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Preface

We are delighted to preface this book which constitutes the refereed post-conference
proceedings of the 15th EAI International Conference on Body Area Networks (EAI
BODYNETS 2020). The theme for 2020 was “Smart IoT and Big Data for Intelligent
Health Management.”

Initially planned to take place in Tallinn, Estonia, the outbreak of the COVID-19
pandemic meant that the conference (like many others), took place as an online event
on October 21, 2020.

We received 30 submissions; after a rigorous double-blind review process,
15 papers were selected for the final program. The main topics covered during the
conference included connectivity and radio propagation, secure communication net-
works for smart-health, and connected wearables sensors for healthcare applications.

In addition to the high-quality technical paper presentations, the conference also
featured two keynote speeches. Prof. Mohsen Guizani, a Professor at the Computer
Science and Engineering Department at Qatar University, Qatar, gave a keynote speech
titled “IoT Security Schemes for Healthcare Systems.” Helena Gapeyeva (MD, PhD), a
Physician of Physical and Medical Rehabilitation at the Clinic of Medical Rehabilitation
in East Tallinn Central Hospital, Estonia, gave a keynote speech titled “Movement
analysis in Physical and Rehabilitation Medicine: Data monitoring.”

Organizing the conference would not have been possible without the support of the
Steering Committee: the chair Imrich Chlamtac and members Jun Suzuki, Giancarlo
Fortino, Matti Hämäläinen, and Lorenzo Mucchi. We warmly thank them for their
support and guidance. We also extend our deep appreciation to the Organizing Com-
mittee team for their hard work, and to the technical Program Committee members for
carefully reviewing and selecting the papers.

We hope you will enjoy reading and studying the proceedings of BODYNETS
2020, and we look forward to seeing you at the next edition of the conference.

October 2020 Muhammad Mahtab Alam
Matti Hämäläinen
Lorenzo Mucchi

Imran Khan Niazi
Yannick Le Moullec
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Providing Connectivity to Implanted Electronics
Devices: Experimental Results on Optical
Communications Over Biological Tissues

with Comparisons Against UWB

Senjuti Halder(B), Mariella Särestöniemi, Iqrar Ahmed, and Marcos Katz

Centre for Wireless Communications, University of Oulu, Oulu, Finland
senjutihalder@yahoo.com, marcos.katz@oulu.fi

Abstract. Radio and acoustic waves have been conventionally used for transmit-
ting information through biological tissues. However, some radio-based commu-
nications often suffer from several drawbacks like security, safety, privacy, and
interference. In this paper, we demonstrate that optical wireless communications
can be practically used for communications through biological tissues, particularly
to transmit information to and from implanted devices. In the experiment, ex vivo
samples of pork meat were used as the optical channel. Initial results show that
information can be optically transmitted through biological tissues to distances
of several centimeters, a range of practical interest as many implants today are
placed within this extent. Optical links are inherently secure, and interference to
and from other equipment is not an issue. With numerous potential benefits, opti-
cal wireless communication can be considered as a complementary approach to
the existing radio frequency (RF) communications. In this paper, a comparison
between the measurement results of ultra-wideband (UWB) and optical commu-
nications through the biological tissues is presented. Both experiments have been
taken place in a similar environment, with the same meat samples. We have also
explored the effect of tissue temperature on successful communications through
biological tissues. These initial results are very promising and indicate various
potential benefits for in-body communication in the future.

Keywords: Medical implants · Optical communications · Ultra-wideband ·
Biological tissues · In-body communications

1 Introduction

Improving the quality of life is one of the ultimate goals of technology, and in this respect,
wireless and mobile communications play a key role. In particular, remote health moni-
toring is a cost-effective approach to the prevention of diseases as well as the provision
of health care. The aging population, chronic diseases, and the desire to live a healthy
lifestyle are present-day healthcare challenges that can be addressed by wireless tech-
nology. The concept of wireless body area networks (WBAN) is a well-known example

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
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4 S. Halder et al.

of this technology, where a network of nodes (e.g., sensors) inside, outside, and on the
patient’s body collects, processes, and transmits physiological data. Last decades have
witnessed a remarkable development in electronic body implant technology. Today, we
rely on a great variety of these implants, such as heart pacemakers, cardioverter defib-
rillators, medicine dispensers, and brain stimulation implants, for example. In addition,
in-body sensors and smart pills have been developed to monitor physiological parame-
ters, imaging, drug delivery, etc. Furthermore, there is currently an increasing interest in
brain implants beyond conventional brain stimulation and deep brain stimulation. These
include monitoring and recording brain activity and ultimately interfacing neural sys-
tems with computer systems (e.g., brain-computer interfaces). Recently, the idea of the
internet of things (IoT) has been extended to consider in-body, on-body, and out-body
nodes networked to provide medical care. New concepts such as the internet of medical
things (IoMT) and the internet of the human body (IHB) have been lately proposed.

One of the key enablers in the above-mentioned systems is human centric commu-
nications (HCC), a field that has been and continues to be widely investigated. HCC
defines wireless communications taking place inside the human body, communication
between internal and external nodes as well as communication across nodes on the
body. Figure 1 depicts the possible wireless links in HCC, where three types of nodes
are shown, a) in-body nodes (IBN), b) on-body (OBN) nodes, and c) out-body or external
nodes (EN). In this paper, the focus is on in-body communications, where wireless links
are established between IBNs or between IBNs and OBNs. Typical nodes include elec-
tronic implants as well as ingestible or implanted sensors, for instance. Radio has been
the dominant technology for in-body wireless communications, exploiting narrowband,
wideband, and ultra-wideband concepts. Acoustic communication is also an interesting
approach to communicating through biological tissue. Human tissue is a challenging
medium for the propagation of radio waves. Radio frequency attenuation is typically
high, due to the high conductivity and dielectric constant of the biological tissues. These
characteristics strongly depend on the frequency used for communications. Moreover,
the medium could be very complex, as the signal may need to propagate through many
layers of different tissues, each with different characteristics. In-body communication
must be highly secure and private, and this is a challenge for radio systems. Several
cases have emerged in recent years, showing the vulnerability of commercial implants
to hacks, leading even to a massive recall of implantable devices. Besides, the radio is
prone to be affected by non-intentional interference. Ultrasound-based communication
systems do not face these challenges, though they might be limited by low data support
and considerably high-power consumption. In this paper, we propose the use of optical
communications for establishing in-body wireless links. Previous work has shown that
optical communication is viable for very short optical links of a fewmillimeters, particu-
larly for reaching electronic devices placed under the skin. This is the case of superficial
communications, indicated with “a” in Fig. 1. However, our initial experiments have
shown that considerably longer ranges can be easily achieved using optical links based
on near-infrared (NIR) light. This case, depicted with “b” in Fig. 1, provides connectivity
to in-body electronic nodes (IBNs). Moreover, connecting in-body and out-body nodes
(e.g., EN) is also possible using optical links. The prospect of using light for wireless
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communications inside the human body is highly relevant. Optical wireless commu-
nications have unique advantages such as high security, privacy, safety as well as low
complexity and power consumption. Furthermore, light sources are used for a variety
of novel purposes inside the human body, such as for diagnosis and therapy. Control
of cellular activity (e.g., in neurons) by means of light to activate, inhibit, or monitor
certain functions is another highly relevant application of light. The vision of having key
health functionalities such as wireless communication, diagnosis, treatment, and moni-
toring working with under the same light-based infrastructure is truly appealing. In this
paper, we report the design, implementation, and testing of an optical communication
system, with a testbed using realistic ex vivo samples as the optical channel. The optical
system is compared to an ultra-wideband communication system working in a similar
scenario. The impact of the temperature on the optical and radio communication links
is also investigated. There are several studies presenting the impact of the temperature
on the dielectric properties of the animal tissues in different frequency ranges [1, 2].
However, up to the authors’ knowledge, there is a lack of studies presenting the impact
of the temperature on the radio channel characteristics. In ref. [3], authors have presented
results on the impact of the temperature on the antenna and channel characteristics. Fre-
quency domain channel results are repeated in this paper to ease the comparison with
the measurement results obtained with the optical technique at the same temperature.

Fig. 1. HCC: In-body, out-body, and off-body links.

This paper is organized as follows. Section 2 introduces optical communications
through biological tissues, while Sect. 3 provides a comparison among radio, acoustic,
and optical wireless systems for in-body communications. Section 4 presents measure-
ment results from a realistic setup justifying the optical communication approach. Dis-
cussions on opportunities, challenges, and novel applications are presented in Sect. 5.
Finally, Sect. 6 concludes the paper.
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2 Optical Communications Through Biological Tissues

Visible and infrared light is widely used in medical information and communication
technology (ICT), mostly for diagnosis and therapeutics. In this section, we briefly
introduce the basic ideas behind optical communications in biological tissues, in other
words, how to exploit light to transmit information through biological tissues. Unlike
conventional uses of optical wireless communications (OWC), where the medium is air
or water, biological tissues are a challengingmedium. Interaction of light with biological
tissues is a well-studied field, particularly aiming at analyzing properties of the tissue
and eventually making the diagnosis. However, biological tissues have not been studied
from the wireless communications standpoint. Light is reflected, absorbed, scattered,
and transmitted through biological tissues. Biological tissues are characterized by high
anisotropy and strong absorption and scattering. The near-infrared window in the region
(700–1100) nm is commonly used as light is less attenuated than in other wavelengths.
Due to scattering, light is dispersed, reducing rapidly its energy as light propagates
across the tissue. Light is thus highly attenuated, and pulses are spread in time. The
receiver needs to cope with the signal impairments imposed by this severe medium in
order to recover the transmitted signal. Contrasting air and water, one can expect that the
range of optical links in tissues is quite limited, a fact that is in line with the geometry
of the human body and the ranges demanded by typical in-body medical applications.
Increasing the optical power of the transmitted signal can be used to increase the range
or data rate. On the other hand, to avoid damages to the biological tissues, the energy
and power density of the transmitted signal need not to exceed certain limits, defined by
the International Commission on Non-Ionizing Radiation Protection [4].

Rayleigh and Mie scattering are commonly used to model the optical scattering
process in biological tissues, where the former takes place when the scattering is caused
by particles much smaller than the wavelength of light, and the latter when the sizes of
particles are in the order or larger of the light wavelength.

3 Radio, Acoustic and Optical Wireless Communications
in Biological Tissues: A Comparison

3.1 Radio

Radio technology has been widely used in medical applications for several decades.
It has several advantages for implant communications. It can provide high-data-rate
communications and, also high-resolution images using low transmit power. Especially
with lower frequencies, power losses in the tissues are moderate. Radio is a well-known
technique for which inexpensive components are widely available. Besides, the in-body
data can easily be transmitted out of the body since most of the medical devices use RF
[5, 6].

Narrowband (NB) and UWB technologies are the most commonly used radio tech-
nologies in the medical applications based on the WBAN, which is considered as a
collection of miniaturized low-power, wireless sensors for monitoring the human body
functions [6]. For the successful implementation of WBAN applications, the IEEE pub-
lished the standard 802.15.6 [7] for in-body/on-body node communications. In addition
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to the main technologies NB and UWB, WBAN covers also human body communica-
tions (HBC) technology, which is based on galvanic coupling or capacitive coupling.
From these techniques, UWB is chosen to be compared with the optical communication
technique.

UWB technology has been recognized as a promising candidate for implant commu-
nication systems. It provides several advantages: high data rates, lowpower consumption,
high security, simple transceivers, etc. [6]. The main drawback of the UWB is the higher
propagation loss within the tissues. However, the propagation loss can be dealt with the
use of a lower UWB band (3–5 GHz) in the applications where the signal is required to
propagate deep inside the body tissues and with properly directive antennas. UWB has
been used in several medical monitoring applications, such as capsule endoscopy, tumor
detection, heart and breath rate monitoring, glucose level monitoring, etc.

3.2 Acoustic

Mechanical movements of particles in a substance form the ultrasounds (US) wave
[8]. Ultrasonic waves are generally defined by the following parameters: frequency,
pressure, amplitude, propagation speed, and intensity [9]. US is an extensively popular
technology in healthcare due to its various applications in imaging. Ultrasound consists
of all the acoustic waves having a frequency above 20 kHz, which is non-audible for
humans [10]. Apart from the numerous imaging applications, US has been considered to
have great potential for in-body communications. Acoustic waves, typically generated
through piezoelectric materials are preferred to be used for underwater communications,
as they propagate better in media mostly made up of water when compared to RF. Up
to 60% of the human adult body consists of water [11] and blood is a fluid that provides
cells with different resources. This makes ultrasound an eligible technology to support
in-body communications.

3.3 Optical

Over the years, there has been a growing interest in utilizing optical communications for
the betterment of healthcare technologies. Light has been widely used in both therapeu-
tic and diagnostic medical applications. Light-based communications typically require
line-of-sight (LOS) configuration [12]. However, non-line-of-sight (NLOS) configura-
tion is also possible, though the signal strength could be greatly affected in that scenario.
In recent years, visible light communications (VLC), a case of OWC, has become an
extremely popular research topic. In the electromagnetic spectrum, the visible spectrum
expands over a wavelength of 400 nm to 700 nm [13]. In VLC, light-emitting diodes
(LEDs) are employed due to their advantages of simultaneously providing illumina-
tion and transmitting of data. Optical communications possess numerous advantages
like safety, large and unregulated spectrum, data security, less interference, zero-radio-
exposure as well as cost and energy effectiveness. These advantages could lead these
light-based communications a suitable choice for future medical applications. The uti-
lization of optical communications in implants is very safe and secure for patients,
a fundamental advantage of this technology. For OWC, IEEE published the standard
802.15.7 in 2011 which mainly aimed at visible light spectrum. Development work has
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been going on to achieve further standards so that the ultraviolet, visible light and infrared
areas can also be included.

Some key characteristics of UWB, acoustic, and optical communications system are
presented in Table 1.

Table 1. General comparison of UWB, acoustic and optical communications for short-range
medical applications.

Radio (UWB) Acoustic Optical

Supported data rate 0.5–10 Mbps <0.5 bps 100 Kbps

Range <10 cm (directive antennas) <15 cm <5 cm

Power requirements Low Low/moderate Potentially low

Complexity Low Low Low

Security/privacy Low High Very high

Safety/exposure Safe within SAR limits Safe Safe

Standard 802.15.6, 802.15.4 None None

Frequency 3.1–10.6 GHz 1–3 MHz 300 GHz–430 THz

4 Experimental Results

In this section, we present some measurement results carried out with individual exper-
imental testbeds for both optical and UWB. Results, though initial, show the potential
of optical wireless communications for in-body applications.

4.1 Optical Measurements

The optical communication measurements have been carried out using mostly commer-
cially available equipment. An experimental testbed was developed to evaluate optical
communication through biological tissues [14]. The testbed consists of an optical trans-
mitter, an optical receiver, and the biological tissue as the optical channel. Figure 2 shows
the basic blockdiagramof the testbedused in themeasurement setup.The transmitter side
comprises a computer, universal software radio peripheral (USRP) where the key blocks
of the transmitter were implemented, bias-tee, LED driver, and LED source. Thorlabs
DC2200 LED driver [15] and an 810 nmmounted IR LEDproduced by Thorlabs [16] are
implemented in the transmitter side. On the other end, the optical receiver comprises a
photodetector, USRPwhere receiver blockswere implemented and a computer. The pho-
todetector used in the receiver side is a silicon avalanche photodetector APD120A from
Thorlabs [17]. For both transmitter and receiver side, NI USRP-2920 have been used
which are designed and developed Ettus Research, the daughter company of National
Instruments. We have used NIR light to illuminate the biological tissue since NIR light
propagates better through tissues. The tunnel between source and receiving nodes has
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been created with the help of GNU radio software. For the optical communication link
through biological tissues, a Gaussian minimum-shift keying (GMSK) modulation was
used. The GMSK modulation scheme has been used due to its constant envelope prop-
erty. It is difficult for the LED to be able to respond to the prompt phase changes of some
other modulation schemes (e.g., quadrature phase-shift keying (QPSK)). Thus, GMSK
modulation is considered as a convenient choice for the optical communications as the
phase changes occur steadily in GMSK [14, 18].

Fig. 2. Simplified block diagram of the experimental testbed.

Here, we have used a 3 cm thick fresh pork meat sample with the skin on. The
meat sample consists of both muscle and fat (approximately 0.5 cm of fat and 2.5 cm
of flesh). The temperature of the sample was 12 °C. The LED input current has been
varied and we have measured the corresponding optical power employed on the meat
sample. The optical powers were well in accordance with the standard of laser safety
ANSI.Z136.1-2007 [19]. Successful optical communication was established through
the ex vivo sample. Moreover, an image file of 14 MB has been transmitted through the
sample and we were able to achieve a data rate of 22 Kbps. The meat sample has been
illuminated on the skin surface and the detector has been placed on the flesh side. The
experimental setup for optical communications through biological tissues is presented
in Fig. 3.

To understand the effect of tissue temperature on optical communication, the same
meat sample has been heated to 37 °C. For this heating purpose, we have placed the
sample inside a heating box made of acrylic material. A temperature controller was
used to set the desired temperature of the sample. Table 2 presents the transmitted and
received optical power for both cold and warm meat along with the power losses. Both
the transmitted and received optical powers are measured with the help of PM100D
power meter from Thorlabs [20].
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Fig. 3. Experimental setup for optical communications through biological tissue.

Table 2. Transmitted optical power, received optical power and power losses of cold and warm
meat.

Transmitted
optical power
(mW/cm2)

Received optical
power (µW)
(Cold meat)

Power loss (dB)
(Cold meat)

Received optical
power (µW)
(Warm meat)

Power loss (dB)
(Warm meat)

50.94 98.3 −27.14 128.3 −25.98

101.11 204.2 −26.94 234.2 −26.35

146.26 301.8 −26.85 341.8 −26.31

190.53 389.9 −26.89 419.9 −26.57

231.38 469.2 −26.92 520.2 −26.48

A comparison of the received optical power in both cases (cold and warm meat
samples) shows a minor difference between the measured values. The received optical
power for both cold andwarmmeat samples are presented in Fig. 4. The optical properties
of the meat sample change with the temperature and this affects the amount of received
power.Moreover, as our sample consisted of both flesh and fat, the fat portion has become
more transparent due to the rise in the temperature. This transparency also leads to better
light propagation through the tissues, as seen in Fig. 4.
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4.2 UWBMeasurements

For a fair comparison, the UWB testbed used the very same meat sample used for the
case of optical communication. UWB measurements were conducted using the Agilent
8720ESVectorNetworkAnalyzer (VNA). TwodifferentUWB-antennaswere connected
to the VNA’s ports with coaxial cables. Antennas were placed on the top and below the
biological tissue. The block diagram of the UWB measurement set up is presented in
Fig. 5.

Fig. 5. Simplified block diagram of the UWB measurement setup.
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The UWBmeasurement results are analyzed in more detail in [3] presenting a study
on the UWB in-body measurements using pork meat. Ref. [3] evaluates also the impact
of the meat’s fat and muscle composition as well as the impact of meat’s temperature on
the UWB antenna and channel characteristics and compares the UWB channel charac-
teristics on humans and pork tissues by simulations. One of the channel results of [3] is
represented in this paper to ease the comparison with the results obtained using optical
communication.

Figure 6 presents the meat used in themeasurements. The size of themeat is 22 cm×
20 cm, which is much larger than that used in the optical measurements due to antenna
sizes and the necessity to avoid propagationflow from themeat sides. The thickness of the
meat is 3 cm as in optical measurements. The frequency-domain channel characteristics
are evaluated for the UWB range of 0.5–5 GHz. Two different UWB antenna prototypes
are used in the measurements: 1) a cavity-backed antenna, which is used as an on-body
antenna and is located above the skin layer and 2) a loop antenna, which resembles as an
in-body antenna. The cavity-backed antenna is a directive on-body antenna designed for
implant communications at the frequency band 3.75–4.25 GHz, which is the frequency
range of interest in this UWB measurement study. A detailed description of the antenna
can be found in [21]. The loop antenna is an omnidirectional antenna designed to work
for the whole UWB band 3.1–10.6 GHz. Details of the loop antenna can be found in
[22].

Fig. 6. The meat piece used in the measurements.

The meat piece was set inside a cube form area made by absorber pieces. The loop
antenna was set below the meat muscle and fat tissue side. The cavity-backed antenna
was set to the top of the tissues on the skin side. Figure 7 presents the measurement
setup, which is explained in detail in [3]. Ref. [3] also analyses in more detail the
frequency and time domain channel characteristics as well as antenna characteristics
with different pork meat pieces. This section summarizes the channel results for the
pork meat sample which was also used in optical measurements to ease the comparison
with optical measurements. The measurements were taken as the meat was cold (12 °C)
and warm (37 °C), as in the optical measurements.

Frequency domain channel characteristics, i.e., S21 parameters, are presented in
Fig. 8 for the pork meat with cold and warm temperatures. It can be seen, power loss on
the frequency range of interest, i.e., 3.75–4.25 GHz, varies from−48 dB to−58 dBwith
the cold meat. The power loss difference at the 3.75 GHz and 4.25 GHz is noteworthy.
The higher the frequency, the larger is the power loss due to changes in the dielectric
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Fig. 7. UWB measurement setup inside the cube made from absorber pieces [3].

properties [23]. Nevertheless, the power loss is at a reasonable level for successful data
communications in this case. For the warm meat, the power loss is approximately 6 dB
smaller compared to the cold meat. The variation within the frequency range of interest
is −42 to −52 dB. These results show clearly, how the temperature has a clear impact
on the channel characteristics since the dielectric properties of the tissues change with
the temperature.

Fig. 8. The S21 parameter obtained in UWB measurements with the meat at the temperature of
12°C and 37°C [3]
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It can be concluded that the power loss for 3 cm thick meat remains at a reasonable
level for a data communication link.With lowerUWBfrequencies anddirective antennas,
data communications might be possible even with double meat thickness in the realistic
scenario of 37 °C meat temperature.

The measurements have been taken with a meat piece having interlaced muscle and
fat layers. Fat is known to be among the easiest tissues for radio propagations [24, 25]
and thus the “fat tunnels” within the muscle layers help to achieve reasonable power loss
level. With meat pieces having separate muscle and fat layers, the power loss is worse
[3].

With the UWB technique, better propagation depth is obtained. The best propagation
depth is achieved with directive on-body antennas. However, such antennas usually
require relatively large cavity structures which might be clumsy for wearable devices.

5 Discussion

This study investigates the potential of transmitting information through biological tis-
sues by utilizing optical communications. Results show that optical communications
through biological tissues are possible, in a range of practical interest. A comparison of
the optical communications through biological tissues with the UWB communication
is also presented in this paper. Here, we have used the same piece of meat sample with
3 cm thickness as the medium for both UWB and optical measurements. Individual
experimental testbeds have been used to carry out the measurements. Light propaga-
tion through biological tissue is an extremely complex process, where phenomena like
absorption, scattering, and reflectance take place during the propagation. The meat sam-
ple we have used here contains both fat and muscle. The optical power applied to the
sample during the optical communications is well below the regulated safety limits. First,
we have demonstrated that optical communications through biological tissues are fea-
sible through ranges that are of practical interest, e.g., wireless connectivity to different
implanted devices can be provided. In fact, in the future, very secure and safe com-
munications could be provided to several possible implanted electronic devices such as
pacemakers, defibrillators, insulin pumps, and others. The simple optical communica-
tions system was not matched to the optical channel, and thus, the supported data rate
was relatively low, of the order of several tens of Kbps. Nevertheless, in most of the
cases involving implanted devices, the required data throughput is relatively small, as
typical applications require the sporadic transmission of sensor information, changing
device settings, etc. High-order modulation schemes as well as multiple optical beams
can be used to increase the data rate.

An initial comparison between optical andUWBcommunications through biological
tissues has been presented here. The comparison here focuses only on the attenuation
of the two systems for a similar piece of sample. It was found that power loss with the
optical system is minor than with UWB. However, also with UWB the loss is moderate
and still far from the UWB receiver’s sensitivity limits. Besides, the comparison is not
straightforward since in the UWB measurement setup, only a pure sinusoid signal is
inserted directly to the transmitter antenna without any modulation.

Optical and UWB measurements on the meat sample were carried out at 12 °C and
37 °C to observe the effect of tissue temperature during the communications. We have
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found that the received optical power of the heated meat sample is higher than that of
the cold meat sample. Moreover, the power loss for the heated meat has been found
to be smaller than the cold meat during UWB measurements. On the other hand, we
have noticed minor differences in the power losses for the cold and warm meat during
the optical measurements. So, it can be considered that optical communication is less
sensitive to the tissue temperature compared to UWB communications. The measured
power losses for both cold and warm samples are such that the signal can be decoded at
the receiver.

Various individual advantages of optical and radio communications can be exploited
together to implement a flexible hybrid optical-radio wireless network. In this hybrid
optical-radio wireless network, both the optical and radio communications complement
each other. An optical-radio hybrid network has several advantages, including increased
link connection reliability, security, and support of higher data rates. Instead, the radio
enables implant communication in the cases where the implant is deeper inside the
tissues. The hybrid optical-radio network can be considered as a suitable approach for
future medical applications due to these potential benefits.

6 Conclusion

In this paper, the feasibility of optical communications through biological tissues is
investigated. A realistic scenario exploiting ex vivo samples is used in the study. A con-
ventional UWB communication system is used as a baseline for comparison. The initial
results regarding optical communications through biological tissues are very encourag-
ing. Although the data rate achieved for optical communications is relatively low, it could
well be sufficient for most of the electronic medical implants in use today. A range of
three centimeters was obtained for the optical link, a distance well suited to provide con-
nectivity to prevailing implants such as pacemakers, defibrillators and implanted drug
dosing systems, for instance. Conventional narrow-band radio-based systems often face
challenges like security, privacy, and safety, which need to be seriously tackled in any
medical-related application. Both optical communication system as well as UWB based
radio technique inherently overcome these drawbacks. The benefit of optical communi-
cation system over UWB is smaller device size and minor power loss. However, despite
ofminor power loss, optical communication is restricted only to few centimeterswhereas
with directive antennas at lower parts of the UWB range, the reliable communication
can be achieved even up to 10 cm.

Optical communication can either be utilized as a standalone approach or in combina-
tionwith other conventional communications (e.g., acoustic/radio). Thesemeasurements
will be carried out to achieve a more comprehensive comparison advantages of optical
communications indicate that it can be considered as a suitable approach for different
future medical applications. In the future, extensive between the optical and UWB sys-
tems. The connectivity to the implanted electronic devices using optical and UWB com-
munications will be further investigated where both the communication system would
transmit data through biological tissues.
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Abstract. This paper presents a study on the in-body propagation using pork
meat at the lower ultrawideband (UWB) frequency band 3.74-4.25 GHz of the
wireless body area network (WBAN) standard 802.15.6. Pork meat in terms of
the dielectric properties is one of the most similar to human tissues and thus is
commonly used in in-body propagation studies. Nevertheless, there are differences
in the dielectric properties, creating some differences also in the radio propagation.
The first objective of this paper is to investigate by simulations the propagation
differences between human and pork tissue layer models. The simulations results
show clear differences between the channel characteristics obtained using a human
tissues and pork tissues: within the frequency range of interest, the path loss with
porkmeat can be up to 5 dB less thanwith the humanmeat. The second objective of
this paper is to study, by measurements, the in-body channel characteristics using
different types of pork meat piece having different fat and muscle compositions.
It was found that path loss is clearly higher with the pork meat having separate
skin, fat, and muscle layers compared to the pork meat having interlaced fat and
muscle layers. Furthermore, the third objective of this paper is to study the impact
of the meat temperature on the measured channel characteristics by comparing the
channels obtained with the meat at the temperatures of 12 °C and at 37 °C. Also, in
this case clear differences were observed in path loss: within the frequency range
of interest, the path loss was maximum 5 dB lower with meat at 37 °C than with
a colder meat. The results presented in this paper provide useful information and
relevant aspects for the in-body propagation studies conducted with pork meat.

Keywords: Dielectric properties of tissues · Fat layer propagation · In-body
propagation · Radio channel measurements · Temperature impact · Ultra
wideband ·Wireless body area networks

1 Introduction

Wireless medical monitoring has increased interest in recent years due to the several
benefits it may provide for the healthcare of human beings [1–3]. Capsule endoscope is
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one example of the implant monitoring systems which has become popular method of
investigating the gastrointestinal (GI) tract [4, 5].

Smooth design of monitoring devices requires deep knowledge of radio channel
characteristics. Channel characteristics can be studied with electromagnetic simulations,
which are based on solving Maxwell’s equations in their differential or integral forms,
or measurements using phantom models, anaesthetized living animals, or tissues of the
animals [5–8].

Measurements with the anaesthetized animals provide the most realistic results of
the measurements since dielectric properties of the tissues start to change immediately
after the death of the animal [9]. However, measurements are challenging with anaes-
thetized animals since suchmeasurements require hospital environment [10, 11]. Instead,
measurements with meat pieces are more feasible. Since some of the tissue dielectric
properties of adult pig is known to be close to the those off human beings, pig meat is
commonly used in the on-body/in-body antenna studies aswell as in in-body propagation
studies [12–14].

However, the use of meat pieces has some shortcomings and restrictions which
should be considered. For instance, dielectric properties of animals can be different
compared to those of human beings though dielectric properties of adult pork tissues are
found to be close to those of humans [15–17]. Besides, dielectric properties of tissues
change with the age of the animal [18] or as the time passes from the death of the animal
[9]. Moreover, temperature impacts the dielectric properties of the tissues [16], which
obviously has clear impact on the in-body channel characteristics. Finally, composition
of fat and muscle layers in the meat piece is assumed to have strong impact on the results
since fat is known to be a good propagation channel [19, 20].

Up to the author’s knowledge, there is no studies presented on comparing channel
characteristics evaluated with meat pieces having different fat and muscle composition
with realistic antennas. Furthermore, up to the author’s knowledge there are no studies
presenting impact of the meat temperature on the channel characteristics.

The aim of this paper is to address the aforementioned aspects. First, channel char-
acteristics obtained using human tissues and pork tissues in the layer simulation models
are compared. Secondly, the channel characteristics are evaluated using two different
meat pieces: the first one having interlaced muscle and fat layers, the second one having
separate muscle and fat layers. Finally, the impact of the meat’s temperature is evaluated
on the antenna performance and channel characteristics.

The paper is organized as follows: Sect. 2 presents study case including description
of the simulations, antennas, and measurements. Section 3 presents simulation-based
antenna verification. Section 4 compares channel characteristics obtained using human
tissues and pork tissues in the layer simulation model. Measurement results for meat
pieces with different fat and muscle composition are evaluated in Sect. 4. Furthermore,
the impact of the temperature on the antenna and channel characteristics are studied in
Sect. 4. Finally, Conclusions with future work perspectives are discussed in Sect. 5.



20 M. Särestöniemi et al.

2 Study Case

2.1 Simulations

Simulationswere conductedwith a 3D electromagnetic simulation tool CSTStudio Suite
software [21], which uses the finite integration technique. A planar layer tissue model,
which is presented in Fig. 1, was used in the simulations. The thicknesses of the tissue
layers are selected according to the thicknesses of tissue layers of the meat piece 1 used
in the measurements. These thicknesses are presented in Table 1 in Subsect. 2.2

Fig. 1. Layer model used for the verification of the antennas.

Table 1. Tissue thicknesses of Meat1 and Meat2 in the location of antennas.

Tissues Meat1 Meat2

Skin 2 mm 2 mm

Outer fat 10 mm 7 mm

Muscle 15 mm 18 mm

Inner fat 3 mm 3 mm

In this study, we use two types of antennas. The first one is a directional cavity backed
UWB on-body antenna, shown in Fig. 2a, which was introduced in [22]. It is designed
for on-in body communications for the frequency band 3.75–4.25 GHz which meets
the IEEE 802.15.6 standards requirements [23]. Its dimensions with the cavity are x =
83mm, y= 49.5mm, and z= 19.62mm,where x and y arewidth and length, respectively
and z is towards the body. The size of the antenna itself is x = 47.5 mm, y = 47.5 mm.
The second antenna is a loop antenna, shown in Fig. 2b, which is introduced in [24].
The loop antenna is omni-directional antenna UWB antenna, having large bandwidth
3.1–10.6 GHz and it is originally designed for on-body communications. The size of the
antenna is 43 mm x 46 mm. In this initial study, the loop antenna is used to resemble
the in-body antenna, since in the simulations, it was noticed to achieve similar path loss
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Fig. 2. Antennas used in this study: a) cavity backed low-UWBon-body antenna, b) loop antenna.

values as the implant (capsule endoscope) antenna [25], for which a prototype was not
available.

2.2 Measurements

Measurements were conducted using two different types of porcine pieces which are
presented in Figs. 3a–b. Both pieces had skin, outer fat, muscle and inner fat layers. In

Fig. 3. a) Meat 1 with interlaced fat and muscle layers, b) Meat 2 with distinct muscle and fat
layers.
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the first meat piece, which is referred to asMeat1, the fat andmuscle layers are interlaced
so that there are “fat tunnels” going through the muscle layer.Meat2 has distinct fat and
muscle layers. Both meat pieces have thickness of 3 cm. The thickness of the tissues
layers for Meat1 and Meat2 below the antennas are presented in Table 1.

The measurements were conducted with a Vector Network Analyzer (VNA) 8720ES
in measurement laboratory premises at the University of Oulu, Finland. The meat pieces
were set individually inside a cube form area made by absorber pieces to avoid signal
interference from the surrounding environment as well as minimize the propagation
overflow from the sides of meat pieces. Meat piece was set inside a thin plastic bag to
protect the antennas and the absorbers. The picture of themeasurement setup is presented
in Fig. 4.

Fig. 4. a) Measurement setup before closing the back and front walls, b) on-body antenna with
meat piece

3 Simulation Based Antenna Verification

The aimof this section is to verify usability of the loop antenna on themeasurement based
in-body propagation studies. This verification is conducted by comparing simulated
channel characteristics obtained using an implant antenna [25] and a loop antenna [24]
as the in-body antenna. The simulations are conducted using the planar tissue layermodel
since the pork meat piece also resembles planar layer model. The aim of this comparison
is to show that loop antenna can be considered as an alternative in the measurements
when using layer meat pieces. Figure 5 presents comparison between the frequency
and time domain channel characteristics obtained using a capsule antenna and the loop
antenna in the simulations. Figure 5a presents the S21 for the whole simulated frequency
range and Fig. 5b the zoomed version of Fig. 5a for the frequency band of interest 3.75–
4.25 GHz. Figure 5c presents channel impulse responses obtained applying inverse fast
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Fourier transform (IFFT) for the simulated band. As one can note from Figs. 5a-b, the
path loss difference is minor between the results obtained using the capsule antenna and
the loop antenna within frequency range of interest. However, outside the frequency
range of interest the differences are larger.

In time domain, the main peaks of the IRs are at the same level, though the main
peak is clearly wider with the loop antenna. From the results it can be concluded that
loop antenna can be used as in-body propagation studies in the measurements.

4 Simulation Based Comparison Between the Channel
Characteristics Obtained Using Human and Pork Tissues

This section compares simulation results obtained using tissue layer models having
dielectric properties of human tissues to those obtained using pork tissues. Dielectric
properties (relative permittivity and tangent loss) for human and pork tissues at 4GHz are
presented in Table 2. The dielectric properties of human tissues are found from e.g. [26].
For dielectric properties of pork tissues there are several studies available in the literature
[9, 10, 15, 16]. However, the challenge is there is variation in the values presented for
pork. The reason for this is that several factors affect the dielectric properties: age and
size of the pig, time from the death of the pig, temperature of the meat. For instance,
there is wide variation in the reported results for tangent loss values of the pork muscle
tissue. Thus, for this study, we decided to use tangent loss value of the human tissues
also for pork tissues and we left study of the impact of the reported tangent loss variation
for future work.

First, the antenna matching with human and pork tissues are evaluated by studying
the S11 parameters presented in Figs. 6a–b for the on-body antenna and the loop antenna,
respectively. It is found that the difference between the dielectric properties of human
and pork tissues cause approximately 3 dB difference in the antenna’s notch area so that
S11 values is slightly higher with the human tissues. Same phenomenon can be found
with both antennas.
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Fig. 5. Simulation based comparison of channel characteristics obtained using a loop antenna
and a capsule endoscope implant antenna [25]: a) S21s for the whole simulated bandwidth, b) S21
for the frequency range of interest, and c) impulse responses.
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Table 2. Dielectric properties of human and pork tissues at 4 GHz.

Tissues Human tissues
Relative permittivity/tangent
loss

Pork tissues
Relative permittivity

Skin 36.6/0.29 37.5/0.32

Fat 5.12/0.16 5.78/0.23

Muscle 50.8/0.27 48.0/0.27

Fig. 6. S11 parameters with a) on-body antenna, b) loop antenna (in-body antenna) obtained with
simulation model having dielectric properties of human tissues and pork tissues.

The frequency and time domain channel characteristics are presented in Figs. 7a–
b, respectively. As it is noted, difference in the dielectric properties of human and pork
tissues have clear impact on the channel characteristics: within the simulated bandwidth,
the path loss is up to 8 dB higher with pork tissues until 3.25 GHz than with the human
tissues. Instead, from 3.5 GHz onwards, i.e. also within the frequency range of interest
3.75–4. 25 GHz, the path loss is higher with human tissues.
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Fig. 7. Comparison between the differences of human and pork tissues: a) S21 parameters, b)
IRs obtained by performing IFFT for whole the frequency bandwidth, and c) IRs obtained by
performing IFFT for whole the frequency band of interest 3.75–4.25 GHz.
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In time domain, as the IFFT is performed for the whole simulated bandwidth, the
difference can be seen mainly in within the time range of 1–2 ns, where the level of the
channel taps is higher with the human tissues than with the pork tissues. However, as it
was pointed out that S21 is higher with pork tissues at the frequency range of interest,
it is important to study impulse response also with the filtered S21. The IR obtained by
performing IFFT only for the frequency range 3.75–4.25 GHz, is presented in Fig. 7c. In
this case, it can be clearly seen that the IR peaks are 1–3 dB stronger with pork tissues.
Even the difference in the main peaks in almost 3 dB.

5 Measurement Results

5.1 Channel Comparison with Different Meat Pieces

In this section, the frequency and time domain channel characteristics are evaluated and
compared using Meat1 and Meat2, which both have thickness of 3 cm. The aim is to

Fig. 8. Reflection coefficient for a) on-body antenna, b) the loop antenna within the tissues with
Meat1 and Meat2.
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observe how the meat constitution, i.e. whether the fat and muscle layers are interlaced
or separated, have impact on the channel characteristics.

Firstly, the antenna reflection coefficients are on-body and the loop antenna are
studied when located on or below the pork pieces Meat1 and Meat2. The reflection
coefficients for the on-body antenna is presented in Fig. 8a and for the loop antenna in
Fig. 8b. Antenna reflection coefficients for the on-body antenna are very similar with
both meat pieces, since the skin thickness and outer fat thickness are same with both
meats. Instead, one can note differences in the reflection coefficients of the loop antenna,
which is located below the meat pieces. This is due to the different tissue constitution of
these different pork meats: there is more fat on the inner surface ofMeat1whereas more
muscle tissues on the inner surface of Meat2. The differences in the antenna matching
are noteworthy only at 1.5 GHz and 2.5 GHz, which however, are out of the frequency
range of interest. The antenna matching at 3.75–4.25 GHz is relatively same with both
meat pieces.

Next, the channel characteristics are studied. Frequency domain channel character-
istics, i.e. S21 parameters, and time domain channel characteristics, i.e. channel impulse
responses, are presented in Figs. 9a–b. As one can note, there is a clear level difference in
the frequency and time domain channel characteristics obtained using Meat 1 and Meat
2 in the measurements. In frequency domain, the level difference is clearest at 1.5 GHz
and 3 GHz which, however, are out of the frequency range of interest. At the on-body
antenna’s operational frequency range, 3.75–4.25 GHz, the level difference is at highest
10 dB, except at 3.75 GHz there is a large notch with Meat1. In time domain, the main
difference is observed in the level and width of the main peak. The difference is also in
this case at highest 10 dB.

The differences in the channel characteristics obtained using Meat1 and Meat2 are
partly explained by differences in the antenna matching. However, the main difference
comes from the different propagation paths due to different tissue composition. Fat
is known to be one of the “easiest” tissue for UWB signal propagation in terms of
propagation time and power loss [19, 20], hence, Meat1 having “fat tunnels” through
the muscle layer appear to be clearly easier meat piece to propagate through.

6 Impact of the Temperature

The channel results presented in the previous section were evaluated for the meat pieces
which was measured to have temperature of 12 °C. However, temperature of the humans
is approximately 37 °C. The temperature is known to have a clear impact on the tissues’
dielectric properties [16], which is assumed to change also channel characteristics signif-
icantly. Thus, next, the impact of the temperature is evaluated for channel characteristics
withMeat1.

The Meat1 was heated in a heating box up to 37 °C. Then the S11, S21, and IR
values are evaluated in the same antenna positions as in Section A. The obtained results
are presented in Figs. 10a–c. For the comparison, S11, S21, and IR values measured in
the cold (12 °C) temperature are included in the figure.

As noted from Fig. 10a, temperature changes the antenna matching slightly at the
lower frequencies (up to 4.1 GHz). Due to these changes, the notch of the S11 is trans-
ferred 0.2 dB to the lower frequency, to 3.9 GHz. The changes in the S21 values are also
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Fig. 9. a) Frequency domain and b) time domain comparison of channel characteristics obtained
usingMeat1 and Meat2.
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Fig. 10. Comparison between the antenna and channel characteristics at 12 °C and 37 °C temper-
ature: a) S11 parameters for on-body antenna, b) S21 parameters, and c) IRs obtained performing
IFFT for the whole frequency bandwidth.



