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Introduction
The term System Programming refers to programming close to an operating system level.
Windows 10 System Programming provides guidance for system programmers targetting
modern Windows systems, from Windows 7 up to the latest Windows 10 versions.

The book uses the documented Windows Application Programming Interface (API) to
leverage system-level facilities, including processes, threads, synchronization primitives,
virtual memory and I/O. The book is presented in two parts, due to the sheer size of the
Windows API and the Windows system facilities breadth. You’re holding in your hands (or
your screen of choice) part 1.

Who Should Read This Book

The book is intended for software developers that target the Windows platform, and need
to have a level of control not achievable by higher-level frameworks and libraries. The book
uses C and C++ for code examples, as the Windows API is mostly C-based. C++ is used
where it makes sense, where its advantages are obvious in terms of maintenance, clarity,
resource management, and any combination of the above. The book does not use non-trivial
C++ constructs, such as template metaprogramming. The book is not about C++, it’s about
Windows.

That said, other languages can be used to target the Windows API through their specialized
interoperabilitymechanisms. For example, .NET languages (C#, VB, F#, etc.) can use Platform
Invoke (P/Invoke) to make calls to the Windows API. Other languages, such as Python, Rust,
Java, and many others have their own equivalent facilities.

What You Should Know to Use This Book

Readers should be very comfortable with the C programming language, especially with
pointers, structures, and its standard library, as these occur very frequently in the Windows
APIs. Basic C++ knowledge is highly recommended, although it is possible to traverse the
book with C proficiency only.
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Sample Code

All the sample code from the book is freely available in the book’s Github repository at
https://github.com/zodiacon/Win10SysProgBookSamples. Updates to the code samples will
be pushed to this repository. It’s recommended the reader clone the repository to the local
machine, so it’s easy to experiment with the code directly.

All code samples have been compiled with Visual Studio 2019. It’s possible to compile most
code samples with earlier versions of Visual Studio if desired. There might be few features
of the latest C++ standards that may not be supported in earlier versions, but these should
be easy to fix.

Happy reading!

Pavel Yosifovich

June 2019

https://github.com/zodiacon/Win10SysProgBookSamples


Chapter 1: Foundations
The Windows NT line of operating systems has quite a bit of history, starting with version
3.1 launched in 1993. Today’s Windows 10 is the latest successor to that initial NT 3.1. The
fundamental concepts of current Windows systems is essentially the same as it was back in
1993. This shows the strength of the initial OS design. That said, Windows grew significantly
since its inception, with many new features and enhancements to existing ones.

This book is about system programming, typically regarded as low-level programming of the
operating system’s core services, without which no significant work can be accomplished.
System programming uses low level APIs to use and manipulate core objects and mecha-
nisms in Windows, such as processes, threads and memory.

In this chapter, we’ll take a look at the foundations of Windows system programming,
starting from the core concepts and APIs.

In this chapter:

• Windows Architecture Overview
• Windows Application Development
• Working with Strings
• 32-bit vs. 64-bit Development
• Coding Conventions
• Handling API Errors
• The Windows Version

Windows Architecture Overview

We’ll start with a brief description of some core concepts and components inWindows. These
will be elaborated on in the relevant chapters that follow.
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Processes

A process is a containment and management object that represents a running instance of a
program. The term “process runs” which is used fairly often, is inaccurate. Processes don’t
run - processes manage. Threads are the ones that execute code and technically run. From a
high-level perspective, a process owns the following:

• An executable program, which contains the initial code and data used to execute code
within the process.

• A private virtual address space, used for allocating memory for whatever purposes the
code within the process needs it.

• An access token (sometimes referred to as primary token), which is an object that stores
the default security context of the process, used by threads executing code within the
process (unless a thread assumes a different token by using impersonation).

• A private handle table to Executive (kernel) objects, such as events, semaphores, and
files.

• One or more threads of execution. A normal user-mode process is created with one
thread (executing the main entry point for the process). A user-mode process without
threads is mostly useless and under normal circumstances will be destroyed by the
kernel.

These elements of a process are depicted in figure 1-1.
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Figure 1-1: Important ingredients of a process

A process is uniquely identified by its Process ID, which remains unique as long as the kernel
process object exists. Once it’s destroyed, the same ID may be reused for new processes. It’s
important to realize that the executable file itself is not a unique identifier of a process. For
example, there may be five instances of notepad.exe running at the same time. Each process
has its own address space, its own threads, its own handle table, its own unique process
ID, etc. All those five processes are using the same image file (notepad.exe) as their initial
code and data. Figure 1-2 shows a screen shot of Task Manager’s Details tab showing five
instances of Notepad.exe, each with its own attributes.
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Figure 1-2: Five instances of notepad

Dynamic Link Libraries

Dynamic Link Libraries (DLLs) are executable files that can contain code, data and resources
(at least one of these). DLLs are loaded dynamically into a process either at process
initialization time (called static linking) or later when explicitly requested (dynamic linking).
We’ll look at DLLs inmore detail in chapter 15. DLLs don’t contain a standardmain functions
like executables, and so cannot be run directly. DLLs allow sharing their code in physical
memory betweenmultiple processes that use the same DLL, which is the case for all standard
Windows DLLs stored in the System32 directory. Some of these DLLs, known as subsystem
DLLs implement the documented Windows API, which is the focus of this book.

Figure 1-3 shows two processes using shared DLLs mapped to the same physical (and virtual)
addresses.
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Figure 1-3: Sharing DLLs code

Virtual Memory

Every process has its own virtual, private, linear address space. This address space starts
out empty (or close to empty, since the executable image and NtDll.Dll are normally the
first to be mapped). Once execution of the main (first) thread begins, memory is likely to be
allocated, more DLLs loaded, etc. This address space is private, which means other processes
cannot access it directly. The address space range starts at zero (although technically the first
64KB of address cannot be allocated), and goes all the way to a maximum which depends
on the process “bitness” (32 or 64 bit), the operating system “bitness” and a linker flag, as
follows:

• For 32-bit processes on 32-bit Windows systems, the process address space size is 2 GB
by default.

• For 32-bit processes on 32-bit Windows systems that use the increase user address
space setting, that process address space size can be as large as 3 GB (depending on the
exact setting). To get the extended address space range, the executable from which the
process was created must have been marked with the LARGEADDRESSAWARE linker flag
in its header. If it was not, it would still be limited to 2 GB.

• For 64-bit processes (on a 64-bit Windows system, naturally), the address space size is
8 TB (Windows 8 and earlier) or 128 TB (Windows 8.1 and later).
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• For 32-bit processes on a 64-bit Windows system, the address space size is 4 GB if
the executable image is linked with the LARGEADDRESSAWARE flag. Otherwise, the size
remains at 2 GB.

The requirement of the LARGEADDRESSAWARE flag stems from the fact that a 2 GB
address range requires 31 bits only, leaving the most significant bit (MSB) free for
application use. Specifying this flag indicates that the program is not using bit 31
for anything and so setting that bit to 1 (which would happen for addresses larger
than 2 GB) is not an issue.

The memory itself is called virtual, which means there is an indirect relationship between an
address range and the exact location where it’s found in physical memory (RAM). A buffer
within a process may be mapped to physical memory, or it may temporarily reside in a file
(such as a page file). The term virtual refers to the fact that from an execution perspective,
there is no need to know if the memory about to be accessed is in RAM or not; if the memory
is indeed mapped to RAM, the CPU will access the data directly. If not, the CPU will raise
a page fault exception that will cause the memory manager’s page fault handler to fetch the
data from the appropriate file, copy it to RAM, make the required changes in the page table
entries that map the buffer, and instruct the CPU to try again.

Threads

The actual entities that execute code are threads. A Thread is contained within a process,
using the resources exposed by the process to do work (such as virtual memory and handles
to kernel objects). The most important attributes a thread owns are the following:

• Current access mode, either user or kernel.
• Execution context, including processor registers.
• A stack, used for local variable allocations and call management.
• Thread Local Storage (TLS) array, which provides a way to store thread-private data
with uniform access semantics.

• Base priority and a current (dynamic) priority.
• Processor affinity, indicating on which processors the thread is allowed to run on.

The most common states a thread can be in are:

• Running - currently executing code on a (logical) processor.
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• Ready - waiting to be scheduled for execution because all relevant processors are busy
or unavailable.

• Waiting - waiting for some event to occur before proceeding. Once the event occurs,
the thread moves to the Ready state.

General System Architecture

Figure 1-4 shows the general architecture of Windows, comprising of user-mode and kernel-
mode components.

Figure 1-4: Windows system architecture

Here’s a quick rundown of the named boxes appearing in figure 1-3:

• User processes

These are normal processes based on image files, executing on the system, such as
instances of Notepad.exe, cmd.exe, explorer.exe and so on.

• Subsystem DLLs

Subsystem DLLs are dynamic link libraries (DLLs) that implement the API of a
subsystem. A subsystem is a certain view of the capabilities exposed by the kernel.
Technically, starting from Windows 8.1, there is only a single subsystem - the Win-
dows Subsystem. The subsystem DLLs include well-known files, such as kernel32.dll,
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user32.dll, gdi32.dll, advapi32.dll, combase.dll and many others. These include mostly
the officially documented API of Windows. This book focuses on using the APIs
exposed by these DLLs.

• NTDLL.DLL

A system-wide DLL, implementing the Windows native API. This is the lowest layer
of code which is still in user mode. Its most important role is to make the transition to
kernel mode for system call invocation. NTDLL also implements the Heap Manager,
the Image Loader and some part of the user-mode thread pool. Although the native
API is mostly undocumented, we will use some of it in this book where the standard
documented Windows API is not available to achieve some goals.

• Service Processes

Service processes are normal Windows processes that communicate with the Service
Control Manager (SCM, implemented in services.exe) and allow some control over
their lifetime. The SCM can start, stop, pause, resume and send other messages to
services. Chapter 19 deals with services in more detail.

• Executive

The Executive is the upper layer of NtOskrnl.exe (the “kernel”). It hosts most of the
code that is in kernel mode. It includes mostly the various “managers”: Object Manager,
Memory Manager, I/O Manager, Plug & Play Manager, Power Manager, Configuration
Manager, etc. It’s by far larger than the lower Kernel layer.

• Kernel

The Kernel layer implements the most fundamental and time-sensitive parts of kernel
mode OS code. This includes thread scheduling, interrupt and exception dispatching
and implementation of various kernel primitives such as mutex and semaphore. Some
of the kernel code is written in CPU-specific machine language for efficiency and for
getting direct access to CPU-specific details.

• Device Drivers

Device drivers are loadable kernel modules. Their code executes in kernel mode and
so has the full power of the kernel. Classic device drivers provide the glue between
hardware devices and the rest of the OS. Other types of drivers provide filtering
capabilities. For more information on device drivers, see my book “Windows Kernel
Programming”.

• Win32k.sys

The kernel-mode component of the Windows subsystem. Essentially this is a kernel
module (driver) that handles the user interface part of Windows and the classic
Graphics Device Interface (GDI) APIs. This means that all windowing operations are
handled by this component. The rest of the system has little-to-none knowledge of UI.
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• Hardware Abstraction Layer (HAL)

The HAL is an abstraction layer over the hardware closest to the CPU. It allows device
drivers to use APIs that do not require detailed and specific knowledge of things like
an Interrupt Controller or a DMA controller. Naturally, this layer is mostly useful for
device drivers written to handle hardware devices.

• System Processes

System processes is an umbrella term used to describe processes that are typically “just
there”, doing their thing where normally these processes are not communicated with
directly. They are important nonetheless, and some in fact, critical to the system’s
well-being. Terminating some of them is fatal and causes a system crash. Some of the
system processes are native processes, meaning they use the native API only (the API
implemented by NTDLL). Example system processes include Smss.exe, Lsass.exe,
Winlogon.exe, Services.exe and others.

• Subsystem Process

The Windows subsystem process, running the image Csrss.exe, can be viewed as
a helper to the kernel for managing processes running under the Windows system.
It is a critical process, meaning if killed, the system would crash. There is normally
one Csrss.exe instance per session, so on a standard system two instances would
exist - one for session 0 and one for the logged-on user session (typically 1). Although
Csrss.exe is the “manager” of the Windows subsystem (the only one left these days),
its importance goes beyond just this role.

• Hyper-V Hypervisor

The Hyper-V hypervisor exists on Windows 10 and server 2016 (and later) systems
if they support Virtualization Based Security (VBS). VBS provides an extra layer of
security, where the actual machine is in fact a virtual machine controlled by Hyper-V.
VBS is beyond the scope of this book. For more information, check out the Windows
Internals book.

Windows Application Development

Windows offers an Application Programming Interface (API) for use by developers to access
aWindows’ system functionality. The classic API is known as theWindows API, and consists
mostly of a long list of C functions, providing functionality from base services dealing with
processes, threads and other low-level objects, to user interface, graphics, networking and
everything in between. This book focuses mostly on using this API to program Windows.
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Starting with Windows 8, Windows supports two somewhat distinct application types: the
classic desktop applications that were the only application type prior to Windows 8 and
Universal Windows Applications that can be uploaded to the Windows Store. From an
internals perspective, these two types of applications are the same. Both types use threads,
virtual memory, DLLs, handles, etc. Store applications primarily use theWindows Runtime
APIs (described later in this section) but can use a subset of the classic Windows API.
Conversely, desktop applications use the classic Windows API, but can also leverage a
subset of the Windows Runtime APIs. This book focuses on desktop applications because
the entire Windows API is available for them to use since this API contains the majority
of functionality useful for system programming.

Other API styles offered by Windows, especially starting from Windows Vista are based
on the Component Object Model (COM) technology - a component-oriented program-
ming paradigm released in 1993 and used today by many components and services in
Windows. Examples include DirectX, Windows Imaging Component (WIC), DirectShow,
Media Foundation, Background Intelligent Transfer Service (BITS), Windows Management
Instrumentation (WMI) and more. The most fundamentals concept in COM is the interface
- a contract consisting of a collection of functions under a single container. We’ll look at the
basics of COM in chapter 18.

Naturally, over the years, various wrappers for these two fundamental API styles have been
developed, some byMicrosoft, some by others. Here are some of the common ones developed
by Microsoft:

• Microsoft Foundation Classes (MFC) - C++ wrappers for (mostly) the user interface
(UI) functionality exposed by Windows - working with windows, controls, menus,
GDI, dialogs, etc.

• Active Template Library (ATL) - a C++ template-based library geared towards building
COM servers and clients. We will use ATL in chapter 18 to simplify writing COM-
related code.

• Windows Template Library* (WTL) - an extension to ATL, providing template-based
wrappers for Windows user interface functionality. It’s comparable to MFC in terms
of features, but is more lightweight and does not carry a (large) DLL with it (as MFC
does). We’ll use WTL in this book to simplify UI-related code, as UI is not the focus of
this book.

• .NET - a framework and a runtime (Common Language Runtime - CLR) that provide a
host of services, such as Just in Time (JIT) compilation of Intermediate Language (IL)
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to native code and garbage collection. .NET can be used by leveraging new languages
(C# being the most well-known) that provide lots of features, many of them abstracting
Windows functionality and increasing productivity. The .NET framework uses the
standard Windows APIs to accomplish its higher-level functionality. .NET is beyond
the scope of this book - see the book “CLR Via C#” by Jeffrey Richter for an excellent
coverage of .NET’s inner workings and functionality.

• Windows Runtime (WinRT) - this is the newest API layer added inWindows 8 and later
versions. Its primary goal is developing applications based on the Universal Windows
Platform (UWP). These applications can be packaged and uploaded to the Windows
Store and downloaded by anyone. The Windows Runtime is built around an enhanced
version of COM, so it too consists of interfaces as its primary (but not only) building
block. Although this platform is native (and not based on .NET), it can be used by
C++, C# (and other .NET languages) and even JavaScript - Microsoft provides language
projections to simplify accessing theWindows Runtime APIs. A subset of theWindows
Runtime APIs is available for (classic) desktop applications. We’ll take a look at the
basics of the Windows Runtime in chapter 19.

Most of the standard Windows API function definitions are available in the windows.h
header file. In some cases, additional headers will be needed, as well as additional import
libraries. The text will point out any such headers and/or libraries.

Your First Application

This section describes the basics of using Visual Studio to write a simple application, compile
and run it successfully. If you already know this, you can just skip this section.

First, you’ll need to install the proper tools to develop for Windows. Here is the short list of
software in order:

1. Visual Studio 2017 or 2019, any edition, including the free community edition (available
at https://visualstudio.microsoft.com/downloads/). Earlier versions of Visual Studio
work just fine, but it’s usually best to stick with the latest versions, as these include
compiler improvements as well as usability enhancements. In the installer’s main
window, make sure at least the Desktop Development with C++ workload is selected,
as shown in figure 1-5.

https://visualstudio.microsoft.com/downloads/
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Figure 1-5: Visual Studio installer main window

2. TheWindows Software Development Kit (SDK) is an optional installation that provides
(possibly) updated headers and libraries, as well as various tools.

Once Visual Studio 2017/2019 is installed, run it and select to create a new project.

• In Visual Studio 2017, select File / New Project… from the menu and locate The C++
/ Desktop node, and select the Windows Console Application project template, as
shown in figure 1-6.

• In Visual Studio 2019, selectCreate New Project from the startupwindow and filter with
console and C++ in the project type and language, respectively, and select Console
App (make sure the language listed is C++). This is shown in figure 1-7.
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Figure 1-6: New project dialog in Visual Studio 2017
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Figure 1-7: New project dialog in Visual Studio 2019

Name the projectHelloWin, and change the destination folder if you wish, and clickOK. The
project should be created with a HelloWin.cpp file open in the editor with a minimal main
function.

Add an #include at the top of the file for windows.h:

#include <windows.h>

If your project has a precompiled header (an #include "pch.h" is at the top of every
C/C++ source file,

add the windows.h #include to this file, so that after the first compilation, subsequent
compilations will be faster.
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You can also include it in a C/C++ file if you prefer, but the include must follow the pch.h
include.

Add another #include for stdio.h to gain access to the printf function:

#include <stdio.h>

In this first application, we’ll get some system information by calling the GetNativeSys-
temInfo function.
Here is the main function code:

int main() {

SYSTEM_INFO si;

::GetNativeSystemInfo(&si);

printf("Number of Logical Processors: %d\n", si.dwNumberOfProcessors);

printf("Page size: %d Bytes\n", si.dwPageSize);

printf("Processor Mask: 0x%p\n", (PVOID)si.dwActiveProcessorMask);

printf("Minimum process address: 0x%p\n", si.lpMinimumApplicationAddress);

printf("Maximum process address: 0x%p\n", si.lpMaximumApplicationAddress);

return 0;

}

From the Build menu, select Build Solution to compile and link the project (technically all
projects in the solution). Everything should compile and link without errors. Hit Ctrl+F5
to launch the executable without attaching to the debugger. (Or use the Debug menu and
select Run Without Debugging. A console window should open showing output similar to
the following:

Number of Logical Processors: 12

Page size: 4096 Bytes

Processor Mask: 0x00000FFF

Minimum process address: 0x00010000

Maximum process address: 0x7FFEFFFF

If you run the application by pressing F5 (Debug menu, Start Debugging), the
console window will appear and very quickly disappear when the application
exits. Using Ctrl+F5 adds a convenient “Press any key to continue” prompt which
lets you view the console output before dismissing the window.
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Visual Studio typically creates two solution platforms (x86 and x64), which can be switched
easily with the Solution Platforms combobox located in the main toolbar. By default, x86 is
selectedwhichwould produce the output above. If you switch the platform tox64 and rebuild
(assuming you’re running an Intel/AMD 64 bit version of Windows of course), you’ll get a
slightly different output:

Number of Logical Processors: 12

Page size: 4096 Bytes

Processor Mask: 0x0000000000000FFF

Minimum process address: 0x0000000000010000

Maximum process address: 0x00007FFFFFFEFFFF

The differences stem from the fact that 64-bit processes use pointers which are 8 bytes in
size, while 32-bit processes use 4 bytes pointers. The address space address information from
the SYSTEM_INFO structure is typed as pointers, so their sizes vary by process “bitness”.
We’ll discuss 32-bit and 64-bit development in more detail in the section “32-bit vs. 64-bit
Development” later in this chapter.

Don’t worry about the meaning of the information presented by this small application
(although some of it is self-explanatory). We’ll look at these terms in later chapters.

The use of the double colon before the function name in the above code
::GetNativeSystemInfo is to emphasize the fact the function is part of the
Windows API and not some member function of the current C++ class. In this
example it’s obvious as there is no C++ class around, but this convention will
be used throughout the book regardless (it also slightly speeds up the compiler
function lookup). More coding conventions are described later in this chapter in
the section, “Coding Conventions”.

Working with Strings

In classic C, strings are not real types, but are just pointers to characters that end with a
zero. The Windows API uses strings this way in many cases, but not all cases. The question
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of encoding comes up when dealing with strings. In this section, we’ll take a look at strings
in general and how they are used in the Windows APIs.

In classic C, there was only a single type representing a character - char. The characters
represented by char are 8 bit in size at most, where the first 7-bit values utilize the ASCII
encoding. Today’s systems must support multiple character sets from many languages, and
these cannot fit into 8 bits. Thus, new encodings were created under the umbrella term
Unicode, officially available online at http://www.unicode.org.

The Unicode Consortium defines several other character encodings. Here are the common
ones:

• UTF-8 - the prevalent encoding used for web pages. This encoding uses one byte for
Latin characters that are part of the ASCII set, and more bytes per character for other
languages, such as Chinese, Hebrew, Arabic, andmany others. This encoding is popular
because if the text is mostly English, it’s compact in size. In general, UTF-8 uses from
one to four bytes for each character.

• UTF-16 - uses two bytes per character in most cases and encompasses all languages in
just two bytes. Some more esoteric characters from Chinese and Japanese may require
four bytes, but these are rare.

• UTF-32 - uses four bytes per character. The easiest to work with, but potentially the
most wasteful.

UTF stands for Unicode Transformation Format.

UTF-8 may be the best when size matters, but from a programming standpoint, it’s
problematic because random access cannot be used. For example, to get to the 100th character
in a UTF-8 string, the code needs to scan from the start of the string and work its way
sequentially because there is no way to knowwhere the 100th character may be. On the other
hand, UTF-16 is much more convenient to work with programmatically (if we disregard the
esoteric cases) because accessing the 100th character means adding 200 bytes to the string’s
start address.
UTF-32 is too wasteful and is rarely used.

Fortunately, Windows uses UTF-16 within its kernel, where each character is exactly 2 bytes.
The Windows API follows suit and uses UTF-16 encoding as well, which is great as strings
don’t need to be converted when API calls eventually land in the kernel. However, there is
a slight complication with the Windows API.

http://www.unicode.org
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Parts of the Windows API were migrated from 16-bit Windows and Consumer Windows
(Windows 95/98). These systems used ASCII as their primary way of working, which means
the Windows API used ASCII strings rather than UTF-16. A further complication arises
when double-byte encoding was introduced, where each character was one or two bytes in
size, losing the advantage of random access.

The net result of all this is that the Windows API contains UTF-16 and ASCII functions for
compatibility reasons. Since today the aforementioned systems do not exist, it’s best to leave
the one byte per character strings alone and use the UTF-16 functions only. Using the ASCII
functions will cause the string to be converted to UTF-16 and then used with the UTF-16
function.

UTF-16 is also beneficial when interoperating with the .NET Framework, because .NET’s
string type stored UTF-16 characters only. This means passing a UTF-16 string to .NET
does not require any conversion or copying.

Here is an example for the function CreateMutex, which if searched on the web will lead to
one of two functions: CreateMutexA and CreateMutexW. The offline documentation gives
this prototype:

HANDLE CreateMutex(

_In_opt_ LPSECURITY_ATTRIBUTES lpMutexAttributes,

_In_ BOOL bInitialOwner,

_In_opt_ LPCTSTR lpName);

The _In_opt_ and other similar annotations are called Syntax Annotation Language (SAL)
and are used to convey metadata information to function and structure definitions. This
may be useful for humans as well as static analysis tools. The C++ compiler currently
ignores these annotations, but the static analyzer available in Visual Studio Enterprise
editions uses it to detect potential errors before actually running the program.

For now let’s concentrate on the last parameter which is a string pointer typed as LPCTSTR.
Let’s break it down:



Chapter 1: Foundations 21

L=Long P=Pointer C=Constant STR=String. The only mystery is the T in between. LPCTSTR
is in fact a typedef with one of the following definitions:

typedef LPCSTR LPCTSTR; // const char* (UNICODE not defined)

typedef LPCWSTR LPCTSTR; // const wchar_t* (UNICODE defined)

The term “long pointer” means nothing today. All pointers are the same size in a particular
process (4 bytes in 32-bit processes and 8 bytes in 64-bit processes). The terms “long” and
“short” (or “near”) are remnants from 16-bit Windows where such terms actually had
different meanings. Also, the types LPCTSTR and similar have another equivalent - without
the L - PCTSTR, PCWSTR, etc. These are generally preferred in source code.

The definition of the UNICODE compilation constant makes LPCTSTR expand to a UTF-
16 string, and its absence to an ASCII string. This also means CreateMutex cannot be
a function, because the C language does not allow function overloading, where a single
function name may have multiple prototypes. CreateMutex is a macro, expanding to
CreateMutexW (UNICODE defined) or CreateMutexA (UNICODE not defined). Visual Studio
defines the UNICODE constant by default in all new projects, which is a good thing.We always
want to use the UTF-16 functions to prevent the conversion from ANSI to UTF-16 (and of
course for strings that contain non-ASCII characters, such a conversion is bound to be lossy).

W in CreateMutexW stands for Wide and A in CreateMutexA stands for ANSI or
ASCII.

If the code needs to use a constant UTF-16 string, prefix the string with L to instruct the
compiler to convert the string to UTF-16. Here are two versions of a string, one ASCII and
the other UTF-16:

const char name1[] = "Hello"; // 6 bytes (including NULL terminator)

const wchar_t name2[] = L"Hello"; // 12 bytes (including UTF-16 NULL terminat\

or)
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From this point on, we’ll use the term “Unicode” to refer to UTF-16, unless otherwise
explicitly stated.

Using the macros begs the question of how can we compile code that uses constant strings
without explicitly choosing ASCII vs. Unicode? The answer lies with another macro, TEXT.
Here is an example for CreateMutex:

HANDLE hMutex = ::CreateMutex(nullptr, FALSE, TEXT("MyMutex"));

The TEXTmacro expands to the constant string with or without the “L” prefix depending on
whether the UNICODEmacro is defined or not. Since the ASCII functions are more expensive
since they convert their values to Unicode before calling the wide functions, we should never
use the ASCII functions. This means we can simply use the “L” prefix without the TEXT
macro. We’ll adopt this convention throughout the book.

There is a shorter version of the TEXT macro called _T defined in <tchar.h>. They are
equivalent. Using these macros is still a fairly common practice, which is not bad in itself.
However, I tend not to use it.

Similar to LPCTSTR there are other typedefs to allow using ASCII or Unicode, based on the
UNICODE compilation constant. Table 1-1 shows some of these typedefs.

Table 1-1: Types used with strings

Common type(s) ASCII type(s) Unicode type(s)
TCHAR char, CHAR wchar_t, WCHAR
LPTSTR, PTSTR char*, CHAR*, PSTR wchar_t*, WCHAR*, PWSTR
LPCTSTR, PCTSTR const char*, PCSTR const wchar_t*, PCWSTR

Strings in the C/C++ Runtime

The C/C++ runtime has two sets of functions for manipulating strings. The classic (ASCII)
ones begin with “str” such as strlen, strcpy, strcat, etc., but also Unicode versions
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starting with “wcs”, such as wcslen, wcscpy, wcscat etc.
In the same vein as theWindows API, there is a set of macros that expand to either the ASCII
or the Unicode version depending on another compilation constant, _UNICODE (notice the
underscore). The prefix for these functions is “_tcs”. So we have functions named _tcslen,
_tcscpy, _tcscat, etc., all working with the TCHAR type.

Visual Studio defines the _UNICODE constant by default so we get the Unicode functions if
using the “_tcs” functions. It would very weird if only one of the “UNICODE” constants
would be defined, so avoid that.

String Output Parameters

Passing strings to functions as input as was done in the CreateMutex case is very common.
Another common need is receiving results in the form of strings. The Windows API uses a
few ways to pass back strings results.

The first (and the more common) case is where the client code allocates a buffer to hold the
result string and provides the API with the size of the buffer (the maximum size the string
can hold), and the API writes the string to the buffer up to the size specified. Some APIs also
return the actual number of characters written and/or the number of characters required if
the buffer is too small.

Consider the GetSystemDirectory function defined like so:

UINT GetSystemDirectory(

_Out_ LPTSTR lpBuffer,

_In_ UINT uSize);

The function accepts a string buffer and its size and returns the number of characters written
back. Notice all sizes are in characters, rather than bytes, which is convenient. The function
returns zero in case of failure. Here is an example usage (error handling omitted for now):

WCHAR path[MAX_PATH];

::GetSystemDirectory(path, MAX_PATH);

printf("System directory: %ws\n", path);

Don’t let the pointer type confuse you - the declaration of GetSystemDirectory
does notmean you provide a pointer only. Instead, you must allocate a buffer and
pass a pointer to this buffer.
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MAX_PATH is defined in the Windows headers as 260, which is the standard maximum path
in Windows (this limit can be extended starting with Windows 10, as we’ll see in chapter
11). Notice that printf uses %ws as the string format to indicate it’s a Unicode string, since
UNICODE is defined by default and so all strings are Unicode.

The second common case is where the client code provides a string pointer only (via its
address) and the API itself allocates the memory and places the resulting pointer in the
provided variable. This means the client code is tasked with freeing the memory once the
resulting string is no longer needed. The trick is to use the correct function to free the
memory. The API’s documentation indicates which function to use. Here is an example
for this usage with the FormatMessage function defined like so (its Unicode variant):

DWORD FormatMessageW(

_In_ DWORD dwFlags,

_In_opt_ LPCVOID lpSource,

_In_ DWORD dwMessageId,

_In_ DWORD dwLanguageId,

_When_((dwFlags & FORMAT_MESSAGE_ALLOCATE_BUFFER) != 0, _At_((LPWSTR*)lpBuf\

fer, _Outptr_result_z_))

_When_((dwFlags & FORMAT_MESSAGE_ALLOCATE_BUFFER) == 0, _Out_writes_z_(nSiz\

e))

LPWSTR lpBuffer,

_In_ DWORD nSize,

_In_opt_ va_list *Arguments);

Looks scary, right? I purposefully included the full SAL annotations for this function as
the lpBuffer parameter is tricky. FormatMessage returns a string representation of an
error number (we’ll discuss errors in more detail in the section “API Errors” later in this
chapter). The function is flexible in the sense that it can allocate the string itself or have
the client provide a buffer to hold the resulting string. The actual behavior depends on the
first dwFlags parameter: if it includes the FORMAT_MESSAGE_ALLOCATE_BUFFER flag, the
function will allocate the buffer of the correct size. If the flag is absent, it’s up to the caller
to provide storage for the returned string.

All this makes the function a bit tricky, at least because if the former option is selected, the
pointer type should be LPWSTR* - that is, a pointer to a pointer to be filled in by the function.
This requires a nasty cast to make the compiler happy.

Here is a simple main function that accepts an error number from the command line
arguments and shows its string representation (if any). It uses the option of letting the
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function make the allocation. The reason is that there is no way to know what length the
string should be, so it’s best to let the function allocate the correct size.

int main(int argc, const char* argv[]) {

if (argc < 2) {

printf("Usage: ShowError <number>\n");

return 0;

}

int message = atoi(argv[1]);

LPWSTR text;

DWORD chars = ::FormatMessage(

FORMAT_MESSAGE_ALLOCATE_BUFFER | // function allocates

FORMAT_MESSAGE_FROM_SYSTEM |

FORMAT_MESSAGE_IGNORE_INSERTS,

nullptr, message, 0,

(LPWSTR)&text, // ugly cast

0, nullptr);

if (chars > 0) {

printf("Message %d: %ws\n", message, text);

::LocalFree(text);

}

else {

printf("No such error exists\n");

}

return 0;

The complete project is called ShowError in the Github repository for the book

Notice the call to the LocalFree function to free the string if the call is successful. The
documentation for FormatMessage states that this is the function to call to free the buffer.

Here is an example run:
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C:\Dev\Win10SysProg\x64\Debug>ShowError.exe 2

Message 2: The system cannot find the file specified.

C:\Dev\Win10SysProg\x64\Debug>ShowError.exe 5

Message 5: Access is denied.

C:\Dev\Win10SysProg\x64\Debug>ShowError.exe 129

Message 129: The %1 application cannot be run in Win32 mode.

C:\Dev\Win10SysProg\x64\Debug>ShowError.exe 1999

No such error exists

Safe String Functions

Some of the classic C/C++ runtime string functions (and some similar functions in the
Windows API) are not considered “safe” from a security and reliability standpoint. For
example, the strcpy function is problematic because it copies the source string to the target
pointer until a NULL terminator is reached. This could overflow the target buffer and cause a
crash in the good case (the buffer could be on the stack for example, and corrupt the return
address stored there), and be used as a buffer overflow attack where an alternate return
address is stored on the stack, jumping to a prepared shellcode.

To mitigate these potential vulnerabilities, a set of “safe” string functions were added to
the C/C++ runtime library by Microsoft, where an extra parameter is used to specify the
maximum size of a target buffer, so it will never overflow. These functions have a “_s”
suffix, such as strcpy_s, wcscat_s, etc.

Here are some examples using these functions:

void wmain(int argc, const wchar_t* argv[]) {

// assume arc >= 2 for this demo

WCHAR buffer[32];

wcscpy_s(buffer, argv[1]); // C++ version aware of static buffers

WCHAR* buffer2 = (WCHAR*)malloc(32 * sizeof(WCHAR));

//wcscpy_s(buffer2, argv[1]); // does not compile

wcscpy_s(buffer2, 32, argv[1]); // size in characters (not bytes)
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free(buffer2);

}

The maximum size is always specified in characters and not bytes. Also note that these
functions are able to calculate themaximum size automatically if the target buffer is statically
allocated, which is convenient.

Another set of safe string functions was also added to the Windows API, at least for the
purpose of reducing dependency on the C/C++ runtime. These functions are declared (and
implemented) in the header <strsafe.h>. They are built according to the Windows API
conventions, where the functions are actually macros expanding to functions with “A” or
“W” suffix. Here are some simple examples of usage (using the same declarations as above):

StringCchCopy(buffer, _countof(buffer), argv[1]);

StringCchCat(buffer, _countof(buffer), L"cat");

StringCchCopy(buffer2, 32, argv[1]);

StringCchCat(buffer2, 32, L"cat");

“Cch” stands for Count of Characters.

Notice these functions don’t have a C++ variant that knows how to handle statically allocated
buffers. The solution is to use the _countof macro that returns the number of elements in
an array. Its definition is something like sizeof(a)/sizeof(a[0]) given an array a.

Which set of functions should you use? It’s mostly a matter of taste. The important point is
to avoid the classic, non-safe functions. If you do try to use them, you’ll get a compiler error
like this:

error C4996: 'wcscpy': This function or variable may be unsafe. Consider using \

wcscpy_s instead. To disable deprecation, use _CRT_SECURE_NO_WARNINGS. See onli\

ne help for details.

Clearly, this error can be disabled by defining _CRT_SECURE_NO_WARNINGS before including
the C/C++ headers, but it would be a bad idea. This macro exists to help maintain
compatibility with old source code that probably should not be touched when compiled
with recent compilers.
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32-bit vs. 64-bit Development

Starting with Windows Vista, Windows has official 32 bit and 64 bit versions (there was a
non-commercial 64-bit version of Windows XP as well). Starting with Windows Server 2008
R2, all server versions are 64-bit only. Microsoft removed the 32-bit server versions since
servers typically need lots of RAM and large process address space, making 32-bit systems
too limited for server work.

The programming model of 32 bit and 64 bit is identical from an API perspective. You should
be able to compile to 32 or 64 bit just by selecting the required configuration in Visual Studio
and hit Build. However, if the code should build successfully for both 32-bit and 64-bit targets,
coding must be done carefully to use types correctly. In 64-bit, pointers are 8 bytes in size,
whereas in 32-bit they are just 4 bytes. This change can lead to errors if a pointer’s size is
assumed to be of a certain value. For example, consider this cast operation:

void* p = ...;

int value = (int)p;

// do something with value

This code is buggy, since in 64-bit the pointer value is truncated to 4 bytes to fit into int
(int is still 4 bytes in a 64-bit compilation as well). If such a cast is truly needed, an alternate
type should be used instead - INT_PTR:

void* p = ...;

INT_PTR value = (INT_PTR)p;

// do something with value

INT_PTR means: “int the size of a pointer”. The Windows headers define several types like
this one for this exact reason. Other types maintain their size regardless of the compilation
“bitness”. Table 1-2 shows some examples of common types and their sizes.
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Table 1-2: Common Windows types

type name size (32 bit) size (64 bit) Description
ULONG_PTR 4 bytes 8 bytes unsigned integer the size of a

pointer
PVOID, void* 4 bytes 8 bytes void pointer
any pointer 4 bytes 8 bytes
BYTE, uint8_t 1 bytes 1 bytes unsigned 8 bit integer
WORD, uint16_t 2 bytes 2 bytes unsigned 16 bit integer
DWORD, ULONG, uint32_t 4 bytes 4 bytes unsigned 32 bit integer
LONGLONG, __int64, int64_t 8 bytes 8 bytes signed 64 bit integer
SIZE_T, size_t 4 bytes 8 bytes unsigned integer sized as native

integer

The differences between 32 bit and 64 bit go beyond type sizes. The address space of a 64-bit
process is 128 TB (Windows 8.1 and later) compared to a mere 2 GB for 32-bit processes. On
x64 systems (Intel/AMD), 32-bit processes can execute just fine thanks to a translation layer
called WOW64 (Windows on Windows 64). We’ll take a deeper look at this layer in chapter
12. This has several implications which are discussed in that chapter as well.

All sample applications in the book should build and run successfully on x86 and x64 equally
well, unless stated otherwise explicitly. It’s always best to build for both x86 and x64 during
development and fix any issues that may arise.

In this book we won’t cover ARM and ARM64 explicitly. All programs should build and
run just fine on such systems (32 bit on ARM, 64 bit on ARM64), but I didn’t have access
to such systems, and so could not verify this in person.

Lastly, if code should be compiled in 64 bit only (or 32 bit only), the macro _WIN64 is defined
for 64-bit compilations. For example, we could replace the following line from HelloWin:

printf("Processor Mask: 0x%p\n", (PVOID)si.dwActiveProcessorMask);

with
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#ifdef _WIN64

printf("Processor Mask: 0x%016llX\n", si.dwActiveProcessorMask);

#else

printf("Processor Mask: 0x%08X\n", si.dwActiveProcessorMask);

#endif

This would be somewhat clearer rather than using the %p format string which automatically
expects 4 bytes in 32-bit processes and 8 bytes in 64-bit processes. This forced a cast to PVOID
because dwActiveProcessorMask is of type DWORD_PTR and would generate a warning
when used with %p.

A better option here is to specify %zu or %zX, which is used to format size_t
values, equivalent to DWORD_PTR.

Coding Conventions

Having any coding conventions is good for consistency and clarity, but the actual conven-
tions vary, of course. The following coding conventions are used in this book.

• Windows API functions are used with a double colon prefix. Example: ::CreateFile.
• Type names use Pascal casing (first letter is capital, and every word starts with a capital
letter as well. Examples: Book, SolidBrush. The exception is UI related classes that
start with a capital ‘C’; this is for consistency with WTL.

• Private member variables in C++ classes start with an underscore and use camel casing
(first letter is small and subsequent words start with capital letter). Examples: _size,
_isRunning. The exception is for WTL classes where private member variable names
start with m_. This is for consistency with ATL/WTL style.

• Variable names do not use the old Hungarian notation. However, there may be some
occasional exceptions, such as an h prefix for a handle and a p prefix for a pointer.

• Function names follow the Windows API convention to use Pascal casing.
• When common data types are needed such as vectors, the C++ standard library is used
unless there is good reason to use something else.

• We’ll be using the Windows Implementation Library (WIL) from Microsoft, released
in a Nuget package. This library contains helpful types for easier working with the
Windows API. A brief introduction to WIL is in the next chapter.
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• Some samples have a user interface. The book uses the Windows Template Library
(WTL) to simplify UI-related code. You can certainly use some other library for UI
such as MFC, Qt, straight Windows API, or even .NET libraries such as WinForms or
WPF (assuming you know how to call native functions from .NET). UI is not the focus
of this book. If you need more details on native Windows UI development, consult the
classic “Programming Windows”, 6th edition, by Charles Petzold.

Hungarian notation uses prefixes to make variable names hint at their type. Examples:
szName, dwValue. This convention is now considered obsolete, although parameter names
and structure members in the Windows API use it a lot.

There are some more coding conventions used later in this book, which will be described
when these become relevant.

C++ Usage

The code samples in this book make some use of C++. We won’t be using any “complex” C++
features, but mostly features that enhance productivity, help with error avoidance. Here are
the main C++ features we’ll use:

• The nullptr keyword, representing a true NULL pointer.
• The auto keyword that allows type inference when declaring and initializing variables.
This is useful to reduce clutter, save some typing, and focus on the important parts of
the code.

• The new and delete operators.
• Scoped enums (enum class).
• Classes with member variables and functions.
• Templates, where they make sense.
• Constructors and destructors, especially for building RAII (Resource Acquisition Is
Initialization) types. RAII will be discussed in greater detail in the next chapter.

Handling API Errors

Windows API function may fail for a variety of reasons. Unfortunately, the way a function
indicates success or failure is not consistent across all functions. That said, there are very
few cases, briefly described in table 1-3.
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function return
type

Success is … Failure is … How to get the
error number

BOOL not FALSE (0) FALSE (0) call
GetLastError

HANDLE not NULL (0) and
not INVALID_-
HANDLE_VALUE

(-1)

0 or -1 call
GetLastError

void cannot fail
(usually)

None Not needed, but
in rare cases
throws an SEH
exception

LSTATUS or LONG ERROR_SUCCESS

(0)
greater than zero return value is

the error itself
HRESULT greater or equal

to zero, usually
S_OK (0)

negative number return value is
the error itself

other depends depends look up function
documentation

The most common case is returning a BOOL type. The BOOL type is not the same as the
C++ bool type; BOOL is in fact a 32-bit signed integer. A non-zero return value indicates
success, while a returned zero (FALSE) means the function has failed. It’s important not to test
against the TRUE (1) value explicitly, since a success can sometimes return a value different
from one. If the function fails, the actual error code is available by calling GetLastError,
responsible for storing the last error from an API function occurring on the current thread.
Put another way, each thread has its own last error value, which makes sense in a multi-
threaded environment like Windows - multiple threads may call API functions at the same
time.

Here is an example of handling such an error:

BOOL success = ::CallSomeAPIThatReturnsBOOL();

if(!success) {

// error - handle it (just print it in this example)

printf("Error: %d\n", ::GetLastError());

}

The second item from table 1-3 is for functions returning void. There are actually very
few such functions, and most cannot fail. Unfortunately, there are very few such functions
that can actually fail in extreme circumstances (“extreme” usually means very low memory
resources) with a Structured Exception Handling (SEH) exception. We’ll discuss SEH in
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chapter 20. You probably don’t need to worry too much about such functions, because if
one of these does fail, it means the entire process and possibly the system is in big trouble
anyway.

Next, there are functions returning LSTATUS or LONG, both of which are just signed 32-bit
integers. The most common APIs using these scheme are the registry functions we’ll meet in
chapter 17. These functions return ERROR_SUCCESS (0) if successful. Otherwise, the returned
value is the error itself (calling GetLastError is not needed).

Next on the list from table 1-3 is the HRESULT type, which is yet again a signed 32-bit
integer. This return type is common for Component Object Model (COM) functions (COM
is discussed in chapter 18). Zero or a positive value indicates success, while a negative value
indicates an error, identified by the returned value. In most cases, checking for success or
failure is done with the SUCCEEDED or FAILED macros, respectfully, returning just true or
false. In rare cases the code would need to look at the actual value.

The Windows headers contain a macro to convert a Win32 error (GetLastError) to an
appropriate HRESULT: HRESULT_FROM_WIN32, which is useful if a COM method needs to
return an error based on a failed BOOL-returning API.
Here is an example for handling an HRESULT based error:

IGlobalInterfaceTable* pGit;

HRESULT hr = ::CoCreateInstance(CLSID_StdGlobalInterfaceTable, nullptr, CLSCTX_\

ALL,

IID_IGlobalInterfaceTable, (void**)&pGit);

if(FAILED(hr)) {

printf("Error: %08X\n", hr);

}

else {

// do work

pGit->Release(); // release interface pointer

}

Don’t worry about the details of the above code. Chapter 21 is dedicated to COM.

The last entry in table 1-3 is for “other” functions. For example, the FormatMessage function
we met a few sections ago returns a DWORD indicating the number of characters copied to the
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provided buffer, or zero if the function fails. There are no hard and fast rules for these kinds
of functions - the documentation is the best guide. Luckily, there are not that many of them.

Defining Custom Error Codes

The error code mechanism exposed by GetLastError can be used by applications as well
to set error codes in a similar vein. This is accomplished by calling SetLastError with the
error to set on the current thread. A function can use one of the many predefined error codes,
or it can define its own error codes. To prevent any collision with system-defined codes, the
application should set bit 29 in the defined error code.

Here is an example of a function that uses this technique:

#define MY_ERROR_1 ((1 << 29) | 1)

#define MY_ERROR_2 ((1 << 29) | 2)

BOOL SomeApi1(int32_t, int32_t*);

BOOL SomeApi2(int32_t, int32_t*);

bool DoWork(int32_t value, int32_t* result) {

int32_t result1;

BOOL ok = ::SomeApi1(value, &result1);

if (!ok) {

::SetLastError(MY_ERROR_1);

return false;

}

int32_t result2;

ok = ::SomeApi2(value, &result2);

if (!ok) {

::SetLastError(MY_ERROR_2);

return false;

}

*result = result1 + result2;

return true;

}

Note that in my functions, I’m free to use the C++ bool type which can be true or false,
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rather being a 32-bit integer (BOOL). The custom-defined error codes have bit 29 set, making
sure they don’t clash with a system defined error code.

The Windows Version

In some cases it’s desirable to query the system for the Windows OS version on which the
current application is executing. The official version numbers of Windows releases is shown
in table 1-4.

Table 1-4: Windows version numbers

Windows release name Official version number
Windows NT 3.1 3.1
Windows NT 3.5 3.5
Windows NT 4.0 4
Windows 2000 5.0
Windows XP 5.1
Windows Server 2003 5.2
Windows Vista / Server 2008 6.0
Windows 7 / Server 2008 R2 6.1
Windows 8 / Server 2012 6.2
Windows 8.1 / Server 2012 R2 6.3
Windows 10 / Server 2016 10.0

You may be wondering why the version numbers have these values - we’ll get to that in a
moment. The classic function to get this information is GetVersionEx, declared like so:

typedef struct _OSVERSIONINFO {

DWORD dwOSVersionInfoSize;

DWORD dwMajorVersion;

DWORD dwMinorVersion;

DWORD dwBuildNumber;

DWORD dwPlatformId;

TCHAR szCSDVersion[ 128 ]; // Maintenance string for PSS usage

} OSVERSIONINFO, *POSVERSIONINFO, *LPOSVERSIONINFO;

BOOL GetVersionEx(

_Inout_ POSVERSIONINFO pVersionInformation);
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Using it is fairly straightforward:

OSVERSIONINFO vi = { sizeof(vi) };

::GetVersionEx(&vi);

printf("Version: %d.%d.%d\n",

vi.dwMajorVersion, vi.dwMinorVersion, vi.dwBuildNumber);

However, compiling it with recent SDKs causes a compilation error: “error C4996: ‘GetVer-
sionExW’: was declared deprecated”.
The reason will become clear shortly. It’s possible to remove this deprecation by adding the
following definition before including <windows.h>:

#define BUILD_WINDOWS

#include <Windows.h>

Running the above code snippet on Windows up to 8 (inclusive) gives back the correct
Windows version. However, running it on Windows 8.1 or 10 (and their server equivalents),
will always display the following output:

Version: 6.2.9200

This is the Windows version for Windows 8. Why? This was a defensive mechanism devised
by Microsoft after some issues applications had on Windows Vista. Since Vista came out on
January 2006, almost five years after Windows XP, many applications were built in the XP
days, and some went to the trouble of checking the minimum Windows version to be XP
using the following code:

OSVERSIONINFO vi = { sizeof(vi) };

::GetVersionEx(&vi);

if(vi.dwMajorVersion >= 5 && vi.dwMinorVersion >= 1) {

// XP or later: good to go?

}

This code is buggy, because it doesn’t foresee the possibility of having a major number of 6
or higher with a minor version of zero. So, for Vista, the above condition failed and would
notify the user “Please use XP or later”. The correct check would have been this:
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if(vi.dwMajorVersion > 5 || (vi.dwMajorVersion == 5 && vi.dwMinorVersion >= 1) {

// XP or later: good to go!

}

Unfortunately, too many applications had that bug, and so Microsoft decided for Windows
7 not to increase the major version number but only increment the minor number to 1;
this solved the bug. What about Windows 8? Microsoft was still afraid of the above bug
and so incremented the minor number only, giving 6.2. The reasoning for Windows 8.1 was
similar (6.3). But what about Windows 10? Should the version be 6.4? This seems like a total
defeat - how long can Microsoft continue leaving the major version as 6? Well, Windows
10 has version number 10.0. Does that mean all is well? Not really. As we saw, the call to
GetVersionEx returns the Windows 8 numbers even on Windows 10. What gives?

A new feature has been introduced (called Switchback) that returned the Windows version
as no higher than 8 (6.2) to prevent compatibility issues, unless the application in question
has declared its knowledge of a higher-version Windows in existence. This is accomplished
using a manifest file - an optional XML file with configuration information - that can be
used to indicate a specific Windows version awareness, from Vista to 10.

This is not just for manipulating the returned version number, but also for some behavioral
changes of some APIs for compatibility. This is accomplished using Shims, which changes
API behavior depending on the selected OS version.

In Visual Studio, a manifest can be added by following these steps:

• Add an XML file to the project with a name like manifest.xml. This will hold the
manifest file’s contents.

• Fill in the manifest (shown after this list).
• Open Project/Properties and navigate to the Manifest Tool node, Input and Output. In
Additional Manifest Files, type the name of the manifest file (figure 1-8).

• Build the project normally.
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Figure 1-8: Setting manifest file

Notice the setting EmbedManifest = Yes in figure 1-8. This embeds the manifest as a resource
in the executable rather than leaving it as a loose file in the same directory as the executable
and always named {exename}.exe.manifest.

The manifest can have several elements, but we focus on just one in this chapter (we’ll
examine others in due course). Here it is:

<?xml version="1.0" encoding="utf-8"?>

<assembly manifestVersion="1.0" xmlns="urn:schemas-microsoft-com:asm.v1">

<compatibility xmlns="urn:schemas-microsoft-com:compatibility.v1">

<application>

<!-- Windows Vista -->

<!--<supportedOS Id="{e2011457-1546-43c5-a5fe-008deee3d3f0}" />-->

<!-- Windows 7 -->

<!--<supportedOS Id="{35138b9a-5d96-4fbd-8e2d-a2440225f93a}" />-->
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<!-- Windows 8 -->

<!--<supportedOS Id="{4a2f28e3-53b9-4441-ba9c-d69d4a4a6e38}" />-->

<!-- Windows 8.1 -->

<!--<supportedOS Id="{1f676c76-80e1-4239-95bb-83d0f6d0da78}" />-->

<!-- Windows 10 -->

<!--<supportedOS Id="{8e0f7a12-bfb3-4fe8-b9a5-48fd50a15a9a}" />-->

</application>

</compatibility>

</assembly>

The easiest way to get a nice manifest file to tweak is (ironically perhaps) create
a simple console C# application, then add to the project an Application Manifest
File item, which will generate the above XML, among other elements.

The GUIDs for the various OS versions have been created when those versions were released.
This means there is no way an application developed in the Windows 7 days could get a
version of Windows 10, for example.
If you uncomment the Windows 8.1 version for instance and re-run the application, the
output would be:

Version: 6.3.9600

If you uncomment the Windows 10 GUID (whether the Windows 8.1 GUID is commented
out or not is unimportant), you’ll get the real Windows 10 version (if running on a Windows
10 machine, of course):

Version: 10.0.18362

Getting the Windows Version

Given that GetVersionEx is deprecated (at least for the reasons discussed in the previous
section), what is the proper way to get the Windows version? A new set of APIs is available
that can give back the result, but not in a simple numerical sense, but by returning true/false
forWindows version questions. These are available in the <versionhelpers.h> header file.
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Here are some of the functions included: IsWindowsXPOrGreater,
IsWindowsXPSP3OrGreater, IsWindows7OrGreater, IsWindows8Point1OrGreater,
IsWindows10OrGreater,
IsWindowsServer. Their usage is straightforward - they accept nothing and return TRUE or
FALSE. Their implementation uses another version-related function, VerifyVersionInfo:

BOOL VerifyVersionInfo(

_Inout_ POSVERSIONINFOEX pVersionInformation,

_In_ DWORD dwTypeMask,

_In_ DWORDLONG dwlConditionMask);

This function knows how to compare version numbers based on the specified criteria
(dwConditionMask), such as the major or minor version numbers. You can find the
implementation of all the Boolean functions inside versionhelper.h.

There is an undocumented (but reliable) way to get the version numbers regardless of the
manifest file without calling GetVersionEx. It’s based on a data structure called KUSER_-
SHARED_DATA that is mapped to every process to the same virtual address (0x7FFE0000).
Its declaration is listed in this Microsoft link: https://docs.microsoft.com/en-us/windows-
hardware/drivers/ddi/content/ntddk/ns-ntddk-kuser_shared_data. The Windows version
numbers are part of this shared structure in the same offsets. Here is an alternative to
showing the Windows version numbers:

auto sharedUserData = (BYTE*)0x7FFE0000;

printf("Version: %d.%d.%d\n",

*(ULONG*)(sharedUserData + 0x26c), // major version offset

*(ULONG*)(sharedUserData + 0x270), // minor version offset

*(ULONG*)(sharedUserData + 0x260)); // build number offset (Windows 10)

Of course, it’s recommended to use the official APIs rather than KUSER_SHARED_DATA.

Exercises

1. Write a console application that prints more information about the system than the
HelloWin application shown earlier, by calling the following APIs: GetNativeSystem-

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/ns-ntddk-kuser_shared_data
https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/content/ntddk/ns-ntddk-kuser_shared_data
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Info, GetComputerName, GetWindowsDirectory, QueryPerformanceCounter, GetPro-
ductInfo, GetComputerObjectName. Handle errors if they occur.

Summary

In this chapter, we looked at the fundamentals of Windows, both in terms of architecture
and in terms of programming. In the next chapter, we’ll dig into kernel objects and handles,
as these form the basis of many aspects of working with Windows.



Chapter 2: Objects and Handles
Windows is an object-based operating system, exposing various types of objects (usually
referred to as kernel Objects), that provide the bulk of the functionality inWindows. Example
object types are processes, threads and files. In this chapter we’ll discuss the general theory
related to kernel objects without too much details of any specific object type. The following
chapters will go into details of many of these types.

In this chapter:

• Kernel Objects
• Handles
• Creating Objects
• Object Names
• Sharing Kernel Objects
• Private Object Namespaces

Kernel Objects

The Windows kernel exposes various types of objects for use by user mode processes, the
kernel itself and kernel mode drivers. Instances of these types are data structures in system
(kernel) space, created and managed by the Object Manager (part of the Executive) when
requested to do so by user or kernel mode code. kernel objects are reference counted, so only
when the last reference to the object is released will the object be destroyed and freed from
memory.

There are quite a few object types supported by the Windows kernel. To get a peek, run the
WinObj tool from Sysinternals (elevated) and locate the ObjectTypes directory. Figure 2-1
shows what this looks like. These types can be cataloged based on their visibility and usage:
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• Types that are exported to user mode via the Windows API. Examples: mutex,
semaphore, file, process, thread, timer. This book discusses many of these object types.

• Types that are not exported to user mode, but are documented in theWindows Driver
Kit (WDK) for use by device driver writers. Examples: device, driver, callback.

• Types that are not documented even in theWDK (at least at the time of writing). These
object types are for use by the kernel itself only. Examples: partition, keyed event, core
messaging.

Figure 2-1: Object types

The main attributes of a kernel object are depicted in figure 2-2.
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Figure 2-2: Kernel Object Attributes

Since kernel objects reside in system space, they cannot be accessed directly from user mode.
Applications must use an indirect mechanism to access kernel objects, known as handles.
Handles provide at least the following benefits:

• Any change in the object type’s data structure in a future Windows release will not
affect any client.

• Access to the object can be controlled through security access checks.
• Handles are private to a process, so having a handle to a particular object in one process
means nothing in another process context.

Kernel objects are reference counted. The Object Manager maintains a handle count and a
pointer count, the sum of which is the total reference count for an object (direct pointers
can be obtained from kernel mode). Once an object used by a user mode client is no
longer needed, the client code should close the handle used to access the object by calling
CloseHandle. From that point on, the code should consider the handle to be invalid. Trying
to access the object through the closed handle will fail, with GetLastError returning
ERROR_INVALID_HANDLE (6). The client does not know, in the general case, whether the
object has been destroyed or not. The Object Manager will delete the object if its reference
drops to zero.

Handle values are multiples of 4, where the first valid handle is 4; Zero is never a valid handle
value. This scheme does not change on 64 bit systems.
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A handle is logically an index to an array of entries in a handle table maintained on a process
by process basis, that points logically to a kernel object residing in system space. There
are various Create* and Open* functions to create/open objects and retrieve back handles
to these objects. If the object cannot be created or opened, the returned handle is in most
cases NULL (0). One notable exception to this rule is the CreateFile function that returns
INVALID_HANDLE_VALUE (-1) if it fails.

For example, the CreateMutex function allows creating a new mutex or opening a mutex
by name (depending whether the mutex with that name exists). If successful, the function
returns a handle to the mutex. A return value of zeromeans an invalid handle (and a function
call failure). The OpenMutex function, on the other hand, tries to open a handle to a named
mutex. If the mutex with that name does not exist, the function fails.

If the function succeeds and a namewas provided, the returned handle can be to a newmutex
or to an existing mutex with that name. The code can check this by calling GetLastError
and comparing the result to ERROR_ALREADY_EXISTS. If it is, then it’s not a new object,
but rather another handle to an existing object. This is one of those rare cases where
GetLastError can be called even if the API in question succeeded.

Running a Single Instance Process

One fairly well-known usage for the ERROR_ALREADY_EXIST case is limiting an executable
to have a single process instance. Normally, if you double-click an executable in Explorer,
a new process is spawned based on that executable. If you repeat this operation, another
process is created based on the same executable. What if you wanted to prevent the second
process from launching, or at least have it shut down if it detects another process instance
with the same executable already running.

The trick is using some named kernel object (a mutex is usually employed, although any
named object type can be used instead), where an object with a particular name is created.
If the object already exists, there must be another instance already running, so the process
can shut down (possibly notifying its sibling of that fact).

The SingleInstance demo application demonstrates how this can be achieved. It’s a dialog-
based application built withWTL. Figure 2-3 shows what this application looks like running.
If you try launching more instances of this application, you’ll find that the first window logs
messages coming from the new process instance that then exits.
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Figure 2-3: The Single Instance application

In the WinMain function, we create the mutex first. If this fails, then something is very wrong
and we bail out.

HANDLE hMutex = ::CreateMutex(nullptr, FALSE, L"SingleInstanceMutex");

if (!hMutex) {

CString text;

text.Format(L"Failed to create mutex (Error: %d)", ::GetLastError());

::MessageBox(nullptr, text, L"Single Instance", MB_OK);

return 0;

}

Failure to create the mutex should be extremely rare. The most likely scenario for failure is
that another kernel object (which is not a mutex) with that same name already exists.

Now that we get a proper handle to the mutex, the only question is whether the mutex was
actually created or we received another handle to an existing mutex (presumably created by
a previous instance of this executable):
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if (::GetLastError() == ERROR_ALREADY_EXISTS) {

NotifyOtherInstance();

return 0;

}

If the object existed prior to the CreateMutex call, then we call a helper function that sends
some message to the existing instances and exits. Here is NotifyOtherInstance:

#define WM_NOTIFY_INSTANCE (WM_USER + 100)

void NotifyOtherInstance() {

auto hWnd = ::FindWindow(nullptr, L"Single Instance");

if (!hWnd) {

::MessageBox(nullptr, L"Failed to locate other instance window",

L"Single Instance", MB_OK);

return;

}

::PostMessage(hWnd, WM_NOTIFY_INSTANCE, ::GetCurrentProcessId(), 0);

::ShowWindow(hWnd, SW_NORMAL);

::SetForegroundWindow(hWnd);

}

The function searches for the existing window with the FindWindow function and uses the
window caption as the search criteria. This is not ideal in the general case, but it’s good
enough for this sample.

Once the window is located, we send a custom message to the window with the current
process ID as an argument. This shows up in the dialog’s list box.

The final piece of the puzzle is handling the WM_NOTIFY_INSTANCE message by the dialog.
In WTL, window messages are mapped to functions using macros. The message map of the
dialog class (CMainDlg) in MainDlg.h is repeated here:
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BEGIN_MSG_MAP(CMainDlg)

MESSAGE_HANDLER(WM_NOTIFY_INSTANCE, OnNotifyInstance)

MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

END_MSG_MAP()

The custom message is mapped to the OnNotifyInstance member function, implemented
like so:

LRESULT CMainDlg::OnNotifyInstance(UINT, WPARAM wParam, LPARAM, BOOL &) {

CString text;

text.Format(L"Message from another instance (PID: %d)", wParam);

AddText(text);

return 0;

}

The process ID is extracted from the wParam parameter and some text is added to the list
box with the AddText helper function:

void CMainDlg::AddText(PCWSTR text) {

CTime dt = CTime::GetCurrentTime();

m_List.AddString(dt.Format(L"%T") + L": " + text);

}

m_List is of type CListBox, a WTL wrapper for a Windows list box control.

Handles

As mentioned in the previous section, a handle points indirectly to a small data structure in
kernel space that holds a few pieces of information for that handle. Figure 2-4 depicts this
data structure for 32 bit and 64 bit systems.
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Figure 2-4: Handle Entry

On 32 bit systems, this handle entry is 8 bytes in size, and it’s 16 bytes in size on 64 bit systems
(technically 12 bytes are enough, but it’s extended to 16 bytes for alignment purposes). Each
entry has the following ingredients:

• Pointer to the actual object. Since the lower bits are used for flags and to improve CPU
access times by address alignment, an object’s address is multiple of 8 on 32 bit systems
and multiple of 16 on 64 bit systems.

• Access mask, indicating what can be done with this handle. In other words, the access
mask is the power of the handle.

• Three flags: Inheritance, Protect from close and Audit on close (discussed shortly).

The access mask is a bitmask, where each “1” bit indicating a certain operation that can be
carried using that handle. The access mask is set when the handle is created by creating an
object or opening an existing object. If the object is created, then the caller typically has full
access to the object. But if the object is opened, the caller needs to specify the required access
mask, which it may or may not get.

For example, if an application wants to terminate a certain process, it must call the
OpenProcess function first, to obtain a handle to the required process with an access mask
of (at least) PROCESS_TERMINATE, otherwise there is no way to terminate the process with
that handle. If the call succeeds, then the call to TerminateProcess is bound to succeed.

Here is an example of terminating a process given its process ID:
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bool KillProcess(DWORD pid) {

// open a powerful-enough handle to the process

HANDLE hProcess = ::OpenProcess(PROCESS_TERMINATE, FALSE, pid);

if (!hProcess)

return false;

// now kill it with some arbitrary exit code

BOOL success = ::TerminateProcess(hProcess, 1);

// close the handle

::CloseHandle(hProcess);

return success != FALSE;

}

The OpenProcess function has the following prototype:

HANDLE OpenProcess(

_In_ DWORD dwDesiredAccess, // the access mask

_In_ BOOL bInheritHandle, // inheritance flag

_In_ DWORD dwProcessId); // process ID

Since this is an Open operation, the object in question already exists, the client needs to
specify what access mask it requires to access the object. An access mask has two types of
access bits: generic and specific. We’ll discuss these details in chapter 16 (“Security”). One of
the specific access bits for a process is PROCESS_TERMINATE used in the above example. Other
bits include PROCESS_QUERY_INFORMATION, PROCESS_VM_OPERATION andmore. Refer to the
documentation of OpenProcess to locate the complete list.

What access mask should be used by client code? Generally, it should reflect the operations
the client code intends to perform with the object. Asking for more than needed may fail,
and asking less is obviously not good enough.

The flags associated with each handle are the following:

• Inheritance - this flag is used for handle inheritance - a mechanism that allows sharing
an object between cooperating processes. We’ll discuss handle inheritance in chapter
3.

• Audit on close - this flag indicates whether an audit entry in the security log should
be written when that handle is closed. This flag is rarely used and is off by default.
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• Protect from close - setting this flag prevents the handle from being closed. A call to
CloseHandlewill return FALSE and GetLastError returns ERROR_INVALID_HANLDLE
(6). If the process is running under a debugger, an exception is raised with the following
message: “0xC0000235: NtClose was called on a handle that was protected from close
via NtSetInformationObject”. This flag is rarely useful.

Changing the inheritance and protection flags can be donewith the SetHandleInformation
function defined like so:

#define HANDLE_FLAG_INHERIT 0x00000001

#define HANDLE_FLAG_PROTECT_FROM_CLOSE 0x00000002

BOOL SetHandleInformation(

_In_ HANDLE hObject,

_In_ DWORD dwMask,

_In_ DWORD dwFlags);

The first parameter is the handle itself. The second parameter is a bit mask indicating which
flags to operate on. The last parameter is the actual value for these flags. For example, to set
the “protect from close” bit on some handle, the following code could be used:

::SetHandleInformation(h, HANDLE_FLAG_PROTECT_FROM_CLOSE,

HANDLE_FLAG_PROTECT_FROM_CLOSE);

Conversely, the following code snippet removes this same bit:

::SetHandleInformation(h, HANDLE_FLAG_PROTECT_FROM_CLOSE, 0);

The opposite function to read back these flags exists as well:

BOOL GetHandleInformation(

_In_ HANDLE hObject,

_Out_ LPDWORD lpdwFlags);

The handles opened from a particular process can be viewed with the Process Explorer tool
from Sysinternals. Navigate to a process you’re interested in, and make sure the lower pane
is visible (View menu, Show Lower Pane). The lower pane shows one of two views - switch
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to Handle view (View menu, Lower Pane View, Handles). Figure 2-5 is a screenshot of the
tool showing open handles in an Explorer process. The columns shown by default are Type
andName only. I added the following columns by right-clicking the header area and clicking
Select Columns: Handle, Object Address, Access and Decoded Access.

Figure 2-5: Handle View in Process Explorer

Here is a brief description of the columns:

• Handle - this is the handle value itself, relevant to this process only. The same handle
value can have a different meaning, i.e. - points to a different object, or maybe even
an empty index.

• Type - the object type name. This corresponds to the Object Types directory inWinObj
shown in figure 2-1.

• Object Address - this is the kernel address where the real object structure resides.
Notice these addresses end with a zero hex digit on 64 bit (on 32 bit systems, the
addresses end with “8” or “0”). There is nothing user mode code with this information,
but it can be used for debugging purposes: if you have two handles to an object and
you want to know whether they point to the same object you can compare object
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addresses; if they are the same, it’s the same object. Otherwise, the handles point to
different objects.

• Access - this is the access mask discussed above. To interpret the bits stored in this hex
value, you need to locate the access mask bits in the documentation. To alleviate that,
use the Decoded Access column.

• Decoded Access - provides a string representation of the access mask bits for common
object types. This makes it easier to interpret the access mask bits without digging into
the documentation.

I personally implemented this column to Process Explorer.

Process Explorer’s handle view shows only handles to named objects by default. To view all
handles, Enable Show unnamed handles and mappings option from the View menu. Figure
2-6 shows how the view changes when this option is checked.
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Figure 2-6: Handle View in Process Explorer (including unnamed objects)

The term “Name” is trickier than it seems. What Process Explorer considers named objects
are not necessarily actual names, but in some cases are convenient monikers. For example,
process and thread handles are shown in figure 2-5, even though processes and threads
cannot have string-based names. There are other object types with a “Name” which is not
their name; the most confusing are File and Key. We’ll discuss this “weirdness” in the section
“Object Names”, later in this chapter.

The total number of handles in a process’ handle table is available as a column in Process
Explorer and Task Manager. Figure 2-7 shows this column added to Task Manager.
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Figure 2-7: Handle count column in Task Manager

Note that the number shown is the handle count, rather than object count. This is because
more than one handle can exist that reference the same object.

Double-clicking a handle entry in Process Explorer opens a dialog that shows some properties
of the object (not the handle). Figure 2-8 is a screenshot of such a dialog.
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Figure 2-8: Kernel object properties in Process Explorer

The basic object information is repeated from the handle entry (name, type, and address).
This particular object (a mutex) has 3 open handles. The references number is misleading and
does not reflect the actual object reference count. For some types of objects (such asmutexes),
extra information is shown. In this particular case, it’s whether the mutex is currently held
and whether it’s abandoned. (we’ll discuss mutexes in detail in chapter 8).

To get a sense of the number of objects and handles in the system at a given moment, you can
run the KernelObjectView tool from my Github repository at https://github.com/zodiacon/
AllTools. Figure 2-9 shows a screenshot of the tool. The total number of objects (per object
type) is shown along with the total number of handles. You can sort by any column; which
object types have the most objects? The most handles?

https://github.com/zodiacon/AllTools
https://github.com/zodiacon/AllTools
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Figure 2-9: Kernel object Viewer

Pseudo Handles

Some handles have special values and are not closable. These are known as pseudo-handles,
although they are used just like any other handle when needed. Calling CloseHandle on
pseudo-handles always fails. Here are the functions returning pseudo-handles:

• GetCurrentProcess (-1) - return a pseudo-handle to the calling process
• GetCurrentThread (-2) - return a pseudo-handle to the calling thread
• GetCurrentProcessToken (-4) - return a pseudo-handle to the token of the calling
process

• GetCurrentThreadToken (-5) - return a pseudo-handle to the token of the calling
thread

• GetCurrentThreadEffectiveToken (-6) - return a pseudo-handle to the effective
token of the calling thread (if the thread has its own token - it’s used, otherwise -
its process token is used)



Chapter 2: Objects and Handles 58

The last three pseudo handles (token handles) are only supported on Windows 8 and later,
and their access mask is TOKEN_QUERY and TOKEN_QUERY_SOURCE only.

Processes, threads and tokens are discussed later in this book.

RAII for Handles

It’s important to close a handle once it’s no longer needed. Applications that fail to do that
properly may exhibit “handle leak”, where the number of handles grows uncontrollably if
the application opens handles but “forgets” to close them. Obviously, this is bad.

One way to help code manage handles without forgetting to close them is to use C++ by
implementing a well-known idiom called Resource Acquisition is Initialization (RAII). The
name is not that good, but the idiom is. The idea is to use a destructor for a handle wrapped
in a type that ensures the handle is closed when that wrapper object is destroyed.

Here is a simple RAII wrapper for a handle (implemented inline for convenience):

struct Handle {

explicit Handle(HANDLE h = nullptr) : _h(h) {}

~Handle() { Close(); }

// delete copy-ctor and copy-assignment

Handle(const Handle&) = delete;

Handle& operator=(const Handle&) = delete;

// allow move (transfer ownership)

Handle(Handle&& other) : _h(other._h) {

other._h = nullptr;

}

Handle& operator=(Handle&& other) {

if (this != &other) {

Close();

_h = other._h;

other._h = nullptr;

}
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return *this;

}

operator bool() const {

return _h != nullptr && _h != INVALID_HANDLE_VALUE;

}

HANDLE Get() const {

return _h;

}

void Close() {

if (_h) {

::CloseHandle(_h);

_h = nullptr;

}

}

private:

HANDLE _h;

};

The Handle type provides the basic operations expected from a RAII HANDLE wrapper. The
copy constructor and copy assignment operators are removed, as copying a handle that may
have multiple owners does not make sense (causing CloseHandle to be called twice for the
same handle). It is possible to implement these copy operations by duplicating the handle (see
“Sharing Kernel Objects” later in this chapter), but it’s a non-trivial operation best avoided
in implicit copy scenarios. A bool operator returns true if the current handle held is valid;
it considers zero and INVALID_HANDLE_VALUE (-1) as invalid handles. The Close function
closes the handle and is normally called from the destructor. Finally, the Get function returns
the underlying handle.

It’s possible to add an implicit conversion operator to HANDLE, removing the need to call
Get.

Here is some example code using the above wrapper:
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Handle hMyEvent(::CreateEvent(nullptr, TRUE, FALSE, nullptr));

if (!hMyEvent) {

// handle failure

return;

}

::SetEvent(hMyEvent.Get());

// move ownership

Handle hOtherEvent(std::move(hMyEvent));

::ResetEvent(hOtherEvent.Get());

Although writing such a RAII wrapper is possible, it’s usually best to use an existing library
that provides this (and other similar) functionality. For example, although CloseHandle is
the most common closing handle function, there are other types of handles that require a
different closing function. One such library that is used by Microsoft in Windows code is
the Windows Implementation Library (WIL). This library has been released on Github and
is available as a Nuget package.

Using WIL

Adding WIL to a project is done like any other Nuget package. Right-click the References
node in a Visual Studio project and select Manage Nuget Packages…. In the Browse tab’s
search text box, type “wil” to quickly search for WIL. The full name of the package is
“Microsoft.Windows.ImplementationLibrary”, shown in figure 2-10.
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Figure 2-10: Adding WIL via Nuget

The RAII handle wrapper(s) are located in the <wil\resource.h> header file.

Here is the same code using WIL:

#include <wil\resource.h>

void DoWork() {

wil::unique_handle hMyEvent(::CreateEvent(nullptr, TRUE, FALSE, nullptr));

if (!hMyEvent) {

// handle failure

return;

}

::SetEvent(hMyEvent.get());

// move ownership

auto hOtherEvent(std::move(hMyEvent));

::ResetEvent(hOtherEvent.get());

}

wil::unique_handle is a HANDLE wrapper that calls CloseHandle upon destruction. It’s
modeled mostly after the C++ std::unique_ptr<> type. Notice that getting the internal
HANDLE is done by calling get(). To replace the value inside a unique_handle (and close the
old one) use the reset function; calling resetwith no arguments just closes the underlying
handle, making the wrapper object an empty shell.
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The code can be somewhat simplified by adding using namespace wil; so that
wil:: need not be prepended for every type in WIL. Also, notice auto can be
used to simplify code in some cases.

The code samples in this book use WIL in some cases, but not all. From a learning perspec-
tive, it’s sometimes better to use the raw types to make things simpler to understand.

Creating Objects

All the functions for creating new objects have some common parameters. Here is the
CreateMutex and CreateEvent functions to demonstrate:

HANDLE CreateMutex(

_In_opt_ LPSECURITY_ATTRIBUTES lpMutexAttributes,

_In_ BOOL bInitialOwner,

_In_opt_ LPCTSTR lpName);

HANDLE CreateEvent(

_In_opt_ LPSECURITY_ATTRIBUTES lpEventAttributes,

_In_ BOOL bManualReset,

_In_ BOOL bInitialState,

_In_opt_ LPCTSTR lpName);

Notice both functions accept a parameter of type SECURITY_ATTRIBUTES. This structure is
common to virtually all Create functions is defined like so:

typedef struct _SECURITY_ATTRIBUTES {

DWORD nLength;

LPVOID lpSecurityDescriptor;

BOOL bInheritHandle;

} SECURITY_ATTRIBUTES, *PSECURITY_ATTRIBUTES;
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The nLengthmember should be set to the size of the structure. This is a common technique
used by Windows to version structures. If the structure will have new members in a future
Windows release, old code would still function properly because it would have set the length
to the old size, so the newer Windows API know not to look at the new members as the old
code had no idea these existed. That said, the SECURITY_ATTRIBUTES structure has yet to
change from the first Windows NT release.

As its name implies, the structure has to do with security settings on the newly created
object. The main member that is really about security is lpSecurityDescriptor, which
can point to a security descriptor object, which essentially specifies who-can-do-what with
the object. We’ll discuss security descriptors in chapter 16.

The last member, bInheritHandle has security implications, which is why it’s hosted in
this structure as well. It’s the inheritance bit mentioned earlier. This means the inheritance
bit can be set by using this structure without needing to call SetHandleInformation when
creating a new object. Here is an example for creating an event object with the returned
handle having its inheritance bit set:

SECURITY_ATTRIBUTES sa = { sizeof(sa) }; // set nLength and zero the rest

sa.bInheritHandle = TRUE;

HANDLE hEvent = ::CreateEvent(&sa, TRUE, FALSE, nullptr);

DWORD flags;

::GetHandleInformation(hEvent, &flags); // sets flags=1

Handle inheritance is discussed in chapter 3.

Passing NULL for SECURITY_ATTRIBUTES leaves the inheritance bit clear. In terms of security,
this means “default security” which is based on a security descriptor that is stored in the
process access token. We’ll discuss the details in chapter 16. In any case, using NULL for the
security descriptor (either explicitly or passing NULL for the SECURITY_ATTRIBUTES pointer)
is the right thing to do in most cases.
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Object Names

Some types of objects can have string-based names. These names can be used to open objects
by name with a suitable Open function. Note that not all objects have names; for example,
processes and threads don’t have names - they have IDs. That’s why the OpenProcess and
OpenThread functions require a process/thread identifier (a number) rather than a string-
base name. Named objects can be viewed with theWinObj tool from Sysinternals.

From user mode code, calling a Create function with a name creates the object with that
name if an object with that name does not exist, but if it exists it just opens the existing
object. In the latter case, calling GetLastError returns ERROR_ALREADY_EXISTS, indicating
this is not a new object, and the returned handle is yet another handle to an existing object.
In this case the parameters that affect object creation such as the SECURITY_ATTRIBUTES
structure are not used, as the creator already set this up.

The name provided to aCreate function is not the final name of the object. In classic (desktop)
processes, it’s prepended with \Sessions\x\BaseNamedObjects\ where x is the session ID of
the caller. If the session is zero, the name is prepended with \BaseNamedObjects\ only. If the
caller happens to be running in an AppContainer (typically a Universal Windows Platform
process), then the prepended string is more complex and consists of the uniqueAppContainer
SID: \Sessions\x\AppContainerNamedObjects\.

Figure 2-11 shows named objects in session 1 inWinObj.
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Figure 2-11: Named objects in session 1

Figure 2-12 shows named objects in session 0.
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Figure 2-12: Named objects in session 0

All the above means is that object names are session-relative (and in the case of an
AppContainer - package relative). If an object must be shared across sessions it can be created
in session 0 by prepending the object name with Global\; for example, creating a mutex with
the CreateMutex function namedGlobal\MyMutex will create it under \BaseNamedObjects.
Note that AppContainers do not have the power to use session 0 object namespace.

The entire Object Manager namespace hierarchy can be viewed with WinObj. This entire
structure is held in memory and manipulated by the Object Manager as needed. Note that
unnamed objects are not part of this structure, meaning the objects seen in WinObj do not
comprise all the existing objects, but rather all the objects that were created with a name.
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The “directories” shown in WinObj actually Directory objects, which are just one kind of
kernel object which acts as a logical container.

Going back to Process Explorer’s Handles view - it shows by default “named” objects.
“Named” here means not just objects that can be named, but also other objects. Objects
that can be named are Mutexes (Mutants), Semaphores, Events, Sections, ALPC Ports, Jobs,
Timers, and other, less used object types. Yet others are shown with a name that has a
different meaning than a true named object:

• Process and Thread objects - the name is shown as their unique ID.
• For File objects it shows the file name (or device name) pointed to by the file object.
It’s not the same as an object’s name, as there is no way to get a handle to a file object
given the file name - only a new file object may be created that accesses the same
underlying file or device (assuming sharing settings for the original file object allow
it).

• (Registry) Key object names are shown with the path to the registry key. This is not a
name, for the same reasoning as for file objects.

• Directory objects show its logical path, rather than being a true object name. A
Directory is not a file system object, but rather an object manager directory.

• Token object names are shown with the user name stored in the token.

To verify the above statements, browse through WinObj and look for File or Key objects.
You won’t find any, which suggests these objects cannot be named.

Sharing Kernel Objects

As we’ve seen, handles to kernel objects are private to a process. In some cases, a process
may want to share a kernel object with another process. Such a process cannot simply pass
somehow the value of the handle to the other process, because in the other process’ handle
table that handle value may point to a different object or be empty.

Clearly, some mechanism must be in place to allow such sharing. In fact, there are three:
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• Sharing by name
• Sharing by handle inheritance
• Sharing by duplicating handles

We’ll look at the first and third option here, and discuss handle inheritance in the next
chapter.

Sharing by Name

This is the simplest option, if available. “Available” heremeans that the object in question can
have a name, and does have a name. The typical scenario is that the cooperating processes
(2 or more) would call the appropriate Create function with the same object name. The
first process to make the call would create the object, and subsequent calls from the other
processes would open additional handles to the same object.

The sample BasicSharing shows an example of using sharing by name with a Memory
Mapped File object. This object can be used to share memory between processes (normally,
each process can only see its own address space). Running two instances (or more) of the
application (shown in figure 2-13) allows sharing textual data between these processes.

The full details of memory-mapped files are discussed in chapter 14.

Figure 2-13: The Basic Sharing application

To test it out, type something in the edit box and clickWrite. Then switch to another instance,
and just click Read. The text you entered should appear in the other application’s edit box.
Of course you can swap roles. If you launch another instance, you can click Read and the
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last text would appear as well. This is because all these processes are reading and writing to
the same (shared) memory.

By the way, these don’t have to be processes based on the same executable - this
is just used here for convenience. The determining factor is the object’s name.

Beforewe look at the code, let’s seewhat this looks like in Process Explorer. Run two instances
of the executable, open Process Explorer and locate the two processes. Make sure the lower
pane shows Handles (and not DLLs). The object type to look for is Section (the kernel name
of Memory Mapped File). Find a section called “MySharedMemory” (with the session-based
prefix of course), as shown in figure 2-14.

Figure 2-14: The shared section object

If you double-click the handle, you should see the properties of the section object as shown
in figure 2-15.
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Figure 2-15: Section object properties

Notice there are two open handles to the object. Presumably, these are coming from the two
processes holding handles to that object. Notice the shared memory’s size: 4 KB - we’ll see
this reflected in the code.

