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Foreword

Human activity recognition and understanding have been explored in various
domains for a long period. Vision-based and sensor-based activity analyses are
progressing amazingly with the advent of various IoT sensors and video cameras.
The impacts are very high for the present and the future of the world. There are very
few genuine books on human activity recognition, and these are mainly in the
vision-based field. There is a dire necessity for a comprehensive guideline for the
researcher and practitioner in the arena of IoT sensor-based human activity
recognition.

This book is filling the huge void by introducing 10 excellent chapters—from
the basics of activity recognition to the advanced deep learning related strategies.
The book has enriched itself by introducing a number of pragmatic challenges for
future research issues. It has a great collection of important references at the end
of the book so that readers can go through for further study. The chapters ended
with some thought-provoking questions. The book will be very much valuable for
now and in the coming years, especially for the undergrad (final year) and Master’s
course in universities as well as for researchers.

I know Prof. Md Atiqur Rahman Ahad for almost a decade. He has been
engaged in research activities and promoting research extensively for a longer
period. He has published two books as a single author on vision-based human
action recognition in 2011 and 2013. The books are available in Springer. From the
records of Springer, it is found that these are well-read and very useful until now.
Introducing another book on IoT Sensor-Based Activity Recognition is a great move
by him. Other co-authors are young and highly-promising researchers as well.
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I am very delighted that the book is published by Springer and I am confident
that it will get huge circulation in the academic and research communities. I thank
Ahad, Antar, and Ahmed for their excellent efforts to produce such a magnificent
book.

August 2019 Toshio Fukuda, Fellow IEEE
IEEE President-elect 2019 (President 2020)

Nagoya University, Japan
Meijo University, Japan

Waseda University, Japan
Beijing Institute of Technology, China

Nagoya, Japan
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Comments from Experts

This timely book on sensor-based activity recognition will serve as an excellent
overview of the state of the art and a roadmap for what is to come in this area. The
authors have nicely presented the relevant problems, approaches, challenges, and
opportunities in human activity recognition, identified the most relevant related
research, and provided useful summaries and thought-provoking questions for each
chapter. In reading this book, readers will gain from their combined expertise and
learn important principles for approaching a range of related problems. I highly
recommend it.

Matthew Turk, IEEE Fellow, IAPR Fellow,
President, Toyota Technological Institute at Chicago.

This compilation brings together successfully different aspects and use of IoT
sensors in Human Activity Recognition (HAR) with applications in healthcare,
elderly people monitoring, fitness tracking, working activity monitoring and more
encompassing 150 or so benchmark datasets and dataset repositories for pattern
recognition, machine learning, context awareness, and human-centric sensing. In
addition to discussing and introducing multiple performance evaluation techniques
for use in both video-based and sensor-based (environmental, wearable, and
smartphone) HAR, the book highlights deep learning methods to solve the problem
of shallow learning using hand-crafted features in conventional pattern recognition
approaches.

Mohammad Karim, IEEE Fellow, OSA Fellow, SPIE Fellow,
Provost, Executive Vice Chancellor, University of Massachusetts Dartmouth.

It is many years now since I first wondered whether people could be recognised
by their gait. Then, computers were slow, memory was expensive and
accelerometers were enormous. Rolling on 20 years, we find that computers are
fast, memory is cheap and the notion that gait is individual to each person is widely
accepted. There has also been tremendous progress in sensors and in their analysis
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and there is now a rich selection of techniques to enable recognition by this. We
also now have the IEEE Transactions on Biometrics Behavior and Identity Science.
And now we have a book on Sensor-based Activity Recognition. Enjoy!!

Mark Nixon, IET Fellow, IAPR Fellow,
BMVA Distinguished Fellow 2015, University of Southampton.

The book has comprehensive coverage on an increasingly important topic as we
start to see more and more wearable devices. The chapters are structured well, with
excellent illustrations and activities for use in a graduate or upper-level under-
graduate course.

Sudeep Sarkar, AAAS Fellow, IEEE Fellow, AIMBE Fellow, IAPR Fellow,
University of South Florida.

The book is a timely, badly needed, and important treatise on IoT and sensors.
Well exposed concepts and algorithms supporting ways of realizing processes of
recognition and classification of human activities. Thorough discussions on algo-
rithms, sensing devices and tools as well as benchmark data sets are a genuine asset
of this monograph.

Witold Pedrycz, IEEE Fellow,
University of Alberta.

Great work! I especially like the multifaceted approach that includes the design
of experiments and the use of available tools, hardware, and methods specifically
tailored to activity recognition research.

Kristof Van Laerhoven, Professor,
University of Siegen.

It is one of the most comprehensive, easy-to-read books about the human
activity recognition in this modern IoT and Big Data era. Technologies mentioned
in this book are up-to-date. Both researchers and practitioners should read this book
to grasp its critical ideas and recent advancement.

Atsushi Inoue, Professor,
Eastern Washington University.

This is a cutting-edge collection of theories, technologies, and views on digital
human activity recognition. The book is a must-read for students and researchers in
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the field of IoT sensor-based human activity recognition and its applications. No
other book has presented results of this research in a more convincing way.

Anton Nijholt, Professor
University of Twente.

The elaborate explanations and benefits of utilizing deep learning over con-
ventional pattern recognition approach in the field of human activity recognition
with sensor modalities will be beneficial to the research community. Besides,
comfortable and straightforward approach of representing benchmark datasets,
device information, data collection protocol, and other solution of existing and
possible challenges has made this book a must-read.

Mahbub Hassan, Professor
University of New South Wales.

An excellent book that provides an overview of human activity recognition
based on wearable and smartphone sensors.

Vishal M. Patel, Asst. Professor
Johns Hopkins University.

Small Internet-connected devices with sensors have spread widely to many
different application domains. This has left a distinct need for an in-depth look at
this emerging field. Developers and researchers who are new to the IoT world will
greatly benefit from this comprehensive volume, which helps satisfy that need.

Walter J. Scheirer, Asst. Professor
University of Notre Dame.

In this book, the authors systematically discuss various components of a
sensor-based activity analysis system starting from preprocessing up to perfor-
mance evaluation. The book provides a clear idea about the purpose and necessity
of each component through well-written texts, clean illustrations, and nice
data-visualization. The exercises in the ‘Think Further’ sections at the end of each
chapter are well formulated. The book will be a very good first read for any
newcomer in the activity analysis domain. On the other hand, the chapters on recent
trends and future challenges can provide foods for thought to the experts.

Upal Mahbub, Senior Engineer
Qualcomm Technologies, Inc.
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Preface

The accelerometer was invented in 1783. Though the initial purpose of using
accelerometer was to validate the principles of Newtonian physics, with the
advancement of the technology, it has become a popular component in the domain
of IoT sensor-based Human Activity Recognition (HAR) in the present days.
However, inventions of other sensors (e.g., gyroscope, magnetometer, pressure
sensor) enrich this domain a lot. These sensors carry a lot of information, but they
are in the form of raw data. There is a plenty of useful information and pattern
underneath these raw data, but we need to extract some meaningful inherent
information from the data and decipher some patterns. Therefore, we aim to present
the tools and techniques, step by step, in this book so that one can acquire the idea
of the primary approaches for HAR and progress thereafter. This book cuts through
the basic concept of sensor-based human activity classification and demonstrates
exactly how and from where to begin with, if someone is a newcomer in this
research arena.

We can divide this book into three parts:

• At the beginning, we discuss different approaches of HAR, different types of
filters for removing noises from the raw data, various parameters of those filters,
and their effects, and different types of windowing techniques. Following these
aspects, we amass several essential features in the time, frequency and other
domains that are conventionally explored by the researchers. We enlighten on
how to select important features, deduce surplus features, prepare them for the
classification, and classify various activities using those features.

• In the next part of this book, we scrutinize distinctive issues and factors that we
have to consider while designing a new dataset related to sensor-based human
activity analysis. Moreover, we introduce different tools and applications that
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are exploited for data collection. In this book, we summarize about 150
benchmark datasets and categorize them with some important features.

• In the final section of the book, we present more information about classification
and evaluation strategies. We bestow on deep learning concepts and how this
extremely flourishing domain can solve the problems of classification faced by
the conventional statistical classifiers. Finally, we demonstrate a number of
future challenges that one can ponder on for further developments.

We introduce some thought-provoking questions at the end of each chapter. We
strongly recommend that a reader explore the entire book to get a comprehensive
exploration of sensor-based human activity recognition and analysis.

We are delighted to present this book for the students of upper level of undergrad
and postgraduate, as well as, researchers in academia and industry—in the domain
of IoT, sensor, HAR, healthcare, machine learning and related fields. We firmly
anticipate that this book will be a genuine companion on the IoT Sensor-based
Human Activity Recognition journey. We have been engaged ourselves for this
book for about three years’ period, and we kept on polishing the book for a longer
period to enrich the content and the clarity.

We are indebted to Toshio Fukuda, Fellow IEEE, IEEE President 2020 for his
time to write the ‘Foreword’ of this book. We would like to offer our sincere
gratitude to a panel of great researchers who poured their valuable time and
comments to enrich the book. We would like to mention them with our sincerest
gratefulness: Matthew Turk (IEEE Fellow, IAPR Fellow, President, Toyota
Technological Institute at Chicago), Mohammad Karim (IEEE Fellow, OSA
Fellow, SPIE Fellow, Provost, Executive Vice Chancellor, University of
Massachusetts Dartmouth), Sudeep Sarkar (AAAS Fellow, IEEE Fellow, AIMBE
Fellow, IAPR Fellow, Professor, University of South Florida), Witold Pedrycz
(IEEE Fellow, Canada Research Chair, University of Alberta), Mark Nixon (IET
Fellow, IAPR Fellow, BMVA Distinguished Fellow 2015, Professor, University of
Southampton), Diane J. Cook (IEEE Fellow, FTRA Fellow, NAI Fellow,
Huie-Rogers Chair Professor, Washington State University), Kenichi Kanatani
(IEEE Fellow, Professor Emeritus, Okayama University), Atsushi Inoue
(Professor, Eastern Washington University), Kristof Van Laerhoven (Professor,
University of Siegen), Anton Nijholt (Professor, University of Twente), Mahbub
Hassan (Professor, University of New South Wales), Vishal M. Patel (Asst.
Professor, Johns Hopkins University), Walter J. Scheirer (Asst. Professor,
University of Notre Dame.), and Upal Mahbub (Senior Engineer, Qualcomm
Technologies, Inc.).

We want to thank everyone who encouraged and assisted us to accomplish this
book. Finally, we are grateful to the Springer and Prof. Lakhmi Jain for their
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endorsements and publishing the book. We will be delighted to have your valuable
feedback on this book. Enjoy the book!

Osaka, Japan Md Atiqur Rahman Ahad, SMIEEE
Associate Professor, Osaka University

Professor, University of Dhaka
atiqahad@du.ac.bd

http://ahadVisionLab.com
http://cennser.org/ICIEV
http://cennser.org/IVPR

http://cennser.org/IJCVSP
https://abc-research.github.io/

Michigan, USA Anindya Das Antar
adantar@umich.edu

Maryland, USA Masud Ahmed
mahmed10@umbc.edu
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Chapter 1
Introduction on Sensor-Based Human
Activity Analysis: Background

Abstract The constant growth of sensor-based systems and technologies for the
detection of human activities has made notable progress in the field of human-
computer interaction. The continuation of Internet connectivity into daily objects
and physical devices has made it possible for the researchers to use IoT sensors for
healthcare, elderly people monitoring, fitness tracking, working activity monitoring,
and so on. The prominent application fields of sensor-based activity monitoring sys-
tems are many, but not limited to, pattern recognition, machine learning, context
awareness, and human-centric sensing. If a salient investigation is performed on this
topic by fellow researchers, this can create a vital turn in the way of interaction
among people and mobile devices. In this book, we have bestowed a comprehensive
survey showing the various aspects of human activity recognition based on wearable,
environmental, and smartphone sensors. After discussing the background, numerous
factors have been analyzed for the data pre-processing part regarding noise filtering
and segmentation methods. The list of sensing devices, sensors, and application tools
listed in this book can be used for the activity data collection efficiently. Moreover,
a detailed analysis of more than 150 benchmark datasets and dataset repositories in
this book includes information about sensors, attributes, activity classes, etc. These
datasets sum up several types of sensor-based daily activities, medical activities, fit-
ness activities, transportation activities, device usage, fall detection, and hand gesture
data. In addition to these, we have shown the feature extraction and classical machine
learningmethods in detail. Moreover, the overview of different types of classification
problems has been given along with the discussion on several performance evalua-
tion techniques showing their advantages and limitations. Furthermore, we have also
discussed the importance of deep learning methods to solve the problem of shallow
learning using hand-crafted features in conventional pattern recognition approaches.
Finally, we have presented a summary of activity recognition methods focused on
recent works in several benchmark datasets, and mentioned some future challenges
regarding data collection, design issues, and other prospects.
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2 1 Introduction on Sensor-Based Human Activity Analysis: Background

1.1 Introduction

Human activity recognition (HAR) has been one of themost dominant and influential
research subjects in various fields over the last few decades, including mobile com-
puting [3, 4], machine learning, context-aware computing [5, 6], security based on
surveillance [7–10], energy expenditure estimation [11–13] and analysis [14, 15],
fall detection [16, 17], fall risk assessment [18], motor rehabilitation [19], trans-
portation activity monitoring [20, 21], age and gender estimation [22, 23], cardiac
monitoring [24], and ambient assistive living [25–27]. The goal of activity recogni-
tion is to identify the actions executed by a people delivered a set of inspections of
itself and the enclosing environment. HAR seeks to understand people’s everyday
activities by examining insights gathered from individuals and their surrounding liv-
ing environments. This knowledge is gathered from various IoT sensors embedded
in smartphones, wearable devices and home settings [28]. Cameras and video-based
devices are also used in the domain of computer vision (e.g., as RGB frames, Depth
maps, and skeleton joints) to record day-to-day human activities for automated recog-
nition systems [29–32].

Comprehensive growth of low-power, low-cost, and miniaturized but high-
capacity- or density-based sensors, along with the flourished wired and wireless
communication networks [33–35], the sensor-based domains have emerged tremen-
dously. Therefore, interactions with devices and human beings have progressed a
lot. Sensors become integral parts of our daily lives in most of the sectors. Besides,
in present days due to the access of various sensors in smartphones, there has been
a transformation towards portable mobile phones in current years from dedicated
wearable motion sensors. We have shown some basic embedded smartphone sensors
in Fig. 1.1, which can be utilized in activity recognition.

Though there are numerous applications, the extensive goal ofmost of the research
works in human activity identification is the remote monitoring of the regular activi-
ties of people, especially of pregnant women, elderly people, and hospital patients. It

Proximity sensor

Ambient light sensor

Image sensor

GPS sensor

Accelerometer

Humidity sensor Microphone Touch sensor

Gyroscope

Magnetometer

Fingerprint sensor

Pressure sensor

Temperature sensor

Fig. 1.1 Basic embedded smartphone sensors to monitor human activities
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Fig. 1.2 Application areas of human activity recognition (HAR)

is targeted to have 24hr monitoring or evaluation to provide them ubiquitous health
and well-being supervisions [36]. According to the current population benchmark,
the world population is increasing expeditiously. If we look at the World Population
Aging Report 2019, we will find that number of persons aged 65 or over in 2019
was 702.9 million all over the world. It is expected to be 1548.9 million within 2050
(120% change within 30years). Moreover, in 2019, these numbers were 200.4 mil-
lion in Europe and Northern America, 119 million in Central and Southern Asia,
260.6 million in Eastern and South-Eastern Asia, 4.8 million in Australia and New
Zealand, and 56.4 million in Latin America and the Caribbean [37].

Besides this, the condition worsens by the rapid increase of nuclear families and
abroad or big cities from rural areas or remote islands going students, job-seekers
who have to leave their older parents alone at home. This condition desires more
welfare services and provisions to the elderly support system and by tracking their
daily activities, we can remotely monitor them. The same process can be useful for
the supervision and fast response to pregnant women and patients suffering from
infirmity or persistent disorders such as Parkinson’s disease (PD), autism, and visual
impairments [38]. Likewise, patients suffering fromdementia, flu, and insanity can be
monitored to detect anomalous activities and thereby inhibit unwanted consequences
[39, 40]. We have summarized the application areas of human activity recognition
(HAR) in Fig. 1.2. These are:
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Elderly user with
wearable devices 

Accidental activity Location detection
server Emergency alert

Fig. 1.3 A basic system design to monitor accidental activities using wearable sensors

• Any undesirable change in elderly people’s daily activities while they commute
from one place to another or any kind of unanticipated condition that brings a
drastic change in their daily activity can be monitored and their lives can be saved
by sending an alarm to their nearest ones as shown in Fig. 1.3.

• In daily physical exercise monitoring, we can also use the activity recognition
process, like jogging, walking, running, etc. Furthermore, the recognition of static
activities, e.g., like, sitting, standing, etc. alongwith dynamic activities with postu-
ral transitions like sitting to stand, stand to walk, etc. It can be assistive to monitor
the workers, their fatigue levels, working rates, etc. in working sectors [41–46].

• Such assessments and programs can be essential if people are to maintain a healthy
lifestyle by recommending minute behavioral corrections. For instance, we can
inspire the users to avoid elevators and use stairs regularly, or we can alarm them
to stand after an elongated span of sitting at workplaces.

• On-body sensing devices can also help to detect drug-seeking behavior by exploit-
ing respiratory, cardiac and other vital signals [47].

• In strategic circumstances, soldiers are expected to obtain detailed information
about their actions, health conditions, and locations for protection and safety pur-
poses. This knowledge can be particularly useful in combat and training conditions
when it comes to decision taking.

• Smart home [48, 49] for daily activitymonitoringor activities of daily living (ADL)
can provide external sensing to monitor moderately complicated or complex daily
activities (e.g., cooking, working on a computer, using utensils, brushing teeth,
using toilet, eating lunch, etc.). This concept is based on numerous sensors merged
in different locations of home and home appliances, which users are assumed to
interact with (e.g., bed, faucet, stove, washing machine, oven, and locker).

• Camera-based systems have been extensively explored for video-based surveil-
lance (e.g., intervention disclosure) and interactive purposes. Kinect game console
[50], which has been developed by Microsoft has been used for depth maps and
skeleton-based applications.
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Fig. 1.4 Approaches for human activity recognition

1.2 Approaches to Human Activity Recognition

To achieve the goal of recognizing human activity, we need systems with sens-
ing capabilities that recognize activity. For this reason two approaches are mainly
employed:

• Video-based action or activity recognition and
• Sensor-based human activity recognition.

Sensor-based human activity recognition approaches are split into the following
three categories:

• Environmental sensor-based activity recognition,
• Wearable sensor-based activity recognition, and
• Smartphone sensor-based systems, as shown in Fig. 1.4.

1.3 Comparison of Different Approaches

Abasic comparison of different approaches of human activity recognition techniques
and procedures have been analyzed in detail mentioning different modalities in this
section. The advantages and disadvantages of these approaches have also been dis-
cussed in detail.

1.3.1 Video-Based Activity Recognition

Video-based approaches often work well indoor environment, especially for depth
map-based methods. However, these video-based methods do not succeed to achieve
comparable results in outdoor or in real-life situations. Some of the core challenges
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are: variable lighting conditions—hence, variations in illuminations, cluttered envi-
ronments, and high diversification of actions that take place in natural surroundings
and so on [51, 52]. In a multi-person scenario, an individual’s action understanding
and segmenting each subject are extremely difficult tasks. Moreover, this system is
expensive, infrastructure dependent, and hampers privacy. So, we have focused on
sensor-based human activity recognition, as this field is growing more attention in
recent days.

1.3.2 Environmental Sensor-Based Activity Recognition

Environmental sensor-based systems consist of ambient sensors, which are dissem-
inated throughout the subject’s sustenance environment. This kind of systems pas-
sively monitors their occupants, thus the users do not need to operate manually. A
variety of sensors can be used for this purpose to monitor a vast amount of param-
eters. Ambient sensors are easy to install and they have fewer limitations in terms
of size, weight, and power than other types of sensors, which simplifies the system
design. However, the main problem regarding these sensors is infrastructure depen-
dency and failure of monitoring subjects outside the home environment. Also, they
manifest complications to differentiate between the subject to be monitored and the
neighborhood in the residence.

1.3.3 Wearable Sensor-Based Activity Recognition

Wearable sensor-based systems are intended to be attached to a part or multiple
locations of the human body during daily activities. These are mostly done for the
continuous measurement of activity records, physiological and biomechanical data
collections, irrespective of subject’s locations [53–55]. Over an extended period,
wearable sensors are suitably adapted to gather data on regular physical activity
patterns as they can be integrated into jewelry [56], clothing [57], earbud [58], or
worn as wearable devices like a smartwatch, wristband, gloves, etc.Wearable sensors
can capture some physiological data and regulate some parameters, which may not
be measurable by using camera devices or ambient sensors. The reason is that an
wearable sensor remains attached to the monitoring subject and it is invariant of any
environment (usually) and any infrastructure.

For example, wearable sensors are extensively used for monitoring of activities
like sleep monitoring (though there are different types of sensors or systems for sleep
monitoring and performances vary significantly from one to another). Moreover,
these sensors are cheaper than other types of sensing methods like audio, video,
EEG, ECG, etc. and they have no typical privacy issues, unlike video sensors. On-
body sensors are proficient in measuring a variety of body signals including motion,
physiological signals, location, etc. [59]. This capability not only enhances patient
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monitoring task but also provides portable and remote supervision of elderly people.
But unfortunately, two of the main constraints of on-body sensors are the discomfort
while wearing sensors by a patient or elderly person, and various vulnerabilities.
Battery-life is another important concern. Moreover, it will be harder to make the
wearable system stable while performing daily activities, which creates fluctuations
in accelerometer and gyroscope data.

1.3.4 Smartphone Sensor-Based Activity Recognition

Nowadays, smartphones arise from the combination of new advantages and features
(e.g., Internet access, location-based services, gaming, and multi-sensing capabili-
ties) that complement the conventional telephone service. Smartphones can play a
critical role in exploring novel solutions for retrieving data directly from the con-
sumers. One of the benefits of today’s mobile developments is that they combine
inertial sensors such as accelerometers, gyroscopes, magnetometers and so on that
can be used for work on detection of human activities.

However, a smartphone may run a number of active applications and sensors, and
data transfer. These can quickly commit for energy loss of the smartphone’s battery.
Besides, it requires various floating-point operations to be carried out per second if
we want to exploit different models for human activity recognition on smartphones.
However, this may not be an issue but this could lead to a problem with quick battery
discharge, which can affect user’s attention. However, fixed-point arithmetic based
system reforming the multiclass conventional Support Vector Machine (SVM) can
solve the problem [60]. Another positive side of activity data collection using internal
smartphone sensor is flexibility. We can easily engage lots of users with smartphones
for the data collection process and access the data using a mobile application. For
all these reasons, smartphone sensor-based activity recognition is an open research
area considering the challenges of less battery usage, sensible way of data collection,
behavior pattern analysis, etc.

However, recognizing daily activities will be a great difficulty for an autonomous
system and a vast number of other sensory data will be required. Because of the
deficiency of good review of the structural basis of activity recognition and lacking
relevant benchmark dataset information, most of the researchers find it difficult to
research in this field. There are several good survey papers like [9, 61, 62] on vision-
based activity recognition technique but there is a lacking of comprehensive works
on sensor-based activity recognition, which is needed for the community.

Therefore, in this book,we have summed upmore than 150 benchmark datasets on
wearable, smartphone, and environmental sensor-based human activity recognition
along with fall detection [17] and transportation activities.
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1.4 Outline of the Book

The basic outline of this book have been presented below that covers a background
analysis of human activity recognition research with sensor modality, methods of
data preprocessing, feature analysis, conventional pattern recognition approaches
used in previous research works, existing challenges, information about available
sensing devices, analysis of benchmark datasets, overview of classification problems,
performance evaluation techniques, evolution of deep learning-based approaches,
and future challenges.

• In this chapter includes an introduction to the definitions, concepts and principles
of human activity recognition systems along with the historical perspective, where
intentions and motivation of research in this field have been clarified.

• The importance of human activity recognition (HAR), its application in numerous
fields have been also discussed. Besides, several ways for pre-processing and
segmentation steps of raw-sensor data have been discussed in Chap.2.

• Chapter3 provides feature extraction, selection and classification procedures.
• We have presented some challenges in human activity recognition regarding var-
ious determinants including the number of activity classes, the types of classes
and their relationships, choice of sensors, energy consumption, data collection
protocols, etc. in Chap.4.

• Chapter5 provides a brief description of a number of sensing devices, systems and
application tools that can be used in making a dataset on activity recognition.

• We have provided an in-depth presentation for more than 150 benchmark datasets
in Chap.6. We have discussed some required information of those datasets under
various categories and have added dataset reference, availability, name, and num-
ber of sensors, devices being used, number of subjects, number of activity classes,
etc.

• In Chapter7, we have given an overview of classification problems (binary classi-
fication, multi-class classification, etc.) using proper explanation with examples.

• The performance measure and evaluation matrices (confusion matrix, ROC curve,
accuracy, precision, recall, etc.) to justify the performance of classifiers have been
discussed in detail in Chap. 8.

• Chapter9 shows the evaluation of deep models to solve the poor generalization
and shallow learning problem of conventional pattern recognition approach.

• We have introduced various future challenges in the field of human activity recog-
nition (HAR) in Chap.10. Finally, this chapter concludes and provides directions
for future research.

1.5 Conclusion

In this chapter, we have presented sensor-based activity recognition related various
aspects after analyzing the background. There are different approaches on sensor-
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based activity recognition and some glimpses are presented in this chapter. It is to be
noted that video-based action/activity recognition strategies are different from basic
wearable sensor-based activity recognition. Variations among different parameters
are widely varied in both categories. The advantages and disadvantages of using
different sensor modalities for activity recognition can be found in this chapter.

1.6 Think Further

1. What are the application areas of Human Activity Recognition (HAR)?
2. What are the basic approaches for HAR?
3. Which type of sensors can be used in HAR?
4. What are the drawbacks of vision-based human activity recognition approach?
5. What are the benefits of sensor-based human activity recognition?
6. What are the major settings and differences among environmental, wearable,

and smartphone sensor-based HAR?
7. How can we solve user comfort issue in the case of wearable system?
8. What are the application areas of environmental sensor-based HAR system?
9. What are the importance of remote monitoring of elderly people?
10. What are the motivations behind sensor-based HAR research?
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Chapter 2
Basic Structure for Human Activity
Recognition Systems: Preprocessing
and Segmentation

Abstract Automatic recognition of human activities using sensor-based systems is
commonly known as human activity recognition (HAR). It is required to follow a
structural pipeline to recognize activity using a machine learning technique. This
chapter represents the different stages of this structural pipeline in detail. Following
this, the preprocessing steps have been analyzed to clean and remove noises from
raw sensor data. The importance of segmentation and criterions to select the best
windowing method have been also described based on previous research works.
The challenges regarding the selection of window length, window type, choosing
overlapping percentage, and the relation between window duration and performance
have been also investigated in the end.

2.1 Basic Structure for Human Activity Recognition
Systems

Human activity is the summation of human action, where action can be defined as
basic and the smallest element of something done by a human being [1, 2]. Human
activity recognition is not a simple task as there can be a periodic occurrence of
an action, two activities may have almost similar properties. Besides, it varies from
person to person how an activity is performed. Moreover, occlusions, environmen-
tal noises, sensor orientation, and data acquisition issues make the task of accurate
recognition more difficult [3–6]. There are several ways to derive information from
raw sensor data about everyday human activities [7]. We can summarize the fun-
damental steps as pre-processing of raw sensor data, segmentation of filtered raw
data, feature extraction and classification. Figure2.1 depicts a generic architecture
for sensor-based human activity recognition (HAR) systems.
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Fig. 2.1 A simple structure for sensor-based human activity recognition

2.2 Pre-processing of Raw Sensor Data

2.2.1 Noise Filtering

The direct use of raw sensor data for further analysis is not a good idea, as the signal
is made up of several components and there can be intrinsic noise components. The
very first stage in pre-processing the data is noise filtering. Normally, four filters,
such as a median filter, a low-pass filter, a discrete wavelet package shrinkage, and a
Kalman filter as shown in Fig. 2.2 are used to eliminate acceleration and gyroscope
noise [8–11]. However, when choosing one or more filters, we need to be careful
about the signal-to-noise ratio (SNR), the correlation coefficient (R) between the
filtered signal and the reference signal, the cut-off frequency, the waveform delay,
the filter size, the window length, etc., as shown in Fig. 2.3.

Kalman filters normally show larger SNR and R-value. Following the order then
comes median filter, discrete wavelet package shrinkage, and finally Butterworth
low-pass filter (with waveform delay). The performance of a Butterworth low-pass
filter can be improved by correcting the waveform delay by adjusting filter order
and cut-off frequency. Real-time efficiency and waveform delay are two significant
factors to be considered in the case of sensor-based activity recognition if we want
to develop algorithms for filtering sensor noises. Because of the use of previous data
only to estimate the current state, the Kalman filter shows good real-time perfor-
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Fig. 2.3 Factors to choose appropriate filter for sensor data

mance with a short delay. Performance of the median filter is related to its window
length, N when applied in real-time. The reason behind this is the waiting time for
about N/2 future data points to perform filtering. In case of discrete wavelet package
shrinkage, decomposition level influences real-time performance. In spite of hav-
ing little waveform delay, This filtering process requires to wait for at least 2 j for
potential data points to eliminate the noise, where j refers to decomposition level.

Butterworth filter is a casual system and does not need to wait for future data.
But, we need to select the order of the filter and the cut-off frequency very carefully
if we want to minimize waveform delay in the case of a Butterworth low-pass filter.
By minimizing waveform delay for Butterworth filter, we can get better SNR and
R-value than Kalman filter. Human activity frequency is usually about 0–20 Hz [12].
So, it is a good idea to choose the cut-off frequency of the Butterworth low pass filter
to be 20Hz to eliminate high-frequency noises. Filter order needs to be chosen based
on the accuracy check, graphical analysis, and to ensure minimum waveform delay
based on the sampling rate of data collection.
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2.2.2 Separating Gravitational and Body Acceleration
Component

Accelerometers respond to both gravitational and body acceleration but in case of
a gyroscope, there is no gravitational part related to body orientation. So, the only
reading we get from the gyroscope is due to the body movement. For more precise
recognition of static and dynamic activities, if the accelerometer is used, it is better
to separate body acceleration (BA) and gravitational acceleration (GA) components.
We can get information about spatial orientation from the gravitational acceleration
component whereas, body acceleration component is related to the movement of the
device. So, we can use GA element related features to determine static activities and
BA component related features to identify dynamic activities. These two components
overlap in frequency.

A study in [8] has shown that while body acceleration has a frequency band from
0 to 20Hz, most of the elements are above 0Hz and below 3Hz. This range overlaps
the region covered by the gravitational component, which is generally between 0
and 1Hz. This makes it difficult to differentiate those two components. So, based
on accuracy check, Butterworth low-pass filter with corner frequency in between
0.1–0.5Hz [13–15] can be used to separate GA component. Then subtracting this
GA component from raw filtered data, we can get BA component. This process has
been shown in Fig. 2.4.