On the UWB in-Body Propagation Measurements Using Pork Meat 31

noteworthy at lower frequencies, as presented in Fig. 10b. However, at the frequency
range of interest, the difference is maximum 5 dB. In time domain results, presented
in Fig. 10c, the main difference can be noted in the level of the CIR’s main peak: with
warm meat, the main peak is 9 dB at higher level than that with the cold meat.

7 Conclusions

This paper presented a study on UWB in-body propagation measurements conducted
using pork meat. The first aim of this paper was to investigate by simulations the propa-
gation differences between human and pork tissue layer models. The simulations results
showed clear differences between the channel characteristics obtained using human tis-
sues compared to pork tissues: within the frequency range of interest at 3.75–4.25 GHz,
the path loss difference is up to 5 dB. The second aim of this paper was to study, by
measurements, the propagation using different types of pork meat piece having different
fat and muscle compositions. It was found that path loss is clearly higher with the pork
meat having separate skin, fat, and muscle layers compared to the pork meat having
interlaced fat and muscle layers. Furthermore, the third objective of this paper was to
study the impact of the meat temperature on the measured channel characteristics by
comparing the channels obtained with the meat at the temperature of 12 °C and at 37 °C.
Also, in this case clear differences were observed in path loss: within the frequency
range of interest, the path loss was maximum 5 dB lower with meat at 37 °C than with
a colder meat.

The results presented in this paper provide information and insights on the use of
pork meats in the in-body propagation studies. It is shown that selection of the meat
pieces used in the measurements is crucial: meat composition may have strong impact
on the channel characteristics. Besides, it would be important to heat themeat up to 37 °C
if more realistic scenario is aim to be evaluated. Furthermore, although the dielectric
properties of the human and adult pork tissue are similar, the differences in the dielectric
properties cause clear impact on the channel characteristics, which should be taken into
the account in monitoring device design.

Our future work plans include extensive measurements using different meat pieces
having different thicknesses with different fat and muscle composition. Aim is to per-
form propagation path calculations for different propagation path options with the corre-
sponding dimensions and compare them with the measured data. Furthermore, different
on-body and implant antennas having different operational frequencies will be used in
the evaluations.
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Abstract. This paper presents a simulation-based study on detection of
stroke/brain hemorrhage even in the white matter using radio channel charac-
teristics analysis. The idea is to utilize the fact that blood has different dielectric
properties than brain’s white and grey matters and, thus, additional blood areas
inside the brain change radio channel characteristics between the transmitter and
receiver antennas located on the opposite sides of the head. The antennas should
be strongly directive and designed to work attached to the body surface so that
hemorrhages even in the white matter could be detected. The study is conducted
using the electromagnetic simulation software CST and two different simulation
models: a spherical tissue layer model and an anatomical voxel model. The anten-
nas used in this study are bio-matched mini-horn antennas designed for implant
communications at 1–4 GHz frequency range. Different sizes of the blood areas
are evaluated. This initial study shows how even small sizes of hemorrhage can
change radio channel even as the hemorrhage is located in the middle of the brain,
in the white matter. The path loss difference is 0.5–10 dB between the hemor-
rhage and reference cases depending on the size and location of the hemorrhage.
A practical solution of this hemorrhage detection technique could be a portable
helmet type of structure having several small sized antennas around the internal
part of the helmet. Such a helmet would be easy to use e.g. in ambulance, which
would enable early detection of hemorrhage in its early phase and, hence, improve
prospects of the cure significantly.

Keywords: Bio-matched horn antenna · Brain hemorrhage · Dielectric
properties · Early diagnosis · Propagation loss · Radio channel analysis
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1 Introduction

Brain hemorrhage/stroke is a fatal physical condition, which may cause severe disability
or even death, and thus it is essential to be diagnosed in its early phase. Current method
for detecting hemorrhage and stroke in the brain is practically limited to computing
tomography (CT) and magnetic resonance imaging (MRI). They are expensive and
complex techniques and can be used only in central hospitals. Consequently, there is
a strong need for a wearable and easy to use technique for fast detection of hemorrhage
and stroke already outside hospital. In the literature, there are microwave-based studies
presenting hemorrhage detection [1–12]. Most of them are based on detecting changes
in the antenna return loss, which has restrictions. For instance, hemorrhage located
deep inside the brain white matter cannot be detected reliably with return loss analysis.
Besides, several evaluations in the literature are conducted with the large antennas,
which are not suitable for practical portable applications. The idea of helmet type brain
hemorrhage detection device was originally presented in [13] which would measure
channel parameters between the antennas located in different sides of the head. However,
Ref. [13] presents only the idea, not any measurement or simulation results.

Most of the simulation-based studies in the literature are conducted using simplified
headmodels. There is a lack of studies presenting radio channel characteristics-base brain
hemorrhage detection, which would have been conducted using a realistic voxel model
and directive antennas. Besides, there is lack of studies presenting brain hemorrhage
detection in the white matter.

This study focuses detecting brain hemorrhage in the white matter in the middle part
of the brain, since it is considered the most challenging part for hemorrhage detection.
The paper involves propagation studies in the head area aiming at detection of hem-
orrhage and stroke using radio channel characteristics analysis. Hemorrhage detection
could be done by using a simple, portable helmet type of monitoring device in which
several transmitter and receiver antennas are located inside the helmet. The diagnosis
could be done by setting the helmet in the patient’s head, measuring and analysing the
radio channel characteristics, and hence the diagnosis could be done outside the hospital
in ambulance or even in patient’s home which is important for rural area health care.
Hence, the medical treatment could be started immediately, and prospects of cure could
be significantly improved.

The physical phenomenon behind the proposed technique is that blood have different
dielectric properties than the brain matter (grey and white), as shown in Table 1 [14].
Especially the relative permittivity of the blood is significantly higher than that of the
brain matters. Thus, blood area inside brain change propagation and channel charac-
teristics between the transmitter and receiver antennas, which are located in different
sides of the head. Since the propagation losses in the tissues are relatively high, strongly
directive antennas should be used so that the received signal is on the level in which the
changes caused by hemorrhage can be still detected.

The objective of this paper is to present electromagnetic simulations-based study on
the detection of brain hemorrhage in white matter using radio channel characteristics
analysis. CST Simulia Studio Suite [15], which is based on finite integration technique,
is used in the simulations. CST’s anatomical voxel model Hugo is chosen for these
evaluations since it has detailed brain structure with separate grey and white matters.
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Table 1. Dielectric properties of different tissues in the head.

Tissue Dielectric properties at selected frequencies

1 GHz
Relative
Permittivity/Conductivity
[S/m]

2 GHz
Relative
Permittivity/Conductivity
[S/m]

4 GHz
Relative
Permittivity/Conductivity
[S/m]

Skin 40.9/0.9 38.6/1.27 36.6/2.34

Fat 11.3/0.12 11.0/0.12 10.4/0.50

Muscle 54.8/0.98 53.3/1.45 50.8/3.02

Skull bone 20.6/0.36 19.1/0.65 16.9/1.40

Cerebrospinal
fluid

68.4/2.46 66.9/3.07 63.7/5.20

Brain grey
matter

52.3/0.99 49.7/1.51 46.6/3.09

Brain white
matter

38.6/0.62 36.7/1.00 34.5/2.14

Blood 61.1/1.58 59.0/2.19 55.7/4.13

The aim is to show how brain hemorrhage with different sizes and different locations can
be detected using a directive on-body antenna designed for in-body communications.
Even hemorrhages in the middle of the white matter can be detected with this method.
2D power flow illustration and power values at different locations inside the brain of the
voxel showhow the blood areas change the propagation. Besides, power loss calculations
are presented to show the difference between the hemorrhage and reference cases.

The paper is organized as follows: Sect. 2 presents Study case by describing the
antenna and simulation model used in this study. Power flow presentation are illustrated
in Sect. 3. Channel evaluations are presented in Sect. 4, and Conclusions are given in
Sect. 5.

2 Study Case

2.1 Directive on-Body Antenna

In this study, a directive bio-matched mini-horn antenna illustrated in Fig. 1, is used in
the evaluations. The antenna is originally presented in [16] and based on the documen-
tation it was remodeled for this study case. The dimensions of the antenna were further
modified slightly to get better matching with the voxel model. The modified structure
has dimension h = 2.7 cm and d = 1.8 cm. The bio-matched horn antenna is composed
of water-filled holes, which mimic the frequency-dependent relative permittivity of the
underlying tissue over its entire bandwidth. Details of the antenna structure can be read
in [16].

The modified antenna structure is tuned to operate at 1.7–3.3 GHz. The antenna’s
S11 parameter is presented in Fig. 2.



Detection of Brain Hemorrhage in White Matter Using Analysis 37

Fig. 1. A mini horn antenna designed for in-body communications.

Fig. 2. Reflection coefficient S11 of the mini horn antenna as located on the skin.

2.2 Simulation Models

The simulations were carried out using the CST studio suite, which is based on the
finite integration technique. Two different simulation models were used in this study:
a spherical tissue layer model and CST’s anatomical Hugo voxel model, which are
presented in Figs. 3a–b, respectively. The spherical layer model is a full sphere, which
consists of several different nested tissue spheres, each layer having realistic thicknesses.
The thicknesses are presented in Table 2. The anatomical voxel model Hugo has the
detailed brain model with separate grey and white matters having realistic shapes. The
resolution of the Hugo voxel is 1 mm × 1 mm × 1 mm.

Antennas are located on the skin in themiddle of the head, as shown in Fig. 4. For this
study case, we chose the widest part in the headwhere themuscle layer is thickest since it
can be seen as to the most challenging location in terms of radio signal propagation. The
diameter of the voxel model’s head is 16 cm in this location and thus also the diameter
of the spherical model is set 16 cm.
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Fig. 3. a) Spherical layer model and b) Hugo voxel model with horn-antennas placed on the skin.

Bio-matched mini-horn antennas are designed to work so that they are completely
attached to the skin [16]. Although the resolution of Hugo voxel is small, pixelization
may have strong impact on the antenna and channel characteristics, as explained in [17].
Thus, the non-smoothness of the voxel skin surface is compensated by inserting thin
skin layer in front of the antenna so that it overlaps with the voxel’s non-smooth skin
surface.

The possibility to detect brain hemorrhage is studied by inserting blood pieces of
different sizes in the voxel model’s brain white matter. The sizes with the corresponding
dimensions are summarized in Table 2. The blood pieces and their locations are presented
in Fig. 4 for the spherical layer model and in Fig. 5 for the voxel model. The spherical
model is evaluated with the large piece in two different locations, whereas the voxel

Table 2. Dimensions of different sizes of brain hemorrhages.

Tissues Small (S) Medium (M) Large (L)

Dimensions (x, y, z) (2, 2, 1) cm (3, 2, 1) cm (5, 4, 2) cm
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Fig. 4. Blood areas on the spherical model a) middle, b) left.

model is evaluated with large, medium, and small pieces, which are located in themiddle
of the brain.

Fig. 5. Different sizes of brain hemorrhages in the cross-cut of the voxel model.

3 Power Flow Analysis

In this section, the power flow from the transmitter antenna to the receiver antenna is
presented to understand how the hemorrhage change the propagation inside the brain
tissues. Power flow representation at 1.7 GHz with and without the hemorrhage are
presented in Figs. 6a–b, respectively. The dB range for the power flow presentation is
0–−65 dB, where the reference 0 dB level is set to the antenna. Power flow on the skin
is −26 dB.

From Figs. 6a–b one can note clear differences between the cases with and without
the hemorrhage. In the presence of hemorrhage, the power flow is narrower. Within the
plotted dB range, the Rx antennas is achieved easily in the reference case, whereas in
the case of hemorrhage, the Rx antenna is hardly achieved. The differences in the power
flows are due to the differences between the dielectric properties between the blood and
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Fig. 6. Power flows at 1.7 GHz a) in the reference case, b) in the hemorrhage case, c) points A-E
where power is measured.

brain tissues. Blood has clearly higher permittivity than the brain matters (grey/white)
and thus, the power loss is larger in the presence of hemorrhage.

Table 3 presents the comparison between the power loss values obtained with the
reference model and the hemorrhage model in the locations depicted in Figs. 6c. In
the location A, which is close to the Rx antenna, the instant power flow value for the
reference model at the selected cross-cut is 2 dB higher than that of the hemorrhage
model. In point B, the power loss with the hemorrhage model is 6.5 dB higher than with
the reference model. Interestingly, at point C, the reference model has higher power loss
although the power inside the blood area is expected to be smaller. However, at point
D, there is no difference between the hemorrhage and reference cases. Instead, at the
point E, the difference is the power loss being higher with the hemorrhage model. It is
interesting to note that the blood properties affect the power inside the hemorrhage, and
this requires further studies.
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Table 3. Power measured in points A–E at 1.7 GHz.

Power at points A [dB] B [dB] C [dB] D [dB] E [dB]

Reference −71.6 −71.5 −54 −48 −53

Hemorrhage −73.6 −77.1 −52 −48 −56

As a comparison, power loss is calculated with Matlab based on planar model prop-
agation. The calculation utilises an extension of the algorithm that includes lossy media
proposed by Orfanides [16]. The tissue thicknesses as well as calculated power loss
values in the presence of large size hemorrhage are presented in Table 4. As one can
note, the power loss difference is significant between the hemorrhage and the reference
case: in the presence of the hemorrhage having a large size, the loss is 9 dB higher
at 1.7 GHz. However, in the power flow evaluations presented above, the difference is
milder. The difference is due to the more complex structure of the voxel model, which
enables alternative propagation paths than just a direct path through the tissues, which
are on the direct line between the transmitter and the receiver antennas. However, power

Table 4. Thicknesses of the layers used in the power loss calculations.

Tissues Relative
permittivity

Loss tangent Thickness [mm]

Air 1 0 0

Skin Dry 39.04 1.146 0.002

Muscle 53.68 1.288 0.006

Skull 15.665 0.408 0.002

CSF 67.34 2.853 0.002

Grey-Matter 50.29 1.334 0.015

White-Matter 37.48 0.8737 0.04

Blood 59.55 1.976 0.05

White-Matter 37.48 0.8737 0.016

Grey-Matter 50.29 1.334 0.015

CSF 67.34 2.853 0.002

Skull 15.665 0.408 0.002

Muscle 53.68 1.288 0.006

Skin Dry 39.04 1.146 0.002

Air 1 0 0

Power loss in the reference case: 50 dB
Power loss with blood: 59 dB
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loss values obtained using Matlab provides good reference showing clearly the impact
of the blood on the channel characteristics.

4 Channel Characteristics Analysis

First, the channel characteristics are evaluated with the spherical model in the presence
and absence of blood. Channel parameters S21s obtained using the reference model and
the hemorrhage model are presented in Fig. 7. Hemorrhage location middle and left
are included. As it can be seen, blood in both brain areas cause clear differences in
the channel characteristics, especially in the frequency range 2.5–4 GHz. However, at
lower frequencies 1.3–2 GHz one can note differences in the channel responses as well
though the differences are milder, approximately 1.5 dB in this case. The closer the
modelled hemorrhage area is to the antenna, the clearer is the difference. Interestingly,
S21 obtained with the reference model is at clearly higher level than S21 of the models
with blood pieces only in the frequencies 2.5 GHz onwards. At lower frequencies it is
vice versa at certain frequencies. When comparing the dielectric properties of the blood,
grey and white matter, one can note that within the simulated frequency range, the
relativity permittivity of the blood is clearly higher than those of brain matters. Instead,
the conductivity values are higher for the blood area.

Fig. 7. S21 comparison with the spherical layer model as the hemorrhage is in the middle of the
brain and in the left part of the brain.

Next, the S21s obtained using the voxel model in the reference case and hemorrhage
case are compared. The results are presented in Fig. 8. As it can be seen, the S21 of the
reference model is at higher level than the S21 of the hemorrhage model at most of the
frequencies, as expected from the power loss calculations. However, at e.g. 2.6 GHz,
the S21 of the reference case is at lower level and the case of largest hemorrhage is at
highest level.Obviously, the difference on dielectric properties of blood and brainmatters
have variation depending on the frequency. Thus, it is important to select carefully the
frequency range used for this technique.
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Fig. 8. S21 channel parameters obtained using the voxelmodelwith different sizes of hemorrhage.

The zoomed version of the S21 results at lower frequencies are presented in Fig. 9.
As one can note, even at lower frequencies the difference is 1–5 dB, which is clearly
detectable in the practical solutions.

Fig. 9. Zoomed version of S21 at lower frequencies.

5 Conclusions

Detection of the brain hemorrhage in its early face is essential for the better prospects of
cure. This paper presented a simulation -based study of detecting brain hemorrhage in
the white matter using radio channel characteristics analysis, which could be realized in
a portable and compact helmet type of structure with several small mini-horn antennas
inside. The study is conducted by using the electromagnetic simulation softwareCST and
two different simulation models: a spherical tissue layer model and an anatomical voxel
model. The bio-matchedmini-horn antennas designed for implant communications were
used in this study.
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The idea of this technique was to utilize the fact that blood has different dielectric
properties than brain’s white and grey matters and, thus, additional blood areas inside
the brain change the radio channel characteristics between the transmitter and receiver
antennas located on opposite sides of the head. This initial study showed how even small
sizes of hemorrhage can change the radio channel characteristics even when hemorrhage
is located in the middle of the brain, in the white matter. The path loss difference was
0.5–15 dB between the reference and hemorrhage cases depending on the frequency.

Power flow studies at 1.7 GHz revealed interesting phenomenon: although the power
loss is expected to be larger in the presence of blood, the power inside the certain
part of the hemorrhage area was noted to be higher than in the respective location
without the blood. This is one of the future topics we are aiming to solve. Besides, other
future work objectives include more detail studies on the impact of the hemorrhage in
different frequencies and with several antennas to maximize visibility of the difference.
Optimal antenna locations will be determined as well. Furthermore, different sizes of
the head models will be used in the studies. Moreover, radio channel measurements will
be conducted using a real human skull filled with phantom liquids [17] for brain matter
and blood and prototypes of the bio-matched mini-horn antenna.

A practical solution of this hemorrhage detection technique could be a helmet type
of structure having several small sized antennas around the internal part of the helmet.
The brain hemorrhage could be detected analyzing channel characteristics of different
antenna combinations. The benefit of helmet type of brain hemorrhage detector would
be its easy use e.g. in ambulance. This would enable the early detection of hemorrhage
in its early phase and hence, improve prospects of the cure significantly even for the
patients living in rural areas far away from the hospitals.

The side effects and risks related to the radio channel analysis-based hemorrhage
detection techniques are minor since the measurement itself is very fast and thus, the
exposure for radiation isminor. Besides, input power can be kept low tomeet the Specific
Absorption Requirements (SAR) for the antennas.
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Abstract. An investigation is presented on Artefact Removal Methods for Ultra-
Wideband (UWB) Microwave Imaging. Simulations have been done representing
UWB signals transmitted onto a cylindrical head-mimicking phantom contain-
ing an inclusion having dielectric properties imitating an haemorrhagic stroke.
The ideal image is constructed by applying a Huygens’ Principle based imaging
algorithm to the difference between the electric field outside the cylinder with an
inclusion and the electric field outside the same cylinder with no inclusion. Eight
different artefact removal methods are then applied, with the inclusion positioned
at π and −π

4 radians, respectively. The ideal image is then used as a reference
image to compare the artefact removal methods employing a novel Image Quality
Index, calculated using a weighted combination of image quality metrics. The
Summed Symmetric Differential method performed very well in our simulations.

Keywords: UWB microwave imaging · Image quality metric · Artefact removal

1 Introduction

In recent years, there has been considerable interest into research in the field of medi-
cal imaging. Current imaging techniques are advanced and can produce images of high
clarity within a variety of tissue mediums. Medical professionals can draw on a range of
technologies to assist with diagnosis depending on the suspected inclusion to be detected
or the body part being imaged. Each technology has its own advantages and disadvan-
tages. There are several techniques currently used for diagnosis purposes. Ultrasound
scanners are cost-effective and successful in the medical diagnosis of areas of high con-
trast in soft tissues, hence their use in prenatal imaging and detection of various cancers.
However, ultrasound is not a reliable technique for imaging air spaces, hard tissue such
as bone/skull and providing definition in similar contrasting tissues. Computed Tomog-
raphy (CT) is very good at imaging hard tissues but requires a substantial dose of ionising
radiation. Magnetic Resonance Imaging (MRI) does not expose the patient to ionising
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radiation but does require them to stay still inside a claustrophobic space for a long time
(up to hours). MRI and CT Scan devices are also expensive and not portable (owing to
the pertinent dimensions of the devices), nor are they usable at rural medical centres, or
carried by First Response Services (FRS) which are seen as essential for saving a person
experiencing stroke. There is therefore an opportunity for research into a non-ionising,
non-invasive, portable and cost-effective alternative.

Ultra-Wideband (UWB) technology has already proved successful in a number of
areas related to health monitoring. The non-invasive nature of the signals and the suc-
cess at detecting changes quickly in the wireless medium has proven effective in health
monitoring through movement detection [1]. Recent research has also shown the suc-
cessful detection of lesions which have different dielectric properties to the surrounding
medium using UWB Microwave imaging [2]. This holds the potential for detections of
cancer and stroke [3–5].

Current UWBmicrowave imagingmethods rely on algorithms to process the electric
fieldmeasured at various points around the perimeter of an object.With all the algorithms
used there is the risk of inaccurate results due to reflections of the transmitting signal and
unwanted reflections of signals from the surrounding tissues. These unwanted signals
are known as ‘artefacts’ [6]. For the successful application of any imaging apparatus, a
reliable artefact-removal algorithm is necessary.

This study will explore a methodology for analysing and comparing a variety of
methods for removing artefacts, using several imaging and signal processing metrics to
provide a weighted Image Quality Index.

2 Theoretical Framework

Previous study focussing on breast cancer imaging [7] has identified that microwaves
respond differently if they hit tissues which have different dielectric properties. By
using UWB across microwave frequencies, it is possible to produce images with enough
resolution to show inclusions. The same principle has been used to determine the contrast
between blood and brain matter to identify stroke in head-mimicking phantoms [8].

This study uses a technique explained in [9] which uses Huygens’ Principle (HP) to
forward propagate thewaves [10]. This avoids having to solve complex inverse problems.
A simulated waveform is constructed using the principles laid out by Parrikar et al. [11],
which is transmitted from a line source external to the cylinder and received at a point on
the radius, external or at the edge of the cylinder. The electric field E can be calculated
by summing the known Electric Field Eknown at NPT points np on the perimeter using
Eq. (1). HP indicates the Huygens’ Principle method used and G refers to the use of
Green’s function.

EHP(r, φ; θ; txm; f ) = �s

∑NPT

np=1
Eknown
np,txmG

(
k1

∣∣�rnp − �r∣∣) (1)

where (r, φ, θ) ≡ �r is the observation point, k1 represents the wave number of the
media constituting the cylinder, �s is the spatial sampling, and txm is the transmitting
line source operating at frequency f .
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An image is obtained by summing the solutions and mapping the intensity values.
With Nf frequencies fi, the intensity of the final image I can be obtained using Eq. (2).

I(r, φ, θ; txm) = 1

B

∑Nf

i=1
�f |EHP(r, θ, φ; txm; f )|2 (2)

where �f and B are the frequency sampling and Bandwidth, respectively.
By subtracting, before applying Eq. (1), the electric field with no inclusion from the

electric field with an inclusion to get the difference in electric fields Ediff :

Ediff
np,txm = Eknown(WithInclusion)

np,txm − Eknown(NoInclusion)
np,txm (3)

the image obtained through Eq. (2) will show the inclusion.
For the purposes of real scenario medical imaging, Eq. (3) cannot be used. In [6], it

has been shown that this problem can be solved by producing a matrix of average values
of the electric field obtained when the inclusion is present. Measurements are taken from
multiple transmission sources and a mean value generated, which is subtracted from the
single transmitter data. This is explained mathematically in Eq. (4).

EHP(r, φ, θ; txm; f ) = �s

∑NPT

np=1

(
Eknown
np,txm − avgM

{
Eknown
np,txm

})
× G

(
k1

∣∣�rnp − �r∣∣) (4)

The Average subtraction method represents just one method of obtaining an image
of the inclusion. Several methods have been proposed which replace the average matrix
with an alternative, such as the measurements from a neighbouring transmitter in the
case of Rotation Subtraction [6, 12], or by using a differential method of obtaining the
resulting image, as is the case in [2, 13, 14]. Variations on these techniques will be
simulated and compared in this study.

3 Methodology

3.1 Ideal Image Construction

For the simulations, an external cylinder was simulated with radius 7cm, relative dielec-
tric constant ∈ r = 10 and conductivity σ = 0.2 S/m. An internal cylindrical inclusion
was constructed with radius 0.5cm, relative dielectric constant ∈ r = 60, conductivity
σ = 2 S/m and located 2 cm from the centre of the external cylinder with an eccentricity
angle of−π

4 radians. A simulation was run to construct the electric field at the perimeter
of the external cylinder. This field was simulated using MATLAB and generated a value
for the electric field at 80 points around the circumference for 1101 discrete frequencies
between 1 and 6.5 GHz. The normalised microwave image of such cylinder with an
inclusion can be seen in Fig. 1 (a). x and y values are in metres.

As can be seen in Fig. 1 (a), the electric field displays the reflection of the transmitter
signal on the right of the cylinder. The transmitting signal has been set as a line source
external to the cylinder at x = −0.2, y = 0. No evidence of the inclusion can be seen
in this image. This is because the reflected transmitter signal is greater by a significant
order of magnitude than the reflections from the inclusion.
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Fig. 1. (. a) Image of cylinder with an inclusion, and (b) without inclusion. (c) Ideal image
(constructed after employing Eq. (3)).

Figure 1(b) shows instead the image of the cylinder without the inclusion. Figure 1
(a) looks very similar to Fig. 1 (b). To detect the inclusion, Eq. (3) should be used before
performing imaging: such an image is given in Fig. 1 (c) and is used as an ‘Ideal Image’
for reference and comparisons.

This process is repeatedwith an inclusion at an eccentricity angle ofπ radians and the
images used as reference images for comparing subsequent experiments using different
pre-processing algorithms.

3.2 Artefact Removal Methods

This study involves a comparison of various artefact removal algorithms operating in
the frequency domain.

Average Subtraction (AS). The average subtractionmethodworks by taking the results
frommulti-transmitting sources (3 in this case) positioned slightly apart from each other
(4.5° in this case) on the perimeter of the cylinder, with the first transmitter x1 positioned
at x = −0.07, y = 0. When tabulating the (known) Electric Field at np points on the
perimeter, the data from transmission point x1 are placed into matrix A1 which has
dimensions made up by the number of frequencies × number of observation points. For
this series of experiments, 1101 discrete frequencies f are used at 80 observation points,
here denoted with φ, giving matrix A1 in Eq. (5).

A1 =
⎡

⎢⎣
f1φ1 · · · f1φ80

...
. . .

...

f1101φ1 · · · f1101φ80

⎤

⎥⎦ (5)

The results from transmission points x2 and x3 are placed into matrices A2 and A3
respectively in a similar fashion. Next, the mean of each point is calculated, i.e. Aavg .

The resulting average matrix Aavg is then subtracted from the matrix of the first
transmitter A1 before performing imaging:

EAS = A1 − Aavg (6)
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Rotation Subtraction (RS). The simulation is set up to replicate a signal from 2 trans-
mitters, placed 4.5° apart on the perimeter of the cylinder. The receivers, frequencies
and other input parameters remain the same as for the previous experiments. The image
is then constructed using matrix ERS , given as the following:

ERS = A1 − A2 (7)

where A1 and A2 are the results matrix from transmitter 1 and 2, respectively.

Differential Neighbouring Receiver Type (DNR). This method is adapted from
Klemm’s Differential method [2]. Instead of using the raw results to build a matrix
from, the input matrix is instead built using the difference in value between neighbouring
receivers. The input matrix S is thus built using the following calculation.

S(f , φ; n) = A(f , φ : n) − A(f , φ − 1; n) (8)

for φ = 1 to
Na

2
with φ − 1 = Na for φ = 1

S(f , φ; n) = A(f , φ, n) − A(f , φ + 1; n) (9)

for φ = Na

2
+ 1 to Na with φ + 1 = 1 for φ = Na

where Na is the number of receiving antennas, n is the transmitter index and A is the
original resultsmatrix. This results in aDifferential (NeighbouringReceiverType)matrix
S. To such a matrix is then applied the Average Subtraction or Rotation Subtraction
methods.

Differential Symmetric Receiver Type (DSR). By exploiting the (eventual) object
symmetry, it may also be possible to construct a differential matrix using the difference
between the receivers placed symmetrically opposite. This is adapted from a method
used by Mustafa et al. in [13]. The differential matrix S is built by subtracting each
receiver value from its symmetrically opposite receiver as in Eq. (10).

S(f , φ; n) = A(f , φ; n) − A(f ,Na + 2 − φ; n) (10)

for φ = 1 to Na with Na + 1 = Na

2
+ 1 for φ = 1 and

Na

2
+ 1 = 1 for φ = Na

2
+ 1.

This results in a Differential (Symmetric Receiver Type) matrix S. To such a matrix
is then applied the Average Subtraction or Rotation Subtraction methods.
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Summed Symmetric Differential (SSD). The Symmetric Differential method above
relies on the natural symmetry of some objects, such as the brain, across the left and
right halves. However, there is a risk with the symmetric method of mirrored artefacts
appearing in the images. The ellipsoid shape of the skull and brain have a distinct left-
right line of symmetry. The front-back sections of the brain also contain similar densities
of tissue.Whilst not completely symmetrical, the similarity in shape and density could be
utilised to provide an artefact removal method by summing a differential matrix formed
from the left-right differential and a secondmatrix formed from a front-back differential.
This should provide a more intense peak at the area of inclusion and mirrored artefacts
should have a reduced intensity. As before, a differential matrix S is constructed as in
Eq. (10). A second matrix R is constructed across the front-back receivers as follows.

R(f , φ; n) = A(f , φ; n) − A

(
f ,

Na

2
+ 2 − φ; n

)
(11)

for φ = 1 to
Na

2
+ 1

with
Na

2
+ 2 − φ = 3Na

4
+ 1 for φ = Na

4
+ 1

R(f , φ; n) = A(f , φ; n) − A

(
f ,

3Na

2
+ 2 − φ; n

)
(12)

for φ = Na

2
+ 2 to Na

with
3Na

2
+ 2 − φ = Na

4
+ 1 for φ = 3Na

4
+ 1

where Na is the number of receiving antennas, n is the transmitter index and A is the
original results matrix. The combinedmatrixC is then constructed by summingmatrices
S and R.

C(i, j; n) = S(i, j; n) + R(i, j; n) (13)

This results in a Differential (Summed Symmetric Receiver Type) matrix. To such a
matrix is then applied the Average Subtraction or Rotation Subtraction methods.

3.3 Comparison Methods

To compare the proposed artefact removal methods, it is necessary to construct a quan-
tifiable measurement system that can be used to compare images. It is often difficult to
construct a useful quantifiable number to measure an image. Whilst humans are good at
recognising patterns and contrasts in an image, a machine must be taught each process,
and this uses considerable computing power. For this experiment, basic comparisonmet-
rics have been calculated to compare the results. These are explained in greater detail
below. Some of the below metrics rely on a reference image. For the purposes of this
experiment, an ‘Ideal Image’ has been used as shown above.
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Error Image. AnError imageMErr is constructed by subtracting the ideal imageXIdeal ,
from the image to be tested YTest .

MErr = Ytest − XIdeal (14)

Mean Square Error (MSE). The mean square error is the mean of all the squared
values of the errors in the error matrix. Squaring the values means that any negative
values become positive, so the absolute value is important. The average gives a single
value which is an indication of the error across the whole matrix.

MSE = 1

N

∑N

i=1
MErr

2
i (15)

where N is the number of elements in the Error matrixMErr . The mean square error can
be calculated using MATLAB’s imaging toolbox and the command immse [15].

Polyshape Construction. To evaluate the shape of the inclusion,we set 0.75 as a thresh-
old on the normalised image, assigning every value above 0.75 to 1, and all others to
0. The resulting shape can then be obtained using MATLAB’s polyboundary and
polyshape functions [15].

Area Difference (ArD). This metric is related to the comparison between the size of
the target area for an ‘Ideal’ image and the size of the target area in the test image.

Centroid Difference (CD). To test the accuracy of the image at locating an inclusion,
the above Polyshape method was combined with MATLAB’s centroid function.
Comparison of accuracy can be made by assessing the Euclidean difference between the
centroid of an ideal image polyshape and the test image. This will assess how accurate
the location of the inclusion in the test image is. This is done using theMATLAB pdist
function [15].

Signal-to-Noise Ratio (SNR). The Signal-to-Noise Ratio (SNR) is a useful metric in
determining how clear any detected inclusion is by providing an assessment of the ratio
between the background noise and the desired signal. To calculate the Signal-to-Noise
Ratio (SNR) in dB, the above threshold is used to calculate the Polyshape to determine
the target and background areas. SNR calculations are performed based on this result.
This method can be calculated using Eq. (16).

SNR = 10 log10

(
Qt − Qb

Db

)
dB (16)

where Qt and Qb are the mean values of the detected target and background regions,
respectively, and Db is the standard deviation of the background.

Structural Similarity Index Metric (SSIM). The SSIM is an image quality metric
which gives a value between 0 and 1 which indicates the similarity between two images
(with 1 meaning the images are identical) [16]. This is calculated using the following
equation.
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SSIM = (2 × x̄ × ȳ + C1)
(
2 × σxy + C2

)
(
σ 2
x + σ 2

y + C2
)(
x̄2 + ȳ2 + C1

) (17)

where x is the reference image, y is the test image, x̄ and ȳ represent the corresponding
mean, σx and σy represent the corresponding variance, σxy is the covariance of the
reference and test image and C1 and C2 are small constants. MATLAB can calculate
the SSIM based on two input images using the ssim function [15]. This will output both
a value and a monochrome mapping which is a useful visual assessment of the quality
of the image. An example is shown in Fig. 2(e).

Average Difference (AvD). The average difference is a measure of the mean difference
in value between the Ideal Image and the test image. It is calculated by summing the
elements of the Error Matrix and dividing by the number of elements.

Image Quality Index (IQI). The abovemetrics provide severalways of quantifying the
precision, accuracy, and quality of the images to be constructed.Whilst these metrics are
useful, to aid in comparing the methods an overall quality index will be calculated. This
will be constructed by giving each of the metrics a score between 1 and 0 (with 1 being
a perfect image or match with the Ideal image). For many of these values, as they are
already being based on normalised results which will be between 0 and 1, it is relatively
simple to produce an appropriate score. For SNR, instead a comparison is made with
the Ideal Image. The value will approach 1 as it approaches the SNR value of the Ideal
image. The full metric Indexes I are shown in Eq. (18–23) with R representing the test
result value.

IMSE = 1 − MSER (18)

ISNR = SNRR

SNRIdeal
(19)

ISSIM = SSIMR (20)

IAvD = 1 − AvDR (21)

ICD = 1 − CDR

External Cylinder Radius
(22)

IArD = 1 − ArDR

External Cylinder Area
(23)

The overall ImageQuality Index is then calculated by taking aweighted average of all
the indexes. Themost useful metrics for our studywill be ones that measure the accuracy,
precision, and quality of the image. Therefore, Area Difference Index IArD, Centroid
Difference ICD and Signal-to-Noise Ratio ISNR are each given a weighting of 0.25. The
SSIM value ISSIM provides a very useful measure of the contrast differences between



54 J. Puttock et al.

the test image and ideal image. This has been given a weighting of 0.15. The Average
Difference IAvD and Mean Square Error IMSE provide useful additional information
but are considered a less reliable assessment of quality as error value can easily be
influenced by the power of received signals without necessarily affecting the ability to
detect inclusions. These have therefore been given aweighting of 0.05 each. These values
have been chosen arbitrarily based on the measurement requirements of this project.

Fig. 2. Average Subtraction Results Images (a) Results Image, (b) Error Image, (c) Ideal Image,
(d) Results Polyshape, (e) SSIM Image and (f) Ideal Polyshape.

4 Results

The simulation was run using each of the 5 Artefact removal methods, with the differ-
ential methods being calculated using an Average Subtraction or Rotation subtraction
sub-method on the differential matrix. The results are presented for an inclusion at π

radians (Table 1) and for an inclusion at −π
4 radians (Table 2). The experiment names

and metrics are expressed in abbreviated form. The Ideal SNR value was calculated
following the construction of the Ideal Images and had a value of approximately 7.4 dB.
The results images for an inclusion at −π

4 radians are shown in Fig. 3. A subset of the
results images for Average Subtraction (AS) methods on an inclusion at π radians are
shown in Fig. 4.
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Table 1. Artefact Removal Comparison with Inclusion at π radians.

Experiment Subtraction
Method

MSE SNR
[dB]

SSIM AvD CD
[mm]

ArD IQI

AS N/A 0.09729 5.36519 0.70400 0.25517 1.21322 0.0018 0.90422

RS N/A 0.09937 5.44750 0.70809 0.25663 1.40726 0.0005 0.90775

DNR Average 0.09814 6.06145 0.71389 0.25937 13.06835 0.0233 0.88642

DNR Rotation 0.10098 6.04735 0.71476 0.26439 11.70547 0.0179 0.89186

DSR Average 0.09974 5.40451 0.69871 0.25736 2.43316 0.0008 0.90070

DSR Rotation 0.10008 5.44746 0.69865 0.25737 1.15772 0.0000 0.90726

SSR Average 0.09462 6.03662 0.73537 0.23888 3.33967 0.0061 0.92886

SSR Rotation 0.09523 6.06927 0.73697 0.23870 2.94882 0.0072 0.93161

Table 2. Artefact Removal Comparison with Inclusion at −π
4 radians.

Experiment Subtraction
Method

MSE SNR
[dB]

SSIM AvD CD
[mm]

ArD IQI

AS N/A 0.02934 5.66908 0.80481 0.13335 6.14234 0.0143 0.87828

RS N/A 0.03214 5.59032 0.80104 0.13886 7.21017 0.0164 0.86969

DNR Average 0.06838 3.55544 0.73731 0.20546 9.19064 0.0159 0.78002

DNR Rotation 0.05846 3.94577 0.74968 0.19013 11.2011 0.0000 0.79266

DSR Average 0.06179 4.60431 0.75460 0.19962 14.3283 0.0141 0.80071

DSR Rotation 0.06317 4.62941 0.75185 0.20243 12.8656 0.0118 0.80623

SSR Average 0.02489 6.99660 0.86229 0.11733 1.62966 0.0082 0.95034

SSR Rotation 0.02589 6.92966 0.86047 0.12060 2.86084 0.0080 0.94248

Fig. 3. Results Images for an Inclusion at −π
4 radians. Top Row: Average Subtraction – (a) AS,

(b) DNR, (c) DSR, (d) SSR. Bottom Row: Rotation Subtraction – (e) RS, (f) DNR, (g) DSR, (h)
SSR.



56 J. Puttock et al.

Fig. 4. Average Subtraction results for an inclusion at π radians: (a) AS, (b) DNR, (c) DSR, (d)
SSR.

5 Discussion and Conclusion

Summed Symmetric Differential method had the best Image Quality Index. The Signal-
to-NoiseRatiowas the highest for thismethod in both positions and the contrast similarity
meant that this method also had a high SSIM in comparison to the other methods.

For an inclusion at π radians the Average Subtraction, Rotation Subtraction and Dif-
ferential (Symmetric Receiver Type) methods all scored highly in the Centroid Distance
metric. When the inclusion was at −π

4 radians, the Summed Symmetric method had the
best Centroid Distance score.

The results show that the position of the inclusion can vastly influence the resulting
image, with every artefact removal method exhibiting differences in image quality when
the inclusionwasmoved.When the inclusion is atπ radians, all images showa symmetric
split inclusion image. This is likely due to the inclusion being directly in front of the
transmitting source. As the image is split perfectly either side of the inclusion position,
the centroid distance (and to a lesser extent the Area Difference) remain accurate. The
SSIM is greatly affected though due to the difference in inclusion shape between the
test image and ideal image. In simulation, the source signal will hit the inclusion and
the highest peaks are observed as the signal reflections are ‘split’ by the inclusion. With
Average Subtraction and Summed Symmetric Differential methods, there is far greater
definition of the inclusion position. To avoid the inclusion position having an impact on
the result, multiple transmitter groups could be used. If five transmitter triplets are used,
such as in [4] with each transmitter within a triplet placed 4.5° apart and the triplets
placed equally around the perimeter of the cylinder to be imaged, the inclusion will
only ever be opposite a maximum of one transmitter triplet. If the results for each triplet
are summed, or a mean value taken, and then imaged the resulting image should have
improved the definition of the inclusion image, reflected artefacts will be minimised
and the dependency on inclusion position will be removed. However, as the Summed
Symmetric Differential methods had reflected artefacts which were separate from the
inclusion image, the effect of summing the results from multiple transmitters could
increase the quantity of artefacts seen for this method. Concerning computational time,
we found no significant difference among the algorithms used.

Whilst the Summed Symmetric method scored highly in this study, the experiments
were performed using simulated cylinders with significantly contrasting electrical prop-
erties. This was performed to prove the algorithms as a proof of concept against con-
trasting mediums. In a realistic scenario, such as brain stroke detection, the contrast will
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be less significant, thus artifacts could be more prominent, lowering SNR values. Future
studies should aim to use simulated data which equates the electrical properties closer to
that of human tissues. Further study using measured data and head-mimicking phantoms
would be an obvious progression from this study to assess the value in these methods.

