Beginning
Arduino
Nano 33 lol

. Step-By-Step Internet of Things
PrOJects

Agus Kurniawan

Beginning Arduino
Nano 33 loT

Step-By-Step Internet of Things
Projects

Agus Kurniawan

Apress’

Beginning Arduino Nano 33 IoT: Step-By-Step Internet of Things Projects

Agus Kurniawan
Faculty of Computer Science, Universitas Indonesia
Depok, Indonesia

ISBN-13 (pbk): 978-1-4842-6445-4 ISBN-13 (electronic): 978-1-4842-6446-1
https://doi.org/10.1007/978-1-4842-6446-1

Copyright © 2021 by Agus Kurniawan

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation, computer
software, or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 NY Plaza, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance
Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6445-4. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6446-1

Table of Contents

About the AUhOFccccmmismmmmsmsmssns s vii
About the Technical REVIEWETccccsmssemmssssnsmsssnsssssnsssssnsssssnsssssnnnnns ix
Chapter 1: Setting up Development Environment..........ccccccerrnssnnnnnnnns 1
LU0 1T 10 o 2
Review Arduino Nano 33 10T BOArd.........cccccvveernenersnmsensesesesessssesesesessesesessesenns 3
Set Up Development ENVIrONMENtccoveevnnenniennnesensse s sessesessenens 4
Hello Arduino: BIINKing LED..........ccocvivrnrieniennsesserse s sessessessesessessessessssessessens 10
Arduing Web Editor ... 14
Registering an Arduino ACCOUNTcccvveririnrn s 15
Installing Arduing PIUG-iNcoccvcrienninne s ssens 15
Building an Arduino Program..........ccoeeveerrereerersemsesesessessessessesessessessesessessesaes 19
1] 4= 7 21
Chapter 2: Arduino Nano 33 loT Board Developmentccceiuenrnans 23
INEPOAUCTION.....c.ecercece e 24
Basic SKetch Programming.........ccccoeveernsmsessenmsssesssssssssssssssesessssssssssssssessssesenns 24
Main Programccooeeeernnesnsenmnnssesess s sssss s s s sessesesssssssssessnnes 24
Declare Variables..........ccuverrereneneresmsessesssssesssesessesessese s ssssesesssssssssessnns 25

L0 TS T 1] £ OSSP RS 32
Conditional Statement ... 32

[0 T0] o 3 o S 39
Break and CONtINUEc..cccvveeereserescrsesese s 43

ii

TABLE OF CONTENTS

DIgItal 1/0 ...veeeeeecece s s 46
4 10T N 1 OO 49
Plotting ANAlog SENSOTccccviiiiirierene s s enen 52
Serial CommUNICALION.......cccveeerecerrer s 55
Pulse Width Modulation ... s e 57
Serial Peripheral INterfacecccvvvnnnininn s 62
Interintegrated CirCUit (I2C).......ccvrrrerereererrerserssesseresesessessessessesessessessessssessessens 65
SCanNing 120 AdAreSS.......ccceeverriemnmsererssssssse e ssssssns 68
Reading Sensor-Based 12C AQArESSccccevrererrerieresensesseressssessessessesessessesaes 73
1] 4= 7 78
Chapter 3: IMU Sensor: Accelerator and GyroSCOpPe.......cccussesressnnsssnns 79
INEPOAUCTION.....c.eceeeec e 79
Set Up LSMBDS3 LIDIaryc.cccveeernrenesnnerrssesesesessssesessesessssessssssesssssssssessssesenns 81
Working with an ACCeIerator............ccuvvnennesninsesneses e 83
Working With GYrOSCOPEccvrieriereririerserese s sesse s e sessessessessesessessessesssssssessees 86
[(0] Lo JT=T (0] g D R 90
Displaying Sensor Data with Organic Light-Emitting Diode I12C Display 92
Wiring for Arduino Nano 33 loT and the OLED I12C Displayc.cccesrusesererens 93
Checking the 12C Address of the OLED I2C DisSplaycccceevrrerverereesersersens 94
Setting up the OLED I2C Display Library..........ccocvvevvrmverierenensensesseseesessensenes 95
Testing the OLED 12C DiSPIaY......ccccveverrerrerersesersersessessssessessessssessessesssssssessens 96
Displaying the GYroSCOPE SENSOTcovererrmmnmseseresssssssesesessssssesesesssssneaes 98
SUMMANY.c et e s e e e b b e e Re e r e e e aenne s 102
Chapter 4: Arduino Nano 33 loT Networkingccccccsrrernssssssnsnnnnnnnas 103
INEPOAUCTION.....cvieeccer s 104
Set up the WIFiNINA LIDIaryccccoeernsennesenissesssesssesssssessssessssesessssessssesenns 104

iv

TABLE OF CONTENTS

Scanning WiFi HOTSPOL........coovcvvriereninrerere s sessese e sessessessessssessessesnsssssensessens 105
Connecting to @ WiFi NEtWOrK.........ccocvevererrnicnre e 109
Accessing Network Time Protocol SErver...........ccorrerresnnneseseseresesenenens 114
Building a Simple 10T Application..........ccccririrnini s 121
WIKING et e e e 121
Developing Program...........coocevenrnnenesenesssesesesesssesesesesseses e sessesessenens 122
L] T S 127
SUMMANY ...t r e se e ne e e 129
Chapter 5: Arduino 10T Cloud..........ccccnmmssnnnnmmsssssnnnmsssssnssssssssnsnssssnnns 131
INEFOTUCHION.......cciei 131
Setting up Arduing 10T ClOUM.......ccccveverrerrerernserseresesesseressessssessesessessssessessens 132
Register Arduino Nano 33 10T ..o 133
Install the Arduino Create Agent........c.ccvvvnrnrininnnnnns s 133
Add New Arduing DEVICEccouvererrrrerrreseresesrssesesese e s 134
Develop a Remote LED BUtton ... 138
Adding @ New Thing........cccririnninins s ssssssessessens 138
Adding @ Property ... sessesesssssssessesssssssessesesssssssessessens 140
Editing the SKetch Program.........cccovcvvninnnncni s sesesnens 142
Build @ DaShDO@rdccoeeermenerereerese e 143
TESHING o ————————— 147
Develop Sensor MoONItoring.........coeeerrererenernsererese s 148
Add @ NEW ThiNG ...coveeeeeeeerieerereeee e s 149

LT (o I (0] 0T g 149
Editing the SKetch Program.........ccovcvvninnsninnnsnsnese s sesennens 151
Build @ DaShDO@rdccoeenerenrercrereser e 153
TSN o ————————— 154
SUMMANY....eeeerieereree s s e pe e e e 155

TABLE OF CONTENTS

Chapter 6: Bluetooth Low Energy (BLE)......ccccussseensrssssnnnssssssssnnssssnnns 157
INEPOAUCTION....c.eeeeeeeeee e 157
SEtting UP BLE ... 158
Demo 1: Hello Arduing BLE..........cocooovreeerecrnesesese e 159
Writing SKetch Program ... 159
TeSting Programccoeernennneneresesssesese s s 161
Demo 2: Controlling LED With BLEcccoocrneennenerese e 166
Writing the Program ... s sens 166
Testing the Program ... s senns 169
Demo 3: Sensor Real-Time MONitoringc.cucvveseresernsenensesesssesessesessesessens 173
Writing the Program ... s sens 173
TESHNG ..cvieeeerreer e e 177
SUMMAIY.c.ueitetrierere e s e s s e e s e s saese e e s aesaesae e e e e aesae e e e nannaees 181

1T = 183

About the Author

Agus Kurniawan is a lecturer, IT consultant, and author. He has 15 years
of experience in various software and hardware development projects,
delivering materials in training and workshops, and technical writing. He
has been awarded the Microsoft Most Valuable Professional (MVP) award
14 years in a row.

Agus is a lecturer and researcher in the field of networking and
security systems at the Faculty of Computer Science, Universitas
Indonesia, Indonesia. Currently, he is pursuing a PhD in computer
science at the Freie Universitdt in Berlin, Germany. He can be reached
on Twitter at @agusk2010.

vii

About the Technical Reviewer

Mike McRoberts is the author of Beginning Arduino by Apress. He is
winner of Pi Wars 2018 and member of Medway Makers. He is an Arduino
and Raspberry Pi enthusiast.

C/C++, Arduino, Python, Processing, JS, Node-Red, Node]JS, Lua.

ix

CHAPTER 1

Setting up
Development
Environment

Arduino Nano 33 IoT is an internet of things (IoT) solution to perform
sensing and actuating on physical environment. The Arduino Nano 33 IoT
board comes with WiFi and BLE modules that enable communication with
other entities for exchanging data. This chapter will explore how to set up
the Arduino Nano 33 IoT board for development.

The following is a list of topics in this chapter:

e Reviewing Arduino Nano 33 IoT board
e Setting up development environment
e Building LED blinking program

e Applying Arduino web editor

© Agus Kurniawan 2021 1
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_1

https://doi.org/10.1007/978-1-4842-6446-1_1#DOI

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

Introduction

Arduino Nano 33 IoT is one of IoT platforms from Arduino. This board uses
WiFi and Bluetooth modules to connect to a network. WiFi is a common
network that people use to access Internet. Bluetooth is a part of wireless
personal network (WPAN) that enables communication with other devices
within a short distance.

Arduino Nano 33 IoT board is designed for low-cost IoT devices to
address your IoT problems. Arduino Nano 33 IoT has a small-size factor, 45
x 18 mm (length x width). You can see my Arduino Nano 33 IoT board in

Figure 1-1.

Figure 1-1. Arduino Nano 33 [oT board

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

Review Arduino Nano 33 loT Board

Arduino Nano 33 IoT is built from ARM Cortex M0 32-bit SAMD21. The
board also has a radio module, NINA-W102, from u-blox. This module is
designed for data communication over WiFi and Bluetooth. You can read a
detailed specification of Arduino Nano 33 IoT on Table 1-1.

Since Arduino Nano 33 IoT has some digital and analog I/0, we extend
the board capabilities by wiring with other sensors or actuators. We also
use universal asynchronous receiver/transmitter (UART), serial peripheral
interfact (SPI), and interintergrated circuit (I2C) protocols to communicate
with other devices.

Table 1-1. A Specification of Arduino Nano 33 IoT

Features Notes

Microcontroller SAMD21 Cortex-MO0+ 32-bit
Radio module u-blox NINA-W102

Secure module ATECC608A

Operating voltage 3.3V

Input voltage 21V

DC current per I/0 pin (limit) 7 mA

Clock speed 48 Mhz

CPU flash memory 256 KB

SRAM 32KB

EEPROM None

Digital 1/0 14

PWM pins 11(2,3,5,6,9,10,11,12,16 / A2,

17 /A3,19/ A5)

(continued)

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

Table 1-1. (continued)

Features Notes

UART 1

SPI 1

12C 1

Analog Input 8 (ADC 8/10/12 hit)

Analog Output 1 (DAC 10 bit)

LED_BUILTIN 13

USB Native in the SAMD21 processor
IMU LSM6DS3

Size (Length x Width) 45 mmx 18 mm

Key: CPU, central processing unit; SRAM, static random-access
memory; EEPROM, electrically erasable programmable
read-only memory; PWM, pulse width modulation; UART,
universal asynchronous receiver/transmitter; SPI, serial
peripheral interfact; I12C, interintergrated circuit; USB, universal
serial bus; IMU, inertial measurement unit.

Next, we will set up Arduino Nano 33 IoT on your computer so you can
build programs for Arduino board.

Set Up Development Environment

Arduino provides software to build programs for all Arduino board models.
We can use Arduino software. You can download Arduino software on

the following link: https://www.arduino.cc/en/Main/Software. This
software is available for Windows, Linux, and macOS.

https://www.arduino.cc/en/Main/Software

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

The installation process steps are easy. Just follow the installation
guideline from Arduino setup. After finished installation, you will see the
Arduino application menu on main menu from your OS platform.

Open the Arduino application. Then, we will obtain the Arduino
application as shown in Figure 1-2. You will see skeleton codes on the
application dialog. The following is a code template.

void setup() {
// put your setup code here, to run once:

}

void loop() {
// put your main code here, to run repeatedly:

}

We can see that the Arduino program adopts C/C++ program language
dialects. We can put all data initialization on the setup() function. The
program will execute codes inside the loop() function continuously.

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

sketch_aug16b | Arduino 1.8.13 -) X

File Edit Sketch Tools Help

sketch_aug16b
tup () { A
/ put your setup code here, to run once:

Arduino NANO 33 loT on COM12

Figure 1-2. Arduino software for Windows

To work with the Arduino Nano 33 IoT board, we need to configure
Arduino software. First, we add Arduino SAMD Boards so the Arduino
software will recognize our Arduino Nano 33 IoT board. You can open
a menu on Arduino software by clicking the menu Tools » Board ... »
Boards Manager...

After clicking the Board Manager menu, we will obtain the Boards
Manager dialog, as shown in Figure 1-3. Select All on the Type menu from
Boards Manager. Then, type Arduino&NANO&33&I0T in the textbox. You will
see Arduino SAMD Boards. Click and install this package. Make sure your
computer is connected to an Internet network.

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

©:
Type All | Arduino&NANC&3381oT
Arduino SAMD Boards (32-bits ARM Cortex-M0+)

by Arduine
Boards included in this package:

Arduino MKR WiFi 1010, Arduino Zero, Arduino MKR1000, Arduine MKRZERO, Arduino MKR FOX 1200, Arduino MKR WAN 1300, Arduino MKR

WAN 1310, Arduino MKR GSM 1400, Arduino MKR NE 1500, Arduino MKR Vidor 4000, Arduine Nano 33 IoT, Arduino MO Pro, Arduing MO,
Arduino Tian, Adafruit Circult Playground Express.
Online Help

187 ~ Inssall

Figure 1-3. Adding supported boards for Arduino Nano 33 IoT

This installation takes several minutes to complete. After completed
installation, you can see the Arduino Nano 33 IoT board on the targeted
board. You can verify it by clicking the menu Tools » Board ... » Boards
Manager...on Arduino software. You will see your board list. Figure 1-4
shows Arduino Nano 33 IoT on Arduino software.

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

© sketch_aug1a | Arduino 1813 = B X

File Edit Sketch Tools K
Auto Forma Cirl+T
Archive Sketch

sketeh_augt Fix Encoding & Reload
g Sotin o) Manage Libraries.., Ctrl+Shift+]
put yoy enal Monitor Ctrl+Shift+M

Serial Plotter Ctrl+Shift+L

WiFi101 / WIiFININA Firmware Updater

¢4 T Board: "Arduino NANO 33 loT* > Boards Manager...
PUL YO port: "cOMI2” > Arduino AVR Boards
Get Board In Arduino Zera (Programming Port) Arduino SAMD (32-bits ARM Cortex-M0+) Boards *
B Arduing Zero (Native USB Port)
rogrammer
Arduine MKR1000
Bum Bootlo:

Arduino MKRZERO

Arduino MKR WiFi 1010
15 Arduino NANO 33 loT —
Arduino MKR FOX 1200
Arduino MKR WAN 1300
Arduine MKR WAN 1310
Arduino MKR G5M 1400
Arduine MKR NB 1500
Arduino MKR Vidor 4000
Adafruit Circuit Playground Express
Arduino MO Pro (Programming Port}
Arcuino MO Pro (Native USB Port)
Arduine MO
Arduino Tian

Figure 1-4. A list of targeted boards for Arduino

Now you attach Arduino Nano 33 IoT to a computer via micro USB
cable. After attached, you can verify your board using Device Manager for
Windows. Figure 1-5 shows my Arduino Nano 33 IoT on Windows 10.

CHAPTER 1

File Action View Help

o mE dm B

SETTING UP DEVELOPMENT ENVIRONMENT

i Audio inputs and outputs
3 Batteries

9 Bluetooth

] Computer

= Disk drives

& Display adapters

VW W W Y

W

= Keyboards

= Monitors

P Network adapters
Portable Devices
v B Ports (COM &LPT)

VW W W VN

> [Print queues

» u Processors

> [Sensors

> B Software devices

> G Storage controllers
> 3 System devices

0 Mice and other pointing devices

ff USB Serial Device (COM12) A

> Iy Sound, video and game controllers

> @ Universal Serial Bus controllers v

Figure 1-5. Detected Arduino Nano 33 IoT on Device Manager—

Windows 10

If you are working on Linux, you can verify the Arduino Nano 33 IoT

using this command on the terminal.

$ 1s /dev/ttyUsB*

You will see a list of attached devices over USB. Arduino Nano 33 IoT
usually is detected as /dev/ttyUSBO or /dev/ttyUSB1. For macOS, you can
type this command to check Arduino Nano 33 IoT.

$ 1s /dev/cu*

You should see the USB device on your terminal.

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

Hello Arduino: Blinking LED

We first build a Arduino program. The Arduino Nano 33 IoT board has a
built-in LED that is attached on digital pin 13. In this section, we build a
simple blinking LED. Now you can connect Arduino Nano 33 IoT into a
computer. Then, we can start to write the Arduino program.

You can open Arduino software. We create a program from the project
template. You can click menu and then File » Examples » 01.Basics »
Blink. After clicked, you will obtain program codes as shown in Figure 1-6.
This is a program sample from Arduino.

© Blink | Arduino 1.8.13 - O X ‘
File Edit Sketch Tools Help

// the loop function runs over and over again forew:
void loop{) {
digitalWrite (LED_BUTILTIN, HIGH); // turn the LED
| le (1000) ; // wait for :
digitalWrite (LED BUILTIN, LOW);: f T
v (1000) ; !/ wait for a

Arduino NANO 33 leT on CO

Figure 1-6. Blink application on Arduino software

10

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT
You can see the program codes are written as follows.

void setup() {
// initialize digital pin LED BUILTIN as an output.
pinMode(LED BUILTIN, OUTPUT);

}

// the loop function runs over and over again forever
void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH
is the voltage level)
delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by
making the voltage LOW
delay(1000); // wait for a second

}

Save this program. Now we can compile and upload the Arduino
program into Arduino Nano 33 IoT. You can click the Verify icon to compile
the Arduino program. To upload the Arduino program into the board, click
the Upload icon on Arduino software. You can see these icons in Figure 1-7.

11

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

@ Blink | Arduino 1.8.13 - [m} X
File Edit Sketch Tools Help

15 once when you press rasalt

in LED BUILTIN as an output

pinMode (LED_BUILTIN, OUTPBUT);

// the loop function runs over and over again foreve

void loop{) {
digitalWrite (LED BUILTIN, HIGH): // turn the LED
delay(1000); // wait for a si
digitalWrite (LED BUILTIN, LOW); // turn the LED
delay(1000); B // wait for a s

|} v

< >

Figure 1-7. Compiling and flashing a program

After uploading the Arduino program into Arduino Nano 33 IoT, we
will see blinking LED on the Arduino Nano 33 IoT board. You can see my
blinking LED in Figure 1-8.

12

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

-y
ol
bl _
bl
ol

Blinking
LED

Figure 1-8. Blinking LED on Arduino Nano 33 IoT

How does it work?

Arduino Nano 33 IoT board has one built-in LED on digital pin 13. In
our program, we set digital pin 13 as digital output using pinMode(). We
initialize this data on the setup() function.

void setup() {
// initialize digital pin LED_BUILTIN as an output.

pinMode(LED BUILTIN, OUTPUT);
}

The Arduino program defines LED_BUILTIN for a general of built-in
LED pin. We can set the pin as output mode by giving a value, OUTPUT.
Now our program will run continuously on the loop() function. We
turn on LED and then turn off the LED. We can use digitalWrite()
to perform on/off on the LED. Set the value to HIGH to turn on the
LED. Otherwise, we can turn off the LED by sending a value of LOW on the
digitalWrite() function. We also set a delay for turning the LED on/off.
We set 1000 ms on the delay() function.

13

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

void loop() {
digitalWrite(LED_BUILTIN, HIGH); // turn the LED on (HIGH
is the voltage level)
delay(1000); // wait for a second
digitalWrite(LED_BUILTIN, LOW); // turn the LED off by
making the voltage LOW
delay(1000); // wait for a second

}

You can practice the blinking LED program.
Next, we can use the Arduino web editor for alternative tools for
Arduino development. We just need a browser and Internet access.

Arduino Web Editor

Arduino provides an online editor to build Arduino programs. The
advantage of online editor is that we don’t prepare too many runtimes and
tools. We only need a browser and Internet connection.

We can access the Arduino web editor using any browser. You can
navigate to the link https://create.arduino.cc/editor. Figure 1-9
shows the Arduino web editor model. To use Arduino web editor, we must
register in the Arduino portal to build the Arduino program.

In this section, we will focus on getting started with Arduino web
editor. We will perform these tasks to complete our Arduino development

with online web editor:
e Register your Arduino portal account
e Install Arduino plug-in

o Build blink application for Arduino Nano 33 IoT

14

https://create.arduino.cc/editor

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

sketch_auglda

W —F % Arduino/Gonulno MKRIODOD = ses SHARE

[sketchbook SEARCH SKETCHROOK a seeteh_sughas 0 Readuie adoc -
E] Examples ORDERMG BY LAST LSO x

4 =
B3 Litwmries B sketch_augida @ =

@ Monitor & black-nano_augion

- 1
(@) Help i 1
12
141 Proferences

() Featwres usage

Figure 1-9. Arduino web editor

Registering an Arduino Account

To use and build the Arduino program with Arduino web editor, we must
register an Arduino account. This account is a similar account to that used
to buy the Arduino board in the Arduino store.

You can register a new Arduino account on the right-top menu icon.
You can fill personal information through this portal. After completed
account registration, we can build the Arduino program with Arduino web
editor.

Installing Arduino Plug-in

To enable our Arduino Nano 33 IoT to connect to Arduino web editor, we
need to install the Arduino plug-in. This is a required task for Windows.
The Arduino plug-in will act as a bridge between local Arduino Nano 33
IoT and the Arduino web editor.