If you locate the second process using this object (see figure 2-16), you should find the same
information presented when double-clicking the handle. How can you be sure these are
pointing to the same object? Look at the Object Address column. If the address is identical,
this is the same object (and vice versa). Notice also that the handle values are not the same
(the normal case). In figures 2-14 the handle value is 0x14c (PID 22384) and in figure 2-16
it’s 0x16c (PID 27864). Still - they reference the exact same object.
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Figure 2-16: The shared section in the other process

If you were to close one of the instances, what would happen? One handle would close,
but the object remains alive. This means that launching a completely new instance and
clicking Read will show the most recent text. What would happen if we close all cooperating
applications and then launch one instance again. What would we see if we click Read? Try
and explain to yourself why this is the case.

Now let’s turn our attention to the code.

BasicApplication is a WTL dialog-based project. The dialog box class (CMainDlg) holds a
single member of interest, which is the handle to the memory-mapped file:

private:

HANDLE m_hSharedMem;

When the dialog is created, in the WM_INITDIALOG message handler, we create the file
mapping object and giving it a name:
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m_hSharedMem = ::CreateFileMapping(INVALID_HANDLE_VALUE, nullptr, PAGE_READWRIT\

E,

0, 1 << 12, L"MySharedMemory");

if (!m_hSharedMem) {

AtlMessageBox(m_hWnd, L"Failed to create/open shared memory", IDR_MAINFRAME\

);

EndDialog(IDCANCEL);

}

CreateFileMapping is used to create (or open) a file mapping object. The exact details of
the parameters are discussed in chapter 14 (in part 2). Here we care about one parameter
in particular (the last) - the object’s name. This is the name we’ve seen in Process Explorer
(with the standard session-related prefix). If this is the first process to attempt creating the
object - it’s created. Subsequent calls result in additional handles to the same object (calling
GetLastError would return ERROR_ALREADY_EXISTS). In this case, we don’t care whether
this call is the first or not - we just want a handle to the same kernel object so that its
“function” is available from multiple processes.

The second to last argument pair (0 and 1 << 12) determine the size of the shared memory
as a 64-bit value. In this case it’s set to 4 KB (1 << 12). If the call fails for any reason we just
print a simple message and close the dialog, causing the process itself to exit.

When the dialog is closed, it’s a good idea to close the handle. Strictly speaking, it’s not
necessary to do that in this particular case, because once the dialog is closed, the process
exits, and the kernel ensures that all handles from a terminated process are properly closed.
Still, it’s a good habit to have (unless some RAII wrapper for the handle does that for you).
For completeness, here is the call to close handle when handling the WM_DESTROY message
for the dialog:

if (m_hSharedMem)

::CloseHandle(m_hSharedMem);

Now for the write and read parts. Accessing the shared memory is done by calling
MapViewOfFile, resulting in a pointer to the shared memory (again, the exact details are
in chapter 12). Then it’s just a matter of copying the text to that mapped memory:
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void* buffer = ::MapViewOfFile(m_hSharedMem, FILE_MAP_WRITE, 0, 0, 0);

if (!buffer) {

AtlMessageBox(m_hWnd, L"Failed to map memory", IDR_MAINFRAME);

return 0;

}

CString text;

GetDlgItemText(IDC_TEXT, text);

::wcscpy_s((PWSTR)buffer, text.GetLength() + 1, text);

::UnmapViewOfFile(buffer);

The copying is done with wcscpy_s to the mapped memory. Then the memory is unmapped
with UnmapViewOfFile.

Reading data is very similar. The access mask is changed to FILE_MAP_READ rather than
FILE_MAP_WRITE, and memory is copied in the other direction, directly to the edit box:

void* buffer = ::MapViewOfFile(m_hSharedMem, FILE_MAP_READ, 0, 0, 0);

if (!buffer) {

AtlMessageBox(m_hWnd, L"Failed to map memory", IDR_MAINFRAME);

return 0;

}

SetDlgItemText(IDC_TEXT, (PCWSTR)buffer);

::UnmapViewOfFile(buffer);

Sharing by Handle Duplication

Sharing kernel objects by name is certainly simple. What about objects that don’t (or can’t
have a name)? Handle duplication may be the answer. Handle duplication has no inherent
restrictions (except security) - it can work on almost any kernel object, named or unnamed
and it works at any point in time (in chapter 3 we’ll see that handle inheritance is only
available when a process creates a child process). There is a dent, however; this is the most
difficult way of sharing in practice, as we shall soon see.

A Duplicated I/O completion port handle does not work in the target process.
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Duplicating a handle is as simple as calling the DuplicateHandle function:

BOOL DuplicateHandle(

_In_ HANDLE hSourceProcessHandle,

_In_ HANDLE hSourceHandle,

_In_ HANDLE hTargetProcessHandle,

_Outptr_ LPHANDLE lpTargetHandle,

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ DWORD dwOptions);

Duplicating a handle requires a source process, source handle and a target process. If
successful, a new handle entry is written to the target process handle table, pointing to the
same object as the source handle. The “before” and “after” duplication are depicted in figures
2-17 and 2-18, respectively.

Figure 2-17: Before handle duplication
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Figure 2-18: After handle duplication

Technically, DuplicateHandle can work on any two processes for which proper handles can
be obtained, but the typical scenario is duplication one of the caller’s handles into another
process’ handle table. Also, the source and target processes may be the same. Let’s go over
the parameters of DuplicateHandle in details:

• hSourceProcessHandle - this is a handle to the source process. This handle must
have the PROCESS_DUP_HANDLE access mask. If the source is the caller’s process than
passing GetCurrentProcess will do the trick (and it always has full access).

• hSourceHandle - the source handle to duplicate. This handle must be valid in the
context of the source process.

• hTargetProcessHandle - the target process handle. Typically some call to Open-
Process must be used to gain such a handle. As with the source process, the
PROCESS_DUP_HANDLE access mask is required.

• lpTargetHandle - this is the resulting handle, valid from the target process per-
spective. In figure 2-18, the resulting handle returned to the caller was 72. This value
is with respect to Process B (the caller is assumed to be process A).

• dwDesiredAccess - the desired access mask for the duplicated handle. If the dwOp-
tions parameter has the flag DUPLICATE_SAME_ACCESS, then this access mask is
ignored. Otherwise, this is the access mask to request for the new handle.
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• bInheritHandle - specifies whether the new handle is inheritable or not (see chapter
3 for more on handle inheritance).

• dwOptions - a set of flags. One is DUPLICATE_SAME_ACCESS discussed above. The
second supported is DUPLICATE_CLOSE_SOURCE; if specified, closes the source handle
after a successful duplication (this means the handle count for the object is not
incremented).

Here is a simple example of creating a job object and duplicating a handle to it in the same
process while reducing the access mask (error handling omitted):

HANDLE hJob = ::CreateJobObject(nullptr, nullptr);

HANDLE hJob2;

::DuplicateHandle(::GetCurrentProcess(), hJob, ::GetCurrentProcess(), &hJob2,

JOB_OBJECT_ASSIGN_PROCESS | JOB_OBJECT_TERMINATE, FALSE, 0);

The source and target process are the current process. Running this piece of code and looking
at the handles in Process Explorer shows the differences (figure 2-19).

Figure 2-19: Simple handle duplication

One handle (0xac) has full access to the job object, while the other (duplicated) handle (0xb0)
has just the specified desired access mask.

In the more common case, a handle from the current process is duplicated to a target
cooperating process. The following function will duplicate a source handle from the current
process to a target process:
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HANDLE DuplicateToProcess(HANDLE hSource, DWORD pid) {

// open a strong-enough handle to the target process

HANDLE hProcess = ::OpenProcess(PROCESS_DUP_HANDLE, FALSE, pid);

if (!hProcess)

return nullptr;

HANDLE hTarget = nullptr;

// duplicate

::DuplicateHandle(::GetCurrentProcess(), hSource, hProcess,

&hTarget, 0, FALSE, DUPLICATE_SAME_ACCESS);

// cleanup

::CloseHandle(hProcess);

return hTarget;

}

This is the case where handle duplication becomes non-trivial. It’s not the act of duplication
itself - that’s rather simple - a single function call. The problem is how to convey the
information to the target process. Two pieces of information must be conveyed to the target
process:

• When the handle has been duplicated.
• What is the duplicated handle value?

Remember, that the caller knows the created handle value, but the target process does not.
Theremust be some other form of inter-process communication that allows the caller process
to pass the required information to the target process (since they are part of the same system
and need to cooperate by sharing the kernel object in question).

We’ll look at various inter-process communication mechanisms throughout this book.
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Private Object Namespaces

We’ve seen that some types of kernel objects can have string-based names. We’ve also seen
that this is one (convenient) way of sharing such objects between processes. However, there
are a few downsides of having named objects:

• Some other, unrelated process, may create an object with the same name, that can
cause failure when creating the object later (if the object types differ), or worse, the
creation “succeeds” because it’s the same object type and the code gets back a handle
to an existing object. The result is a mess, where processes use the same object that
they don’t expect.

• This is a special case of the above bullet, for emphasis. Since the name is visible (in
tools, but can also be obtained programmatically), another process can “hijack” the
object or otherwise interfere with object usage. From a security standpoint, the object
in question is too visible. Unnamed objects are much stealthier, as there is no good way
to guess what a particular object is used for.

Is there a way for processes to share named objects (since it’s easy) but not be visible to other
processes? Starting with Windows Vista, there is a way to create a private object namespace
that only the cooperating processes know about. Using tools or APIs will not reveal its full
name.

The PrivateSharing sample application is an enhanced version of BasicSharing, where the
memory-mapped file object’s name is now under a private object namespace and is not
visible to all. Looking at this object with Process Explorer shows a partial name only (figure
2-20).
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Figure 2-20: Named object with a private namespace

If some random code tries to locate an object named “MySharedMem”, it would fail to do
so, since this not the object’s true name.

Creating a private namespace is a two-step process. First, a helper object called a Boundary
Descriptor must be created. This descriptor allows adding certain Security IDs (SIDs) that
would be able to use private namespaces created based on that boundary descriptor. This
can help tighten security on the private namespace(s). To create a boundary descriptor, use
CreateBoundaryDescriptor:
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HANDLE CreateBoundaryDescriptor(

_In_ LPCTSTR Name,

_In_ ULONG Flags); // currently unused

Once a boundary descriptor exists, two functions can be used to restrict access to any
private namespace created through that descriptor: AddSIDToBoundaryDescriptor and
AddIntegrityLabelToBoundaryDescriptor (the latter available starting from Windows
7):

BOOL AddSIDToBoundaryDescriptor(

_Inout_ HANDLE* BoundaryDescriptor,

_In_ PSID RequiredSid);

BOOL AddIntegrityLabelToBoundaryDescriptor(

_Inout_ HANDLE * BoundaryDescriptor,

_In_ PSID IntegrityLabel);

Both accept the address of the boundary descriptor’s handle and a SID. With AddSIDTo-
BoundaryDescriptor, the SID is typically a group’s SID, allowing all users in that group
access to the private namespaces. AddIntegrityLabelToBoundaryDescriptor allows set-
ting a minimum integrity level for processes that wish to open objects in private namespace
managed by this boundary descriptor.

SIDs and integrity levels are discussed in chapter 16.

Once the boundary descriptor is set, the next step is creating the actual private namespace
with CreatePrivateNamespace:

HANDLE CreatePrivateNamespace(

_In_opt_ LPSECURITY_ATTRIBUTES lpPrivateNamespaceAttributes,

_In_ LPVOID lpBoundaryDescriptor, // the boundary descriptor

_In_ LPCWSTR lpAliasPrefix); // namespace name

Confusingly, the boundary descriptor type is void* rather than HANDLE. This is a slip in the
API, but since HANDLE is defined as void*, this works fine. This mishap also hints that a
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boundary descriptor is not a kernel object, even though it returns a HANDLE; it has its own
close function - DeleteBoundaryDescriptor.

An object namespace is also not a true kernel object. If the namespace already exists, the
function fails and OpenPrivateNamespace must be used instead. It also has its own close
function (ClosePrivateNamespace):

HANDLE OpenPrivateNamespaceW(

_In_ LPVOID lpBoundaryDescriptor,

_In_ LPCWSTR lpAliasPrefix); // namespace name

BOOLEAN ClosePrivateNamespace(

_In_ HANDLE Handle,

_In_ ULONG Flags); // 0 or PRIVATE_NAMESPACE_FLAG_DESTROY

Another slip is the function ClosePrivateNamespace returning BOOLEAN (typedefed as
BYTE) instead of the standard BOOL.

Once the namespace is created or opened, named objects can be created normally with the
name in the form alias\namewhere “alias” is the lpAliasPrefix parameter from creating
or opening the namespace.

Let’s look at the concrete code in the PrivateSharing application.

The dialog class now has three members:

private:

wil::unique_handle m_hSharedMem;

HANDLE m_hBD{ nullptr }, m_hNamespace{ nullptr };

The code uses theWIL unique_handle RAII wrapper for the memory-mapped file’s handle,
but the boundary descriptor and the namespace are managed as raw handles.

When the dialog box is created, the same memory-mapped file is created as in BasicSharing,
but this time under a private namespace (error handling omitted for clarity):
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// create the boundary descriptor

m_hBD = ::CreateBoundaryDescriptor(L"MyDescriptor", 0);

BYTE sid[SECURITY_MAX_SID_SIZE];

auto psid = reinterpret_cast<PSID>(sid);

DWORD sidLen;

::CreateWellKnownSid(WinBuiltinUsersSid, nullptr, psid, &sidLen);

::AddSIDToBoundaryDescriptor(&m_hBD, psid);

// create the private namespace

m_hNamespace = ::CreatePrivateNamespace(nullptr, m_hBD, L"MyNamespace");

if (!m_hNamespace) { // maybe created already?

m_hNamespace = ::OpenPrivateNamespace(m_hBD, L"MyNamespace");

}

m_hSharedMem.reset(::CreateFileMapping(INVALID_HANDLE_VALUE, nullptr,

PAGE_READWRITE, 0, 1 << 12, L"MyNamespace\\MySharedMem"));

In this example, a single SID was added to the boundary descriptor. This SID is for all
standard users. It’s possible to add something more strict, such as the Administrators group,
so that processes running under standard user rights would not be able to tap into this
boundary descriptor. The SID is created based on a well-known SID for the users group
by calling CreateWellKnownSid. Then AddSIDToBoundaryDescriptor is called to attach
the SID to the boundary descriptor.

Don’t worry about these SIDs and other security terms. They are described in detail in
chapter 16.

Once the boundary descriptor is set, CreatePrivateNamespace or OpenPrivateNamespace
is called with the alias “MyNamespace”. This is used as the prefix for the memory-mapped
file object created with CreateFileMapping.

Finally, the WM_DESTROYmessage handler for the dialog deletes the namespace and boundary
descriptor:
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if (m_hNamespace)

::ClosePrivateNamespace(m_hNamespace, 0);

if (m_hBD)

::DeleteBoundaryDescriptor(m_hBD);

Bonus: WIL Wrappers for Private Namespaces

The WIL library has many wrappers for various types of handles and pointers. Unfortu-
nately, it doesn’t have a boundary descriptor and private namespace wrappers. Fortunately,
it’s not too difficult to create ones. Here is one way to do it:

namespace wil {

static void close_private_ns(HANDLE h) {

::ClosePrivateNamespace(h, 0);

};

using unique_private_ns = unique_any_handle_null_only<decltype(

&close_private_ns), close_private_ns>;

using unique_bound_desc = unique_any_handle_null_only<decltype(

&::DeleteBoundaryDescriptor), ::DeleteBoundaryDescriptor>;

}

I will not go over the details of the above declarations, since they do require good
acquaintance with C++ 11 decltype, using and templates.

The PrivateSharing2 project is the same as PrivateSharing but uses WIL wrappers (with the
above additions) to manage all handles and even the pointer returned from MapViewOfFile.
Here is the Read function for example:
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wil::unique_mapview_ptr<void> buffer(::MapViewOfFile(

m_hSharedMem.get(), FILE_MAP_READ, 0, 0, 0));

if (!buffer) {

AtlMessageBox(m_hWnd, L"Failed to map memory", IDR_MAINFRAME);

return 0;

}

SetDlgItemText(IDC_TEXT, (PCWSTR)buffer.get());

Other Objects and Handles

Kernel objects are interesting in the context of system programming, and are the focus of
this book. There are other common objects used in Windows, namely user objects and GDI
objects. The following is a brief description of these objects and handles to such objects.

Task Manager can show the number of such objects for each process by adding the User
Objects and GDI Objects columns, as shown in figure 2-21.
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Figure 2-21: User and GDI object count

User Objects

User objects are Windows (HWND), Menus (HMENU) and hooks (HHOOK). Handles to these
objects have the following attributes:

• No reference counting. The first caller that destroys a user object - it’s gone.
• Handle values are scoped under a Window Station. A Window Station contains a
clipboard, desktops and atom table. This means handles to these objects can be passed
freely among all applications sharing a desktop, for instance.
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The terms Window Station and desktop will be discussed later in this book. Atom tables
will not, as these are related to the UI subsystem in Windows, which is not the focus of
this book.

GDI Objects

The Graphics Device Interface (GDI) is the original graphics API in Windows and is still
used today, even though there are richer and better APIs (Direct2D for example). Example
GDI objects: device context (HDC), pen (HPEN), brush (HBRUSH), bitmap (HBITMAP) and others.
Here are their attributes:

• No reference counting.
• Handles are valid only in the process in which they are created.
• Cannot be shared between processes.

Summary

In this chapter, we looked at kernel objects and the ways they can be accessed and shared
by using handles. We did not look at any specific object type too closely, as these will be
discussed in other chapters in more detail. In the next chapter, we’ll delve into the most
well-known of all kernel objects - the process.



Chapter 3: Processes
Processes are the fundamental management and containment objects in Windows. Every-
thing that executes must be under some process context, there is no such thing as running
outside of a process. This chapter examines processes from multiple points of view - from
creating, to managing, to destroying and almost everything in between.

In this chapter:

• Process Basics
• Process Creation
• Creating Processes
• Process Termination
• Enumerating Processes

Process Basics

Although the basic structure and attributes of processes did not change since the first release
of Windows NT, new process types have been introduced into the system with special
behaviors or structure. The following is a quick overview of all process types currently
supported, while later sections in this chapter discuss each process type in greater detail.

• Protected Processes - These processes were introduced in Windows Vista. They
were created to support Digital Rights Management (DRM) protection by preventing
intrusive access to processes rendering DRM-protected content. For example, no other
process (even running with administrator rights) can read the memory withing a
protected process address space, so the DRM-protected data cannot be directly stolen.
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• UWP Processes - These processes, available starting with Windows 8, host the
Windows Runtime, and typically are published to the Microsoft Store. A UWP process
executes inside an AppContainer - a sandbox of sorts that limits the operations this
process can carry out.

• Protected Processes Light (PPL) - These processes (available from Windows 8.1)
extended the protection mechanism from Vista by adding several levels of protection
and even allowing third-party services to run as PPL, protecting them from intrusive
access, and from termination, even by admin-level processes.

• Minimal Processes - These processes available from Windows 10 version 1607, is a
truly new form of process. The address space of a minimal process does not contain
the usual images and data structures that a normal process does. For example, there is
no executable file mapped into the process address space, and no DLLs. The process
address space is truly empty.

• Pico Processes - These processes are minimal processes with one addition: a Pico
provider, which is a kernel driver that intercepts Linux system calls and translates
them to equivalent Windows system calls. These processes are used with theWindows
Subsystem for Linux (WSL), available from Windows 10 version 1607.

A Process’ basic information is easily visible in tools such as Task Manager and Process
Explorer. Figure 3-1 shows Task Manager Details tab with some columns added beyond the
defaults.

Figure 3-1: Task Manager’s Details tab
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Let’s briefly examine the columns appearing in figure 3-1:

Name

This is normally the executable name upon which the process is based on. Remember
that this name is not the unique identifier of the process. Some processes don’t seem to
have an executable name at all. Examples include System, Secure System, Registry, Memory
Compression, System Idle Process and System Interrupts.

• System Interrupts is not really a process, it’s just used as a way to measure the time
spent in the kernel servicing hardware interrupts and Deferred Procedure Calls. Both
are beyond the scope of this book. You can find more information in the Windows
Internals andWindows Kernel Programming books.

• System Idle Process is also not a real process. It always has a Process ID (PID) of zero.
It accounts for Windows idle time. This is where the CPUs go when there is nothing
to do.

• The System process is a true process, technically being a minimal process as well. It
always has a PID of 4. It represents everything going on in kernel space - the memory
used by the kernel and kernel drivers, the open handles, threads and so on.

• The Secure System process is only available on Windows 10 and Server 2016 (and
later) systems that boot with Virtualization Based Security enabled. It represents
everything going on in the secure kernel. Refer to the Windows Internals book for
more information.

• The Registry process is a minimal process available from Windows 10 version 1803
(RS4) that is used as “working area” for managing the registry, rather than using
the Paged Pool as was done in previous versions. For the purposes of this book,
it’s an implementation detail that does not affect the way the registry is accessed
programmatically.

• The Memory Compression process is a minimal process available on Windows 10
version 1607 (but not on servers) and holds compressed memory in its address space.
Memory compression is a feature added in Windows 10 to conserve physical memory
(RAM), especially useful for devices with limited resources such as phones and IoT
(Internet of Things) devices. Confusingly, Task Manager does not show this process,
but it is shown properly by Process Explorer.
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The reason Memory Compression is not shown in Task Manager is somewhat
funny. In Windows 10 before version 1607 memory compression was supported,
but the compressed memory was stored in the user-mode address space of the
System process and this made the System process look as though it was consuming
(possibly) a lot of memory. That was compressed memory, so it was really saving
memory, but appearances are sometimes more important, and so the compressed
memory was moved into its own (minimal) process and the process itself was
hidden purposefully from the list in Task Manager.

In the rest of this chapter, up to the section “Minimal and Pico Processes”, deals with “normal”
processes that are based on executable files. In any case, minimal and Pico processes can only
be created by the kernel.

PID

The unique ID of the process. PIDs are multiple of 4, where the lowest valid PID value is
4 (belonging to the System processes). Process IDs are reused once a process terminates, so
it’s possible to see a new process with a PID that was once used for a (now gone) process. If
a unique identifier is required for a process, then a combination of the PID and the process
start time is truly unique on a certain system.

You may recall from chapter 2, that handles also start with 4 and are multiples of 4, just
like PIDs. This is not a coincidence. In fact, PIDs (and thread IDs) are handle values in a
special handle table used just for this purpose.

Status

The Status column is a curious one. It can have one of three values: Running, Suspended and
Not Responding. Let’s look at each one. Table 3-1 summarizes the meaning of these states
based on process type.

Table 3-1: The Status column

Process type Running when… Suspended when… Not responding
when…

GUI process (not
UWP)

GUI thread is
responsive

All threads in the
process are suspended

GUI thread does not
check message queue
for at least 5 seconds
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Table 3-1: The Status column

Process type Running when… Suspended when… Not responding
when…

CUI process (not
UWP)

At least one thread is
not suspended

All threads in the
process are suspended

Never

UWP process in the foreground in the background GUI thread does not
check message queue
for at least 5 seconds

Aprocess with a GUImust have at least one thread that handles its user interface. This thread
has a message queue, created for it as soon as it called any UI or GDI function. This thread
must therefore pumpmessages - that is, listen to its message queue and process messages that
arrive. The typical listening functions are GetMessage or PeekMessage. If none is called for
at least 5 seconds, Task Manager changes the status to Not Responding, the windows owned
by that thread become faded and “(Not Responding)” is added to the window’s caption. The
problematic thread did not examine its message queue for one of three possible reasons:

• It was suspended for whatever reason.
• It’s waiting for some I/O operation to complete, and it takes longer than 5 seconds.
• It’s doing some CPU intensive work that takes longer than 5 seconds.

We’ll look at these issues in chapter 5 (“Thread Basics”).

UWP processes are special in the sense that they are suspended unwillingly when they
move into the background such as when the application’s window is minimized. A simple
experiment can verify this case: Open the modern Calculator on Windows 10, and locate it
in Task Manager. You should see its status as Running, meaning it can respond to user input
and generally do its thing. Nowminimize Calculator, and you’ll see the status changing after
a few brief seconds to Suspended. This kind of behavior exists for UWP processes only.

Non-UWP processes that have no GUI are always shownwith a Running status, asWindows
has no idea what these processes are actually doing (or not). The only exception is if all
threads in such a process are suspended, and then its status changes to Suspended.

TheWindows API does not have a function to suspend a process, only to suspend a thread.
Technically it’s possible to loop over all the threads in a certain process and suspend each
one (assuming a powerful enough handle can be obtained). The native API (implemented in
NtDll.Dll) does have a function for that purpose, NtSuspendProcess. This is the function
called by Process Explorer if you right-click a process and choose Suspend. Of course the
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opposite function exists as well - NtResumeProcess.

User Name

The user name indicates under what user the process is running. A token object is attached
to the process (called Primary Token) that holds the security context for the process based on
the user. That security context contains information such as the groups the user belongs to,
the privileges it has and more. We’ll take a deeper look at tokens in chapter 16. A process can
run under special built-in users, such as Local System (shown as System in Task Manager),
Network Service and Local Service. These user accounts are typically used to run services,
which we’ll look at in chapter 16.

Session ID

The session number under which session the process executes. Session 0 is used for system
process and services and session 1 and higher are used for interactive logins. We’ll look at
sessions in more detail in chapter 16.

CPU

This column shows the CPU percentage consumption for that process. Note it shows whole
numbers only. To get better accuracy, use Process Explorer.

Memory

The memory-related columns are somewhat tricky. The default column shown by Task
Manager is Memory (active private working set) (Windows 10 version 1903) or Memory
(private working set) (earlier versions). The term Working Set means RAM (physical
memory). Private working set is the RAM used by the process and not shared with other
processes. The most common example of shared memory is for DLL code. Active private
working Set is the same as Private working set, but is set to zero for UWP processes that are
currently suspended.

Are the above two counters a good indication of the amount of memory used by a process?
Unfortunately, no. These indicate the private RAM used, but what about memory that is
currently paged out? There is another column for that - Commit Size. This is the best
column to use to get a sense of the memory usage for a process. The “unfortunate” part is
that Task Manager does not show this column by default.
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Process Explorer has an equivalent column for Commit Size, but it’s called Private
Bytes, which is consistent with a Performance Counter by that name.

These memory terms are discussed further in chapter 12.

Base Priority

The Base Priority column, officially called Priority Class, shows one of six values, that
provide the base scheduling priority for threads executing in that process. The possible values
with the priority level associated with them are the following:

• Idle (called Low in Task Manager) = 4
• Below Normal = 6
• Normal = 8
• Above Normal = 10
• High = 13
• Real-time = 24

The most common (and default) priority class is Normal (8). We’ll discuss priorities and
scheduling in chapter 6.

Handles

The handles columns shows the number of handles to kernel objects that are open in a
particular process. This was discussed at length in chapter 2.

Threads

The Threads column shows the number of threads in each process. Normally, this should be
at least one, as a process with no threads is useless. However, some processes are shown with
no threads (using a dash). Specifically, Secure System is shown with no threads because the
secure kernel actually uses the normal kernel for scheduling. The system Interrupts pseudo-
process is not a process at all, so cannot have any threads. Lastly, the System Idle Process
does not own threads either. The number of threads shown for this process is the number of
logical processors on the system.

There are other columns of interest in Task Manager, which will be examined in due course.
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Processes in Process Explorer

Process Explorer can be thought of as a “Task Manager on steroids”. It has most of the
functionality of Task Manager and much more. We’ve already seen its ability to show open
handles in processes. In this section we’ll examine some of its process-related capabilities.

First, Process Explorer can show processes with various columns, just like Task Manager. It
has more columns than are available in Task Manager, however. Immediately apparent are
the colors processes are shown in. Each color indicates some interesting aspect of a process.
Of course a process can have more than one such “aspect”, worthy of a color, and in that case
one color “wins” and the “losing” color is not shown. All the available colors can be changed
and enabled or disabled by selecting Options, Configure Colors… from the menu, showing
the dialog in figure 3-2.

Figure 3-2: Color configurations in Process Explorer
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Table 3-2 summarizes their background colors and meaning.

Table 3-2: Colors in Process Explorer

Name (default color) Meaning
New Objects (green) New objects created
Deleted Objects (red) Objects that have been destroyed
Own Processes (blueish) Processes running under the logged on user account
Services (pink) Processes hosting Windows Services (see chapter 19)
Suspended Processes (gray) Suspended processes
Packed Images (purple) Executables or DLLs that use packing techniques to reduce size. In

some cases, malware may be using such techniques
Relocated DLLs (yellowish) Shown in the modules view (not in the main process view).

Discussed in chapter 15
Jobs (brown) Processes that are part of a job (see chapter 4)
.NET Processes (yellowish) Processes that run some .NET code. More precisely, processes that

host the .NET CLR
Immersive Processes (cyan) Normally UWP processes (that are not suspended). More

precisely, processes that host the Windows Runtime. The function
used to determine this is IsImmersiveProcess

Protected Processes (fuchsia) Protected processes and PPL processes (see later in this chapter)
(all other) (white) Processes that don’t have any of the enabled aspects. If all colors

are enabled, what’s left are mostly system processes

I personally added the protected processes color and selected the default to be Fuchsia
(unrelated to Google’s new OS).

The new and destroyed objects colors are shown for a period of one second by default. You
can make it longer by opening the menu Options, Difference Highlight Duration….

Another interesting feature of Process Explorer is the ability to “sort” processes in a tree (more
accurately, trees) of processes. If you click on the Process column where the image name is,
you can sort normally, but a third click turns the Process column into trees of processes. Part
of these trees is shown in figure 3-3.
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Figure 3-3: Process tree(s) in Process Explorer

Each child node in the tree is a child processes of its parent node. Some processes seem to be
left-justified (see Explorer.exe in figure 3-3). These processes don’t have a parent process, or
more accurately - had a parent process that has since exited. Double-clicking such a process
and switching to the Image tab shows basic information about the process including its
parent. Figure 3-4 shows this information for that instance of Explorer.exe.
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Figure 3-4: Explorer.exe Properties

Notice the parent process is unknown but its PID is known (4160 in figure 3-4). This means
that the parent PID is stored with the child process, but if the parent no longer exists no
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other information about it remains.

You may be wondering what would happen if a new process is created with PID 4160 in
figure 3-4, since PIDs get reused. Fortunately, Process Explorer is not confused, as it checks
the start time of the parent process. If it’s later than the child then clearly that process
cannot be the parent.

Why is Explorer.exe parentless? This is actually the normal case, as Explorer
is created by an earlier process running UserInit.exe, whose job (among other
things) is to launch the default shell (configured in the registry by default to be
Explorer.exe). Once its work is done, the UserInit process simply exits.

The important point to remember about this parent-child process relationship is this: if
process A creates process B and process A dies, process B is unaffected. In other words,
processes in Windows are more like siblings - they don’t affect each other after creation.

Process Creation

The major parts involved in process creation is depicted in figure 3-5.
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Figure 3-5: Flow of process creation

First, the kernel opens the image (executable) file and verifies that it’s in the proper format
known as Portable Executable (PE). The file extension does not matter, by the way - only the
actual content does. Assuming the various headers are valid, the kernel then creates a new
process kernel object and a thread kernel object, because a normal process is created with
one thread that eventually should execute the main entry point.

At this point, the kernel maps the image to the address space of the new process, as well as
NtDll.Dll. NtDll is mapped to every process (except Minimal and Pico processes), since it has
very important duties in the final stage of process creation (outlined below) as well being the
trampoline from which system calls are invoked. The final major step which is still carried
out by the creator process is notifying theWindows subsystem process (Csrss.exe) of the fact
that a new process and thread have been created. (Csrss can be thought of as a helper to the
kernel for managing some aspects of Windows subsystem processes).
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At this point, from the kernel’s point of view, the process has been created successfully, so
the process creation function invoked by the caller (typically CreateProcess, discussed in
the next section) returns success. However, the new process is not yet ready to execute its
initial code. The second part of process initialization must be carried out in the context of
the new process, by the newly created thread.

Some developers believe that the first thing that runs in a new process is the executable’s
main function. This is far from the truth, however. There is a lot going on before the actual
main function starts running. The star of this part is NtDll, as there is no other OS level code
in the process at this time. NtDll has several duties at this point.

First, it creates the user-mode management object for the process, known as the Process
Environment Block (PEB) and the user mode management object for the first thread
called Thread Environment Block (TEB). These structures are partially-documented (in
<winternl.h>), and officially should not be used directly by developers. That said, there
are cases where these structures are useful, especially when trying to achieve things that are
difficult to do otherwise.

The current thread’s TEB is accessible via NtCurrentTeb(), while the PEB of the current
process is available via NtCurrentTeb()->ProcessEnvironmentBlock.

Then some other initializations are carried out, including the creation of the default process
heap (see chapter 13), creation and initialization of the default process thread pool (chapter
9) and more. For full details, consult theWindows Internals book.

The last major part before the entry point can start execution is to load required DLLs.
This part of NtDll is often referred to as the Loader. The loader looks at the import section
of the executable, which includes all the libraries the executable depends upon. These
typically include the Windows subsystem DLLs such as kernel32.dll, user32.dll, gdi32.dll
and advapi32.dll.

To get a sense for these import libraries, we can use the DumpBin.exe tool available as part
of the Windows SDK and Visual Studio installation. Open the Developer Command Prompt
to gain easy access to the various tools and type the following to look at the imports for
Notepad.exe:

c:\>dumpbin /imports c:\Windows\System32\notepad.exe
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The result is a dump of all import libraries and what symbols are imported (used) from those
libraries. Here is an abbreviated output (Windows 10 version 1903):

Dump of file c:\Windows\System32\notepad.exe

File Type: EXECUTABLE IMAGE

Section contains the following imports:

GDI32.dll

140022788 Import Address Table

1400289E8 Import Name Table

0 time date stamp

0 Index of first forwarder reference

35C SelectObject

2D0 GetTextFaceW

1C2 EnumFontsW

...

USER32.dll

140022840 Import Address Table

140028AA0 Import Name Table

0 time date stamp

0 Index of first forwarder reference

364 SetThreadDpiAwarenessContext

2AD PostMessageW

BA DialogBoxParamW

...

msvcrt.dll

140022FD8 Import Address Table

140029238 Import Name Table

0 time date stamp

0 Index of first forwarder reference

2F ?terminate@@YAXXZ

496 memset

...

api-ms-win-core-libraryloader-l1-2-0.dll

140022C60 Import Address Table

140028EC0 Import Name Table

0 time date stamp
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0 Index of first forwarder reference

F GetModuleFileNameA

18 LoadLibraryExW

13 GetModuleHandleExW

...

urlmon.dll

00000001 Characteristics

000000014002C0D0 Address of HMODULE

000000014002F0E0 Import Address Table

0000000140028368 Import Name Table

0000000140028638 Bound Import Name Table

0000000000000000 Unload Import Name Table

0 time date stamp

0000000140020F31 3B FindMimeFromData

...

For each required DLL, dumpbin shows the imported functions from that DLL, i.e. the
functions actually used by the executable. Some of the DLL names may look weird, and
in fact you won’t find them as actual files. The example in the above output is api-ms-win-
core-libraryloader-l1-2-0.dll. This is known as an API Set, which is an indirect mapping from
a contract (the API Set) to an actual implementation DLL (sometimes referred to as a Host).

API Sets exist starting from Windows 7.

Another way to view these dependencies is with a graphical. Figure 3-6 shows one such tool,
PE Explorer, downloadable from http://github.com/zodiacon/AllTools, with Notepad.exe’s
dependencies. For each API Set or DLL, it shows the imported functions.

http://github.com/zodiacon/AllTools
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Figure 3-6: PE Explorer with Notepad.exe

API Sets allows Microsoft to separate function “declarations” from the actual implemen-
tation. This means the implementing DLL can change at a later Windows release, and
can even be different on different form factors (IoT devices, HoloLens, Xbox, etc.). The
actual mapping between API set and implementation is stored for each process in the
PEB. You can view these mappings using the ApiSetMap.exe tool, downloadable from https:
//github.com/zodiacon/WindowsInternals/releases. Here is the first few lines of output:

https://github.com/zodiacon/WindowsInternals/releases
https://github.com/zodiacon/WindowsInternals/releases
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C:\>APISetMap.exe

ApiSetMap - list API Set mappings - version 1.0

(c) Alex Ionescu, Pavel Yosifovich, and Contributors

http://www.alex-ionescu.com

api-ms-onecoreuap-print-render-l1-1-0.dll -> s{printrenderapihost.dll}

api-ms-win-appmodel-identity-l1-2-0.dll -> s{kernel.appcore.dll}

api-ms-win-appmodel-runtime-internal-l1-1-6.dll -> s{kernel.appcore.dll}

api-ms-win-appmodel-runtime-l1-1-3.dll -> s{kernel.appcore.dll}

api-ms-win-appmodel-state-l1-1-2.dll -> s{kernel.appcore.dll}

api-ms-win-appmodel-state-l1-2-0.dll -> s{kernel.appcore.dll}

api-ms-win-appmodel-unlock-l1-1-0.dll -> s{kernel.appcore.dll}

api-ms-win-base-bootconfig-l1-1-0.dll -> s{advapi32.dll}

api-ms-win-base-util-l1-1-0.dll -> s{advapi32.dll}

api-ms-win-composition-redirection-l1-1-0.dll -> s{dwmredir.dll}

api-ms-win-composition-windowmanager-l1-1-0.dll -> s{udwm.dll}

api-ms-win-containers-cmclient-l1-1-1.dll -> s{cmclient.dll}

api-ms-win-core-apiquery-l1-1-1.dll -> s{ntdll.dll}

api-ms-win-core-apiquery-l2-1-0.dll -> s{kernelbase.dll}

The DLLs or API Set names don’t have a full path associated with them. The Loader searches
in the following directories in order until the DLL is located:

1. If the DLL name is one of the KnownDLLs (specified in the registry), the system
directory is searched first (see item 4) (Known DLLs are described in chapter 15 in
part 2). This is where the Windows subsystem DLLs reside (kernel32.dll, user32.dll,
advapi32.dll, etc.)

2. The directory of the executable
3. The current directory of the process (determined by the parent process). (This is

discussed in the next section)
4. The System directory returned by GetSystemDirectory (e.g. c:\windows\system32)
5. The Windows directory returned by GetWindowsDirectory (e.g. c:\Windows)
6. The directories listed in the PATH environment variable

The DLLs listed in the Known DLLs registry key (HKEY_LOCAL_MA-
CHINE\SYSTEM\CurrentControlSet\Control\Session Manager\KnownDLLs) are
always loaded from the system directory, to prevent DLL hijacking, where an
alternate DLL with the same name is placed in the executable’s directory.
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Once the DLL is found, it’s loaded and its DllMain function (if exists) is called with the
reason DLL_PROCESS_ATTACH indicating the DLL has now been loaded into a process. (Full
discussion of DLL loading is saved for chapter 15).

This process continues recursively, because one DLL may depend on another DLL and so
on. If any of the DLLs is not found, the Loader displays a message box similar to figure 3-7.
Then the Loader terminates the process.

Figure 3-7: Failure to locate a required DLL

If any of the DLL’s DllMain function returns FALSE, this indicates the DLL was not able to
initialize successfully. Then the Loader halts further progress and shows the message box in
figure 3-8, after which the process shuts down.

Figure 3-8: Failure to initialize a required DLL

Once all required DLLs have been loaded and initialized successfully, control transfers to
the main entry point of the executable. The entry point in question is not the actual main
function provided by the developer. Instead, it’s a function provided by the C/C++ runtime,
set appropriately by the linker. Why is that needed? Calling functions from the C/C++
runtime such as malloc, operator new, fopen and others require some setup. Also, global
C++ objects must have their constructors called, even before your main function executes.
All this is done by the C/C++ runtime startup function.
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There are actually four main functions developers can write, and for each there is a
corresponding C/C++ runtime function. Table 3-4 summarizes these names and when they
are used.

Table 3-4: main and C/C++ startup functions

Developer’s main C/C++ runtime startup Scenario
main mainCRTStartup Console application using ASCII characters
wmain wmainCRTStartup Console application using Unicode characters
WinMain WinMainCRTStartup GUI application using ASCII characters
wWinMain wWinMainCRTStartup GUI application using Unicode characters

The correct function is set by the linker’s /SUBSYSTEM switch, also exposed through Visual
Studio, in the Project Properties dialog shown in figure 3-9.

Figure 3-9: System Linker setting in Visual Studio

Is a console-based process that different from a GUI-based process? Not really. Both these
types are members of the Windows subsystem. A console application can show GUI and a
GUI application can use a console. The difference lies in various defaults such as the main
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function prototype and whether a console window should be created by default.

A GUI application can create a console with AllocConsole.

The main Functions

Based on the rows in table 3-4, there are four variants of a main function written by
developers:

int main(int argc, const char* argv[]); // const is optional

int wmain(int argc, const wchar_t* argv[]); // const is optional

int WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPSTR commandLine, int showCmd);

int wWinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

LPWSTR commandLine, int showCmd);

Sometimes you’ll see main functions written as _tmain or _tWinMain. As you probably
guess, this allows compiling as Unicode or ASCII based on the compilation constants _-
UNICODE and UNICODE, respectively.

With the classic main/wmain functions, the command line arguments are broken down by
the C/C++ runtime prior to calling (w)main. argc indicates the number of command-line
arguments and is at least one, as the first “argument” is the full path of the executable. argv
is an array of pointers to the parsed (split based on whitespace) arguments. This means
argv[0] points to the full executable path.

With the w(WinMain) functions, the parameters are as follows:

• hInstance represents the executable module itself within the process address space.
Technically, it’s the address to which the executable is mapped. It’s up to the linker
to specify this value. By default, Visual Studio uses the linker option /DYNAMICBASE
which generates a pseudo-random base address each time the project is built. In any
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case, the number itself is not important, but it is needed in various functions, such as
for loading resources (LoadIcon, LoadString and others).

The HINSTANCE type is just a void pointer. Incidentally, the HMODULE type which is
sometimes used interchangeably with HINSTANCE, is indeed the same thing. The reason
two types exist instead of one has to do with 16 bit Windows, where they meant different
things.

• hPrevInstance should represent the HINSTANCE of a previous instance of the same
executable. This value is always NULL, however, and is not really used. In the 16-bit
Windows days, it was non-NULL. This means there is no direct way to know whether
another process running the same executable already exists. We saw one way to deal
with that if needed in the Singleton demo application from chapter 2. The WinMain
signature was preserved from 16-bit Windows for easier porting to 32-bit Windows
(at the time). The end result is that this parameter is often written without a variable
name because it’s completely useless.

An alternative technique to silence compiler warnings (especially with pure C) is to use
the UNREFERENCED_PARAMETER macro with the variable name like so: UNREFERENCED_-
PARAMETER(hPrevInstance);. Ironically, this macro actually references its argument by
simply writing it with a terminating semicolon; that’s enough to make the compiler happy.

• commandLine is the command line string excluding the executable path - it’s the rest
of the command line (if any). It’s not “parsed” into separate tokens - it’s just a single
string. If parsing is beneficial, the following function can be used:
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#include <ShellApi.h>

LPWSTR* CommandLineToArgvW(_In_ LPCWSTR lpCmdLine, _Out_ int* pNumArgs);

The function takes the command line and splits it into tokens, returning a pointer to an array
of string pointers. The count of strings is returned via *pNumArgs. The function allocates a
block of memory to hold the parsed command-line arguments, and it must be eventually
freed by calling LocalFree. The following code snippet shows how to parse the command
line properly in a wWinMain function:

int wWinMain(HINSTANCE hInstance, HINSTANCE, LPWSTR lpCmdLine, int nCmdShow) {

int count;

PWSTR* args = CommandLineToArgvW(lpCmdLine, &count);

WCHAR text[1024] = { 0 };

for (int i = 0; i < count; i++) {

::wcscat_s(text, 1024, args[i]);

::wcscat_s(text, 1024, L"\n");

}

::LocalFree(args);

::MessageBox(nullptr, text, L"Command Line Arguments", MB_OK);

If the string passed to CommandLineToArgvW is the empty string, then its return value is a
single string which is the full executable path. On the other hand, if the passed-in string
contains non-empty arguments, it returns an array of string pointers containing only the
parsed arguments without having the full executable path as the first parsed string.

A process can get its command line at any time by calling GetCommandLine, and it’s a proper
argument to CommandLineToArgvW. This could be useful if parsing is required outside of
wWinMain.

• showCmd is the last argument which suggests how to show the main window of the
application. It’s determined by the process creator, where the default is SW_SHOWDE-
FAULT (10). The application of course is free to disregard this value and show its main
window in any way it pleases.
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Process Environment Variables

Environment variables is a set of name/value pairs that can be set on a system or user wide
basis using the dialog shown in figure 3-10 (accessible from the System Properties dialog or
simply by searching). The names and values are stored in the Registry (like most system data
in Windows).

Figure 3-10: Environment variables editor
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User environment variables are stored in HKEY_CURRENT_USER\Environment.
System environment variables (applicable to all users) are stored at
HKEY_LOCAL_MACHINE\System\Current Control Set\Control\Session
Manager\Environment

A process receives environment variables from its parent process, which are a combination
of system variables (applicable to all users) and user-specific variables. In most cases the
environment variables a process receives are a copy of its parent’s (see next section).

A console application can get the process environment variables with a third argument to
main or wmain:

int main(int argc, char* argv[], const char* env[]); // const is optional

int wmain(int argc, wchar_t* argv[], const wchar_t* env[]); // const is optional

env is an array of string pointers, where the last pointer is NULL, signaling the end of the
array. Each string is built in the following format:

name=value

The equals character separates the name from the value. The following example main
function prints out the names and values of each environment variable:

int main(int argc, const char* argv[], char* env[]) {

for (int i = 0; ; i++) {

if (env[i] == nullptr)

break;

auto equals = strchr(env[i], '=');

// change the equals to NULL

*equals = '\0';

printf("%s: %s\n", env[i], equals + 1);

// for consistency, revert the equals sign

*equals = '=';

}

return 0;

}
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GUI applications can call GetEnvironmentStrings to get a pointer to an environment
variables memory block, formatted like so:

name1=value1\0

name2=value2\0

...

\0

The following code snippet uses GetEnvironmentStrings to show all environment vari-
ables in one giant message box:

PWSTR env = ::GetEnvironmentStrings();

WCHAR text[8192] = { 0 };

auto p = env;

while (*p) {

auto equals = wcschr(p, L'=');

if (equals != p) { // eliminate empty names/values

wcsncat_s(text, p, equals - p);

wcscat_s(text, L": ");

wcscat_s(text, equals + 1);

wcscat_s(text, L"\n");

}

p += wcslen(p) + 1;

}

::FreeEnvironmentStrings(env);

The environment block can be replaced in one swoopwith SetEnvironmentStrings using
the same format returned by GetEnvironmentStrings.

The environment block must be freed with FreeEnvironmentStrings. Normally, applica-
tions don’t need to enumerate environment variables, but rather change or read a specific
value. The following functions are used for this purpose:
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BOOL SetEnvironmentVariable(

_In_ LPCTSTR lpName,

_In_opt_ LPCTSTR lpValue);

DWORD GetEnvironmentVariable(

_In_opt_ LPCTSTR lpName,

_Out_ LPTSTR lpBuffer,

_In_ DWORD nSize);

GetEnvironmentVariable returns the number of characters copied to the buffer if it’s large
enough, or the length of the environment variable otherwise. It returns zero on failure (if the
named variable does not exist). The usual practice is to call the function twice: first, with
no buffer to get the length and then a second time after allocating a properly-sized buffer to
receive the result. The following function can be used to get a variable’s value by returning
a C++ std::wstring as a result:

std::wstring ReadEnvironmentVariable(PCWSTR name) {

DWORD count = ::GetEnvironmentVariable(name, nullptr, 0);

if (count > 0) {

std::wstring value;

value.resize(count);

::GetEnvironmentVariable(name, const_cast<PWSTR>(value.data()), count);

return value;

}

return L"";

}

The const_cast operator above removes the “constness” of value.data() as
it returns const wchar_t*. A brutal C-style cast would work just as well:
(PWSTR)value.data().

Environment variables are used in many situations to specify information that is based on
their current values. For example, a file path may be specified as “%windir%\explorer.exe”.
The name between the percent characters is an environment variable that should be
expended into its real value. Normal API functions don’t have any special understanding of
these intentions. Instead, the application must call ExpandEnvironmentStrings to convert
any environment variable enclosed between percent signs to its value:
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DWORD ExpandEnvironmentStrings(

_In_ LPCTSTR lpSrc,

_Out_opt_ LPTSTR lpDst,

_In_ DWORD nSize);

Just like GetEnviromentVariable, ExpandEnvironmentStrings returns the number of
characters copied to the target buffer or the number of characters that is needed if the buffer
is too small (plus the NULL terminator). Here is an example usage:

WCHAR path[MAX_PATH];

::ExpandEnvironmentStrings(L"%windir%\\explorer.exe", path, MAX_PATH);

printf("%ws\n", path); // c:\windows\explorer.exe

Creating Processes

Processes are created under the same user account with CreateProcess. Extended functions
exist, such as CreateProcessAsUser, whichwill be discussed in chapter 16. CreateProcess
requires an actual executable file. It cannot create a process based on a path to a document
file. For example, passing something like c:\MyData\data.txt, assuming data.txt is some text
file - will fail process creation. CreateProcess does not search for an associated executable
to launch for TXT files. When a file is double-clicked in Explorer, for instance, a higher-level
function from the Shell API is invoked - ShellExecuteEx. This function accepts any file,
and if does not end with “EXE”, will search the registry based on the file extension to locate
the associated program to execute. Then (if located), it will eventually call CreateProcess.

Where does Explorer look for these file associations? We’ll look at that in chapter 17
(“Registry”)

CreateProcess accepts 9 parameters as follows:
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BOOL CreateProcess(

_In_opt_ PCTSTR pApplicationName,

_Inout_opt_ PTSTR pCommandLine,

_In_opt_ PSECURITY_ATTRIBUTES pProcessAttributes,

_In_opt_ PSECURITY_ATTRIBUTES pThreadAttributes,

_In_ BOOL bInheritHandles,

_In_ DWORD dwCreationFlags,

_In_opt_ PVOID pEnvironment,

_In_opt_ PCTSTR pCurrentDirectory,

_In_ PSTARTUPINFO pStartupInfo,

_Out_ PPROCESS_INFORMATION lpProcessInformation);

The function returns TRUE on success, which means that from the kernel’s perspective
the process and the initial thread have been created successfully. It’s still possible for the
initialization done in the context of the new process (described in the previous section) to
fail.

If successful, the real returned information is available via the last argument of type
PROCESS_INFORMATION:

typedef struct _PROCESS_INFORMATION {

HANDLE hProcess;

HANDLE hThread;

DWORD dwProcessId;

DWORD dwThreadId;

} PROCESS_INFORMATION, *PPROCESS_INFORMATION;

There are four pieces of information provided: the unique process and thread IDs, and two
open handles (with all possible permissions unless the new process is protected) to the newly
created process and thread. Using the handles, the creating (parent) process can do anything
it wants with the new process and thread (again, unless the process is protected, see later in
this chapter). As usual, it’s a good idea to close these handles once they are no longer needed.

Now let’s turn our attention to the rest of the parameters that are inputs to the function.

pApplicationName and pCommandLine

These parameters should provide the executable path to run as a new process and any
command-line arguments that are needed. These parameters are not interchangeable,
however.
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In most cases, you’ll use the second argument for both the executable name and any
command-line arguments needed to pass to the executable and set the first argument to
NULL. Here are some of the benefits of the second argument compared to the first:

• If the file name has no extension, an EXE extension is added implicitly before searching
for a match.

• If just a file name is supplied (not a full path) as the executable, the system searches in
the directories listed in the previous section where the Loader looks for required DLLs,
repeated here for convenience:

1. The directory of the caller’s executable
2. The current directory of the process (discussed later in this section)
3. The System directory returned by GetSystemDirectory
4. The Windows directory returned by GetWindowsDirectory
5. The directories listed in the PATH environment variable

If pApplicationName is not NULL, then it must be set to a full path to the executable. In that
case, pCommandLine is still treated as command-line arguments.

One dent in the pCommandLine argument is that it’s typed as PTSTR, meaning it’s a non-
const pointer to a string. This means CreateProcess actually writes (not just reads) to this
buffer, which will cause an access violation if called with a constant string like so:

CreateProcess(nullptr, L"Notepad", ...);

Compile time static buffers are placed by default in a read-only section of the executable
and mapped with the read only protection, causing any writes to raise an exception. The
simplest solution is to place the string in read/write memory by building it dynamically or
placing it on the stack (which is always read/write):

WCHAR name[] = L"Notepad";

CreateProcess(nullptr, name, ...);

The final content of the buffer is the same as initially provided. You might be wondering
why CreateProcess writes to the buffer. Unfortunately, there is no good reason that I
know of and Microsoft should fix that. But they haven’t for many years now, so I wouldn’t
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hold my breath.

This issue does not occur with CreateProcessA (the ASCII version of
CreateProcess). The reason may be obvious: CreateProcessA must convert
its arguments to Unicode, and for that it allocates a buffer dynamically (which
is read/write), converts the string and then calls CreateProcessW with that
allocated buffer. This does not mean you should use CreateProcessA!

pProcessAttributes and pThreadAttributes

These two parameters are SECURITY_ATTRIBUTES pointers (for the newly created process
and thread), discussed in chapter 2. In most cases, NULL should be passed in, unless the
returned handles should be inheritable and in that case an instance with bInheritHandle
= TRUE may be passed in.

bInheritHandles

This parameter is a global switch that allows or disallows handle inheritance (described in the
next sub-section). If FALSE, no handles from the parent process are inherited by the (newly
created) child process. If TRUE, all handles that are marked inheritable will be inherited by
the child process.

dwCreationFlags

This parameter can be a combination of various flags, the more useful ones described in
table 3-5. Zero is a reasonable default in many cases.

Table 3-5: Some flags for CreateProcess

Flag Description
CREATE_BREAKAWAY_FROM_JOB If the parent process is part of a job, the child process is not,

unless the job does not allow breaking out of it in which
case the child process is still created under the same job (see
next chapter for more on jobs)

CREATE_SUSPENDED The process and thread are created, but the thread is
suspended. The parent process eventually should call
ResumeThread on the returned thread handle to start
execution
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Table 3-5: Some flags for CreateProcess

Flag Description
DEBUG_PROCESS The parent process becomes a debugger, and the created

process is the debuggee. The debugger will start getting
debugging events related to the child process. Any processes
created from the child also become debuggees under the
control of the parent process

DEBUG_ONLY_THIS_PROCESS Similar to DEBUG_PROCESS, but only the child process
becomes a debuggee, rather than all child processes created
by the child process

CREATE_NEW_CONSOLE The new process gets its own console (if it’s a CUI
application) rather than inheriting its parent console

CREATE_NO_WINDOW If the child is a CUI application, it’s created without a
console

DETACHED_PROCESS Sort of the opposite of CREATE_NEW_CONSOLE. The child
process does not get any console. If it needs one, it can call
AllocConsole to create one

CREATE_PROTECTED_PROCESS The new process must be run protected (see later in this
chapter)

CREATED_PROTECTED_PROCESS Create the new process as protected. This only works for
executables that are signed by Microsoft specifically for this

CREATE_UNICODE_ENVIRONEMT Creates the environment block for the new process as
Unicode rather than the default (which is ironically ASCII)

INHERIT_PARENT_AFFINITY (Windows 7+) The child process inherits its parent group
affinity (see chapter 6 for more on affinity)

EXTENDED_STARTUPINFO_PRESENT The process is created with an extended STARTUPINFOEX
structure that contains process attributes (see the section
“Process (and Thread) Attributes” later in this chapter

CREATE_DEFAULT_ERROR_MODE Creates the process with the system default error mode
rather than inheriting it from the parent. See the section on
Error Mode in chapter 20

In addition to the flags in table 3-5, the creator can set the process priority class, based on
table 3-6.
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Table 3-6: Priority class flags in CreateProcess

Priority class flag Base priority value
IDLE_PRIORITY_CLASS 4
BELOW_NORMAL_PRIORITY_CLASS 6
NORMAL_PRIORITY_CLASS 8
ABOVE_NORMAL_PRIORITY_CLASS 10
HIGH_PRIORITY_CLASS 13
REALTIME_NORMAL_PRIORITY_CLASS 24

If no priority class flag is specified, the default is Normal unless the creator’s priority class is
Below Normal or Idle, in which case the new process inherits its parent’s priority class. If the
Real-time priority class is specified, the child process must execute with admin privileges;
otherwise, it gets a High priority class instead.

The priority class has little meaning for the process itself. Rather, it sets the default priority
for threads in the new process. We’ll look at the effects of priorities in chapter 6.

pEnvironment

This is an optional pointer to an environment variables block to be used by the child process.
Its format is the same as returned by GetEnvironmentStrings discussed earlier in this
chapter. In most cases, NULL is passed in, which causes the parent’s environment block to be
copied to the new process’ environment block.

pCurrentDirectory

This sets the current directory for the new process. The current directory is used as part of
the search for files in case a file name only is used rather than a full path. For example, a call
to the CreateFile function with a file named “mydata.txt”, will search for the file in the
process’ current directory. The pCurrentDirectory parameter allows the parent process
to set the current directory for the created process which can affect the locations in which
DLL search is performed for required DLLs. In most cases, NULL is passed in, which sets the
current directory of the new process to the current directory of the parent.

Normally, a process can change its current directory with SetCurrentDirectory. Note this
is a process-wide rather than a thread setting:

BOOL SetCurrentDirectory(

_In_ PCTSTR pPathName);

The current directory consists of a drive letter and path or a share name in the Universal
Naming Convention (UNC), such as \\MyServer\MyShare.
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Naturally, the current directory can be queried back with GetCurrentDirectory:

DWORD GetCurrentDirectory(

_In_ DWORD nBufferLength,

_Out_ LPTSTR lpBuffer);

The return value is zero on failure, or the number of characters copied to the buffer (including
the NULL terminator). If the buffer is too small, the returned value is the required character
length (including the NULL terminator).

pStartupInfo

This parameter points to one of two structures, STARTUPINFO or STARTUPINFOEX, defined
like so:

typedef struct _STARTUPINFO {

DWORD cb;

PTSTR lpReserved;

PTSTR lpDesktop;

PTSTR lpTitle;

DWORD dwX;

DWORD dwY;

DWORD dwXSize;

DWORD dwYSize;

DWORD dwXCountChars;

DWORD dwYCountChars;

DWORD dwFillAttribute;

DWORD dwFlags;

WORD wShowWindow;

WORD cbReserved2;

PBYTE lpReserved2;

HANDLE hStdInput;

HANDLE hStdOutput;

HANDLE hStdError;

} STARTUPINFO, *PSTARTUPINFO;

typedef struct _STARTUPINFOEX {

STARTUPINFO StartupInfo;

PPROC_THREAD_ATTRIBUTE_LIST pAttributeList;

} STARTUPINFOEXW, *LPSTARTUPINFOEXW;
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The minimum usage for this parameter is to create a STARTUPINFO structure, initialize its
size (cbmember) and zero out the rest. Zeroing the structure is important, otherwise it holds
junk values which will likely cause CreateProcesss to fail. Here is the minimal code:

STARTUPINFO si = { sizeof(si) };

CreateProcess(..., &si, ...);

STARTUPINFOEX is discussed in the section “Process (and Thread) Attributes” later
in this chapter.

The STARTUPINFO and STARTUPINFOEX structures provide more customization options for
process creation. Some of their members are only used if certain values are set in the dwFlags
member (in addition to other flags). Table 3-7 details dwFlags possible values and their
meaning.

Table 3-7: The dwFlags member of STARTUPINFO flags

Flag Meaning
STARTF_USESHOWWINDOW The wShowWindow member is valid
STARTF_USESIZE The dwXSize and dwYSize members are valid
STARTF_USEPOSITION The dwX and dwY members are valid
STARTF_USECOUNTCHARS The dwXCountChars and dwYCountChars members are valid
STARTF_USEFILLATTRIBUTE The dwFillAttribute member is valid
STARTF_RUNFULLSCREEN For console apps, run full screen (x86 only)
STARTF_FORCEONFEEDBACK Instructs Windows to show the “Working in Background” cursor,

whose shape can be found in the Mouse Properties dialog shown
in figure 3-11. If during the next 2 seconds, the process makes GUI
calls, it gives the process an additional 5 seconds with this cursor
showing. If at any point, the process calls GetMessage, indicating
it’s ready to process messages, the cursor is immediately reverted
to normal.

STARTF_FORCEOFFFEEDBACK Does not show the “Working in Background” cursor
STARTF_USESTDHANDLES The hStdInput, hStdOutput and hStdError members are valid
STARTF_USEHOTKEY The hStdInput member is valid and is a value sent as wParam for

a WM_HOTKEY message. Refer to the documentation for more
information

STARTF_TITLEISLINKNAME The lpTitle member is a path to a shortcut file (.lnk) used to
start the process. The Shell (Explorer) sets this appropriately

STARTF_TITLEISAPPID The lpTitle member is an AppUserModelId. See discussion after
this table
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Table 3-7: The dwFlags member of STARTUPINFO flags

Flag Meaning
STARTF_PREVENTPINNING Prevents any windows created by the process from being pinned

to the task bar. Only works if STARTF_TITLEISAPPID is also
specified

STARTF_UNTRUSTEDSOURCE Indicates the command line passed to the process is from an
untrusted source. This is a hint to the process to check its
command line carefully

Figure 3-11: “Working in Background” mouse cursor

Let’s now examine the other members of STARTUPINFO.
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There are three reserved members, lpRserved, lpReserved2 and cbReserved2 - these
should be set to NULL, NULL and zero, respectively.

The lpDesktop member specifies an alternate Window Station for the new process and an
alternate Desktop for the new thread. If this member is NULL (or an empty string), the parent
process Window Station and Desktop are used. Alternatively, a full desktop name can be
specified in the format windowstation\desktop. For example “winsta0\mydesktop” could be
used. See the sidebarWindow Stations and Desktops for more information.

Window Stations and Desktops
A Window Station is a kernel object which is part of a session. It contains user related
objects: A clipboard, an atom table and desktops. A desktop contains windows, menus and
hooks. A process is associated with a single Window Station. The interactive Window
Station is always named “WinSta0” and is the only one within a session that can be
“interactive”, meaning used with input devices.

By default, a interactive logon session has a Window Station named “winsta0”, in which
two desktops exist: the “default” desktop, where the user normally works - where you
see Explorer, the task bar and whatever else you normally run. Another desktop (created
by the Winlogon.exe process is called “Winlogon” and is the one used when pressing the
famous Ctrl+Alt+Del key combination. Windows calls the SwitchDesktop function to
switch the input desktop to the “Winlogon” desktop. Desktops can be created or opened
with CreateDesktop and OpenDesktop, respectively.

You can find more details in my blog post at https://scorpiosoftware.net/2019/02/17/
windows-10-desktops-vs-sysinternals-desktops/.

The lpTitle member can hold the title for console applications. If NULL, the executable
name is used as the title. If dwFlags has the flag STARTF_TITLEISAPPID (Windows 7 and
later), then lpTitle is an AppUserModelId, which is a string identifier that the shell uses
for task bar item grouping and jump lists. Processes can set their AppUserModelId explicitly
by calling SetCurrentProcessExplicitAppUserModelID rather than letting their parent
dictate it. Working with jump lists and other task bar features are beyond the scope of this
book.

dwX and dwY can be set as default location for windows created by the process. They are used
only if dwFlags includes STARTF_USEPOSITION. The new process can use these values if its
calls to CreateWindow or CreateWindowEx use CW_USEDEFAULT for the window’s position.
(See the CreateWindow function documentation for more details.) dwXSize and dwYSize are

https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/
https://scorpiosoftware.net/2019/02/17/windows-10-desktops-vs-sysinternals-desktops/
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similar, specifying default width and height of new windows created by the child process
if it uses CW_USEDEFAULT as width and height in calls to CreateWindow/CreateWindowEx.
(Of course STARTF_USESIZE must be set in dwFlags for these values to propagate).

dwXCountChars and dwYCountChars set the initial width and height (in characters) of
a console window created by the child process (if any). As with the previous members,
dwFlags must have STARTF_USECOUNTCHARS for these values to have any effect.

dwFillAttribute specifies the initial text and background colors if a new console win-
dow is created with the process. As usual, this member has effect if dwFlags includes
STARTF_USEFILLATTRIBUTE. The possible color combinations have 4 bits each, leading to
16 combinations for text and background. The possible values are shown in table 3-8.

Table 3-8: Color values for consoles

Color constant Value Text/background
FOREGROUND_BLUE 0x01 Text
FOREGROUND_GREEN 0x02 Text
FOREGROUND_RED 0x04 Text
FOREGROUND_INTENSITY 0x08 Text
BACKGROUND_BLUE 0x10 Background
BACKGROUND_GREEN 0x20 Background
BACKGROUND_RED 0x40 Background
BACKGROUND_INTENSITY 0x80 Background

wShowWindow (valid if dwFlags includes STARTF_USESHOWWINDOW) indicates the way the
main window should be shown by the process (assuming it has a GUI). These are values
normally passed to the ShowWindow function, with the SW_ prefix. wShowWindow is unique
because it’s provided directly in the WinMain function as the last parameter. Of course the
created process can just disregard the provided value and show its windows in anyway it sees
fit. But it’s a good practice to honor this value. If the creator does not provide this member,
SW_SHOWDEFAULT is used, indicating the application can use any logic in displaying its main
window. For example, it may have saved the last window position and state (maximized,
minimized, etc.) and so it will restore the window to the saved position/state.

One scenario where this value is controllable is with shortcuts created using the shell.
Figure 3-12 shows a shortcut created for running Notepad. In the shortcut properties,
the way the initial window is shown can be selected: normal, minimized or maximized.
Explorer propagates this value in the wShowWindow member when creating the process
(SW_SHOWNORMAL, SW_SHOWMINNOACTIVE, SW_SHOWMAXIMIZED).



Chapter 3: Processes 125

Figure 3-12: Show window in shortcuts

The last three members in STARTUPINFO are handles to standard input (hStdInput), output
(hStdOutput) and error (hStdError). If dwFlags contains STARTF_USEHANDLES, these
handles will be used in the new process as such. Otherwise, the new process will have the
defaults: input from keyboard, output and error to the console buffer.
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If the process is launched from the taskbar or a jump list (Windows 7+), the hStdOutput
handle is actually a handle to a monitor (HMONITOR) fromwhich the process was launched.

Given all these various options for process creation (and there are more discussed in the
section “Process (and Thread) Attributes” later in this chapter), it may seem daunting to
create a process, but in most cases it’s fairly straightforward if the defaults are acceptable.
The following code snippet creates an instance of Notepad:

WCHAR name[] = L"notepad";

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi;

BOOL success = ::CreateProcess(nullptr, name, nullptr, nullptr, FALSE,

0, nullptr, nullptr, &si, &pi);

if (!success) {

printf("Error creating process: %d\n", ::GetLastError());

}

else {

printf("Process created. PID=%d\n", pi.dwProcessId);

::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

}

What can be done with the returned handles from CreateProcess? One thing is being
notifiedwhen the process terminated (for whatever reason). This is donewith the WaitForS-
ingleObject function. This function is not specific to a process, but can wait for various
kernel objects until they become signaled. The meaning of signaled depends on the object
type; for a process, it means terminated. A detailed discussion of the “wait” functions is saved
for chapter 8. Here, we’ll look at a couple of examples. First we can wait indefinitely until
the process exits:
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// process creation succeeded

printf("Process created. PID=%d\n", pi.dwProcessId);

::WaitForSingleObject(pi.hProcess, INFINITE);

printf("Notepad terminated.\n");

::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

}

WaitForSingleObject puts the calling thread into a wait state until the object in question
changes to the signaled state or the timeout expires. In case of INFINITE (-1), it never expires.
Here is an example for a non-INFINITE timeout:

DWORD rv = ::WaitForSingleObject(pi.hProcess, 10000); 10 seconds

if (rv == WAIT_TIMEOUT)

printf("Notepad still running...\n");

else if (rv == WAIT_OBJECT_0)

printf("Notepad terminated.\n");

else // WAIT_ERROR (unlikely in this case)

printf("Error! %d\n", ::GetLastError());

The calling thread blocks for nomore then 10000milliseconds, after which the returned value
indicates the state of the process.

A process can always get the STARTUPINFO it was created with by calling
GetStartupInfo.

Handle Inheritance

In chapter 2 we looked at ways to share kernel objects between processes. One is sharing by
name the other by duplicating handles. The third option is to use handle inheritance. This
option is only available if a process creates a child process. At the point of creation, the parent
process can duplicate a selected set of handles to the target process. Once CreateProcess is
called with the fifth argument set to TRUE, all handles in the parent process that have their
inheritance bit set will be duplicated into the child process, where the handle values are the
same as in the parent process.
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The last sentence is important. The child process cooperates with the parent process
(presumably they are part of the same software system), and it knows it’s going to get some
handles from its parent. What it does not know is what the values of these handles are.
One simple way of providing these values is using the command line arguments sent to the
process being created.

Setting a handle to be inheritable can be done in several ways:

• If the object in question is created by the parent process, then its SECURITY_AT-
TRIBUTES can be initialized with a handle inheritance flag and passed to the Create
function like so:

SECURITY_ATTRIBUTES sa = { sizeof(sa) };

sa.bInheritHandles = TRUE;

HANDLE h = ::CreateEvent(&sa, FALSE, FALSE, nullptr);

// handle h will be inherited by child processes

• For an existing handle, call SetHandleInformation:

::SetHandleInformation(h, HANDLE_FLAG_INHERIT , HANDLE_FLAG_INHERIT);

• Lastly, most Open functions allow setting the inheritance flag on a successfully
returned handle. Here is an example for a named event object:

HANDLE h = ::OpenEvent(EVENT_ALL_ACCESS,

TRUE, // inheritable

L"MyEvent");

The InheritSharing application is yet another variation on the memory sharing applications
from chapter 2. This time, the sharing is achieved by inheriting the memory mapping handle
to child processes created from a first process. The dialog now has an extra Create button to
spawn new processes with an inherited shared memory handle (figure 3-13).
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Figure 3-13: Sharing by Inheritance application

A InheirtSharing process creates another instance of itself when the Create button is clicked.
The new instance must get a handle to the shared memory object, and this is done by
inheritance: the existing shared memory handle (held in a wil::unique_handle object)
needs to be made inheritable so that it can be duplicated to the new process. The Create
button click handler starts with setting the inheritance bit:

::SetHandleInformation(m_hSharedMem.get(), HANDLE_FLAG_INHERIT, HANDLE_FLAG_INH\

ERIT);

Now the new process can be created with the fifth argument set to TRUE, indicating all
inheritable handles are to be duplicated for the new process. In addition, the new process
needs to know the value of its duplicated handle, and this is passed in the command line:

STARTUPINFO si = { sizeof(si) };

PROCESS_INFORMATION pi;

// build command line

WCHAR path[MAX_PATH];

::GetModuleFileName(nullptr, path, MAX_PATH);

WCHAR handle[16];

::_itow_s((int)(ULONG_PTR)m_hSharedMem.get(), handle, 10);

::wcscat_s(path, L" ");

::wcscat_s(path, handle);

// now create the process

if (::CreateProcess(nullptr, path, nullptr, nullptr, TRUE,

0, nullptr, nullptr, &si, &pi)) {
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// close unneeded handles

::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

}

else {

MessageBox(L"Failed to create new process", L"Inherit Sharing");

}

The command line is built by first calling GetModuleFileName, which generally allows
getting a full path for any DLL loaded in the process. With the first argument set to NULL, the
executable full path is returned. This approach is robust, such that there is no dependency
on the actual location of the executable in the file system.

Once this path is returned, the handle value is appended as a command-line argument.
Remember that an inherited handle always has the same value as in the original process. This
is possible because the new process handle table is initially empty, so the entry is definitely
unused.

The last piece of the puzzle is when the process starts up. It needs to know whether it’s the
first instance, or an instance that gets an existing inherited handle. In the WM_INITDIALOG
message handler, the command line needs to be examined. If there is no handle value in
the command line then the process needs to create the shared memory object. Otherwise, it
needs to grab the handle and just use it.

int count;

PWSTR* args = ::CommandLineToArgvW(::GetCommandLine(), &count);

if (count == 1) {

// "master" instance

m_hSharedMem.reset(::CreateFileMapping(INVALID_HANDLE_VALUE,

nullptr, PAGE_READWRITE, 0, 1 << 16, nullptr));

}

else {

// first "real" argument is inherited handle value

m_hSharedMem.reset((HANDLE)(ULONG_PTR)::_wtoi(args[1]));

}

::LocalFree(args);

Since this is not WinMain, the command line arguments are not readily available. GetCom-
mandLine can always be used to get the command line at any time. Then CommandLine-
ToArgvW is used to parse the arguments (discussed earlier in this chapter). If no handle value
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is passed in, CreateFileMapping is used to create the shared memory. Otherwise, the value
is interpreted as a handle and attached to the wil::unique_handle object for safe keeping.

You can try creating a new instance from a child process - it works in exactly the same way
as using the “original” handle to propagate to the child process.

Debugging Child Processes with Visual Studio
In the InheritSharing application, it’s desirable to debug not just the main instance, but
also a child process, because it’s initiated with a different command line. Visual Studio by
default does not debug child processes (processes created by the debugged process).

There is, however, an extension to Visual Studio that allows this. Open the extensions
dialog (Tools/Extensions and Updates in VS 2017, Extensions/Manage Extensions in VS
2019), go to the Online node and search forMicrosoft Child Process Debugging Power Tool
and install it (figure 3-14).

Figure 3-14: Child Process Debugging Power Tool in extensions

Once installed, go toDebug/Other Debug Targets/Child Process Debugger Settings…, check
Enable Child Process Debugging and click Save. Now set a breakpoint at CMainDlg::OnInitDialog
and start debugging normally (F5).

The first time you hit the breakpoint is when the dialog comes up for a fresh process,
creating its own shared memory object. The count variable should be 1 (figure 3-15).

Figure 3-15: Breakpoint in the first process

Continue debugging and click Create. A new process should come up under the control of
the debugger and the same breakpoint should hit again (figure 3-16). Notice count is now
2. Also notice it’s a different process - the Processes toolbar combobox should show two
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processes (figure 3-17).

Figure 3-16: Breakpoint in the second process

Figure 3-17: Debugging multiple processes

Process Drive Directories

Every process has its current directory, set with SetCurrentDirectory and retrieved with
GetCurrentDirectory. This directory is used when accessing a file without any path prefix
such as “mydata.txt”. What about default directories when accessing a file with a drive prefix
like “c:mydata.txt” (notice the lack of a backslash).

As it turns out, the system keeps track of the current directory for each drive using process
environment variables. If you call GetEnvironmentStrings, you’ll discover something like
the following at the beginning of the block:

=C:=C:\Dev\Win10SysProg

=D:=D:\Temp

To get the current directory for a drive call GetFullPathName:
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DWORD GetFullPathNameW(

_In_ LPCWSTR lpFileName,

_In_ DWORD nBufferLength,

_Out_ LPWSTR lpBuffer,

_Outptr_opt_ LPWSTR* lpFilePart);

Generally speaking, this function returns the full path of a given file name. Specifically, with
a drive letter it returns its current directory. Here is an example:

WCHAR path[MAX_PATH];

::GetFullPathName(L"c:", MAX_PATH, path, nullptr);

Do not append a backslash to the drive letter after the colon! If you do, you’ll just
get the same string back.

Calling the function with a drive letter and a file name returns the resulting full path of the
drive’s current directory and the file name:

WCHAR path[MAX_PATH];

::GetFullPathName(L"c:mydata.txt", MAX_PATH, path, nullptr); // no backslash

The above code might return something like “c:Win10SysProg\mydata.txt”.

GetFullPathName does not check for the existence of the file provided.

Process (and Thread) Attributes

The STARTUPINFO structure we met in CreateProcess has quite a few fields in it. It stands
to reason that future versions of Windows may require more ways to customize process
creation. One possible way would be to extend the STARTUPINFO structure and add more
flags to make certainmembers valid. Microsoft decided to extend STARTUPINFO in a different
way starting with Windows Vista.

An extended structure, STARTUPINFOEX is defined, that extends STARTUPINFO, shown here
again for convenience:
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typedef struct _STARTUPINFOEX {

STARTUPINFO StartupInfo;

PPROC_THREAD_ATTRIBUTE_LIST pAttributeList;

} STARTUPINFOEXW, *LPSTARTUPINFOEXW;

The memory layout of STARRTUPINFOEX starts with a STARTUPINFO with just one added
member: an opaque attribute list. This attribute list is the main extension mechanism for
CreateProcess (and CreateRemoteThreadEx discussed in chapter 5). Since this attribute
list can point to any number of attributes, there is no need to extend STARTUPINFOEX further.

Creating and filling an attribute list requires the following steps:

1. Allocate and initialize an attribute list with InitializeProcThreadAttributeList.
2. Add attributes as required by calling UpdateProcThreadAttribute once for each

attribute.
3. Set the pAttribute member of STARTUPINFOEX to point to the attribute list.
4. Call CreateProcess with the extended structure, not forgetting to add the flag

EXTENDED_STARTUPINFO_PRESENT to the creation flags (sixth parameter to Cre-
ateProcess)

5. Delete the attribute list with DeleteProcThreadAttributeList.

Let’s take these steps in turn. Here is the simplified declaration of InitializeProcThrea-
dAttributeList:

BOOL InitializeProcThreadAttributeList(

_Out_ PPROC_THREAD_ATTRIBUTE_LIST pAttributeList,

_In_ DWORD dwAttributeCount,

_Reserved_ DWORD dwFlags, // must be zero

PSIZE_T pSize);

The first step is to allocate a buffer large enough to hold the required number of attributes.
This is done by calling InitializeProcThreadAttributeList twice: first to get the
required size, allocate a buffer, and then make a second call to initialize the buffer to hold
an attribute list.

The following example performs these steps (error handling omitted):
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SIZE_T size;

// get required size

::InitializeProcThreadAttributeList(nullptr, 1, 0, &size);

// allocate the required size

auto attlist = (PPROC_THREAD_ATTRIBUTE_LIST)malloc(size);

// initialize

::InitializeProcThreadAttributeList(attlist, 1, 0, &size); // just one attribu\

te

The first call to InitializeProcThreadAttributeList returns FALSE, with GetLastEr-
ror returning 122 (“The data area passed to a system call is too small.”). This is expected,
since the real return value is the required size. The attribute list itself must be allocated by
the caller (malloc is used in the above snippet), which also means it must be freed after the
call to CreateProcess.

Next, UpdateProcThreadAttribute is called a number of times according to the count of
attributes. The list of possible attributes has grown with almost every Windows release, and
is likely to continue growing. Table 3-9 shows the documented attributes for processes and
threads (at the time of writing), with a brief description.

Table 3-9: Documented process and thread attributes

Attribute constant
PROC_THREAD_ATTRIBUTE_

Applies to Minimum version Description

PARENT_PROCESS Process Windows Vista Sets a different parent
process from which to inherit
various properties

HANDLE_LIST Process Windows Vista Specified a list of handles to
be inherited by the child
process

GROUP_AFFINITY Thread Windows 7 Sets the default CPU affinity
group for the new thread (see
chapter 6)

PREFERRED_NODE Process Windows 7 Sets the preferred NUMA
node for the new process

IDEAL_PROCESSOR Thread Windows 7 Sets the ideal CPU for the
new thread (see chapter 6)
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Table 3-9: Documented process and thread attributes

Attribute constant
PROC_THREAD_ATTRIBUTE_

Applies to Minimum version Description

UMS_THREAD Thread Windows 7 Sets the User Mode
Scheduling (UMS) context
for the new thread (see
chapter 10)

MITIGATION_POLICY Process Windows 7 Sets security mitigation
policies for the new process
(see chapter 16)

SECURITY_CAPABILITIES Process Windows 8 Sets the security capabilities
of an AppContainer (see
chapter 16)

PROTECTION_LEVEL Process Windows 8 Launches the new process
with the same protection
level as the creator

CHILD_PROCESS_POLICY Process Windows 10 Specifies whether the new
process can create child
processes

DESKTOP_APP_POLICY Process Windows 10 (1703) Applies to applications
converted to UWP using
Desktop Bridge. Specifies
whether the new process’
child processes will be
created outside the desktop
app environment

Desktop Bridge is discussed in chapter 18.

UpdateProcThreadAttribute is defined like so:
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BOOL UpdateProcThreadAttribute(

_Inout_ PPROC_THREAD_ATTRIBUTE_LIST pAttributeList,

_In_ DWORD dwFlags, // must be zero

_In_ DWORD_PTR Attribute,

_In_ PVOID pValue,

_In_ SIZE_T cbSize,

_Out_ PVOID pPreviousValue, // must be NULL

_In_opt_ PSIZE_T pReturnSize); // must be NULL

The following example uses PROC_THREAD_ATTRIBUTE_PARENT_PROCESS attribute to set a
different parent by specifying a handle to another process:

HANDLE hParent = ...;

::UpdateProcThreadAttribute(attlist, 0, PROC_THREAD_ATTRIBUTE_PARENT_PROCES\

S,

&hParent, sizeof(hParent), nullptr, nullptr);

With PROC_THREAD_ATTRIBUTE_PARENT_PROCESS, the attribute value is an open handle to
the relevant process. See the documentation for details on the other attributes values.

Once the attribute list is fully updated, the call to CreateProcess can commence, being
careful to use the correct structure and flags for the attributes to have any effect:

STARTUPINFOEX si = { sizeof(si) };

si.lpAttributeList = attlist;

PROCESS_INFORMATION pi;

WCHAR name[] = L"Notepad";

::CreateProcess(nullptr, name, nullptr, nullptr, FALSE,

EXTENDED_STARTUPINFO_PRESENT, nullptr, nullptr, (STARTUPINFO*)&si, &pi);

There are two things that must be set to indicate an attribute list: the STARTUPINFOEX
structure and the flag EXTENDED_STARTUPINFO_PRESENT. Without the latter, the attributes
won’t be applied.