Filtered
acceleration data

 (0.1 - 0.5) Hz

Gravitational 
acceleration (GA)

acceleration – gravitational acceleration (GA)

Fig. 2.4 Separation of body acceleration (BA) and gravitational acceleration (GA)
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2.2.3 Converting Categorical Data to Numerical Data

Categorical data are variables that contain values for the label rather than numerical
values. Such categorical data do not help many of the learning algorithms. They
require all numeric input and output variables. Therefore, we need to convert these
categorical data into numerical data. There are two significant ways for this conver-
sion namely:

• Integer encoding
• One-hot encoding

Integer encoding is the simplest encoding method and easily reversible. For each
category, we can assign a unique integer value. For example, we can think about a
dataset with three activity labels where the walk is 1, the run is 2, and the stand is 3.
Integer encoding can serve the purpose for some variables due to the natural ordered
relation between them. Most of the machine learning algorithms can recognize and
link this relationship. But we can implement this encoding method only if there is an
ordinal relationship exists between the variables. The ordinal relationship represents
a sequence in which something is related to others of its kind. For example, there is a
variation of features (mean and standard deviation of acceleration) for the mentioned
activities which incorporates an ordinal relationship. To be more precise, the mean
acceleration for the running activity will be higher than stand activity.

If there is no ordinal relationship between the variables like for categorical or nom-
inal variables containing label values rather than numeric values, the integer encoding
is not enough. If we still perform integer encoding for the variables without an ordi-
nal relationship, the model will assume a natural ordering between categories may
result in poor performance. In this case, we need to use the one-hot encoding. Instead
of an integer variable, we can use binary variables to represent that data. One-hot
encoding converts the categorical features into a format that fits best with algorithms
for classification and regression. Some algorithms, such as random forests, manage
native categorical values. Then, a hot encoding is not required.

2.3 Segmentation of Filtered Data

For continuous activity and motion detection, it’s not easy for us to recover useful
information from a continuous stream of sensor data. Therefore, we need to seg-
ment continuous stream into some segmented data form. To improve specific signal
properties, various segmentation techniques can be used to obtain relevant informa-
tion from a perpetual stream of data [16]. In this process, the sensor signal must
be initially split into smaller time segments (windows). Later features are extracted
from each window sample that is fed to the suitable classification algorithm. In the
case of real-time data, windows need to be defined during the same period with data
collection, which produces a perpetual real-time activity profile.
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Segmentation is the process which divides sensor signals into smaller data seg-
ments. In the case of activity recognition field, most of the segmentation strategies
can be classified into three groups:

1. Activity-defined windows
2. Event-defined windows
3. Sliding windows

2.3.1 Activity-Defined Windows

Activity-defined windowing procedure partitions sensor data stream based on the
detection of changes in activity. Before identifying the specific activities explicitly,
initial and endpoints need to be determined for each activity.

2.3.2 Event-Defined Windows

The basic technique of event-defined windowing approach is to locate specific events
for further use. In this way, we can determine successive data partitioning. Pre-
processing is required to locate specific events for event-definedwindows.The events,
in this case, may not be uniformly distributed in time. This is why window size
does not play an important role. This analysis is mostly used in gait analysis along
with the detection of heel strikes and toe-offs events. [17, 18] have presented some
methods where windoing techniques are explored. Heel strike represents the initial
floor contact while walking, and toe-offs represents the end of floor contact.

2.3.3 Sliding Windows

The sliding window approach which is referred to as “windowing”, is themost exten-
sively applied segmentation technique in the field of sensor-based human activity
recognition. This method is simple for implementation and it requires less amount
of preprocessing, that suits applications in real time. In this technique, the sensor
signals are divided into windows of a fixed size and duration. This is your choice
to keep no inter-window gaps or to choose a certain amount of overlap between
adjacent windows. For some applications the overlap between the adjacent windows
is allowed, where the activity is continuous enough and a sudden transition does not
occur much.

Based on Banos et al. [19], the main contributions to each type of segmentation
technique for on-body sensing activity recognition are summed up in Table2.1.
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Table 2.1 Principal
segmentation techniques in
numerous research works

Segmentation type References

Activity-defined windows [15, 20–29].

Event-defined windows [30–41].

Sliding windows [42–72].

2.3.3.1 Factors to Select Window Length

For the segmentation process, certain variables need to be considered when choos-
ing window duration in sliding windows. A study [73] showed that the quality of
extracted features are better from smaller windows as it creates the possibility to
generate distinguishable features to separate activities. But due to more number of
feature vectors from smaller size windows, it slowdowns the identification result
rate for the end-user. Besides, if the activities are carried out for a short time, there
is a high risk of identification failure in the event of longer windows. The optimal
length of the window should be calculated depending on the operation being carried
out. Moreover, we need to be careful enough while choosing the number of frames
in case of windowing the sensor data. This is guided by a trade-off between two
perspectives [74]:

• Information and
• Resolution.

When choosing the window length, long windows will include more information
about an activity when a subject is performing only that single activity. This is how
data is collected under laboratory set up. There is a common assumption behind
the windowing technique while collecting data under lab set up that in general, a
window will contain only a single activity no matter how long the window is. This
hypothesis is likely to be breached in everyday life, where we can not control the
activity changes and transitions.

2.3.3.2 Window Overlapping Issue

In previous studies, window size has been ranged from 0.08 second to 7 seconds
mostly, which is shown in Table2.2. Besides, some studies have indicated a fixed
percentage of overlaps between neighboring windows [45, 75–77], whereas some
studies preferred disjoint windows or non-overlapping windows [56, 78–80]. In
the case of data points where each interval contains a piece of information that is
unrelated to other intervals, non-overlapping windowing technique produces more
precise results. Overlapping plays an important role when the signals at each interval
are dependent of the other interval signals.

In case of processing the intervals separately, if the windows are not overlapping,
we will be missing any information at the boundary of the windows. This is why we
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Table 2.2 Window length in
numerous research works

Window duration (second) References

0.08 [81]

1 [78]

1.5 [79]

3 [80]

5 [56]

7 [82]

use overlapping windows in short-time Fourier transforms (STFT) so that one of the
windows will capture any jump in the signal curve and it will show in our analysis.
If we use non-overlapping windows, we will miss the jumps in the signal curve and
assume the signal is smooth. Studies have been showed that overlapping windows
can handle the transitions more accurately [77]. On the contrary, to overcome the
problem of misclassification due to transition, non-overlapping window duration
should be small.

From [46], we have found that features derived from window lengths of one and
two seconds on average achieve imperceptibly higher precision values than those
with other window lengths. However, there are notable differences across different
behaviors. If we can pick many lengths of windows for various tasks, this will lead
to better rates of identification. From [46], we have also found that higher window
times attain more precision for activities with higher velocity (e.g., the 2 s and 4s
window for skipping and hopping). For activities with moderate or lower velocities,
windows with lower duration are preferred (e.g., the 1 s window for jogging and
walking, and the 0.25 s and 0.5 s windows for standing and sitting).

2.4 Conclusion

In this chapter, we have summarized the basic architecture of a sensor-based human
activity recognition system. The principal aspiration of this chapter is to show a
detail explanation about the preprocessing steps of raw sensor data to get better
performance. We have analyzed four types of noise filtering techniques with their
pros and cons. Following this, the advantage of separating the input acceleration
signal into the body and gravitational acceleration has been investigated. Finally, we
have given a complete explanation of choosing the proper segmentation technique,
their advantages, disadvantages, and parameter selection showing examples from
previous research works.
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2.5 Think Further

1. What is the general architecture of a Human Activity Recognition (HAR) sys-
tem?

2. Should we explore raw data directly for classification? Why or why not?
3. What are the basic preprocessing steps of raw sensor data?
4. Which filters can be used to filter out noises from raw sensor data?
5. What are the factors that need to be taken care of while choosing filters?
6. What are the pros and cons of Kalman filter?
7. What are the pros and cons of median filter?
8. What are the pros and cons of wavelet package shrinkage filter?
9. What are the pros and cons of Butterworth low-pass filter?
10. How to choose the cut-off frequency of Butterworth low-pass filter?
11. What are the benefits of separating body acceleration (BA) and gravitational

acceleration (GA)?
12. How to separate BA and GA component from acceleration data?
13. What are the importance of converting categorical data to numerical data?
14. In which cases we need to convert categorical data?
15. What are the importance of segmenting the filtered data?
16. What are the basic categories of segmentation process?
17. What are the basic requirements of choosing window length and window type?
18. What are the issues and benefits of using overlapping sliding window?
19. Based on the previous researches what should be the ideal window length to

classify human activities?
20. What will be the differences in terms of performance in the case of a shorter

window and longer window?
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Chapter 3
Methodology of Activity Recognition:
Features and Learning Methods

Abstract Sensor-based Human Activity Recognition (HAR) has been explored by
many research communities and industries for various applications. Conventional
pattern recognition approaches based on handcrafted features contributed a lot in
this research field by employing general classification approaches. This chapter rep-
resents those handcrafted features in time and frequency domain along with their
importance and feature selection methods. Following these methods, this chapter
provides explanations of several conventional machine learning techniques for clas-
sifying sensor data for activity recognition. The problems of overfitting and underfit-
ting have been discussed with remedies. Previous research works using conventional
pattern recognition (PR) approaches on some benchmark datasets have also been
analyzed.

3.1 Introduction on Methods of Activity Recognition

Sensor-based Human Activity Recognition (HAR) has been explored by many
research communities and industries for various applications [1–5]. After some pre-
processing steps and segmentation (if it is required to segment temporally, based
on the available dataset) of raw sensor data, the feature extraction is done from the
processed data. Then, we need to create an algorithm pipeline and model by using
machine learning techniques from the set of feature instances.Moreover, it is required
to train the model that will recognize the activities using the sensor data.

3.2 Features Extraction

In the field of Human Activity Recognition (HAR), due to the oscillatory and highly
fluctuating nature of raw accelerometer signals, as shown in Fig. 3.1, correct identifi-
cation of activity patterns gets complicated. In real life, people normally perform sim-
ilar movements in numerous ways. This can create a large variation in the extracted
features in real-time. To overcome this problem, after the segmentation stage, we
can concentrate to extract features that are more relevant and robust, from the seg-
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Fig. 3.1 Acceleration signals for various activities

mented data. These can be useful in differentiating the activities that are correlated
to each other. In the case of large-scale data, this is necessary to find a high-level
representation so that we can ensure the generalization capacity of the HAR system.

We can regard a feature set as properly extracted feature vector if the feature set
shows a small contrast between replications of the identical actions and across various
subjects. Also, the feature set should alter considerably between various activities.

In most of the research works, existing human activity recognition systems based
on accelerometer data use the statistical approach of feature extraction. Most of the
common features used for activity recognition are the mean and standard deviation.
But there are lots of other features. We can classify these features into the following
categories in general:

1. Time domain or statistical domain features
2. Frequency domain or spectral domain features

Figure3.2 presents the list of features analyzed in previous works.We have shown
a basic block diagram of feature extraction technique in Fig. 3.3.

3.2.1 Time Domain Features

In most of the statistical analysis, an elementary task is to distinguish the location
and variability of the time series data. Time-domain features are usually extracted
directly from a patch of time series data called ’window’. Different types of time
domain features have been extensively explored, e.g., in [6–8], [9–15]. In [16], mean
and standard deviation have been explored for activity recognition.We can represent
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Feature

Time domain Frequency domain

Mean

Standard deviation

Root mean square

Maximum

Minimum

Kurtosis

Skewness

Histogram

Auto correlation

Pairwise correlation

Zero crossing rate Maximum frequency

Median frequency

Power spectral density

Fundamental frequency

Power bandwidth

Fig. 3.2 Time domain and frequency domain features for sensor-based activity recognition

Filtered
acceleration data Segmentation/windowing

Time domain features

DFT/FFT
Frequency domain 

features

Heuristic features

Fig. 3.3 A basic block diagram of feature extraction technique

mean value as the DC component or average value of the signal over a particular
window. The stability of a time series signal can be represented by the standard
deviation, which measures the variability of the signal over a window. We can use
the standard deviation value of the acceleration signal (fromaccelerometer) to capture
the range of possible acceleration values. This can help to distinguish activities or
behaviors that may appear identical in appearance but vary in pace and strength (e.g.,
walking versus jogging versus running). The mean absolute deviation (MAD) was
traditionally used to automatically diagnose epileptic seizures [6].

For the differentiation of static activities (e.g., sitting, lying, etc.) and dynamic
activities (e.g., walk, jog, etc.) and identification of postures,mean plays an important
role [7]. There are other features named variance, median, skewness, interquartile
range, kurtosis, root mean square (RMS), etc. These features have been widely used
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by many researchers [9, 13, 17, 18]. Kurtosis feature denotes the peak of a curve of a
frequency distribution. When using this feature, the estimation of whether the data is
elevated or flat compared to a normal distribution is possible. In fact, the tailedness of
probability distribution of a random variable (real-valued) can be determined along
with the degree of asymmetry of the sensor signal distribution [19].

The degree of asymmetry of the sensor data distribution can bemeasured using the
skewness feature. This function’s inputs are an n-dimensional array with data along
with the axis, along which skewness is computed. The quadratic mean value of the
signal is called root mean square (RMS) value, which is calculated over a window.
In previous researches, this feature has been exploited to distinguish walking patterns
[20]. RMS value feature is popular too in current activity recognition works [21].

Ameasure of the statistical dispersion is represented by interquartile range (IQR).
The difference between the 75th and the 25th percentiles of a signal over a window is
similar to IQR. The interquartile range depicts the dispersal of the data and bypasses
the impact on range produced by extreme values in the data when the mean values of
various classes are alike. This feature has shown its usefulness in epileptic seizures
detection and fall detection [6], likewise median absolute deviation (MAD).

If we want to estimate the intensity and direction of a linear relationship between
two different signals then, signal correlation feature is one of the best choices. In the
case of identifying activities, this feature distinguishes between activities that include
translation in a particular dimension [22]. To determine the degree of correlation,
it is important to measure the coefficients of correlation between the signals along
different axes. Pearson’s coefficient, which is a specimen correlation coefficient is
profoundly used in this manner. It can computed as the ratio of the covariance of the
signals along the x-axis and the y-axis to the product of their standard deviations [23].
In addition, the cross-correlation coefficient has beenused tomeasure the relationship
between acceleration signals fromdifferent axes on the samebody segment and across
different segments [24]. To estimate the self-similarity of time series segments, we
can use the auto-correlation feature in case of activity recognition [25].

Zero-crossing is another temporal domain feature. We can define this feature as a
normalized (by the window length) value of the total number of times that the signal
changes from positive to negative, or the reverse. This feature has been applied
profoundly in both speech recognition and music information retrieval. This is a key
feature to recognize the neighboring circumstances or the type of sounds such as
music, speech, and noise [26]. Zero crossing rate can also be used in human activity
recognition perspective [27].

There are some other features used in different work such as integral of modu-
lus of accelerations [13], jerk [28, 29]. Jerk is the derivative of acceleration, which
measures the rate of change of acceleration. When a phone is carried in pocket or
handbag, the orientation of the accelerometer is generally unknown. In these cases,
it is difficult to isolate body-related accelerations from the gravitational accelera-
tion, or discover the real directions of the perceived accelerations correctly. As an
explication, the jerk feature (i.e., changes of accelerations) is explored rather than
the primary acceleration signal. The total jerk magnitude is fully independent of any
sensors’ orientations. However, it can represent the body-related accelerations. The
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Table 3.1 Different types of features and their derivation formulas

Feature Equation

Mean
(∑n−1

i=0 Ai

)

n

Standard deviation
∑n−1

i=0 |Amean−Ai |
√

n

Variance
∑n−1

i=0 (Amean−Ai )
2

n

Skewness n
(n−1)(n−2)

∑n−1
i=0

(
Ai −Amean

Astd

)3

Kurtosis [
n(n+1)

(n−1)(n−2)(n−3)

∑n−1
i=0

(
Ai −Amean
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)4]− 3(n−1)2

(n−2)(n−3)

Inter-quartile range Amod of last hal f − Amod of f irst hal f

Average peak- trough- distance
∑ |Arelative maxima −Arelative minima (ad jacent)|

m

Integral of modulus of accelerations ∫ n−1
0 |ax |dt + ∫ n−1

0 |ay |dt + ∫ n−1
0 |az |dt

Parameters n = window size,

Ai = amplitude of (ith) point of the window,

std = standard deviation,

m = total number of maxima to minima

or minima to maxima path.

jerk signal can be improved further with specific knowledge on jerk angles (direc-
tional changes) if the direction of gravitation can be approximated [30]. In Table3.1,
we have summarized some of the features and their derivation formula.

3.2.2 Frequency Domain Features

To extract frequency-domain features, the Fast Fourier Transform (FFT) is a broadly
used transformation method to reconstruct window sensor data in the frequency
domain. A set of coefficients are found from the output of an FFT, which denotes the
amplitudes of the signal frequency components and the distribution of signal energy.
We can explore median frequency [31] and subsets of the various FFT coefficients
[32] to derive the spectral distribution from those coefficients.

Some other features can be extracted from this FFT series. One of this feature
is spectral energy. It can be computed from the summations of the squared FFT
coefficients [33]. If we sum up the normalized information entropy of the FFT com-
ponents, that can be another feature named entropy [34]. Entropy differentiates activ-
ities with simple and complex acceleration patterns. A good example in this regard
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can be the cycling activity, which requires uniform movement of legs. If we per-
form frequency-domain analysis of thigh acceleration, it displays a single dominant
frequency. In opposite, running activity is composed of more complex acceleration
pattern and it often shows many major FFT components. These variations lead to a
much higher frequency domain entropy for running than cycling if we compare [33].
To differentiate activities with single dominant frequency and activities with com-
plex acceleration pattern with many dominant FFT components, frequency domain
analysis is a good option.

There are some other methods of feature extraction which are not very much
common but used in additional cases to improve recognition accuracy. These types
of features are described below.

3.3 Wavelet Analysis-Based Features

Although Fourier analysis is usually used to collect information about a signal’s fre-
quency content, wavelet analysis can be employed to analyze both time and frequency
characteristics. We can also examine fast-changing transient signals using wavelet
analysis. Wavelets can be used to provide more precisely localized temporal and
frequency information. By using this feature and utilizing a Fourier transform, we
can formulate many applications. The formulation of wavelet analysis is done using
continuous or discrete wavelet transform. The discrete wavelet transform (DWT) is
typically computing by using a filter bank, where the initial signal is successively dis-
integrated into independent low- and high- pass filtered signals that can be considered
approximations and coefficients.

We can get several unique coefficients, each of which includes data on a particular
frequency band by decomposing a body-worn or smartphone sensor signal using
wavelet analysis. These coefficients comprise information on temporal changes in
frequency content. The reason behind this is the characterization of the original
signal along its entire length by these coefficients. Therefore, a wavelet technique can
be explored for evaluating and characterizing non-stationary signals with changing
frequency context over time, which is not possible using Fourier analysis. In the
case of activity monitoring, wavelet analysis has been mostly implemented in three
constraints: identification of activity transition points [35], signal enhancement [36],
and generation of time-frequency features consequently used for classification [20,
35].

3.4 Heuristic Features

We can represent the human movement or action patterns as time-varying segmental
accelerations. Previous research works implemented various methods to derive cer-
tain heuristic features. The goal was to quantify the amplitude of these accelerations.
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It is required to remove the baseline offset before deriving these features. We can do
that by using a high pass filter. These features include,

• Signal magnitude area (SMA) [37],
• Peak-to-peak acceleration [38],
• Mean rectified value [39], and
• Root mean square [40].

These features are generally employed to distinguish static activities (e.g., sit,
sleep, stand, etc.) from dynamic activities (e.g., walk, run, jog, etc.) [37]. When
a subject is at rest (static acceleration due to gravity), the computed acceleration
is equal to the cosine of the sensor orientation angle relative to the vertical. This
angle can be mentioned as the tilt angle. The tilt angle can be used as an input to a
classification solution, especially to the case where static postures are to be separated
[41], and to recognize postural transitions [36].

3.5 Feature Selection and Dimensionality Reduction
Methods

Generally, we act several identical actions in a variety of ways. This can generate
a large variability in the features, which are extracted from on-body or smartphone
sensor data. Features are varied too and different features can extract different kinds
of information—hence, aid to classify activities. Besides, choice of less important
features with redundant or irrelevant information can hamper recognition accuracy.
So, it is important to find the importance and robustness of features before using
them to build the learning model. If we need to deal with high dimensional space
of features, dimensionality reduction is the most popular step in machine learning,
which is done either by creating new dimensions or we can also select a subset of the
original dimension. In this case, we can map the original feature space onto a new
feature space which has a lower dimension [42].

We can pick the features depending on the element of value, which can be identi-
fied using Random Forest attribute. Another popular method is Maximum Relevance
and Minimum Redundancy (MRMR) [43]. This method had been used in [44], where
the minimum mutual information between features had been used as a criterion for
minimum redundancy. Besides, for maximum relevance, the maximal mutual infor-
mation between the classes and features had been used.Moreover,Correlation-based
Feature Selection (CFS) method [45] had been also used in [46]. The CFS method
works based on a primary assumption that features should be strongly correlatedwith
the specified class, however, they must be uncorrelated with each other. Another fea-
ture selection method is a forward-backward search, in which features are added
sequentially, but deleted from a larger set. It is also possible to identify the optimal
features based on the produced classification results for each subset of the features.
We summarize some feature selection techniques in this section. Figure3.4 summa-
rizes the concepts.
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Fig. 3.4 Feature selection and dimensionality reduction techniques

3.5.1 Removing Feature with Low Variance

In this method, a variance threshold is set for features. Features whose variance does
not meet the threshold are removed. In the default case, features with zero variance
are removed that have the same value in all samples [47].

3.5.2 Missing Value Ratio

If a dataset contains more than 50% of missing values, we can either impute the
missing values or we can drop the variables. Presence of missing value ensures that
we will not have much information. This is the reason for dropping those values. It is
required to set a threshold value first in this technique. When the amount of missing
values in any variable surpasses that threshold value, we can remove the variable
[47].

3.5.3 Univariate Feature Selection

This method selects the best features on the basis of the univariate statistical tests,
e.g., false positive rate, false discovery rate, family-wise error, etc. It is regarded as a
preprocessing step before estimating the result by the model. This method has some
subcategories [48].
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3.5.4 Select-k-Best

This method keeps k-Highest scoring features and eliminates the rest. The value of
the k needs to be selected based on the characteristics of the feature sets [49].

3.5.5 Select Percentile

This method keeps a user-specified specific percentage of features and removes the
rest [50].

3.5.6 Generic Univariate Selection

In this method, univariate feature selection is performed with a configurable strat-
egy. This permits to choose the suitable univariate selection approach with hyper-
parameter search estimator [48].

3.5.7 Recursive Feature Elimination

This method works by recursively eliminating some attributes and building model
based on the rest of the attributes. It utilizes the model efficiency to recognize which
attributes or combination of attributes offer the most to predicting the target attribute.
Firstly, the estimator is trained using the initial feature set and the importance of each
feature is obtained. Then the less important features are eliminated from the feature
set and this method is recursively iterated on the pruned set until the aspired number
of features to select is ultimately attained [51].

3.5.8 L1-Based Feature Selection

Linear models castigated with the L1 norm have sparse solutions. In most of the
cases, many of their estimated coefficients are zero. Based on this method, we can
design an algorithm to select only the non-zero coefficients, which will reduce the
dimensionality of the data [52].
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3.5.9 T-Distributed Stochastic Neighbor Embedding (t-SNE)

This is an advanced and non-linear way to search for patterns. It is possible at the
same time to recall both local and global structures of the data using the t-SNE
algorithm. Besides, in both high and low dimensional space, this algorithm computes
the probability similarity of points. The distinction between these two probabilities
is minimized afterwards. Though in the case of big datasets this algorithm functions
very well, it has some limitations. These limitations include delayed computation
time and loss of large-scale information. This algorithm is also unable to represent
huge datasets with lots of variables [53].

3.5.10 Uniform Manifold Approximation and Projection
(UMAP)

As we mentioned earlier, the t-SNE algorithm has some limitations in the case of
large datasets. UniformManifoldApproximation and Projection (UMAP) algorithm,
on the other hand, performswell as a dimensionality reduction technique than t-SNE.
This algorithm can preserve both local and global structure in a higher amount than
t-SNE. The runtime is also more abbreviated for UMAP. When we need to deal with
multivariate and high dimensional large datasets, UMAP is preferred. The combi-
nation of visualization power and reduction of dimensions of the data has made
UMAP a powerful dimensionality reduction technique for preserving both local and
global structure of the data. It is based on Riemannian geometry as well as algebraic
topology. This dimensional technique can map nearby points on the manifold to the
points in the lower-dimensional presentation. It can perform similarly for the faraway
points. This UMAP is based on an approximation of the k-nearest neighbor compu-
tation. An efficient optimization are accomplished by using the stochastic gradient
descent algorithm [54]. For visualization quality, the UMAP has demonstrated com-
parable performances with the t-SNE. Moreover, it is free from any computational
constraints on embedding dimensions [54].

3.5.11 Factor Analysis

Factor analysis technique groups the variable by using their correlations. In this
technique, a particular groupwill contain only those variables having a higher amount
of correlation among themselves, and a lower amount of correlation with other group
variables. In this technique, each group is named as a factor. Though these factors
or groups are lower in number than the original data dimensions, these factors are
difficult to observe [55].
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3.5.12 ISOMAP

ISOMAP (Isometric Feature Mapping) algorithm is a non-linear feature reduction
approach. ISOMAP focuses on to obtain a low-dimensional representation from
a non-linear manifold. This algorithm is different than the Principle Component
Analysis (PCA) approach. The primary consideration of this technique is to assume
the manifold smooth. Besides, it also implies that the geodesic distance between
the two points is equal to that of the Euclidean distance for every two points on the
manifold. Geodesic distance is known as the shortest or nearest distance between two
points on a curved surface. On the other hand, Euclidean distance is the shortest path
between two points on a straight line [56]. ISOMAP can be explored in a situation
when higher-dimensional data and lower-dimensional manifold have a non-linear
mapping.

3.5.13 Elimination of Highly Correlated Features

We can calculate the correlation coefficient among the features and set a correlation
coefficient threshold. If any two feature has a correlation coefficient that crosses the
threshold, we can consider them as the same feature and we can remove one [57].

3.5.14 Tree-Based Feature Selection

Tree-based estimators can be applied to calculate feature importance and to drop
irrelevant features. The optimal condition is chosen based on Gini Impurity. Gini
Impurity measures how frequently a randomly selected element from the set will be
erroneously classified or labeled—if it were randomly labeled as per the order of
labels in the subset. When we need to train a tree (or decision tree), it is required
to measure how much each feature reduces the weighted impurity in a tree. Then
the impurity reduction from each feature is averaged for forest and the features are
ranked according to thismeasure. For forest, the impurity reduction from each feature
is averaged and the features are ranked according to this measure [58].

In some other cases, we can consolidate the primary features to describe a new set
of variables as an alternative, and choose a subset of the prevailing features. Applying
this process can give us benefit in two ways:

• We can reduce the disproportionately produced features from many sensors.
• The newly decreased set of variables generally demonstrates more reliable dis-
criminative ability while classification.

Two most widely utilized dimensionality reduction techniques in the arena of
human activity recognition or monitoring using accelerometers are: PCA (Princi-
ple Component Analysis) and ICA (Independent Component Analysis) [59]. PCA
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procedure utilizes an orthogonal linear transformation that turns the data to a new
set of observations or of likely correlated variables, to compute principal compo-
nents. This method can emphasize variation and extract strong data set or patterns
from the original data. ICA is a statistical and computational method. This procedure
reveals concealed factors that carry sets of random variables, signals, or measure-
ments. Moreover, Discrete Cosine Transform (DCT) has been also adopted in some
works [60] along with autoregressive model coefficients [61], which obtained good
recognition accuracies.

3.6 Choosing Appropriate Feature Selection or
Dimensionality Reduction Technique

To remove superfluous and irrelevant data, increasing the comprehensibility of the
result, and increasing learning accuracy dimensionality reduction plays an impor-
tant role in the field of machine learning [62]. Classification accuracy is also closely
related to several attribute space reduction techniques, which shows the significance
of appropriate feature selection strategy [63]. In this section, we have shortly sum-
marized the use cases of dimensionality reduction and we have tried to give an idea
about which dimensionality reduction or feature selection techniques are good in
terms of processing time and computational cost.

• Missing value ratio: To reduce the number of variables for a dataset containing
too many missing values, this method can be used. If we find a large number of
missing values in data, we can remove those variables.

• Low variance filter method: To separate and release constant variables from the
dataset, we can employ the low variance filter method. The target variable is less
influenced by the variables with lower variance. Therefore, we can reliably remove
these variables.

• High correlation filter method: The multicollinearity is increased in a dataset
if it contains high correlation variable pairs. High correlation filter method can
identify the features that are highly correlated, and then remove them.

• Random Forest (RnF) method: The importance of the extracted feature can be
found using the Random Forest technique, which is used bymany researchers. It is
possible to keep the topmost feature based on the feature importance rank, which
reduces the dimensionality of the dataset.

• Factor analysis technique: For highly correlated sets of variables, factor analy-
sis is the most preferred technique of dimensionality reduction. By utilizing this
method, it is possible to group the variables based on the correlation of variables
in a group and correlation of variables among different groups. Finally, each group
is represented as a factor.

• Principal Component Analysis (PCA) technique: PCA is mostly used to deal
with linear data. In this method, the data is divided into a set of components. The
goal is to describe as much variance as possible.
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• Backward Feature Elimination and Forward Feature Selection method:
Because of higher computational time, both of these techniques are normally used
on smaller datasets with a lower amount of variables.

• UniformManifoldApproximation andProjection (UMAP) algorithm: UMAP
algorithm shows better performance for high dimensional data. This method has
an advantage over t-SNE due to shorter runtime.

• ISOMAP algorithm: ISOMAP algorithm performs well for strongly non-linear
data by recovering full low-dimensional representation.

• t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm: The t-SNE
algorithm also serves properly when the data is strongly non-linear. The perfor-
mance is remarkably well for visualizations as well.

• Independent Component Analysis (ICA) method: ICA transforms the data into
independent components. These independent components explain the data using
a smaller quantity of components.

3.7 Feature Normalization

Extracted features always vary in magnitudes and it can create difficulties for some
machine learning methodologies, where feature with greater magnitude has higher
importance. This is not justified in all cases. To overcome this untoward effect, a
normalizing step is necessary before classification. Because of the differences in
scale factors and units among different features, all features should be normalized
before proceeding to the feature selection stage. There are generally four types of
feature scaling or normalizing methods:

1. Rescaling (min-max normalization): This is the simplest method of feature
scaling. This method rescales the range of features to scale the range in [0, 1] or
[−1, 1]. Based on the characteristics of the data, we can select the target range.
The equation of the rescaling method can be shown as:

xnorm = x − min(x)

max(x) − min(x)
(3.1)

where, x = original value and xnorm = normalized value.
2. Mean normalization: This is another normalization method where the average

of the feature vector is subtracted from the original feature vector. Then the result
is divided by the range to get the normalized feature value. The equation of the
mean normalization method can be shown as:

xnorm = x − mean(x)

max(x) − min(x)
(3.2)
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where, x = original value and xnorm = normalized value.
3. Standardization: This is the most extensively used normalizing method in

machine learning where we need to handle various data that can include mul-
tiple dimensions. In different machine learning methods like Support Vector
Machine (SVM), Artificial Neural Network (ANN), Loristic Regression, etc.—
this standardization approach is extensively employed for normalization [64]. In
this process, when we subtract the mean in the numerator, each feature value in
the data is required to have zero-mean and unit variance. The common practice
of this technique is to compute the distribution mean as well as the standard
deviation for each feature. After this step, the mean is subtracted from the corre-
sponding feature vector. Finally, the result is divided by the standard deviation
to get the normalized output. The formula is given below:

xnorm = x − mean(x)

σ
(3.3)

where, x = original value, xnorm = normalized value, and σ = standard devia-
tion.