15

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

First, we open a browser and navigate to the link https://create.
arduino.cc/getting-started/plugin/welcome. Then, we have a form, as
shown in Figure 1-10.

Figure 1-10. Arduino plug-in installation

Click the START button. After that, you will see a form, as shown in
Figure 1-11. Click the DOWNLOAD button to download the Arduino plug-
in application.

16

https://create.arduino.cc/getting-started/plugin/welcome
https://create.arduino.cc/getting-started/plugin/welcome

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

DOWNLOAD THE ARDUINO PLUGIN FOR WINDOWS

1

~~~4
o C ~{ *
y " M} SKETCHBOOM
//

i

|

e

i m

Figure 1-11. Download the Arduino plug-in for Windows

After downloading the Arduino plug-in, we can install this application.
Follow the installation steps from the setup file. If we finished the Arduino
plug-in installation, the browser will detect our Arduino plug-in. Figure 1-12
shows the browser detecting the Arduino plug-in. Click the NEXT button to
continue.

17



CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

PLUGIN CORRECTLY INSTALLED!

@ ARDUIND CREATE PLUGIN TRAY
CON

Figure 1-12. Detecting the Arduino plug-in

After we click the NEXT button, we receive confirmation of the
completed installation, as shown in Figure 1-13.

You can click the GO TO WEB EDITORS button to continue. You will be
directed to the Arduino web editor, as shown in Figure 1-9.

Now we are ready for Arduino development using the Arduino web
editor. Next, we will build a blink Arduino application.

18



CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

[©. 0] GETTING STARTED

CONGRATULATIONS! YOU'RE ALL SET,

SETUP STEPS

Figure 1-13. Completed Arduino plug-in installation

Building an Arduino Program

The Arduino web editor has the same functionalities as the desktop
version ofArduino software. The Arduino web editor has project samples.
We also can add Arduino libraries into the project.

In this section, we build a blink Arduino application like in the
previous project. We start by opening a browser and navigating to
https://create.arduino.cc/editor. Click the Examples menu on the left
menus. Then, click the BUILTIN tab and select 01.BASICS(6) -> Blink. You
can see Figure 1-14 for our Arduino project.

After we select the Blink project sample, we have a blink program. You
can see this program in Figure 1-15. Now we can compile and upload the
program into Arduino Nano 33 IoT.

Select your Arduino Nano 33 IoT board from the dropdown of the
device list. Click the Verify and Upload icon on the left of dropdown. This
tool will compile and upload the Arduino program into the targeted board.

19


https://create.arduino.cc/editor

CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

* sketch_augi7a
SEARCH EXAMPLES Q W' =3  Arduino NANO 33 loT at CO. - aas

SHOWING EXAMPLES FOR NANO 33107

H shottch_sugiTaing -

BUILTIN | FROM LIBRARIES

n\.mm—h

B AnalogReadSerial

B us e kW

o= vaid loop() {

B BareMinimum w
n )

T ——— 2

& DigitalReadSerial

E Fade

K ReadAnalogVoltage
02 DIGITAL (5)
OIAMALOG (6)
04 COMMUNICATION (12)

1]
amazon
05.CONTROL (8)

Figure 1-14. Create a new project

-

SEARCH EXAMPLES =3 A =3 arduing NANO 33T atCO.. «  lsss  SHARE

SHOWING EXAMBLES FCR NANO 33507

BULTIN | FROM USRARES. ,.
iH et
bt =

g 13 =
SIS 1) 54
1
& ZnstogReatsenal "
a7

& BaseMinimum

& Blink O

YUNEY

& DigitalRadserial

= Fade

& ReadAnalogvaltage

BUENK

03 DICITAL (%)

OLANALOC {6)

4 COMMUNICATION (12}

O5.CONTROL (8)

Figure 1-15. Uploading a program into Arduino Nano 33 IoT

20



CHAPTER 1 SETTING UP DEVELOPMENT ENVIRONMENT

We can try to build another Arduino project using the Arduino web
editor. We can use project samples from this tool.
This is the end of the chapter for setting up an Arduino development

environment.

Summary

We have learned to set up an Arduino development environment. We also
installed Arduino software on a desktop environment. We built a simple
Arduino program, blink. In addition, we tried to use the Arduino web
editor to build Arduino programs.

Next, we will learn how to access Arduino Nano 33 IoT input/output.
We use other communication protocols too.

21



CHAPTER 2

Arduino Nano 33 loT
Board Development

This chapter focuses on how to build Arduino Nano 33 IoT programs. We

use Arduino Sketch to build Arduino programs. This software is available

for Windows, macOS, and Linux. Then, we explore how to access Input/

Output peripherals on the Arduino Nano 33 IoT board by the Arduino

program.

In this chapter, you will learn:

how to write Arduino programs using Sketch
how to access digital I/O

how to access analog I/0

how to plot analog sensor analog

how to build a serial communication

how to access PWM

how to access SPI

how to scan an I12C address

how to read sensor device-based I12C

© Agus Kurniawan 2021
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_2

23


https://doi.org/10.1007/978-1-4842-6446-1_2#DOI

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Introduction

We can say Arduino is a platform since Arduino as a company provides
hardware and software. To build programs for Arduino Nano 33 IoT
boards, we can use Arduino Sketch. This program uses C/C++ dialects as
its language style.

In this chapter, we learn how to build programs for Arduino Nano
33 IoT. This is one of various Arduino models. The Arduino Nano 33 IoT
board uses WiFi and Bluetooth modules to connect to a network. WiFi is
a common network that people use to access Internet. Bluetooth is a part
of wireless personal network (WPAN) that enables communication with
other device in short distance.

We use Arduino software to build Arduino programs. This tool uses the
Sketch program that uses C++ dialects. In the next section, we start to learn
Sketch programming.

Basic Sketch Programming

In this section, we learn about Sketch programming language. Technically,
Sketch uses C++ dialects, so if you have experience with C++ programming
language, you can skip this section.

Main Program

The Arduino program has a main program to perform tasks continuously.
When we create a program using Arduino software, we have skeleton
codes with two functions: setup() and loop(). You can see the complete
codes as follows.

void setup() {
// put your setup code here, to run once:

24



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

void loop() {
// put your main code here, to run repeatedly:

In these codes, we have two functions, setup() and loop(). The
setup() function is called once when the Arduino board is turned on. If
we put codes in the setup() function, it means our codes will run once.
Otherwise, we have the loop() function that is called continuously.

This is a basic of the main program from Arduino. In this section, we
learn Sketch programming with the following topics:

o Declaring variables

e Making a conditional statement

o Makingloops

o Working with break and continue

Next, we start by declaring variables on the Sketch program.

Declare Variables

We can declare a variable using the following statement.
<data type> <variable name>;

<data type> is a keyword from the Sketch program that is adopted
from the C++ program. <data type> represents how to define our data
type on the variable. <variable name> is the variable name we will call
and use in our program. A list of <data type> in the Sketch program can
be seen in Table 2-1.

25



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Since the Sketch program adopts from C++, we put ; at the end of
the code line. Otherwise, we obtain an error while compiling codes. For
instance, we declare variables with int and char data types as follows:

int a;

int b = 10;
char c;

char d = 'A";

We can set an initial value while declaring a variable. For instance, we
setint b = 10.

Table 2-1. Data Types on

the Sketch Program

array float  void

bool int String()
Boolean long  unsigned char
Byte short  unsigned int
char size_t unsigned long

double string  word

For a demo, we create a project for the Arduino Nano 33 IoT. Open the
Arduino software and write these codes.

void setup() {
int a = 10;
int b = 5;

26



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

// initialize serial communication
Serial.begin(115200);
while (!Serial) {

)

}

int ¢
int d

a+ b;
a * b;

// print
Serial.print("C= ");
Serial.println(c);

Serial.print("d= ");
Serial.println(d);

}
void loop() {

}

27



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

| @ DeclareVar | Arduino 1.8.13 - & X

File Edit Sketch Tools Help

DeclareVar

E b =5
// initialjfize serial communication
Serial.begin(115200);
while (!Serial) (
}
€ =a+ B
1t d =a * b;
/ print
Serial.print("C= ")
Serial.println(c);
; Serial.print("d= ");
| Serial.println(d);
pO
// put your main code here, to run repeatedly:

Arduino NAND 33 loT on COM12

Figure 2-1. Declaring variables

Figure 2-1 shows the aforementioned codes. To print messages,
we use the Serial.print() and Serial.println() functions. We can
print messages using Serial.print() without carriage return (“\r\n”).
Otherwise, we can print messages with carriage return using Serial.
println().

All printed messages with Serial library will be shown on the serial
communication channel. Now we can save this program. Then, compile
and upload to the Arduino Nano 33 IoT board.

28



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

To see the program output on the serial communication channel, we
can use the Serial Monitor tool from Arduino. You can find it on the menu
Tools » Serial Monitor, as shown in Figure 2-2.

DeclareVar | Arduino 1.8.13 — O X
File Edit Sketch Tools

Auto Fol Ctrl+T
Archive Sketch
DedlareVar Fix Encoding & Reload
vedd Satusi() Manage Libraries... Ctrl+Shift+
int a = 10  Serial Monitor fsmeG—m_—m—" Ctrl+Shift+M
int b = 5; Serial Plotter Ctrl+Shift+L

¥ initial WiFi101 / WiFiNINA Firmware Updater
Serial.bed  Board: "Arduino NANO 33 loT"
Port: "COM12"

int ¢ = a
e - Get Board Info
int d = a

Programmer
/ pri
&) ?“mt / Burn Bootloader
Serial.privcy w7+
Serial.println(c);

Serial.print("d= "):

Serial.println(d);

Figure 2-2. Opening the Serial Monitor tool

After clicking the Serial Monitor tool, we can see our program output.
Select baudrate 115200 on the bottom of the Serial Monitor tool. You
should see the program output in Serial Monitor. Figure 2-3 shows my
program output in the Serial Monitor tool.

29



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

coM12 - O X
| Send
c= 15
d= 50
[ Autoscroll [ ] Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 2-3. Program output on the Serial Monitor tool

If you don’t see the output message on the Serial Monitor tool, you can
click the RESET button on the Arduino Nano 33 IoT board. You can find
this button next to the micro USB connector. You can see the RESET button
position in Figure 2-4.

i lRITII.I IN;: cc Z}':"l

T

Figure 2-4. Clicking the RESET button on the Arduino Nano 33 IoT

30



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

How does it work?
This program only runs on the setup() function. We declare two
variables, a and b. Then, we assign their values.

void setup() {
int a = 10;
int b = 5;

Next, we activate the Serial object to perform serial communication.
We set baud rate at 115200. We use while looping syntax to wait on
creating Serial object.

// initialize serial communication
Serial.begin(115200);
while (!Serial) {

)

}

We perform simple mathematic operations such as addition and
multiplication. The result of the operations is stored in the c and d

variables.
int ¢ = a + b;
int d = a * b;

We print the result to serial terminal using the Serial object.

// print
Serial.print("C= ");
Serial.println(c);

Serial.print("d= ");
Serial.println(d);

31



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

On the loop() function, we do nothing. All codes run on the setup()
function. That’s why you probably don’t see the program output, because
we see it late.

void loop() {
}

Operators

The Sketch program adopts C++ operators. We can declare arithmetic
operators to perform mathematic operations. We can use the following
arithmetic operators:

e % (remainder)

e *(multiplication)

e +(addition)

e - (subtraction)

e /(division)

o =(assignment operator)

For Boolean operators, we implement && for logical, | | for logical or,
and ! for logical not.

Conditional Statement

We can perform action-based conditions. For instance, we want to
turn on a lamp if a light sensor obtains a low intensity value. In Sketch,
we implement a conditional statement using if and switch syntax. A
conditional statement with if can be declared as follows:

32



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

if(<conditionaly) {
// do something

} else {
// do something
}

We can put a conditional value on <conditional> such as applying
Boolean and arithmetic operators. For a demo, we can create a Sketch
program on the Arduino Nano 33 IoT. You write this complete program.

long num_a;
long num_b;

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial) {
>
}
}

void loop() {
num_a = random(100);
num_b = random(100);

// print
Serial.print("num_a: ");
Serial.print(num_a);
Serial.print(", num b: ");
Serial.println(num_b);

33



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

if(num_a > num b) {
Serial.println("num_a > num_b");
telse {
Serial.println("num_a <= num_b");

}

delay(2000);

}

Save this program as conditional. Now you can compile and upload
this program into the Arduino Nano 33 IoT board. Open the Serial Monitor
tool so you can see this program output. Figure 2-5 shows my program
output for a conditional program.

@ com12 - O 2
| Send

num_a: 33, num_b: 43
num_a <= num b
num_a: 62, num_b: 29
num_a > num_b

num_a: 0, num b: 8
num_a <= num b
num_a: 52, num b: 56
num_a <= num_b

[ Autoscroll [ ] Show timestamp BothNL&CR ~ 115200 baud ~ Clear output

Figure 2-5. Program output for a conditional if program

How does this work?

34



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

This program generates random values for num_a and num_b variables
on the loop() function.

void loop() {
num_a = random(100);
num_b = random(100);

Next, we print these random values on the serial terminal using the
Serial object. We can call the Serial.print() and Serial.println()
functions.

// print
Serial.print("num_a: ");
Serial.print(num a);
Serial.print(", num b: ");
Serial.println(num_b);

Last, we evaluate a value on num_a and num_b using a conditional-if
statement. We check if the num_a value is greater than num_b or not. Then,
we print the result on the serial terminal.

if(num_a > num b) {
Serial.println("num_a > num b");
telse {
Serial.println("num_a <= num b");

}

The next demo is to implement a conditional with switch statement.
In general, we can declare a switch statement as follows.

switch(value) {
case vall: <code>
break;
case val2: <code>

35



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

break;
case val3: <code>
break;

For the demo, we build a program to evaluate the num_a value with
a switch statement. We set a random value with a maximum value of 5.
Open Arduino software and write this complete program.

long num a;

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial) {
5
}

}
void loop() {

num_a = random(5);

// print
Serial.print("num a: ");
Serial.println(num_a);
switch(num_a) {

case 0:
Serial.println("num_a value is 0");
break;

case 1:
Serial.println("num_a value is 1");
break;

case 2:

Serial.println("num_a value is 2");
break;

36



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

case 3:
Serial.println("num_a value is 3");
break;

case 4:
Serial.println("num_a value is 4");
break;

}

delay(2000);

}

Save this program as ConditionalSwitch. You can compile and upload
this program into Arduino Nano 33 IoT. To see the program output, and
you can open the Serial Monitor tool. You can see my program output in
Figure 2-6.

@ com12 - O S
| Send

num_a: 3
num_a value is 3
num_a: 3
num_a value is 3
num_a: 2
num_a value is 2
num_a: 4
num_a value is 4
num_a: 0
num_a value is 0
num_a: 3
num_a value is 3

[ Autoscroll [ ] Show timestamp BothNL&CR ~ 115200 baud ~ Clear output

Figure 2-6. Program output on the switch program

How does this work?

37



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

This program starts to generate random values on the loop() function.
The result is be stored in the num_a variable. Then, we print this value to a
serial terminal.

void loop() {
num_a = random(5);

// print
Serial.print("num a: ");
Serial.println(num_a);

Next, we evaluate the num_a variable using a switch statement. We
check num_a for value: 0, 1, 2, 3, and 4. We print the message on each
switch-case statement.

switch(num_a) {

case 0:
Serial.println("num_a value is 0");
break;

case 1:
Serial.println("num_a value is 1");
break;

case 2:
Serial.println("num_a value is 2");
break;

case 3:
Serial.println("num_a value is 3");
break;

case 4:

Serial.println("num_a value is 4");
break;

38



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

You have learned conditional statements with if and switch. In
my opinion, you can use switch statements if the options are below 5;
otherwise, you can use an if-statement with operators.

Looping

The looping task is useful when you perform the same task continuously.
In the Sketch program, we can implement looping tasks using for, while,
and do. .while statements. We can declare a for-statement as follows.

for(start;conditional;increment/decrement) {
<codes>

For a while statement, we can implement as follows.

while(selection) {

<codes>

We also can use do. .while for looping. You can run the first code step,
then we select a while statement.

do {
<codes>
} while(selection);

Now we can build a Sketch program to implement looping using for,
while, and do..while statement. Write this complete program using the
Arduino software.

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial) {

39



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

}
}

void loop() {
long val = random(15);
int i;
// print
Serial.print("val: ");
Serial.println(val);

// looping

Serial.println("Looping: for");

for(i=0;i<val;i++){
Serial.print(i);
Serial.print(" ");

}
Serial.println();

Serial.println("Looping: while");

int start = 0;

while(start < val) {
Serial.print(start);
Serial.print(" ");

start++;

}
Serial.println();

Serial.println("Looping: do..while");
start = 0;
do {

Serial.print(start);

Serial.print(" ");

40



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

start++;
Jwhile(start < val);
Serial.println();

delay(3000);
}

You can save this program as Looping. You can compile and upload this
program into the Arduino Nano 33 IoT board. After uploading a program
into the Arduino Nano 33 IoT board, you can open the Serial Monitor tool
to see program output. You can see my program output in Figure 2-7.

@ com12 - O X
| Send

val: 8

Looping: for
01234567
Looping: while

0 L2345 67
Looping: do..while
012345%57
val: 3

Looping: for

012

Looping: while

0 I2

Looping: do..while
0 X2

[ Autoscroll [ ] Show timestamp BothNL&CR  ~ 115200 baud ~ Clear output

Figure 2-7. Program output for looping

How does it work?
We set a random value for our looping program.

void loop() {
long val = random(15);
int i;

41



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

We print this random value to serial terminal.

// print
Serial.print("val: ");
Serial.println(val);

For looping with a for statement, we perform a loop starting with i=0
until we reach val value.

Serial.println("Looping: for");

for(i=0;i<val;i++){
Serial.print(i);
Serial.print(" ");

}
Serial.println();

For awhile statement, we perform a similar task to the for statement.

We set start = 0 for initialization.

int start = 0;

while(start < val) {
Serial.print(start);
Serial.print(" ");
start++;

}

Serial.println();

Last, we implement a do. .while statement. We set start=0 again.
Then, we perform a looping task.

start = 0;
do {
Serial.print(start);
Serial.print(" ");

42



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

start++;
Jwhile(start < val);
Serial.println();

Break and Continue

When we perform looping, we probably want to exit from looping or skip
a certain step from looping. In the Sketch program, we can use break and
continue statements.

For demo, we create the Sketch program to perform looping from 0 to
arandom value. When the looping iteration reaches 5, we skip this step
using a continue statement. Then, we exit from looping when we reach an
iteration value more than 10 using a break statement.

Now we can open Arduino software. We can write this complete
program for break and continue implementation.

void setup() {
// initialize serial communication
Serial.begin(115200);
while (!Serial) {
}
}

void loop() {
long val = random(6, 15);
int i;
// print
Serial.print("val: ");
Serial.println(val);

43



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

// looping
Serial.println("Looping: for");
for(i=0;i<val;i++){
if(i==5)
continue;

if(i>10)
break;

Serial.print(i);
Serial.print(" ");

}
Serial.println();

delay(3000);
}

Save this program as BreakContinue. Compile and upload this
program into Arduino Nano 33 IoT. After uploading the program, we can
see program output using the Serial Monitor tool, You can see my program
output in Figure 2-8.

© comiz - O X

| Send
val: 11 s
Looping: for

D320 d e T 4930

val: 9

Looping: for
01234678

val: 12

Looping: for
01234678510
val: 13

Looping: for

;4.2 4 678930
val: 9

Looping: for
01234678

w

[ Autoscroll [ ] Show timestamp Both NL&CR  ~ 115200 baud ~ Clear output

Figure 2-8. Applying break and continue on the Sketch program

44



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

How does it work?
We set a random value on the loop() function. We print this random