The last step is cleaning up the attribute list and the allocated memory for it:
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::DeleteProcThreadAttributeList(attList);

::free(attList);

Given the above steps, the following function creates a given process parented with another
process based on its ID:

DWORD CreateProcessWithParent(PWSTR name, DWORD parentPid) {

HANDLE hParent = ::OpenProcess(PROCESS_CREATE_PROCESS, FALSE, parentPid);

if (!hParent)

return 0;

PROCESS_INFORMATION pi = { 0 };

PPROC_THREAD_ATTRIBUTE_LIST attList = nullptr;

do {

SIZE_T size = 0;

::InitializeProcThreadAttributeList(nullptr, 1, 0, &size);

if (size == 0)

break;

attList = (PPROC_THREAD_ATTRIBUTE_LIST)malloc(size);

if (!attList)

break;

if (!::InitializeProcThreadAttributeList(attList, 1, 0, &size))

break;

if (!::UpdateProcThreadAttribute(attList, 0, PROC_THREAD_ATTRIBUTE_PARE\

NT_PROCESS,

&hParent, sizeof(hParent), nullptr, nullptr))

break;

STARTUPINFOEX si = { sizeof(si) };

si.lpAttributeList = attList;

if (!::CreateProcess(nullptr, name, nullptr, nullptr, FALSE,

EXTENDED_STARTUPINFO_PRESENT, nullptr, nullptr, (STARTUPINFO*)&si, \

&pi))

break;
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::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

} while (false);

::CloseHandle(hParent);

if (attList) {

::DeleteProcThreadAttributeList(attList);

::free(attList);

}

return pi.dwProcessId;

}

Most of the code is the same as the steps outlined for working with attributes, with error
handling added and proper cleanup. Notice the process handle is opened with the PROCESS_-
CREATE_PROCESS access mask. This is required when using the PROC_THREAD_ATTRIBUTE_-
PARENT_PROCESS attribute. This means not all processes can just arbitrarily serve as parents.

Running this function from with Notepad and a PID of an Explorer process created Notepad
as expected. Opening its properties in Process Explorer shows Explorer as being the parent
(figure 3-18).
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Figure 3-18: Changing parent process

As another example, consider the following function that applied a process security mitiga-
tion policy:
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DWORD CreateProcessWithMitigations(PWSTR name, DWORD64 mitigation) {

PROCESS_INFORMATION pi = { 0 };

PPROC_THREAD_ATTRIBUTE_LIST attList = nullptr;

do {

SIZE_T size = 0;

::InitializeProcThreadAttributeList(nullptr, 1, 0, &size);

if (size == 0)

break;

attList = (PPROC_THREAD_ATTRIBUTE_LIST)malloc(size);

if (!attList)

break;

if (!::InitializeProcThreadAttributeList(attList, 1, 0, &size))

break;

if (!::UpdateProcThreadAttribute(attList, 0, PROC_THREAD_ATTRIBUTE_MITI\

GATION_POLICY,

&mitigation, sizeof(mitigation), nullptr, nullptr))

break;

STARTUPINFOEX si = { sizeof(si) };

si.lpAttributeList = attList;

if (!::CreateProcess(nullptr, name, nullptr, nullptr, FALSE,

EXTENDED_STARTUPINFO_PRESENT, nullptr, nullptr, (STARTUPINFO*)&si, \

&pi))

break;

::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

} while (false);

if (attList) {

::DeleteProcThreadAttributeList(attList);

::free(attList);

}

return pi.dwProcessId;

}
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The code is nearly identical except for the different attribute. The value associated with
PROC_THREAD_ATTRIBUTE_MITIGATION_POLICY is a DWORD or DWORD64 indicating the mit-
igation(s) to apply to the new process.

Full discussion of process mitigations is in chapter 16.

For example, calling this function with the following arguments

WCHAR name[] = L"notepad";

auto pid = CreateProcessWithMitigations(name,

PROCESS_CREATION_MITIGATION_POLICY_WIN32K_SYSTEM_CALL_DISABLE_ALWAYS_ON);

Causes Notepad to fail initialization and terminate, not before showing the message box
in figure 3-19. The reason is that the specific mitigation prevents calls to Win32k.sys (the
windowingmanager), which essentiallymeansUser32.dll cannot properly initialize.Without
this capability Notepad is useless and cannot properly execute. This mitigation is good for
processes that have no UI and want to make sureWin32k.sys security vulnerabilities cannot
be used in such a process.

Figure 3-19: Notepad failing to initialize

Protected and PPL Processes

Protected processes were introduced in Windows Vista as a way to fight Digital Rights
Management (DRM) infringements. These processes be granted certain access rights even
by admin-level users. The only access masks allowed for protected processes are: PRO-
CESS_QUERY_LIMITED_INFORMATION, PROCESS_SET_LIMITED_INFORMATION, PROCESS_-
SUSPEND_RESUME and PROCESS_TERMINATE.
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Only Microsoft-signed executables with a certain Extended Key Usage (EKU) were allowed
to execute protected.

Windows 8.1 introduced Protected Processes Light (PPL), which extends the protectionmodel
to include several levels of protection, where higher level protected processes have full access
to lower level ones, but not vice versa. With the extended model, it is now possible to run
third party anti-malware services by negotiating with Microsoft and obtaining the proper
signature. Also, some of the PPL levels (such as for anti-malware) deny PROCESS_TERMINATE
access, so that malicious software, even with elevated permissions, cannot stop or kill these
services. Table 3-10 lists the PPL signer levels with a brief description.

Table 3-10: PPL signers

PPL Signer Level Description
WinSystem 7 System and minimal processes
WinTcb 6 Critical Windows components. PROCESS_TERMINATE is denied
Windows 5 Important Windows components handling sensitive data
Lsa 4 Lsass.exe (if configured to run protected)
Antimalware 3 Anti-malware service processes, including 3rd party.

PROCESS_TERMINATE is denied
CodeGen 2 .NET native code generation
Authenticode 1 Hosting DRM content
None 0 Not valid (no protection)

The level (and whether the process is “normal” protected or PPL) shown in table 3-10 is
stored inside the kernel process object.

The “limited” access masks allowed for protected/PPL processes cater for setting/querying
superficial information about the process, such as querying its start time, its priority class
or its executable path. Getting a list of loaded modules inside a protected process cannot be
obtained because this requires an access mask of PROCESS_QUERY_INFORMATION, which is
not allowed. Figure 3-20 shows Csrss.exe selected in Process Explorer. Notice that the list of
modules in the bottom pane is empty. Also, the Protection column is shown, with the signer
values from table 3-10.
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Figure 3-20: Protected Processes

Figure 3-20 also shows Microsoft’s own anti-malware executables (MsMpEng.exe and
NisSrv.exe, known as “Windows Defender”) running as anti-malware PPL, just like other
3rd party anti-malware services.

Protected and PPL processes cannot load arbitrary DLLs, so that the protected process is not
tricked into loading an untrusted DLL that would run under the protection of the process.
All DLLs loaded by protected/PPL processes must be signed properly.

Creating a process as protected requires the CREATE_PROTECTED_PROCESS flag in Cre-
ateProcess. Of course, this can only work on properly signed executables. The protection
mechanism is too specialized to be used by normal applications and so is not going to be
discussed further in this book.

You can find more information on protected/PPL processes in the “Windows
Internals 7th edition Part 1” book in chapter 3.

UWP Processes

AUniversalWindows Platform (UWP) process is similar to any other standard process. It uses
theWindows Runtime platform/API to domost of its work - be that UI, graphics, networking,
background processing and so on. Some of its unique properties include:
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• A UWP process always runs under an application sandbox known as AppContainer
that limits what it can do and what it can access (discussed in more detail in chapter
16, “Security”).

• A UWP process’ state is managed by the Process Lifetime Manager (PLM), running
under the Explorer.exe process, that can initiate process suspension, resumption, and
termination based on its foreground/background activity andmemory usage (discussed
more in chapter 18).

• A UWP package includes a set of capabilities - declarations - of what the application
wants to access (such as camera, location, Pictures folder) and those capabilities are
listed in the Microsoft Store so that users can decide whether that would like to
download such an application.

• UWP processes are single instance by default (multiple instances supported starting
with Windows 10 version 1803).

From a process creation perspective, a standard CreateProcess call cannot create a UWP
process. This is because a UWP application has identity, something that is missing from
standard executables. Such an application is built into a package with the executable,
libraries, resource files and anything else that is needed for the application to execute
properly. This package has a universally unique name, and this name is the one required
for UWP process creation.

You can view this name in Task Manager or Process Explorer by adding the
Package Name column.

As a simple example to this requirement, run Calculator on Windows 10, and look at its
properties with Process Explorer (figure 3-21). Notice the command line; disregard its length
and ugliness and just copy it, and use Start/Run to launch another calculator with the pasted
in the command-line. You’ll get an error message box similar to the one in figure 3-22.
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Figure 3-21: Calculator properties in Process Explorer

Figure 3-22: Error message box when creating Calculator manually

The error message in figure 3-22 seems unrelated to anything. The missing piece of
information is the package full name, which needs to be specified as a process attribute.
Unfortunately, this particular attribute is undocumented, so cannot be specified with the
help of theWindows headers. There is a way to specify this parameter using another creation
mechanism devised just for this purpose and exposed through a COM interface (and class).

TheMetroManager application, shown in figure 3-23 lists the available UWP packages on the
machine, and allows the user to launch any selected package. The application demonstrates
a few interesting abilities:

• Consuming Windows Runtime APIs from a non-UWP application.
• Enumerating packages
• Launching UWP processes in the documented way.
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Figure 3-23: TheMetro Manager application

The Windows Runtime (WinRT) is built on top of COM, which means it utilizes interfaces,
classes, class factories, GUIDs and other concepts from the COM world (albeit giving to
some new names). The Windows Runtime supports entities typically found in high level
languages, including static methods and generics. We’ll look at how this works in chapter
18. Here, I want to concentrate mostly on the mechanics of using the Windows Runtime.

The Windows Runtime API can be consumed by a C++ client in several ways:

1. Directly, by instantiating the proper classes and working with the low level object
factories until an instance is created and then use normal COM calls.

2. Use theWindows Runtime Library (WRL) C++ wrappers and helpers.
3. Use the C++/CX language extensions, that provide an easy access to WinRT by

extending C++ in a non-standard way.
4. Use the CppWinRT library, that provides relatively easy access to theWinRTAPIs with

standard C++ only.

All the above four ways are officially supported. The first option is the most tedious and is
only recommended for learning purposes, as it hides very little from the developer and so
is very verbose. Option 2 is easier to use, but is not favored today, not even by Microsoft.
Option 3 is the easiest and was the most common in the early days of WinRT, but is frowned
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upon today because it forces the developer to use non-standard C++ extensions. This leaves
option 4, which is the recommended way to work with WinRT in C++, as it’s easy enough
to work with but still uses standard C++ constructs.

CppWinRT is beyond the scope of this book, but we’ll cover the basics which can get you
quite far. First, we need to add the Nuget package for the library (figure 3-24). Next, we need
to add includes for the namespaces that we wish to use from WinRT. The following was
added to the pre-compiled header (pch.h in the project source code):

Figure 3-24: CppWinRT Nuget package

More CppWinRT information is available in the online Microsoft documentation.

#include <winrt/Windows.Foundation.h>

#include <winrt/Windows.Foundation.Collections.h>

#include <winrt/Windows.ApplicationModel.h>

#include <winrt/Windows.Management.Deployment.h>

#include <winrt/Windows.Storage.h>

This is the general format of the CppWinRT headers: winrt prefix and then the namespace
(found in the WinRT documentation).

The headers without the winrt prefix are the “real” WinRT headers, that are included
internally. You generally don’t want these headers when working with CppWinRT.

Since all WinRT APIs are in namespaces and nested namespaces, the type names become
long. It’s much easier to add using namespace statements to a source file, or in some cases
- a function to ease accessing the various types:
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using namespace winrt;

using namespace winrt::Windows::Management::Deployment;

using namespace winrt::Windows::ApplicationModel;

The winrt namespace itself has some general CppWinRT helpers, so it’s mandatory. The
others depend on the types we use.
Enumerating the UWP packages is done with the PackageManager class in the
winrt::Windows::Management::Deployment namespace:

auto packages = PackageManager().FindPackagesForUser(L"");

An empty string for the user looks at the current user (other users on the system may have
installed different packages).

The auto keyword is real helper here as the actual returned type is IIterable<Package>
(and I’ve shortened both types assuming we have using namespace for them). The
important point is this method returns a collection (IIterable<>) in WinRT parlance.
Because of the added conveniences in CppWinRT, any such collection can be iterated upon
with the C++ enhanced range-based for statement:

for (auto package : packages) {

auto item = std::make_shared<AppItem>();

item->InstalledLocation = package.InstalledLocation().Path().c_str();

item->FullName = package.Id().FullName().c_str();

item->InstalledDate = package.InstalledDate();

item->IsFramework = package.IsFramework();

item->Name = package.Id().Name().c_str();

item->Publisher = package.Id().Publisher().c_str();

item->Version = package.Id().Version();

m_AllPackages.push_back(item);

}

AppItem is a normal C++ class the application defines to store the information in plain C++
types rather than WinRT types where it makes sense, especially for strings:
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struct AppItem {

CString Name, Publisher, InstalledLocation, FullName;

winrt::Windows::ApplicationModel::PackageVersion Version;

winrt::Windows::Foundation::DateTime InstalledDate;

bool IsFramework;

};

The standard Windows Runtime string is typed as HSTRING, which is an im-
mutable array of UTF-16 characters stored with its length.

This AppItem-stored data is used to show the information in the application’s list view.

Running a UWP package is accomplished with the following COM (not WinRT) interface,
shown in C++:

struct IApplicationActivationManager : public IUnknown {

virtual HRESULT __stdcall ActivateApplication(

/* [in] */ LPCWSTR appUserModelId,

/* [unique][in] */ LPCWSTR arguments,

/* [in] */ ACTIVATEOPTIONS options,

/* [out] */ DWORD *processId) = 0;

virtual HRESULT __stdcall ActivateForFile(

/* [in] */ LPCWSTR appUserModelId,

/* [in] */ IShellItemArray *itemArray,

/* [unique][in] */ LPCWSTR verb,

/* [out] */ DWORD *processId) = 0;

virtual HRESULT __stdcall ActivateForProtocol(

/* [in] */ LPCWSTR appUserModelId,

/* [in] */ IShellItemArray *itemArray,

/* [out] */ DWORD *processId) = 0;

};

There are several ways to “activate” a UWP application, using something called contracts,
where one of the contracts is called Launch, which naturally launches the application.
ActivateApplication is using the Launch contract, while the others work with different
contracts. We’ll use the Launch contract only in this application.
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The complete code for launching an app is in the CView::RunApp member function. First,
we need to locate some information about a package using its unique package full name
(stored in the AppItem structure shown earlier). Here is the first call:

bool CView::RunApp(PCWSTR fullPackageName) {

PACKAGE_INFO_REFERENCE pir;

int error = ::OpenPackageInfoByFullName(fullPackageName, 0, &pir);

if (error != ERROR_SUCCESS)

return false;

OpenPackageInfoByFullName returns an opaque pointer to an internal data structure that
holds information about the requested package. Unfortunately, the full package name is not
enough, because theoretically a package can contain multiple applications (which is not yet
supported) and so another application ID needs to be extracted from the package:

UINT32 len = 0;

error = ::GetPackageApplicationIds(pir, &len, nullptr, nullptr);

if (error != ERROR_INSUFFICIENT_BUFFER)

break;

auto buffer = std::make_unique<BYTE[]>(len);

UINT32 count;

error = ::GetPackageApplicationIds(pir, &len, buffer.get(), &count);

if (error != ERROR_SUCCESS)

break;

This is accomplished in two steps: first calling GetPackageApplicationIds with a NULL
pointer for the application ID and a length of zero. This causes the function to fill in the
required length. Then, a buffer is constructed with make_unique (ensuring it’s automatically
destroyed when the variable goes out of scope), and a second call is made.

The application IDs returned are stored with a 4-byte length and then the data itself. Since
only one application is expected, we can just skip the first 4 bytes and use the rest as the
application ID. The last step is to create the instance that implements IApplicationActi-
vationManager and call ActivateApplication with the application ID:
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CComPtr<IApplicationActivationManager> mgr;

auto hr = mgr.CoCreateInstance(CLSID_ApplicationActivationManager);

if (FAILED(hr))

break;

DWORD pid;

hr = mgr->ActivateApplication((PCWSTR)(buffer.get() + sizeof(ULONG_PTR)),

nullptr, AO_NOERRORUI, &pid);

ActivateApplication is even kind enough to return the process ID of the created process.
Finally, the package information data needs to be freed:

::ClosePackageInfo(pir);

If you look at the parent of any UWP process, you’ll discover it’s an Svchost.exe process,
rather than the direct creator (see figure 3-22). This is because UWP processes are actually
launched by the DCOM Launch service, hosted in a service host (figure 3-25).
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Figure 3-25: The DCOM Launch service

Minimal and Pico Processes

Minimal processes contain just a user mode address space. Memory Compression and
Registry are canonical examples of minimal processes. Minimal processes can only be created
by the kernel, and so will not be discussed further in this book.

Pico processes are minimal processes with an added twist: a pico provider, which is a kernel
driver that is responsible for translating Linux system calls to equivalent Windows system
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calls. This is the basis of theWindows Subsystem for Linux (WSL), available in Windows 10
version 1607 (and later) and Windows 2016 (and later). Pico processes are beyond the scope
of this book, although I may publish a special chapter on WSL in the future.

Process Termination

Most processes will terminate at some point before the system is shutdown. There are several
ways a process might exit or terminate. One thing to keep in mind is no matter how a process
terminates, the kernel ensures nothing private to the process remains: all private (non-shared)
memory is freed and all handles in the process handle table are closed.

A process terminates if any one of the following conditions is met:

1. All the threads in the process exit or terminate.
2. Any thread in the process calls ExitProcess.
3. The process is terminated (usually externally but could be because of an unhandled

exception) with TerminateProcess.

Anyone writing a Windows application usually finds out at some point that the thread
executing the main function is “special”, typically referred to as the main thread. It can
be observed that whenever the main function returns, the process exits. This seems to
be a scenario not listed in the above reasons for process exit. However, it does, and it’s
scenario number 2. The C/C++ runtime library invokes main/WinMain (discussed in the
section “Process Creation” earlier in this chapter),
and then does required cleanup such as calling global C++ destructors, C runtime cleanup,
etc., and then as its final act eventually calls ExitProcess, causing the process to exit.

From the kernel’s perspective, all threads in a process are equal, and there is nomain thread.
The kernel destroys a process when all threads within it exit/terminate, as a process without
threads is mostly useless. In practice, this scenario can only be achieved in native processes
(executables that only depend on NtDll.dll and have no C/C++ runtime). In other words, this
is unlikely to happen in normal Windows programming.

The ExitProcess function is defined like so:

void ExitProcess(_In_ UINT exitCode);
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The calling process is the only one capable of calling ExitProcess, and naturally, this
function never returns. External processes can attempt to terminate a process with Ter-
minateProcess (discussed later). The exit code becomes the process exit code, that can be
read by anyone holding a handle to the process with GetExitCodeProcess defined like so:

BOOL GetExitCodeProcess(

_In_ HANDLE hProcess,

_Out_ LPDWORD lpExitCode);

It might seem weird that the exit code is available after the process exits, but since a handle
to the process is still open, the kernel process structure is still alive and that is where the exit
code is stored. What would happen if GetExitCodeProcess is called for a live process. You
might expect the function to fail, but confusingly it succeeds and returns an exit code called
STILL_ACTIVE (0x103).

In the kernel, STILL_ACTIVE is called STATUS_PENDING, indicating in this case
that the process is still alive.

The last sentence means looking at the exit code is not a 100% sure way to check if a
process is still alive. The proper way to do this is call WaitForSingleObject(hProcess,
0) and check the return value against WAIT_OBJECT_0; if equal, the process is dead; Only
the kernel management object still remains because there is at least one open handle to the
process.

ExitProcess shuts down the process in an orderly fashion, performing the following
important actions:

1. All other threads in the process terminate.
2. All DLLs in the process get their DllMain function called with a reason value of

PROCESS_DLL_DETACH, indicating the DLL is about to be unloaded and should do its
cleanup.

3. Terminates the process and the calling thread (ExitProcess never returns).

The third way a process might terminate is because of a call to TerminateProcess, defined
like so:
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BOOL TerminateProcess(

_In_ HANDLE hProcess,

_In_ UINT uExitCode);

TerminateProcess can be called from outside the process, assuming a handle with the
access mask PROCESS_TERMINATE can be obtained. The function terminates the process then
and there and specifies what its exit value would be. The process in question has no say in
this.

TerminateProcess differs from ExitProcess in one important aspect: DllMain functions
for all DLLs in the target process don’t get called, so cannot perform any cleanup action. This
may result in loss of functionality or data. For example, if a DLL writes some information to
a log file when it’s unloaded, it will not get the chance to do so. Clearly, TerminateProcess
should be used as a last resort.

Task Manager’s End Task button in the Details tab calls TerminateProcess if
it’s able to open a process handle with PROCESS_TERMINATE access mask. The End
Task button in the Processes tab is trickier, as for GUI processes it first attempts
to ask the process to exit nicely by sending a close message to its main window
(SendMessage or PostMessage function with WM_CLOSE as the message type).

Enumerating Processes

In some cases it’s beneficial to enumerate existing processes. One possible reason would be
to look for a particular process of interest. Another reason may be to create some sort of tool
that provides information on existing processes. Well-known tools such as Task Manager
and Process Explorer use process enumeration.

The Windows API provides three documented ways to enumerate processes. We’ll examine
all of them and then briefly discuss a fourth, semi-documented, option.

Using EnumProcesses

The simplest function to use is EnumProcesses part of the so-called Process Status API
(PSAPI), included in <psapi.h>:
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BOOL EnumProcesses(

_Out_ DWORD *pProcessIds,

_In_ DWORD cb,

_Out_ DWORD *pBytesReturned);

This function provides the bear minimum - all process IDs. The caller must allocate a large
enough buffer to store all PIDs. On return, the function indicates the number of bytes actually
stored in the provided buffer. If it’s lower than the buffer size, it means the buffer was large
enough to contain all PIDs. If it’s equal to the buffer size, then the buffer was probably
too small, and the caller should make a second call with a larger buffer size until the first
condition is met.

The simplest way is to call the function with a (hopefully) large enough buffer:

const int MaxCount = 1024;

DWORD pids[MaxCount];

DWORD actualSize;

if(::EnumProcesses(pids, sizeof(pids), &actualSize)) {

// assume actualSize < sizeof(pids)

int count = actualSize / sizeof(DWORD);

for(int i = 0; i < count; i++) {

// do something with pids[i]

}

}

A more conservative approach needs to allocate the PIDs array dynamically so it can
be resized when needed. A relatively simple way to do this is by leveraging the C++
std::unique_ptr<> template class. Here is a revised example:
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int maxCount = 256;

std::unique_ptr<DWORD[]> pids;

int count = 0;

for (;;) {

pids = std::make_unique<DWORD[]>(maxCount);

DWORD actualSize;

if (!::EnumProcesses(pids.get(), maxCount * sizeof(DWORD), &actualSize))

break;

count = actualSize / sizeof(DWORD);

if (count < maxCount)

break;

// need to resize

maxCount *= 2;

}

for (int i = 0; i < count; i++) {

// do something with pids[i]

}

Remember to add #include <psapi.h> for the above to compile.

You’ll need to #include <memory> so that unique_ptr<> is available.

If you would rather use classic C++ or even C, you can of course do that by leveraging
the new and delete operators or the malloc and free functions. I recommend using the
modern C++ approach which is less error prone because the allocated memory is freed
automatically when the relevant object is destroyed.

The downside of EnumProcesses is its minimal information - just the PID for each process.
If anything else about the process is needed (the usual case), another call to OpenProcess
is required to get a handle to each process of interest and then making the appropriate
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calls to retrieve information or perform the required operations on the process. Of course,
OpenProcess can fail, because not every access mask is necessarily possible to obtain for a
process.

The following code snippet shows how to get the process image name and its start time after
a successful call to EnumProcesses:

// count is the number of processes

for (int i = 0; i < count; i++) {

DWORD pid = pids[i];

HANDLE hProcess = ::OpenProcess(PROCESS_QUERY_LIMITED_INFORMATION, FALSE, p\

id);

if (!hProcess) {

printf("Failed to open a handle to process %d (error=%d)\n",

pid, ::GetLastError());

continue;

}

FILETIME start = { 0 }, dummy;

::GetProcessTimes(hProcess, &start, &dummy, &dummy, &dummy);

SYSTEMTIME st;

::FileTimeToLocalFileTime(&start, &start);

::FileTimeToSystemTime(&start, &st);

WCHAR exeName[MAX_PATH];

DWORD size = MAX_PATH;

DWORD count = ::QueryFullProcessImageName(hProcess, 0, exeName, &size);

printf("PID: %5d, Start: %d/%d/%d %02d:%02d:%02d Image: %ws\n",

pid, st.wDay, st.wMonth, st.wYear, st.wHour, st.wMinute, st.wSecond,

count > 0 ? exeName : L"Unknown");

}

OpenProcess is used to get a handle to the process with PROCESS_QUERY_LIMITED_IN-
FORMATION access mask, which is the lowest one you can ask for. This is enough to get
shallow information on a process, such as its start time (GetProcessTimes) or image file
name (QueryFullProcessImageName).

Here is the prototype for GetProcessTimes:
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BOOL GetProcessTimes(

_In_ HANDLE hProcess,

_Out_ LPFILETIME lpCreationTime,

_Out_ LPFILETIME lpExitTime,

_Out_ LPFILETIME lpKernelTime,

_Out_ LPFILETIME lpUserTime);

FILETIME is a 64-bit value that is split into two 32-bit values. The creation and exit time
are given in 100 nano-seconds units measured from January 1, 1601, UTC, at midnight. The
creation time is converted into a more manageable form using FileTimeToSystemTime,
which splits the 64-bit value into human-readable pieces (day, month, year, etc.).

The kernel and user times are relative, given in the same 100 nsec units. They are not used in
the above code, putting their result in a dummy variable. Note that providing NULL for any
of the parameters will cause the function to throw an access violation exception.

QueryFullProcessImageName allows getting the full executable path of a given process:

BOOL QueryFullProcessImageName(

_In_ HANDLE hProcess,

_In_ DWORD dwFlags,

_Out_ LPTSTR lpExeName,

_Inout_ PDWORD lpdwSize

);

The dwFlags parameter is usually zero, but can be PROCESS_NAME_NATIVE (1), which returns
the path in device form, which is the native Windows way of representing paths (something
like \Device\HarddiskVolume3\MyDir\MyApp.exe). We’ll look at this form more closely in
chapter 11. The lpExeName parameter is the buffer allocated by the caller, and the last
parameter is a pointer to the size of the buffer, in characters. This is an input/output
parameter, so it must be initialized to the allocated buffer size, and the function changes
it to the actual number of characters written to the buffer.

Running this code with standard user rights produces output like the following:
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Failed to get a handle to process 0 (error=87)

Failed to get a handle to process 4 (error=5)

Failed to get a handle to process 88 (error=5)

Failed to get a handle to process 152 (error=5)

Failed to get a handle to process 900 (error=5)

Failed to get a handle to process 956 (error=5)

Failed to get a handle to process 1212 (error=5)

...

PID: 9796, Start: 26/7/2019 14:13:40 Image: C:\Windows\System32\sihost.exe

PID: 9840, Start: 26/7/2019 14:13:40 Image: C:\Windows\System32\svchost.exe

Failed to get a handle to process 9864 (error=5)

PID: 9904, Start: 26/7/2019 14:13:40 Image: C:\Windows\System32\svchost.exe

PID: 9936, Start: 26/7/2019 14:13:40 Image: C:\Windows\System32\svchost.exe

PID: 10004, Start: 26/7/2019 14:13:40 Image: C:\Windows\System32\taskhostw.exe

Failed to get a handle to process 10032 (error=5)

PID: 9556, Start: 26/7/2019 14:13:40 Image: C:\Windows\explorer.exe

...

Getting a handle to PID 0 (System Idle Process in Task Manager) fails, as PID 0 is not valid.
This is why the error is number 87 (ERROR_INVALID_PARAMETER). Other processes in the
low-PID range fail to open as well, with error 5 (ERROR_ACCESS_DENIED).

Running the same code with admin rights by opening an elevated command window,
navigating to the output directory and running the executable produces the following output:

Failed to get a handle to process 0 (error=87)

PID: 4, Start: 26/7/2019 14:13:20 Image: Unknown

PID: 88, Start: 26/7/2019 14:13:01 Image: Unknown

PID: 152, Start: 26/7/2019 14:13:01 Image: Unknown

PID: 900, Start: 26/7/2019 14:13:20 Image: C:\Windows\System32\smss.exe

Failed to get a handle to process 956 (error=5)

PID: 1212, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\wininit.exe

Failed to get a handle to process 1220 (error=5)

PID: 1288, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\services.exe

PID: 1300, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\LsaIso.exe

PID: 1316, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\lsass.exe

...

There are two things to notice here. First, we do get more processes open successfully than
with standard user rights. Second, with some processes we fail to retrieve the image name.
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This is because they don’t have normal executable names. These are some of the “special”
ones: 4 (System), 88 (Secure System), 152 (Registry) and further down (not shown) Memory
Compression. Clearly, QueryFullProcessImageName cannot provide the names for these
processes.

Even with administrator privileges, we can’t seem to open every possible process. This
situation can be improved by enabling the Debug privilege (which exists by default in the
admin token, but is not enabled). Curiously enough, if you run the code directly from Visual
Studio (running elevated), you’ll get the same effect as if the Debug privilege was enabled,
because Visual Studio already enabled itsDebug privilege and because it’s the one launching
the process, its access token is duplicated for the new process, so that the Debug privilege is
already enabled.

To make sure the Debug privilege is enabled regardless of where the executable is launched
from, we can use the following function:

bool EnableDebugPrivilege() {

wil::unique_handle hToken;

if (!::OpenProcessToken(::GetCurrentProcess(), TOKEN_ADJUST_PRIVILEGES,

hToken.addressof()))

return false;

TOKEN_PRIVILEGES tp;

tp.PrivilegeCount = 1;

tp.Privileges[0].Attributes = SE_PRIVILEGE_ENABLED;

if (!::LookupPrivilegeValue(nullptr, SE_DEBUG_NAME, &tp.Privileges[0].Luid))

return false;

if (!::AdjustTokenPrivileges(hToken.get(), FALSE, &tp, sizeof(tp),

nullptr, nullptr))

return false;

return ::GetLastError() == ERROR_SUCCESS;

}

The complete project is named ProcEnum in the samples repository.
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A thorough explanation of this function is saved for chapter 16 (“Security”). For now, we can
simply use it and get better results:

Failed to get a handle to process 0 (error=87)

PID: 4, Start: 26/7/2019 14:13:20 Image: Unknown

PID: 88, Start: 26/7/2019 14:13:01 Image: Unknown

PID: 152, Start: 26/7/2019 14:13:01 Image: Unknown

PID: 900, Start: 26/7/2019 14:13:20 Image: C:\Windows\System32\smss.exe

PID: 956, Start: 26/7/2019 14:13:30 Image: C:\Windows\System32\csrss.exe

PID: 1212, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\wininit.exe

PID: 1220, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\csrss.exe

PID: 1288, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\services.exe

PID: 1300, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\LsaIso.exe

PID: 1316, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\lsass.exe

PID: 1436, Start: 26/7/2019 14:13:33 Image: C:\Windows\System32\svchost.exe

...

Now we can open a handle to each and every process (except PID 0 which of course is not
a real process).

We still are unable to get the names of the special processes. The next technique for process
enumeration solves this issue.

Using the Toolhelp Functions

The so-called “Toolhelp” functions provide a more convenient way to get basic information
on processes, including process “names” for the special processes not based on an executable
image. All this is available from a standard user rights process - no need for elevated
permissions.

To gain access to these functions, include <tlhelp32.h>. The initial function to call is Cre-
ateToolhelp32Snapshot, which creates a snapshot consisting of an optional combination
of processes and threads, and for a specific process - heaps and modules as well. Here is the
call to create the snapshot to get information for processes only:
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HANDLE hSnapshot = ::CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if (hSnapshot == INVALID_HANDLE_VALUE) {

// handle error

}

The second parameter to CreateToolhelp32Snapshot indicates which process is the target
of the snapshot in case modules or heaps are requested. For processes and threads this must
be zero and all processes/threads are included in the snapshot.

Now process enumeration starts with Process32First, and subsequent processes are
available by calling Process32Next until the latter returns FALSEmeaning there are nomore
processes. Both functions accept a PROCESSENTRY32 structure pointer where the information
is returned for each process:

typedef struct tagPROCESSENTRY32 {

DWORD dwSize; // size of structure

DWORD cntUsage; // unused

DWORD th32ProcessID; // PID

ULONG_PTR th32DefaultHeapID; // unused

DWORD th32ModuleID; // unused

DWORD cntThreads; // # threads

DWORD th32ParentProcessID; // parent PID

LONG pcPriClassBase; // Base priority

DWORD dwFlags; // unused

TCHAR szExeFile[MAX_PATH]; // Path

} PROCESSENTRY32;

The first member (dwSize) must be set to the size of the structure. As can be seen from the
comments, only some of the members are actually used. The following code demonstrates
getting all possible information provided by process snapshotting:
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PROCESSENTRY32 pe;

pe.dwSize = sizeof(pe);

if (!::Process32First(hSnapshot, &pe)) {

// unlikely - handle error

}

do {

printf("PID:%6d (PPID:%6d): %ws (Threads=%d) (Priority=%d)\n",

pe.th32ProcessID, pe.th32ParentProcessID, pe.szExeFile,

pe.cntThreads, pe.pcPriClassBase);

} while (::Process32Next(hSnapshot, &pe));

::CloseHandle(hSnapshot);

The project ProcList from this chapter’s samples has the complete code. Here is the first few
lines of output:

PID: 0 (PPID: 0): [System Process] (Threads=12) (Priority=0)

PID: 4 (PPID: 0): System (Threads=359) (Priority=8)

PID: 88 (PPID: 4): Secure System (Threads=0) (Priority=8)

PID: 152 (PPID: 4): Registry (Threads=4) (Priority=8)

PID: 900 (PPID: 4): smss.exe (Threads=2) (Priority=11)

PID: 956 (PPID: 932): csrss.exe (Threads=13) (Priority=13)

PID: 1212 (PPID: 932): wininit.exe (Threads=2) (Priority=13)

PID: 1220 (PPID: 1204): csrss.exe (Threads=27) (Priority=13)

Using the WTS Functions

The Windows Terminal Services (WTS) functions are used to work in a terminal services
(also called Remote Desktop Services) environment, where a server may host several remote
(and local) sessions simultaneously. That said, the WTS API can be used on a single session
machine just the same as for a multi-session machine. There are several interesting functions
in this API, but for this section’s purposes we’ll use its process enumeration functions:
WTSEnumerateProcesses and WTSEnumerateProcessesEx. The WTS API is defined in its
own header (not included by default with <windows.h>) - <wtsapi32.h>. It also requires
adding an import library - wtsapi32.lib - to link successfully.

WTSEnumerateProcesses is defined like so:
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typedef struct _WTS_PROCESS_INFO {

DWORD SessionId;

DWORD ProcessId;

LPTSTR pProcessName;

PSID pUserSid;

} WTS_PROCESS_INFO, *PWTS_PROCESS_INFO;

BOOL WTSEnumerateProcesses(

_In_ HANDLE hServer,

_In_ DWORD Reserved,

_In_ DWORD Version,

_Out_ PWTS_PROCESS_INFO *ppProcessInfo,

_Out_ DWORD *pCount);

The function can enumerate processes on other machines with the first handle that can be
obtained by calling WTSOpenServer. To use the local machine, the constant WTS_CURRENT_-
SERVER_HANDLE can be used instead. The Version parameter must be set to 1, and the real
result is allocated and filled by the function itself, returning a pointer to an array of structures
of type WTS_PROCESS_INFO for each discovered process. The last parameter returns the
number of processes in the returned array. Since the function allocates the memory, the
client application must free it eventually with WTSFreeMemory.

The following function, part of the ProcList2 project, uses WTLEnumerateProcesses to show
information on all processes in the system:

bool EnumerateProcesses1() {

PWTS_PROCESS_INFO info;

DWORD count;

if (!::WTSEnumerateProcesses(WTS_CURRENT_SERVER_HANDLE, 0, 1, &info, &count\

))

return false;

for (DWORD i = 0; i < count; i++) {

auto pi = info + i;

printf("\nPID: %5d (S: %d) (User: %ws) %ws",

pi->ProcessId, pi->SessionId,

(PCWSTR)GetUserNameFromSid(pi->pUserSid), pi->pProcessName);

}

::WTSFreeMemory(info);
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return true;

}

The returned information per-process is fairlyminimal - process ID, session ID, process name
(executable name or a special process name such as System) and a Security Identifier (SID)
of the user running the process. The above function displays all information available, and
uses a helper function to turn a SID (which is a binary blob, discussed in chapter 16) into a
human-readable name:

CString GetUserNameFromSid(PSID sid) {

if (sid == nullptr)

return L"";

WCHAR name[128], domain[64];

DWORD len = _countof(name);

DWORD domainLen = _countof(domain);

SID_NAME_USE use;

if (!::LookupAccountSid(nullptr, sid, name, &len, domain, &domainLen, &use))

return L"";

return CString(domain) + L"\\" + name;

}

To link properly, wtsapi32.lib must be added to the linker additional dependencies in
Project/Properties, or alternatively added in source with the appropriate #pragma:

#pragma comment(lib, "wtsapi32")

Running the application that calls EnumerateProcesses1 with standard user rights shows
something like the following:
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PID: 0 (S: 0) (User: )

PID: 4 (S: 0) (User: ) System

PID: 88 (S: 0) (User: ) Secure System

PID: 152 (S: 0) (User: ) Registry

PID: 812 (S: 0) (User: ) smss.exe

PID: 1004 (S: 0) (User: ) csrss.exe

...

PID: 8904 (S: 1) (User: VOYAGER\Pavel) nvcontainer.exe

PID: 8912 (S: 1) (User: VOYAGER\Pavel) nvcontainer.exe

PID: 8992 (S: 1) (User: VOYAGER\Pavel) sihost.exe

PID: 9040 (S: 1) (User: VOYAGER\Pavel) svchost.exe

PID: 9104 (S: 0) (User: ) PresentationFontCache.exe

...

PID 0 (the idle process) has no name as far as the WTS APIs are concerned. As explained
earlier, this is not a real process, so any name is synthetic anyway. The SID provided by the
API is NULL in all non-running-user processes. To get the most out of this function, including
the SIDs, we can run it in an elevated command window (or launch Visual Studio elevated
and execute from the IDE). The results are better:

PID: 0 (S: 0) (User: )

PID: 4 (S: 0) (User: ) System

PID: 88 (S: 0) (User: NT AUTHORITY\SYSTEM) Secure System

PID: 152 (S: 0) (User: NT AUTHORITY\SYSTEM) Registry

PID: 812 (S: 0) (User: NT AUTHORITY\SYSTEM) smss.exe

PID: 1004 (S: 0) (User: NT AUTHORITY\SYSTEM) csrss.exe

...

PID: 1360 (S: 0) (User: Font Driver Host\UMFD-0) fontdrvhost.exe

PID: 1388 (S: 0) (User: NT AUTHORITY\LOCAL SERVICE) WUDFHost.exe

PID: 1492 (S: 0) (User: NT AUTHORITY\NETWORK SERVICE) svchost.exe

PID: 1540 (S: 0) (User: NT AUTHORITY\SYSTEM) svchost.exe

PID: 1608 (S: 0) (User: NT AUTHORITY\LOCAL SERVICE) WUDFHost.exe

PID: 1684 (S: 1) (User: NT AUTHORITY\SYSTEM) winlogon.exe

PID: 1760 (S: 1) (User: Font Driver Host\UMFD-1) fontdrvhost.exe

...

PID: 8396 (S: 0) (User: NT AUTHORITY\NETWORK SERVICE) svchost.exe

PID: 8904 (S: 1) (User: VOYAGER\Pavel) nvcontainer.exe

PID: 8912 (S: 1) (User: VOYAGER\Pavel) nvcontainer.exe

PID: 8992 (S: 1) (User: VOYAGER\Pavel) sihost.exe
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PID: 9040 (S: 1) (User: VOYAGER\Pavel) svchost.exe

...

The WTSEnumerateProcessesEx API (available fromWindows 7) is an extended version of
WTSEnumerateProcesses that provides more information per process:

BOOL WTSEnumerateProcessesEx(

_In_ HANDLE hServer,

_Inout_ DWORD *pLevel,

_In_ DWORD SessionID,

_Out_ PTSTR *pProcessInfo,

_Out_ DWORD *pCount);

The pLevel parameter can be set to 0 or 1. With 1, an array of extended structures is returned
with more information for each process:

typedef struct _WTS_PROCESS_INFO_EX {

DWORD SessionId;

DWORD ProcessId;

LPTSTR pProcessName;

PSID pUserSid;

DWORD NumberOfThreads;

DWORD HandleCount;

DWORD PagefileUsage;

DWORD PeakPagefileUsage;

DWORD WorkingSetSize;

DWORD PeakWorkingSetSize;

LARGE_INTEGER UserTime;

LARGE_INTEGER KernelTime;

} WTS_PROCESS_INFO_EX, *PWTS_PROCESS_INFO_EX;

The SessionID parameter allows enumerating processes in a specific session of interest, but
WTS_ANY_SESSION can be supplied to indicate all sessions are of interest.
The ppProcessInfo is typed as a pointer to a pointer to a string, which makes no sense.
It must be a pointer to PWTS_PROCESS_INFO or PWTS_PROCESS_INFO_EX based on the level
value. The following is a revised enumeration function that uses the extended structure:
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bool EnumerateProcesses2() {

PWTS_PROCESS_INFO_EX info;

DWORD count;

DWORD level = 1; // extended info

if (!::WTSEnumerateProcessesEx(WTS_CURRENT_SERVER_HANDLE, &level,

WTS_ANY_SESSION, (PWSTR*)&info, &count))

return false;

for (DWORD i = 0; i < count; i++) {

auto pi = info + i;

printf("\nPID: %5d (S: %d) (T: %3d) (H: %4d) (CPU: %ws) (U: %ws) %ws",

pi->ProcessId, pi->SessionId, pi->NumberOfThreads, pi->HandleCount,

(PCWSTR)GetCpuTime(pi),

(PCWSTR)GetUserNameFromSid(pi->pUserSid), pi->pProcessName);

}

::WTSFreeMemoryEx(WTSTypeProcessInfoLevel1, info, count);

return true;

}

The fields related to memory in WTS_PROCESS_INFO_EX (PagefileUsage, PeakPage-
fileUsage, WorkingSetSize and PeakWorkingSetSize) are actually buggy because they
are 32 bit in size even in 64-bit processes (the structure should have been modified so that
DWORD is changed to DWORD_PTR at the very least), so if one of these counters is above 4 GB,
they will show wrong numbers.

Freeing the allocated memory block must be done with a dedicated function
(WTSFreeMemoryEx), with the appropriate level related enumeration. The code displays some
additional data compared to EnumerateProcesses1 - number of threads in the process,
number of handles and the total CPU time used. The GetCpuTime helper function returns a
string representation of the CPU time:

CString GetCpuTime(PWTS_PROCESS_INFO_EX pi) {

auto totalTime = pi->KernelTime.QuadPart + pi->UserTime.QuadPart;

return CTimeSpan(totalTime / 10000000LL).Format(L"%D:%H:%M:%S");

}

The KernelTime and UserTime members of WTS_PROCESS_INFO_EX are the time the
process’ threads spent in kernel mode and user mode, respectively. This time is provided
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in 100-nanosecond units (100 times 10 to the -9th power), which is very common within the
Windows API. This means converting to seconds requires dividing by 10 million. The above
code uses the CTimeSpanATL helper class that accepts a number of seconds and can provide
simple string formatting for the value.

Here is some sample output from running EnumerateProcesses2 with admin rights:

PID: 0 (S: 0) (T: 12) (H: 0) (CPU: 7:16:22:09) (User: )

PID: 4 (S: 0) (T: 365) (H: 27610) (CPU: 0:00:14:39) (User: ) System

PID: 88 (S: 0) (T: 0) (H: 0) (CPU: 0:00:00:00) (User: NT AUTHORITY\SYST\

EM) Secure System

PID: 152 (S: 0) (T: 4) (H: 0) (CPU: 0:00:00:01) (User: NT AUTHORITY\SYST\

EM) Registry

PID: 812 (S: 0) (T: 2) (H: 53) (CPU: 0:00:00:00) (User: NT AUTHORITY\SYST\

EM) smss.exe

PID: 1004 (S: 0) (T: 14) (H: 951) (CPU: 0:00:00:05) (User: NT AUTHORITY\SYST\

EM) csrss.exe

...

Using the Native API

The last option available for process (and thread) enumeration is using the native API
exposed by NtDll.dll. This API is mostly undocumented, and in some cases partially
documented. Some of the documentation is part of the Windows Driver Kit (WDK), as
some kernel APIs are the targets of native functions and so share a prototype. In user mode,
Microsoft provides very partial definitions for the native API in the file <winternl.h>.

One of the functions is NtQuerySystemInformation. This mega-function can return
various pieces of information depending on a SYSTEM_INFORMATION_CLASS that specifies
the type of information requested. Here is the definition from <winternl.h>:
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typedef enum _SYSTEM_INFORMATION_CLASS {

SystemBasicInformation = 0,

SystemPerformanceInformation = 2,

SystemTimeOfDayInformation = 3,

SystemProcessInformation = 5,

SystemProcessorPerformanceInformation = 8,

SystemInterruptInformation = 23,

SystemExceptionInformation = 33,

SystemRegistryQuotaInformation = 37,

SystemLookasideInformation = 45,

SystemCodeIntegrityInformation = 103,

SystemPolicyInformation = 134,

} SYSTEM_INFORMATION_CLASS;

As can be seen from the enumeration, there are many gaps of undocumented information
classes. SystemProcessInformation is one value that retrieves data for all processes in the
system, with more fields than are available with WTS_PROCESS_INFO_EX. It even includes all
threads for each process. In fact, Task Manager and Process Explorer use this to get process
information.

Using the above enumeration returns objects of type SYSTEM_PROCESS_INFORMATION,
which is declared in <winternl.h> like so:

typedef struct _SYSTEM_PROCESS_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

BYTE Reserved1[48];

UNICODE_STRING ImageName;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

PVOID Reserved2;

ULONG HandleCount;

ULONG SessionId;

PVOID Reserved3;

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG Reserved4;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;
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PVOID Reserved5;

SIZE_T QuotaPagedPoolUsage;

PVOID Reserved6;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivatePageCount;

LARGE_INTEGER Reserved7[6];

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

Although it provides quite a bit of information, there are many members named “reserved”-
something, which are actually undocumented fields, rather than true reserved fields. Can
we get the details for these “reserved” fields?

Although these structures and enumerations are undocumented, some have been located in
some leaked Windows sources, reverse engineered or are available in the public symbols
provided by Microsoft. One application that uses many of these officially undocumented
functions and types is Process Hacker, a open-source Process Explorer clone available on
Github. One of its sibling projects is phnt, which contains the largest definitions of native
APIs, structures, enumerations and definitions (https://github.com/processhacker/phnt) that
I know of.

As a quick example, the complete SYSTEM_PROCESS_INFORMATION looks something like the
following:

typedef struct _SYSTEM_PROCESS_INFORMATION {

ULONG NextEntryOffset;

ULONG NumberOfThreads;

LARGE_INTEGER WorkingSetPrivateSize;

ULONG HardFaultCount;

ULONG NumberOfThreadsHighWatermark;

ULONGLONG CycleTime; // since WIN7

LARGE_INTEGER CreateTime;

LARGE_INTEGER UserTime;

LARGE_INTEGER KernelTime;

UNICODE_STRING ImageName;

KPRIORITY BasePriority;

HANDLE UniqueProcessId;

HANDLE InheritedFromUniqueProcessId;

ULONG HandleCount;

https://github.com/processhacker/phnt
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ULONG SessionId;

ULONG_PTR UniqueProcessKey;

SIZE_T PeakVirtualSize;

SIZE_T VirtualSize;

ULONG PageFaultCount;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivatePageCount;

LARGE_INTEGER ReadOperationCount;

LARGE_INTEGER WriteOperationCount;

LARGE_INTEGER OtherOperationCount;

LARGE_INTEGER ReadTransferCount;

LARGE_INTEGER WriteTransferCount;

LARGE_INTEGER OtherTransferCount;

SYSTEM_THREAD_INFORMATION Threads[1];

} SYSTEM_PROCESS_INFORMATION, *PSYSTEM_PROCESS_INFORMATION;

Most of the fields that don’t exist in the documented structures can still be obtained by other
API functions. For example, process creation time can be retrieved with GetProcessTimes,
but this does require opening a handle to the process (with access mask PROCESS_QUERY_-
LIMITED_INFORMATION in this case). Clearly, getting much of the information in one stroke
is a win, which is why process information tools typically use the native API.

In this book, we won’t use the native API unless there is a very good reason to do so. You
can explore the code of Process Hacker to get a sense of how to use these APIs. In any case,
if an official API exists, it’s always safer to go with that, rather than to rely on a native
undocumented API.

Exercises

1. Write a GUI or console application calledMiniProcExp - a mini Process Explorer, that
uses either the Toolhelp APIs, WTS APIs or the native API to show information about
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processes. Anything that is not readily available get by opening a proper handle to the
process and using the correct function to get the information. (A basic app is provided
in the MinProcExp project).

2. Extend the previous application by adding operations on processes, such as terminating
and changing priority class.

3. Continue extending the application in any way you see fit!

Summary

Processes are the most fundamental building block in Windows. It holds a set of resources
such as an address space, that allows threads to execute code using these resources. In the
next chapter, we’ll look at how processes can be managed as a unit using Jobs.



Chapter 4: Jobs
Job objects have been around since Windows 2000, being able to manage one or more
processes. Most of their capability revolves around limiting the managed processes in some
ways. Their usefulness has grown significantly since Windows 8. OnWindows 7 and earlier,
a process can be a member of a single job only, while in Windows 8 and later, a process can
be associated with multiple jobs.

In this chapter:

• Introduction to Jobs
• Creating Jobs
• Nested Jobs
• Querying Job Information
• Setting Job Limits
• Job Notifications
• Silos

Introduction to Jobs

Job objects are visible indirectly in Process Explorer if a process is under a job. In that case,
a Job tab appears in the process’ properties (this tab is absent if the process is under no job).
Another way to glean at the presence of jobs is to enable the Jobs color (brown by default) in
Options / Configure Colors…. Figure 4-1 shows Process Explorer with the Jobs color visible
with all other colors removed.
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Figure 4-1: Brown Processes are in Jobs

If a process is part of a job, its properties show a Job tab with details listing the job’s name (if
any), the processes that are part of the job, and the limits imposed on the job (if any). Figure
4-2 shows a WMI Worker Process (wmiprvse.exe) that is part of a named job. Note the job’s
limits.
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Figure 4-2: Job properties in Process Explorer

Once a process is associated with a job, it cannot get out. This makes sense, since if a process
could be removed from a job, that would make jobs too weak to be useful in many cases.

Creating Jobs

Creating or opening a job is similar to other create/open functions of other kernel object
types. Here is the CreateJobObject function:

HANDLE CreateJobObject(

_In_opt_ LPSECURITY_ATTRIBUTES pJobAttributes,

_In_opt_ LPCTSTR pName);

The first argument is the familiar SECURITY_ATTRIBUTES pointer, typically set to NULL. The
second argument is an optional name to set for the new job object. As with other create
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functions, if a name is provided, and a job with that name exists, then (barring security
restrictions), another handle to the existing job is returned. As usual, calling GetLastError
can reveal whether the job is an existing one, by returning ERROR_ALREADY_EXISTS.

Opening an existing job object by name is possible with OpenJobObject, defined like so:

HANDLE OpenJobObject(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ PCTSTR pName);

Most of the arguments should be self-explanatory by now. The first argument specifies the
access mask required for the named job object. This access mask is checked against the
security descriptor of the job object, returning success only if the security descriptor includes
entries that allow the requested permissions. Table 4-1 shows the valid job access masks with
a brief description.

Table 4-1: Job Object access masks

Access mask Description
JOB_OBJECT_QUERY (4) Query operations against the job, such as

QueryInformationJobObject
JOB_OBJECT_ASSIGN_PROCESS (1) Allows adding processes to the job
JOB_OBJECT_SET_ATTRIBUTES (0x10) Required to call SetInformationJobObject
JOB_OBJECT_TERMINATE (8) Required to call TerminateJobObject
JOB_OBJECT_ALL_ACCESS All possible access to the job

With a job handle in hand, processes can be associated with a job by calling AssignPro-
cessToJobObject:

BOOL AssignProcessToJobObject(

_In_ HANDLE hJob,

_In_ HANDLE hProcess);

The job handle must have the JOB_OBJECT_ASSIGN_PROCESS access mask, which is always
the case when a new job is created, since the caller has full control of the job. The process
handle to assign to the job must have the PROCESS_SET_QUOTA and PROCESS_TERMINATE
access mask bits. This means that some processes can never be part of a job, such as protected
processes, since this access mask cannot be obtained for such processes.
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The following example opens a process given its ID, and adds it into the provided job:

bool AddProcessToJob(HANDLE hJob, DWORD pid) {

HANDLE hProcess = ::OpenProcess(PROCESS_SET_QUOTA | PROCESS_TERMINATE, FALS\

E, pid);

if(!hProcess)

return false;

BOOL success = ::AssignProcessToJobObject(hJob, hProcess);

::CloseHandle(hProcess);

return success ? true : false;

}

Once a process is associated with a job, it cannot break out. If that process creates a child
process, the child process is created by default as part of the parent’s process job. There are
two cases where a child process may be created outside of a job:

• The CreateProcess call includes the CREATE_BREAKAWAY_FROM_JOB flag and the job
allows breaking out of it (by setting the limit flag JOB_OBJECT_LIMIT_BREAKAWAY_OK
(see the section “Setting Job Limits”, later in this chapter)

• The job has the limit flag JOB_OBJECT_LIMIT_SILENT_BREAKAWAY_OK. In this case,
any child process is created outside the job without requiring any special flags.

Nested Jobs

Windows 8 introduced the ability to associate a process with more than one job. This makes
jobs much more useful than they used to, since if a process you wish to control with a job
was already part of a job - there was no way to associate it with another job. A process that
is assigned a second job, causes a job hierarchy to be created (if possible). The second job
becomes a child of the first job. The basic rules are the following:

• A limit imposed by a parent job affects the job and all child jobs (and hence all processes
in those jobs).

• Any limit imposed by a parent job cannot be removed by a child job, but it can be more
strict. For example, if a parent job sets a job-wide memory limit of 200 MB, a child job
can set (for its processes) a limit of 150 MB, but not 250 MB.

Figure 4-3 shows a hierarchy of jobs created by invoking the following operations (in order):
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1. Assign process P1 to J1.
2. Assign process P1 to J2. A hierarchy is formed.
3. Assign process P2 to J2. Process P2 is now affected by jobs J1 and J2.
4. Assign process P3 to J1.

The resulting process/job relationship is depicted in figure 4-3.

Figure 4-3: Job hierarchy

Viewing job hierarchies is not easy. Process Explorer, for example, showing a job’s details,
includes information for the shown job and all child jobs (if any). For example, viewing the
information for job J1 from figure 4-3, three processes would be listed: P1, P2 and P3. Also,
since job access is indirect - a Job tab is available if a process is under a job - the job shown
is the immediate job this process is part of. Any parent jobs are not shown.

The following code creates the hierarchy depicted in figure 4-3.
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#include <windows.h>

#include <stdio.h>

#include <assert.h>

#include <string>

HANDLE CreateSimpleProcess(PCWSTR name) {

std::wstring sname(name);

PROCESS_INFORMATION pi;

STARTUPINFO si = { sizeof(si) };

if (!::CreateProcess(nullptr, const_cast<PWSTR>(sname.data()), nullptr, nul\

lptr,

FALSE, CREATE_BREAKAWAY_FROM_JOB | CREATE_NEW_CONSOLE,

nullptr, nullptr, &si, &pi))

return nullptr;

::CloseHandle(pi.hThread);

return pi.hProcess;

}

HANDLE CreateJobHierarchy() {

auto hJob1 = ::CreateJobObject(nullptr, L"Job1");

assert(hJob1);

auto hProcess1 = CreateSimpleProcess(L"mspaint");

auto success = ::AssignProcessToJobObject(hJob1, hProcess1);

assert(success);

auto hJob2 = ::CreateJobObject(nullptr, L"Job2");

assert(hJob2);

success = ::AssignProcessToJobObject(hJob2, hProcess1);

assert(success);

auto hProcess2 = CreateSimpleProcess(L"mstsc");

success = ::AssignProcessToJobObject(hJob2, hProcess2);

assert(success);

auto hProcess3 = CreateSimpleProcess(L"cmd");

success = ::AssignProcessToJobObject(hJob1, hProcess3);

assert(success);
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// not bothering to close process and job 2 handles

return hJob1;

}

int main() {

auto hJob = CreateJobHierarchy();

printf("Press any key to terminate parent job...\n");

::getchar();

::TerminateJobObject(hJob, 0);

return 0;

}

The code is available in the JobTree project in this chapter’s source code.

The process image names are purposefully different, so they are easier to spot (P1=mspaint,
P2=mstsc, P3=cmd). The jobs are named, also for easier identification.

Each process is initially created outside of any job by specifying CREATE_BREAKAWAY_FROM_-
JOB in the CreateProcess call. Otherwise, running this application from a process that is
already part of a job (such as Visual Studio) would complicate the job hierarchy.

Figure 4-4 shows the job under whichmspaint is running. Notice it’s Job2, althoughmspaint
is also under Job1. Figure 4-5 shows the job under which cmd is running, showing the three
processes. That’s because cmd is part of Job1, and Job1 shows all processes including those
in child jobs.
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Figure 4-4: Job2 properties in Process Explorer
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Figure 4-5: Job1 properties in Process Explorer

Viewing job hierarchies is not easy, as there is no documented (or undocumented for that
matter) API to enumerate jobs, let alone job hierarchies. A tool I created called Job Explorer
tries to fill this gap. You can find it in my Github repository at https://github.com/zodiacon/
jobexplorer.

https://github.com/zodiacon/jobexplorer
https://github.com/zodiacon/jobexplorer
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Running Job Explorer while the JobTree application is waiting for a key press shows the
screenshot in figure 4-6 when the “All Jobs” tree node is selected and the jobs are sorted by
name.

Figure 4-6: Job Explorer All Jobs node

Double-clicking on Job1 expands the job hierarchy on the left and shows the job details on
the right, as shown in figure 4-7.

Figure 4-7: Job Explorer Job hierarchy view

The job hierarchy is clearly visible in the tree view. Notice that conhost.exe process (which
is always created when cmd.exe is launched) is also part of the same job.

You may be wondering how Job Explorer works. I plan to write a blog post about that.
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Querying Job Information

A job object keeps track of some basic job statistics even without any special settings. The
primary API to query information about a job object is aptly named QueryInformation-
JobObject:

BOOL QueryInformationJobObject(

_In_opt_ HANDLE hJob,

_In_ JOBOBJECTINFOCLASS JobObjectInfoClass,

_Out_ LPVOID pJobObjectInfo,

_In_ DWORD cbJobObjectInfoLength,

_Out_opt_ LPDWORD pReturnLength);

The hJob parameter is the handle to a job - which must have the JOB_QUERY access mask;
however, as is hinted by the SAL annotation, a NULL value is a valid value, pointing to the job
the calling process is under (if any). In this way, a process can query information that may be
pertinent to its execution, such as any memory limits imposed by the job. If the job is nested,
then the immediate job is the one queried. JOBOBJECTINFOCLASS is an enumeration of the
various pieces of information that can be queried. For each type of information requested,
an appropriately-sized buffer must be supplied in the pJobObjectInfo argument to be filled
by the function. The last argument is an optional value containing the returned data size in
the provided buffer, which is useful for some types of queries that return variable-sized data.
Finally, just as with most APIs, the function returns a non-FALSE value on success.

Table 4-2 summarizes the (documented) information classes available for jobs in query
operations.

Table 4-2: JOBINFOCLASS for documented job query operations

Information class
(JobObject*)

Information structure type Description

BasicAccountingInformation

(1)
JOBOBJECT_BASIC_-

ACCOUNTING_INFORMATION

Basic accounting

BasicLimitInformation (2) JOBOBJECT_BASIC_LIMIT_-

INFORMATION

Basic limits

BasicProcessIdList (3) JOBOBJECT_BASIC_-

PROCESS_ID_LIST

List of process IDs in the job

BasicUIRestrictions (4) JOBOBJECT_BASIC_UI_-

RESTRICTIONS

User interface limits

EndOfJobTimeInformation

(6)
JOBOBJECT_END_OF_JOB_-

TIME_INFORMATION

What happens when the end
of job time limit is reached
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Table 4-2: JOBINFOCLASS for documented job query operations

Information class
(JobObject*)

Information structure type Description

BasicAndIoAccountingInformation

(8)
JOBOBJECT_BASIC_AND_IO_-

ACCOUNTING_INFORMATION

Basic and I/O accounting

ExtendedLimitInformation

(9)
JOBOBJECT_EXTENDED_-

LIMIT_INFORMATION

Extended limits

GroupInformation (11) USHORT array (Windows 7+) Processor
groups for the job (see chapter
6)

NotificationLimitInformation

(12)
JOBOBJECT_NOTIFICATION_-

LIMIT_INFORMATION

(Windows 8+) Notification
limits

LimitViolationInformation

(13)
JOBOBJECT_LIMIT_-

VIOLATION_INFORMATION

(Windows 8+) Information on
limits violations

GroupInformationEx (14) GROUP_AFFINITY array (Windows 8+) Processor group
affinity

CpuRateControlInformation

(15)
JOBOBJECT_CPU_RATE_-

CONTROL_INFORMATION

(Windows 8+) CPU rate limit
information

NetRateControlInformation

(32)
JOBOBJECT_NET_RATE_-

CONTROL_INFORMATION

(Windows 10+) Network rate
limit information

NotificationLimitInformation2

(33)
JOBOBJECT_NOTIFICATION_-

LIMIT_INFORMATION_2

(Windows 10+) Extended limit
information

LimitViolationInformation2

(34)
JOBOBJECT_LIMIT_-

VIOLATION_INFORMATION_2

(Windows 10+) Extended limit
violation information

Job Accounting Information

As mentioned earlier, a job keeps track of some pieces of information, regardless of
any limits imposed on the job. The basic accounting information is available with the
JobObjectBasicAccountingInformation enumeration and the JOBOBJECT_BASIC_AC-
COUNTING_INFORMATION structure defined like so:
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typedef struct _JOBOBJECT_BASIC_ACCOUNTING_INFORMATION {

LARGE_INTEGER TotalUserTime; // total user mode CPU time

LARGE_INTEGER TotalKernelTime; // total kernel mode CPU time

LARGE_INTEGER ThisPeriodTotalUserTime; // same counters as above

LARGE_INTEGER ThisPeriodTotalKernelTime; // for a "period"

DWORD TotalPageFaultCount; // page fault count

DWORD TotalProcesses; // total processes ever existed in the \

job

DWORD ActiveProcesses; // live processes in the job

DWORD TotalTerminatedProcesses; // processes terminated because of limi\

t violation

} JOBOBJECT_BASIC_ACCOUNTING_INFORMATION, *PJOBOBJECT_BASIC_ACCOUNTING_INFORMAT\

ION;

The various times are provided as LARGE_INTEGER structures, each holding a 64-bit value
in 100 nanosecond units. The “this period” prefix reports times since the recent per-job
user/kernel time limits that have been set (if any). These values are zeroed when the job
is created and when a new per-job time limit is set.

The following code snippet shows how to make a query call on a job object for basic
accounting information:

// assume hJob is a job handle

JOBOBJECT_BASIC_ACCOUNTING_INFORMATION info;

BOOL success = QueryInformationJobObject(hJob, JobObjectBasicAccountingInformat\

ion, &info, sizeof(info), nullptr);

Similarly, using JobObjectBasicAndIoAccountingInformation and JOBOBJECT_BASIC_-
AND_IO_ACCOUNTING_INFORMATION provides extended accounting information for a job,
that includes I/O operations count and sizes. This extended structure includes two structures,
one of which is JOBOBJECT_BASIC_ACCOUNTING_INFORMATION:
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typedef struct _IO_COUNTERS {

ULONGLONG ReadOperationCount;

ULONGLONG WriteOperationCount;

ULONGLONG OtherOperationCount;

ULONGLONG ReadTransferCount;

ULONGLONG WriteTransferCount;

ULONGLONG OtherTransferCount;

} IO_COUNTERS, *PIO_COUNTERS;

typedef struct JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION {

JOBOBJECT_BASIC_ACCOUNTING_INFORMATION BasicInfo;

IO_COUNTERS IoInfo;

} JOBOBJECT_BASIC_AND_IO_ACCOUNTING_INFORMATION, *PJOBOBJECT_BASIC_AND_IO_ACCOU\

NTING_INFORMATION;

Read and write operations refer to ReadFile and WriteFile (and similar) APIs, which we
look at later in this book. The “other” operations refers to usage of the DeviceIoControl
API, that is issued in non-read/write operations, typically targeting devices rather than file
system files.

The JobMon project, part of this chapter’s source code includes many of the features of Jobs
that we discuss in this chapter. Running it shows the window in figure 4-8.
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Figure 4-8: Job Monitor initial window

Click on the Create Job button to create an empty job. You can set a name for job before
creating the job. The job is created with zero processes and shows the basic and I/O
information (figure 4-9).
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Figure 4-9: Job Monitor with a newly created job

To see job accounting in action, download the CPUStres.exe tool from https://github.com/
zodiacon/AllTools. Click the three dots button to browse for CpuStres.exe. Then click Create
and Add Process button several times to add instances of CPUStres to the job (figure 4-10).
Notice the accounting information is no longer zero.

https://github.com/zodiacon/AllTools
https://github.com/zodiacon/AllTools


Chapter 4: Jobs 193

Figure 4-10: Job Monitor with a several CPUStres processes

CPUStres is a CPU-eating utility, which is used more in the next chapter. The display is
updated roughly every 1.5 seconds. You can add more processes to the job (either CPUStres
or another image), and close processes. Figure 4-11 shows Job Monitor after more CPUStres
are added with some closed.
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Figure 4-11: Job Monitor with more processes

You can click Terminate Job to terminate all processes in the job in one stroke. This is
achieved by calling TerminateJobObject:

BOOL TerminateJobObject(

_In_ HANDLE hJob,

_In_ UINT uExitCode);

TerminateJobObject behaves as if every process active in the job is terminated with
TerminateProcess where uExitCode is the exit code of all processes in the job.
At this point, new processes may be added to the job, with accounting information updated
normally.
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Querying for Job Process List

The list of active (live) processes in a job can be retrieved by calling QueryInformation-
JobObjectwith the JobObjectBasicProcessIdList information class, returning an array
of process IDs in the JOBOBJECT_BASIC_PROCESS_ID_LIST structure:

typedef struct _JOBOBJECT_BASIC_PROCESS_ID_LIST {

DWORD NumberOfAssignedProcesses;

DWORD NumberOfProcessIdsInList;

ULONG_PTR ProcessIdList[1];

} JOBOBJECT_BASIC_PROCESS_ID_LIST, *PJOBOBJECT_BASIC_PROCESS_ID_LIST;

The structure has a variable size because of the array of process IDs. This means a fixed size
array should be large enough to include all process IDs and hope for the best. Alternatively,
a dynamically-allocated buffer can be used and its size adjusted if it’s not large enough.
The following example shows how to retrieve the list of active processes while allocating
large enough buffer as required.

#include <vector>

#include <memory>

std::vector<DWORD> GetJobProcessList(HANDLE hJob) {

auto size = 256;

std::vector<DWORD> pids;

while (true) {

auto buffer = std::make_unique<BYTE[]>(size);

auto ok = ::QueryInformationJobObject(hJob, JobObjectBasicProcessIdList\

,

buffer.get(), size, nullptr);

if (!ok && ::GetLastError() == ERROR_MORE_DATA) {

// buffer too small - resize and try again

size *= 2;

continue;

}

if (!ok)

break;

auto info = reinterpret_cast<JOBOBJECT_BASIC_PROCESS_ID_LIST*>(buffer.g\
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et());

pids.reserve(info->NumberOfAssignedProcesses);

for (DWORD i = 0; i < info->NumberOfAssignedProcesses; i++)

pids.push_back((DWORD)info->ProcessIdList[i]);

break;

}

return pids;

}

The code uses some C++ constructs to simplify memory management. The function itself
returns a std::vector<DWORD> holding the process IDs in the job. In the most general
case the number of processes is not known in advance, so the function allocates a buffer
with std::make_unique<BYTE>[], which allocates a byte array with the given number of
elements (size). The unique_ptr’s destructor frees the buffer when it goes out of scope.

Next, QueryInformationJobObject is called with the allocated byte buffer. If it returns
FALSE and GetLastError returns ERROR_MORE_DATA, it means the allocated buffer is too
small, so the function doubles size and tries again.

Once the buffer is large enough, the pointer is cast to JOBOBJECT_BASIC_PROCESS_ID_-
LIST*, and the process IDs can be retrieved and placed into the std::vector. Curiously
enough, the process IDs returned in this structure are typed as ULONG_PTR, which is means
each one is 64 bit in a 64 bit process. This is unusual, as process IDs are normally 32 bit
values (DWORD). This is why we cannot simply copy the entire array in one stroke to the
vector (unless the vector is changed to hold ULONG_PTRs).

You may be curious why the process IDs are typed as ULONG_PTR. This is one of the very
few cases in the Windows API where this occurs. Within the kernel, process (and thread)
IDs are generated using a private handle table for just this purpose. And since handles on
64 bit systems are 64 bit values, it may be “naturally” easy to use them as is. Still, since
handle tables are limited to about 16 million handles, 64 bit values are not currently needed
(and not used for process IDs outside the kernel).
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Setting Job Limits

The primary purpose of a job is to place limits on its processes. The function to use is the
opposite of QueryInformationJobObject - SetInformationJobObject defined like so:

BOOL SetInformationJobObject(

_In_ HANDLE hJob,

_In_ JOBOBJECTINFOCLASS JobObjectInfoClass,

_In_ PVOID pJobObjectInfo,

_In_ DWORD cbJobObjectInfoLength);

The arguments should be self-explanatory at this point. The job handle must have the
JOB_OBJECT_SET_ATTRIBUTES access mask, and cannot be NULL. Table 4-3 summarizes the
(documented) information classes that can be used with SetInformationJobObject.

Table 4-3: JOBINFOCLASS for documented job set operations

Information class
(JobObject-)

Information structure Description

BasicLimitInformation (2) JOBOBJECT_BASIC_LIMIT_-

INFORMATION

Basic limits

BasicUIRestrictions (4) JOBOBJECT_BASIC_UI_-

RESTRICTIONS

User interface limits

EndOfJobTimeInformation

(6)
JOBOBJECT_END_OF_JOB_-

TIME_INFORMATION

What happens when the end
of job time limit is reached

AssociateCompletionPortInformation

(7)
JOBOBJECT_ASSOCIATE_-

COMPLETION_PORT

Associate a completion port
with the job

ExtendedLimitInformation

(9)
JOBOBJECT_EXTENDED_-

LIMIT_INFORMATION

Extended limits

GroupInformation (11) USHORT array (Windows 7+) Processor
groups for the job (see chapter
6)

GroupInformationEx (14) GROUP_AFFINITY array (Windows 8+) Processor
groups and affinities for the
job (see chapter 6)

NotificationLimitInformation

(12)
JOBOBJECT_NOTIFICATION_-

LIMIT_INFORMATION

(Windows 8+) Notification
limits

LimitViolationInformation

(13)
JOBOBJECT_LIMIT_-

VIOLATION_INFORMATION

(Windows 8+) Information on
limits violations

GroupInformationEx (14) GROUP_AFFINITY array (Windows 8+) Processor group
affinity
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Table 4-3: JOBINFOCLASS for documented job set operations

Information class
(JobObject-)

Information structure Description

CpuRateControlInformation

(15)
JOBOBJECT_CPU_RATE_-

CONTROL_INFORMATION

(Windows 8+) CPU rate limit
information

NetRateControlInformation

(32)
JOBOBJECT_NET_RATE_-

CONTROL_INFORMATION

(Windows 10+) Network rate
limit information

NotificationLimitInformation2

(33)
JOBOBJECT_NOTIFICATION_-

LIMIT_INFORMATION_2

(Windows 10+) Extended limit
information

LimitViolationInformation2

(34)
JOBOBJECT_LIMIT_-

VIOLATION_INFORMATION_2

(Windows 10+) Extended limit
violation information

The most “fundamental” limits are specified with JobObjectBasicLimitInformation and
JOBOBJECT_BASIC_LIMIT_INFORMATION, while extended limits are set with JobObjectEx-
tendedLimitInformation and JOBOBJECT_EXTENDED_LIMIT_INFORMATION. These struc-
tures are defined like so:

typedef struct _JOBOBJECT_BASIC_LIMIT_INFORMATION {

LARGE_INTEGER PerProcessUserTimeLimit;

LARGE_INTEGER PerJobUserTimeLimit;

DWORD LimitFlags;

SIZE_T MinimumWorkingSetSize;

SIZE_T MaximumWorkingSetSize;

DWORD ActiveProcessLimit;

ULONG_PTR Affinity;

DWORD PriorityClass;

DWORD SchedulingClass;

} JOBOBJECT_BASIC_LIMIT_INFORMATION, *PJOBOBJECT_BASIC_LIMIT_INFORMATION;

typedef struct _JOBOBJECT_EXTENDED_LIMIT_INFORMATION {

JOBOBJECT_BASIC_LIMIT_INFORMATION BasicLimitInformation;

IO_COUNTERS IoInfo;

SIZE_T ProcessMemoryLimit;

SIZE_T JobMemoryLimit;

SIZE_T PeakProcessMemoryUsed;

SIZE_T PeakJobMemoryUsed;

} JOBOBJECT_EXTENDED_LIMIT_INFORMATION, *PJOBOBJECT_EXTENDED_LIMIT_INFORMATION;

The various limits that can be set depend on the LimitFlags member in JOBOBJECT_BA-
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SIC_LIMIT_INFORMATION (whether standalone or part of JOBOBJECT_EXTENDED_LIMIT_-
INFORMATION). Some flags have no associated member, as these flags themselves are enough.
Others make the corresponding member’s value used by SetInformationJobObject. Table
4-4 summarizes the flags that have no correspondingmember. Table 4-5 summarizes the flags
that have associated member(s).

Table 4-4: LimitFlags with no associated member

Limit flag (JOB_OBJECT_LIMIT_*) Description
DIE_ON_UNHANDLED_EXCEPTION (0x400) Prevents processes in the job from showing a dialog

box in case of an unhandled exception
PRESERVE_JOB_TIME (0x40) This flag preserves any previously set job limits, so

that the caller can just make further changes. This flag
cannot be used with JOB_OBJECT_LIMIT_JOB_TIME

(and vice versa)
BREAKAWAY_OK (0x800) Allows processes created from a process in the job to

be created outside the job if
CREATE_BREAKAWAY_FROM_JOB flag is specified in the
call to CreateProcess. If the process is part of a job
hierarchy, the new process breaks from this job and all
parent jobs that have this flag set

SILENT_BREAKAWAY_OK (0x1000) Allows processes created from a process in the job to
be created outside of the job without any special flag
to CreateProcess

KILL_ON_JOB_CLOSE (0x2000) Terminate all processes in the job when the last job
handle is closed

Table 4-5: LimitFlags with associated member(s)

Limit flag
(JOB_OBJECT_LIMIT_*)

Associated member (B/E) Description

WORKINGSET (1) MinimumWorkingSetSize,
MaximumWorkingSetSize (B)

Limits the per-process
working set (RAM). If the
process needs to use more
RAM, it will page towards
itself

PROCESS_TIME (2) PerProcessUserTimeLimit

(B)
Limits the user mode
execution time of each process
in the job (in 100 nano-sec
units)
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Table 4-5: LimitFlags with associated member(s)

Limit flag
(JOB_OBJECT_LIMIT_*)

Associated member (B/E) Description

JOB_TIME (4) PerJobUserTimeLimit (B) Limits the job-wide
user-mode CPU time. if the
process uses more CPU time,
it is terminated

ACTIVE_PROCESS (8) ActiveProcessLimit (B) Limits the active (live)
processes in the job. Newly
created processes that violate
this limit are automatically
terminated

AFFINITY (0x10) Affinity (B) Sets the CPU affinity for all
processes in the job (see
chapter 6 for more on affinity)

PRIORITY_CLASS (0x20) PriorityClass (B) Limits the processes in the job
to use the same priority class
(see chapter 6)

SCHEDULING_CLASS (0x80) SchedulingClass (B) Limits the scheduling class for
all processes in the job. The
values are 0 to 9, where 9 is
the highest. The default is 5
(see chapter 6 for more
information)

PROCESS_MEMORY (0x100) JobMemoryLimit (E) Limits the per-process
committed memory

JOB_MEMORY (0x200) JobMemoryLimit (E) Limits the job-wide
committed memory

SUBSET_AFFINITY (0x4000) Affinity (B) (Windows 7+) Allows
processes to use a subset of the
affinity specified. The JOB_-
OBJECT_LIMIT_AFFINITY

flag is required as well

All the flags in table 4-4 must be used with the extended limits structure (JOBOBJECT_-
EXTENDED_LIMIT_INFORMATION), where the flags themselves are specified with the nested
JOBOBJECT_BASIC_LIMIT_INFORMATION structures’s LimitFlagsmember. In table 4-5, B/E
indicates whether this limit is specified with the basic (B) or the extended (E) structure.

The following code sets a priority class of Below Normal for the given job:
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bool SetJobPriorityClass(HANDLE hJob) {

JOBOBJECT_BASIC_LIMIT_INFORMATION info;

info.LimitFlags = JOB_OBJECT_LIMIT_PRIORITY_CLASS;

info.PriorityClass = BELOW_NORMAL_PRIORITY_CLASS;

return ::SetInformationJobObject(hJob, JobObjectBasicLimitInformation,

&info, sizeof(info));

}

We can test this type of functionality with the Job Monitor application. Open Job Monitor,
create a new job, and add a process to the job (Notepad in figure 4-12).
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Figure 4-12: Job Monitor with Notepad added

If you examine the Base Priority column in Task Manager for this Notepad process, you
should see the value Normal (figure 4-13).
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Figure 4-13: Base Priority of Notepad in Task Manager

The exact meaning and effect of Base Priority (Priority Class) is discussed in chapter 6.

Now return to JOb Monitor, select the Priority Class limit and set its value to Below Normal
and click Set (figure 4-14).

Figure 4-14: Setting Priority Class limit in Job Monitor

Now switch to Task Manager. Notepad’s base priority should now show Below Normal
(figure 4-15).
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Figure 4-15: Limited base priority of Notepad

Trying to change the base priority with Task Manager by right-clicking Notepad and
selecting Set Priority with any level (except Below Normal) will have no effect because of
the job limit.
Going back to Job Monitor and clicking Remove on the priority class limit will re-allow base
priority modifications.

You can find the code to set/remove most of the available job limits in the JobMon
project in the MainDlg.cpp file.

CPU Rate Limit

Windows 8 added a CPU rate limit to the available job limits, which is not set by the basic
or extended limits, but rather uses its own job limit enumeration: JobObjectCpuRateCon-
trolInformation.
The associated structure is JOBOBJECT_CPU_RATE_CONTROL_INFORMATION defined like so:

typedef struct _JOBOBJECT_CPU_RATE_CONTROL_INFORMATION {

DWORD ControlFlags;

union {

DWORD CpuRate;

DWORD Weight;

struct {

WORD MinRate;

WORD MaxRate;

};

};

} JOBOBJECT_CPU_RATE_CONTROL_INFORMATION, *PJOBOBJECT_CPU_RATE_CONTROL_INFORMAT\

ION;
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There are three different ways to set CPU rate limits, controlled by the ControlFlags field.
Its possible values are summarized in table 4-5.

Table 4-5: Flags for CPU rate control

Flag (JOB_OBJECT_CPU_RATE_*) Description
ENABLE (1) Enable CPU rate control
WEIGHT_BASED (2) CPU rate is based on relative weight (Weight member)
HARD_CAP (4) Sets a hard cap for CPU consumption
NOTIFY (8) Notifies the I/O completion port associated with the job (if

any) for rate violations
MIN_MAX_RATE (0x10) Sets the CPU rate between minimum and maximum values

(MinRate and MaxRate members)

If CPU rate control is enabled, and neither JOB_OBJECT_CPU_RATE_CONTROL_WEIGHT_-
BASED nor JOB_OBJECT_CPU_RATE_CONTROL_MIN_MAX_RATE are specified, then the Cpu-
Ratemember specifies the CPU limit percentage relative to 10000. For example, if 15 percent
CPU is desired, the value should be set to 1500. This allows fractional CPU rates to be
specified.
If the JOB_OBJECT_CPU_RATE_CONTROL_HARD_CAP flag is also specified, the limit is a hard
one - the job won’t get more CPU even if there are CPUs available. Without this flag, the
job may get more CPU time if there are available processors.

Behind the scenes, the kernel applied these restrictions bymeasuring the CPU consumption
of the job in 300 msec time intervals, allowing/preventing it to/from executing in the next
interval(s).

The CpuLimit project demonstrates using CPU rate control with the CpuRatemember and a
hard cap. The main function accepts an array of process IDs to put in a job, and a percentage
to use as a hard CPU rate limit.
Here is the start of main:
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int main(int argc, const char* argv[]) {

if (!::IsWindows8OrGreater()) {

printf("CPU Rate control is only available on Windows 8 and later\n");

return 1;

}

if (argc < 3) {

printf("Usage: CpuLimit <pid> [<pid> ...] <precentage>\n");

return 0;

}

// create the job object

HANDLE hJob = ::CreateJobObject(nullptr, L"CpuRateJob");

if (!hJob)

return Error("Failed to create object");

for (int i = 1; i < argc - 1; i++) {

int pid = atoi(argv[i]);

HANDLE hProcess = ::OpenProcess(PROCESS_SET_QUOTA | PROCESS_TERMINATE,

FALSE, pid);

if (!hProcess) {

printf("Failed to open handle to process %d (error=%d)\n", pid,

::GetLastError());

continue;

}

if (!::AssignProcessToJobObject(hJob, hProcess)) {

printf("Failed to assign process %d to job (error=%d)\n", pid,

::GetLastError());

}

else {

printf("Added process %d to job\n", pid);

}

::CloseHandle(hProcess);

}

main starts by checking whether the application is executing on Windows 8 at least, as CPU
rate control was not available in prior versions. Then, the program validates that there are at
least one process ID and a CPU percentage by checking for at least 3 arguments (the program
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itself, PID, rate).