It is also important to note that this study has also focused only on cylindrical
inclusions inside a cylinder. Further studies could explore the effect of changing the
shape and size of the inclusion.

The Image Quality Index provides a good metric for quantifying the quality of
images. By visually comparing the results images and the IQI, the score seems repre-
sentative of the quality of the image. For a more rigorous assessment of the IQI method,
future study could incorporate a comparison with subjective scoring by a sample of
medical professionals.
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Abstract. Cloud-assisted body area networks have been the focus of researchers
in past years as a response to the development of robust wireless body area net-
works (WBANs). While software such as Signal Processing in Node Environment
(SPINE) provide Application Programming Interfaces (APIs) to manage hetero-
geneous biomedical sensor networks, others have focused on developing tools
that address the issue of sensor connection/control, data receiving, and visualiza-
tion. However, existing software tools lack sufficient flexibility, scalability, and
support for complicated biomedical systems. In this paper, BSNCloud, a cloud-
centered heterogeneous and comprehensive wireless body sensor data collection,
streaming, and analytics framework is proposed. The system combines the sensor
control and data aggregator event detection, real-time data analysis, visualization,
and streaming into one Android App and incorporated four key components in
the cloud server: data repository, algorithm repository, machine learning engine,
and web portal. A prototype has been implemented with preliminary performance
evaluation. Results show that the system is promising in its full utilization of the
high performance computing power as well as the large volume storage capacity.

Keywords: Body sensor networks · Cloud-assisted ·Wireless body area
networks

1 Introduction

Wearable computing has gained increasing research and development, especially in
biomedical applications. For example, several software tools from Shimmer Sensing
[1], Qualcomm [2], Intel [3] and Samsung [4] attempted to address the issue of sensor
connection/control, data receiving, and visualization. However, these tools are largely
limited in flexibility, scalability, and support for complicated biomedical systems. On
the other hand, systems have been recently proposed to enable cloud assisted wireless
body area networks. Specifically, BodyCloud [5] provides a general-purpose software
that covers a wide range of sensors and provides APIs for the creation of new biomedical
applications.

© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2020
Published by Springer Nature Switzerland AG 2020. All Rights Reserved
M. M. Alam et al. (Eds.): BODYNETS 2020, LNICST 330, pp. 59–73, 2020.
https://doi.org/10.1007/978-3-030-64991-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-64991-3_5&domain=pdf
https://doi.org/10.1007/978-3-030-64991-3_5


60 M. Li et al.

Despite of existing research advances, two key issues have not been addressed:
(i) medical doctors and practitioners need user-friendly, multiple sensor supported, real-
time, and powerful analytics support for high quality patient healthmonitoring activities.
For this purpose, body sensor data should be collected, streamed, processed, analyzed
(real-time and on-demand), and archived in cloud server. (ii) biomedical researchers face
significant challenges of high cost and overhead performing data analytics. To resolve
this issue, both body sensor data repository and data analytics algorithm repository
should be created in the cloud server so that researchers can complete the task of large
volume data analysis at minimum cost without the overhead of purchasing computing
facility, recruiting algorithm developers, as well as obtaining results within a few days
instead of months.

We propose BSNCloud, a heterogeneous and comprehensive wireless body sensor
data collection, streaming, and analytics framework. BSNCloud is unique in the sense
that it provides both real-timeAndroidAppbased analysis aswell as on-demandwebpor-
tal based data analysis with the potential of supporting a large set of body sensor data and
analytics algorithms. The system operates across a set of wireless body sensors, Android
phone/tablets, PC desktops/laptops, and a cloud cluster. For implementation, we adopted
the widely used Shimmer3 IMU motes that is able to sample multiple signals such as
accelerometer. Then, the basic MultiShimmer Template for Android was repackaged to
include additional key features such as signal statistics, event detection, real-time data
analysis, and multi-signal streaming (using WebSocket [6]). The cloud server is setup
with OpenStack operating system, a PHP web server, and MySQL database. Users can
perform data analysis using existing data sets and algorithms, upload live data through
the Android App, upload their own data on theWeb Portal, upload their own algorithms,
or modify contributed algorithms for validation and performance evaluation.
Experimental results show that the proposed BSNCloud is very promising. Specifically,
it achieves several desirable features:

• Usability: given the reasonable cost of Shimmer motes and user friendly web portal,
medical researchers and doctors can easily collect data and archive them securely in
the cloud server without worrying about storage management.

• Flexibility: users have the option of using existing shared data and contributed algo-
rithms as well as experimenting with their own collected data and algorithms, making
performance evaluation a fairly easy task. The Android App supports multiple users
and multiple signal streaming and therefore fits well for both hospital and home
rehabilitation setting.

• Efficiency: both real-time and on-demand web portal data analysis are performed in
the high performance cluster server, it is possible to run large data volume without
significant delay.

• Scalability: BSNCloud can be extended to include other Bluetooth enabled sensors.
Development of iOS App is also feasible so that data from iPhone sensors can be
collected too. The proposed algorithm repository has the potential to grow as more
researchers contribute new algorithms.

This paper is organized as follows. Section 2 reviews related works. Section 3 intro-
duces and describes the proposed BSNCloud architecture. Section 4 describes the data
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aggregator side design and implementation with an Android App. Section 5 describes
the cloud server, which includes a web server, machine learning engine, and MySQL
database. Section 6 presents design decisions, implementation details and performance
evaluation. Finally, Sect. 7 summarizes the work with future works.

2 Related Works

Among many potential communication technologies, Zigbee [7] and Bluetooth are most
widely deployed. Zigbee is a very low power, collision avoidance protocol optimized for
lower power sensors. It has developed a health care specific protocol and is compliant
with all IEEE 11073 devices as well as most other IEEE 802.15.4 wireless devices.
Bluetooth supports high-bandwidth and many existing devices with a health care com-
pliant version defined. However, it has very high power requirements and uptime for the
radios. Bluetooth Low Energy [8] is a new proposed system from Bluetooth for lower
energy requirements, while being interoperable with Bluetooth Classic.

SPINE [9], a TinyOS based platform, has enabled the implementation of a heteroge-
neous body sensor network by abstracting the hardware level of multiple sensors such
as TelosB and MicaZ and creating an easy to use software. Furthermore, SPINE con-
tains APIs for general-purpose processing functions such as average, median and RMS.
Separately, Shimmer Research [10] delivers two sets of software tools: development
drivers for LabView, MATLAB, Android and C#; standalone software such as Shimmer
Connect, Shimmer Log and Shimmer Plot for easy connection, storage and visualization
of sensor data. While these drivers and software provide a good combination of tools for
easy direct use or further API developments, the research community needs a scalable,
robust instrument to meet their fast research and development needs.

One WBAN architecture that incorporates SPINE is DexterNet [11]. The system
takes a real-time approach and seeks to provide an open-source platform that allows
indoor and outdoor persistent human monitoring. The Body Sensor Layer, Personal
Network Layer and Global Network Layer provide a three-tier architecture to address
the different API needs from the sensors, data aggregator and server. This system is both
scalable and reconfigurable in real-time due to the versatility of the layered approach.
CodeBlue [12], proposed by Fulford-Jones and Malan, presents an ad hoc infrastruc-
ture for emergent medical care. In this project, several types of body sensors (e.g.,
pulse oximeter, ECG/EKG sensor) are individually connected to Zigbee enabled radio
transmitters. Due to the ad hoc architecture and the capability of self-organizing, Code-
Blue yields scalability for network expanding and flexibility to connect various wireless
devices. Jiang and Cao proposed CareNet [13], an integrated wireless environment used
for remote health care systems. CareNet offers features such as high reliability and
performance, scalability, security and integration with web based portal systems.

Combining Cloud Computing and Wireless Sensor Networks (CC-WSN) [14] and
Open Sensor Web Architecture (OSWA) [15] propose architectures that integrate wire-
less sensor networks (WSN)with the cloud. CC-WSNhas base services including sensor
data management run on Google AppEngine and Microsoft Azure, filter chain and filter
management and user services including visualization and notification. OSWA provides
an architecture for integrating sensor networks with various distributed computing plat-
forms like SOA and Grid-Computing. BodyCloud [5] proposes a SaaS approach that
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supports cloud-assisted BSN applications. The purpose of the software is to allow fast
prototyping of cloud-assisted BSN applications and flexibility among architectural com-
ponents utilizing web standards-based procedures and scalability aided by the Google
App Engine PaaS infrastructure. Their paper discusses the issues of providing body-side
and cloud-side context-aware sensing and adaptation, an issue our proposed architecture
will address.

A survey of the architectures presented above reveals that several issues still need to
be explored [16]. One such issue is providing an efficient collection of body senor data
and implementing an adaptive sensing mechanism. The data transmission throughout
the network, including sensor to aggregator and aggregator to cloud, still has potential
for further optimization. Contextual adaptation is another area of concern, relating to
dynamic adaptation in an array of services depending on the current network and sensing
context. Finally, a general software that assists programmers for developing specific
healthcare related apps is worth further investigation.

To address data reliability between sensor and data aggregator, an analysis driven
adaptive framework [17] was proposed. In this framework, a group data importance
based scheme was designed to mitigate the effect of data loss on analysis algorithms.
Then, a hybrid transmission protocolwas developed tomeet analysis needs. Furthermore,
a multi-level importance ranking was introduced to allow a fast organization of sensor
data into priority and non-priority packets. These packets are transmitted progressively in
response to data reliability demands and network constraints. Finally, the concatenation
of small data frames from sensors with low sample rates like ECG/EKG, along with
an adaptive transmission scheme can provide loss resilience among the sensor network
[18].

3 System Architecture

As shown in Fig. 1, our proposed system consists of three basic parts: the sensors, the data
aggregator and the cloud server. In a typical scenario, a patient may wear a number of
wireless sensors from blood pressure to accelerometer for continuous health monitoring.
Depending on the kind of illness and the purpose (rehabilitation vs simple monitoring),
some patients may also get scheduled for periodical measurement of specific signals at
various frequency in doctor’s office. During such scheduledmeasurement, real-time data
analysis is often desired so that more than just visualized signal is displayed.While sam-
ples are being collected, a phone/tablet/PC, or the “data aggregator”, should be connected
with sensors wirelessly (via short range communication such as Zigbee, Bluetooth, or
even the newly proposed standard WBAN) so that data can be processed, analyzed, and
then streamed to a cloud server for backup. In this case, a software tool (ideally, a tablet
App) plays a key role by connecting the sensors and the cloud server. The App should
be able to control the data sampling, visualization, analysis, and streaming such that the
system can work autonomously and continuously without human intervention.

Different from existing “cloud-assisted” body area network architectures, our pro-
posed BSNCloud system is “cloud-centered”, i.e., it fully utilizes the processing power
and storage capacity for optimal efficiency and minimum cost. In our design, the cloud
server consists of three key components: (i) a web server that keeps receiving data
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Fig. 1. System architecture of BSNCloud.

streaming and analysis requests from the data aggregator; (ii) a machine learning engine
that automatically performs real-time or on-demand analysis as requested and responds
with the results; and (iii) a MySQL database that stores various body sensor data sets,
specific data analysis algorithms, as well as information about all data analysis sessions.

Essentially, BSNCloud aims at improving sensor-based event monitoring for remote
patient care to a new level. Its scalable biomedical body area network computing plat-
formhas the potential of eliminating distance barriers and providing health care remotely.
Another key aspect of the system is its open source, user friendly, and scalable cloud com-
puting platform for sensor data storage, indexing, and analysis. It also allow researchers
to upload, update, and contribute algorithms to the repository and conduct comparative
study with the availability of a large number of high volume data sets.

4 Data Aggregator Design

Despite of efforts that enables sensor side programming on various tasks such as data
sampling, event detection, data analysis, pre-processing, and data transmission, such
approaches are many times limited to specific types of sensor motes. For example, the
SPINE open-source software, built on TinyOS [19], provides a set of APIs that allow
heterogeneous data collection, multiple forms of data analysis, threshold based event-
detection and some forms of data reliability enhancement. However, the widely used
TelOsb mote [20] is no longer produced. While Zigbee compatible sensors still exist,
they lack enough capability on biomedical sensors. On the other hand, Shimmer Sensing
[1] decided not to support TinyOS in their Shimmer 3 IMU motes and instead support
Bluetooth only. There are two reasons: (i) there is a significant barrier for mobile devices
to communicate with sensor motes in Zigbee while Bluetooth is readily available among
all Android and iOS devices; (ii) it is much easier to control sensors at the data aggregator
than coding the the sensor itself since vendors may choose different implementation
languages such as nesC, C, and Java.

4.1 Data Aggregator Functions

In our system, we adopted Shimmer3 IMU development kit and combined sensor side
functions and data aggregator side functions together. Core functions are implemented
inside a comprehensive Android App, which is repackaged from the original Multi-
Shimmer Template for Android. As shown in Fig. 2, specific data aggregator functions
include:
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Fig. 2. Data aggregator modules.

• Sensor Control that includes turning sensors on/off for sampling as well as manually
(through configuration) or automatically (through algorithm) manipulation of the fre-
quency of data sampling. This allows the system to find the appropriate sampling rate
for a specific application dynamically and sensors to be emulated for experimental
purposes.

• Data Presentation that includes data visualization and signal statistics (e.g. min, max,
average, standard deviation, time between peaks, binned distribution, etc.), which
allows users to directly view the time series sensor data as well as key measures.

• Event Detection that handles lightweight analysis of data samples (e.g. threshold-
based detection algorithms) to detect emergent events. It can be for both general
and application specific functions. General functions will detect abnormal sample
values based on configuration of sensors. Application specific functions will focus on
identifying certain simple patterns indicating the occurrence of specific events. In the
case when a critical event occurs, an alarm message is triggered for emergency and
further real-time data analysis may be automatically initiated for diagnosis.

• Data Analysis that perform real-time on-demand analysis from users. It can also
be triggered automatically when certain abnormal events are detected. In any case, a
request is sent to the cloud server so that reasonably sophisticated, capable, and trained
algorithms can be executed to analyze the N number of most recent or upcoming
samples. This allows the data aggregator to utilize the processing power of the cloud
server to run some complex machine learning algorithms for activity classification
such as Fall Detection. A list of algorithms specific to each body sensor data can be
available to the App user for selection. This makes the App scalable and eliminates
the overhead of implementing a large set of analytics algorithms locally on the App.

• Data Communication that includes both sample streaming and real-time data analy-
sis requests. For sensors with multiple signals (e.g., accelerometer), multiple socket
threads should be used to transmit different signals of the same samples (e.g., X, Y, Z)
simultaneously. Streaming can also be adapted based on battery power and network
connectivity (i.e. offline or online with WiFi/3G/4G).
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4.2 Data Streaming

Compared with traditional socket implementation that requires a server program stays
running and waits for requests, WebSocket has several desirable features: (i) it’s full-
duplexed and enables streaming on top of TCP, which ensures the reliability of data
streaming; (ii) it is supported by all browsers as well as programming languages such
as Java, Javascript, and Python; (iii) its secure version is supported by Firefox 6, Safari
6, Google Chrome 14, Opera 12.10, and Internet Explorer 10. Essentially, WebSocket
protocol offers a standard and universal implementation for interaction between a web
browser (or client applications such as Android Apps) and a web server with lower
overheads, facilitating real-time data transfer from and to the server.

In BSNCloud, a XAMPP Apache based PHP web server is setup and configured to
receive requests from both Android App side real-time analysis and alsoWeb Portal side
on-demand analysis request. Whenever a user decides to stream and select the specific
sensor data, a Java WebSocket connection is created for each signal (3 connections for
accelerometers). Collected samples are temporarily stored locally in the data aggregator
before delivered to the server. If the data aggregator goes offline, samples that have
not been streamed yet will stay in local storage and will be streamed once Internet
connection is restored. Each data streaming is uniquely indexed by, a stream_id, and
then a sensor_id for each sensor, as well as the name of the specific signals (e.g., X/Y/Z
for accelerometers).

4.3 Real-Time Data Analysis

Real-time analysis is a key feature of data aggregator. A user may follow a predefined
schedule or decide based on certain observation. It is also possible that abnormality
is identified by the event detector and therefore an analysis request is automatically
initiated. In either case, amessage is sent to theweb server and thenwait for the response.
Frequent requests may make a separate WebSocket connection a necessity. Otherwise,
existing WebSocket for data streaming can be used. Upon the receipt of the result, a
message box is displayed in the App showing the result.

Due to its time sensitivity, real-time data analysis does not use a large data set and
instead focus on either some most recent samples or upcoming samples. In addition, the
size of such samples may affect the response time. While most recent samples can be
analyzed immediately at the server side, upcoming samples will need time to accumulate
and then get started.

5 Cloud Server Design

As the most important component of the proposed BSNCloud system, the cloud server
aims at achieving large scale, distributed, and even parallel biomedical data manage-
ment and analytics. In addition to the hardware resources that offer high performance
computing power and large volume storage capacity, we designed four key modules for
web server:
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• Data Repository that stores, indexes, and manages body sensor data storage. MySQL
is used to manage all data, which consists of both data sets and data analysis sessions.
All raw data are stored as files locally in the hard drive with file location stored in
the database tables. Data are classified as “Healthy”, “Patient”, and “Synthesis” to
indicate their source. Data sets can be streamed from the Android App, uploaded data
from lab/hospital or online repositories [21].

• Algorithm Repository that includes both contributed and user uploaded algorithms.
These algorithms can be public and therefore open to all users or private and only for
the owner to modify and update. Private algorithms can be contributed and become
public once tested and approved. Sample algorithms include distributed clustering
algorithms (e.g. K-means algorithm), parallel EM algorithms, parallel SVM algo-
rithms, distributed random forest algorithms and distributed deep learning algorithms
(e.g. Deep Convolutional Network, Auto Encoders, Restricted BoltzmannMachines).
Based on the specific application, there may be multiple algorithms corresponding
to the same body sensor data. To facilitate the contribution of algorithms, an online
domain specific language (DSL) based template can be designed for uploading algo-
rithmmodules and test of algorithms. A biomedical DSLwith uniform language inter-
face [22] will support multiple data sources such as time series data from accelerome-
ters, image data from vision sensor networks, as well as different types of biomedical
body sensors.

• Machine Learning Engine that is able to execute various algorithms over selected data
in the repository. The machine learning engine works closely with data repository and
algorithm repository. It pre-processes rawdata so that it fits specific input requirements
by data analysis algorithm. For example, when a request is sent to analyze accelerom-
eter data, the machine learning engine combines the raw data of the three signals X, Y,
and Z and combine it to a CSV file, before feeding it to a specific algorithm. It should
also incorporate major implementation environments such as Python, Java, C++, and
Matlab. Integration with existing frameworks such as TensorFlow is another possibil-
ity. The engine may also draw fromMPI [23] for computational-intensive algorithms
and the MapReduce model [24] for data-intensive algorithms.

• WebPortal that offers accountmanagement, datamanagement, data analysis, and algo-
rithm development. The web portal provides a software as a service (SAAS) level of
user experience so that minimum overhead is achieved. Through the web portal, a user
can viewdata sets by sensor types or algorithms,manage data analysis sessions, upload
data sets, upload/contribute analysis algorithms, and perform new analysis.

The modules presented in Fig. 3 provide the basis for the cloud server’s flexible and
scalable design. Data received from the data aggregator will be formatted and stored
on the server. Through the web portal, a user can request real-time analysis as data
is being received, triggering result messages as desired. Furthermore, users will have
the opportunity to upload algorithms or select algorithms from the expansive existing
libraries and make analysis requests. The results will then be displayed in the web portal
and the user can retrieve the data in a standard format. In addition, a user can request
raw data from the cloud server. This provides an opportunity not only for researchers to
analyzemultiple data sets at once, but also for professionals tomake real-time judgements
based on patient data.
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Fig. 3. Cloud server modules.

6 Implementation and Performance Evaluation

Wehave completed the prototype implementation of the proposedBSNCloud system and
performed preliminary study on its performance. has acquired a 5-server cloud cluster
with one server being the master and four others as slaves. Each server has 2x EightCore
Intel® Xeon® Processor E52640 v2 2.00 GHz 20 MB Cache (95 W) and 8 × 4 GB
PC314900 1866 MHz DDR3 ECC Registered DIMM. The total storage space is over
40 TB. Servers run Ubuntu and OpenStack systems. XAMPP-Apache PHP web server
is setup for receiving both Android App and Web Portal.

Shimmer3 IMU mote is used for streaming. The mote has the dimension of 51 mm
× 34 mm × 14 mm, runs 24 MHz MSP430 CPU with very low power consumption,
light weight, and is wearable at different part of human body with a short/long strap. 5
colored LEDs are used to indicate the device status and operating mode. The data is
highly accurate and scientifically reliable with a SD card of 7 GB capacity. It offers
integrated 9DoF inertial sensing via accelerometer, gyroscope, magnetic and pressure
sensors. The supported communication standard is Bluetooth.

A fall detection algorithm is implemented in Python and Java for experimenting
the machine learning engine, real-time data analysis, and on-demand web portal data
analysis.While multiple sensor data can be used, accelerometer data is the primary focus
in this study. The algorithm is firstly trained with labeled data and then read csv files
combined from the X, Y, Z raw data stored in the cloud server.

6.1 Android App

The developed Android App supports synchronized login with web portal. Figure 4
illustrates the sensor configuration as well as the main page with multiple functionalities
such as event detection, set streaming on/off, enable statistics, perform real-time analysis,
etc.
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Fig. 4. Android App main page and sensor configuration.

Fig. 5. Android App sensor configuration and data visualization.
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Figure 5 illustrates the sensor configuration and data visualization that is provided
by the MultiShimmer Template. However, MultiShimmer does not provide functions
other than sensor control, data collection, and visualization. We have repackaged the
app to include many additional functions, especially on streaming multiple body sensor
signals to the cloud server side.

Figure 6 illustrates the real-time data analysis. A user may selects one sensor signal,
sends a request to the server, and then wait for the response. Please be noted that for
accelerometers, choose one signal X also requests Y, Z signals for analysis together.

Fig. 6. Android App real-time analysis.

6.2 Web Portal

Figure 7 shows the dashboard page of the web portal. A user enters the system and select
data and algorithms for data analysis. First, a specific sensor is chosen, then followed by a
specific algorithm, and finally one data set. Each step of selection helps filter non-related
algorithms or data sets. Algorithms are labeled by both method and application (e.g.,
fall detection). Before an analysis is initiated, a summary is presented for verification.
The analysis results are displayed in the textbox at the bottom.
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Fig. 7. Web Portal dashboard and data analysis pages.

6.3 Experimental Results

We have also conducted experiments to evaluate some key performance measure for the
system. Figure 8 shows the measured throughput of a 8 Hz sampling rate accelerometer
data streamingwith 3 parallelWebSocket connections by varying the number of samples.
It can be seen that the throughput is quite consistent over time for different sample sizes.
It should be note that this throughput is not equivalent to the network capacity since it
takes time to collect samples.
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Fig. 9. Real-time data analysis response time

Figure 9 shows the real-time analysis response time in ms. It can be seen the results
are sent back from the cloud server within a very short period of time. We then increases
the sampling rate from 8 Hz to 16 Hz and 51.2 Hz, results show that the response
time increases to over one min. Further analysis reveals that since the real-time analysis
request is actually sent over an existing streaming WebSocket, which is already in near
saturation status under high sampling rates. We will experiment with a separate Web-
Socket connection for real-time analysis and/or prioritize the message so that it is sent
before queued sample packets.

Figure 10 shows thewebportal data analysis response time for accelerometer samples
collected for 1, 5, 10, 20, 30, and 60 min, respectively. It can be seen that results come
back within 1–2 min. For reference, the data size of 60 min correspond to 2.6 Mbytes.
Therefore, the high performance of the cloud server is clearly validated.
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Fig. 10. Web portal data analysis response time for accelerometer samples.

7 Summary

In this paper, we have presented the design, implementation, and performance evaluation
of BSNCloud, a cloud centered system for biomedical body sensor data collection,
analysis, streaming, and storage. Key design decisions were made to maximize usability,
efficiency, and scalability. The system helps facilitate the data analysis research and
significantly reduces the cost and overhead by researchers. It is expected to grow with
active use and contribution from the research community. In the future, we will address
the issue of reducing the real-time data analysis response time under high sapling rate.
We will also include more analysis algorithms with the proposed DSL based algorithm
contribution template.
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Abstract. Pacemakers’ safety, security and reliability are of utmost
importance for patient’s life quality in various daily situations. An
integral characteristic of the pacemaker that depends on all of these
attributes is its lifetime. In current medical practice the pacemaker’s
expected lifetime is estimated relying on manufacturer’s data sheet and
expert knowledge that may result in quite rough approximations if
patient’s specifics are not taken into account. In this paper we perform
a model-based quantitative analysis of pacemaker lifetime that takes
into account patient specific factors, including general health condition,
acting environment, remote reporting and others. We demonstrate that
including these factors in analysis can provide drastically different results
compared to that of average approximating estimates.

Keywords: Cardiac implanted electronic devices · Pacemaker ·
UPPAAL timed automata.

1 Introduction

The embrace of sensors and advances in communication and cloud technology has
enabled us to develop effective monitoring applications in different areas includ-
ing the health sector. Implantable medical devices such as cardiac implanted
electronic devices (CIEDs), insulin pumps and gastric stimulators can contin-
uously track a patient and transfer the data to the medical institution regard-
less of the location. CIEDs, namely permanent pacemakers (PPM), implantable
cardioverter-defibrillators (ICDs) and cardiac resynchronization therapy (CRT)
devices exceed 500 units per million inhabitants worldwide [21] and their num-
ber is increasing in correlation with the expected lifetime and national wealth. In
well-developed countries the average prevalence is over 1000 implants today and
reaches 10000 devices per 1M elderly people (ibid). For such remarkable deploy-
ment rate the reliability and operational lifetime of devices is an important ques-
tion to prevent fatalities. According to patient support organizations the complete
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failure of a modern pacemaker is rare [11] and most frequently devices need just
timely reprogramming for proper operation [1]. Acquiring timely information of
patient condition changes and the discovery of possible mismatch of device set-
tings requires periodic device operation analysis to discover irregularities in the
heart behavior. Regardless the maintenance related usability concerns it is impor-
tant to underline that remote monitoring of pacemakers and other CIEDs has
improved the patient survival rate [25] and not only. The accurate predicting of
device maintenance dates not only prevents malfunctioning in conditions when the
monitoring is urgently needed but also improves the user trust and convenience
of wearing the devices without compromising patient’s life quality.

Permanent pacemaker communication is required for device adjustments
according to patient’s physical condition and its deviations over the time. Due
to technological limitations, mainly because of the high energy consumption of
legacy wireless communication, frequent data transmissions of pacemakers were
not possible till recent times. Inductive link coupling used for legacy pacemakers
made data exchange - device programming and event report offloading possible
only at hospital environments. Therefore, not much attention has been paid to
pacemaker communication security and energy efficiency measures. Bluetooth
connectivity for PPMs was proposed already in 2002 by Hsu and Avudaiappan
[14]. However, Bluetooth Classic technology available at this time was not suit-
able for long duration battery operation. The energy efficient Bluetooth Low
Energy (BLE) connected pacemakers were actually introduced to the market in
2016 and are considered simple to use and helpful for both sides, patients and
cardiologists [24]. Today, there is a selection of modern PPM and ICD devices
from companies Medtronic and Abbott that provide BLE connectivity with an
acceptable reduction of the device operation lifetime. However, the impact of
wireless communication to device energy consumption is still remarkable; an
active modern Bluetooth transmitter consumes around one milliamper current
while modern microcontrollers in pacemakers can operate with few microamps
per pacing in average. Therefore it is important to optimize wireless commu-
nication frequency and data amount to be transmitted heavily depending on
patient’s clinical needs. It is also essential to pay attention to personal data pro-
tection and protection against external operational vulnerabilities to CIEDs as
life supporting medical devices.

Deployment of advanced wireless communication made possible periodic
transmission of heart data to cardiologist which significantly improved the
patient monitoring quality but it also added security risks and reduced device
battery lifetime. As argued in [20] wireless interfaces of such devices are vulnera-
ble to cyber attacks with even life-threatening impact. Various passive and active
attacks targeting the communication medium are possible [17]. The upgrade
mechanisms of the PPMs and the vulnerabilities of the cloud server could be
also used for compromising the devices remotely [2]. Moreover, pacemakers of
St. Jude Medical were found to have insufficient cyberprotection measures that
made possible battery drain, firmware downgrade and malfunctioning attacks
over the wireless interface [16]. As various nodes such as home routers, mobile
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phones, enterprise gateways, would take part in the communication, the range of
security threats gets very wide. Therefore, it is essential to establish end-to-end
security that covers the whole communication medium encompassing the device,
cloud system, and all intermediate nodes. On the other side, the security coun-
termeasures create an additional burden to resource-constrained devices with the
additional energy consumption affecting significantly the device lifetime. From
the clinical point of view, requirements to communication frequency and payload
depend on patient’s profile (health condition, daily activities, environment etc.)
that in combination with the security countermeasures on the communication
can result in largely varying expectations to device lifetime.

To reduce threats and possibly infeasible design decisions (that ignore the
factors coming from different use cases) a model-based formal analysis can be
used to justify design and runtime configuration decisions. The formal analysis
in this paper is targeted to taking into account the effects of pacemaker remote
monitoring and secured dynamic episode alerting to the device lifetime, depend-
ing on different patient profiles and security countermeasures adjusted to daily
living environment. We apply probabilistic modeling, simulation experiments
and model-checking with UPPAAL Timed Automata to estimate the impact of
various factors to pacemaker expected lifetime. In particular, we focus on factors
such as averaged patient-dependent condition episode alerting frequency and the
cost of secure communication (in terms of energy consumption) in three possible
patient environments during a day. The impact of listed factors is characterized
with numerical data extracted from model experiment that justifies the need
for refined model-based analysis of pacemaker operational lifetime. The choice
of UPPAAL Timed Automata as the formalism for our work is justified by the
facts that the checking of behavioral, stochastic and real-time aspects of systems
is efficient and the UPPAAL tool family includes several extensions of the stan-
dard modeling and verification tool which will allow us in the future to address
different development aspects of pacemakers.

2 Related Work

In the context of wireless Body Area Sensor Networks (BASN) extensive research
has been done with application of formal methods. Ahmed et al. [6] used higher-
order-logic theorem proving to formally analyse energy consumption of BASNs
by verifying the mathematical relations for energy, delay and distortion of a given
BASN. The results of this analysis can then be used to determine the parameters
of optimal energy consumption of BASN algorithms. In a closely related work,
Dai et al. [12] proposed synthesizing power management strategies for wireless
sensor network nodes with UPPAAL STRATEGO by taking into account the
various power states of a node device during the runtime in order to achieve a
tradeoff between power consumption and performance.

Regarding verification of wireless body area network protocols, several works
exist in the literature. For example, timed automata have been used in [8] to
verify a recently proposed Medium Access Control protocol called STDMA (Sta-
tistical frame based TDMA protocol). Taking also security into accout, Chen
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et al. [10] proposed a formal modeling and verification method using the PAT
model-checker for wireless BASN-specific authentication security protocols.

However quite few results are available on the verification of pacemaker oper-
ation correctness using model-checking tools. An operational model verification
with UPPAAL tool is conducted by Pajic et al. [19]. As stated in the Intro-
duction, pacemakers were found to have insufficient cyberprotection measures
[2,16]. This triggered research work to present solutions for protection against
cyber attacks under the assumption the communication has been already com-
promised. For example, Rao et al. [22] presented a model for a multi-modal
design approach for risk assessment of pacemaker devices and they propose an
adaptive remediation scheme to mitigate security threats. The approach is inte-
grated into the hardware-software development with a middleware for dynamic
switching between the modes based on risk values assigned to the different func-
tions each mode has.

The analysis of the recent related work, with some of the example papers dis-
cussed above, shows the lack of satisfying solution in the pacemaker literature
and motivates the authors for the work presented in this paper. To the best of
authors’ knowledge, a formal model-based analysis on the effects of pacemaker
remote monitoring and secured dynamic episode alerting to the device lifetime,
taking into account different patient profiles regarding heart condition and secu-
rity measures adjusted to daily living environment, has not been presented yet.

3 Pacemaker Background

In general, an implantable pacemaker monitors and regulates the patient’s heart
rate continuously by providing single or dual chamber rate-responsive corrective
bradycardia and atrial tachyarrhythmia electrical pacing. As a reference device
of current study we use Medtronic dual chamber permanent pacemaker model
Azure XT DR W1DR01 [4].

3.1 Pacing

Dual chamber and single chamber pacing modes address different cardiac con-
ditions. Dual chamber pacing restores AV synchrony by sensing and stimulating
two chambers of the heart, the right atrium and right ventricle. Single cham-
ber pacing supports patients with infrequent asystole or patients with chronic
AT/AF and for whom dual chamber pacing is not justified [4]. For some of the
dual chamber pacing modes pacing occurs at the programmed lower rate and
for some modes the pacing is occuring at the sensor rate. Rate-responsive pac-
ing adapts the pacing rate to changes in patients’ physical activity due to some
patients exhibiting heart rates that do not adapt to changes in their physical
activity. The device uses an activity sensor to measure the patient’s movement
and to determine the appropriate pacing rate.
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3.2 Monitoring and Alerting

Data collected by the pacemaker is encrypted and sent to the CareLink network
through the MyCareLink Heart mobile app [3], providing clinicians with alerts
on clinically-relevant patient events. The app also makes selected pacemaker
data, such as transmission success history, pacemaker battery information and
updates on physical activity, easily accessible to patients. If a clinical or system
performance event occurs and Medtronic CareAlert Monitoring is programmed
to respond with an alert, the device automatically attempts to establish wireless
communication with the mobile phone. After communication is established, the
mobile phone receives the alert data from the device, and then transmits the alert
data to the CareLink Network wherefrom the data is accessible to clinicians.

Examples of clinically-relevant alerts are “Average Ventricular Rate During
AT/AF larger than Threshold ” indicating that the average ventricular rate dur-
ing a selectable duration of AT/AF exceeds the programmed threshold, and
“Monitored VT Episode Detected ” indicating that one or more monitored VT
episodes were detected.

The clinician may also configure the device to send periodic reports with the
frequency depending on the patient. The information included in such reports
is, e.g., “episode data and EGM storage”, providing an arrhythmia episode
log that enables to view the summary and detailed diagnostic data, includ-
ing stored EGM, for the selected arrhythmia episode, and “rate drop response
episodes data” displaying beat-to-beat data that is useful in analyzing Rate Drop
Response episodes and the events leading up to these episodes.

3.3 Pacemaker Security Countermeasures

We assume that the communication between pacemaker and cloud is secured
with end-to-end mechanisms. From the connectivity perspectives, device per-
forms internal data encryption and communicates with smartphone or tablet
PC gateway over BLE communication using Medtronic BlueSync technology.
Gateway device runs Medtronic MyCareLink Heart application that acts as a
pass-through element for the encrypted pacemaker data.

In a typical scenario, three main security tasks should be performed in a
system: (1) relevant cryptographic keys should be generated, (2) each device
should be authenticated and authorized, (3) based on the generated keys, secure
end-to-end communication should be established. In typical end-to-end com-
munication, a gateway acts as an intermediary node between sensor nodes and
the cloud. Gateways obtain the sensor data with short-range local area net-
work protocols (i.e., wireless or wired) and relay them to the cloud server over
wide area network infrastructures. In addition to relaying responsibility, these
gateways could take over some cryptographic operations to relieve the sensors
from resource-intensive tasks [13,15,18]. However, this functionality comes with
a compromise in the end-to-end security property, requiring more trust to the
gateway.
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In most cases, these gateways do not have resource restrictions like sensors
have but may be subject to different threats or security controls. In station-
ary locations, a patient can use the existing network infrastructures, thus, a
pacemaker can benefit from hospital gateway or home router. Hospital gateways
could be more trustable as they could be secured by IT staff of the hospitals,
and we can assume that more physical security is guaranteed. This can elimi-
nate the cyber threats requiring physical proximity to the target. On the other
side, an ordinary user generally relies on the default configuration of the home
routers and ignores the security hardening. Thus, it is reasonable to delegate
some cryptographic tasks to the hospital gateways but not to home routers.

A mobile phone could be a perfect fit as a gateway while the patient visits
non-stationary places. However, it is not trustable for sensitive tasks as mobile
malware poses an important threat to the secure communication passing over the
mobile phone. These devices are prone to physical loss or theft. Most of the public
places may enable the attackers to come close to the target and conduct man-in-
the-middle (MitM) or denial of service (DoS) attacks. Comparing with the home
environment, despite the existence of similar threats in home environment, the
likelihood of threats could be considered higher for communication over the
mobile phone in public places. Therefore, we assume that a stronger security
configuration should be enabled in this option and any compromise in end-to-
end security is not tolerable.

In resource-constraint scenarios such as our pacemaker remote monitoring
case, security mechanisms are required to be use-case adaptable and lightweight,
meaning that they should operate with less storage, computing, and energy
resources. The current study does not follow proprietary BlueSync implementa-
tion that, according to our knowledge, supports a single security model for the
pacemaker data communications. The strength of lightweight security mecha-
nisms is that they can be deployed according to the patient environments with
varying threat profiles. As we assume in this study the patient profile is deter-
mined by being in different locations such as hospital, home, and other places
during a day, we selected a distinct security configuration setting for each loca-
tion. Hospital and home are more stationary ones whereas the third option covers
all other places a user can visit or stay at (e.g., shops, public transport, etc.).

We assume that the pacemaker application uses Datagram Transport Layer
Security (DTLS) which can be considered a UDP-based alternative of transport
layer security (TLS) protocol [23]. A DTLS session starts with a handshake for
authenticating the parties and exchanging the session keys. The parties use the
agreed session key to perform secure communication. However, in the case of using
a certificate, large messages should be fragmented into various packets exchanged
between parties, ending up with huge energy consumption for the handshaking
phase. Therefore, delegation schemes in which gateways conduct handshake oper-
ation on behalf of sensors are proposed in the literature [13,15,18].

We consider the security configuration options given in the benchmarked
study, [18], as the main baseline. The results in this study are very rele-
vant for our cases as it provides a detailed performance analysis of a health-
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care IoT system and proposes a solution that uses delegation idea (i.e.,
namely DTLS session resumption) which is compared with other configura-
tion options. We assume that in a hospital setting, DTLS session resump-
tion using elliptic curve operations for certificates and transferring hand-
shake responsibility to the gateway is enabled. In home environment, sym-
metric key-based DTLS (DTLS_PSK_WITH_AES_128_CCM_8) is uti-
lized. The pacemaker is assumed to initiate a certificate-based handshake
using Elliptic Curve Digital Signature Algorithm in non-stationary places
(i.e., security option is DTLS_ECDH_ECDSA_WITH_AES_128_CCM_
SHA_256) which has a higher cost but provides more assurance about the
authentication of the pacemaker. We omit the details about the key generation
algorithms for simplicity.

In our model, as the frequency of the data transmission is so low, we consider
that a handshake happens for each transmission of monitoring data or alert.
As the data sizes are also low, one or two messages are enough after agreeing
on the session key, considering the available payload sizes after excluding all
headers. Therefore, we assume that energy consumption is heavily determined
by handshake operation and the sensor side energy consumption values given in
[18] are considered as the baseline for the calculation and correlation of energy
costs of each security configuration for the model (i.e., DTLS session resumption
costs 1/6 less than Symmetric key-based DTLS and certificate-based DTLS costs
32 times more than Symmetric key-based DTLS).

4 UPPAAL Probabilistic Timed Automata

UPPAAL Timed Automata (UTA) [7] address the behavioral and timing aspects
of systems providing efficient data structures and algorithms for their represen-
tation and analysis through simulation and model checking.

An UTA is given as the tuple (L, E, V , CL, Init, Inv, TL), where L is a
finite set of locations, E is the set of edges defined by E ⊆ L × G(CL, V ) ×
Sync × Act × L, where G(CL, V ) is the set of constraints in guards, Sync is
a set of synchronization actions over channels and Act is a set of sequences of
assignment actions with integer and boolean expressions as well as with clock
resets. V denotes the set of integer and boolean variables. CL denotes the set of
real-valued clocks (CL ∩ V = ∅). Init ⊆ Act is a set of assignments that assigns
the initial values to variables and clocks. Inv : L → I(CL, V ) is a function
that assigns an invariant to each location and I(CL, V ) is the set of invariants
over clocks CL and variables V . TL : L → {ordinary, urgent, committed} is the
function that assigns the type to each location of the automaton.

UPPAAL Probabilistic Timed Automata (UPTA) [9] is a stochastic and sta-
tistical modeling extension of UTA. UPTA preserves the standard UTA con-
structs such as integer variables, data structures and user-defined C-like func-
tions. Additionally, UPTA support branching edges where weights can be added
to define a probability distribution on discrete transitions. The weights may be
general expressions that depend on the states and not just simple constants. For
the work in this paper we use the branching edges with probability weights.
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The requirement specification language (in short, query language) of UTA,
used to specify properties to be model checked, is a subset of Timed Computation
Tree Logic (TCTL) [7]. The query language consists of path formulae and state
formulae. State formulae describe properties that can be interpreted in individual
states, whereas path formulae quantify over paths or traces of the model and can
be classified into reachability, safety and liveness [7]. For this paper we consider
safety properties that are specified with path formula A�φ stating that state
formula φ should be true in all reachable states.

5 Pacemaker Monitoring and Dynamic Alert Model

For the objective of this paper the model concerns only the continuous monitor-
ing and possible episode alerting from the pacemaker in a probabilistic manner
depending on three different patient profiles listed as Type 0, Type 1 and Type 2.