value to the serial terminal using Serial object.

void loop() {
long val = random(6, 15);
int i;
// print
Serial.print("val: ");
Serial.println(val);

We perform looping from 0 to a random value, val. When we have
iteration = 5, we skip this iteration using the continue statement. Then,
when we have iteration >10, we exit from looping by calling the break
statement.

// looping
Serial.println("Looping: for");
for(i=0;i<val;i++){

if(i==5)
continue;

if(i>10)
break;
Serial.print(i);

Serial.print(" ");

}
Serial.println();

This is the end of the basic Sketch program. Next, we write an Arduino
program with various cases.

45



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Digital 1/0

Arduino Nano 33 IoT has digital input/output about 14 pins. We can
perform to attach sensors and actuators into digital I/O pins. You can see
the Arduino Nano 33 IoT pin layout on the back of the board. Figure 2-9
shows the back of the Arduino Nano 33 IoT. Digital I/O pins are defined as
Dx, where x is a digital number; for instance, D1 is digital I/O on pin 1.

, TX1 RXO RST {4 12] D} . l:!? D4 -
N~ Ve " g

R

FeCe.

&) - “ROMS COMPLIANT
’ - DESIGEED ANC ASSEMBLFD IN ITALY

© "-_ARDUIE‘O,,_ : . _fnnu:nn'.cc

VUSB ~ __‘ i —: it o i
=i A7 A6 -A5 "A4- A3 ‘A2 Al A® REF3.3VDI3—
s B B @ -, = rY Y ¥ .

Figure 2-9. Arduino Nano 33 IoT pinout

To implement demo for digital I/O on the Arduino Nano 33 IoT, we
need an LED and a push button. We will use internal LED (built-in LED)
on digital pin 13. We also need a push button that is connected to digital
pin 7. You can see our project wiring in Figure 2-10.

46



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

" e e LI I L A O " e s 0w LI A
.- e .- e 00 LI B L . " e 0

. & & & @
* 8 8 8 0
* & 8 0
& & & & @
* 8 8 0 0
® & & & @
L I I B

L L LI B L L A
L B B L B L B B B L B B B L L

fritzing
Figure 2-10. A wiring for a push button project

Now we create the Arduino program. In this program, we turn on the
LED when the user clicks a push button. The program algorithm is to read
a push button state using the digitalRead() function. To turn on the LED,
we can use digitallWrite() and set HIGH value.

Open Arduino software. We can implement our program. Write this
complete program.

int led = 13;
int pushButton = 7;
int state = 0;

void setup() {
pinMode(led, OUTPUT);
pinMode(pushButton, INPUT);

}

47



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

void loop() {
state = digitalRead(pushButton);
digitalhWrite(led,state);
delay(300);

}

Save this program as ButtonLed. You can compile and upload this
program to Arduino Nano 33 IoT. After uploading, you can test by clicking
a push button. You should see a lighting LED on Arduino Nano 33 IoT.

How does this work?

This program starts by initializing values for LED and push button

pins.

int led = 13;
int pushButton = 7;
int state = 0;

void setup() {
pinMode(led, OUTPUT);
pinMode(pushButton, INPUT);

}

Then, on the loop() function, we read a push button state using
the digitalRead() function. The state value will be passed to the
digitalWrite() function to turn on/off LED.

void loop() {
state = digitalRead(pushButton);
digitalhWrite(led,state);
delay(300);

}

Now that we have learned about digital I/O, we will learn analog I/0 in
the next section.

48



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Analog I/0

Arduino Nano 33 IoT provides analog I/O to enable us to make interaction
with sensor and actuator devices. We can see analog I/O pins with labeling
Ax, where x is analog pin number. You can see these labels on the back of
Arduino Nano 33 IoT.

You can see these pins in Figure 2-9. Arduino Nano 33 IoT has eight
analog inputs (ADCs) and one analog input (DAC). For ADC model,
Arduino Nano 33 IoT provides ADC resolution with 8-, 10-, and 12-bit.
Furthermore, DAC model has a 10-bit resolution.

For our demo, we use the analog sensor TMP36. It’s a temperature
sensor. You can also use TMP36 module like thermal module from
Linksprite, https://www.linksprite.com/wiki/index.php?title=
Thermal Module. You can perform wiring as shown in Figure 2-11. You can
build this following wiring:

¢ TMP36 module VCC is connected to Arduino 3.3V

¢ TMP36 module GND is connected to Arduino GND

o TMP36 module SIG is connected to Arduino analog A0

Figure 2-11. Wiring for analog sensor and Arduino Nano 33 IoT

49


https://www.linksprite.com/wiki/index.php?title=Thermal_Module
https://www.linksprite.com/wiki/index.php?title=Thermal_Module

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Now we can write an Arduino Program to analog sensor from
TMP36 module. We read sensor data and then show it on a serial
terminal. You can start by opening Arduino software and write this

complete program.

void setup() {
Serial.begin(115200);
while (!Serial) {
}

}

void loop() {
int reading = analogRead(A0);

float voltage = reading * 3.3;
voltage /= 1024.0;

Serial.print(voltage); Serial.println(" volts");
float tempC = (voltage - 0.5) * 100 ;

Serial.print(tempC);
Serial.println(" degrees C");
delay(3000);

Save this program as AnalogSensor. Now you can compile and upload
this program into Arduino Nano 33 IoT. Open the Serial Monitor tool
to see program output. Figure 2-12 shows my program output for the
AnalogSensor program.

How does it work?

50



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

First, we read sensor data on analog pin AO0.

void loop() {
int reading = analogRead(A0);

Then, we calculate a voltage and show it on the serial terminal. Since
we use a voltage reference of 3.3V, we can calculate using this formula:

float voltage = reading * 3.3;
voltage /= 1024.0;

Serial.print(voltage); Serial.println(" volts");

Now we can compute a temperate using the following formula-based
datasheet from TMP36 module.

float tempC = (voltage - 0.5) * 100 ;

Serial.print(tempC);
Serial.println(" degrees C");

The result is be printed on serial terminal.

© com12 - O s

| Send
0.76 volts A
26.05 degrees C

0.76 volts

26.38 degrees C

0.76 volts

26.38 degrees C

0.76 volts

26.05 degrees C

0.77 volts

27.34 degrees C

W

[“] Autoscroll [ ] Show timestamp Both NL&CR  ~ 115200 baud ~ Clear output

Figure 2-12. Program output for reading temperature

51



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Plotting Analog Sensor

We also can plot analog input on the plotter tool. This tool is available on
Arduino software. For our demo, we use a SparkFun Electret Microphone
Breakout as an analog source. You can find this module on the link
https://www.sparkfun.com/products/12758.

Now we can connect a SparkFun Electret Microphone Breakout to
Arduino Nano 33 IoT. You can build this following the wiring:

e SparkFun Electret Microphone Breakout module VCC
is connected to Arduino 3.3V.

o SparkFun Electret Microphone Breakout module GND
is connected to Arduino GND.

o SparkFun Electret Microphone Breakout module SIG is
connected to Arduino AO.

You can see my hardware wiring in Figure 2-13.

Figure 2-13. Arduino wiring with SparkFun Electret Microphone
Breakout

52


https://www.sparkfun.com/products/12758

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Now we can write Arduino program to plot sensor data. Open Arduino
software and write this complete program.

void setup() {
Serial.begin(115200);
while (!Serial) {
}

}

void loop() {
int val = analogRead(A0);
Serial.println(val);
delay(300);

}

Save this program as AnalogPlotting. Now you can compile and upload
this program into Arduino Nano 33 IoT. Open the Serial Plotter tool on
Arduino software, and click the menu Tools » Serial Plotter, as shown in
Figure 2-14.

53



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

@ AnalogPlotting | Arduino 1.8.13 - a X

File Edit Sketch Tools i

Auto Format Ctrl+T
Archive Sketch

AnalogPlottii  Fix Encoding & Reload

Manage Libraries... Ctrl+Shift+]
Serial Monitor Ctrl+Shift+M

void setup()
Serial.beq
while (!sef

H
} Board: "Arduino NANO 33 loT"
Port: "COM12"
Get Board Info

WiFi101 / WiFiNINA Firmware Updater

void loop()
int val =
Serial.pri
delay (300)

Programmer
Burn Bootloader

Figure 2-14. Opening the Serial Plotter tool

After you click the Serial Plotter, you will obtain a dialog as shown in
Figure 2-15. Make noise on SparkFun Electret Microphone Breakout so we
can obtain various signals on the plotter tool. Since we use delay(300),
plotter updates its graphs every 300 ms.

@ comiz O X

540.01

525.01

w
i
o
(=]
—

455,01
480.0 00 00 300 00 500)
115200 baud  ~ Send No line ending

Figure 2-15. Plotting sensor data

54



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

How does it work?
This program works very simply. First, we read an analog sensor by
calling analogRead().

void loop() {
int val = analogRead(A0);

Then, we print to the serial terminal using print1ln() from the Serial
object.

Serial.println(val);
delay(300);

This makes the Serial Plotter tool display a graph.

Serial Communication

Serial communication is the process of sending data one bit at a time,
sequentially, over a communication channel. In Arduino Nano 33 IoT, we
can implement serial communication using the Serial object. We already
used this Serial object in previous projects to show program output using
the Serial Monitor tool.

We can write data into serial communication by calling print() and
println() from Serial object. Further information about the Serial
object, you canread it at https://www.arduino.cc/reference/en/
language/functions/communication/serial/

For the demo, we build a blink program. Each LED state is written into
a serial terminal. We use baudrate 115200. You can open Arduino software
and write this complete program.

55


https://www.arduino.cc/reference/en/language/functions/communication/serial/
https://www.arduino.cc/reference/en/language/functions/communication/serial/

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT
int led = 13;

void setup() {
Serial.begin(115200);
pinMode(led, OUTPUT);

}

void loop() {
Serial.println("LED: HICH");
digitalhWrite(led, HIGH);
delay(1000);
Serial.println("LED: LOW");
digitalhWrite(led, LOW);
delay(1000);

Save this program as SerialDemo. Now you can compile and upload

this program into Arduino Nano 33 IoT. Open the Serial Monitor tool to

see the program output. Figure 2-16 shows my program output for the
SerialDemo program.

[LED:

!LED:
|LED:
|LED:
|LED:
|LED:
|LED:
|LED:

|LED:
!LED:
|LED:
|LED:
LED:

[ [“] Autoscroll [ ] Show timestamp

HIGH
LOW
HIGH
LOW
HIGH
LOW
HIGH
LOW
HIGH
LOW
HIGH
LOW
HIGH

Figure 2-16. Program output for the SerialDemo program

56

Send

W

~ 115200 baud ~ Clear output




CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Pulse Width Modulation

Pulse width modulation (PWM) is a method to control analog output.
Technically, it's not "true" analog output. A microcontroller unit (MCU)
can manipulate duty cycles to generate pulses. Arduino Nano 33 IoT

non

has a PWM pin on digital pins. You can see a sign "~" on digital pins as a
PWM pin. You can see that Figure 2-9 shows a digital pin such as D2 ~. In
general, Arduino Nano 33 IoT has 11 PWM pinson 2, 3, 5, 6, 9, 10, 11, 12,
16/A2, 17/A3, and 19/A5.

For our demo, we use RGB LED. This LED has four pins. Three pins
are red, green, and blue pins. The rest could be ground (GND) or voltage
common collector (VCC), depending on RGB cathode or anode model.

We can implement our demo wiring as shown in Figure 2-17. You can

perform the wiring as follows:
¢ RGBred pin is connected to Arduino digital pin 12.
o RGB green pin is connected to Arduino digital pin 11.
o RGB blue pin is connected to Arduino digital pin 10.

¢ RGB GND pin is connected to Arduino digital pin GND.

57



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

T
—IIII......

L L

L AL L R
(¢l ® o » & % % % % o ® o ® ® @
. e e

fritzing
Figure 2-17. Wiring for Arduino and RGB LED

Now we create the Arduino program to generate some colors with RGB
LED. We will make colors such as red, green, blue, yellow, purple, and
aqua. You can open Arduino software and write this complete program.

int redPin = 12;
int greenPin = 11;
int bluePin = 10;

void setup()

{
pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);
pinMode(bluePin, OUTPUT);
Serial.begin(115200);

}

58



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

void loop()

{
setColor(255, 0, 0); // red
Serial.println("red");
delay(1000);
setColor(o, 255, 0); // green
Serial.println("green");
delay(1000);
setColor(o, 0, 255); // blue
Serial.println("blue");
delay(1000);
setColor(255, 255, 0); // yellow
Serial.println("yellow");
delay(1000);
setColor(80, 0, 80); // purple
Serial.println("purple");
delay(1000);
setColor(o, 255, 255); // aqua
Serial.println("aqua");
delay(1000);

}

void setColor(int red, int green, int blue)

{

analogWrite(redPin, red);
analogWrite(greenPin, green);
analoghrite(bluePin, blue);

}

59



CHAPTER 2

ARDUINO NANO 33 10T BOARD DEVELOPMENT

@@:T'ﬁ'

red
green
blue
yellow
purple
aqua
red
green
blue
yellow
purple
agua
red

[“] Autoscroll [ Show timestamp Both NL & CR

~ 115200 baud ~

Send

v

Clear output

Figure 2-18. Program output for the RGB application

Save this program as test_rgb_arduino. Now you can compile and

upload this program into Arduino Nano 33 IoT. You should see some colors

on RGB LED. You also can open the Serial Monitor tool to see the program

output. Figure 2-18 shows my program output for the test_rgb_arduino

program.

How does it work?
We initialize digital pins for PWM pins. We call pinMode () with OUTPUT
mode. We also configure serial with baudrate 115200.

int redPin = 12;
int greenPin = 11;
int bluePin = 10;

void setup()

{

pinMode(redPin, OUTPUT);
pinMode(greenPin, OUTPUT);

60



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

pinMode(bluePin, OUTPUT);
Serial.begin(115200);

We also define the setColor() function to generate a color from
combining red, green, and blue color values. We call analoghrite() to
write data for PWM data.

void setColor(int red, int green, int blue)
{
analoghrite(redPin, red);
analogWrite(greenPin, green);
analoghrite(bluePin, blue);

}

Next, we generate some colors on the loop() function. For instance,
we want to set red = 255, green = 0, and blue = 0. These sample for
generating colors for red, green, and blue.

void loop()

{
setColor(255, 0, 0); // red
Serial.println("red");
delay(1000);
setColor(o, 255, 0); // green
Serial.println("green");
delay(1000);
setColor(o, 0, 255); // blue
Serial.println("blue");
delay(1000);

61



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

We also generate colors for yellow, purple, and aqua by inserting
values for red, green, and blue.

setColor(255, 255, 0); // yellow
Serial.println("yellow");
delay(1000);

setColor(80, 0, 80); // purple
Serial.println("purple");
delay(1000);

setColor(o, 255, 255); // aqua
Serial.println("aqua");
delay(1000);

You can practice generating new colors by combining values for red,
green, and blue. We can only set values from 0 to 255.

Serial Peripheral Interface

Serial communication works with asynchronous mode so there is no control
on serial communication. This means we cannot guarantee the data that
is sent will be received by receiver. The serial peripheral interface (SPI) is a
synchronous serial communication interface specification, but SPI has four
wires to control data such as master out/slave in (MOSI), master in/slave out
(MISO), serial clock signal (SCLK), and slave select (SS).

Arduino Nano 33 IoT has one SPI interface with the following SPI pins:

e MOSI on Digital pin 11
e MISO on Digital pin 12
e SCLK on Digital pin 13

You can attach any sensor or actuator-based SPI interface on Arduino
Nano 33 IoT. For our demo, we only connect the MISO pin to the MOSI
pin using a jumper cable. You can connect digital pin 12 to digital pin 11.
Figure 2-19 shows my wiring for the SPI demo.

62



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Figure 2-19. Connecting MISO and MISO pins from Arduino SPI

To access the SPI interface on Arudino Nano 33 IoT, we can use the SPI
library. You can obtain a detailed information about this library at this link,
https://www.arduino.cc/en/Reference/SPI

Now we can build the Arduino program. Our program will send data to
SPI and receive data from SPI. Open Arduino software and then write this
complete program.

#include <SPI.h>

byte sendData,recvData;
void setup() {
SPI.begin();

63


https://www.arduino.cc/en/Reference/SPI

CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Serial.begin(9600);
randomSeed(80);

}

void loop() {
sendData = random(50, 100);

SPI.transfer(sendData);

recvData

Serial.print("Send=");
Serial.println(sendData,DEC);
Serial.print("Recv=");
Serial.println(recvData,DEC);
delay(800);

© com O
Send

Recv=54 ~

Send=66

Recv=66

Send=57

Recv=57

Send=92

Recv=92

Send=50

Recv=50

Send=85

Recv=85

Send=52

Recv=52

w

Both NL& CR  ~ 115200 baud ~ Clear output

[“] Autoscroll [_]Show timestamp

Figure 2-20. Program output for the SPI program

Save this program as SPIDemo. Now you can compile and upload
this program into Arduino Nano 33 IoT. You can open the Serial Monitor
tool to see program output. Figure 2-20 shows my program output for the
SPIDemo program.

64



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

How does it work?
We initialize SPI and Serial interface on the setup() function.

#include <SPI.h>

byte sendData,recvData;

void setup() {
SPI.begin();
Serial.begin(9600);
randomSeed(80);

}

To send and receive data over SPI, we can use the SPI.transfer()
function. We send data with a random value on the loop() function.

void loop() {
sendData = random(50, 100);
recvData = SPI.transfer(sendData);

Then, we print sent data and received data on serial terminal.

Serial.print("Send=");
Serial.println(sendData,DEC);
Serial.print("Recv=");
Serial.println(recvData,DEC);

You have completed the SPI demo. You can practice more with SPI by
applying sensors or actuator devices.

Interintegrated Circuit (12C)

The interintegrated circuit (I2C) protocol is a protocol intended to allow
multiple "slave" module/device (chip) to communicate with one or more
"master" chips. This protocol works with asynchronous mode.

To communicate with other devices/modules, 12C protocol defines the 12C
address for all "slave" devices.

65



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

The 12C interface has two pins: serial data (SDA) and serial clock
(SCL). For data transfer, the I2C interface uses an SDA pin. An SCL pin is
used for clocking. The Arduino Nano 33 IoT board has I12C pins on A4 as
SDA and A5 as SCL.

For our demo, we use a sensor module-based 12C interface. The I12C
interface uses a device address so the Arduino Nano 33 IoT board can
access data by opening a connection to the 12C address. Each analog
sensor from sensor module-based 12C will be attached to the 12C address.

For testing, I used a PCF8591 AD/DA converter module with sensor
and actuator devices. This sensor module can be seen in Figure 2-21. The
PCF8591 AD/DA module uses a PCF8591 chip that consists of four analog
input and AD converters. The PCF8591 chip also has analog output with
a DA converter. For further information about the PCF8591 chip, you can
read at this link, https://www.nxp.com/products/interfaces/ic-spi-
serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-
converter:PCF8591.

You can find the chip at an online store like Aliexpress. You can
probably obtain this module at your local store.

Figure 2-21. PCF8591 ADC DAC AD/DA module

66


https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591
https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591
https://www.nxp.com/products/interfaces/ic-spi-serial-interface-devices/ic-dacs-and-adcs/8-bit-a-d-and-d-a-converter:PCF8591

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Based on datasheet documentation of the PCF8591 AD/DA converter
module, this module uses I2C addresses on 0x48. The PCF8591 AD/DA
converter module also consists of three sensors as follows:

e Thermistor: using channel 0
e Photoresistor: using channel 1
o Potentiometer: using channel 3

Now attach the PCF8591 AD/DA converter module to the Arduino
Nano 33 IoT board with the following wiring:

e The PCF8591 AD/DA module SDA is connected to
Arduino A4 pin.

¢ The PCF8591 AD/DA module SCL is connected to
Arduino A5 pin.

¢ The PCF8591 AD/DA module VCC is connected to
Arduino 3.3V.

e The PCF8591 AD/DA module GND is connected to
Arduino GND pin.

Figure 2-22 shows my wiring for the PCF8591 AD/DA converter
module and Arduino Nano 33 IoT. You should see a lighting LED when we
plug in 3.3V to the module.

67



CHAPTER 2  ARDUINO NANO 33 10T BOARD DEVELOPMENT

Figure 2-22. Wiring PCF8591 ADC DAC AD/DA module with
Arduino Nano 33 IoT

We have finished our wiring for this demo. Next, we will implement
two project demos as listed here:

e I2Cscanning application
o I2Csensor application

Next, we build a scanning 12C address application on the Arduino
Nano 33 IoT board.

Scanning 12C Address

Every device/module-based I2C set owns an I2C address on MCU. In this
section, we want to scan all devices that are attached on Arduino Nano 33
IoT. We also have two internal sensor device-based 12Cs inside Arduino
Nano 33 IoT.

68



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

To access I12C on the Arduino board, we can use the Wire library.
We can include our program by inserting the wire.h library. For further
information about the Wire library, we can read on the official website
from Arduino (https://www.arduino.cc/en/Reference/Wire).

For our demo, we use our wiring demo from the PCF8591 AD/DA
converter module (see Figure 2-22). Open Arduino software and write this
complete program.

#include <Wire.h>
void setup() {

Serial.begin(115200);
Wire.begin();
Serial.println("\nI2C Scanner");

}

void loop() {
byte error, address;
int nDevices;