A job object is then created, with a name, so it’s easier to identify using tools. Each process
is opened and assigned to the job, if possible.
Now the program is ready to apply the CPU rate control:

JOBOBJECT_CPU_RATE_CONTROL_INFORMATION info;

info.CpuRate = atoi(argv[argc - 1]) * 100;

info.ControlFlags = JOB_OBJECT_CPU_RATE_CONTROL_ENABLE |

JOB_OBJECT_CPU_RATE_CONTROL_HARD_CAP;

if (!::SetInformationJobObject(hJob, JobObjectCpuRateControlInformation,

&info, sizeof(info)))

return Error("Failed to set job limits");

printf("CPU limit set successfully.\n");

printf("Press ENTER to quit.\n");

char dummy[10];

gets_s(dummy);

::CloseHandle(hJob);

return 0;

}

The CPU rate limit is calculated by taking the argument from the command line and
multiplying it by 100. Finally, SetInformationJobObject is called to set the limit.
Before the program exits, it waits for the user to press ENTER. This allows the job object’s
handle to be open, and so easier to spot with tools. Otherwise, the handle would have been
closed, marking the job for deletion. The limits, however, are still applied, as long as there
are processes active in the job.

Let’s test this by launching two instances of the CpuStress application (figure 4-16). The
system used here has 16 logical processors, so we’ll activate 4 threads withmaximum activity
in both of them. That should consume about 50% of all CPU time on the system (figure 4-17).
Task Manager shows this is indeed the case (figure 4-18).
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Figure 4-16: 2 instances of CPU Stress when launched
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Figure 4-17: 2 CPU Stress with 4 maximum active threads

Figure 4-18: Task Manager showing 50% CPU utilization

Now we execute CpuLimit with the process IDs and the required CPU rate limit (20% in this
example):

cpulimit 38984 28760 20

You should see a set of success messages like so:
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CpuLimit.exe 20132 17480 20

Added process 20132 to job

Added process 17480 to job

CPU limit set successfully.

Press ENTER to quit.

At this point, you should be able to see the CPU consumption drop in both CPUStress
instances (figure 4-19). The total CPU both consume should be around 20%, viewable in
Task Manager.
Opening Job Explorer and looking at the CpuRateJob job (this is the name given in the code
for easy identification) should show the CPU rate limit (figure 4-20).

Unfortunately, at the time of this writing, Process Explorer does not show CPU
rate control information for jobs.

Figure 4-19: CPU Stress instances affected by CPU rate control
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Figure 4-20: Job Explorer showing CPU rate control

If CpuLimit fails to add the processes with error 5 (access denied), run CpuStress
from a command window rather than through explorer. If you’re curious, inves-
tigate why this happens.

User Interface Limits

Another set of job limits is available through the JobObjectBasicUIRestrictions infor-
mation class for user interface related restrictions. These are represented by a single 32-bit
value stored in a simple structure:

typedef struct _JOBOBJECT_BASIC_UI_RESTRICTIONS {

DWORD UIRestrictionsClass;

} JOBOBJECT_BASIC_UI_RESTRICTIONS, *PJOBOBJECT_BASIC_UI_RESTRICTIONS;

The available restrictions are bit flags listed in table 4-6.

A job that uses UI restrictions cannot be part of a job hierarchy.
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Table 4-6: User Interface job restrictions

UI flag (JOB_OBJECT_UILIMIT_*) Description
NONE (0) No limits
HANDLES (1) Processes in the job cannot access USER handles (e.g.

windows) owned by processes not part of the job
READCLIPBOARD (2) Processes in the job cannot read data from the clipboard
WRITECLIPBOARD (4) Processes in the job cannot write data to the clipboard
SYSTEMPARAMETERS (8) Processes in the job cannot change system parameters by

calling SystemParametersInfo
DISPLAYSETTINGS (0x10) Processes in the job cannot call ChangeDisplaySettings
GLOBALATOMS (0x20) Processes in the job cannot access global atoms. The job has

its own atom table (see the next sidebar)
DESKTOP (0x40) Processes in the job cannot create or switch desktops

(CreateDesktop, SwitchDesktop)
EXITWINDOWS (0x80) Processes in the job cannot call ExitWindows or

ExitWindowsEx

An Atom Table is a system-managed table that maps strings (or integers in
a certain range) to integers. Each entry in the table is an atom. These atoms
are used with user interface APIs, such as when registering a window class
(RegisterClass / RegisterClassEx) or by manually manipulating an atom
table (AddAtom, FindAtom, GlobalAddAtom and others). The Global atom table is
available to all applications - this is the one that is not accessible in a job restricted
with JOB_OBJECT_UILIMIT_GLOBALATOMS.

Here is a quick experiment to show one effect of UI restrictions. Open Job Monitor, create a
new job and insert a Notepad instance into it. Then set a UI limit of Write Clipboard (figure
4-21).
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Figure 4-21: Job Monitor with a Notepad and UI restriction

Now open another Notepad instance outside of the job (or use any other text editing
application). Copy some text from the application and try to paste it into the Notepad
instance that is in the job. The operation should fail, even though the Edit menu shows
the Paste option is enabled.

The JOB_OBJECT_UILIMIT_HANDLES flag prevents processes in the job from accessing other
user interface objects (such as windows) outside the job. This means that calling functions
such as PostMessage or SendMessage to windows outside the job fails. In some cases, there
is a need to talk to a specific window outside the job from within the job. A process outside
the job can grant (or remove) access to a window (or other USER object such as a menu or
hook) by calling UserHandleGrantAccess:
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BOOL UserHandleGrantAccess(

_In_ HANDLE hUserHandle, // user object handle

_In_ HANDLE hJob, // job handle

_In_ BOOL bGrant); // TRUE to grant access, FALSE to remove it

The “hook” referred to in the previous paragraph is one of those that can
be installed with SetWindowsHookEx (discussed in a later chapter). With this
restriction in place, a process in the job cannot hook threads that run in processes
outside the job.

Job Notifications

When job limits are violated, or when certain events occur, the job can notify an interested
party via an I/O completion port, that can be associated with the job. I/O completion ports
are typically used to handle completion of asynchronous I/O operations (which we’ll tackle
in a later chapter), but in this special case are used as the mechanism of notifying when
certain job events occur.

The job is a dispatcher (waitable) object, that becomes signaled when CPU time violation
occurs. For this simple case, a thread can wait with WaitForSingleObject (as a common
example) and then handle the CPU time violation. Setting a new CPU time limit resets the
job to the non-signaled state.

The first step in getting notifications is to associate an I/O completion port with the job. Here
is the relevant snippet from JobMon (OnBindIoCompletion function inMainDlg.cpp) (error
handling omitted for clarity):
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wil::unique_handle hCompletionPort(::CreateIoCompletionPort(

INVALID_HANDLE_VALUE, nullptr, 0, 0));

JOBOBJECT_ASSOCIATE_COMPLETION_PORT info;

info.CompletionKey = 0; // application defined

info.CompletionPort = hCompletionPort.get();

::SetInformationJobObject(m_hJob.get(), JobObjectAssociateCompletionPortInforma\

tion,

&info, sizeof(info));

// transfer ownership and store in a member

m_hCompletionPort = std::move(hCompletionPort);

Normally the first argument to CreateIoCompletionPort is a file handle, but in this case
it’s INVALID_HANDLE_VALUE, indicating no file is associated with the I/O completion port.

The next step is to wait for the completion port to fire by calling GetQueuedCompletion-
Status defined like so:

BOOL GetQueuedCompletionStatus(

_In_ HANDLE CompletionPort,

_Out_ PDWORD pNumberOfBytesTransferred,

_Out_ PULONG_PTR lpCompletionKey,

_Out_ LPOVERLAPPED* pOverlapped,

_In_ DWORD dwMilliseconds);

JobMon creates a thread and calls this function, waiting indefinitely until a notification
arrives. A new thread is required in this case so that the UI thread of JobMon does not block,
causing the UI to become unresponsive. Here is the relevant code from JobMon following
the creation of the completion port:

// create a thread to monitor notifications

wil::unique_handle hThread(::CreateThread(nullptr, 0, [](auto p) {

return static_cast<CMainDlg*>(p)->DoMonitorJob();

}, this, 0, nullptr));
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Thread creation is explained in detail in the next chapter.

The thread is passed the this pointer so that it can conveniently call a member function
(DoMonitorJob). DoMonitorJob calls GetQueuedCompletionStatus and responds when
the wait is over:

DWORD CMainDlg::DoMonitorJob() {

for (;;) {

DWORD message;

ULONG_PTR key;

LPOVERLAPPED data;

if (::GetQueuedCompletionStatus(m_hCompletionPort.get(),

&message, &key, &data, INFINITE)) {

// handle notification

The meaning of the parameters to GetQueuedCompletionStatus are special when used
with job notifications (as opposed to a file). pNumberOfBytesTransferred is the notification
type, summarized in table 4-7. The CompletionKey parameter is the same one specified
in CreateIoCompletionPort, and is application-defined. Finally, pOverlapped is extra
information, whose format depends on the type of notification (table 4-7).

Table 4-7: Job notifications

Notification
(JOB_OBJECT_MSG_*)

Associated data
(pOverlapped)

Description

END_OF_JOB_TIME (1) NULL Job time limit has been
exhausted. The time limit is
now canceled and processes in
the job continue to run

END_OF_PROCESS_TIME (2) The PID of the process A process exceeded its
per-process CPU time (the
process is being terminated)

ACTIVE_PROCESS_LIMIT (3) NULL The active processes limit has
been exceeded

ACTIVE_PROCESS_ZERO (4) NULL The number of active
processes became zero (all
processes exited for whatever
reason)
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Table 4-7: Job notifications

Notification
(JOB_OBJECT_MSG_*)

Associated data
(pOverlapped)

Description

NEW_PROCESS (6) The PID of the new process A new process was added to
the job (either directly or
because another process in the
job created it). When the
completion port is initially
associated, all active processes
are reported as well

EXIT_PROCESS (7) The PID of the exiting process A process in the job has exited
ABNORMAL_EXIT_PROCESS (8) The PID of the exiting process A process has exited

abnormally, which means it
terminated because of an
unhandled exception, from a
given list of exceptions (check
the documentation for a
complete list)

PROCESS_MEMORY_LIMIT (9) The PID of the process A process in the job has
exceeded its memory
consumption limit

JOB_MEMORY_LIMIT (10) The PID of the process A process in the job caused
the job to exceed its job-wide
memory limit

NOTIFICATION_LIMIT (11) The PID of the process (Windows 8+) A process in the
job that registered a to receive
a notification limit has
exceeded a limit.

In case of a notification limit, call QueryInformationJobObject with JobObjectNotifi-
cationLimitInformation and/or JobObjectNotificationLimitInformation2 (Win-
dows 10) to query for the limits being violated.

The following code snippet from JobMon shows how some of these notification codes are
handled:
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switch (message) {

case JOB_OBJECT_MSG_ACTIVE_PROCESS_LIMIT:

AddLog(L"Job Notification: Active process limit exceeded");

break;

case JOB_OBJECT_MSG_ACTIVE_PROCESS_ZERO:

AddLog(L"Job Notification: Active processes is zero");

break;

case JOB_OBJECT_MSG_NEW_PROCESS:

AddLog(L"Job Notification: New process created (PID: "

+ std::to_wstring(PtrToUlong(data)) + L")");

break;

case JOB_OBJECT_MSG_EXIT_PROCESS:

AddLog(L"Job Notification: process exited (PID: "

+ std::to_wstring(PtrToUlong(data)) + L")");

break;

case JOB_OBJECT_MSG_ABNORMAL_EXIT_PROCESS:

AddLog(L"Job Notification: Process " + std::to_wstring(

PtrToUlong(data)) + L" exited abnormally");

break;

case JOB_OBJECT_MSG_JOB_MEMORY_LIMIT:

AddLog(L"Job Notification: Job memory limit exceed attempt by process "

+ std::to_wstring(PtrToUlong(data)));

break;

case JOB_OBJECT_MSG_PROCESS_MEMORY_LIMIT:

AddLog(L"Job Notification: Process " + std::to_wstring(

PtrToUlong(data)) + L" exceeded its memory limit");

break;

case JOB_OBJECT_MSG_END_OF_JOB_TIME:

AddLog(L"Job time limit exceeded");

break;

case JOB_OBJECT_MSG_END_OF_PROCESS_TIME:
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AddLog(L"Process " + std::to_wstring(PtrToUlong(data))

+ L" has exceeded its time limit");

break;

}

AddLog is a private function that adds the corresponding message to the bottom list view.

For end-of-job time limit violation, the default action taken is to terminate all processes in the
job. Each process’ exit code is set to ERROR_NOT_ENOUGH_QUOTA (1816) and a notification is
not sent. To change that, a call to SetInformationJobObjectmust be made beforehand to
set a different end-of-job action with JobObjectEndOfJobTimeInformation information
class, passing the following structure:

typedef struct _JOBOBJECT_END_OF_JOB_TIME_INFORMATION {

DWORD EndOfJobTimeAction;

} JOBOBJECT_END_OF_JOB_TIME_INFORMATION, *PJOBOBJECT_END_OF_JOB_TIME_INFORMATIO\

N;

#define JOB_OBJECT_TERMINATE_AT_END_OF_JOB 0

#define JOB_OBJECT_POST_AT_END_OF_JOB 1

A value of JOB_OBJECT_TERMINATE_AT_END_OF_JOB is the default, while JOB_OBJECT_-
POST_AT_END_OF_JOB causes posting a notification message without terminating the pro-
cesses. If a completion port is not associated with the job, this value has no effect and the
termination protocol is used.

Silos

Windows 10 version 1607 and Windows Server 2016 introduced an enhanced version of a
job known as Silo. A silo always starts as a job, but it can be upgraded to a silo by using Set-
InformationJobObjectwith an undocumented information class, JobObjectCreateSilo
(35), that appears in theWindows SDK headers, but is not documented. Some of the Silo APIs
are documented in the Windows Driver Kit (WDK) for use by device driver writers. Since
silos are mostly controllable from kernel mode, their programmatic usage is out of scope for
this book.

There are two variations to silos: Application Silos and Server Silos. Server silos are only
supported on Windows server machines, starting with Server 2016. They are used today
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to implement Windows Containers, the ability to sandbox processes, creating a virtual
environment that makes processes think they are on a machine of their own. This requires
the redirection of file system, registry, and object namespace to be part of a particular silo,
so the kernel had to go through significant changes internally to be silo-aware.

Application silos are used in applications that were converted to UWP using the Desktop
Bridge technology. They are not nearly as powerful as server silos (nor they need to be). Job
Explorer has a Silo Type column that indicates if a job is in fact a silo by listing its type.
Figure 4-22 shows three application silos on the machine.

Figure 4-22: Job Explorer showing Silos

Notice silos have a silo ID, which is a unique job ID that is used internally to identify silos.

More detailed information on silos can be found in the “Windows Internals, 7th
edition, Part 1” in chapter 3.

Exercises

1. Write a tool calledMemLimit that accepts a process ID and a number representing the
maximum committed memory for the process and set that limit using a job.

2. Extend JobMon to cover all remaining limits that are not currently implemented, such
as I/O and network limits.

Summary

Jobs offer many opportunities to control and limit processes, all implemented by the kernel
itself. The introduction of nested jobs in Windows 8 makes jobs more useful and less
restrictive.
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In the next chapter, we’ll start looking at threads. Processes and jobs aremanagement objects,
but threads are the actual ones assigned to processors to do work, so there is no OS life
without threads.



Chapter 5: Threads Basics
Processes are management objects, and do not execute code directly. To get anything done
on Windows, threads must be created. As we’ve seen already, a user mode process is created
with a single thread that eventually executes the main entry point of the executable. In many
cases, this is good enough, and the application may not require any more threads.

Some applications, however, may benefit from using multiple threads executing within the
process. Each thread is an independent path of execution, and so can use a different processor,
resulting in true concurrency. In this chapter, we’ll explore the fundamentals of creating and
managing threads. In subsequent chapters, we’ll delve into other aspects of threads, such as
scheduling and synchronization.

In this chapter:

• Introduction
• Creating and Managing Threads
• Terminating Threads
• A Thread’s Stack
• A Thread’s Name
• What About the C++ Standard Library

Introduction

The first question we should consider is why use threads in the first place? There are
essentially two possible reasons:

1. Increase performance by utilizing multiple cores executing concurrently.
2. Improve application design.



Chapter 5: Threads Basics 223

Although you may come up with other reasons to use threads, these reasons somehow fall
into the second category. It’s always possible to design with a single thread (maybe by using
timers, for example), without creating more threads. Still, the second reason is valid and
is in fact the dominant one. A quick look at Task Manager in the Performance/CPU tab
shows many (thousands of) threads, much more than the number of processors, and still the
consumed CPU percentage at any time is low, meaning reason number 1 is not dominant
(figure 5-1).

Figure 5-1: Performance/CPU in Task Manager

A thread abstracts an independent execution path, unrelated (from an execution perspective)
to other threads that may be active at the same time. Once a thread starts execution, it may
perform any of the following operations, until it exits:

• CPU-bound operations - calculations or invocation of functions that rely on CPU
operations to make progress.

• I/O bound operations - operations performed against I/O devices, such as disks or the
network. While waiting for an I/O operation to complete, the thread is in a wait state,
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and does not consume CPU cycles.
• Other operations that may result in the thread entering the wait state, such as waiting
on a synchronization primitive (e.g. a mutex).

Thread Synchronization is discussed in detail in chapter 7.

The fact that the CPU utilization in figure 5-1 is not 100% means that most threads are in a
wait state (do not want to execute). In fact, if 16 threads execute code at the same time on the
machine (figure 5-1), the CPU utilization would be 100%. It’s only about 13%, which means
there are about 2 processors active at the same time.

Sockets, Cores and Logical Processors

Before we get any further with threads, we must realize that threads are an abstraction over
processors. But what exactly is the definition of a processor? In the days where multiple
cores make up a typical CPU, the terms might become confusing. Figure 5-2 shows a logical
composition of a typical CPU.

Figure 5-2: Logical composition of a CPU
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In figure 5-2, there is one socket, which is the physical chip stuck in the computer’s
motherboard. Laptops and home computers typically have just one of these. Large server
machines may contain more than one socket. Each socket has multiple cores, which are
independent processors (4 in figure 5-2).
On Intel processors, each core may be split to two logical processors, also called hardware
threads because of a technology called Hyper-threading. From Windows perspective, the
number of processors is the number of logical processors (16 in figure 5-1). This means that
at any given moment, at most 16 threads may be running. The number of sockets, cores and
logical processors is also shown by Task Manager (figure 5-1).

AMD has a similar technology called Simultaneous Multi Threading (SMT).

Hyper-threading can be disabled in the BIOS settings. The potential downside of hyper-
threading is that every two logical processors that share a core also share the Level 2 cache,
and so might “interfere” with each other. Chapter 6 has more to say of caching.

Creating and Managing Threads

The basic function to create a thread is CreateThread:

HANDLE WINAPI CreateThread(

_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

_In_ SIZE_T dwStackSize,

_In_ LPTHREAD_START_ROUTINE lpStartAddress,

_In_opt_ LPVOID lpParameter,

_In_ DWORD dwCreationFlags,

_Out_opt_ LPDWORD lpThreadId);

The first argument to CreateThread should be recognizable by now, typically set to NULL.
The dwStackSize parameter sets the thread’s stack size, discussed in detail in the section
“A Thread’s Stack”, later in this chapter. It’s usually set to zero, which sets a default sizes



Chapter 5: Threads Basics 226

based on the PE header. I say “sizes” because the stack has an initial size and a maximum
size (discussed later as well).

The lpStartAddress parameter is the most important one, specifying the user function to
call from the new thread. This function can be named anything but it must adhere to the
following prototype:

DWORD WINAPI ThreadProc(_In_ PVOID pParameter);

The thread function must return a 32-bit number, which is considered the thread’s exit code,
that can later be retrieved with GetExitCodeThread. The WINAPI macro expands to the
__stdcall keyword, signifying the standard calling convention which is common to most
Windows APIs. Finally, the parameter passed to the function is a user-defined value that is
passed as the fourth parameter to CreateThread, and simply passed as-is to the thread
function. This value typically points to some data structure containing information that
allows the thread to do its job.

Back to CreateThread - the lpParameter parameter was just discussed. In the simplest
cases, NULL could be passed in. The dwCreationFlags argument can have three possible
values (which can be combined). Specifying the CREATE_SUSPENDED flag creates the thread
in a suspended state. The thread is ready to go, but a call to ResumeThreadmust be made to
let it loose. Another possible value is STACK_SIZE_PARAM_IS_A_RESERVATION, which gives
an alternate meaning to the stack size parameter (discussed in the section “A Thread’s Stack”
as well). Finally, specifying neither of these flags (most common), instructs the thread to start
execution immediately. The last optional argument to CreateThread is the resulting unique
thread ID of the new thread. If the caller is not interested in this information, it can simply
specify NULL for this argument.

The return value from CreateThread is a handle to the newly created thread. If something
goes wrong, the return value is NULL and GetLastError can be called to extract the error
code. Once the handle is not needed, it should be closed with CloseHandle like any other
kernel object handle.

The following code snippet creates a thread from the main function, waits for it to exit, and
prints out its exit code:
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DWORD WINAPI DoWork(PVOID) {

printf("Thread ID running DoWork: %u\n", ::GetCurrentThreadId());

// simulate some heavy work...

::Sleep(3000);

// return a result

return 42;

}

int main() {

HANDLE hThread = ::CreateThread(nullptr, 0, DoWork, nullptr, 0, nullptr);

if(!hThread) {

printf("Failed to create thread (error=%d)\n", ::GetLastError());

return 1;

}

// print ID of main thread

printf("Main thread ID: %u\n", ::GetCurrentThreadId());

// wait for the thread to finish

::WaitForSingleObject(hThread, INFINITE);

DWORD result;

::GetExitCodeThread(hThread, &result);

printf("Thread done. Result: %u\n", result);

::CloseHandle(hThread);

return 0;

}

Here is an example output:

Main thread ID: 19108

Thread ID running DoWork: 23700

Thread done. Result: 42

The GetExitCodeThread allows retrieving the returned value from a thread’s function:
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BOOL GetExitCodeThread(

_In_ HANDLE hThread,

_Out_ LPDWORD lpExitCode);

You might be wondering what would happen if the function is called with a thread that has
not exited yet. The function does not fail, but returns STILL_ACTIVE (0x103=259).

The Primes Counter Application

The following example illustrates amore complex usage ofmultiple threads. ThePrimesCounter
application (available in the samples for this chapter), counts the number of prime numbers
in a range of numbers using a specified number of threads. The idea is to split the work
between several threads, each counting prime numbers in its range of numbers. Then the
main thread waits for all worker threads to exit, allowing it to simply sum the counts from
all threads. This is depicted in figure 5-3.

Figure 5-3: Primes Counter design
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This idea of creating several threads that do some work, and waiting for them to exit before
aggregating the results is sometimes called Fork-Join, because threads are “forked” from
some initial thread and then “joined back” to the initial thread upon completion.

Another name for this pattern is Structured Parallelism.

The number of threads used in this application is one of the parameters of the algorithm -
the interesting question is what number of threads is optimal to complete the calculation the
quickest? This will be discussed later; but, first - the code.

The main function accepts the range of numbers and the number of threads on the command
line:

int main(int argc, const char* argv[]) {

if (argc < 4) {

printf("Usage: PrimesCounter <from> <to> <threads>\n");

return 0;

}

int from = atoi(argv[1]);

int to = atoi(argv[2]);

int threads = atoi(argv[3]);

if (from < 1 || to < 1 || threads < 1 || threads > 64) {

printf("Invalid input.\n");

return 1;

}

The number of threads is limited to 64. Why this number? This is the maximum number of
handles that can be waited upon at the same time with WaitForMultipleObjects, which
is used later to wait until all threads exit.

The next call in main is to the function that initiates the work and returns result:



Chapter 5: Threads Basics 230

DWORD elapsed;

int count = CalcAllPrimes(from, to, threads, elapsed);

printf("Total primes: %d. Elapsed: %d msec\n", count, elapsed);

CalcPrimes accepts the arguments extracted from the command line and returns the total
primes counted, and also returns the elapsed time in milliseconds using the last elapsed
parameter (passed by reference). Finally, the results are echoed to the console.

Each thread needs its “from” and “to” numbers and somewhere to put the result. Since a
thread function can return a 32-bit unsigned integer, this can be used here. But in the general
case, the return value may not be flexible enough. The typical solution is to define a structure
that has all the information required by the thread, including input and output values. For
our application, the following structure is defined:

struct PrimesData {

int From, To;

int Count;

};

CalcAllPrimesmust allocate a PrimesData instance for each thread and initialize the From
and To data members:

int CalcAllPrimes(int from, int to, int threads, DWORD& elapsed) {

auto start = ::GetTickCount64();

// allocate data for each thread

auto data = std::make_unique<PrimesData[]>(threads);

// allocate an array of handles

auto handles = std::make_unique<HANDLE[]>(threads);

The current time is captured before any work is done with GetTickCount64. This API
returns the number of milliseconds elapsed since Windows booted. Although it’s not the
most accurate API to use (QueryPerformanceCounter is more accurate), it will do for this
application’s purposes.

GetTickCount64 replaces the older GetTickCount by returning a 64 bit number
as opposed to a 32-bit number returned from GetTickCount. A 32-bit number of
milliseconds will overflow and roll back to zero after about 49.7 days.
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The code uses std::unique_ptr<[]> to managed an array that is cleaned up automatically
when the variable goes out of scope. This is used for the PrimesData array as well as for the
threads handles.

Next, the function calculates the chunk size for each thread and then loops to create the
threads appropriately:

int chunk = (to - from + 1) / threads;

for (int i = 0; i < threads; i++) {

auto& d = data[i];

d.From = i * chunk;

d.To = i == threads - 1 ? to : (i + 1) * chunk - 1;

DWORD tid;

handles[i] = ::CreateThread(nullptr, 0, CalcPrimes, &d, 0, &tid);

assert(handles[i]);

printf("Thread %d created. TID=%u\n", i + 1, tid);

}

Each thread’s PrimesData instance is initialized with the correct From and To based on the
chunk size. The only wrinkle is that the range may not be exactly divisible by the number
of threads. So, the last thread is tasked with the “tail” of numbers (if any). CreateThread
is called to create each thread, pointing each thread to the CalcPrimes function (discussed
shortly), passing to it its personal PrimesData pointer. Finally, the thread index and ID are
displayed.

CalcPrimes is the thread function tasked with counting the prime numbers in the range
supplied to that thread:

DWORD WINAPI CalcPrimes(PVOID param) {

auto data = static_cast<PrimesData*>(param);

int from = data->From, to = data->To;

int count = 0;

for (int i = from; i <= to; i++)

if (IsPrime(i))

count++;

data->Count = count;
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return count;

}

The parameter passed in to a thread is cast to a PrimesData pointer. Then a simple for loop
checks if the number is a prime one and if so increments a counter that is eventually stored in
the PrimesData’s Count member. IsPrime is a simple function returning true for a prime
number and false otherwise:

bool IsPrime(int n) {

if (n < 2)

return false;

if(n == 2)

return true;

int limit = (int)::sqrt(n);

for (int i = 2; i <= limit; i++)

if (n % i == 0)

return false;

return true;

}

The algorithm used in IsPrime is certainly not optimal, but that’s not the point.

Back in CalcAllPrimes, all threads are created without the CREATE_SUSPENDED flag, so
they start immediately. All that remains is to wait until all threads exit:

::WaitForMultipleObjects(threads, handles.get(), TRUE, INFINITE);

A full discussion of the wait functions is saved for chapter 7. WaitForMultipleObjects
above accepts the following arguments, in order:

• the number of handles in the array
• the array of handles to wait on
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• a boolean flag indicating if the wait should be for all handles to become signaled (TRUE)
or just one (FALSE). For threads, the meaning of “signaled” is “exited”.

• a timeout in milliseconds, in this case INFINITE means wait as long as it takes.

Once all threads exit, the wait is over. All that’s left is to gather results:

elapsed = static_cast<DWORD>(::GetTickCount64() - start);

FILETIME dummy, kernel, user;

int total = 0;

for (int i = 0; i < threads; i++) {

::GetThreadTimes(handles[i], &dummy, &dummy, &kernel, &user);

int count = data[i].Count;

printf("Thread %2d Count: %7d. Execution time: %4u msec\n",

i + 1, count,

(user.dwLowDateTime + kernel.dwLowDateTime) / 10000);

total += count;

::CloseHandle(handles[i]);

}

return total;

The code above uses the GetThreadTimes API to retrieved timing information for a thread:

BOOL GetThreadTimes(

_In_ HANDLE hThread,

_Out_ LPFILETIME lpCreationTime,

_Out_ LPFILETIME lpExitTime,

_Out_ LPFILETIME lpKernelTime,

_Out_ LPFILETIME lpUserTime);

The function returns a thread’s creation time, exit time, the time it spent executing in kernel
mode and the time it spend executing in user mode. For this application, I wanted to display
the execution time, which means summing up kernel time and user time, while disregarding
create and exit times.

The kernel and user times are reported in a FILETIME structure, which is a 64-bit value stored
in two 32-bit values:
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typedef struct _FILETIME {

DWORD dwLowDateTime;

DWORD dwHighDateTime;

} FILETIME, *PFILETIME, *LPFILETIME;

The value is in 100 nanosecond units (10 to the -7th power), which means the value in
milliseconds can be obtained by dividing by 10000. The code assumes the elapsed time is
not higher than a 32-bit value in 100 nanosecond units, which may not be correct in the
general case.

Running Primes Counter

Here are a few runs for the same value range, starting from a baseline with one thread:

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 1

Thread 1 created (3 to 20000000). TID=29760

Thread 1 Count: 1270606. Execution time: 9218 msec

Total primes: 1270606. Elapsed: 9218 msec

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 2

Thread 1 created (3 to 10000001). TID=22824

Thread 2 created (10000002 to 20000000). TID=41816

Thread 1 Count: 664578. Execution time: 3625 msec

Thread 2 Count: 606028. Execution time: 5968 msec

Total primes: 1270606. Elapsed: 5984 msec

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 4

Thread 1 created (3 to 5000001). TID=52384

Thread 2 created (5000002 to 10000000). TID=47756

Thread 3 created (10000001 to 14999999). TID=42296

Thread 4 created (15000000 to 20000000). TID=34972

Thread 1 Count: 348512. Execution time: 1312 msec

Thread 2 Count: 316066. Execution time: 2218 msec

Thread 3 Count: 306125. Execution time: 2734 msec

Thread 4 Count: 299903. Execution time: 3140 msec

Total primes: 1270606. Elapsed: 3141 msec

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 8
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Thread 1 created (3 to 2500001). TID=25200

Thread 2 created (2500002 to 5000000). TID=48588

Thread 3 created (5000001 to 7499999). TID=52904

Thread 4 created (7500000 to 9999998). TID=18040

Thread 5 created (9999999 to 12499997). TID=50340

Thread 6 created (12499998 to 14999996). TID=43408

Thread 7 created (14999997 to 17499995). TID=53376

Thread 8 created (17499996 to 20000000). TID=33848

Thread 1 Count: 183071. Execution time: 578 msec

Thread 2 Count: 165441. Execution time: 921 msec

Thread 3 Count: 159748. Execution time: 1171 msec

Thread 4 Count: 156318. Execution time: 1343 msec

Thread 5 Count: 154123. Execution time: 1531 msec

Thread 6 Count: 152002. Execution time: 1531 msec

Thread 7 Count: 150684. Execution time: 1718 msec

Thread 8 Count: 149219. Execution time: 1765 msec

Total primes: 1270606. Elapsed: 1766 msec

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 16

Thread 1 created (3 to 1250001). TID=50844

Thread 2 created (1250002 to 2500000). TID=9792

Thread 3 created (2500001 to 3749999). TID=12600

Thread 4 created (3750000 to 4999998). TID=52804

Thread 5 created (4999999 to 6249997). TID=5408

Thread 6 created (6249998 to 7499996). TID=42488

Thread 7 created (7499997 to 8749995). TID=49336

Thread 8 created (8749996 to 9999994). TID=13384

Thread 9 created (9999995 to 11249993). TID=41508

Thread 10 created (11249994 to 12499992). TID=12900

Thread 11 created (12499993 to 13749991). TID=39512

Thread 12 created (13749992 to 14999990). TID=3084

Thread 13 created (14999991 to 16249989). TID=52760

Thread 14 created (16249990 to 17499988). TID=17496

Thread 15 created (17499989 to 18749987). TID=39956

Thread 16 created (18749988 to 20000000). TID=31672

Thread 1 Count: 96468. Execution time: 281 msec

Thread 2 Count: 86603. Execution time: 484 msec

Thread 3 Count: 83645. Execution time: 562 msec

Thread 4 Count: 81795. Execution time: 671 msec
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Thread 5 Count: 80304. Execution time: 781 msec

Thread 6 Count: 79445. Execution time: 812 msec

Thread 7 Count: 78589. Execution time: 859 msec

Thread 8 Count: 77729. Execution time: 828 msec

Thread 9 Count: 77362. Execution time: 906 msec

Thread 10 Count: 76761. Execution time: 1000 msec

Thread 11 Count: 76174. Execution time: 984 msec

Thread 12 Count: 75828. Execution time: 1046 msec

Thread 13 Count: 75448. Execution time: 1078 msec

Thread 14 Count: 75235. Execution time: 1062 msec

Thread 15 Count: 74745. Execution time: 1062 msec

Thread 16 Count: 74475. Execution time: 1109 msec

Total primes: 1270606. Elapsed: 1188 msec

C:\Dev\Win10SysProg\x64\Release>PrimesCounter.exe 3 20000000 20

Thread 1 created (3 to 1000001). TID=30496

Thread 2 created (1000002 to 2000000). TID=7300

Thread 3 created (2000001 to 2999999). TID=50580

Thread 4 created (3000000 to 3999998). TID=21536

Thread 5 created (3999999 to 4999997). TID=24664

Thread 6 created (4999998 to 5999996). TID=34464

Thread 7 created (5999997 to 6999995). TID=51124

Thread 8 created (6999996 to 7999994). TID=29972

Thread 9 created (7999995 to 8999993). TID=50092

Thread 10 created (8999994 to 9999992). TID=49396

Thread 11 created (9999993 to 10999991). TID=18264

Thread 12 created (10999992 to 11999990). TID=33496

Thread 13 created (11999991 to 12999989). TID=16924

Thread 14 created (12999990 to 13999988). TID=44692

Thread 15 created (13999989 to 14999987). TID=53132

Thread 16 created (14999988 to 15999986). TID=53692

Thread 17 created (15999987 to 16999985). TID=5848

Thread 18 created (16999986 to 17999984). TID=12760

Thread 19 created (17999985 to 18999983). TID=13180

Thread 20 created (18999984 to 20000000). TID=49980

Thread 1 Count: 78497. Execution time: 218 msec

Thread 2 Count: 70435. Execution time: 343 msec

Thread 3 Count: 67883. Execution time: 421 msec

Thread 4 Count: 66330. Execution time: 484 msec
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Thread 5 Count: 65366. Execution time: 578 msec

Thread 6 Count: 64337. Execution time: 640 msec

Thread 7 Count: 63798. Execution time: 640 msec

Thread 8 Count: 63130. Execution time: 703 msec

Thread 9 Count: 62712. Execution time: 718 msec

Thread 10 Count: 62090. Execution time: 703 msec

Thread 11 Count: 61937. Execution time: 781 msec

Thread 12 Count: 61544. Execution time: 812 msec

Thread 13 Count: 61191. Execution time: 796 msec

Thread 14 Count: 60826. Execution time: 843 msec

Thread 15 Count: 60627. Execution time: 875 msec

Thread 16 Count: 60425. Execution time: 875 msec

Thread 17 Count: 60184. Execution time: 875 msec

Thread 18 Count: 60053. Execution time: 890 msec

Thread 19 Count: 59681. Execution time: 875 msec

Thread 20 Count: 59560. Execution time: 906 msec

Total primes: 1270606. Elapsed: 1109 msec

The system on which these runs executed has 16 logical processors. Here is a couple of
interesting observations from the above output:

• Improvement of execution time with increasing number of threads is not linear (not
even close).

• Using more threads than the number of logical processors reduces execution time.

Why do we get these results? What is the optimal number of threads in a fork-join style
algorithm? It seems that answer should be “the number of logical processors”, since and
more threads will cause context switches to occur, because not all threads can execute at the
same time, while using less threads would definitely leave some processors not utilized.

The reality, however, is not that simple. The single reason we get the two observations we
did is this: the work is not split equally between the threads (in terms of execution time).
This is simply because of the algorithm used: the larger the number, the more work has to
be done because the sqrt function is a monotonic one and its output is in direct proportion
to its input. This is often the challenge in fork-join algorithms: fair split of work. Figure 5-4
demonstrates what happens in an example case with four threads.
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Figure 5-4: Primes Counter with 4 threads

Notice in the output above how later threads have longer running time, simply because they
have more work to do. Now it may be obvious why we get better running time with 20
threads even if there are only 16 logical processors on the system. Early threads that finish
quickly make processors free, allowing those “extra” threads (after 16) to get a processor, thus
pushing work onward. Is there a limit? Of course, at some point, the context switch overhead,
coupled with possible page faults because of more memory allocations for thread stacks will
start making things worse. Clearly, asking what is the optimum number of processors for
this program is not an easy question. And it can get even worse: this program only does
CPU bound operations; no I/O. If threads need to do I/O from time to time, the question
becomes even more difficult.

Terminating Threads

Every good (or bad) thread must at some point come to an end. There are three ways for a
thread to terminate:
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1. The thread function returns (best option)
2. The thread calls ExitThread (best to avoid)
3. The thread is terminated with TerminateThread (typically a bad idea)

The best option is to simply return from the thread function. When a thread starts execution,
the thread function is not really the first or only function executed by the thread. The
thread in fact starts execution inside an NTDLL.dll function named RtlUserThreadStart,
which conceptually calls the thread’s actual function as provided to CreateThread. Once the
thread’s function returns, RtlUserThreadStart does some cleanup and calls ExitThread.
Note that ExitThread can only be called by a thread to terminate itself as its prototype
suggests:

void ExitThread(_In_ DWORD exitCode);

ExitThread from Kernel32.dll is actually a forwarder to RtlExitUserThread in Nt-
Dll.Dll.

The problem with calling ExitThread explicitly from the thread’s function is at least the
fact that C++ destructors won’t be called, as ExitThread never returns. So it’s always better
to simply return from the thread’s function to allow it to cleanup local C++ objects properly.

In any case, ExitThread also calls the DllMain function for all DLLs in the process with the
DLL_THREAD_DETACH reason argument. This allows DLLs to perform per-thread operations.
For example, DLLs can allocate some block of memory to manage something on a per-thread
basis. In many cases this is combined with Thread Local Storage (TLS), discussed in chapter
10.

The third option of terminating a thread is with a call to TerminateThread that can be made
from another thread (even belonging to another process). The only condition is the caller’s
ability to obtain a handle to the thread with a THREAD_TERMINATE access mask. Here is the
definition of TerminateThread:

BOOL WINAPI TerminateThread(

_Inout_ HANDLE hThread,

_In_ DWORD dwExitCode);
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Terminating a thread with this call is almost always a bad idea. The problem lies in what the
thread managed to do and what it has not yet done because of its termination. If the thread
is terminated while doing actual work, there is no way to tell what instructions it executed
and what other code it could not execute because of termination. Application state could
be in an inconsistent state. As an extreme (but not unlikely) example, the thread may have
acquired a critical section (see chapter 7), and did not get the chance of releasing it, causing
a deadlock, since other threads waiting for the critical section will wait forever.

Another issue with TerminateThread is that it does not call DLLs DllMain function with
DLL_THREAD_DETACH. This means DLLs cannot run some code that might free memory or
perform other actions to reverse what was done when the thread was created.

These problems with TerminateThread mean that calling this function safely is a rare
occurrence, and there should be a better way to handle whatever scenario that seems to
require it. Still, if this is desirable, the caller must obtain a powerful-enough handle having
the THREAD_TERMINATE access right. Thread handles returned from CreateThread and
CreateProcess always have full permissions. For other cases, obtaining a handle for an
arbitrary thread can be attempted with OpenThread:

HANDLE OpenThread(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ DWORD dwThreadId);

The function looks similar to OpenProcess, discussed in chapter 3. If the requested access
mask can be obtained, a non-NULL handle is returned to the caller. If THREAD_TERMINATE is
asked for and received, a call to TerminateThread is bound to succeed.

A Thread’s Stack

Local variables and return addresses from functions reside on a thread’s stack. The size of a
thread’s stack can be specified with the second parameter to CreateThread, but there are
actually two values that affect a thread’s stack: a reserved memory size that serves as the
maximum size of the stack, and an initial, committed memory size, that is ready for use. The
terms reserved and committed will be discussed in depth in chapter 12, but here’s the gist of
it: Reserved memory just marks a contiguous address space range as used for some purpose
so that new allocations in the process address space won’t be made from that range. For a
stack, this is essential, as a stack is always contiguous. Committed memory means memory
actually allocated, and so can be used.
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It’s possible to allocate the maximum stack size immediately, committing the entire stack
upfront, but that would be wasteful, as a thread might not need the entire range for its stack
related work. The memory manager has an optimization up its sleeve: commit a smaller
amount of memory and if the stack grows beyond that amount, trigger an expansion of
the stack, up to the reserved limit. The triggering is done by a page with a special flag,
PAGE_GUARD that causes an exception if touched. This exception is caught by the memory
manager, which then commits an additional page, moving the PAGE_GUARD page one page
down (remember that a stack grows to lower addresses). Figure 5-5 shows this arrangement.

Figure 5-5: A thread’s stack

The actual minimum for a guard page is 12 KB, meaning 3 pages. This guarantees that a
stack expansion will allow at least 12 KB of committed memory to be available for the
stack.

Typically, zero is passed as the stack (second) argument to CreateThread. In that case, the
defaults for the committed and reserved sizes are retrieved from values stored in the Portable
Executable (PE) header. The first thread, which is created by the kernel and so is out of our
control always uses these values. You can dump this values using the dumpbin utility that
is available as part of the Windows SDK. Here is an example with Notepad:
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C:\>dumpbin /headers c:\windows\system32\notepad.exe

Microsoft (R) COFF/PE Dumper Version 14.24.28314.0

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\system32\notepad.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

8664 machine (x64)

7 number of sections

9E7797DD time date stamp

0 file pointer to symbol table

0 number of symbols

F0 size of optional header

22 characteristics

Executable

Application can handle large (>2GB) addresses

OPTIONAL HEADER VALUES

...

80000 size of stack reserve

11000 size of stack commit

100000 size of heap reserve

1000 size of heap commit

...

The default commit size for a thread’s stack in Notepad is 0x11000 (68 KB) and the reserved
size is 0x80000 (512 KB). These are the values used for Notepad’s first thread for sure. Other
threads, explicitly created with CreateThread will have these values if the stack argument
passed to CreateThread is zero.

You can also view this information in several free graphical tools, such as my own
PE Explorer v2.

You can view this information with the VMMap Sysinternals tool. Run Notepad, and then
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run VMMap. Select the Notepad process from the dialog (figure 5-6). Then click OK.

Figure 5-6: Process selector in VMMap

VMMap’s main window opens. Select the Stack item in themiddle list. This focuses the lower
list to thread stacks only (figure 5-7).
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Figure 5-7: Selecting stacks in VMMap

Now open on of the stack items in the lower pane. You should see a committed size of 0x11000
bytes (68 KB) with a protection of Read/Write. Then a 12 KB guard page range, with the rest
of the memory reserved (figure 5-8).

Figure 5-8: One thread’s stack in VMMap

VMMap will be discussed more thoroughly in chapter 12.

The CreateThread function has only one parameter for the stack size, and so it allows
setting the initial committed memory or the maximum reserved memory, but not both. This
is based on the flags argument. If it contains STACK_SIZE_PARAM_IS_A_RESERVATION, then
the value is the reserved size; otherwise, it’s the upfront committed size.
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The fact that CreateThread only allows setting one of the values seems to be an oversight.
The native function (from NtDll) NtCreateThreadEx allows setting both values.

Visual Studio allows changing the default stack sizes using the project’s properties, under
Linker/System node (figure 5-9). This simply sets the requested values in the PE header.

Figure 5-9: Stack sizes in Visual Studio

Finally, a thread can call SetThreadStackGuarantee to attempt at guaranteeing a certain
stack size is available:

BOOL SetThreadStackGuarantee(_Inout_ PULONG StackSizeInBytes);

If the function succeeds, the increase in stack size is done by allocating more guard pages
(which are also marked as committed), meaning they are guaranteed to be available if a stack
expansion is required.
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A Thread’s Name

Starting with Windows 10 and Server 2016, a thread can have a string-based name or
description, set with SetThreadDescription:

HRESULT SetThreadDescription(

_In_ HANDLE hThread,

_In_ PCWSTR lpThreadDescription);

The thread handle must have the THREAD_SET_LIMITED_INFORMATION access mask, which
is easy to get for almost any thread. The name/description can be anything. Notice this
function returns an HRESULT, where S_OK (0) means success. It’s important to realize this
is not the same as naming other kernel objects; there is no way to lookup a thread by its
name/description. The name is just stored in the thread’s kernel object and can be used as a
debugging aid. Here is a simple example of setting the current thread’s name:

::SetThreadDescription(::GetCurrentThread(), L"My Super Thread");

Visual Studio 2019 and later versions show the thread’s name (if any) in the debugger’s
Threads window (figure 5-10).

Figure 5-10: Thread’s name in the Visual Studio debugger

Naturally, the opposite function exists as well:
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HRESULT GetThreadDescription(

_In_ HANDLE hThread,

_Out_ PWSTR* ppszThreadDescription);

GetThreadDescription returns the result in a caller allocated pointer. The function requires
calling LocalFree to free the memory it allocated. Here is an example:

PWSTR name;

if (SUCCEEDED(::GetThreadDescription(::GetCurrentThread(), &name))) {

printf("Name: %ws\n", name);

::LocalFree(name);

}

What About the C++ Standard Library?

This book is about Windows programming, so directly discussing C++ may be out of
place. Still, starting from the C++ 11 standard, the C++ standard library offers threading
mechanisms (in fact, in earlier C++ standards, the word thread isn’t even mentioned). The
basic type is std::thread that allows creating a thread. Other classes deal with thread
synchronization (see chapter 7); and there are more.

The greatest benefit of using the C++ standard library is the fact that it’s, well, standard,
which means it’s cross-platform. If this is more important then other considerations, then
by all means, go ahead and use it. The downside of the C++ standard library compared to
working with the Windows API is the very few customizations available. The C++ standard
library does not support thread priorities, affinities, CPU sets (all discussed in chapter 6),
stack size control, and so on. This level of control can only be achieved by using Windows-
specific APIs.

Exercises

1. Create a WTL dialog-based application that allows counting prime numbers (add edit
boxes for number input) in a range of numbers. Perform the calculation on a separate
thread so the UI thread is not blocked.

2. Add a Cancel button to the dialog that allows cancellation of the prime numbers
counting mid-flight.
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3. Create a Console application to calculate the Mandelbrot set with multiple threads
concurrently, so the calculation is quicker. (You can find more on the Mandelbrot set
in wikipedia.) The number of threads should be an input to the application, as well as
the dimensions of the output bitmap. Divide the total number of lines by the number
of threads, and assign each thread to the range of lines. Each pixel should be 0 (belongs
to the set) or 1 (does not belong to the set). Store the results in a two-dimensional array.

4. Extend the application to write the output to a BMP or PPM format (both relatively
simple), so the results can be viewed in a paint-like application.

5. Create a WTL application and calculate the Mandelbrot set with multiple threads
without freezing the UI. Add the ability to pan/zoom and recalculate as needed.

Summary

In this chapter, we looked at the basics of thread creation and management. In the next
chapter, we’ll discuss thread scheduling and its associated properties, such as priority and
affinity.



Chapter 6: Thread Scheduling
Threads are created to execute code, or at least that should be their intention. This means at
some point a logical processor needs to run the thread’s function. Generally, there are many
threads on a typical system, but only a subset of them actually wants to execute code at
the same time. Most threads are waiting for something and so are not candidates for being
scheduled on processors at that time. If the number of threads that want to run (are in the
ready state) is less or equal to the number of logical processors on the system (and there
are no affinity restrictions, discussed later in this chapter), then all the ready threads simply
execute.

However, some questions may come up. How long would threads get CPU time? What
happens if a new thread wakes up? What about the case where there are more threads that
are ready to run than there are available processors? We’ll try to answer all these (and some
other) questions in this chapter.

In this chapter:

• Priorities
• Scheduling Basics
• Multiprocessor Scheduling
• Background Mode
• Processor Groups
• Suspending and Resuming

Priorities

Every thread has an associated priority, that matters in the case where there are more threads
that want to execute than there are available processors. In this section we’ll look at the
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available priorities and how these can be manipulated, and the next section we’ll see how
these apply in scheduling.

Thread priorities are from 0 to 31, where 31 is the highest. Technically, thread 0 is reserved
for a special thread called zero page thread that is part of the memory manager in the kernel.
It’s the only thread that is allowed to have a priority of zero. So technically, usable priorities
are from 1 to 31. In user mode (where we write code in this book), the priorities cannot be
set to an arbitrary value. Instead, a thread’s priority is a combination of a process’ Priority
Class (called Base Priority in Task Manager) and an offset around that base priority. Figure
6-1 shows Task Manager with the Base Priority column highlighted.

Figure 6-1: Base Priority in Task Manager

Each priority class is associated with a priority value, shown in table 6-1.
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Table 6-1: Process priority classes

Priority Class Priority value API constant
Idle (Low) 4 IDLE_PRIORITY_CLASS

Below Normal 6 BELOW_NORMAL_PRIORITY_CLASS

Normal 8 NORMAL_PRIORITY_CLASS

Above Normal 10 ABOVE_NORMAL_PRIORITY_CLASS

High 13 HIGH_PRIORITY_CLASS

Real-time 24 REALTIME_PRIORITY_CLASS

The name “real-time” in table 6-1 does not implyWindows is a real-time operating system;
it’s not. Windows cannot provide latency and timing guarantees that real-time operating
systems do. This is because Windows works with a wide variety of hardware and so it’s
simply not possible to have any such guarantees when hardware range is unconstrained.
“Real-time” in table 6-1 just means “higher than all the rest”.

The priority class of a process can be set when that process is being created with CreatePro-
cess. The sixth parameter (flags) can be combined with one of the constants in table 6-1. If
no explicit priority class is specified, the priority class defaults toNormal, unless the creator’s
priority class is Idle or Below Normal, in which case the creator’s priority class is used.

If a process already exists, changing the priority class is possible with SetPriorityClass:

BOOL SetPriorityClass(

_In_ HANDLE hProcess,

_In_ DWORD dwPriorityClass);

TaskManager as well as Process Explorer offer a context menu to change a process’ priority
class.

The process handle in question must have the PROCESS_SET_INFROMATION access mask
for the call to succeed. Also, if the target priority class is Real-time, the caller must have
the SeIncreaseBasePriority privilege. if it does not, the function does not fail, but the
resulting priority class is set to High rather than Real-time.
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Naturally, the opposite function exists as well to retrieve the priority class of a process:

DWORD GetPriorityClass(_In_ HANDLE hProcess);

The handle access mask needs only PROCESS_QUERY_LIMITED_INFORMATION, which can be
obtained for almost all processes.

The process priority class has no direct effect on the process itself, since a process does not
run - threads do. All threads created in a process have their default priority set to the priority
class level. For example, in aNormal priority class process, all threads have a default priority
of 8. To make changes to a thread’s priority, the SetThreadPriority function can be used:

BOOL SetThreadPriority(

_In_ HANDLE hThread,

_In_ int nPriority);

The nPriority parameter is not an absolute priority value. Instead, it’s one of seven possible
values (except for Real-time priority class, see next sidebar), depicted in table 6-2.

Table 6-2: Thread relative priorities

Priority value Effect
THREAD_PRIORITY_IDLE (-15) priority drops to 1 except for real-time priority class,

where thread priority drops to 16
THREAD_PRIORITY_LOWSET (-2) priority drops by 2 relative to the priority class
THREAD_PRIORITY_BELOW_NORMAL (-1) priority drops by 1 relative to the priority class
THREAD_PRIORITY_NORMAL (0) priority set to the process priority class value
THREAD_PRIORITY_ABOVE_NORMAL (1) priority increases by 1 relative to the priority class
THREAD_PRIORITY_HIGHEST (2) priority increases by 2 relative to the priority class
THREAD_PRIORITY_TIME_CRITICAL (15) priority increases to 15 except for the real-time

priority class, where the thread priority increases to 31

The real-time priority class is special in relation to table 6-2. Threads in that
priority class can be assigned any value from 16 to 31. SetThreadPriority
accepts the values from -7 to -3 and from 3 to 7, corresponding to priorities 17
to 21 and 27 to 30.

The High priority class has only six levels. That’s because threads in processes
with priority class other than real-time cannot have their priorities above 15.
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The idle and time critical values are called Saturation values.

The net effect of table 6-1 and table 6-2 can be summarized in table 6-3 and figure 6-2. In
figure 6-2, each rectangle signifies a possible thread priority value based on SetPriority-
Class/SetThreadPriority. Table 6-3 is a summary table representation of tables 6-1 and
6-2 combined.

Figure 6-2: Thread Priorities

Table 6-3: Thread priorities by priority class

Priority Class
(right) Relative
Priority (down)

Real-
Time

High Above Normal Normal Below Normal Idle

Time Critical (+15) 31 15 15 15 15 15
Highest (+2) 26 15 12 10 8 6
Above Normal (+1) 25 14 11 9 7 5
Normal (0) 24 13 10 8 6 4
Below Normal (-1) 23 12 9 7 5 3
Lowest (-2) 22 11 8 6 4 2
Idle (-15) 16 1 1 1 1 1
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The resulting combination of process priority class and relative thread priority is the final
thread’s priority. From the kernel’s scheduler perspective, only the final number is important.
It doesn’t care how that number came to be. For example, priority 8 can be reached in one
of three ways: Normal priority class with normal (0) relative thread priority; Below normal
priority class with highest (+2) relative thread priority; Above normal priority class with
lowest (-2) relative thread priority. From the scheduler’s perspective, they are all the same;
it doesn’t care about processes in general, only threads.

The real-time priority range (16-31) is used by many kernel threads that do essential work
for the system as a whole, so it’s important for processes whose threads run in that range
not to consume too much CPU time. Of course, a process must have a very good reason to
be in that range in the first place.

If we look at thread priorities in a tool such as Process Explorer, we find two values for the
priority: Base Priority and Dynamic priority (figure 6-3).



Chapter 6: Thread Scheduling 255

Figure 6-3: Thread properties in Process Explorer

The base priority is the one set by the developer (or the default value), while the dynamic
priority is the actual current priority for that thread. In some cases the priority is increased
(boosted) temporarily. We’ll look at some of the reasons for this boost later in this chapter.
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From the scheduler’s perspective, the dynamic priority is the determining priority value.

Threads in the real-time range never have their priority boosted.

Scheduling Basics

Scheduling in general is quite complex, taking into account several factors, some of them
conflicting: multiple processors, power management (the desire to save power on the
one hand and utilize all processors on the other hand), NUMA (Non-Uniform Memory
Architecture), hyper-threading, caching, and more. The exact scheduling algorithms are
undocumented for a reason: Microsoft can make modifications and tweaks in subsequent
Windows versions and updates without developers taking any dependency on the exact
algorithms. Having said that, it’s possible to experience many of the scheduling algorithms
by experimentation.

We’ll start with the simplest scheduling possible - when there is a single processor on a
system, since it’s fundamental to how scheduling works. Later, we’ll look at some of the
ways these algorithms change on a multi-processing system.

Single CPU Scheduling

The scheduler maintains a Ready Queue, where threads that want to execute (are in the
Ready state) are managed. All other threads that do not want to execute at this time (in the
Wait state) are not being looked at since they don’t want to execute. Figure 6-4 shows an
example system where seven threads are in the ready state. They are arranged in a number
of queues based on their priority in.
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Figure 6-4: Threads in Ready state

There may be thousands of threads on a system, but most are in the waiting state, so are
not considered by the scheduler.

The algorithm for a single CPU goes like this:

1. The highest priority thread runs first. In figure 6-4, threads 1 and 2 have the highest
(and same) priority (31), so the first thread in the queue for priority 31 runs; let’s assume
it’s thread 1 (figure 6-5).
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Figure 6-5: Highest priority thread runs

Thread 1 runs for a certain amount of time called a Quantum. The length of a quantum is
discussed in the next section. Assuming thread 1 has lots to do, when its quantum expires,
the scheduler preempts thread 1, saving its state in its kernel stack, and it goes back to the
Ready state (since it still has things to do). Thread 2 now becomes the running thread since
it has the same priority (figure 6-6).
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Figure 6-6: Thread 2 is running, thread 1 is back to ready

So, the priority is the determining factor. As long as threads 1 and 2 need to execute, they
will round-robin on the CPU, each running for a quantum. Fortunately, threads typically
don’t run forever. Instead, they enter a wait state at some point. Here are a few examples
that cause a thread to enter a wait state:

• Performing a synchronous I/O operation
• Waiting on a kernel object, that is currently not signaled
• Waiting for a UI message when there are none
• Entering a voluntary sleep

Once a thread enters wait state, it’s removed from the scheduler’s ready queue. Let’s assume
that threads 1 and 2 entered a wait state. Now the highest priority thread is thread 3 and it
becomes the running thread (figure 6-7).
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Figure 6-7: Thread 3 is running

Thread 3 runs for a quantum. If it still has work to do, it gets another quantum, since it’s
the only one in its priority level. If, however, thread 1 receives whatever it was waiting for,
it goes to the ready state and preempts thread 3 (since thread 1 has a higher priority) and
becomes the running thread. Thread 3 goes back to the ready state (figure 6-8). This switch is
not at the end of thread 3’s quantum, but rather at the time of the change (thread 1 finishing
waiting). Thread 3’s quantum is replenished if its priority is above 15 (which it is in this
example).

If the preempted thread’s priority is 16 or higher, it gets its quantum restored when
it goes back to the ready state.
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Figure 6-8: Thread 1 is running, thread 3 is back to ready

With this algorithm in mind, threads 4, 5 and 6 will run each having their own quantum if
there are no higher-priority threads in the ready state.

This is the basis of scheduling. In fact, in a real single CPU scenario, this is exactly the
algorithm used. However, even in this case, Windows tries to be “fair” to some extent. For
example, thread 7 in figures 6-4 to 6-8 (with a priority of 4) may not run if higher-priority
threads are in the ready state, and so it suffers from CPU starvation. Is that thread doomed
in such a system? Not really; the system will boost the thread’s priority to 15 every roughly 4
seconds, giving it a better chance to make forward progress. This boost lasts for one quantum
of actual execution of the thread, and then the priority drops back to its initial value. This
is just one example of a temporary priority boost. You’ll see other examples in the section
“Priority Boosts” later in this chapter.
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The Quantum

The quantum was mentioned a few times in the preceding section - but how long is a
quantum? The scheduler works in two orthogonal ways: the first is with a timer, that fires
every 15.625 milliseconds by default, and can be obtained by calling GetSystemTimeAd-
justment and looking at the second argument. Another way is to use the clockres tool from
SysInternals:

C:\Users\pavel>clockres

Clockres v2.1 - Clock resolution display utility

Copyright (C) 2016 Mark Russinovich

Sysinternals

Maximum timer interval: 15.625 ms

Minimum timer interval: 0.500 ms

Current timer interval: 1.000 ms

The value to look at in relation to the quantum is theMaximum time interval value.

The Current time interval from clockres shows the current timer firing interval. This
is typically lower than the maximum interval because of multimedia timers that may
have been requested. This allows getting timer notifications up to a 1 msec resolution.
Regardless, the quantum itself is not affected by the Current timer interval.

The default quantum is 2 clock ticks for client machines (Home, Pro, Enterprise, XBOX, etc.)
and 12 clock ticks for server machines. In other words, the quantum is 31.25 msec for client
and 187.5 msec for server.

The reason server versions get a longer quantum is to increase the chances of a client request
being handled completely in a single quantum. This is less of a concern on a client machine
since it may have many processes doing relatively little work each, some with user interface
that should be responsive, so short quantums better fit the bill. Switching from client to
server (or vice versa) in terms of quantum can be achieved with the following dialog which
I like to call “the most incomprehensible dialog in Windows” (figure 6-9).
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Figure 6-9: Performance Options dialog
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Here is how to get to this dialog: go to System properties (from the Control Panel or
right-click This PC in Explorer and select Properties). Then clickAdvanced System
Settings. A dialog opens - click the Performance Settings button. The Performance
Options dialog appears. Click the Advanced tab, and you’re there.

This dialog has two parts which are completely unrelated. The lower part controls the size of
page files (if any), discussed later in this book. The upper part is the “incomprehensible” part.
The option Programs means short quantums, while the option Background Services means
long quantums. If you check the other radio button, the change is instantaneous.

There is yet another difference between the two options. Programs alsomeans that
in the foreground process (the one hosting the foreground window), all threads
get triple quantum by default. This quantum stretching effect is not present for
Background Services because a true server is unlikely to have an interactive user
sitting at the console. Also, some of the priority boosts we’ll look at later in this
chapter do not apply when Background Services is selected.

There are other ways to change the quantum. For fine-grained control, the registry value
HKLM\SYSTEM\CurrentControlSet\Control\PriorityControl\Win32PrioritySeparation
controls not just the length of a quantum, but also quantum stretching for the foreground
process. See the “Windows Internals” book (chapter 4) for the details. It’s best to leave this
value at its default, where the rules previously described apply.

Another way to control the quantum is available by using a job object (described in detail
in chapter 4) with the SchedulingClass field in JOBOBJECT_BASIC_LIMIT_INFORMATION.
This works for long fixed quantum systems only (the default for server systems). The
scheduling class value (between 0 and 9) sets the quantum for threads in processes that
are part of the job in question in the following way:

Quantum = 2 * (timer interval) * (Scheduling class + 1);

The default scheduling class is 5, effectively giving a quantum of 12 * timer interval,
which is the default on server systems, as we saw earlier. The highest value (9) causes the
threads to be non-preemptive, meaning they have an infinite quantum (can continue running
theoretically indefinitely until they voluntarily enter a wait state). A value higher than 5
requires the caller to have the SeIncreaseBasePriority privilege, which by default is available
for users in the Administrators group, but not to standard users.
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The scheduling class value only applies for processes with priority classes higher
than Idle.

Processor Groups

The original Windows NT design supported 32 processors at most, with a machine word (32
bit) used to indicate the actual processors on a system, with each bit representing a processor.
When 64 bitWindows appeared, themaximumnumber of processors was naturally extended
to 64.

Starting with Windows 7 (64 bit systems only), Microsoft wanted to support more than 64
processors, and so an additional parameter entered the scene: a processor group. For example,
Windows 7 and Server 2008 R2 support up to 256 processors, meaning there are 4 processor
groups on a system with 256 processors.

Windows 8 and Server 2012 support 640 processors (10 groups) and Windows 10
supports even more. The basic rule remains - at most 64 processors per group -
the number of groups increases as needed.

A thread can be a member of one processor group, which means a thread can be scheduled
on one of (at most) 64 processors that are part of its current group. When a process is created,
it’s assigned a processor group in a round-robin fashion, so that processes are “load balanced”
across groups. Threads in a process are assigned to the process group. A parent process can
affect the initial processor group of a child process in one of the following ways:

1. The parent process can use the INHERIT_PARENT_AFFINITY flag as one of the flags
to CreateProcess to indicate the child process should inherit its parent processor
group rather than getting it according to the round robin managed by the system. If
the parent process’ threads use more than one affinity group, one of the groups is
selected arbitrarily as the one used for the child process group.

2. The parent process can use the PROC_THREAD_ATTRIBUTE_GROUP_AFFINITY process
attribute to specify a desired default processor group.

The process group affinity can be retrieved with GetProcessGroupAffinity:
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BOOL GetProcessGroupAffinity(

_In_ HANDLE hProcess,

_Inout_ PUSHORT GroupCount,

_Out_ PUSHORT GroupArray);

Controlling the processor group of a specific thread is possible with the SetThread-
GroupAffinity function. This is discussed in the section “Hard Affinity” later in this
chapter.

Multiprocessor Scheduling

Multiprocessor scheduling adds complexity to the scheduling algorithms. The only thing
Windows guarantees is that the highest priority thread that wants to execute (at least one if
there’s more than one) is currently running. In this section, we’ll take a look at some of the
parameters that affect scheduling.

Affinity

Normally, a thread may be scheduled on any processor. However, the affinity of a thread,
that is, the processors it’s allowed to run on can be controlled in several ways, described in
the followings sections.

Ideal Processor

The Ideal Processor is an attribute of a thread, also sometimes referred to as “Soft Affinity”.
An ideal processor serves as a hint to the scheduler as - all other things being equal - the
preferred processor for executing code for that thread. The default ideal processor is selected
in a round-robin fashion, starting with a random generated when the process is created. On
a hyper-threaded system, the next ideal processor is selected from the next core, rather than
from the next logical processor.

The ideal processor can be viewed with the Process Explorer tool, as one of the properties
shown in the Threads tab (figure 6-10).
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Figure 6-10: Thread’s Ideal processor in Process Explorer

A thread’s ideal processor can be changed with SetThreadIdealProcessor:

DWORD WINAPI SetThreadIdealProcessor(

_In_ HANDLE hThread,

_In_ DWORD dwIdealProcessor);

The ideal processor changed by this function is between 0 and the maximum number of
processors minus 1, where 63 is the maximum, since this is the highest processor number in
any group. If more than one group is supported on the system, the current thread’s group is
used. The function returns the previous ideal processor number or -1 (0xffffffff) in case of
an error. Passing the special value MAXIMUM_PROCESSORS (which equals 32 on 32 bit systems
and 64 on 64 bit systems) for the ideal processor just returns the current ideal processor.

SetThreadIdealProcessor changes the ideal processor for the current processor group the
thread is part of. To make the change for a different group, the extended SetThreadIdeal-
ProcessorEx function can be used:

typedef struct _PROCESSOR_NUMBER {

WORD Group;

BYTE Number;

BYTE Reserved;

} PROCESSOR_NUMBER, *PPROCESSOR_NUMBER;

BOOL SetThreadIdealProcessorEx(

_In_ HANDLE hThread,

_In_ PPROCESSOR_NUMBER lpIdealProcessor,

_Out_opt_ PPROCESSOR_NUMBER lpPreviousIdealProcessor);
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The PROCESSOR_NUMBERstructure’s Group member is the group to set the ideal processor
in, and the Number member is the CPU index (0 to 63). As with the non-Ex function, the
previous ideal processor can be retrieved using the last optional parameter.

Hard Affinity

While the ideal processor serves as a hint and a recommendation onwhich processor a thread
should execute, hard affinity (sometimes called just affinity) allows specifying the allowed
processors to execute on for a particular thread or process. Hard affinity works on two levels:
process and thread, where the basic rule is that a thread cannot “escape” the affinity set by
its process.

Generally speaking, setting hard affinity constraints is usually a bad idea. It limits
the scheduler’s freedom in assigning processors and can cause threads to get less
CPU time than if they had no hard affinity constraints. Still, in some rare occasions
this can be useful, as threads that run on the same set of processors are more
likely to get better CPU cache utilization. This could be useful for systems that run
specific known processes, rather than some randommachine that may be running
anything. Another use of hard affinity is in stress testing, such as using fewer
processors for some execution to see how a system with that restricted number of
processors might behave when running the same process(es).

Setting a process-wide hard affinity is achieved with SetProcessAffinityMask:

BOOL WINAPI SetProcessAffinityMask(

_In_ HANDLE hProcess,

_In_ DWORD_PTR dwProcessAffinityMask);

The process handle must have the PROCESS_SET_INFORMATION access mask. The affinity
mask itsef is a bit mask where a bit set to one indicates allowed processor and a zero bit
indicates a forbidden processor. For example, the affinity mask 0x1a (11010 in binary)
indicates processors 1, 3 and 4 are the only ones allowed. The function changes the affinity
mask for the current process processor group.

Task Manager and Process Explorer allow changing a process affinity mask. For Task
Manager, right clicking a process in the Details tab and selecting Set affinity shows a dialog
with the available processors for the current process processor group (system affinity mask)
(figure 6-11). Clicking OK calls SetProcessAffinityMask to set the new affinity mask.
Process Explorer has similar functionality.
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Figure 6-11: Setting hard affinity in Task Manager

Naturally, the inverse function is available as well, which also provides the system affinity
mask:

BOOL WINAPI GetProcessAffinityMask(

_In_ HANDLE hProcess,

_Out_ PDWORD_PTR lpProcessAffinityMask,

_Out_ PDWORD_PTR lpSystemAffinityMask);

Here is an example for getting the current process affinity mask, perhaps just to retrieve the
system affinity mask:

DWORD_PTR processAffinity, systemAffinity;

::GetProcessAffinityMask(::GetCurrentProcess(), &processAffinity,

&systemAffinity);

As an example, on a system with 16 logical processors, the returned system affinity mask is
0xffff.
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Setting the process affinity mask constraints all the threads in the process to use that mask.
An individual thread can further restrict its affinity mask by calling SetThreadAffinity-
Mask:

DWORD_PTR WINAPI SetThreadAffinityMask(

_In_ HANDLE hThread,

_In_ DWORD_PTR dwThreadAffinityMask);

The function sets the thread affinity mask, if possible. Remember the basic rule: a thread’s
affinity mask cannot include processors not specified in its process affinity mask. The return
value is the previous affinity mask of the thread, or zero if an error occurs.

On a system with more than 64 processors, a thread may change its processor group while
specifying an affinity mask with SetThreadGroupAffinity:

typedef struct _GROUP_AFFINITY {

KAFFINITY Mask; // affinity bit mask

WORD Group; // group number

WORD Reserved[3];

} GROUP_AFFINITY, *PGROUP_AFFINITY;

BOOL SetThreadGroupAffinity(

HANDLE hThread,

const GROUP_AFFINITY *GroupAffinity,

PGROUP_AFFINITY PreviousGroupAffinity);

The function can do two things: change the processor group for the specified thread and/or
change the hard affinity mask in that group. If the group is changed, it becomes the default
processor group for the thread’s process. This complicates things, so it’s usually better to
make sure all threads in a process are part of the same group. Still, if more than 64 threads
may be running concurrently in that process (and there are more than 64 processors on the
system), then changing the processor group of some threads can be beneficial, as they can
utilize processors from another group.

KAFFINITY is typedefed as ULONG_PTR.

As you might expect, the inverse function is available as well:
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BOOL GetThreadGroupAffinity(

HANDLE hThread,

PGROUP_AFFINITY GroupAffinity);

CPU Sets

As we’ve seen in the previous section, a thread’s affinity cannot “escape” its process affinity.
However, there are some scenarios where it’s beneficial to have a thread (or threads) use
processors that other threads in the process are forbidden to use. Windows 10 and Server
2016 added this capability, known as CPU Sets.

The term “CPU Set” indicates an abstract view of processors, where each CPU set is
potentially mapped to one or more logical processors. Currently, however, each CPU set
maps exactly to a single logical processors. The system has its own CPU sets, which by
default includes all processors on a system. This information is available with GetSystem-
CpuSetInformation:

BOOL WINAPI GetSystemCpuSetInformation(

_Out_opt_ PSYSTEM_CPU_SET_INFORMATION Information,

_In_ ULONG BufferLength,

_Out_ PULONG ReturnedLength,

_In_opt_ HANDLE Process,

_Reserved_ ULONG Flags);

The function returns an array of structures of type SYSTEM_CPU_SET_INFORMATION defined
like so:

typedef struct _SYSTEM_CPU_SET_INFORMATION {

DWORD Size;

CPU_SET_INFORMATION_TYPE Type; // currently

union {

struct {

DWORD Id;

WORD Group;

BYTE LogicalProcessorIndex;

BYTE CoreIndex;

BYTE LastLevelCacheIndex;

BYTE NumaNodeIndex;

BYTE EfficiencyClass;
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union {

BYTE AllFlags;

struct {

BYTE Parked : 1;

BYTE Allocated : 1;

BYTE AllocatedToTargetProcess : 1;

BYTE RealTime : 1;

BYTE ReservedFlags : 4;

};

};

union {

DWORD Reserved;

BYTE SchedulingClass;

};

DWORD64 AllocationTag;

} CpuSet;

};

} SYSTEM_CPU_SET_INFORMATION, *PSYSTEM_CPU_SET_INFORMATION;

To get a sense of some of these values, run CPUStress and select the System / CPU Sets…
menu item. The system CPU set should be displayed. Figure 6-12 shows the output for a
system with 1 socket, 8 cores and 16 logical processors.
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Figure 6-12: System CPU Sets in CPUStress

Currently, Task Manager and Process Explorer don’t provide information on CPU sets.

The ID in figure 6-12 corresponds to the CpuSet.Id member in SYSTEM_CPU_SET_INFOR-
MATION. This is an abstract value for the ID of the CPU set itself. The first CPU set currently
starts at 256 (0x100) and is incremented by one for each additional CPU set. This value of 256
was arbitrarily chosen and does not mean anything by itself. These IDs are needed, however,
to change CPU sets for processes and threads, described in the following paragraphs.

The Group column in figure 6-12 corresponds to a process group (CpuSet.Group in the
structure above). The Core column indicates the core for that CPU set (CpuSet.CoreIndex).
Normally this is the real core number (the exact definition of this member is more elaborate
and theoretical - check the documentation if interested). The LP column shows the logical
processor number for that CPU set (CpuSet.LogicalProcessorIndex). The Node column
shows the NUMA node for the CPU set (CpuSet.NumaNodeIndex).
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For more details on other members of SYSTEM_CPU_SET_INFORMATION, consult the
documentation.

A process can set a default CPU sets for its threads with SetProcessDefaultCpuSets:

BOOL WINAPI SetProcessDefaultCpuSets(

_In_ HANDLE Process,

_In_opt_ const ULONG* CpuSetIds,

_In_ ULONG CpuSetIdCound);

The CPUSetIds array is expected to contain the CPU set Ids, available in the CpuSet.Id
member of SYSTEM_CPU_SET_INFORMATION. A value of NULL removes the current CPU set
assignment, meaning the CPU set constraints are removed from threads in the process that
don’t have specific selected CPU sets. A thread can select specific CPU sets, that may be
different than its process assignment with SetThreadSelectedCpuSets:

BOOL WINAPI SetThreadSelectedCpuSets(

_In_ HANDLE Thread,

_In_opt_ const ULONG* CpuSetIds,

_In_ ULONG CpuSetIdCount);

Here is an example using these functions:

ULONG sets[] = { 0x100, 0x101, 0x102, 0x103 };

::SetProcessDefaultCpuSets(::GetCurrentProcess(), sets, _countof(sets));

ULONG tset[] = { 0x104 };

::SetThreadSelectedCpuSets(::GetCurrentThread(), tset, _countof(tset));

The preceding example causes all the threads in the process to use CPU sets 0x100 to 0x103
by default, except for the current thread, which uses CPU set 0x104, essentially “escaping”
its parent process CPU sets. This could be useful where a thread should have its own CPU,
where other threads in the process cannot use.

CPU Sets vs. Hard Affinity

CPU sets and hard affinity may conflict with each other. In such a case, hard affinity always
wins. If CPU sets contradicts hard affinity, CPU sets are ignored.
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System CPU Sets

The system has its ownCPU set, as can be determinedwith GetSystemCpuSetInformation,
which normally returns the CPU sets available on the system. The Windows API does
not provide a documented way to change it, but it is possible to do with the native
NtSetSystemInformation call. This allows telling the “system” to avoid certain processors,
so as not to interfere with user processes. This capability is used in Game Mode, available in
Windows 10 version 1703 and later.

A detailed discussion of Game Mode is beyond the scope of this book.

Revised Scheduling Algorithm

Multiprocessor (MP) scheduling is complex: Hard affinity, ideal processor, CPU sets, power
considerations, Game Mode, and other aspects all make scheduling decisions on MP
complicated, to say the least. The ready queue (actually an array of 32 queues, one per
priority) described in the section “Scheduling Basics” is extended on MP systems: each
processor has its own ready queue. Additionally, on Windows 8 and later, there are shared
ready queues for groups of processors (currently a maximum of 4 per group). This allows the
scheduler to have more options when it needs to locate a processor for a ready thread that is
attached to a shared ready queue (per-CPU ready queues are still used for threads that have
hard affinity constraints).

the above details can be changed by Microsoft in future versions of Windows. The text is
there to give some ideas on the complexity of scheduling.

A revised, simplified, MP scheduling algorithm is presented in figure 6-13. It assumes no
affinity or CPU set constraints, no power or other special considerations.
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Figure 6-13: MP simplified scheduling

As can be seen in figure 6-13, the ideal processor is the preferred processor to use, followed
by the last processor it ran on (processor’s cache may still contain data used by that thread).
If all processors are busy, the scheduler does not preempt the first processor that runs a low-
priority thread; that would be inefficient, as many processors may be needed to be searched.
Instead, the thread is put in the (shared) ready queue of its ideal processor.

The next Windows version, 2004 (April 2020) may change the order of check
between ideal processor and previous processor. Regardless, from a developer’s
perspective, it matters very little.

Observing Scheduling

Scheduling changes are fairly frequent, but they can be observed by using tools. In the
following sections I’ll describe some experiments you can use to investigate and experience
scheduling. This section is optional and can be safely skipped.
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General Scheduling

To get a general sense of scheduling we, can use Performance Monitor. Run CPUStress and
terminate two threads so that only two remains. Activate both threads (figure 6-14).

Figure 6-14: CPUStress with two active threads

Now open Performance Monitor (type perfmon at Run prompt or just search for it). The
Performance console appears. Click on the Performance Monitor item (figure 6-15).

Figure 6-15: Performance Monitor
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Performance Monitor is a built-in tool that can show performance counters, which are just
numbers, exposed by various system components. technically, any application can register
and expose performance counters. In the following examples we use some of these built-in
counters that are related to scheduling.

Delete the default counter, and Click theAdd (green plus button) to add new counters. Search
for the Thread category and open it (figure 6-16).

Figure 6-16: The Thread performance counter category

Now select the following counters: Priority Current and Thread State (use the Control key
to multi-select) (figure 6-17).
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Figure 6-17: Counters selected from the Thread category

In the lower search box, type CPustress and press ENTER. A list of threads should show up.
Select the thread 1 and 2 (these should be the numbers shown to left in CPUStress). Click
Add (figure 6-18) and then OK.
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Figure 6-18: Two threads selected in Threads category

4 graphs are now shown, with the current priority and states of the two worker threads from
CPUStress. Right click an empty graph region and select Properties. Switch to the Graph tab
and change the vertical scale to be between 0 and 16 (figure 6-19). Click OK.
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Figure 6-19: Changing graph scale

Now the priorities and states should be more easily identifiable (figure 6-20).
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Figure 6-20: The counters at work

Notice the priority of the threads is 8 (red and green lines in figure 6-20, green is obscured
by the red). The thread states alternates between 2 and 5. Here is the main state numbers:
Running=2, Ready=1,Waiting=5. Now switch to theCPUStress application. Notice the thread
priorities jump to 10. If you switch to another application, it drops back down. You can change
the activity level of one thread to high and see the effect. (figure 6-21). You can play with
priorities as well.
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Figure 6-21: state changes in threads

Hard Affinity

You can test hard affinity by continuing from the previous experiment. CPUStress allows
restricting affinity (you can use Task Manager as well). Select Process/Affinity from the
menu and choose a single CPU as hard affinity (doesn’t matter which) (figure 6-22).
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Figure 6-22: Process affinity in CPUStress

You should see threads going into the ready state from time to time, as both threads fight
for the single CPU. Increase their activity to Maximum and observe the threads alternate
between states 2 (running) and 1 (ready) (figure 6-23).



Chapter 6: Thread Scheduling 285

Figure 6-23: Maximum activity with a single processor affinity

Performance Monitor is only updates every 1 second, which means several
quantums elapse in that time. This means what you see is not completely accurate,
but it gives the general idea.

CPU Sets

Observing CPU sets requires a different tool, one that can show CPU numbers used by
threads. We’ll use the Windows Performance Recorder (WPR) from the Windows SDK’s
Windows Performance Toolkit.

Search for Windows Performance Recorder (wprui.exe). If you can’t find it, most likely it
isn’t installed. Run the Windows 10 SDK installation again and add Windows Performance
Toolkit.

In the main WPR UI, select First Level Triage only. This captures CPU, memory, I/O and
other events, from which we’ll look into CPU related events (figure 6-24).
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WPR uses Event Tracing for Windows (ETW) to capture various events emitted
by various system components including the scheduler.

Figure 6-24: WPR main user interface

Go to CPUStress and reset the affinity to all processors. Also, set the process CPU sets to the
first 4 processors using the Process/CPU Sets menu item (figure 6-25).
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Figure 6-25: Restricted CPU sets in CPUStress

Next, use the Thread/Selected CPU Sets… menu item to set one of the worker threads to use
some other CPU (figure 6-26), where CPU 10 is selected.
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Figure 6-26: Selected CPU sets for a thread in CPUStress

Make sure the two threads in CPUStress are active. Now go back to WPR and click the Start
button. Wait 2 or 3 seconds and click Stop. Wait for the processing to finish, and once it does,
open the trace inWindows Performance Analyzer (WPA) with the Open in WPA button.

Windows Performance Analyzer (WPA) is an analysis tools for ETW captures. It’s
fairly complex and versatile, and the following information barely scratches the
surface of this powerful tool. WPA is beyond the scope of this book.

When the trace opens, navigate in the left pane to Computation / CPU Usage (Precise) / CPU
Utilization by Process, Thread, Activity. You should see something like figure 6-27.
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Figure 6-27: Typical UI for WPA

ETW traces are always system-wide, so we first need to filter to our process of interest -
CPUStress. Expand the unnamed Series tree node in the top left and locate CPUStress. Right-
click it and select Filter to Selection. The view should clear out, leavingCPUStress information
only. Expand the process node, revealing thread nodes (figure 6-28).
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Figure 6-28: WPA filtered to CPUStress process

If you expand a thread which did not have its selected CPU sets altered, you should see CPU
numbers 0 to 3 (the first four processors set for the process CPU set) (figure 6-29). On the
other hand, expanding the thread with its own selected CPU set should only show that CPU
as being utilized (figure 6-30).
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Figure 6-29: Thread with no assigned CPU sets
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Figure 6-30: Thread with assigned CPU set to CPU 10

Background Mode

Some processes are naturally more important than others. For instance, if a user works with
Microsoft Word, she probably expects her interaction and usage ofWord to be very good. On
the other hand, processes such as backup application, anti-virus scanners, search indexers
and similar are not as important and should not interfere with the user’s main applications.

One way for these background applications to limit their impact is to lower their CPU
priority. This works, but CPU is just one type of resource used by processes. Other resources
include memory and I/O. This means reducing the CPU priority of threads or the priority
class of a process may not be enough to reduce the impact of such processes.