5.1 Patient Profiles

The “best” case patient profile (Type 0) is away from home (traveling to work
and back, being at work and any possible shopping) 10 h per day. Hence, he is at
home 14 h per day. He visits the hospital once per year and this visit is 2 h long.
Regarding dynamic alerts, he has 1 alert per year in any of the three possible
environments.

The “medium” case patient profile (Type 1) is away from home 6 h per day. He
visits the hospital 2 times per year and each visit is 4 h long. Regarding dynamic
alerts, he has 4 alerts per year in any of the three possible environments.

The “worst” case patient profile (Type 2) is away from home 1 h per day. He
visits the hospital 4 times per year and each visit is 2 d (48 h) long. Regarding
dynamic alerts, he has 10 alerts per day in any of the three possible environments.

5.2 Modeling Alerting Cost, Parameters and Constants

The device battery characteristics are as follows. The mean usable capacity is
1.2 Ah. Depending on the device setting/programming per patient needs, the
lifetime of the device varies from 7.4 to 15.8 years (see Tables 4, 5, 8 in technical
manual [5]). For our model let us choose the value 13.7 years/5000 d for the
lifetime of the device regardless the patient profile. Note that all numbers for
the model can be changed accordingly to different patient profiles and concrete
living scenarios. One of the main assumptions is that daily reporting is active
for all patients. This reduces lifetime of the device battery by 14.4% which
translates to 564 d less lifetime. After applying simple calculations in order to
have reasonable numbers for the model parameters to work on a day basis for
the lifetime reduction, we know that 189 daily reporting sessions are needed to
reduce battery lifetime by 1 day.
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The dynamic alerts have a different cost in terms of battery lifetime depend-
ing on the environment the patient is in when the alert is triggered. This is due
to different security protocols applied for communication in different environ-
ments. An additional assumption is that the alert triggered when at home costs
the same as sending the daily report meaning that the security countermeasure
cost is the same for both. Then, we assume that the cost of sending an alert from
hospital is 1/6 less than the cost of an alert from home and the cost of the alert
while traveling is 32 times higher than the cost of the alert from home, taking
into account recommendations in Sect. 3.3. Thus, 220 hospital alerting sessions
and 6 travel alerting sessions are needed in order to reduce battery lifetime by
1 day, respectively.

Figure 1 shows the model parameters, variables and constants. P is the
patient type index with domain {0, 1, 2}. N is the number of patient profile
types, 0 for “best”, 1 for “medium” and 2 for “worst”. M is the normalization
to 1000 of the probability weight in order to accommodate all model probabil-
ity weights into approximating integer scale from 0 to 1000. On this scale Ph
denotes the probability weight of being at home during any hour around the
clock. Similarly Pt is the probability weight of traveling and Pv is the probabil-
ity weight of visiting the hospital during any hour around the clock. Pr is the
probability weight of daily reporting and it is the same for all patients. Pa is
the probability weight of alerting at any hour. Alerting may occur in any of the
three different environments. Variable env is for the environment the patient is
currently located in and it can be assigned symbolic values home, travel and
hospital for the environment options.

Fig. 1. Pacemaker UPPAAL model parameters, variables and constants.

Variable lifetime expresses the battery lifetime estimate in days which is
calculated iteratively in every hour (model time) depending on different envi-
ronment and communication events that can occur with probability weights
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specified as described above. The initial value of battery lifetime estimate (with-
out any battery use) is 5000 d. deltaLTN is a constant showing the decrease
of battery lifetime by 1 day after 189 daily reporting sessions. deltaLTH is a
constant for the decrease of battery lifetime by 1 day after 189 home dynamic
alerting sessions. deltaLTT is a constant for the decrease of battery lifetime by
1 day after 6 dynamic alerting sessions during travel. deltaLTO is a constant
for the decrease of battery lifetime by 1 day after 220 hospital dynamic alerting
sessions. crD is a variable for counting sessions of daily reporting. This counter
is reset after reaching constant value cD which, in turn, triggers the subtraction
operation lifetime − deltaLTN . Similarly reaching values crO, crT and crH
with corresponding constants cO, cT and cH trigger resets of variables crO,
crT and crH, respectively. Letters O, T and H stand for hospital, traveling and
home, respectively.

5.3 Pacemaker Model

Figure 2 shows the complete model composed of interacting automata Patient,
Device and HourClock. The hour clock of the system model is depicted in the
lower part of the figure. The state updates of Patient and Device are triggered
every 1 h with synchronization channel chH. The automaton Patient that models
possible moves of the patient between different environments is shown in the
upper part of the figure and the pacemaker device automaton is shown in the
middle part of the figure. The initial location of the patient is his/her home.
Probability Ph indicates that he/she stays at home and probability M − Ph
indicates that he/she is traveling. Probability Pt indicates that he/she keeps
traveling, while probability Pv indicates that he/she will visit the hospital and
probability M −Pt−Pv indicates that he/she will return back home. The value
vectors of the probabilities calculated from assumptions can be seen in Fig. 1
where the elements of vectors correspond to different patient profiles 0, 1 and
2. A concrete element is chosen from the vectors Ph, Pt, Pv and Pa depending
on what value of Patient template parameter P (denoting profile) is selected for
the model experiment. Variable env is updated according to the patient location
in current state and is used within branching conditions in Device automaton.
Location value affects the type of dynamic alerts which in turn affect differently
the battery lifetime as described above and shown in the device model template.

In the device automaton template there are two main locations, one mod-
eling the regular Monitoring and the other for Alerting. From Monitoring with
probability Pr daily reporting occurs and whenever variable crD (for counting
sessions of daily reporting) reaches constant value cD the battery lifetime is
decreased by constant deltaLTN . From Monitoring with probability M − Pr
daily reporting does not occur. During Monitoring dynamic episode alerting
occurs with probability Pa being different for each patient type as it can be
seen in Fig. 1 and battery lifetime is decreased depending on the environment
the patient is currently located. With probability M −Pa dynamic alerting does
not occur in current hour. Since the minimal time step in the model is one hour,
sub-hour activities’ timing is ignored and modeled using Committed locations
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in which the model time is not progressing, i.e., all state updates of transitions
from Committed locations are instantaneous (in model time).

Fig. 2. Pacemaker UPPAAL probabilistic model

5.4 Pacemaker Model Analysis

The model depicted in Fig. 2 allows for checking critical battery lifetime proper-
ties depending on the different patient profiles and patient activities. For exam-
ple, let us prove with model-checking that the expected lifetime is safe, i.e.,
the battery level never gets below a critical value before planned maintenance
time, which could be 15% of its initial level. Assuming that the battery nomi-
nal lifetime is 5000 d and for simplicity we approximate the depletion rate being
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Table 1. Experimental estimates of device lifetime for different patient profiles

Environment Depletion
rates in env.
(days per
alert)

Impact of
the
environment

Patient Type 0 Patient Type 1 Patient Type 2

Home 0,12714 Hrs in env.
per day

14 18 22,475

No of alerts in
env. per day

0,0016 0,0082 9,3646

Depletion per
day (days per
day of
operation)

0,0002 0,00105 1,19063

Travel 4,06853 Hrs in env.
per day

10 6 1

No of alerts in
env. per day

0,00114 0,00274 0,41667

Depletion per
day (days per
day of
operation)

0,00012 0,00029 1,69522

Hospital 0,10595 Hrs in env.
per day

0,00548 0,0219 0,526

No of alerts in
env. per day

0,0000006 0,00001 0,21918

Depletion per
day (days per
day of
operation)

0,0000025 0,00004 0,02322

Total no of
alerts per day

0,00274 0,01097 10,0004

Total
expected
lifetime

4435 4431 1239

Lifetime till
15%
remaining
battery
lifetime

3770 3766 1053

constant the critical threshold will be reached by 4250 d (15% of 5000 d is 750 d).
Also we use an auxiliary clock variable GCl in the query to refer to the time
instances in the interval from 0 to EXLT , which stands for the expected lifetime
until reaching the critical threshold value. The TCTL formula (1) expresses the
property that in all states of all possible scenarios within closed time interval
[0,EXLT ] the calculated battery level never gets less than the Critical value
(750 d of remaining lifetime).

A� GCl <= EXLT imply lifetime >= Critical (1)

In addition to model-checking the correctness of pacemaker’s maintenance
schedule, concrete numerical estimates of battery lifetime can be generated by
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UPPAAL simulation experiments under various scenarios. Table 1 exemplifies
the results of simulation experiments for all three patient profiles described in
Sect. 5.1. As can be seen from Table 1 the pacemaker expected lifetime average
estimates for patient type 0 and type 2 differ drastically (over 3 times), and
claiming common rough estimate regardless the specifics of patient profile is
obvious risk to patient’s safety. The factors, such as, frequency of alerting and
security protocols used in different environments have substantial effect on pace-
maker expected lifetime. While one would expect that the expected lifetime and
maintenance deadline estimates for patient types 0 and 1 can be proved to be
correct (Query 1 would be satisfied) and for patient type 2 the Query 1 would
be clearly unsatisfiable, it turns out that if more than daily reporting is taken
into account the query is not satisfiable for all patient types for this case study.
That confirms our main hypothesis that patient profile specific analysis using
patient and device models incorporating all influential factors is inevitable.

6 Conclusions

In this paper we have presented a model-based quantitative analysis of pace-
maker lifetime that takes into account patient specific factors, including general
health condition, acting environment, remote dynamic reporting of vital patient
data and alternative security protection measures for these data communica-
tions. The study did not follow proprietary pacemaker BlueSync implementation
that, according to our knowledge, supports a single security model. Instead, we
proposed a multi-level security model that, depending on the security context,
allows to select different security levels. Moreover, due to the fact that current
patient safety regulations do not foresee remote modifications of the pacemaker
firmware, our proposed cryptographic implementation should be applicable for
the secure implantable device firmware upgrade as well in the further.

The analysis of the recent related work on development of BANs and specif-
ically on implantable pacemakers motivated us for the work presented in this
paper. We performed probabilistic modeling and model analysis with UPPAAL
Timed Automata on a fully parameterizable model regarding some of typical
patient profiles. For that we took into account averaged patient-dependent data
for episode alerting frequency which is additionally assigned different security
costs based on three possible patient environments during a day. The focus
of our work was on pacemaker operational lifetime prediction with UPPAAL
model-checking tool with different remote observation needs according to car-
diovascular disease severity and location-dependent security requirements. The
proposed approach to fine-grained battery lifetime analysis using probabilistic
timed models is flexible in the sense that it can be easily adjusted by incorpo-
rating in the model only the factors that have impact to device endurance and
reliable maintenance planning.
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Abstract. Molecular communication uses molecules or other nanoscale
particles to transmit data in scenarios where conventional communica-
tion techniques are not feasible. In previous work a testbed using super-
paramagnetic iron oxide nanoparticles (SPIONs) as information carriers
in a fluid transmission channel with constant background flow was pro-
posed. The SPIONs are detected at a receiver as change of a coils induc-
tance. We now improve the testbed by using a piezoelectric micropump
as transmitter, making amplitude modulation (AM) with different injec-
tion volumes possible. Machine learning is employed at the receiver to
differentiate between six different amplitude levels and grey code is used
to reduce bit errors. With AM and the designed coding scheme, the
achievable effective data rate was doubled to 4.45 bit s−1.

Keywords: Molecular communication · Amplitude modulation ·
SPIONs · Micropump

1 Introduction

The aim of molecular communication is to achieve data transmission using mol-
ecules or other particles in the nanoscale. So far, setups to experimentally inves-
tigate molecular communication with various transmission methods, such as air-
based transmission with alcohol [3,8,18] or encoding information as change of
pH-value [4,6,9] have been proposed. In [16] a different setup that uses super-
paramagnetic iron oxide nanoparticles (SPIONs) as information carriers in a fluid
transmission channel is presented. [1,2] provide some induction-based receiver
concepts for such SPION-based testbeds.
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Investigated data transmission scenarios in [1,2] were confined to binary-
state symbol transmissions, encoding a ‘1’ as an injection of SPIONs into the
transmission channel and a ‘0’ as no injection. The achievable information rate
was restricted due to an increase of inter-symbol interference for reduced symbol
intervals.

Schemes for amplitude modulation (AM), or concentration shift keying, in
molecular communication have been proposed previously (e.g. [10,14]). How-
ever, these focus on a diffusion-based scenario in contrast to the active transport
present in the provided testbed and are restricted to theoretical channel obser-
vations. In [2,16] a peristaltic pump was used as a transmitter to enable on-off
keying (OOK). However, the pump was limited to a fixed transmission volume.
We now replace the peristaltic pump with a micropump allowing for use of AM
to achieve a higher-level encoding per symbol. Machine learning is used at the
receiver to detect the transmitted amplitude levels.

Today, micropumps are used in many applications including drug delivery [5],
lab-on-a-chip devices [13] and sensor enhancement [12]. As described in [15,19]
many different actuators have been used for micropumps. Of these technologies,
piezoelectric actuated micropumps show the most promising features since they
are able to create very high forces and actuation speeds, enabling high pumping
frequencies and pressures. For this paper a refined version of the steel-foil based
micropump introduced in [17] with a diameter of 20 mm, designed by Fraunhofer
Research Institution for Microsystems and Solid State Technologies (EMFT) in
Munich, was used. The pumps parameters allow a fast injection of a well-defined,
discrete volume of SPIONs of up to 11.5µl per pump stroke. The stroke volume
can be controlled by changing the piezo actuator voltage enabling a variety of
amplitude levels.

We used the described micropump to achieve AM in a molecular commu-
nication testbed with SPIONs for the first time. Together with a comprehen-
sive coding scheme, employing two-dimensional grey code and symbol detection
based on machine learning, the achievable data rate was doubled in comparison
to previous setups using OOK.

In the following, we will first describe the testbed setup and its individual
components. Then we will present the methods used to encode and decode data,
as well as the achieved data transmission in the experimental testbed. A discus-
sion of the results and an outline of future improvements concludes the article.

2 Testbed

The testbed can be separated into the four hardware components informa-
tion carriers, transmitter, channel and receiver. The principle setup was first
described in [16].
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2.1 Information Carriers

Information is transmitted in the testbed by changing the concentration of SPI-
ONs. Due to their superparamagnetic properties they can be detected as change
of a coils inductance. In our case we used particles with a hydrodynamic diame-
ter of 50 nm, a specific susceptibility of 8.78 × 10−3 for an aqueous solution with
a concentration of 1 mg Fe ml−1 and a coating of lauric acid. They were synthe-
sized by the Section for Experimental Oncology and Nanomedicine (SEON) of
the University Hospital Erlangen.

2.2 Transmission Channel

A flexible tube with an inner diameter of 1.52 mm is used as the transmission
channel. A constant background flow of water is provided by a peristaltic pump
(Ismatec ISM596D) with a flow rate of 10 ml min−1. SPIONs are injected into the
transmission tube as described in Subsect. 2.3 and travel a distance of 5 cm to the
receiver. Due to laminar flow the injected nanoparticles are spread out axially
along the transmission channel, causing inter-symbol interference for repeated
injections.

2.3 Transmitter

The transmitter consists of a steel micropump, manufactured by Fraunhofer
EMFT in Munich, and a venous cannula.

The pump has a height of 1 mm, a diameter of 20 mm and moves a volume
of 11µl per full stroke. Due to its high flow rate of up to 20 ml min−1 (for
water), and high pressure tolerance of 60 kPa, it is ideal for use in the testbed
environment. As can be seen in Figs. 1 and 2, the micropump is composed of a
coin shaped steel base plate, three steel foils and a piezo actuator disc. Two steel
foils are laser-welded on top of the base plate to create passive inlet- and outlet
valves and valve seats. The third steel foil closes the top of the pump chamber.
The piezo actuator is glued onto the pump chamber with a patented process
described in [7].

The piezo actuator is driven with a rectangular voltage signal. The stroke
volume can be adjusted by varying the voltage amplitude: A signal alternating
from −80 V to +300 V results in a full stroke with an approximate volume of
11µl. For an input signal with a reduced voltage swing of −80 V to +150 V a
volume of approximately 6µl is expedited per stroke.

A venous cannula with an inner diameter of 0.8 mm is used to inject the
nanoparticles into the transmission channel. The cannula is placed so that the
injection occurs in the middle of the channel in the same direction as the back-
ground flow.
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(a) The pump consists of a steel base plate (1), passive inlet (2) and outlet (3) valves, an
actuator diaphragm (4) and the piezoelectric actuator (5). Here the initial state, when
no voltage is applied to the actuator, is shown. The mounting process leads to a pre-bent
piezo actuator and actuator diaphragm.

(b) Applying a negative voltage of −80 V to the actuator causes the diaphragm to bend
upwards and the pump chamber is filled.

(c) With a positive voltage in the range of 80 V to 300 V the diaphragm is bent down-
wards and the liquid in the pump chamber is ejected through the outlet valve.

Fig. 1. Schematic cross-section of the used steel micropump shown for the three dif-
ferent actuation states.

The amount of SPIONs that are introduced into the background channel
in each symbol interval is varied to achieve different amplitude levels. As the
micropump is operated at a significantly higher rate (40 Hz) than the symbol
frequency (maximally 3.5 Hz), multiple pump strokes are observed as an indi-
vidual injection with higher volume. Furthermore, the injected volume per pump
stroke can be controlled. We therefore chose six different amplitude levels with
steps of a half stroke (approx. 6µl) ranging from no injection (0µl) to two and
a half strokes (approx. 28µl) per injection.
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Fig. 2. Pictures of the steel micropump showing the top with the piezoelectric actuator
(left) and the steel base plate (right). The pump has a diameter of 20mm.

2.4 Receiver

The transmission channel is passed through a custom made coil at the receiver.
Due to the magnetic properties of the SPIONs the coil inductance changes as the
nanoparticles pass through it. In a parallel circuit this change of inductance can
be observed as a shift of resonance frequency that is measured using the LDC1612
from Texas Instruments. The receiver setup and capabilities were presented in
[2]. The change in resonance frequency depends on the amount of SPIONs inside
the detection coil, allowing for differentiation of various amplitude levels.

3 Data Transmission

Data transmission in the testbed is achieved by encoding binary data in six
different amplitude levels (as described in Subsect. 2.3) that are detected at the
receiver and decoded using machine learning classification.

3.1 Encoding

Each transmitted symbol has six possible amplitude levels (0 to 5). Words are
constructed of two symbols with one amplitude level each. Binary data is rep-
resented by encoding five bits to one word. When encoding all possible 32 com-
binations of five bits to two symbol words (36 possible combinations), 4 unused
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words remain. In future these may be used for transmission synchronisation or
other control commands. In our case these remaining code words are used to
increase the distance between similar amplitude levels. Furthermore, to reduce
bit errors in scenarios where a detected amplitude level is incorrect but close to
the actually transmitted level, a two-dimensional grey code is applied, changing
only one bit for neighbouring words. Table 1 shows the complete encoding.

Table 1. Encoding table for the representation of 5 bits using words consisting of two
symbols (S0 and S1). To reduce bit errors for similar amplitude levels neighbouring
words have only a single bit change. The four remaining words in blue are not used for
transmission. A neighbouring bit sequence was arbitrarily chosen for decoding.

S0 S1

0 1 2 3 4 5

0 00000 00001 00011 01011 01001 01000

1 00100 00001 00010 01010 01001 01100

2 00101 00111 00110 01110 01111 01101

3 10101 10111 10110 11110 11111 11101

4 10100 10001 10010 11010 11001 11100

5 10000 10001 10011 11011 11001 11000

To enable simple detection, each transmission is initiated and terminated
with a symbol of maximal amplitude (value 5).

3.2 Decoding

The recorded signal is decoded using machine learning in a Matlab (The Math-
Works, Inc.) script. First, a moving averaging filter with a length of two samples
is applied to reduce noise and the amount of data points is increased to 100 Sa s−1

with cubic spline interpolation. Next, a zero baseline is determined as the mean
value of two symbol intervals before injection of SPIONs. The initial synchro-
nisation peak is set to the first local maximum after a threshold at half of the
maximal signal amplitude is exceeded. This peak is used to determine the fixed
symbol intervals with a known duration. To accommodate for transmission tim-
ing inaccuracies, the symbol intervals are resynchronised at the highest available
peaks that are at least five symbol intervals apart and exceed the initial detection
threshold.

For each symbol interval three signal parameters, which were determined by a
feature selection algorithm, are calculated. First, local maxima inside the symbol
interval are searched. For the peak with the largest amplitude the height of the
rising and falling edges are calculated by determining the minimal amplitude
within one symbol interval before and after the peak. In addition, the absolute
amplitude value is also recorded. If no local maximum is found, the symbol
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amplitude is set to the minimal amplitude inside the symbol interval. Figure 3
shows a section with eight symbols of a sample transmission, demonstrating
detection of the prediction parameters. As inter-symbol interference causes a
changed baseline for each symbol interval, the application of fixed threshold
values to differentiate between multiple amplitude levels is not possible.
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Fig. 3. Sample transmission sequence section with eight symbols. The symbol intervals
are shown with dashed lines and are annotated with the transmitted amplitude level.
Peaks are detected and the parameters peak amplitude (purple), rising edge height
(green) and falling edge height (red) determined for each symbol interval. The param-
eter detection is shown exemplary for two symbols.

The rising and falling edge heights are normalised to the values of the initial
synchronisation peak and then passed to a classification predictor together with
the amplitude levels. A discriminant analysis model fitted to a training sample
sequence with a total of 204 symbols is used for classification. An individual
model was trained for each symbol rate (2 Hz to 3.5 Hz) with the ‘fit discriminant
analysis classifier’ algorithm in Matlab. Figure 4 shows the spread of the three
prediction parameters in the training sequence for a symbol rate of 2 Hz. The
high deviation of the predictor parameters with overlapping areas does not allow
for simple threshold detection. By using the combined information of all three
parameters in a machine learning model a good prediction of the transmitted
symbol can be made.



AM in a Molecular Communication Testbed with SPIONs and a Micropump 99

0 1 2 3 4 5

0

0.5

1

Transmitted Symbol

R
is

in
g

E
dg

e
H

ei
gh

t
(N

or
m

al
is

ed
)

0 1 2 3 4 5

0

0.5

1

Transmitted Symbol

Fa
lli

ng
E

dg
e

H
ei

gh
t

(N
or

m
al

is
ed

)

0 1 2 3 4 5

0.2

0.4

Transmitted Symbol

P
ea

k
A

m
pl

it
ud

e
of

R
es

on
an

ce
Sh

ift
(k

H
z)

Fig. 4. Distribution of the three predictor parameters rising edge height, falling edge
height and peak amplitude for a training set of 204 symbols. Although the mean values
marked in red show a clear tendency, definite detection thresholds cannot be set due
to the high deviations.
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4 Results

4.1 Injection Volume Correlation

In a first step, the correlation between injected volume of SPIONs and detected
shift in resonance frequency is of interest. To determine this relation a series of
injections were performed with the micropump ranging in volume from one to
five pump strokes. Between each injection a pause, sufficient to ensure a return
to zero, was made. Figure 5 shows the detected resonance shift, normalised to
the maximal value, in relation to the normalised injection volume. As expected,
a linear relation between the detection signal and the injection volume can be
observed. Therefore, detection of different amplitude levels is possible.
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Fig. 5. Resonance shift at the receiver in relation to injection volume for 24 individual
injection bursts. Each burst consists of one to five pump strokes. A linear relation
between the received signal and the transmitted volume of SPIONs can be observed.

4.2 Data Transmission

Information en- and decoding was evaluated for four different symbol rates rang-
ing from 2 Hz to 3.5 Hz in steps of 0.5 Hz, each with a random sequence of 2000
bits. Due to restrictions for the micropump driver the sequence was split into
four transmissions of 100 symbols. Each sequence was decoded as described in
Subsect. 3.2 and the binary output evaluated for bit errors.

Figure 6 shows a sample transmission section consisting of eight symbols. All
words (i. e. symbol tuples) but one were decoded correctly. Due to the choice of
coding only a single bit error results from the incorrectly detected word.
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Fig. 6. Sample transmission sequence section with eight symbols. The detected symbol
values for each interval and the decoded words are shown. The second transmitted
symbol value (2) was incorrectly detected as 1. However, as neighbouring words differ
only by a one bit the selected coding restricts the decoded binary word to a single bit
error.

In Fig. 7 the average symbol and bit error probabilities are shown for the four
different symbol interval durations. No significant correlation between reduced
symbol intervals and an increase of decoding errors can be observed. As can be
seen in Fig. 8, symbol detection errors are restricted to a single value offset in
most cases. Due to the choice of coding, only a single bit error occurs for such
a single value detection offset. The result is a significantly lower bit error rate
(20% for a single word with a typical symbol error) than symbol error rate (50%
for a single word with one detection error).

From an information theory perspective our transmission from encoding to
decoding can be regarded as a binary symmetric channel, implying equal prob-
abilities for bit errors independent of bit value. The capacity of such a channel
with a given error probability f is

C(f) = 1 −
(
f log2

1
f

+ (1 − f) log2
1

1 − f

)
. (1)

The noisy-channel coding theorem provides an upper boundary for achievable
effective data rate given a channel capacity and the tolerable bit error rate (BER)
[11]. This effective data rate is given by

C

R
= 1 −

(
BER log2

1
BER

+ (1 − BER) log2
1

1 − BER

)
(2)
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Fig. 7. Probabilities for bit and symbol errors using amplitude modulation and the
provided coding scheme. Due to the use of grey code, the average probability for a bit
error (10.3%) is significantly lower than the symbol error probability (24%).
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Fig. 8. Probabilities for various receive symbol errors. A detection error with an offset
larger than 1 amplitude level occurs in only very few cases, resulting in the coding gain
achieved by the use of grey code.
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where R is the code rate. Using (2) we can calculate the possible effective data
rates for both the transmission scenario using AM and previous results with
OOK presented in [2].

Figure 9 shows the calculated values for the various symbol intervals and mul-
tiple tolerable BER scenarios. Although different symbol intervals were investi-
gated in [2], the possible effective data rates can be compared to the results
presented here. For a symbol interval of 0.4 s and a tolerable BER of 1% an
effective data rate of 3.9 bit s−1 is achievable using AM. With the same param-
eters the data rate was restricted to 2.3 bit s−1 using OOK. Of the investigated
intervals, the maximal data rate using AM is reached at a symbol interval of
0.29 s and is 4.5 bit s−1 for a remaining BER of 1%. This is close to double the
value achievable with OOK in [2].
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Fig. 9. Achievable effective data rate according to the noisy-channel coding theorem.
Comparable values for OOK were taken from [2]. With a tolerable BER of 1% an
effective data rate of 4.5 bit s−1 can be reached using the proposed AM scheme. The
maximal value for OOK is 2.3 bit s−1.

5 Conclusion

A micropump was successfully used as a transmitter in the provided molecular
communication testbed. Due to the pumps capabilities, six different amplitude
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levels could be differentiated at the receiver by modulating the volume of SPIONs
injected in one symbol interval. With machine learning and an adapted coding
a bit error probability of 10.3% was achieved.

As no significant increase of bit errors for reduced symbol intervals was
observed, a further increase of symbol rate and therefore effective data rate
is possible and will have to be investigated in future work. Limiting factors may
be the increase of inter-symbol interference due to laminar flow and the sensor
sample rate.

In comparison to data transmission using on-off keying presented in [2] the
achievable effective data rate was doubled.

In future work improvements may be made on both the coding scheme and
the testbed setup. In particular, an increase of the sensor sample rate and an
optimisation of the used coils is of interest. Symbol encoding could be optimised
to ensure larger amplitude changes and therefore reduce bit errors. Finally, the
machine learning model used for detecting amplitude values could be improved
with a significantly larger training set.
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Abstract. Recently, DNA cryptography rejuvenates the art of secret writing by
combining biological information and cryptography. DNA’s double-helical struc-
ture serves as a template for encoding decoding information, vast storage and ran-
domness. The structure includes DNA encryption that uses a DNA sequence table
to substitute plaintext into the DNA sequence. However, this encoding table can
result in leakage of information about the plaintext, character frequency, and key,
by carefully examining the ciphertext through frequency analysis attack. There-
fore, this paper proposes an enhanced DNA table for all 96 printable ASCII char-
acters which are created to improve the entropy so that the probability of each
encoding base (A, T, C, G) is equally likely and to reduce the computational
complexity of DNA cryptography. An algorithm has been selected to implement
both tables for performance measurement. The results show that encoding and
encryption time is reduced, high entropy ciphertext, better frequency distribution
ciphertext is obtained. Information leakage in terms of conditional entropy is also
reduced by the proposed table. In conclusion, the proposed table can be used as a
DNA sequence table in DNA cryptography to improve overall system security.

Keywords: DNA cryptography · DNA sequence table · Entropy · IoT
application

1 Introduction

Novel encryption techniques tend to ensure system security more than traditional cryp-
tographic methods either by combining two or more traditional techniques or by taking
the advantage of biological characteristic of DNA encryption [1, 2]. With advancements
in technology, more efforts are to ensure system security from attacker’s perspective. A
recent study sheds light on the fact that traditional cryptographic solutions either sym-
metric or asymmetric encryption are not secure any longer and cannot be used directly
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as a standalone solution [3]. One of the presented solution is using DNA Cryptography
only or in combination with traditional cryptography, where DNA computing, encoding,
decoding, and biological simulation processes yield better security [4]. Recent advance-
ments in DNA cryptography present the solutions based on symmetric and asymmet-
ric cryptographic systems, which when deployed showed improved usability [5]. These
advancements are primarily because of DNA computing being fast and secure than exist-
ing technique and indicating that in near future DNA chips will replace silicon chips
in computer systems for highly fast processing. A single gram of DNA has 1021 bases
which are equal to 108 of data, due to the compactness in the double-helical structure
of DNA [6].

DNA computing was started by L. Adleman in 1994 to solve complex computational
problems primarily [7]. Recent development shows that it uses DNA cryptography to
ensure system security for the next generations. Specifically, proposed encryption algo-
rithms apply DNA cryptography with a DNA table that serves as a foundation for encod-
ing and decoding the ASCII characters using DNA bases. DNA has four bases which
are known as Adenine (A), Guanine (G), Cytosine (C) and Thymine (T) for encoding.
Initially, researchers in [8] have designed a base table using those bases and most tech-
niques use the table either with or without iterations currently. This means that in one
iteration code, “TTTT” sequence is representing A in the plaintext characters but in
other iterations, this code may be used to represent Y. Only the code positions against
characters changes but the sequence remains the same, and this is done to ensure that
same plain text is retrieved at the other end after passing through this table. However,
the analysis of the DNA encryption technique shows that frequency analysis reveals
information about the key [9]. Thus, this paper proposes an enhanced DNA encoding
table that is designed keeping in view the frequency count, randomness in codes and
entropy of the table. Later, the proposed table is compared with the table in [8], followed
by a complete encryption-decryption process and performance analysis.

The rest of the paper is organized as follows: Sect. 2 has a review of the work
done so far. Section 3 gives a detailed insight into the proposed table. Section 4 has an
experimental analysis, statistics followed by conditional entropy and its calculation and
lastly Sect. 5 concludes this paper.

2 Related Work

DNA cryptography is an umbrella having technologies that are inspired by genetic entity
DNA, ranging from Polymerize Chain Reaction (PCR) of DNA synthesis to digital cod-
ing using the same bonding and stimulation patterns as defined in DNA by nature [9].
This paper focuses on the study of techniques where DNA coding has been used to
improve system security. DNA coding has four basic nitrogenous bases A,T,C,G and
their representation using binary bases 0 and 1. Several DNA based cryptographic tech-
niques have been proposed where DNA bases are used in combination with one-time
pad (OTP) [10–12]. The technique in [10] uses microdots to save ciphertext while PCR
is used at the decryption end. Whereas researchers in [11] use basic mathematical oper-
ations like DNA addition, DNA subtraction combined in a Feistel structure for system
security. Meanwhile, the technique in [13] uses a lookup table to rearrange DNA bases,
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where a dynamic table for 256 ASCII characters is created. Then, it applies iterations
to change the positions of characters which followed by a mathematical series before it
uses asymmetric encryption for the encryption-decryption process. The combination of
the output from the asymmetric encryption process with chunks of dynamically encoded
text produces the ciphertext.

Later, researchers in [14] introduce a dynamic ASCII table where random ASCII
characters are assigned to DNA bases initially. The dynamic ASCII table brings a new
insight into DNA cryptography that random table results in different ciphertexts with the
same plaintext making it challenging for an attacker to get access to the table along with
iteration. A mathematical series is used for iteration purposes in which every iteration
changes the position of the characters dynamically. For example, plaintext “A” may be
encoded as “AAAA” in one iteration but in the next iteration, it may be “ACCT” to
provide the randomness to the ciphertext. The same plaintext is encoded over different
iteration to yield different ciphertexts. This encoded text is modified using OTP and
is followed by genomic conversion. The final ciphertext is a compressed form of the
genomic conversion into an amino acid table.

A biological simulation-based technique is proposed in [15] whereby a unique DNA
based encoding table has been introduced. In this technique, a random encoding table is
introduced after every session resulting in session-based output. The approach encodes
the same plaintext that has different outputs in every different session. On the other hand,
authors in [16] remove limitations of OTP ciphertext using DNA and amino acid coding,
followed by randomness evaluation using NIST tests. A biotic-DNA oriented secret
key mechanism is introduced in [17] and they use genetic information gathered from
biological systems. The technique in [18] is a combination of digital coding, traditional
cryptography as well as PCR amplification. Digital coding and traditional encryption are
used to encode the plaintext followed by PCR for key generation. The technique in [19]
has the underlying foundation of the signature method and asymmetric encryption with
DNA. Initially the plain text is converted into ASCII codes followed by binary code, and
is transformed into a matrix. This data is transmitted physically as a biological molecule
in DNA.

DNA cryptography is not limited to text encryption but is equally applicable in
image encryption as well [20]. A technique proposed by Zhang et al. [21] is image-
based encryption comprised of map lattices of linear, as well as non-linear coupled with
spatiotemporal chaos. A technique proposed in [22] is a combination of the hyperchaotic
system along with a genetic recombinant, for image encryption where the system proved
good security for image encryption. Zhang et al. proposed an image encryption system
[23] based on permutation algorithms. Mix chaotic mapping in addition to Josephus
traversing is used in [24] for image encryption. A combination of the chaotic system
has been proposed in [25] which gave good encryption results than the previous tech-
niques. DNAcryptography has been implemented in cloud computing to improve system
security by enabling socket programming [26, 27]. In [28] an architectural framework
has been proposed where digital signatures have been used in combination with DNA.
Robust DNA codes based on DNA sequence has been proposed in [29, 30].

A technique proposed in [31] has used the same base table as in [8] and it uses DNA
computing for intrusion detection. In this technique, DNA encoding is used to convert
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the network traffic data into DNA sequences. The idea behind selecting DNA computing
is that it follows the same mechanism to detect diseases as an intrusion detection system
does. The results of the technique show that DNA can be used for intrusion detection
and can give better results using a better encoding method.

Analyzing the existing work proves that all these techniques use the same base
table as in [8] with or without iterations. This base table has a unique code for all ASCII
printable characters, alphabets, capital, small, numbers and special characters. This table
has 96 codes for 96 different characters which are 26 capital, 26 small, 10 numbers and
34 special characters. The bases contain binary coding, A= 00, T= 01, G= 10, C= 11.
Each character is coded using DNA bases such as “y” is coded as “AAAA”. These codes
are unique, indicating no two characters can have the same code. Where primarily this
table is used to introduce randomness in cipher text. This table being randomly generated
can yield more or less randomness across iterations, so by carefully examining this fact
a new table has been created, which will always yield better randomness. New table is
static in nature but can improve security as it has more random encoding as compare to
base table. Frequently occurring characters have high random codes than less frequently
occurring. Where a detail description is provided in Sect. 3. Keeping these facts into
consideration, a new encoding table has been designed and these two tables will be
compared based on different parameters.

3 Proposed DNA Table

The proposed table has unique codes for all 48 * 2 = 96 matrix as of base table as in
Table 1. These codes are not assigned randomly but have the underlying foundation as
follows:

• Frequency count of “71,013,156” characters from [32], and additional “5747”
characters online, to rank these characters according to the number of occurrences.

• A character that has high-frequency count will have codes with all four bases without
being repeated in a particular order, similarly going down to least frequency characters
with repetition of DNA bases. High-frequency character “t” is coded as “ACTG”,
having all four bases and when it is converted into its binary code is “00110110”.
Meanwhile, the same character is coded as “TCCC”, 01111111 in [8] having more
repeating bits in a sequence. This is due to the repetitions of English language basic
characteristics. Thus, the code should have all four bases to reduce repetitions so that
the bits are more random and less predictable for the attacker.

• Each DNA base is counted exactly 96 times as in Table 1. This has been carefully
selected and designed having the probability 96/384 for each base and the final entropy
factor.
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Table 1. The proposed DNA encoding table

Rank Character Frequency DNA code Rank Character Frequency DNA code

1 e 7,741,972 ATCG 49 H 123,634 CGTC

2 t 5,507,785 ACTG 50 x 123,585 CTGC

3 a 5,263,861 ACGT 51 7 120,193 AGAC

4 o 4,729,276 ATGC 52 W 107,223 ACAG

5 n 4,535,686 AGTC 53 L 106,998 ATAG

6 i 4,527,428 AGCT 54 O 105,776 AGAT

7 s 4,186,244 GCTA 55 F 100,951 ACAT

8 r 4,137,989 TACG 56 Y 94,312 ATAC

9 h 2,955,955 TCAG 57 G 93,618 TATC

10 l 2,553,528 TGCA 58 J 78,794 TCCA

11 d 2,369,920 TGAC 59 z 66,509 TGTA

12 c 1,960,612 TAGC 60 j 65,894 TATG

13 u 1,613,333 TCGA 61 U 57,512 TCTG

14 m 1,467,476 GATC 62 q 54,288 TGTC

15 f 1,296,945 GCAT 63 : 54,102 GACC

16 p 1,255,599 GTCA 64 ) 53,753 GCGA

17 g 1,206,847 GTAC 65 ( 53,472 GTGA

18 y 1,062,140 AGCG 66 $ 51,586 GAGT

19 w 1,015,755 GACT 67 K 46,612 GCGT

20 , 985,065 CATG 68 ; 36,839 GTGC

21 . 946,186 CTGA 69 V 31,104 CGCA

22 b 866,356 CTAG 70 * 20,772 CACG

23 v 653,397 CAGT 71 ? 12,481 CTCG

24 0 546,333 CGTA 72 Q 11,872 CGCT

25 1 461,006 CGAT 73 / 8,198 CTCA

26 k 460,798 CATC 74 X 7,682 CACT

27 5 374,503 ACGC 75 & 6,539 AGAG

28 2 333,599 ATCA 76 Z 5,672 ACAC

29 T 325,562 ACTA 77 ! 2,201 ATAT

30 S 304,999 AGTA 78 % 2,005 TGTG

31 “ 284,771 ATGA 79 + 324 TATA

32 9 282,397 AGCA 80 > 89 TCTC

(continued)
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Table 1. (continued)

Rank Character Frequency DNA code Rank Character Frequency DNA code

33 A 280,987 ACGA 81 < 84 TCGC

34 M 259,574 TCGT 82 = 24 GAGA

35 – 252,382 TGCT 83 # 12 GTGT

36 C 229,383 TAGT 84 @ 3 CACA

37 I 223,370 TGAT 85 { 2 CCCG

38 N 205,465 TCAT 86 } 2 CGCC

39 ‘ 204,593 TACT 87 [ 2 TGGT

40 4 192,545 GATG 88 ] 2 GTTG

41 3 187,640 GTAG 89 ˆ 2 GAAG

42 8 182,681 GTCC 90 _ 2 GTTG

43 B 169,490 GCTG 91 | 1 TAAT

44 6 153,881 GACG 92 ~ 1 TCCT

45 R 146,455 GCAG 93 \ 1 CAAT

46 P 144,300 CTAC 94 ‘ 1 GAAT

47 E 138,459 CGAC 95 e 1 CGGT

48 D 129,645 CAGC 96 £ 1 GTAA

The subsequent section gives a detailed insight into how this entropy is calculated
and what is the ideal value for this entropy.

3.1 Entropy

Entropy is themeasure of uncertainty in bits and this concept was introduced by Shannon
in 1948 [32, 33]. The uncertainty of the cipher is the number of plaintext bits that must be
recovered from scrambled ciphertext to get the message back, and this is measured via
entropy. The entropy of a variable is the weighted average of optimal bit representation
size such as the average size of an optically encoded message. Mathematically, entropy
can be defined as in (1) [9, 34].

H (X ) = −
∑

x∈X
Pr[X ]log2(Pr[X ]) (1)

Meaning, higher the probability of an event less the uncertainty. Here we are calcu-
lating the entropy of X with four bases as X = {A,C,T ,G}. Now, the probability of
each DNA base multiplied by log of its probability as modified for four values as in (2):

H (X ) = −[
P(A)log2(P(A)) + P(C)log2(P(C)) + P(G)log2(P(G)) + P(T )log2(P(T ))

]
(2)

The highest uncertainty is only achieved when the values are equally distributed.
Figure 1 explains that the probability of an event that ranges from 0 to 1 and the entropy
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can range from 0 to 1. This graph gives an insight into the entropy of an event where
two outcomes are considered:

Fig. 1. Entropy and probability distribution

• The value of entropy is 0 for both the least and highest probability, which proves that
if the probability of occurrence is 0, an event entropy will be 0, indicating that event
will never happen. Similarly if the probability of an event is 1 means this event will
always happen against the entropy is 0 because, in this scenario, there is no uncertainty
about the information.