Serial.println("Scanning...");

nDevices = 0;

for(address = 1; address < 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();

if (error == 0) {
Serial.print("I2C device found at address 0x");
if (address < 16)
Serial.print("0");
Serial.println(address, HEX);

nDevices++;

69


https://www.arduino.cc/en/Reference/Wire

CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

else if (error == 4) {
Serial.print("Unknown error at address 0x");
if (address < 16)
Serial.print("0");
Serial.println(address, HEX);
}
}
if (nDevices == 0)
Serial.println("No I2C devices found");
else
Serial.println("done");

delay(5000);
}

Save this program as i2c_scanner. Now you can compile and upload
this program into Arduino Nano 33 IoT. We can see program output using
Serial Monitor.

Figure 2-23 shows my program output for i2c_scanner. You can see
that there are three 12C addresses. 0x48 is our PCF8591 AD/DA converter
module. Two I2C addresses, 0x60 and 0x6A, are internal I2C sensors inside
Arduino Nano 33 IoT.

70



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

© com O
Send

I2C device found at address 0x6€0 -~
I12C device found at address 0x6A
done

Scanning...

I12C device found at address 0x48
I2C device found at address 0x60
12C device found at address 0x6A
done

Scanning. ..

I2C device found at address 0x48
I2C device found at address 0xé0
I2C device found at address Ox6A
done

w

[] Autoscroll [] Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 2-23. Program output for reading I2C address

How does it work?
First, we initialize 12C and serial interfaces on the setup() function.
We set baudrate serial for 115200.

#include <Wire.h>
void setup() {

Serial.begin(115200);
Wire.begin();
Serial.println("\nI2C Scanner");

}

On the loop() function, we scan the 12C address by probing 12C data.
We set initialize nDevices = 0 for a number of finding I2C devices. We
perform a looping task from address 0 to 127.

71



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Then we open the I2C interface using Wire.beginTransmission().
Next, we close a transmission by callingwire.endTransmission().

nDevices = 0;
for(address = 1; address < 127; address++) {
Wire.beginTransmission(address);
error = Wire.endTransmission();

We check for value error. If there is no error, it means we have an 12C
device on current address. We print the 12C address to serial terminal
using Serial.println() with HEX mode.

if (error == 0) {
Serial.print("I2C device found at address 0x");
if (address < 16)
Serial.print("0");
Serial.println(address, HEX);

nDevices++;

}

Otherwise, we check the error code. If error = 4, we print errors on this
address for unknown errors on the current address.

else if (error == 4) {
Serial.print("Unknown error at address 0x");
if (address < 16)
Serial.print("0");
Serial.println(address, HEX);
}

72



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Last, we print our findings from the I12C interface on the serial
terminal.

if (nDevices == 0)

Serial.println("No I2C devices found");
else

Serial.println("done");

This program is useful to check a list of I2C devices that are attached
on Arduino Nano 33 IoT.

Reading Sensor-Based 12C Address

In this section, we read sensor data from the I12C device. We already
configured hardware wiring in Figure 2-22. The PCF8591 AD/DA
converter module has three sensors: thermistor, photo-voltaic cell, and
potentiometer. Each sensor has a channel address on 0x00, 0x01, and 0x03,
respectively.

Let’s start to build the Arduino program to access sensor device over
the 12C interface. We will use hardware wiring in Figure 2-22. You can open
the Arduino software and write this complete program.

#include "Wire.h"

#define PCF8591 0x48 // I2C bus address

#define PCF8591 ADC CHO 0x00 // thermistor

#define PCF8591 ADC CH1 0x01 // photo-voltaic cell
#define PCF8591 ADC_CH2 0x02

#define PCF8591_ADC CH3 0x03 // potentiometer

byte ADC1, ADC2, ADC3;

void setup()

{
Wire.begin();
Serial.begin(9600);

73



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

}
void loop()

{
// read thermistor
Wire.beginTransmission(PCF8591);
Wire.write((byte)PCF8591 ADC CHO);
Wire.endTransmission();
delay(100);
Wire.requestFrom(PCF8591, 2);
delay(100);
ADC1=Wire.read();
ADC1=Wire.read();

Serial.print("Thermistor=");
Serial.println(ADC1);

// read photo-voltaic cell
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591 ADC _CH1);
Wire.endTransmission();
delay(100);
Wire.requestFrom(PCF8591, 2);
delay(100);

ADC2=Wire.read();
ADC2=Wire.read();

Serial.print("Photo-voltaic cell=");
Serial.println(ADC2);

// potentiometer
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591_ADC_CH3);
Wire.endTransmission();

74



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

delay(100);
Wire.requestFrom(PCF8591, 2);
delay(100);

ADC3=Wire.read();
ADC3=Wire.read();

Serial.print("potentiometer=");
Serial.println(ADC3);

delay(500);

Save this program as 12CSensor. Now you can compile and upload
this program into Arduino Nano 33 IoT. Open the Serial Monitor tool
on Arduino software. You should see sensor data from the 12C protocol.
Figure 2-24 shows my program output for the I2CSensor.

© comi 5]

Send
potentiometer=78 -
Thermistor=115
Photo-voltaic cell=113
potentiometer=78
Thermistor=115
Photo-voltaic cell=112
potentiometer=78
Thermistor=115
Photo-voltaic cell=113
potentiometer=78
Thermistor=115
Photo-voltaic cell=113
potentiometer=78

v

[] Autoscroll [] Show timestamp Both NL&CR  ~ 115200 baud ~ | Clear output |

Figure 2-24. Program output for reading sensors over I2C

75



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

How does it work?
First, we initialize our 12C, Serial, and PCF8591 AD/DA converter
module. We define 12C address channel. This is done on the setup()

function.

#include "Wire.h"

#define PCF8591 0x48 // I2C bus address

#define PCF8591 ADC CHO 0x00 // thermistor

#define PCF8591_ADC _CH1 0x01 // photo-voltaic cell
#define PCF8591_ADC_CH2 0x02

#define PCF8591 ADC CH3 0x03 // potentiometer

byte ADC1, ADC2, ADC3;

void setup()
{
Wire.begin();
Serial.begin(9600);
}

We can read sensor data on the loop() function. To read thermistor
data, we open I12C using Wire.beginTransmission() with passing
PCF8591. Then, select a channel for thermistor with value PCF8591
ADC_CHO using Wire.write(). We close transmission by calling Wire.
endTransmission(). We read sensor data with 2 bytes using the Wire.
requestFrom() function.

void loop()

{
// read thermistor
Wire.beginTransmission(PCF8591);
Wire.write((byte)PCF8591 ADC CHO);
Wire.endTransmission();
delay(100);

76



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

Wire.requestFrom(PCF8591, 2);
delay(100);

ADC1=Wire.read();
ADC1=Wire.read();

We set delay(100) to wait the module to complete our request. We
read a data per byte using the Wire.read() function. Next, we print
thermistor data on the serial terminal.

Serial.print("Thermistor=");
Serial.println(ADC1);

With the same method, we can read photo-voltaic cell by changing
channel the value PCF8591_ADC_CH1. After that, we read sensor data and

print the result to the serial terminal.

// read photo-voltaic cell
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591 ADC CH1);
Wire.endTransmission();
delay(100);
Wire.requestFrom(PCF8591, 2);
delay(100);

ADC2=Wire.read();
ADC2=Wire.read();

Serial.print("Photo-voltaic cell=");
Serial.println(ADC2);

We also read potentiometer from the PCF8591 AD/DA converter
module. Open the I2C interface and select the channel for PCF8591 ADC
CH3. Then, we can read sensor data and print it on the serial terminal.

77



CHAPTER 2  ARDUINO NANO 33 I0T BOARD DEVELOPMENT

// potentiometer
Wire.beginTransmission(PCF8591);
Wire.write(PCF8591_ADC_CH3);
Wire.endTransmission();
delay(100);
Wire.requestFrom(PCF8591, 2);
delay(100);

ADC3=Wire.read();
ADC3=Wire.read();

Serial.print("potentiometer=");
Serial.println(ADC3);

This is the end of the chapter. You can practice more on Arduino Nano
33 IoT with some protocol that we already learned.

Summary

We have learned basic Arduino programming using Sketch. We accessed
digital and analog I/O on the Arduino Nano 33 IoT board. We explored
how to implement PWM on Arduino Nano 33 IoT and how to plot
sensor data. Furthermore, we learned to use SPI and I12C interfaces to
communicate with external devices.

Next, we will learn how to access internal sensor devices on Arduino
Nano 33 IoT.

78



CHAPTER 3

IMU Sensor:
Accelerator and
Gyroscope

The Arduino Nano 33 IoT board has an internal sensor, inertial

measurement unit (IMU). This IMU sensor is built from LSM6DS3. In this

chapter, we explore how to access the IMU sensor on Arduino Nano 33 IoT.
You will learn the following topics in this chapter:

o Setting up LSM6DS3 sensor
e Accessing accelerator sensor
e Accessing gyroscope sensor

o Plotting sensor data

Introduction

Arduino Nano 33 IoT has an internal sensor that we can access directly.
This sensor is the IMU-based LSM6DS3. This module consists of
accelerator and gyroscope sensors. This sensor is connected to Arduino
Nano 33 IoT over the interintegrated circuit (I2C) interface. For further

© Agus Kurniawan 2021 79
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_3


https://doi.org/10.1007/978-1-4842-6446-1_3#DOI

CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

information about technical documentation of LSM6DS3, we can read the
detailed datasheet document at this link, https://content.arduino.cc/
assets/st_imu_lsméds3_datasheet.pdf. You can see the LSM6DS3 chip
on Arduino Nano 33 IoT board in Figure 3-1.

LMS6DS3
l:_ﬂi?!ﬂl-]— cc irf'

Ak ' T

P P Y

Figure 3-1. LSM6DS3 chip on Arduino Nano 33 IoT

In Chapter 2, we learned about the 12C interface. We also perform
a scan of the I2C address. You can run the i2c_scanner program from
Chapter 2. Figure 3-2 shows a list of I2C addresses of I2C devices. The IMU
sensor runs on 0x60 and x6A 12C addresses.

80


https://content.arduino.cc/assets/st_imu_lsm6ds3_datasheet.pdf
https://content.arduino.cc/assets/st_imu_lsm6ds3_datasheet.pdf

CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

© com12 - O p 4
| Send

Scanning. .. A
I2C device found at address 0xé0

I2C device found at address 0xéA

done

Scanning. ..

I2C device found at address 0x6€0

I2C device found at address 0x6A

done

w

[“] Autoscroll [ Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 3-2. A list 12C addresses from sensor device-based I2C
interface

In this chapter, we will explore the IMU sensor, LSM6DS3, on Arduino
Nano 33 IoT. We access accelerator and gyroscope sensors from the
Arduino program.

Set Up LSM6DS3 Library

To access the IMU sensor-based LSM6DS3 chip on Arduino Nano 33
IoT, we need to install the Arduino LSM6DS3 library. This library can be
used to access the IMU sensor for accelerator and gyroscope sensors. We
will use this library in this chapter. Details about the LSM6DS3 library
can be read at this link, https://www.arduino.cc/en/Reference/
ArduinoLSM6DS3.

To install the Arduino LSM6DS3 library, you can open Arduino
software. Then, click the menu Sketch » Include Library » Manage
Libraries, as shown in Figure 3-3.

81


https://www.arduino.cc/en/Reference/ArduinoLSM6DS3
https://www.arduino.cc/en/Reference/ArduinoLSM6DS3

CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

@ sketch_aug22a | Arduino 1.8.13 = O X
File Edit Sketch Tools Help
—————
Verify Ctrl+R
Upload Ctrl+U Manage Libraries... '\-qtmshiﬁ+l
Upload Using Programmer Ctrl+Shift+U Add ZIP Library...

i Export compiled Binary  Ctrl+Alt+S
) _I Arduino libraries
/7P Show Sketch Folder Eﬂx Bridge
: Include Library ’  Esplora
Add File... Ethernet
id loop() { Firmata
// put your main code here, to run repe; GSM
HID
! 125
Keyboard

Figure 3-3. Opening the Manage Libraries menu in Arduino software

After we click the Manage Libraries menu, we will obtain a Library
Manager dialog, as shown in Figure 3-4. You can type arduino_lsm6ds3 in
the search textbox. Then, you should see a list of libraries. You should also
see the Arduino_LSM6DS3 library. In Figure 3-4 you can see the Arduino_

LSM6DS3 library that is noted by a red arrow.

-] Library Manager

Type All ~ Topic All ~ arduing_lsmbds3 P——

Arduino_LSMSDS3

B Arduing A

Allows you to read the accelerometer and gyroscope values from the LSMEDS3 IMU on your Arduine Nano 33 IoT or Arduine Uno
WiFi Rev2 boards.

More info —

And
by Seeed Studio
Arduine library to control Grove 6 Axis pe LSMEDS3, . Arduing library te control Grove 5 Axis

AccelerometerfGyroscope LSMEDS], LSMEDS3-C,
More info

Version 2.0.0 ~  Install
LSM6
by Pololu

LSME accelerometer and gyro library This is a library for the Arduing IDE that helps interface with ST's LSMEDS33 accelerometer and gyre.
More info

5TM32duino LSMGDS3
o AST

3D accelerometer and 30 gyroscope. This lisrary provides Arduine support for the 30 acceleromater and 20 gyroscope LSMEDSS for STH32
boards.

More info

Figure 3-4. Installing the Arduino LSM6DS3 library

82



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Click the Install button after you click the Arduino_LSM6DS3 library.
Make sure your computer is connected to the Internet. After completing
installation, we can access the IMU sensor on Arduino Nano 33 IoT.

Working with an Accelerator

The IMU sensor in Arduino Nano 33 IoT has an accelerator sensor. This
sensor measures acceleration on x, y, and z coordinates. The sensor value
ranges from -4 to 4. We will use the Arduino LSM6DS6 library to access the
IMU accelerator sensor.

In general, we can start to use the LSM6DS6 library by calling
IMU.begin(). Then, we can read the sensor value by calling the IMU.
readAcceleration() function.

For the demo, we read the IMU accelerator on the Arduino Nano 33
IoT board. Then, we print the measurement result on the serial terminal.
You can open Arduino software and write this complete program.

#include <Arduino_LSM6DS3.h>

void setup() {
Serial.begin(115200);
while (!Serial);

if ('IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);
}

Serial.print("Accelerometer sample rate = ");
Serial.print(IMU.accelerationSampleRate());
Serial.println(" Hz");

Serial.println();

83



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Serial.println("Acceleration in G's");
Serial.println("X\tY\tZ");

}

void loop() {
float x, vy, z;

if (IMU.accelerationAvailable()) {
IMU.readAcceleration(x, y, z);

Serial.print(x);
Serial.print('\t");
Serial.print(y);
Serial.print('\t");
Serial.println(z);

Save this program as SimpleAccelerometer. Now you can compile and
upload this program into Arduino Nano 33 IoT. We can see program output
using the Serial Monitor. Change your board position or shake your board
or move your board with certain speed so you have a measurement result
on the serial terminal.

Figure 3-5 shows my program output for the SimpleAccelerometer
program. You can see accelerator values for x, y, and z.

84



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

!."\' M
Send
0.03  0.46  0.93 a
0.02 0.36 0.96
-0.06 0.31 1.10
-0.05 0.24  1.16
0.05 0.18 1.03
0.05  0.15  1.02
0.08 0.18 0.88
-0.01 0.15 0.83
-0.03 0.14  0.84
-0.04 0.20 0.81
-0.06 0.46  0.71
-0.05 0.66 0.62
-0.06 0.72  0.58
| EJ Autoscroll [[]Show timestamp Both NL&CR v 115200 baud v | Clear output

Figure 3-5. Program output from reading the IMU accelerator

How does it work?
First, we include the Arduino LSM6DS3 library in the Arduino program.

#include <Arduino_LSMéDS3.h>

We initialize the IMU sensor and the Serial object on the setup()
function.

void setup() {
Serial.begin(115200);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);
}

We also can print the current accelerator sample rate by calling the
IMU.accelerationSampleRate() function on the serial terminal.

85



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Serial.print("Accelerometer sample rate = ");
Serial.print(IMU.accelerationSampleRate());
Serial.println(" Hz");

Serial.println();
Serial.println("Acceleration in G's");
Serial.println("X\tY\tZ");

On the loop() function, we read the accelerator sensor. We should
check whether there is available accelerator sensor data by calling the IMU.
acccelerationAvailable() function. If it’s available for sensor data, we
can read the sensor data using the IMU.readAcceleration() function.

void loop() {
float x, y, z;

if (IMU.accelerationAvailable()) {
IMU.readAcceleration(x, y, z);

Then, we print the sensor data on the serial terminal.

Serial.print(x);
Serial.print('\t");
Serial.print(y);
Serial.print('\t");
Serial.println(z);

Working with Gyroscope

Gyroscope is a sensor to measure orientation and angular velocity.

Arduino Nano 33 IoT has a built-in gyroscope sensor over the IMU

LSM6DS3 sensor chip. We can access this sensor using the Arduino
LSM6DS3 library.

86



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

For our demo, we read the gyroscope sensor using the Arduino
LSM6DS3 library. Then, we print sensor data in the serial terminal. Open
Arduino software and write this complete program.

#include <Arduino_LSM6DS3.h>

void setup() {
Serial.begin(9600);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);
}

Serial.print("Gyroscope sample rate = ");
Serial.print(IMU.gyroscopeSampleRate());
Serial.println(" Hz");

Serial.println();

Serial.println("Gyroscope in degrees/second");
Serial.println("X\tY\tZ");

}

void loop() {
float x, y, z;

if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(x, y, z);

Serial.print(x);
Serial.print('\t');
Serial.print(y);
Serial.print('\t");
Serial.println(z);

87



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Save this program as SimpleGyroscope. Now you can compile and
upload this program into Arduino Nano 33 IoT. We can see the program
output using the Serial Monitor. Change your board orientation to see the
change values on the Serial Monitor tool.

Figure 3-6 shows my program output for the SimpleGyroscope
program. You can see gyroscope values for x, y, and z.

f__ =
Send
-2.50 20.51 -13.12 ~
-5.07 20.02 -12.94
-7.32 19.23 -11.84
-7.14 18.62 -10.56
-3.66 17.33 -9.16
-1.65 15.69 -8.48
-2.32 14.77 -9.03
-3.36 14.04 -9.77
-0.85 1355 -9.40
3.05 13.43 -7.51
2.38 14.28 -6.16
-4.46 15.20 ~-6.16
-10.07 15.81 =-7.87
v
[“] Autoscroll [ Show timestamp Both NL&CR  ~ 115200 baud ~ Clear output |

Figure 3-6. Program output from reading the gyroscope sensor

How does it work?
First, we include the Arduino LSM6DS3 library in the Arduino program.

#include <Arduino_LSM6DS3.h>

We initialize the IMU sensor to enable work with the gyroscope sensor
and the Serial object on the setup() function.

void setup() {
Serial.begin(115200);
while (!Serial);

88



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);
}

We also can print the current gyroscope sample rate by calling the IMU.
gyroscopeSampleRate() function on the serial terminal.

Serial.print("Gyroscope sample rate = ");
Serial.print(IMU.gyroscopeSampleRate());
Serial.println(" Hz");

Serial.println();

Serial.println("Gyroscope in degrees/second");
Serial.println("X\tY\tZ");

On the loop() function, we read the gyroscope sensor. We should
check whether there is available gyroscope sensor data by calling the IMU.
gyroscopeAvailable() function. If it’s available for the Gyroscope sensor
data, we can read sensor data using the IMU. readGyroscope() function.

void loop() {
float x, y, z;

if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(x, y, z);

Then, we print the sensor data on the serial terminal.
Serial.print(x);
Serial.print('\t");
Serial.print(y);
Serial.print('\t');
Serial.println(z);

This is the end of the project. You can practice by applying the IMU
sensor in your projects.

89



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Plotting Sensor Data

We can read sensor data from built-in sensor devices on Arduino Nano
33 IoT. In this section, we will plot our sensor using the Serial Plotter tool
from Arduino. For testing, we will use previous projects that read the
Gyroscope sensor.

You can open Arduino software. We initialize our Gyroscope sensor
and serial communication on the setup() function. We set serial baudrate
115200 and initialize Gyroscope by calling the IMU.begin() function.

#include <Arduino_LSM6DS3.h>

void setup() {
Serial.begin(115200);
while (!Serial);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);

}
}

On the loop() function, we read the Gyroscope sensor using IMU.
readGyroscope(). First, we should check availability of sensor data by
calling the IMU. gyroscopeAvailable() function. We store the Gyroscope
sensor to X, y, and z variables.

void loop() {
float x, y, z;

if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(x, y, z);

90



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

To plot the Gyroscope sensor to the Serial Plotter tool, we can print

sensor values with the " delimiter. For instance, we printx, y, and z sensor
variables as follows.

Serial.print(x);
Serial.print(',");
Serial.print(y);
Serial.print(',");
Serial.println(z);

Now save this program as GyroscopePlotter program. Then, you can
compile and upload this program in Arduino Nano 33 IoT.

After uploading the program, you can open the Serial Plotter from
the Tools menu in Arduino software. You should see sensor outputs on
the Serial Plotter too. Figure 3-7 shows my program output from the
GyroscopePlotter program.

© comi2 - O b4

[(T1]
300.0

N )ﬂl\ h\] ,'JI' L
/ ”ﬁ"“‘ A N Ak A 2 ’\Ok (;\q §
b AR a\/J A\ S -/\.\3(;(“ %k T )(/
0.0 Wi _y_(d\r - ™, =4 e S o P %
N (AR A
\I UI| J v ‘ ||Ir \Jlr :
-150.0 IU
-300.9190 T780 1350 450 1550 TE8(
115200 baud  ~ | Send No line ending

Figure 3-7. Plotting the Gyroscope sensor on Serial Plotter

91



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Displaying Sensor Data with Organic
Light-Emitting Diode 12C Display

In this section, we want to display sensor data on an organic light-emitting