Windows offers the concept of Background Mode, where a thread’s CPU priority drops to
4 and the memory priority and I/O priority drop as well. For example, looking at Windows
Explorer in Process Explorer in the Threads view show memory and I/O priority as well as
CPU priority (figure 6-31). I/O priority has a default value of *Normal” andmemory priority’s
default value is 5 (possible values are 0 to 7).
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Figure 6-31: Memory and I/O priority in Process Explorer

The exact definition of memory priority and I/O priority are not important for this
discussion. We’ll discuss memory priority in a later chapter. For I/O priority - intuitively
- higher levels get precedence over lower levels when accessing I/O.



Chapter 6: Thread Scheduling 294

As a contradictory example, examine figure 6-32, showing threads for a SerachFilterHost.exe
process. Notice its memory and I/O priority.

Figure 6-32: Low memory and I/O priority in Process Explorer
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This SearchProtocolHost.exe process lowered its I/O and memory priority as well as its CPU
priority in one swoop using a call to SetPriorityClass with the special PROCESS_MODE_-
BACKGROUND_BEGIN value like so:

::SetPriorityClass(::GetCurrentProcess(), PROCESS_MODE_BACKGROUND_BEGIN);

The handle to the process must point to the current process, otherwise the call fails. The
background mode begins for all threads in the process until the complementary call is made
with PROCESS_MODE_BACKGROUND_END:

::SetPriorityClass(::GetCurrentProcess(), PROCESS_MODE_BACKGROUND_END);

Similarly, the call can bemade on a thread basis with the standard SetThreadPrioritywith
the special values THREAD_MODE_BACKGROUND_BEGIN and THREAD_MODE_BACKGROUND_END.
Here too, the thread handle must reference the current thread for the call to succeed.

The fact that the above calls require the current process/thread mean that a thread or process
cannot be “forced” into background mode; rather, the thread or process itself should be a
“good citizen” and enter background mode willingly.

Process Explorer does allow forcing a process into background mode. Right-click a process
and select Set Priority/Background.

Priority Boosts

As we’ve seen in the section “Scheduling Basics”, the priority is the determining factor
where scheduling is concerned. However,Windows employs several tweaks to priority called
priority boosts. These temporary increase in priority is designed to make scheduling a little
more “fair” in some sense, or to provide a better experience for the user. In this section,
I’ll discuss some of the common priority boost reasons. In any case, don’t depend on these
boosts, as they may be removed and new ones may appear in future versions of Windows.

Remember that threads in the real-time range (priorities 16 to 31) never have their
priority boosted.
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Completing I/O Operations

When a thread issues a synchronous I/O operation, it enters a wait state until the operation
completes. Once it completes, the device driver responsible for the I/O operation has an
opportunity to boost the requesting thread’s priority to increase its chances of running
sooner, now that the operation finally completes. The priority boost (if applied) increases
the thread’s priority by the amount at the driver’s discretion, and the priority decays by one
level every quantum that the thread manages to run, until the priority drops back to its base
level. Figure 6-33 shows a conceptual view of this process.

Figure 6-33: Thread priority boost and decay

Foreground Process

There is always an active window on a system - the one usually with a caption in a different
color. This window was created by a thread, which is part of a process. This process is
sometimes referred to as the Foreground Process. In a foreground process on a system
configured with short quantums (the default for client versions of Windows): when a thread
completes a wait on a kernel object, it gets a +2 boost to its priority. This priority decays
after a single quantum to its base level.
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GUI Thread Wakeup

When a thread that has a user interface receives a windows message (typically its call to
GetMessage returns), it gets a +2 boost to improve its chances of running sooner. This priority
decays after a single quantum to its base level.

Starvation Avoidance

Threads that are in the ready state for at least 4 seconds, get a large boost to priory 15 for
a single quantum of execution, after which the priority drops back to its original level. This
allows threads in low priority to make some forward progress even on a relatively busy
system.

Other Aspects of Scheduling

This section looks at other aspects of scheduling not yet discussed.

Suspend and Resume

A thread can be created in a suspended state by specifying the CREATE_SUSPENDED flag as
part of CreateThread. This allows the caller to prepare the thread for execution, such as
manipulating its priority or affinity before actually executing useful code. Using this flag
creates the thread with a suspend count of 1. More generally, a thread can be suspended by
calling SuspendThread:

DWORD WINAPI SuspendThread(_In_ HANDLE hThread);

The thread handle must have the THREAD_SUSPEND_RESUME access mask for the call to suc-
ceed. The function increments the suspend count of the thread, and suspends its execution.
The function returns the previous suspend count of the thread or (DWORD)-1 if it fails.
There is a maximum suspend count a thread can have defined as MAXIMUM_SUSPEND_COUNT
(defined as 127). A thread can suspend itself, but it cannot resume itself.

Once suspended, the thread can be resumed with ResumeThread:
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DWORD WINAPI ResumeThread(_In_ HANDLE hThread);

ResumeThread decrements the thread’s suspend count, and if it’s zero, it becomes eligible for
execution. This function is required if a thread has been created with CREATE_SUSPENDED.

Generally, suspending a thread is a bad idea, since there is no way to know where exactly
the suspension occurs. For example, the thread might have acquired a lock that other threads
are waiting on. Suspending such a thread before it releases the lock causes a deadlock, as
other threads contending for the lock will wait indefinitely.

Thread synchronizations and locks are discussed in the next chapter.

Suspending and Resuming a Process

A process is not scheduled, threads do. However, it may be desirable at times to suspend
all threads in a process at once. This functionality is used for example in the case of
UWP processes, which get all their threads suspended when the application goes to the
background. The Windows API does not provide a function for this. It’s technically possible
to iterate over all threads in a process and call SuspendThread, but it’s risky at best. A new
thread might start while iterating, which would likely miss that thread.

UWP process suspension builds on an undocumented job object feature called
Deep Freeze.

The native API however, does provide the (undocumented) NtSuspendProcess function
defined like so:

NTSTATUS NtSuspendProcess(_In_ HANDLE hProcess);

Although undocumented, it’s been around forever, so it’s fairly safe to use. If you do use
it, don’t forget to add extern "C" to the function definition to let the linker know it’s a C
function. Also, add theNtDll import library to the project’s linker input libraries or in source
code like so:
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#pragma comment(lib, "ntdll")

The inverse function exists as well, aptly named NtResumeProcess:

NTSTATUS NtResumeProcess(_In_ HANDLE hProcess);

Process Explorer offers a right-click operation on a process to suspend/resume it. It uses
the above functions internally.

Sleeping and Yielding

A thread can voluntarily relinquish the remainder of its quantum by entering sleep:

void Sleep(_In_ DWORD dwMilliseconds);

The thread goes into a wait state for approximately the number of milliseconds requested.
A value of zero is valid, and causes the scheduler to execute the next thread in the queue
which has the same priority. If there is none, the thread continues execution. Another legal
value is INFINITE which causes the thread to sleep forever; this is hardly ever useful.

The accuracy of the sleep interval actually depends on whether the internal timer
resolution has be altered. Normally it should be the same as a clock tick used for
scheduling, but usually it’s much less because some other thread requested it. The
output of the clockres.exe Sysinternals utility shows the current timer interval,
that affects (among other things) sleep time accuracy.

As an alternative to calling Sleep(0), a thread can call SwitchToThread:

BOOL SwitchToThread(void);

SwitchToThread tells the scheduler to schedule the next ready thread, even if its priority is
lower than the current thread. The function returns TRUE if the scheduler is able to comply;
otherwise, the thread continues execution and the function returns ‘FALSE‘.
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Summary

In this chapter we looked at various aspects of scheduling. From priorities and how they can
be set, to simple single CPU scheduling, up to multiprocessor considerations, with affinities
and CPU sets. In the next chapter, we’ll look at thread synchronization, where threads must
coordinate their efforts and the various ways they can do so.



Chapter 7: Thread Synchronization
(Intra-Process)
In an ideal threading world, threads would go about their business not bothering other
threads. In reality, threads must at times synchronize with each other. The canonical example
is accessing a shared data structure, such as a dynamic array. If one thread attempts to insert
an item into the array, no other thread should manipulate the same array or even read from
it. It might be the case that the threads do so at different times, but since it’s all about timing,
they may do so at the same time. This would lead to data corruption or some exception. To
mitigate that, threads sometimes need to synchronize their work.

Windows provides a rich set of primitives that aid in achieving this (and other) synchroniza-
tion. In this chapter, we’ll examine the synchronization mechanisms available to user mode
developers through the Windows API for synchronizing threads within a single process.
In the next chapter, we’ll look at more synchronization primitives that can be used to
synchronize threads running in different processes.

In this chapter:

• Synchronization Basics
• Atomic Operations
• Critical Sections
• Locks and RAII
• Deadlocks
• The MD5 Calculator Application
• Reader Writer Locks
• Condition Variables
• Waiting on Address
• Synchronization Barriers
• What About the C++ Standard Library?
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Synchronization Basics

The classic synchronization is about avoiding a data race. A data race occurs when two
or more threads access the same memory location and at least one of them is writing to
that location. Reading concurrently from the same location is never a problem. But once a
write enters the picture, all bets are off. Data may become corrupted, reads may become
torn (some of the data is read before the change and some after the change). This is where
synchronization is required.

In chapter 5, we saw an example application that parallelizes primes numbers calculation.
That particular algorithm (fork/join) did not require any synchronization, except for waiting
for all threads to complete. This is ideal, as performance can be improved by throwing more
CPUs at the problem (at least up to a point). The need to synchronize is not fun, as it reduces
performance by definition, since some operations must be performed sequentially rather
than concurrently. In fact, the speedup that can be gained by adding more threads/CPUs to
a problem depends on the percentage of the code that can be parallelized. This is described
nicely by Amdahl’s Law:

A more thorough discussion of Amdahl’s Law can be found on Wikipedia: https://en.
wikipedia.org/wiki/Amdahl%27s_law

Where p is the percentage of code that can be parallelized. For example, if 80% of code can
be parallelized, then the maximum speedup possible is 5, no matter how many processors
are thrown into the problem.

Most synchronization-related operations require threads to wait upon some condition, until
it is safe to proceed, preventing a data race. In the following sections, we’ll look at various
synchronization options provided by the Windows API, from the simplest to more complex.

https://en.wikipedia.org/wiki/Amdahl%27s_law
https://en.wikipedia.org/wiki/Amdahl%27s_law
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Atomic Operations

Some operations that seem so simple and quick are not actually thread safe. Even a simple
C variable increment (x++) is not thread or multiprocessor safe. Consider, for example, two
threads running concurrently on two processors that perform an increment to the same
memory location (figure 7-1).

Figure 7-1: Simple increment by multiple threads

Even a simple increment involves a read and write. In figure 7-1, each thread may read the
initial value (0) into CPU registers. Each thread increments its processor’s register and then
writes back the result. The final result written to X is 1 instead of 2. This diagram is a gross
simplification, as there are other factors at play, such as CPU caches. But even ignoring that,
this is clearly a data race. In fact, one of the threads (say T2) may be preempted (for example
after R is incremented), and while T1 continues incrementing X, once T2 receives CPU time,
it writes back 1 to X, effectively killing all increments done by thread T1.
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The Simple Increment Application

The Simple Increment application shown in figure 7-2, uses multiple threads to do one thing:
increment a single memory location. The program allows selecting the count of threads to
run concurrently and the number of increments each thread should perform. Once the Run
button is clicked, operations are on the way. When done, the actual result and the expected
result, along with the time it took to execute.

Figure 7-2: The Simple Increment application

The Synchronization combobox allows selecting how to synchronize the increments. The
first (and default) option (“None”) is to simply use the ++ operator on the shared memory
location - no synchronization at all. Clicking Run with the default options shows something
like figure 7-3.
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Figure 7-3: Simple Increment application with no synchronization

Notice the final result is nowhere near the expected result. This is because of the lack of
synchronization, causing increments to become “lost”. You can click Run again and you’ll
get a different result. This is the nature of synchronization issues. The following is the piece
of code responsible for doing the multi-threaded increments with a simple ++ operations (in
MainDlg.cpp):

void CMainDlg::DoSimpleCount() {

auto handles = std::make_unique<HANDLE[]>(m_Threads);

for (int i = 0; i < m_Threads; i++) {

handles[i] = ::CreateThread(nullptr, 0, [](auto param) {

return ((CMainDlg*)param)->IncSimpleThread();

}, this, 0, nullptr);

}

::WaitForMultipleObjects(m_Threads, handles.get(), TRUE, INFINITE);

for (int i = 0; i < m_Threads; i++)

::CloseHandle(handles[i]);

}

DWORD CMainDlg::IncSimpleThread() {

for (int i = 0; i < m_Loops; i++)

m_Count++;

return 0;

}
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As we’ve seen in chapter 5, passing information to a thread is done via the PVOID parameter
of CreateThread. However, in many cases it’s more convenient to have the thread function
be an instance function, rather than static or global. A useful trick is to pass this as the
parameter and use it to call into an instance function, where the entire object state is
available. This allows the IncSimpleThread function to be an instance one, rather than
static.

You may be wondering why not just capture the this pointer and use the
data members directly? Unfortunately, API functions can only use non-capturing
lambda functions. This is why this trick is needed.

In the above code, m_Threads is the number of threads, m_Loops is the number of iterations
to do and m_Count is the shared memory location being incremented.

This is clearly an artificial example, where millions of increments are performed on the
same memory location, which exposes the bug easily. In real applications, these increments
are much less frequent, which means any synchronization bugs are less likely to occur, and
in fact may be missed by developers and QA, only to be discovered on customer’s machines.

The Interlocked Family of Functions

The solution to the above synchronization issue is in performing the increment as an atomic
operation, so that any increment is isolated from other increments and any other access to
the same memory location using other Interlocked functions. This atomic operation and
other similar operations are exposed in the Windows API though a set of functions with the
Interlocked prefix. In the simple increment case, that’s InterlockedIncrement:

unsigned InterlockedIncrement(unsigned volatile *Addend);

This performs an atomic increment, and as a bonus, returns the new value in addition
to actually changing the memory location. Behind the covers, this is not a true function,
but rather a compiler intrinsic that issues a special instruction to the CPU to perform this
operation atomically. This is great, since leveraging the hardware is always going to be faster
than software. Also, since there is no explicit “lock” object used, no deadlock is possible with
these functions.

Back to the Simple Increment application, the second synchronization method in the
combobox sets the increment method to InterlockedIncrement, used in the Inter-
lockedThread function:
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DWORD CMainDlg::IncInterlockedThread() {

for (int i = 0; i < m_Loops; i++)

::InterlockedIncrement((unsigned*)&m_Count);

return 0;

}

Figure 7-4 shows an example run with the Interlocked option selected in the synchronization
combobox.

Figure 7-4: Simple Increment application with Interlocked synchronization

Other simple functions in the same vein include InterlockedDecrement, InterlockedAdd,
InterlockedExchange, InterlockedAnd, InterlockedOr, InterlckedXor, InterlockedEx-
changePointer, InterlockedCompareExchange and a few others. These exist for 64 bit
and 16 bit values as well, with the suffixes 64 and 16, respectively, added to the function
names (e.g. InterlockedInrement64).
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There are also extended functions, such as InterlockedAndAcquire,
InterlockedAndRelease and InterlockedAndNoFence (and similar for
other operations). These specialized versions also specify the acquire/release
semantics on the memory location. Discussing these variants is out of scope
for this book, and you should use the “standard” functions, which are the
safest, unless you know what you’re doing. More information on fences and
acquire/release semantics can be found on the web. One of the best is the talk
“Atomic<> Weapons”¹ by Herb Sutter. You can also (or alternatively) watch my
(somewhat abridged) session “Concurrency and the C++ Memory Model”².

The InterlockedCompareExchange function is mostly used when doing lock free program-
ming, a paradigm that uses CPU intrinsics to avoid using any locks in software. This topic is
out of scope for this book, as it’s not Windows-specific. However, the Windows API offers
a lock-free, singly linked list implementation. These functions use the SLIST_HEADER union
as a linked list header and SLIST_ENTRY structures as the entries that can be added/removed
to/from the list, atomically.

Both types are fully defined in the SDK headers, but only SLIST_ENTRY should bemarginally
interesting to look at:

typedef struct DECLSPEC_ALIGN(16) _SLIST_ENTRY {

struct _SLIST_ENTRY *Next;

} SLIST_ENTRY, *PSLIST_ENTRY;

SLIST_ENTRY and SLIST_HEADER must be aligned on a 16 byte boundary, indi-
cated by decorating the types with the __declspec(align(16)) VC++ compiler
attribute. Stack-based or static allocation of these types will work correctly,
but more often than not you’ll need to dynamically allocate SLIST_ENTRY. The
C runtime offers the _aligned_malloc function that guarantees a specified
alignment of a memory allocation.

Clearly, it’s a classic single list entry item. But where is the actual data? The expectation is
that your data item includes as a first entry SLIST_ENTRY itself. This ensures the alignment
requirement is met for the SLIST_ENTRY. The following example shows a data item type
suitable to be stored in the described linked list:

¹https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
²https://www.youtube.com/watch?v=NZ_ncor_Lj0

https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.youtube.com/watch?v=NZ_ncor_Lj0
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://www.youtube.com/watch?v=NZ_ncor_Lj0
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struct MyDataItem {

SLIST_ENTRY Entry;

int MyValue;

//...

};

Since the operations on the list must be lock-free, and the list is singly linked, it actually
implements a stack. There is no thread-safe way to add items at the tail of the list. This is
why the main operations on the list use the names “Push” and “Pop” - terms used in stack-
based data structures.

Table 7-1 lists the functions available for lock-free singly linked list manipulation.

Table 7-1: Functions for working with singly linked lists

Function Description
InitializeSListHead Initializes the list’s head to an empty list.
InterlockedPushEntrySList Inserts an item in the front of the list.
InterlockedPopEntrySList Removes the item in the front of the list.
InterlockedPushListSListEx Inserts multiple items in from of the list.
InterlockedFlushSList Removes all items from the list, returning the item that was in

front (if any).
QueryDepthSList Returns the count of items in the list. This function is not

thread safe and is best avoided. It’s much better to keep track
of the item count yourself (with InterlockedIncrement /
InterlockedDecrement).

Critical Sections

The Interlocked family of functions is great with simple cases such as integer increments.
However, for other operations, a more general mechanism is required. A critical section is
a classic synchronization mechanism based on one thread at most acquiring a lock. Once a
thread acquired a specific lock, no other thread can acquire the same lock until the thread
that acquired it in the first place releases it. Only then, one (and only one) of the waiting
threads can acquire the lock. This means that at any given moment, no more than one thread
has acquired the lock. This idea is depicted in figure 7-5.
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Figure 7-5: Synchronization with a critical section

The thread that acquired the lock is also its owner, which means two things:

1. The owner thread is the only thread that can release the critical section.
2. If the owner thread attempts to acquire the critical section a second time (recursively),

it succeeds automatically, incrementing an internal counter. This means the owner
thread now has to release the critical section the same number of times to truly release
it.

The code between acquire and release of the lock is called a critical region.

The critical section itself is represented by the CRITICAL_SECTION structure, in itself a
typedef to another structure, RTL_CRITICAL_SECTION. Although the structure is fully
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defined, you should treat it as opaque. Initializing the critical section must be done with
one of the following functions:

void InitializeCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

BOOL InitializeCriticalSectionAndSpinCount(

LPCRITICAL_SECTION lpCriticalSection,

DWORD dwSpinCount);

BOOL InitializeCriticalSectionEx(

LPCRITICAL_SECTION lpCriticalSection,

DWORD dwSpinCount,

DWORD Flags);

The initialization of a critical section involves setting its members to some initial values.
This is why the first function returns void.

The second and third variants set a spin count for the critical section. The idea is that if a
critical section cannot be acquired by a thread, it should enter a wait state because some
other thread holds the critical section. However, entering a wait state requires the thread
to transition to kernel mode, which is not cheap. A compromise could be to spin a small
amount of time because it’s likely that the current owner of the critical section will release it
very soon, and so a transition to the kernel can be avoided. The spin count maximum value
is 0x00ffffff (the remaining hex digits are used internally as flags).

What should the spin count be? It’s difficult to answer that categorically, because it depends
on the actual processor type and other hardware factors. The default spin count is 2000 (used
by InitializeCriticalSection).

If the system has a single processor (or the process image file has the “Single CPU”
flag in its PE header), the spin count is always set to zero. This makes sense, since
another thread would never be able to release the critical section while this thread
is spinning, since there are no more processors.

The last initialization function adds a flags parameter. Several are defined in the headers,
but only one is documented - CRITICAL_SECTION_NO_DEBUG_INFO (0x01000000), which
specifies that the critical section structure should not allocate an extra debug structure that
can help with diagnosing critical section issues.

When the critical section is not needed anymore, call DeleteCriticalSection:
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void DeleteCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

Once the critical section is initialized, it can be acquired and released by threads using the
following functions:

void EnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

void LeaveCriticalSection(LPCRITICAL_SECTION lpCriticalSection);

EnterCriticalSection attempts to acquire the critical section and only returns when
it does. If the calling thread is already the owner of the critical section, it continues
immediately. Conversely, LeaveCriticalSection releases an already acquired critical
section.

Curiously enough, any thread can call LeaveCriticalSection (not just the
current owner thread) and succeed. I would expect the function to throw an
exception (since it returns void). But it just releases the critical section, turning
the owner thread ID back to zero.

A simple example is shown in the Simple Increment application. If you select the synchro-
nization mechanism as “Critical Section” in the combobox and click Run, the increments
would now be protected by a critical section (figure 7-6).

Figure 7-6: Simple Increment application with critical section synchronization

The code to accomplish this synchronization in Simple Increment is the following:
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// m_CritSection is CRITICAL_SECTION

void CMainDlg::DoCriticalSectionCount() {

auto handles = std::make_unique<HANDLE[]>(m_Threads);

::InitializeCriticalSection(&m_CritSection);

for (int i = 0; i < m_Threads; i++) {

handles[i] = ::CreateThread(nullptr, 0, [](auto param) {

return ((CMainDlg*)param)->IncCriticalSectionThread();

}, this, 0, nullptr);

}

::WaitForMultipleObjects(m_Threads, handles.get(), TRUE, INFINITE);

for (int i = 0; i < m_Threads; i++)

::CloseHandle(handles[i]);

::DeleteCriticalSection(&m_CritSection);

}

DWORD CMainDlg::IncCriticalSectionThread() {

for (int i = 0; i < m_Loops; i++) {

::EnterCriticalSection(&m_CritSection);

m_Count++;

::LeaveCriticalSection(&m_CritSection);

}

return 0;

}

Each call to EnterCriticalSectionmust be matched by a LeaveCriticalSection in the
same function. It’s too dangerous to call some other function within the critical region that
is expected to call LeaveCriticalSection. To avoid possible bugs, always use these pair of
functions within the same

The EnterCriticalSection waits for the critical section to be available as long as it takes.
There is no way to specify a timeout, but there is a way to inspect the critical section, if it’s
free - acquire it; otherwise, continue execution. This is exactly what TryEnterCritical-
Section does:

BOOL TryEnterCriticalSection(LPCRITICAL_SECTION lpCriticalSection);
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Locks and RAII

As we’ve seen in the previous section, EnterCriticalSection and LeaveCriticalSec-
tion are natural pairs. It would be unfortunate to “forget” calling LeaveCriticalSection,
for example by returning from the function before the call. This mistake is easy to make, and
even if there is no such bug, it forces the developer to think about it and make sure that any
future modifications to that function don’t break the pair of calls.

It would be much better to have code that automatically calls LeaveCriticalSection no
matter what, without the code having to worry about it. There are two ways to get this
behavior: termination handlers and C++ Resource Acquisition Is Initialization (RAII).

Termination handlers will be discussed in more detail in a future chapter, but here are the
essentials:

CRITICAL_SECTION cs;

void DoWork() {

::EnterCriticalSection(&cs);

__try {

// manipulate shared resource

}

__finally {

::LeaveCriticalSection(&cs);

}

}

The __try and __finally are two Microsoft-specific keywords extending the C language
for the sake of running the code in the __finally block when leaving the __try block, no
matterwhat. Even a return statementwithin the __try blockwould first call the __finally
block and only then actually return from the function.

If you’re using C (and not C++), then termination handlers are your best option. When work-
ing with C++, it’s better (and more convenient) to leverage constructors and destructors that
can execute code automatically when objects are constructed and destroyed, respectively.
(This is known as the RAII idiom in C++)

For a critical section, a RAII class could look something like this:
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// AutoCriticalSection.h

struct AutoCriticalSection {

AutoCriticalSection(CRITICAL_SECTION& cs);

~AutoCriticalSection();

// delete copy ctor, move ctor, assignment operators

AutoCriticalSection(const AutoCriticalSection&) = delete;

AutoCriticalSection& operator=(const AutoCriticalSection&) = delete;

AutoCriticalSection(AutoCriticalSection&&) = delete;

AutoCriticalSection& operator=(AutoCriticalSection&&) = delete;

private:

CRITICAL_SECTION& _cs;

};

// AutoCriticalSection.cpp

AutoCriticalSection::AutoCriticalSection(CRITICAL_SECTION& cs) : _cs(cs) {

::EnterCriticalSection(&_cs);

}

AutoCriticalSection::~AutoCriticalSection() {

::LeaveCriticalSection(&_cs);

}

The code is part of the ThreadingHelpers project in this chapter’s code samples.

The constructor acquires the critical section and the destructor releases it. Using it in the
Simple Increment application could be done like so:



Chapter 7: Thread Synchronization (Intra-Process) 316

DWORD CMainDlg::IncCriticalSectionThread() {

for (int i = 0; i < m_Loops; i++) {

AutoCriticalSection locker(m_CritSection);

m_Count++;

}

return 0;

}

While we’re on the subject of RAII, it may be a good idea to wrap the critical section itself
in a RAII class, so that critical section initialization and deletion is automatic as well. Here
is a possible implementation:

// CriticalSection.h

class CriticalSection : public CRITICAL_SECTION {

public:

CriticalSection(DWORD spinCount = 0, DWORD flags = 0);

~CriticalSection();

void Lock();

void Unlock();

bool TryLock();

};

// CriticalSection.cpp

CriticalSection::CriticalSection(DWORD spinCount, DWORD flags) {

::InitializeCriticalSectionEx(this, (DWORD)spinCount, flags);

}

CriticalSection::~CriticalSection() {

::DeleteCriticalSection(this);

}

void CriticalSection::Lock() {

::EnterCriticalSection(this);

}

void CriticalSection::Unlock() {
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::LeaveCriticalSection(this);

}

bool CriticalSection::TryLock() {

return ::TryEnterCriticalSection(this);

}

The Lock, Unlock and TryLock are not required, but may be helpful in some scenarios.

The derivation from CRITICAL_SECTION allows passing CriticalSection if CRITICAL_-
SECTION is required. Alternatively, a CRITICAL_SECTIONmember could be embedded inside
the structure, with an operator that can implicitly cast CriticalSection to CRITICAL_-
SECTION. I leave this implementation as an exercise for the reader.

Deadlocks

Working with critical sections seems simple enough. Even if we work with the various RAII
wrappers, there is still a danger of deadlocks. A classic deadlock occurs when thread A that
owns lock 1 (e.g. a critical section) waits for lock 2 that is owned by thread B, while thread
B is waiting for lock 1.

The way to avoid deadlocks is theoretically easy: always acquire the locks in the same order.
This means that every thread that needs more than one lock should always acquire the locks
in the same order. This guarantees deadlock cannot happen (at least not because of these
locks). The practical issue is how to enforce the ordering; without writing any code, it’s a
matter of documenting the order so that future code continues to adhere to the rules. An
alternative option is to write a “multi-lock” wrapper that always acquires locks in the same
order. A simple way to accomplish that is to order the acquisition by the lock’s address in
memory.

Write such a multi-lock wrapper for critical sections.

The MD5 Calculator Application

The MD5Calculator application demonstrates the use of critical sections that is more
interesting (and complex) than Simple Increment (we’ll also modify it in later sections). The
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application calculates the MD5 hash of image files (EXEs and DLLs) as they are loaded by
processes. Since processes typically use many common DLLs, it’s better to cache the results
of hashes that have already been calculated. The application has several challenges:

• Show a responsive user interface while calculations are done in the background.
• Get notified of new images (DLLs/EXEs) that are loaded by any process on the system.
• Manage a cache of files with their MD5 hashes.

Figure 7-7 shows the main screen of the application before any activity.

Figure 7-7: TheMD5 Calculator application

By default, no caching forMD5 hashes is done. Clicking the greenGo button (or theCalculate
/ Go menu item), starts capturing image loads and calculates hashes from scratch for each
image file, even if duplicates are loaded (figure 7-8).
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Figure 7-8: TheMD5 Calculator application running with no caching

You can launch a new process, such as Notepad and watch its modules load and reflected at
the bottom of the list view display. Click the Stop button to stop capturing image loads. You
can use the Edit / Clear menu item to clear the display.

Now you can use the Calculate / Use Cache menu item to toggle cache usage. Now click Go
again. Notice that after some calculations, the cache starts to be useful and the “Cached?”
column shows more “Yes” items when the hash value can be satisfied by the cache (figure
7-9).
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Figure 7-9: TheMD5 Calculator application running with caching

Let’s walk through the most important parts of the application.

Calculating MD5 Hash

Calculating the MD5 hash of any buffer can be done using the Windows cryptographic API.
A simple class named MD5Calculator is used to make the calculation (part of its own static
library project named HashCalc):

// MD5Calculator.h

class MD5Calculator {

public:

static std::vector<uint8_t> Calculate(PCWSTR path);

};

// MD5Calculator.cpp

#include <wincrypt.h>

#include "MD5Calculator.h"

#include <wil\resource.h>
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std::vector<uint8_t> MD5Calculator::Calculate(PCWSTR path) {

std::vector<uint8_t> md5;

wil::unique_hfile hFile(::CreateFile(path, GENERIC_READ, FILE_SHARE_READ,

nullptr, OPEN_EXISTING, FILE_FLAG_SEQUENTIAL_SCAN, nullptr));

if (!hFile)

return md5;

wil::unique_handle hMemMap(::CreateFileMapping(hFile.get(), nullptr,

PAGE_READONLY, 0, 0, nullptr));

if (!hMemMap)

return md5;

wil::unique_hcryptprov hProvider;

if (!::CryptAcquireContext(hProvider.addressof(), nullptr, nullptr,

PROV_RSA_FULL, CRYPT_VERIFYCONTEXT))

return md5;

wil::unique_hcrypthash hHash;

if(!::CryptCreateHash(hProvider.get(), CALG_MD5, 0, 0, hHash.addressof()))

return md5;

wil::unique_mapview_ptr<BYTE> buffer((BYTE*)::MapViewOfFile(hMemMap.get(),

FILE_MAP_READ, 0, 0, 0));

if (!buffer)

return md5;

auto size = ::GetFileSize(hFile.get(), nullptr);

if (!::CryptHashData(hHash.get(), buffer.get(), size, 0))

return md5;

DWORD hashSize;

DWORD len = sizeof(DWORD);

if (!::CryptGetHashParam(hHash.get(), HP_HASHSIZE, (BYTE*)&hashSize,

&len, 0))

return md5;

md5.resize(len = hashSize);

::CryptGetHashParam(hHash.get(), HP_HASHVAL, md5.data(), &len, 0);
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return md5;

}

A detailed description of the cryptographic API is beyond the scope of this book. However,
the procedure to calculate a hash is fairly straightforward. There are a few preparatory steps,
before calling the actual hashing function, CryptHashData. This function accepts a handle
representing the hashing algorithm, the buffer to hash and the size of the buffer to hash.

Here are the steps, in order, performed by MD5Calculator::Calculate:

1. The file in question is opened with CreateFile (discussed in detail in chapter 11). The
file is opened for read access, with the optional flag FILE_FLAG_SEQUENTIAL_SCAN
that is a hint to the file system that the reading is going to be sequential.

2. The contents of the file must be placed in a memory buffer to be usable by the hashing
function. One way would be to allocate a buffer the size of the file and use ReadFile
to read its contents into the buffer. A better approach is to use a memory-mapped file
(discussed in chapter 14), that can map a file’s contents to memory (see item 5 below),
without any need to allocate or read anything. The CreateFileMapping function is
used to create the file mapping object based on the file handle (first argument).

3. CryptAcquireContext is called to get back a cryptographic provider handle based a
provider (PROV_RSA_FULL in our case).

4. The call to CryptCreateHash returns a handle to a specific hash algorithm (CALG_MD5
for MD5).

5. Calling MapViewOfFilemaps the file contents to memory, returning a pointer. This is
wrapped by the WIL unique_mapview_ptr<> that calls UnmapViewOfFile when the
variable goes out of scope.

6. Now everything is ready to call CryptHashData to calculate the hash.
7. All that’s left to do is retrieve the hash size and hash data itself. Both are accomplished

with calls to CryptGetHashParam: the first with HP_HASHSIZE to get the hash size
(always 16 bytes for MD5, but the code remains generic).

8. The buffer for the result is allocated by calling resize on the vector of bytes. Then a
second call to CryptGetHashParam is made with HP_HASHVAL to get the actual hash.

The Hash Cache

The cache itself is encapsulated in the HashCache class defined like so:
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using Hash = std::vector<uint8_t>;

class HashCache {

public:

HashCache();

bool Add(PCWSTR path, const Hash& hash);

const Hash Get(PCWSTR path) const;

bool Remove(PCWSTR path);

void Clear();

private:

mutable CriticalSection _lock;

std::unordered_map<std::wstring, Hash> _cache;

};

The cache is managed with an unordered_map<> object from the C++ standard library that
maps a file path to its hash. The hash itself is stored as a vector of bytes, although for MD5 I
could have just used an array of 16 bytes. Since accessing the cache may be done by multiple
threads, the unordered_map<> must be protected from concurrent access. Here I’m using
a critical section. The implementation is fairly straightforward, protecting each operation
with the critical section:

HashCache::HashCache() {

_cache.reserve(512);

}

bool HashCache::Add(PCWSTR path, const Hash& hash) {

AutoCriticalSection locker(_lock);

auto it = _cache.find(path);

if (it == _cache.end()) {

_cache.insert({ path, hash });

return true;

}

return false;

}

const Hash HashCache::Get(PCWSTR path) const {

AutoCriticalSection locker(_lock);
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auto it = _cache.find(path);

return it == _cache.end() ? Hash() : it->second;

}

bool HashCache::Remove(PCWSTR path) {

AutoCriticalSection locker(_lock);

auto it = _cache.find(path);

if (it != _cache.end()) {

_cache.erase(it);

return true;

}

return false;

}

void HashCache::Clear() {

AutoCriticalSection locker(_lock);

_cache.clear();

}

The code uses the RAII AutoCriticalSection class, defined earlier to acquire and release
with no need for termination handlers (__try / __finally).

The main view class (CView) holds an instance of HashCache named m_Cache, that is used
if cache usage is enabled (m_UseCache member).

Image Loads Notifications

The next, relatively independent, piece of the puzzle is getting notifications about image
loads. One powerful way to get these notifications from user mode is to utilize Event Tracing
for Windows (ETW). ETW is a mechanism existed since Windows 2000 that allows system
components and other applications to generate rich events that can be consumed in real-time
or logged to a file and analyzed later. A basic ETW architecture is shown in figure 7-10.
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Figure 7-10: ETW Architecture

The main pieces of ETW are the following:

• Providers generate events.
• Sessions encapsulate one or more providers plus some configuration. Events are
captured when the session starts until it’s stopped.

• Controllers enable or disable providers, and start and stop sessions.
• Consumers consume events in real-time or to a file (ETL - event tracing log). In a
typical case, a controller is also a consumer.

Complete treatment of ETW is beyond the scope of this book.

In our case, we need to use the kernel provider that can send a bunch of events, one of them
is image loads. The TraceManager class encapsulates working with the ETW infrastructure.
It’s defined like so:
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class TraceManager final {

public:

~TraceManager();

bool Start(std::function<void(PEVENT_RECORD)> callback);

bool Stop();

private:

void OnEventRecord(PEVENT_RECORD rec);

DWORD Run();

private:

TRACEHANDLE _handle{ 0 };

TRACEHANDLE _hTrace{ 0 };

EVENT_TRACE_PROPERTIES* _properties;

std::unique_ptr<BYTE[]> _propertiesBuffer;

EVENT_TRACE_LOGFILE _traceLog = { 0 };

wil::unique_handle _hProcessThread;

std::function<void(PEVENT_RECORD)> _callback;

};

The interface exposed by TraceManager is fairly simple. Once constructed, a session is
started by calling Start and stopped by calling Stop. The private Run method is the one
that starts the session running with its own thread (more on that in a moment). The
OnEventRecord function is a callback invoked for every generated event. The various private
data members are mostly concerned with building an ETW session and managing it. Let’s
look at the implementation.

The destructor just calls Stop:

TraceManager::~TraceManager() {

Stop();

}

Start is a bulky function that sets up the ETW session appropriately and then initiates
processing. It accepts a callback from an interested consumer to be called for each event. Its
first major task is calling StartTrace, that configures and starts a session:
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bool TraceManager::Start(std::function<void(PEVENT_RECORD)> cb) {

_callback = cb;

if (_handle || _hTrace)

return true;

auto size = sizeof(EVENT_TRACE_PROPERTIES) + sizeof(KERNEL_LOGGER_NAME);

_propertiesBuffer = std::make_unique<BYTE[]>(size);

::memset(_propertiesBuffer.get(), 0, size);

_properties = reinterpret_cast<EVENT_TRACE_PROPERTIES*>(_propertiesBuffer.g\

et());

_properties->EnableFlags = EVENT_TRACE_FLAG_IMAGE_LOAD;

_properties->Wnode.BufferSize = (ULONG)size;

_properties->Wnode.Guid = SystemTraceControlGuid;

_properties->Wnode.Flags = WNODE_FLAG_TRACED_GUID;

_properties->Wnode.ClientContext = 1;

_properties->LogFileMode = EVENT_TRACE_REAL_TIME_MODE;

_properties->LoggerNameOffset = sizeof(EVENT_TRACE_PROPERTIES);

auto error = ::StartTrace(&_handle, KERNEL_LOGGER_NAME, _properties);

if (error != ERROR_SUCCESS && error != ERROR_ALREADY_EXISTS)

return false;

First, it checks if a session is already in progress, and if so, it simply returns. Otherwise, it
saves the callback in a data member and goes on to prepare the EVENT_TRACE_PROPERTIES
structure. The important parts are setting EnableFlags to EVENT_TRACE_FLAG_IMAGE_-
LOAD, which specifies that image-related events are of interest, and LogFileMode to EVENT_-
TRACE_REAL_TIME_MODE to indicate a real-time session is requested.

Check the documentation of StartTrace for the full details.

ETW sessions are unique in the sense that they can outlive a process. Thismeans StartTrace
can fail, but if the last error is ERROR_ALREADY_EXISTS then the session is already running,
and we can just tap into it as a consumer.

Next, we need to set up the consumer, by calling OpenTrace:
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_traceLog.Context = this;

_traceLog.LoggerName = KERNEL_LOGGER_NAME;

_traceLog.ProcessTraceMode = PROCESS_TRACE_MODE_EVENT_RECORD |

PROCESS_TRACE_MODE_REAL_TIME;

_traceLog.EventRecordCallback = [](PEVENT_RECORD record) {

((TraceManager*)record->UserContext)->OnEventRecord(record);

};

_hTrace = ::OpenTrace(&_traceLog);

if (!_hTrace)

return false;

The callback for each event is set in the EventRecordCallback member of the EVENT_-
TRACE_LOGFILE structure (_traceLog). It uses the UserContext member as the this
pointer (set earlier in the Context member) to invoke an instance function of the class.
This function (OnEventRecord) will invoke the callback that was passed in earlier in Start.

The consumer is now in place, so the last operation needed is to start processing events. To
that end, a separate thread is created, because the ProcessTrace function is a blocking one,
and we don’t want the caller to be blocked when calling Start:

_hProcessThread.reset(::CreateThread(nullptr, 0, [](auto param) {

return ((TraceManager*)param)->Run();

}, this, 0, nullptr));

return true;

}

The Run member function just calls ProcessTrace:

DWORD TraceManager::Run() {

auto error = ::ProcessTrace(&_hTrace, 1, nullptr, nullptr);

return error;

}

As mentioned, the OnEventRecord function invokes the client’s callback:
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void TraceManager::OnEventRecord(PEVENT_RECORD rec) {

if (_callback)

_callback(rec);

}

Finally, the Stop function closes and stops the trace:

bool TraceManager::Stop() {

if (_hTrace) {

::CloseTrace(_hTrace);

_hTrace = 0;

}

if (_handle) {

::StopTrace(_handle, KERNEL_LOGGER_NAME, _properties);

_handle = 0;

}

return true;

}

The main frame class (CMainFrm) holds a TraceManager instance. It calls Start and Stop
when the appropriate menu / tool bar items are selected:

LRESULT CMainFrame::OnStartTrace(WORD, WORD, HWND, BOOL&) {

m_TraceManager.Start([this](auto record) {

m_view.OnEvent(record); // call the view

});

// UI updates omitted...

return 0;

}

LRESULT CMainFrame::OnStopTrace(WORD, WORD, HWND, BOOL&) {

m_TraceManager.Stop();

// UI updates omitted

return 0;

}
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Event Parsing

An ETW event is provided to the event callback using the EVENT_RECORD structure that
contains everything about the specific event. Here is its definition:

typedef struct _EVENT_RECORD {

EVENT_HEADER EventHeader; // Event header

ETW_BUFFER_CONTEXT BufferContext; // Buffer context

USHORT ExtendedDataCount; // Number of extended

// data items

USHORT UserDataLength; // User data length

PEVENT_HEADER_EXTENDED_DATA_ITEM // Pointer to an array of

ExtendedData; // extended data items

PVOID UserData; // Pointer to user data

PVOID UserContext; // Context from OpenTrace

} EVENT_RECORD, *PEVENT_RECORD;

ETW event properties can include strings (ANSI and Unicode), numbers, custom structures,
and some other special types. Everything is stored in a binary blob as part of EVENT_RECORD
starting at UserData address. To get to the various properties and values, some parsing is
required. The EventParser class is a helper class for parsing properties. It stores each parsed
property in an EventProperty structure defined like so:

struct EventProperty {

EventProperty(EVENT_PROPERTY_INFO& info);

std::wstring Name;

BYTE* Data;

ULONG Length;

EVENT_PROPERTY_INFO& Info;

template<typename T>

T GetValue() const {

static_assert(std::is_pod<T>() && !std::is_pointer<T>());

return *(T*)Data;

}

PCWSTR GetUnicodeString() const;
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PCSTR GetAnsiString() const;

};

Each property has a name (Name member), a pointer to the actual data (Data), a length
(Length) and a reference to the original structure describing the property (Info). The
GetValue<> template function retrieves property values for simple POD (“plain old data”)
types, such as numeric types. The static_assert statement instructs the compiler to reject
complex types, as they would produce a wrong value.

static_assert was introduced in C++ 11 and enhanced in C++ 14.

GetUnicodeString and GetAnsiString return the data as their corresponding string types.

The EventParser class is declared like so:

class EventParser {

public:

EventParser(PEVENT_RECORD record);

PTRACE_EVENT_INFO GetEventInfo() const;

PEVENT_RECORD GetEventRecord() const;

const EVENT_HEADER& GetEventHeader() const;

const std::vector<EventProperty>& GetProperties() const;

const EventProperty* GetProperty(PCWSTR name) const; // lookup by name

DWORD GetProcessId() const;

static std::wstring GetDosNameFromNtName(PCWSTR name);

private:

std::unique_ptr<BYTE[]> _buffer;

PTRACE_EVENT_INFO _info{ nullptr };

PEVENT_RECORD _record;

mutable std::vector<EventProperty> _properties;

};

An EventParser instance takes an EVENT_RECORD as its input. Everything about the event
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is stored there somewhere. EventParser’s task is to extract the required information. Here
is the implementation except for GetDosNameFromNtName, which we’ll deal with separately:

EventProperty::EventProperty(EVENT_PROPERTY_INFO& info) : Info(info) {

}

EventParser::EventParser(PEVENT_RECORD record) : _record(record) {

ULONG size = 0;

auto error = ::TdhGetEventInformation(record, 0, nullptr, _info, &size);

if (error == ERROR_INSUFFICIENT_BUFFER) {

_buffer = std::make_unique<BYTE[]>(size);

_info = reinterpret_cast<PTRACE_EVENT_INFO>(_buffer.get());

error = ::TdhGetEventInformation(record, 0, nullptr, _info, &size);

}

::SetLastError(error);

}

PTRACE_EVENT_INFO EventParser::GetEventInfo() const {

return _info;

}

PEVENT_RECORD EventParser::GetEventRecord() const {

return _record;

}

const EVENT_HEADER& EventParser::GetEventHeader() const {

return _record->EventHeader;

}

const std::vector<EventProperty>& EventParser::GetProperties() const {

if (!_properties.empty())

return _properties;

_properties.reserve(_info->TopLevelPropertyCount);

auto userDataLength = _record->UserDataLength;

BYTE* data = (BYTE*)_record->UserData;

for (ULONG i = 0; i < _info->TopLevelPropertyCount; i++) {

auto& prop = _info->EventPropertyInfoArray[i];
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EventProperty property(prop);

property.Name.assign((WCHAR*)((BYTE*)_info + prop.NameOffset));

auto len = prop.length;

property.Length = len;

property.Data = data;

data += len;

userDataLength -= len;

_properties.push_back(std::move(property));

}

return _properties;

}

const EventProperty* EventParser::GetProperty(PCWSTR name) const {

for (auto& prop : GetProperties())

if (prop.Name == name)

return &prop;

return nullptr;

}

DWORD EventParser::GetProcessId() const {

return _record->EventHeader.ProcessId;

}

PCWSTR EventProperty::GetUnicodeString() const {

return (PCWSTR)Data;

}

PCSTR EventProperty::GetAnsiString() const {

return (PCSTR)Data;

}

The constructor calls TdhGetEventInformation to get the basic event details and an array
of properties, all from the EVENT_RECORD. The call is made twice: the first time with a length
of zero to get the required length, then, after allocating the required buffer, makes a second
call to retrieve the actual data.
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The Tdh functions require the header <tdh.h> and linking against tdh.lib. As
mentioned earlier, a detailed discussion of these functions is outside the scope
of this book.

GetProperties does the hard work of walking each property in the event, extracting the im-
portant information and encapsulating it in an EventProperty instance. The GetProperty
helper function returns a property given its name (if any).

Putting it All Together

Now that we have all the individual pieces, we can start integrating them into an actual
application. The main view class (CView) holds the data items that are actually displayed.
These take the form of EventData structures defined like so (in view.h):

struct EventData {

CString FileName;

ULONGLONG Time;

DWORD ProcessId;

Hash MD5Hash;

DWORD CalculatingThreadId;

DWORD CalculationTime;

bool Cached : 1;

bool CalcDone : 1;

};

The view stores a vector of these items, a critical section to protect access to the vector,
the cache itself, and whether it should be used:

class CView... {

//...

private:

std::vector<EventData> m_Events;

HashCache m_Cache;

CriticalSection m_EventsLock;

bool m_UseCache{ false };

};
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When an event comes in, the callback OnEvent is invoked. The callback needs to grab the
event details, store them in a new EventData object and go ahead and calculate the MD5
hash (or use a cached result). First, it filters out unwanted events:

void CView::OnEvent(PEVENT_RECORD record) {

EventParser parser(record);

// ID 10 is a load image event

if (parser.GetEventHeader().EventDescriptor.Opcode != 10)

return;

Remember the ETW trace only enables the image load type of events. As it turns out, there
are actually four events that may be sent. Only one of them (with an opcode of 10) is an
image load. Refer to this reference³ for the full details.
Here is the structure for the Image load set of events:

[EventType(10, 2, 3, 4), EventTypeName("Load", "Unload", "DCStart", "DCEnd")]

class Image_Load : Image {

uint32 ImageBase;

uint32 ImageSize;

uint32 ProcessId;

uint32 ImageCheckSum;

uint32 TimeDateStamp;

uint32 Reserved0;

uint32 DefaultBase;

uint32 Reserved1;

uint32 Reserved2;

uint32 Reserved3;

uint32 Reserved4;

string FileName;

};

The above format is known as simplified MOF (Managed Object Format). It’s used with
ETW andWindows Management Instrumentation (WMI).

³https://docs.microsoft.com/en-us/windows/win32/etw/image-load

https://docs.microsoft.com/en-us/windows/win32/etw/image-load
https://docs.microsoft.com/en-us/windows/win32/etw/image-load
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Once the proper event is received (Opcode=10), the interesting property (FileName) is
retrieved and used to fill a new EventData instance, before initiating computation of the
MD5 hash by posting a custom message to the view:

auto fileName = parser.GetProperty(L"FileName");

if (fileName) {

EventData data;

data.FileName = parser.GetDosNameFromNtName(

fileName->GetUnicodeString()).c_str();

data.ProcessId = parser.GetProcessId();

data.Time = parser.GetEventHeader().TimeStamp.QuadPart;

data.CalcDone = false;

size_t size;

{

AutoCriticalSection locker(m_EventsLock);

m_Events.push_back(std::move(data));

size = m_Events.size();

}

int index = static_cast<int>(size - 1);

// initiate work from the UI thread

PostMessage(WM_START_CALC, index, size);

}

}

There are a few points worth noting:

• The critical section protecting the view’s data is held for as short time as possible. This
is achieved by using an artificial block so that the critical section can be released as
soon as the block is exited.

• Initiating the calculation is not done in this function, as it’s called by the TraceMan-
ager’s thread, which should be let go as soon as possible to be available to process the
next event. Instead, calling PostMessage causes a message to be asynchronously sent
to the window, to be handled by the UI thread, allowing the current function to return.

The last interesting detail of the above code is the use GetDosNameFromNtName. The
file name provided by the ETW event is in “device format”, which is the native NT
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format looking something like this: “DeviceHarddiskVolume3SomeDirectorySomeFile.dll”.
The reason internal device names have this format will be discussed in chapter 11. For
now, this kind of path should be translated to something like “c:SomeDirectorySomeFile.dll”
to be usable by the CreateFile API used for the hash calculation. The static Event-
Parser::GetDosNameFromNtName is used to translate back to a Win32 device name:

std::wstring EventParser::GetDosNameFromNtName(PCWSTR name) {

static std::vector<std::pair<std::wstring, std::wstring>> deviceNames;

static bool first = true;

if (first) {

auto drives = ::GetLogicalDrives();

int drive = 0;

while (drives) {

if (drives & 1) {

// drive exists

WCHAR driveName[] = L"X:";

driveName[0] = (WCHAR)(drive + 'A');

WCHAR path[MAX_PATH];

if (::QueryDosDevice(driveName, path, MAX_PATH)) {

deviceNames.push_back({ path, driveName });

}

}

drive++;

drives >>= 1;

}

first = false;

}

for (auto& [ntName, dosName] : deviceNames) {

if (::_wcsnicmp(name, ntName.c_str(), ntName.size()) == 0)

return dosName + (name + ntName.size());

}

return L"";

}

The function uses a static vector of string pairs, each mapping an NT device name to a drive
letter. The first time the function is called, it gets all the driver letters (GetLogicalDrives)
as a bitmask, where bit 0 corresponds to drive A, bit 1 to drive B, bit 2 to driver C, and so on,
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and for each drive queries for its NT device name with QueryDosDevice (see chapter 11 for
more on QueryDosDevice).
With the passed-in path at hand, the device name is searched in the vector and its
corresponding driver letter is extracted. Finally, the rest of the path is appended to the
extracted drive letter and returned to the caller.

Reader Writer Locks

Using critical sections to protect shared data from concurrent access works well, but it’s
a pessimistic mechanism - it allows one thread at most to access the shared data. In
some scenarios, where some threads read the data, and other threads write the data, an
optimization can be made: If one thread reads the data, there is no reason to prevent other
threads that only read the data from doing it concurrently. This is exactly the role of the
“Single Writer Multiple Readers” mechanism.

TheWindowsAPI provides the SRWLOCK structure that represents such a lock (S is for “Slim”).
its definition is as follows:

typedef RTL_SRWLOCK SRWLOCK, *PSRWLOCK;

What about that RTL_SRWLOCK? Here goes:

typedef struct _RTL_SRWLOCK {

PVOID Ptr;

} RTL_SRWLOCK, *PRTL_SRWLOCK;

Clearly, this is just an opaque data that should be treated as such.

Initializing an SRWLOCK is accomplished with InitializeSRWLock:

void InitializeSRWLock(_Out_ PSRWLOCK SRWLock);

Alternatively, the structure can be initialized statically by assigning it to SRWLOCK_INIT
macro, which just zeros out the structure. Curiously enough, there is no “delete” for the
SRWLOCK; this is because all of its internal information is packed into that pointer-sized cell.

With an initialized SRWLOCK, threads can attempt to acquire the shared or exclusive lock
using the following functions:
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void AcquireSRWLockShared (_InOut_ PSRWLOCK SRWLock);

void AcquireSRWLockExclusive (_InOut_ PSRWLOCK SRWLock);

If the relevant lock cannot be acquired, the thread enters a wait state. Once acquired, the
thread can make forward progress and access the shared resource as specified, meaning it’s
up to the thread not to do the “wrong” access. For example, if a thread acquires the shared
lock, it must not modify the shared data.

Once the work is done, the thread uses the associated release function:

void ReleaseSRWLockShared (_Inout_ PSRWLOCK SRWLock);

void ReleaseSRWLockExclusive (_Inout_ PSRWLOCK SRWLock);

SRW locks store very little state, so their flexibility is limited:

• A shared lock owner cannot directly upgrade its lock to an exclusive one. It must first
release its shared lock and then contend for the exclusive lock.

• An exclusive owner cannot recursively acquire a lock; this causes a deadlock.
• There is no guarantee that the first thread acquiring a lock is the first to receive it. As
the documentation states: “SRW locks are neither fair nor FIFO”.

Assuming these limitations are acceptable, performance gains are possible if most operations
on the data are read rather than write.

RAII Wrappers

As with critical sections, it’s convenient to have RAII wrappers for SRWLOCKs. Here are three
classes, one for wrapping SRWLOCK and the others for acquiring/releasing:
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class ReaderWriterLock : public SRWLOCK {

public:

ReaderWriterLock();

ReaderWriterLock(const ReaderWriterLock&) = delete;

ReaderWriterLock& operator=(const ReaderWriterLock&) = delete;

void LockShared();

void UnlockShared();

void LockExclusive();

void UnlockExclusive();

};

struct AutoReaderWriterLockExclusive {

AutoReaderWriterLockExclusive(SRWLOCK& lock);

~AutoReaderWriterLockExclusive();

private:

SRWLOCK& _lock;

};

struct AutoReaderWriterLockShared {

AutoReaderWriterLockShared(SRWLOCK& lock);

~AutoReaderWriterLockShared();

private:

SRWLOCK& _lock;

};

The implementation is fairly straightforward:
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ReaderWriterLock::ReaderWriterLock() {

::InitializeSRWLock(this);

}

void ReaderWriterLock::LockShared() {

::AcquireSRWLockShared(this);

}

void ReaderWriterLock::UnlockShared() {

::ReleaseSRWLockShared(this);

}

void ReaderWriterLock::LockExclusive() {

::AcquireSRWLockExclusive(this);

}

void ReaderWriterLock::UnlockExclusive() {

::ReleaseSRWLockExclusive(this);

}

AutoReaderWriterLockExclusive::AutoReaderWriterLockExclusive(SRWLOCK& lock)

: _lock(lock) {

::AcquireSRWLockExclusive(&_lock);

}

AutoReaderWriterLockExclusive::~AutoReaderWriterLockExclusive() {

::ReleaseSRWLockExclusive(&_lock);

}

AutoReaderWriterLockShared::AutoReaderWriterLockShared(SRWLOCK& lock)

: _lock(lock) {

::AcquireSRWLockShared(&_lock);

}

AutoReaderWriterLockShared::~AutoReaderWriterLockShared() {

::ReleaseSRWLockShared(&_lock);

}
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These wrappers are part of the Threadinghelpers project.

MD5 Calculator 2

With the MD5 Calculator, we can replace some of the critical sections for SRW locks to
potentially improve concurrency, as multiple read operations may be happening at the same
time. For example, the hash cache use of a critical section can be replaced with an SRWLOCK:

class HashCache {

public:

HashCache();

bool Add(PCWSTR path, const Hash& hash);

const Hash Get(PCWSTR path) const;

bool Remove(PCWSTR path);

void Clear();

private:

mutable ReaderWriterLock _lock;

std::unordered_map<std::wstring, Hash> _cache;

};

And the implementation:

bool HashCache::Add(PCWSTR path, const Hash& hash) {

AutoReaderWriterLockExclusive locker(_lock);

auto it = _cache.find(path);

if (it == _cache.end()) {

_cache.insert({ path, hash });

return true;

}

return false;

}
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const Hash HashCache::Get(PCWSTR path) const {

AutoReaderWriterLockShared locker(_lock);

auto it = _cache.find(path);

return it == _cache.end() ? Hash() : it->second;

}

bool HashCache::Remove(PCWSTR path) {

AutoReaderWriterLockExclusive locker(_lock);

auto it = _cache.find(path);

if (it != _cache.end()) {

_cache.erase(it);

return true;

}

return false;

}

void HashCache::Clear() {

AutoReaderWriterLockExclusive locker(_lock);

_cache.clear();

}

Similar modifications can be made for the CView class.

The above changes can be found in the MD5Calculator2 project.

Lastly, SRW locks support Try variants for acquiring the locks:

BOOLEAN TryAcquireSRWLockExclusive (_Inout_ PSRWLOCK SRWLock);

BOOLEAN TryAcquireSRWLockShared (_Inout_ PSRWLOCK SRWLock);

These functions return TRUE if the specified lock is acquired, and FALSE otherwise. If it is
acquired, the normal associated Release function must be eventually called.
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Condition Variables

Condition variables are another synchronization mechanism, providing the capability to
wait on a critical section or SRW lock until some condition occurs. A classic example of
using condition variables is a producer/consumer scenario. Suppose some threads produce
data items and place them in a queue. Each thread does whatever work is needed to produce
the items. At the same time, other threads act as consumers - each removing an item from
the queue and processes it in some way (figure 7-11).

Figure 7-11: Producer/consumer

If items are produced faster than consumers can process, then the queue is non-empty, and
consumers continue working. On the other hand, if consumer threads process all items, they
should go into a wait state until new items are produced, in which case they should be
awoken. This is exactly the behavior provided by condition variables. Consumer threads
that have nothing to do (the queue is empty) should not spin, checking periodically if the
queue becomes non-empty, because this consumes CPU cycles for no good reason. Condition
variables allow an efficient wait (that consumes no CPU) until threads are awakened
(typically by producer threads).

A condition variable is represented by a CONDITION_VARIABLE opaque structure, very
similar to SRWLOCK. It must be initialized by calling InitializeConditionVariable:

void InitializeConditionVariable(_Out_ PCONDITION_VARIABLE ConditionVariable);

As with SRWLOCK, a static initialization is possible by setting the CONDITION_VARIABLE to
CONDITION_VARIABLE_INIT.

A condition variable is always associated with a critical section or SRW lock. When a
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thread needs to wait until a condition variable is signaled, it first must acquire the critical
section/SRW lock and then call the associated sleep function:

BOOL SleepConditionVariableCS(

_Inout_ PCONDITION_VARIABLE ConditionVariable,

_Inout_ PCRITICAL_SECTION CriticalSection,

_In_ DWORD dwMilliseconds);

BOOL SleepConditionVariableSRW(

_Inout_ PCONDITION_VARIABLE ConditionVariable,

_Inout_ PSRWLOCK SRWLock,

_In_ DWORD dwMilliseconds,

_In_ ULONG Flags);

The thread calling one of the above Sleep* functions must have first acquired the associated
synchronization object exactly once. The function releases the synchronization object and
waits on the condition variable, atomically. While waiting, the thread may be woken by
calling one of the wake functions on the condition variable:

VOID WakeConditionVariable (_Inout_ PCONDITION_VARIABLE ConditionVariable);

VOID WakeAllConditionVariable (_Inout_ PCONDITION_VARIABLE ConditionVariable);

WakeConditionVariable wakes a single thread (no guarantee on which thread it is if
multiple threads are sleeping on the condition variable), while WakeAllConditionVariable
wakes all threads waiting on the condition variable.

Once woken, the thread re-acquires the synchronization object and continues execution.
At this time, the thread should recheck the condition for which it was waiting, and if not
satisfied, call the Sleep* function again. This can happen as another thread might have
woken up just before this one and did some work that made the condition false again. The
operations of such a thread are illustrated in figure 7-12 (using a critical section).
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Figure 7-12: Consumer thread operation with a condition variable

The steps involved in figure 7-12 are the following:

1. The consumer thread acquires the critical section.
2. The thread checks if it’s OK to proceed. For example, it may check if the queue it’s

supposed to work on is not empty.
3. If it is empty, the thread calls SleepConditionVariableCS, which releases the critical

section (so another thread can acquire it) and goes to sleep (wait state).
4. At some point, a producer thread will wake the consumer thread by calling WakeCon-

ditionVariable because, for example, it added a new item to the queue.
5. SleepConditionVariableCS returns, acquires the critical section and goes back to

check if it’s OK to proceed. If not, it resumes waiting.
6. Now that it’s OK to proceed, the thread can do its work (such as removing an item

from the queue). The critical section is still held.
7. Finally, the work is done and the critical section must be released.

Back to the Sleep* functions: These functions return TRUE if successful, meaning the thread
has woken up with the synchronization primitive acquired. If these return FALSE, it means
a possible error occurred. If the dwMillisecond parameter is not INFINITE, it signifies an
error. If the time interval is finite, a FALSE might indicate the thread was not woken up
during that interval. In this case, GetLastError returns ERROR_TIMEOUT.
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For SRW locks, the Flags parameter indicates if this should be an exclusive acquire or
not. Passing zero means exclusive access, while passing CONDITION_VARIABLE_LOCKMODE_-
SHARED means shared access.

The Queue Demo Application

The Queue Demo application demonstrates the use of a condition variable to wake consumer
threads accessing a shared queue with producer threads. Once launched, it allows selecting
the number of producer and consumer threads (figure 7-13).

Figure 7-13: The Queue Demo application

Click the Run button to start the action. Producer threads produce items (which are numbers)
and push them into a queue. Consumer threads pop items from the queue and check if the
numbers are prime or not. If the queue is empty, a consumer thread sleeps on a condition
variable until woken up by a producer thread. The current queue size is shown at the bottom
and is updated periodically.

If the producer threads produce more items than the consumer threads can handle, the
queue size will increase, as the consumers try to catch up. Clicking Stop stops the producers,
allowing the consumers to catch up and drain the queue. If, on the other hand, the consumers
are “quicker” (perhaps because there are many of them), the queue size will be mostly zero,
as consumers are quick enough to pick up any new item and process it before a new one
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appears in the queue. While working, some statistics are displayed for the consumer threads
(figure 7-14). You’ll have to “play” with the thread counts to get interesting behavior.

Figure 7-14: The Queue Demo application at work

The CMainDlg class defines the following nested types:

struct ConsumerThreadData {

unsigned ItemsProcessed{ 0 };

unsigned Primes{ 0 };

wil::unique_handle hThread;

};

struct WorkItem {

unsigned Data;

bool IsPrime;

};

ConsumerThreadData is the data structure manipulated by a consumer thread. There is one
such object per consumer thread. It stores a handle to the thread, and the count of items
processed and prime numbers found. Each work item stored in the queue is made up of a the
number to determine if it’s prime and a result (which is not used in the application directly).
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Based on these structures and the application’s requirements, the following data members
are stored:

std::queue<WorkItem> m_Queue; // the queue

CriticalSection m_QueueLock; // the critical section protecting the queue

CONDITION_VARIABLE m_QueueCondVar;

std::vector<wil::unique_handle> m_ProducerThreads;

std::vector<ConsumerThreadData> m_ConsumerThreads;

wil::unique_handle m_hAbortEvent;

static CMainDlg* m_pThis; // simplifies access to this

Producer threads just store their handles, but they could potentially store more state,
similar to the consumer threads. The CriticalSection class is the wrapper from the
ThreadingHelpers project to simplify working with it. The m_hAbortEvent is an event kernel
object handle that is used to signal producer and consumer threads to stop running. Event
kernel objects are discussed in detail in the next chapter. As an alternative for this application,
a volatile boolean variable could have been used instead. Finally, The m_pThis static member
is used to refer to the only dialog instance to simplify accessing instance methods for thread
functions.

The CMainDlg::OnInitDialog function performs single initialization of the dialog box in
terms of controls, but also initializes m_pThis and the abort event:

LRESULT CMainDlg::OnInitDialog(UINT, WPARAM, LPARAM, BOOL&) {

m_pThis = this;

m_hAbortEvent.reset(::CreateEvent(nullptr, TRUE, FALSE, nullptr));

//...

Clicking the Run button causes a call to OnRun which just calls Run to do the actual work.
The function starts by getting the number of consumer and producer threads and performs
some sanity checks:
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void CMainDlg::Run() {

int consumers = GetDlgItemInt(IDC_CONSUMERS);

if (consumers < 1 || consumers > 64) {

DisplayError(L"Consumer threads must be between 1 and 64");

return;

}

int producers = GetDlgItemInt(IDC_PRODUCERS);

if (producers < 1 || producers > 64) {

DisplayError(L"Producer threads must be between 1 and 64");

return;

}

There is nothing special about the number 64 in the above code. Larger numbers can easily
be selected if desired.

Next, some initialization should be done for this run:

bool abort = false;

::ResetEvent(m_hAbortEvent.get());

::InitializeConditionVariable(&m_QueueCondVar);

m_ThreadList.DeleteAllItems();

The abort event is reset and the condition variable is initialized. The list view showing the
consumer threads is cleared of any existing items. Now it’s time to create the consumer
threads:

m_ConsumerThreads.clear();

m_ConsumerThreads.reserve(consumers);

for (int i = 0; i < consumers; i++) {

ConsumerThreadData data;

data.hThread.reset(::CreateThread(nullptr, 0, [](auto p) {

return m_pThis->ConsumerThread(PtrToLong(p));

}, LongToPtr(i), 0, nullptr));

if (!data.hThread) {
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abort = true;

break;

}

m_ConsumerThreads.push_back(std::move(data));

}

if (abort) {

::SetEvent(m_hAbortEvent.get());

return;

}

Each consumer thread is created with a normal CreateThread, pointing the thread function
to the instance function ConsumerThreadwith a value indicating the index of the consumer
thread in the consumer thread array.

You might think it would be easier to just pass the thread function a pointer to
the ConsumerThreadData instance (data in the code above). This will lead to a
crash or corruption, because the data is on the stack and then will be copied to
the vector (and so moved to the heap) making the pointer a garbage one. In this
case, I decided to pass in the index as it’s not going to change.

If, for some reason, thread creation fails, the loop is aborted and the event is set to cause all
previously created producer threads to abort.

Next, producer threads are created in a similar fashion:

m_ProducerThreads.clear();

m_ProducerThreads.reserve(producers);

for (int i = 0; i < producers; i++) {

wil::unique_handle hThread(::CreateThread(nullptr, 0, [](auto p) {

return m_pThis->ProducerThread();

}, this, 0, nullptr));

if (!hThread) {

DisplayError(L"Failed to create producer thread. Aborting");

abort = true;

break;

}

}
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if (abort) {

::SetEvent(m_hAbortEvent.get());

return;

}

Producer threads call the ProducerThread instance function. Contrary to consumer threads,
these don’t require any special context, since they just generate pseudo-random numbers.
The last part of the Run function is adding the consumer threads basic information to the list
view and start a simple timer used to periodically update the queue size:

CString text;

for (int i = 0; i < (int)m_ConsumerThreads.size(); i++) {

const auto& t = m_ConsumerThreads[i];

text.Format(L"%2d", i);

int n = m_ThreadList.InsertItem(i, text);

m_ThreadList.SetItemText(n, 1,

std::to_wstring(::GetThreadId(t.hThread.get())).c_str());

}

GetDlgItem(IDC_RUN).EnableWindow(FALSE);

GetDlgItem(IDC_STOP).EnableWindow(TRUE);

SetTimer(1, 500, nullptr);

Here is a producer thread’s code:

DWORD CMainDlg::ProducerThread() {

for (;;) {

if (::WaitForSingleObject(m_hAbortEvent.get(), 0) == WAIT_OBJECT_0)

break;

WorkItem item;

item.IsPrime = false;

LARGE_INTEGER li;

::QueryPerformanceCounter(&li);

item.Data = li.LowPart;

{
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AutoCriticalSection locker(m_QueueLock);

m_Queue.push(item);

}

::WakeConditionVariable(&m_QueueCondVar);

// sleep a little bit from time to time

if ((item.Data & 0x7f) == 0)

::Sleep(1);

}

return 0;

}

The code uses an infinite loop which is only broken out of if the abort event is signaled. Then
a WorkItem instance is prepared, and the number generated uses the low 32 bit of whatever
QueryPerformanceCounter returns. This choice is completely arbitrary in this example.
Next, the thread acquires the critical section to prevent synchronization issues on the work
items queue, since it’s accessed concurrently by producers and consumers (and even the UI
thread may need access). The queue itself is the standard C++ std::queue<> class, but any
other queue implementation will do.

Once a new item is added to the queue, the thread signals the condition variable to wake
up a thread that is waiting on it by calling WakeConditionVariable. The last bit of code
before looping to push the next item is a possible sleep to delay the thread a bit.

The consumer threads’ code is shown below:

DWORD CMainDlg::ConsumerThread(int index) {

auto& data = m_ConsumerThreads[index];

auto tick = ::GetTickCount64();

for (;;) {

WorkItem value;

{

bool abort = false;

AutoCriticalSection locker(m_QueueLock);

while (m_Queue.empty()) {

if (::WaitForSingleObject(m_hAbortEvent.get(), 0) == WAIT_OBJEC\

T_0) {

abort = true;

break;



Chapter 7: Thread Synchronization (Intra-Process) 354

}

::SleepConditionVariableCS(&m_QueueCondVar, &m_QueueLock, INFIN\

ITE);

}

if (abort)

break;

ATLASSERT(!m_Queue.empty());

value = m_Queue.front();

m_Queue.pop();

}

{

// do the actual work

bool isPrime = IsPrime(value.Data);

if (isPrime) {

value.IsPrime = true;

::InterlockedIncrement(&data.Primes);

}

::InterlockedIncrement(&data.ItemsProcessed);

}

auto current = ::GetTickCount64();

if (current - tick > 600) {

PostMessage(WM_UPDATE_THREAD, index);

tick = current;

}

}

PostMessage(WM_UPDATE_THREAD, index);

return 0;

}

The function starts by getting a reference to the data structure for this consumer thread. Then
an infinite loop is constructed. The critical section is acquired for the queue and then an inner
while loop is entered if the queue is empty. If it’s empty, the thread has nothing to do, so it
calls SleepConditionVariableCS to enter a wait state until awakened by another thread
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using condition variable. Before waiting, it releases the critical section. When it wakes up
(because a producer called WakeConditionVariable), it automatically acquires the critical
section again (see figure 7-12), and must recheck the condition (queue empty), because it’s
possible that another consumer thread woke up a bit earlier and popped the last item from
the queue. Also, condition variables may be prone to spurious wake ups, which is another
reason to recheck the condition.

If the queue is not empty, the consumer can go ahead and remove the first item in the queue
(at this time the critical section is still held) by calling m_Queue.front() to get the item and
m_Queue.pop() to drop it from the queue.

The critical section is then released (scope ended with AutoCriticalSection) and then
actual work on the item is performed by calling the helper IsPrime function. The relevant
counters maintained by this thread are incremented if needed. The increments are performed
with InterlockedIncrement because the UI thread accesses these values possibly concur-
rently. Finally, a message is posted to the window to update the statistics of this thread every
600 milliseconds or so.

The WM_UPDATE_THREAD application-defined message receives the consumer thread index
and updates the number of items processed and the number of primes calculated:

LRESULT CMainDlg::OnUpdateThread(UINT, WPARAM index, LPARAM, BOOL&) {

auto& data = m_ConsumerThreads[index];

int n = (int)index;

CString text;

text.Format(L"%u", ::InterlockedAdd((LONG*)&data.ItemsProcessed, 0));

m_ThreadList.SetItemText(n, 2, text);

text.Format(L"%u", ::InterlockedAdd((LONG*)&data.Primes, 0));

m_ThreadList.SetItemText(n, 3, text);

return 0;

}

Accessing the counters may be done concurrently with respect to the consumer thread, so to
prevent possible torn reads, InterlockedAddwith zero is used to mitigate that. Reading the
counters directly would probably be fine too, but it may depend on the values’ alignment in
memory and on the target processor, so it’s better to be safe than sorry.

The other UI update is the periodic queue size update by using a timer:
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LRESULT CMainDlg::OnTimer(UINT, WPARAM id, LPARAM, BOOL&) {

if (id == 1) {

size_t size;

{

AutoCriticalSection locker(m_QueueLock);

size = m_Queue.size();

}

SetDlgItemInt(IDC_QUEUE_SIZE, (unsigned)size, FALSE);

}

return 0;

}

The timer ID used is 1, checked by the if statement. Any access to the queue should be done
under the protection of the critical section, and then the queue size is read before updating
the UI.

Lastly, clicking the Stop button calls the OnStop function which simply calls Stop:

void CMainDlg::Stop() {

// signal threads to abort

::SetEvent(m_hAbortEvent.get());

::WakeAllConditionVariable(&m_QueueCondVar);

// update UI

GetDlgItem(IDC_RUN).EnableWindow(TRUE);

GetDlgItem(IDC_STOP).EnableWindow(FALSE);

}

The function sets the abort event to cause all producers to exit their infinite loop. The
condition variable is used to wake all consumer threads, so they can drain the queue if any
items are left in it.

Write a RAII wrapper for condition variables.

Change the Queue Demo application to use an SRW lock instead of a critical
section.
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Waiting on Address

Windows 8 and Server 2012 adds another synchronization mechanism, that allows a thread
to wait efficiently until the value at some address changes to a desired value. Then it can
wake up and proceed with its work. It’s certainly possible to use other synchronization
mechanisms to achieve a similar effect, such as using a condition variable, but waiting on
address is more efficient and is not prone to deadlocks since no critical sections (or other
software synchronization primitives) are used directly.

A thread can enter a wait state until a certain value appears on a “monitored” data by calling
WaitOnAddress:

BOOL WaitOnAddress(

_In_ volatile VOID* Address,

_In_ PVOID CompareAddress,

_In_ SIZE_T AddressSize,

_In_opt_ DWORD dwMilliseconds);

The functions in this section require linking against the synchronization.lib import
library.

The function checks if the value at *Address is the same as in *CompreAddress. If they are
different, the call returns immediately with a value of TRUE. Otherwise, the thread enters
a wait state. The values size to compare is specified in the AddressSize parameter, and it
must be 1, 2, 4 or 8. The last parameter indicates the time to wait, which can be INFINITE
to wait however long it takes.

Internally, the kernel keeps waited on addresses in a hash table, keyed by the address.

Some other thread may change the value in *Address. Unfortunately, this does not
automatically cause the waiting thread to wake. Instead, the thread that made the change
must call one of the “wake” functions:
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VOID WakeByAddressSingle (_In_ PVOID Address);

VOID WakeByAddressAll (_In_ PVOID Address);

With the former function, Any threads waiting on the specified address are woken, while
the latter wakes just one thread. Spurious wakes are also possible with this mechanism, so
the woken thread should recheck if the value is indeed the expected one. If not, the thread
should go back to waiting by calling WaitOnAddress again (typically done with a loop).

A typical code could look something like this:

DWORD undesiredValue = 0;

DWORD actualValue = 0;

void Thread1() {

// set undesiredValue as appropriate

while(actualValue == undesiredValue) {

::WaitOnAddress(&actualValue, &undesiredValue, sizeof(DWORD), INFINITE);

}

// actualValue != undesiredValue

}

void Thread2() {

//...

actualValue++;

::WakeByAddressSingle(&actualValue);

}

Synchronization Barriers

Another synchronization primitive introduced in Windows 8 is a synchronization barrier.
This object allows synchronizing threads that need to get to a certain point in their work
before they all can continue. For example, suppose there are several parts of a system, each
of which needs to be initialized in two phases, before the main application code can continue.
One simple way to accomplish that is to call each initialization function sequentially:
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void RunApp() {

// phase 1

InitSubsystem1();

InitSubsystem2();

InitSubsystem3();

InitSubsystem4();

// phase 2

InitSubsystem1Phase2();

InitSubsystem2Phase2();

InitSubsystem3Phase2();

InitSubsystem4Phase2();

// go ahead and run main application code...

}

This works, but if each of the initializations can be done concurrently, so that each
initialization is carried out by a different thread. Each thread must not continue to phase
2 initialization until all other threads are done with phase 1. It is, of course, possible to
implement such a scheme by using a combination of other synchronization primitives, but
a synchronization barrier already exists for this kind of purpose.

A synchronization barrier is represented by the SYNCHRONIZATION_BARRIER opaque struc-
ture that must be initialized with InitializeSynchronizationBarrier:

BOOL InitializeSynchronizationBarrier(

_Out_ LPSYNCHRONIZATION_BARRIER lpBarrier,

_In_ LONG lTotalThreads,

_In_ LONG lSpinCount);

lTotalThreads is the total number of threads that need to reach the barrier before they all
can continue. The lSpinCount parameter allows setting a spin count for the threads arriving
at the barrier before entering a wait state (if the barrier is not yet released). A value of -1
sets a default spin.
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The documentation states that the default spin is 2000. However, as far as I can tell the spin
count is not currently used.

Once initialized, threads that need to wait at the barrier call EnterSynchronizationBar-
rier:

BOOL EnterSynchronizationBarrier(

_Inout_ LPSYNCHRONIZATION_BARRIER lpBarrier,

_In_ DWORD dwFlags);

Specifying the SYNCHRONIZATION_BARRIER_FLAGS_SPIN_ONLY flag causes the thread to
spin until the barrier is released. This should only be used if the anticipated time for bar-
rier release is small. The opposite flag, SYNCHRONIZATION_BARRIER_FLAGS_BLOCK_ONLY,
specifies that no spinning should be done if the barrier is not released yet and then thread
should enter a wait state. The last flag, SYNCHRONIZATION_BARRIER_FLAGS_NO_DELETE is a
possible optimization that tells the API to skip some synchronization required when deleting
the barrier. If specified, all threads entering the barrier must specify this flag.

The function returns TRUE for a single thread only once the barrier is released, and FALSE
for all other threads. In the previously described scenario, here is one of the initialization
functions running in a separate thread:

DWORD WINAPI InitSubSystem1(PVOID p) {

auto barrier = (PSYNCHRONIZATION_BARRIER)p;

// phase 1

printf("Subsystem 1: Starting phase 1 initialization (TID: %u)...\n",

::GetCurrentThreadId());

// do work...

printf("Subsystem 1: Ended phase 1 initialization...\n");

::EnterSynchronizationBarrier(barrier, 0);

printf("Subsystem 1: Starting phase 2 initialization...\n");

// do work

printf("Subsystem 1: Ended phase 2 initialization...\n");
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return 0;

}

After phase 1 initialization is complete, EnterSynchronizationBarrier is called to wait
until all other threads complete their phase 1 initialization. The main function can be written
like so:

SYNCHRONIZATION_BARRIER sb;

InitializeSynchronizationBarrier(&sb, 4, -1);

LPTHREAD_START_ROUTINE functions[] = {

InitSubSystem1, InitSubSystem2, InitSubSystem3, InitSubSystem4

};

printf("System initialization started\n");

HANDLE hThread[4];

int i = 0;

for (auto f : functions) {

hThread[i++] = ::CreateThread(nullptr, 0, f, &sb, 0, nullptr);

}

::WaitForMultipleObjects(_countof(hThread), hThread, TRUE, INFINITE);

printf("System initialization complete\n");

// close thread handles...

Running this piece of code produces output like the following:

System initialization started

Subsystem 1: Starting phase 1 initialization (TID: 79480)...

Subsystem 2: Starting phase 1 initialization (TID: 104836)...

Subsystem 3: Starting phase 1 initialization (TID: 32556)...

Subsystem 4: Starting phase 1 initialization (TID: 86268)...

Subsystem 2: Ended phase 1 initialization...

Subsystem 3: Ended phase 1 initialization...

Subsystem 1: Ended phase 1 initialization...

Subsystem 4: Ended phase 1 initialization...

Subsystem 4: Starting phase 2 initialization...

Subsystem 3: Starting phase 2 initialization...

Subsystem 1: Starting phase 2 initialization...
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Subsystem 2: Starting phase 2 initialization...

Subsystem 3: Ended phase 2 initialization...

Subsystem 1: Ended phase 2 initialization...

Subsystem 4: Ended phase 2 initialization...

Subsystem 2: Ended phase 2 initialization...

System initialization complete

Finally, a synchronization barrier should be deletedwith DeleteSynchronizationBarrier:

BOOL DeleteSynchronizationBarrier(_Inout_ LPSYNCHRONIZATION_BARRIER lpBarrier);

It’s OK to call DeleteSynchronizationBarrier immediately after calling EnterSynchro-
nizationBarrier because the function waits until all threads reached the barrier before be-
ing deleted, unless all threads use the flag SYNCHRONIZATION_BARRIER_FLAGS_NO_DELETE
so that the delete function does not make that guarantee. This could be useful if the barrier
is never deleted.

What About the C++ Standard Library?

Similar to the same-named section from chapter 5, the C++ standard library provides
synchronization primitives that can be used as alternatives to the Windows API, especially
for cross-platform code. As usual, customization on these objects is very limited (if any).
Examples include:

• std::mutex that acts like a critical section without the support for recursive acquisi-
tion.

• std::recusrsive_mutex that acts just like a critical section (supports recursive
acquisition).

• std::shared_mutex that is similar to an SRW lock.
• std::condition_variable is a conditional variable equivalent.
• Others

Clearly, some things may be missing from C++, such as waiting on address and synchro-
nization barriers. However, these could be added to a future standard. In any case, all the
C++ standard library types work within the same process only. There is no way to use these
across processes.
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Exercises

1. Create a thread-safe implementation of a stack data structure. If a pop operation cannot
succeed, block the thread until data is available (use a condition variable).

Summary

In this chapter, we looked at various synchronization mechanisms available through the
Windows API. Common to all these is the ability to synchronize in some sense between
threads in the same process. In the next chapter, we’ll extend the synchronization primitives
available by leveraging kernel objects that can also synchronize between threads in different
processes.



Chapter 8: Thread Synchronization
(Inter-Process)
The previous chapter described various synchronization mechanisms with one common
factor: they can be used to synchronize between threads running in the same process. This
chapter complements these mechanisms with others that are based on kernel objects, which
by their very nature are part of system space, and so can naturally be shared between
processes, and thus used by threads running in (potentially) different processes. This does
not mean these mechanisms are useless in a same process scenario - far from it. But they do
have that special capability which the mechanisms described in chapter 7 don’t.