4. Scaling to unit length: This is another common method of feature scaling. In
this method, it is necessary to scale the components of a feature vector to achieve
the outcome that the complete vector has length one. This normally indicates
that we need to divide each component by the Euclidean length of the vector.
The formula is:

xnorm = x

||x || (3.4)

where, x = original value, xnorm = normalized value, and ||x || = Euclidean
length of the vector.
In some application areas (e.g., Histogram features), using the L1 norm (i.e.,
snake distance, Manhattan Length, or Manhattan Distance, City-Block Length)
of the feature vector is an effective strategy. This technique becomesmore promi-
nent and useful if a Scalar Metric is used as a distance measure in the following
learning steps. We have summarized the feature normalization techniques in
Fig. 3.5.

3.8 Learning

Wecan summarize the four different types ofmachine learning algorithms for labeled
and unlabeled data. These primary techniques are:

• Supervised learning
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• Unsupervised learning
• Semi-supervised learning
• Reinforcement learning

Supervised learning is used for labeled data, unsupervised learning is used for
unlabeled data, and semi-supervised learning is used for partially unlabeled data.
In the case of reinforcement learning, algorithms learn to react to an environment.
We have summarized the machine learning techniques in Fig. 3.6. In the case of
human activity recognition, most of the sensor data are labeled, which is the primary
reason for using a supervised learning technique.We can utilize various classification
methods based on the amount of data, the type of data, similarities of activity classes,
amount of activities, number of classes, etc. Some of the most common and widely-
explored classifiers to classify dynmic and statis activities are:

• Linear Discriminant Analysis (LDA): The tolerance value for LDA has significant
importance for the performance.

• Support Vector Machine (SVM): The selection of kernels for SVM is important.
• Logistic Regression (LR),
• K-Nearest Neighbour (KNN): The determination of K-value and the distance com-
putation strategy for KNN are significant.

• Random Forest (RnF): Proper selection of the number of tress is needed.

The field of smartphone sensor-based activity recognition using a supervised
machine learning technique includes many research works. In the case of classi-
fication technique, labeled data (most of the time labeled manually) are used. There
is a high chance of generating training dataset with inappropriate labeling, which
deteriorates the performance in real-time applications. To mitigate this problem, a
semi-supervised learning-based recognition method is proposed that is dependent on
self-training procedure [65]. However, they have employed their method on a small
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Fig. 3.6 Different types of machine learning techniques

sample of labeled training data. In another unsupervised approach based onK-Means
clustering, activity recognition was accomplished in [66]. But this method failed to
perfectly distinguish between sitting and standing activities (failure rate is higher:
37%). In the case of [67], they used three separate networks for three separate states
(static activities, dynamic activities, and transitional activities) where the output of
Linear Discriminant Analysis module was used as input to these networks. They
achieved 85% accuracy for their owned dataset.

3.9 Machine Learning Techniques Related to Activity
Recognition

Machine learning algorithms have become the most extensively used approaches in
the activity recognition process based on the feature representation of data from an
accelerometer alone or both accelerometer and gyroscope [68]. Various assumptions
are made about the structure and shape of the function by various machine learning
methods. We need to emphasis on streamlining a representation to approximate
it. As mentioned earlier, there are four categories of machine learning algorithms.
Among them, in most of the research works, supervised classification method has
been utilized as most of the activity data are labeled and the task is to classify
the activities. Besides, the output variables (activities) are mostly categorical and
includes time series prediction,which is the core reason for choosing the classification
(supervised learning)method. Earlier researchworks on sensor data focused on using
one of the following approaches for training:

• Linear (assumed functional form is a linear combination of the input variables),
• Parametric (mapping is done to a known functional form),
• Nonlinear or non-parametric (able to learn any mapping from input to output), or
• Ensemble algorithms.
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Short descriptions of the most common algorithms have been given in the next
sub-sections.

3.9.1 Nonlinear or Non-parametric Algorithms

These algorithms do not constitute powerful hypotheses about the nature of the
mapping function. Besides, these algorithms are also free to learn any functional
form from the training data. In the case of non-parametric methods, there are no
much worries about choosing just the right features. These algorithms can fit a large
number of functional forms. This results in greater performancemodels for prediction
and makes no assumptions or weak assumptions about the underlying function.

In spite of advantages, these methods have some primary limitations, namely—(i)
they require a lot more training data for the mapping function estimation; (ii) they
are a lot slower to train due to a large number of parameters to train; and (iii) there is
a risk of overfitting the training data [69]. We have summarized the non-parametric
algorithms that can be used for HAR in Fig. 3.7.

3.9.1.1 Decision Tree (DT)

For predictive modeling machine learning, Decision Tree is an essential type of
algorithm. However, in the case of decision trees, a non-linear relationship between
predictors and outcome deteriorate the accuracy. Classification and Regression Trees
(CART model) is represented by a binary tree. A single input variable (x) and a split
point on that numeric variable are interpreted by each node of the tree. The leaf nodes
of the tree include anoutput variable (y),which is employed tomake a straightforward
prediction. The tree evaluates a new input started at the root node of the tree, whereas,
a learned binary tree is regarded as a partitioning of the input space. The complexity
of the decision tree algorithm is based on the number of splits in the tree. Pruning
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sensor-based HAR
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method is used to further lift performance. However, accuracy will suffer, if there is
a non-linear relationship between predictors and outcome.

3.9.1.2 K-Nearest Neighbours (KNN)

KNN is one of the simplest algorithms as the entire training dataset is the model
representation for KNN and predictions are made using the training dataset directly.
No learning is required other than storing the entire dataset. Care must be taken about
the consistency of training data and removal of erroneous and outlier data. When a
new data point arrives, predictions are made by exploring through the full dataset
for K number of most similar instances (called as neighbors), and by compiling the
output variable for those K instances [69].

3.9.1.3 Naive Bayes (NB)

For the two-class (binary) and multiclass problem, Naive Bayes classification algo-
rithm is used. In this methodology, the prediction probability is calculated by using
three other statistical probability: likelihood probability, prior probability, and evi-
dence probability. Class probability is also known as posterior probability. Here,
likelihood probability denotes the probability of the instance such that it belongs to
a specific class, whereas prior probability is the finding probability of that specific
class among other classes and evidence probability is the finding probability of that
specific instance among other instances.

p(y) = P(likelihood)P(prior)

p(evidance)

where, y = predicted output.

3.9.1.4 Support Vector Machine (SVM)

Support Vector Machines can be explained by Maximal-Margin classifier [69]. In
this case, an n-dimensional space is formed by the input variables of data. In SVM, a
hyperplane or space is predict fot the best separation of the points in the input variable
space by their class. The distance between the hyperplane and the nearest data points
(support vectors) is called margin. Maximal-Margin hyperplane is the optimal line
with the largest margin (perpendicular or vertical distance from the line to the most
adjacent points) that can separate all the classes. The hyperplane is learned in the
training phase. An optimization procedure is utilized to maximize the margin.
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3.9.2 Linear Algorithms

Parametric algorithms interpret the function to a known form whereas, a parametric
learning model compiles data with a set of parameters of fixed size (independent
of the number of training examples). These models only care about the number
of parameters needed no matter what amount of data is given as input. They are
also called linear machine learning algorithms as the assumed functional form is a
linear combination of the input variables. Parametric machine learning algorithms
come with the benefits of easily interpreting results, very fast to learn from data, less
training data requirement, and good working capability even if the fit to the data is
not comprehensive. We have summarized the parametric algorithms that can be used
for HAR in Fig. 3.8.

However, these algorithms have some limitations too, as these methods are con-
strained to the specified form,more suited to simpler problems, and unlikely tomatch
the underlying mapping function in practice [69] (Fig. 3.8).

3.9.2.1 Logistic Regression (LR)

Logistic Regression is the go-to method for two-class values problems. The core of
this method is based on logistic function or sigmoid function, which is an S-shaped
curve that calculates the probability of the class by mapping the final output layer
value from 0 to 1. Logistic regression is represented by the equation [69],

y = eB0 + B1x

1 + eB0 + B1x

where, y = Predicted output, B0 = Bias or intercept term, and B1 = Coefficient for
the single input value (x).

A constant real-valued B coefficient is associated with each column of input data
that must be learned. Using maximum likelihood estimation, the coefficients are
calculated from the training data, and the minimization algorithm is used to optimize
the most appropriate values for the training data coefficients.
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3.9.2.2 Linear Discriminant Analysis (LDA)

LinearDiscriminantAnalysis (LDA)workswellwhenwe havemore than two classes
based classification problems. LDAmodels are represented by themean and variance
of the variable for each class for a single input variable. In the case of multiple
variables, the same properties are calculated over the multivariate Gaussian namely
the means and covariance matrix. LDA model calculates the mean and variance for
each class simply assuming data to be Gaussian and the attributes to have the same
variance. Predictions are made by LDA by estimating the probability (using Bayes
theorem) that a new set of input belongs to each class. The class that gains the highest
probability is the output class and a prediction is made. The discriminant function is
calculated for each class and the class with the highest discriminant value makes the
output classification.

3.9.3 Ensemble Algorithms

Ensemble methods make use of multiple learning algorithms so that better predic-
tive performance can be obtained than any of the constituent learning algorithm
alone [70].

A machine learning ensemble allows for a much more flexible formation to exist
among those alternatives, though it consists of only a solid finite set of alternative
models. Ensemble methods build a set of classifiers and then classify new data points
by exerting a (weighted) vote of their predictions. The original ensemble method
is Bayesian averaging, but more recent algorithms include error-correcting output
coding, Bagging, and boosting. We have summarized the ensemble algorithms that
can be used for HAR in Fig. 3.9.

3.9.4 Bagging or Bootstrap Aggregating

The algorithm is named asBagging because it incorporatesBootstrapping andAggre-
gation to create a single model ensemble. Multiple bootstrapped subsamples are
drawn based on a sample of data. On top every subsample, a Decision Tree is built.
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After the creation of each subsample Decision Tree, an algorithm is used to aggregate
over the Decision Trees to form the most effective predictor.

3.9.4.1 Random Forest (RnF)

Random Forest is the modern variation of classical Decision Tree algorithms. In the
case of the Random Forest algorithm, the sub-trees are learned in such a way that
the predictions from them have a less or weak correlation. The learning algorithm
is restricted to a random sample of features of which to search. For classification
problems, at each split point, m number of features can be searched. A good default
to find the value of m is [69]

m = √
p

where, p = input variables number.

3.10 Overfitting and Underfitting Problem

If the estimator models the training data too well then it is known as overfitting.
Overfitting happens when the model is aware of the information and noise in the
training results. The effect of overfitting is that the model picks up and learns the
noises of the training data as concepts. The problems are that a new data may not
contain these noises. Therefore, these concepts may not be applied to any new data.

Underfitting means that the model is unable to fit the data well enough. An under-
fitting machine learning model is not a proper model. Therefore, performance on
training data is poor. We can say that an underfit model will not only perform poor
for training data but also it will have poor generalization for other data.

3.11 Remedies of Overfitting and Underfitting Problem

Overfitting and underfitting bothmay lead to poormodel results. Inmachine learning,
overfitting is the most common problem. Evaluating the model and reporting results
on the same dataset causes overfitting because the model will always make a more
precise prediction of data that it has seen before. Underfit model is easy to detect
and we need to try alternative machine learning models to prevent underfitting. To
counter this overfitting, we have to test our model on unseen data. Therefore, to limit
overfitting we can use the following techniques to evaluate our models as shown in
Fig. 3.10.
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3.11.1 Resampling Techniques

K-fold cross-validation is the most famous and efficient resampling technique. In
this case, the training dataset is split into K subsets. Then the model is implemented
considering only set as the testing set and rests as the training set for K times. Finally,
we calculate the average accuracy of these K results.

3.11.2 Split Training Data

We can split some data from the training set or use completely different testing set to
predict the accuracy. In this case, we can estimate the learning models on the testing
dataset to get an opinion about the performance of the model on unseen data.

3.11.3 Incorporation of the Validation Set to Prevent
Overfitting

In general, we need to split the dataset into two subsets. One of these subsets is used
for training themodel, which is known as the train set, and the other is used for testing
the performance of the model, which is known is the test set. This is an important rule
of machine learning that the test data should be unseen by the model and after fitting
the model on the training we should evaluate the performance on the test data once.
If we tune the parameters of the model after evaluating the performance on test data
and evaluate the performance again, we will see that the performance is improving.
This is a case of overfitting. It implies that the test dataset is no longer invisible for
the model.

To solve this problem, the concept of validation dataset has come. The term
validation is related to validate something. It is defined as a subset of the full dataset,
which is isolated from training the model. It provides an estimate of the skill of the
model and allows to fine-tuning the various hyperparameters of the model. Every
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type of experiment including model selection, neural network selection, number of
layers and number of neuron selection, hyperparameter tuning, etc. are done based
on the performance of the model on the validation set after fitting the model on the
train set. Following adjustment of the parameters (i.e., tuning), the final appropriate
model is used on the test data to assess the performance of the test dataset. This
method solves the problem of overfitting on the test data and also provides scopes to
tune the parameters of the model that eventually demonstrate superior performance.
There are several ways to split the original dataset into the train, validation, and test
set but as a thumb rule, it will be appropriate to split the main dataset into 70% as the
training set, 10% as the validation set, and rest of the 20% data as the test set. So, we
can summarize the train set, test set, and validation set by the following definitions:

• Training set: The training set is part of the data used to fit themodel. Inmost of the
cases, it covers all input and projected performance data. In the case of supervised
machine learning, training data sets are labeled, whereas, an unlabeled training set
is used for unsupervised machine learning techniques.

• Validation set: Validation set is defined as the sample of data utilized to give a
balanced and fair analysis of amodel to fit on the training dataset. The validation set
tunes the hyperparameters of the model. Some authors put the results of validation
set in their research papers though it may be unnecessary in most of the cases.
As validation set is explored to tune and pick the well-suit hyperparameters, these
results are less required to show. Mentioning the hyperparameters in the report is
sufficient. The model does not learn from the validation set but the validation set
can be effective for themodel indirectly by providing an opportunity to improve the
model without causing overfitting. If a dataset is tiny, then this subset and tuning
can be avoided. In this scenario, there is a strong risk of overfitting where a model
is learned and adjusted based on only the training sample. It will usually turn out
that the model will not match the data for the real-world test as well as the data for
the testing. Particularly when the size of the training data set is limited or when
the amount of parameters in the model is high, the magnitude of this difference
would likely be big. Cross-validation is a means of calculating the effect’s scale. A
distinction can be created between two forms of cross-validation: exhaustive and
non-exhaustive cross-validation.

– Exhaustive cross-validation: This is an approach of cross-validation that study
and check all feasible means of splitting the initial sample into a training set and
a validation. Leave-p-out and Leave-one-out cross-validation techniques fall
under this category. Leave-p-out cross-validation (LpO CV) means utilizing p
observations as the set for validation and the other observations as the set for
training. This is replicated in every sense the original sample may be split on a
validation set of p findings and a training set [71]. If we consider a special case
of Leave-p-out cross-validation with p = 1, then this is called Leave-one-out
cross-validation [72].

– Non-exhaustive cross-validation:Non-exhaustive cross-validationmethods do
not quantify all ways of initial sample splitting. Those methods are Leave-p-out
approximations for cross-validation. k-fold cross-validation, Holdout method,
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and Repeated random sub-sampling validation are examples from this category.
In cross-validation k-fold, the initial sample is uniformly partitioned into sub-
samples k of similar dimensions. Of the k subsamples, the validation data for
evaluating the model is maintained as a single subsample, and the remaining k
1 subsample is used as training data. The cross-validation method is then repli-
cated k-times, with each of the k subsamples being used as the validation data
exactly once. Then, the values of k can be summed to provide one estimation
[73].We randomly allocate data points in the holdout process to two sets D0 and
D1, which are typically named the training set and the test set, respectively. The
scale of each of the sets is subjective because the evaluation package is usually
smaller than the trial package. Dataset D0 is used for training and evaluation
of performance is done in D1. Repeated random sub-sampling approach, also
known as cross-validation of Monte Carlo, produces several random splits of
the dataset into training and validation details [74, 75]. The model is fitted to
the training data for each such split, and predictive performance is measured
using validation data. Over the splits, the results are then averaged. The benefit
of this approach (over k-fold cross-validation) is that the proportion of the split
training/validation will not depend on the number of iterations.
Nested cross-validation is another variation of cross-validation that is needed
when cross-validation is used simultaneously for the selection of the best col-
lection of hyperparameters and error estimation (and generalization capability
assessment). There are several variations of this. Each should discern at least
two versions: k*l-fold cross-validation and k-fold cross-validation with valida-
tion and test set. k*l-fold cross-validation is a truly nested variant (used by [76]
for example) which contains an outer loop of k folds and an inner loop of l
folds. The entire collection of data is split into k-sets. k-fold cross-validation
with validation and test set is a form of cross-validation k*l-fold while running
l = k − 1.

• Test set: Test set is defined as the subset of data that is explored to implement
in the final model—to assess the performance of the model. These are mentioned
as the final results of a model under a dataset. This is considered as a unbiased
assessment of themodel. Test set is used only when themodel has been completely
trained. We also need to be careful so that the test set contains sampled data from
different classes and we need to make sure there is no class imbalance.

3.11.4 Overfitting Related to Overlapping Sliding Window
and Cross-Validation with Random Splitting

If we use the sliding window with some percentage of overlap and K-fold cross-
validation with the random splitting of data, it can cause overfitting. While splitting
randomly, data from one window may be put on the train set, whereas data from the
most adjacent window may be put into the test set. As we are using a sliding window



3.11 Remedies of Overfitting and Underfitting Problem 51

K-fold cross-validation
with random splitting

-0.724   0.02  0.70  ……. 0.04   0.05 0.01

W1

Train set Validation 
set

Test set

W2 W3
W4

W5

Overlapping sliding window Adjacent windows share data

Fig. 3.11 Overfitting due to the simultaneous use of overlapping sliding window and cross-
validation with random splitting

with overlapping, it means that adjacent windows share some percentages of data. It
will cause similar data to appear on both test and train sets, which will expose some
of the data from the test set while fitting the model as they also appear in the train
set. This will cause overfitting. This situation has been shown in Fig. 3.11.

We can solve this problem by using a non-overlapping sliding window or by using
K-fold cross-validationwith the temporal splitting of datawhile using an overlapping
sliding window. In this case, we need to put the data into train, validation, and test
set in a temporal manner. For example, we can put the first 60% window data in the
training set, the next 20% data in the validation set, and finally the rest of the 20%
window data in the test set. We have called this splitting as temporal splitting as the
splitting of data maintains temporal order. Thus, the splitting of data in three sets
from the overlapping windows should not be random. The temporal splitting of data
will have a temporal order of windows, which will prevent the data from the adjacent
windows to appear in train and test sets.

3.11.5 Overfitting Because of Orientation-Dependent Model

In general, most of the datasets are created using a fixed oriented smartphone or
wearable device. A model which is trained on these sensor data performs well on the
test data also, as the user carry a smartphone or wearable device in the same orien-
tation trained by the model. These types of models are called orientation-dependent
model, which is overfitting because of a specific orientation. These models will show
poor performance in real-time where users may carry the smartphone or wearable
device in different orientations as shown in Fig. 3.12. To prevent this overfitting the
model should be trained such a way so that it can offer the same performance even
if the orientation changes in real-time.
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Portrait Landscape

Fig. 3.12 Different possible orientations of smartphones in daily usage

3.11.6 Overfitting Because of Position-Dependent Model

In previous researchworks, it was a common practice tomake the datasets by keeping
the smartphone or wearable sensors in fixed body positions like in the shirt pocket,
or pant pocket, or hand, and so on. In previous research works, we have found many
considerable body positions to place the wearable sensor device, e.g.,

• Waist [24, 77–85],
• Chest [67, 83, 85–90],
• Wrist [24, 81, 82, 85, 88, 90, 91],
• Upper arm [24, 92],
• Head [92, 93],
• Thigh [24, 77, 86, 88, 91],
• Leg [91],
• Ear [12],
• Ankle [82, 83, 85], etc.

In Fig. 3.13, we have summarized the possible various positions of wearable sensor
devices and smartphone.
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Fig. 3.13 Different possible positions of smartphones and wearable devices

This practice puts a constraint on the user behavior, and therefore, a model can
be position-dependent. And it will cause overfitting as the model will only show
good performance for a specific position. In real life, most of the users do not like to
keep the smartphone or wearable devices in any specific position. If this happens, the
position-dependent model will show poor performance. This is why it is necessary to
create a dataset by keeping the smartphone in different positions, and the researchers
should focus to build a position-independent model. The performance of that model
can be examined by training the model using specific body sensor data (e.g., shirt
pocket and pant pocket), and testing the model using other body sensor data (like the
hand). In this way, we can build a position-independent model for real-life cases to
prevent overfitting.

3.12 Some Analysis on Behavior Identification Using
Traditional Approaches For Pattern Recognition

In this section, we have provided a comparative study of some of the standard
databases of the classification methods in previous studies. We have also compared
numerous feature selection processes and classification accuracies. In [94], they built
a method by using a waist-mounted accelerometer to collect data from 6 subjects
which included 12 daily activities. This work has proposed to deliver the majority
of signal processing onboard the wearable unit employing embedded intelligence
and implementation of a real-time classification system. They reached an average
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accuracy of 90.8%, while postural orientation identification was 94.1% accurate and
probable falls were observed with 95.6% accuracy.

On the other hand, one-dimensional (1D) Haar-like filtering techniques have been
introduced as a unique feature extraction method suitable for 3D with lower compu-
tational cost in the paper [95]. Their new approach reached 93.91% precision in case
of activity recognition, thus growing the expense of computation to 21.22% relative
to a few prior approaches. The work [96] has attempted to identify the important
sensors and better classification process by using supervised learning for activity
recognition. A two-step prediction technique has been used by them. In the first
step, they have used binary classifiers to distinguish between the null class and the
rest of the classes. In the second step, a multi-class classifier has been exploited to
predict the exact class. In [97], a Kernel Principal Component Analysis (KPCA)
has further processed features after the extraction for better accuracy. Linear Dis-
criminant Analysis (LDA) was used to render them sturdier. They ended up using
a Deep Belief Network (DBN) to train the features. They noticed 89.61% accuracy
that outperformed traditional multiclass Vector Support Machine (SVM) (82.02%)
and Artificial Neural Network (ANN) (65.31%).

Summary of features, classification methods, proposed solutions and accuracies
of previous works have been discussed in Table 3.2 for HASC2010 Corpus, UCI
HAR, UCI HAPT, UCI batteryless wearable sensor, UniMiB SHAR, and WARD
dataset.

3.13 Conclusion

This chapter presents a basic outline of themethodologyof sensor-basedHAR includ-
ing feature extraction, feature selection, feature normalization, conventionalmachine
learning techniques, and problems of overfitting. Hand-crafted features have been
discussed in detail including time domain, frequency domain, wavelet, and heuristic
features. To balance the trade-off between performance and computational cost, we
have discussed some prominent feature selection and feature normalization tech-
niques. Linear and non-linear algorithms of machine learning have been considered
in this chapter to classify activity data. Moreover, the problems and causes of over-
fitting and underfitting problems have been addressed with remedies. Finally, an
analysis has been provided comparing the methods of previous research works on
some benchmark datasets using these methods.

3.14 Think Further

1. What are the importance of extracting features from sensor data?
2. What are the differences between time domain and frequency domain features?
3. Provide some examples of time domain features.
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Table 3.2 Comparative analysis of existing works on some benchmark datasets

Dataset Paper Features Method Comment

UCI HAR [99] [98] 17 Multiclass SVM.
Accuracy: 89.3%

They used fixed
point arithmetic,
which is
energy-efficient.

[100] 561 One-Vs-One They proposed

SVM and KNN. a majority

96.4% accuracy. voting system.

[101] 561 Sparse kernelized They proposed

Learning Vector metric adaptation

Quantization with 1 prototype

(LVQ) model. vector for LVQ.

96.23% accuracy.

[102] 561 Novel confidence They

based boosting exploited

algorithm. confidence

94.33% accuracy. information from

weak learner.

UCI [103] 561 SVM with They estimated

HAPT [104] probability and the probability

discrete filtering.
95.24% and
96.66% accuracy.

of each activity to
be on each class.

HASC [105] 12 Random Forest They improved

Corpus [106] (accuracy: 75%) activity

with
EM+DENSE and
EM+SPARSE
method.

recognition with
incorrect
segments.

UCI [107] 46 CRF classifier. They proposed a

BWS [108] Precision: 85.1% bed-egress

for room-1 and
84.9% for
room-2.

movement
detection
framework.

UniMiB [109] 2 4 classifiers They monitored

SHAR [109] KNN- 82.86%, different falls

SVM- 98.71%,
ANN- 72.13%
and RnF-
88.41%.

and daily
activities.

WARD [110] 40 KNN- 90.5% They used

SHAR [110] with 1–5 sensors. a framework with

majority voting
and Distributed
Sparsity
Classifier (DSC).
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4. What are the purposes of using mean, standard deviation, median absolute devi-
ation, etc. features for human activity recognition?

5. How can we extract frequency domain feature?
6. What are the impacts of frequency domain feature to distinguish human activi-

ties?
7. Provide some examples of frequency domain features.
8. What are the importance of using wavelet analysis?
9. Provide some examples of wavelet analysis-based features.
10. What are the importance of heuristic features?
11. Provide some examples of heuristic features.
12. State some importance of feature selection and dimensionality reduction tech-

niques.
13. Mention some process of feature selection and dimensionality reduction.
14. How to select appropriate feature selection and dimensionality reduction tech-

niques in different cases?
15. What are the importance of feature normalization?
16. What are the basic feature normalization processes?
17. Why most of the human activity classifications can be done using supervised

machine learning techniques?
18. Mention some nonlinear machine learning techniques.
19. Mention some linear machine learning algorithms.
20. What are overfitting and underfitting problem?
21. State some remedies of overfitting and underfitting problem.
22. How can overfitting occur in the case of overlapping sliding window and cross-

validation with random splitting?
23. How can a orientation-dependent model cause overfitting in real-time cases?
24. Which type of conventional pattern recognitionmethods have been used in earlier

research works?
25. Mention some benefits of conventional pattern recognition approaches.
26. Mention some drawbacks and limitations of earlier research works.
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Chapter 4
Human Activity Recognition: Data
Collection and Design Issues

Abstract Sensor-based Human Activity Recognition (HAR) has been explored by
many research communities and industries for various applications. In the earlier
chapters, we have presented methodologies to accomplish human activity recogni-
tion, pre-processing steps of raw data from sensors, segmentation of these data using
various windowing approaches, feature extraction approaches, feature normaliza-
tion schemes, sub-space methods for dimensional reduction and related issues. In
this chapter, we present important challenges in activity recognition, data collection
protocols, and design issues. This chapter also represents the basic requirement of
training data, environmental set up for data collection, sensor requirement, sensor
position, and energy consumption issues.

4.1 Human Activity Recognition: Data Collection

Sensor-based Human Activity Recognition (HAR) has been explored by many
research communities and industries for various applications—along with various
challenges ahead to deal with [1–8]. Human Activity Recognition (HAR) algorithms
can be assessed on the footing of the complexity of the activities they acknowledge
in the field of sensor-based activity recognition. The primary complications depend
on various factors including the number of activities, types of activities, choice of
sensors, energy expenditure, obtrusiveness, and data collection protocols.

4.1.1 Complications of the Activities

Recognition algorithms can be assessed based on the complexity of the activities
they recognize in the field of sensor-based recognition of daily human activities. The
complexity of the activities and actions can change and depends on various determi-
nants including the number of activities, the types of activities, and the complexity
of the training data obtained for those activities.
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There are various benchmark datasetswhere the number of the activities vary from
6 to 10 classes usually. Some of the common activity classes are walking, running,
sitting, stair up, stair down, etc. The variabilities of classes make it difficult to form
a single model to work on many classes. Moreover, how these classes are extracted
and what kind of sensors are explored, are crucial issues.

4.1.1.1 Number of Activities

The complications of how precisely a human activity recognition system can iden-
tify a specific activity increase with a distinct and extensive set of activities people
perform. However, the recognition of a large set of activities is difficult than the
recognition of a smaller set of activities. The logic for this can be connected to
the fact that as activities rise in number, general classifiers need to distinguish these
classes among a larger set of activities. This is why the recognition rate with optimum
performance is difficult to achieve.

4.1.1.2 Patterns of Activities

There are three basic patterns of (ambulation) activities in total [3] (as shown in
Fig. 4.1):

• Static activities,
• Dynamic activities, and
• Activities with postural transitions.

Static activities such as lying, sitting, and standing, are easier to identify than the
periodic activities, such as running, walking, jogging, etc. based on any complex
movement and actions. However, highly similar postures, for example, sitting and
standing overlap significantly in the feature space and difficult to distinguish. Fur-
thermore, there are some activities, such as walking upstairs, walking downstairs,
walking in different postures, walking with carrying objects (backpack), walking
while performing other activities (texting in smartphone), etc. have high motion sim-
ilarities. These activities are challenging to separate as such activities share high
similarity in the feature space because of their comparable movement patterns. In
most of the cases, high correlations among activities are not uniform during the entire
set of activities, which makes the recognition even harder. For example, sitting and
standing actions are very much similar (difficult to distinguish), however, they are
very different from walking (easily distinguishable).

Transitional activities can be further divided into four types [3]:

• Static to static postural transition (e.g., sit to stand, lying to sit, etc.)
• Static to dynamic (e.g., stand to walk)
• Dynamic to static (e.g., walk to stand)
• Dynamic to dynamic (e.g., walk to jog, jog to run, etc.)
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Fig. 4.1 Different types of daily human activities
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In many research projects, researchers have used the data collected from static to
static postural transitions to distinguish static activitiesmore efficiently. For example,
to identify sitting and lying smartly, the past few time frames can be considered using
the fact that for sitting activity, a previous postural transition (standing to sitting, or
lying to sitting) is a required information. Similarly, to identify the dynamic activity
(like, walk) well, we may consider the past few time frames using the fact that for
walking activity, a previous stand is a must.

In Fig. 4.2, we have summarized the complication factors behind human activity
recognition using sensor devices. These factors need to be considered with care to
obtain better performance.
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Table 4.1 Group of activities identified by sophisticated human activity recognition systems

Group Activities

Daily activities Working at the PC, watching TV, watering plants, reading, brushing teeth,
cleaning floor, sleeping, cooking, having lunch, drinking water,
vacuuming.