diode (OLED) display. There are two interface models on OLED display:
serial peripheral interface (SPI) and I2C. In this demo, we will use the
OLED I2C display. You can buy any OLED I2C display module in a local
electronic store. You can probably find it on Aliexpress or Alibaba.

For this demo, I use the OLED I2C display with 0.96 inch or 128 x 64
pixels. You can see my OLED I2C display in Figure 3-8.

Figure 3-8. OLED 0.96-inch I2C display

You can use any display size for the OLED I2C display. Next, we will
wire the OLED I2C display for Arduino Nano 33 IoT.

92



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Wiring for Arduino Nano 33 loT and the
OLED 12C Display

We use the OLED display with an I2C interface so we can connect this
OLED display to Arduino Nano 33 IoT over I12C pins. You can see my wiring
in Figure 3-9. You can perform this wiring as follows:

o The OLED I2C display module serial data is connected
to the Arduino A4 pin.

o The OLED I2C display module serial clock is connected
to the Arduino A5 pin.

e The OLED I2C display module voltage common
collector (VCC) is connected to Arduino 3.3V.

o The OLED I2C display module ground (GND) is
connected to the Arduino GND pin.

Figure 3-9. Wiring the OLED I2C display on Arduino Nano 33 IoT

93



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Next, we can build the Arduino program for the OLED I12C display.

Checking the 12C Address of the OLED 12C Display

After we make wiring between the Arduino Nano 33 IoT and the OLED I2C
display, we can use the i2c_scanner program from Chapter 2 to check the
12C address from devices. We want to know the I12C address from the OLED
12C display.

Load the i2c_scanner program into Arduino software. Then, compile
and upload this program into Arduino Nano 33 IoT. After that, open the
Serial Monitor tool. You should see three 12C addresses. Two of them are I12C
built-in sensors on Arduino Nano 33 IoT. The rest is our OLED I2C display.

You can see my program output in Figure 3-10. You can see my OLED
12C display running on the 0x3C I12C address. Two I12C addresses, 0x60 and
Xx6A, are I2C built-in sensors on Arduino Nano 33 IoT.

@ comi2 = B X
| Send
Scanning...

I2C device found at address 0x3C

I12C device found at address 0x6e0

I2C device found at address Ox6A

done

Scanning...

I2C device found at address 0x3cC

12¢ device found at address 0x6€0

12C device found at address 0x6€A

done

Scanning...

12C device found at address 0x3C

I12C device found at address 0x60

I2C device found at address OxéR

done

[AAutoscroll [ ] Show timestamp Both NL&CR  ~ 115200 baud ~ Clear output

Figure 3-10. Detecting I12C addresses for the OLED 12C display

Next, we set up libraries in order to build programs for OLED 12C
display on Arduino Nano 33 IoT.

94



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Setting up the OLED 12C Display Library

To work with the OLED I2C display on Arduino, we need to install two of
the following libraries from Adafruit:

o Adafruit SSD1306, https://github.com/adafruit/
Adafruit SSD1306

o Adafruit GFX Library, https://github.com/adafruit/
Adafruit-GFX-Library

We can install these libraries via Library Manager on Arduino software.
Type Adafruit_SSD1306 and Adafruit GFX Library to install these libraries.
Figure 3-11 shows Adafruit_SSD1306 library.

Library Manager X

Type All ~ Topic All ~ Adafruit_SSD1305
| Adafruit 55D1306
by Adafruit

55D1306 oled driver library for monochrome 128x64 and 128x32 displays 5501306 oled driver library for menochrome 128x64 and
128x32 displays
More info

Version 240 ~ Install
Adafruit SSD1306 Wemos Mini OLED
oy Adafruit + meauser

55D1306 oled driver library for Wemos D1 Mini OLED shield This is based on the Adafruit library, with additional code added to suppart the
G448 display by meauser.
More info

desklab
by Axel Schlindwein, Tobias Schmitt, Jonas Drotleff

Implement methods for the use of desklab (www.desk-lab.de) devices. Supports desklab Photometers. You will also have to install
Adafruit_S5D1306 and Adafruit-GFX-Library.
More info

ESP QRcode
Jose Antonio Espinosa and Anun Pany

by P ya

ESP Generate QRCode for SSD1306, SH1106 oled displays 128%64 pixel and others based on Adafruit ST?7XX ESF Generate QRCode
for SSD1306, SH1106 oled displays 128%64 pixel and others based on Adafruit ST77XX

More info

Figure 3-11. Adding libraries for the OLED I2C display
Install these libraries. You will probably be asked to install additional

libraries to enable work with Adafruit_SSD1306 and Adafruit GFX library—
for instance, Adafruit BusIO.

95


https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit_SSD1306
https://github.com/adafruit/Adafruit-GFX-Library
https://github.com/adafruit/Adafruit-GFX-Library

CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Testing the OLED I12C Display

After we installed the Adafruit_SSD1306 library, we can test our OLED
12C display. We can use program samples from Adafruit_ SSD1306 library.
You can find it in the menu File » Examples » Adafruit_SSD1306 >
ssd1306_128x64_i2c. After clicked, you should obtain codes as shown in
Figure 3-12.

ssd1306_128x64_i2c | Arduino 1.8.13 = O X
File Edit Sketch Tools Help

ssd1306_128x64_i2c

B01110000, BOL1110000, o)
BOO00000D, BOO110000 };

vold setup() {

Serial.bagin (9600);

/{ SSD1306_SW

if (!display.b

ITCHCAPVCC = generate display voltage fr
i-.’:(SSD].3UG_SWITCHCBPVCC, 0x3C)) { // A
n{F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever

}

Serial.prin

// Show initial display buffer contents on the screen
// the library initializes this with an Adafruit spla:
d y.display():

1y
y(2000); // Pause for Z seconds

Arduino NANO 33 loT on COM12

Figure 3-12. A program sample for the OLED I2C display

96



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Next, we modify this program with the 12C address from our OLED 12C
display. In the previous section, we had the 0x3C address for the OLED 12C
display. Replace the 12C address display.begin() with 0x3C, as shown in
Figure 3-12.

Now you can compile and upload this program to Arduino Nano 33
IoT. You should see some forms on the OLED I12C display. Figure 3-13
shows program output from ssd1306_128x64_i2c on the OLED I2C display
with 128x64 pixels.

Figure 3-13. Running the ssd1306_128x64_i2c program on the OLED
12C display

If you can see display output with the ssd1306_128x64_i2c program,
it means your OLED I2C display works. We will use this OLED to display
sensor data.

97



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

If you don'’t see display output, first, check the I12C address of your
OLED I2C display. Then, make sure your OLED I2C displays with display
size 128x64 pixels.

Displaying the Gyroscope Sensor

In this section, we will build the Arduino program to display the Gyroscope
sensor for the OLED I2C display. We will use a program from the previous
section to read the Gyroscope sensor.

Now we can open Arduino software and create a new program. We
start by importing all required libraries for the OLED I2C display and the
Gyroscope sensor.

#include <SPI.h>

#include <Wire.h>

#include <Adafruit GFX.h>
#include <Adafruit_SSD1306.h>
#include <Arduino_LSM6DS3.h>

We define the OLED I2C display size. In this demo, I use 128x64 pixels.
You can change its size based on your OLED module.

#define SCREEN_WIDTH 128
#define SCREEN HEIGHT 64

Next, we configure Adafruit_SSD1306 with passing the I12C address of
the OLED module and display size.

#define OLED_RESET 4 // Reset pin
Adafruit SSD1306 display(SCREEN WIDTH, SCREEN HEIGHT, &Wire,
OLED RESET);

98



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

On the setup() function, we initialize serial communication, the
Gyroscope sensor, and Adafruit_SSD1306.

void setup() {
Serial.begin(115200);

if (!IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);
}
if(!display.begin(SSD1306 SWITCHCAPVCC, 0x3C)) { // Address
0x3D for 128x64
Serial.println(F("SSD1306 allocation failed"));
for(;;); // Don't proceed, loop forever

}

After that, we test the OLED 12C display by calling display() for 2
seconds. Then, we clear the screen of the OLED display.

display.display();
delay(2000); // Pause for 2 seconds

// Clear the buffer
display.clearDisplay();

On the loop() function, we read the Gyroscope sensor. First, we check
the sensor data with IMU.gyroscopeAvaliable(). If it’s available, we can
read the sensor data using the IMU.readGyroscope() function. Store all the
sensor data on the x, y, and z variables.

void loop() {
float x, y, z;

if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(x, y, z);

99



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Next, we display sensor data on the OLED 12C display using the

print() function. We also use setTextSize() to set font size.

display.
display.
display.
display.
display.
display.
display.
display.
display.
display.
display.
display.
display.

clearDisplay();
setTextSize(1);
setTextColor(SSD1306 WHITE);
setCursor(0,0);
print("Gyroscope: X, Y, Z");
setTextSize(2);
setCursor(0,12);
print(String(x));
setCursor(0,30);
print(String(y));
setCursor(0,48);
print(String(z));

display();

Finally, we display the sensor data into serial terminal using the

Serial.print() and Serial.println() functions.

Serial.print(x);
Serial.print('\t");
Serial.print(y);
Serial.print('\t");
Serial.println(z);

delay(300);

Save this program as OledSensor. Now you can compile and upload

this program in Arduino Nano 33 IoT. You should see sensor data on the
OLED I2C display, as shown in Figure 3-14.

100



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

Figure 3-14. Displaying the Gyroscope sensor on the OLED 12C
display

You also can see program output on the Serial Monitor tool. You can
see my program output in Figure 3-15.

101



CHAPTER 3  IMU SENSOR: ACCELERATOR AND GYROSCOPE

CoM12 - (m} X
| Send
3.30 -7.08 -4.76 N
3.54 -6.96 -4.88
3.60 -6.96 -4.88
3.42 -7.14  -4.70
3.42 -6.96 -4.70
3.54 -T.02 -4.76
3.54 -6.90 -4.88
3.30 -7.02 -4.82
3.48 -6.96 -4.82
3.42 -7.02  -4.82
3.60 -6.84 -4.88
3.60 -6.77 -4.94
3.30 -7.14 -4.70
3.54 -6.90 -4.82
b
[ Autoscroll [ ] Show timestamp Both NL&CR  ~ 115200 baud ~ Clear output

Figure 3-15. Program output from OledSensor

This is the end of the chapter. You can practice by applying the IMU
sensor in your projects.

Summary

You have learned how to access internal IMU sensors in Arduino Nano
33 IoT. We began by setting up the LSM6DS3 library. Then, we created
Arduino programs to access accelerator and gyroscope sensors on Arduino
Nano 33 IoT. Finally, we displayed sensor data on the Serial Plotter tool
and OLED I2C display.

Next, we will learn how to access networks on Arduino Nano 33 IoT
and make IoT programs.

102



CHAPTER 4

Arduino Nano 33 loT
Networking

Arduino Nano 33 IoT is designed for IoT implementation. This board has a
network module, WiFi, which enables communication with other systems.
In this chapter, we focus on how Arduino Nano 33 IoT accesses and
collaborates with external systems, such as servers.

You will learn the following topics in this chapter:

e Setting up WiFi with WiFiNINA library

e Scanning WiFI hotspots

o Connecting to a network

e Accessing network time protocol (NTP) servers
e Building a simple IoT application

This chapter requires an environment such as a WiFi network. You
should provide a WiFi hotspot with enabled Internet so Arduino Nano 33
IoT can communicate with other systems.

© Agus Kurniawan 2021 103
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_4


https://doi.org/10.1007/978-1-4842-6446-1_4#DOI

CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Introduction

Arduino Nano 33 IoT is one of IoT platforms from Arduino. This board uses
WiFi and Bluetooth modules to connect to a network. WiFi is a common
network that people use to access the Internet. Bluetooth is a part of the
wireless personal network (WPAN) that enables communication with
other devices within a short distance.

WiFi module

3
-
£l
=
=
-]
=
-
=
—=
L

Figure 4-1. WiFi module on Arduino Nano 33 IoT

Arduino Nano 33 IoT is designed for low-cost IoT devices to leverage
IoT solutions. Arduino Nano 33 IoT has a WiFi module, as shown in
Figure 4-1. In this chapter, we apply a WiFi module in Arduino Nano 33 IoT
to communicate with others.

Set up the WiFiNINA Library

To access the WiFi module on the Arduino Nano 33 IoT board, we should
install the WiFiNINA library. We can install it via Library Manager. You
can click the menu Sketch » Include Library » Manage Libraries. After
we click the menu for Manage Libraries, we will obtain a dialog as shown
in Figure 4-2. You can type WiFiNINA in te search textbox. After that, you
should see WiFiNINA on the list (see Figure 4-2).

104



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

@ Library Manager X

Type All * Topic All ~ WFININA C—

 WiFiNINA A "
by Arduino

Enables network connection (local and Internet) with the Arduino MKR WiFi 1010, Arduino MKR VIDOR 4000, Arduino UNO WiFi
Rev.2 and Nano 33 IoT. With this library you can instantiate Servers, Clients and send/receive UDP packets through WiFi. The board can
connect either to open or encrypted networks (WEP, WPA). The IP address can be assigned statically or through a DHCPW&»
manage DNS

k Uersinn 1.7.0 | Tnetall
ArduineOTA
by Arduino,Juraj Andrassy
Upload sketch over network to Arduine board with WIFI or Ethernet libraries Based on WIFI10LOTA |ibrary. Uploads over Ethernet,
UIPEthernet, WiFi101, WiFiNina, WiFiLink, \WiFi, WiFiEspAT to SAMD, nRFS, esp82685, esp32 and to ATmega with more then 64 kB flash memory.
More info

ArtnetWifi |
ty Stephan Ruloff

ArtNet with the ESP8266, ESP32 and more. Send and receive Art-Net frames using WiFi. Tested on ESP8266, ESP32, WiFil01 and WIFiNINA
devices. |

Slynk_MHNINk_WH
s Khoi Hoang
s|mpla WiFiManager for Blynk and Mega, UNO WiFi, Teensy, SAM DUE, SAMD21, SAMDS1, STM32, nRFS2, etc. boards running
WIFiNINA shields, configuration data saved in EEPROM, Fi. ge, LittleFS/ IFS Library for
ranfiniirinn faiirn{ra rannarting Mana Tasney SAM OUE SAMA21 SAMAST STM2 RREG2 arr haards ta the auailzhis MuliWiE &Ps and

Figure 4-2. Installing the WiFiNINA library

Make sure your computer is connected to the Internet. After you install
the WiFiNINA library, we can create Arduino programs to communicate
with other systems over the WiFi network.

Scanning WiFi Hotspot

We can access a WiFi hotspot if we know the WiFi SSID name. In this
section, we build an Arduino program to scan existing WiFi SSIDs and then
print the list on the serial terminal.

Now you can open Arduino software. You can write the following
completed program.

#include <SPI.h>
#include <WiFiNINA.h>

int led = 13;

105



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

void setup() {
Serial.begin(115200);
pinMode(led, OUTPUT);

// check for the WiFi module:

if (WiFi.status() == WL_NO MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);

}

}
void loop() {

digitalWrite(led, HIGH);
scanWiFi();
digitalWrite(led, LOW);
delay(15000);

}

void scanWiFi() {
Serial.print("Scanning...");
byte ssid = WiFi.scanNetworks();

Serial.print("found ");
Serial.println(ssid);

for (int i = 0; i<ssid; i++) {
Serial.print(">> ");
Serial.print(WiFi.SSID(i));
Serial.print("\tRSSI: ");
Serial.print(WiFi.RSSI(i));
Serial.print(" dBm");
Serial.print("\tEncryption: ");
Serial.println(WiFi.encryptionType(i));

106



Serial.println("");
Serial.println("");

}

CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Save this program as WifiScan. Now you can compile and upload this
program into Arduino Nano 33 IoT. We can see program output using the

Serial Monitor.

Figure 4-3 shows my program output for the WifiScan program. You
can see a list of WiFi SSIDs. If you don't see a list of WiFi SSIDs, you should
move to a place where you are certain they can be found.

& comi2
|

Scanning. ..found 2

Scanning...found 2

> ICOLOR RSSI:
>> G R551:

>> ICOLOR RSSI:
>> & RSSI:

-58 dBm
-74 dBm

-58 dBm
-74 dBm

[“] Autoscroll [ Show timestamp

Encryption: 4
Encryption: 4

Encryption: 4
Encryption: 4

Both NL & CR

w

~ 115200 baud ~ Clear output

Figure 4-3. Scanning WiFi hotspots

How does it work?
First, we define the WiFiNINA library and digital pin for built-in LED
on Arduino Nano 33 IoT.

#include <SPI.h>

#include <WiFiNINA.h>

int led = 13;

107



CHAPTER 4  ARDUINO NANO 33 IOT NETWORKING
On setup() function, we initialize Serial and WiFi objects.

void setup() {
Serial.begin(115200);
pinMode(led, OUTPUT);

// check for the WiFi module:
if (WiFi.status() == WL_NO MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);
}
}

To scan existing WiFi SSIDs, we create the scanWiFi() function. We
can call WiFi.scanNetworks () to retrieve all existing WiFi SSIDs. Once we
have the list of WiFi SSIDs, we print WiFi information such as SSID name,
RSSI, and encryption model.

void scanWiFi() {
Serial.print("Scanning...");
byte ssid = WiFi.scanNetworks();

Serial.print("found ");
Serial.println(ssid);

for (int i = 0; i<ssid; i++) {
Serial.print(">> ");
Serial.print(WiFi.SSID(i));
Serial.print("\tRSSI: ");
Serial.print(WiFi.RSSI(i));
Serial.print(" dBm");
Serial.print("\tEncryption: ");
Serial.println(WiFi.encryptionType(i));

108



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Serial.println("");
Serial.println("");

}

We will use the scanWiFi() function in the loop() function. We
can also turn on LED while the program is scanning WiFi SSIDs. After
completely scanning WiFi SSIDs, we turn off the LED and set the delay for

15 seconds.

void loop() {
digitalWrite(led, HIGH);
scanWiFi();
digitalhWrite(led, LOW);
delay(15000);

}

Connecting to a WiFi Network

We already learned how to obtain a list of WiFi SSIDs. Now we can connect
and join with a certain WiFI SSID. We need information about the WiFi
SSID name and its key if that WiFi SSID applies an access security.

For our demo, we use the Arduino program, called WiFiWebClient.
This program will connect to the WiFi SSID and then access the Google
website. Figure 4-4 is a program sample: WiFiWebClient.

109



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

© wiFiwebClient | Arduino 1.8.13 = O X

|File Edit Sketch Tools Help

WiFiwebClient

lude <SPI.h>
e <WiFANINA.h>

char ssid[] = SECRET SSI1D;
char pass([] = SECRET PASS; ff yo I
nt keyIndex = 0; // your network key

Arduino NANO 33 loT on COM12

Figure 4-4. WiFiWebClient application

You can see this project has two files: WiFiWebClient.ino and arduino_
secret.h. You can set your WiFi SSID name and key on arduino_secret.h file.

#define SECRET SSID "SSID"
#define SECRET PASS "SSID-PIN"

Our core program is implemented in the WiFiWebClient.ino file. First, we
declare WiFiNINA, WiFi SSID information, and WiFiClient objects. We also
define the targeted server for the Google website like “www.google . com”

110


https://www.google.com

CHAPTER 4

#include <SPI.h>
#include <WiFiNINA.h>

#include "arduino_secrets.h"
char ssid[] = SECRET SSID;
char pass[] = SECRET_PASS;
int keyIndex = 0;

int status = WL_IDLE_STATUS;
char server[] = "www.google.com";

WiFiClient client;

ARDUINO NANO 33 I0T NETWORKING

We initialize Serial and WiFi objects. We set baudrate 115200 for serial
communication. We also verify the WiFi module by calling the WiFi.

status() function.

void setup() {
Serial.begin(115200);
while (!Serial) {

)

}
// check for the WiFi module:

if (WiFi.status() == WL_NO MODULE) {

Serial.println("Communication with WiFi module failed!");

// don't continue
while (true);

}

After the WiFi object is initialized, Arduino connects to the WiFi

network. Once our Arduino is connected, we print the WiFi connection

status on the serial terminal using the printWiFiStatus() function.

111



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

// attempt to connect to Wifi network:

while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
status = WiFi.begin(ssid, pass);

// wait 10 seconds for connection:
delay(10000);
}
Serial.println("Connected to wifi");
printWifiStatus();

Then, we connect to Google website using the client.connect()
function. After connected to Google website, we can make an HTTP GET
request.

Serial.println("\nStarting connection to server...");
if (client.connect(server, 80)) {
Serial.println("connected to server");
// Make a HTTP request:
client.println("GET /search?q=arduino HTTP/1.1");
client.println("Host: www.google.com");
client.println("Connection: close");
client.println();

}
}

void loop() {
while (client.available()) {
char ¢ = client.read();
Serial.write(c);

}

112



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

// if the server's disconnected, stop the client:
if (!client.connected()) {
Serial.println();
Serial.println("disconnecting from server.");
client.stop();

// do nothing forevermore:
while (true);

The following is an implementation of the printWiFiStatus()
function. We print the IP address using the WiFi.localIP() function. We
also obtain RSSI by calling the WiFi.RSSI() function.

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

Save all codes. Now you can compile and upload this program into
Arduino Nano 33 IoT. We can see program output using Serial Monitor.

113



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Figure 4-5 shows my program output for the WiFiWebClient program.
You can see the output program by accessing the Google website.

@@;1';'- — O
| Send
Attempting to connect to SSID: TECHNICOLOR s
Connected to wifi
5SID: TECHNICOLOR
IF Address: 192.168.0.30
signal strength (RSSI):-67 dBm

Starting connection to server...

connected to server

HTTE/1.1 200 OK

Content-Type: text/html; charset=I50-8859-1

Date: Mon, 24 Aug 2020 12:01:12 GMT

Expires: -1

Cache-Control: private, max-age=0 v
< >

Auboscroll [[JShow timestamp Both NL& CR v~ 115200 baud ~ Clear output

Figure 4-5. Programming output for accessing the Google website