In this chapter:

• Dispatcher Objects
• The Mutex
• The Semaphore
• The Event
• The Waitable Timer
• Other Wait Functions

Dispatcher Objects

Chapter 2 deals extensively with kernel objects and handles. The following lists the most
important points related to kernel objects. For more details, refer to chapter 2.

• Kernel objects reside in system (kernel) space and are theoretically accessible from any
process, provided that process can obtain a handle to the requested object.
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• Handles are process relative.
• There are three ways to share objects across processes: handle inheritance, name, and
handle duplication.

Some kernel objects are more specialized, called dispatcher objects or waitable objects. Such
objects can be in one of two states: signaled or non-signaled. The meaning of signaled and
non-signaled depends on the type of object. Table 8-1 summarizes themeaning of these states
for common dispatcher objects.

Table 8-1: Common dispatcher objects and their signaled/non-signaled meaning

Object type Signaled Non-Signaled
Process Exited/Terminated Running
Thread Exited/Terminated Running
Job End of job time reached Limit not reached or not set
Mutex Free (unowned) Owned
Semaphore Count is above zero Count is zero
Event Event is set Event is not set
File I/O operations completed I/O operation in progress or not

started
Waitable Timer Timer count has expired Timer count has not expired
I/O Completion Asynchronous I/O operation

completed
I/O operation has not completed

Files and I/O completion ports are discussed in chapter 11. Waitable timer, mutex,
Semaphore and Event objects are discussed later in this chapter.

Waiting for an object to become signaled is usually accomplished by one of the following
two functions (except for I/O completion port which has its own waiting function, discussed
in chapter 11):
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DWORD WaitForSingleObject(

_In_ HANDLE hHandle,

_In_ DWORD dwMilliseconds);

DWORD WaitForMultipleObjects(

_In_ DWORD nCount,

_In_ CONST HANDLE* lpHandles,

_In_ BOOL bWaitAll,

_In_ DWORD dwMilliseconds);

WaitForSingleObject accepts a handle to a dispatcher object, where the handle must have
the SYNCHRONIZE access right. The timeout parameter indicates how long to wait at most for
the object to become signaled. The value can be zero, which means no waiting should occur
either way. Conversely, the value can be set to INFINITE, which means the thread is willing
to wait for however long it takes until the object becomes signaled. There are possible four
return values from WaitForSingleObject:

• WAIT_OBJECT_0 - the wait is over because the object became signaled before the
timeout expired.

• WAIT_TIMEOUT - the object did not become signaled in the time the thread was waiting.
This value will never be returned if the timeout is INFINITE.

• WAIT_FAILED - the function failed for some reason. Call the usual GetLastError to
see why.

• WAIT_ABANDONED - thewait is on amutex object and themutex has become abandoned.
The meaning of an abandoned mutex will be discussed in the “Mutex” section later in
this chapter.

The extended WaitForMultipleObjects function allows waiting on one or more handles.
The function expects an array of handles as the second parameter, with the first parameter
indicating the count of handles. This number of handles is limited to MAXIMUM_WAIT_OB-
JECTS (64). The third argument specifies whether the thread should wait until all objects
become signaled at once (TRUE) or that just one (any) becomes signaled (FALSE).

The function’s return values include WAIT_TIMEOUT and WAIT_FAILED, just like WaitForS-
ingleObject, which mean the same thing. If bWaitAll is TRUE (wait for all objects), the
return value is between WAIT_OBJECT_0 and WAIT_OBJECT_0+count-1, where count is
the number of handles. If the return value is between WAIT_ABANDONED_0 and WAIT_ABAN-
DONED_0+count-1, it means all object are signaled and at least one mutex is abandoned.
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If bWaitAll is FALSE, the return value (if not timeout or error) indicates which object (index
in the array) was in the signaled state, offset by WAIT_OBJECT_0 or WAIT_ABANDONED_0. For
example, returning WAIT_OBJECT_0 + 3means the fourth object was signaled and the wait
was over because of that. If more than one object is signaled, the smallest index is the one
returned.

Succeeding a Wait

If a wait function succeeds because the object or objects became signaled, the thread is
awakened and can resume execution. Does the object just signaled remains in the signaled
state? It depends on the type of the object. Some objects remain in their signaled state, such
as processes and threads. Once a process exits or terminates, it becomes signaled and remains
so for the rest of its life (while there are open handles to that process).

Some types of objects may change their signaled state after a successful wait. For example,
a successful wait on a mutex turns it back to the non-signaled state (the reason will be
evident in the next section wheremutexes are discussed). Another object that exhibits special
behavior when signaled is an auto-reset event. When signaled, it releases one thread (and
one only), and when that happens its state flips to non-signaled automatically.

What happens if multiple threads wait for the same mutex, and it becomes signaled? Only
one of the threads can acquire the mutex before it flips back to the non-signaled state. Behind
the scenes waiting threads for an object are stored in a first-in-first-out (FIFO) queue, so
the first thread in the queue is the one woken up (regardless of its priority). However, this
behavior should not be relied upon. Some internal mechanisms may remove a thread from
waiting (for example if it’s suspended, such as with a debugger), and then when the thread
resumes, it will be pushed to the back of the queue. So the simple rule here is that there is
no way to know for sure which thread will wake up first. And in any case, this algorithm
can change at any time in a future version of Windows.

The Mutex

The first kernel object type we’ll examine is the mutex. The mutex (short for “mutual
exclusion”) provides similar functionality to the critical section discussed in chapter 7. Its
purpose is the same: protect shared data from concurrent access. Only one thread at a time
can acquire the mutex successfully, and proceed to access the shared data. All other threads
waiting for the mutex must continue to wait until the mutex is released by the acquiring
thread.

Creating a mutex object requires calling the CreateMutex or CreateMutexEx functions:
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HANDLE CreateMutex(

_In_opt_ LPSECURITY_ATTRIBUTES lpMutexAttributes,

_In_ BOOL bInitialOwner,

_In_opt_ LPCTSTR lpName);

HANDLE CreateMutexEx(

_In_opt_ LPSECURITY_ATTRIBUTES lpMutexAttributes,

_In_opt_ LPCTSTR lpName,

_In_ DWORD dwFlags,

_In_ DWORD dwDesiredAccess);

The first parameter to both functions is the usual SECURITY_ATTRIBUTES pointer, typically
set to NULL. If bInitialOwner is set to TRUE, CreateMutexwill attempt to acquire themutex
by calling WaitForSingleObject until it can be acquired, before returning. The same can be
achievedwith CreateMutexEx by specifying the flag CREATE_MUTEX_INITIAL_OWNER in the
dwFlags parameter. If a new object is created, then this acquisition succeeds immediately.

The lpName parameter allows setting a name for the mutex. If the mutex object with the
same name exists (and no security restrictions apply), the functions open a handle to the
existing mutex. If the name exists, but the object is not a mutex, the functions fail.
Finally, the extended function allows specifying the desired access mask for the mutex. This
is mostly useful when opening an existing mutex, possibly requesting a weaker access mask
than MUTEX_ALL_ACCESS, which is what is requested by default with CreateMutex.

An existing mutex can be opened by name with OpenMutex:

HANDLE OpenMutexW(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ LPCWSTR lpName);

If the namedmutex doesn’t exist, the function fails and returns NULL. If two (or more) threads
want to synchronize using the same-named mutex, it’s simpler (and avoids a race condition)
to call CreateMutex or CreateMutexEx: the first thread (whoever that may be) creates the
object, and subsequent callers get new handles to the existing object.

As usual with kernel objects, any open handles should be eventually closed with CloseHan-
dle.

Calling WaitForSingleObject on a mutex causes the thread to wait until it becomes
signaled, which means free, or unowned by any other thread. Once acquired, the mutex
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transitions to the non-signaled state atomically, preventing any other thread from acquiring
it. Once the mutex’ owner is done working with the shared data, it calls ReleaseMutex to
release it from its ownership, making it signaled again:

BOOL ReleaseMutex(_In_ HANDLE hMutex);

The Simple Increment application from chapter 7 can be configured to use a mutex as a
synchronization primitive (figure 8-1). Notice it takes considerably longer to perform the
count correctly. This is because synchronizing using a mutex (like all kernel objects) requires
a user mode to kernel mode transition, which is not free. The example is contrived, of course,
so the difference seems huge compared to a critical section. In practice, it’s not that bad.

Figure 8-1: Simple increment with a mutex

The code that uses the mutex for this looped increment is the following:

void CMainDlg::DoMutexCount() {

auto handles = std::make_unique<HANDLE[]>(m_Threads);

m_hMutex = ::CreateMutex(nullptr, FALSE, nullptr);

for (int i = 0; i < m_Threads; i++) {

handles[i] = ::CreateThread(nullptr, 0, [](auto param) {

return ((CMainDlg*)param)->IncMutexThread();

}, this, 0, nullptr);

}

::WaitForMultipleObjects(m_Threads, handles.get(), TRUE, INFINITE);
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for (int i = 0; i < m_Threads; i++)

::CloseHandle(handles[i]);

::CloseHandle(m_hMutex);

}

DWORD CMainDlg::IncMutexThread() {

for (int i = 0; i < m_Loops; i++) {

::WaitForSingleObject(m_hMutex, INFINITE);

m_Count++;

::ReleaseMutex(m_hMutex);

}

return 0;

}

Mutexes can be acquired recursively (by the same thread), causing an internal counter to be
incremented. This means the same number of calls to ReleaseMutex is needed to actually
free the mutex. Calling ReleaseMutex by a thread that does not own the mutex, fails.

The Mutex Demo Application

TheMutexDemo application shows how threads, running in different processes can synchro-
nize access to a shared file, so that only one thread can access the file at the same time. Since
multiple processes are involved, a critical section cannot be used.

To test things out, open two command windows and navigate to the directory where
MutexDemo.exe resides. Alternatively, you can run from Visual Studio, but you would have
to set a command-line argument in the project’s properties (figure 8-2). The argument should
be some non-existent file path.
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Figure 8-2: Setting a command line argument

Run the application from both command windows, pointing to the same file. You should see
output like the following in each command window:

Process 25092. Mutex handle: 0x9C

Press any key to begin...

The process IDs will be different, and the most likely the handle values as well. These are
handles to the same mutex object. To verify that, open Process Explorer and locate the two
process instances. In each one locate the mutex (its name is “ExampleMutex”). Notice the
handle values correspond to the values printed (figure 8-3).



Chapter 8: Thread Synchronization (Inter-Process) 372

Figure 8-3: One of the mutex handles in Process Explorer

Now double-click the handle and verify the handle count for the mutex is 2 (figure 8-4). Also,
note it’s non-signaled (Held: FALSE).
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Figure 8-4: Mutex properties in Process Explorer

Now quickly hit any key in both console windows. Threads from these processes will now
use the mutex to synchronize access to the file. Each thread appends a line to the file with a
string holding the process ID.

Once the processes complete execution, you can open the file in a text editor. You should see
something like the following:
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This is text from process 25092

This is text from process 25092

This is text from process 25092

This is text from process 25092

This is text from process 25092

This is text from process 36460

This is text from process 25092

This is text from process 36460

This is text from process 25092

This is text from process 36460

This is text from process 36460

This is text from process 25092

This is text from process 36460

This is text from process 25092

This is text from process 36460

...

The total number of lines should be 200. Each process should have written exactly 100 lines
with its own process ID.

The main function creates/opens the named mutex, prints the process ID and mutex handle,
and then waits for a user to press a key:

int wmain(int argc, const wchar_t* argv[]) {

if (argc < 2) {

printf("Usage: MutexDemo <file>\n");

return 0;

}

HANDLE hMutex = ::CreateMutex(nullptr, FALSE, L"ExampleMutex");

if (!hMutex)

return Error("Failed to create/open mutex");

printf("Process %d. Mutex handle: 0x%X\n", ::GetCurrentProcessId(), HandleT\

oULong(hMutex));

printf("Press any key to begin...\n");

_getch();

The Error function provides a simple error display we encountered several times before:
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int Error(const char* text) {

printf("%s (%d)\n", text, ::GetLastError());

return 1;

}

Once a key is pressed, a loop is executed 100 times, acquires the mutex, accesses the file and,
releases the mutex, all within the same iteration:

printf("Working...\n");

for (int i = 0; i < 100; i++) {

// insert some randomness

::Sleep(::GetTickCount() & 0xff);

// acquire the mutex

::WaitForSingleObject(hMutex, INFINITE);

// write to the file

if (!WriteToFile(argv[1]))

return Error("Failed to write to file");

::ReleaseMutex(hMutex);

}

::CloseHandle(hMutex);

printf("Done.\n");

return 0;

}

The WriteToFile function opens the file, sets the file pointer to the end of the file, writes
the text to the file and closes the file:
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bool WriteToFile(PCWSTR path) {

HANDLE hFile = ::CreateFile(path, GENERIC_WRITE, FILE_SHARE_READ,

nullptr, OPEN_ALWAYS, 0, nullptr);

if (hFile == INVALID_HANDLE_VALUE)

return false;

::SetFilePointer(hFile, 0, nullptr, FILE_END);

char text[128];

sprintf_s(text, "This is text from process %d\n", ::GetCurrentProcessId());

DWORD bytes;

BOOL ok = ::WriteFile(hFile, text, (DWORD)strlen(text), &bytes, nullptr);

::CloseHandle(hFile);

return ok;

}

The files API is discussed in detail in chapter 11.

You can run concurrently as many QueueDemo processes as you like - the shared file will
not be corrupted. The fact that this demo uses the same executable is irrelevant - this works
the same way if used from different executables. The important part is the shared mutex.

Change the mutex name to NULL and repeat the experiment. Do you understand
the result?

Abandoned Mutex

What happens if a thread that owns a mutex exits or terminates (for whatever reason)? Since
the owner of the mutex is the only one that can release the mutex, this may cause a deadlock,
where other threads waiting for the mutex will never acquire it. This kind of mutex is called
abandoned mutex, literally abandoned by its owner thread.

Fortunately, the kernel is aware of mutex ownership, and so releases an abandoned mutex
explicitly if it sees that a thread terminated while holding a mutex (or more than one if
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that’s the case). This causes the next thread which successfully acquires the mutex to get
back WAIT_ABANDONED rather than WAIT_OBJECT_0 from its WaitForSingleObject call.
This means the thread acquires the mutex normally, but the special return value is used as
a hint to indicate the previous owner did not release the mutex before terminating. This
usually indicates a bug that should be investigated further.

Write RAII wrappers for a mutex.

The Semaphore

The semaphore is the first synchronization kernel object that we examine that has no direct
counterpart within the intra-process primitives examined in chapter 7. The purpose of a
semaphore is to limit something, in a thread-safe way, of course.

A semaphore is initialized with a current and a maximum count. As long as its current count
is above zero, it’s in the signaled state. Whenever a thread calls WaitForSingleObject on a
semaphore and it’s in the signaled state, the semaphore’s count is decremented and the thread
is allowed to proceed. Once the semaphore count reaches zero, it becomes non-signaled, and
any threads attempting to wait on it will block.

Conversely, a thread that wants to “release” one of the semaphore counts (or more), calls
ReleaseSemaphore, causing the semaphore’s count to increase and set it to the signaled
state again.

Let’s rewind a bit and look at how creating a semaphore with one of the following functions:

HANDLE CreateSemaphore(

_In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,

_In_ LONG lInitialCount,

_In_ LONG lMaximumCount,

_In_opt_ LPCTSTR lpName);

HANDLE CreateSemaphoreEx(

_In_opt_ LPSECURITY_ATTRIBUTES lpSemaphoreAttributes,

_In_ LONG lInitialCount,

_In_ LONG lMaximumCount,
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_In_opt_ LPCTSTR lpName,

_Reserved_ DWORD dwFlags,

_In_ DWORD dwDesiredAccess);

A semaphore can have a name, just like a mutex. This allows easy sharing between threads
running in different processes. The unique parameters in the above creation functions are
the initial count and maximum count of the semaphore. These are typically set to the
same value, indicating whatever is limited by the semaphore (such as a queue) has now
zero elements. The extended function allows specifying the desired access mask (which
is SEMAPHORE_ALL_ACCESS by default when calling CreateSemaphore). The dwFlags
parameter is currently unused and must be set to zero.

Acquiring a count of a semaphore is done with the usual waiting functions. Releasing
semaphore count(s) is accomplished with ReleaseSemaphore:

BOOL ReleaseSemaphore(

_In_ HANDLE hSemaphore,

_In_ LONG lReleaseCount,

_Out_opt_ LPLONG lpPreviousCount);

The function allows specifying the count to release (i.e. how many to add to the current
semaphore’s count). This value is typically 1 but can be higher. The last argument allows
retrieving the new semaphore count. It’s also possible to specify zero for the release count
and just get back the current semaphore’s count. Of course, any such retrieval is a potential
race condition, because between the retrieval and acting on the result, the semaphore’s count
might have changed by another thread.

Is a semaphore with a maximum count of one equivalent to a mutex? Think about
that for a moment. The answer is a definite no. The reason is that a semaphore
does not have any concept of ownership. Any thread can acquire one of its counts,
and any thread can call ReleaseSemaphore. The semaphore’s purpose is very
different from a mutex’. This “free style” behavior can cause deadlocks if not
careful, but in most cases, it’s a good thing, as we’ll see in the next code example.

As with other named objects, a handle to an existing semaphore can be obtained by name
with OpenSemaphore:
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HANDLE OpenSemaphore(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ LPCTSTR lpName);

The Queue Demo Application

The Queue Demo application shown in figure 8-5 is based on the application of the
same name from chapter 7. This time, a semaphore is added so that the queue of work
items is limited by a specified amount. In the chapter 7 version, the queue could have
grown indefinitely if producer threads generated data much faster than consumer threads
could process. This is problematic because the memory consumption of the queue may be
prohibitive and even cause out of memory situations in extreme cases (especially with 32-bit
processes).

Figure 8-5: Enhanced Queue Demo application

This is where the semaphore comes in. In the original application, a producer thread that
has new data would just push it into the queue and wake a consumer thread if needed with
the condition variable. This time, a producer thread first calls WaitForSingleObject on the
semaphore. If the semaphore’s count is above zero, i.e. signaled, meaning the queue is not
full and it goes ahead with pushing an item. On the consumer side, a consumer thread pops
an item off the queue and then calls ReleaseSemaphore to indicate the queue now has one
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less item.

First, the semaphore is created in CMainDlg::Run based on the specified value in the dialog:

//...

int queueSize = GetDlgItemInt(IDC_MAX_QUEUE_SIZE);

if (queueSize < 10 || queueSize > 100000) {

DisplayError(L"Maximum queue size must be between 10 and 100000");

return;

}

// create semaphore

m_hQueueSem.reset(::CreateSemaphore(nullptr, queueSize, queueSize, nullptr));

m_hQueueSem is a new datamember holding a smart handle to the semaphore (wil::unique_-
handle), ensuring CloseHandle is called when the semaphore goes out of scope or reset
again.

Here is the modified producer code:

DWORD CMainDlg::ProducerThread() {

for (;;) {

if (::WaitForSingleObject(m_hAbortEvent.get(), 0) == WAIT_OBJECT_0)

break;

// wait if needed to make sure queue is not full

::WaitForSingleObject(m_hQueueSem.get(), INFINITE);

WorkItem item;

item.IsPrime = false;

LARGE_INTEGER li;

::QueryPerformanceCounter(&li);

item.Data = li.LowPart;

{

AutoCriticalSection locker(m_QueueLock);

m_Queue.push(item);

}

::WakeConditionVariable(&m_QueueCondVar);
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// sleep a little bit from time to time

if ((item.Data & 0x7f) == 0)

::Sleep(1);

}

return 0;

}

The only addition is the call to WaitForSingleObject on the semaphore. The consumer
threads code changes as well by releasing a single semaphore of the semaphore once an item
has been removed from the queue:

DWORD CMainDlg::ConsumerThread(int index) {

auto& data = m_ConsumerThreads[index];

auto tick = ::GetTickCount64();

for (;;) {

WorkItem value;

{

bool abort = false;

AutoCriticalSection locker(m_QueueLock);

while (m_Queue.empty()) {

if (::WaitForSingleObject(m_hAbortEvent.get(), 0) == WAIT_OBJEC\

T_0) {

abort = true;

break;

}

::SleepConditionVariableCS(&m_QueueCondVar, &m_QueueLock, INFIN\

ITE);

}

if (abort)

break;

ATLASSERT(!m_Queue.empty());

value = m_Queue.front();

m_Queue.pop();

::ReleaseSemaphore(m_hQueueSem.get(), 1, nullptr);

}
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// rest of code omitted...

return 0;

}

You can look at a semaphore basic properties using Process Explorer’s handle view. Figure 8-6
shows the semaphore from the Queue Demo application while it’s running (Process Explorer
does not update the object’s state automatically, though).

Figure 8-6: Semaphore’s properties in Process Explorer

The flexibility of the semaphore is evident: producer threads wait to get one count from the
semaphore, and consumer threads release count(s) - not the same threads.
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Write RAII wrappers for a semaphore.

The Event

The event is in one sense the simplest of the synchronization primitives - it’s just a flag that
can be set (signaled state) or reset (non-signaled). Being a (possibly named) kernel object
gives it the flexibility to work within a single process or across processes. We’ve already
used an event in the Queue Demo application. Now we’ll discuss it in detail.

A complexity associated with events is the fact there are two types of events: manual-reset
and auto-reset. Table 8-2 summarizes their properties, which will be elaborated on next.

Table 8-2: Event type differences

Event type Kernel name Effect of SetEvent
Manual reset Notification puts the event in the signaled state, and releases all threads

waiting on it (if any). The event remains in the signaled state
Auto reset Synchronization a single thread is released from wait, and then the event goes

back automatically to the non-signaled state

The kernel type name in table 8-2 is useful with tools such as Process Explorer which
provide an event’s type name using kernel terminology.

Creating an event object is no different from other object types, accomplished with one of
the following functions:
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HANDLE CreateEvent(

_In_opt_ LPSECURITY_ATTRIBUTES lpEventAttributes,

_In_ BOOL bManualReset,

_In_ BOOL bInitialState,

_In_opt_ LPCTSTR lpName);

HANDLE CreateEventEx(

_In_opt_ LPSECURITY_ATTRIBUTES lpEventAttributes,

_In_opt_ LPCTSTR lpName,

_In_ DWORD dwFlags,

_In_ DWORD dwDesiredAccess);

The functions specify the type of event required to create. Once the decision is made, it
cannot be changed. CreateEvent uses the bManualReset parameter to indicate a manual-
reset event (TRUE) or an auto-reset event (FALSE). With CreateEventEx, the type of event
is specified with the dwFlags parameter, where setting it to CREATE_EVENT_MANUAL_RESET
signifies a manual-reset event.

The second decision to be made is the initial state of the event (signaled or non-signaled).
CreateEvent allows specifying the initial state in the bInitialState parameter. With
CreateEventEx, another flag is used to indicate an initial state of signaled - CREATE_-
EVENT_INITIAL_SET.

As with the extended create functions for mutex and semaphore, CreateEventEx allows
specifying the access mask for the new event handle (EVENT_ALL_ACCESS by default with
CreateEvent). Similarly to the former objects, if a name is specified and an event with
that name already exists, (and barring security constraints), another handle to the event is
opened, and the event type and initial state are ignored.

Remember, the way to differentiate a new from an existing object is by calling
GetLastError and checking for ERROR_ALREADY_EXISTS.

Similarly to the other objects, an event can be opened by name with OpenEvent:
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HANDLE OpenEvent(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ LPCTSTR lpName);

Working with Events

An event’s state can be explicitly changed with the SetEvent and ResetEvent functions:

BOOL SetEvent(_In_ HANDLE hEvent); // signaled

BOOL ResetEvent(_In_ HANDLE hEvent); // non-signaled

Let’s look at an example scenario. Suppose there are several processes running that are part
of the same system. Suppose further that one of the processes, let’s call it the controller, needs
to signal all other processes part of this application to shutdown gracefully. How can that be
accomplished?

Events provide the perfect candidate. Processes are isolated and so no direct communication
is possible. In most cases, that isolation is a good thing. In some cases, some information
must be sent between processes. In this case the information to send is simple: a single bit
would suffice to indicate a shutdown operation is required.

This flow synchronization can be accomplished with a manual-reset event. All processes
create a named event with a predefined name such as “ShudownEvent”:

// notice a manual-reset event

HANDLE hShutdown = ::CreateEvent(nullptr, TRUE, FALSE, L"ShutdownEvent");

Since the object is named, only the first process actually creates it and the rest get
handles to the existing object. Calling CreateEvent is convenient and does not require any
synchronization for “who creates the event first” - it simply doesn’t matter.

Next, each process except the controller need to wait on the event somewhere. When the
event becomes signaled, each process initiates its own shutdown procedure:

::WaitForSingleObject(hShutdown, INFINITE);

// object is signaled, initiate shutdown...

The controller process just needs to set the event when shutdown is required:
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::SetEvent(hShutdown);

// initiate own shutdown...

A manual reset event is required here because setting the event should wake all threads
waiting on it, which is what is required in this scenario.

A question that may come up is where exactly the participating processes wait for the event?
The simplest solution is to create a thread whose sole purpose is to do the waiting. This is
not ideal, as threads should not be created to just wait. There is a better alternative which is
using the thread pool, which we’ll examine in the next chapter.

An auto-reset event’s behavior is different. Calling SetEvent changes it to the signaled state.
If no threads are waiting on it, it remains in the signaled state, until at least one thread waits
on it. Then, a single thread is released and the event goes back to the non-signaled state
automatically. To wake another waiting thread, another call to SetEvent is required.

The Queue Demo application shows a common example of using an event to indicate to pro-
ducer and consumer threads it’s time to abort. The event is first created in CMainDlg::OnInitDialog
as a manual-reset event, since multiple threads need to be notified with a single call that it’s
time to exit:

m_hAbortEvent.reset(::CreateEvent(nullptr, TRUE, FALSE, nullptr));

The producer code checks if the event is signaled without waiting:

DWORD CMainDlg::ProducerThread() {

for (;;) {

if (::WaitForSingleObject(m_hAbortEvent.get(), 0) == WAIT_OBJECT_0)

break;

//...

If the event is signaled it aborts immediately by breaking out of the infinite loop. This call is
made at every iteration so the producer can exit as soon as possible. Consumer threads work
in a similar manner.

You may be wondering why not just use a Boolean variable, check if it’s true and exit if
it becomes true. The main issue is that the compiler (and possibly the CPU as well) will
optimize away the variable as having a value that does not change, since the compiler has
no idea it may change from a different thread. A possible solution is to mark the variable
volatile to prevent any optimizations and force the CPU to access the actual value. Even



Chapter 8: Thread Synchronization (Inter-Process) 387

that is not bulletproof. Generally, these options are best avoided as this situation is a data
race - multiple threads accessing the same memory where at least one is writing. In any
case, there is no way to simulate the behavior of an auto-reset event with simple variables,
let alone coordinate between threads in different processes.

The final function for working with events is PulseEvent:

BOOL PulseEvent(_In_ HANDLE hEvent);

The purpose of PulseEvent is to set the event momentarily and if no thread is currently
waiting, reset the event. The documentation states: “This function is unreliable and should
not be used. It exists mainly for backward compatibility.”, and goes on to give an example of
why using this function is not a good idea.

Avoid using PulseEvent.

The Waitable Timer

The Windows API provides access to several timers with different semantics and program-
ming models. Here are the main ones:

• For windowing scenarios, the SetTimer API provides a timer that works by posting
WM_TIMER messages to the calling thread’s message queue. This timer is suitable for
GUI applications, since the timer message can be handled on the UI thread.

• The Windows multimedia API provides a multimedia timer created with time-
SetEvent that calls a callback function on a separate thread at priority 15. The timer
can be one shot or periodic and can be very precise (its resolution can be set by the
function). A value of zero for the resolution requests the highest resolution the system
can provide. Here is a simple example using a multimedia timer:
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#include <mmsystem.h>

#pragma comment(lib, "winmm")

void main() {

auto id = ::timeSetEvent(

1000, // interval (msec)

10, // resolution (msec)

OnTimer, // callback

0, // user data

TIME_PERIODIC); // periodic or one shot

::Sleep(10000);

::timeKillEvent(id);

}

void CALLBACK OnTimer(UINT id, UINT, DWORD_PTR userData, DWORD_PTR, DWORD_PTR) {

printf("Timer struck at %u\n", ::GetTickCount());

}

The timer we’ll focus on in this section, is a waitable timer, which is a kernel object and so
deserves to be in this chapter. A waitable timer becomes signaled when its due time arrives.

Creating a waitbale timer is accomplished by one of two functions, somewhat similar to
previously encountered functions:

HANDLE CreateWaitableTimer(

_In_opt_ LPSECURITY_ATTRIBUTES lpTimerAttributes,

_In_ BOOL bManualReset,

_In_opt_ LPCTSTR lpTimerName);

HANDLE CreateWaitableTimerEx(

_In_opt_ LPSECURITY_ATTRIBUTES lpTimerAttributes,

_In_opt_ LPCTSTR lpTimerName,

_In_ DWORD dwFlags,

_In_ DWORD dwDesiredAccess);

A waitable timer can have a name, just like mutexes, semaphores and events. There are two
variants of waitable timers, similar to events: manual-reset timers (bManualReset is TRUE
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or dwFlags is CREATE_WAITABLE_TIMER_MANUAL_RESET) or auto-reset, also called synchro-
nization timer (bManualReset is FALSE or dwFlags is zero). Finally, CreateWaitable-
TimerEx can specify an explicit access mask for the returned handle (TIMER_ALL_ACCESS
by default with CreateWaitableTimer).

As waitable timers can be named, an existing timer can be opened by name with OpenWait-
ableTimer:

HANDLE OpenWaitableTimer(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ LPCTSTR lpTimerName);

Creating a timer is the first step of using it, with the all-important SetWaitableTimer(Ex)
functions:

typedef VOID (CALLBACK *PTIMERAPCROUTINE)(

_In_opt_ LPVOID lpArgToCompletionRoutine,

_In_ DWORD dwTimerLowValue,

_In_ DWORD dwTimerHighValue);

BOOL SetWaitableTimer(

_In_ HANDLE hTimer,

_In_ const LARGE_INTEGER* lpDueTime,

_In_ LONG lPeriod,

_In_opt_ PTIMERAPCROUTINE pfnCompletionRoutine,

_In_opt_ LPVOID lpArgToCompletionRoutine,

_In_ BOOL fResume);

BOOL SetWaitableTimerEx(

_In_ HANDLE hTimer,

_In_ const LARGE_INTEGER* lpDueTime,

_In_ LONG lPeriod,

_In_opt_ PTIMERAPCROUTINE pfnCompletionRoutine,

_In_opt_ LPVOID lpArgToCompletionRoutine,

_In_opt_ PREASON_CONTEXT WakeContext,

_In_ ULONG TolerableDelay);

The first five parameters to both functions are the same, so we’ll tackle those first. The
lpDueTime parameter signifies when the time should expire. It’s given as a LARGE_INTEGER
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structure, which is nothing but a glorified 64-bit number, which convenient access to its two
32-bit parts if desired. The number stored is signed, with different meanings to positive vs.
negative numbers:

• A positive number indicates absolute time in 100-nano second units measured from
January 1, 1601, midnight, UTC (Universal Coordinated Time also known as GMT).

• A negative number indicates relative time in 100-nano second units.

The actual resolution of timer depends on the hardware and is not in the range of 100 nano
seconds.

Let’s start with the most common case, a relative interval. An interval in milliseconds is
fairly common, and converting between 100nsec (10 to -7th power) to msec (10 to the -3rd
power), means multiplying by 10000. An interval of 10 msec can be set by initializing a
LARGE_INTEGER like so:

LARGE_INTEGER interval;

interval.QuadPart = -10000 * 10;

Absolute time is more tricky, as zero time is in a simingly weird time in the distant past.
The best thing is to work with helper functions provided by the Windows API to get to the
desired value. For example, suppose the timer should expire at 17:30:00 on March 10, 2020
(UTC) (the date I’m writing these lines), the following snippet helps in computing the correct
value:

SYSTEMTIME st = { 0 };

st.wYear = 2020;

st.wMonth = 3;

st.wDay = 10;

st.wHour = 17;

st.wMinute = 30;

FILETIME ft;

::SystemTimeToFileTime(&st, &ft);

LARGE_INTEGER dueTime;

dueTime.QuadPart = *(LONGLONG*)&ft;

The FILETIME structure is identical to a LARGE_INTEGER, but curiously enough does not have
the single 64-bit data member, only two 32-bit values; this is why the last line forcefully reads
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it as a 64-bit value. Also, the term “file time” commonly used in file system times uses the
same time measurement.
If local time is needed as a basis, rather thanUTC, the TzSpecificLocalTimeToSystemTime
before calling SystemTimeToFileTime like so:

FILETIME ft;

::TzSpecificLocalTimeToSystemTime(nullptr, &st, &st);

::SystemTimeToFileTime(&st, &ft);

TzSpecificLocalTimeToSystemTime uses the current time zone by default (the first NULL
value), taking into account Daylight Saving Time (DST), if active.

If the due time is absolute and specifies a value in the past, the timer is signaled
immediately.

The third parameter to SetWaitableTimer(Ex) indicates whether the timer is one-shot or
periodic. Specifying zero makes it one-shot; otherwise, it’s the period in milliseconds. Note
this works in both absolute and relative due times.

The fourth parameter is an optional function pointer that should be called when the timer is
signaled (expires). The parameter can be NULL, in which case the normal wait functions
can be used to get an indication of when the timer expires. If the value is non-NULL,
the function is not called immediately when the timer expires; instead, the function is
wrapped in an Asynchronous Procedure Call (APC) and attached to the thread that called
SetWaitableTimer(Ex).

An APC is a callback destined to a particular thread, and so must be executed by that
thread only. In the case of a waitable timer, the APC is added to the queue of APCs for the
thread that called SetWaitableTimer(Ex). The tricky part is that this APC does not execute
immediately. That would be too dangerous, as the thread may be doing something at the
time the timer expires, forcefully diverging it to the APC’s callback can have unintended
consequences. What if the thread has acquired a critical section at the time of the call? In
general, the APC would have no clue where the thread was in its execution.

This all means that APCs are pushed at the end of the particular thread’s queue, but in order
to run them the thread must enter an alertable state. In this state, the thread first checks if
any APCs have accumulated in its APC queue, and if so, runs all of them now in sequence
before resuming execution of the code following its entering the alertable state.

How does a thread enter an alertable state? There are several functions that can accomplish
that, the simplest being SleepEx:
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DWORD SleepEx(

_In_ DWORD dwMilliseconds,

_In_ BOOL bAlertable);

SleepEx is a superset of the familiar Sleep function. In fact, the Sleep function is
implemented by calling SleepEx with the bAlertable argument set to FALSE. Calling
SleepEx with bAletrable set to TRUE puts the thread to sleep in an alertable state for the
duration of the sleep. If, during the sleep period, APCs appear in the thread’s queue, they
are executed immediately and the sleep is over. If any APC was already present when the
call to SleepEx is made, no sleep occurs at all.

The following example shows how to set up a waitable timer that calls a callback every
second by putting the thread in an infinite sleep in an alertable state (SimpleTimer project
in the code samples for this chapter):

void CALLBACK OnTimer(void* param, DWORD low, DWORD high) {

printf("TID: %u Ticks: %u\n", ::GetCurrentThreadId(), ::GetTickCount());

}

int main() {

auto hTimer = ::CreateWaitableTimer(nullptr, TRUE, nullptr);

LARGE_INTEGER interval;

interval.QuadPart = -10000 * 1000LL;

::SetWaitableTimer(hTimer, &interval, 1000, OnTimer, nullptr, FALSE);

printf("Main thread ID: %u\n", ::GetCurrentThreadId());

while (true)

::SleepEx(INFINITE, TRUE);

// we'll never get here

return 0;

}

Running this yields something like the following:
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Main thread ID: 32024

TID: 32024 Ticks: 19648406

TID: 32024 Ticks: 19649406

TID: 32024 Ticks: 19650421

TID: 32024 Ticks: 19651421

TID: 32024 Ticks: 19652437

TID: 32024 Ticks: 19653437

TID: 32024 Ticks: 19654453

...

Notice the thread that called SetWaitableTimer is the same one that executes the callback.
The code uses SleepEx with an infinite timeout, as the thread has nothing to do except for
running the timer callback. The infinite while loop is necessary, otherwise after the first
callback runs, the sleep is over and the program would exit. The loop keeps the thread alive,
just waiting for APCs to appear.

Another useful option with SleepEx is to use a timeout of zero. This can be thought of a
simple “garbage collection”, where a thread from time to time calls SleepEx(0, TRUE) to
run any APCs that may have accumulated, but the thread does not wish to wait at all.

SleepEx is simple enough, but other scenarios require more flexibility. Other functions that
allow a thread to wait in an alertable state include extended versions of the classic functions,
discussed in the next section.

Other forms of using APCs are covered in chapter 11.

Windows supports three types of APCs: user mode APCs, kernel-mode APCs and
special kernel-modeAPCs. The former is the one discussed in this book. The kernel
variants are (obviously) available for kernel-mode callers only (and are in fact not
documented in theWDK), and in any case are not in the scope of this book. Seemy
book “Windows Kernel Programming”, and various online resources for a detailed
description of kernel-mode APCs.

The fifth parameter to SetWaitableTimer(Ex) is a user-defined value passed as-is to the
callback function if provided. The callback itself receives this value as its first argument, and
also two 32-bit values that comprise a 64-bit value in the absolute format described earlier
indicating the time the timer has been triggered.

The sixth (and last) parameter to SetWaitableTimer specifies if timer expiration should
trigger waking the system if it was in a power conservation state (such as connected standby).
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This concludes SetWaitableTimer. The extended function (available from Windows 7 and
Server 2008 R2) has two more parameters. The first (sixth) is an optional pointer to a
REASON_CONTEXT structure defined like so:

typedef struct _REASON_CONTEXT {

ULONG Version;

DWORD Flags;

union {

struct {

HMODULE LocalizedReasonModule;

ULONG LocalizedReasonId;

ULONG ReasonStringCount;

LPWSTR *ReasonStrings;

} Detailed;

LPWSTR SimpleReasonString;

} Reason;

} REASON_CONTEXT, *PREASON_CONTEXT;

The structure can provide additional context for the timer request. It’s also used with power
requests. This helps in logging in case the timer causes the system to wake from a low
power state. Passing NULL indicates there is no specific context. See the documentation for
REASON_CONTEXT for the exact details.

The last parameter to SetWaitableTimerEx is a tolerance value in milliseconds for the
timer’s expiration. This relates to a feature called coalescing timers introduced in Windows
7. Suppose you have two timers, one that expires in 100 msec and the other in 105 msec.
Normally, a CPU would have to wake up after 100 msec and signal the first timer, go to
sleep, and then wake after 5 msec to signal the second timer. If, however, the second (or
first) timer has requested a tolerance of (say) 10 msec, the system would wake the CPU
just once and signal both timers in one stroke, because the application indicated it’s OK to
signal the timer at some tolerance interval from the exact time. Specifying zero (which is
what SetWaitableTimer does internally) means there is no tolerance, and the application
wants the best accuracy at the possible expanse of more power consumption. Otherwise, the
tolerance is taken into consideration with respect to other timers on the system.

We are not done with timers yet - timers can also be handled more conveniently by utilizing
the thread pool, which we’ll look at in the next chapter.

Lastly, a timer can be canceled after a successful call to SetWaitableTimer(Ex) (but before
the timer expires) with CancelWaitableTimer:
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BOOL CancelWaitableTimer(_In_ HANDLE hTimer);

Other Wait Functions

The classic wait functions WaitForSingleObject and WaitForMultipleObjects are the
most common to use. However, there are other variants, which we look it in this section.

Waiting in Alertable State

Extended versions of the common functions exist that accept an extra parameter to indicate
whether to wait in an alertable state:

DWORD WaitForSingleObjectEx(

_In_ HANDLE hHandle,

_In_ DWORD dwMilliseconds,

_In_ BOOL bAlertable);

DWORD WaitForMultipleObjectsEx(

_In_ DWORD nCount,

_In_reads_(nCount) CONST HANDLE* lpHandles,

_In_ BOOL bWaitAll,

_In_ DWORD dwMilliseconds,

_In_ BOOL bAlertable);

Passing FALSE for bAlertable is the same as calling the original function.With bAlertable
set to TRUE, any APCs attached to the calling thread are executed in sequence and then the
wait is over. The return value in such a case is WAIT_IO_COMPLETION. If that’s returned and
the thread still wants to wait on the object(s), it can call the wait function again.

Other functions exist with the same pattern, providing an option for waiting in an alertable
state, described in the next sections.

Waiting on GUI Threads

GUI threads should not generally use the WaitForSingleObject or WaitForMultipleOb-
jects (or their extended variants) with an INFINITE timeout if the wait could be long.
The problem is that if the object(s) in question do not become signaled for a long time, all
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UI activity managed by that thread will freeze, producing the dreaded “Not Responding”
status in Task Manager, with the windows created by that thread becoming faded and
unresponsive, and “Not Responding” added to their title bar. This is a very bad user
experience and should be avoided at all costs.

In many cases, GUI threads don’t need to wait for kernel objects, but in some cases
it’s unavoidable. Fortunately, there is a solution: the MsgWaitForMultipleObject(Ex)
functions:

DWORD

WINAPI

MsgWaitForMultipleObjects(

_In_ DWORD nCount,

_In_ CONST HANDLE *pHandles,

_In_ BOOL fWaitAll,

_In_ DWORD dwMilliseconds,

_In_ DWORD dwWakeMask);

WINUSERAPI

DWORD

WINAPI

MsgWaitForMultipleObjectsEx(

_In_ DWORD nCount,

_In_ CONST HANDLE *pHandles,

_In_ DWORD dwMilliseconds,

_In_ DWORD dwWakeMask,

_In_ DWORD dwFlags);

The functions wait on one or more object normally, but also for UI messages destined for
the calling thread, whose type is specified by the dwWakeMaskparameter. The simplest is
QS_ALLEVENTS that causes the functions to return with the value WAIT_OBJECT_0+nCount
whenever any message appears in the thread’s message queue. In this case, the thread should
pump messages and resume waiting. Here is an example for waiting on an event object and
pumping messages in between:
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void WaitWithMessages(HANDLE hEvent) {

while (::MsgWaitForMultipleObjects(1, &hEvent, FALSE, INFINITE, QS_ALLEVENT\

S)

== WAIT_OBJECT_0 + 1) {

MSG msg;

while (::PeekMessage(&msg, nullptr, 0, 0, PM_REMOVE)) {

::TranslateMessage(&msg);

::DispatchMessage(&msg);

}

}

}

Check out the other state mask (QS_) values in the documentation.

The extended function drops the fWaitAll parameter from the original function, and instead
provides an extra dwFlags parameter that can be zero or include one or more the following
flags:

• MWMO_ALERTABLE - the function waits in an alertable state, as described in the previous
section.

• MWMO_INPUTAVAILABLE - the function returns if input exists in the message queue,
even if that input has already been seen with PeekMessage or GetMessage. Without
this flag, only new input causes the function to return.

• MWMO_WAITALL - the function returns if all the objects are signaled and input is
available, all at the same time.

Waiting for an Idle GUI Thread

The WaitForInputIdle function can be used to wait until a GUI thread in the specified
process is ready to process messages:
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DWORD WINAPI WaitForInputIdle(

_In_ HANDLE hProcess,

_In_ DWORD dwMilliseconds);

The function is most useful for a parent that creates a child process and wants to interact
with its UI thread (typically the first thread). Since process creation on the child’s process
side is asynchronous, the parent has no way of knowing when exactly the thread is ready
to receive messages. Posting messages to the thread too early (before the thread’s message
queue is ready) will cause the messages to be lost.

Here is a typical code that accomplishes this:

PROCESS_INFORMATION pi;

//...

::CreateProcess(..., &pi);

// error handling omitted

::WaitForInputIdle(pi.hProcess, INFINITE);

// UI thread is ready, post some message to the main thread

::PostThreadMessage(pi.dwThreadId, WM_USER, 0, 0);

//...

Signaling and Waiting Atomically

The last waiting function we’ll look at in this chapter is SignalObjectAndWait:

DWORD SignalObjectAndWait(

_In_ HANDLE hObjectToSignal,

_In_ HANDLE hObjectToWaitOn,

_In_ DWORD dwMilliseconds,

_In_ BOOL bAlertable);

The hObjectToSignal can be an event, semaphore or mutex only, each signaled with
its own function: SetEvent, ReleaseSemaphore (with a count of 1), and ReleaseMutex,
respectively. hObjectToWaitOn can point to any waitable object. The function combines
signaling one object and atomically waiting on another one.

The first benefit of this function is its efficiency. Instead of something like the following:



Chapter 8: Thread Synchronization (Inter-Process) 399

::SetEvent(hEvenet1);

::WaitForSingleObject(hEvent2, INFINITE);

SignalObjectAndWait combines these two functions so that only a single transition to
kernel mode is required:

::SignalObjectAndWait(hEvent1, hEvent2, INFINITE, FALSE);

The second benefit is the fact that the two operations are atomic, meaning no other thread can
observe the signaled state of the signaled object before the thread enters a wait state on the
other object. In some edge cases involving the PulseEvent function, SignalObjectAndWait
provides a reliable solution.

The former warning applies - don’t use PulseEvent.

Exercises

1. Create a system that can run multiple work items concurrently, but some of them may
have dependencies on other work items. As a concrete example, think of compiling
projects in Visual Studio. Some projects depend on other projects, so they must be
processed in order. Here is an example of a project hierarchy (read: project 4 depends
on 1, project 5 depends on projects 2 and 3, and so on). The goal is to compile all projects
as quickly as possible while adhering to the dependencies. use event objects for flow
synchronization.
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Example project dependencies

Summary

In this chapter, we looked at the dispatcher objects commonly used for thread synchroniza-
tion. In the next chapter, we’ll examine thread pools, a common alternative to explicitly
creating threads.



Chapter 9: Thread Pools
In the last few chapters, we saw how to create and manage threads. Although this works,
there are cases where it’s overkill. Sometimes we need to perform some bounded operation
on a different thread, but always creating a new thread has its overhead. Threads are not
free: the kernel has its structures that manage the information of a thread, a thread has user-
mode and kernel-mode stacks, and the creation of a thread itself takes time. If the thread is
expected to be relatively short-lived, the extra overhead becomes significant.

The thread pools discussed in this chapter have no relationship to the .NET or
.NET Core thread pool, which is available in managed processes. The CLR /
CoreCLR has its own implementation of a thread pool.

In this chapter:

• Why Use a Thread Pool?
• Thread Pool Work Callbacks
• Thread Pool Wait Callbacks
• Thread Pool Timer Callbacks
• Thread Pool I/O Callbacks
• Thread Pool Instance Operations
• The Callback Environment
• Private Thread Pools
• Cleanup Groups
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Why Use a Thread Pool?

Windows provides thread pools, a mechanism that allows sending operations to be per-
formed by some thread from a pool of threads. The advantages of using a thread pool over
manually creating and managing threads are the following:

• No explicit thread creation or termination is done by client code - the thread pool
manager handles that.

• Completed operations do not destroy the worker thread - it returns to the pool to
service another request.

• The number of threads in the pool can grow and shrink dynamically based on work
items load.

Windows 2000was the firstWindows version to provide support for thread pooling. It offered
a single thread pool per process. Starting from Windows Vista, the thread pool API was
significantly enhanced, including the addition of private thread pools, which means more
than one thread pool can exist in a process.

We’ll describe the newer API only, as there are no good reasons to use the old API unless
you’re targetting pre-Vista versions of Windows.

The services of thread pooling are used internally by some Windows functions and third-
party libraries, so you might find that thread pool threads exist even if you did not explicitly
use any thread pool-related APIs. If you run a simple application such as Notepad, which
does not require more than one thread, you may find, when looking at the process in
Process Explorer, that it has several threads, some of them starting with the function
ntdll!TppWorkerThread (figure 9-1). This is the starting function for a thread-pool thread.
If you allow the Notepad process to linger for a while, you might find that after some time
of inactivity, the thread pool threads are gone (figure 9-2).

“Tpp” is short for Thread Pool Private, i.e. a private (not exported) function related
to thread pooling. The kernel object responsible for managing thread pools is called
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TpWorkerFactory.

Figure 9-1: Thread pool threads in Notepad
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Figure 9-2: No thread pool threads in Notepad

You can get a sense of the number of thread pools in the system by running my Object
Explorer tool, that can be downloaded from https://github.com/zodiacon/AllTools or https:
//github.com/zodiacon/ObjectExplorer/Releases. When opened, the Object Types is shown.
Sort by name and look for TpWorkerFactory (figure 9-3). Note the number of such objects in
the system.

https://github.com/zodiacon/AllTools
https://github.com/zodiacon/ObjectExplorer/Releases
https://github.com/zodiacon/ObjectExplorer/Releases
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Figure 9-3: The number of TpWorkerFactory objects shown in Object Explorer

You can view more details by right-clicking the TpWorkerFactory object and selecting All
Objects to view all objects of this type with some details (figure 9-4). You can get a sense of
how many thread pools exist in processes.

Figure 9-4: TpWorkerFactory objects in the system

Thread Pool Work Callbacks

The simplest API for submitting a work item for the thread pool is TrySubmitThreadPool-
Callback:
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typedef VOID (NTAPI *PTP_SIMPLE_CALLBACK)(

_Inout_ PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context);

BOOL TrySubmitThreadpoolCallback(

_In_ PTP_SIMPLE_CALLBACK pfns,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

TrySubmitThreadPoolCallback sets up a callback provided as the first parameter, to be
called by the thread pool. The second parameter allows specifying a context value that
is passed as-is to the callback function. The last optional parameter, related to a callback
environment can be set to NULL. We’ll take a look at the callback environment later in this
chapter.

The callback function itself is invoked with two parameters, where the second is the context
provided to TrySubmitThreadPoolCallback. The first parameter of type PTP_CALLBACK_-
INSTANCE is an opaque pointer than represents this callback instance. We’ll discuss this
parameter later in this chapter as well.

The function returns TRUE on success, which should be the case most of the time, unless
Windows is in extreme memory pressure. Once submitted, the callback executes as soon
as possible by a thread pool thread. There is no built-in way to cancel the request once
submitted. There is also no direct way of knowing when the callback finished execution. It
is possible, of course, to add our own mechanism, such as signaling an event object from the
callback and waiting for it on a different thread.

The Simple Work Application

The Simple Work sample application, shown in figure 9-5 when it’s executed allows
submitting work items to the thread pool with TrySubmitThreadPoolCallback while
watching the thread under which each callback is executed. At the same time, the application
shows the number of threads in the process.
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Figure 9-5: The Simple Work Application

When the application starts up, the number of threads should be low, usually 1 or 4. Click
the Submit Work Item button to submit a single work item. If the number of threads is above
one, it’s likely to stay with the same number, as at least one thread pool thread is already
alive and can pick up the request (figure 9-6).
Clicking the same button a few more times will initiate more work items, and the number
of threads should increase as the thread pool “senses” a higher load.
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Figure 9-6: A single work item submitted to the thread pool

Now click Submit 10 Work Items button several times and watch the thread count go up
substantially (figure 9-7).

Figure 9-7: Many work items submitted to the thread pool

If you don’t submit many items, simply wait some time, the thread count will start to drop.
Given enough time, the thread count will drop to 1, leaving only the main UI thread alive
(figure 9-8). This application shows the dynamic nature of the thread pool.
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Figure 9-8: Simple Work after some time of inactivity

The “submit” buttons simply call TrySubmitThreadPoolCallback:

LRESULT CMainDlg::OnSubmitWorkItem(WORD, WORD wID, HWND, BOOL&) {

if(!::TrySubmitThreadpoolCallback(OnCallback, this, nullptr))

AtlMessageBox(*this, L"Failed to submit work item callback",

IDR_MAINFRAME, MB_ICONERROR);

return 0;

}

LRESULT CMainDlg::OnSubmit10WorkItems(WORD, WORD, HWND, BOOL&) {

for (int i = 0; i < 10; i++) {

if (!::TrySubmitThreadpoolCallback(OnCallback, this, nullptr)) {

AtlMessageBox(*this, L"Failed to submit work item callback",

IDR_MAINFRAME, MB_ICONERROR);

break;

}

}

return 0;

}

The context argument is set to this, so that the static callback function (OnCallback) has
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access to the dialog box object. The callback simulates work by sleeping a bit, indicating on
which thread it’s invoked by posting messages to the dialog box with PostMessage:

void CMainDlg::OnCallback(PTP_CALLBACK_INSTANCE instance, PVOID context) {

auto dlg = (CMainDlg*)context;

// post message indicating start

dlg->PostMessage(WM_APP + 1, ::GetCurrentThreadId());

// simulate work...

::Sleep(10 * (::GetTickCount() & 0xff));

// post message indicating end

dlg->PostMessage(WM_APP + 2, ::GetCurrentThreadId());

}

The messages are mapped by the normal WTLmessage map to functions that are invoked by
the UI (main) thread. This is because any messages posted (or sent) to a window are always
put in the message queue of the window’s creator thread, and only that thread is allowed
to retrieve messages from the queue and handle them. Here is the handler for the custom
WM_APP + 1 message:

LRESULT CMainDlg::OnCallbackStart(UINT, WPARAM wParam, LPARAM, BOOL&) {

CString text;

text.Format(L"Started on thread %d", wParam);

m_List.AddString(text);

return 0;

}

The second message is identical except for the text itself.

Getting the number of threads in the current process is surprisingly tricky, as there is no
documented (or undocumented, for that matter) API to get the value directly. The Tool help
API discussed in chapter 3 is used here to locate the current process, where the number of
threads is provided as part of the PROCESSENTRY32 structure. The code is part of a WM_TIMER
message handler that is called every 2 seconds to update the current thread count:
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auto hSnapshot = ::CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS, 0);

if (hSnapshot == INVALID_HANDLE_VALUE)

return 0;

PROCESSENTRY32 pe;

pe.dwSize = sizeof(pe);

::Process32First(hSnapshot, &pe);

// skip idle process

auto pid = ::GetCurrentProcessId();

ULONG threads = 0;

while (::Process32Next(hSnapshot, &pe)) {

if (pe.th32ProcessID == pid) {

threads = pe.cntThreads;

break;

}

}

::CloseHandle(hSnapshot);

CString text;

text.Format(L"Threads: %u\n", threads);

SetDlgItemText(IDC_THREADS, text);

Controlling a Work Item

Using TrySubmitThreadpoolCallback is fairly straightforward, but sometimes you need
more control. For example, you may want to knowwhen the callback completes, or you may
want to cancel the work item if some condition is satisfied. For these cases, you can create a
thread pool work item explicitly. The API to achieve this is CreateThreadPoolWork:

PTP_WORK CreateThreadpoolWork(

_In_ PTP_WORK_CALLBACK pfnwk,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

The function looks similar to TrySubmitThreadpoolCallback, with two differences. The
first is the return value, which is an opaque PTP_WORK pointer representing the work item,
or NULL on failure. The second difference is the callback prototype that looks like this:
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typedef VOID (CALLBACK *PTP_WORK_CALLBACK)(

_Inout_ PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context,

_Inout_ PTP_WORK Work);

There is a third argument to the callback, which is the work item object returned originally
from CreateThreadpoolWork. Once a work item object is created, it can be submitted
(possibly multiple times) by calling SubmitThreadpoolWork:

VOID SubmitThreadpoolWork(

_Inout_ PTP_WORK Work

);

Notice the function returns void, implying that it cannot fail. This is because if Cre-
ateThreadpoolWork succeeds, there is no way SubmitThreadpoolWork can fail. On the
other hand, each call to TrySubmitThreadpoolCallback can potentially fail.

More than one call to SubmitThreadpoolWork is allowed using the same work object. The
potential downside is that all these submissions use the same callback and the same context,
as these can only be provided at work object creation. Once submitted, some control over
the submitted callbacks is available with WaitForThreadpoolWorkCallbacks:

void WaitForThreadpoolWorkCallbacks(

_Inout_ PTP_WORK pwk,

_In_ BOOL fCancelPendingCallbacks);

The first parameter is the work object returned from CreateThreadpoolWork. If
fCancelPendingCallbacks is FALSE, the calling thread enters await state until all callbacks
submitted through the work item have completed. If no callback has been submitted yet, the
function returns immediately.

If fCancelPendingCallbacks is TRUE, the function cancels any submitted callbacks that
have not started execution yet. The function never cancels a callback in progress - that would
not make sense, as the only way to do that is to forcefully terminate the thread pool thread,
which is a bad idea. The calling thread waits for all currently executing callbacks to complete
before its wait os ended.

Finally, the thread pool work object must be be eventually freed with CloseThreadpool-
Work:
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void CloseThreadpoolWork(_Inout_ PTP_WORK pwk);

Modify the Simple Work application to use CreateThreadpoolWork and related
functions described in this section. (The solution is the project called SimpleWork2,
located with the other samples for this chapter.)

The Windows Implementation Library (WIL) has handles for thread pool
work objects: wil::unique_threadpool_work, unique_threadpool_work_-
nocancel, and unique_threadpool_work_nowait. The “nowait” variant just
closes the work object when it goes out of scope. The first two variants call
WaitForThreadpoolWorkCallbacks to wait for all pending callbacks to com-
plete, with the cancellation argument set to TRUE in the former and FALSE in the
latter.

The MD5 Calculator Application

The MD5 calculation application from chapter 7 creates a new thread for every new
calculation needed. This is inefficient, and the thread pool can be used here as an alternative.
The code to be replaced is in CView::OnStartCalc, where currently a thread is created for
each required calculation:

// spawn a thread to do the actual calculation

auto data = new CalcThreadData;

data->View = this;

data->Index = (int)index;

auto hThread = ::CreateThread(nullptr, 0, [](auto param) {

auto data = (CalcThreadData*)param;

auto view = data->View;

auto index = data->Index;

delete data;

return view->DoCalc(index);

}, data, 0, nullptr);

if (!hThread) {

AtlMessageBox(nullptr, L"Failed to create worker thread!",
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IDR_MAINFRAME, MB_ICONERROR);

return 0;

}

::CloseHandle(hThread);

The simplest way to replace this code is by using TrySubmitThreadpoolCallback, like so:

auto data = new CalcThreadData;

data->View = this;

data->Index = (int)index;

if (!::TrySubmitThreadpoolCallback([](auto instance, auto param) {

auto data = (CalcThreadData*)param;

auto view = data->View;

auto index = data->Index;

delete data;

view->DoCalc(index);

}, data, nullptr)) {

AtlMessageBox(nullptr, L"Failed to submit thread pool work!",

IDR_MAINFRAME, MB_ICONERROR);

return 0;

}

Although both CreateThread and TrySubmitThreadpoolCallback can potentially fail,
this is less likely to happen with TrySubmitThreadpoolCallback as it requires fewer
resources than spawning a new thread.

The other option is to use a full work object with CreateThreadpoolWork. However,
this has fewer benefits in this case, because we need a different context for each work
item submission, so its main advantage is the ability to wait and possibly cancel pending
operations. Still, let’s do this with the help of WIL’s wrappers:
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auto data = new CalcThreadData;

data->View = this;

data->Index = (int)index;

wil::unique_threadpool_work_nowait work(::CreateThreadpoolWork(

[](auto instance, auto param, auto work) {

auto data = (CalcThreadData*)param;

auto view = data->View;

auto index = data->Index;

delete data;

view->DoCalc(index);

}, data, nullptr));

if(!work) {

AtlMessageBox(nullptr, L"Failed to submit thread pool work!",

IDR_MAINFRAME, MB_ICONERROR);

return 0;

}

::SubmitThreadpoolWork(work.get());

We select the unique_threadpool_work_nowait variant since we don’t want to wait for
the pending operation when the work object goes out of scope, which happens at the end
of the function. In this example, there is no real benefit in using the manually created work
item, but other cases may benefit from this approach.

Thread Pool Wait Callbacks

In chapter 8 in the section “Working with Events”, we looked at an example where several
processes need to wait on a common event (“shutdown”), and for this purpose, each process
creates a thread that does the waiting. As mentioned in that section, this is inefficient -
threads should do actual work rather than waiting. A better approach is to let a thread pool
wait for the event. At first glance, it seems to be the same thing: isn’t the thread pool thread
going to just wait? And if so, what’s the difference with respect to an application-created
thread?

The difference is that the same thread pool thread can be waiting for multiple objects, sub-
mitted by the application and possibly other Windows APIs and libraries. Each such thread
can wait for up to 64 objects at the same time using the familiar WaitForMultipleObjects.
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If more than 64 waits are required, another thread from the pool can be launched for this
purpose.

To create a thread pool wait object, call CreateThreadpoolWait:

typedef VOID (NTAPI *PTP_WAIT_CALLBACK)(

_Inout_ PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context,

_Inout_ PTP_WAIT Wait,

_In_ TP_WAIT_RESULT WaitResult); // just a DWORD

PTP_WAIT CreateThreadpoolWait(

_In_ PTP_WAIT_CALLBACK pfnwa,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

The pattern should be apparent at this point, as the function and callback are very similar to
CreateThreadpoolWork. The parameters to CreateThreadpoolWait are the same with a
minor twist to the callback function. It provides an extra argument, which specifies why the
callback was invoked; that is, the callback is invoked when a wait operation for an object is
over, so WaitResult specifies why it was over. Possible values include WAIT_OBJECT_0 to
indicate the object was signaled and WAIT_TIMEOUT indicating the timeout expired without
the object being signaled.

CreateThreadpoolWait returns an opaque PTP_WAIT pointer that represents the wait
object. Now actual wait requests can be submitted with SetThreadpoolWait:

VOID SetThreadpoolWait(

_Inout_ PTP_WAIT pwa,

_In_opt_ HANDLE h,

_In_opt_ PFILETIME pftTimeout);

Apart from the wait object, the function accepts the handle to wait on, and the timeout
argument specifies how long towait. The format of this value is the same discussed in chapter
8 in relation towaitable timers: a negative number indicates the relative time in 100nsec units,
and a positive number indicates absolute time counted from January 1st, 1601, midnight
UTC, in 100nsec units. Refer to chapter 8 for the full discussion of how to specify this value.
A NULL pointer indicates infinite wait.
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Contrary to thread pool work object, calling SetThreadpoolWaitwith the same wait object
(PTP_WAIT) causes cancellation of the current wait (if it has not already executed) and
replaces the wait with the (possibly) new handle and timeout. Setting the handle to NULL
stops queuing new callbacks.

For our example of a shutdown event, the wait could be accomplished by code such as the
following:

void ConfigureWait() {

HANDLE hShutdown = ::CreateEvent(nullptr, TRUE, FALSE, L"ShutdownEvent");

auto wait = ::CreateThreadpoolWait(OnWaitSatisfied, nullptr, nullptr);

::SetThreadpoolWait(wait, hShutdown, nullptr);

// continue running normally...

}

void OnWaitSatisfied(PTP_CALLBACK_INSTANCE instance, PVOID context,

PTP_WAIT wait, TP_WAIT_RESULT) {

// Since the wait request specified infinite time, the fact that we're here

// means the event was signaled

DoShutdown(); // initiate shutdown

}

An extended set function is available as well:

BOOL SetThreadpoolWaitEx(

_Inout_ PTP_WAIT pwa,

_In_opt_ HANDLE h,

_In_opt_ PFILETIME pftTimeout,

_Reserved_ PVOID Reserved);

The function is essentially identical to SetThreadpoolWait, except the return value. Instead
of void, it returns TRUE in means a wait was active and has now been replaced. If FALSE is
returned, it means a callback was executed for the previously registered handle or about to
be executed.

Similarly to a thread pool work item, some control is possible with WaitForThreadpool-
WaitCallbacks:
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VOID WaitForThreadpoolWaitCallbacks(

_Inout_ PTP_WAIT pwa,

_In_ BOOL fCancelPendingCallbacks);

WaitForThreadpoolWaitCallbacks has essentially the same semantics and behavior as
WaitForThreadpoolWorkCallbacks.

Finally, the Wait item needs to be freed with CloseThreadpoolWait:

VOID CloseThreadpoolWait(_Inout_ PTP_WAIT pwa);

Thread Pool Timer Callbacks

In chapter 8, we looked at awaitable timer kernel object that can be used to initiate operations
when it expires, optionally periodically. However, initiating operations was not very conve-
nient. It required some wait operation (which now we know can be accomplished with the
thread pool), or running a callback as an APC on the thread that called SetWaitableTimer.
The thread pool provides yet another service that calls a callback directly (from the pool)
after a specified period elapses, and optionally periodically.

The semantics of the relevant functions is very similar to what we’ve seen already. Here is
the thread pool timer object creation function:

typedef VOID (CALLBACK *PTP_TIMER_CALLBACK)(

_Inout_ PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context,

_Inout_ PTP_TIMER Timer);

PTP_TIMER CreateThreadpoolTimer(

_In_ PTP_TIMER_CALLBACK pfnti,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

The function parameters should be self-explanatory at this point. CreateThreadpoolTimer
returns an opaque pointer representing the timer object. To initiate an actual timer, call
SetThreadpoolTimer:
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VOID SetThreadpoolTimer(

_Inout_ PTP_TIMER pti,

_In_opt_ PFILETIME pftDueTime,

_In_ DWORD msPeriod,

_In_opt_ DWORD msWindowLength);

The pftDueTime parameter specifies the time for expiration, with the aforementioned
format used with SetWaitableTimer and SetThreadpoolWait, event though it’s typed as
FILETIME. If this parameter is NULL, it causes the timer object to stop queuing new expiration
requests (but those already queued will be invoked when expiration is due). The msPeriod
is the requested period, in milliseconds. If zero is specified, the timer is one-shot. The last
parameter is used similarly to the last argument to SetWaitableTimerEx - an acceptable
tolerance (in milliseconds), so that timer coalescing can occur to conserve power.

Calling the function a second time with the same timer object cancels the callback and
replaces the timer with the new information.

An extended function exists, similar to the wait object variant:

BOOL SetThreadpoolWaitEx(

_Inout_ PTP_WAIT pwa,

_In_opt_ HANDLE h,

_In_opt_ PFILETIME pftTimeout,

_Reserved_ PVOID Reserved);

As with the wait object, the only difference compared to the non-Ex function is the return
value. The function returns TRUE if a previous timer was in effect and now has been replaced.
It returns FALSE otherwise.

To determine whether there is a timer set on the timer object, call IsThreadpoolTimerSet:

BOOL WINAPI IsThreadpoolTimerSet(_Inout_ PTP_TIMER pti);

As you might expect, waiting and possible cancellation of the timer is possible with
WaitForThreadpoolTimerCallbacks:
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VOID WaitForThreadpoolTimerCallbacks(

_Inout_ PTP_TIMER pti,

_In_ BOOL fCancelPendingCallbacks);

Lastly, the timer pool object should be closed:

VOID CloseThreadpoolTimer(_Inout_ PTP_TIMER pti);

The Simple Timer Sample

The Simple Timer sample from chapter 8 can be re-written to use a thread pool timer object
instead of using a waitable timer. Here is the complete code:

void CALLBACK OnTimer(PTP_CALLBACK_INSTANCE inst, PVOID context, PTP_TIMER time\

r) {

printf("TID: %u Ticks: %u\n", ::GetCurrentThreadId(), ::GetTickCount());

}

int main() {

auto timer = ::CreateThreadpoolTimer(OnTimer, nullptr, nullptr);

if (!timer) {

printf("Failed to create a thread pool timer (%u)", ::GetLastError());

return 1;

}

static_assert(sizeof(LONG64) == sizeof(FILETIME), "something weird!");

LONG64 interval;

interval = -10000 * 1000LL;

::SetThreadpoolTimer(timer, (FILETIME*)&interval, 1000, 0);

printf("Main thread ID: %u\n", ::GetCurrentThreadId());

::Sleep(10000);

::WaitForThreadpoolTimerCallbacks(timer, TRUE);

::CloseThreadpoolTimer(timer);

return 0;

}
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The static_assert keyword makes a sanity check so that a 64-bit integer can be treated
the same as a FILETIME structure. The timer is set for a one second interval with a period
of one second. The call to Sleep just causes the main thread to wait, all the while timer
callbacks are invoked as specified.

Thread Pool I/O Callbacks

I/O callbacks handled by the thread pool are used to service asynchronous I/O operations.
This is discussed in chapter 11, “File and Device I/O”.

Thread Pool Instance Operations

There are two parameters we have not described yet - the callback environment and the
instance parameter provided to callbacks. In this section, we’ll look at the instance parameter,
and in the next section we’ll examine the callback environment.

The opaque instance parameter (typed as PTP_CALLBACK_INSTANCE) is used with several
functions callable from the callback itself. We’ll start with CallbackMayRunLong:

BOOL CallbackMayRunLong(_Inout_ PTP_CALLBACK_INSTANCE pci);

Calling this function provides a hint to the thread pool that this callback may be long
running, so the thread pool should consider this thread not part of the thread pool thread
limits and spawn a new thread to service the next request, since this one is unlikely to end
any time soon. The function returns TRUE to indicate that the thread pool is able to spawn
a new thread for the next request. It returns FALSE if it cannot do so at this time. The long-
running flag is still applied to the instance just the same.

The next set of functions request the thread pool to perform a certain operation before the
callback really ends and the thread can go back to the pool:
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VOID SetEventWhenCallbackReturns(

_Inout_ PTP_CALLBACK_INSTANCE pci,

_In_ HANDLE evt);

VOID ReleaseSemaphoreWhenCallbackReturns(

_Inout_ PTP_CALLBACK_INSTANCE pci,

_In_ HANDLE sem,

_In_ DWORD crel);

VOID ReleaseMutexWhenCallbackReturns(

_Inout_ PTP_CALLBACK_INSTANCE pci,

_In_ HANDLE mut);

VOID LeaveCriticalSectionWhenCallbackReturns(

_Inout_ PTP_CALLBACK_INSTANCE pci,

_Inout_ PCRITICAL_SECTION pcs);

VOID FreeLibraryWhenCallbackReturns(

_Inout_ PTP_CALLBACK_INSTANCE pci,

_In_ HMODULE mod);

The first four functions are fairly straightforward, calling the following functions before
the callback returns: SetEvent, ReleaseSemaphore (with a count of the crel parameter),
ReleaseMutex, LeaveCriticalSection, respectively. Thismay not look like big deal - can’t
the callback function provided by the client just call the appropriate function? It can, but
that would require the relevant object/handle to be passed via the context parameter in the
original function which may be inconvenient, and even problematic as the context can only
be set once when the related thread pool is created.

The last function in the list, FreeLibraryWhenCallbackReturns calls FreeLibrary to
unload a dynamic link library (DLL) at the end of the callback. It has the extra benefit of being
able to unload a DLL from which the callback itself originated. Calling FreeLibrary by the
callback itself is fatal, as the function would unload its own code, resulting in a memory
access violation once FreeLibrary returns. Having the thread pool call FreeLibray solves
the problem, since the caller is not part of the DLL.

The last function that works on an instance parameter is DisassociateCurrentThread-
FromCallback:

void DisassociateCurrentThreadFromCallback(_Inout_ PTP_CALLBACK_INSTANCE pci);

Calling this function tells the thread pool that this callback finished its important work,
so other threads that may be waiting on functions such as WaitForThreadpoolWorkCall-
backs to satisfy their wait, even though the callback is technically still executing. if the
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callback is part of a cleanup group (described in the next section), this function does not
change that association.

The Callback Environment

Each of the thread pool object creation functions has a last parameter of type PTP_CALL-
BACK_ENVIRON, called a callback environment. Its purpose is to allow further customization
when using thread pool functions. The structure itself is defined in the <winnt.h> header, but
you should consider the structure as opaque and only manipulate it through the functions
described in this section.

To initialize a callback environment to a clean state, call InitializeThreadpoolEnviron-
ment:

VOID InitializeThreadpoolEnvironment(_Out_ PTP_CALLBACK_ENVIRON pcbe);

The callback environment API functions are implemented inline by calling other functions
from ntdll.dll. For example, InitializeThreadpoolEnvironment calls TpInitialize-
CallbackEnviron, also implemented in the same header file. The actual effect of a callback
environment is only evident once it’s passed to thread pool functions.

Back to InitializeThreadpoolEnvironment - the function currently zeroes all members
except the Version field that is set to 3 (Windows 7 and later) or 1 (Vista). Eventually, the
environment should be destroyed with DestroyThreadpoolEnvironment:

VOID DestroyThreadpoolEnvironment(_Inout_ PTP_CALLBACK_ENVIRON);

Currently, this function does nothing, but this may change in future versions of Windows,
so it’s a good practice to call it once the environment object is no longer needed.

Once a callback environment is initialized, a set of functions can be called to customize
various members of the environment structure. Table 9-1 summarizes the functions and their
meaning.
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Table 9-1: Functions for manipulating a callback environment

Function Description (effective for the callbacks associated
with the callback environment)

SetThreadpoolCallbackPool Sets the thread pool object to use for the callbacks
SetThreadpoolCallbackPriority Sets the priority of the callbacks
SetThreadpoolCallbackRunsLong Sets a hint that the callbacks are long-running
SetThreadpoolCallbackLibrary Indicates the callbacks are part of a DLL,

synchronizing some parts of DLL handling
SetThreadpoolCallbackCleanupGroup Associates the callback with a cleanup group

(described later in this chapter)

The relationship between a callback environment, a thread pool and various thread pool
items is illustrated in figure 9-9.

Figure 9-9: Relationships between various thread pool entities

Some functions require a more detailed discussion. SetThreadpoolCallbackPool sets a
different thread pool than the process default. The next section shows how to create thread
pools.

SetThreadpoolCallbackPriority provides the opportunity to set a priority for callbacks
relative to other callback running on the same thread pool:
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VOID SetThreadpoolCallbackPriority(

_Inout_ PTP_CALLBACK_ENVIRON pcbe,

_In_ TP_CALLBACK_PRIORITY Priority);

The priority parameter can be one of the values from the TP_CALLBACK_PRIORITY enumer-
ation:

typedef enum _TP_CALLBACK_PRIORITY {

TP_CALLBACK_PRIORITY_HIGH,

TP_CALLBACK_PRIORITY_NORMAL,

TP_CALLBACK_PRIORITY_LOW,

} TP_CALLBACK_PRIORITY;

Higher priority callbacks are guaranteed to start before lower priority ones. This provides
some level of flexibility within the same thread pool.

This function was added in Windows 7 and Server 2008 R2.

SetThreadpoolCallbackLibrary is called to let the thread pool know the callback is part
of a DLL, and so it should keep the DLL loaded in the process as long as there are callbacks
for that environment. It also helps in preventing a deadlock if other threads try to acquire
the Loader Lock (the loader lock is discussed in the chapter “Dynamic Link Libraries”).

Private Thread Pools

By default, the process has a single thread pool, which cannot be destroyed. It’s the
pool targeted when callbacks don’t have a custom callback environment. With a callback
environment, it’s possible to target callbacks to a different thread pool by calling SetThread-
poolCallbackPool:

VOID SetThreadpoolCallbackPool(

_Inout_ PTP_CALLBACK_ENVIRON pcbe,

_In_ PTP_POOL ptpp);

The thread pool itself is represented by the opaque PTP_POOL pointer. A private thread pool
is created with the CreateThreadpool function:
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PTP_POOL CreateThreadpool(_Reserved_ PVOID reserved);

As indicated, the only parameter is reserved and should be set to NULL. If the function
succeeds, it returns an opaque pointer used in subsequent calls. NULL is returned on failure,
which may happen in extreme low resources conditions.

With a thread pool in hand, functions are available to customize it to some extent. The most
important functions are related to the minimum and the maximum number of threads in the
pool:

VOID SetThreadpoolThreadMaximum(

_Inout_ PTP_POOL ptpp,

_In_ DWORD cthrdMost);

BOOL SetThreadpoolThreadMinimum(

_Inout_ PTP_POOL ptpp,

_In_ DWORD cthrdMic);

The functions are pretty self-explanatory. The default maximum number of threads is 512
and the minimum is 0. However, these numbers should not be relied upon, so it’s better to
call the above functions to set appropriate values - after all this is one of the primary reasons
to create private thread pools. If the minimum number of threads is greater than zero, this
number of threads is created upfront, ready to process callbacks.

Curiously enough, there are no documented reciprocal functions to get the current minimum
and the maximum number of threads.

This can be achieved by calling the nativeAPI function NtQueryInformationWorkerFactory
(see the sourec code of my Object Explorer tool for an example of how to do it).

Another customization supported for private thread pools is the stack sizes used for threads
in that pool:
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typedef struct _TP_POOL_STACK_INFORMATION {

SIZE_T StackReserve;

SIZE_T StackCommit;

}TP_POOL_STACK_INFORMATION, *PTP_POOL_STACK_INFORMATION;

BOOL SetThreadpoolStackInformation(

_Inout_ PTP_POOL ptpp,

_In_ PTP_POOL_STACK_INFORMATION ptpsi);

The default sizes come from the PE header as described in chapter 5. That is, the default of
the defaults is 4KB committed memory and 1MB reserved. This may be too much or too
little, so calling SetThreadpoolStackInformation allows better utilization of memory for
thread pool threads.

Curiously enough, the stack sizes do have a query function:

BOOL QueryThreadpoolStackInformation(

_In_ PTP_POOL ptpp,

_Out_ PTP_POOL_STACK_INFORMATION ptpsi);

There are more ways to customize a thread pool object, but these are not (currently) exposed
by the Windows API, so they will not be described here.

Lastly, a thread pool needs to be properly destroyed by calling CloseThreadpool:

VOID CloseThreadpool(_Inout_ PTP_POOL ptpp);

Update the Simple Work application to use a private thread pool and change the
maximum and minimum threads, as well as stack sizes. (the solution is in the
SimpleWork3 project).

Cleanup Groups

In a heavily used thread pool application, it may be difficult to know when to close the
various thread pools, work items, wait items, etc. A cleanup group keeps track of all callbacks
associated with it so they can be closed with a single stroke, without the application having



Chapter 9: Thread Pools 428

to keep track of all callbacks manually. Note that this applies to a private thread pool only,
as the default thread pool cannot be destroyed.

A cleanup group is associated with a callback environment discussed in the previous section.
The first step is to create a new cleanup group with CreateThreadpoolCleanupGroup:

PTP_CLEANUP_GROUP CreateThreadpoolCleanupGroup();

As expected, the function returns an opaque pointer representing the cleanup group. To
have any effect, the cleanup group must be associated with a callback environment with
SetThreadpoolCallbackCleanupGroup:

VOID SetThreadpoolCallbackCleanupGroup(

_Inout_ PTP_CALLBACK_ENVIRON pcbe,

_In_ PTP_CLEANUP_GROUP ptpcg,

_In_opt_ PTP_CLEANUP_GROUP_CANCEL_CALLBACK pfng);

The function accepts an already initialized callback environment, the cleanup group to
associate with the environment and an optional callback of the following form:

typedef VOID (CALLBACK *PTP_CLEANUP_GROUP_CANCEL_CALLBACK)(

_Inout_opt_ PVOID ObjectContext,

_Inout_opt_ PVOID CleanupContext);

The optional callback is invoked if the cleanup group is canceled (discussed shortly). Every
time functions such as CreateThreadpoolWork, CreateThreadpoolWait, etc. are called,
they are tracked by the associated cleanup group. When you want to clean up everything,
call CloseThreadpoolCleanupGroupMembers:

VOID CloseThreadpoolCleanupGroupMembers(

_Inout_ PTP_CLEANUP_GROUP ptpcg,

_In_ BOOL fCancelPendingCallbacks,

_Inout_opt_ PVOID pvCleanupContext);

The function waits for all outstanding callbacks to complete. This saves you from calling the
various close functions for the items created for this pool. If fCancelPendingCallbacks
is TRUE, all callbacks that have not started yet are canceled, and the callback provided to
SetThreadpoolCallbackCleanupGroup (if not NULL) is called for each canceled item. The
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callback is called with the original context argument set in the CreateThreadPool* (work,
wait, timer, I/O) and the cleanup context provided in SetThreadpoolCallbackCleanup-
Group in the last parameter.

Once the wait and optional cancellation are done, the thread pool and cleanup group can be
closed gracefully with CloseThreadpool and CloseThreadpoolCleanupGroup:

VOID CloseThreadpoolCleanupGroup(_Inout_ PTP_CLEANUP_GROUP ptpcg);

Exercises

1. Use the thread pool to implement the Mandelbrot exercises from chapter 5.
2. Use the thread pool to implement the exercise from chapter 8.

Summary

Thread pools are a great mechanism to improve performance and scalability in a heavily
multithreaded process. In the next chapter, we’ll round up some advanced (and some not so
advanced) features related to threading that didn’t fit well in previous chapters.



Chapter 10: Advanced Threading
This chapter rounds off threads-related topics that didn’t fit well in previous chapters.

In this chapter:

• Thread Local Storage
• Remote Threads
• Thread Enumeration
• Caches and Cache Lines
• Wait Chain Traversal
• User Mode Scheduling
• Init Once Initialization
• Debugging Multithreaded Applications

Thread Local Storage

A thread naturally has access to its stack data, and to process-wide global variables. However,
it’s sometimes convenient to have some storage on a thread by thread basis, but accessible
in a uniform way. A classic example is the GetLastError function we are familiar with.
Although any thread can call GetLastError, the result is different for each threading
making the access. One way to handle that would be to store some hash table keyed by
the thread ID and then find the value based on that key. That would work, but it has some
drawbacks. One is that the hash table would need synchronization as multiple threads may
access it concurrently. Second, searching for the correct thread is perhaps not as fast as one
would hope.

Thread Local Storage (TLS) is a user-mode mechanism that allows storing data on a per-
thread basis, accessible by each thread in the process, but only to its own data; the access
method, however, is uniform.
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The value stored for GetLastError is not stored in TLS; it’s stored as part of the
Thread Environment Block (TEB) structure that is maintained for each thread, but
it is the same idea.

Another classic example of TLS usage is in the C/C++ standard library. In the days when
the C standard library was conceived back in the early 1970s, there was no concept of
multithreading. So the C runtime maintains a set of global variables as state for certain
operations. For example, the following classic C code attempts to open a file and deal with
possible errors:

FILE* fp = fopen("somefile.txt", "r");

if(fp == NULL) {

// something went wrong

switch(errno) {

case ENOENT: // no such file

//

break;

case EFBIG:

//

break;

//

}

}

Any I/O error is reflected in the global errno variable. But in a multithreaded application,
this is a problem. Imagine thread 1 making an I/O function call, causing errno to change.
Before it can check its value, thread 2 makes an I/O call as well, changing errno again. This
causes thread 1 to examine a value produced because of thread 2’s activity.

The net result of this is that errno cannot be a global variable. And so today, errno is not
a variable, but rather a macro, that calls a function, errno(), that uses thread-local storage
to retrieve the value for the current thread. Similarly, the implementation of I/O functions
such as fopen store the error result to the current thread using TLS.