• The entropy of the system is maximum “1” when the probability is “1/2 = 0.5”.
This clearly indicates that all events have the same chance to occur. If the probability
increases from “0.5” then entropy decreases and similarly if the probability decreases
the entropy also decreases, because in a former event is less likely to occur whereas
in later the event is more likely to occur.

• For a system where number of events increases, for example, it has four possible
outcomes and the probability range from 0 to 1, its distribution differs. Each event
has equal probability 1/4 = 0.25 only then maximum entropy will be achieved. Here
the entropy reaches a maximum value which is 2.

3.2 Entropy Calculation for DNA Table

This section calculates the entropy of the base table that originally described in [8] and
followed by the entropy of the proposed table.

Entropy of Base Table
The entropy of the base table is calculated by examining the number of occurrences of
each DNA base table in [8], whereby A = 83, C = 106, G = 96, and T = 99. And the
total number of bases in the table is 384. By substituting these values in Eq. (2),

H (X ) = −
[
83

384
log2

(
83

384

)
+ 106

384
log2

(
106

384

)
+ 96

384
log2

(
96

384

)
+ 99

384
log2

(
99

384

)]

H (X ) = 1.9164
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Hence the minimum number of bits needed to encode all possible meaning of the
table or number of bits of information per character is 1.92.

Entropy of the Proposed Table
The entropy of the proposed table is calculated by examining the number of occurrences
of each DNA base in the table, where A = 96, C = 96, G = 96, and T = 96. And the
total number of bases in the table is 384. By substituting these values in Eq. (2),

H (X ) = −[ 96
384

log2

(
96

384

)
+ 96

384
log2

(
96

384

)
+ 96

384
log2

(
96

384

)
+ 96

384
log2

(
96

384

)

H (X ) = 2

The minimum number of bits needed to encode all possible meaning in the proposed
table or number of bits of information per character is 2. Higher entropy makes con-
ducting frequency analysis harder in DNA cryptography. The DNA table with higher
entropy introduces more uncertainty about the ciphertext when an attacker does not
have any information about the plaintext. Meanwhile, a lack of good entropy can leave
a cryptosystem vulnerable and unable to encrypt data securely. Later, Sect. 4 discusses
the experimental result of the entropy for the proposed DNA table.

4 Experimental Results

To compare the performance of both DNA tables, this section describes the encryption
algorithm [14] of DNA cryptography as follows..

1. Read input (plaintext)
2. Create a DNA sequence using dynamic DNA table
3. Convert sequence into 2 bit binary
4. XOR binary sequence with random binary key of equal length
5. Convert the sequence of step iv into DNA sequence
6. Use mRNA table to convert sequence from step 5
7. Transfer mRNA to tRNA
8. Divide tRNA into two and interchange their positions
9. Apply the reverse simulation (U to T)
10. Generate cipher text using amino acid table

This algorithm is implemented in MATLAB R2019b. The next subsections describe
the performance measurements, where outputs of base and proposed DNA table are
compared in terms of frequency count, time entropy, and conditional entropy of key
given cipher.

4.1 Frequency Analysis of Encoded Text

After taking the input from the user, the DNA table is used to encode the plain text.
Four DNA bases A, C, T, and G replace each plaintext character so an input string of
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length, m becomes m * 4 in the encoded text. Given below are the graphs, indicating the
frequency count of the input string of 3000 characters and 6000 characters as in Fig. 2
and Fig. 3 respectively. An input string of 3000 characters yields an encoded string
3000 * 4 = 12000 DNA bases. Figure 2 gives the insight of DNA bases frequencies.
From Subsect. 3.2 with the calculation of the proposed table entropy, the encoded count
of all DNA bases should be equally distributed, thus making a string of 12000 bases
has 12000/4 = 3000 frequency per base. Figure 2 proves that the frequency count of the
base table is not uniformly distributed, ranging from 1938–4830 when compared to the
proposed DNA table with the range in between 2933 to 3036.

2470

4830

1938

27623013 3018 3036
2933

0

1000

2000

3000

4000

5000

6000

A C G T
Base Proposed

Fig. 2. Frequency count input 3000 characters

4660

9779

3981

5580
6031 6007 6061 5901

0

2000

4000

6000

8000

10000

12000

A C G T
Base Proposed

Fig. 3. Frequency count input 6000
characters

Figure 3 shows the frequency count using another input of 6000 characters that
creates 6000 * 4 = 24000 DNA bases. Ideally, the frequency of each base should be
6000 or nearly equal to it, but the frequency count of the DNA base table ranges from
3981–9779 while the proposed DNA table creates the value near to 6000, ranging from
5901–6061.

4.2 Computational Time of Encoding Process

Figure 4 illustrates a time comparison to substitute the same plaintext of equal length
using both DNA tables. The graph proves that time difference is negligible in case of
small plaintext, but as the size of plaintext increases, the time required to encrypt the
plaintext using the proposed DNA table has a significant difference as compared to the
base table. Based on the graph, for an input of 50 characters, the time taken by the base
table is 0.0539 ms while the proposed table is 0.0522 ms with the time difference is
0.0017 ms. But, as the size of plaintext increases to 1750 characters, the time difference
is 0.0646 ms, and for 2500 characters, the time difference has increased to 0.9931 ms.
This difference is mainly because of the frequency analysis performed prior to table
creation, as most occurring characters are at the start so the loop does not iterate through
the whole table. Instead, it immediately encodes the character and exits but in the base
table, the characters are randomly placed so the time increases with the size of the input.
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Fig. 4. Time comparison of encoding process using the DNA base and proposed table

4.3 Frequency Analysis of Ciphertext

At the end of this algorithm, the DNA cryptography generates the ciphertext. The text
DNA sequences are mapped to the amino acid table. The final ciphertext is in the form
of 26 English characters. Figure 5 implies the frequency analysis of the ciphertext with
300 characters plaintext as the input of the encryption algorithm. Based on both DNA
tables, it is obvious that frequency ranges from 0–66 for the base technique whereas
it ranges from 0–36 for the proposed technique. Meanwhile, Fig. 6 gives a frequency
analysis of 2400 characters plaintext as the input. For the base technique, the frequency
count ranges from 11–451, while for the proposed table, it ranges from 11–308. This
frequency difference is important from an attacker’s perspective to conduct a frequency
analysis attack due to the randomness of the ciphertext. This way, he cannot extract
meaningful information about the plaintext from when he does not know the secret key
[9, 35].

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Proposed 29 19 14 13 18 4 36 15 8 0 13 20 15 9 18 22 1 33 18 20 10 37 12 8 0 8

Base 50 4 6 4 7 2 31 21 11 2 3 21 0 10 3 66 15 50 19 33 2 18 0 12 1 9
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40

50

60

70

Proposed Base

Fig. 5. Frequency analysis of ciphertext (with 300 characters)
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A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Proposed 255102100 76 101 27 308 98 73 11 90 170155 74 114219100246196157158221 82 38 19 50

Base 399 43 91 41 56 19 249142 72 11 50 158 32 64 21 451130403160262 66 137 13 95 17 58
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Fig. 6. Frequency analysis of ciphertext (with 2400 characters)

4.4 Computational Time of the DNA Encryption Technique

Time is an important factor when it comes to the computational complexity performance
of the algorithm. Figure 7 shows the encryption time that is calculated formultiple inputs.
The inputs are the number of characters in the plaintext and computational time is the
total encryption time in seconds. The same input is provided to both experiments using
the base and the proposed DNA tables. The graph indicates that the encryption time for
the proposed table is significantly less than using the base table. Based on the graph, for
an input of 600 characters, the time taken by the proposed table is 0.1624 s while and
the base table is 0.248 s. One of the factors for this time difference is because the table
is designed by taking into account that the characters with high rank or frequency must
be in start so that loop traverse time reduces.
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Fig. 7. Encryption time comparison
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4.5 Entropy Analysis

The entropy of the cryptosystem varies as the number of inputs or sample space varies.
Figure 8 gives the entropy of different ciphertexts, provided the same plaintext and the
same random key. The X-axis is the input size or the number of characters, whereas
the Y-axis is the entropy of ciphertext H(C). For input size ranging from 300 to 2400,
it is obvious that the entropy of the proposed technique is more than the entropy of the
base technique. This difference is because at the time of encoding, at a very early stage
of encryption algorithm the frequencies of encoded text are nearly equally distributed,
and highly ranked characters have most random codes. As explained in [9], the entropy
of English characters is 26log226 = 4.7 which an ideal entropy value for the proposed
cipher is. In the case of 2400 characters as the input, the entropy of the proposed technique
is approximately 4.4 which is not very less than ideal value, while for the base table, the
entropy is in between 4.09 to 3.91 which is less than ideal.
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Fig. 8. Entropy of ciphertext

4.6 Conditional Entropy

According to Kerchoff’s Principle, the security of the cryptosystem depends primarily
on having strong keys and keeping them secret, but not in the encryption-decryption
algorithm because it can be accessed [35]. Thus, the system must ensure that there is
no information leakage about key or plain text from the ciphertext. Conditional entropy
is also called key equivocation when it comes to cryptography. Key equivocation of a
cryptosystem can be described as in (3) with MN = plaintext with length N , CN =
ciphertext with length N and K = random key [24].

H (K/CN ) = H (K) + H
(
MN

)
− H

(
CN

)
(3)

Key equivocation is a process in cryptanalysis where the attacker has only access
to ciphertext and he tries to infer some information about the key. It is also known
as a ciphertext-only attack. Given below is the calculation of conditional entropy in
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both scenarios whereby the encryption uses the base and the proposed table. Key and
plaintext are the same for both cases with the number of input characters of 1200. Using
the equation in (3) to calculate the conditional entropy for base table, H (K/CN ) =
0.9994+ 4.7615− 4.164 = 1.5969 and the conditional entropy for the proposed table,
H (K/CN ) = 0.9994 + 4.47615 − 4.3484 = 1.1272.

This conditional entropy is the information being leaked or it can be stated as the
amount of information of the key with the given cipher. The result shows that the pro-
posed technique reveals less information about the key than the base technique. Hence,
the proposed table technique can serve as a good substitute for the base technique for
improvements in terms of frequency analysis, computational time, and entropy.

5 Conclusion

Traditional cryptographic techniques are designed based on substitution, and transposi-
tion operations. With advancements of technology however compromise the security of
the cryptographic algorithms. Researchers propose new security solutions to overcome
security issues including DNA cryptography which involves PCR, DNA synthesis and
digital coding. DNA coding is mostly used for encryption-decryption techniques with a
basic table of 96 ASCII characters to encode the plaintext into DNA bases. This research
work has improved that table, by carefully constructing the table based on frequency
analysis, randomness in code and entropy of the table. Later, the paper compares the per-
formance of the proposed table with the base table which originally designed for DNA
cryptography. The results indicate that the proposed table gives a balanced frequency
of occurrence in the encoded text and ciphertext, reduces encoding time based on DNA
bases and encryption time, better entropy of the ciphertext and finally the conditional
entropy is less than the base technique. The entropy of the proposed table is slightly less
than the base table but it has a huge impact on the output. Hence, this table can be used
for better security and computational time of DNA encryption techniques.
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Abstract. One of the biggest unsolved problems in nanonetwork
research is the actual construction of the components required for build-
ing such networks. Most existing ideas are limited to partial solutions
of construction of nanodevices, computation within them, and commu-
nication between them. While many ideas are promising, the problem
remains how to combine those various building blocks into operational
and efficient nanonetworks.

In this paper we use DNA as the basic building block for all compo-
nents of nanonetworks. The inherent properties of this molecule are used
to assemble complex nanostructures. DNA can be utilized to create both
nanodevices and a communication mechanism. Properly designed DNA-
molecules can even be utilized for computational purposes. In summary,
DNA forms the base for an exhaustive nanonetwork concept.

This work specifically presents an approach how to solve arbitrary
mathematical problems that can be modeled as boolean formulas using
DNA-based nanonetworks by in-message computation. The computa-
tion itself is encoded in the assembly process of a message. This avoids
often-stated space constraints for computations at the nanoscale, as the
medium of transportation is commonly less constrained than the size of
nanodevices dictates. This method thereby presents a constructive app-
roach on how to actually create message molecules, rather than only
proving the general possibility.

Keywords: Nanonetworks · Tile-based self-assembly ·
Nanostructures · Molecular communication · Decision problems

1 Introduction

After the concept of nanonetworks and their use in, e.g., medical applications
have been adequately described in recent years, research groups worldwide are
now looking into the question of how such nanonetworks can actually be con-
structed. A promising approach is the paradigm of self-assembly: components
of nanonetworks such as sensors, actuators and even the messages exchanged
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between them can grow like crystals [7] instead of being manually engineered by
humans – a process hardly imaginable on the nanoscale [4].

Crystal formation is a natural instance of the principle of self-assembly. It
is based on tiny and often simple components assembling themselves into larger
and more complex structures according to local rules. In order to make this
process usable in the context of building nanonetworks, the resulting complex
structures should be nanodevices, nanosensors, message molecules, fully func-
tional nanonetworks or even computers [2]. However, it is hardly possible to
influence the process. A very fortunate exception are certain building blocks
made from DNA. These also follow the paradigm of self-assembly and can be
treated like crystals [16].

The basic entities we are looking at are DNA strands. It is possible to create
arbitrary DNA strands in the laboratory [13]. One can actually create DNA
building blocks out of DNA strands that behave like puzzle pieces [17]. These
puzzle pieces of DNA are also called tiles or DNA-tiles. Tiles can be designed in
such a way that they bind with other tiles only in a specific and predetermined
way. It has been shown that this characteristic can be used to create almost any
structure at the nanoscale [8]. Additionally, tiles can also perform computations
through conditional binding processes [9,17]. All these building processes execute
– after an initial tile set has been provided – without the need for any further
human intervention [7]. Also, all the materials required for this approach can be
produced in a laboratory, so that the first rudimentary nanonetworks can really
be built and operated in-vitro.

DNA-based nanonetworks, in their most primitive form, are unfortunately
not programmable once the devices have self-assembled. Further, implementing
conventional algorithms with just a small set of tiles is much less well researched
than conventional programming languages. As a consequence, the purpose of
a nanonetwork has to be known before its self-assembly, and the tiles have to
be created and selected accordingly. While a proof of concept for this approach
has already been presented in [7], it is still mostly unknown how nanonetworks
for specific mathematical problems can be created, i.e., given a specific problem
formulation, how many different tiles are needed and how they look like.

This paper presents a novel approach on how to create the necessary building
blocks for specific, but arbitrary problems, namely those that can be modeled as
a boolean formula. Previous findings that tile-based self-assembly systems are
Turing-complete [17] are of mere theoretical interest, as the proof gives no algo-
rithm on how to compute in a feasible manner [14]. This paper bridges the gap
by offering a solution for the complexity classes AC0 and NC1. AC0 and NC1

are classes of problems that describe strongly restricted circuits of limited size,
among other [3,15]. Important problems of these classes are basic arithmetic
functions like addition and multiplication, as well as logical operations and the
computation of thresholds. These form the basic necessary operations to cre-
ate more complex communication protocols. Looking at possible applications,
nanonetworks can be created that react, upon measuring environmental param-
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eters, once a predefined threshold has been reached, thus increasing reliability. A
logical AND can be used to establish a distributed consensus among nanodevices,
as demonstrated in [7].

The remainder of the paper is structured as follows: Sect. 2 presents the nec-
essary definitions to understand the mathematical models and the process of self-
assembly in general. Section 3 introduces the definitions and general ideas behind
DNA-based nanonetworks. Section 4 suggest an algorithms that creates mes-
sage molecules for problems that can be modeled as boolean formulas. Section 5
explains a generic nanonetwork architecture. Section 6 summarizes by present-
ing a list of problems that can be solved by DNA-based nanonetworks via the
developed procedure.

2 Preliminaries for Tile-Based Self-Assembly

This section gives a brief introduction and examples of tile-based self-assembly
systems from Eric Winfree [17]. The notation used in the preliminaries is based
on [5] and has already been presented in [7]. For a detailed definition of self-
assembly systems and an overview of the most important results regarding self-
assembly systems, please consult [11].

Tiles are the basic components of self-assembly systems. A 2D-tile is a square
in Z

2 and a 3D-tile is a cube in Z
3. Figure 1(a)–(d) show examples of two-

dimensional and three-dimensional tiles. Models with focus on the mathemati-
cal functionality (a, b) and with focus on the biological components (c, d) are
presented.

From here on, the dimension is largely omitted. Unless otherwise specified,
two-dimensional tiles are implied by the symbol t.

Each side of a tile can have any number of glues, with a corresponding binding
strength. The glues and their strengths are depicted by a number of black boxes
on each side. In Fig. 1 all glues are of strength s = 1. The glue color is indicated
by a label, here N, E, W and S.

Additionally, each tile has a marker in the middle. The marker is also repre-
sented by a label and can be implemented by a florescence marker biologically.
It is used to encode semantic properties of a tile. An example would be the
representation of an encoded truth value.

In the DNA-computing research community, tiles are made from DNA
[11]. Glues are implemented by open DNA strands with freely selectable base
sequences. This enables the implementation of both color, by the use of a specific
base sequence, and strength, by the corresponding length of the open strands.
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Fig. 1. Examples of tiletypes with mathematical and biological representation in 2D
and 3D. The modeled glues are displayed as black cubes, their type as a label. The
biological glues are illustrated by base sequences. [1]

Examples of DNA-tiles are shown in Fig. 1(c, d). The open strands with the
displayed bases adenine (A), thymin (T), cytosin (C) and guanin (G) can only
bind with a matching complementary sequence.

A tile can have no or exactly one neighbor on each side. Tiles t and t′ only
interact with each other when they are neighbors. The interaction rules are
determined by the glues.

If glues are not explicitly shown or mentioned, the empty glue Lg = ∅ with
the label void and the strength 0 is assumed.

A tile t, with a glue strength 0 or no glue at a side can’t interact with other
tiles t

′
at that side.

Two tiles are of the same tiletype, iff they have identical glue color, glue
strength and markers.

The temperature τ of a self-assembly system describes the minimum glue
strength s that is required for a tile to form a stable bond with other tiles.

Two tiles bind with each other if they are neighbors and have glues of a
suitable color and if the binding strength with all neighbors is at least equal to
the temperature. Meaning that two tiles can only bind at temperature 2 if they
share a glue with the same color and 2 black boxes.
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The temperature τ models the physical temperature. If the temperature τ
is increased, molecules move faster. The additional energy makes it more likely
that bonds are destroyed or cannot form in a stable manner.

In this paper, τ is assumed as 2 or 3 and omitted in the notation. Tem-
peratures 2 and 3 are sufficient to implement all functionality relevant to the
scenarios discussed in this paper.

In order for tiles to bind together, they must be rotated to match each other.
In biological systems based on DNA this happens automatically. Mathematical
models require that tiles are not rotatable.

Due to the intrinsic properties of DNA, errors are unavoidable [17]. However,
the number of errors during the self-assembly process can be reduced if special
tiletypes are used. In [11], procedures are described that greatly reduce the
probability of errors in two dimensions. In [7] this reduction is further explained
in the context of nanonetworks and in [1] a procedure for three dimensions is
introduced.

The binding strength s of tiles t and t
′

is equal to the number of matching
glues with all neighbors of a tile.

The total binding strength of a tile t is the sum of binding strengths between
t and all of its correct neighbors. Incorrect neighbors do not contribute to the
total binding strength. An assembly is the result of two or more tiles forming a
stable binding with each other.

The border of an assembly α is a subset α
′

of α. The border only contains
tiles with at least one unoccupied neighboring position. A tile t correctly binds
with an assembly α if the total binding strength of t with neighboring tiles of
assembly α is at least equal to the temperature τ . Only border-tiles of assemblies
may interact with free tiles.

The growth front of n-dimensional assemblies is a subset of positions of Zn.
A position is part of the growth front iff it is unoccupied and neighbor to a
border-tile that has a positive glue strength at that side.

The positions of the growth front change when tiles are added to or removed
from the assembly. It is assumed that exactly one tile is added or removed at
any discrete time.

The initial assembly α0 at time 0 is called the seed-assembly or seed-tile σ.
Starting with σ, tiles are added non-deterministically to the assembly at the

growth front. Due to the inherent non-determinism of self-assembly systems, it
can be difficult to create tilesets T that grow into desired structures.

An assembly sequence of a self-assembly system is a sequence S =
〈α0, α1, . . .〉, while αi+1 is created from αi by adding a tile to αi. The last
element of a finite sequence is called the result or terminal.
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Fig. 2. (a) Example for a tileset of a 2D-self-assembly systems. (b) The corresponding
assembly sequence of the tileset from (a). The seed-tile is called σ and the temperature
is 2. S = 〈α0, . . . , α3〉 shows the three steps until the assembly is terminal. [7]

Figure 2(a) shows an example tileset of a 2D-TAM with seed-tile σ. The
assembly sequence of the TAM Tτ at temperature τ = 2 is depicted in Fig. 2(b).
α0 describes the assembly at time 0. α1, α2 and α3 show the assembly after the
addition of one tile at a time. In α3, the required correct glues originate from
two different neighboring tiles.

3 DNA-Based Nanonetworks

In the following sections different components are defined, which are necessary
for the creation of DNA-based nanonetworks. The idea of using DNA-tiles as
construction material for nanonetworks, their computations and communication
mechanisms goes back to [7]. For a detailed description of DNA-based nanonet-
works see [7].

First, a communication mechanism based on tiles is described. This is fol-
lowed by an explanation of how receptors and ligands can be realized using
DNA. The individual components are then combined and formally defined as
DNA-based nanonetworks.
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3.1 Message Molecules

Since self-assembly systems can also be used as computational models, the pre-
sented approach has the advantage that computations can be integrated into the
assembly process of a message molecule.

A message molecule can be designed in such a way that specific tiles are
necessary to achieve a fully assembled message molecule. By making sure that
these tiles are only distributed under certain conditions – e.g. in case of an event
– they can be interpreted as input for a computation. Other tiles, also required
for the computation, can be kept in the medium as required [7].

This method ensures that, for example, a ligand necessary for a binding
reaction is only formed on a message molecule once a computation has been
finalized. A ligand is the part of a molecule that can form a bond with a receptor.

Tiles and assemblies are subject to Brownian motion. Brownian motion can
be used as a distribution mechanism to transport tiles to the required positions.
The process is largely random, which is why a large number of message molecules
is required.

Any decision problem [14] can be solved by a self-assembly system at temper-
atur 2 [17]. However, it is unclear whether nanobots will perform computations
in the same way as macroscopic computers and whether there is enough space
for complex computations at the nanoscale [6]. Further, it is mostly unknown
how to create a space efficient self-assembly system that solves a given decision
problem using message molecules. In the following sections a generalized method
that creates message molecules for many decision problems is explained.

Since self-assembly systems solve a large number of challenges at once, while
they can already be created in the laboratory, it is compelling to use this previ-
ously proven technology.

Definition 1. A message molecule MΦ is a tileset T , which computes the
boolean formula Φ and creates a ligand in the case of a successful computation.

3.2 Forming Ligands

The ligands are binding sites on message molecules, which enable a correct bind-
ing with nanobots. These are modeled by the glues of tiles.

The variable size and shape of message molecules require additional tiletypes
to always provide a uniform starting point for the composition of a ligand. Fur-
thermore, it should only form if a computation has been successfully completed.
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Figure 3 shows an example of a ligand. Since it is a temperature 2 system,
the two tiles with the label “R” can only bind to the assembly once the middle
row of the adjacent message molecule is complete. This in turn depends on the
successful assembly of the remaining assembly [7]. After the whole ligand is
finalized, the ligand can bind to the receptor from Fig. 4.
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Fig. 3. Generic ligand of a message molecule at temperature 2. The tiles with marker
“R” can only attach to the assembly if tile C has a right neighbor. The white tiles
represent an adjacent message molecule that has to be finalized before the ligand can
form. [7]

3.3 Message Receptors

Receptors are the parts of nanobots that can bind message molecules. They
are modeled by tiles with appropriate glues. These can be generated by simple
assemblies. Unlike ligands, they are not tied to the successful computation of a
formula Φ.

Receptors can be of any shape as long as they bind their corresponding ligand
without overlapping. In this case the temperature restriction must be observed.
Furthermore, the externally available glues of a receptor must be at least one
tile apart from each other to prevent premature binding of parts of the ligand
to the receptor.

Figure 4 shows an example of a possible receptor for a message molecule.
The gray squares represent any part of a ligand message. The black squares
represent individual glues of strength 1. The labels of the receptor’s glues encode
the binding condition. If the receptor is correctly designed, it can “recognize”
the outermost three tiles of the message molecule at once.
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x

y

Fig. 4. Generic receptor, which can stably bind message molecules at temperature 2.
The grey tiles represent the ligand of a message molecule with unbound glues x and x
that are spaced one tile apart from each other. The white tiles are part of a nanobot
with unbound glues x and y that allow message molecules to bind. [7]

4 Creating Generic Message Molecules

Although it is known that self-assembly systems are Turing-complete at temper-
ature 2, this finding cannot be transferred directly to message molecules. In this
section a procedure is presented, with which many mathematical problems can
be compiled to message molecules. This demonstrates the potential versatility
of DNA-based nanonetworks.

Theoretical computer science has proven that different types of problems can
be transformed into each other. Since decision problems can easily be processed
at the nanoscale, these are of particular interest. Theorem1 proofs a procedure
that creates a tileset that assembles into message molecules that solve a given
boolean formula Φ.

Theorem 1. For each decision problem modeled as a boolean formula Φ, a cor-
responding message molecule can be created that executes the same computation
and only forms a ligand if the result of the computation is “1”.

Proof. Let Φ be a boolean formula. We consider every truth assignment that
satisfies the formula Φ.

Every boolean formula may be transformed into disjunctive normal form
[12]. This is done by setting up the truth table for said formula. Table 1 shows
an example.
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Table 1. Example truth table for the formula A ∧ B.

A B A ∧ B

1 1 1
1 0 0
0 1 0
0 0 0

For each line of the truth table that contains “1” in the last column a clause
is created. A clause is a formula phi

′
that only contains literals, negative literals

and the logical ∧. The process is repeated for every row of the truth table. All
resulting formulas are then combined with the logical ∨ operator. The result
is a canonical formula that performs an equivalent computation as the original
boolean formula Φ. The produced formula is called the disjunctive normal form
of a formula Φ. The size of the result can be further reduced by procedures like
McCluskey or Karnaugh maps [10].

For every formula in disjunctive normal form a tileset can be generated as
follows:

For every sub formula a message molecule is created. The number of rows of
each message molecule is equal to the number of literals times 3. Figure 5 shows
an example for the formula from Table 1.
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Fig. 5. Example tilesets for the DNF formula from truth Table 1. For every row i of
the truth table that evaluates to “1”, two tiletypes for each literal are created (left).
These assemble into the message molecule (right).

The truth value of each literal is represented by the label of the corresponding
tile as well as by its glues. Only if all literals are part of the message molecule
a ligand is formed. Each ascending row of the message molecule can only form
once the previous row assembled fully.



Solving Generic Decision Problems by in-Message Computation 131

Since there is a message molecule for each sub formula and all the sub for-
mulas are combined by a logical ∨, the completion of a single message molecule
is sufficient to communicate a successful computation. �

5 Arbitrary Nanonetworks for Boolean Formulas

In [6] a list of relevant mathematical operations for nanonetworks is presented.
Most of them can be solved by representing them as a boolean formula Φ that
can be transcribed into a message molecule by applying the methodology from
Sect. 4.
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Fig. 6. Tileset (left) and fully assembled message molecules (right) for a boolean for-
mula Φ. The tileset to the left contains three tiletypes for every literal in line i of the
corresponding truth table and only contains tiles that are used more than once. To the
right, the message molecules for the clauses of the disjunctive normal form (DNF) of
the formula Φ are displayed.

Figure 6 shows an example for the general architecture with n input bits. i
represents the index of the row of a truth Table 2 that evaluates to “1”. The
truth table represents an arbitrary boolean formula Φ. The disjunctive normal
form of the formula Φ can directly be derived from the table.

The assembly process of the message molecules starts with the seed-tile σ at
the bottom right. Since the temperature is 2, The bottom row of M and B can
form, as well as the right stack of tiles T1. . . Tn. The remaining assembly process
can only proceed if the red tiles Ai

n, that represent the literals of each clause, are
present. Once all required tiles Ai

n are bound to the assembly the tiles B1. . . Bn

can attach, followed by the left tile R, which completes the ligand.
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Table 2. Generic truth table for aboolean formulaΦ. The columns represent all occurring
sub formulas. Each row i that evaluates to “1” represents a truth assignment that satisfies
the formula Φ and serves as input for a message molecule. The red line shows an example.

φ1 φ2 . . . Φ

1 1 1

1 0 1

.

.

.

0 1 0

0 0 1

Fig. 7. The general reference architecture for a DNA-based nanonetwork. It consists of
o ≥ 0 markers (orange rhomboids), p � 1 nanosensors, q ≥ 0 message molecules and
r � 1 Nanobots. (Color figure online)



Solving Generic Decision Problems by in-Message Computation 133

The binding of one of the created message molecules to a nanobot suffices
to implement the required logical ∨. Combined, the result is a behavior that
maps the original problem. The corresponding nanonetwork is shown in Fig. 7. It
depicts a set of nanosensorsi

n that measure specific markers (orange rhomboids)
and release tiles Ai

n into a medium once a successful measurement has been
conducted. Together with tiles that are always present in the shared medium,
the tiles assemble into message molecules that compute the clauses of the given
boolean formula Φ.

Only in the case of a successful computation a ligand is formed and the
resulting message molecule can bind to a nanobot which then can release medical
payload or communicate the measurement (orange triangles).

Apart from message molecules, receptors and ligands, nanosensors and nano-
bots can also be created from tiles. Consequently, we define a nanonetwork as a
tileset. Nanobots and nanosensors are modeled as hollow cubes, which may be
opened once a specific message molecules or markers binding to them.

Definition 2. A tile-based nanonetwork NΦ is a tileset NSe ∪ NR ∪ MΦ. NSe

is a tileset for nanosensors. NR is a tileset for nanobots and MΦ a tileset for
message molecules, which compute the function Φ.

6 Conclusion and Future Work

This work advances the modeling framework for DNA-based nanonetworks pre-
sented in [7]. While [7] showed that it is in-fact possible to create nanonetworks
that solve arbitrary decision problems, it was not elaborated how to achieve this
goal. The viability of the approach was exemplified by the implementation of a
DNA-based nanonetwork for the mathematical operation And with four bits.

In this work we closed the gap by presenting and proving a procedure that
creates message molecules for any decision problem that can be modeled by a
boolean formula. This increases the number of known, feasible computations by
DNA-based nanonetworks tremendously. In [6] a list of mathematical operations
that are of interest to nanonetworks has been assembled. Table 3 shows a subset
of the entries. The left column shows problems that were derived from medical
use-case scenarios, while the right column displays additional problems from
the same complexity class. For all of the depicted problems a corresponding
decision problem can be defined and solved by our methodology. This can easily
be deduced since all of the problems can be solved by circuits, which directly
implies that they can be expressed as a boolean formula.

As predicted by [6], the computations of AC0-messages and NC1-messages
are relatively simple to implement at the nanoscale.

The complexity classes AC0 and NC1 describe circuits with specific limita-
tions. Boolean circuits characterized by AC0 are of polynomial size and constant
depth in regard to the number of input bits. The gates of NC1 have two inputs
per gate at most, but can be of logarithmic depth in regard to the number of
input bits. For a detailed description consult [6]. Both complexity classes repre-
sent comparably easy problems.
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Table 3. List of problems sorted by complexity classes. The class NC1 includes the class
AC0 and the problems in AC0 are therefore considered easier. Both AC0 and NC1 describe
problems that require very little space to be computed. Table adapted from [6].

Medical problems Additional problems

AC0-message: Add Odd/Even

Sub Div2

Sign Mod2

Inc Inv

And/Or Log2

NC1-message: Mult Min/Max

Div Parity

Exp It-Mult

Major Mod

Thres

It-Add

Avg

However, the size of a truth table grows exponentially with the number of
different literals in the boolean formula that serves as an input. Therefore it
isn’t always possible to find a small set of message molecules that solves a given
problem. However, for many of the presented scenarios our methodology suffices.

Tile-based self-assembly systems are indeed Turing-complete and a univer-
sal Turing-machine can be created from tiles. However, the number of required
tiletypes for a tileset that encodes a Turing-machine is huge and often infeasi-
ble. The presented methodology provides a feasible approach for many common
input-sizes.

For mathematical systems, more efficient solutions can often be constructed
for specific problems. It is possible and likely that smaller message molecules
exist for individual operations. The general approach presented in this paper
works for all boolean formulas, specific, fixed operations however, can often be
solved in a more efficient manner.

The next logical step is the construction of tilesets for the most important
problems from Table 3. The problems Add, Mult and Thres are of particu-
lar interest as they are among the most commonly used operations in modern
programming. Space-efficient message molecules for those operations could be
combined to encode the behavior of primitive communication protocols.

Furthermore, the feasibility of the presented approach could be tested in a
wet-lab experiment. Successfully simulating the assembly process of the message
molecules would illustrate the practical usefulness and generality of tile-based
nanonetworks, as the presented procedure is capable of solving numerous prob-
lems.
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Abstract. The neuro-spike communication is conducted using electro-
chemical nervous signal transmissions between neurons and synapses.
The nervous signal is composed of a sequence of electrically charged ions
exchange in the neurons. It passes to other from one neuron to another
one through the process of release and a combination of chemical sub-
stances in synapses. The neuro-spike communication is subject to disrup-
tions due to different biological factors that impact the permanence of
neural communications. In this paper, we investigate the performance of
a neuro-spike communication between two neighboring neurons. We first
present a mathematical model to capture the inherent biological char-
acteristics of the nervous system. Next, the error probability of signal
detection as a function of biological parameters has been characterized.
Finally, we study the impacts of some specific medicines on the param-
eters of neuro-spike communication in the diseases of Multiple Sclerosis
and Alzheimer’s.

Keywords: Neural communication · Axonal noise · Cooperative
communication synapses · Synaptic channel · Neuro-spike
communication

1 Introduction

Neuro-spike communication in biological nervous systems is a promising research
field that is expected to have impacts on brain-machine communication system
design and medical science. The neuro-spike communication is a heterogeneous
communication process comprising electrical and chemical communications. In
the nervous transmission, a signal may be blocked, may be changed into several
spikes, or maybe added to other spikes and makes complex or wrong patterns of
spikes. In addition, because of certain types of nervous system diseases or using
specific types of medicines, a fault signal may be generated while there has been
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no nervous signal to transmit. It is a challenging task to model the biological
nervous system as a mathematical model.

Several statistical approaches have been investigated in [1–3] to model ner-
vous systems. Signal estimation and signal detection in a nervous communi-
cation system subjected to noise and several random disturbances have been
investigated in [1]. In this work, a mathematical model for a neuro-spike com-
munication link has been developed for the cases of a synapse and multiple
cooperative synapses. In [2], the binary stochastic channels are used to model
nervous processes. Also, the detection error at the receiver is computed. In [4] the
axonal-synaptic channel is modeled as a multiple-input-single-output (MISO)
communication link and the error probability of an optimum detector for the
axonal-synaptic channel is computed. In [3], several sources of randomness have
considered in the model of a neuro-spike communication link, and the bit error
rate for signal detection is computed. Also, an optimum receiver is designed in
[3] to enhance the bit error rate. The authors have derived the closed form equa-
tion for the signal detection threshold and the optimum input spike rate. The
results depicted a high efficiency in achievable bit rate with the proposed system
design. In [5], a model is presented for signal propagation in nanomachine to neu-
ron communications based on molecular communications, where the behavior of
such a system as a function of the frequency is characterized. It is shown that
in a frequencies range of about 3–84 Hz, a nanomachine is able to successfully
communicate with a biological neuron with an acceptable time delay of about
13.5–43 ms.

In this work, we consider a neuro-spike communication link between two
successive neurons with several synapses between them. We describe the trans-
mission of action potentials along the axon as an additive white Gaussian noise
(AWGN) and consider the axon in the presynaptic neuron as an AWGN channel.
Next, we use a stochastic binary Z-channel to model the release of neurotrans-
mitters. Because the communication in the synaptic cleft has a molecular nature,
we use a binary stochastic X-channel to model this process. Also, we model the
aggregation of synaptic channels effects as a binary Z-channel with an aggrega-
tion crossover probability. Finally, We compute the error probability of signal
detection using the developed model. The model and the underlying analysis
can be used to investigate the impact of different biological parameters on the
performance of the neuro-spike communication link. This study could serve as
an initial step in the analysis of the impacts of specific medicines or experimen-
tal treatments on special nervous system diseases such as Multiple Sclerosis and
Alzheimer. Since the access to real data regarding the communication in the
neocortex is difficult, similar to most related works in this field, our assumption
and findings are based on the insights from the physilogy of the brain.

The remainder of this paper is organized as follows. In Sect. 2, a physiological
background of the central nervous system is presented. A mathematical system
model for a neuro-spike communication link is described in Sect. 3. In Sect. 4,
the error probability of nervous signal detection using the developed model is
evaluated. The nervous communication performance subject to some nervous
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system diseases using the developed model is discussed in Sect. 5. Simulation
and numerical results are presented in Sect. 6. Finally, concluding remarks are
drawn in Sect. 7.

Fig. 1. Structure of a neuron in the central nervous system representing its main func-
tional parts.

2 Biological Background of Neuro-Spike Communication

The human central nervous system consists of billions of interconnected neu-
rons that are connected successively together by synaptic clefts that are named
synapse [6]. A typical neuron, shown depicted in Fig. 1, mainly is made of several
segments that are named as dendrites, cell body (soma), and axon. The outer
layer of neuron is called a membrane. The axon is covered by myelin sheath with
periodic gaps that nodes of Ranvier are located on them. The myelin sheath with
insulating the axon speeds up signal propagation along the axon. A nervous sig-
nal first, enters the neuron through dendrites which are located on the top of
soma, next, passes through the axon pathway and then, leaves neuron by axon
terminals. The synapse is a small gap that passes a nervous signal only in one
direction, from the presynaptic neuron to the postsynaptic neuron, see Fig. 2.

When there is no signal to transmit via the nervous system, the neuron is
in a resting manner and is polarized with an intracellular potential about −95
to −65 mV. Electrically charged ion flows of potassium (K+), sodium (Na+),
chloride (Cl-), cause the transmitting signal throughout the nervous system.
These ions enter the neuron or exit from that via the ion channels located on
the soma and dendrites (cation and anion channels) and, on the nodes of Ran-
vier (Sodium and potassium channels). The ion exchanges between inside and
outside of the neuron, change the membrane potential of the neuron to either
a higher level or lower than the resting manner potential. With a potential
increasing high enough about 20 mV to reaches a firing threshold level, the neu-
ron will be excited, the membrane will be depolarized, and the firing will happen.
When a neuron fires, an action potential (spike) about 90 mV at a time period
of 1 ms will be generated in the neuron. The potential increase is called the
excitatory-postsynaptic-potential (EPSP). Conversely, a potential decrease to a
lower value than the resting manner potential causes the hyperpolarization of



140 M. Hosseini et al.

the neuron membrane that is called inhibitory-postsynaptic-potential (IPSP).
As firing happens, a spike passes along the axon. The spike jumps along the
axon, from a node to the next node, and reaches the axon terminals. It requires
to pass through the synapses to excite the next neuron [7]. When a spike reaches
an axon terminal, the depolarization leads to opening the calcium channels and
causes an influx of calcium ions (Ca++) into the presynaptic neuron [8]. An
increase in calcium ions causes the release of chemical substances called neu-
rotransmitters into the synapse cleft. Neurotransmitters, in turn, bind to the
receptor of the postsynaptic neuron, and by changing of permeability features of
the neuron, making the cation or anion channel open. Opening cation channels
conduct positively charged ions into the neuron, and thus, increases its potential
to a value larger than the threshold and leads to a spike firing. Inversely, with
opening anion channels, negatively charged ions conduct into the neuron, and
due to a decrease of potential to a smaller value of resting potential, the neuron
will be inhibited or in another point of view, its sensitivity to the next nervous
signal will be reduced.

Fig. 2. Two successive neurons which are connected by chemical synaptic clefts; the
nervous signal passes from presynaptic neuron to the postsynaptic neuron via multiple
synapses.

3 Neuro-Spike Communication Model

Figure 3 depicts the mathematical model for a neuro-spike communication link
consisting of two successive neurons and multiple synapses between them, which
is shown in Fig. 2. This model is complex and heterogeneous and thus, it is split
to several blocks which are investigated separately in the following.

3.1 Transmitter (Presynaptic Neuron)

A presynaptic neuron as a transmitter should pass the nervous signal through the
axon and then, releases neurotransmitter into synapses. The nervous signal, as the
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input of the neuro-spike communication model, could be modeled as a sequence of
delta functions that is so-called spike train and is defined as follows [1]:

x(t) =
∑

i

δ(t − ti), (1)

Fig. 3. Representation of the mathematical model for a neuro-spike communication
link.

where δ(t) expresses the delta function, and ti is the time duration in which the
i-th spike occurs. The achieved signal at the axon terminal is obtained as

a(t) = x(t) + n(t), (2)

where n(t) implies the axonal noise that is assumed to have Gaussian distribution
over a bandwidth BWn with the variance σ2

n. The power-spectral-density of n(t)
is [3]

Sn(f) =

{
σ2
n

2BWn
, −BWn ≤ f ≤ BWn

0 ,o.w.
(3)

therefore, the axon signal to noise ratio (SNR) can be obtained as follows:

SNRax =
1

Sn(f)

∫ ∞

0

x2(t)dt =
2BWn

σ2
n

∫ ∞

0

x2(t)dt. (4)

The axon SNR depends on the characteristics of the axon. Therefore, the
higher value of SNR implies the enhancement of the axon health and leads
to the more smoothing pathway of the nervous signal transmission throughout
the axon. The main reason for some nervous system diseases such as multiple
sclerosis (MS) [9] is the weak passing of signals through the axon. Therefore,
the value of axon SNR in these nervous diseases is small. It is expected that
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specific nervous medicines and treatments be effective to smooth the pathway
of transmitting nervous spikes in the axon and thereby increase the value of
SNRax.