Transportation Riding a bus, subway, train, driving car, cycling, etc.

Ambulation Walking, running, sitting, standing still, lying, climbing stairs, descending
stairs, riding escalator, stay, jogging, riding elevator.

Phone usage Text messaging, making a call, playing games, using apps, sending
business e-mail.

Fitness/exercises Rowing, lifting weights, spinning, nordic walking, doing push-up.

Nursing activities Patient sitting, measure blood pressure, measure ECG, attaching bust
bandage.

Falls Directional fall: forward fall, backward fall, rightward fall, leftward fall,
etc. Fall based on movements: stumbling, sliding, slipping, etc.

4.2 Type of Activities

According to [9], the basic group of activities are shown in Table 4.1. Daily activities
include basic activities that are performed each day inside the houses in most of
the cases. Transportation activities represent human activities related to daily trans-
ports like cycling, riding a bus, driving a car, etc. In recent days, researchers are
also focusing on nursing activities in hospitals or health care facilities, and fitness
activities that can play an important role to improve our medical sectors. Besides
several types of fall detection classes are also growing important attentions among
researchers to prevent accidental fall of elderly people or patients in hospital. Col-
lecting fall detection data is painful experience and difficult to do [10]. Among all
of these types of activities, the recognition of ambulation activities like walk, stay,
run, etc. is the most common research field.

4.2.1 Ambulation Activities

Ambulation activities can be classified into three basic types [3]:

• Static activities,
• Dynamic activities, and
• Activities with postural transitions as shown in Fig. 4.1.

Activities like sitting on a sofa, lying on a bed, standing, etc. are regarded as
static activities where also postural transition can be presented (posture change from
sit to stand or stand to sit). These activities can be classified easily from periodic
activities, for example, walking, jogging, running, etc. because of the variation in
terms of acceleration and velocity. However, extra complexities can be added in the
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classification procedure because of the presence of extremely comparable postures
(standing and sitting). Furthermore, if there is a similarity in the feature space in
the case of dynamic activities because of related action patterns, it also makes the
classification procedure difficult.

In most of the cases, the similarity among performed activities is not uniform
throughout the entire period and the entire set of activities. Due to this reason, the
recognition of particular activities gets even harder. For instance, sitting and standing
are much related (difficult to separate), however, they are very distinct from walking
(easily separable).

4.3 Data Collection Protocol

Training data can be collected from several users either in the laboratory or free-
living conditions. Laboratory data are obtainedmaintaining stringent protocolswhere
activities are conducted at the same pace and for the same duration in constrained
ways.But in the case of free-living conditions, subjectsmight act contrarily and in less
restrained ways. Unsupervised, less-controlled and user-annotated data collection
in case of long-term out-of-lab monitoring brings several challenges. Most crucial
challenges include:

1. During out-of-lab monitoring, subjects tend to annotate data themselves without
any supervision of researchers. This results in unreliable annotations creating dif-
ficulties for classifiers to be trainedwell, which eventually degrades the classifier’s
recognition accuracy.

2. Problems become more prominent as there are no standard ways to follow to
perform a specific activity. For instance:

• A person may sit on a sofa in such a way, which cannot be recognized to be
either lying or sitting.

• The same situation can occur in case of dynamic activities, such as walking can
be recognized as jogging or skipping for some persons and vice versa.

Therefore, training and test dataset prepared in laboratory settings are easier to be
recognized by machine learning algorithms than the dataset prepared in a free-living
condition.

4.3.1 Basic Requirements

4.3.1.1 Requirements of Training Data

We can evaluate recognition algorithms based on the variety and quantity of test data
they demand. We can choose training data based on the following two criteria:
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Choice of training data
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Subject-independent
recognition 

Subject-dependent
recognition 

Complexity of the
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Fig. 4.3 The basic criteria of training data collection

1. Subject-independent recognition: Any activity recognition algorithm is consid-
ered to be ideal if it is trained on a given subject population but it can identify
activities for unseen subjects quite well. However, according to some previous
works, such as [11], it is hard to achieve subject-independent recognition for a
diverse set of activities as there are numerous ways of them to be performed by
people. It requires a large number of training data and well-designed classifier to
improve accuracy.

2. Subject-dependent recognition: Subject-dependent recognition is quite easier to
achieve. Previous works on human activity recognition suggest that recognition
algorithms function better with more person-specific training data. Ideally, the
amount of data we require for better recognition depends both on the complexity
of the problem and on the complexity of the chosen algorithm. These are:

a. The complexity of the problem: In most of the cases, the nature and com-
plexity of the problem is usually calculated by the unknown underlying feature
which best relates the input variables to the output variable.

b. The complexity of the learning algorithm: In most of the cases, the learning
algorithm’s complexity is calculated by the method used to inductively learn
from concrete examples of the unknown underlying mapping function.

We have summarized the basic requirements of training data collection in Fig. 4.3,
showing two criteria. Moreover, nonlinear algorithms, which are more powerful
machine learning algorithms need more data as they are more flexible and non-
parametric. They can find out how many parameters are needed to model a problem
in addition to the values of those parameters. This added flexibility and power comes
at the cost of requiring more training data.
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Fig. 4.4 Factors that need to be considered to fulfill sensor requirement for HAR

4.3.1.2 Sensor Requirement

The recognition algorithm’s sophistication will increase dramatically by the amount
of smartphone sensors used, the form of sensors used, and the location of the device,
when taking user data. We have summarized this situation in Fig. 4.4.

1. The number of sensors to choose: There aremany sensors available for wearable
systems and smartphones such as:

• Global Positioning System (GPS),
• Wi-Fi,
• Bluetooth,
• Accelerometers,
• Magnetometers,
• Gyroscopes,
• Barometers,
• Proximity sensors,
• Temperature sensors,
• Humidity sensors,
• Ambient light sensors,
• Cameras, and
• Microphones.

But we need to carefully select the amount of sensors because a recognition
device employed with a limited range of sensors allows the operation in real-life
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implementation simpler and more efficient. Fewer sensor signals are needed to
analyze a system with a small number of sensors than a large number of sensors.
Although a system with fewer sensors is rendered easier by lower computing
demand, the efficiency of identification of these systems is poorer than systems
with a wide range of sensors because less knowledge is usable.

2. Location of smartphone andwearable device: Users usually carry smartphones
in their shirt pocket, pant pocket, or keeping them in their hands. Besides, users
who use wearable devices (like a smartwatch or other devices) wear it in the wrist
or place it in the upper arm, leg, or ankle. Some people also keep smartphone or
wearable devices in the waist. Accelerometers handle axis-based motion sensing,
whereas, a gyroscope determines the orientation of the position of a smartphone.
When collecting data, the orientation and position of sensing device should be
noted, as data may vary for the device on various locations on the body of a
person, even if the activity remains the same. Owing to the changing location of
smartphones and other tracking devices, the overall quality of identification can
be degraded by inaccurate detection of a specific incident.
Another problem is that certain people might not often carry their mobile with
them when they’re at home, rendering monitoring their actions difficult. In this
situation, a wearable sensor may be a reasonable choice for certain people to
wear it all day long when doing tasks, but it comes with the issue of discomfort.
Especially, patients or elderly people find it difficult to use wearable devices all
the time. In particular, people deny those wearable systems which hinder the daily
physical behavior of subjects or force them into a fixed pattern of existence due
to their size, methods of communication, or position in the body to wear that
creates discomfort. These problems need to be considered with care by the fellow
research community.

4.4 Design Issues

Main design issues concerning human activity recognition include the choice of
sensors, the location of smartphones or wearable devices, the flexibility of wearable
systems, the energy consumption of the device, etc. We have summarized these
factors in Fig. 4.5.

4.4.1 Variety of Sensors

Triaxial accelerometers and gyroscopes are reasonably the most widely used sensors
to recognize ambulation activities like walking, jogging, skipping, sitting, etc. These
are usually less expensive, demand comparatively low power [12], and are installed
in most of today’s cellular phones and wearable devices. The Global Positioning
System (GPS) facilitates all sort of location-based services and for context-aware
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Fig. 4.5 Factors that need to
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purposes, including the recognition of the user’s transportation mode [12]. The GPS
sensor is very convenient. Tracking the place of users can be effective to understand
their activities using ontological argumentation or reasoning [13]. For example, if a
person is at a park, s/he is not brushing the teeth but might be moving or walking.
Also, information about places can be obtained easily by using the Google Places
Web Service [14], among other tools. Essential signs data (e.g., heart rate, respiration
rate, skin temperature, skin conductivity, ECG, EEG, etc.) can also be monitored
using sensors merged on a wearable device for medical activities recognition and
monitoring patients [15].

4.4.2 Computational Cost

Computational cost is a key factor. Fewer sensor signals are needed to analyze a
system with a small number of sensors. Though, lower computation requirement
makes a system with fewer sensors simple, the recognition accuracy of such systems
is inferior to the systems with a large set of sensors as less information is accessible.

4.4.3 Energy Consumption Issue

In case of human activity recognition, energy consumption is a vital issue to be con-
sidered as mobile devices such as sensors and cellular phones are generally energy-
constrained. Short-range wireless networks (e.g., Bluetooth or Wi-Fi) should be
fancied over long-range networks (e.g., cellular network or WiMAX) as the former
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requires lower power. Feature extraction and classification process can be done in
the integration device as another approach so that raw signals would not have to
be continuously sent to the server [13]. In the case of multiple sensors, there can
be a system of turning the sensors off or reducing their sampling/transmission rate
when they are not required. For instance, if the user’s activity is sitting or standing
still, the GPS sensor may be turned off [12]. Hence, by improving the design issues
and utilizing nanotechnology, we can make the devices more energy-efficient. To
reduce excessive energy consumption, we can take help of embedded programming
for more efficient and long-time usage of the devices.

4.4.4 Processing Time

Processing time is a primary factor in the case of human activity recognition. Most
of the use cases of this research area demand real-time performance without delay.
If we focus only to improve the performance at the cost of higher processing time,
this will fail to provide the result for the end-user on time. In the case of a medical
emergency and accidental cases, this issue can be very serious. This is the reason to
balance the trade-off between performance and processing time.

4.4.5 Optimum Performance

Human activity recognition application areas mostly cover patient-activity moni-
toring, fitness monitoring, accidental activity identification, etc. This is necessary to
maintain optimum performance in real-time. False detection of activities (like human
fall detection when the smartphone drops from a hand) and lower performance rate
to detect activities can cause serious problem for patients. So, it is very important
to ensure optimum performance while doing human activity recognition research.
Some activities are for regular monitoring and some activities are for healthcare
issues on serious cases. The purposes of the system will define the level of optimum
performance of activity recognition.

4.5 Choosing the Position of the Smartphone

We have already discussed in the Introduction part about the possible positions (e.g.,
shirt pocket, left or right pants pocket, back pocket, holding in the left or right
hand, carrying in a bag, etc.) of a smartphone to keep when a person is performing
activities. The location of the device (smartphone or smartwatch) and, subsequently,
the placing of the accelerometer or gyroscope is an important discussion point.One
of the key points is that in order to quantify human acceleration, it is crucial to
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consider the movement of the human body and what physical properties one needs
to evaluate [16]. This shows the significance of choosing the appropriate combination
of measurement range and accelerometer placement.

Usually, body motion can be calculated very well with a single accelerometer
positioned near the center of mass of the body situated within the pelvis [17]. The
same theory goes for gyroscope too. Attachment to the waist facilitates the control
of accelerations close to the center of mass, which is the benefit of this location.
Every body motion can trigger a change in the center of mass [18]. Therefore, it is
recommended that we try to keep the smartphone in a pant pocket up to waist height
near the center of mass of the body to make the recognition more accurate. However,
in reality, it is difficult to keep the sensors or mobile phones always in this position,
especially for female (as in many countries, women wear different kinds of dresses
that will not allow this setting).

There are other common positions for positioning, such as chest or leg [19].
Accelerometers usually ought to be connected to the portion of the body whose
action is being observed. Ultimately, the best location to put the accelerometer must
be decided depending on the requirement and the form of behaviors to be observed.

4.6 Conclusion

Due to the limitations and shortage of some comprehensive and large publicly avail-
able datasets on sensor-based human activity recognition, most of the researchers try
to build their datasets. However, the collection of data in a proper way is a challeng-
ing task to deal with. In this chapter, we have analyzed those challenges and design
issues along with some feasible solutions. Sensor requirement for data collection,
the difference between lab-collected data and real-time data, sensor position, energy
consumption issues, and other factors have been discussed in detail in this chapter.

4.7 Think Further

1. What factors do we need to consider while collecting human activity data?
2. What are the differences between data collected in a laboratory and free-living

condition?
3. What is the relation between complexity and number of activities to classify?
4. What is the relation between complexity and types of activities?
5. Why it is difficult to classify activities with similar postures?
6. Why it is difficult to classify complex activities consisted of several sub-

activities?
7. What are the different types of human activities?
8. What are the basic categories of ambulation activities?
9. What should be the ideal data collection protocol?
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10. What are the basic requirements of training data?
11. What are the basic sensor requirements?
12. How number and types of sensors can bring a change in performance?
13. What are the primary design issues?
14. How can we handle computational cost in the field of HAR?
15. How we can deal with energy consumption issue in the field of HAR?
16. How to choose the ideal position of smartphone and wearable device for better

performance?
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Chapter 5
Devices and Application Tools for
Activity Recognition: Sensor Deployment
and Primary Concerns

Abstract Sensorymodality is a primary concern in sensor-based activity recognition
research. The usage of wearable devices and utilizing embedded smartphone sensor
data to recognize daily activities has become famous in this research field nowadays.
This chapter deals with the challenges of choosing an appropriate sensing device
and application tools for data collection. Sensing devices used in previous activity
recognition research works have been described in detail with their hardware and
software specification. Finally, the description and parameters of some important
sensors (accelerometer, gyroscope, etc.) have been given.

5.1 Available Sensing Devices and Application Tools

Human Activity Recognition (HAR) has numerous important applications as well
as, a number of challenges are ahead to deal with [1–8]. In this chapter, we present
decides and application tools for human activity recognition—based on sensors.Most
of the time tracking apps and devices combined on home appliances are used for the
gathering of data from human behavior. But smartphones nowadays do provide the
requisite sensors which can be used at any location at any time for tracking activities.
But to access smartphone sensors, we need an application tool. We have discussed
wearable devices and sensor modules in this segment, along with some applications
and techniques that can be used for the identification of human activities. Researchers
can use this sensing devices and apps for data collection or they can use the data
collected by these devices for further research.

5.1.1 Node

Motion Node [9] is notably tiny in size (35 mm × 35 mm × 15 mm) and lightweight
enough (14 g) to wear without difficulty for a prolonged period of time. This is a
store-bought sensing platform to captivate human activity signals. Motion Node is
a 6-DOF inertial measurement unit (IMU), which is specially intended for human
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motion sensing purposes. This device integrates a 3-axis accelerometer, a 3-axis
gyroscope, and a 3-axismagnetometer. For each axis of accelerometer and gyroscope,
the measurement range is ±6g and ±500dps respectively.
Good Points: Motion Node is a wired device and sends sampled sensor data to a
laptop computer via a USB interface. No sensor data is missed in this case and the
accuracy of the sensor data is well maintained.
Challenge: Possible anxiety is that the wire is cumbersome and may distort the
sample data.

5.1.2 Eco Sensors

Eco sensors [10] are small (1 cm × 2 cm × 6 mm) in dimension and they have no
internal battery. Their production price is relatively inexpensive. It consumes very
little power. Each of the Eco sensors features a 2-axis accelerometer sensor equipped
for the distinct task of tracking infant activity (Fig. 5.1).
Good Points: The compressed form factor and low energy consumption make Eco
nodes suitable for several applications, e.g., environmental monitoring, medicine,
ambient intelligence, and computer-human interface.
Challenge: One core concern is that the wireless range is limited to 10.7m. Also,
the multi-modal data collection is not allowed.

5.1.3 µParts

µParts [11] is a low-cost, compact sensor node (10 × 10) optimized for settings
needing a high population of relatively low sampling rate sensors. µParts designers
have restrained the components to a single side of the PCB, whereas putting the
battery on the reverse side. These explicit design decisions have reduced the cost
of the device to a great extent. To detect motion, this system includes temperature,
light, and a ball switch sensor.

Fig. 5.1 Block diagram of
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Fig. 5.2 Schematic design
of ESense

Processor
(CSR/SoC)

Bluetooth
6-axis
 IMU

Memory

I2C/SPI

Audio System
Microphone

Speaker
Power System

5.1.4 ESense

ESense [6, 12] is a wireless earbud for robust, effective, and multimodal sensing
of human behavior. The purpose of this sensor is to track head and mouth-related
action. This earbud can sense audio, orientation, change of movement, temperature,
photoplethysmogram (PPG), and galvanic skin response. It uses Bluetooth commu-
nication for sending data to the receiver. This earbud can also be used for listening
to music. The schematic design of ESense is shown in Fig. 5.2.
Good Points: ESense can be used as both for entertainment and sensing purposes.
Also, the ear is relatively stationary than other body parts, so it will induce very little
noise due to body jerking.

5.1.5 MITes (MIT Environmental Sensors)

It is a handheld package of omnipresent wireless sensing system equipped for the
real-time compilation of human behaviors in natural settings for conduct research,
built inMIT, USA [13]. It consists of 3.2 cm × 2.5 cm × 0.6 cm and 8.1g (including
battery) stick-on nodes that sense environmental or body information and transmit
it wirelessly to one or several reception nodes. USB or RS232 serial ports are used
to send the received data to the host computer. MITes have been developed using a
common communication board with an easy-to-replace sensor connector, so several
sensor nodes (light, temperature, etc.) can be accessed by removing just the onboard
sensor and microcode.

5.1.6 MICA2DOT

MICA2DOT [14] is a wireless smart microsensor. It has a built-in temperature sensor
and a battery monitoring system. It also contains 18 connecting pins, where different
sensors can be attached to this sensor. This sensor also supports serial communi-
cation. There are three types of processor available for MICA2DOT (MPR500CA,
MPR510CA, and MPR520CA), which mainly based on the Atmel ATmega 128L
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Fig. 5.3 Block diagram of
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microcontroller. Diagram of MPR500CA is given in Fig. 5.3. A research team from
UC Berkeley developed an OS system for this sensor namely TinyOS. For trans-
mitting and receiving data this sensor can use Multi-channel Radio communication
using 868/916, 433 MHz or 315 MHz.
Good Points:MICA2DOT consumes a very little power. Also, it can communicate
with every node wireless as a router.
Challenge: The sensor has 6 analog input-output pins.

5.1.7 MICAz

MICAz [15] is an IEEE 802.15.4 measurement system with the architecture, par-
ticularly for intensely embedded sensor networks. It is very small in size and can
communicate wirelessly. There are 51 I/O pins, used as extension connectors for
Acceleration/Seismic, Magnetic, Light, Barometric Pressure, Temperature, Acous-
tic, RH and other Crossbow Sensor Boards. TinyOS operating system is used for
this sensor. The basic diagram of the MICAz is shown in Fig. 5.4. MICAz has I2C,
SPI and UART interfaces. The main application of this system is indoor building
monitoring and security.
Good Point: It can send or receive data at 250kbps rate.

Fig. 5.4 Block diagram of
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5.1.8 Intel Mote

Intel Mote [16] is a Bluetooth-based enhanced sensor network node. Intel Mote has
increased CPU performance, improved radio bandwidth, and reliability along with
a cheap cost. In this network node, there is an embedded wireless microcontroller
consisting of an ARM7 core along with a Bluetooth radio, SRAM, and FLASH
memory as well as different I/O choices. The design of this node also includes a
reliable high bandwidth streaming transport layer. The software architecture used by
the sensor is based on TinyOS.
Good Points: A new transportation protocol was built to enable end-to-end safe
transfer of broad datagrams inside the network from one node to another arbitrary
node. A low-power network configuration has been introduced, utilizing the Blue-
tooth holdmode. During thismode, data will still flow at extremely low speeds across
the network, rising the resource usage while ensuring a quick response time for the
network.

5.1.9 TMote Sky

TMote Sky [17] is an ultra-low-power IEEE 802.15.4 compliant wireless sensor
module. It contains temperature, humidity, and light sensors with USB, which facil-
itates a broad range of mesh network applications. This module has out-of-the-box
TinyOS support. TMote influences arising wireless protocols and the open-source
software movement. It has USB support, optional SMA antenna, and 16-pin expan-
sion support. The block diagram is shown in Fig. 5.5. In spite of featuring onboard
sensors for robust application, cost and packaging size of TMote Sky is very little.
Good Point: It provides flexible interconnection with external sensors and periph-
erals.

5.1.10 Smart-ITS

Smart-ITS [18] is an integrated smart-object network.This represents the “Disappear-
ing Computer” hypothesis, which places computation within the context of contact
between people and their natural world. In the 1G Smart-ITS architecture, the three
primary functionalities are mapped onto two hardware modules. Block diagram of
a single module is shown in Fig. 5.6. One module is intended for communication
purposes and the other for physical I/O. Both modules contain processors. An I2C
data bus and a power bus interconnect the modules. The central module is called core
board and it communicates with other Smart-ITS.
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Fig. 5.5 Block diagram of
TMote sky. PAR denotes
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radiation sensor, and TSR is
total solar radiation sensor
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5.1.11 Luna Nurse

Luna Nurse is a sensor that can monitor whether a person has left the bed or not
[19]. Three different states can be detected by this sensor by sensing the movement
of the person, which is: bed-rising up, sitting on the edge of the bed, and leaving the
bed. The detection method of this sensor is passive infrared. It can be installed in the
headrest side of the bed. The behavior on the bed can be detected within 2 m from
the sensor. The operating environment temperature should be 5 ◦C ∼ 40 ◦C and the
weight of this device is around 6kg.
Good Points: It is easy to install the sensor from the bed and it can be easily set on
the head side of a person while sleeping. Being a non-contact type sensor without
sound, the user does not have to compromise comfort sleeping. This sensor can also
be used for fall accident prevention of children and elderly people while sleeping.
This product got a Good Design Award in 2014.

5.1.12 Google Glass App

A software has been developed at the University of Toronto, Canada for wearable
systems that help autistic children with social interactions. This [20] software is used
for tracking children who interact in real-world circumstances with adults. These
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programs can be used for reinforcing strategies acquired in clinical environments in
daily situations, such as home and education.

5.1.13 CC2650 SensorTag

The test package CC2650 SensorTag [21] acts as a sensor slave system built on a
CC2650multi-standard wirelessMCUdesign based on Bluetooth low energy (BLE).
It includes five peripheral sensors: IR temperature sensor, movement sensor, baro-
metric pressure, humidity, and optical sensors. This package is designedwith a robust
sensor driver software solution, merged to a GATT server operating on TI BLE-Stack
v2. For setup and data collection the GATT registry provides a rudimentary module
for each sensor.

5.1.14 Device Analyzer

Device Analyzer [22] is a software that runs on Android smartphones running 2.1or
higher and that gathers context consumption data when the handset is in operation.
It has a personal analytics option that extracts data monitoring our everyday work
like phone calls or our movement patterns using embedded phone sensors. Research
works can be done using data collected by this application.

5.1.15 Smart Wearable Clothes

These clothes have brought a new era in the field of data collection related to activity
monitoring [23]. These clothes use E-textile (electro-textile) and smart fabrics with
electronics and other components embedded in. Smart clothes can monitor a user’s
fitness parameters during the workout. There are several types of smart wearable
clothes, e.g., Nadi X Yoga Pants, Ambiotex, Owlet Smart Sock2, OMsignal Bra,
Siren, Samsung NFC Suit, etc. Note that the International Symposium on Wearable
Computers (ISWC) has been running for 24 years and this is the premier community
for wearable technology-based research activities.

5.1.16 Maglietta Interattiva Computerizzata (MagIC)

MagIC [24] is an undershirt, which includes embedded sensors to measure heart rate
and breathing rate. This product is made of conductive fibers. There is an electronic
module consisting of a triaxial accelerometer, a data storage system, and a signal
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transmitter attached with the vest. The vest is waterproof (easy to wash) and comes
in various sizes. The vest is specifically tailored to reduce artifacts. People with
impaired movement can wear this cloth, as it has both sides and front opening with
a zipper or velcro.

5.1.17 Cyber Glove II

This glove [25] is specifically designed to measure hand function of people with
neurological disorders. Bend sensors were also used which contain an ink based
on carbon/polymer whose resistance increases with bending. By using these bend
sensors, this glove can measure finger and wrist flexion. The primary function is to
track and monitor finger activity as the user completes different activities, so it can
identify only minor differences in fine motor skills.

5.1.18 Bellabeat

Bellabeat [26] is a wellness-oriented outfit intended to build fashionable, compatible
women’s wearables. This sophisticated piece of jewellery is built to monitor health
problems. This can be worn with accessories or objects, as a necklace or bracelet.

5.1.19 Fitness Trackers and Smartwatches

Samsung smartwatches (Gear Fit, Gear 2, and Gear 2 Neo), Apple Watch, Basis
Peak fitness by Intel’s new devices group, Fitbit, and Xiaomi Mi Bands are most
popular for fitness tracking, daily movement monitoring, sleep monitoring, heart
rate monitoring, etc. These devices can be used for data collection purposes [27].

5.1.20 HASC Tool and HASC Logger

HASC Tool [28] is an application built with Eclipse Plugin for the processing of
action details. We can create a dataset on triaxial accelerometer data of different
activities using this tool on a smartphone. HASC Logger, on the other hand, is a
device that gathers data about operation via iPhone or iPod touch. Action label must
be manually issued. It is explored by several works, e.g., [8].
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5.1.21 LoRaWAN

LoRaWAN [29] is a module that can be interfaced with a number of sensors. Many
research works have utilized this sensor for activity monitoring [7, 30]. It is a high-
efficiency tool of optimum precision of calculation. LoRaWAN sensor has a network
lifespan of up to 10 years, and the energy usage is much smaller compared to other
sensor products. It provides real-time graphs of sensor data. This device has signal
conditioning circuitry for analog signals and also has digital sensors interfacing
capability.

5.1.22 Snapband

The [31] Snapband is a lightweight, multi-location contact input tool. This system
can be snapped to various places very easily. Snapband addresses the challenges by
utilizing current wearable gadgets that are limited to being carried at different places
on the body (for example, wrist). This will restrict the capabilities for interaction
based on physical limitations in body movement and positioning. On the other side,
Snapband is a multi-functional wireless input system which can be worn at vari-
ous locations of the body. It is also possible to mount this device onto objects in
the environment. Users may change the position of the unit to various affordances,
depending on specific conditions and usage cases.

5.1.23 LYRA

LYRA [32] is a smart wearable device, which has been designed for in-service flight
assistant. This device assists flight attendants during their work. This device lets
people use their smartphones to search and order services. Smart glasses and a smart
shoe clip with RFID reader attachment give located details to flight attendants during
long-distance flights.

5.1.24 YAWN

YAWN [33] is yet another wearable toolkit that simplifies the integration of micro-
electronics into the fabric. YAWN is a bus-based, compact wearable toolkit that sim-
plifies the interconnection by depending on a prefabricated fabric band constructed
from three wires. This ensures fast reconfiguration, washability, and reduces the
number of link issues.
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5.2 Descriptions of Some Important Sensing Devices

In a signal acquisition system, sensors are the component of the instruments that are
diligent in calculating variations in the spatial parameter and must be sensitive to the
essence of the signal to be obtained [34]. The description of the sensors in this section
addresses the challenges to correctly recognize static, dynamic and transitional activ-
ities performed by different subjects in different environments in the context of wear-
able sensors embedded in smart devices like smartphone and smartwatch. Some of
these sensors can also be used as environmental sensors for monitoring human activ-
ities inside the home for patients and elderly people. Through using the Android
sensor system, we can access certain sensors and acquire raw sensor data. The sen-
sor architecture is part of the kit of android hardware and contains the following
groups and interfaces: SensorManager, Sensor, SensorEvent, SensorEventListener,
TriggerEvent, etc.

5.2.1 Accelerometer

Accelerometry is a movement kinematic analysis tool that enables the quantification
of human body accelerations induced or sustained by the use of an accelerometer
[35]. It has also been pointed out that, for long-termmonitoring of human movement
use of accelerometry is increasing rapidly [36]. The working principle is consistent
with Newton’s second law of motion. It measures the acceleration forces in ms−2

that is applied to a device on all three physical axes (x, y, and z), as shown in Fig. 5.7,
including the force of gravity, where 1 g = 9.81ms−2. Accelerometers typically
lead to good results in the detection of physical activity, which generally needs
very little time, memory, which computing power [37]. The basic operational theory
behind the accelerometer focused on Microelectromechanical Systems (MEMS) is
the displacement of a tiny evidence mass carved into the silicone surface of the
integrated circuit and supported by miniature beams [38].

Fig. 5.7 Triaxial
accelerometer sensor
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Fig. 5.8 Triaxial gyroscope
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5.2.2 Gyroscope

A gyroscope identifies up/down, left/right and rotation around three axes (x, y, and z)
as shown in Fig. 5.8 for more complex orientation details. It measures the influence
of gravity applied to a system on all three physical axes (x, y, and z), in ms−2. Inside
phones gyroscopes do not use gears and gimbals much as conventional mechani-
cal devices. Instead, they are gyroscopes of the Micro-Electro-Mechanical Systems
(MEMS), a simplified variant of the principle mounted on an electronics board such
that it may work within a smartwatch or mobile. This device can measure the angu-
lar velocity of the smartphone device, namely the pitch, roll, and yaw, which helps
determine rapid shifts or small changes in the angular velocity of the user. When
empirically analyzed, a periodic shift in gyroscopic data signals dynamic movement
and small changes denote transition between static states of the user.

Early activity recognition algorithms relied solely on accelerometer data. How-
ever, the incorporation of gyroscope sensors in HAR adds another level of precision
helping out the accelerometer with understanding which way the phone is orientated.
It helps out in keeping the same recognition accuracy no matter what orientation the
phone is kept by the user while taking data. As a result, use of both accelerometer
and gyroscope is making a good impact on human activity recognition [39, 40].

5.2.3 Magnetometer

The tri-axis magnetometer utilizes the principle of Hall effect on a miniature scale to
detect the effect of the earth’s magnetic field along the three principal axes as shown
in Fig. 5.9. The accelerometer, gyroscope, and magnetometer are housed in the same
module using the MEMS technology.
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Fig. 5.9 Triaxial
magnetometer sensor

5.2.4 Pressure Sensor

Pressure sensor readings indicate the ambient air pressure near the device. Pressure
sensor readings are useful in detecting the altitude of the device as shown in Fig. 5.10.
It is essential to differentiate between the transportation modes of varying altitude
levels, for example, buses and subway trains.

There are other types of sensor like Global Positioning System (GPS), Wi-Fi,
Bluetooth, barometers, humidity sensors, light sensors, etc. in smart devices. How-
ever, these types of sensors are not widely used in wearable sensor-based human
activity recognition domain but there can be possible research direction about uti-
lizing data from these sensors for making a better activity recognition system. We
can also extract data regarding linear acceleration, gravity, and orientation. How-
ever, these readings do not use a unique sensor, rather they are synthesized from the
accelerometer, gyroscope and magnetometer data.