The same idea applies to other global variables maintained by the C/C++ runtime library.
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Dynamic TLS

The Windows API provides 4 functions for TLS usage. The first function allocates a slot for
every thread in the process (and future threads):

DWORD TlsAlloc();

The function returns an available slot index and zeros all the corresponding cells for
all existing threads to zero. If the function returns TLS_OUT_OF_INDEXES (defined as
0xffffffff), it means the function failed and all available slots are allocated. The number
of slots that are guaranteed to be available is defined as TLS_MINIMUM_AVAILABLE (currently
64). This may seem a lot, but that’s not necessarily the case. TLS is fairly useful with DLLs,
where a DLL may want to store some piece of information on a per-thread basis, so it would
allocate a lot when loaded and use it when required. If you take a look at a typical process,
the number of DLLs can be easily higher than 100. In practice, the number of available slots
is higher than 64. If you try allocating slots until failure, you can get a sense of how many
slots are available:

int slots = 0;

while (true) {

DWORD slot = ::TlsAlloc();

if (slot == TLS_OUT_OF_INDEXES) {

printf("Out of TLS indices!\n");

break;

}

slots++;

}

printf("Allocated: %d\n", slots);

Running this on my Windows 10 version 2004 in basic console application yields 1084 slots.
If you examine the actual slot values, some are already allocated.

Internally, 64 slots are allocated beforehand, and so are always available. If more are
requested, 1024 more are allocated if possible (remember each thread needs its own TLS
array). However, you should not rely on this number or behavior.
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Each cell in TLS is a pointer-sized value, so the best practice here is to use a single slot,
and allocate dynamically whatever structure is needed to hold all the information that you
would need to store in TLS, and just store the pointer to the data in the slot itself.

Once an index is available, two functions are used to store or retrieve a value to/from a slot:

BOOL TlsSetValue(

_In_ DWORD dwTlsIndex,

_In_opt_ PVOID pTlsValue);

PVOID TlsGetValue(_In_ DWORD dwTlsIndex);

The functions are fairly straightforward to use. A thread calling these functions can only
access its own value in the specific slot index. There is no direct way to access another
thread’s TLS slot - that would defeat the purpose. This also implies that no synchronization
is ever necessary when accessing TLS since only a single thread can access the same address
in memory. The TLS arrays are illustrated in figure 10-1.
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Figure 10-1: Thread Local Storage

Eventually, the TLS index allocated by TlsAlloc needs to be freed with TlsFree:

BOOL TlsFree(_In_ DWORD dwTlsIndex);

One non-standard use for TLS is to pass arguments to functions without actually passing
an argument. For example, suppose there is a function that already exists and its prototype
cannot change. If that function needs an additional context when called, how can you pass
along an extra argument? TLS is a nice solution to the problem. The only thing that needs
sharing is the TLS index allocated for this purpose.

Here is a more concrete example. Let’s assume we have a class named Transaction that
manages a transaction of some kind. Operationsmay be part of a transaction, but theymay be
invoked without a transaction. How can we model such a constraint? Perhaps the obvious
answer is to add a Transaction* parameter to each function in the system, so that each
function can make decisions based on whether it’s part of a transaction or not.

However, this could be problematic if the functions already exist. Adding another parameter
is non-trivial and could have a ripple effect. In some cases it cannot be done without breaking
most code if virtual functions are involved, where any change to their signature could have
a cascading effect that can get out of control.
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Of course, an alternative exists by (again) managing some hash table of transaction objects
keyed by thread Id, but this is inefficient (managing a hash table and requires locking) - a
transaction is single threaded, it propagates on a thread by thread basis.

TLS offers an elegant solution. Here is an example Transaction class declaration:

class Transaction {

public:

Transaction();

~Transaction();

static Transaction* GetCurrent();

void AddLog(PCWSTR text);

void AddError(PCWSTR text);

private:

int _errors = 0;

// requires C++ 17 compiler

inline static DWORD _tlsIndex = TLS_OUT_OF_INDEXES;

};

// pre C++ 17 compiler

DWORD Transaction::_tlsIndex = TLS_OUT_OF_INDEXES;

Whenever a transaction is scope, function can get it from TLS indirectly by calling Trans-
action::GetCurrent(). If the return value is NULL, there is no transaction. Otherwise,
there is a transaction and the code can use it. Here is a conceptual implementation of the
Transaction class:
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Transaction::Transaction() {

if (_tlsIndex == TLS_OUT_OF_INDEXES)

_tlsIndex = ::TlsAlloc();

::TlsSetValue(_tlsIndex, this);

}

Transaction::~Transaction() {

if (_errors == 0) {

// commit transaction

}

else {

// abort/rollback transaction

}

::TlsSetValue(_tlsIndex, nullptr);

}

Transaction* Transaction::GetCurrent() {

if (_tlsIndex == TLS_OUT_OF_INDEXES)

return nullptr;

return static_cast<Transaction*>(::TlsGetValue(_tlsIndex));

}

void Transaction::AddError(PCWSTR) {

_errors++;

// more code

}

void Transaction::AddLog(PCWSTR) {

// more code

}

The constructor allocates a TLS index (just once). Then it sets its own address as the value
in the TLS slot. The destructor decides whether to commit or abort the transaction and then
sets the TLS value to NULL, indicating there is no transaction.

GetCurrent simply retrieves the value in the TLS slot and casts it to a Transaction*. Here
is an example code using this class:
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bool DoWork() {

// more code

}

void f1() {

auto tn = Transaction::GetCurrent();

if (tn)

tn->AddLog(L"f1 working");

if (!DoWork()) {

if (tn)

tn->AddError(L"Failed in DoWork");

else

printf("Failed in DoWork");

}

}

void do_something() {

Transaction t;

f1();

}

This idea, sometimes called ambient transaction is used in the .NET Framework with the
TransactionScope class.

Static TLS

Thread local storage is also available in a simpler form, by using a Microsoft extension
keyword on a global or static variable or by using C++ 11 or higher compiler. Let’s examine
both options.

The Microsoft-specific specifier __declspec(thread) can be used to designate a thread
local variable like so:
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__declspec(thread) int counter;

The variable counter is now thread-local. Each thread has its own value. Similarly, with C++
11 or later, this can be done in a cross-platform manner with the thread_local keyword
like so:

thread_local int counter;

The result is the same. This TLS is “static” in the sense that it does not need any allocation,
and it cannot be destroyed. Internally, the compiler bundles up all the thread-local variables
into one chunk and stores the information in the PE in a section named .tls. The loader
(NTDLL) that reads this information when the process starts up calls TlsAlloc to allocate a
slot and allocates dynamically for each thread that starts up a memory block that contains all
the thread-local variables. This is possible since every user-mode thread starts in an NTDLL-
provided function before the “real” function that is passed to CreateThread is invoked.

Figure 10-2 shows the TLS data in a PE file where the following line was compiled:

thread_local int counter =5;

The value “5” can be clearly seen in the binary data of the TLS section. Also, it appears there
is more TLS data that is used as part of some Windows DLLs that were not created by the
application directly.
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Figure 10-2: TLS in a PE file

Remote Threads

The CreateThread function we used numerous times creates a thread in the current process.
There are some cases, however, that one process may wish to create a thread in another
process. The canonical example for this use is by a debugger. When a forceful breakpoint is
required, such as when a user presses a “Break” button, the debugger creates a thread in the
target process and points it to a DebugBreak function (or a CPU intrinsic that issues a break
instruction), causing the process to break and the debugger to be notified.

The functions that allows this are CreateRemoteThread and CreateRemoteThreadEx:
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HANDLE WINAPI CreateRemoteThread(

_In_ HANDLE hProcess,

_In_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

_In_ SIZE_T dwStackSize,

_In_ LPTHREAD_START_ROUTINE lpStartAddress,

_In_ LPVOID lpParameter,

_In_ DWORD dwCreationFlags,

_Out_opt_ LPDWORD lpThreadId);

HANDLE CreateRemoteThreadEx(

_In_ HANDLE hProcess,

_In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes,

_In_ SIZE_T dwStackSize,

_In_ LPTHREAD_START_ROUTINE lpStartAddress,

_In_opt_ LPVOID lpParameter,

_In_ DWORD dwCreationFlags,

_In_opt_ LPPROC_THREAD_ATTRIBUTE_LIST lpAttributeList,

_Out_opt_ LPDWORD lpThreadId);

CreateRemoteThread adds just one parameter compared to CreateThread - the first -
the handle to the target process. This handle must have quite an access mask - PROCESS_-
CREATE_THREAD, PROCESS_QUERY_INFORMATION, PROCESS_VM_OPERATION, PROCESS_VM_-
WRITE, and PROCESS_VM_READ. This makes sense, since creating a thread in another process
is a very invasive operation.

The handle can also be GetCurrentProcess(), which makes the function identical to
CreateThread.

The most interesting parameter is the function pointer itself (lpStartAddress). The address
of the function is relative to the target process, meaning the code the thread needs to execute
should already be there somehow. One idea is to use a function that is guaranteed to be in
the target process and in a known address. Windows API functions are generally of this
type. Since the Windows subsystem DLLs (kernel32.dll, kernelbase.dll, user32.dll, etc. and
certainly ntdll.dll) are mapped to the same address in all processes, the address obtained
from the calling process can be used in the target process as well.

CreateRemoteThreadEx adds another parameter compared to CreateRemoteThread: an
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attribute list. This is the same attribute lists discussed in chapter 3. Some attributes are related
to processes (chapter 3), but there are some attributes that are related to threads, and this is
the way to specify them. Note that this is just as relevant for local threads as it is for remote
threads. Refer back to table 3-9 for the list of attributes, some op which are for threads.

The Breakin Application

The breakin sample application does a remote break-in into a process using a remote thread
calling the DebugBreak function, similarly to how a debugger would do it.

Technically, a function already exists to perform this action - DebugBreakProcess.

The first step is to get a process ID from the command line and open a strong-enough handle:

int main(int argc, const char* argv[]) {

if (argc < 2) {

printf("Usage: breakin <pid>\n");

return 0;

}

int pid = atoi(argv[1]);

auto hProcess = ::OpenProcess(PROCESS_CREATE_THREAD | PROCESS_QUERY_INFORMA\

TION |

PROCESS_VM_OPERATION | PROCESS_VM_READ | PROCESS_VM_WRITE,

FALSE, pid);

if (!hProcess)

return Error("Failed to open process");

There is nothing new in the above code. The important part is to request the minimal access
mask for CreateRemoteThread to succeed.

Next comes the call to CreateRemoteThread. We’re using the fact that kernel32.dll is
mapped to the same address in each process, so the address of the DebugBreak function is
the same in each process. This means we can locate this function in this process and instruct
the remote thread to use the same function address:
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auto hThread = ::CreateRemoteThread(hProcess, nullptr, 0,

(LPTHREAD_START_ROUTINE)::GetProcAddress(

::GetModuleHandle(L"kernel32"), "DebugBreak"),

nullptr, 0, nullptr);

if (!hThread)

return Error("Failed to create remote thread");

printf("Remote thread created successfully!\n");

::CloseHandle(hThread);

::CloseHandle(hProcess);

return 0;

}

GetModuleHandle returns the address of a loaded module in this process (kernel32.dll), and
GetProcAddress retrieves a function’s address. These functions and others related to DLLs
are discussed in detail in chapter 15.
There is yet another hidden assumption in this code, which is about the parameters of a
thread’s function. A standard thread’s function looks like this:

DWORD WINAPI ThreadFunction(PVOID param);

This means any function we ask the remote thread (or any thread for that matter) to runmust
have this prototype or something “close enough”. In this case, “close enough” works because
DebugBreak does not accept anything, so we can pass along a NULL as the param value, and
the return type is not going to be used anyway, so that’s OK as well. If the function would
require more than one parameter, that would be problematic as there would be no easy way
to pass these along.

We can test the breakin application by running some process (e.g. notepad), attaching with
some debugger, and letting the process run freely. Then, we can use breakin to force a
breakpoint. The result should be a breakpoint in the process with the debugger regaining
control.

What would happen if we do this with a process that is not being debugged? Try
it and find out!
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A more useful use for CreateRemoteThread(Ex) is injecting a DLL into a target process.
Since this requires dealing with virtual memory and DLLs, we’ll postpone this example usage
until chapter 15.

Thread Enumeration

We’ve seen in chapter 3 several ways to enumerate the processes running on a system. What
about threads? The tool help function CreateToolhelp32Snapshot offers a flag, TH32_-
SNAPTHREAD, that enumerates all threads in the system.

HANDLE CreateToolhelp32Snapshot(

DWORD dwFlags,

DWORD th32ProcessID);

The snapshot contains all threads in all processes - there is no way to specify a specific
process ID. The second parameter to CreateToolhelp32Snapshot does include a process
ID, but this works only when enumerating modules or heaps.

Once a snapshot is created, you can go over the threads in the snapshot by calling
Thread32First once, and then iterating by calling Thread32Next until it returns false:

BOOL Thread32First(

HANDLE hSnapshot,

LPTHREADENTRY32 lpte);

BOOL Thread32Next(

HANDLE hSnapshot,

LPTHREADENTRY32 lpte);

Both functions return information in a THREADENTRY32 structure defined like so:
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typedef struct tagTHREADENTRY32 {

DWORD dwSize; // must be set before calls

DWORD cntUsage;

DWORD th32ThreadID; // this thread

DWORD th32OwnerProcessID; // Process this thread is associated with

LONG tpBasePri; // base priority

LONG tpDeltaPri; // not used

DWORD dwFlags; // not used

} THREADENTRY32;

The thlist Application

The thlist application lists all threads in a particular process or all threads in the system
depending on whether a process ID was provided on the command line. The function also
lists the image name of the process each thread belongs to.

The heart of the application is a helper function, EnumThreads that returns a vector of
ThreadInfo structures defined like so:

struct ThreadInfo {

DWORD Id; // thread ID

DWORD Pid; // process ID

int Priority; // thread priority

FILETIME CreateTime; // thread create time

DWORD CPUTime; // thread CPU time (msec)

std::wstring ProcessName; // process image name

};

The thread creation time and CPU time is not provided by the THREADENTRY32 structure.
These require opening a handle to the thread, and if successful - obtaining the information.
A thread can be opened much like a process by providing its ID and a requested access mask
to OpenThread:

HANDLE OpenThread(

_In_ DWORD dwDesiredAccess,

_In_ BOOL bInheritHandle,

_In_ DWORD dwThreadId);

The EnumThreads function begins by creating a snapshot for processes and threads:
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std::vector<ThreadInfo> EnumThreads(int pid) {

std::vector<ThreadInfo> threads;

HANDLE hSnapshot = ::CreateToolhelp32Snapshot(TH32CS_SNAPPROCESS | TH32CS_S\

NAPTHREAD, 0);

if (hSnapshot == INVALID_HANDLE_VALUE)

return threads;

The snapshot contains processes and threads. First, we enumerate the processes so we can
create a mapping between a process ID and its associated information. Then it would be easy
to locate a process when iterating over threads:

PROCESSENTRY32 pe;

pe.dwSize = sizeof(pe);

std::unordered_map<DWORD, PROCESSENTRY32> processes;

processes.reserve(512);

::Process32First(hSnapshot, &pe);

// skip idle process

while (::Process32Next(hSnapshot, &pe)) {

processes.insert({ pe.th32ProcessID, pe });

}

For each process discovered, an entry is inserted into an unordered_map<>, so processes can
be looked up faster in the second stage. Process ID 0 (the idle process) is skipped since it’s
not a real process and is not of particular interest (Process32First is called, but the result
is not processed).

Now comes thread enumeration itself. The THREADENTRY32 structure is initialized with the
proper size:
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threads.reserve(4096);

THREADENTRY32 te;

te.dwSize = sizeof(te);

Next, thread iteration takes place. For each thread, the corresponding process is looked up
in the unordered_map<> to locate the process image name:

::Thread32First(hSnapshot, &te);

do {

if (te.th32OwnerProcessID > 0 && (pid == 0 || te.th32OwnerProcessID == pid)\

) {

ThreadInfo ti;

ti.Id = te.th32ThreadID;

ti.Pid = te.th32OwnerProcessID;

ti.Priority = te.tpBasePri;

ti.ProcessName = processes[ti.Pid].szExeFile;

The if statement checks that if a process ID was specified (non zero), only threads in that
process are processed; otherwise, all threads are processed.

Next, we need to get some more thread information that is not part of the enumeration:

auto hThread = ::OpenThread(THREAD_QUERY_LIMITED_INFORMATION, FALSE, ti.Id);

if (hThread) {

FILETIME user, kernel, exit;

::GetThreadTimes(hThread, &ti.CreateTime, &exit, &kernel, &user);

ti.CPUTime = DWORD((*(ULONGLONG*)&kernel + *(ULONGLONG*)&user) / 10000000);

::CloseHandle(hThread);

}

else {

ti.CPUTime = 0;

ti.CreateTime.dwHighDateTime = ti.CreateTime.dwLowDateTime = 0;

}

THREAD_QUERY_LIMITED_INFORMATION is the needed access mask to retrieve superficial
information about a thread, such as its creation and execution times, using GetThreadTimes:
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BOOL GetThreadTimes(

_In_ HANDLE hThread,

_Out_ LPFILETIME lpCreationTime,

_Out_ LPFILETIME lpExitTime,

_Out_ LPFILETIME lpKernelTime,

_Out_ LPFILETIME lpUserTime);

The function is similar to GetProcessTimeswe’ve used before, but works on a thread basis.
The creation time and exit times are in the usual 100nsec units from January 1, 1601, UTC,
and the kernel and user execution times are measured in 100nsec units. The above code
divides the sum of kernel and user times by 10 million, to reduce the number to units of
seconds.

All that remains is to add the ThreadInfo object to the vector and continue iteration:

threads.push_back(std::move(ti));

}

} while (::Thread32Next(hSnapshot, &te));

::CloseHandle(hSnapshot);

return threads;

}

The main function calls EnumThreads and presents the information with various format
manipulations:

int main(int argc, const char* argv[]) {

DWORD pid = 0;

if (argc > 1)

pid = atoi(argv[1]);

auto threads = EnumThreads(pid);

printf("%6s %6s %5s %18s %11s %s\n", "TID", "PID", "Pri", "Started",

"CPU Time", "Process Name");

printf("%s\n", std::string(60, '-').c_str());

for (auto& t : threads) {

printf("%6d %6d %5d %18ws %11ws %ws\n", t.Id, t.Pid, t.Priority,
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t.CreateTime.dwLowDateTime + t.CreateTime.dwHighDateTime == 0 ?

L"(Unknown)" : (PCWSTR)CTime(t.CreateTime).Format(L"%x %X"),

(PCWSTR)CTimeSpan(t.CPUTime).Format(L"%D:%H:%M:%S"),

t.ProcessName.c_str());

}

return 0;

}

Running the application without any parameters dumps all threads in the system. Running
it with a process ID limits its output to that process:

C:\>thlist.exe 11740

TID PID Pri Started CPU Time Process Name

------------------------------------------------------------

11744 11740 8 03/22/20 12:12:08 0:00:02:06 explorer.exe

11904 11740 8 03/22/20 12:12:08 0:00:00:27 explorer.exe

13280 11740 9 03/22/20 12:12:10 0:00:17:14 explorer.exe

11936 11740 8 03/22/20 12:12:11 0:00:00:27 explorer.exe

11716 11740 8 03/22/20 12:12:11 0:00:00:32 explorer.exe

...

5080 11740 8 03/25/20 11:14:36 0:00:00:00 explorer.exe

17064 11740 8 03/25/20 11:14:36 0:00:00:00 explorer.exe

41084 11740 8 03/25/20 11:14:37 0:00:00:00 explorer.exe

48916 11740 8 03/25/20 11:14:44 0:00:00:00 explorer.exe

The native APIs for process enumerations described in chapter 3 also provide the capability
to enumerate threads in each process.

Caches and Cache Lines

In the early days of microprocessors, the CPUs’ speeds and thememory’s (RAM) speeds were
comparable. Then CPU speeds went up and memory speeds lagged. This leads to a situation
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where the CPU stalls a lot, waiting for memory to read or write a value. To compensate, a
cache was introduced between the CPU and memory, as illustrated in figure 10-3.

Figure 10-3: Cache between CPU and memory

The cache is a fast memory compared to main memory, which allows the CPU to stall less.
Naturally, the cache is not nearly as large as main memory, but its existence is essential in
today’s systems. The importance of the cache cannot be overestimated.

The SumMatrix project compares summing a matrix in two ways as shown here:

long long SumMatrix1(const Matrix<int>& m) {

long long sum = 0;

for (int r = 0; r < m.Rows(); ++r)

for (int c = 0; c < m.Columns(); ++c)

sum += m[r][c];

return sum;

}

long long SumMatrix2(const Matrix<int>& m) {

long long sum = 0;

for (int c = 0; c < m.Columns(); ++c)

for (int r = 0; r < m.Rows(); ++r)

sum += m[r][c];

return sum;

}

The Matrix<> class is a simple wrapper over a one-dimensional array. From an algorithmic
perspective, the time it takes to sum the matrix elements in both functions should be the
same. After all - the code goes over all the matrix’ elements once. But the practical result
may be surprising. Here is a run on my machine with various matrix sizes and the time it
takes to sum the elements (everything is single-threaded):
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Type Size Sum Time (nsec)

-----------------------------------------------------------------

Row major 256 X 256 2147516416 34 usec

Col Major 256 X 256 2147516416 81 usec

Row major 512 X 512 34359869440 130 usec

Col Major 512 X 512 34359869440 796 usec

Row major 1024 X 1024 549756338176 624 usec

Col Major 1024 X 1024 549756338176 3080 usec

Row major 2048 X 2048 8796095119360 2369 usec

Col Major 2048 X 2048 8796095119360 43230 usec

Row major 4096 X 4096 140737496743936 8953 usec

Col Major 4096 X 4096 140737496743936 190985 usec

Row major 8192 X 8192 2251799847239680 35258 usec

Col Major 8192 X 8192 2251799847239680 1035334 usec

Row major 16384 X 16384 36028797153181696 142603 usec

Col Major 16384 X 16384 36028797153181696 4562040 usec

The differences are extreme, and they are due to caches. When a CPU reads data, it doesn’t
read a single integer or whatever it was instructed to read, but reads an entire cache line
(typically 64 bytes) and places it in its internal cache. Then when reading the next integer in
memory, no memory access is required because the integer is already present in the cache.
This is optimal and the way SumMatrix1 works - it traverses memory linearly.

SumMatrix2 on the other hand, reads an integer (along with the rest of the cache line), and
the next integer is further away, on a different cache line (for all but the smallest of matrices),
which requires reading another cache line, possibly throwing away data that may be needed
soon, making things even worse.

Technically, there are 3 cache levels implemented in most CPUs. The closer the cache to the
processor, the faster it is and the smaller it is. Figure 10-4 shows a typical cache configuration
for a 4-core CPU (with Hyperthreading technology).
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Figure 10-4: Cache levels in CPUs

Level 1 cache is made up of a data cache (D-cache) and instruction cache (I-cache) and is
per logical processor. Then there is cache level 2, which is shared by logical processors that
are part of the same core. Finally, level 3 cache is system-wide. The sizes of these caches are
rather small, roughly 3 orders of magnitude smaller than main memory. The cache sizes on a
system are easily visible in Task Manager in the Performance / CPU tab, as shown in figure
10-5.



Chapter 10: Advanced Threading 452

Figure 10-5: Cache sizes in Task Manager

In figure 10-5, level 3 cache size is 16 MB (system-wide). Level 2 cache size is 2 MB, but that
includes all cores. Since this system has 8 cores, each level 2 cache is really 2MB/8=256KB.
Similarly, level 1 cache size is 512 KB, spread over 16 logical processors makes each cache
512KB/16=32KB. The bottom line is that cache sizes are small compared to the main memory
size (in the gigabytes).

There is yet another important cache not shown by Task Manager, called Translation
Lookaside Buffer (TLB). This is a CPU cache dedicated to a fast translation of virtual to
physical addresses. We’ll discuss this cache further in chapter 12.

Let’s look at another example where caches and cache lines play an important (even crucial)
part. The FalseSharing project demonstrates going over a large array, counting the number
of even numbers in the array. This is done with multiple threads - each thread is assigned
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a contiguous part of the array. The counts themselves are placed in another array, each cell
modified by the corresponding thread. Figure 10-6 shows this arrangement with 4 threads.

Figure 10-6: The False Sharing application

Here is the first version of counting even numbers:

using namespace std;

struct ThreadData {

long long start, end;

const int* data;

long long* counters;

};

long long CountEvenNumbers1(const int* data, long long size, int nthreads) {

auto counters_buffer = make_unique<long long[]>(nthreads);

auto counters = counters_buffer.get();

auto tdata = make_unique<ThreadData[]>(nthreads);

long long chunk = size / nthreads;

vector<wil::unique_handle> threads;

vector<HANDLE> handles;

for (int i = 0; i < nthreads; i++) {

long long start = i * chunk;
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long long end = i == nthreads - 1 ? size : ((long long)i + 1) * chunk;

auto& d = tdata[i];

d.start = start;

d.end = end;

d.counters = counters + i;

d.data = data;

wil::unique_handle hThread(::CreateThread(nullptr, 0, [](auto param) ->\

DWORD {

auto d = (ThreadData*)param;

auto start = d->start, end = d->end;

auto counters = d->counters;

auto data = d->data;

for (; start < end; ++start)

if (data[start] % 2 == 0)

++(*counters);

return 0;

}, tdata.get() + i, 0, nullptr));

handles.push_back(hThread.get());

threads.push_back(move(hThread));

}

::WaitForMultipleObjects(nthreads, handles.data(), TRUE, INFINITE);

long long sum = 0;

for (int i = 0; i < nthreads; i++)

sum += counters[i];

return sum;

}

CountEvenNumbers1 accepts a pointer to the data, its size and the number of threads to
use for partitioning the data array. It then allocates counters_buffer, which is the buffer
where each thread should increment its own designated cell. Then an array of ThreadData is
allocated (tdata), so that each thread can receive its own parameters for iteration. Next, two
vector objects are created to hold the thread handles. One holds them as wil::unique_-
handle so they are automatically closed when the object goes out of scope. The second
vector (handles) holds the handles as plain HANDLE instances, so it can be passed directly
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to WaitForMultipleObjects.
The chunk size is calculated as well.

Now starts the loop that prepares the data for each thread and calls CreateThread to start
threads rolling. The chunking is done almost identically as was demonstrated in chapter 5
in the primes calculation application. Let’s take a closer look at the thread’s loop:

for (; start < end; ++start)

if (data[start] % 2 == 0)

++(*counters);

For each even number, the contents of the counters pointer is incremented by one. Note
that there is no data race here - each thread has its own cell, so the final results should be
correct. The problem with this code is the fact that when a single count is written by some
thread, a full cache line is written, which invalidates any caches looking at this memory on
other processors, forcing them to refresh their cache by reading from main memory again,
which we already know is slow. This situation is referred to as false sharing.

The alternative is not to write over cells that are sharing cache lines with other threads, at
least not very often. Here is the code inside the thread block in the function CountEvenNum-
bers2, which is identical in all other respects:

auto d = (ThreadData*)param;

auto start = d->start, end = d->end;

auto data = d->data;

size_t count = 0;

for (; start < end; ++start)

if (data[start] % 2 == 0)

count++;

*(d->counters) = count;

return 0;

}, tdata.get() + i, 0, nullptr));

The major difference is keeping the count in a local variable (count) and only writing to the
cell in the result array just once - when the loop is done. Since count is on the thread’s
stack, and stacks are at least 4 KB in size, they cannot possibly be on the same cache
line as other count variables in other threads. This improves performance considerably. Of
course, generally using a local variable is likely to be faster than accessing memory indirectly
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because it’s easier for the compiler to cache this variable in a register. But the real impact is
the avoidance of sharing a cache line between threads.

The main function tests both implementations with various numbers of threads, like so:

const long long size = (1LL << 32) - 1; // just a large number

cout << "Initializing data..." << endl;

auto data = make_unique<int[]>(size);

for (long long i = 0; i < size; i++)

data[i] = (unsigned)i + 1;

auto processors = min(8, ::GetActiveProcessorCount(ALL_PROCESSOR_GROUPS));

cout << "Option 1" << endl;

for (WORD i = 1; i <= processors; ++i) {

auto start = ::GetTickCount64();

auto count = CountEvenNumbers1(data.get(), size, i);

auto end = ::GetTickCount64();

auto duration = end - start;

cout << setw(2) << i << " threads " << "count: " << count << " time: "

<< duration << " msec" << endl;

}

cout << endl << "Option 2" << endl;

for (WORD i = 1; i <= processors; ++i) {

auto start = ::GetTickCount64();

auto count = CountEvenNumbers2(data.get(), size, i);

auto end = ::GetTickCount64();

auto duration = end - start;

cout << setw(2) << i << " threads " << "count: " << count << " time: "

<< duration << " msec" << endl;

}

You’ll have to run this as a 64-bit process since it allocates about 16 GB of memory.

The function uses up to 8 threads (just to limit running time). In a well-behaved program, we
would expect almost a linear improvement, because no synchronization is used or needed.
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But, in the false sharing variation (the first), the improvement by adding threads is less
noticeable, and makes things worse with some thread values:

Initializing data...

Option 1

1 threads count: 2147483647 time: 4843 msec

2 threads count: 2147483647 time: 3391 msec

3 threads count: 2147483647 time: 2468 msec

4 threads count: 2147483647 time: 2125 msec

5 threads count: 2147483647 time: 2453 msec

6 threads count: 2147483647 time: 1906 msec

7 threads count: 2147483647 time: 2109 msec

8 threads count: 2147483647 time: 2532 msec

Option 2

1 threads count: 2147483647 time: 4046 msec

2 threads count: 2147483647 time: 2313 msec

3 threads count: 2147483647 time: 1625 msec

4 threads count: 2147483647 time: 1328 msec

5 threads count: 2147483647 time: 1062 msec

6 threads count: 2147483647 time: 953 msec

7 threads count: 2147483647 time: 859 msec

8 threads count: 2147483647 time: 855 msec

Notice in the false sharing option (1), in some cases more threads degrade performance. In
the optimal case (2), there is constant improvement.

Wait Chain Traversal

In chapters 7 and 8, we’ve looked at various synchronization primitives used to synchronized
thread activity. One caveat of synchronization is the possibility of deadlocks. If a deadlock
does occur in a non-trivial application, it’s not easy to discover where the deadlock is. There
are some techniques used with debuggers that can help locate such deadlocks. In this section,
we’ll look at a programmatic technique that can identify a wide range of deadlocks, called
Wait Chain Traversal (WCT).

The WCT API provides the ability to traverse a wait chain starting from a thread of interest.
A wait chain contains an alternating sequence of threads and objects. Each thread in the
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stream waits for an object that follows it, which is owned by the following thread in the
chain, and so on. For example, a thread may be an owner of a critical section, and wait for
a mutex, that is owned by another thread - this is an example of a wait chain.

Wait chain analysis is able to track chains involving the following objects:

• Critical sections
• Mutexes (including across processes)
• Asynchronous Local Procedure Calls (ALPC) - the internal inter-process communica-
tion mechanism used by Windows components

• SendMessage - The SendMessage API is synchronous, and if called from a thread that
is not the window’s owner causes the thread to block

• Wait operations on threads and processes
• Component Object Model (COM) cross-apartment calls (see chapter 18 for more on
COM)

• Sockets and Simple Message Block (SMB) operations

To start a wait chain analysis, a handle to aWCT session has to be opened with OpenThread-
WaitChainSession:

HWCT OpenThreadWaitChainSession (

_In_ DWORD Flags,

_In_opt_ PWAITCHAINCALLBACK callback);

The function opens a session for WCT and specifies whether the session should synchronous
or asynchronous. Specifying zero for Flags sets a synchronous session. This means the
thread that performs the analysis is blocked until the analysis is complete. Specifying
WCT_ASYNC_OPEN_FLAG (1) indicates an asynchronous session, in which case the callback
parameter should point to a function that is invoked when the analysis is complete. If
successful, OpenThreadWaitChainSession returns an opaque handle to the WCT session.
Otherwise, NULL is returned.

We’ll work with the simpler synchronous session, and describe the differences for asyn-
chronous sessions later.

Once a WCT handle is in place, a wait chain analysis is invoked for a specific thread with
GetThreadWaitChain:
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BOOL GetThreadWaitChain (

_In_ HWCT WctHandle,

_In_opt_ DWORD_PTR Context,

_In_ DWORD Flags,

_In_ DWORD ThreadId,

_Inout_ LPDWORD NodeCount,

_Out_writes_(*NodeCount) PWAITCHAIN_NODE_INFO NodeInfoArray,

_Out_ LPBOOL IsCycle);

WctHandle is the handle received from OpenThreadWaitChainSession. Context is an
optional value that is passed as-is to the callback provided to OpenThreadWaitChainSes-
sion in case of an asynchronous session. Flags indicates which out-of-process should be
considered, as described in table 10-1.

Table 10-1: Flags for GetThreadWaitChain

Flag Description
WCT_OUT_OF_PROC_FLAG (1) Without this flag, no out-of-process analysis is attempted
WCT_OUT_OF_PROC_COM_FLAG (2) Required for COM analysis
WCT_OUT_OF_PROC_CS_FLAG (4) Required for critical section analysis
WCT_NETWORK_IO_FLAG (8) Required for sockets/SMB analysis
WCTP_GETINFO_ALL_FLAGS Combines all the previous flags

ThreadId is the thread from which to begin wait chain analysis. If the thread is a member
of a process with a higher integrity level (see chapter 16 for more information), the analysis
may fail. Running with admin rights and enabling the Debug privilege can help with getting
access to such processes.

NodeCount points to the number of analysis nodes the function is willing to take. On return,
it specifies how many actual nodes were written. The maximum analysis depth, which is
the maximum nodes that can be returned is defined by WCT_MAX_NODE_COUNT (currently
defined as 16). NodeInfoArray is the output array of node objects. Finally, the last output
parameter, IsCycle, indicates whether there is a cycle in the analysis, returning TRUE if
there is a deadlock.

Each analysis node is of type WAITCHAIN_NODE_INFO, defined like so:
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typedef struct _WAITCHAIN_NODE_INFO {

WCT_OBJECT_TYPE ObjectType;

WCT_OBJECT_STATUS ObjectStatus;

union {

struct {

WCHAR ObjectName[WCT_OBJNAME_LENGTH];

LARGE_INTEGER Timeout; // Not implemented

BOOL Alertable; // Not implemented

} LockObject;

struct {

DWORD ProcessId;

DWORD ThreadId;

DWORD WaitTime;

DWORD ContextSwitches;

} ThreadObject;

};

} WAITCHAIN_NODE_INFO, *PWAITCHAIN_NODE_INFO;

Each node represents one object in the chain. A chain always starts with a thread object and
then is followed (if the thread is waiting on something) by an object, then by a thread (if
that thread owns the object), etc.

The ObjectType and ObjectStatus are always valid. Here are their definitions:

typedef enum _WCT_OBJECT_TYPE {

WctCriticalSectionType = 1,

WctSendMessageType,

WctMutexType,

WctAlpcType,

WctComType,

WctThreadWaitType,

WctProcessWaitType,

WctThreadType,

WctComActivationType,

WctUnknownType,

WctSocketIoType,
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WctSmbIoType,

WctMaxType

} WCT_OBJECT_TYPE;

typedef enum _WCT_OBJECT_STATUS {

WctStatusNoAccess = 1, // ACCESS_DENIED for this object

WctStatusRunning, // Thread status

WctStatusBlocked, // Thread status

WctStatusPidOnly, // Thread status

WctStatusPidOnlyRpcss, // Thread status

WctStatusOwned, // Dispatcher object status

WctStatusNotOwned, // Dispatcher object status

WctStatusAbandoned, // Dispatcher object status

WctStatusUnknown, // All objects

WctStatusError, // All objects

WctStatusMax

} WCT_OBJECT_STATUS;

ObjectType indicates what object is represented by the current node. If it’s a thread
(WctThreadType), then the ThreadObject part of the anonymous union provides more
information: thread ID, the process ID of this thread, the time it spent waiting and the
number of context switches it incurred.

If the object type is not a thread, it can be a lock object (such as a critical section or a mutex),
or something else (such as a send message call or COM). In the case of a lock object, the
LockObject part of the union is valid, and provides the object’s name (if any).

ObjectStatus indicates the status of the object described by the node as can be seen in the
above WCT_OBJECT_STATUS enum definition.

All that’s left to do at this point is to go over the returned array of nodes, performing some
form of analysis with the information.

Finally, whenWCT is no longer needed, the session must be closed with CloseThreadWait-
ChainSession:

VOID CloseThreadWaitChainSession(_In_ HWCT WctHandle);
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The Deadlock Detector Application

With the WCT information in hand, it’s not too difficult to build a tool that can identify
deadlocks. The DeadlockDetector project does just that. Figure 10-7 shows the application’s
window when launched.

Figure 10-7: Deadlock Detector at launch

The Processes Combobox allows selecting a process for analysis. Clicking Detect Deadlocks
enumerates all threads in the selected process, and then perform wait chain analysis for each
thread in the process, displaying the result in a tree view, where each root node is a thread.
Figure 10-8 shows the application detecting deadlocks with one of the sample applications,
SimpleDeadlock1.
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Figure 10-8: Deadlock Detector detects mutex deadlock

The application starts by enumerating processes with the Toolhelp functions, as we’ve done
numerous times, so I will not repeat the code here. The Combobox is then populated with
the results.

Once the user clicks Detect Deadlocks, the message handler starts by opening a WCT session
for synchronous analysis:

LRESULT CMainDlg::OnDetect(WORD, WORD wID, HWND, BOOL&) {

auto hWct = ::OpenThreadWaitChainSession(0, nullptr);

if (hWct == nullptr) {

AtlMessageBox(*this, L"Failed to open WCT session", IDR_MAINFRAME, MB_I\

CONERROR);

return 0;

}

Then, the selected process ID is extracted from the selected item in the Combobox, and a
call is made to enumerate the threads in that process:
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auto pid = (DWORD)m_ProcCombo.GetItemData(m_ProcCombo.GetCurSel());

auto threads = EnumThreads(pid);

The thread enumeration function returns a vector<DWORD>, a vector of all thread IDs in the
process. The code used for thread enumeration is very similar to the code used in the section
“Thread Enumeration”, earlier in this chapter.

At this point, we need to start a loop over all thread IDs, and perform the analysis for each
thread:

m_Tree.DeleteAllItems();

int failures = 0;

for (auto& tid : threads) {

if (!DoWaitChain(hWct, tid))

failures++;

}

if (failures == threads.size()) {

AtlMessageBox(*this, L"Failed to analyze wait chain. (try running eleva\

ted)",

IDR_MAINFRAME, MB_ICONEXCLAMATION);

}

::CloseThreadWaitChainSession(hWct);

return 0;

}

If all threads fail analysis, it means the target process is not accessible, and an error message
is displayed to that effect. The DoWaitChain function initiates the analysis for a specific
thread ID:
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bool CMainDlg::DoWaitChain(HWCT hWct, DWORD tid) {

WAITCHAIN_NODE_INFO nodes[WCT_MAX_NODE_COUNT];

DWORD nodeCount = WCT_MAX_NODE_COUNT;

BOOL cycle;

auto success = ::GetThreadWaitChain(hWct, 0, WCTP_GETINFO_ALL_FLAGS, tid,

&nodeCount, nodes, &cycle);

if(success) {

ParseThreadNodes(nodes, nodeCount, cycle);

}

return success;

}

The function allocates the maximum-sized array for nodes on the stack, and then initializes
nodeCount to that maximum. Next, GetThreadWaitChain is invoked to do the actual
analysis. if successful, the returned node chain is processed by calling ParseThreadNodes.
Why might GetThreadWaitChain fail? Apart from the already mentioned reason (access
denied), it’s also possible that the thread in question has exited, since thread enumeration is
based on a snapshot of currently executing threads, and it is possible for some of the threads
to terminate in the meantime. Of course, the opposite could be true as well - new threads
may have been created in the process that are not currently being analyzed. This is usually
not a big deal, since new threads are less likely to cause issues. In any case, the analysis can
be repeated, with threads re-enumerated.

ParseThreadNodes starts by defining textual representations for the object types and status
types:

void CMainDlg::ParseThreadNodes(const WAITCHAIN_NODE_INFO* nodes, DWORD count,

bool cycle) {

static PCWSTR objectTypes[] = {

L"Critical Section",

L"Send Message",

L"Mutex",

L"ALPC",

L"COM",

L"Thread Wait",

L"Process Wait",

L"Thread",

L"COM Activation",

L"Unknown",
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L"Socket",

L"SMB",

};

static PCWSTR statusTypes[] = {

L"No Access",

L"Running",

L"Blocked",

L"PID only",

L"PID only RPCSS",

L"Owned",

L"Not Owned",

L"Abandoned",

L"Unknown",

L"Error"

};

Then, a loop over the actual nodes returned starts, processing each object, and adding its
information to the tree as child nodes. A switch statement is used to distinguish between
three object types: thread, lock object, and all the rest. For each one the available information
is extracted and placed in the tree:

HTREEITEM hCurrentNode = TVI_ROOT;

CString text;

for (DWORD i = 0; i < count; i++) {

auto& node = nodes[i];

auto type = node.ObjectType;

auto status = node.ObjectStatus;

switch (type) {

case WctThreadType:

text.Format(L"Thread %u (PID: %u) Wait: %u (%s)",

node.ThreadObject.ThreadId, node.ThreadObject.ProcessId,

node.ThreadObject.WaitTime, statusTypes[status - 1]);

break;

case WctCriticalSectionType:

case WctMutexType:
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case WctThreadWaitType:

case WctProcessWaitType:

// waitable objects

text.Format(L"%s (%s) Name: %s",

objectTypes[type - 1], statusTypes[status - 1],

node.LockObject.ObjectName);

break;

default:

// other objects

text.Format(L"%s (%s)", objectTypes[type - 1],

statusTypes[node.ObjectStatus - 1]);

break;

}

auto hOld = hCurrentNode;

hCurrentNode = m_Tree.InsertItem(text, hCurrentNode, TVI_LAST);

m_Tree.Expand(hOld, TVE_EXPAND);

}

Lastly, if there is a cycle (i.e. deadlock), another leaf node is added with the text “Deadlock!”:

if (cycle) {

m_Tree.InsertItem(L"Deadlock!", hCurrentNode, TVI_LAST);

m_Tree.Expand(hCurrentNode, TVE_EXPAND);

}

There is one final detail worth mentioning. For COM analysis, a special registration is
required so that COM infrastructure is connected to WCT. The following piece of code is
used in OnInitDialog to perform that connection:

auto comLib = ::GetModuleHandle(L"ole32");

if (comLib) {

::RegisterWaitChainCOMCallback(

(PCOGETCALLSTATE)::GetProcAddress(comLib, "CoGetCallState"),

(PCOGETACTIVATIONSTATE)::GetProcAddress(comLib, "CoGetActivationState")\

);

}
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Asynchronous WCT Sessions

If the session is configured as asynchronous, the callback function provided to OpenThread-
WaitChainSession must have the following prototype:

typedef VOID (CALLBACK *PWAITCHAINCALLBACK) (

HWCT WctHandle,

DWORD_PTR Context,

DWORD CallbackStatus,

LPDWORD NodeCount,

PWAITCHAIN_NODE_INFO NodeInfoArray,

LPBOOL IsCycle);

The call to OpenThreadWaitChainSession always returns FALSE, but of GetLastError
returns ERROR_IO_PENDING, this means the call was successful in initiating the analysis
on a WCT-managed thread. Once the analysis is complete, the callback is invoked with
the results. Most of the arguments are similar to those for OpenThreadWaitChainSession.
except CallbackStatus, which indicates whether the analysis succeeded or the reason for
the failure. ERROR_SUCCESS (0) means success, and there are a few reasons for failure. The
most common failure is ERROR_ACCESS_DENIED, which as mentioned earlier may be averted
by running with admin rights and enabling the Debug privilege.

The DeadlockDetector project contains a function to enable the Debug privilege in
DeadlockDetector.cpp (such a function was also used in chapter 3).

User Mode Scheduling

Chapter 6 discussed scheduling in detail. The kernel scheduler is responsible for determining
which thread should run on which processor, and make the context switches when needed.
In some extreme cases, this is not as efficient as it can be. It would be advantageous in some
scenarios to be able to control scheduling from user-mode rather than kernel mode. These
decisions should not require a switch from user mode to kernel mode, as these switches are
not cheap.
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In the past (and still supported), Windows provided fibers, which attempted to provide a
user-mode schedulingmechanism. However, fibers were not recognized by the kernel, which
caused a number of issues, such as Thread Local Storage not properly propagated, Thread
Environment Block structures not alignedwith the currently executing fiber andmore. Fibers
should not be used today, and so they are not described in this book.

Starting with Windows 7 and Windows 2008 R2, Windows supports an alternative mecha-
nism called User Mode Scheduling (UMS), where a user-mode thread becomes a scheduler of
sorts and can schedule threads from user mode without the need to have a user-mode/kernel-
mode transition. The mechanism is known to the kernel, so the drawbacks of fibers are not
present with UMS, since real threads are used rather than fibers sharing a thread.

Unfortunately, crafting a real system that uses UMS is not trivial, to say the least, and so
a deep description of UMS is not attempted in this book. Rather, Microsoft provided (since
2010) a library called Concurrency Runtime, abbreviated Concrt and pronounced “concert”,
that uses UMS behind the covers to provide efficient use of threads when concurrent
execution is required.

The Primes Counter application from chapter 3 is used as an example. In that application,
we created a number of threads (that was a parameter to the application), and split the work
of calculating prime numbers between the threads, allowing each one to count the number
of threads in its chunk, and then finally summing the results from all threads.

One of the issues we faced is the fact that it was difficult to partition the work fairly so that
each thread has roughly the same workload. Otherwise, threads that are done early cause a
CPU to be idle. We tried to compensate by having more threads, but that has its cost too in
terms of memory and context switches.

In some cases, the concurrency runtime provides nice solutions with very simple code
compared to the hardship of partitioning, thread creation, and management, that was done
in the application.

The application from chapter 3 is also available in the projects for this chapter, with the
addition of doing the same work of counting prime numbers in a range, but this time using
concrt.

The first thing required is an #include:

#include <ppl.h>

ppl.h provides the convenience functions, one of which we’ll use in a moment. It includes
the “real” workhorse of concrt, concrt.h.

In the main function, after the existing calculation code is done, we use concrt like so:
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count = 0;

concurrency::parallel_for(from, to + 1, [&count](int n) {

if (IsPrime(n))

::InterlockedIncrement((unsigned*)&count);

});

auto end = ::GetTickCount64();

printf("Using concrt: Primes: %d, Elapsed: %u msec\n", count, (ULONG)(end - sta\

rt));

The parallel_for function does what it implies: a for loop, parallelized automatically.
You just specify the initial value and the final value plus one, and a function to run for each
iteration (here provided as a lambda). This code runs concurrently in some way. Note there is
no indication for how many threads to create or how to manage them. The only caveat here
is the required synchronization on the count shared variable. In the original partitioning
scheme, this was not needed, as each thread was incrementing its own counter.

Here is an example run on my system:

C:\>PrimesCounter.exe 3 20000000 16

Thread 1 created (3 to 1250001). TID=42576

Thread 2 created (1250002 to 2500000). TID=30636

Thread 3 created (2500001 to 3749999). TID=16944

...

Thread 15 created (17499989 to 18749987). TID=32580

Thread 16 created (18749988 to 20000000). TID=55440

Thread 1 Count: 96468. Execution time: 515 msec

Thread 2 Count: 86603. Execution time: 796 msec

...

Thread 15 Count: 74745. Execution time: 1906 msec

Thread 16 Count: 74475. Execution time: 1906 msec

Total primes: 1270606. Elapsed: 1985 msec

Using concrt: Primes: 1270606, Elapsed: 1640 msec

It doesn’t matter how many threads I throw at the problem, the concrt version always
outperforms the manual partitioning. And it does so with very few lines of code, and much
more efficiently - it never creates more threads than the number of logical processors on the
system.

SQL Server uses UMS to improve its performance since it’s a highly multithreaded
server application.
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Init Once Initialization

One common pattern in many applications is having a singleton object. In some views, it’s
an anti-pattern, but this debate is out of scope for this book. The fact is, singletons are useful
and sometimes necessary. One common requirement for a singleton is to be initialized just
once. In a multithreaded application, multiple threads may access the singleton at the same
time initially, but the singleton must be initialized just once. How can that be achieved?

There are several well-known algorithms that, if properly implemented, can get the job done.
This is not a general algorithm book, so these are not described here. The Windows API
however, provides a built-in way to call a function with the guarantee that it is called just
once.

In C++ 11 and later, static variables in functions are guaranteed to be initialized
just once. Also, C++ 11 has the std::call_once function, that does the same
thing dynamically.

The One-Time Initializing API is available starting from Windows 8 and Server 2012. The
simplest version is synchronous initialization, which is described here. For the asynchronous
version, consult the official documentation.

A variable of type INIT_ONCE is used to control on-time initialization. It must be initialized
(pun not intended) in a static manner - global or static variable, so that its initialization is
guaranteed to be just once. The simplest way to initialize it is by setting its value to INIT_-
ONCE_STATIC_INIT like so:

INIT_ONCE init = INIT_ONCE_STATIC_INIT;

INIT_ONCE is just a wrapper for an opaque pointer. The alternative is to initialize it with
InitOnceInitialize:

VOID InitOnceInitialize(_Out_ PINIT_ONCE InitOnce);

Then, when the initialization is needed call InitOnceExecuteOnce:
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BOOL InitOnceExecuteOnce(

_Inout_ PINIT_ONCE InitOnce,

_In_ __callback PINIT_ONCE_FN InitFn,

_Inout_opt_ PVOID Parameter,

_Outptr_opt_result_maybenull_ LPVOID* Context);

The InitOnce parameter is the one initialized previously, controlling this initialization.
InitFn is the function that is guaranteed to be called just once. Parameter is an optional
context value to be passed into the initialization function, and Context is an optional result
from the initialization function. The function itself must have the following prototype:

BOOL (WINAPI *PINIT_ONCE_FN) (

_Inout_ PINIT_ONCE InitOnce,

_Inout_opt_ PVOID Parameter,

_Outptr_opt_result_maybenull_ PVOID *Context);

if the callback returns TRUE, the initialization is considered successful. Otherwise, it’s
considered failed, and FALSE returns to InitOnceExecuteOnce. Parameter is the value
passed in from InitOnceExecuteOnce. The context can return some value, but it must have
the rightmost INIT_ONCE_CTX_RESERVED_BITS (2) bits zeroed, which means that if it’s an
address, it must be 4-bytes aligned.

Debugging Multithreaded Applications

Writing correct and efficient multithreaded applications is hard. Once bugs creep in - and
they will - debugging becomes important, and is much more difficult than single-threaded
application. Covering all aspects of debugging is beyond the scope of this book. Instead, I
would like to mention some tips and helpers available in Visual Studio that could be useful,
especially for multithreaded applications.

Debugging is a big topic, and Visual Studio is not the only debugger in town. In fact, in
production environments, other low-level and low-footprint debuggers, such as WinDbg
are used. This section is only about Visual Studio debugging, typically performed on the
developer’s workstation.
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Breakpoints

When a breakpoint is set in a multithreaded part of the code, any thread triggers it, and all
threads are suspended as a result. Performing debugger step operations resume all threads,
not just the thread you may be interested in isolating. One way to isolate a thread is to freeze
all other threads using the Threads window, as shown in figure 10-9.

Figure 10-9: Context menu options for the Threads debugger window

The Show Threads in Source option shown in figure 10-9, adds a thread icon in the source
code where one or more threads are when a breakpoint hits.

Breakpoints can be conditional. One of the possible conditions is a thread ID or thread name,
allowing you to break only on a specific thread (or threads) of interest (figure 10-10).
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Figure 10-10: Breakpoint thread filter

Parallel Stacks

The Parallel Stacks window (accessible from the Debug / Windows / Parallel Stacks menu)
shows a graphical view of how threads are spawned from other threads, giving a nice visual
representation of all threads running in the process (figure 10-11).
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Figure 10-11: Parallel Stacks window

Parallel Watch

The Parallel Watch window, accessible in a similar manner as Parallel Stacks, shows a
variable or expression of choice that is used by multiple threads running the same code,
each having its own copy of the variable (figure 10-12).
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Figure 10-12: Parallel Watch window

Thread Names

Chapter 5 described thread names, available in Windows 10 with the SetThreadDescrip-
tion function. A thread’s name can also be directly changed in the Threads window
during debugging, making it easier to follow specific threads. The names get reset once
the debugging session is over, so it’s better to call SetThreadDescription on well-known
threads in code so that their names are ready when starting debugging.

Exercises

1. Create a console application that calculates the Mandelbrot set with concrt. Compare your
results with the same exercise from chapter 5.

Summary

In this chapter, various threading-related topics were presented. In the next chapter, we’ll
leave threads behind, and look at file and device I/O operations.



Chapter 11: File and Device I/O
In previous chapters, we used threads in various ways to perform CPU-bound work.
However, not all operations are CPU related. Some require communication with files or
other devices, commonly known as I/O operations. These operations do not require CPU
usage until the operations complete, at which point thread code continues processing with
the result of the I/O operation.

In this chapter, we’ll examine I/O operations, both synchronous and asynchronous, and look
at how threads can pick up I/O results efficiently to continue processing.

In this chapter:

• The I/O System
• The CreateFile Function
• Synchronous I/O
• Asynchronous I/O
• I/O Completion Ports
• I/O Cancellation
• Devices
• Pipes and Mailslots
• Transactional NTFS
• File Search and Enumeration
• NTFS Streams
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The I/O System

The main purpose of the I/O system is to abstract access to physical and logical devices.
Accessing a file in the any file system should be different than accessing a serial port, a USB
camera or a printer. The I/O System is comprised of multiple components, some in user mode
and most in kernel mode. The most important pieces are shown in figure 11-1.

Figure 11-1: Important parts of the I/O System

User-mode processes call into the I/O system using various Windows APIs, which will be
examined in this chapter. All file and device operations on the kernel side are initiated by
the I/O manager. A request, such as read or write, is handled by creating a kernel structure
called I/O Request Packet (IRP), filling in the details of the request and then passing it to the
appropriate device driver. For real files, this goes to a file system driver, such as NTFS. This
process is not essentially different than normal system calls, as shown in figure 11-2.
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Figure 11-2: Read I/O operation call flow

As far as the kernel is concerned, I/O operations are always asynchronous. This means that
a driver should initiate the operation and return as soon as possible so that the calling thread
can regain control. The original caller, however, can choose to make the call synchronous.
In that case, the I/O manager waits on behalf of the caller until the operation is done. This
flexibility is very convenient from the client’s perspective.

The CreateFile Function

The CreateFile function is the entry point to the world of I/O operations. The function
name itself is somewhat misleading. The term “File” used in CreateFile is short for “File
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Object”, which is the abstraction used by the kernel to represent a connection to a device,
whether that device happens to be a file in a file system or not. Here is the prototype of
CreateFile:

HANDLE CreateFile(

_In_ LPCTSTR lpFileName,

_In_ DWORD dwDesiredAccess,

_In_ DWORD dwShareMode,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,

_In_ DWORD dwCreationDisposition,

_In_ DWORD dwFlagsAndAttributes,

_In_opt_ HANDLE hTemplateFile);

Windows 8 and Server 2012 added a similar function, CreateFile2, defined like so:

typedef struct _CREATEFILE2_EXTENDED_PARAMETERS {

DWORD dwSize;

DWORD dwFileAttributes;

DWORD dwFileFlags;

DWORD dwSecurityQosFlags;

LPSECURITY_ATTRIBUTES lpSecurityAttributes;

HANDLE hTemplateFile;

} CREATEFILE2_EXTENDED_PARAMETERS, *PCREATEFILE2_EXTENDED_PARAMETERS;

HANDLE CreateFile2(

_In_ LPCWSTR lpFileName,

_In_ DWORD dwDesiredAccess,

_In_ DWORD dwShareMode,

_In_ DWORD dwCreationDisposition,

_In_opt_ PCREATEFILE2_EXTENDED_PARAMETERS pCreateExParams);

CreateFile2 is very similar to CreateFile, but is usable from UWP applications as
well as desktop applications. CreateFile, on the other hand, cannot be called from
UWP applications. Note that CreateFile2 is Unicode only, whereas CreateFile has the
usual CreateFileA and CreateFileW variants. CreateFile2 also supports one new flag
(FILE_FLAG_OPEN_REQUIRING_OPLOCK) that cannot be provided to CreateFile.
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Opportunistic locks (Oplocks) are beyond the scope of this chapter.

The lpFileName parameter indicates which file or device name to create or open. This is
not necessarily a “file name”, as indicated by the parameter’s name. It is a symbolic link into
the executive’s object manager namespace, with some parsing rules added. Table 11-1 shows
some common filename patterns, some of which are elaborated further in the following
paragraphs.

Table 11-1: Common file name arguments for CreateFile

Filename format Example Description
x:\dir1\dir2\file c:\mydir\myfile.txt Full path to a file/directory in

the filesystem
..\dir1\file ..\mydir\myfile.txt Relative path to the

file/directory system (.. means
parent directory)

dir1\dir2\file mydir1\mydir2\myfile.txt Relative path to a file/directory
from current directory

file myfile.txt File in the file system in the
current directory

\server\share\dir1\dir2\file \myserver\myshare\mydir\myfile.txtFile/directory in a share on
another machine

\server\pipe\pipename \myserver\pipe\mypipe Named pipe client
\server\mailslot\mailslotname \myserver\mailslot\mymailslot Mailslot client
\.*devicename* \.\kobjexp Device symbolic link name
builtin com1 Old DOS names are treated as

symbolic links rather than files
in the current directory

The “symbolic link” is the fundamental value provided for the file name in CreateFile.
Even something like “c:” that may look very “fundamental” is, in fact, a symbolic link. To
view these symbolic link, we can check out the WinObj tool from Sysinternals we met
briefly in chapter 2, or my own Object Explorer tool. Figure 11-3 shows WinObj with the
Global?? object directory selected. Figure 11-4 shows the same directory in Object Explorer
(select Objects / Object Manager Namespace to open that view). The selected directory is the
symbolic links directory.
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Figure 11-3: Symbolic links inWinObj
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Figure 11-1: Symbolic links in Object Explorer

Every name in the list is a symbolic link, which is a candidate to CreateFilewith the prefix
“\\.\”. Some symbolic links do not require this prefix, such as “C:”. Notice that “C:” is indeed
a symbolic link, pointing to something like “Device\HarddiskVolume3”, which can be found
under the Device object manager directory.

Some of the symbolic links look nice, like “C:”, “PhysicalDrive0”, “PIPE” and more, while
others look like a jumble of numbers with GUIDs. These links are mostly for hardware
devices. The subsection “Communicating with devices” later in this chapter provides further
details.

Next, we’ll examine the rest of the parameters to CreateFile before discussing some of the
common “files” that can be accessed with the function.

The dwDesiredAccess parameter is used to specify the access mask required for accessing
the file object. In most cases, you’ll use one or more of the generic access rights: GENERIC_-
READ (to read data from the file/device), GENERIC_WRITE (to write data to the file/device), or
both (GENERIC_READ | GENERIC_WRITE). You can also specify zero, if only very superficial
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information is to be accessed, such as a file’s timestamp or size. You can also use more fine-
grained access masks relevant to the file or device being accessed. For example, FILE_READ_-
DATA is a specific access mask for files, requesting reading their contents. However, reading
a file’s attribute requires another access mask - FILE_READ_ATTRIBUTES. GENERIC_READ,
being a generic access mask, is mapped to specific access masks, that for files include both
FILE_READ_DATA and FILE_READ_ATTRIBUTES.

The SYNCHRONIZE and FILE_READ_ATTRIBUTES access masks are always re-
quested regardless of whether they are specified explicitly or not.

More information on access masks and generic mappings are provided in chapter 16
(“Security”).

The dwShareMode parameter specifies the sharing mode the file/device should be opened
with. This is mostly used with a file system file or directory. If the file/directory is not
open, the caller specifies how she allows sharing the object with other CreateFile calls.
For example, if the initial caller allows sharing as read-only, subsequent callers cannot open
the object with GENERIC_WRITE access. If the file/directory is already open when another
CreateFile call comes in for the same object, the share mode is ignored. Table 11-2 lists the
possible sharing modes.

Table 11-2: Sharing modes for CreateFile

Sharing mode Description
0 Object is opened with exclusive access. No other CreateFile call

can succeed.
FILE_SHARE_READ Object is allowed to be opened with GENERIC_READ access by

subsequent callers.
FILE_SHARE_WRITE Object is allowed to be opened with GENERIC_WRITE access by

subsequent callers.
FILE_SHARE_DELETE Object is allowed to be opened with DELETE access by subsequent

callers. The file will be deleted when all handles are closed.
Combinations of the above Combines the meanings of each flag

The next argument, lpSecurityAttributes is the standard SECURITY_ATTRRIBUTES dis-
cussed in chapter 2.
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The dwCreationDisposition parameter specifies how to create or open file system objects
(files and directories). For other devices, the flag should always be set to OPEN_EXISTING.
The possible values and their meanings are described in table 11-3.

Table 11-3: Creation disposition for CreateFile

Value File exists File does not exist
CREATE_NEW (1) CreateFile fails A new file is created
CREATE_ALWAYS (2) Overwrites the existing file Creates a new file
OPEN_EXISTING (3) Opens the file CreateFile fails
OPEN_ALWAYS (4) Opens the file (no overwrite) Creates the file
TRUNCATE_EXISTING (5) Opens the file and truncates it to zero size ‘CreateFile fails

The dwFlagsAndAttributes parameter allows setting three separate flags/values that can
be combined by the normal OR operator:

• Various flags affecting the operations that are to be performed once the file object is
created (table 11-4)

• File attributes on the resulting file in case a new file is created in the file system (table
11-5)

• Quality of service flags for named pipe clients, if SECURITY_SQOS_PRESENT flag is
present as well. Named pipes are discussed in chapter 18 (in part 2).

Table 11-4: Standard flags for dwFlagsAndAttributes

Flag (FILE_FLAG_*) Description
WRITE_THROUGH Forces any write operations flush data to disk (and written to the cache

as well)
NO_BUFFERING Forces operations to go directly to disk (no caching is used)
SEQUENTAIL_SCAN A hint to the file system that a sequential read is is the typical operation

on the file, may have positive effects on performance
RANDOM_ACCESS A hint to the file system that random access to the file is expected
DELETE_ON_CLOSE Indicates the file should be deleted when the last handle to it is closed
OVERLAPPED Opens the file/device for asynchronous operations (see later in this

chapter)
BACKUP_SEMANTICS Required flag to open a handle to a directory rather than a file. The flag

allows callers with the Backup or Restore privileges to open any file,
regardless of security settings on the file

POSIX_SEMANTICS Requests file name lookup is case sensitive. This flag does not seem to be
respected in recent versions of Windows
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Table 11-4: Standard flags for dwFlagsAndAttributes

Flag (FILE_FLAG_*) Description
OPEN_REPARSE_POINT Ignores the normal processing of the reparse point (if any) and opens the

file for normal access (reparse points are beyond the scope of this
chapter)

OPEN_NO_RECALL A hint to the file system that a remote file will not necessarily be read to
local storage

SESSION_AWARE (Windows 8+) Device is opened with session awareness. This allows
session 0 to open to access devices that are session-aware. This flag also
requires a Registry entry to enable this check. The value
IoEnableSessionZeroAccessCheck must be set to 1 in
HKLM\System\CurrentControlSet\SessionManager\I/O System

Table 11-5: File attributes for dwFlagsAndAttributes

File attribute
(FILE_ATTRIBUTE_)

Description

NORMAL or none Normal file (if used, must be without any of the following
attributes)

HIDDEN File is hidden
ARCHIVE File should be archived. It has no actual effect, but

applications that perform file backup use it as a marker
ENCRYPTED Contents of the file are encrypted
READONLY File is read-only, and cannot be opened for write access
SYSTEM File is a system file, to be used by the OS and system

components only
OFFLINE Actual storage of the file is elsewhere. This flag should not

be set arbitrarily
TEMPORARY A hint to the file system and cache manager that the file is

used for temporary storage. The system tries to avoid
writing the file’s data to storage, as the file is expected to be
deleted shortly. Good to combine with
FILE_FLAG_DELETE_ON_CLOSE

NOT_CONTENT_INDEXED The file will not be indexed by the indexing service

The defined attribute list is longer than those shown in table 11-5, but these extras cannot
be set with CreateFile, and must be set with different APIs (depending on the attribute in
question), described later in this chapter.

Careful use of the cache-related flags (FILE_FLAG_WRITE_THROUGH, FILE_FLAG_NO_BUFFER-
ING, FILE_FLAG_SEQUENTAIL_SCAN, FILE_FLAG_RANDOM_ACCESS) for files can have perfor-
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mance benefits. For FILE_FLAG_NO_BUFFERING, however, there are some requirements to
make it work:

• Read/write access size is required to be a multiple of the volume sector size. This size
can be discovered by calling GetDiskFreeSpace.

• The buffers used in read/write operations must be aligned on the physical sector size
boundary. For these kinds of buffers, the VirtualAlloc function is recommended for
allocation purposes, as it’s always page (4 KB)-aligned (see chapter 13 for more on
VirtualAlloc) or use the C runtime _aligned_malloc function. The physical sector
size may be different from the logical sector size provided by GetDiskFreeSpace. To
get the physical sector size, a DeviceIoControl call is needed on the volume with the
IOCTL_STORAGE_QUERY_PROPERTY control code (see later in this chapter for more on
DeviceIoControl).

If caching is used (the normal case), you can call FlushFileBuffers to force flushing data
to the file:

BOOL FlushFileBuffers(_In_ HANDLE hFile);

The last parameter to CreateFile, hTemplateFile, is an optional file handle to copy
attributes from in case a new file is being created. if specified, the handle must have the
GENERIC_READ access mask. If an existing file is opened, this parameter is ignored.

CreateFile returns a handle to the created file object, or INVALID_HANDLE_VALUE if it fails
(one of the few Create functions that do not return NULL on failure). As usual, GetLastError
provides more information about the error.

In the following sections, we’ll examine various aspects of working with files and devices
and elaborate on some of the flags described in this section.

Working with Symbolic Links

As we’ve seen, CreateFile internally works by parsing symbolic links. These links are
available to query with QueryDosDevice:
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DWORD QueryDosDevice(

_In_opt_ LPCTSTR lpDeviceName,

_Out_ LPTSTR lpTargetPath,

_In_ DWORD ucchMax);

The function works in two modes: if lpDeviceName is not NULL, the function looks up the
symbolic link and returns its target (if any) in lpTargetPath. If lpDeviceName is NULL,
it returns all symbolic links in lpTargetPath, separated by '\0', so they can be iterated
if desired, calling QueryDosDevice for each symbolic link. The last entry, in this case, has
an extra '\0' to indicate the end of the list. The function returns the number of characters
written to the target buffer, or zero if the function fails. If the function fails because the target
buffer is too small, GetLastError returns ERROR_INSUFFICIENT_BUFFER.

The symlinks application allows querying symbolic links using QueryDosDevice. If no
arguments are passed in, the application dumps all symbolic links and their targets. If
an argument is provided, the application dumps only those symbolic links that have the
provided string in their names.

The first step is to allocate a large enough buffer to read all symbolic links. This is needed
since the application needs to either dump all of them or search through them for matches.
Either way, all the symbolic links need to be read:

#include <memory>

#include <string>

#include <set>

using namespace std;

int wmain(int argc, wchar_t* argv[]) {

auto size = 1 << 14;

unique_ptr<WCHAR[]> buffer;

for (;;) {

buffer = make_unique<WCHAR[]>(size);

if (0 == ::QueryDosDevice(nullptr, buffer.get(), size)) {

if (::GetLastError() == ERROR_INSUFFICIENT_BUFFER) {

size *= 2;

continue;

}

else {

printf("Error: %d\n", ::GetLastError());
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return 1;

}

}

else

break;

}

A loop is constructed that allocates an array of characters with std::make_unique<> and
then QueryDosDevice is called with a NULL lpDeviceName to bring in all symbolic links. If
the buffer is too small, the size is doubled, and the attempt is retried.

Once successful, the returned list must be iterated, calling QueryDosDevice again for each
symbolic link that matches the provided command-line argument, or all of them. The
application takes care of sorting the results by symbolic link using std::set (which inserts
its elements into a binary search tree sorted by the element) with a custom comparer so the
comparison is case insensitive (which is not the default for std::wstring):

if (argc > 1) {

// convert argument to lowercase

::_wcslwr_s(argv[1], ::wcslen(argv[1]) + 1);

}

auto filter = argc > 1 ? argv[1] : nullptr;

// simplify stored type

using LinkPair = pair<wstring, wstring>;

struct LessNoCase {

bool operator()(const LinkPair& p1, const LinkPair& p2) const {

return ::_wcsicmp(p1.first.c_str(), p2.first.c_str()) < 0;

}

};

// sorted by LessNoCase

set<LinkPair, LessNoCase> links;

WCHAR target[512];

for (auto p = buffer.get(); *p; ) {

wstring name(p);
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auto locase(name);

::_wcslwr_s((wchar_t*)locase.data(), locase.size() + 1);

if (filter == nullptr || locase.find(filter) != wstring::npos) {

::QueryDosDevice(name.c_str(), target, _countof(target));

// add pair to results

links.insert({ name, target });

}

// move to next item

p += name.size() + 1;

}

// print results

for (auto& link : links) {

printf("%ws = %ws\n", link.first.c_str(), link.second.c_str());

}

Here are example runs with some common symbolic links:

C:\>symlinks.exe c:

C: = \Device\HarddiskVolume3

c:\> symlinks.exe pipe

PIPE = \Device\NamedPipe

c:\>symlinks.exe nul

NUL = \Device\Null

c:\>symlinks con

CimfsControl = \Device\cimfs\control

CON = \Device\ConDrv\Console

CONIN$ = \Device\ConDrv\CurrentIn

CONOUT$ = \Device\ConDrv\CurrentOut

...

PartmgrControl = \Device\PartmgrControl

PciControl = \Device\PciControl

...

UVMLiteController = \Device\UVMLiteController0x1

VolMgrControl = \Device\VolMgrControl
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The opposite function to QueryDosDevice exists as well, which allows defining new
symbolic links:

BOOL DefineDosDevice(

_In_ DWORD dwFlags,

_In_ LPCTSTR lpDeviceName,

_In_opt_ LPCTSTR lpTargetPath);

lpDeviceName is the symbolic link’s name and lpTargetPath is the target of the link.
For example, making the following call sets up a new logical drive to point to an existing
directory:

::DefineDosDevice(0, L"s:", L"c:\\Windows\\System32");

This is the same effect provided by the built-in Windows tool subst.exe:

c:>subst s: c:\windows\system32

After one of the previous calls, you can open Explorer and see the new drive appearing just
like any other drive.
However, going back to WinObj or Object Explorer, the new symbolic link does not appear
in the Global?? object manager directory; that would be too powerful an operation. Instead,
it’s part of the logon session associated with the calling process’ token. Figure 11-5 shows
where such symbolic links are stored.

The mapping affects the global namespace if the caller is running under the LocalSystem
account.
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Figure 11-5: Symbolic links created with DefineDosDevice

The directory name pointed to by the arrow in figure 11-5 is the logon session ID. This is
discussed further in chapter 16 (“Security”).

The dwFlags parameter to DefineDosDevice can be zero or a combination of the values
shown in table 11-6.

Table 11-6: Flags to DefineDosDevice

Flag Description
DDD_NO_BROADCAST_SYSTEM Prevent the function from broadcasting a WM_SETTINGSCHANGE

message. This message normally allows applications such as
Explorer to update their state

DDD_RAW_TARGET_PATH The target path is interpreted as a native path (something like
\Device\Harddiskvolume3\MyDir) instead of a Win32 path
(c:\MyDir)

DDD_REMOVE_DEFINITION Removes the symbolic link mapping. Typically lpTargetPath
is set to NULL to delete the name provided in lpDeviceName.
Otherwise, the target name is looked up for removal
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Table 11-6: Flags to DefineDosDevice

Flag Description
DDD_EXACT_MATCH_ON_REMOVE Only valid with the previous flag. Performs an exact match on

the target path (rather than a partial match)

Path Length

The file name length to CreateFile is traditionally limited to MAX_PATH characters, defined
as 260. With the Unicode version of the function (CreateFileW), that path can be extended
to about 32767 characters by prepending the path with *\?* (e.g. \\?\c:\MyDir\MyFile.txt).
Each part within the path is limited to 255 characters.

Remember that as part of a C/C++ string, each backslash must be escaped with
another backslash. So “c:\temp” must be written “c:\\temp”. An alternative with
C++ 11 is to use the string literal feature. This is done by prepending R to the
string before the quotes and then put the path surrounded by parenthesis. Exam-
ple: R"(c:\temp\file.txt)" or with Unicode: LR"(c:\temp\file.txt)". An
optional delimiter sequence can appear before the ( and must be the same after
), but for paths this is rarely needed.

Extending the path with \\?\ is also supported for Universal Naming Convention
(UNC) paths as well. The prefix changes to \\?\UNC\.

Windows 10 version 1607 and Windows Server 2016 added a new feature that allows
breaking out of these path length limitations. This is an opt-in feature that requires two
settings:

• A global registry value named LongPathsEnabled atHKLM\System\CurrentControlSet\

Control\FileSystem must be set to 1 (DWORD value). The first time an I/O function is called
for a process, this value is read and cached for the lifetime of the process. This means any
change to this value will be noticed for new processes only. If this value is changed and the
system is rebooted, all processes are guaranteed to see the new value.

• The specific executable must include the longPathAware element in its manifest and
set to true. This is the full section in the manifest XML file:
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<application xmlns="urn:schemas-microsoft-com:asm.v3">

<windowsSettings

xmlns:ws2="http://schemas.microsoft.com/SMI/2016/WindowsSettings">

<ws2:longPathAware>true</ws2:longPathAware>

</windowsSettings>

</application>

The Registry is a machine-wide setting and so requires admin access to change.

Most of the functions in the Windows API dealing with paths can cope with the possibly
very long paths.

Be careful when using long paths, as most built-in applications do not have this
setting in their manifest. For example, Windows Explorer doesn’t have it. With
very long paths, Explorer will not be able to handle such paths.

Directories

The CreateFile function can open a handle to an existing directory if the flag FILE_-
FLAG_BACKUP_SEMANTICS is specified in the dwFlagsAndAttribute argument. To create a
directory, a separate function is needed:

BOOL CreateDirectory(

_In_ LPCTSTR lpPathName,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes);

BOOL CreateDirectoryEx(

_In_ LPCTSTR lpTemplateDirectory,

_In_ LPCTSTR lpNewDirectory,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes);

The lpPathName parameter of CreateDirectory and lpNewDirectory of CreateDirec-
toryExW specifies the path of the new directory (this can be a full path or relative path,
but all components of the path except the new directory must exist before the call). An
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optional SECURITY_ATTRIBUTES pointer can be supplied to set the security descriptor for
the new directory (see chapter 16 for more information). Finally, the lpTemplateDirectory
parameter to CreateDirectoryEx allows specifying an existing directory from which some
properties of the new directory are copied, such as compression and encryption settings.

Files

Once a file handle is open, there is some basic information about the file that can be queried.
Probably the most common is the file’s size:

DWORD GetFileSize(

_In_ HANDLE hFile,

_Out_opt_ LPDWORD lpFileSizeHigh);

BOOL GetFileSizeEx(

_In_ HANDLE hFile,

_Out_ PLARGE_INTEGER lpFileSize);

File sizes are 64-bit, implying Windows can handle extremely large files. The maximum file
size in practice is much more limited than the theoretical 2 to the 64th power (16 EB) bytes
and depends on the actual disk size, the file system and some attributes, such as whether
the file is compressed or sparse (discussed later in this chapter). Still, files larger than 32-bit
size (4 GB) are fairly common, and code should generally expect such sizes unless there is a
compelling reason to assume otherwise.

GetFileSize returns the low 32-bit of the file size as its return value, and the high 32-bit
value in the lpFileSizeHigh parameter, if specified. If lpFileSizeHigh is NULL, the high
32-bit value is not returned. The function returns INVALID_FILE_SIZE in case of an error,
defined as 0xffffffff.

GetFileSizeEx is simpler, as it returns the file size in a LARGE_INTEGER structure, which
we met before. This function returns the usual boolean to indicate success or failure.

The file size returned by the above two functions is the logical file size, which may be
different than the physical file size. For example, if the file is compressed or sparse, its actual
size on the disk is likely to be smaller. For such files, there is a dedicated function that can
be used to query the actual file size on disk:
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DWORD GetCompressedFileSize(

_In_ LPCTSTR lpFileName,

_Out_opt_ LPDWORD lpFileSizeHigh);

GetCompressedFileSize accepts the file name rather than a handle, and returns the
requested size in the same format as GetFileSize.

Another piece of basic information about a file relates to its creation, modification and access
times. GetFileTime retrieves these values:

BOOL GetFileTime(

_In_ HANDLE hFile,

_Out_opt_ LPFILETIME lpCreationTime,

_Out_opt_ LPFILETIME lpLastAccessTime,

_Out_opt_ LPFILETIME lpLastWriteTime

);

The returned times are in the usual units of 100nsec from January 1, 1601. A NULL pointer
can be provided for any of the times to indicate that a particular result is of no interest to
the caller.

File attributes can be retrieved with GetFileAttributes or GetFileAttributesEx:

DWORD GetFileAttributes(_In_ LPCTSTR lpFileName);

BOOL GetFileAttributesEx(

_In_ LPCTSTR lpFileName,

_In_ GET_FILEEX_INFO_LEVELS fInfoLevelId,

_Out_ LPVOID lpFileInformation);

GetFileAttributes accepts a file name and returns its attributes. These attributes include
those in table 11-5 and can include additional attributes that are not legal to set in a
CreateFile call. These additional values are listed in table 11-7.
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Table 11-7: More file attributes

File attribute
(FILE_ATTRIBUTE_)

Description

DIRECTORY or none Directory (rather than a file)
REPARSE_POINT The file has an associated reparse point
COMPRESSED The file is compressed
SPARSE_FILE The file is a sparse file
INTEGRITY_STREAM (Windows 8+) Directory or data stream is configured with

integrity (ReFS only)*
NO_SCRUB_DATA (Windows 8+) The data stream should not be read by the

data integrity scanner (ReFS and storage spaces only)*

* A detailed discussion of the attributes FILE_ATTRIBUTE_INTEGRITY_STREAM and FILE_-
ATTRIBUTE_NO_SCRUB_DATA are beyond the scope of this book.

GetFileAttributesEx currently accepts a single “level” with the value GetFileExInfoS-
tandard, and returns a WIN32_FILE_ATTRIBUTE_DATA structure defined like so:

typedef struct _WIN32_FILE_ATTRIBUTE_DATA {

DWORD dwFileAttributes;

FILETIME ftCreationTime;

FILETIME ftLastAccessTime;

FILETIME ftLastWriteTime;

DWORD nFileSizeHigh;

DWORD nFileSizeLow;

} WIN32_FILE_ATTRIBUTE_DATA, *LPWIN32_FILE_ATTRIBUTE_DATA;

In addition to the file attributes discussed earlier, the function returns the file’s creation time,
last access time, last write time, and size.

To get even more information for a file, call GetFileInformationByHandle:

BOOL GetFileInformationByHandle(

_In_ HANDLE hFile,

_Out_ LPBY_HANDLE_FILE_INFORMATION lpFileInformation);
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The function takes a handle to a file, rather than a file path, and returns a superset of WIN32_-
FILE_ATTRIBUTE_DATA called BY_HANDLE_FILE_INFORMATION:

typedef struct _BY_HANDLE_FILE_INFORMATION {

DWORD dwFileAttributes;

FILETIME ftCreationTime;

FILETIME ftLastAccessTime;

FILETIME ftLastWriteTime;

DWORD dwVolumeSerialNumber;

DWORD nFileSizeHigh;

DWORD nFileSizeLow;

DWORD nNumberOfLinks;

DWORD nFileIndexHigh;

DWORD nFileIndexLow;

} BY_HANDLE_FILE_INFORMATION, *PBY_HANDLE_FILE_INFORMATION;

The function returns several pieces of information, some of which are also part of WIN32_-
FILE_ATTRIBUTE_DATA. The extras include the volume serial number, the number of links
to the file (can be more than 1 on NTFS if there are hard links to the file), and the file’s index
(64 bit, provided as two 32-bit numbers). The times are given in the usual 100nsec units
since January 1, 1601. The file index is unique to a file on a particular volume. This means
combining the file index with the volume number gives an identity for a file on a particular
machine. This can be used for comparing two file handles, indicating whether they point to
the same file or not.

If you’re only interested in a file’s attributes, GetFileInformationByHandle is
faster than GetFileAttributes or GetFileAttributesEx, because it uses an
already open handle. The other functions need to open the file, get the information
and close it. Always prefer working with a handle (if you have it) than using a
file path.

To get even more information about a file, call GetFileInformationByHandleEx:
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BOOL GetFileInformationByHandleEx(

_In_ HANDLE hFile,

_In_ FILE_INFO_BY_HANDLE_CLASS FileInformationClass,

_Out_ LPVOID lpFileInformation,

_In_ DWORD dwBufferSize

);

The function has quite a few pieces of information that can be retrieved, where the
information requested is provided by the FILE_INFO_BY_HANDLE_CLASS enumeration:

typedef enum _FILE_INFO_BY_HANDLE_CLASS {

FileBasicInfo,

FileStandardInfo,

FileNameInfo,

FileRenameInfo,

FileDispositionInfo,

FileAllocationInfo,

FileEndOfFileInfo,

FileStreamInfo,

FileCompressionInfo,

FileAttributeTagInfo,

FileIdBothDirectoryInfo,

FileIdBothDirectoryRestartInfo,

FileIoPriorityHintInfo,

FileRemoteProtocolInfo,

FileFullDirectoryInfo,

FileFullDirectoryRestartInfo,

#if (_WIN32_WINNT >= _WIN32_WINNT_WIN8)

FileStorageInfo,

FileAlignmentInfo,

FileIdInfo,

FileIdExtdDirectoryInfo,

FileIdExtdDirectoryRestartInfo,

#endif

#if (_WIN32_WINNT >= _WIN32_WINNT_WIN10_RS1)

FileDispositionInfoEx,

FileRenameInfoEx,

#endif

#if (NTDDI_VERSION >= NTDDI_WIN10_19H1)
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FileCaseSensitiveInfo,

FileNormalizedNameInfo,

#endif

MaximumFileInfoByHandleClass

} FILE_INFO_BY_HANDLE_CLASS, *PFILE_INFO_BY_HANDLE_CLASS;

That’s quite a list. The conditional compilation shows which values have been added in
Windows 8 / Server 2012 and later, in Windows 10 version 1607 and Server 2016, and
Windows 10 version 1903.