Accessing Network Time Protocol Server

Sometimes we want to get current time on Arduino Nano 33 IoT. We can
apply the network time protocol (NTP) server to retrieve current time. This
time uses the UTC timezone.

For our demo, we can use a program sample from Arduino. This program
is called WiFiUdpNtpClient. You can see this program in Figure 4-6.

We will explore this program. First, this program has two files:
WiFiUdpNtpClient.ino and arduino_secret.h. You can set your WiFi SSID
name and key on arduino_secret.h file.

#define SECRET_SSID "SSID"
#define SECRET PASS "SSID-PIN"

Our core program is implemented in the WiFiUdpNtpClient.ino file.
We declare WiFiNINA, WiFi SSID information, and WiFiClient objects.

114



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

WiFiUdpNtpClient | Arduino 1.8.13 - O ¢

File Edit Sketch Tools Help

WiFiUdpNtpClient

-~
#include <SPI.h>
ude <WiFiNINA.h
$include <WiFiUdp.h
WL_IDLE_STATUS;
le "arduino secrets.h"
///////please enter your sensitive data 1 & Secre
r ssid[] = SECRET_SSID: ol
char pass[] SECRET PASS;

t keyIndex = 0;

2390; // local port to
| IPAddress timeServer (129, 6, 15, 28); // time.nist.g
t NTP_PACKET SIZE = 48; // NTP time stamp is

Arduino NANO 33 loT on COM12

Figure 4-6. Program codes for WiFiUdpNtpClient

#include <SPI.h>
#include <WiFiNINA.h>
#include <WiFiUdp.h>

int status = WL_IDLE STATUS;
#include "arduino secrets.h"
char ssid[] = SECRET_SSID;
char pass[] = SECRET_PASS;
int keyIndex = 0;

115



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

We must also define the NTP server. We connect to 192.6.15.28 for
time.nist.gov. We initialize packet size and WiFiUDP object.

unsigned int localPort = 2390;
// time.nist.gov NTP server
IPAddress timeServer(129, 6, 15, 28);

// NTP time stamp is in the first 48 bytes of the message
const int NTP_PACKET_SIZE = 48;

byte packetBuffer[ NTP_PACKET SIZE];
WiFiUDP Udp;

On the setup() function, we initialize serial communication and WiFi
object. Once we have connected to the WiFi network, we can initialize the
UDP protocol by calling Udp. begin().

void setup() {
Serial.begin(9600);
while (!Serial) {
; // wait for serial port to connect. Needed for native USB
port only

}

// check for the WiFi module:

if (WiFi.status() == WL_NO MODULE) {
Serial.println("Communication with WiFi module failed!");
// don't continue
while (true);

}

String fv = WiFi.firmwareVersion();
if (fv < "1.0.0") {
Serial.println("Please upgrade the firmware");

}

116



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

// attempt to connect to Wifi network:
while (status != WL _CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
// Connect to WPA/WPA2 network. Change this line if using
open or WEP network:
status = WiFi.begin(ssid, pass);

// wait 10 seconds for connection:
delay(10000);

}

Serial.println("Connected to wifi");
printWifiStatus();

Serial.println("\nStarting connection to server...");
Udp.begin(localPort);

On the loop() function, we send data to the NTP server by calling
the sendNTPpacket () function. We will implement the sendNTPpacket()
function in the next step. Once we have a response from the NTP server, we
parse data using Udp . parsePacket ().

void loop() {
sendNTPpacket (timeServer);
delay(1000);
if (Udp.parsePacket()) {
Serial.println("packet received");
Udp.read(packetBuffer, NTP_PACKET SIZE);

We calculate epoch time from the NTP server to be second numbers.

117



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

unsigned long highWord = word(packetBuffer[40],
packetBuffer[41]);
unsigned long lowWord = word(packetBuffer[42],
packetBuffer[43]);

unsigned long secsSince1900 = highWord << 16 | lowhord;
Serial.print("Seconds since Jan 1 1900 = ");
Serial.println(secsSince1900);

// now convert NTP time into everyday time:

Serial.print("Unix time = ");

// Unix time starts on Jan 1 1970. In seconds, that's
2208988800:

const unsigned long seventyYears = 2208988800UL;

// subtract seventy years:

unsigned long epoch = secsSince1900 - seventyYears;

// print Unix time:

Serial.println(epoch);

Then, we print UTC time, such as hour, minute, and second to the

serial terminal.

118

Serial.print("The UTC time is ");

Serial.print((epoch % 86400L) / 3600);

Serial.print(':");

if (((epoch % 3600) / 60) < 10) {
Serial.print('0");

}

Serial.print((epoch % 3600) / 60);

Serial.print(':");

if ((epoch % 60) < 10) {
Serial.print('0");

}



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Serial.println(epoch % 60); // print the second
}

delay(10000);

}

The following is an implementation of the sendNTPpacket () function.
We request data from the NTP server. We pass the IP address of the NTP
server. A result of the NTP response is read and stored to the packetBuffer
variable.

unsigned long sendNTPpacket(IPAddressd address) {
// set all bytes in the buffer to 0
memset (packetBuffer, 0, NTP_PACKET SIZE);
// Initialize values needed to form NTP request

packetBuffer[0] = ob11100011; // LI, Version, Mode
packetBuffer[1] = 0O; // Stratum, or type of clock
packetBuffer[2] = 6; // Polling Interval
packetBuffer[3] = OXEC; // Peer Clock Precision

// 8 bytes of zero for Root Delay & Root Dispersion
packetBuffer[12] = 49;

packetBuffer[13] = Ox4E;

packetBuffer[14] = 49;

packetBuffer[15] = 52;

//NTP requests are to port 123
Udp.beginPacket(address, 123);
Udp.write(packetBuffer, NTP_PACKET SIZE);
Udp.endPacket();

The following is an implementation of the printWiFiStatus()
function. We print the IP address using the WiFi.localIP() function. We
also obtain RSSI by calling the WiFi.RSSI() function.

119



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

void printWifiStatus() {
// print the SSID of the network you're attached to:
Serial.print("SSID: ");
Serial.println(WiFi.SSID());

// print your WiFi shield's IP address:
IPAddress ip = WiFi.localIP();
Serial.print("IP Address: ");
Serial.println(ip);

// print the received signal strength:
long rssi = WiFi.RSSI();
Serial.print("signal strength (RSSI):");
Serial.print(rssi);

Serial.println(" dBm");

Now we can save this program. You can compile and upload to
Arduino Nano 33 IoT. Then, open the Serial Monitor tool to see the

program output. Figure 4-7 shows my program output.

Send
Attempting to connect to SSID: TECHNICOLOR -~
Connected to wifi
SSID: TECHNICOLOR
IP Address: 192.168.0.30
signal strength (RSSI):-54 dBm

Starting connection to server...

packet received

Seconds since Jan 1 1900 = 3807259700

Unix time = 1598270900

The UTC time is 12:08:20

packet received

Seconds since Jan 1 1900 = 3807259711

Unix time = 1598270911 >
[ Autoscroll ] Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 4-7. Program output for getting current time from the NTP server
120



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Building a Simple loT Application

Since we have a network module in Arduino Nano 33 IoT, we can build a
simple IoT application. We can control an LED from a website. We can turn
on/off LEDs. For demo implementation, we need three LEDs.

Technically, we will build a simple webserver inside Arduino Nano 33
IoT. We receive HTTP GET requests to perform LED on/off from users. We
define the following HTTP GET requests.

o http://<ip_address Arduino>/gpiol/1 for turning on
LED1

o http://<ip_address Arduino>/gpiol/0 for turning off
LED1

o http://<ip_address Arduino>/gpio2/1 for turning on
LED2

o http://<ip_address Arduino>/gpio2/0 for turning on
LED2

o http://<ip_address Arduino>/gpio3/1 for turning on
LED3

o http://<ip_address Arduino>/gpio3/0 for turning on
LED3

Next, we build wiring for our demo.

Wiring
We need three LEDs for our demo. We can build the following wiring:

e LED 1isconnected to digital pin 6 on Arduino
Nano 33 IoT

o LED 2is connected to digital pin 4 on Arduino Nano 33
IoT.

121



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

e LED 3is connected to digital pin 3 on Arduino Nano
33 IoT.

o AllLED GND pins are connected to ground (GND) pin
on Arduino Nano 33 IoT.

Figure 4-8 shows our wiring for the IoT project.

ol Jobdofee

LN .. .
L A

.
ORI R
A B R R

L B I T B I O
T " e e s s e e e s e

0
.
L]
L]
.
.
.
.
.
.
.
.
.
.

L A

R E R R R R R e e e e e e e
R E R e e

" e e . e e L B L L L B B
" e L B B L R R B L B L B

fritzing

Figure 4-8. Wiring for the IoT project

Developing Program

Our IoT project implementation is to build the Arduino program with
Sketch. We will connect to existing WiFi and then perform a simple web
server. We must wait for incoming HTTP GET requests to turn on/off LEDs.

To implement, we open Arduino software and create a new project.
First, we define our LED pins and WiFi SSIDs. Set your WiFi SSID name
and SSID key if it’s available. To implement a simple web server, we use the
WiFiServer library. You can read it at this link, https://www.arduino.cc/
en/Reference/WiFiServer.

122


https://www.arduino.cc/en/Reference/WiFiServer
https://www.arduino.cc/en/Reference/WiFiServer

CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

#include <SPI.h>
#include <WiFiNINA.h>

int led1 = 6;
int led2 = 4;
int led3 = 3;

const char* ssid = "wifi-ssid";
const char* password = "ssid-key";

int status = WL_IDLE STATUS;
WiFiServer server(80);

On the setup() function, we initialize Serial object with baudrate 115200
and set digital mode for LED pins. We set OUTPUT for digital mode.

void setup() {
Serial.begin(115200);
delay(10);

// prepare GPIO5

pinMode(led1, OUTPUT);
pinMode(led2, OUTPUT);
pinMode(led3, OUTPUT);
digitalhWrite(led1, 0);
digitalWrite(led2, 0);
digitalWrite(led3, 0);

Next, we connect to existing WiFi by calling the WiFi.begin() function
and pass WiFi SSID and its key.

while (status != WL_CONNECTED) {
Serial.print("Attempting to connect to SSID: ");
Serial.println(ssid);
status = WiFi.begin(ssid, password);

123



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

// wait 10 seconds for connection:
delay(10000);
}
Serial.println("");
Serial.println("WiFi connected");

If our Arduino is connected to the WiFi network, we can start a web
server by calling the begin() function from the WiFiServer object.

server.begin();
Serial.println("Server started");

// Print the IP address

char ips[24];

IPAddress ip = WiFi.localIP();

sprintf(ips, "%d.%d.%d.%d", ip[o], ip[1], ip[2], ip[3]);
Serial.println(ips);

On the loop() function, we perform some tasks such as waiting
for incoming HTTP requests. Then, we parse incoming packets. If the
packet is valid, we can turn on/off LED. First, we wait for incoming client
connections. We can call server.available().

void loop() {
// Check if a client has connected
WiFiClient client = server.available();
if (!client) {
return;

}

// Wait until the client sends some data
Serial.println("new client");
while(!client.available()){

delay(1);

}
124



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

Once we have a connected client, we wait for incoming HTTP request
packets. We parse the packet to identify the type of command. We can use
a string manipulation process. We call indexOf() if we have “/gpioX/Y”
requests. X is an LED number, and Y is a command for turning on/off LED.

String req = client.readStringUntil('\r");
Serial.println(req);
client.flush();

// Match the request
int val1 =
int val2 =
int val3 =
int ledreq = 0;

if (req.index0f("/gpio1/0") != -1) {

| | |
o O O
e we e

vall = 0;
ledreq = 1;

}

else if (req.indexOf("/gpio1/1") != -1) {
vall = 1;
ledreq = 1;

}

else if (req.indexOf("/gpio2/0") != -1) {
val2 = 0;
ledreq = 2;

}

else if (req.indexOf("/gpio2/1") != -1) {
val2 = 1;
req = 2;

}

else if (req.indexOf("/gpio3/0") != -1) {
val3 = 0;
ledreq = 3;

}

125



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

else if (req.indexOf("/gpio3/1") != -1) {
val3 = 1;
ledreq = 3;

}

else {
Serial.println("invalid request");
client.stop();
return;

}

After we identify a command type, we can turn on/off LEDs using
digitalWrite().

digitalWrite(led1, vali);
digitalWrite(led2, val2);
digitalWrite(led3, val3);

Next, we send a response to the client. We send HTML scripts using the
client.print() function. After that, we close the client connection.

client.flush();
String s = "HTTP/1.1 200 OK\r\nContent-Type: text/html\r\n\r\
n<!DOCTYPE HTML>\r\n<html>\r\n";
if(ledregq==1) {

s += "LED1 is ";

s += (val1)? "ON": "OFF";
}else if(ledreq==2) {

s += "LED2 is ",

s += (val2)? "ON": "OFF";
}else if(ledreq==3) {

s += "LED3 is ",

s += (val3)? "ON": "OFF";
}

s += "</html>\n";

126



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

// Send the response to the client
client.print(s);

delay(1);

client.stop();

Serial.println("Client disonnected");

You can save this program as IoTDemo. Next, we can compile and test

this program.

Testing

After we compile and upload the IoTDemo program into Arduino Nano
33 10T, we can open the Serial Monitor tool. We should see our IP address
from Arduino Nano 33 IoT. If we don’t have it, our Arduino Nano 33 IoT
probably obtained problems while connecting to existing WiFi. Figure 4-9

shows my IP address from Arduino Nano 33 IoT.

COM12 - X
| Send
WiFi connected
Server started
192.168.0.30
[ Autoscroll [ Show timestamp Both NL& CR ~ 115200 baud ~ Clear output

Figure 4-9. Arduino Nano 33 IoT is connected to WiFi

127



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

For testing, we can use a browser. You can make a request to turn on
an LED. We can call http://<ipaddress>/gpiol/1 to turn on LED 1. If we
succeed, we will obtain a response, as shown in Figure 4-10. LED 1 also is
lighting.

(@ Not secure | 192.168.0.30

LEDI is ON

Figure 4-10. Turning on LED over the HTTP GET request

To turn off LED 1, we can make a request with this link,
http://<ipaddress>/gpiol/0. We will see LED 1 turns off. We also obtain a
response from Arduino Nano 33 IoT, as shown in Figure 4-11.

(i) Not secure | 192.168.0.30

LEDI is OFF
Figure 4-11. Turning off LED over the HTTP GET request

Our IoTDemo program also prints all information about client
connection and client requests. You can see my program output in
Figure 4-12.

This is the end of the chapter. We can practice by developing IoT
programs based on the Arduino Nano 33 IoT board.

128



CHAPTER 4  ARDUINO NANO 33 10T NETWORKING

© com12 - O b4
| Send

192.168.0.30 ~
new client

GET /gpiol/1 HTTP/1.1
Client disonnected

new client

GET /favicon.ico HTTP/1.1
invalid request

new client

GET /gpiol/0 HTTP/1.1
Client disonnected

new client

GET /favicon.ico HTTP/1.1
invalid request

v

[] Autoscroll [_] Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 4-12. Program output from the IoT project on a serial
terminal

Summary

We already learned how to set up the WiFiNINA library on Arduino Nano
33 IoT. We connected our board to an existing WiFi network. Then, we
attempted to connect to the Google website. We requested a current time
from the NTP server. Finally, we built an IoT application to turn on/off LED.
In the next chapter, we will learn how to connect to Arduino IoT Cloud.

129



CHAPTER 5

Arduino loT Cloud

Arduino IoT Cloud is one of Arduino services to provide a cloud service for
an IoT platform. We can send and receive data from IoT devices to Arduino
IoT Cloud. This chapter explores how Arduino Nano 33 IoT interacts with
Arduino IoT Cloud.

You will learn the following topics in this chapter:

o Setting up Arduino IoT Cloud

e Building programs on Arduino Nano 33 IoT for the
Arduino IoT Cloud

o Building sensor monitoring program with the Arduino
IoT Cloud

Introduction

A cloud technology enables us to enhance our IT and business
productivity. A cloud technology also can be used to address IoT solutions.
Arduino IoT Cloud is one of cloud servers from Arduino. We can send and
receive data from Arduino IoT Cloud to our Arduino devices.

In this chapter, we build programs on Arduino Nano 33 IoT to access
the Arduino IoT Cloud. Arduino Nano 33 IoT has a WiFi module so we can
connect to the Arduino IoT cloud over the WiFi network. Make sure you

have Internet access on WiFi network.

© Agus Kurniawan 2021 131
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_5


https://doi.org/10.1007/978-1-4842-6446-1_5#DOI

CHAPTER 5 ARDUINO 10T CLOUD

Setting up Arduino loT Cloud

To access and build programs for the Arduino IoT Cloud, we need to set
up our Arduino devices. We should register a new account to this platform.
You can register your account on Arduino IoT Cloud to this link, https://
create.arduino.cc/iot/. After we sign up, we register our Arduino Nano
33 10T to the Arduino IoT Cloud.

You can see the Arduino IoT Cloud dashboard in Figure 5-1. We have
three menus: Things, Dashboards and Devices. Members without a paid
subscription can only create the Things menu on this platform.

Welcome to The New Dashboards

Dashboards are flexible and customizable visual
interfaces made with widgets. Widgets can display
data from any sensor, actuator or compatible
smart device connected to the loT Cloud.

Figure 5-1. A dashboard of the Arduino IoT Cloud website

If you have an account in the Arduino store, you can use the same
account to sign up for Arduino IoT Cloud. Then, we can register our
Arduino Nano 33 IoT.

132


https://create.arduino.cc/iot/
https://create.arduino.cc/iot/

CHAPTER 5  ARDUINO IOT CLOUD

Register Arduino Nano 33 loT

Before we use Arduino IoT Cloud, we have to register our Arduino devices.
In this chapter, we use Arduino Nano 33 IoT. We have some steps to
register our Arduino devices. You can perform the following tasks:

o installing Arduino Create Agent
e adding a new Arduino device

Next, we can install the Arduino Create Agent.

Install the Arduino Create Agent

Arduino Create Agent is a background program to listen to our local
Arduino devices. This agent program acts as a bridge between local
Arduino devices and Arduino IoT Cloud.

The Arduino Create Agent program is available for Windows, Linux,
and the macOS platform. You can download this program at this link,
https://github.com/arduino/arduino-create-agent. After installed,
you should allow this program to run in the background. On the Windows
platform, you can see a tray icon for the Arduino Create Agent on the
taskbar, as shown in Figure 5-2.

Go to Arduine Create
Open debug console
Agent version 1.1.251-318de37

Pause Plugin

Figure 5-2. A tray icon of the Arduino Create Agent on Windows OS

133


https://github.com/arduino/arduino-create-agent

CHAPTER 5 ARDUINO 10T CLOUD

You can open the Debug Console menu by clicking this in the Arduino
Create Agent. If your Arduino devices are attached on local computer, a
debug console from the Arduino Create Agent will show our device status.
Figure 5-3 shows my Arduino Nano 33 IoT is detected.

"Network": false } -
list

{ "Ports": [ { "Name": "COM12", "SerialNumber": "", "DeviceClass": "", "IsOpen": false, "IsPrimary": false, "Baud": O,
"BufferAlgorithm": "", "Ver": "1.1.251", "NetworkPort": false, "VendorID": "0x2341", "ProductID": "0x8057" } ],
"Network™: false }

{ "Ports”: [], "Network": true }

list

{ "Ports”": [ { "Name": "COM12", "SerialNumber”: ", "DeviceClass": "", "IsOpen": false, "IsPrimary": false, "Baud™: 0,
"BufferAlgorithm": "", "Ver": "1. 1 2517, "NetworkPor‘t" false, "VendorlD" "0x2341", "ProductID' "UxBDS?' Tl
"Network": faise }

{ "Ports": [], "Network": true }

{ "Ports": [], "Network": true }

{ "Ports": [ { "Name": "COM12", "SerialNumber": "*, "DeviceClass": "", "IsOpen": false, "IsPrimary": false, "Baud": 0,
"BufferAlgorithm": "", "Ver": "1.1.251", "NetworkPort”: false, "VendorID": "0x2341", "ProductID": "0x8057" } ],
"MNetwork": false }

list

{ "Ports": [ { "Name": "COM12", "SerialNumber”: ", "DeviceClass": "", "IsOpen": false, "IsPrimary": false, "Baud": 0,
"BufferAlgorithm": "", "Ver": *1.1.251", "NetworkPort": false, "VendorID": "0x2341", "ProductID": "0x8057" } ],
"Network": false }

{ "Ports”: [], "Network": true }

Figure 5-3. A form of the Arduino Create Agent Debug Console

If you don’t see your Arduino device, make sure your Arduino is
attached to your computer properly. After completed, you can register
your Arduino Nano 33 IoT.

Add New Arduino Device

Once we have set up the Arduino Create Agent program on a local
computer, we can add a new Arduino device. You can open the Arduino
IoT Cloud website. Then, click the DEVICES menu. You can see a list of
Arduino devices.

Now you can add a new Arduino Nano 33 IoT. You can plug in your
Arduino Nano 33 IoT. You should see a dialog, as shown in Figure 5-4.
Click Set up in the Arduino device menu.

134



CHAPTER 5  ARDUINO IOT CLOUD

Setup device

OO

ARDUINO

Set up an Arduino device Set up a 3rd Party device
Companible devices (1

Figure 5-4. Adding a new Arduino device

After clicking this option, you should see Arduino Nano 33 IoT, as
shown in Figure 5-5. If you don’t see your Arduino Nano 33 IoT, make
sure your Arduino Nano 33 IoT is attached and Arduino Create Agent is

running.

135



CHAPTER 5 ARDUINO IOT CLOUD

Setup device

Arduino NANO 33 loT found

An Arduine NANO 33 loT has been detected on port
COM12 and ready to be configured.

CONFIGURE

If the detected type of the device you wanz ta configure is not
cOrrect, try 1o reset your bosrd and then refresh

Figure 5-5. Arduino IoT Cloud detected Arduino Nano 33 IoT

Set your device name for Arduino Nano 33 IoT. If done, you can
click the CONFIGURE button. Arduino IoT Cloud will configure your
Arduino Nano 33 IoT, as shown in Figure 5-6. It will take several minutes
to complete this task. After completing configuration, you should see your
Arduino Nano 33 IoT listed on the Arduino IoT Cloud list, as shown in
Figure 5-7.

136



CHAPTER 5

Setup device

Make your device loT-ready

Your Arduino NANO 33 10T will now be configured to
communicate securely with the Arduino loT.

The process can take up to 5 minutes. please do not
disconnect the device.

1)

Uploading Sketch...