Linear acceleration provides uswith the absolute acceleration of the device devoid
of the gravity portion of acceleration data. Gravity readings specify the direction of
the Earth’s center. Orientation readings are derived from the gyroscopic data and
present the azimuth angle of the device. The gravity and orientation sensors work in
tandem to provide an accurate frame of reference for angular motions.

Fig. 5.10 Pressure sensor
reading
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5.3 Factors to Choose Accelerometer Sensor

Until picking a device, we have to weigh the following considerations [41] about the
accelerometer sensor as seen in Fig. 5.11.

5.3.1 Frequency Response

Frequency Response is defined by the crystal density, piezoelectric properties, and
case resonance frequency. It is the frequency range inwhich the accelerometer perfor-
mance is within a defined variance, normally±5%. g is an earth gravity acceleration
of 32.2 ft/s2, 386 in/s2, or 9.8 m/s2, respectively.

We need to consider the frequency range of the accelerometer to which it will
detect motion and state a true output. Frequency response is measured in Hertz (Hz),
which is normally specified as a range.

5.3.2 Dynamic Range

The maximal amplitude (can be positive or negative) which the accelerometer may
calculate until distorting or clipping the output signal is called dynamic range. Nor-
mally dynamic range is defined in unit: g’s.

5.3.3 Sensitive Axis

The inherent design of accelerometers tends it to detect inputs about an axis. We
need to consider either the accelerometer is single-axis or triaxial. The most suitable
accelerometers are triaxial accelerometers (TA) based on numerous applications,
which can detect inputs in three orthogonal planes. Single-axis accelerometers, on
the other side, will only track signals in one plane.

Fig. 5.11 Important factors
that need to be considered
before choosing
accelerometer sensor

Factors to choose
 accelerometer sensor

Frequency response

Dynamic range

Sensitive axis
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Table 5.1 Target accelerometer system parameters

Parameters Target Value

Number of axes 3

Sampling frequency 1.25–800 Hz

12 bits 8 bits

Maximum
acceleration amplitude
and

±2 g 2/2048 2/128

Acceleration
resolution (in bits
and g)

±4 g 4/2048 4/128

±8 g 8/2048 8/128

Maximum
acceleration without
damage

5000 g

Most of the accelerometers used in day-to-day activity tracking calculate either
vertical (uni-axial) or tri-axial (triaxial) accelerations and respond to movement fre-
quency and speed [42].But it needs to be considered that, asmost of the humanmotion
occurs in more than one movement axis, triaxial accelerometers are used to measure
the acceleration in each orthogonal axis. Most of the smartphone’s accelerometers
are the triaxial accelerometer. Adapted from [41], Table 5.1 provides several char-
acteristics of the accelerometer used in different investigations.

The reference point is usually chosen in such a way that 0 g correlates to a free-
fall state and the final output number represents the highest sum of g the system
can register. An accelerometer’s efficiency depends on four factors: the direction in
which it is positioned (decided by the smartphone’s size), its orientation at this spot,
the subject’s posture, and the operation being carried out by the subject [43]. The
accelerometer efficiency, when the subject is at rest, is calculated by its inclination
relative to the gravitational vector. If we know the accelerometer’s orientation relative
to the human, then we may use the resulting accelerometer recordings to evaluate
the subject’s posture relative to each position [43].

5.4 Acceleration Related to Human Activities

Themagnitude of the acceleration decreases from the head to the feet and is typically
greater in the vertical direction [44]. To the other side, frequency continues to decline
from the ankle to the shoulder and is higher in the vertical direction than in the
transverse [44]. The precision of recognition activity as a feature of the sampling rate
of the accelerometer was examined by [45]. It has been shown that for ambulation
activities no significant improvement in accuracy is obtained above 20 Hz. Adapted
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Table 5.2 Amplitude and movement while performing physical activities for different sensor loca-
tions

Vertical (g) Horizontal (g)

Motion Head Body Ankel Head Body Ankel

Walking – –0.3; 0.8 –1.7; 3.3 –0.2; 0.2 –0.3; 0.4 –2.1; 0.4

Running 0.8; 4.0 0.9; 5.0 3.0; 12.0 – – –

from [44], Table 5.2 indicates certain amplitude cycles for certain standard activities;
all units are in g.

The measuring ranges influence the precision and expense of the accelerometer,
and the frequency defines the device’s sampling rate which is critical during the
sensor design process. Accelerometers ought to be able to measure accelerations of
±12g, in general, and higher than ±6g, if put at the waist to test daily life events
[46].

5.5 Conclusion

Due to the advancements of sensor-based technologies and smart devices, researchers
are focusing on creating sensor-based activity recognition dataset. In this chapter, we
have provided different types of sensor modules and mobile application tools that
can be utilized by the researchers for collecting data. This chapter also provides a
brief description of important sensors like accelerometer, gyroscope, magnetometer,
pressure sensor, etc. However, the devices and systems may have newer versions as
time passes. Moreover, some systems may be unavailable in the market in the future.
Therefore, these systems and tools are depicting the recent and current trends, from
which we can understand an overall view of the devices and tools for human activity
recognition arena.

5.6 Think Further

1. How to choose sensor modalities for human activity recognition?
2. What are the available sensing devices and application tools?
3. Which mobile applications can be used to collect smartphone sensor data?
4. Which software can be used to collect data from wearable and environmental

sensors?
5. Describe some important sensing devices.
6. What is the purpose of using acceleration data in HAR?
7. What is the purpose of using gyroscope data in HAR?
8. What is the purpose of using magnetometer data in HAR?



92 5 Devices and Application Tools …

9. What is the purpose of using pressure sensor data in HAR?
10. What factors need to be considered to choose sensor for better performance?
11. What are the limitations or constraints of using accelerometer in HAR?
12. What are the limitations or constraints of using gyroscope in HAR?
13. What are the limitations or constraints of using magnetometer in HAR?
14. What are the limitations or constraints of using pressure sensor in HAR?
15. What are the recent smart sensors for HAR?
16. What are the recent tools and mobile applications for HAR?
17. Write down various sensors that are suitable for various activity types. Explain

the reasons for your selections of sensors.
18. Are there any sensors that can be explored for HAR (but not yet exploited by

the research community)?
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Chapter 6
Sensor-Based Benchmark Datasets:
Comparison and Analysis

Abstract Human Activity Recognition (HAR) using installed sensors has made
renowned progress in the field of pattern recognition and human-computer interac-
tion. To make efficient machine learning models, researchers need publicly avail-
able benchmark datasets. In this chapter, we have bestowed a comprehensive survey
on sensor-based benchmark datasets. We have not considered RGB or RGB-Depth
video-based action or activity-related datasets in this book. We have performed a
complete analysis of benchmark datasets, that incorporates information about sen-
sors, attributes, activity classes, etc. These datasets sum up a good number of sensor-
baseddaily activities,medical activities, fitness activities, device usage, fall detection,
transportation activity, and hand gesture data.

6.1 Benchmark Datasets Information

HumanActivity Recognition (HAR) has numerous important applications as well as,
a number of challenges are ahead to dealwith [1–8]. In this chapter,wepresent sensor-
based benchmark datasets and their comparative presentations. Researchers face
multiple obstacles including technological difficulties, the question of anonymity,
corporate authority, etc. in the data collection process [3]. However, with these chal-
lenges, a large range of databases are currently accessible for sensor dependent
behavior recognition. We evaluated benchmark datasets from well-known databases
in this segment, with related details such as data set characteristics, attribute charac-
teristics, number of attributes, classes, and so on. Moreover, we have also mentioned
the devices and sensors information used for collecting data in these datasets. These
datasets contain data related to daily activities, fall classification, nursing and medi-
cal activities, sports activities, physical activities, sleep monitoring systems, and so
on. Smartphones, wearable devices, and multiple environmental sensor-based smart
home devices have been used mainly for collecting data in these datasets.
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6.2 UCI Machine-Learning Repository

University of California Irvine (UCI) machine learning repository [9] contains
datasets in different domains, usually in *.CSV format. Datasets in this collection
provide details regarding categories of attributes, missing values, target area, etc.
The flexibility of data description and application richness are the key advantages in
these datasets. We have listed datasets from this repository in Tables 6.1 and 6.2 for
smartphone and wearable sensor-based movement identification. These datasets are
publicly available. The names of these listed datasets are

• Heterogeneity Human Activity Recognition (HHAR),
• Activity recognition with healthy older people using a Battery-less Wearable Sen-
sor (UCIBWS),

• Activity Recognition system based on Multisensor data fusion (AReM),
• Human Activity Recognition using smartphones (HAR),
• Smartphone-based recognition of Human Activities and Postural Transitions
(HAPT),

• Activity recognition from Single Chest-mounted accelerometer (Single Chest),
• OPPORTUNITY activity recognition (OPPORTUNITY),
• Activities of Daily Living (ADLs) recognition using binary sensors,

Table 6.1 List of publicly available 15 UCI ML repository datasets with basic information

Dataset Subjects Activities Attributes Instances Year

HHAR [19] 9 6 16 43930257 2015

UCIBWS [20] 14 4 9 75128 2016

AReM [21] 1 6 6 42240 2016

HAR [22] 30 6 561 10299 2012

HAPT [23] 30 12 561 10929 2015

Single Chest [24] 15 07 N.A N.A 2014

OPPORTUNITY
[13]

4 35 242 2551 2012

ADLs [25] 2 10 N.A 2747 2013

REALDISP [26] 17 33 120 1419 2014

UIFWA [24] 22 2 N.A N.A 2014

PAMAP2 [27] 9 19 52 3850505 2012

DSA [28] 8 19 5625 9120 2013

Wrist ADL [28] 16 14 3 N.A 2014

RSS [29] N.A 2 4 13197 2016

MHEALTH [30] 10 12 23 120 2014

WISDM [31] 51 18 6 15630426 2019

WESAD [32] 15 3 12 63000000 2018

SFDLA [33] 17 36 138 3060 2018

N.A: Not available
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Table 6.2 List of publicly available 15 UCI ML repository datasets with sensor information

Dataset Devices Sensors/module Missing values

HHAR [19] 4 smartwatch and 8
smartphone

Accelerometer and
gyroscope

Yes

UCIBWS [20] Battery-less wearable
sensor

7 RFID reader antennas at
two rooms

No

AReM [21] Chipcon AT86RF230
radio subsystem with a
TinyOS firmware

WSN (RSS data
collection using IRIS
nodes) at 20Hz

No

HAR [22] Waist-mounted
smartphone (Samsung
Galaxy S II)

Accelerometer and
gyroscope at 50Hz

No

HAPT [23] Waist-mounted
smartphone (Samsung
Galaxy S II)

Accelerometer and
gyroscope at 50Hz

No

Single chest [24] Chest-mounted device Accelerometer 52Hz No

Opportunity [13] Wearable object Accelerometers, motion
sensors, ambient sensors,
etc

Yes

ADLs [25] WSN device 12 sensors (PIR,
magnetic, pressure and
electric sensors)

No

REAL-DISP [26] Wearable device 9 sensors (accelerometers,
4D quaternions,
magnetic, gyroscope, etc.)

No

UIFWA [24] Android smartphone at
chest pocket

Accelerometer No

PAMAP2 [27] 3 inertial measurement
units and a heart rate
monitor

Wireless IMU and heart
rate monitoring sensors

Yes

DSA [28] Five Xsens MTx units 9 sensors per unit.
(accelerometers,
gyroscopes, and
magnetometers) at 25Hz

No

Wrist ADL [34] Wrist-worn device Accelerometer No

RSS [29] WSN device in office
environment

5 sensors No

MHEALTH [30] Wearable device
Shimmer2 (BUR10)

Accelerometer, 2 lead
ECG, and magnetic
sensors

No

WISDM [31] Smartphone and
smartwatch

Accelerometer, gyroscope No

WESAD [32] Wrist and chest worn
device

RespiBAN, and Empatica
E4

Yes

SFDLA [33] Sensors fixed in 6
positions

23 sensing features Yes
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• REALDISP activity recognition (REALDISP),
• User Identification From Walking Activity (UIFWA),
• PAMAP2 Physical Activity Monitoring (PAMAP2),
• Daily and Sports Activities (DSA),
• Dataset for ADL recognition with Wrist-worn accelerometer (Wrist ADL),
• Indoor user movement prediction from RSS data (RSS),
• MHEALTH dataset (MHEALTH).
• WISDM smartphone and smartwatch activity biometrics (WISDM),
• Wearable Stress and Affect Detection (WESAD), and
• Simulated Falls and Daily Living Activities (SFDLA).

Among these datasets, HHAR, OPPORTUNITY, PAMAP2, and SFDLA datasets
contain missing values. There are many ways to handle missing values like list-wise
or case deletion, pairwise deletion, maximum likelihood, and so on according to the
research work [10–12]. This is an active area of research in sensor-based human
activity recognition where the training dataset contains missing values [13–18].

6.3 Pervasive System Research Group

Pervasive System Research Group1 has several datasets, source codes, and apps,
whichwith a proper assertion, can be utilized for research purposes. This is a research
group of the University of Twente, The Netherlands. In Tables 6.3 and 6.4, we have
summarized the activity datasets from this research group. These datasets are publicly
available. The listed datasets are

• Smoking Activity,
• Complex Human Activities,
• Physical Activity Recognition, and
• Sensors Activity datasets.

6.4 Human Activity Sensing Consortium (HASC)

HASC2 is a non-profit voluntary organization, which conducts activities to build
large-scale databases using wearable sensors for human behavior monitoring. We
have listed datasets from HASC in Tables 6.5 and 6.6. These datasets are

• HASC2010corpus,
• HASC2011corpus,
• HASC2012corpus,

1http://ps.ewi.utwente.nl/Datasets.php.
2http://hasc.jp/.

http://ps.ewi.utwente.nl/Datasets.php
http://hasc.jp/
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Table 6.3 List of publicly available Pervasive system research group datasets with basic informa-
tion

Dataset Subjects Activities Applications Year

Smoking activity
[35]

11 5 Detection of
smoking activity

2016

Complex human
activities [36]

10 male
age: 23–35

13 Complex human
activities
recognition

2016

Physical activity
recognition [37]

4 6 Daily human
activities
recognition

2013

Sensors activity
[38]

10
age: 25–30

7 Healthcare 2014

Table 6.4 List of publicly available pervasive system research group datasets with sensor infor-
mation

Dataset Devices Sensors/module

Smoking activity [35] Smartwatch at wrist position
and smartphone in pocket

Accelerometer, gyroscope,
linear acceleration sensor, and
magnetometer

Complex human activities [35] Two mobile phones (Samsung
Galaxy S2) in right pocket and
wrist

Accelerometer, gyroscope,
linear acceleration sensor,
magnetometer

Physical activity recognition
[37]

4 smartphones on four body
positions (wrist, jeans pocket,
arm, belt)

Accelerometer, gyroscope,
magnetometer at 50Hz
sampling frequency

Sensors activity [38] 5 smartphones on five body
positions

Accelerometer and gyroscope

• HASC-IPSC: Indoor Pedestrian Sensing Corpus,
• HASC-PAC2016: Pedestrian Activity Corpus, and
• HASC-BDD: Ballroom Dance Dataset.

Among these datasets, HASC2010corpus, HASC-IPSC, and HASC-BDD are
publicly available and explored by researchers, e.g., [8, 10].

6.5 Medical Activities-Related Datasets

Recognition of clinical events has various implications for continuous control of heart
attack patients, pregnant women, and the elderly. We have also mentioned several
datasets related to medical practices in Tables 6.7 and 6.8 namely,
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Table 6.5 List of HASC datasets with basic information

Dataset Subjects Activities Applications Year Public
availability

HASC 2010
corpus [39]

540 6 Human activity
recognition using
smartphone or terminal
devices

2010 Yes

HASC 2011
corpus [40]

116 6 Same as HASC 2010
corpus

2011 No

HASC 2012
corpus [41]

136 6 Same as HASC 2010
corpus

2012 No

HASC IPSC
[42]

107 6 Indoor position and
building structure
estimation research

2014 Yes

HASC PAC
[43]

510 6 Human activity
recognition related to
Pedestrian

2016 No

HASC BDD
[44]

7 13 Dance step recognition
in ballroom

2019 Yes

Table 6.6 List of HASC datasets with sensor information

Dataset Devices Sensors/module

HASC 2010, 2011, 2012
corpus [39–41]

Smartphone (pocket, bag) and
HASC tool

Triaxial accelerometer.
Sampling rate: 10–100 Hz

HASC IPSC [42] Two mobile phones (back
waist pocket, bag) and HASC
logger

Accelerometer, Wi-Fi, pressure
sensor, angular velocity, and
geomagnetism sensor

HASC PAC [43] Smartphone (waist, arm, bag,
chest, foot) and HASC logger

Accelerometer, gyro,
magnetometer, sensor
(pressure, proximity, light),
and Wi-Fi

HASC BDD [44] Wearable sensors and video
camera

Six inertial sensors

• Daphnet Freezing of Gait (FoG) dataset,
• Nursing Activity dataset,
• Nursing Care Records [45], and
• Predicting Parkinson’s Disease dataset.

Among these datasets, Daphnet Freezing of Gait Data Set (Daphnet FoG) and
Predicting Parkinson’s Disease datasets are publicly available.
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Table 6.7 List of medical activities-related datasets with basic information

Dataset Subjects Activities Applications Year

Daphnet FoG
[46]

10 Parkinson’s
disease (PD)
patients

3 Monitoring PD
patients’ walk
and detecting
sporadic freezing
of gait

2010

Nursing activity
[47]

Labelled data (22
nurses),
unlabelled data
(60 nurses)

25 Monitoring
nursing activities
in the hospital

2016

Predicting
Parkinson’s
disease [48]

9 Parkinson’s
disease (PD)
patients

2 Monitoring and
measure
symptoms of PD
disease

2011–12

Table 6.8 List of medical activities-related datasets with sensor information

Dataset Devices Sensors/module

Daphnet FoG [46] Wearable device that can
obtain gait data

Accelerometer sensors. At
foot, knee, and hip

Nursing activity [47] Mobile devices (iPod) in breast
pockets and accelerometers on
right wrist and back waist

Accelerometer sensor for
nurses combined with
wearable and environmental
sensors for patients

Predicting Parkinson’s disease
[48]

Smartphones for at least one
charge cycle per day (about
4–6 h)

Accelerometer, compass,
ambient light, proximity,
battery level, GPS, and audio
sensors

6.6 Physical and Sports Activities-Related Datasets

Physical and sports activities related to datasets can be used for the research work
of monitoring daily work-out time to remain healthy and fit. Many wearable devices
are available nowadays, which come with the feature of fitness tracking. But, most of
the cases, these devices fail to distinguish among similar complex physical activities.
So, research works in this area have many opportunities. In Tables 6.9 and 6.10, we
have summarized 4 datasets related to physical activities monitoring. All datasets
are publicly available. The listed datasets are,

• Body Attack Fitness dataset,
• Swimmaster dataset,
• Fitbit dataset, and
• BWT (Body Weight Training) dataset.
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Table 6.9 List of publicly available fitness activities-related datasets with basic information

Dataset Subjects Activities Applications Year

Body attack
fitness [49]

1 6 Leg-based
physical activities
monitoring and
correct sensor
placement
research

2009

Swimmaster [50] 12 (5× 25m)
crawl

Swim activities Evaluate swim
techniques,
specially the body
balance and body
rotation during
crawl swimming

2009

Fitbit [51] 30 Fitbit users 11 Tracking
different. Fitbit
trackers from the
variation of
outputs and
behaviour
tracking of people

2016

BWT [52] N.A 10 Support system
for beginners to
perform effective
Body Weight
Training (BWT)
alone

2018

Table 6.10 List of publicly available fitness activities-related datasets with sensor information

Dataset Devices Sensors/module

Body attack fitness [49] Wearable system for legs 10 accelerometer sensors on
the leg

Swimmaster [50] Body attached device 5 accelerometer sensors at the
right and left wrist, at the
lower and upper back, and one
at the head

Fitbit [51] Fitbit (activity tracking wrist
band)

Accelerometer, gyroscope,
sleep monitoring sensor, heart
rate monitor, etc

BWT [52] SenStick sensor device Accelerometer, gyroscope,
magnetic, temperature,
humidity, pressure, light, and
UV sensors
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6.7 Household Activities-Related Datasets

With the great advancement in the field of Internet of Things (IoT), the smart home
conceptwithmultiple sensors embedded in homeappliances, vehicles, etc. are getting
more famous. These sensors’ data can be used for tracking daily household activities,
which will suggest the users a well-suited daily routine for the rest of the week. We
have listed some datasets based on environmental sensors and sensors merged in
home appliances in Tables 6.11 and 6.12. Among these datasets, all are publicly
available except Activity Recognition with Ambient Sensing (ARAS) dataset [53].
The names of the enlisted datasets are,

• MIT PlaceLab dataset,
• CMU Multi-Modal Activity Database (CMU-MMAC) dataset,
• Ubicomp dataset,
• Activity Recognition with Ambient Sensing (ARAS) dataset,
• Smart Home dataset,
• Center for Advanced Studies in Adaptive Systems (CASAS) dataset,

Table 6.11 List of household activities-related datasets with basic information

Dataset Subjects Activities Applications Year

MIT PlaceLab
[54]

1 10 Household activities
recognition

2006

CMU-MMAC
[55]

43 5 Cooking activities
recognition

2009

Ubicomp [56] 3 10, 13, and 16
activities in 3
houses

Monitoring daily
activities of inhabitants
inside their houses

2008

Smart home
[57]

2 age: 26 and
57, in 2 houses

17 Sensor based activity
recognition in bathroom
and kitchen

2010

ARAS [53] Multiple from 2
houses

27 Human activity
recognition from
ambient sensors merged
at home

2013

CASAS [58]
adults

Younger and
older

11 Common activities
detection that span
multiple environment
settings

2012

Home sensors
[59]

2 women in two
homes

16 Proactive care for the
aging based on
environment sensors

2004

Daily routine
[60]

1 34 Recognize daily routines
as a probabilistic
combination of activity
patterns

2008
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Table 6.12 List of 8 household activities-related datasets with sensor information

Dataset Devices Sensors/module

MIT PlaceLab [54] Wearable system 5 accelerometers (one on each limb
and one on the hip) and one wireless
heart rate monitor

CMU-MMAC [55] Multi-sensor network based devices Accelerometers, gyroscopes, video,
audio, RFID tags, motion capture
system based on body markers, skin
temperature and galvanic skin
response (GSR)

Ubicomp [56] RFM DM 1810 WSN kits with a
rich API and blue-tooth headset
(Jabra BT250v) for annotation

House A: 14 sensors, House B: 23
sensors, House A: 21 sensors

Smart home [57] WSN with many nodes, which
communicates with a central
gateway

Sensors attached in 2 bathrooms and
2 kitchens. Reed switches, mercury
contacts, PIR, and float sensors

ARAS [53] Home sensors based system, that
communicates using ZigBee
protocol wirelessly

20 binary sensors for each house.
Force sensor, photocell, contact
sensors, proximity sensors,
temperature sensors, sonar sensors,
infrared receivers, etc

CASAS [58] Sensor network in house and data
stored in SQL

475 sensors used for creating 11
datasets in this research

Home sensors [59] Sensor device and EMS tool Home 1: 77 environmental sensors,
Home 2: 84 environmental sensors
(installed on doors, windows, oven,
cabinets, drawers, etc.)

Daily routine [60] Porcupine sensor platform with PIC
microcontroller

3D accelerometer, temperature
sensor, and light sensor

• Cooking Activity dataset3

• Home Sensors dataset, and
• Daily Routine dataset.

6.8 Device Usage Activities-Related Datasets

Recently, many users use devices like smartwatches, smartphones, tabs, etc. Data
related to the activities of users while using these smart devices can be a promising
field of research. With user-agreement to avoid privacy issues, these research works
can help the users in contextual life management, choosing apps and the best phone

3Cooking Activity Challenge with International Conference on Activity and Behavior Computing
(ABC), 2020 https://abc-research.github.io/cook2020.

https://abc-research.github.io/cook2020
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Table 6.13 List of device usage activities-related datasets with basic information

Dataset Subjects Activities Applications Year

Activity
classification [61]

10 7 Determine user
activities while
wearing a
smartwatch or
using a phone

2015

Reality mining
[62]

100 5 Sensing complex
social systems
and social
patterns in daily
user activity

2004

MDC [63] 200 7 Contextual life
management,
health, and
well-being

2009–2010

Device analyzer
[64]

31320 4 Phone plan and
app
recommendation

2014

Insight for wear
[65]

11.5 million
records

7 Help users
augmenting their
own behavior or
device use

2015

plans suited for them based on historical use. In Tables 6.13 and 6.14, we have
listed these kinds of datasets related to user activity while using smart devices with
embedded sensors. The listed datasets are,

Table 6.14 List of device usage activities-related datasets with sensor information

Dataset Devices Sensors/module Availability

Activity classification
[61]

Smartphone in 5 body
locations

Accelerometer.
Sampling frequency:
50Hz

Publicly available

Reality mining [62] 100 Nokia 6600
phones with the
Symbian OS and IBM
laptop

Proximity, GPS, call
log, SMS, etc

Not publicly available

MDC [63] Nokia phones Sensors embedded in
Nokia phone

Only for non-profit
organizations

Device analyzer [64] Smartphone and app. GSM, GPS Yes (with condition)

Insight for wear [65] Lifelogging
smartwatch app.

Embedded sensors in
smartwatch

Yes (with condition)
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• Activity Classification dataset,
• Reality Mining dataset,
• Mobile Data Challenge (MDC) dataset,
• Device Analyzer dataset, and
• Insight for Wear dataset.

6.9 Wearable Sensor-Based Datasets

Wearable devices have to be built taking into account consumer versatility. In several
databases, low weight, trendy, and convenient wearable tools with integrated sensors
were used for behavior tracking. Some of these publicly accessible databases have
been addressed with specific details in Tables 6.15 and 6.16. The names of such
datasets mentioned are,

• University of Southern California Human Activity Dataset (USC-HAD),
• UC Berkeley WARD (Wearable Action Recognition Database),
• Skoda mini checkpoint dataset,
• Human-Computer Interaction gestures dataset (HCI),
• PPS Grouping dataset,
• University of Dhaka—Mobility Dataset (DU-MD),
• Human Gait Database (HuGaDB), and
• UTD Multimodal Human Action Dataset (UTD-MHAD).

6.10 Smartphone Sensor-Based Datasets

Smartphones have been most people’s regular companion during the day. So, using
embedded sensor data from smartphones, tracking user behaviors is convenient.
But, there are some problems as the precise and accurate classification of activities
depends on the placement or location of the smartphone (for example, shirt pocket,
carrying in hand or bag, thigh pocket, or elsewhere) and orientation of the smart-
phone.Moreover,we have to rely on embedded sensors only.Yetmobile sensor-based
behavior detection has clutched other research interests because of the flexibility and
cost-effective method. We also mentioned several publicly accessible datasets of this
method in Tables 6.17 and 6.18. There are some more datasets based on smartphone
sensor, e.g.,

• Datasets in UCI ML repository [9],
• Human Activity Sensing Consortium, e.g., HASC2010 Corpus [39],
• HASC-IPSC (Indoor Pedestrian Sensing Corpus) [42]

Some of these datasets can be presented under different categories due to similar
modalities or patterns. Some other datasets are,
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Table 6.15 List of publicly available wearable sensor-based datasets with basic information

Dataset Subjects Activities Applications Year

USC-HAD [66] 14 12 Healthcare (physical
fitness monitoring and
elder care)

2012

WARD [67] 20 13 Human action
recognition

2009

Skoda [68] 1 10 Activities related to car
maintenance

2007

HCI [49] 1 5 Human-computer
interaction based on
hand gesture

2009

PPS grouping
[69]

10 2 Detection of different
group formation while
walking

2009

DU-MD [70,
71]

25 10 Used for training HAR
package in existing
fitness bands to act as
remote healthcare
monitoring system

2018

HuGaDB [72] 18 12 Health-care-related
studies, such as in
walking rehabilitation or
Parkinson’s disease
recognition

2017

UTD-MHAD
[73]

8 (4 male, 4
female)

27 Robust human action
recognition using fusion
of data from differing
modality sensors

2015

• WISDM (Wireless Sensor Data Mining) dataset,
• Smart Devices dataset,
• Gait database.

Among these datasets, the Gait database by Institute of Scientific and Industrial
Research (ISIR), Osaka University is the largest database with 745 subjects (388
males and 357 females) [74, 75].

6.11 Locomotion and Transportation Datasets

In recent years, there have been various researches on multimodal sensor data that
are collected during transportation and locomotion activities. Transportation mode
recognition is beneficial in sectors regarding travels and tourism, traffic condition
monitoring, user transportation behavior monitoring, collecting data for transport
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Table 6.16 List of publicly available wearable sensor-based datasets with sensor information

Dataset Devices Sensors/module

USC-HAD [66] Motion node (high
performance inertial sensing
device)

Triaxial accelerometer and
gyroscope

WARD [67] DexterNet (sensor platform) Triaxial accelerometer and
biaxial gyroscope

Skoda [68] Wearable system 20 triaxial accelerometer on
both right and left arm

HCI [49] Wearable system for hand 8 triaxial accelerometer on
both arms

PPS grouping [69] Wearable system 10 triaxial accelerometer
sensor on hip

DU-MD [70] Trillion node engine project’s
devices from The University of
Tokyo

Accelerometer

HuGaDB [72] Body sensor network. 3 pairs of inertial sensors
(accelerometer, gyroscope),
and 1 pair of EMG sensors

UTD-MHAD [73] Kinect camera and wearable
device

RGB, depth, skeleton from
Kinect; 9-axis MEMS sensor
(3-axis acceleration, 3-axis
angular velocity, and 3-axis
magnetic strength)

Table 6.17 List of 3 publicly available smartphone sensor-based ambulation activity datasets with
basic information

Dataset Subjects Activities Applications Year

WISDM [76] 29 6 Smartphone
sensor-based
activity
monitoring

2012

Smart devices
[77]

N.A 11 Human behaviour
recognition using
smart devices

2017

Gait database
[78]

745 (388 males
and 357 females)

5 gait activities Analyzing the
dependence of
gait
authentication
performance

2013
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Table 6.18 List of publicly available smartphone sensor-based ambulation activity datasets with
sensor information

Dataset Devices Sensors/module

WISDM [76] Several android phones, like
the Nexus One, HTC Hero and
Motorola Backflip

Triaxial accelerometer

Smart devices [77] Smartphone, smartwatch and
smartglass along with 2 apps
(SWIPE and Timelogger)

Accelerometer, gyroscope,
Electrooculography (EOG),
and pressure sensor

Gait database [78] Motorola ME860 smartphone 3 Inertial sensors
(Accelerometer and
gyroscope) and a smartphone
(accelerometer) at 100Hz

statistics, etc. Smart City is a big term recently and these datasets are very crucial for
the future development of the Smart City concept. We can also easily access sensor
data to monitor the average speed of traffic in a region. Public transit providers may
enhance reliability by changing their routes and schedules, based on locomotion and
transportation details. There are also many context-aware applications including,

• Activity and health monitoring [79],
• Parking spot detection [80], and
• Content delivery optimization [81, 82].