The process of releasing neurotransmitters into the synapse can be modeled
as a stochastic binary Z-channel, with a crossover probability of pR. The binary
input of this channel is equal to 1 when there is ‘a spike’ or is equal to 0 when
there is ‘no spike’. Also, the binary output R(t) is 1 or 0, respectively when
neurotransmitters release happens or not. The probabilities pR and 1−pR imply
the cases of a noisy spike leads to the release and a noisy spike is failed to leading
to the release. The proper synthesis of neurotransmitters, the on-time opening
of calcium channels, and the influx of sufficient calcium ions into the neuron,
and the perfect chemical combination in the axon terminals increase the value
of pR [10].

3.2 Synaptic Channel

Communication in the synaptic channel is mainly due to the activity of released
chemical substances by the presynaptic neuron, and the opening and closing
of ion channels on the postsynaptic neuron. Therefore, the synaptic channel
has a molecular nature and we model it by a Z-binary channel with synaptic
error probabilities pc0 and pc1. The binary input of this channel is R(t), that
represents the release or not release of neurotransmitter into the synapse. Besides
that, the binary output is C(t) which is equal to 1 and deals to the opening of
cation channels, otherwise is 0. Probabilities 1 − pc1 and 1 − pc0, respectively
are equivalent to cases that neurotransmitters are released and cation channels
open, and there is no release and cation channels remain closed. Somewhere in
this paper, all these stochastic parameters are called synaptic parameters.

The values of synaptic parameters mainly dependent on the synaptic chan-
nel characteristics. Therefore, in some special nervous system diseases due to
synaptic disruptions, the values of pc0 and pc1 are considerably high, while with
the appropriate performance of synaptic channel the values of these parameters
are negligible. To facilitate the describing of the synaptic channel performance
we use a new concept as synapse operation probability which is obtained as

pCh = 1 − pChe
, (5)

where pChe
expresses the error probability of synaptic channel and is defined as

follows:
pChe = pC0pr {R = 0} + pC1pr {R = 1} . (6)

3.3 Receiver (Postsynaptic Neuron)

There are hundreds to thousands of synapses between adjacent every pair of
successive neurons [6]. While a spike transmission, each synapse has a basic role
in the decreasing or increasing the membrane potential of the postsynaptic neu-
ron, respectively. The excitation or inhibition impacts of all synapses, aggregate
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in the soma of the postsynaptic neuron. Synapses that open cation channels
on the postsynaptic neuron and cause to increase of membrane potential are
called cooperative synapses. Also, the operation which leads to the aggregation
of cooperative synapses impacts is called spatial summation [6]. The process of
spatial summation between two neurons i and j can be modeled as a stochastic
binary Z-channel with the crossover probability pSij

. Considering the physiol-
ogy background presented in Sect. 2, this probability increases by an increase
in the number of cooperative synapses between two neurons [11], and it will be
decreased by increasing of firing threshold of the postsynaptic neuron. We can
model the spatial summation as

pSij
=

1
| Vthj

− Vrestj |
(

1
| Vthj

− Vrestj | + exp(−Nijp
l
Chij

)
)−1

, (7)

where Nij is the number of cooperative synapses between presynaptic neuron
i and postsynaptic neuron j. Vrestj and Vthj

state the resting potential and
firing threshold of the postsynaptic neuron. Also, pl

Chij
represents the operation

probability of the l-th synapse between two neurons i and j, which is obtained
by Eq. (5).

The output signal of the binary spatial summation Z-channel is S(t), which
in a short time slot is indicated by the binary variable S. Therefore, S = 1
implies a spike firing that means cooperative synapses successfully excite the
postsynaptic neuron. Besides, S = 0 express that excitation of the postsynaptic
neuron is failed and no spike is generated. Also, the binary input variable of
this channel is C = 1, equivalent to the opening of cation channels and entering
positive ions into the postsynaptic neuron or C = 0 which means cation channels
are not opened. Notice that indices i and j can be removed because a general
neuron link has been considered in this model.

On the other side, after a neurotransmitter release, the membrane potential
changing of the postsynaptic neuron lasts about 15 ms. Therefore, another neu-
rotransmitter that opens the same channel still could increase the membrane
potential, and thereby, the excitation rate increases. Thus, the results of succes-
sive releases of neurotransmitters aggregate together. This process that states
the postsynaptic neuron response to the successive releases is called temporal
summation [6] and can be modeled as q.h(t). In this modeling, h(t) corresponds
to the EPSP waveform and deals to the postsynaptic neuron response to a single
neurotransmitter release, and q deals to the variable amplitude of the tempo-
ral summation. The value of q changes with the number of neurotransmitters
releases. Also, h(t) is modeled as an alpha function as follows [1]:

h(t) =
hp

tp
exp

(
1 − t

tp

)
u(t), (8)

where hp and tp are the peak EPSP magnitude and the corresponding time,
respectively, and u(t) indicates the unit step function whose value is one for
t > 0, and zero otherwise. Also, the probability density function (PDF) of q can
be represented as the k-th order Gamma-distribution [12]
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p(q) =
βk

(k − 1)!
q(k−1)exp(−β), (9)

both β and k determine the distribution spread. The parameter k modify the
variability of q therefore, the case with k = 1 refers to an exponential distribution
with the highest variability and k = ∞ refers to a delta-function is independent
to the variability in q.

4 Nervous Spike Detection

In this section, we evaluate the bit error rate (BER) of nervous spike detection
in a neuro-spike communication link. As shown in Fig. 3, the binary variable X
implies the existence or absence of a nervous spike in the presynaptic neuron,
respectively by X= 1 and 0. Also, Y states the binary decision of spike existence
or absence in the postsynaptic neuron, respectively by Y = 1 and 0. The output
signal in the receiver measured over the period 0 ≤ t ≤ T is:

y(t) = h(t) ∗
∑

i

qiSiδ(t − ti), (10)

where qi is the variable amplitude of EPSP waveform in response to the i-th
nervous spike. Si is a binary variable stating the spike fire in the soma of the
postsynaptic neuron. Also, the symbol ∗ indicates the convolution operation.
We consider the period T is divided into several time slots, and each time slot
is small enough in which only one spike may occur. We can express the output
signal in a single time slot as follows:

y(t) = S.q.h(t). (11)

Thus, the following rules (Y0, Y1) relates the output signal to its binary equiv-
alent:

Y0;Y = 0 −→ y(t) = 0,
Y1;Y = 1 −→ y(t) = S.q.h(t). (12)

Considering initial probabilities as p0 = pr {X = 0} and p1 = 1 − p0 =
pr {X = 1}, we can formulate the likelihood ratio for the model as follows [2]:

Lx(y) =
f {Y |X = 1}
f {Y |X = 0} , (13)

in this equation, f{Y |X = 1} implies the probability distribution function of the
binary output in the postsynaptic soma conditioned on the spike existence in
the presynaptic neuron. Thereby, we can write decision rules according to the
model, base on (10) as [1]

{
if Lx(y) ≥ L0 then Y1 is true
if Lx(y) ≤ L0 then Y0 is true

(14)
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where L0 states the decision threshold which can be defined as follows:

L0 =
p0 + 1

SNRax

p1
. (15)

We can also represent the likelihood ratio as a function of other stochastic
parameters of the model. Therefore, we rewrite it as

LS(y) =
f {Y |S = 1}
f {Y |S = 0} , (16)

and thereby, the decision rules change to
{

if LS(y) ≥ L1 then Y1 is true
if LS(y) ≤ L1 then Y0 is true

(17)

where L1 is the new decision threshold and is defined as

L1 =
L0A1 − A3

−L0A2 + A4
, (18)

where

A1 = pr {S = 0|X = 0} = 1 − pC0pS

A2 = pr {S = 1|X = 0} = pC0pS

A3 = pr {S = 0|X = 1} = 1 − pC0 + pR(pC0 − pS + pSpC1)
A4 = pr {S = 1|X = 1} = pRpS(1 − pC1) + (1 − pR)pSpC0.

(19)

Now, according to [13], the LS(y) can be represented as follows:

LS(y) =
∫ ∞

0

p(q)
pr {Y |q : S = 1}
pr {Y |S = 0} dq (20)

where pr {Y |q : S = 1} represents the binary output probability conditioned on
the variable amplitude of the EPSP waveform. Then, supposing the AWGN
bandwidth is large enough to satisfy BWntP > 1, we can simplify LS(y) as
follows:

LS(y) =
∫ ∞

0

βkq(k−1)

(k − 1)!
exp(−βq + 2q.r(y) − q2Eh)dq, (21)

where r(y) =
∫ T

0
h(t)y(t)dt, and Eh = exp(2)Tph2

p

4 .
Finally, the average error probability of spike detection in the receiving neu-

ron can be represented as

perror = p0pfalse + p1pmiss (22)

where

pfalse = pr {Y = 1 | X = 0} = pr {LS(y) ≥ L1 | S = 0} (1 − pSpC0)
+ pr {LS(y) ≥ L1 | S = 1} (pSpC0),

(23)

and
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pmiss = pr {Y = 0 | X = 1} = pr {LS(y) < L1 | S = 0} (1 + pSpR(−1 + pC1)
+ (1 − pR)(−pSpC0)) + pr {LS(y) < L1 | S = 1} (pR(1 − pC1)pS

+ (1 − pR)(pSpC0)).
(24)

5 Discussion on Nervous System Diseases
and the Impact of Medicines on Neuro-Spike
Communication Performance

In this section, the relation between random parameters of the developed model
and some nervous system diseases is investigated. Considering the communica-
tion background of the nervous system presented in Sect. 2, a nervous signal
may be blocked either while passing the axon, or transmitting in the synaptic
channel.

For example in Multiple Sclerosis (MS) which is a mobility disability ner-
vous disease, due to the demyelination of axon, the spike may be disrupted or
blocked while passing the axon [9,14]. In MS disease, while passing a spike in
the axon, a large number of positive ions flow out of the neuron and the nervous
spike will be blocked. Therefore, the value of (SNRax) in such diseases is low.
Fampridine (Fampyra R©) is known as an efficient medicine for MS and walking
disability diseases [15]. Fampridine by blocking the potassium channels prevents
excessive efflux of positive electrical charges. As a result, SNRax increases, and
the transmission of the nervous signal through the axon facilitates.

In some other nervous system diseases, the release probability pR is too small.
In such cases, special medicines such as clonidine act on the presynaptic neuron
and through a prolonged inhibition of this neuron increase the release probability
of neurotransmitters [10].

Also, synaptic channel disruptions cause some nervous diseases such as,
Parkinson, Schizophrenia, and Alzheimer [16–19]. In these diseases in which the
nervous spike passing is failed at the synaptic channel, the value of synaptic
parameters pC0 and pC1 are high. Exercise, enough and good quality sleep as
well as the hormone Leptin act on the nervous system to facilitate nervous signal
passing through the synaptic channel. Thus, values of pC0 and pC1 decrease and
abilities of learning and memorizing [20] will be improved.

6 Numerical Results

In this section, the bit error rate (BER) of a neuro-spike communication link
based on the developed model is investigated. Simulations are carried out in the
environment of MATLAB [21]. According to [1], we set the predefined parameters
as hp = 2 mV and Tp = 1 ms for the EPSP waveform. The variable amplitude
of EPSP waveform, q, is considered as a Gamma distribution with parameters
β = 1 and k = 1. We also considered 107 transmitted spikes and computed
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Fig. 4. The average probability of error versus the axon SNR in a neuro-spike commu-
nication link with pR = 0.8, pC0 = 0.01, pC1 = 0.01, pS = 0.4.

Fig. 5. The bit error probability curves versus the relase probability for different param-
eters of the synaptic channel in a neuro-spike communication link with pC0 = 0.009,
pS = 0.6, SNRax = 15dB.
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Fig. 6. The bit error rate versus the spatial summation probability in a neuro-spike
communication link with pR = 0.8, pC0 = 0.01, pC1 = 0.09, SNRax = 15dB.

the average performance. In the following, the results of the error probability
analysis versus stochastic parameters are depicted.

Figure 4 shows the error probability of spike detection in the postsynaptic
neuron versus the axon SNR changes. It is observed that by an increase in
SNRax, the spike transmission in the neuron facilitates and as a result, the error
probability improves. In cases of axonal diseases such as MS who suffer from weak
passing of signal in the axon, SNRax is low and thus, as we can observe in Fig. 4,
the correct spike detection in the receiver with a high probability will be failed.

In Fig. 5, the average error probability versus the releases probability of neu-
rotransmitters pR for different cases of pC1 = 0.05, 0.1, and 0.8 is depicted. It
can be seen that with an increase of pR, the error probability of spike detection
decreases. Also, it is observed that for the worst case of pC1 = 0.8 increasing pR

could not change the error probability. The reason is that in such a case, the
synaptic channel is approximately disrupted and thus, the error probability is
not sensitive to other parameters.

In Fig. 6, the average error probability versus the spatial summation proba-
bility is shown. With an increase of pS , the average error probability decreases.
The reason is that spatial summation probability directly is dependent on the
number of cooperative synapses between two neurons. Therefore, more synapses
cooperate to excite the postsynaptic neuron the detection of the signal will be
more successful.
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7 Conclusion

In this paper, the performance of a neuro-spike communication link has been
studied. First, we developed a model of neuro-spike communication which con-
sists of two successive neurons that are connected via multiple synapse cleft.
Next, we evaluated the error probability of signal detection in this system using
the proposed model. The simulation results reveal the strong dependence of sig-
nal detection to the disruption factors such as axonal noise, release probability of
neurotransmitters, synaptic channel parameters, and spatial and temporal sum-
mation. We also have studied the impact of different nervous system medicines
on these stochastic parameters. As part of our future work, we model the coop-
eration of synapses as a biological concept of synaptic plasticity and develop the
neuro-spike communication model by considering the medicine effect.
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Abstract. Fitness tracking, fall detection, indoor navigation, and visual aid appli-
cations for smart glasses are rapidly emerging. The performance of these applica-
tions heavily relies on the accuracy of step detection, which has rarely been studied
for smart glasses. In this paper, we develop an accelerometer-based algorithm for
step calculation on smart glasses. Designed based on a salience-analysis app-
roach, the algorithm provides a highly accurate step calculation. An activity mon-
itoring application for a commercial Android-based smart glasses (Vuzix M100)
is designed and realized for algorithm evaluation. Experimental results from 10
participants wearing the smart glasses running our application achieved average
step detection error of 2.6% demonstrating the feasibility of our salience-based
algorithm for performing pedometry on smart glasses.

Keywords: Smart glasses · Accelerometer · Activity monitoring · Salience ·
Peak-to-Peak

1 Introduction

In recent years, interest in smart glasses has been substantially growing, as has the
number of influential companies, such as Amazon and Facebook, that are announcing
their entry into the smart glasses market. It is expected that the combined market size
for smart glasses will grow at an exponential rate of 76% annually and will reach $16B
by 2025 [1]. The use of commercial smart glasses for fitness tracking [2, 3], indoor
navigation [4, 5], fall detection [6, 7], vision enhancement in the visually impaired [8–
10] has already gainedmomentum and it is expected that such applications will comprise
a considerable sector of the smart glasses market. The performance of these applications
as well as many other emerging services is dependent on the accuracy of pedometry
(step detection and counting) on smart glasses.
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Due to the proliferation of accelerometers in consumer products and by virtue of
their low power consumption, accelerometer-based step calculation has emerged as the
most popular approach to perform pedometry. Many existing step counting solutions
have shown that when a user is walking, the measurements of the accelerometer (on the
user’s body) will regularly change and such changes can be used to calculate the number
of steps taken by the user.

Plenty of research studies on activity monitoring, especially step detection have
been conducted [11]. A number of such studies aim at detecting steps for handheld
devices such as smartphones [12]. Other researchers have transformed the problem
of step detection into a case in pattern recognition and employed a machine learning
technique for pedometry [13, 14]. Another group of studies devised algorithms that target
step detection in ankle-worn, shin-worn, orwaist-worn devices [15, 16]. To the best of our
knowledge, step detection techniques suited for smart glasses have not been adequately
explored. Smart glasses cannot offer similar activity tracking utility levels compared
to the typical handheld, waist-worn, or ankle-worn wearable devices [17]. Head-worn
devices typically contain a limited number of sensors and they are vulnerable to external
sources of error. Moreover, it is typical for smart glasses to require low computing power
by virtue of their size, heat, and battery issues [18, 19].

In order to motivate the problem, we conducted an experiment, where we attached 6
inertial measurement units (IMUs) produced by Shimmer Research to different regions
on a subject body and asked him to take 220 steps. We use the windowed peak detection
technique, proposed in [20] as an optimal step detection method for wearable low-power
devices, to derive the number of steps for each IMU. Table 1 summarizes the number of
steps counted by each IMU; we observe that lower parts of the body and especially, the
shin, thigh, and waist areas performed well; this can be attributed to the higher impact
of each step (foot striking the ground) on those areas comparing to other locations.

Table 1. Counted steps vs. the location of IMU

Sensor location Shin Thigh Waist Forearm Upper arm Head

Steps counted 228 199 230 188 179 114

Error( real−est.
real )(%) 4% 10% 5% 15% 19% 48%

Based on the above experiment, in this paper, we propose a step detection algorithm
for smart glasses, which can identify steps accurately and in real-time. The algorithm is
composed of a signal preprocessing phase, axes combination phase, salience calculation
and analysis phase, and a peak detection phase. The proposed algorithm utilizes only the
accelerometer data for step calculation since smart glasses are commonly designed with
an accelerometer, while other sensors such as the GPS and gyroscope are not always
available. Furthermore, the proposed algorithm requires a low level of computing power
from smart glasses.

The contributions of this paper are threefold. First, we propose an algorithm for
step detection and calculation on smart glasses based on accelerometer data. Second,
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in two experiments, we investigate the step detection accuracy of our algorithm on
commercial smart glasses as well as on IMUs attached to multiple on-body locations.
Third, we incorporated the proposed algorithm into an activity monitoring application
for Android-based smart glasses for real-time step calculation. The rest of this paper
is organized as follows. Section 2 introduces some related studies. Sections 3 and 4
describe the designed data collection and data analysis phases, respectively. Section 5
covers our experimental results and Sect. 6 discusses constraints and future directions
of our investigation. Finally, Sect. 7 concludes this study.

2 Related Work

There are numerous algorithms and research studies conducted on step detection based
on smartphones and waist-mounted devices, with high accuracies [20]. Some algorithms
explore other ways to detect steps beyond the basic peak-valley relationship, such as the
method proposed by Kumar et al., [21] discussing the use of the linear relationship
between the amplitude of acceleration and the frequency of steps, effectively detecting
steps through their pilot trials. Most of the research in the field of step detection focuses
on 5 body parts to mount the censor: wrist, pocket (waist level), thigh, ankle, and foot.
The most reliable step count algorithms come from insole pressure sensors that have the
ability to detect the pressure applied to the sensor once a subject takes a step [22, 23].
The impulse (force) generated from each foot striking the ground in walking is more
pronounced in those areas. In general, lower parts of the body such as the ankle and foot
absorb most of the impact of stepping and therefore, devices placed on these body parts
leads to the most accurate results [24].

Smartwatches and smartphones are among the electronic equipment that is capa-
ble of recording and analyzing motion signals [25–27]. However, smartphones are not
necessarily always taken in the same or relative location. In addition, these devices are
extremely sensitive to non-ambulatory activities [28]. Moreover, hand and arm move-
ments when the device is being carried, do not necessarily correlate with stepping and
may create artifacts on the signal. On the other hand, smartwatches provide a tremendous
amount of information by continuously monitoring of the user and measurement of their
physiological parameters. Although, the data acquired from smartwatches are under the
question of reliability, due to subtle and often wrist movements, compared with other
parts of the body where the sensors are usually placed [26]. One inevitable shortcoming
of data based on wearable devices is that they are not generalizable and unstable across
different brands [29], which is the case in smartphones as well.

Themost popular step detection algorithm uses peak-valley extraction to detect steps
from the accelerometer data. The three-axis accelerometer data is combined into a single
acceleration vector, which is then graphedwhere each peak is considered to be a step [30,
31]. A more advanced algorithm would be a filtering system which places thresholds for
each peak to be considered a step, as there will be multiple peaks from the accelerometer
that is not considerable enough to be detected as a peak.

Most step counting algorithms are created for devices inside the pocket [32]. For
instance, Brajdic and Harle [20] provided evaluations considering various algorithms
for step detection on smartphones. They evaluated several algorithms such as windowed
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peak detection (WPD), hiddenMarkov model, and continuous wavelet transform, which
were the most promising approaches. They found that the simplest algorithm with the
best accuracy is the windowed peak detection algorithm.

A number of studies have employed amodified version of the peak-to-peak algorithm
to detect steps from an accelerometer signal. For instance, the peak detection algorithm
proposed in [33] produces a refined method that enables the algorithm to detect peaks
in periodic and quasi-periodic signals. This method is noted to have high efficiency in
peak detection within high and low-frequency signals. Another innovation based on step
detection for head-mounted sensors is being used for detecting user movements when
using virtual reality systems. The idea of these virtual reality systems is to immerse the
user into a virtual world in which their movement in real life is synchronized to their
virtual avatar [34].

3 Sensor Platforms and Pilot Experiments

We run a pilot study to investigate the step detection accuracy of our algorithm on
commercial smart glasses as well as on the IMUs attached to multiple body parts. The
first experiment is through activitymonitoring via a smart glass device for the head signal,
and another is using the IMUs for pocket, head, and foot-worn IMUs. Experiments are
conducted in an outdoor environment at the California State University, Los Angeles
campus. The participants include 10 students (average age 26.3, SD = 5.2, average
height 170 cm, SD = 11.3 cm). For both experiments, each test consisted of walking
100 steps at their usual pace repeated 10 times per individual. For this pilot study, none
of the participants reported any limitations in their mobility or vision. In the following,
we explain both experiments.

Fig. 1. Vuzix M100 device on test subject for data collection.
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3.1 Step Detection on the Smart Glass

A popular Android-based smart glass in the research and industry communities, namely
the Vuzix M100, with a sampling frequency of 100 Hz is used in the first experiment.
Figure 1 shows a subject wearing the Vuzix M100 with the activity monitoring Android
application running. The application utilizes our salience-based algorithm to detect the
steps in real time. Figure 2 is a screenshot of the Android application.

Fig. 2. Graphical user interface of application on Vuzix M100.

3.2 Step Detection on IMUs

In experiment 2, we employ the Shimmer3 [35] IMU unit to collect the acceleration
signal from the head, foot, and pocket locations. The step detection is performed off-line
on a desktop computer. Figure 3 shows the Shimmer worn by the same subject on the
head.

Fig. 3. (a) The Shimmer3 IMU, (b) the Shimmer sensor is worn by a subject on the head.
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4 Methods

We propose a novel algorithm to identify the steps using the accelerometer signal from a
smart glass device and compare the accuracy of our results against theWPDmethod. The
WPD uses a moving average to smooth the accelerometer signal, and it detects single
peaks via a fixed size sliding window; it finds the maximum value in the window, shifts
the window, and discards the chosen maximum if it persists for two windows in a row.
This algorithm has been identified as an optimal step detection approach for wearable
devices owing to its computationally inexpensive nature [20, 36]. Figure 4 presents the
block diagram of our step detection approach; the description of each step will follow
in the preceding subsections.

Fig. 4. The block diagram representing the flow of the approach.

4.1 Pre-processing

The signal preprocessing consists of calibration and low-pass filtering. First, the cali-
bration process is utilized to reduce the drift errors and offsets from the raw acceleration
signals. Second, a moving average filter is used to suppress the high-frequency noise of
the calibrated inertial signals. Details of the preprocessing phase can be found in [29].

4.2 Combining the Axes

The three axes (x, y, z) are combined to a single magnitude measure. We use (1) to
calculate the magnitude of combined acceleration in all directions using the Euclidean
distance method:

r =
√
A2
x + A2

y + A2
z (1)

4.3 Peak Detection with Salience Algorithm

We calculate the salience of each acceleration sample point. Considering all possible
intervals in a given signal of sizeN, salience is the length of the longest interval for which
a sample is a maximum [37, 38]. The key property of the salience values algorithm is
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that the starting point of each step has a large salience value. Hence, steps can be found
by locating these prominent points.

As an example, salience can be visualized as shown in Fig. 5. Considering the fourth
sample in the signal shown in Fig. 5; despite the fact that it has a higher magnitude
than the seventh sample, it has a smaller salience comparing to the seventh sample, s(4)
= 4 as opposed to s(7) = 8. The term salience vector represents the resulting signal
containing the salience of each sample in the original signal. The list of salience vector
of the example signal shown in Fig. 5 can be found in (2). We use salience signals to
find each stride that has the largest salience samples over a time threshold of 30 s. Once
the time threshold is met, the salience vector is then processed through a peak detection
algorithm to determine the steps of the filtered data.

s(k) = {14, 1, 2, 4, 1, 13, 8, 1, 4, 2, 1, 5, 2, 1, 15}, 1 ≤ k ≤ 15 (2)

Fig. 5. Salience of an example data sequence.

We have implemented all three algorithms found in [38] for computing the salience
vector, s, of a signal. These algorithms include: 1) basic salience computation, 2) par-
tial salience allocation, and 3) sliding window analysis. We found the sliding window
approach to be the most suitable one for the purpose of step detection, as it offers faster
execution time and it addresses the issues pertaining to the signal’s origin. The following
briefly explains three algorithms with which we can calculate salience that is done after
combining the three axes of the signal and obtaining the r vector [37].

Basic Scheme. To find the length of the longest interval for which a sample is maximum
in a signal, the following steps are required:

1. Initialization: Since each sample is a maximum with respect to itself, all salience
values are set equal to 1. Thus, the length of the analysis interval (n) is set as n = 2.

2. Subdividing the input signal of length N into analysis intervals of length n. The
length of the last interval will be between 1 and n.

3. Finding the maximum point within each interval and assigning a salience of n to the
corresponding sample.
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4. Increasing the size of the analysis interval by one and going back to step 2 until n
reaches N.

The last calculated salience vector will be reported.

Partial Salience Allocation Scheme. As an alternative to the basic scheme, partial
salience allocation is used in the case of computationally expensive functions. This
algorithm utilizes tabular representation of the samples as instead of finding maxima
over intervals with increasing lengths, one can determine the maximum over frames of
decreasing lengths. With j being the position of the global maxima in the signal, the
value in this position is a maximum for the previous j−1 first samples. Accordingly,
assuming that j is known, one can compute the maximum over j−1 first samples only
and assign it a salience of j−1 and so on, until a salience has been assigned to the first
sample.

Sliding Window Salience Computation Scheme. Partial salience allocation is faster
than the basic scheme, however, this method cannot find salience values for all the
samples in the input signal. Furthermore, the problems related to the samples near the
boundaries are not addressed in this scheme. The intuition behind the sliding window
scheme is to apply a window to the input signal and move the window sample by sample
in order to address the boundary problem. In this method, a sliding window wM (i), of
length M, where M < N, and origin i, is placed at the beginning of the signal and is
shifted sample by sample towards the endpoint of the signal. Saliences S(k,i), Sleft(k,i),
Sright(k,i) are then computedwith respect to the slidingwindow. If the properwindow size
is chosen, the running saliences obtained will suffice for most applications. We define
local saliences with reference to the position of a given window. Moreover, running
saliences S*(k), S∗

left(k), S
∗
right(k), are defined as the maximum of the local saliences of

sample k for all window positions (previous and current). Thus, running saliences are
non-decreasing. Here we outline the sliding window analysis scheme:

1. Initialization: all saliences S* are set equal to 1 and all saliences S∗
left and S∗

right are
set equal to zero.

2. Applying the partial salience allocation scheme to the samples within the sliding
window with origin i and computing the local S(k, i), Sleft (k, i), and Sright (k, i)
saliences, where k = i, i +1, …, i +M − 1.

3. Updating running saliences as follows: for each sample k, S* = S(k, i), S∗
left(k, i) =

Sleft(k, i), S∗
right(k) = Sright(k, i) if their values will be increased, otherwise, we

skip this step.
4. Shifting the sliding window to the right by one sample, i.e., (i → i +1) and going

back to step 2.

Once the sliding window reaches the right boundary of the input signal, the final salience
vector, Sfinal (k) is given by (3):

Sfinal(k) = S∗
left(k) + S∗

right(k) + 1, k = 1, 2, . . . ,M (3)



Activity Monitoring Using Smart Glasses 161

We discard the first and lastM − 1 element of the salience vector since these values
are in the boundary. Due to this problem, it is important to properly choose the size of
the sliding window.

4.4 Signal Enhancement

In this step, we compute a vector u, which is defined as:

u = (r.s)

max(s)
(4)

where s is the salience vector and dot (.) represents an element-wise multiplication. The
idea behind deriving u is to make peaks of r more pronounced and to diminish the rest
of the samples.

4.5 Thresholding and Peak Detection

We extract all the elements of u that exceed a certain threshold, that is given by (5) as
potential cycle indices [38].

threshold = 2

3
max(u) (5)

Then the difference vector, d, between adjacent extracted indices is calculated. We nor-
malize d around its mean and extract one of the two indices of points that fall within
this range, i.e., | d − mean(d) | < mean(d). This elimination phase helps to increase the
accuracy of our stride detection algorithm by counting two close peaks only once. The
number of such points is indicative of the number of steps taken and in fact, these points
are the start/endpoints of each step. Finally, we return a list of indices that these points
correspond to.

Among the three algorithms to calculate the salience vector, the sliding window
scheme is more efficient than the basic and partial salience allocation. Hence, we will
base our results on the calculations from the sliding window algorithm. We choose the
window size of 94 [38] and calculate the salience vector.

Figure 6a shows the combined accelerometer signal, r, and the red lines represent the
occurrence of a step. Figure 6b exhibits the salience vector of the combined acceleration
signal. Figure 6c depicts the enhanced salience vector where the peaks (associated with
steps) become pronounced, and that this subfigure corresponds to the vector, u, where
we enhance the signal. As shown, the peaks are more significant and distinguishable
from the rest of the signal.
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Fig. 6. Original signal (a), the signal’s salience vector (b), and the salience vector after
normalization (c).

4.6 Error Determination

To quantify the differences between the signals from different parts in the body namely
foot, head, and pocket, we calculate the error for each trial and each person as written
in (6) and (7). The error in our experiments is defined as the absolute difference of the
number of steps calculated by the algorithm from the ground truth [36]:

ej(k) =
∣∣stepsj(k) − stepsj

∧

(k)
∣∣

stepsj(k)
(6)

with j being the subject number, and k being the trial number. The term stepsj(k) is the
true number of steps that subject j took in trial k, and stepsj

∧

(k) is the step calculated by
the algorithm. Each subject performs each trial 10 times, thus, the averaged error for
subject j and overall repeats (ej) is given by (7):

ej =
∑n

k=1 ej(k)

n
(7)

5 Results

Weevaluate the step detection performance of our algorithmoncommercial smart glasses
as well as IMUs attached to the head and other parts of the body. In the pilot trial, we
collected gait data from 10 subjects and applied our proposed algorithm to these signals.
In this section, we compare the performance of the algorithm for the foot, pocket, and
head signals, and provide error analysis for the results.



Activity Monitoring Using Smart Glasses 163

5.1 Accuracy Comparison

Figure 7 graphs the changes in step detection error from theWPDmethod to our salience-
based approach. The average step detection error of our approach (2.6% with SD of 2.8)
was significantly lower than that of the WPD method (21.8% with SD of 9.7).

Fig. 7. Comparing the error for step counting from the head signal between theWPDmethod and
our approach.

5.2 Error Analysis

Table 2 lists the average step detection for three IMU locations in experiment 2. For
both the WPD method and our approach, the foot location performs remarkably well
and achieves similar results with an average error of 2.9% (SD = 1.6) and 2.7% (SD =
2.4), respectively.

We note moderate improvements in step detection for the pocket location with our
approach (6% with SD of 3.5) comparing to the WPD (7.2% with SD of 6.5). The head
location benefitted the most from our salience-based approach, where the step detection
error declined from 25.6% (SD = 9.4) to 3.9% (SD = 2.4). The error range for the head
location was from 13% to 39% in the WPD method; however, with our approach, the
range was narrowed down to 0% to 8%.
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Table 2. Average step detection error in experiment 2.

Subject WPD Our approach

Head Pocket Foot Head Pocket Foot

1 31% 10% 1% 8% 1% 0%

2 23% 5% 5% 3% 13% 2%

3 35% 2% 2% 5% 2% 2%

4 21% 6% 0% 4% 8% 6%

5 15% 1% 2% 0% 6% 7%

6 38% 9% 4% 5% 4% 4%

7 20% 23% 5% 2% 7% 1%

8 13% 10% 3% 3% 5% 0%

9 21% 1% 3% 2% 9% 4%

10 39% 5% 4% 7% 5% 1%

Average 25.6% 7.2% 2.9% 3.9% 6.0% 2.7%

St. Dev. 9.4 6.5 1.6 2.4 3.5 2.4

6 Discussion and Future Work

During the process of this research,we are attempting to develop an algorithm that further
improves on the current step detection algorithms by collecting additional data for testing
and applying the salience algorithm to filter the noisy data received from accelerometer
sensors. We focused on analyzing smart glass data received from the sensors. There
are several factors that make it difficult to achieve the same accuracy from head data
than it is from the foot data. One of the most challenging issues with collecting data
from the head is all of the movement the head experiences throughout walking. Every
slight acceleration from the head can be falsely interpreted as a step, which is where the
salience algorithm aids in fixing. Moreover, in our trials, the subjects are asked to walk
at their normal pace that is relatively slow which is more challenging. In the future, we
intend to investigate the performance of our algorithm for various speeds. As people
age, the angular displacement of the head changes and the body will have a decreased
ability to attenuate accelerations from trunk to head [39]. As another future direction,
we will investigate our algorithm’s performance on older adults.

Providing an improvement in accuracy on current step detection algorithms can
also be applied on a myriad of other fields ranging from physical health measurements,
medical studies, and personal localization. Although step counters are not commonly
used in clinical research, steps per days can now be considered as vital signs for crucial
medical information in the future [24].

Before activity monitors can be adequately used for clinical research, they must
first prove there is a connection between steps taken and future occurrence of diseases.
Having accurate measurements of physical activity is crucial during medical studies
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as any slight mismeasurement could result in obscuring actual links between physical
activity and certain ailments that affect physical movements [40].

Another future application of this research can be implemented in personal local-
ized positioning systems based on steps detection and the calculated distance the user
has travelled [41]. A group of researchers from Seoul National University worked on
a method to determine the user’s location in indoor settings. Due to the lack of GPS
measurements for indoor environments, these researchers resorted to step detection in
combination with pedestrian dead reckoning to capture the user’s current location. They
are able to achieve step detection through several conditions such as handheld texting,
in pocket of pants front and back [14]. For indoor position to be accurate the direction in
which the user is walking and their heading is crucial to be determined, which is accom-
plished by using the magnetometers to find their absolute direction [42]. Furthermore,
the algorithm developed in this paper can be used on other data sets from other studies.
The data set from [43] is of accelerometer data collected from two groups of individuals
who are sighted and blind using the aid of walking cane or guide dog. The paper [43]
discusses the interesting differences between the sighted and blind walkers.

Here, we perform the analysis assuming the data we are analyzing is walking signal,
in other words, walking is granted, however, the salience algorithm can be employed to
detect whether the subject is actually walking in the first place. The proposed method is
computationally inexpensive, performs well on slow walking data, and is a low battery
consumer. These qualities make this approach efficient and highly practical.

7 Conclusions

A biomechanical process (called Pronation [44]) occurs during ambulation that allows
the body to naturally absorb shock as each foot strikes the ground. Since the head is the
farthest body location from the ground, the accelerations become significantly damp-
ened [45], making it an unsuitable signal to detect steps. On the other hand, applications
in fitness tracking, indoor navigation, user authentication, vision enhancement for the
visually impaired will comprise a considerable portion of the smart glasses market and
they are all dependent on accurate step counts. With this motivation, we implement
and evaluate an accurate and reliable method for step detection using head acceleration
signals. Furthermore, our algorithm achieves superior step counting performance when
applied to the acceleration signal collected from other body parts. Our results demon-
strate the feasibility of our salience-based algorithm for performing pedometry on smart
glasses.
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Abstract. Real-time human activity recognition is a popular and chal-
lenging topic in sensor systems. Inertial measurement units, vision-based
systems, and wearable sensor systems are mostly used for gathering
motion data. However, each system has drawbacks such as drift error,
illumination, occlusion, etc. Therefore, under certain circumstances, they
are not efficient alone in activity estimation. To overcome this, hybrid
sensor systems were used as an alternative approach in the last decade.
In this study, a human activity recognition system is proposed using
textile-based capacitive sensors. The aim of the system is to recognize
the basic human actions in real-time such as walking, running, squat-
ting, and standing. The sensor system proposed in this study is used to
collect human activity data from the participants with different anthro-
pometrics and create an activity recognition system. The performance
of the machine learning models is tested on unseen activity data. The
obtained results showed the effectiveness of our approach by achieving
high accuracy up to 83.1% on selected human activities in real-time.

Keywords: Wearable capacitive sensors · Human activity
recognition · Onset-offset detection

1 Introduction

The field of Human Activity Recognition (HAR) aims to monitor and model
human behaviors and body kinematics. In daily life, humans perform different
body motions to sustain life routines, to carry out duties or to meet their needs.
A combination of the motions of different body parts represents a specific activ-
ity such as walking, running, jumping, sitting, standing, lying on the sofa, etc.
where each body motion has some distinctive characteristics on the signal level.
Last decade, the progress in wearable sensor technologies made it possible to
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collect useful data regarding body kinematics, muscle response, physical and
neural changes that occur during the action. The estimation of these distinc-
tive features is challenging, however capturing and modeling human movements
provide utmost beneficial information for autonomous computer-aided proactive
and personalized services. Therefore, in the last two decades, scientists have been
intensively working on monitoring and modeling the body movements and uti-
lizing the power of computers in terms of data processing, high computational
capacities, and re-usability of activity data.

In HAR, vision-based sensors [1–3], embedded sensors such as accelerometer,
gyroscope, magnetometer, etc., [4–6] and various body-mounted sensors [7–11]
are popular technologies that are used to collect motion data. One of the most
widely used sensors in HAR are the Inertial Measurement Unit sensors (IMUs).
IMUs are capable of tracking kinematics of the user when they are attached to
body joints. Although IMUs are rather low-cost, the localization of the IMUs
is still a challenging task and IMUs are mostly prone to the drift problem that
leads to cumulative error in sensing.

Currently, each sensor system has its limitations in terms of reliability, pre-
cision, power consumption and cost. There is no silver bullet for HAR yet and it
has been a progressive field of research for the past two decades. With the devel-
opment of the wearable textile-based sensors, motion data collection became
more effective since they are manufactured from flexible and body conformal
textile material. The body-fitted wearable sensors are good at capturing the
activity pattern as they are worn directly on body joints. Textile based sensors
are widely used in a number of applications including sports/recreation [12,13],
elderly care [14,15], rehabilitation [16,17], gaming [18–21], and robotics [22,23]
etc. Herein, low-cost textile-based sensors manufactured [24] for this study were
used to establish a wearable HAR system. Stretchable wearable braces are used
for sensor attachment and placement on knees. It is feasible to measure different
body kinematics by attaching them to belts, wristbands, or elbows.

The textile-based sensors have embedded capacitive, resistive, optical and
piezoelectric properties that are able to sense strain, pressure, touch, tempera-
ture, humidity [25,26]. In this study, the textile-based capacitive strain sensors
are used that measure the capacitance variation depending on the elongation dur-
ing lower limb motion for HAR system. We tested our prototype system on four
different lower limb motion activities; walking, running, squatting, and standing.
We initially chose these basic activities before moving on to more complex activ-
ities, since these activities have distinctive signal patterns. We collected activity
data from multiple participants. Each participant wore these knee braces and
performed 4 different activities. Finally, we evaluated the performance of our
HAR system by using signal segmentation and machine learning methods.

2 Related Studies

Although IMUs are one of the most commonly used sensors, they are not suffi-
cient alone in terms of the performance in HAR, and scientists use some other
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auxiliary sensors. Wu et al. [27], used a combination of wearable flexible sensor
and accelerometer to recognize activities of elderly people during the rehabili-
tation period. Hu et al. [28] manufactured a sensor system using flexible fabrics
and conductive yarns that is attachable to the knee joints. An electrogoniome-
ter was used as a reference sensor to calibrate their system. They compared
the motion capturing performance of their system with the VICON [29] motion
capturing system and stated that their system is able to accurately detect knee
joint movements both indoor and outdoor without hysteresis.

Another example for the sensor fusion in HAR is reported by Leier et al. [30]
who developed fall detection and activity recognition system. They manufactured
a smart wearable sensor for people working in challenging conditions to detect
accidental situations and give feedback.

Beside the classical machine learning algorithms such as those Support Vec-
tor Machine (SVM) [31], Decision Tree (DT) [32], Random Forest (RF) [33], k-
Nearest Neighbor (kNN) [34], etc., Nguyen et al. [35] investigated a new machine
learning approach for human activity recognition. They used an ensemble algo-
rithm based on voting technique. Their model was trained on two static datasets
called Mobile Health (MHEALTH) [36] and University of Southern California-
Human Activities Dataset (USC-HAD) [37].