Figure 5-6. Configuring Arduino Nano 33 IoT

(©.0] Things  Dashboards  Devices

Devices
All device tvoes -
Name Status Linked Thing
black-nano
D “ Arduing NAND 33 1sT = Unknown CRERTE TS
blacknano33iot
O TR L eer @ online blacko1

Figure 5-7. Arduino Nano 33 IoT device was added

ARDUINO 10T CLOUD

All device status

137



CHAPTER 5 ARDUINO 10T CLOUD

Develop a Remote LED Button

In this section, we build a program to remote LED from the Arduino IoT
Cloud dashboard. We can turn on/off the LED on Arduino Nano 33 IoT
from the Arduino IoT Cloud dashboard website.

To implement our demo, we can perform some tasks with the following
steps:

e adding a new thing

e adding properties

o editing Sketch program
e building a dashboard

o testing

We implement these steps in the next section.

Adding a New Thing

A feature of the Arduino IoT Cloud is a program to interact with Arduino
devices. With a free membership, we can only create one thing. In

this demo, we build a remote for the LED from the Arduino IoT Cloud
dashboard.

Open the Arduino IoT Cloud website. Click the Things menu. Then,
you can obtain a form, as shown in Figure 5-8. Enter your Thing name and
Arduino device. Each Thing is connected by one Arduino device.

After you set the Thing name, you can click the CREATE button.

After that, you will see a form, as shown in Figure 5-9. We will configure
Properties for Arduino Nano 33 IoT in the next section.

138



CHAPTER 5  ARDUINO IOT CLOUD

[©0] 10T cLoup| Things  Dashboards  Devices = 6

CREATE NEW THING

nhere erties of the o

ented by a collection of propert

the actual hardware used to implement them

blackOl

blacknanc33iot via Cloud - Nano 33 loT -

EE Report Bug CANCEL CREATE
Figure 5-8. Adding a new Thing

m I0T CLOUD Things Dashboards Devices LN C]

blackO1

Last synced a few seconds ago

/3

ADD A NEW PROPERTY

ADD PROPERTY

I Properties i Webhooks ) Associated Device

1~ THING EDIT VIEW 1

In this view you can add properties to your Thing and automatically
generate code, as well as edit it. You can also delete a property

Thing ID: £7013109-4408-40cc-2585-b4f2a7T5e90a

Figure 5-9. A dashboard of an Arduino Thing

139



CHAPTER 5 ARDUINO 10T CLOUD

Adding a Property

We can expose I/0 from Arduino Nano 33 IoT through the Thing property.

For instance, we want to expose sensor data to the Arduino IoT Cloud.

In this scenario, we want to expose our built-in LED in Arduino Nano 33

IoT. We can set I/0 on LED so we can turn on/off the LED over the web.
You can start by opening a Thing on the Arduino IoT Cloud. Figure 5-9

shows our Thing that we already created. Click the Add Property button

to add a new property. After clicking, you will obtain a form, as shown in

Figure 5-10.

Gxa m Things Dashboards Devices UPGRADE PLAN A

CANCEL ADD PROPERTY

Figure 5-10. Adding a new property

140



CHAPTER 5  ARDUINO IOT CLOUD

In this scenario, you can set the following options:
o Name: LED1
e VARIABLE NAME: IED1
o TYPE: ON/OFF (Boolean)
o Permission: Read & Write
e Update: when the value changes
o History: checked

My entry is shown in Figure 5-10. After filled all fields, you can click
the ADD PROPERTY button. You will come back to the Things form. You
should see LED1 property on the Thing form, as shown in Figure 5-11.

6°0) ot cLoup | Things  Dashboards  Devices 5 @
blackO1 EDIT SKETCH
Last synced a few seconds ago

Hi properties 5 Webhooks  [) Associated Device

LED1

ADD PROPERTY

ON/OFF (Boolean}
On change

R&W

Thing ID: £7013109-3408-40¢c-a589-04L2a775e90a

Figure 5-11. A Thing with one property

You have created a Thing. Next, we can modify the Sketch program in
order to connect to this LED1 property.

141



CHAPTER 5 ARDUINO 10T CLOUD

Editing the Sketch Program

Now we can edit our Sketch program. On the property form from the Thing
dashboard (see Figure 5-11), you can click the EDIT SKETCH button. After
clicking, you will obtain the Arduino web editor, as shown in Figure 5-12.

o
® blackD1_aug30a &
B  —>  ArduinoNANO3ZloTatCo.. =
SEARCH SKETCHEOOK Q black0l_aug30a ReadMe adoc thingFroparties h Secret -
5.
ORDERING BY LAST MODIFIED 1
8
21 al Monit thout blockin
blacko]_augioa © b
24 { indt LED
& sketch_augiTa 25 1EDL
26 pinto SOUTPUT);
27 /f Defined in thingProperties.h
ketch_augld g
& oktch_smglda 28 initProperties();
29
& black-nano_augloa 38 /f Connect to Arduino IoT Cloud
31 Ardi loud. begin{Ardui wferredConnection);

33 setDebughessagelevel(2);

35}
36+ void loop() {
37 ErduineCloud. updatel);

38 /{ Your code here

33}

48+ void onLEDIChange() {

41 /f Do something

42 1f(1eD1)

43 digitalwrite(13, HIGH);
a4 else

45 digitalWrite(12, LOW);
48 3}

Figure 5-12. Editing the Sketch program

34 ArduincCloud. printDebugInfe();

Success: Done verifying black01_aug30a

First, we modify the Secret program to configure the WiFi network on
Arduino Nano 33 IoT. Fill in SSID ID and SSID key on the Secret tab. Now

we modify codes on our main Sketch.

You can see our property variable, IED1, is declared on the main Sketch

program.

#include "arduino secrets.h"
bool 1ED1;
#include "thingProperties.h"

142



CHAPTER 5  ARDUINO IOT CLOUD

Then, we initialize our digital pin for a built-in LED. We also set
1ED1=false for initialization. We add the following script on the setup()
function.

void setup() {

1ED1 = false;
pinMode(13,0UTPUT);

On the onLED1Change () function, we perform turn on/off LED. If
we have 1ED1=true, we turn on the LED by calling the digitalWrite()
function. Otherwise, we turn off the LED.

void onLED1Change() {
// Do something
if(1ED1)
digitalWrite(13, HIGH);
else
digitalWrite(13, LOW);

Save this program. You can compile and upload this program to
Arduino Nano 33 IoT. Click Verify and Upload icons for compiling and
uploading program.

Build a Dashboard

Now we can build a dashboard that is used to create interaction between
Arduino IoT Cloud and Arduino Nano 33 IoT. We can create many
dashboards for a Thing project. In our scenario, we create a dashboard
with a button. First, click the DASHBOARD menu. Create a new dashboard
so you will obtain a form, as shown in Figure 5-13.

143



CHAPTER 5 ARDUINO 10T CLOUD

[©.0] 0T cLoup Things  Dashboards  Devices

Figure 5-13. A dashboard of Arduino IoT Cloud

We can add a new switch on our dashboard editor. Click the ADD
button and select Switch widget. You can see the Switch widget option in
Figure 5-14.

[©.0] Things  Dashboards  Devices H o

= @ Untitled i | USEDAsHBOARD )

WIDGETS THINGS

Jo)

w
"
5

©®
Z
:
Ed
:

ution

B ¢
g

Messenger

Colar

Dimmed light

5 © O @

Figure 5-14. Adding a widget on the dashboard

144



CHAPTER 5  ARDUINO IOT CLOUD

Click Switch widget and then drag it to the dashboard editor. After
dragging the Switch widget, you should see Switch widget, as shown in
Figure 5-15.

Click Example Data to link the Switch widget to the Thing property.
After clicking, you will obtain a form as shown in Figure 5-16.

m IOT CLOUD Things Dashboards Devices

Switch

@ o

Example Data ]

Figure 5-15. Adding a switch

145



CHAPTER 5 ARDUINO IOT CLOUD

X Widget Settings

LED

Linked Property

LED This widge: is displaying example data,
Select a source property 1o display its
walue.

Link Property

Example Date
Switch Labels

B3 show ON/OFF labels

Histaric Data

Figure 5-16. Setting a Switch widget

Click the Linked Property button to link with the Thing property. We
will obtain a form, as shown in Figure 5-17. Select our Thing name, and
select Property (LED1). If done, click the LINK PROPERTY button. Then,
we will back to our dashboard editor.

146



CHAPTER 5  ARDUINO IOT CLOUD

(_
Link Property
Things Properties LED1
; Thing blackt
| [ black0l » LED! > Tk ONOEE
g Last value false
Parmission Reed/Mirice
Update policy  On change
Last 30 Aug 2020 1.
update

Figure 5-17. Linking a switch to thing properties

You also can rename our dashboard program—for instance, LED
Demo. Now we can test our dashboard program.

Testing

To test our program, we need to activate our dashboard program on
running mode. You can click the USE DASHBORD button to activate the
dashboard program.

You can attempt to toggle the Switch to ON mode. Then, you should
see the built-in LED on Arduino Nano 33 IoT lights up. You also can turn
off the LED by toggling the Switch to OFF mode.

147



CHAPTER 5 ARDUINO 10T CLOUD

[© ©) 10T cLouD Things  Dashboards  Devices O

o] LED1

black0? ¥

Figure 5-18. LED demo program on the dashboard editor

% IO0OT CLOUD Things Dashboards Devices HER Gy

€ LED Demo ( epiT DASHEOARD )

D LED1

Figure 5-19. Toggling the Switch to turn on the LED

You can customize this program by adding some LEDs. Then, you can
add some properties on the Things program.

Develop Sensor Monitoring

We have created Arduino IoT Cloud to turn on/off LED on Arduino Nano
33 IoT. Now we can continue to build the Arduino IoT Cloud program
for monitoring sensors. In this demo, we use built-in sensors on Arduino
Nano 33 IoT. For testing, we use the Gyroscope sensor.

148



CHAPTER 5  ARDUINO IOT CLOUD

To implement this demo, we can perform some tasks with the
following steps:
e adding a new thing
e adding properties
o editing the Sketch program
¢ building a dashboard
o testing

We implement these steps in the next section.

Add a New Thing

You can create a new Thing on Arduino IoT Cloud. If you have a free
membership, you should delete the existing Thing on Arduino IoT Cloud
because you can only create one Thing.

Now you can create a new Thing. For instance, we set the Thing
name as GyroscropeThing. Then, we can add some properties to
GyroscopeThing.

Add Property

After creating a Thing, we can add properties. For this demo, we create
three properties to monitor the Gyroscope sensor from Arduino Nano

33 IoT. These properties will be linked to X, Y, and Z degrees from the
Gyroscope sensor. When we can add a new property, we have a form, as
shown in Figure 5-20. We add three properties with property parameters as
shown in Table 5-1.

149



CHAPTER 5 ARDUINO 10T CLOUD

CO BT Things  Dashboards  Devices #H @
! @
XDegree
@
xDegree
0}
Float - ge!
a
]
I
-]
@

@ When the value changes 0.05

Figure 5-20. Adding a property on a Thing

Table 5-1. Input Paramters for Three Thing Properties

Parameters Property 1 Property 2 Property 3
Name xDegree yDegree zDegree
Variable xDegree yDegree zDegree
Type Float Float Float
Minimum/Maximum -4/-4 -4/-4 -4/-4
Permission Read-only Read-only Read-only
Update

Delta 0.05 0.05 0.05

Show history visualization Checked Checked Checked

150



CHAPTER 5  ARDUINO IOT CLOUD

After we creat three Thing properties, we will return to our Things
dashboard. You can see three properties in Figure 5-21.

GE IOT CLOUD Things Dashboards Devices UPGRADE PLAN i l'\'-_-,‘

GyroscopeThing
7’
W
7’
&

Last synced a few seconds ago
1} Proparties b Webhooks ¥ Associated Device
ADD PROPERTY

XDegree

b
o
o
]
frd
- |

Float

Change »= 0.05

RO

YDegree
Float
Change >= 0.05

RO

ZDegree

Float

Figure 5-21. Three properties on GyroscopeThing

Editing the Sketch Program

After we add three properties on GyroscopeThing, we can edit the Sketch
program. We will read the gyroscope sensor and then update sensor data
to property variables.

Click the EDIT SKETCH button to edit our program on Arduino
IoT Cloud. Then, we have the Sketch web editor. We modify this Sketch
program to enable us to read the Gyroscope sensor and update three Thing
properties.

151



CHAPTER 5 ARDUINO 10T CLOUD

First, we set the SSID ID and SSID key on Arduino Secret. Then, we
open the main program. We add the LSM6DS3 library on the Sketch

program.

#include "arduino_secrets.h"
#include <Arduino_LSM6DS3.h>

We will see our property variables, such as xDegree, yDegree, and
zDegree.

float xDegree;
float yDegree;
float zDegree;

#include "thingProperties.h"

On the setup() function, we initialize the LSM6DS3 library by calling
IMU.begin() API. Then, we can access the Gyroscope sensor on Arduino
Nano 33 IoT.

void setup() {
if ('IMU.begin()) {
Serial.println("Failed to initialize IMU!");

while (1);
}

We can read the Gyroscope sensor and then update to xDegree,
yDegree, and zDegree variables. We can call IMU. gyroscopeAvailable()
to check whether sensor data is available or not. To read sensor data, we
can use the IMU.readGyroscope() function.

152



CHAPTER 5  ARDUINO IOT CLOUD

void loop() {
ArduinoCloud.update();
// Your code here
if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(xDegree, yDegree, zDegree);

}

delay(1000);

Save this program. Now you can compile this Sketch program and
upload to Arduino Nano 33 IoT device.

Build a Dashbhoard

We build a dashboard to create interaction between Arduino Nano 33 IoT
and Arduino IoT Cloud. We perform a new dashboard program with the

following steps:
o Create a new dashboard.
e Add three value widgets into the dashboard editor.

o Each value widget is to be linked to each Thing
Property, as shown in Figure 5-22.

e Do the same action for XDegree, YDegree, and ZDegree

value widgets.

Last, we can set dashboard name. Now we can test our widgets on the
dashboard.

153



CHAPTER 5 ARDUINO IOT CLOUD

<
Link Property
Things Properties XDegree
Thing GyrascopeT..
GyroscopeThing > ADegree b Type Floa:

Last value 3357
Permission Read-Only
ZDagres Update policy On change

Last 30 Aug 2020 2...
update

¥Degree

Figure 5-22. Linking a property to a widget

Testing

We can test our Arduino IoT Cloud program. You can navigate to the
Arduino IoT Cloud dashboard. Click the dashboard form that we already
created. Click the USE DASHBORD button to be in RUN mode.

You can see the widget output in Figure 5-23. Shake your Arduino
Nano 33 IoT board to see sensor data changes on dashboard widgets.

154



CHAPTER 5

(©.0] Things  Dashboards  Devices
€ Gyroscope
e X Degree o Y Degree o] Z Degree

-14.221 -4.028 -7.874

GyrascopeThing GyrascopeThing GyroscopeThing

ARDUINO 10T CLOUD

EDIT DASHBOARD

Figure 5-23. Showing sensor values on the Arduino loT Cloud

dashboard

You have created a dashboard on Arduino IoT Cloud to monitor
sensors from Arduino Nano 33 IoT. You can practice by applying some

sensors or actuators to integrate with Arduino IoT Cloud.

Summary

We have learned how to get started with Arduino IoT Cloud. We have set
up and registered our Arduino Nano 33 IoT to Arduino IoT Cloud. We also
have built two programs for Arduino IoT Cloud: remoting an LED and

sensor monitoring.

Next, we will learn how to work and make interaction with Bluetooth

Low Energy.

155



CHAPTER 6

Bluetooth Low Energy
(BLE)

Arduino Nano 33 IoT has two built-in network modules: WiFi and
Bluetooth. In this chapter, we explore how to get started with Bluetooth
Low Energy (BLE) on Arduino Nano 33 IoT. We will build programs to
utilize the BLE module.

You will learn the following topics in this chapter:

e Setting up BLE library on Arduino Nano 33 IoT
e Building a simple BLE application
e Developing an LED control program over BLE

o Exposing sensor data over BLE service

Introduction

Arduino Nano 33 IoT is one of the IoT platforms from Arduino. This board
uses WiFi and Bluetooth modules to connect to a network. Arduino Nano
33 IoT has support for BLE radio. BLE technology enables us to advertise
our services and make interactions among BLE devices such as mobile

devices.

© Agus Kurniawan 2021 157
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1_6


https://doi.org/10.1007/978-1-4842-6446-1_6#DOI

CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Each BLE radio can act as the bulletin board or the reader. As the
bulletin board, we can expose some data for all BLE radios and BLE
readers. BLE specification also provides notification mechanisms to alert
other readers as to when data is changed.

In this chapter, we explore how to work with BLE on Arduino Nano
33 IoT. Next, we set up a BLE library in order to work with BLE radio on
Arduino Nano 33 IoT.

Setting up BLE

To work with BLE on Arduino Nano 33 IoT, we need the ArduinoBLE
library. We can perform BLE operations such as making and advertising
BLE services. A detail of the ArduinoBLE library can be found at this link,
https://www.arduino.cc/en/Reference/ArduinoBLE.

You can open the Library Manager dialog from the menu Sketch »
Include Library » Manage Libraries. After clicking, you will obtain a
dialog, as shown in Figure 6-1.

Library Manager X

Type All ~ Topic All * ArduincBLE
| ArduinoBLE
by Arduino
Enables BLE connectivity on the Arduino MKR WiFi 1010, Arduino UNC WiFi Rev.2, Arduino Nano 33 IoT, and Arduino Nano 33 BLE.

This library supports creating a BLE peripheral and BLE central mode.
More info

Version 1.1.3 ~ Install
PhysicsLabFirmware
2y Arduing

Firmware for the Physics Lab kit. This library depends on the ArduineBLE and MKRIMU libraries.
More info

BeaconNano

by Petruzzella

Create a Beacon from an Arduine Nano Ble This library supports creating a Beacon.
Mors info

HardwareBLESerial

by Anthony Zhang (Uberi)

An Arduine library for Nordic Semiconductors proprietary UART/Serial Port ion over BLE protocol, using Ardui E. The
interface is largely a drop-in for the Soft Serial class, without any of the blocking calls and with additional line-criented methods
such as peekLine() and readLine(). There is also a polling method that must be called regularly to perform various internal housekeeping tasks.
Maore info.

Figure 6-1. Adding the ArduinoBLE library

158


https://www.arduino.cc/en/Reference/ArduinoBLE

CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

You can type ArduinoBLE in the search textbox. Then, click the ENTER
key. You should see the ArduinoBLE library in the result form. Select this
library and then install it. After completion, you can build the Arduino
program to apply BLE radio.

Demo 1: Hello Arduino BLE

The first demo is to build a hello world application for BLE radio. We
advertise our BLE with a certain BLE name. If the BLE reader is connected,
we can turn on LED. When the BLE reader is disconnected, we turn off
LED. Next, we write a program with Arduino software.

Writing Sketch Program

We will develop the Arduino program to advertise the BLE service. We will
turn on the LED after the BLE reader is connected. You start by opening
Arduino software. Create a new program. Next, we write codes with step-
by-step.

First, we import the ArduinoBLE library in our program. We just write
this code:

#include <ArduinoBLE.h>

On the setup() function, we initialize serial communicate, LED, and
BLE radio. We call Serial.begin() to initialize serial communication with
baudrate 115200. We set the LED pin on LED BUILTIN as OUTPUT mode. To
activate BLE radio on Arduino Nano 33 IoT, we can call the BLE.begin()

function.

void setup() {
Serial.begin(115200);
while (!Serial);

pinMode(LED BUILTIN, OUTPUT);

159



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

// begin initialization

if (!BLE.begin()) {
Serial.println("starting BLE failed!");
while (1);

}

Now we set our BLE radio name by calling BLE.setLocalName(). This
name will be detected on the BLE reader. We also set BLE UUID by calling
the BLE.setAdvertisedServiceUuid() function. BLE UUID represents
a 128-bit value computed. You can generate UUID using this online tool,
https://www.guidgenerator.com/online-guid-generator.aspx.

BLE.setLocalName("HelloBLE");
BLE.setAdvertisedServiceUuid("19B10000-E8F2-537E-4F6C-
D104768A1214");

// start advertising

BLE.advertise();

Serial.println("Bluetooth device active, waiting for
connections...");

Make sure your BLE UUID complies with standard BLE SIG. Some BLE
UUIDs are reserved by their services. You can check these services at this
link, https://www.bluetooth.com/specifications/assigned-numbers/
service-discovery/.

Next, we wait for the incoming BLE reader on the 1loop() function. We
can call BLE.contral() to wait for BLE readers.

void loop() {
// wait for a BLE central
BLEDevice central = BLE.central();

160


https://www.guidgenerator.com/online-guid-generator.aspx
https://www.bluetooth.com/specifications/assigned-numbers/service-discovery/
https://www.bluetooth.com/specifications/assigned-numbers/service-discovery/

CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

After the BLE reader is connected to our BLE radio on Arduino Nano 33
IoT, we can obtain BLEDevice object. Then, we turn on the LED by calling
digitalWrite()with passing HIGH value. Then, we perform infinite
looping by checking connection status.

if (central) {
Serial.print("Connected to central: ");
Serial.println(central.address());
digitalWrite(LED BUILTIN, HICH);

while (central.connected()) {
// do nothing

}

If the BLE reader is disconnected, we will obtain a false value
from central.connected(). After that, we turn off the LED by calling
digitalWrite() with passing LOW value.

digitalWrite(LED BUILTIN, LOW);
Serial.print("Disconnected from central: ");
Serial.println(central.address());

}
}

Our program is done. You can save this program as HelloBLE.

Testing Program

Now our Arduino program, HelloBLE, can be compiled and uploaded to
Arduino Nano 33 IoT. To test this program, we need a mobile phone with
Android or iOS platform. In this demo, I use an Android phone.

First, open Serial Monitor to see the program output from the
HelloBLE program. Next, install nRF Connect for Mobile application on
the Google Play store or Apple store. You can see nRF Connect for Mobile
application from the Google Play store in Figure 6-2.

161



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Download and install nRF Connect for Mobile application for mobile
platforms. After installing, you can run this program. You can see my nRF
Connect for Mobile application on Android as shown in Figure 6-3. Next,
we can connect to Arduino Nano 33 IoT.

nRF Connect for

G? Mobile

1RF CONM

About this app

Ratings and reviews

4 %

Figure 6-2. nRF Connect for Mobile application on the Google Play
store

162