The available datasets are very limited for the general analysis of locomotion and
usage of transportation modes (e.g., public transport, bike, car, etc.). Tables 6.19
and 6.20 list some locomotion and transportation datasets. Researchers explored the
SHL dataset for locomotion and transportation study [83–86]. The listed datasets
in these tables are done by Yang, Wang, Reddy, Siirtola, Hemminki, Zhang, Xia,
Widhalm, Jahangiri, Su,Geolife,HTC,USTransportation, and SHL (Sussex-Huawei
Locomotion-Transportation) dataset [83, 84, 84, 86].

6.12 Datasets on Fall Detection Techniques

Accidental fall detection of patients, pregnant women, and elderly people have
become a major focus of attention among researchers due to its life-saving applica-
tions [100]. In this regard, access to public databases can establish an extensive and
systematic assessment of fall detection techniques. In Tables 6.21 and 6.22, we have
summarized publicly available datasets [101] on numerous types of falls along with
similar activities closely related to fall.

However, it is extremely difficult to prepare fall detection datasets—as you need
the subjects to fall down in different directions and various ways [100]. These can
be varied, and painful for the subjects to do. The fall by a healthy person, and the



110 6 Sensor-Based Benchmark Datasets: Comparison and Analysis

Table 6.19 List of the locomotion and transportation datasets with basic information

Dataset Subjects Activities Labelled data Public Year

By Yang [87] 3 6 3 No 2009

By Geolife [88] 182 6 50176 Yes 2010

By Wang [89] 7 6 12 No 2010

By Reddy [90] 16 5 120 No 2010

By Siirtola [91] 5 6 3 No 2012

By Hemminki
[92]

16 6 150 No 2013

By Zhang [93] 15 6 30 No 2013

By Xia [94] 18 4 22 No 2014

HTC [95] 224 10 8311 No 2014

By Widhalm [96] 15 8 355 No 2014

By Jahangiri [97] 10 5 25 No 2015

By Su [98] 5 6 3 No 2016

US transportation
[99]

13 5 31 Yes 2018

SHL [83] 3 28 2812 Yes 2018–2019

Table 6.20 List of locomotion and transportation datasets with sensor and device information
Dataset Devices Sensors/module

By Yang [87] 1 smartphone, no preferred placement Accelerometer

By Geolife [88] 1 GPS logger or 1 GPS phone GPS

By Wang [89] 1 smartphone, no preferred placement Accelerometer

By Reddy [90] 6 smartphones in 6 positions: arm, waist,
chest, hand, pocket, and bag

Accelerometer, GPS, Wi-Fi, and
GSM

By Siirtola [91] 1 smartphone in trousers Accelerometer

By Hemminki [92] 1 smartphone with partially no preferred
placement and partly fixed locations:
trousers, bag, torso

Accelerometer, GPS

By Zhang [93] 1 smartphone, no preferred placement Accelerometer

By Xia [94] 1 smartphone, jacket/torso Accelerometer, gyroscope, and
GPS

HTC [95] 1 smartphone, no fixed position Accelerometer, gyroscope, and
magnetometer

By Widhalm [96] 1 smartphone, no fixed position Accelerometer, GPS

By Jahangiri [97] 1 smartphone, no preferred placement Accelerometer, gyroscope, and
GPS

By Su [98] 1 smartphone, no preferred placement Accelerometer, gyroscope,
magnetometer, and barometer

US transportation [99] 1 smartphone, no fixed position 9 smartphone sensors

SHL [83] 4 smartphones in 4 positions: hand, torso,
backpack, and trousers. 1 front facing
camera

15 smartphone sensors, 1 time
lapse video
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Table 6.21 List of publicly available datasets for fall detection techniques with basic information
Dataset Subjects Activities/falls Applications Year

DLR [102] 19 15 activities, 1 falls Activity monitoring
along with fall
detection

2010

MobiFall [103] 24 9 activities, 4 falls Fall detection using
smartphones

2013

UR fall [104] 6 males 5 activities, 4 falls Falls monitoring in
office and home
environment

2014

Tfall [105] 10 8 falls Use of compensation
strategies to prevent
the fall

2014

TST fall [106] 11 4 activities, 4 falls Fall activity
monitoring

2014

Cogent labs [107] 42 15 activities, 4 falls Wearable
sensor-based fall
monitoring for elder
people

2015

Gravity [108] 2 7 activities, 12 falls Numerous types of
fall monitoring

2015

DMPSBFD [109] 5 martial artists 10 activities, 4 falls Daily activities and
fall monitoring

2015

UMA fall [110] 17 8 activities, 3 falls Falls and daily
activities monitoring

2016

MobiAct [111] 57 9 activities, 4 falls Fall detection using
smartphones

2016

UniMiB SHAR [109] 30 9 activities, 8 falls Preventing fall
accidents

2017

Sis fall [112] 38 19 activities, 15 falls Different types of fall
monitoring

2017

fall by an elderly or a patient are not the same at all in terms of speed, patterns of
falling down, etc. And we can not create a more ‘realistic dataset’ with elderly or
sick people for fall detection! It is not possible. One alternative way is to exploit
mannequins in a controlled manner, or to develop any robotic system that can be
managed with some realistic features like weight, walking speed, patterns of fall
down, etc. Computer-generated simulated data may be explored as well to see the
results (similar to some synthetic video-based action recognition datasets).

6.13 UCR Time Series Classification Archive

This is a repository hosted by the University of California, Riverside that represents
time-series data, which comes in two parts namely train and test set [113]. The two
files are in the same format but are generally of different sizes. The files are in the
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Table 6.22 List of publicly available datasets for fall detection techniques with sensor information

Dataset Devices Sensors/module

DLR [102] 1 external IMU (Xsens MTx) Accelerometer, gyro, and
magnetometer at 100Hz

MobiFall [103] 1 smartphone (Samsung Galaxy S3) Accelerometer (87Hz) and gyroscope
(100Hz)

UR fall [104] 1 external IMU (x-io-x-IMU)
(Bristol, UK)

Accelerometer. Aampling frequency:
256Hz

Tfall [105] 1 smartphone (Samsung Galaxy
Mini)

Accelerometer. Sampling frequency:
45Hz

TST fall [106] 2 external IMU, (Shimmer device) Accelerometer. Sampling frequency:
100Hz

Cogent labs [107] 2 SHIMMER sensor nodes with
intelligence modularity for health
sensing

Triaxial accelerometer, triaxial
gyroscope, and bluetooth device.
Sampling frequency: 100Hz

Gravity [108] Samsung Galaxy S3 and LG G Watch Accelerometer. Sampling frequency:
50Hz.

DMPSBFD [109] 5 smartphones. Accelerometer and gyroscope.
Sampling frequency: 5Hz

UMA fall [110] 1 Smartphone (Samsung Galaxy S5)
4 external IMUs (LG G4, Bosch
accelerometer, Texas Instruments
SensorTag, and InveSense
MPU-9250)

Accelerometers, gyroscope, and
magnetometer. Sampling frequency:
100Hz for smartphone and 20Hz for
IMU

MobiAct [111] 1 smartphone (Samsung Galaxy S3) Accelerometer (87Hz) and gyroscope
(100Hz)

UniMiB SHAR [109] 1 smartphone (Samsung Galaxy
Nexus)

Triaxial accelerometer. Sampling
frequency: 50Hz

Sis fall [112] 1 external sensing mote 2 accelerometers and 1 gyroscope.
Sampling frequency: 200Hz

standard ASCII format that can be read directly by most tools/languages. UCR4

repository contains electrocardiogram (ECG) data, robots’ surface detection data,
etc. that are measured using different devices.

6.14 PhysioBank

This domain focuses on smartphones andwearable devices data formonitoring health
and wellness improvement. PhysioBank5 is a rich source of psychological health-
related signals along with numerous benchmark datasets. There are datasets includ-

4http://www.cs.ucr.edu/~eamonn/time_series_data/.
5https://www.physionet.org/physiobank.

http://www.cs.ucr.edu/~eamonn/time_series_data/
https://www.physionet.org/physiobank
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ing electrocardiogram (ECG), electroencephalogram (EEG), gait data of human in
different stages, and other forms of medical data. Most of the medical data are of
multivariate time series characteristics [114].

6.15 CRAWDAD

Most of the data in the Community Resource for Archiving Wireless Data At Dart-
mouth (CRAWDAD)6 domain is related to mobile devices and wireless networks.
There is no limitation on the data format. Sometimes, this domain provides data
about location or mobility of users who use mobile devices with embedded sensors
like accelerometer, GPS, gyroscope, etc. [115].

6.16 Conclusion

In this chapter, we have presented a comprehensive survey on sensor-based bench-
mark datasets, covering about more than 150 datasets. Many papers explored their
datasets but these are usually neither robust nor open for others to explore. Because of
the challenges to find publicly available benchmark datasets on sensor-based activ-
ity recognition, most of the researchers face difficulties in this field of research. In
this chapter, we have summarized the basic information of numerous benchmark
sensor-based datasets to recognize human activities. Beside that, we have provided
the source of these datasets with proper analysis so that the researchers can easily
select an appropriate dataset according to their research goals.

These datasets sumup several types of sensor-based daily activities,medical activ-
ities, fitness activities, device usage, fall detection, and hand gesture data. Therefore,
these datasets remain only to the authors or to their groups and not open for all
to exploit. Some industries have introduced some datasets through various on-body
sensor devices, however, these are for their internal research purposes as well and
not open for all. Most of the datasets are smaller in size in terms of data, number
of classes, number of subjects, variabilities, etc. Therefore, it is necessary to make
collaborations for having full or part of those industrial large dataset to start research
activities. Various competitions and challenges are explored in different conferences
or workshops based on some datasets (e.g., SHL challenge with ACM UbiComp,
Cooking Activity Challenge7). These are more helpful for research communities.
Apart from the above points, we have not explored any RGB or RGB-Depth video-
based action- or activity-related datasets in this chapter or book. Some of these works
are available in various papers or books [1, 2, 4, 5]. There are demands for datasets in

6http://crawdad.org/.
7Cooking Activity Challenge with International Conference on Activity and Behavior Computing
(ABC), 2020 https://abc-research.github.io/cook2020.

http://crawdad.org/
https://abc-research.github.io/cook2020
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the domain of various falls in hospital and outside, activities related to rehabilitation
progress in rehabilitation centers, autism study, eye movement and tracking to under-
stand behavior [116–118], earable-based datasets for challenging activities that are
usually not possible tomanage by other sensors [6, 119], fatigue and tiredness-related
datasets [120, 121], and so on.

6.17 Think Further

1. Why do we need the information of benchmark datasets in the field of sensor-
based human activity recognition?

2. How can we classify sensor-based activity datasets?
3. What should be the key factors to choose a dataset?
4. Which information are needed to compare different datasets?
5. Mention some application areas of UCI Machine-Learning repository datasets.
6. Mention some application areas of Pervasive System Research Group datasets.
7. Mention someapplication areas ofHumanActivitySensingConsortium (HASC)

datasets.
8. Mention some application areas of medical activities-related Datasets
9. Mention someapplication areas of physical and sports activities-related datasets.

10. Mention some application areas of household activities-related datasets.
11. Mention some application areas of device usage activities-related datasets.
12. Mention some application areas of wearable sensor-based datasets.
13. Mention some application areas of smartphone sensor-based datasets.
14. Mention some application areas of locomotion and transportation-related

datasets.
15. Mention some application areas of fall detection datasets.
16. If you want to make a new dataset for sensor-based activity recognition, then

what kind of datasets do you prefer to develop? Explain the goal or purpose for
each target dataset.

17. List up the problems of the existing datasets and make a guideline for future
datasets to develop.

18. What are the unrealistic points in the existing dataset?
19. How can you develop a dataset having more than thousand subjects?
20. How can you develop a dataset for fall detection purpose?
21. How can you develop a dataset combining vision-based systems (e.g., RGB

camera or depth camera) and sensor-based system?
22. What are the missing points in the vision-based as well as sensor-based activity

datasets?
23. Mention some applications where both vision-based and sensor-based action

classes can be explored?
24. Which activities are more important than other activity classes in the existing

datasets?
25. Enlist 30 activity classes that are explored already along with the datasets.
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26. Enlist top 10 activity classes that will be more important in the near-future and
that are more realistic.
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Chapter 7
An Overview of Classification Issues
in Sensor-Based Activity Recognition

Abstract Human activity analysis and recognition tasks can be considered as clas-
sification problems in most of the cases. This chapter represents the overview of
classification problems explaining their different types with examples. Binary clas-
sification, multilabel classification, multi-class classification, and hierarchical classi-
fication tasks are presented in this chapter. At the end, we have given a brief summary
about the bias-variance trade-off problem.

7.1 Types of Classification Problems

Sensor-based Human Activity Recognition (HAR) has been explored by many
research communities and industries for various applications—along with various
challenges ahead to deal with [1–8]. Sensor-based activity recognition has numerous
application domains that widen the classification tasks into a great extent. In previous
research works, human activity recognition was restricted into binary classification
and multi-class classification tasks. Due to the increasing application tasks in the
medical domain, multilabel and hierarchical classification tasks have also been sig-
nificant nowadays. In general, there can be four types of classification problems as
shown in Fig. 7.1:

• Binary classification,
• Multi-class classification,
• Multilabel classification, and
• Hierarchical classification.

Different research works exploited different classifiers [9–13]. We discuss these
classification tasks based on their definitions and use cases.
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problem

One vs Rest(OvR) strategy

One vs One(OvO) strategy

Fig. 7.1 Different types of classification problems

7.2 Binary Classification

Binary classification is also known as binomial classification where the task is to
classify the components of an assigned set into two groups following a classification
rule. In a binary classification task, the input is generally classified into one of the
two non-overlapping classes. Non-overlapping classes signify that the classes must
be mutually exclusive. This intends that there is no way that any of the data could
fall into two different classes at once. For example, utilizing heartbeat sensor and
body pressure data to evaluate whether a patient has a certain disease or not. Some
of the well-known methods that are used for the binary classification task are,

• Decision trees,
• Random forests,
• Neural networks,
• Logistic regression,
• Bayesian networks,
• Support Vector Machines (SVM),
• Probit model, etc.

Binary classification technique has been used in many research domains. Binary-
classification experiments have been discussed in [14], where response time was
the primary performance measure to review some studies of human information-
processing capabilities. The feature subset selection problem has been analyzed in
[15] for the binary classification problem using a logistic regression model. There is
another research work where the authors have investigated the polarity correspon-
dence principle for the performance of speeded binary classification tasks [16].
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7.3 Multi-class Classification

Multi-class classification is also known as multinomial classification where the task
is to classify the instances of input data into one of three or more classes. In this
case, the input is classified into one of the n non-overlapping classes. The value of
n should be equal to or greater than 3 for multi-class classification. For example,
classifying human activities (e.g., walking, jogging, running, upstairs, downstairs,
sitting, etc.) using a smartphone or smartwatch sensor (e.g., accelerometer and/or
gyroscope) data can be called multi-class classification task. Some of the algorithms
to approach multi-class classification problems are,

• Neural networks,
• Extreme learning machines (a special case of single hidden layer feed-forward
neural networks),

• K-nearest neighbors (KNN),
• Naive Bayes,
• Decision trees,
• Support Vector Machines (SVM), etc.

As human activities are complex and there can be many variations of activities,
multi-class classification is the common choice for human activity recognition tasks.
Multiclass Support Vector Machine algorithm has been used for human physical
Activity Recognition using acceleration sensors [17–23]. Boosting algorithms can
also be used formulti-class classification of human activities [24]. Tree-based ensem-
ble classifiers for multiclass-classification are also common to recognize and classify
human activities with great performance [9–12, 25].

These types of multi-class classification methods are also known as algorithm
adaptation techniques. There is another strategy to decrease the problem of multi-
class classification by transforming it into multiple binary classification problems.
This method can be called a problem transformation technique that can be utilized
in two ways:

• One versus Rest (OvR) strategy
• One versus One (OvO) strategy

7.3.1 One Versus Rest (OvR) Strategy

This method is also named as One versus All (OvA) and One Against All (OAA)
strategy. This method is also known as binary relevance method. In this case, a single
classifier is trained for each class and it is considered that only the samples of that
class belong to the positive class and all other samples belong to the negative class.
This is required to produce a real-valued confidence score by the base classifier rather
than just a class label for its decision. The class is fitted against all other classes for
each classifier in this method.
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This method is computationally efficient and interpretable for a fewer amount of
activity classes as the total number of required classifiers is equal to the number of
classes. Since only one classifier represents one class, it is possible to gain knowl-
edge about that class by inspecting only a single classifier output. In spite of these
advantages, this strategy has several drawbacks:

• First of all, the binary classifiers may differ in terms of the scale of confidence
values.

• Secondly, even if it is possible to create a training set with balanced class distri-
butions, the binary classification learners see unbalanced distribution because the
set of negatives they see is much higher than the set of positives.

7.3.2 One Versus One (OvO) Strategy

In this method, one classifier is fitted per class pair. Each classifier takes the samples
of a pair of classes from the initial training set and must learn to recognize these two
classes. A voting scheme is applied for all of the classifiers at the prediction time.
During the prediction time, the class with the most received vote is selected as the
output class. So, it requires n(n−1)

2 classifiers in total, where, n = total number of
classes. This method has a higher amount of computational cost than the One versus
Rest method because of the higher amount of classifiers for prediction. However,
this strategy has benefits for kernel algorithms, which do not scale well with a higher
number of samples. The reason behind this is the individual learning problem that
only requires a small subset of the data whereas, with One versus Rest strategy, the
complete dataset is used for n times, where n is the number of classes.

7.4 Multilabel Classification

Though multiclass and multilabel classification tasks sound similar, there is a clear
difference in terms of the number of predicted labels for each instance. In the case of
multilabel classification, multiple labels are to be predicted for each instance [26].
In a formal manner, in the task of multilabel classification, a model is required to
design that maps inputs x to binary vectors y, assigning 0 or 1 to each element of
output vectors. The classes are mutually exclusive for the multiclass classification
task,whereas, formultilabel classification, each label depicts a different classification
task, but the tasks are somehow related.

For example, we can take data from an eye tracker while watching amovie and our
task is to classify the genre (e.g., horror, romance, adventure, documentary, comedy,
and science fiction) of the movie based on the eye tracker data. These classes are not
mutually exclusive, as amovie can be classified intomore than one class (for example,
horror and adventure, romantic and horror, documentary, horror, and adventure, etc.)
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Table 7.1 Multilabel classification task of finding genres of a movie by utilizing eye tracker data

Movie genre Percentage of belonging

To a particular class (in %)

Comedy 0.7

Horror 0.02

Romance 90.08

Adventure 6.1

Documentary 0

Science fiction 2.2

with varying percentages. Therefore, this is a multilabel classification problem. The
results from Table 7.1 summarizes this situation (This table has been generated
using random values). In the case of multiclass classification, on the other hand,
each instance can be assigned to only one label (for example, the activity can be
either walk or sit but cannot be both at the same time).

Some algorithms that can be adapted for the multilabel classification task are,

• Boosting,
• K-nearest neighbors (KNN),
• Decision trees,
• Kernel methods for vector output,
• Neural networks.

Multilabel classification technique has been used to train human activity recog-
nition algorithms for labels with inaccurate time stamps [27]. It can also be used
for physical activity recognition from accelerometer sensor values from different
positions [28]. There are some other research works in this domain where multilabel
classification technique has been used [29–32].

7.5 Hierarchical Classification

In this method, the input is classified into only one class, which can be divided into
subclasses or grouped into superclasses. The hierarchy needs to be predefined and
cannot be changed while performing the classification task. In this case, firstly, the
classification is performed at a lower level with highly specific input data. Then it
is required to systematically combine the classifications of the individual pieces of
data and classified on a higher level iteratively until one output is produced. This
final output is the classification of the data overall. This method can be useful for
recognizing pictures in the area of computer vision. There are other applications in
the field of text classification [33] and protein function prediction.
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The hierarchical classification technique is very popular in computer vision,where
human activities can be identified from a video [34, 35]. However, this technique can
also be applied to sensor-based human activity recognition [36]. Hierarchical Hidden
MarkovModel is popular in this case [37]. There are also some other research works
in this domain focused on hierarchical modeling for human activity recognition [38–
41].

7.6 Bias-Variance Trade-Off

In this section, we have discussed the bias-variance trade-off problem, which can
be used to properly interpret different machine learning algorithms and to evade the
mistake of overfitting and underfitting.

7.6.1 Bias Error

Bias signifies the difference between the average prediction of our model and the
correct value, which we are trying to predict. Highly biased models do not care much
about training data and make simplified assumptions. In general, linear algorithms
are highly biased, which makes the learning process faster but they are less flexible.
In the case of complex problems, biased models have lower predictive performance
in general [42]. So we can say that low bias models, for example, decision trees,
k-nearest neighbors, Support Vector Machine, etc. suggest less assumption about the
form of the target function, whereas, highly biased models i.e., Linear Regression,
Linear Discriminant Analysis, Logistic Regression, etc. suggest more assumption
about the form of the target function.

7.6.2 Variance Error

Variance defines howmuchmodel prediction varies for different training data, which
also tells us the spread of our data. Models with high variance try to learn the training
datawell anddonot generalizewell on the test data. They are heavily influencedby the
specifics of the training data. In general, non-linear machine learning algorithmswith
high flexibility (i.e., decision tree) have high variance. Machine learning algorithms
with low variance, for example, Linear Regression, Linear Discriminant Analysis,
Logistic Regression, etc. suggest minute adjustments to the estimate of the target
function with changes to the training dataset. On the other hand, machine learning
algorithmswith high variance i.e., decision rees, k-nearest neighbors, Support Vector
Machines, etc. suggest large changes to the estimate of the target function with
changes to the training dataset.
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7.6.3 Irreducible Error

There is another error named irreducible error, which can not be overcome notwith-
standing of what algorithm is used. This is the error that stemmed from the problem’s
preferred representation. Factors such as unknown variables that influence input vari-
ables mapping to output variable can trigger this error [42].

7.6.4 Overfitting and Underfitting Related to Bias and
Variance

From the discussion above, it is clear that the goal of supervised learning algorithms
is to obtain low bias and low variance to achieve good prediction performance. From
another point of view, in the case of models that underfit the data and fail to capture
the underlying pattern, they usually have high bias and low variance. This case is
prominent while using a lower amount of data to build a model where the model is
too simple to capture the complex pattern in the data or in the case of building linear
models with nonlinear data. On the other hand, when the models overfit capturing
noise along with the underlying pattern of the data, these models usually have low
bias and high variance. This situation appears when we train our model over a noisy
dataset. In general, the complex models are prone to overfitting with high variance.

7.6.5 Balancing Bias-Variance Trade-Off

Too simple models with very few parameters have high bias and low variance,
whereas, complex models with a large number of parameters have high variance
and low bias. An algorithm can not be more complex and less complex at the same
time. Increasing the bias will decrease the variance and increasing the variance will
decrease the bias. So, there is a trade-off between these two concerns and we need
to find a balance between in this trade-off by tuning the model hyperparameters. To
build a reliable model, we necessitate finding a suitable balance between bias and
variance such that it minimizes the total error. The TotalError can be defined as,

Total Error = Bias2 + Variance + I rreducible Error (7.1)

Therefore, to understand the behavior of prediction models, it is really important
to understand the concept of bias and variance. If we can create an optimal balance
of bias and variance, it would never overfit or underfit the model.
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7.7 Conclusion

In order to obtain the desired performance in classification problems, we need to
categorize our problem into a suitable classification task. Thenwe need to knowabout
that classification category in detail. Considering these tasks, we have designed this
chapter that provides a summary of different types of classification tasks with proper
explanation and examples. We have also compared the One versus One and One
versus Rest classification tasks in this chapter. We have also discussed the problem
of bias-variance trade-off to find a good balance between bias and variance such that
it minimizes the total error. This will help to build a good model.

7.8 Think Further

1. What are the different types of classification problems?
2. What is binary classification?
3. In which cases we can use binary classification?
4. What is multiclass classification?
5. In which cases we can use multiclass classification?
6. Differentiate between one versus rest (OvR) and one versus one (OvO) strategy.
7. What is multilabel classification?
8. In which cases we can use multilabel classification?
9. What is hierarchical classification?
10. In which cases we can use hierarchical classification?
11. What is Bias and Variance?
12. Why can not we eliminate irreducible error easily?
13. How to deal with bias-variance trade-off?
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Chapter 8
Performance Evaluation in Activity
Classification: Factors to Consider

Abstract After building the model to recognize activities from sensor data, it
is essential to investigate the effectiveness of the model. The evaluation of the
performance for machine learning methods can be performed using some evalua-
tion matrices. This chapter properly explains the evaluation matrices namely accu-
racy, precision, recall, F1 score, balance classification rate, confusion matrix, and so
on. Graphical performance measures namely ROC curve, cumulative gains, and lift
charts have been explained too. This chapter also represents some essential concepts
related to precision and recall trade-off, and accuracy as a performance measure. The
contents of this chapter will be useful not only for human activity recognition, but
also for other classification-related researches.

8.1 Performance Measure

Sensor-based Human Activity Recognition (HAR) has been explored by many
research communities and industries for various applications—along with various
challenges ahead to deal with [1–8]. In this chapter, we present various performance
evaluation issues in human activity recognition. Proper evaluation and performance
analysis of machine learningmethods andmodels that have been utilized or proposed
in research works is an essential part that must be taken care of. Though a specific
model can produce good results in terms of accuracy-based evaluation, it may happen
that the same model is performing poor while evaluated using logarithmic loss or
other matrices. This phenomenon shows the importance of choosing proper evalua-
tion matrices for the performance analysis of the proposed models in sensor-based
activity recognition. Most common matrices are –

• Accuracy,
• Recall,
• Precision,
• F1 score, and
• ROC curve.
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These can be categorized under paired criteria, combined criteria, and graphical
tools [9–15]. Research has also been done to make the classification technique robust
by analyzing the performance properly in imprecise environments [16].

8.2 Four Essential Concepts of Classification

Four terms are closely related tomeasure the performance of amodelwhile predicting
a class. Every evaluation matrices are dependent on these four terms—based on True
or False, and Positive or Negative. These four concepts are:

• True positives
• True negatives
• False positives
• False negatives

8.2.1 True Positive (TP)

True positive denotes the number of outcomes where the model correctly predicts
the positive class. This refers to the positive tuples correctly labeled by the classifier.
For example, if an umpire gives a batsman not out when he is not out, this is a true
positive case.

8.2.2 True Negative (TN)

True negative indicates the number of outcomes where the model correctly predicts
the negative class. These are the negative tuples that are correctly identified by the
classifier. If an umpire gives a batsman out when he is out, this can be an example
of a true negative case.

8.2.3 False Positive (FP)

False Positive denotes the number of outcomes where the model incorrectly predicts
the positive class. These are the negative tuples that are incorrectly labeled as positive.
For example, if an umpire gives a batsman not out when he is out. False positive is
also known as type-1 error.
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True Positive (T )

True outcome: A thief arrives.

Predicted outcome: Thief (alarm on).

Comment: Good performing robot.

False Positive (F )

False Negative (F ) True Negative (T )

True outcome: No thief arrives.

Predicted outcome: Thief (alarm on).

Comment: False alarm waking the owner.

True outcome: A thief arrives.

Predicted outcome: No thief (no alarm).

Comment: Security breached. Bad
performing robot.

True outcome: No thief arrives.

Predicted outcome: No thief (no alarm).

P N

P N

Fig. 8.1 Concept of true positive, true negative, false positive, and false negative in the case of a
thief predictor model using environmental sensors

8.2.4 False Negative (FN)

False Negative represents the number of outcomes where the model incorrectly pre-
dicts the negative class. These are the positive tuples that are incorrectly labeled as
negative. If an umpire gives a batsman out when he is not out. This error is the most
severe during classification and it is regarded as a type-2 error.

8.2.5 Example to Clear the Concept

In this section, we discuss to clear the concept of true positive, true negative, false
positive, and false negative by providing an example of a robot with motion sensors,
light sensors, etc. for alarming when a thief attacks a home. Let’s assume that a thief
arrives, this is a positive class, and no thief arrives, this is a negative class. We can
summarize the thief prediction model by using a 2 × 2 confusion matrix as shown
in Fig. 8.1, which depicts four possible outcomes.

8.3 Classification Accuracy

Classification accuracy is defined as the ratio of the number of correct prediction by a
model to the number of input samples in total. Based on our definition of true positive,
true negative, false positive, and false negative, we can deduce that the total number
of correct prediction is the sum of true positive and true negative, whereas the total
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input sample comprises of the summation of the all four parameters (TP , TN , FP ,

and FN ). So, we can represent the classification accuracy by the following formula,

Classi f ication Accuracy = Number of correct prediction

T otal number of prediction made

= TP + TN

TP + TN + FP + FN

(8.1)

where, TP = true positive, TN = true negative, FP = false positive, and FN = false
negative.

8.3.1 Is Accuracy Sufficient to Justify the Performance?

Accuracy measure performs well when there is a balance of samples among each
class. When there is an imbalance of input samples among classes, it is not possible
to justify whether a model is performing well or not. We can look at Fig. 8.2a as
an example of this case. This figure summarizes that the used model can perfectly
predict all of the 998 walk data, whereas it could predict 1 out of 2 run data correctly.
The accuracy of this model is very high (99.9%), which does not correctly sum up
the performance of this model as we can not represent the weakness of this model in
terms of classifying run data showing this overall accuracy.

Fig. 8.2 Accuracy as a
performance measure for
classification problem

Predicted

Tr
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Walk

Walk

Run

Run

998 0

1 2

(a) Imbalance of input samples among classes

Predicted

Tr
ue

Walk

Walk

Run

Run

490 10

300 200

(b) Balance of input samples.
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If we make a balance of samples between input classes and use the same model,
we will find from Fig. 8.2b that the accuracy will be dropped down to 69.0% only.
This is because the model can correctly classify walk but fails to recognize run data.
This limitation of this model was not present during the previous case because there
were very few amounts of run data, which was the reason for the overall higher
accuracy of the model with a false sense. When the cost of misclassification of the
minor class samples is very high, this could be a real problem.

8.4 Precision or Positive Predictive Value

Precision is also known as the positive predictive value. It is defined as the proportion
of predicted positives that are positive. It means the percentage of results, which are
relevant. In a word, we can say that precision represents how many decided labels
are appropriate. We can define precision by the following formula,

Precision = TP

TP + FP
(8.2)

where, TP = true positive and FP = false positive.

8.5 Recall or Sensitivity or True Positive Rate

Recall is also known as sensitivity or true positive rate. It is defined as the proportion
of actual positives that are predicted positive. It means the percentage of total relevant
results that have been correctly classified by the model. In a word, we can say that
recall represents how many relevant items are selected. We can define recall by the
following formula,

Recall = TP

TP + FN
(8.3)

where, TP = true positive and FN = false negative.

8.6 Precision Versus Recall

There lies a trade-off between precision and recall. If we need to maintain a good
recall percentage, it will let the model keep generating results which may not be
accurate. This will lower the precision. On the other hand, if the model is bound to
predict the result with high precision rate, it can not keep generating non-accurate
results, which will lower the recall. There is no possible way to maximize both of
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these metrics at the same time. There can be generalized problems where we may
choose to give priority to either precision or recall value but in most of the cases,
there is a metric named F1 score that takes into account both precision and recall.
We can design our model to maximize this metric to make the model better.