Vu et al. [38] produced a flexible sensor by padding conductive ink that
contains conductive carbon nanotubes to a spandex fabric to detect basic human
motions. They attached their sensor to a commercial muscle pants to collect data
from the upper thigh. They obtained best results in terms of recognition accuracy
with RF algorithm.

Apart from offline learning approaches, Bhat et al. [39] developed a frame-
work that performs online learning and inference in HAR. They used a combi-
nation of strain sensor and accelerometer. They also used a low-cost Internet of
Things (IoT) device to test their system. The policy gradient algorithm achieved
great performance in HAR.

The novelty of our proposed system is to provide a new textile-based sensor
system in HAR. The capacitive properties of the sensors are feasible to mimic
human motions when they are attached to body joints. In this study, we tested
the performance of our HAR system in terms of the accuracy and speed of
activity classification in real-time.

3 Activity Recognition System Using Textile-Based
Sensors

In this section, the infrastructure of the proposed human activity recognition
system is introduced as illustrated in the flow diagram of Fig. 1: 1) Data acqui-
sition of basic human activities, 2) Preprocessing, 3) Feature extraction, and 4)
Classification.
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Fig. 1. Flow diagram of the proposed HAR system

3.1 Data Acquisition System

Textile-Based Capacitive Sensor. The sensor system used in this study is
manufactured using low-cost textile materials with capacitive properties [24,40].
The sensors can be mounted to apparel pieces such as knee braces to sense the
motion kinematics. The capacitive strain sensors consist of two pieces of knitted
conductive fabrics and a silicone insulator between these fabrics. The capacitance
value changes depending on the strain value of the fabric. The capacitance vari-
ation provides information about the movement when the sensors are attached
to body joints such as knees. The structure of the capacitive sensor is illustrated
in Fig. 2.

Conduc ve fabrics

Silicone insulator

Conduc ve yarns

Fig. 2. Structure of the textile-based strain sensor

Design of the Knee Braces with Sensors. As legs are the most active body
parts involved in many movements, we decided to track the knee joints. The knee
joint movements yield information about the patterns of sports activities like
walking, running, squatting, etc. One of the novelties of this study is producing
a new wearable sensor to estimate human activities in real-time. Therefore, the
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sensors are affixed to braces worn on both knees throughout the data collection
in the training and testing procedures (Fig. 3).

(a) frontal view (b) profile view

Fig. 3. Knee brace sensors

These sensors can easily be worn and taken off by the participants. In addi-
tion, they can be attached to fabrics on different body joints such as wristbands
and elbows.

Design of the Hardware. Figure 4 shows a diagram of the data transmission
process. The data transmission lines of the two knee sensors as shown in Fig. 3
are connected to a Transmitter Bluno (TB) module performing Bluetooth-based
communication via a microcontroller.

Regulator

Battery

Microcontroller
Power
Data

Textile-based  
strain sensor  

(left knee)

TB RB PC

Textile-based  
strain sensor  
(right knee)

Fig. 4. Circuit diagram for data collection and transmission

A low-3.7V lipo battery is sufficient to power the TB module as well as
the microcontroller and is attached to a small pocket case. The microcontroller
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connected to capacitive sensor measures the capacitance difference between the
two ends of each sensor and transmits the values through conductive yarns to
TB. These measurements are transferred to a Receiver Bluno (RB) module via
Bluetooth simultaneously. The RB is attached to the USB port of the computer
in our setup. The data collection process starts as soon as the Bluno connection
is established. The data transfer rate is set to 50 Hz.

3.2 Preprocessing

Signal Filtering and Normalization. The TB transfers the following sensory
data to the RB: 1) timestamp value indicating the exact time when data samples
are read, and capacitance values that are read from 2) the Left Knee (LK) and
3) Right Knee (RK) at that time. A smoothing filter called Savitzky-Golay [41]
is applied to the incoming data. Figure 5 displays the raw data belonging to
different activity classes on the left column and, the filtered data on the right
column.
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Fig. 5. Recorded signals of human activities before smoothing (left column) and after
smoothing (right column)

In this study, we create different feature sets for obtaining the optimal HAR
performance of our HAR system. We applied two different data normalization
approaches by taking the ratio and the difference of raw sensor data retrieved
from the right and left knees simultaneously. This approach is intended to
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improve the data integrity and make the features more robust, especially when
one (or more) of the following changes: 1) the user of the braces, 2) the initial
positioning of the braces at the knee of the user, and 3) the location of the braces
while performing the activity.

Signal Segmentation. We applied two different types of signal segmentation
methods based on 1) Sliding Window, 2) Onset-Offset Detection to investigate
the effect of these two segmentation approaches on the performance of activity
classification.

Sliding Window (SW) [42] is one of the most commonly used signal seg-
mentation methods. We heuristically fixed the window and shifting size to 128
samples (2.56 s) and 64 samples (1.28 s), respectively. Therefore, two consecutive
frames had 50% of data samples in common. We applied the First In First Out
(FIFO) inventory valuation method.

Onset-Offset Detection (OOD) based segmentation approach is an adaptive
segmentation technique. We applied an algorithm to extract each onset and
offset from walking, running and squatting signals. A single onset-offset tuple is
created using the samples starting with a left local minimum that is followed by
a peak and then ending with the right local minimum.

3.3 Feature Extraction

In this section, we will explain the features extracted from the frames processed
using the SW and OOD techniques, separately.

The SW technique provides a fixed-sized data frame with 128 samples in each
time slot [43]. Figure 6 shows one instantaneous frame obtained from each activ-
ity. It is noteworthy to mention that during running, the participant takes almost
twice as many steps as he/she takes during walking. During squat motion, the
signals obtained from both knees are mostly amplitude-shifted versions of each
other. During standing, the signals are more or less stationary. After normaliz-
ing the capacitance values retrieved from RK and LK sensors (i.e., the ratio and
difference of RK and LK signals), we extracted the 8 statistical features given
in Table 1.

Since OOD approach is an adaptive method for extracting frames, frame size
is equal to the number of samples between the detected onset and offset and
varies depending on the speed and step size of the activity, if any. A single frame
captured arbitrarily between the detected onset and offset for each activity is
illustrated in Fig. 7.

It is observed that walking and running activities have similar patterns; how-
ever, both the maximum and minimum values are larger in running, whereas the
duration of running action is generally shorter. In the squat motion, the dynamic
range between the maxima and minima regarding the capacitance change is
larger due to the extended range of the knee activity. A frame for the standing
action is not explicitly shown here, since it has no significant onset-offset dif-
ference. The statistical features in Table 1 are extracted from each consecutive
frame obtained by applying OOD.
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Fig. 6. Signals in one frame for each activity using shifting window method

Fig. 7. Signals in one frame for each activity using onset offset detection method

As a consequence, each feature instance is labeled with action names and
recorded in the feature set. The statistical features are used to model the distri-
bution and tendency of data, because they provide distinctive properties for each
activity class. Herein, the statistical features are the same for both segmentation
methods.

3.4 Classification

Four different machine learning algorithms are proposed to be used in the frame-
work of this paper. These algorithms are SVM, kNN, RF and DT. Each algo-
rithm is trained using different parameters to create the corresponding models
as given in Table 2. It is noteworthy to mention that the Radial Basis Function
(RBF) [44] for SVM as a kernel achieved higher performance compared to other
kernel functions.
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Table 1. Features extracted from each frame.

Features Definition

Mean Central tendency of the data in one frame

Median Value which divides the data in 2 equal parts

Min Minimum value in a frame data

Max Maximum value in a frame data

Standard deviation Average distance between each quantity and mean

Kurtosis Measure of whether the data has profusion of outliers
or lack of outliers relative to a normal distribution

Skewness Measure of the asymmetry of the probability
distribution of a real-valued random variable

Quantiles Points in a distribution that relate to the rank order
of values in that distribution

Table 2. Hyperparameters of ML models

Model Hyperparameter Value

Kernel RBF

SVM-1 Gamma 0.01

C 10

Kernel RBF

SVM-2 Gamma “scale”

C 1

Criterion “gini”

DT Number of estimators 200

Random state 0

Number of neighbors 5

kNN Leaf size 20

Weights “uniform”

Criterion “gini”

RF Number of estimators 100

Random state 0

4 Experiments

4.1 Experimental Framework

In this study, we used a specific sports activities dataset to compare the effect
of two signal segmentation methods in classification. We investigated the perfor-
mances of five different machine learning models and finally perform a real-time
HAR. Firstly, we collected activity data from the participants using the knee
brace sensors presented in the Sect. 3.1. Participants between the age of 21 to
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30 and were assessed. Body weight and height of participants ranged from 62
to 75 kg and 168 to 178 cm, respectively. Each participant wears the braces and
performs four different sports activities in different time slots. An experimenter
checks the connection between the sensor and the computer to ensure that there
is no interruption or distortion during the recording.

A PC with the following features; Intel Core i5 2.90 GHz with 8 GB RAM was
used. On the PC side, all implementations involving signal processing, feature
extraction, and classification were carried out using Python 3.7 platform.

4.2 Dataset

Our training and test data were collected from 3 participants with different
anthropometrics in different sessions. The training data set include 36 min long
data (12 min for each participant consisting of three minutes for each activity).
The total number of data samples collected for the training process is 108.000
(36× 60 s× 50 Hz). The testing data include 12 min long data (4 min for each
participant consisting of one minute for each activity). The size of testing data
is about 36.000 (12× 60 s× 50 Hz).

4.3 Evaluation Criteria

Each machine learning model (i.e., SVM-1, SVM-2, DT, kNN, RF) is trained
with the training set and tested with the test data. One of the main purposes
of this study is to inspect the effects of two signal segmentation methods not
only on the classification accuracy, but also on the response time considering the
real-time constraints. Therefore, we evaluated the performance of each algorithm
by using the 10-fold cross-validation method in terms of classification accuracy
(Acc) and execution time (ET [s]) in an offline manner. In the real-time HAR
system, however, we selected the system with the model showing the optimal
performance.

5 Results

To demonstrate the importance of the features extraction in the offline tests, we
compared the performance of the proposed system using feature vectors with the
selected eight Statistical Features (w. SF) and without the statistical features
(wo. SF), i.e. all samples in the frame (e.g., 128 samples) were used in the
feature vector. In each experiment, we used the same classifiers with the same
parameters.

Table 3 shows the classification results obtained using SW-based segmenta-
tion. This table is used to investigate the performance of different combinations
of the signal processing pipeline including 1) Single sensor on one knee, 2) Two
sensors without normalization, 3) Two sensors normalized by their signal ratio
and, 4) Two sensors normalized by their signal difference.
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Table 3. Results of classification using SW-based segmentation

MODELS

Feature sets SVM-1 SVM-2 DT kNN RF

Acc ET[s] Acc ET[s] Acc ET[s] Acc ET[s] Acc ET[s]

Single sensor (wo. SF) 0.399 15.00 0.661 5.80 0.717 4.08 0.803 1.01 0.762 28.89

Single sensor (w. SF) 0.771 1.95 0.515 1.68 0.796 0.26 0.786 0.16 0.785 8.21

Two sensors without
normalization (wo. SF)

0.367 30.79 0.643 11.80 0.73 8.69 0.767 2.52 0.772 41.89

Two sensors without
normalization (w. SF)

0.782 3.51 0.648 2.24 0.831 0.52 0.773 0.28 0.827 12.24

Two sensors normalized
by ratio (wo. SF)

0.464 9.82 0.615 8.52 0.703 6.90 0.745 1.94 0.754 32.46

Two sensors normalized
by ratio (w. SF)

0.495 1.45 0.611 0.98 0.751 0.14 0.682 0.13 0.762 7.16

Two sensors normalized
by difference (wo. SF)

0.376 14.42 0.585 5.95 0.683 3.77 0.735 1.11 0.752 26.14

Two sensors normalized
by difference (w. SF)

0.745 1.33 0.683 1.11 0.742 0.21 0.749 0.14 0.76 6.97

Overall results show that RF model achieved the highest accuracy on most
of the feature sets. However, the highest accuracy is obtained by DT model with
a value of 83.1% using two sensors without normalization and with statistical
features. Although RF has the best overall performance in terms of classification
accuracy, it is the laziest model in terms of ET. Herein, kNN proves to be
the fastest model. However, DT can be chosen as the ideal model for our real-
time HAR system with an acceptable processing latency. In addition, the results
indicate that the SF have characteristic properties helping in the improvement
of the classification accuracies in most of the classification models. It is also
observed that the proposed normalization scheme by using neither ratio nor
difference of the two sensor signals have contributed to an improvement in terms
of accuracy.

In Table 4 the classification results of the onset-offset detection based seg-
mentation approach is given. The best ET (0.20 s) is observed using kNN model.
Herein, we omit the onset-offset dataset (wo. SF) since each detected onset-offset
frame has a different number of samples and doesn’t have a regular shape.

The detailed classification performance in terms of accuracy, precision, recall
and F1-score for the DT model using SW-based segmentation and for the RF

Table 4. Results of classification using OOD-based segmentation

Feature sets SVM-1 SVM-2 DT kNN RF

Acc ET [s] Acc ET [s] Acc ET [s] Acc ET [s] Acc ET [s]

Single sensor (w. SF) 0.782 3.65 0.473 2.94 0.801 0.34 0.758 0.20 0.812 9.48
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model using OOD-based segmentation results are examined in Tables 5 and 6,
respectively.

Inspecting the precision and recall values of the RF and DT algorithms
for both segmentation approaches, we obtained similar results. Although these
results show that RF is well-suited at classifying different types of sports activi-
ties, it is not an adequate model for real-time systems. Furthermore, the highest
F1-Score is obtained by using the DT model using two sensors without normal-
ization and SW-based segmentation.

The Confusion Matrices (CM) for the DT model using SW-based segmen-
tation and for the RF model using OOD-based segmentation showing highest
accuracy results are examined in Figs. 8a and b, respectively.

As can be clearly seen, the HAR models are more prone to misclassification
between the human activities of walking and running. Besides, in OOD based
classification, the models mostly confuse the activity pairs of walking and run-
ning, and running and squatting. Another important aspect to emphasize is that
the number of instances in the standing activity are relatively less than other
activities. Considering the performance of the recognition system is quite excel-
lent for standing behaviour, a balanced data set after the segmentation having
equal number of instances in each class would have drastically improved classi-
fication performance compared to what we have demonstrated here.

Table 5. Classification performance of different models using two sensors without
normalization and SW-based segmentation

Model Accuracy Precision Recall F1-score

SVM-1 0.78 0.86 0.78 0.79

SVM-2 0.642 0.72 0.64 0.61

DT 0.831 0.83 0.83 0.83

kNN 0.773 0.84 0.77 0.78

RF 0.827 0.83 0.83 0.82

Table 6. Classification performance of different models using single sensor with OOD-
based segmentation

Model Accuracy Precision Recall F1-score

SVM-1 0.782 0.84 0.75 0.75

SVM-2 0.473 0.53 0.48 0.40

DT 0.801 0.86 0.81 0.80

kNN 0.758 0.80 0.73 0.73

RF 0.812 0.87 0.81 0.81
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(a) DT Model using SW segmentation (b) RF Model using OOD segmentation

Fig. 8. Confusion matrices of different HAR models

6 Conclusion

In this study, a novel approach is applied using textile-based knee sensors to rec-
ognize specific human activities, such as walking, running, squatting, and stand-
ing. These sensors have capacitive properties and are able to measure capaci-
tance variation during the movement. We attached these sensors to knee braces
to accurately measure the variations. We implemented two different signal seg-
mentation algorithms, i.e. the sliding-window method and onset-offset detection
method before statistical features were extracted. Using different classifiers, such
as SVM, kNN, RF, DT, we evaluated the proposed system using performance
criteria, such as classification accuracy and execution time. The overall classi-
fication results show that although RF attained the highest accuracy, it is the
slowest model, thus not sufficient for our real-time HAR system. Therefore, DT
model showing similar accuracy, but drastically improved execution speed is
ideally recommended for HAR.

Due to Covid-19, we conducted this study with a limited size dataset. The
classification accuracy also depends on the size of data. We believe that a higher
accuracy will be obtained in a more balanced data set. In the future, we plan
to improve our experimental setup and collect more activity data from multiple
participants. Besides, only knee bracer sensors are used in this study. We aim
to improve our sensor framework by attaching new sensors to full pants instead
of knee braces. Our ultimate goal is to design a textile-based sensor that can be
worn on the whole body. Moreover, in the next research, we will investigate the
contribution of auxiliary sensors such as smartphone IMUs on the performance
of the HAR system.
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8. Li, F., Shirahama, K., Nisar, M.A., Köping, L., Grzegorzek, M.: Comparison of
feature learning methods for human activity recognition using wearable sensors.
Sensors 18(2), 679 (2018)

9. De Leonardis, G., et al.: Human activity recognition by wearable sensors: compar-
ison of different classifiers for real-time applications. In: 2018 IEEE International
Symposium on Medical Measurements and Applications (MeMeA), pp. 1–6. IEEE
(2018

10. Davila, J.C., Cretu, A.-M., Zaremba, M.: Wearable sensor data classification for
human activity recognition based on an iterative learning framework. Sensors
17(6), 1287 (2017)

11. Jiang, W., Yin, Z.: Human activity recognition using wearable sensors by deep
convolutional neural networks. In: Proceedings of the 23rd ACM International
Conference on Multimedia, pp. 1307–1310 (2015)

12. Stetter, B.J., Ringhof, S., Krafft, F.C., Sell, S., Stein, T.: Estimation of knee joint
forces in sport movements using wearable sensors and machine learning. Sensors
19(17), 3690 (2019)

13. Ray, T., et al.: Soft, skin-interfaced wearable systems for sports science and ana-
lytics. Curr. Opin. Biomed. Eng. (2019)

14. Wang, Z., Yang, Z., Dong, T.: A review of wearable technologies for elderly care
that can accurately track indoor position, recognize physical activities and monitor
vital signs in real time. Sensors 17(2), 341 (2017)

15. Awais, M., et al.: An internet of things based bed-egress alerting paradigm using
wearable sensors in elderly care environment. Sensors 19(11), 2498 (2019)

16. Porciuncula, F., et al.: Wearable movement sensors for rehabilitation: a focused
review of technological and clinical advances. PM&R 10(9), 220–232 (2018)

17. Dorsch, A.K., King, C.E., Dobkin, B.H.: Wearable wireless sensors for rehabilita-
tion. In: Reinkensmeyer, D.J., Dietz, V. (eds.) Neurorehabilitation Technology, pp.
605–615. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-28603-7 29

https://doi.org/10.1007/978-3-642-33765-9_12
https://doi.org/10.1007/978-3-642-33765-9_12
https://doi.org/10.1007/978-3-319-28603-7_29


182 U. Ayvaz et al.

18. Ahram, T., Falcão, C.: Advances in Human Factors in Wearable Technologies
and Game Design. Springer, Heidelberg (2020). https://doi.org/10.1007/978-3-
319-60639-2

19. Cao, M., Xie, T., Chen, Z.: Wearable sensors and equipment in VR games: a
review. In: Pan, Z., Cheok, A.D., Müller, W., Zhang, M., El Rhalibi, A., Kifayat,
K. (eds.) Transactions on Edutainment XV. LNCS, vol. 11345, pp. 3–12. Springer,
Heidelberg (2019). https://doi.org/10.1007/978-3-662-59351-6 1

20. Wei, S.-Y., et al.: Runplay: action recognition using wearable device apply on
Parkour game. In: Proceedings of the 29th Annual Symposium on User Interface
Software and Technology, pp. 133–135 (2016)

21. Nam, S.-H., Kim, J.-Y.: Dance exergame system for health using wearable devices.
IEEE Access 6, 48224–48230 (2018)

22. Moschetti, A., Cavallo, F., Esposito, D., Penders, J., Di Nuovo, A.: Wearable sen-
sors for human-robot walking together. Robotics 8(2), 38 (2019)
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Abstract. Respiration rate (RR) is an important indicator of human health assess-
ment which can be estimated by extracting respiratory signals from the photo-
plethysmogram (PPG). The goal of this study is to propose an alternative method,
for obtaining accurate estimation of respiratory rate (RR) from the PPG signal. The
proposed algorithm is based on the multiple autoregressive models and autocor-
relation analysis (AC-AR). In AC-AR, the autoregressive model (AR) is applied
to determining the dominant respiratory rate from the PPG, and autocorrelation
is applied to reduce the effect of clutter in the three respiratory-induced varia-
tions. Meanwhile, this paper introduced signal quality indices (SQI) to improve
reliability of results. This algorithm is tested using an open source database: The
CapnoBase benchmark dataset, which comprising 42 eight-minute PPG recording
and respiratory signal acquired form both children and adults in different clini-
cal setting. Compared with that of existing method in the literature, the average
absolute error percentage (AAEP) of the proposed algorithm is less than 3.72%,
which demonstrated that our presented AC-AR bring a significant improvement
in accuracy.

Keywords: Respiratory rate (RR) · Photoplethysmography (PPG) · AR model ·
Data fusion

1 Introduction

Respiratory rate (RR) is one of the indicators used by hospitals to monitor patients for
abnormal conditions, such as cardiac, respiratory arrest, systemic inflammatory response
syndrome (SIRS), and renal failure [1]. Adults have a normal respiratory rate of 8–20
breaths per minute (bpm) [2]. In a study of respiratory abnormalities, 54% of cardiac
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arrest patients had at least one RR > 27 bpm three days before cardiac arrest [3]. There-
fore, it is essential to monitor patients’ respiratory. However, although pulse oximetry
can be used to continuously measure heart rate (HR) and peripheral oxygen saturation
(SpO2), continuous estimation of RR requires additional equipment, such as measure-
ment of gas flow. Therefore, these is a need to improve the accurate of RR estimates
from the electrocardiogram (ECG), the photoplethysmogram (PPG) obtained from pulse
oximeters [4, 5]. This paper focuses on extracting RR from PPG signals. Pulse oximeters
estimate blood oxygen saturation (SpO2) based on Beer-Lambert’s law, which indicates
that the light intensity decays exponentially as it passes through the medium and the
degree of attenuation is related to wavelength [6]. Therefore, we can use PPG to show
the change in blood volume in the finger over time. The PPG signal includes a pulse
component and a constant component, and the respiratory signal and the heartbeat signal
are included in the pulse component [7].

The modulation of PPG signals by respiratory cycle includes a variety of ways,
including amplitude modulation (AM), frequency modulation (FM), and baseline wan-
der (BW) [8]. To extract the respiratory modulation signal from the PPG, the most
common method is to detect the peak and trough of the PPG signal and obtain the res-
piratory modulation signal by calculation. In peak-trough detection in the time-domain,
we define the time-series of peaks in the PPG to be a set of pairs

{
tpk,i, ypk,i

}
i=1...Npk ,

and the time-series of troughs in the PPG to be a set of pairs
{
ttr,i,ytr,i

}
i=1...Ntr , where

Npk and Ntr are the number of peaks and troughs, respectively. Npk �= Ntr will be
caused by noise in the signal or misdetection of the detection algorithm [6, 9, 10].
The time-series of peak and trough will be used to derive three different respiration-
modulated signals, representing three different kinds of information about respiration
[6]. (1) Respiration leads to change in cardiac output, causing respiratory-induced
amplitude variation (RIAV), that is, change in peripheral pulse intensity. RIAV is
defined as the height difference between two adjacent peaks and troughs. Therefore,
yRIAV = {

ti, ypk,i − ytr,i
}
i=1...Ntr . (2) Respiration causes periodic changes in heart rate,

namely respiratory-sinus arrhythmia (RSA). It appears that the heart rate increases dur-
ing inhalation and decreases during exhalation, thereby causing respiratory-induced
frequency variation (RIFV), which is defined as the time interval between successive
PPG peaks. Therefore, yRIFV = {ti, ti+1 − ti}i=1...Npk . (3) Respiration causes change in
the pressure in the chest, causing blood exchange between the pulmonary and systemic
circulation. Leading to a change in the baseline of perfusion, called respiratory induced
intensity variation (RIIV). RIIV appears as the change in the amplitude of the peak of
PPG waveform. Therefore, yRIIV = {

ti, ypk,i
}
i=1...Npk . There are also other respiratory

modulation signals, such as pulse width variability [11], which can be used to estimate
the RR (see Fig. 1).

Respiration modulates the PPG in different ways. Different methods of modulation
signal extraction have been proposed in a number of literatures, which are discussed in
Sect. 2. In Sect. 3, the improved Incremental-Merge Segmentation (IMS) algorithm and
peak detection algorithm are introduced, and a combined algorithm for spectral analysis
is proposed to improve the accuracy of RR estimation. Databases and evaluationmethods
are described in Sect. 4. Section 5 shows the results of RR estimation using the proposed
algorithm. The significance and results of this study are discussed in Sect. 6.
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Fig. 1. PPGwaveform and three respirationmodulation signals. RIIV is the change in the baseline
of perfusion; RIAV is the change in peripheral pulse intensity; RIFV is periodic changes in heart
rate.

2 Related Work

Different algorithms have been proposed to estimate RR form PPG, such as digital filters
[12], fast Fourier transforms (FFT) [6], wavelet decomposition [13] and hidden semi-
Markov model [14]. Autoregressive model (AR) [9, 15], principal component analysis
(PCA) [16] and artificial neural network (NN) [17], have all been successfully applied to
various PPG databases with good estimation results. Some studies use neural networks
to analyze the three modulation signals to select the best waveform for the algorithm
design. There are also studies that use data fusion to combine estimates of multiple
modulation signals [6, 18]. However, these methods have higher requirements for time
domain waveforms. This problem can be solved by autocorrelation analysis. Autocor-
relation analysis is a mathematical tool for finding repetitive patterns, such as periodic
signals masked by noise. Since the respiratory signal can be viewed as a noisy periodic
signal, the autocorrelation analysis can be used to calculate the respiratory rate [19].
In the autocorrelation signal, each peak (except the first) represents a period of strong
autocorrelation, and the period with the greatest correlation can be regarded as the RR.

In order to extract effective information from chaotic PPG signal, researchers have
proposed various methods. Byung S. Kim et al. used independent component analysis
(ICA) to reduce motion artifact [16]. Despite so many advances, the use of pulse oxime-
ters to measure respiratory rate has only recently been used commercially, because there
are more reliable methods of RR estimation in clinical settings, such as spirometry or
capacitance. Therefore, it is important to come up with a reliable method for PPG. A
commonmethod now is to introduce the signal quality index (SQI) to evaluate the signal
quality [20]. If the PPG signal does not carry meaningful physiological information, it
will not be algorithmically estimated. The lack of quality indicators may lead to serious
clinical errors, and the introduction of evaluation indicators can improve accuracy and
reliability.

To overcome this limitation, we designed an algorithm that uses all available
respiratory-induced waveform to achieve significant accuracy. In this study, we pro-
pose an algorithm that combines the results of the three respiratory-induced variations
described above, and use the AC-AR algorithm to estimate respiratory rate.
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3 Proposed Algorithm

As for RR estimation, the most essential is the extraction of respiratory modulation sig-
nals. The main methods for extracting respiratory modulation signals are peak detection
and signal quality assessment. Before the peak detection, the pre-processing procedure
should be carried out first. A high-pass filter is applied to remove the dc component of
the PPG signal. Then the PPG is segmented into pulses using IMS algorithm and artifacts
are detected which are used to calculate signal quality (see Fig. 2). If the assessed quality
is low, the RR estimation is not provided. This paper proposes an improved method for
peak detection and signal evaluation, and then uses spectrum analysis and data fusion to
estimate respiratory rate. In the following sections, we will describe RR estimation in
more detail.

Fig. 2. The AC-AR algorithm flowchart.

3.1 Peak Detection

The general principle of peak detection is that any singular point of a differentiable signal
corresponds to a zero-crossing point or two inflection points in its derivative signal. This
paper proposes a new method for peak detection (see Fig. 3). This method does not
need to solve the second derivative, also does not need to solve the inflection point of
the first derivative. Therefore, the computational efficiency can be improved to facilitate
real-time processing. The specific method is shown in the Algorithm 1 below. In order
to avoid the impact of PPG signal amplitude changes on peak detection and verification,
a 10 s sliding window is used for PPG waveform with an overlap time of 5 s.

In order to improve detection accuracy, peak verification is neededwhichmainly con-
siders two factors, the amplitude threshold and the time interval threshold. The method
of setting the amplitude threshold is shown below. Let thresh1 be the ninth decile and
thresh2 be the first decile. Then,

thresh3 = thresh2 + 0.7 ∗ (thresh1 − thresh2) (1)

and then,

highdiff = abs(peaks − thresh1) (2)
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Fig. 3. The result of peak detection algorithm

middlediff = abs(peaks − thresh3) (3)

lowdiff = abs(peaks − thresh2) (4)

where peaks is the time-series of peaks. If condition

(highdiff < middlediff )&(highdiff < lowdiff ) (5)

is met, the peak point is recorded.

Algorithm 1 Peak detection algorithm
1: data PPG;
2: diff diff(data);
3: left_diff diff [1: end-1];
4: logical_left logical(left_diff>0);
5: right_diff diff [2: end];
6: logical_right logical(right_diff>0);
7: peaks find (logical_left & logical_right = 1) + 1;
where diff(X) calculates the difference between X adjacent elements along the first 
array dimension whose size is not equal to 1; logical(A) converts A to an array of 
logical values. Any non-zero element in A will be converted to the logical value 1 
(true), and zero to the logical value 0 (false); find(X) returns a vector containing a 
linear index of each non-zero element in the array X.

In terms of time interval, because the pulse wave ismainly regulated by the heartbeat,
and the normal person’s resting heart rate is 60–100 bpm, the peak of the time interval
corresponding to this range will be detected. For trough detection, the PPG waveform
shows that the minimum value between two peaks is the trough. The time-series of
peak and trough will be used to derive three different respiration-modulated signals,
representing three different kinds of information about respiration.

3.2 Signal Quality Index

Since there are motion artifacts and noise that cannot be filtered out in the PPG, the
quality of the PPG needs to be evaluated. The signal quality evaluation method used in
this paper is analyzed for consistency. First, the PPG pulse is divided into line segments
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using Incremental-Merge Segmentation (IMS) algorithm. According to the shape of the
line segment, it is distinguished into effective signals and noise. This paper calculates
the ratio of artifact and clip in the signal as the SQI for the signal quality.

The IMS algorithm can be used for real-time processing with a sliding window
structure [21]. The algorithm only needs to set a parameter m (the number of points
moved each time, mainly related to the sampling rate). The principle is to divide the
PPG signal into n m-length segments, calculate the slopes of these segments, and merge
them with the same slope, and the different slopes are divided into new Line segments.
After the IMS algorithm, each PPG pulse is represented as a straight line from the
beginning of the pulse to the end of the primary peak of the pulse (see Fig. 4).

Fig. 4. The result of IMS algorithm and Artifact detection

Since the upslope and downslope line segments have a one-to-one correspondence,
the upslope line segments are analyzed separately. If the amplitude and slope of the
upslope line segment both exceed the threshold, it is regarded as artifact; if the slope is
zero, it is regarded as clip; the line segment immediately after the clip is also artifact. SQI
is calculated according to the ratio of artifact and clip in the PPG for signal quality. If
the SQI is less than the threshold, then the data window is labeled as low RR estimation
quality (see Fig. 5).

PPG

Peak detectPeak detect IMS

Interval 
Threshold

Interval 
Threshold Ar�factAr�fact Clip

Threshold

Total �me

Threshold

Bad Good

No Yes

Fig. 5. SQI algorithm flowchart
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3.3 Estimation of Respiratory Rate

After the time-series of peak and trough are obtained from the peak detection, the above
method is used to calculate three kinds of respiratory modulation signals: RIIV, RIFV,
and RIAV. Because these modulation signals are unevenly-sampled time-series, they
are resampled at fs = 4 Hz, using linear interpolation. Each resampled time-series is
normalized using a zero-mean unit-variance transformation, so that the amplitudes of the
three modulation signals are unified to the same range for subsequent spectral analysis.
Then use a high-pass filter to remove the low-frequency signal, and a moving average
filter to smooth the signal. The next step is to extract the respiratory rate.

Autocorrelation Analysis. Autocorrelation analysis is a mathematical tool for finding
repetitive patterns, such as periodic signals masked by noise. Since the respiratory signal
can be viewed as a noisy periodic signal, the autocorrelation analysis can be used to
calculate the respiratory rate. The autocorrelation formula is as follows,

ρx(τ ) = E
[
(xi − μ)(xi+τ − μ)

]

σ 2 (6)

where xi is the time-series of signal, xi+τ is the time-series translated by τ units, μ is
the mean, and σ 2 is the variance. An autocorrelation sequence C[τ] can be combined by
the value of formula from τ = 0 to τ = n − 1. In the autocorrelation signal, each peak
(except the first) represents a period of strong autocorrelation, and the period with the
greatest correlation can be regarded as the RR. Therefore, we can use autocorrelation
analysis to obtain the periodicity of the respiratory signal.

We apply the autocorrelation to analyze the signal as Fig. 6 shows. As the result, the
autocorrelation coefficient waveform contains the breath rate signal, and it overcomes
the effect of noise and clutter. At last, we can analyze these coefficients by AR model
to acquire the more accurate RR.

Fig. 6. Autocorrelation analysis diagram

AR Model. AR model is an alternative to the discrete Fourier transform (DFT) and
one of the methods for high-resolution spectral estimation of short-term sequences. In
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biomedical engineering, AR models are widely used for spectrum analysis of heart rate
variability and electroencephalography analysis. In AR model, each point in the time-
series is a regression of its past points. The number M of past points used is called
the order of AR model. AR model can be regarded as a filter, which divides the time-
series into predictable time series and prediction error series. Compared with the DFT,
it provides a smoother and more intuitive power spectrum, and yet is more complicated.
The AR model is defined as,

x[n] =
∑M

i=1
aix[n − i] + ε[n] (7)

where M is the model order, ai is the weight, and ε[n] is the prediction error and
follows ε ∼ N(0, σ). The least squares method is used to minimize the prediction error
ε[n] to obtain the optimal parameter aopt . Matrix the above formula,

x = Xa + ε (8)

when the prediction error ε[n] reaches the minimum, the parameter aopt is optimal, that
is,

ε = x − Xaopt = 0 (9)

X T ε = X T (
x − Xaopt

) = 0 (10)

X Tx = X TXaopt (11)

(
X TX

)−1(
X TX

)
aopt = aopt =

(
X TX

)−1
X Tx (12)

Another point of AR model is the choice of model order M. Different orders have
different effects in AR model. In practice, by fitting the sequence to multiple orders, the
order with the best effect is selected. The most common selection criterion is Akaike’s
Information Criterion (AIC),

AIC(M) = N · ln
(
σ 2
p

)
+ 2M (13)

where σ 2
p is the variance of the prediction error ε[n]. The best model order is M that

minimizes AIC.
Then, the time-series spectrum R

(
ejω

)
can be obtained by multiplying the square of

the transfer function and the variance of the prediction error,

R
(
ejω

)
=

∣∣∣H
(
ejω

)∣∣∣
2
σ 2
p (14)

where H
(
ejω

)
is the transfer function of AR model,

H
(
ejω

)
= 1

1 − a1e−jω − · · · − aM e−jMω
(15)

The autocorrelation method can remove the noise in the periodic signal with the
characteristics described above. Each peak of the autocorrelation sequence represents
a period of strong autocorrelation, so the period of the autocorrelation corresponds to
the period of the original signal. Therefore, the autocorrelation signal of the respiratory
modulation signal used as the input signal of AR spectrum analysis to estimate the RR.
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3.4 Data Fusion

In order to improve the accuracy and reliability of RR estimation, data fusion can be
performed on three kinds of respiratory modulation signals. A common fusion method
is to average the spectrum of the three kinds of modulation signals, and the maximum
value is selected as RR. This paper proposes an improvement method.

Due to the autocorrelation signal of the modulation signal can be analyzed as a
breathing signal, and the waveform of the autocorrelation signal is more regular. First
use the IMS algorithm to segment the autocorrelation signal. Since the autocorrelation
signal of a normal breathing signal is approximately a sine wave, its variance value is
small, and itsmean value is close to 1, that is, thewaveform is relatively stable (see Fig. 7).
An analysis of variance is performed on the autocorrelation signal, and autocorrelation
signal quality (ASQ) is used as an indicator,

ASQ = var/mean (16)

where var is the variance of these line segments, and mean is the mean of these line
segment. The spectrums of the modulation signal with ASQ less than a certain range are
processed by average.

Fig. 7. Autocorrelation signal quality

4 Materials and Methods

The method was implemented and tested using the MATLAB software framework,
v.R2018a (Mathworks, Nat- ick, MA, USA), and it was designed to be used on each
single window (independently of the others). An open-source dataset, the CapnoBase
benchmark dataset (available at www.capnobase.org)was used for the analysis described
in this paper. The database which contained PPG signals, ECG signals, and respiratory
signals was collected by Karlen et al. The sampling frequency was 300 Hz. These data
were collected from 59 children (mean age 8.7) and 35 adults (mean age 52.4). The
author of the database randomly selects a part of it, and then combines it into a new
data set, which contains 42 data segments with a duration of 8 min. Each recorded CO2

http://www.capnobase.org
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tracing waveform was used as a reference “gold standard” record for RR. Each breath
on the carbon dioxide map in the database has been manually marked by the research
assistant, and the reference RR value is derived based on the average time between two
consecutive breaths using annotations [6].

Before data analysis, preprocessing is performed. We remove the linear trend of the
signal to avoid errors caused by data offset and then use low-pass filtering to remove high-
frequency noise. The three methods mentioned above are then used to extract the res-
piratory modulation signal. The signals are resampled since they are unevenly-sampled
time-series. Each resampled time-series is normalized using a zero-mean unit-variance
transformation. In order to increase the reliability of the signal, a signal evaluation index
(SQI) is introduced to evaluate the quality of the modulated signal. In this study, RR was
estimated to be within a reasonable range of breathing frequencies set at 4 to 65 breaths
per minute.

To extract the RR from the PPG, a common method is to use a sliding window to
segment the PPG time-series, and each window obtains an RR. This experiment uses two
windows size of 30 s and 60 s, and estimates the RR every 3 s and 6 s, respectively. Based
on the estimated value and the reference value, performance was assessed by calculating
themean absolute error (MAE) and average absolute error percentage (AAEP) in breaths
per minute for each record, defined as,

MAE = 1

w

∑w

i=1

∣∣yi − yref ,i
∣∣ (17)

AAEP = 1

w

∑w

i=1

∣∣yi − yref ,i
∣∣

yref ,i
(18)

wherew is the number of reference value, yi is estimate value, and yref ,i is reference value.
The observation value of each algorithm is compared with the reference observation
value, and themeasurement error of the observation value of each algorithm is calculated.
The first 64 s are not used for performance measurements because they are used to
initialize high-pass filters and sliding window. All RR estimation methods, including the
single modulation methods, ignore the measurement errors of the windows containing
artifacts automatically detected by the algorithm.

5 Results

According to the experiment, for the signalwith a sampling frequency of 300Hz, the IMS
algorithm can obtain a better result when m = 10. It provides a good tradeoff between
calculating load and time resolution for pulse peak detection. Different time windows
have no significant effect on RRmeasurement errors, but larger windows can slow down
the real-time response of the algorithm. But when the time window is too small, the
lower respiratory rate cannot be detected. Therefore, we eclectically selected the time
window of 60 s for analysis. Firstly, the PPG signal is analyzed from the time-frequency
domain. Figure 8(a) is the PPG signal, and the spectrum analysis is shown in Fig. 8(b).
From the frequency spectrum, we can find that the energy of the breath rate signal is
weaker compared with the heart signal and its harmonics. Therefore, it is necessary to
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extract the respiratory modulation signal from PPG signal to avoid the interference of
heartbeat signal. As can be seen from Fig. 9, after using the AC-AR algorithm proposed
in this paper, the spectrum is concentrated near RR.

Fig. 8. PPG signal (a) and frequency spectrum (b)

Fig. 9. The frequency spectrum of 180 s respiratory signal before AC-AR (yellow) and after
AC-AR (black). The red dotted line is the respiratory rate. (Color figure online)

After signal preprocessing, we get the respiratory modulation signal from the PPG
signal. Figure 10 shows the comparison between the reference respiratory signal and the
respiratory modulation signal extracted using the peak detection algorithm proposed in
this paper. The extracted respiratory signal is basically similar to the reference respiratory
signal, which is of great help to the subsequent analysis. Following the signal processing
method previously mentioned, respiratory rates are acquired through the AC-AR algo-
rithm. By the above formula and reference respiratory rate, we can calculate the MAE
and AAEP. From Table 1, we can see that the result is much improved after using SQI. In
the CapnoBase database, some signals are chaotic, and the results with large errors will
be obtained by using these signals to analyze. Using SQI can avoid these errors, which
is beneficial to the reliability of clinical results. Meanwhile, compared with AR model,
the AAEP of the AC-AR algorithm decreased by about 1%. From Table 2, the accuracy
is improved to some extent after data fusion with ASQ, which proves that the feasibility
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of data fusion using this method. Compared with averaging the spectrum directly, using
ASQ can dynamically select a better spectrum as the result according to the quality of
autocorrelation signal.

Fig. 10. Comparison of respiratory modulation signals with reference breathing signals. After
processing, the respiratory signals can be extracted normally.