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

18:23 | 0.7KES

= Devices

SCANNER BONDED ADVERTISER

N filter

Figure 6-3. A form of nRF Connect for Mobile application

We can tap SCAN to obtain a list of BLE devices. You should see the
HelloBLE service. You can see my HelloBLE in Figure 6-4. If you don’t see
it, you should tap the SCAN button again.

Now you tap the CONNECT button on HelloBLE. After that, we will
connect to Arduino Nano 33 IoT over BLE radio. Figure 6-5 shows my
Android phone was connected to the HelloBLE service from Arduino Nano
33 IoT.

To disconnect from the HelloBLE service, you can click the
DISCONNECT button. Then, our mobile device closes BLE radio
communication. If you already opened the Serial Monitor tool, you will
see all event messages on this tool. You can see my program output on the
Serial Monitor tool in Figure 6-6.

163



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

20:0:

Devices

SCANNER

BONDED

ADVERTISER

CONNECT }

4 -83 dBm

CONNECT &

COMMECT ¢

CONMECT £

Figure 6-4. HelloBLE service is showing

164



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

DISCONNECT

HELLOBLE

ADVERTISER

Figure 6-5. Connected to HelloBLE service

@ com12
Send

Bluetooth device active, waiting for connections... ~

Connected to central: éb:4d:] L

Disconnected from central: 6b:dd::

w

Both NL& CR  ~ 115200 baud ~ Clear output

[ Autoscroll [ ] Show timestamp

Figure 6-6. Program output on the serial console from HelloBLE
165



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Demo 2: Controlling LED with BLE

In this demo, we build an LED controller over BLE radio. We utilize the
BLE service to expose the LED service. We can turn on/off the LED using
the mobile application.

For implementation, we use a program sample from Arduino,
LED. Next, we develop the Sketch program.

Writing the Program

We will develop the Arduino program to control the LED over BLE radio.
Now you start by opening Arduino software. Create a new program. Next,
we write codes with step-by-step.

First, we import the ArduinoBLE library into our program. We also
initialize the BLE Service with BLERead and BLEWrite characteristics. We
define ledPin for LED_BUILTIN. We write the following codes.

#include <ArduinoBLE.h>

BLEService ledService("19B10000-E8F2-537E-4F6C-D104768A1214");
BLEByteCharacteristic switchCharacteristic("19B10001-E8F2-537E-
4F6C-D104768A1214", BLERead | BLEWrite);

const int ledPin = LED BUILTIN;

Then, we initialize serial communication and digital OUTPUT mode on
the setup() function. We also initialize BLE radio on Arduino Nano 33 IoT
using the BLE.begin() function.

void setup() {
Serial.begin(9600);
while (!Serial);

// set LED pin to output mode
pinMode(ledPin, OUTPUT);

166



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

// begin initialization
if (!BLE.begin()) {
Serial.println("starting BLE failed!");

while (1);
}

Next, we set the BLE service and characteristics using the
addCharacteristic() function. We also initialize the characteristic value
by calling the writeValue() function.

// set advertised local name and service UUID:
BLE.setLocalName("LED");
BLE.setAdvertisedService(ledService);

// add the characteristic to the service
ledService.addCharacteristic(switchCharacteristic);

// add service
BLE.addService(ledService);

// set the initial value for the characeristic:
switchCharacteristic.writeValue(0);

After we define our BLE service, we can start to advertise using the
BLE.advertise() function. We print a message for information that our
BLE is ready to wait for incoming BLE readers.

// start advertising
BLE.advertise();

Serial.println("BLE LED Peripheral");
}

On the loop() function, we wait for BLE readers. We use BLE.central().
If the BLE reader is connected to Arduino Nano 33 IoT, we will obtain a
BLEDevice object.

167



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

void loop() {
BLEDevice central = BLE.central();

After the BLE reader was connected to Arduino Nano 33 IoT, we print

the MAC address from the BLE reader. Then, we perform a looping and

wait for input data from the BLE reader using the value() function from

the BLE service characteristic. If the user sends data>0, we turn on the
LED. Otherwise, we turn off the LED.

if (central) {

168

Serial.print("Connected to central: ");
// print the central's MAC address:
Serial.println(central.address());

// while the central is still connected to peripheral:
while (central.connected()) {
// if the remote device wrote to the characteristic,
// use the value to control the LED:
if (switchCharacteristic.written()) {
int val = switchCharacteristic.value();
Serial.println(val);
if (val»>o) { // any value other than o
Serial.println("LED on");

digitalWrite(ledPin, HIGH); // will turn the
LED on
} else { // a 0 value
Serial.println(F("LED off"));
digitalhWrite(ledPin, LOW); // will turn the
LED off



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

Last, we print the message to the serial terminal if the BLE reader
disconnects.

Serial.print(F("Disconnected from central: "));
Serial.println(central.address());

}
}

Our program is done. You can save this program as LED.

Testing the Program

Now our Arduino program, LED, can be compiled and uploaded to
Arduino Nano 33 IoT. To test this program, we need a mobile phone with
Android or iOS platform. In this demo, I use an Android phone.

26| 0.2%B/s

18

Devices

SCANNER BONDED

Nao filier

CONNECT §

187 ms

CONMECT

Figure 6-7. LED service shows in nRF Connect for Mobile application
169



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

First, open Serial Monitor to see program output from the LED
program. Now you can open the nRF Connect for Mobile application
from your platform. You should see the BLE service on this application,
as shown in Figure 6-7. Tap the CONNECT button to connect to Arduino
Nano 33 IoT.

ta ®=OD

= Devices DISCONNECT £

BONDED apveRmser  SED

Figure 6-8. Showing the BLE service characteristics

After connecting, you will obtain a form, as shown in Figure 6-8. You
can expand the BLE service characteristics. We have two properties: READ
and WRITE.

Tap the WRITE property icon. Then, set a value 15 to turn on the LED,
as shown in Figure 6-9. Tap SEND to send this value. You should see the
LED lighting on Arduino Nano 33 IoT. You also can send 00 to turn off the
LED on the BLE service WRITE, as shown in Figure 6-10.

170



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

Write value

0= 15

Advanced

Figure 6-9. Writing data 15 to turn on the LED

171



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Write value

0x 00

Figure 6-10. Writing data 00 to turn off the LED

If you have already opened the Serial Monitor tool, you will see
program output events information. You can see my program output in

Figure 6-11.

172



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

© com12 - O X

| Send
BLE LED Peripheral ~
Connected to central: Tf:cf:(

21

LED on

0

LED off

Disconnected from central: 7f:cf:

w

[“] Autoscroll [ Show timestamp Both NL& CR  ~ 115200 baud ~ Clear output

Figure 6-11. Program output from the LED

Demo 3: Sensor Real-Time Monitoring

In this section, we build a sensor real-time monitoring over the BLE radio.
We make a BLE service that provides Gyroscope sensor data to the BLE
reader. The BLE reader will obtain notification if the sensor data changes.

Writing the Program

We create a new Arduino program to create the BLE service and then
broadcast the Gyroscope sensor to BLE readers. We will create a BLE
service with three characteristics. Each BLE characteristic will expose the
Gyroscope sensor for x, y, and z degrees.

To start to develop, we can open Arduino software. First, we call the
required libraries.

#include <ArduinoBLE.h>
#include <Arduino_LSM6DS3.h>

173



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Then, we define the BLE service and three BLE characteristics.
We need different UUIDs to apply these features. We also define three
variables to hold sensor data.

BLEService sensorService("16150f38-e7a9-4fel-ae08-48464baf25b2");
BLEStringCharacteristic xSensorLevel("ff99948c-18ff-4ed8-942e-
512b9b24b6da", BLERead | BLENotify,15);
BLEStringCharacteristic ySensorLevel("8084aabb-6cae-461f-9540-
ela5768de49d", BLERead | BLENotify,15);
BLEStringCharacteristic zSensorLevel("ab80cb77-fe74-40d8-9757-
96f8a54c16d9", BLERead | BLENotify,15);

// last sensor data
float oldXLevel = 0;
float oldYLevel
float oldZLevel = 0;

long previousMillis = 0;

1]
o
e

On the setup() function, we initialize serial communication with
baudrate 115200, the Gyroscope sensor, the LED digital pin, and OLED
interintegrated circuit (12C) display module.

void setup() {
Serial.begin(115200);
while (!Serial);

if ('IMU.begin()) {
Serial.println("Failed to initialize IMU!");
while (1);

}

174



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)
pinMode(LED BUILTIN, OUTPUT);

if (!BLE.begin()) {
Serial.println("starting BLE failed!");
while (1);

}

Now we define the BLE service name and add to the advertised service.
Then, add all the BLE characteristics into the BLE service.

BLE.setLocalName("Gyroscope");
BLE.setAdvertisedService(sensorService);

sensorService.addCharacteristic(xSensorLevel);
sensorService.addCharacteristic(ySensorLevel);
sensorService.addCharacteristic(zSensorLevel);
BLE.addService(sensorService);

We set initial default data on all BLE characteristics using the
writeValue() function.

xSensorLevel.writeValue(String(0));
ySensorLevel.writeValue(String(0));
zSensorlLevel.writeValue(String(0));

Now we can start to advertise the BLE service by calling the BLE.
advertise() function. BLE readers will recognize this BLE server.

BLE.advertise();
Serial.println("Bluetooth device active, waiting for
connections...");

}

On the loop() function, we wait for the incoming BLE reader. Once
the BLE reader is connected, we print the MAC address of the BLE reader.
Then, we turn on the LED.

175



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

void loop() {
BLEDevice central = BLE.central();
if (central) {
Serial.print("Connected to central: ");
Serial.println(central.address());
digitalWrite(LED BUILTIN, HICH);

If the BLE reader is connected, we have the BLEDevice object. We can
perform a looping function until the BLE reader is disconnected. Inside
looping, we call the updateGyroscopeLevel () function to update sensor
data to the BLE service.

while (central.connected()) {
//long currentMillis = millis();
updateGyroscopelevel();
delay(300);

}

We turn off the LED after the BLE reader disconnected.

digitalWrite(LED BUILTIN, LOW);
Serial.print("Disconnected from central: ");
Serial.println(central.address());
}
}

For implementation of the updateGyroscopelevel () function, we
read the Gyroscope sensor using IMU.readGyroscope(). We also verify for
existing sensor data using the IMU.gyroscopeAvailable() function.

void updateGyroscopelevel() {
float x, vy, z;

if (IMU.gyroscopeAvailable()) {
IMU.readGyroscope(x, y, z);

176



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

We send the Gyroscope sensor data to the BLE service using the
writeValue() function. We do this task for all BLE characteristics.

if (x != oldXLevel) {
xSensorLevel.writeValue(String(x));
oldXLevel = x;

}

if (y != oldYLevel) {
ySensorLevel.writeValue(String(y));
oldYLevel = y;

}

if (z !'= oldZLevel) {
zSensorLevel.writeValue(String(z));
oldZLevel = z;

}

Serial.print(x);

Serial.print('\t");

Serial.print(y);

Serial.print('\t');

Serial.println(z);

Save this program as GyroscopeBLEService.

Testing

Now we can compile and upload the GyroscopeBLEService program into
Arduino Nano 33 IoT board. Next, we can use an nRF Connect for Mobile
application. Tap the SCAN button, and you should see a list of the BLE
service on your around environment.

177



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

Figure 6-12 shows the Gyroscope BLE service detected on an nRF
Connect for Mobile application. Then, tap the CONNECT button to
connect the Gyroscope BLE service.

After connected, we see properties and characteristics of the
Gyroscope BLE service, as shown in Figure 6-13.

rsejoamen N @

17
=  Devices

SCANNER BONDED

No filter

con EcT }

72 dBm 183 g

CONNECT §

Figure 6-12. Detecting Gyroscope BLE service

178



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

1204 DexEis N @B

= Devices DISCONNECT  #

BONDED  ADVERTISER SYTOSCOPE ¢

Figure 6-13. Connected to the Gyroscope BLE service

You can expand Unknown Service to see the BLE characteristics.
After expanded, you will see three BLE characteristics that represent the
Gyroscope sensor data. Figure 6-14 shows three BLE characteristics of the
Gyroscope BLE service.

179



CHAPTER6 BLUETOOTH LOW ENERGY (BLE)

18:20 | 65.9kB/s N -+ 3 B4

=  Devices DISCONNECT
BONDED ADVERTISER ~ SYROSCOPE _ 3¢

AR L AL UL
01

Unknown Servic
D: 16

Unknown Characteristic

ff-4

figuration

Figure 6-14. Opening BLE characteristics from the Gyroscope BLE
service

Tap the icon of arrow array, as shown in Figure 6-14. After tapping,
you will see sensor data from the Gyroscope sensor. Figure 6-15 shows the
Gyroscope sensor data from Arduino Nano 33 IoT. Sensor data is signed by

the circle in Figure 6-15.

180



CHAPTER 6 BLUETOOTH LOW ENERGY (BLE)

18:20 | 1.3kB/s N @ -+ i =) #

= Devices DISCONNECT

BONDED ADVERTISER  SYROSCOPE

nfiguration

-4 76"

figuration

Figure 6-15. Showing the Gyroscope sensor over the Gyroscope BLE
service

This is the end of the chapter. You can practice more by creating
various BLE services. You also can build your own mobile application to
consume BLE services.

Summary

We have learned how to set up a BLE radio on Arduino Nano 33 IoT board.
We also built Arduino programs by applying the BLE radio. We started with
developing the Helloworld application. We also controlled the LED over
BLE radio.

181



Index

A

Arduino IoT Cloud

adding new Arduino device, 135

build Sensor monitoring
add new thing, 149
add property, 149
edit Sketch program, 151
GyroscopeThing, 151
Input Paramters, 150
new dashboard

program, 153

testing, 154

Cloud list, 136

configuration, 136

Create Agent, 133

dashboard, 132

Debug Console, 134

remote LED
adding new property, 140
adding new Thing, 139
adding switch, 145
adding widget

dashboard, 144

DASHBOARD menu, 143
Editing Sketch program, 142
Link Property button, 146

© Agus Kurniawan 2021
A. Kurniawan, Beginning Arduino Nano 33 IoT,
https://doi.org/10.1007/978-1-4842-6446-1

testing, 147
widget setting, 146

running program, 135
Arduino Nano 33 IoT
analogI/0

sensor, 49
TMP36 module, 51

blinking LED, 10, 13
C++ programming

arithmetic operators, 32

break and continue
statement, 43

conditional if program, 34

conditional statement, 32

ConditionalSwitch, 36

data types, 26

looping, 39

Program output, 30

RESET button, 30

serial monitor tool, 29

skeleton codes, 24

variable declaration, 25, 28

client.print() function, 126
compiling and flashing a

program, 12

configuration, 6
connect WiFi

183


https://doi.org/10.1007/978-1-4842-6446-1#DOI

INDEX

Arduino Nano 33 IoT (cont.)

client.connect()

function, 112
Google website, 114
printWiFiStatus()

function, 111
WiFi.locallP() function, 113
WiFi.RSSI() function, 113
WiFi.status() function, 111
WiFiWebClient

application, 110

delay () function, 13
Digital I/0

digital number, 46

digitalRead() function, 48

digitalWrite () function, 48

wiring push button
project, 47

features, 3
HTTP GET requests, 121
12C protocol

184

error code, 72
i2c_scanner, 70
i2¢_scanner output, 71
I12CSensor, 75
I12CSensor output, 75
PCF8591 AD/DA converter
module, 66
photo-voltaic cell, 77
read sensor data, 73
Scanning I12C address, 68
serial clock, 66
serial data, 66

Wire.beginTransmission()
function, 72

Wire.endTransmission()
function, 72

wiring PCF8591 AD/DA
converter module, 68

installing WiFiNINA library, 105
IoT board, 2

loop() function, 5

micro USB cable, 8

NTP server

printWiFiStatus()
function, 119
sendNTPpacket()
function, 117
Udp.begin() function, 116
Udp.parsePacket()
function, 117
WiFi.RSSI() function, 119
WiFiUDP object, 116
WiFiUdpNtpClient, 115

plotter tool

Plotting sensor data, 54

Serial Plotter tool, 54

SparkFun Electret
Microphone Breakout, 52

PWM

loop() function, 61
RGB LED, 58
setColor() function, 61
test_rgb_arduino, 60

SAMD Boards, 6
scanWiFi() function, 109



Serial communication
process, 55
setup() function, 5
SPI
Connecting MISO and MISO
pins, 63
SPIDemo, 64
SPI pins, 62
SPI.transfer() function, 65
targeted boards, 7
testing
connect WiFi, 127
turning off LED, 128
turning on LED, 128
WiFi.begin() function, 123
WiFi module, 104
WifiScan program, 107
wiring, 121
Arduino web editor, 15
account registration, 15
compile and upload, 20
completed installation, 19
DOWNLOAD button, 17
installation, 16
project creation, 20
plug-in, 18

B

Bluetooth Low Energy (BLE)
add ArduinoBLE library, 159
HelloBLE

BLE.begin() function, 159

INDEX

BLE.setAdvertised
ServiceUuid()
function, 160

Connect HelloBLE
service, 165

Connect nRE 162

form of, nRF, 163

LED controller
addCharacteristic()
function, 167

BLE.advertise() function,
167

BLERead and BLEWrite, 166

BLE service
characteristics, 170

loop() function, 167

nRF connect mobile
application, 169

writing data, 171, 172

Library Manager dialog, 158

C,D,E,F,G,H

C++ programming
arithmetic operators, 32
break and continue

statement, 43

conditional if program, 34
conditional statement, 32
ConditionalSwitch, 36
data types, 26
looping, 39
Program output, 30

185



INDEX

C++ programming (cont.)
RESET button, 30
serial monitor tool, 29
skeleton codes, 24
variable declaration, 25, 28

,J,K
IMU sensor
accelerator
IMU.
accelerationSampleRate()
function, 85
serial object, 85
SimpleAccelerometer, 84
gyroscope
gyroscope sensor, 88
IMU.readGyroscope()
function, 89
LSM6DS3 library, 87
12C addresses, 81
installing LSM6DS3 library, 82
LSM6DS3 chip, 80
LSM6DS3 library, 81
OLED I2C display
Adafruit_SSD1306 library,
95, 99
detecting I12C addresses, 94
display Gyroscope
sensor, 98, 101
0.96-inch, 92
OledSensor program, 100, 102
running ssd1306_128x64_i2c
program, 97

186

testing, 96
wiring, 93
Plotter tool
GyroscopePlotter program, 91
IMU.begin() function, 90
IMU.gyroscopeAvailable()
function, 90
Inertial measurement
unit (IMU), 79
Interintegrated circuit (I2C)
protocol, 65

L

LED controller, BLE
addCharacteristic() function, 167
BLE.advertise() function, 167
BLERead and BLEWrite, 166
BLE service characteristics, 170
loop() function, 167
nRF connect mobile

application, 169
writing data, 171, 172

Microcontroller unit (MCU), 57

N

Network time protocol (NTP)
server
printWiFiStatus() function, 119
sendNTPpacket() function, 117



Udp.begin() function, 116
Udp.parsePacket() function, 117
WiFi.RSSI() function, 119
WiFiUDP object, 116
WiFiUdpNtpClient, 115

Organic light-emitting diode

(OLED)12C display
Adafruit_SSD1306 library, 95, 99
detecting I2C addresses, 94
display Gyroscope

sensor, 98, 101
0.96-inch, 92
OledSensor program, 100, 102
running ssd1306_128x64_i2c

INDEX

S, T,U,V

Sensor real-time monitoring
BLE.advertise() function, 175
BLE characteristics, 174
Gyroscope BLE service, 178, 181
loop() function, 175
setup() function, 174
updateGyroscopeLevel()

function, 176

writeValue() function, 175, 177

Serial peripheral interface (SPI), 62

W XY,Z

WiFi connection
client.connect() function, 112
Google website, 114

program, 97 printWiFiStatus() function, 111
testing, 96 WiFi.locallP() function, 113
wiring, 93 WiFi.RSSI() function, 113

WiFi.status() function, 111
WiFiWebClient application, 110
P’ Q’ R Wireless personal network
Pulse width modulation (PWM), 57 (WPAN), 2

187



	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Setting up Development Environment
	Introduction
	Review Arduino Nano 33 IoT Board
	Set Up Development Environment
	Hello Arduino: Blinking LED
	Arduino Web Editor
	Registering an Arduino Account
	Installing Arduino Plug-in
	Building an Arduino Program

	Summary

	Chapter 2: Arduino Nano 33 IoT Board Development
	Introduction
	Basic Sketch Programming
	Main Program
	Declare Variables
	Operators
	Conditional Statement
	Looping
	Break and Continue

	Digital I/O
	Analog I/O
	Plotting Analog Sensor
	Serial Communication
	Pulse Width Modulation
	Serial Peripheral Interface
	Interintegrated Circuit (I2C)
	Scanning I2C Address
	Reading Sensor-Based I2C Address

	Summary

	Chapter 3: IMU Sensor: Accelerator and Gyroscope
	Introduction
	Set Up LSM6DS3 Library
	Working with an Accelerator
	Working with Gyroscope
	Plotting Sensor Data
	Displaying Sensor Data with Organic Light-Emitting Diode I2C Display
	Wiring for Arduino Nano 33 IoT and the OLED I2C Display
	Checking the I2C Address of the OLED I2C Display
	Setting up the OLED I2C Display Library
	Testing the OLED I2C Display
	Displaying the Gyroscope Sensor

	Summary

	Chapter 4: Arduino Nano 33 IoT Networking
	Introduction
	Set up the WiFiNINA Library
	Scanning WiFi Hotspot
	Connecting to a WiFi Network
	Accessing Network Time Protocol Server
	Building a Simple IoT Application
	Wiring
	Developing Program
	Testing

	Summary

	Chapter 5: Arduino IoT Cloud
	Introduction
	Setting up Arduino IoT Cloud
	Register Arduino Nano 33 IoT
	Install the Arduino Create Agent
	Add New Arduino Device

	Develop a Remote LED Button
	Adding a New Thing
	Adding a Property
	Editing the Sketch Program
	Build a Dashboard
	Testing

	Develop Sensor Monitoring
	Add a New Thing
	Add Property
	Editing the Sketch Program
	Build a Dashboard
	Testing

	Summary

	Chapter 6: Bluetooth Low Energy (BLE)
	Introduction
	Setting up BLE
	Demo 1: Hello Arduino BLE
	Writing Sketch Program
	Testing Program

	Demo 2: Controlling LED with BLE
	Writing the Program
	Testing the Program

	Demo 3: Sensor Real-Time Monitoring
	Writing the Program
	Testing

	Summary

	Index