8.7 F1 Score

F1 score is defined as the harmonic mean between precision and recall. This metric
takes both false positives and false negatives into account. For uneven class distribu-
tion, the F1 score is a very goodmeasure.We can define the F1 score by the following
expression,

F1 score = 2 × Precision × Recall

Precision + Recall
(8.4)

8.8 Fβ Score

This metric measures the effectiveness of retrieval concerning a user who attaches
β times as much importance to recall as precision. This is the weighted harmonic
mean between precision and recall, which can be defined by the following formula,

Fβ = (1 + β)2 × TP

(1 + β)2 × TP + β2 × FN + FP
(8.5)

where, β is the shape parameter.

8.9 Specificity or True Negative Rate

Specificity is also known as the true negative rate. It is defined as the proportion of
actual negatives that are predicted negative.We can define specificity by the following
equation,

Speci f ici t y = TN

TN + FP
(8.6)

8.10 Positive Likelihood

This is a likelihood that a predicted positive is an actual positive. This can be defined
by the following formula,
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Positive likelihood = Sensi tivi t y

1 − Speci f ici t y
(8.7)

8.11 Negative Likelihood

This is a likelihood that a predicted negative is an actual negative. This can be defined
by the following formula,

Negative likelihood = 1 − Sensi tivi t y

Speci f ici t y
(8.8)

8.12 Balanced Classification Rate (BCR)

Balanced Classification Rate (BCR) is also known as balanced accuracy. This metric
combines the sensitivity and specificitymetrics and it can be defined by the following
equation,

BCR = 1

2
(True Posi tive Rate + True Negative Rate)

= 1

2
(

TP

TP + FN
+ TN

TN + FP
)

(8.9)

8.13 Balanced Error Rate (BER)

This metric is also known as Half Total Error Rate (HTER) and it can be defined by
the following equation,

BER = 1 − BCR (8.10)

8.14 Youden’s Index

This is defined as follows with the values of sensitivity and specificity,

Youden′s I ndex (J ) = Sensi tivi t y + Speci f ici t y − 1 (8.11)
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8.15 Matthews Correlation Coefficient

This is a measure of the quality of classification problems. This metric takes into
account the false positive and false negative and it can be used for classes with differ-
ent sizes too. This reflects a correlation coefficient between the binary classifications
observed and expected, and returns a value between −1 to +1. A coefficient of +1
denotes an accurate prediction, 0 denotes no better than random prediction and −1
indicates total disagreement between prediction and observation. This is also known
as the phi coefficient. We can represent the Matthews Correlation Coefficient (MCC)
using the following expression,

MCC = (TP × TN ) − (FP × FN )√
(TP + FP) + (TP + FN ) + (TN + FP) + (TN + FN )

(8.12)

where, TP = true positive, TN = true negative, FP = false positive, and FN = false
negative.

8.16 Discriminant Power Normalized Likelihood Index

The Discriminant Power Normalized Likelihood Index (DP ) is another performance
measure for classifiers, which is defined by the following equation,

DP =
√
3

π
[log( Sensi tivi t y

1 − Speci f ici t y
) + log(

Speci f ici t y

1 − Sensi tivi t y
)] (8.13)

8.17 Cohen’s kappa Coefficient (κ)

This coefficient measures the performance of a classifier on the basis that how well
the classifier performed in comparison to the case where it would have performed
simply by chance. We can say that a model will have a high kappa (κ) score if there
is a big difference between the accuracy and the null error rate. Null error rate defines
the chances of the wrong prediction in case of always predicting the majority class.

8.18 Confusion Matrix

This is one of the most-widely explored representations in the field of classification
and related areas. This is a table-type representation of the performance of a classifier
on a set of test data for which ground truths are known. This table gives a summary
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Fig. 8.3 Typical
representation of a confusion
matrix
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of the prediction results of a classification problem. A total number of correct and
incorrect predictions are reviewed with count values and broken down by each class.
It showswhen themodel gets confusedwhile predicting the results. Confusionmatrix
not only specifies the errors made by a classifier but also gives an insight into the
type of the errors being made. A typical representation of a confusion matrix has
been shown in Fig. 8.3, where four parameters are associated namely true positive,
true negative, false positive, and false negative that have been described earlier.

The term confusion in a confusion matrix or confusion table, determines the
classes that are confused or misclassified by other classes. Figure 8.4 demonstrates
one example where 6 activity classes are mentioned. Top row’s 98.4% value pro-
vides the recognition result or accuracy for ‘stay’ class. However, this ‘stay’ class
is confused with ‘walk’ class by 0.7% and ‘jog’ class by 0.9%. The values in the
1st row summed up as 100%. This is one way to represent confusion matrix. From
this Table, we can predict that ‘upstairs’ class is highly confused or misclassified by
‘walk’ activity class (6.9%). Similarly, we can notice that the ‘walk’ class is also con-
fused with ‘upstairs’ class (3.5%). So, both ‘walk’ and ‘upstairs’ classes are getting
mixed up or messed up or confused by each other. So, if any kind of preprocessing
or improvement is possible to make that can differentiate these two confused activity
classes, we can improve the overall accuracy.

Through the confusion matrix, we can discuss and analyze the reasons for mis-
classification or, try to decipher the rationality of any error in accuracy per class.
Using different programming languages or visualization tools, we can demonstrate
confusion matrix by varied combinations of colors, instead of the numbers. The
diagonal values (in black squares) are the accuracy rates for the classes.
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Fig. 8.4 An example of confusion matrix for activity classification in a dataset

8.19 Receiver Operating Characteristics (ROC) Curve

Receiver Operating Characteristics (ROC) curve is one of the most important evalu-
ation metrics, which is a probability curve that measures the performance of classifi-
cation problems under various threshold settings. Area Under the Curve (AUC) term
is related to the ROC curve, which represents the degree of measure of separability
[15]. If the AUC is higher, it means that the model is good at separating the classes
accurately. The ROC curve is plotted with the true positive rate (TPR) or recall or
sensitivity against the false positive rate (FPR) or specificity, where TPR is on the
y-axis and FPR is on the x-axis. Recommendations for using the ROC curve can be
found in [17].

A basic figure of ROC curve has been shown in Fig. 8.5, where we can see that an
excellent model has AUC near to the 1 with a good measure of separability. On the
other hand, AUC near 0 represents a poor model with worst separability measure. If
a model has AUC of 0.5, we can say that the model will predict randomly.
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Fig. 8.5 Basic representation of ROC curve
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Fig. 8.6 Ideal probability distribution of ROC with AUC = 1

8.19.1 Probability Distribution of ROC Curve

Wecan see the distributions of probabilities fromROCprobability distribution curves
as shown in Figs. 8.6, 8.7, 8.8, and 8.9.We can see an ideal situation in Fig. 8.6, where
the distribution curves do not overlap. Thismeans that themodel has an idealmeasure
of separability and the model can separate between the positive and negative classes
accurately.

The type-1 and type-2 errors occur when the two distribution curves overlap, as
shown in Fig. 8.7. AUC value drops in these cases. AUC value of 0.6 means that
there is a 60% chance that the model can perfectly separate between the positive and
negative classes.
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Fig. 8.7 Probability distribution of ROC with AUC = 0.6 (drop of accuracy)
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Fig. 8.8 Probability distribution of ROC with AUC = 0.5 (random prediction)

The worst-case has been shown in Fig. 8.8, where AUC is 0.5. In this case, the
model will predict randomly with no discrimination capacity to predict between
positive and negative class.

AUC value of 0 has been shown in Fig. 8.9. In this case, the model will reciprocate
the classes. For example, it will predict the positive classes as negative and negative
classes as positive.

8.19.2 ROC Curve for Multiclass Model

In case of a multiclass model with n number of classes, we can plot n number of
ROC curves for n number of classes using One versus All strategy. As an example,
for a classification problem with three classes (a, b, and c), we can plot one ROC for
a, classified against b and c; another for b, classified against a and c; and the last one
for c, classified against a and b.
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8.20 Cumulative Gains and Lift Charts

To measure the model performance, two well-known graphical aids are Cumulative
Gains and Lift Charts. Lift measures how much effective a predictive model is. We
can calculate the lift using the ratio between the results obtained with and without
the predictive model. A lift curve and a baseline are presented in both of the curves.
The larger the area between the lift curve and the baseline, the better the model.

8.20.1 Cumulative Gains Chart

This is a plot of the true positive rate as a function of the proportion of the population
is predicted positive, controlled by some classifier parameters or thresholds. True
positive rate is plotted on the y-axis and proportion of the population being predicted
positive on the x-axis. The baseline defines the overall response rate. Using the
predictions of the response model, the lift curve is drawn mapping the true positive
rate points. This chart is shown in Fig. 8.10.
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Fig. 8.11 A basic
representation of lift chart
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8.20.2 Lift Chart

The actual lift is shown by this chart. To plot the chart, we need to calculate the points
on the lift curve by determining the ratio between the result predicted by the model
and the result using no model. This chart is shown in Fig. 8.11.

8.21 Conclusion

This chapter provides a basic summary concerning the evaluation matrices namely
accuracy, precision, recall, F1 score, confusionmatrix, etc. to justify the performance
of classification models. We have also shown the importance of Receiver Operating
Characteristics (ROC) curve with the probability distribution for the different Area
Under the Curve (AUC). We have also analyzed some common confusions about the
trade-off between precision and recall in this chapter.

8.22 Think Further

1. Why proper evaluation of performance is necessary in human activity recogni-
tion research?

2. What are the four essential concepts of classification?
3. Differentiate among truepositive, true negative, false positive, and false negative.
4. When classification accuracy can not properly measure the performance?
5. What are the common evaluation matrices?
6. What is the trade-off between precision and recall?
7. Mention the importance of confusion matrix.
8. What is AUC in ROC curve?
9. Specify the probability distributions of ROC curve.
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10. What are the importance of Cumulative Gain and Lift Charts?
11. Read 10 good papers from different journals on human activity recognition,

gait recognition, image classification, medical imaging classification, or related.
Then find the matrices those papers explored. Try to understand these issues in
different fields.

12. What are themissingmatrices or points you think, in terms of evaluating activity
classification?
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Chapter 9
Deep Learning for Sensor-Based Activity
Recognition: Recent Trends

Abstract The field of human activity recognition (HAR) using different sensor
modalities poses numerous challenges to the researchers working in this domain.
Though traditional pattern recognition approaches performed well in this regard
earlier, the cost of poor generalization and the cost of shallow learning due to the
handcrafted features have opened a new door for deep learning in this field. This
chapter discusses the importance of deep learning in sensor-based activity recognition
explaining the deep models and their use in previous research works. This chapter
also represents the importance of transfer learning and active learning in this field,
that are new research topics. Finally, this chapter shows the challenges of using deep
models along with feasible solutions.

9.1 Evaluation of Deep Learning in Sensor-Based HAR

Sensor-based Human Activity Recognition (HAR) has been explored by many
research communities and industries for various applications—along with various
challenges ahead to deal with [1–8]. Because of the complexities related to activity
recognition, choosing sensor modality, and multiple numbers of subjects, sensor-
based human activity recognition (HAR) is one of the most challenging domains for
the researchers. Investigation of proper machine learning techniques is necessary as
they are efficient in the case of extracting and learning knowledge from raw sensor
data. The research in the area of HAR has begun considering this a conventional
pattern recognition problem [9]. Typical pattern recognition approaches and general
machine learning algorithms namely Support Vector Machine, Naive Bayes, Deci-
sion Tree, Hidden Markov Model, etc. have made tremendous progress in the field
of sensor-based HAR. These algorithms performed well with satisfactory results

• In the case of a controlled environment with fewer amount of labeled data, and
• In the case of specific domain knowledge requirement.

These traditionalmethods follow the concept of shallow learning, which is heavily
dependent on feature engineering from the data. These methods depend heavily on
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hand-crafted heuristic feature extraction and are restricted by awareness of the human
domain [10]. This learning method incorporates the learning of shallow features
only, which performs poor in the case of unsupervised and incremental tasks. Due to
these restrictions, the performance of conventional pattern recognition approaches
is limited in terms of accuracy and generalization of the model.

9.2 Why Deep Learning Can Increase the Performance of
HAR?

The earlier practice of utilizing conventional pattern recognition approaches and
general classification techniques for recognizing the daily human activities from
sensor data has numerous limitations. These methods restrict the model to generate
for one domain to extend into another domain. This domain transfer is harder for these
techniques. In spite of the progress of conventional algorithms, the major drawbacks
are discussed in this section.

Firstly, the conventionalmodels are dependent on hand-crafted features dependent
on human-experience and specific domain knowledge. In the case of task-specific
environmental setup, these models may perform well; but for more generalized case
in real-time, the performance is poor and it will demandmore running time to develop
a successful activity recognition model.

Secondly, the features learned in the case of hand-designed approaches are shallow
in nature [11] and basically, they represent some statistical information like mean,
standard deviation, variance, amplitude, frequency, and so on [12–14]. Though this is
easy to recognize low-level activities like jogging, running, walking, etc. using these
shallow features, it will be difficult or near impossible to detect complex activities that
are similar. Besides, it is also very difficult to capture complex movements for high
level and context-aware activities that involves a series of several microcavities using
shallow learning [15, 15, 16]. For example, it will be harder and nearly impossible
to recognize and differentiate between the activities “drinking water” and “drinking
milk”, using conventional statistical feature-based models.

Thirdly, conventional models show poor performance in the case of unsupervised
learning tasks [10] because it requires a large amount of labeled data to train these
models and this task is difficult [17]. In the real case, most of the activity data are
unlabeled, and labeled data are always incorporatedwith human labeling error, which
is another reason for the poor performance. Deep neural networks, on the other hand,
can easily exploit unlabeled data to train the model.

A further downside of current machine learning models is that they depend on
learning from static data, whereas, in the real-time, all activity data comes in a stream.
This stream of data requires strong and incremental learning, which is not possible
using conventional pattern recognition approach.

Deep learning models have overcome some of these limitations imposed by the
volatile, chaotic, and complex nature of the activity data, as they can hierarchically
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Activity data from sensors

DNN RNN

DBN Auto Encoder

RBM CNN

Stay

Walk

Jog

Deep learning models
Activity

Fig. 9.1 A basic block diagram of sensor-based human activity recognition using deep learning
methods

learn the features directly from the data. These self-evolving feature-based deep
learning models can learn the features automatically, which releases the pressure of
designing the features manually.

Besides, the use of deep neural networks can extract high-level features in the
deep layers, which can overcome the problem of complex activity recognition, and
multiple user problem. Moreover, it is also possible to redeploy the domain transfer
of the activity models. It is also possible to exploit the huge amount of unlabeled data
using deep generative models [18]. Moreover, we can also transfer the knowledge
of trained deep models into labeled data to new tasks containing few or no labels. In
the Fig. 9.1, we have shown a general pipeline of utilizing deep learning networks
for the sensor-based human activity recognition task.

9.3 Deep Learning Models for Human Activity Recognition

In this section, we have given a brief description of the deep learning models that
are generally used for the sensor-based human activity recognition task. In general,
following deep learning models have been mostly used in previous HAR researches
with modifications and updates [9],

• Deep Neural Network (DNN): Deep fully-connected neural network, artificial
neural network (ANN) with deep layers.
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• Recurrent Neural Network (RNN): A network with time correlation and Long
Short-Term Memory (LSTM) layers.

• Convolutional Neural Network (CNN): A network with multiple convolutions
and pooling layers.

• Deep Belief Network (DBN) and Restricted Boltzmann Machine (RBM).
• Stacked Autoencoder (SAE): This network learns feature by the decoding-
encoding technique of the autoencoder.

• HybridModels:This network is designed using the combination of different deep
learning models.

9.4 Deep Neural Network (DNN)

The concept of deep learning begins with Perceptron, which is basically a linear
binary classifier with a single layer. Multilayer Perceptron is called neural networks.
The depth of neural networks is decided using the number of hidden layers. Tra-
ditional neural networks with very few hidden layers are called Artificial Neural
Network (ANN). It is possible to develop Deep Neural Networks (DNN) from ANN
using denser hidden layers. Because of the presence of dense hidden layers, DNN
can learn from a large amount of data automatically without the need of hand-crafted
features. It is also possible to use DNN as dense layers for other deep models. A
basic block diagram of a DNN is shown in Fig. 9.2.
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Fig. 9.2 A basic block diagram of Deep Neural Network (DNN)
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We will now discuss some previous research works using DNN. Research work
[19] built a Deep Neural Network model and fed hand-crafted features from sensor
data into it. Research work [20], on the other hand, performed Principal Component
Analysis (PCA) before applying DNN model. We can say that in these works, DNN
has been used only as a classification model after extraction of hand-engineered
features. These methods showed poor performance in terms of generalization and
accuracy being shallow.

Automatic feature learning and classification can increase the generalization capa-
bility of a model. This task has been done in the research [21], where they have
utilized DNN with multiple hidden layers and performed well in the case of multi-
dimensional and complex HAR data. More hidden layers increase the generalization
capability of a model and the model can train well even for the complex activity data
[10].

9.5 Convolutional Neural Network (CNN)

The primary advantage of using Convolutional Neural Network (CNN) in the case
of human activity recognition is the identification capability of notable patterns in
the sensor data. CNN is designed using convolution layers followed by pooling and
fully-connected layers as shown in Fig. 9.3. Besides showing promising performance
in the case of text analysis, image classification, and speech recognition, CNN has
also advantages in the case of sensor data for activity recognition. The reasons behind
this are the local dependency of sensory data as nearby sensor signals in the case of
activity data are highly correlated. Besides, there is a variation of scale in terms of
frequency for the performed activities at various speeds. In the lower layers of CNN,
the basic characteristics of each basic movement of human activities are obtained,
whereas, the higher layers can obtain the important patterns of a combination of
multiple basic movements. This is the reason behind the utilization of Convolutional
Neural Networks in a number of the previous researches related to HAR.

A multilayer CNN can have multiple convolutions and pooling operators in each
layer that can learn multiple salient patterns from signals, which are jointly consid-
ered. It is possible to obtain translation invariance when these operators are applied

Convulation
+Relu

Convulation
+Relu

Pooling

Pooling
Fully

Connected
Fully

Connected
Output

Prediction
no dog & cat (.02)
      only dog (0.1)
          only cat (0.2)
               both dog & cat (0.68)

Fig. 9.3 A basic block diagram of Convolutional Neural Network (CNN). Here, ‘ReLu’ is the
Rectified Linear Unit. It is one of the widely-used activation functions
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to the local signals [22–24]. Because of the presence of multiple channel time-series
signals in HAR, it is not possible to apply traditional CNN directly. The CNN should
be designed in such a way that it can be applied along temporal dimension with shar-
ing units among multiple sensors. The following things must be considered while
designing the CNN architecture for HAR.

9.5.1 Adaptation of Input Signal

CNN architectures are designed for images as input, whereas sensor signals are
generally multi-dimensional time-series signals. The primary task is to adapt the raw
sensor data in such away that it forms the structure of a virtual image. This adaptation
can be done in one of the following ways [9],

• Data-driven approach,
• Model-driven approach.

In the data-driven approach, each dimension of the multi-dimensional data is
considered as a single channel, and one-dimensional convolution is performed. After
performing convolutions and pooling, the outputs of each channel are flattened. In
one of the earliest research works by [25], each dimension of accelerometer sensor
data had been treated like a single RGB channel of an image followed by convolution
and pooling separately. Research works [11] utilized one-dimensional convolution
in the same temporal window. This method permits weight sharing in the case of
multi-sensor CNN. Research work [21, 26–28] focused on resizing the kernel of
convolution layer in order to achieve the best kernel for sensor data. In short, we can
say that in the data-driven approach, 1D sensor data is considered as a 1D image.
However, this approach ignores the dependencies between dimension and sensors,
which can turn into poor performance.

Another approach of input data adaptation is called the model-driven approach.
In this method, the input sensor data is resized into a two-dimensional image so that
2D convolution can be applied. Research work [29] formed an image combining
sensor data from all dimensions. On the other hand, research work [30] transformed
time series sensor data into an image by designing a complex algorithm. Research
work [31] showed an example of modality transformation by converting pressure
sensor data into an image. Temporal correlation of sensor data can be utilized in this
approach, which is a benefit but it requires domain knowledge to map time series
data into an image.

9.5.2 Tuning Hyperparameters

There are some hyperparameters for a CNN architecture that we can play with for
better performance. These are
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• The number of features and size of features for convolution layer,
• Window size and window stride for pooling layer, and
• The number of neurons for the fully connected layer.

Choosing the type of pooling after performing convolution is another important
task. Most of the research works including [27, 29, 32] performed max or average
pooling. Pooling operation helps in two ways: speeding up the training process and
limiting overfitting.

9.5.3 Weight Sharing

Tospeedup the trainingprocedure, researchworks [28, 33] introducedweight sharing
technique, whereas, research work [25] proposed partial weight sharing because of
the variation of sensor data in different cases. It also showed that this partial weight
sharing technique improves CNN performance.

9.6 Recurrent Neural Network (RNN)

Recurrent Neural Network (RNN) gives us the benefit to feed a series of inputwithout
any predetermined size. RNN can catch the connections among inputs meaningfully.
Because of the utilization of the temporal correlations among neurons, RNN are
widely used for natural language processing (NLP) and speech recognition. Another
benefit of using RNN is the capability of learning from the past, whereas, basic
feedforward neural networks can remember only what they have learned during the
training phase.

A general RNN has short-term memory along with the problem of vanishing gra-
dients. Vanishing gradient means that the gradient values are so small that the model
stops learning. The extension of RNN with Long Short-Term Memory (LSTM) can
extend the memory of the network. By using LSTM networks, RNN can remember
the inputs over a long period. It also keeps the gradient steep enough to eliminate
the vanishing gradient problem. RNN architecture and RNN with LSTM have been
shown in Figs. 9.4 and 9.5.

Most of the human activity recognition research works focused on computa-
tional cost, resource consumption, and training speed while using RNN [21, 34–37].
Research work [36] has proposed a good model with high throughput after the inves-
tigation of numerousmodel parameters. A Binarized Long Short-TermMemoryNet-
work (B-BLSTM-RNN) model has been proposed by the research work [34], where
the inputs, outputs, and weight parameters are binary values. The B-BLSTM-RNN
is based on the bidirectional Long Short-Term Memory Recurrent Neural Network
(BLSTM-RNN). The overall performance of RNN is promising in the case of HAR
with more research concerns about the computational cost and resource limitations.
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Backfed Input Cell
Recurrent Cell
Output Cell

Fig. 9.4 A basic block diagram of Recurrent Neural Network (RNN)

Backfed Input Cell
Memory Cell
Output Cell

Fig. 9.5 A basic block diagram of Recurrent Neural Network (RNN) with Long Short-TermMem-
ory (LSTM)

9.7 Stacked Autoencoder (SAE)

The latent representations of the input values are learned through the hidden lay-
ers in the case of an autoencoder (AE). This procedure can seem as an encoding-
decoding procedure. The basic advantage of the autoencoder is the learning capability
of advanced features through an unsupervised learning scheme. The stacking of some
autoencoders is generally called Stacked Autoencoder (SAE), where every layer is
treated as the basic model. The learned features are stacked with labels so that they
can be used as classifiers after several rounds of training. Figure 9.6 shows a basic
structure of an autoencoder.

Research works [38, 39] utilized the stacked autoencoder (SAE) for human
activity recognition with greedy layer-wise pre-training technique followed by fine-
tuning. On the other hand, research work [40] added KL divergence and noise to the
cost function and this method improved the performance. The unsupervised feature
learning capability of SAE has made it a powerful tool with the cost of optimal
solution due to the too much dependency on layers and activation function.
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Backfed Input Cell
Hidden Cell
Match Input Output Cell

Fig. 9.6 A basic block diagram of an autoencoder (AE)

Input Cell
Backfed Input Cell
Hidden Cell
Probabilistic Hidden Cell
Match Input Output Cell

Fig. 9.7 A basic block diagram of Deep Belief Network (DBN)

Fig. 9.8 A basic block
diagram of Restricted
Boltzmann Machine (RBM)

Backfed Input Cell
Probabilistic Hidden Cell

9.8 Deep Belief Network (DBN) and Restricted Boltzmann
Machine (RBM)

Restricted Boltzmann Machine (RBM) is an energy-based probabilistic model con-
sisting of visible variables andhiddenvariables. This can be seen as a fully-connected,
undirected graph consisting of visible and hidden layers [18]. If the RBM’s are
stacked, it is called Deep Belief Network (DBN) by treating two consecutive layers
as an RBM, where both DBN and RBM are followed by fully-connected layers. The
architectures of DBN and RBM have been shown in Figs. 9.7 and 9.8.

In case of the RBM-based researches [41–43], most of the works concerned Gaus-
sian RBM in the first layer and binary RBM for the rest of the layers during pretrain-
ing. Research work [44] designed a multi-modal RBM for HAR with multi-modal



158 9 Deep Learning for Sensor-Based Activity Recognition: Recent Trends

sensors, and each RBM was created for each sensory modality. Research work [45],
on the other hand, employed pooling action after fully-connected layer for the extrac-
tion of more important features. Contrastive gradient (CG) method has been utilized
by research work [46] to update the weight in fine-tuning. The network can search
and converge easily by this procedure in all directions. Research work [47] employed
offline training by implementing RBMonmobile phones, as RBM is lightweight and
it has the capability of unsupervised feature learning.

9.9 Hybrid Models

When some deep models are combined to enhance the overall performance, it is
called a hybrid model. Research work [47–49] combined CNN and RNN, showing
that the combination of CNN and recurrent dense layer performs better than CNN
with general dense layers [31, 50]. When the ability of CNN to capture spatial
relationship and RNN to capture the temporal relationships are combined, it can
help to recognize complex activities with different time span and signal distributions.
There are some other researchworks where hybridmodels have been generated using
CNN + SAE [51] and CNN + RBM [52]. In these works, CNN has been utilized for
the feature extraction tasks, and generative models speed up the training procedure.
The researchers are focused on hybrid models nowadays where performance is a
major concern. We have shown a basic block diagram of a hybrid model using DNN
and CNN based on the research work [53] in Fig. 9.9.

Noisy input frame

Noisy input frame

Noisy input frame

Video frame

Video frame

Video frame

DNN

DNN

DNN

CNN

CNN

CNN

Fig. 9.9 A basic block diagram of hybrid model using DNN and CNN
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9.10 Choosing the Best Deep Model for Sensor-Based HAR

The existence of complex activities in sensor-based HAR is one of themost challeng-
ing fields of research. Though deep models have solved the problems of hand-crafted
features and shallow learning, it is required to choose the best model and optimized
hyperparameters for better performance. Research work [21] performed around four
thousand experiments using different setups on DNN, CNN, and RNN on some pub-
lic datasets. Based on this work, RNN with LSTM demonstrated good performance
for recognizing short activities with the natural order, whereas CNN showed good
performance for the long term and repetitive activities. Because RNN captures the
temporal relationships between sensor readings and CNN can learn deep features
containing recursive patterns, it is better to use CNN for multimodal sensor signals.
The features can be integrated through multichannel convolutions [25, 29, 54]. In
the case of CNN, data-driven approach is better than the model-driven approach.
The reason behind this is the capability of transforming sensor data into the virtual
image.

In the case of RBM and autoencoder, it is required pre-training before fine-tuning.
Multilayer RBM and SAE can amplify the performance than single layer RBM
and SAE. We can state that there is no perfect model, which can overcome all the
problems in every situation. It is required to choose the model based on the scenario,
computational cost, resourceutilization and limitation, andperformance. InTable9.1,
we have summarized a number of previous works on sensor-based human activity
recognition using deep models.

Table 9.1 Summary of several previous researchworks on sensor-based human activity recognition
utilizing deep learning techniques

Reference Method Dataset

[21] DNN, CNN, and RNN (RNN
performance was better than CNN in the
case of short-term activity)

OPPORTUNITY [55], PAMAP2 [54],
and Daphnet Gait [21]

[50] A deep network comprising of
convolutional and LSTM layers

OPPORTUNITY [55] and Skoda [56]

[57] Multilayer CNN model with alternating
convolutional and pooling layers

Dataset owned by [57] with 30 subjects

[58] Short-term Fourier transform of the
accelerometer data as an input to the
proposed CNN network

Skoda [56], WISDM [59], Daphnet Gait
[21], and ActiveMiles [58]

[60] Restricted Boltzmann Machine
(RBM)-based model without hardware
constraints

OPPORTUNITY [55], Transportation
and Physical [60], and Indoor/Outdoor
[44]

[61] Ensembles of deep LSTM networks
using wearable sensing data

Dataset owned by [61]

(continued)
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Table 9.1 (continued)

Reference Method Dataset

[62] Hand-crafted features and the
CNN-derived features—fed to k-Nearest
Neighbor (kNN)

Dataset owned by [62] (data from wrist
and waist)

[63] Multichannel CNN architecture for
multiple sensor data

Dataset owned by [63]

[38] Stack Autoencoder (SAE) UCI Smartphone [38]

[59] Restricted Boltzmann machine (RBM) Skoda [56], WISDM [59], and Daphnet
Gait [21]

[26] CNN Dataset owned by [26]

[64] CNN WISDM [59]

[65] DNN Dataset owned by [65]

[34] RNN OPPORTUNITY [55], PAMAP2 [54],
and dataset owned by [34]

[46] DBN Dataset owned by [46]

[66] CNN Dataset owned by [66], and
OPPORTUNITY [55]

[35] RNN OPPORTUNITY [55], Skoda [56], and
PAMAP2 [54]

[29] CNN Skoda [56] and MHEALTH [67]

[67] CNN MHEALTH [67]

[41] RBM Dataset owned by [41]

[68] CNN Dataset owned by [68]

[69] RBM HASC [69]

[36] RNN HASC [69]

[30] CNN UCI Smartphone [38], USC-HAD [30],
and SHO [30]

[70] CNN Dataset owned by [70]

[32] CNN Dataset owned by [32]

[71] CNN Dataset owned by [71]

[72] RBM Dataset owned by [72]

[42] RBM Dataset owned by [42]

[73] CNN Dataset owned by [73]

[45] RBM Dataset owned by [45]

[40] SAE UCI Smartphone [38]

[52] CNN, RBM Dataset owned by [52]

[74] CNN Dataset owned by [74]

[75] CNN OPPORTUNITY [55] and Skoda [56]

[76] RNN OPPORTUNITY [55], Skoda [56],
Ambient kitchen [43], USC-HAD [30],
and Daphnet Gait [21]

(continued)
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Table 9.1 (continued)

Reference Method Dataset

[43] RBM OPPORTUNITY [55], Skoda [56],
Ambient kitchen [43], and Daphnet Gait
[21]

[27] CNN PAF [27]

[44] RBM Heterogeneous [48]

[77] CNN UCI Smartphone [38]

[28] CNN, RNN, and DNN Dataset owned by [28]

[31] CNN, RNN Dataset owned by [31]

[19] DNN Dataset owned by [19]

[20] DNN UCI Smartphone [38]

[78] CNN Dataset owned by [78]

[39] SAE Dataset owned by [39]

[11] CNN OPPORTUNITY [55] and Ambient
kitchen [43]

[48] CNN, RNN Dataset owned by [48] and
Heterogeneous [48]

[33] CNN Dataset owned by [33]

[79] CNN OPPORTUNITY [55], Skoda [56], and
Actitracker [25]

[80] DNN Dataset owned by [80]

[47] RBM Dataset owned by [47]

[81] DBN OPPORTUNITY [55], USC-HAD [30],
and DSADS [81]

[82] CNN Dataset owned by [82]

[83] DNN Dataset owned by [83]

[51] CNN, SAE PAMAP2 [54]

[54] CNN PAMAP2 [54] and Daphnet Gait [21]

[84] DBN UCI HAPT [85]

[86] Three parallel CNN UCI HAR [87] and WISDM [59]

[88] Ensemble Network with RNN SHL [89]

[90] Shallow Neural Network SHL [89]

[91], [92] CNN, RNN with LSTM, OU-ISIR Gait [93]

9.11 Transfer Learning in Sensor-Based HAR

Because of the high computational cost and training time related to the processing of
large HAR datasets, researchers have focused on transferring the knowledge learned
in one domain to another [94]. This ability to extend the knowledge learned into one
context to another reduces the computational cost of the new model, as it requires
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Source scene-1
Subject: Man

Source scene-2
Device: Smartphone

Transfer 
knowledge

Train model-2 Capture activity
data

Capture activity
data

Train model-1

Source Domain Target Domain
Environment: outside houseEnvironment: inside house

Source scene-1
Subject: Woman

Source scene-2
Device: Smartwatch

Fig. 9.10 Basic illustration of transfer learning for different source and target scenarios

less amount of training sample [95]. The idea behind transferring knowledge from
one domain to another is to assume the existing relationship between source and
target. In Fig. 9.10, we have illustrated the application scenario of transfer learning
for sensor-based HAR. In the training phase, the model has been trained to recognize
daily human activities using smartphone sensor data for a man inside a house. Now,
we can think about a different condition to recognize the activities of a woman, using
smartwatch sensor data and in an outdoor environment. Using conventional pattern
recognition approaches or deep models, a model trained in the past scenario will not
perform well for this changed scenario. In this case, we can utilize the concept of
transfer learning to train a newmodel (Model-2), by transferring the knowledge from
Model-1 with less amount of annotated data. This procedure will be computationally
efficient.