Table 1. Comparison of results

AAEP

AC AC-AR

Before using SQI 8.37% 7.56%

After using SQI 4.27% 3.72%

Table 2. The result of ASQ

RIIV RIFV RIAV ASQ

AAEP 6.61% 5.61% 8.55% 3.72%

As can be seen from the boxplot (see Fig. 11), the MAEs are quite different when
using one of the modulation signals alone. The results of RIIV are obviously better than
the other two, indicating that RIIV has the strongest modulation of PPG signal. After
using data fusion and SQI, the experimental results are obviously better. Among them,
the results of data fusion using ASQ were better than SQI analysis of single respiratory
modulated signal, indicating that it is necessary to conduct quality analysis of modulated
signal. Moreover, the result of data fusion using autocorrelation signal quality is better
than that of spectrum averaging.Without considering the outliers, the error of theAC-AR
algorithm is 0.12 ± 0.36 bpm.

To further evaluate the algorithm, a scatter plot is drawn for analysis (see Fig. 12).
Best Fit stands for PPG respiratory rate equal to the reference respiratory rate, and the
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Fig. 11. Results for the CapnoBase benchmark dataset using 60 s windows. The boxplots give
the RMS Error for the different RR estimation methods.

closer the vertical distance to the line, the better the result. As can be seen from the
figure, results are concentrated near the Best Fit, indicating that the AC-AR algorithm
identified and eliminated a majority of high error estimations. This also shows that the
algorithm proposed in this paper is feasible and accurate.

Fig. 12. Scatter plot comparing the reference RR obtained from capnometry with the PPG RR
obtained from the ACF and AC-AR algorithm. The AC-AR eliminates the estimations with large
error (distance from Best fit). Box A: The signal has been badly distorted.

6 Conclusion

In this paper, we improved the method of obtaining respiratory modulation signals and
proposed a new analysis method that can be used in combination with other respiratory
frequency analysis methods to improve the accuracy and robustness of respiratory fre-
quency estimation. The autocorrelation method can remove noise in a periodic signal
having the above characteristics. Each peak of the autocorrelation sequence represents
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a period of strong autocorrelation, so the period of the autocorrelation corresponds to
the period of the original signal. Autoregression (AR) model uses the time history of
the signal to extract the important information hidden in the signal. Therefore, the auto-
correlation signal of the respiratory modulation signal can be used as the input signal of
AR spectrum analysis to estimate the RR. Several experiments have been performed on
different datasets with different methods. The experimental results show that the aver-
age absolute error percentage (AAEP) is less than 3.72%. It is proved that the method
of autocorrelation combined with autoregressive model used to extract respiratory rate
from PPG is feasible and reliable. Finally, it can be seen from the boxplot that the result
of each algorithm has a lot of outliers. The problem is that when the waveform of the
PPG signal is relatively chaotic, the respiratorymodulation signal extracted from it is not
reliable. If the baseline drift of the PPG signal is severe, there will be errors in the peak
detection results, which will cause some peaks to be missed. To solve this problem, our
next goal is to better remove motion noise so that the respiratory rate can be extracted
from people in motion.
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Abstract. To optimize energy consumption in wearable sensor net-
works, an efficient scheme is to set the sensors in sleep mode and wake
them up to engage communication. However, synchronicity between the
sensors needs to be assured by always-on local oscillators. This work
proposes a different topology that takes advantage of the heart beat to
wake-up wearable sensors. The electrocardiogram (ECG) is detected by
two probes and then converted into a pulse signal. Using 28-nm FD-SOI
CMOS technology, this solution is implemented on a circuit consuming
19 nW at a 900 mV supply voltage, hence suitable for long term and
wearable applications.

Keywords: Heartbeat detection · Integrated circuit design ·
2-electrode sensing · FD-SOI technology

1 Introduction

In the context of wearable systems, every integrated sensor needs a long bat-
tery life in order to avoid frequent replacements. Because communication is the
most energy-hungry part of each sensor, data exchanges between the sensors (or
nodes) and aggregators have to be reduced to a minimum, while maintaining the
synchronization between all the nodes.

A conventional solution to address this problem is putting the nodes to sleep
most of the time, and regularly wake up the nodes at defined time steps. During
the wake-up phase, the aggregator can establish specific communication with cer-
tain nodes, which remain active, whereas the others return in sleep mode. While
reducing the average power consumption of the nodes, it requires an always-on
local oscillator in each node. Moreover, all the oscillators have to be in sync so
that the communication between the aggregator and the nodes can be estab-
lished.
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On the human body, the heartbeats can be interpreted as a clock signal with
a low duty cycle, and act as a synchronized wake-up signal [1,9]. An example of
a heart-rate paced communication is depicted in Fig. 1. A typical application for
this slow-paced scheme is posture or pose recognition [11,12]. Once a heartbeat
occurs, all the nodes and the aggregator are activated. The aggregator sets up
a communication with some nodes, e.g. Node1, and the other nodes go back in
sleep mode. Compared to the previous scheme, the local oscillators are replaced
by independent heartbeat detectors in each node. This method has the advantage
to ensure synchronicity for the wake-up phase between all the nodes distributed
on the entire body.

Fig. 1. Example of heart-rate scheduled communication between wearable sensors.

For an always-on system, using Components Off-The-Shelf (COTS) is not
an option, as the power of such a system is in the range of tens of milliwatts,
like in [14]. In the state-of-the-art, integrated heartbeat detection is done by
digitizing the ECG signal with an Analog-to-Digital Converter (ADC), and then
processing the digital data with a Digital Signal Processor (DSP) [4,10]. How-
ever, this scheme is truly efficient when the objective is to reconstruct the ECG
signal with high fidelity [5,7,15,17]. In the proposed context, only the fact that
a heartbeat occurred is important, not the waveform in itself. Therefore, an
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energy-hungry structure ADC + DSP is not relevant to be embedded on each
node. Moreover, in all the systems, a reference electrode located far from the sens-
ing electrodes is needed to get rid of parasitics, 50 Hz interference. A 2-electrode
heartbeat detector circuit focusing on timing and not on signal reconstruction
has been integrated in [8], consuming 58 nW. An external microcontroller (not
taken into account in the energy consumption figure) is nonetheless still needed
to adjust the comparator threshold. In [3], Bose et al. present a 2-electrode
heartbeat detection system with self-adaptation of the comparator threshold
consuming 504 nW in the analog front-end. However, in these 2 reference works,
the comparator threshold is adapted compared to an absolute reference, and
needs to be changed dynamically depending on the baseline drift of the ECG
signal. The calibration circuit is therefore active all the time and increases the
energy consumption of the whole system. Moreover, the last work relies on the
fact that the 2 electrodes are far from each other (tens of centimeters) to sense
a significant difference between the ECG signals, which limits the embedded
character and comfort of the system.

This paper proposes a standalone heartbeat detector circuit functioning with-
out an external microcontroller, making use of the 28-nm FD-SOI CMOS process
for self-calibration through body biasing. The detection threshold is set using
the common-mode of the ECG signal as a reference. Therefore, once calibrated,
the decision threshold does not need to change. The 28-nm FD-SOI CMOS
technology process also offers efficient co-integration with advanced-pitch digital
circuits for embedded processing using the heart-rate as a clock signal. The pro-
posed circuit was designed to function with 2 cm-spaced electrode signals lower
than 1 mV, without a need for an additional reference electrode on the body,
and thus completely integrable on a wearable device. The proposed circuit has
been simulated with a 900 mV supply VDD and consumes 19 nW.

This paper is organized into the following sections. Section 2 provides an
overview of the system, Sect. 3 explains the circuit blocks in detail, Sect. 4
presents the results from both system-level and transistor-level simulations and
Sect. 5 concludes the paper.

2 System Overview

The proposed structure is based on the differential ECG heart rate measured
between 2 input electrodes, depicted in Fig. 2. The objective is to detect the
high amplitude of the R-wave in the QRS complex for each heartbeat. The 2
electrodes are capacitively coupled to the inputs of the differential amplifiers for
DC offset suppression. The input biasing voltage is set to VDD/2 through large
resistors in the TΩ range allowing input impedances orders of magnitude larger
than the electrodes impedances 1/G1 and 1/G2. These resistors are implemented
using transistor-based pseudo-resistors, yielding a silicon occupation of 10 µm2,
and thus compatible with on-chip integration. The resulting high-pass filters are
called HPF1 and HPF2.

Since the electrodes are very close from each other, they sense the same
ECG signal with very few differences. The closer the 2 ECG signals are, the
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more the difference needs to be amplified to be sensed. However, the energy
consumption of the analog front-end increases with the amplifier gain. To amplify
the difference between the ECG signals without increasing the amplifier gain,
the values of the capacitances in the filters HPF1 and HPF2 are voluntarily
mismatched so that the 2 cut-off frequencies are not matched anymore, and
as a result the 2 filtered ECG signals are different. The filters original cut-
off frequency is set 15 Hz to attenuate baseline drift and motion artifact. The
influence of the voluntary frequency mismatch is studied further in Sect. 4.1.

Fig. 2. Block diagram of the proposed circuit.

The differential ECG signal is first amplified by amplifier A1 with a differ-
ential gain GD. Amplifier A1 is used to amplify both the differential signal of
the probes corresponding to the heart rate (typically in the range of 100 µV to
1 mV from [16]), and also the common mode of the input signals with a lower
gain GCM . It also includes a Common-Mode Feedback (CMFB) loop for internal
stability. Amplifier A2 is designed the same way as A1, especially with a similar
GCM , and permits amplifying the common mode reference only, by putting the
same signal at both inputs of the amplifier. The output of A1, i.e. V1, is thus
composed of the amplified differential signal VDM , and the amplified common
mode VCM . The output of A2, i.e. V2, is composed of the amplified common
mode VCM and an intentional offset VO of at least 10 mV. The amplifiers have
to be designed so that noise is negligible compared to VO, thus making the cir-
cuit noise tolerant. Then, by generating similar common-mode components in
V1 and V2, they can be neglected if only the difference of V1 and V2 is taken into
account. Besides, the proposed structure avoids using filters with different band-
widths by extracting separately differential and common modes, hence avoiding
large capacitors. This is a significant advantage for scalability and integration
purposes.

Identical low-pass filters (LPF in Fig. 2) are inserted after each amplifier to
reduce 50 Hz residual frequency component, due to the lack of the reference elec-
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trode. A threshold comparator is then used to compare V1 and V2 and generate
the desired clock signal VOUT . V1 and V2 having the same common mode, the
differential signal VDM , representing the presence of a heartbeat, is eventually
compared to the offset VO. VO has to be set so that it is lower to the amplified
R-wave:

|VO| ≤ |VDM |. (1)

When a heartbeat occurs, VDM crosses VO, the threshold comparator toggles
and generates the desired pulse.

Finally, a self-calibration unit uses the system output signal VOUT to adjust
the offset VO generated by amplifier A2. The obtained VO has to respect the
condition expressed in (1), so that the low-duty-cycled targeted clock signal is
output at VOUT . The calibration process is done once, off-line, at device start-up,
since there is no need to change the threshold value while the device stays in the
same measurement conditions.

The main advantage of the proposed structure is that the reference signal of
the comparator is based on the common-mode voltage output of the amplifiers,
so that only the differential voltage component between the 2 electrodes can
be considered. As a result, in terms of amplifier design, the Common-Mode
Rejection Ratio (CMRR) requirement is lowered compared to a single-amplifier
structure where the same design is used for both differential signal amplification
and common-mode attenuation.

However, since the proposed scheme relies on an identical common-mode gain
in 2 distinct amplifiers, the local mismatch between similar transistors in A1 and
A2 is to be addressed. For that purpose, it is mitigated at the layout level by
placing matched transistors next to one another using interdigitated gates for
connection. The self-configuration unit feedback loop ensures a correct behavior
of the system despite the remaining transistor mismatch.

3 Circuit Design

3.1 Amplifier A1

The structure of the amplifiers used in this approach is a conventional 3-stage
amplifier structure. It is composed of a differential pair and a gain stage. The
electrical schematic of amplifier A1 is shown in Fig. 3. For the differential pair,
composed of M11 and M12, the inputs are connected to PMOS transistors instead
of the NMOS transistors to mitigate the 1/f noise. The gain stage, composed
of 2 transistors in the conventional amplifier structure (M15 and M16 in Fig. 3),
is doubled with the purpose of increasing the gain (addition of M17 and M18).
The body voltage of M17 is fixed and set to VDD/2. For this application, there
is no need for a high CMRR because the system does not need to be linear and
detect all the components of the heartbeats. Thus, the design effort can be set
on lowering the current consumption while still acquiring the R-wave with high
precision. A CMFB circuit is added to the structure for stability and ensures
operation at a fixed common-mode voltage for the first 2 stages. It presents the
particularity to directly drive the body voltage of transistors M13 and M14.
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Fig. 3. Electrical schematic of the designed amplifiers A1 and A2, including each a
Common-Mode Feedback (CMFB) loop. The naming convention is X = 1 for A1,
X = 2 for A2. In A2, the bulk of M27 is connected to the self-calibration unit for VO

adjustment.

3.2 Amplifier A2

Amplifier A2 is designed using the same structure as in amplifier A1, shown
in Fig. 3. Both CMFB circuits in A1 and A2 share the same voltage reference.
However, in the last stage, the transistor M27 is modified so that the bulk voltage
can be modified by the self-calibration unit, Fig. 3. For simplicity reasons, the
possible range of M27 bulk voltage is from 0 V to VDD. Increasing or decreasing
this voltage will decrease or increase the output offset, respectively. This fea-
ture is therefore used to generate the additional offset VO at the output of the
amplifier.

3.3 Threshold Comparator

The designed threshold comparator is a conventional operational amplifier used
as a comparator, as shown in Fig. 4. The differential gain of the amplifier is max-
imized so that the slightest difference between V +

IN and V −
IN saturates the output

VCOMP between VSS and VDD. Besides, the transistors’ dimensions are designed
to optimize the slew-rate, and thus the response rapidity of the comparator.

3.4 Self-calibration Unit

The self-calibration unit acts as the feedback loop for adjusting the offset voltage
of A2, Fig. 5. It takes VOUT as an input and charges the capacitor CC with a
constant current ICHARGE , depending on the duty cycle of VOUT . To calibrate
the system, the resulting voltage VC must be between 2 reference voltages VrefL

and VrefH , defined externally depending on the user. If VC is over VrefH , it means
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Fig. 4. Electrical schematic of the designed threshold comparator.

Fig. 5. Block diagram of the proposed scheme for the self-calibration unit.

that the offset component VO is too low, and the signal inc offset is set. If VC is
below VrefL, the signal dec offset is set instead. The digital signals inc offset and
dec offset are then used to command a charge pump circuit allowing to increase
and decrease the body biasing of M27, respectively. In addition, a resistor RC

is used to discharge the capacitor CC. The passive components RC and CC can
be implemented off-chip so that the resulting time constant can be adapted
externally to each person’s heartbeat. Once the value of VO is calibrated, it does
not need to change while the system is on-line, therefore the self-calibration unit
can be put in sleep mode.

4 Results

4.1 System-Level Model

The proposed structure has been simulated using Matlab R©, and the intermedi-
ate signals are shown in Fig. 6. The ECG signal is generated by the ECGSYN
application from Physionet [6,13], 50 Hz coupling due to the absence of a ref-
erence electrode, Fig. 6-(a). Its amplitude and shape are similar to that of a
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Fig. 6. Transient response of different voltages in the simulated system using Matlab R©.
a) Input signal at electrode #1, 50 Hz coupling. b) Difference between the signals V1

and V2 at the output of the amplifiers A1 and A2, without taking the threshold VO

into account. An acceptable value of VO is indicated on the graph. c) Output signal
VOUT .

measured ECG signal [13], sensed by both electrodes as they are next to each
other. A random electrode conductivity is modeled, depending on the electrode
material itself and its placement on the skin. The highpass filters HPF1 and
HPF2 are designed to have a cut-off frequency 15 Hz, allowing the attenua-
tion of motion artifacts and baseline wandering caused by the respiration [2].
The model includes a random variation of the passive elements values, extracted
from transistor-level Monte-Carlo simulations. Moreover, a voluntary mismatch
between the highpass filters capacitances is added to enhance the differences
between the 2 input signals. Given simulation results, a 40% capacitance mis-
match can produce a detectable differential voltage corresponding to the R-
wave at the output of A1. However, a capacitance mismatch superior to 150%
bring the filter cut-off frequency closer 50 Hz, and produces a differential voltage
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Fig. 7. Transient response of different voltages in the system simulated using Spectre R©.
a) Input signal at electrode #1, 50 Hz coupling, baseline drift and motion artifact. b)
Intermediate signals at the output of the amplifiers A1 and A2. c) Output signal
VOUT .

including also amplified environmental artifacts and not only the R-wave. The
recovery of the heartbeat is not possible anymore. A capacitance mismatch of
100% is thus set for the behavioral simulations.

Amplifiers A1 and A2 are then modeled, with a differential gain GD and a
common-mode gainGCM . The CMRR value of the amplifiers is derived from those
2 gain values. For a defined value of the CMRR, the model generates 100 ECG
signals for statistical purposes, and tests if an acceptable value of the threshold VO

exists after the processing of each signal, as in Fig. 6-(b). If this value exists, a test is
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considered a success and the signal VOUT is output, Fig. 6-(c). Otherwise, the test
is considered a failure. From the simulation, a minimum CMRR of 41 dB is needed
to ensure a 95% success rate. This requirement is thus used to refine the amplifier
design described in Sect. 3.1.

4.2 Transistor-Level Simulations

The circuit is designed using STMicroelectronics 28-nm FD-SOI CMOS. This
technology process allows a fine tuning of the transistors back biasing, needed
for previously described scheme. Besides, the 28-nm FD-SOI CMOS process
allows efficient co-integration with advanced-pitch digital circuits for embedded
processing using the heart-rate as a clock signal.

Fig. 8. DC response of the DC output voltage of A2 depending on the body biasing
voltage of M27.

The circuit behavior has been simulated using Spectre R©. The voltage sup-
ply VDD is set to 900 mV. The current bias of the amplifiers IBIAS is set to
2 nA, while the bias of the comparator is set to 1 nA. For transistor mismatch
mitigation, the transistor lengths have been set to 3 times the minimal allowed
length. The ECG signal is also generated by the ECGSYN application, and 50 Hz
coupling, baseline drift and a motion artifact, using frequency components and
amplitudes described in [2]. The obtained input wave is displayed in Fig. 7-(a).
The outputs of both amplifiers A1 and A2, V1 and V2, respectively, are shown
in Fig. 7-(b). While the amplified common mode is still present in V1 and V2,
the high differential gain GD allows to extract the expected R-wave in V1. As in
Fig. 7-(b), the common-mode voltage reference allows reacting to the environ-
mental perturbations. In the self-calibration unit, VrefL and VrefH are set so
that the offset voltage VO of V2 is 16 mV. The output voltage of the heartbeat
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detector VC is shown in Fig. 7-(c). Considering the offset calibration, Fig. 8 shows
that the DC output voltage of A2 can be tuned in that range with a variation
of the body biasing voltage of M27 that does not modify the common-mode gain
GCM of A2, thus enabling self-calibration without risking a behavioral change
in the amplifiers.

The amplifiers consume 7.5 nW each, and the comparator consumes only
4.2 nW at 60 bpm. The system power consumption is 19 nW without taking into
account the automatic offset calibration unit, since it is in sleep mode while
on-line.

Since they are the most power-hungry part of the system, the characteristics
of the amplifiers are compared with state-of-the-art ECG amplifiers, Table 1.
In this work, even though the CMRR is far below that of conventional instru-
mentation amplifiers used for ECG detection [3,4,8,17], it is still sufficient for
the application since signal reconstruction is not needed. Moreover, since the
CMRR constraint is lowered, an ultra-low-power design can be envisioned for
the amplifiers, yielding to a total power consumption reduction of more than
50% compared to an amplifier used for a similar application [8]. This system is
thus suitable for near-sensor integration.

Table 1. Characteristics of state-of-the-art ECG amplifiers

[4] [17] [8] [3] This work

Application ECG
recording

ECG
recording

Single
heartbeat
detection

Single
heartbeat
detection

Single
heartbeat
detection

Technology
process

65-nm bulk 0.35-µm
bulk

0.18-µm
bulk

0.18-µm
bulk

28-nm
FD-SOI

CMRR >80 dB >65 dB 68 dB >50 dB 48.9 dB

Amplifier
power con-
sumption

64 nW 320 nW 50.4 nW 504 nW 7.5 nW
(x2)

Self-
adaptative
detection
threshold ?

No No No Yes
(92 nW)

Yes
(4.2 nW
on-line)

5 Conclusion

This work presents a low power circuit for wearable systems detecting the ECG
signal and converting the heart rate into a digital signal. This solution permits
waking up the sensors from time to time (e.g. once or twice per second), and
consumes only 19 nW at a 900 mV supply voltage. The applications for this
integrated circuit are in medical monitoring and more generally in high autonomy
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wearable systems. Compared to state-of-the-art on-chip solutions, the structure
of this circuit is simpler and self-adjustable, since there is no need to reproduce
the exact shape of the signal. Thereby, a high CMRR is not required unlike in
conventional instrumentation amplifiers, and the global consumption is lowered.
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Abstract. Anxiety disorders are the most common class of psychiatric
problems affecting both children and adults. However, tools to effec-
tively monitor and manage anxiety are lacking, and comparatively lim-
ited research has been applied to addressing the unique challenges around
anxiety. Leveraging passive and unobtrusive data collection from smart-
phones could be a viable alternative to classical methods, allowing for
real-time mental health surveillance and disease management. This paper
presents eWellness, an experimental mobile application designed to track
a full-suite of sensor and user-log data off an individual’s device in a con-
tinuous and passive manner. We report on an initial pilot study tracking
ten people over the course of a month that showed a nearly 76% success
rate at predicting daily anxiety and depression levels based solely on the
passively monitored features.

Keywords: Mobile application · Anxiety · Remote mental health
monitoring · Passive sensing · Machine learning

1 Background and Introduction

Within the spectrum of mental health disorders, Anxiety disorders are the most
common class of psychiatric problems affecting both children and adults [7,9,17],
with up to one in three people in the US meeting full diagnostic criteria by early
adulthood [13,25]. This manifests in the form of roughly to 7 to 9% of the
population in the US suffering from a specific phobia, 7% from social anxiety
disorder, and 2 to 3% each from panic disorder, agoraphobia, generalized anxiety
disorder, and separation anxiety disorder [4]. Individuals with anxiety disorders
contend with substantial distress and impairment. They are at heightened risk
for a host of negative long-term outcomes including depression, substance abuse,
educational underachievement, and poor physical health [5,19,27].

The optimal method for the prevention or care of mental illness is early iden-
tification, diagnosis, and proactive treatment [26]. Time-sensitive intervention is
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therefore crucial for preventing conditions from becoming chronic and debilitat-
ing. However, traditional methods of psychiatric assessment, including clinical
interviews and self-reports, are limited in their ability to provide just-in-time
interventions as well as early identification. They depend heavily on retrospective
summaries collected in clinical settings, conditions that often result in reporting
biases, inaccurate recall, or late and ineffectual treatment.

Additionally, anxiety disorders are, for the most part, vastly overlooked and
under-treated in the community; only 15–30% of anxious individuals in the com-
munity receive treatment of any kind. Recent research has found strikingly high
levels of anxiety among college-age youth. Indeed, 58.4% of college-aged youth
report feeling “overwhelmed by anxiety” [3]. Several other recent studies docu-
ment the high proportion of college students meeting full diagnostic criteria for
an anxiety disorder [8]. At the same time, young adults are particularly over-
looked within the health care system, with rates of screening, identification, and
referral falling below those of either children or adults [27]. Given this landscape,
there remains a pressing need for tools that improve early identification of anxi-
ety symptoms, provide users with the platforms to monitor their activities, raise
awareness of factors impacting on their wellbeing, and provide a mechanism for
intervention should an anxiety episode escalate.

The growing ubiquity of consumer devices, among them smartphones, smart-
watches, and in-home sensors, all equipped with an array of sensors and user-logs,
have resulted in an unprecedented opportunity to catalog and quantify the daily
aspects of an individual’s life, creating repositories of personalized information
[23].

While much has been noted about the insidious aspects of such surveillance
capabilities, there is also significant potential for such monitoring, if harnessed
and utilized by the individuals themselves, to dramatically improve their health-
care outcomes. Such tools could potentially allow the user to accurately track
their behaviors and habits, compare personal activities with population-level
baselines, establish outlier behaviors with their peers, and even motivate behav-
ioral change and the promotion of healthy habits.

There is significant potential for such monitoring, if harnessed and utilized by
the individuals themselves, to improve their healthcare outcomes dramatically.
This potential has long been recognized with physical behavior and physiological
health, as both are extensively tracked. In contrast, mental health is largely
overlooked.

The notable exception to this trend has been the success in remote stress
monitoring that has been achieved with physiological stress monitoring of fea-
tures like heart-rate variability and Galvanic Skin Response that is accomplished
by wearable sensing devices like smartwatches to determine stress level [10].
While such approaches have demonstrated efficacy, they are limited in their
potential applicability by requiring the wearing of a physical sensing device, and
provide little contextual awareness as to the causes of stress that are encoun-
tered. More recent advances have attempted to compensate for the restrictions
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in activity detection leveraging novel sensing modalities including wireless signal
fluctuations around the body, but such efforts are still in their infancy [24].

Specifically, The capability to track behavioral metrics and associate them to
mental health, although intimately linked, has not been definitively established.
This owes to the significant difficulty in correlating monitorable behaviors and
corresponding mental health. Behavioral patterns both within (e.g., the transi-
tion from weekday to weekend) and across individuals (e.g., simple differences
in how many men and women carry their phones) are simply too diverse and
too subject to confounding factors beyond mental health to allow for easy corre-
lations. Nevertheless, the growing challenges around mental health, necessitate
exploring the possibility further.

Recent efforts have explored whether pervasive mental health monitoring
could be feasible through a smartphone and the embedded sensors, such as
motion sensors, ambient light, microphone, camera, Global Positioning System
(GPS), proximity, and touch screen [6,10,18,20]. These efforts have shown the
promise of this approach in successfully tying behavioral monitoring to men-
tal health; however, such approaches have not translated into fully mature
frameworks, and have focused almost exclusively on depression-related condi-
tions, which while often spoken in conjunction with anxiety, manifest in distinct
ways [12].

The advantages of leveraging a smartphone-based platform are that the con-
tinuous collection of quantitative data potentially provides a more reliable indi-
cator of an individual’s risk at any given time, as well as offering a mechanism for
just-in-time intervention should a mental health episode occur [6]. Conversely,
smartphone-derived data present several challenges, some of which have already
been noted, which can result in limited accuracy owing to differences in behav-
ioral patterns across users, and the indirect manner of detection [12].

We present a system for the remote monitoring of mental health symptoms,
their fluctuation, and their attendant disruption to personal functioning, called
eWellness. The eWellness framework is designed to capture a broad spectrum
of remote monitoring, survey data acquisition, secure data transmission and
management, data analytics, and visualization.

The primary component of eWellness is a mobile application that facilitates
data collection and transmission harvested from an array of sensors and usage
logs from a user’s smartphone. The data is collected passively, pre-processed, and
transmitted through a secure gateway to the cloud, where it is securely stored,
and indexed using a scalable database.

Concurrently the eWellness application includes an active querying compo-
nent where users can be prompted with Ecological Momentary Assessments
(EMA) of their mental health status. This architecture is complemented by a
back-end analytic engine, capable of mapping observed metrics and exogenous
data sources to a user’s mental health state, based on adaptive statistical models,
and advanced machine learning algorithms. The system is designed to monitor
overall mental health as well as acute crisis events in both a retrospective and
predictive capacity.
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2 Framework

2.1 Server

Data from the study, both sensor feeds and usage-logs, along with user-generated
EMA responses, are first encrypted, cached locally on the user’s device, and then
transmitted to a secure remote server, where it is stored in an encrypted scalable
MySQL database.

2.2 eWellness Data Collection

Fig. 1. eWellness data collection hierarchy
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The eWellness mobile application, developed for android devices, collects passive
behavioral data derived from communications logs, embedded sensors, and user-
logs capturing (Fig. 1) the following metrics:

– Communication: monitors incoming and outgoing phone calls and text mes-
sages, including the duration of phone calls, the number of texts and phone
calls, and unique individuals contacted. This does not assess the content of
communications or the recipient of the communication, beyond establishing
a unique contact.

– Location: is periodically sampled using GPS, network, and Wi-Fi detection.
Prompts for a new location after moving 5 m, up to once a minute. This
metric leverages the Google Fused Location API. The application does not
track specific locations; instead, it keeps a total distance traveled using the
vectorized haversine distance function.

– Ambient Sound: is a numeric measure, designed to detect speech and com-
munication above 50 decibels using the phone’s microphone. It samples every
5 min for 5 s. This metric does not capture the audio files of communications
and merely documents the sound frequency and decibel level as numeric val-
ues.

– Activity and Movements: leverage the device’s accelerometer, gyroscope,
and GPS tracking. Activity is sampled every 60 s. In order to determine sta-
tionary and moving activity-type, the application leverages Google’s Activity
Recognition API.

– Light: detects light level associated with possibly being in an outdoor or
indoor location. This sensor is sampled every 6 s.

– Phone Use: is user-log monitoring the device’s screen on-time.

From these raw values, we derived daily aggregated features from these met-
rics to infer both a user’s sociability, and behavioral patterns. These were then
used to learn a model for prediction of anxiety symptom severity. We obtained
statistical characteristics, such as minimum, maximum, mean, standard devia-
tion, the 25th, 50th, and 75th percentiles, of the numeric values of noise exposure
and the ambient luminescence. The number of activity transitions and duration
of each physical activity per day also became a significant metric of identifying
mentally distressed days.

2.3 Limiting Personally Identifiable Data Collection

Recognizing the potentially invasive nature of applications like this, data col-
lection was carefully scoped to avoid the collection of Personally Identifiable
Information (PII) that could link a particular user to a particular dataset. For
example, when attempting to gauge sociability, the application logs the total
number of phone calls made, total time on the phone, and the number of unique
contacts called; the identities of specific callers were not tracked. This has the
consequence of introducing a degree of obscurity into an observed finding (e.g.,
as the application is unable to differentiate between calls to friends and calls to
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a customer-service hotline). At the same time, in the interest of both respecting
privacy and ensuring the acceptability of the app, these efforts were felt to be
necessary constraints on data collection.

3 Pilot Study Methodology

Fig. 2. Screenshots of eWellness

An IRB-approved pilot study was conducted on a dozen individuals who are
use smartphone devices with Android version 5.0 and above. Participants were
recruited from the university community, and included both students and staff.
Study participants did not have a reported history of mental illness. Participants
were asked to download and install the eWellness application (Fig. 2), and then
run it on their phone for a month. Passive data was collected continuously by the
application throughout the month. Participants were asked to answer EMA daily
through the eWellness app, but did not provide any other personal information,
such as name, gender, age, during participation.

The Kessler Psychological Distress Scale (K10) [2] is a validated measure of
psychological distress over the past 30 d, which is used for clinical and epidemi-
ological purposes. It has a notable success in measuring feelings of anxiety along
with depression. For this pilot, the K10 was modified to assess criteria over the
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previous 24 h period. The modified K10 prompted the users as daily EMA to
measure their feelings of anxiety and depression. The K10 is composed of ten
questions, structured on the following standardized template, “Over the past
24 h, how often have you...”, to which users can provide one of five standardized
responses: All of the time, Most of the time, Some of the time, A little of the
time, and None of the time). These responses are scored on a range from five
(All of the time) through one (None of the time). The minimum possible score
of K10 is 10, and the maximum possible score is 50. K10 results are categorized
into four levels of psychological distress: low distress, moderate distress, high
distress, and very high distress. Table 1 details the stress threshold scores. These
results were leveraged as a label for the classification of supervised learning.

Table 1. Categorization of K10 Scores [1].

K10 Score Level Samples (N = 146)

10–15 Low distress 91

16–21 Moderate distress 29

22–29 High distress 21

30–50 Very high distress 5

4 Results

Only 10 participants answered at least seven days of EMAs and provided success-
ful passive sensing data throughout the month. Our analysis focused on a fully
supervised learning approach, and only labeled samples were included. For this
pilot study, we used 146 daily samples to identify daily anxiety and depression
levels. The Z-Score normalization was applied to the features to reach normalized
values from different participants.

We selected 25 features that have a relatively higher correlation with the
raw K10 score. Table 2 provides a detailed list of feature labels and associated
descriptions.

For the 4-class classification, we used 5-fold Cross-Validation (CV) with
four models: K-Nearest Neighbors (KNN), Extra-Trees (ET), Support Vector
Machine (SVM), and Multilayer Perceptron (MLP). The class weight was auto-
matically applied to the models inversely proportional to the class frequencies to
train the imbalanced dataset. The highest classification accuracy achieved was
around 76% with the extra-trees model. We also applied the under-sampling
technique to improve the performance of an imbalanced dataset. Samples from
the low distress class were removed randomly to make uniformly distributed class
labels. Samples from the very high distress class were also ignored. A confusion-
matrix (Fig. 3) demonstrates that the average score of classifying three classes
is 0.65.
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Table 2. 25 features most highly correlated to K10 scores

Feature name Description

total-messages Total # of text messages-received

is-silent-count Number of instances no noise was detected

freq-std Standard deviation for noise frequency

freq-25% Noise frequency 25th percentile value

deci-std Standard deviation for noise decibel

deci-50% Noise decibel 50th percentile value

deci-75% Noise decibel 75th percentile value

rms-max Root mean squared measure of audio over time

act-transition Activity tracking count when in transition

still-cnt Total count of time user was still

tilting-cnt Total count of instances the user was tilting

on-foot-cnt Total count of the instances the user was still

on-bicycle-cnt Total count of time user was riding a bike

on-foot-dur Duration of time on foot

on-bicycle-dur The duration the user spent on a bike

elapsed-device-on Count of time the phone was active

elapsed-device-off Count of time the phone was inactive

light-std Standard deviation for luminescence value

light-25% Luminescence 25th percentile value

light-50% Luminescence 50th percentile value

loc-speed-mean Average speed traveled in a day

loc-alt-mean Mean Altitude Location

loc-alt-std Standard deviation od the altitude

loc-alt-75% Altitude 75th percentile value

loc-alt-max Altitude max value

Fig. 3. 3-class (Low, Moderate, and High distress) classification confusion matrix.
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5 Discussion

5.1 Relevant Features

There are some notable and counter-intuitive findings regarding what data ele-
ments proved to be most-highly correlated to mental health. It is not surprising
to note the presence of features closely related to physical activities (e.g., Dura-
tion of time spent biking or walking) as such activities have been definitively
linked to mental health [22].

What is somewhat less intuitive is the presence of multiple audio and light
sensing features. Audio sensing was included in the protocol under the hypoth-
esis that a moderate level of sound could be indicative of pro-social activities
like being outdoors or in group settings. Conversely, overly loud or quiet noise
profiles could be indicative of stressful environments or isolated conditions that
could be deleterious to mental health. But while interesting in theory, there are
many confounding causes of noise that, by limiting ourselves to solely captur-
ing the frequency and decibel levels of the sound, we would fail to distinguish.
(intuitively, someone watching TV at home alone could register the same noise
profile as someone out to dinner with friends).

Similarly, it was hypothesized that light sensing could be indicative of an
individual being outside, which has been shown to positively correlate to mental
health [16], however here too, many confounding factors would impact light
readings, foremost among them, that the user would actually have to have their
phones out and exposed when outside for the light sensor to register it.

The authors note that Sound and Light sensing is notable in that both were
the most frequently sampled of all features. It is possible that the high degree of
granularity of readings afforded to these particular sensing modalities explains
their relevance. Regardless, the authors suggest additional work is needed to
understand whether or not these features are indeed more universally indicative
of mental health, and explore why that is potentially the case.

5.2 Limitations of the Study

While 10 subjects completing one-months worth of continuous data represents
a critical validation of the technology and its potential utility, the dataset is
too small to achieve statistically significant results. Additionally, this pilot was
scoped to only include individuals without a clinical diagnosis of Anxiety. Con-
sequently, there were insufficient cases of user-reported mental distress, partic-
ularly moderate or severe cases, in order to classify them effectively. Additional
studies are planned to enlarge our dataset and include a cohort of individuals
with diagnosed mental health conditions.

5.3 Accuracy of Labeling

The authors feel there is significant concern about the veracity of user self-
reported labeling of mental health that was leveraged in this study. When con-



Anxiety Detection Leveraging Mobile Passive Sensing 221

structing the experimental design, focus was placed on maximizing user par-
ticipation in the study. At the time, the primary concern the authors had was
that participants would fail to submit a sufficient number of survey responses.
Therefore the protocol was designed to combat this, by prompting users to fill
out a daily EMA in the application via push-notification, with manual outreach
to users who failed to complete an EMA within 48 h, as well as designing the
K10 to be a simple to complete multiple-choice assessment. This combination
resulted in successfully encouraging active participation in the study; however,
there was no mechanism designed to confirm or validate that the resulting inputs
were an accurate reflection of a user’s actual wellbeing.

It is highly likely, therefore, that at least some users were motivated to
respond quickly, and not necessarily accurately. This would result in users simply
selecting the default answer of no reported anxiety to each question.

Furthermore, there may have been a reluctance among users to accurately
report out mental health issues given perceived embarrassment or stigma asso-
ciated with poor mental health. Under-reporting of mental health issues is a
persistent issue that plagues the domain more generally, and isn’t limited to this
study [11], however failing to account for under-reporting is a notable issue.

Finally, even well-meaning participants may have failed to accurately rep-
resent their mental health state due to their either overlooking, or mischarac-
terizing, stresses they encountered. This is particularly true when comparing
responses across users, where baseline expectations of stress may vary wildly
among participants, with prior work for instance demonstrating a clear asso-
ciation between gender and reported wellbeing [21], the result being that one
participant’s perception of a ‘normal’ day, might easily be classified as a low or
moderately-stressed day by another.

Solving this challenge is essential for ultimately achieving the intended goal of
accurate classification of mental illness, for unlike alternative labeling exercises,
where quantifiable metrics are possible, here the labeling of an objective state,
mental illness, particularly when physiological monitoring is not available, is
entirely reliant on subjective inputs, ones that are difficult to accurately capture,
and even more difficult to standardize across users.

The authors recommend that future studies will have to address these con-
cerns by better anticipating and correcting for challenges with accurate labeling
of mental health.

There are a number of possible remedies to this. In the questionnaire itself,
careful structuring of the questions can engage users to provide more thought-out
results [14]. Cross-validating questions designed to ensure internal consistency
are also an effective means of ensuring user accuracy [15].

Consideration should also be given to alternative methods for collecting
labels. Interviewing subjects to determine their mental health, for instance,
would likely produce more accurate results, although would have attendant
tradeoffs of its own, such as reducing the number of labels that could effectively
be captured.
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Educating participants on the presentations of Anxiety could also be key
towards a more accurate and consistent recall of symptoms. Finally, developing
the trust of participants through engagement and transparency, could help to
solicit more honest engagement.

5.4 Subject Heterogeneity

The activities tracked by the eWellness app showcase significant heterogeneity
across subjects in-terms of usage-patterns. Variables like distance-traveled, num-
ber of texts and calls, and physical activity levels, are all far more likely to be
impacted by the individual’s lifestyle, than their mental health on any given day.

Fig. 4. Histogram of normalized values of Duration on Foot for the 4 labels of stress

Figure 4 showcases a fairly typical distribution, in this case the duration spent
on foot in a given day, bucketed into quartiles, with the 4 labels of interest (with
L1 or Level-1 corresponding to Low-distress, L2 to Moderate Distress, L3 to
High-Distress, and L4 to Very high Distress), in this classification superimposed.
While intuitively more time spent on foot may be associated with better mental
health, here we observe no clear pattern.

It was therefore assumed that primary-success would be achieved by classi-
fying mental health within users across time, once their baselines for normative
behavior were established, rather than across users. The limitations of this initial
dataset did not allow for adequate classifying by individual; however, the fact
that classification success was achieved by bundling samples across all subjects
is remarkable in its indication that cross-subject learning in this domain could
be possible. The authors suspect that part of this result likely stems from nor-
malization performed on the data to account for habitual differences in subject
usage. By normalizing the data in this manner, the absolute number is ren-
dered largely moot, and instead variances in user patterns are highlighted, as
it is likely the day-to-day variations that are more reflective of shifts in mental
health. Additional data collection is necessary to validate this finding.
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5.5 Usability

Attempting to gauge the viability of the concept, participants in the pilot were
asked to submit a voluntary anonymized post-study questionnaire regarding
their perceptions about the application and its data collection practices. All
participants responded. A significant majority described the application as some-
what (40%) or mostly (40%) useful. Likewise, all users endorsed feeling comfort-
able with the application, and only one user expressed reservations about the
data being collected.

All participants obtained detailed accounting of the data that was collected
as part of their onboarding process to the study. No individual declined to partic-
ipate after learning the precise nature of what was being tracked. This sampling
suggests that, particularly among the young adults who are more accustomed to
digitized lives, there is less concern about data collection through their mobile
devices. Limiting the collection of PII could be sufficient to assuage most privacy
concerns.

The primary issue users had with the application was its battery consump-
tion resulting from heavy over-sampling of the sensors. Future iterations of the
application will seek to optimize battery usage by minimizing the sampling fre-
quency.

6 Conclusion

Remote health monitoring of mental health, when done so leveraging passive and
unobtrusive data collection, could be a useful alternative for conducting real-
time mental health surveillance. This paper presents eWellness, an experimental
mobile application designed to track a full-suite of sensor and log data off a user’s
device continuously and passively. An initial pilot study tracking ten people over
a month showed a nearly 76% success rate at predicting daily anxiety levels
based solely on the passively monitored features. Our current approach may
prove useful at tracking longitudinal trends in an individual’s mental health,
as well as providing a platform for just-in-time interventions to mental health
crises. Additional work is needed to refine both the technology and analytics.
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