The different conditions and scenarios of the application of transfer learning were
explained in research work [94]—detailing sensor modalities, data labeling proce-
dure, and taxonomy of transferred knowledge. Research work [96] performed their
experiment on models with different probability distributions to transfer knowledge
among them. They also evaluated the performance on HAR [87], Daily Sports [97],
and MHealth [98] datasets. As we mentioned earlier, the variation of the probabil-
ity distribution of acceleration data for different users can degrade the performance
of a model, which has been trained on a different person and tested on another. A
cross-person activity recognition model with transfer learning and Reduced Kernel
Extreme LearningMachine (RKELM) has been proposed to solve this issue for large
datasets [99]. On the other hand, research work [100] has proposed a new frame-
work namedStratifiedTransfer Learning to transfer knowledge (labeled activity data)
from the source domain to the target domain into the same subspace. This method
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has been evaluated on the OPPORTUNITY [55], PAMAP2 [101], and Daily Sports
[97] datasets.

A hierarchical Bayesian transfer learning model has been proposed in [102] to
solve the problem of correct labeling of data. They evaluated the model using smart-
phone dataset [87] as their source and USC-HAD dataset [103] as the target. For a
high variety of data with different conditions and scenarios, the research work [104]
has proposed a transfer learning model. This model has been validated using statis-
tical hypothesis Kolmogorov–Smirnov and χ2 goodness of fit test and evaluated on
theWalk8, HAR [87], and DaSA [105] datasets. On the other hand, a proposition for
independent retraining of machine learning algorithms has been proposed without
the requirement of any labeled training data [106]. This model has been evaluated
on the OPPORTUNITY dataset [55] and DaSA dataset [105].

The challenging factors for human activity recognition are the type of sensors,
environmental and experimental setting, subject, and so on. A trained model using
specific settings can be evaluated in other settings using the concept of transfer
learning. This is the reason behind the intense interest of researchers to discover
the use-case of transfer learning in the large scale cross-domain human activity
recognition using different sensor modalities and devices.

9.12 Active Learning in Sensor-Based HAR

This is a very new research topic in the field of sensor-based HAR. The primary
goal of active learning is to lessen learning complexity and cost. It helps to pick an
appropriate number of unlabeled, insightful data samples and to query the annotator
for the labels, which helps to the labeling effort to have effective results [17]. The
active learning-enabled model approach has been shown in Fig. 9.11.

From this Fig. 9.11, we can see the following steps for an active learning method:

Data
(Labeled training set)

Data 
(Unlabeled pool)(SVM, Random forest, Decision tree, 

deep learning models, etc.)

Annotator
(Human/Machine)

Selected queries
(Select most interesting samples)

New labeled data

Fig. 9.11 Basic cycle of active learning approach
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• We will be given an unlabeled pool of data.
• We can use existing methods or description logic-based new methods to rank the
examples in the order of informativeness.

• Then we need to query the labels of the most informative examples of an unlabeled
pool of data.

• The new labeled data are added with the labeled training examples.
• Then the model is retrained using the new training data.

There have been a few pieces of research on active learning to solve the problem
of HAR. To find unlabeled data samples with more information and to lessen the
effort of annotation, research work [107] has proposed three different techniques
(i.e., least confidence method, margin sampling, and entropy-based). On the other
hand, k-means clustering algorithm-based active learning approach has been pro-
posed by [17]. This approach used the sampling of uncertainties to identify the most
useful samples of unlabeled data. The self-adaptability of activity recognition model
was analyzed by [108] during the incorporation of new sensor data. They evaluated
their model on bicycle repair [109], car maintenance [110], and OPPORTUNITY
[55] datasets. An adaptive framework using active learning was proposed in the
research work by [11]. This approach assists in discovering the behavior pattern
from high-speed and multidimensional data. This method has been evaluated on the
OPPORTUNITY [55], WISDM [11], and smartphone accelerometer [111] datasets.
To select unlabeled data for annotations, two different approaches namely expected
entropy and query by a committee for active learning have been utilized [112]. This
method used random forest-based classifier for activity inference and validated the
results on an in-house dataset [112]. Being an emerging field, active learning has
numerous scopes in the future in the field of sensor-based HAR.

9.13 Challenges in Deep-Model Based HAR and Feasible
Solutions

Though deep models solve many problems of shallow learning, these models have
some challenges that should be taken care of for better performance. The following
subsections highlight the important issues.

9.13.1 Real-Time Activity Recognition

This is hard to deploy deep models in real-time applications using smartphone and
wearable devices. Existing research works using mobile [42] and smartwatch [60]
trained deepmodels using an offlinemethod on the remote server. Themobile devices
utilized the trained model only, which is neither real-time, nor user-friendly in the
case of incremental learning. Limited resource and power consumption of mobile
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and smart devices are other issues in this regard. If we can reduce the communication
cost between device and server, and if we can enhance the computational ability of
the devices, we can tackle this problem.

9.13.2 Performance Limitation in Unsupervised Learning

Previous researches show that deep learning models demonstrate promising perfor-
mance in the case of labeled data. However, because of the problems of human
labeling error, labeling cost, and time consumption, it is required to increase the
performance of deep learning for unsupervised activity recognition.

The knowledge extracted from crowd-sourcing can help in this regard to annotate
the unlabeled activities [113]. Research can also be done to collect the labels by pre-
serving the security concerns and other limitations. Transfer learning can be another
solution in this regard too, by sharing knowledge between activity-related domains
[94, 114, 115].

9.13.3 Complex Activity Recognition

In real-time to solve real-life problems, researches need to focus on recognizingmore
high-level and complex activities, which is a challenging task using existing deep
learning models. Naturally, complex activities contain more semantics and context
information, hence it turns to be more difficult to recognize complex activities. The
correlation of signals is ignored by most of the existing methods, which deteriorates
the performance.We can use data from hybrid sensors to increase the performance of
activity recognition [19]. We can also use context information (e.g., through Wi-Fi,
Bluetooth, or GPS) to characterize the situation [116]. This will help to recognize
the user state for more specific activities.

9.13.4 Robust and Cost-Effective Deep Models

Limitation of computational resources and power consumption issues are some big
challenges in the case of sensor-based HAR. Deep models need a good amount of
resources that are not available for wearable devices and smartphones. On the other
hand, conventional pattern recognition techniques and general neural networks with
a lower amount of layers come with the cost of poor performance in spite of being
computationally-efficient. Therefore, it is required to design robust and cost-effective
deep models.

We can incorporate human-crafted features along with deep features to increase
the performance [43]. The task of learning deep features can be made more
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efficient by providing some pre-knowledge about activity patterns [117].We can also
incorporate shallow models with lower computational cost and deep models with
good performance by sharing parameters.

9.14 Conclusion

This chapter portrays a summary of the evaluation of deep models over conventional
pattern recognition approaches for sensor-based human activity recognition.We have
also pointed out the problems of conventional machine learning approaches in terms
of poor generalization and shallow learning, that has been solved by employing the
automatic feature learning by the deep models. We have also investigated mostly
used deep models like CNN, DNN, RNN, DBN, SAE, etc. in this chapter. Finally,
we have mentioned the challenges of deep learning in terms of computational cost
and discussed transfer learning and active learning for human activity recognition.

9.15 Think Further

1. Mention the challenges of traditional pattern recognition approaches to classify
activity data.

2. What is deep learning?
3. How deep learnings are evaluated in sensor-based human activity recognition?
4. What are the drawbacks of hand-crafted features?
5. What is shallow learning?
6. Can deep learning increase the performance in sensor-based HAR?
7. Mention some common deep learning models that can be used in sensor-based

HAR.
8. What is Deep Neural Network (DNN)?
9. Mention some importance of DNN.
10. What is Convolutional Neural Network (CNN)?
11. Mention some importance of CNN.
12. How to adapt input signal into a CNN network?
13. How can we adjust parameters in the case of a CNN architecture?
14. What is Recurrent Neural Network (RNN)?
15. Mention some importance of RNN.
16. What is vanishing gradient problem?
17. How can Long Short-Term Memory (LSTM) solve the problem of vanishing

gradient?
18. How can LSTM extend the memory of the network?
19. What is Stacked Autoencoder (SAE)?
20. Mention some importance of SAE.
21. What is Deep Belief Network (DBN)?
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22. Mention some importance of DBN.
23. What is Restricted Boltzmann Machine (RBM)?
24. Mention some importance of RBM.
25. What is hybrid model?
26. Mention some importance of hybrid models?
27. How to choose the best deep model for sensor-based HAR?
28. What is transfer learning?
29. How can transfer learning increase the performance in sensor-based HAR?
30. What is active learning?
31. Mention some importance of active learning in sensor-based HAR.
32. What are the challenges of deep learning methods?
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Chapter 10
Sensor-Based Human Activity
Recognition: Challenges Ahead

Abstract Human Activity Recognition (HAR) has explored a lot recently in the
academia and industries for numerous applications. There are lots of progress in
the domain of vision-based action or activity recognition due to the advent of deep
learning models and due to the availability of very large datasets in the last several
years. However, there are still a number of genuine challenges in vision-based HAR.
On the other hand, sensor-basedHAR hasmore constraints to decipher, and is still far
frommaturity due to various challenges. These core challenging issues are addressed
in this chapter. The challenges regarding data collection issues have been discussed in
detail. Prospective research works and challenges in the field of sensor-based activity
recognition have been discussed in terms of new researchers perspective, possible
developments in industries for experts, and smart IoT solutions in the medical sector.

10.1 Major Challenges in Sensor-Based HAR

Sensor-based Human Activity Recognition (HAR) has explored a lot recently in the
academia and industries for numerous applications. The field is still not matured
due to various challenges [1–5]. These core challenging issues are discussed in this
chapter. In this chapter, we are not considering the challenges of activity recognition
based on video sensors, though some of these issues overlap with the constraints of
sensor-based human activity recognition and analysis [2, 6, 7].

The current and possible future challenges regarding data collection for sensor-
based human activity recognition (HAR) have been summarized in Fig. 10.1. From
this Fig. 10.1, the challenges are summarized below:

• Diversity of age, gender, and number of subjects
• Postural transitions
• Number of sensors and types of sensors
• Different body locations of wearable sensors or smartphone
• Missing values or labeling error
• Similar postures
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Challenges in Data Collection 

Diversity of age, gender
and number of subjects 

Number of sensors
and types of sensors

Accelerometer

Gyroscope

Compass

GPS

Light sensor

Barometer

Postural transitions

Static to static
Static to dynamic

Dynamic to static

Dynamic to dynamic Possible locations of
sensors or smartphones 

Similar postures

Jog vs Run

Sit vs stand

Missing value and
labelling error

Fig. 10.1 Some core challenges in the case of data collection for sensor-based HAR research

• Datasets having complex activities
• Datasets having multiple persons and their mutual interactions
• Datasets having fall down-related activities
• Datasets having realistic scenes by the genuine age groups, instead of young adults
for all activity classes.

10.1.1 Diversity of Age, Gender, and Number of Subjects

There are several challenges associated with data collection. First of all, there should
be diversity in terms of age, gender, and the number of subjects while creating a
dataset. A dataset is regarded as a benchmark dataset, if the dataset represents the
real-world scenario. It is possible to develop if the dataset contains data from people
of different ages and genders with a high amount of participation. We can mention
theOU-ISIRGait Database, Inertial Sensor Dataset [8–10] as an example of a diverse
dataset. This dataset contains 745 subjects, where 388 are males and 357 are females
(and the age range is from 2 to 78years, though the number of elderly people were
less).

10.1.2 Postural Transitions

We can see that tracking activities with postural transitions can also be difficult and
it is very hard to track the change of postures using sensors while switching from one
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activity to another [11]. For example, there is a static to dynamic postural transition
when a person starts walking from still positions, whereas, in between starting run-
ning fromwalking activity, there is a dynamic to dynamic postural transition.We can
increase the recognition rate if we can track the change of postures while switching
from one activity to another, which is a difficult task. The switching occurs very fast
and this is the reason for the difficulty to track the transition in an accurate manner.

10.1.3 Number of Sensors and Types of Sensors

There are various types of sensors that are available for collecting data. Nowadays, a
smartphone or a smartwatch also contains different kinds of sensors like accelerome-
ter, gyroscope, GPS, pressure sensor, light sensor, etc. These smart devices, wearable
devices, or environmental sensors can be used for collecting human activity data. The
challenges are to fix the number of sensors and type of sensors to get better recog-
nition results. We need to carefully choose the number of sensors as in real-life
implementations a recognition device that has been implemented with a limited col-
lection of sensors allows the task simpler and easy. The number of sensors plays
a significant role in the case of wearable sensors due to user-comfort concerns, as
well as data density or even data redundancy problems. Carrying multiple sensors
is difficult for users. However, one device may contain multiple sensors (e.g., TI
SensorTag, earable devices [5], and so on). If we can exploit some of these sen-
sors smartly and application-wise then the results will be better. There is a trade-off
between the number of sensors and the efficiency to be treated carefully [12].

10.1.4 Different Body Locations of Wearable Sensors or
Smartphone

Locations of smartphones or wearable sensors also play an important role in HAR.
Often we can see that a model trained with sensor data keeping the smartphone in
the waist position fails to give good performance if we use the same model to predict
activities for sensor data by keeping the smartphone in hand or bag [13]. Location-,
position-, and orientation-invariant approaches are required for robust applications
[9, 10, 14, 15]. Another problem is that some users may not keep their phones with
them while they are staying at home, making tracking their activities impossible. In
this case, a wearable sensor can be a good option for many users to wear it all day
long while performing activities, although it comes with the problem of discomfort.
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10.1.5 Missing Value

Another challenge is to deal with missing values from the sensors, or in the dataset.
Missing values can occur due to different factors, e.g.,

• Limitation of computational resources in mobile devices,
• Optimization problem of the wireless sensor network,
• Malfunction of sensors,
• Data packet loss or collision,
• Distance between the sensors and access points,
• Synchronization problem of sensors,
• Weak Wi-Fi signal or poor network coverage,
• Environmental noises, and so on.

Missing data can deteriorate the performance of human activity recognition unless
the missing data can be imputed/augmented or handled differently [3, 16–22].

10.1.6 Labeling Error

Apart from the missing data issue, labeling error also causes bad performance while
the dataset is labeled manually. We can utilize machine learning techniques to deal
with these challenges. Moreover, we can think of implementing unsupervised learn-
ing using unlabeled data, which can be an alternative of labeled data with an error
(having considerable trade-off). We can also think of automatic annotation avoiding
the general practice of manual annotation by a human [23].

10.1.7 Similar Postures

Similar postures like sitting and stand, or jog and run make it difficult to recognize
the activity. Suppose, there are some persons who sit on a sofa in such a way, which
is very similar to sleeping posture. This case can also happen for dynamic activities
like jog and run, which seem similar in terms of posture. There are some research
going on to identify the action distinguishing ambiguous postures [24].

10.2 Challenges Ahead: Headway and Diversity

Future research works and challenges in the field of activity recognition can be
discussed in terms of three perspectives such as (Fig. 10.2),

• Challenges for new researchers,
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Fig. 10.2 Challenges ahead for the researchers in terms of three basic perspectives

• Possible developments in industries for experts, and
• Smart IoT solutions in healthcare and smart homes.

10.2.1 Selection of Appropriate Datasets

For a new researcher, it is quite very much difficult to choose the perfect dataset that
is more related to the research field. In this book, we have presented more than 150
datasets regarding numerous fields of activity recognition along with activity labels,
sensors, and device information for researchers. A summarized version on datasets
are available in [25]. Researchers who are willing to create sensor-based datasets
often find difficulties in terms of sensor choice, the number of subjects, varieties in
the dataset in terms of gender and age of the subjects, ethical factors regarding users
while data collection and so on.

10.2.2 Lack of Ground Truths

Some databases for the researchers do not include ground-truth and precise knowl-
edge. Hence, a researcher may not conceive and analyze beyond the conventional
methods in analyzing different activities.
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10.2.3 Choice of Sensors

Another common and difficult challenge for new researchers is to choose the
sensor category (e.g., wearable, smartphone, or environmental), sensor type (e.g.,
accelerometer, gyroscope,magnetometer, pressure sensor, etc.), and device type (var-
ious smartphones and wearable devices).

10.2.4 Position or Location of Sensors

The next challenge is to choose the position of wearable sensors (e.g., upper back,
back waist, left wrist, left lower leg, right wrist, right thigh, right lower leg). While
using smartphones for data collection, the choice of the position of the smartphone
(e.g., shirt’s pocket, trouser’s pocket, inside a handbag, etc.) also matters in terms of
accuracy and precision.

10.2.5 User Comfort Issue

When human activity research is performed to develop products in the industry that
may assist and help people in their daily life,weneed to focus onmanyparameters and
precautions. User comfort and familiarity of the chosen device also play important
roles in this case [26]. Otherwise, even if a particular sensor position brings higher
accuracies, we cannot choose that position ignoring user comfort.

10.2.6 Processing Sensor Data and Feature Vector

The early challenges for the new researchers after data collection include visualiza-
tion of data, choice of correct filtering method for preprocessing, choice of window
length, type and overlap percentage for segmentation. Choice of more important fea-
tures using a robust method also creates additional challenges for the researchers to
minimize the processing time in real-time keeping good accuracy percentage.

10.2.7 Selection of Classifiers

The choice of classifiers and choosing between general classifiers and deep learn-
ing techniques need to be handled more carefully for building a good robust model
without overfitting.Model size, processing time, data type, accuracy, precision, appli-
cation areas—all these play crucial functions in this regard.
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A group of classifier-based approach may be used for the proper identification
of certain related behaviors such as sitting and standing or walking, going upstairs
and going downstairs, or leaning backward and sitting backward in a rolling chair.
Much of the current works struggled to specifically differentiate related behaviors
with one classifier. It is necessary to explore the ensemble of classifiers with voting
for the classification of complex activities [14, 27–34]. Future planning will also
involve dealing with manually labeled training data which is not correctly classified
as walking exercise but mistakenly labeled as jogging exercise due to human error.

10.2.8 Analysis of Resource Consumption and Real-Time
Assessment

The study of resource use, like memory, CPU, number of sensors, and, most notably,
battery use, should be performed in potential research work [35–42]. The most com-
mon trade-off between the recognition accuracy and precision and resource usage
should be explored more deeply to get the best possible outcome by the experts.
Some activities are required to understand in real-time. Understanding or recog-
nizing or detecting fall down is very important activity for the elderly people and
hospital patients [43]. Falling down becomes one of the serious concerns in hospitals
in Japan, New Zealand and similar other countries where the elderly population are
higher in percentage. To ensure real-time processing, computing capacity should be
better. However, we can not ensure higher computation in wearable devices. This
area is important and up to the industry to handle the related challenges.

10.2.9 Variability and Diversity in Datasets

The datasets should have more variabilities so that the challenges become more
realistic and more application-centric. Some issues are highlighted in the following
points:

• One of the main problems of most of the currently available activity recogni-
tion databases is less amount of users without varieties (i.e., age-range, gender,
environment, etc.).

• Besides this,most of the datasets only focus on general and simple human activities
like walk, run, sit, etc. More advanced datasets with more complex activity labels
(e.g., eating with hand, eating with a spoon, brushing teeth, walking upstairs, etc.)
with more variation of users should be created in future research works.

• Besides, most of the datasets are created inside the lab under controlled envi-
ronments by trained users, which does not perform well in real-life environment.
Researchers should intend to create more realistic datasets considering these prob-
lems so that the training dataset can represent real-life environmental situations.
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10.2.10 Smart IoT Solutions in Healthcare and Smart Homes

Human activity recognition research has vast application areas in healthcare and
building smart homes with the advancement of smart sensing devices and miniatur-
ized smart sensors with the power of the Internet of Things (IoT) [44]. Researchers
should explore more areas for making activity related datasets that can improve the
medical sector and smart home system. Some of these can be,

• Nursing activities related dataset,
• Patient activities and monitoring dataset (e.g., during the hospital, staying home
and monitoring, monitoring after a surgery and the improvement assessment),

• Abnormal activities and fall detection related datasets,
• Physical exercise-related dataset,
• Elderly activity monitoring dataset,
• Pregnant woman activities monitoring,
• Children’s behavior assessment-related dataset,
• Autism study-related dataset [45], etc.

In this field of research, the two important facts are sensor cost and energy issue.
Most of the patients do not find it comfortable to wear heavy weight and large-sized
sensing devices with lots of wires. This is important to enable wireless sensing tech-
nology with light weight sensors and miniaturized devices. The utilization of nan-
otechnology in this regard makes the sensors costly. The use of small-sized batteries
with limited energy backup also poses a challenge to continue the data collection
process. Nowadays, researchers focus on designing low dimensional features and
models with lower computational costs that can be implemented on a small device
with limited energy resources [46, 47]. In spite of challenges, we can not deny the
importance of sensor-based activity recognition research in the healthcare domain
[1, 48].

10.2.11 Multi-modal Options

In future, we need to incorporate various other modalities—especially from the
vision- and image-based domain [2], such as,

• Gaze and attention analysis,
• Voice or speech signal processing,
• Social signal analysis,
• Visual data for human behavior analysis,
• Facial attributes to understand any objective or purpose of an action, not just the
movement’s information and decision,

• Collective human behavior and data analysis in the multi-person cases or interac-
tions.



10.2 Challenges Ahead: Headway and Diversity 183

10.2.12 Incorporation of Voice or Audio Data

Regarding voice or speech, there is a new device called eSense earable by Nokia-
Bell Lab, UK. It has a multi-modal stereo system along with inertial measurement
unit (IMU). This device can incorporate motion, audio, and proximity data. Activity
analysis are explored with this device recently by [5]. It is found that visual frames
and audio can be effective to enhance the recognition results in the case of large-
scale video classification [49]. However, in the domain of sensor-based activity, the
explorations as well as the success are insignificant. We need to explore the audio
along with sensor data. In our life, we do many activities while talking with others or
using mobile phones. Audio can give the clue on human personal emotional status
like happy or sad or anger or others. A movement along with any emotional status
can bring better recognition results.

10.2.13 Large-Scale and Multi-label Case

Large-scale and multi-label activity classification is a major challenge for the future.
For this kind of case, fusion of different modalities is a difficult task. We need
to explore approaches for these issues. Vision-based activity and behavior under-
standing on large-scale cases are advanced in the last few years, compared with the
sensor-based domain. Therefore, it is required to explore the vision-based domain
and learn from the experiences and approaches—so that we can accommodate some
of these in sensor-based activity analysis.

10.2.14 Person-Object Activities

Objection recognition is not done in the sensor domain. Video or image-based object
recognition has progressed a lot. Now, can we explore sensors in the domain of
person and object interactions? For example, reading book, opening a door, playing
guitar, cooking something, preparing bed, cleaning floors, moving an object, etc. are
very much done in daily life. Open a door of a home, or opening the refrigerator, or
opening the door of a car—these vary object-wise and hence, context/scene analysis
becomes necessary for this kind of activities.

10.2.15 Hand-Object Interaction

Hand-object interaction using sensor information can be another important research
area. A hand can grip different objects and hence, the differences should be
understood automatically. Context-awareness is essential for activity understanding.
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Hand-object interaction can be very useful in the study of partially paralyzed patients
and during their rehabilitation progress periods—to understand howmuch the devel-
opments are made. There can be other applications on this arena. However, how to
locate the sensors and how to accommodate the collected data can be difficult and
challenging issue. Application-based realistic options can be considered in future in
different health-care and rehabilitation applications.

10.2.16 Person-Person Interaction

Most of the datasets we presented in this book are basically singular person
actions/activities (e.g., walking, running, hiking, etc.). However, person-person
actions or interactions aremore important to understand. Twopersons can handshake,
hug, fight, push, kiss, discuss, etc. More than two persons can make more complex
activities. These are really challenging tasks using sensor data only—because we
need to explore the data from both or multiple persons in the vicinity to understand
the actions or interactions. Nevertheless, it is essential to explore these interactions
to understand many real-life applications.

10.2.17 Errors in Data Collection and Missing Values

Data missing is a realistic issue and challenging topic. Due to weakWiFi connection
or distance or low battery level or other technical issues in a wireless sensor network
or body area network, data can be missed or lost in different statistical patterns
[16]. Hence, research work should be intended in future to correct identification of a
particular activity in real-time that has missing values in training dataset due to the
failure of the central server to receive sensor data or that includes noisy data due to
sensor intervention while performing the activity.

In addition, researchers can focus to design a feedback-based network that will
have the capability of continuous improvement of its learning algorithm through the
assessment of users. Whenever a wrong identification of any activity is assured by
a user, this network will take this information and upgrade its learning so that it can
correctly identify that activity more precisely in the future.

10.2.18 Challenges Imposed by Deep Models

Nowadays, many research works focus on deep models avoiding shallow hand-
crafted features to make the model generalized and to transfer the knowledge among
multiple domains. Several factors have also been found by the researchers that must
be taken care of in the future to maintain better performance while using deep



10.2 Challenges Ahead: Headway and Diversity 185

learning-based approaches. Most of the previous approaches that utilize deep-
learning techniques are offline-based techniques using pre-trained models. How-
ever, this approach may fail to perform well in real-time for smartphones and smart
wearable devices with limited energy resource. Besides, deep learning-based models
can pose a challenge to obtain better performance for unlabeled data in the case of
unsupervised learning. Identification of complex activities consisted of several sub-
activities or basic actions is difficult using current deep models because of the pres-
ence of semantics and context information. Moreover, research should be focused to
design deep models with lower computational cost keeping a balanced performance
so that we can implement those models in miniaturized sensing devices with the
lower computational ability and limited energy resources.

10.3 Concluding Remarks

With the rapid development and technical progress in the field of IoT sensors, behav-
ior detection in a variety of evolving computing fields has been the latest frontier
of context-aware customized applications. But the reality is there are not many sys-
tematic studies in sensor-based behavior detection, which is the reason behind this
field becoming a new area of study. Scientists do not find standard datasets most
of the time, which may render their research incredibly difficult, even in practical
environments.

This book (in Chap.dbSen6) surveys the state-of-the-art human activity recogni-
tion where we have compiled more than 150 sensor-based benchmark datasets on
daily activities, ambulation activities, medical activities, fitness activities, wearable
sensor-based, and smartphone sensor-based activities. Besides benchmark datasets
on various types of fall detection techniques have been presented with relevant infor-
mation. Specific details were presented about the characteristics, levels of operation,
categories of sensors, and equipment used by these datasets. We also generated a list
of all sorts of sensing instruments and implementation software that can be used to
create a new dataset. Various noise filtering methods, filter preference, segmentation
methods, and considerations to be included in determining the duration of the win-
dow have been defined in depth. In comparison, each of these databases provided a
description and detailed study of historical behavior identification techniques.

Finally, for future research, numerous ideas are proposed to elongate this field
to more practical and pervasive scenarios. This chapter highlighted the core con-
straints of the existing works. It elaborated a number of future challenges and several
notes on possible solutions and ideas for researchers. We conclude this book with the
high-hope that this book will be instrumental for the IoT sensor-based research activ-
ities that will create brighter future in different applications, especially in healthcare
domain.
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10.4 Think Further

1. Mention some challenges that are still existing in the field of sensor-based human
activity recognition.

2. List up the major approaches that you feel the best-suited for your target appli-
cation or research area.

3. What are the major constraints of your enlisted methods to solve the problems
of HAR field?

4. Can you utilize existing numerous concepts to update them or bring a minor
change to solve each of your enlisted constraints?

5. How can you get an idea from the existing research works to solve the problems?
6. What are the future challenges that are yet to be solved in the area of human

activity recognition?
7. What are the future challenges of data collection protocol?
8. Why diversity of age and gender is necessary for a good dataset?
9. Why postural transition-based activities are difficult to recognize?
10. How can you limit the number of sensors by keeping moderate performance?
11. How to build a position-independent model so that in real-time the user does not

require to keep the smartphone in a constant body position?
12. Why similar postures are difficult to classify?
13. How to deal with the problem of missing values while collecting data?
14. What is the solution to missing value problem?
15. How to deal with the problem of human labeling error?
16. What alternate approach can be taken to automatically annotate data?
17. Can unsupervised learning help us to utilize unlabeled data to solve human

labeling error problem?
18. Compare the vision-based HAR and the sensor-based HAR based on other

vision-based literature and books.
19. What are the intriguing points of sensor-based HAR that can be implemented in

the vision-based activity recognition?
20. What are the intriguing features of vision-based HAR that can be considered in

the sensor-based HAR?
21. How can we combine some of the features of vision-based and sensor-based

activity recognition?
22. Enlist all possible applications where we can explore various IoT sensors and

cameras (whether RGB or depth).
23. Draw the workable architecture and flow diagrams for each of the above-

questioned applications.
24. If you explore multiple sensors or cameras for one person, what are the chal-

lenges?
25. How can you collect data in a synchronized manner so that multi-sensors or

cameras can be handled properly?
26. How can you create datasets related to elderly people without engaging or harm-

ing them while creating the dataset? What are the challenges?
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27. How can you create a dataset related to fall detection?
28. What are the different kinds of falls that can be considered? Note that falling

down by a patient or an elderly person may not have the same nature with others.
29. Find scopes of IoT sensor-based activity and behavior understanding in the field

of autism.
30. Find applications and scopes of sensor-based HAR related to criminal investi-

gation and forensic applications.
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