For each enumeration value, the documentation describes the structure associated with the
value.

Setting File Information

GetFileAttributes has a complementary function to set file attributes:

BOOL SetFileAttributes(

_In_ LPCTSTR lpFileName,

_In_ DWORD dwFileAttributes);

The attributes that can be set by these function are: FILE_ATTRIBUTE_ARCHIVE, FILE_AT-
TRIBUTE_HIDDEN, FILE_ATTRIBUTE_NORMAL, FILE_ATTRIBUTE_NOT_CONTENT_INDEXED,
FILE_ATTRIBUTE_OFFLINE, FILE_ATTRIBUTE_READONLY, FILE_ATTRIBUTE_SYSTEM, and
FILE_ATTRIBUTE_TEMPORARY.

Other attributes that can be changed with other APIs include:

• FILE_ATTRIBUTE_COMPRESSED - call DeviceIoControl with FSCTL_SET_COMPRES-
SION control code (see later in this chapter for more on DeviceIoControl).

• FILE_ATTRIBUTE_ENCRYPTED - if not created as such, call the EncryptFile to encrypt
the file’s current contents, and set the attribute.

• FILE_ATTRIBUTE_REPARSE_POINT - call DeviceIoControl with the FSCTL_SET_-
REPARSE_POINT control code to associate the file with a reparse point.

• FILE_ATTRIBUTE_SPARSE_FILE - call DeviceIoControlwith the FSCTL_SET_SPARSE
control code to turn the file into a sparse one. A sparse file is expected to containmostly
zeros, so it can use less disk space.

Changing the times associated with a file is a matter of calling SetFileTime:
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BOOL SetFileTime(

_In_ HANDLE hFile,

_In_opt_ CONST FILETIME* lpCreationTime,

_In_opt_ CONST FILETIME* lpLastAccessTime,

_In_opt_ CONST FILETIME* lpLastWriteTime);

The handle must have the FILE_WRITE_ATTRIBUTES to allow these changes. The caller can
specify NULL for each value it does not wish to change.

To set other information pieces for a file, the complement of GetFileInformationByHan-
dleEx can be used:

BOOL SetFileInformationByHandle(

_In_ HANDLE hFile,

_In_ FILE_INFO_BY_HANDLE_CLASS FileInformationClass,

_In_reads_bytes_(dwBufferSize) LPVOID lpFileInformation,

_In_ DWORD dwBufferSize);

The FileInformationClass parameter is of the same enumeration given to GetFileIn-
formationByHandleEx. However, only a small subset of information classes can be used
for setting data: FileBasicInfo, FileRenameInfo, FileDispositionInfo, FileAlloca-
tionInfo, FileEndOfFileInfo, and FileIoPriorityHintInfo.

Synchronous I/O

When calling CreateFile and not specifying FILE_FLAG_OVERLAPPED as part of the
dwFlagsAndAttributes parameter, the file object is created for synchronous I/O only. This
is the simplest to work with, so we’ll tackle synchronous I/O first.

The main functions to perform I/O are ReadFile and WriteFile, which work with any file
object (not necessarily pointing to a file system file):



Chapter 11: File and Device I/O 502

BOOL ReadFile(

_In_ HANDLE hFile,

_Out_ LPVOID lpBuffer,

_In_ DWORD nNumberOfBytesToRead,

_Out_opt_ LPDWORD lpNumberOfBytesRead,

_Inout_opt_ LPOVERLAPPED lpOverlapped);

BOOL WriteFile(

_In_ HANDLE hFile,

_In_ LPCVOID lpBuffer,

_In_ DWORD nNumberOfBytesToWrite,

_Out_opt_ LPDWORD lpNumberOfBytesWritten,

_Inout_opt_ LPOVERLAPPED lpOverlapped);

These functions work for synchronous and asynchronous I/O. lpBuffer is the buffer from
which data is to be read (WriteFile) or the buffer to which data is to be written (ReadFile).
For ReadFile, nNumberOfBytesToRead indicates how many bytes to read into the buffer,
and for WriteFile, nNumberOfBytesToWrite indicates how many bytes to write.
The number of bytes actually read/written is returned in lpNumberOfBytesRead (read) or
lpNumberOfBytesWritten (write). It can be smaller than the requested number of bytes or
even zero. Note that you cannot pass NULL for these arguments with synchronous I/O, or else
you will get an access violation when the function attempts to dereference the NULL pointer.

The last parameter, lpOverlapped, is required to be non-NULL for asynchronous operations,
but for Synchronous I/O it should be NULL.

These functions are synchronous, which means the calling thread is now blocked (goes into
a wait state) until the operation is complete and the data has been transferred. The functions
return FALSE on failure, with GetLastError providing the exact error encountered.

The following example shows how to create a new file and write some data to it:
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HANDLE hFile = ::CreateFile(LR"(c:\temp\mydata.txt)",

GENERIC_WRITE, // access

0, // sharing (exclusive)

nullptr, // SECURITY_ATTRIBUTES

CREATE_NEW, // creation disposition

0, // flags and attributes

nullptr); // template file

if(hFile != INVALID_HANDLE_VALUE) {

char text[] = "Hello from Windows!";

DWORD bytes;

::WriteFile(hFile, text, ::strlen(text), &bytes, nullptr);

::CloseHandle(hFile);

}

The next example reads all bytes in a file:

HANDLE hFile = ::CreateFile(LR"(c:\temp\mydata.txt)",

GENERIC_READ, // access

FILE_SHARE_READ, // sharing

nullptr, // SECURITY_ATTRIBUTES

OPEN_EXISTING, // creation disposition

0, // flags and attributes

nullptr); // template file

if(hFile != INVALID_HANDLE_VALUE) {

// assume file size is less than 4GB

DWORD size = ::GetFileSize(hFile, nullptr);

auto buffer = std::make_unique<char[]>(size + 1);

DWORD bytes;

if(::ReadFile(hFile, buffer.get(), size, &bytes, nullptr)) {

// assume data is expected to be ASCII text

buffer[bytes] = '\0'; // add string terminator

printf("%s\n", buffer.get());

}

::CloseHandle(hFile);

}

Each file object opened for synchronous access maintains an internal file pointer, that is
automatically advanced with each I/O operation. For example, if a file is opened and a read
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operation of 10 bytes is performed, the file pointer advances by 10 bytes after the operation
completes. If another read for 10 bytes is issued, it reads bytes 10 to 19, and the file pointer
advances to position 20 in the file.

For sequential reads and writes, that’s great. In some cases, however, you may want to jump
forward or back and read/write from a different position. This can be accomplished with
one of the following functions:

DWORD SetFilePointer(

_In_ HANDLE hFile,

_In_ LONG lDistanceToMove,

_Inout_opt_ PLONG lpDistanceToMoveHigh,

_In_ DWORD dwMoveMethod);

BOOL SetFilePointerEx(

_In_ HANDLE hFile,

_In_ LARGE_INTEGER liDistanceToMove,

_Out_opt_ PLARGE_INTEGER lpNewFilePointer,

_In_ DWORD dwMoveMethod);

The functions move the internal file pointer to the desired position. SetFilePointerEx is
easier to use, since it allows a full 64-bit offset to be provided in the liDistanceToMove
parameter. SetFilePointer accepts the low 32-bit of the offset in lDistanceToMove and
optionally the high 32-bit in lpDistanceToMoveHigh. Both functions attempt to return the
previous file pointer: SetFilePointerEx in lpNewFilePointer, and SetFilePointer in
the return value (low 32-bit) and lpDistanceToMoveHigh (if not NULL - the high 32-bit).

The offset to move, however, is not necessarily the offset from the start of the file. The last
parameter, dwMoveMethod, indicates how to interpret the provided offset:

• FILE_BEGIN (0) - from the beginning of the file
• FILE_CURRENT (1) - from the current file position
• FILE_END (2) - from the end of the file

You can query the current file pointer without moving by specifying a zero
distance to move, and FILE_CURRENT move method. You can move to the end
of the file by specifying zero for the offset and FILE_END for the method.
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Multiple file objects open on the same file are different and not synchronized in
anything, including their file pointer. Each has its own and they don’t affect each
other.

Calling SetFilePointer(Ex) with an offset that is beyond the file’s current size, extends
the file to that size. Conversely, trimming a file can be done by calling SetEndOfFile after
setting the file pointer to the required size:

BOOL SetEndOfFile(_In_ HANDLE hFile);

Asynchronous I/O

As describes at the beginning of this chapter, the Windows I/O system is asynchronous in
nature. Once a device driver issues a request to its controlled hardware (such a disk drive),
the driver does not need to wait for the operation to complete. Instead, it marks the request
as “pending” and returns to its caller. The thread is now free to perform other operations
while the I/O is in progress.

After some time the I/O operation completes by the hardware device. The device issues a
hardware interrupt that causes a driver-supplied callback to run and complete the pended
request.

Using synchronous I/O is simple and easy, and in many cases good enough. However, if lots
of requests are to be served, it’s inefficient to create a thread per request that would initiate
an I/O operation andwait for it to complete; this approach does not scale well. Asynchronous
I/O provides a solution, where a thread initiates a request, and then goes back to serve the
next request, and so on, since I/O operations operate concurrently while the CPU executes
other code. The only wrinkle in this simplistic model is how a thread is notified of an I/O
operation completion. As we’ll soon see, there are a few techniques provided by Windows
to deal with this.

Requesting asynchronous operations must start with the original CreateFile call (which,
by the way, is always synchronous). The FILE_FLAG_OVERLAPPED flag must be specified
as part of dwFlagsAndAttributes parameter. This opens the file/device in asynchronous
mode.

One of the consequences of a file opened for asynchronous access is that there is no file
pointer anymore. This means every operation must somehow provide an offset from the
start of the file to perform the operation (the size is not a problem since it’s part of the



Chapter 11: File and Device I/O 506

read/write call). This is one of the tasks of the OVERLAPPED structure, that must be passed as
the last argument to ReadFile and WriteFile:

typedef struct _OVERLAPPED {

ULONG_PTR Internal;

ULONG_PTR InternalHigh;

union {

struct {

DWORD Offset;

DWORD OffsetHigh;

};

PVOID Pointer;

};

HANDLE hEvent;

} OVERLAPPED, *LPOVERLAPPED;

This structure contains three distinct pieces of information:

• Internal and InternalHigh are as named, used by the I/O manager and should not
be written to, although their usage is described below.

• Offset and OffsetHigh are the offsets to set, indicating where the operation is to
start within the file. The Pointermember of the union is an alternative to these fields
that is somewhat easier to work with if a 64-bit offset is required.

• hEvent is a handle to a kernel event object, that, if non-NULL, is signaled by the I/O
manager when the operation completes.

Technically, Internal holds the I/O operation’s error code. For an asynchronous operation
in progress, it holds STATUS_PENDING, which is the kernel equivalent of STILL_ACTIVE
(0x103). In fact, Windows defines a macro, HasOverlappedIoCompleted that takes advan-
tage of this fact. Here is its definition:

#define HasOverlappedIoCompleted(lpOverlapped) \

(((DWORD)(lpOverlapped)->Internal) != STATUS_PENDING)

The InternalHigh member stores the number of bytes transferred once the
operation completes.



Chapter 11: File and Device I/O 507

In an asynchronous operation, the ReadFile or WriteFile calls normally return FALSE,
since the operation is not yet complete, it just started. In some cases, the underlying device
driver might decide to perform the operation synchronously, in which case the functions
return TRUE. This should happen rarely with ReadFile and WriteFile targeted at a file
system file.

If the functions return FALSE, then calling GetLastError returns ERROR_IO_PENDING, it
means everything is working as planned - the operation is underway and the thread can
continue doing something else. If a different error is returned, then this is a real error - the
operation has not started.

Both ReadFile and WriteFile have a returned bytes parameter that returns the number of
bytes transferred in the case of a synchronous operation. With an asynchronous operation,
this makes no sense, since the operation has not yet completed. Although you can provide an
address of a DWORD and just disregard the result, it’s better to specify NULL for this argument
to avoid any confusion.

Given the above information, the following code example opens a file for asynchronous
access, performs a read operation, does some more processing while the operation is
underway, and then waits for the operation to complete:

HANDLE hFile = ::CreateFile(LR"(c:\temp\mydata.txt)", GENERIC_READ,

FILE_SHARE_READ, nullptr, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, nullptr);

if (hFile != INVALID_HANDLE_VALUE) {

// initialize OVERLAPPED

OVERLAPPED ov = { 0 }; // offset is zero

ov.hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);

BYTE buffer[1 << 12]; // 4KB

BOOL ok = ::ReadFile(hFile, buffer, sizeof(buffer), nullptr, &ov);

if(!ok) {

if (::GetLastError() != ERROR_IO_PENDING) {

// some real error occurred...

return;

}

else {

// do some other work...

// wait for the operation to complete

::WaitForSingleObject(ov.hEvent, INFINITE);
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::CloseHandle(ov.hEvent);

}

}

// do something with the result...

::CloseHandle(hFile);

}

There are few things to note about the above code:

• The OVERLAPPED instance must survive as long as the I/O operation is in progress. In
the above code it’s allocated on the stack, and the caller thread waits for the operation
to complete, so the instance is guaranteed to survive. In more complex cases, it may
need to be allocated dynamically.

• The event is waited on by the original caller, but this is not a requirement; any thread
can wait on the event, including a thread pool thread (as demonstrated in chapter 9).

Once the operation completes, how can you tell how many bytes were transferred? We can’t
get it from the original ReadFile/WriteFile call. We can get it from the InternalHigh
member of the OVERLAPPED structure, but there is a dedicated function to get this informa-
tion:

BOOL GetOverlappedResult(

_In_ HANDLE hFile,

_In_ LPOVERLAPPED lpOverlapped,

_Out_ LPDWORD lpNumberOfBytesTransferred,

_In_ BOOL bWait);

GetOverlappedResult accepts the file handle and the OVERLAPPED structure for the
particular operation you’re interested in (you can initiate several operations from the same
file handle, each having a different OVERLAPPED instance). lpNumberOfBytesTransferred
returns the number of bytes actually transferred.

The final parameter, bWait, specifies whether to wait for the operation to complete (TRUE)
before reporting the result or not. If the operation already completed, then it doesn’t matter. if
the operation is still in progress and bWait is TRUE, the caller thread waits until the operation
is complete and the function returns TRUE. If bWait is FALSE and the operation is still in
progress, the function returns FALSE and GetLastError returns ERRO_IO_INCOMPLETE.

An extended function, GetOverlappedResultEx, provides more flexibility while waiting
for the operation to complete:
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BOOL GetOverlappedResultEx(

_In_ HANDLE hFile,

_In_ LPOVERLAPPED lpOverlapped,

_Out_ LPDWORD lpNumberOfBytesTransferred,

_In_ DWORD dwMilliseconds,

_In_ BOOL bAlertable);

The function allows setting a timeout limit for waiting (dwMilliseconds), and also the
ability to wait in an alertable state (bAlertable) (see chapter 7 for more on alertable state).

Windows provides several ways to deal with asynchronous I/O completion. We’ve just seen
one of these, using an event object. Table 11-8 summarizes the available options.

Table 11-8: Asynchronous completion handling options

Mechanism Remarks
Waiting on the file handle Easy to use, but limited to a single operation
Waiting on an event in the OVERLAPPED
structure

Easy to use. Any thread can wait on the event

Using ReadFileEx and WriteFileEx with a
callback

Callback queued as APC to caller thread,
meaning it’s the only thread that can process
the result

I/O completion port Not as easy as the others, but flexible and
powerful

The first option in table 11-8 indicates that a file handle is a waitable object, and becomes
signaled when an asynchronous operation completes. This works fine if there is only one
such request in progress at a time. If more than one request is in progress, the file handle is
signaled when the first completes, but there is no guarantee of which request that would be.

Generally, I/O operations can complete out of order, since it’s the driver’s
prerogative in how to schedule the actual requests. You should never rely on some
order of I/O operation completion.

Since waiting on a file handle is not ideal, you can tell the system not to bother signaling it:
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BOOL SetFileCompletionNotificationModes(

_In_ HANDLE FileHandle,

_In_ UCHAR Flags);

One of the flags is FILE_SKIP_SET_EVENT_ON_HANDLE, which is the one needed to tell the
I/O manager to skip signaling the file object.

The second option of using an event object tucked in the OVERLAPPED structure works well,
provided that each operation is associated with its own event. Any thread can wait on the
event, including thread pool threads.

ReadFileEx and WriteFileEx

The third option for responding to completed I/O operation is by using an extended version
of ReadFile or WriteFile:

BOOL ReadFileEx(

_In_ HANDLE hFile,

_Out_ LPVOID lpBuffer,

_In_ DWORD nNumberOfBytesToRead,

_Inout_ LPOVERLAPPED lpOverlapped,

_In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

BOOL WriteFileEx(

_In_ HANDLE hFile,

_In_ LPCVOID lpBuffer,

_In_ DWORD nNumberOfBytesToWrite,

_Inout_ LPOVERLAPPED lpOverlapped,

_In_ LPOVERLAPPED_COMPLETION_ROUTINE lpCompletionRoutine);

The functions are identical to their non-Ex counterparts, except for an additional argument,
which is a function pointer that must have the following prototype:

typedef VOID (WINAPI *LPOVERLAPPED_COMPLETION_ROUTINE)(

_In_ DWORD dwErrorCode,

_In_ DWORD dwNumberOfBytesTransfered,

_Inout_ LPOVERLAPPED lpOverlapped);
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One the face of it, this mechanism looks close to perfect: a callback is invoked when
the asynchronous I/O operation completes. Unfortunately, the callback is wrapped in
an Asynchronous Procedure Call (APC) and queued to the original thread that called
ReadFileEx or WriteFileEx. This means this particular thread is the only one which can
invoke the callback by getting into an alertable state, at least occasionally. Refer to chapter
8 for more on APCs and alertable state.

Once invoked, the callback function provides the error code of the operation (ERROR_-
SUCCESS if all is well), the number of bytes transferred, and the original pointer to the
OVERLAPPED structure. This last bit is very convenient, because if the structure was allocated
dynamically (highly likely), the code can free the structure within the callback - the I/O
manager does not touch the structure again at this point.

Manually Queued APC

It’s worthwhile describing another function related to APCs in general. It’s the ability to
queue an APC to a target thread:

DWORD QueueUserAPC(

_In_ PAPCFUNC pfnAPC,

_In_ HANDLE hThread,

_In_ ULONG_PTR dwData);

The function queues an APC to the target thread represented by the hThread parameter, that
must have the THREAD_SET_CONTEXT access mask. pfnAPC is a function pointer that must
have the following prototype:

typedef VOID (WINAPI *PAPCFUNC)(_In_ ULONG_PTR Parameter);

dwData is the value sent to the APC function in the Parameter parameter.

This is still an APC, and so the target thread must enter an alertable state if the APC callback
is to be executed. This means queuing APCs to arbitrary threads is problematic; the caller
should know in advance that the target thread is likely to be in alertable state in the near
future. Otherwise, these APCs queue up, up to some limit, but never executed.

One simple use of QueueUserAPC is to implement a simple queue served by a particular
thread, without the need to create and manage any data structures. The thread that runs the
work items need to be in an alertable state all the time, unless instructed to exit:
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DWORD WorkThread(PVOID param) {

// assume an event handle is passed in to signal thread exit

HANDLE hEvent = (HANDLE)param;

for(;;) {

if(::WaitForSingleObjectEx(hEvent, INFINITE, TRUE) == WAIT_OBJECT_0)

break;

// if the wait is over and the event is not set, this means one or more\

APCs

// executed. Just continue waiting again for more APCs or an exit signal

}

return 0;

}

The thread is created by the following code:

HANDLE hEvent = ::CreateEvent(nullptr, TRUE, FALSE, nullptr);

HANDLE hThread = ::CreateThread(nullptr, 0, WorkThread, (PVOID)hEvent, 0, nullp\

tr);

At this point, a work item can be queued by using QueueUserAPC:

::QueueUserAPC(hThread, SomeFunction, SomeData);

Finally, when the thread should be torn dows, just set the event, and optionally wait for the
thread to exit, perhaps finishing up APCs still in the queue:

::SetEvent(hEvent);

::WaitForSingleObject(hEvent, INFINITE);

I/O Completion Ports

I/O completion ports deserve their own major section, since they are useful not just for
handling asynchronous I/O. We met them briefly when discussing jobs in chapter 4 - a job
can be associated with an I/O completion port, to receive notifications related to the job. In
this section, we’ll focus on an I/O completion’s usage for handling I/O completions.
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An I/O completion port is associated with a file object (could be more than one). It
encapsulates a queue of requests, and a list of threads that can serve these requests once
completed. Whenever an asynchronous operation completes, one of the threads that waits
on the completion ports should wake up and handle the completion, possibly initiating the
next request.

The first step is creating an I/O completion port object and associating it with one or more
file handles. This is a task for CreateIoCompletionPort:

HANDLE CreateIoCompletionPort(

_In_ HANDLE FileHandle,

_In_opt_ HANDLE ExistingCompletionPort,

_In_ ULONG_PTR CompletionKey,

_In_ DWORD NumberOfConcurrentThreads);

The function can perform two distinct operations, possibly combining the two. It can do any
of the following:

• Create an I/O completion port not associated with any file objects.
• Associate an existing completion port to a file object.
• Combine the above two operations in a single call.

This function is the only one in the Create kernel object functions that does not accept a
SECURITY_ATTRIBUTES structure. This is because a completion port is always local to the
process that created it. Technically, duplicating such a handle to another process succeeds,
but the new handle is unusable.

Creating a new completion port without associating it with any file needs only the last
argument, like so:

HANDLE hNewCP = ::CreateIoCompletionPort(INVALID_HANDLE_VALUE, nullptr, 0,

NumberOfConcurrentThreads);

The number of concurrent threads indicates the maximum threads that can handle an I/O
completion through this I/O completion port. Specifying zero sets the number to the number
of logical processors on the system. We’ll see the effect of this parameter a bit later.
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Once a I/O completion port object is created, it can be associated with one or more file
objects (handles). For each file handle, a completion key is specified, which is application-
defined. The file object must have been opened with the FILE_FLAG_OVERLAPPED. Here is
an example of adding a file object to a completion port:

const int Key = 1;

HANDLE hFile = ::CreateFile(..., FILE_FLAG_OVERLAPPED, ...);

HANDLE hOldCP = ::CreateIoCompletionPort(hFile, hNewCP, Key, 0);

assert(hOldCP == hNewCP);

There is no real need to capture the returning handle in this case, since the existing
completion port handle was specified as the second argument. The above assert just makes
it clearer.

Remember that “file” is not necessarily a file in a file system. It could be a pipe, a socket,
or a device, for example.

The above code can be repeated with other file objects, all associated with the completion
port. A somewhat simplistic diagram of a completion port is depicted in figure 11-6. We’ll
see what bound threads are and how all this works in a moment.

Figure 11-6: I/O Completion Port components

The I/O completion port’s purpose is to allow processing of completed I/O operations by
worker threads, where “worker” here can mean any threads that are bound to the completion
port. A thread becomes bound to a completion port when it calls GetQueuedCompletion-
Status:
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BOOL GetQueuedCompletionStatus(

_In_ HANDLE CompletionPort,

_Out_ LPDWORD lpNumberOfBytesTransferred,

_Out_ PULONG_PTR lpCompletionKey,

_Out_ LPOVERLAPPED* lpOverlapped,

_In_ DWORD dwMilliseconds);

The call puts the thread into a wait state until an asynchronous I/O operation initiated
with one of the file objects associated with the completion port completes, or the timeout
elapsed. Typically dwMilliseconds is set to INFINITE, meaning the thread has nothing to
do until an I/O operation completes. If the operation that wakes up the thread completed
successfully, GetQueuedCompletionStatus returns TRUE and the out parameters are filled
with the number of bytes transferred, the completion key originally associated with the file
handle and the OVERLAPPED structure pointer that was used for the request.

If some error occurres, the return value is FALSE, and GetLastError returns the error code.
If the timeout is not infinite, the return value is still FALSE but GetLastError returns WAIT_-
TIMEOUT and the OVERLAPPED pointer is set to NULL.

Any number of threads can call GetQueuedCompletionStatus to wait until a completed
packet arrives. The I/O completion port will not allow more than the maximum threads
specified at the port’s creation to succeed the call at the same time. However, if a thread
for which GetQueuedCompletionStatus succeeded, and that thread, while processing the
completion operation enters a wait state for whatever reason (SuspendThread, WaitForS-
ingleObject. etc.), the completion port will allow another thread to have its GetQueued-
CompletionStatus call end its wait. This means that periodically, the number of threads
handling completion packets can be higher than the original specified maximum. However,
only the maximum number of threads will be “runnable” - that is, not in a wait state.

Once a thread calls GetQueuedCompletionStatus the first time, it becomes bound to the
completion port, until the thread exits, the completion port is closed, or the thread calls
GetQueuedCompletionStatus on a different completion port.

If multiple threads wait for completion packets, the thread that gets the next one is
the last one executed, i.e. it’s a Last In First Out (LIFO) queue (technically a stack).
This is beneficial in cases where the rate of completed operations is relatively
low, allowing the same thread or few threads to do the processing. This benefits
potentially less context switches, and definitely better use of CPU caches.

A thread can also request to dequeue multiple I/O completions with an extended version of
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GetQueuedCompletionStatus:

BOOL GetQueuedCompletionStatusEx(

_In_ HANDLE CompletionPort,

_Out_ LPOVERLAPPED_ENTRY lpCompletionPortEntries,

_In_ ULONG ulCount,

_Out_ PULONG ulNumEntriesRemoved,

_In_ DWORD dwMilliseconds,

_In_ BOOL fAlertable);

The function fills an array of OVERLAPPED_ENTRY structures, no more than ulCount. Each
such structure looks like this:

typedef struct _OVERLAPPED_ENTRY {

ULONG_PTR lpCompletionKey;

LPOVERLAPPED lpOverlapped;

ULONG_PTR Internal;

DWORD dwNumberOfBytesTransferred;

} OVERLAPPED_ENTRY, *LPOVERLAPPED_ENTRY;

The structure includes the three output arguments for a single completion entry, provided
for a single completion by GetQueuedCompletionStatus. The Internal member is just
that, and should not be touched. Back to GetQueuedCompletionStatusEx - the number
of actual entries returned is provided by the ulNumEntriesRemoved parameter. Also, the
function allows the waiting to be in an alertable state, if so desired.

It is possible to manually post a completion packet to an I/O completion port by calling
PostQueuedCompletionStatus, which makes these objects more generic, and not really
just about I/O. This is exactly how the notifications work for a job object.

BOOL PostQueuedCompletionStatus(

_In_ HANDLE CompletionPort,

_In_ DWORD dwNumberOfBytesTransferred,

_In_ ULONG_PTR dwCompletionKey,

_In_opt_ LPOVERLAPPED lpOverlapped);

Aside from the completion port, the function accepts the three parameters that will be later
extracted by GetQueuedCompletionStatus(Ex). Usually, the completion key is used for
distinguishing the type of notification. Alos, for non-I/O operation, there is little meaning
for the OVERLAPPED structure, and so NULL is typically passed in that case.
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The Bulk Copy Application

The BuldCopy application, whose main window is shown in figure 11-7 is an example of how
to put all the pieces together to create an application that asynchronously copies multiple
files, where each file can be customized to be copied to a selected destination.

Figure 11-7: The initial window of the Bulk Copy application

Source files can be added with the Add Files… button (multiple files allowed). Then the Set
Destination Directory… button is used to select a destination for the copy (for all source files
or some of them). An example with three source files is shown in figure 11-8.
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Figure 11-8: Files added in Bulk Copy

Now the Go! button becomes enabled, which allows performing the copy operations. A
progress bar at the bottom of the dialog gives indication of, well, progress (figure 11-9).

Figure 11-9: Copy operations in progress Bulk Copy

When all copying is done, the application shows an “All Done!” message box.
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TheAdd Directory… button allows adding a directory, but the application does not
implement copy operations for the files in the directory. This is left as an exercise
for the reader.

Copying files is much more complex than merely reading from one file and
writing to another. More elements actually need to be copied, such as the security
descriptor and NTFS streams (see later in this chapter on NTFS streams).

Adding files to the list view is not particularly interesting, except the retrieval of the file size
for each file. Here is the complete message handler:

LRESULT CMainDlg::OnAddFiles(WORD, WORD wID, HWND, BOOL&) {

CMultiFileDialog dlg(nullptr, nullptr,

OFN_FILEMUSTEXIST | OFN_ALLOWMULTISELECT,

L"All Files (*.*)\0*.*\0", *this);

dlg.ResizeFilenameBuffer(1 << 16);

if (dlg.DoModal() == IDOK) {

CString path;

int errors = 0;

dlg.GetFirstPathName(path);

do {

wil::unique_handle hFile(::CreateFile(path, 0, FILE_SHARE_READ, nul\

lptr,

OPEN_EXISTING, 0, nullptr));

if (!hFile) {

errors++;

continue;

}

LARGE_INTEGER size;

::GetFileSizeEx(hFile.get(), &size);

int n = m_List.AddItem(m_List.GetItemCount(), 0, path, 0);

m_List.SetItemText(n, 1, FormatSize(size.QuadPart));

m_List.SetItemData(n, (DWORD_PTR)Type::File);

} while (dlg.GetNextPathName(path));

m_List.EnsureVisible(m_List.GetItemCount() - 1, FALSE);

UpdateButtons();
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if (errors > 0)

AtlMessageBox(*this, L"Some files failed to open",

IDR_MAINFRAME, MB_ICONEXCLAMATION);

}

return 0;

}

First, a multi-file open dialog box is created and presented to the user. Each file is opened to
get its file size with GetFileSizeEx. Notice that the access mask provided is zero, because as
noted earlier, SYNCHRONIZE and FILE_READ_ATTRIBUTES are always requested, and these
attributes include the file size. The file is then added to the list view along with its size
(formatted by a little helper function, FormatSize).

Setting the destination path(s) is not interesting from a Windows API perspective, as it’s all
UI-related. The real work starts once the Go! button is clicked.

Each source/destination pair, along with handles to these files is stored in a helper structure
defined like so:

struct FileData {

CString Src;

CString Dst;

wil::unique_handle hDst, hSrc;

};

To keep the handles alive while I/O is being processed, these structures are held in a member
of the dialog class (in MainDlg.h):

std::vector<FileData> m_Data;

The first thing the Go button handler does, is constructing this vector without yet opening
the files:
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LRESULT CMainDlg::OnGo(WORD, WORD wID, HWND, BOOL&) {

// transfer list data to vector

m_Data.clear();

int count = m_List.GetItemCount();

m_Data.reserve(count);

for (int i = 0; i < count; i++) {

if (m_List.GetItemData(i) != (DWORD_PTR)Type::File) {

// folders not yet implemented

continue;

}

FileData data;

m_List.GetItemText(i, 0, data.Src);

m_List.GetItemText(i, 2, data.Dst);

m_Data.push_back(std::move(data));

}

The code extracts the file names from the list view and fills in the FileData structures,
adding them to the vector.

The UI thread should not be bound to any I/O completion port, because that would cause
the UI to be unresponsive while the thread waits for completion packets, so a new thread is
created to serve the I/O completion port. Here is the rest of the OnGo function:

// create a worker thread

auto hThread = ::CreateThread(nullptr, 0, [](auto param) {

return ((CMainDlg*)param)->WorkerThread();

}, this, 0, nullptr);

// error handling ommitted

::CloseHandle(hThread);

// update UI state

m_Progress.SetPos(0);

m_Running = true;

UpdateButtons();

return 0;

}
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The real job is performed by the WorkerThread function. Its first task is to create a new I/O
completion port, unassociated with any file handles at this time:

DWORD CMainDlg::WorkerThread() {

wil::unique_handle hCP(::CreateIoCompletionPort(

INVALID_HANDLE_VALUE, nullptr, 0, 0));

ATLASSERT(hCP);

if (!hCP) {

PostMessage(WM_ERROR, ::GetLastError());

return 0;

}

The various read and write operations that follow will be done in chunks, which are set to
64 KB (you can experiment with other chunk sizes).

const int chunkSize = 1 << 16; // 64 KB

The I/O operations are architected as shown in figure 11-10.

Figure 11-10: Handling I/O operations

First, we loop over all file pairs, and open each source and destination. For the source, its
size is queried:
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LONGLONG count = 0;

for (auto& data : m_Data) {

// open source file for async I/O

wil::unique_handle hSrc(::CreateFile(data.Src, GENERIC_READ, FILE_SHARE_REA\

D,

nullptr, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, nullptr));

if (!hSrc) {

PostMessage(WM_ERROR, ::GetLastError());

continue;

}

// get file size

LARGE_INTEGER size;

::GetFileSizeEx(hSrc.get(), &size);

The destination file may or may not exist. We need to open or create it, and then set its final
size:

// create the target file and set final size

CString filename = data.Src.Mid(data.Src.ReverseFind(L'\\'));

wil::unique_handle hDst(::CreateFile(data.Dst + filename, GENERIC_WRITE, 0,

nullptr, OPEN_ALWAYS, FILE_FLAG_OVERLAPPED, nullptr));

if (!hDst) {

PostMessage(WM_ERROR, ::GetLastError());

continue;

}

::SetFilePointerEx(hDst.get(), size, nullptr, FILE_BEGIN);

::SetEndOfFile(hDst.get());

Extending the file now to its final size is important, because file extension is always done
synchronously, so it’s best to get it over with in one stroke.

Now we can associate both files with the completion port and save the handles in the
FileData structure:
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ATLVERIFY(hCP.get() == ::CreateIoCompletionPort(hSrc.get(), hCP.get(),

(ULONG_PTR)Key::Read, 0));

ATLVERIFY(hCP.get() == ::CreateIoCompletionPort(hDst.get(), hCP.get(),

(ULONG_PTR)Key::Write, 0));

data.hSrc = std::move(hSrc);

data.hDst = std::move(hDst);

A simple enum is used to identify the source file’s completion key (Key::Read) vs. the
destination file’s completion key (Key::Write), since we need to know for each operation
whether it’s a read or write, and that’s one easy way of propagating that information, since
every file is used for read or write only.

ATLVERIFY is similar to assert, but is compiled in Release build as well as Debug. Using
assert or ATLASSERT would remove the entire instruction from the compiled binary. These
asserts just verify that adding to an existing completion port returns back the same handle.

Now it’s time to initiate the first read request for the source file. We need some context
information to be accessible for each operation. One trick we can use is to derive a class
from OVERLAPPED and add any context we need. The pointer would be available after each
successful call to GetQueuedCompletionStatus and we can then just cast to the full type.
Here is the derived data structure (defined in MainDlg.h):

struct IOData : OVERLAPPED {

HANDLE hSrc, hDst;

std::unique_ptr<BYTE[]> Buffer;

ULONGLONG Size;

};

We need the handles to source and destination files, the buffer to read or write, and the size
of the files. This will allow us to determine whether the file is read in its entirety, or not.

With this structure in hand, we can build the first read operation:
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auto io = new IOData;

io->Size = size.QuadPart;

io->Buffer = std::make_unique<BYTE[]>(chunkSize);

io->hSrc = data.hSrc.get();

io->hDst = data.hDst.get();

::ZeroMemory(io, sizeof(OVERLAPPED));

auto ok = ::ReadFile(io->hSrc, io->Buffer.get(), chunkSize, nullptr, io);

ATLASSERT(!ok && ::GetLastError() == ERROR_IO_PENDING);

count += (size.QuadPart + chunkSize - 1) / chunkSize;

}

The structure is allocated dynamically because it must survive until the operation completes.
In this particular applicationwe could have created these data structures statically because all
is done in a single function, but I chose to use dynamic allocation to demonstrate this pattern
that is necessary if the application would have been architected differently. The offsets inside
the OVERLAPPED part of the structure are zeroed (start of file), the buffer allocated, the size
is copied from the file size, and the operation is underway with ReadFile and the structure
pointer.

Finally, the local count variable is updated with the number of chunks required to read (and
write) the entire file. This will help in determining when all operations are done.

At this point, a number of read operations are underway, based on the number of files. Now
it’s time to wait for I/O completion notifications and act accordingly:

PostMessage(WM_PROGRESS_START, count); // update UI

while (count > 0) {

DWORD transferred;

ULONG_PTR key;

OVERLAPPED* ov;

BOOL ok = ::GetQueuedCompletionStatus(hCP.get(), &transferred, &key,

&ov, INFINITE);

if (!ok) {

PostMessage(WM_ERROR, ::GetLastError());

count--;

delete ov;

continue;

}
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Once GetQueuedCompletionStatus returns successfully, we need to examine the com-
pleted packet:

// get actual data object

auto io = static_cast<IOData*>(ov);

if (key == (DWORD_PTR)Key::Read) {

// check if need another read

ULARGE_INTEGER offset = { io->Offset, io->OffsetHigh };

offset.QuadPart += chunkSize;

if (offset.QuadPart < io->Size) {

auto newio = new IOData;

newio->Size = io->Size;

newio->Buffer = std::make_unique<BYTE[]>(chunkSize);

newio->hSrc = io->hSrc;

newio->hDst = io->hDst;

::ZeroMemory(newio, sizeof(OVERLAPPED));

newio->Offset = offset.LowPart;

newio->OffsetHigh = offset.HighPart;

auto ok = ::ReadFile(newio->hSrc, newio->Buffer.get(), chunkSize,

nullptr, newio);

auto error = ::GetLastError();

ATLASSERT(!ok && error == ERROR_IO_PENDING);

}

// read done, initiate write to the same offset in the target file

// offset is the same, just a different file

io->Internal = io->InternalHigh = 0;

ok = ::WriteFile(io->hDst, io->Buffer.get(), transferred, nullptr, ov);

auto error = ::GetLastError();

ATLASSERT(!ok && error == ERROR_IO_PENDING);

}

else {

// write operation complete

count--;

delete io;

PostMessage(WM_PROGRESS);

}

}
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If a read completes, we check if another read is needed, and if so, a new IOData object
is allocated and filled appropriately with the next chunk in the file. Because a read was
completed, a write operation is initiated for writing the returned buffer to the destination
file.

If it was a write that completed, we decrement the count of operations remaining, free the
IOData object, and send an update message to the UI. This loop continues until all I/O
operations are complete.

Lastly, the UI can be updated, all vector of file data cleared (closing the handles to all the
files), and the thread can exit gracefully, while also closing the I/O completion port.

Currently, read operations are constructed twice: the first read and all the rest. Use
PostQueuedCompletionStatus to post a custom notification so that the initial
read is constructed just as subsequent reads.

Add an option to limit the number of concurrent I/O operations that are in
progress. Currently, this number is based on the number of files, which could
be very big.

Using the Thread Pool for I/O Completion

In chapter 9, we’ve seen the use and benefits of thread pools. One set of functions we omitted
was related to I/O operations. Now it’s time to fill in this gap. In the Bulk Copy application,
we create a dedicated thread that called GetQueuedCompletionStatus, and handled I/O
completions. This service is also offered by the thread pool, so no explicit thread needs to be
created, and the scaling of the thread pool can be used to havemore than one thread handling
completions. To get things rolling, call CreateThreadpoolIo to create a completion port
behind the covers and associate it with a file handle:

PTP_IO CreateThreadpoolIo(

_In_ HANDLE hFile,

_In_ PTP_WIN32_IO_CALLBACK pfnio,

_Inout_opt_ PVOID pv,

_In_opt_ PTP_CALLBACK_ENVIRON pcbe);

hFile is the file handle (already open for asynchronous I/O) to be associated with the
internal I/O completion port. pfnio is a callback that is invoked by a thread pool thread
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whenever the internal call to GetQueuedCompletionStatus returns. The pv parameter is
an application-defined value passed as-is to the callback function. Finally, pcbe is an optional
callback environment, described in chapter 9. The function returns an opaque pointer to the
I/O thread pool object.

The callback must have the following prototype:

typedef VOID (WINAPI *PTP_WIN32_IO_CALLBACK)(

_Inout_ PTP_CALLBACK_INSTANCE Instance,

_Inout_opt_ PVOID Context,

_Inout_opt_ PVOID Overlapped,

_In_ ULONG IoResult,

_In_ ULONG_PTR NumberOfBytesTransferred,

_Inout_ PTP_IO Io);

The function provides the standard instance value (Instance parameter) as other thread
pool callbacks, as well as the context provided to CreateThreadpoolIo. The next three
arguments are related to the I/O operation: The OVERLAPPED pointer, the result code
(ERROR_SUCCESS if all goes well) and the number of bytes transferred. The last parameter is
the I/O thread pool object that was returned from CreateThreadpoolIo. As we shall soon
see, it’s convenient to it here.

To get the thread pool completion infrastructure going, it is necessary to call StartThread-
poolIo before every asynchronous operation:

VOID StartThreadpoolIo(_Inout_ PTP_IO pio);

If a ReadFile or WriteFile call returns an error (return value is FALSE and GetLastError is
not ERROR_IO_PENDING), the thread pool I/O must be cancelled with CancelThreadpoolIo:

VOID CancelThreadpoolIo(_Inout_ PTP_IO pio);

Similarly to other thread pool APIs we met, a thread can wait and/or cancel pending I/O
operations:
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VOID WaitForThreadpoolIoCallbacks(

_Inout_ PTP_IO pio,

_In_ BOOL fCancelPendingCallbacks

);

Finally, the thread pool I/O object needs to be closed:

VOID CloseThreadpoolIo(_Inout_ PTP_IO pio);

The Bulk Copy 2 Application

The BulkCopy2 project is identical to the BulkCopy project in terms of functionality, but it
uses the thread pool to respond to I/O completions. In this section, we’ll look at the code
changes to make it work.

First, since we are using the thread pool, creating a dedicated thread is unnecessary - that’s
what the thread pool is for. The OnGO function that responds to the Go button click, calls a
function named StartCopy to initiate the copy operations. It starts by iterating over all file
pairs, opening the files, and setting the final size in the destination:

void CMainDlg::StartCopy() {

m_OperationCount = 0;

for (auto& data : m_Data) {

// open source file for async I/O

wil::unique_handle hSrc(::CreateFile(data.Src, GENERIC_READ, FILE_SHARE\

_READ,

nullptr, OPEN_EXISTING, FILE_FLAG_OVERLAPPED, nullptr));

if (!hSrc) {

PostMessage(WM_ERROR, ::GetLastError());

continue;

}

// get file size

LARGE_INTEGER size;

::GetFileSizeEx(hSrc.get(), &size);

// create target file and set final size
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CString filename = data.Src.Mid(data.Src.ReverseFind(L'\\'));

wil::unique_handle hDst(::CreateFile(data.Dst + filename, GENERIC_WRITE\

, 0,

nullptr, OPEN_ALWAYS, FILE_FLAG_OVERLAPPED, nullptr));

if (!hDst) {

PostMessage(WM_ERROR, ::GetLastError());

continue;

}

::SetFilePointerEx(hDst.get(), size, nullptr, FILE_BEGIN);

::SetEndOfFile(hDst.get());

We are not creating an I/O completion port explicitly. Instead, we are using the thread pool
to create two thread pool I/O objects and associate them with the two files. The FileData
structure has been extended to store these handles:

struct FileData {

CString Src;

CString Dst;

wil::unique_handle hDst, hSrc;

wil::unique_threadpool_io tpSrc, tpDst;

};

Notice the use of wil::unique_threadpool_io that will call CloseThreadpoolIo when
the object goes out of scope.

Continuing inside StartCopy, we create the thread pool I/O objects:

data.tpDst.reset(::CreateThreadpoolIo(hDst.get(), WriteCallback,

this, nullptr));

data.tpSrc.reset(::CreateThreadpoolIo(hSrc.get(), ReadCallback,

data.tpDst.get(), nullptr));

For the write operations, this is passed as the context argument. For the read operations, the
write I/O pool object is passed in. We’ll see why this is required when we implement the read
and write callbacks. The last piece of business in this loop is starting the first read operation,
very similarly to the Bulk Copy application, with the addition of StartThreadpoolIo to get
the thread pool I/O mechanism going:
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data.hSrc = std::move(hSrc);

data.hDst = std::move(hDst);

// initiate first read operation

auto io = new IOData;

io->Size = size.QuadPart;

io->Buffer = std::make_unique<BYTE[]>(chunkSize);

io->hSrc = data.hSrc.get();

io->hDst = data.hDst.get();

::ZeroMemory(io, sizeof(OVERLAPPED));

::StartThreadpoolIo(data.tpSrc.get());

auto ok = ::ReadFile(io->hSrc, io->Buffer.get(), chunkSize, nullptr, io\

);

ATLASSERT(!ok && ::GetLastError() == ERROR_IO_PENDING);

::InterlockedAdd64(&m_OperationCount,

(size.QuadPart + chunkSize - 1) / chunkSize);

}

PostMessage(WM_PROGRESS_START, (WPARAM)m_OperationCount);

}

StartCopy runs quickly, starting read operations for all files and then returns to pumping
UI messages. The rest of the work is done by the two static callbacks registered in
CreateThreadpoolIo. Here is the read callback:

void CMainDlg::ReadCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context,

PVOID Overlapped, ULONG IoResult, ULONG_PTR Transferred, PTP_IO Io) {

if (IoResult == ERROR_SUCCESS) {

auto io = static_cast<IOData*>(Overlapped);

ULARGE_INTEGER offset = { io->Offset, io->OffsetHigh };

offset.QuadPart += chunkSize;

if (offset.QuadPart < io->Size) {

auto newio = new IOData;

newio->Size = io->Size;

newio->Buffer = std::make_unique<BYTE[]>(chunkSize);

newio->hSrc = io->hSrc;

newio->hDst = io->hDst;
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::ZeroMemory(newio, sizeof(OVERLAPPED));

newio->Offset = offset.LowPart;

newio->OffsetHigh = offset.HighPart;

::StartThreadpoolIo(Io);

auto ok = ::ReadFile(newio->hSrc, newio->Buffer.get(), chunkSize,

nullptr, newio);

auto error = ::GetLastError();

ATLASSERT(!ok && error == ERROR_IO_PENDING);

}

// read done, initiate write to the same offset in the target file

io->Internal = io->InternalHigh = 0;

auto writeIo = (PTP_IO)Context;

::StartThreadpoolIo(writeIo);

auto ok = ::WriteFile(io->hDst, io->Buffer.get(),

(ULONG)Transferred, nullptr, io);

auto error = ::GetLastError();

ATLASSERT(!ok && error == ERROR_IO_PENDING);

}

}

The code is very similar to the original application for handling read completions. Calling
StartThreadpoolIo is mandatory before initiating new requests, which shows why the
last parameter (PTP_IO) is convenient to have. Since ending a read operation needs to start
a write operation, the context that was passed in is the PTP_IO object of the destination,
allowing calling the correct StartThreadpoolIo for write. As an alternative, the thread
pool I/O objects could just have easily be tucked in the IOData structure.

The write callback is simpler, as it just needs to update the operation count (in a thread-safe
manner), and free the completed operation:
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void CMainDlg::WriteCallback(PTP_CALLBACK_INSTANCE Instance, PVOID Context,

PVOID Overlapped, ULONG IoResult, ULONG_PTR Transferred, PTP_IO Io) {

if (IoResult == ERROR_SUCCESS) {

auto pThis = static_cast<CMainDlg*>(Context);

pThis->PostMessage(WM_PROGRESS);

auto io = static_cast<IOData*>(Overlapped);

delete io;

if (0 == InterlockedDecrement64(&pThis->m_OperationCount)) {

pThis->PostMessage(WM_DONE);

}

}

}

I/O Cancellation

Once an I/O operation is underway, how can it be canceled? The Windows API provides
some options in this regard.
The obvious need for I/O cancellation is related to asynchronous operations. For that, there
are two functions:

BOOL CancelIo(_In_ HANDLE hFile);

BOOL CancelIoEx(

_In_ HANDLE hFile,

_In_opt_ LPOVERLAPPED lpOverlapped);

CancelIo attempts to cancel all asynchronous operations initiated through the provided file
handle by the calling thread. For more fine-grained control, CancelIoEx can be used with
a specific OVERLAPPED structure representing the operation to cancel.

In any case, canceling an I/O operation is not guaranteed to succeed. The canceling
operation itself is implemented by the device driver responsible for the operation. Some
drivers (especially for devices) don’t support cancellation at all. Even if the driver supports
cancelation, it may not be able to do so for every operation. For example, if an operation is
currently being processed by the hardware, it may be too late to cancel. You should think of
the cancel APIs as requesting cancellation, with no guarantees.

I/O operations are also canceled in the following scenarios:
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• When a file handle is closed, all pending I/O operations are canceled (except if the file
handle is associated with a completion port).

• When a thread exits, all pending I/O operations issued by the thread are canceled,
except requests made to file handles that are associated with I/O completion ports.

If an I/O operation is canceled successfully, the return value from GetLastError (or the
error result provided by a thread pool callback) is ERROR_OPERATION_ABORTED.

What about synchronous operations? Clearly, the thread that initiated the request cannot
cancel it, since it’s waiting for the I/O to complete. A different thread, can, however, attempt
cancelation with CancelSynchronousIo:

BOOL CancelSynchronousIo(_In_ HANDLE hThread);

The thread handle must have the PROCESS_TERMINATE access mask. As stated before,
cancelation is not guaranteed. If it is canceled, the wait of the original thread completes,
the operation returns FALSE and GetLastError returns ERROR_OPERATION_ABORTED.

Devices

Working with devices (that is, non file-system files), is essentially no different than working
with file-system files. The ReadFile and WriteFile functions work for any device,
including asynchronously, although not all devices support read and write operations.
For devices in particular, there is yet another function for performing I/O operations -
DeviceIoControl:

BOOL DeviceIoControl(

_In_ HANDLE hDevice,

_In_ DWORD dwIoControlCode,

_In_ LPVOID lpInBuffer,

_In_ DWORD nInBufferSize,

_Out_ LPVOID lpOutBuffer,

_In_ DWORD nOutBufferSize,

_Out_opt_ LPDWORD lpBytesReturned,

_Inout_opt_ LPOVERLAPPED lpOverlapped);

DeviceIoControl is a general-purpose function that allows sending a request, defined by
a control code (dwIoControlCode) with optional two buffers, one designated “input” and
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the other “output”. The function returns the number of bytes written to the output buffer (if
any) (in lpBytesReturned) and accepts an optional OVERLAPPED structure if the request is
to be performed asynchronously.

As an example, consider the idea of a sparse file. A sparse file should contain mostly zeros, so
the file system can store it in less space than just storing all bytes normally. Compression can
provide a similar effect, but these formats are not the same. To transform a file to become
sparse, a DeviceIoControl call is needed with the FSCTL_SET_SPARSE I/O control code.
The documentation for this control code indicates what should the input and output buffer
contain. In the case of FSCTL_SET_SPARSE, the input buffer should point to the following
structure:

typedef struct _FILE_SET_SPARSE_BUFFER {

BOOLEAN SetSparse;

} FILE_SET_SPARSE_BUFFER;

A very simple structure, indicating whether to turn on or off the sparse file feature. There is
no output buffer for this operation. Making a file sparse can be done like so:

FILE_SET_SPARSE_BUFFER buffer;

buffer.SetSparse = TRUE;

DWORD bytes;

::DeviceIoControl(hFile, FSCTL_SET_SPARSE, &buffer, sizeof(buffer),

nullptr, 0, &bytes, nullptr);

Once a file is sparse, zeros must be written explicitly with another control code, FSCTL_-
SET_ZERO_DATA, like so:

FILE_ZERO_DATA_INFORMATION buffer;

buffer.FileOffset.QuadPart = 100;

buffer.BeyondFinalZero.QuadPart = 1 << 20;

::DeviceIoControl(hFile, FSCTL_SET_ZERO_DATA, &buffer, sizeof(buffer),

nullptr, 0, &bytes, nullptr);

Many other standard control codes exist for various types of devices, check out the
documentation for more information.

CreateFile works with any symbolic link, those shown in figures 11-3 and 11-4. For
example, there are symbolic links called “PhysicalDrive0” and perhaps others, which is a
way to open a drive’s sectors directly, without looking at it through the file system’s lens.
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The DumpDrive application displays raw bytes from a disk, starting from a desired sector.
The main function starts by parsing command-line arguments:

int main(int argc, const char* argv[]) {

if (argc < 4) {

printf("Usage: DumpDrive <index> <offset in sectors> <size in sectors>\\

n");

return 0;

}

WCHAR path[] = L"\\\\.\\PhysicalDriveX";

path[::wcslen(path) - 1] = argv[1][0];

auto offset = atoll(argv[2]) * 512;

auto size = atol(argv[3]) * 512;

The offset and size must be a multiple of a sector’s size. Otherwise, later ReadFile calls
will fail with ERROR_INVALID_PARAMETER. The above code assumes 512 bytes per sector. It’s
better not to assume, and get the actual size programmatically. The exercises at the end of
this section will point you in the right direction.

Next, we need to open the drive, move the file pointer to the required offset and perform the
read:

HANDLE hDevice = ::CreateFile(path, GENERIC_READ, FILE_SHARE_READ

| FILE_SHARE_WRITE, nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)

return Error("Failed to open Physical drive");

LARGE_INTEGER fp;

fp.QuadPart = offset;

if (!::SetFilePointerEx(hDevice, fp, nullptr, FILE_BEGIN))

return Error("Failed in SetFilePointerEx");

auto buffer = std::make_unique<BYTE[]>(size);

DWORD bytes;

if (!::ReadFile(hDevice, buffer.get(), size, &bytes, nullptr))

return Error("Failed to read data");
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DisplayData(offset, buffer.get(), bytes);

::CloseHandle(hDevice);

return 0;

}

The fact that we’re working with a device rather than a file-system file does not change the
fundamental waywewrite code. The path to CreateFile is what’s important. DisplayData
is a simple function that dumps hex bytes to the console:

void DisplayData(long long offset, const BYTE* buffer, DWORD bytes) {

const int bytesPerLine = 16;

for (DWORD i = 0; i < bytes; i += bytesPerLine) {

printf("%16X: ", offset + i);

for (int b = 0; b < bytesPerLine; b++) {

printf("%02X ", buffer[i + b]);

}

printf("\n");

}

}

Here is a truncated example running it on my physical drive 1:

c:\>DumpDrive 1 0 2

0: 33 C0 8E D0 BC 00 7C FB 50 07 50 1F FC BE 1B 7C

10: BF 1B 06 50 57 B9 E5 01 F3 A4 CB BD BE 07 B1 04

20: 38 6E 00 7C 09 75 13 83 C5 10 E2 F4 CD 18 8B F5

30: 83 C6 10 49 74 19 38 2C 74 F6 A0 B5 07 B4 07 8B

40: F0 AC 3C 00 74 FC BB 07 00 B4 0E CD 10 EB F2 88

50: 4E 10 E8 46 00 73 2A FE 46 10 80 7E 04 0B 74 0B

60: 80 7E 04 0C 74 05 A0 B6 07 75 D2 80 46 02 06 83

70: 46 08 06 83 56 0A 00 E8 21 00 73 05 A0 B6 07 EB

...

120: 32 E4 8A 56 00 CD 13 EB D6 61 F9 C3 49 6E 76 61

130: 6C 69 64 20 70 61 72 74 69 74 69 6F 6E 20 74 61

140: 62 6C 65 00 45 72 72 6F 72 20 6C 6F 61 64 69 6E

150: 67 20 6F 70 65 72 61 74 69 6E 67 20 73 79 73 74
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...

3E0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

3F0: 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Add code to dynamically determine the size of a sector. Use the IOCTL_DISK_-
GET_DRIVE_GEOMETRY control code to query the disk for its geometry.

Other uses of symbolic links are for “software drivers”, those that do not manage any
hardware, but need to do things that cannot be done in user mode. A canonical example
is the driver for Process Explorer, that must expose a symbolic link, so that Process Explorer
itself (the driver’s client) can open a handle to the device and make DeviceIoControl calls
to it, requesting various services, based on a communication protocol established by the
driver and known to Process Explorer.

If you run Process Explorer at least oncewith admin rights, you’ll find the symbolic link name
“ProcExp152” using tools such as WinObj or ObjectExplorer. This means Process Explorer
opens a handle to its device using code like the following:

HANDLE hDevice = ::CreateFile(L"\\\\.\\ProcExp152", GENERIC_READ | GENERIC_WRIT\

E, 0, nullptr,

OPEN_EXISTING, 0, nullptr);

And then calls DeviceIoControl when needed.

My own tool, ObjectExplorer, also uses a kernel driver, with a symbolic link named
“KObjExp”. I use a similar CreateFile call to communicate with my device driver.

Another interesting set of symbolic links look like nonsense strings that could not have
been selected by humans; indeed, these were generated by the kernel to (at least) ensure
uniqueness. These weird-looking symbolic links are used for hardware device names. For
example, if you want to access a camera connected to your computer, how would you do it?
There is no symbolic link called “Camera1” or something similar, since this kind of string
has a few limitations:

• What if there are two cameras or more?
• Devices can be plugged out and then back in - do the numeric values persist somehow?
• Is English special in any way - why the word “Camera”? Every driver can come up
with its own name.
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• How can camera devices be enumerated if names can be anything?
• Some devices may have multiple “personalities”. For example, a printer device may
also be a scanner.

Some classic names from the DOS era are still maintained for compatibility, such as PRN,
LPT, COM, NUL and so on.

Behind the scenes, devices expose device interfaces, which you can think of as being similar
to software interfaces. Each interface represents some functionality. For example, a printer
device can “implement” a printing interface and a scanning interface. With these interfaces,
you can search “printers” or “scanners”.

Device interfaces are represented by GUIDs, and many are defined by Microsoft and can be
found in the documentation. This means we need to use an API to locate a device, and part
of the information returned by the API, is the device’s symbolic link that we can pass as-is
to CreateFile.

The EnumDevices application shows an example of how to enumerate devices based on a
device interface, and locate the device symbolic link. The heart of the application is the
EnumDevices function, that accepts a GUID for the requested device interface, and performs
the enumeration. Each device information is returned in the following structure:

struct DeviceInfo {

std::wstring SymbolicLink;

std::wstring FriendlyName;

};

Device enumeration begins by building a device information set (infoset) with SetupDiGet-
ClassDevs:
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std::vector<DeviceInfo> EnumDevices(const GUID& guid) {

std::vector<DeviceInfo> devices;

auto hInfoSet = ::SetupDiGetClassDevs(&guid, nullptr, nullptr,

DIGCF_PRESENT | DIGCF_INTERFACEDEVICE);

if (hInfoSet == INVALID_HANDLE_VALUE)

return devices;

Detailed discussion of the SetupDi* APIs is beyond the scope of this book.

“SetupDi” is short for “Setup Device Interface”.

The first parameter to SetupDiGetClassDevs is the device GUID, which requires the last
flags parameter to include DIGCF_INTERFACEDEVICE. The other flag specified (DIGCF_-
PRESENT) indicates that only connected devices should be enumerated.

Once an infoset is created, it can be enumerated with several enumeration functions, in this
case what we need is SetupDiEnumDeviceInterfaces. If it returns FALSE, it means there
are no more devices (or some other error occurred):

devices.reserve(4);

SP_INTERFACE_DEVICE_DATA data = { sizeof(data) };

SP_DEVINFO_DATA ddata = { sizeof(ddata) };

BYTE buffer[1 << 12];

for (DWORD i = 0; ; i++) {

if (!::SetupDiEnumDeviceInterfaces(hInfoSet, nullptr, &guid, i, &data))

break;

The enumeration returns a SP_INTERFACE_DEVICE_DATA structure that can be used to query
for the symbolic link:
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if (::SetupDiGetDeviceInterfaceDetail(hInfoSet, &data, details,

sizeof(buffer), nullptr, &ddata)) {

DeviceInfo info;

info.SymbolicLink = details->DevicePath;

Finally, we can get a “friendly name” for the device, and add the device to the vector:

if(::SetupDiGetDeviceRegistryProperty(hInfoSet, &ddata,

SPDRP_DEVICEDESC, nullptr, buffer, sizeof(buffer), nullptr))

info.FriendlyName = (WCHAR*)buffer;

devices.push_back(std::move(info));

}

}

::SetupDiDestroyDeviceInfoList(hInfoSet);

return devices;

}

The DisplayDevices function takes a collection of DeviceInfo instances, displays the
information, and attempts to open a handle with CreateFile:

void DisplayDevices(const std::vector<DeviceInfo>& devices, const char* name) {

printf("%s\n%s\n", name, std::string(::strlen(name), '-').c_str());

for (auto& di : devices) {

printf("Symbolic link: %ws\n", di.SymbolicLink.c_str());

printf(" Name: %ws\n", di.FriendlyName.c_str());

auto hDevice = ::CreateFile(di.SymbolicLink.c_str(), GENERIC_READ,

FILE_SHARE_READ | FILE_SHARE_WRITE,

nullptr, OPEN_EXISTING, 0, nullptr);

if (hDevice == INVALID_HANDLE_VALUE)

printf(" Failed to open device (%d)\n", ::GetLastError());

else {

printf(" Device opened successfully!\n");

::CloseHandle(hDevice);

}

}

printf("\n");

}



Chapter 11: File and Device I/O 542

The main function uses some GUIDs from various header files to enumerate some types of
devices:

#define INITGUID

#include <Wiaintfc.h>

#include <Ntddvdeo.h>

#include <devpkey.h>

#include <Ntddkbd.h>

int main() {

auto devices = EnumDevices(GUID_DEVINTERFACE_IMAGE);

DisplayDevices(devices, "Image");

// now in one stroke

DisplayDevices(EnumDevices(GUID_DEVINTERFACE_MONITOR), "Monitor");

DisplayDevices(EnumDevices(GUID_DEVINTERFACE_DISPLAY_ADAPTER),

"Display Adapter");

DisplayDevices(EnumDevices(GUID_DEVINTERFACE_DISK), "Disk");

DisplayDevices(EnumDevices(GUID_DEVINTERFACE_KEYBOARD), "keyboard");

return 0;

}

Here is an example run (truncated) on my machine:

...

Monitor

-------

Symbolic link: \\?\display#deld06e#4&5dd6935&0&uid200195#{e6f07b5f-ee97-4a90-b0\

76-33f57bf4eaa7}

Name: Generic PnP Monitor

Device opened successfully!

Symbolic link: \\?\display#deld070#4&5dd6935&0&uid208387#{e6f07b5f-ee97-4a90-b0\

76-33f57bf4eaa7}

Name: Generic PnP Monitor

Device opened successfully!

Display Adapter
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---------------

Symbolic link: \\?\pci#ven_8086&dev_3e9b&subsys_09261028&rev_02#3&11583659&0&10\

#{5b45201d-f2f2-4f3b-85bb-30ff1f953599}

Name: Intel(R) UHD Graphics 630

Failed to open device (5)

Symbolic link: \\?\pci#ven_10de&dev_1f36&subsys_09261028&rev_a1#4&13a74b11&0&00\

08#{5b45201d-f2f2-4f3b-85bb-30ff1f953599} Name: NVIDIA Quadro RTX 3000

Failed to open device (5)

Symbolic link: \\?\root#basicdisplay#0000#{5b45201d-f2f2-4f3b-85bb-30ff1f953599}

Name: Microsoft Basic Display Driver

Failed to open device (5)

Disk

----

Symbolic link: \\?\scsi#disk&ven_nvme&prod_pm981a_nvme_sams#4&9bd8d03&0&020000#\

{53f56307-b6bf-11d0-94f2-00a0c91efb8b}

Name: Disk drive

Device opened successfully!

Symbolic link: \\?\usbstor#disk&ven_wd&prod_elements_10b8&rev_1012#575836314134\

344e39393230&0#{53f56307-b6bf-11d0-94f2-00a0c91efb8b}

Name: Disk drive

Device opened successfully!

keyboard

--------

Symbolic link: \\?\hid#vid_1532&pid_021e&mi_01&col01#9&5ed78c5&0&0000#{884b96c3\

-56ef-11d1-bc8c-00a0c91405dd}

Name: Razer Ornata Chroma

Failed to open device (5)

Symbolic link: \\?\hid#vid_044e&pid_1212&col01&col02#7&1551398c&0&0001#{884b96c\

3-56ef-11d1-bc8c-00a0c91405dd}

Name: HID Keyboard Device

Failed to open device (5)

...

The prefix “\\?\” is identical to “\\.\”.
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Pipes and Mailslots

Two types of devices are worth mentioning in this section - pipes and mailslots. Pipes
is uni- or bi-directional (also referred to as half-duplex and full-duplex) communication
mechanism, that works across processes and across machines on the network. Mailslots is a
uni-directional communication mechanism, that works locally or over the network.

You can view existing pipes and mailslots with Object Explorer. Select Pipes… orMailslots…
from the Objects menu. There are a lot of open pipes on a typical system (figure 11-11).

Figure 11-11: Pipes on a system (Object Explorer)

Table 11-1 showed an example of a path related to a named pipe and to a mailslot. The
CreateFile function is used by a named pipe/mailslot client. For the server endpoint, other
functions need to be used.
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Pipes

Pipes come in two variants - anonymous and named. Anonymous pipes is a simple uni-
direction communication mechanism that is limited to the local machine. An anonymous
pipe pair is created with CreatePipe:

BOOL CreatePipe(

_Out_ PHANDLE hReadPipe,

_Out_ PHANDLE hWritePipe,

_In_opt_ LPSECURITY_ATTRIBUTES lpPipeAttributes,

_In_ DWORD nSize);

CreatePipe creates handles for the two ends of the pipe. A classic example of using
anonymous pipes is to redirect input and/or output to another process. This allows one
process to feed data to another process, while the other process has no idea, and doesn’t
really care, it just uses the standard handle(s) for input/output.

The SimpleRedirect application shows an example of redirecting the output handle to the
EnumDevices application from the previous section. Instead of the output of EnumDevices
going to its console, it will go to the SimpleRedirect process.

The application window is a simple dialog with a big edit box (figure 11-12). Clicking Create
and Redirect creates the pipes, the EnumDevices process and performs the redirection. The
result is the text written by that process (figure 11-13).
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Figure 11-12: Simple Redirect at launch
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Figure 11-13: Redirected text in Simple Redirect

The basic idea is to create an anonymous pipe and share its write end with the EnumDevices
process. This way, anything the EnumDevices process writes, the read end of the pipe can be
used to read it. To make it work, the write and of the pipe must be attached to the standard
output of the EnumDevices process, so any standard output calls (such as printf) will be
available through the pipe. This arrangement is depicted in figure 11-14.
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Figure 11-14: Anonymous pipe with redirection

The trick is to pass the write handle to the new process, which is done with process handle
inheritance, as described in chapter 3.

The CMainDlg::OnRedirect function does the work of creating the pipe and using it. First
it creates the pipe:

LRESULT CMainDlg::OnRedirect(WORD, WORD wID, HWND, BOOL&) {

wil::unique_handle hRead, hWrite;

if (!::CreatePipe(hRead.addressof(), hWrite.addressof(), nullptr, 0))

return Error(L"Failed to create pipe");

Next, the write handle needs to be shared with the new process (yet to be created), so it must
be made inheritable:

::SetHandleInformation(hWrite.get(), HANDLE_FLAG_INHERIT, HANDLE_FLAG_INHERIT);

Now the EnumDevices process can be created, by calling the CreateOtherProcess helper
function (discussed shortly). Then the local write handle is not needed anymore, so can be
closed:

if (!CreateOtherProcess(hWrite.get()))

return Error(L"Failed to create process");

// local write handle not needed anymore

hWrite.reset();

All that’s left to do is read data from the read end of the pipe and use the data:



Chapter 11: File and Device I/O 549

char buffer[1 << 12] = { 0 };

DWORD bytes;

CEdit edit(GetDlgItem(IDC_TEXT));

ATLASSERT(edit);

while (::ReadFile(hRead.get(), buffer, sizeof(buffer), &bytes, nullptr) && byte\

s > 0) {

CString text;

edit.GetWindowText(text);

text += CString(buffer);

edit.SetWindowText(text);

::memset(buffer, 0, sizeof(buffer));

}

It’s a normal ReadFile call that is repeated as long as there is data in written to the pipe
from the other end.

To make this work properly, the new process needs to be created with handle inheritance
and proper flags to make the inherited handle be used as standard output:

bool CMainDlg::CreateOtherProcess(HANDLE hOutput) {

PROCESS_INFORMATION pi;

STARTUPINFO si = { sizeof(si) };

si.hStdOutput = hOutput;

si.dwFlags = STARTF_USESTDHANDLES;

WCHAR path[MAX_PATH];

::GetModuleFileName(nullptr, path, _countof(path));

*::wcsrchr(path, L'\\') = L'\0';

::wcscat_s(path, L"\\EnumDevices.exe");

BOOL created = ::CreateProcess(nullptr, path, nullptr, nullptr, TRUE,

CREATE_NO_WINDOW, nullptr, nullptr, &si, &pi);

if (created) {

::CloseHandle(pi.hProcess);

::CloseHandle(pi.hThread);

}

return created;

}
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The STARTUPINFO structure is initialized by setting the hStdOutput member to the value
of the write handle. This works because inherited handles have the same value in the
new process. The flag STARTF_USESTDHANDLES ensures the standard handles are picked up
automatically by the new process.

To locate the EnumDevices executable, the code assumes it’s in the same directory as the cur-
rent executable. GetModuleFileNamewith a NULL first argument returns the full executable
path of the current process. Then, the filename part is replaced with “EnumDevices”.

Finally, CreateProcess is called with the handle inheritance flag set to TRUE (fifth
argument). The returned handles are closed properly as they are not really needed. Adding
the CREATE_NO_WINDOW flag is a nice touch that prevents a console window popping up for
the new process.

Named pipes and mailslots are discussed in their own chapter (in Part 2).

Transactional NTFS

The Windows executive has a component called Kernel Transaction Manager (KTM), that
provides support for using transactions for file (and registry) operations. For files, it’s
sometimes referred to as Transactional NTFS (TxF). A transaction is a set of operations that
adhere to the so-called ACID properties:

• Atomicity - either all operations in a transaction succeed, or all operations fail.
• Consistency - the file system will always be in a consistent state.
• Isolation - multiple transaction in progress do not affect each other.
• Durability - system failure should not cause the transaction to violate the earlier
properties.

Microsoft’s documentation has been warning developers for some years now not
to rely on the KTM, and look for other mechanisms to get similar results. The
warning indicates that transaction support for file and registry operations may be
removed in a futureWindows version.Why?My guess is not many developers use
this powerful facility. In any case, it hasn’t happened yet, and in my opinion the
alternatives listed in the documentation are not real replacements for the KTM.

This section provides a quick introduction to TxF. To get started with transactional opera-
tions, call CreateTransaction to create a new transaction:
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HANDLE CreateTransaction (

_In_opt_ LPSECURITY_ATTRIBUTES lpTransactionAttributes,

_In_opt_ LPGUID UOW, // must be NULL

_In_opt_ DWORD CreateOptions,

_In_opt_ DWORD IsolationLevel, // must be 0

_In_opt_ DWORD IsolationFlags, // must be 0

_In_opt_ DWORD Timeout,

_In_opt_ LPTSTR Description);

The transactionAPIs have their own #include (<ktmw32.h>) and import library (ktmw32.lib).

The function has some unused parameters. lpTransactionAttributes is the standard
SECURITY_ATTRIBUTES structure. CreateOptions can be zero or TRANSACTION_DO_NOT_-
PROMOTE to prevent promoting the transaction to a distributed one. If Timeout is provided
which is not zero or INFINITE, the transaction will abort after the specified time in
milliseconds elapses. Otherwise, there is no timeout for the transaction. The last parameter
is an optional human-readable string describing the transaction.

The function returns a handle to the new transaction, or INVALID_HANDLE_VALUE if it fails.

With a transaction handle in hand, several file related functions accept a transaction handle,
such as CreateFileTransacted:

HANDLE CreateFileTransacted(

_In_ LPCTSTR lpFileName,

_In_ DWORD dwDesiredAccess,

_In_ DWORD dwShareMode,

_In_opt_ LPSECURITY_ATTRIBUTES lpSecurityAttributes,

_In_ DWORD dwCreationDisposition,

_In_ DWORD dwFlagsAndAttributes,

_In_opt_ HANDLE hTemplateFile,

_In_ HANDLE hTransaction,

_In_opt_ PUSHORT pusMiniVersion,

_Reserved_ PVOID lpExtendedParameter); // NULL

The function is an extended version of CreateFile. The file name must reference a local
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file, otherwise the function fails and GetLastError returns ERROR_TRANSACTIONS_UNSUP-
PORTED_REMOTE. hTransaction is the transaction handle obtained from CreateTransac-
tion.

The pusMiniVersion parameter should be NULL if the file is opened for read access only.
If opened for write access, it indicates what kind of view the file should present to clients
during the transaction (defined in txfw32.h):

• TXFS_MINIVERSION_COMMITTED_VIEW - view based on the last commit.
• TXFS_MINIVERSION_DIRTY_VIEW - dirty view as its being modified by the transaction.
• TXFS_MINIVERSION_DEFAULT_VIEW - committed for a transaction that does not mod-
ify the file, dirty otherwise.

A custom miniversion view can also be created by using the FSCTL_TXFS_CREATE_-

MINIVERSION I/O control code (check the documentation).

The handle returned by CreateFileTransacted can be passed to normal I/O access
functions, such as ReadFile and WriteFile. This means that once a file object is created
transacted, all the other operations on the file remain exactly the same.

Similarly to CreateFileTransacted, there are other functions that can work as part of
a transaction: CopyFileTransacted, CreateHardLinkTransacted, DeleteFileTrans-
acted, CreateDirectoryTransacted and more.

Once all operations complete successfully, the transaction can be committed with Commit-
Transaction:

BOOL CommitTransaction(_In_ HANDLE TransactionHandle);

If something went wrong with the various operations in the transaction, you can request all
operations to roll back:

BOOL RollbackTransaction(_In_ HANDLE TransactionHandle);

Transaction handles are closed normally with CloseHandle.
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The kernel object type for a transaction is TmTx.

Every transaction has an ID that can be retrieved with GetTransactionId:

BOOL GetTransactionId (

_In_ HANDLE TransactionHandle,

_Out_ LPGUID TransactionId);

The returned GUID can be used to open a handle to an existing transaction with OpenTrans-
action:

HANDLE OpenTransaction (

_In_ DWORD dwDesiredAccess,

_In_ LPGUID TransactionId);

Transactions are implemented behind the covers with the Common Log File System (CLFS)
logging facility.

File Search and Enumeration

Sometimes there is a need to search or enumerate for files and directories. Fortunately,
the file management APIs provide several functions to accomplish such a fit. To start
enumeration/search, call either FindFirstFile or FindFirstFileEx:



Chapter 11: File and Device I/O 554

HANDLE FindFirstFileW(

_In_ LPCTSTR lpFileName,

_Out_ LPWIN32_FIND_DATA lpFindFileData);

HANDLE FindFirstFileEx(

_In_ LPCTSTR lpFileName,

_In_ FINDEX_INFO_LEVELS fInfoLevelId,

_Out_ LPVOID lpFindFileData,

_In_ FINDEX_SEARCH_OPS fSearchOp,

_Reserved_ LPVOID lpSearchFilter,

_In_ DWORD dwAdditionalFlags);

Both functions accepts a file name to start the search with. This can be any path specification
and include wildcards. Examples include c:\temp\*.png and c:\mydir\file??.txt.

Each result is returned with the WIN32_FIND_DATA structure defined like so:

typedef struct _WIN32_FIND_DATA {

DWORD dwFileAttributes;

FILETIME ftCreationTime;

FILETIME ftLastAccessTime;

FILETIME ftLastWriteTime;

DWORD nFileSizeHigh;

DWORD nFileSizeLow;

DWORD dwReserved0;

DWORD dwReserved1;

_Field_z_ TCHAR cFileName[ MAX_PATH ];

_Field_z_ TCHAR cAlternateFileName[ 14 ];

} WIN32_FIND_DATA, *PWIN32_FIND_DATA, *LPWIN32_FIND_DATA;

The structure gives the basic properties of a file.

The extended function has an fInfoLevelId parameter to indicate what information
to return. Using FindExInfoStandard is equivalent to the non-extended function. The
alternative value, FindExInfoBasic, does not return the short file name (in cAlternate-
FileName), which speeds up the search operation, and is recommended, since short filenames
are rarely (if at all) needed.

The fSearchOp parameter’s only useful value is FindExSearchLimitToDirectories, that
hints to locate directories only. Not all file systems support this hint, so don’t rely on it.
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The last parameter to the extended function, dwAdditionalFlags provides some more
customization for the search:

• FIND_FIRST_EX_CASE_SENSITIVE - searches are case sensitive.
• FIND_FIRST_EX_LARGE_FETCH - uses larger buffer for searches, which can increase
performance at the expense of more memory usage.

• FIND_FIRST_EX_ON_DISK_ENTRIES_ONLY - skips files that are not resident (such as
virtualized files common in services such as OneDrive).

The functions return a search handle, which is INVALID_HANDLE_VALUE if an error occurs.

With a valid handle, the first search match is available. To progress to the next match, call
FindNextFile:

BOOL FindNextFile(

_In_ HANDLE hFindFile,

_Out_ LPWIN32_FIND_DATA lpFindFileData);

The function returns the next match, or FALSE if there are no matches.

When you’re done with the search, call FindClose to close the search handle:

BOOL FindClose(_Inout_ HANDLE hFindFile);

NTFS Streams

TheNTFS file system supports file streams, which are essentially files within a file. Normally,
we use the default data stream, but others can be created and used. These are essentially
hidden from normal view and don’t show up in standard tools such asWindows Explorer.

A familiar example of such a case is when downloading some types of files from the web,
and when selecting Properties in Explorer, shows something like figure 11-15.
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Figure 11-15: Properties of a “blocked” file

How does Explorer “know” this file came from a different machine? The secret is in an NTFS
stream that is within the file. The streams command-line tool from Sysinternals can identify
such streams. Here is the output for the file in figure 11-15:

C:\>streams -nobanner file.chm

C:\file.chm:

:Zone.Identifier:$DATA 26
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There is a hidden NTFS stream named “Zone.Identifier” within the file and it’s 26 bytes long.
Streams does not show the contents of NTFS streams, but my toolNTFS Streams does (figure
11-16).

Figure 11-16: Stream contents in NTFS Streams

You can find NTFS Streams in my Gitub repository https://github.com/zodiacon/
AllTools or https://github.com/zodiacon/NtfsStreams.

The HTML Help (hh.exe) Windows application looks for this stream and if found does not
parse the HTML.

The Unblock check box in figure 11-15 deletes the stream, allowing HTML Help to work
normally.

How can we create such hidden streams? The normal CreateFile function can be used,
where the filename is appended with a colon and the stream’s name. Here is an example:

HANDLE hFile = ::CreateFile(L"c:\\temp\\myfile.txt:mystream", GENERIC_WRITE, 0,

nullptr, CREATE_NEW, 0, nullptr);

char text[] = "Hello from a hidden stream!";

DWORD bytes;

::WriteFile(hFile, text, ::strlen(text), &bytes, nullptr);

::CloseHandle(hFile);

Here is some interaction with the new file:

https://github.com/zodiacon/AllTools
https://github.com/zodiacon/AllTools
https://github.com/zodiacon/NtfsStreams
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C:\temp>dir myfile.txt

Volume in drive C is OS

Volume Serial Number is 9010-6C18

Directory of C:\temp

06-Apr-20 12:11 0 myfile.txt

1 File(s) 0 bytes

0 Dir(s) 904,581,414,912 bytes free

C:\temp>streams -nobanner myfile.txt

C:\temp\myfile.txt:

:mystream:$DATA 27

The file is shown as having zero size! Clearly, this is not the case, as there is a hidden stream
inside that can be arbitrarily long. NTFS Streams will show the contents of the stream.

The “$DATA” suffix is the default stream reparse point. Custom reparse points can be
created that are handled in special ways by file system filter drivers. This is beyond the
scope of this book.

You may be wondering how Streams and NTFS Streams work. Two functions exist for
enumerating streams within a file, very similar to the search functions from the previous
section:

HANDLE WINAPI FindFirstStream(

_In_ LPCTSTR lpFileName,

_In_ STREAM_INFO_LEVELS InfoLevel,

_Out_ LPVOID lpFindStreamData,

_Reserved_ DWORD dwFlags);

BOOL FindNextStreamW(

_In_ HANDLE hFindStream,

_Out_ LPVOID lpFindStreamData);

The functions allow enumerating all streams in a file. Each returned value in the lpFind-
StreamData parameter is actually the following structure:
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typedef struct _WIN32_FIND_STREAM_DATA {

LARGE_INTEGER StreamSize;

WCHAR cStreamName[MAX_PATH + 36];

} WIN32_FIND_STREAM_DATA, *PWIN32_FIND_STREAM_DATA;

It provides the stream size and its name.

Write an equivalent tool to Streams.

Summary

This chapter was all about I/O operations. We saw how to work with files and devices, both
synchronously and asynchronously. There are more file-related APIs that we didn’t cover
in this chapter, for which you can find more information in the documentation. Examples
of functionality not discussed in this chapter include file operations (copy, move, etc.), file
links (soft and hard), file locking, and file encryption and decryption.

In the next chapter, we’ll venture into a new area that no application or operating system
can do without - memory management.



Chapter 12: Memory Management
Fundamentals
Memory is a fundamental building block of any computer system. In the old days, using
memory was relatively simple, as an application just allocated physical memory directly,
used it, freed it, and that was it. Modern operating systems manage virtual memory, a term
that has some unfortunate connotations. In this chapter we’ll introduce all major concepts
related to memory - both virtual and physical.

In this chapter:

• Basic Concepts
• Process Address Space
• Memory Counters
• Process Memory Map
• Page Protection
• Enumerating Address Space Regions
• Sharing Memory
• Page Files
• WOW64
• Virtual Address Translation

Basic Concepts

Today’s modern Intel/AMD processors started as very modest in terms of memory. The
original 8086/8088 processors supported just 1 MB of memory (physical, as there was nothing
else at the time). Each access to memory was a combination of a segment address and an
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offset, which was needed because these processors worked with 16-bit values internally, but
the memory access requires 20 bits (1 MB). A segment register’s value (16-bit) was multiplied
by 16 (0x10) and then an offset was added to reach an address in the 1 MB range. This
mode of working is now called Real Mode, and is still the mode in which today’s Intel/AMD
processors wake up in.

With the introduction of the 80386 processor, virtual memory was born as it’s essentially
used today, including the ability to access memory linearly (with the segment registers just
set to zero) by using offsets only. This makes memory access much more convenient. Virtual
memory means every memory access needs to be translated to where the physical address
is. This mode is referred to as Protected Mode. In protected mode, there is no way to access
physical memory directly - only via a mapping from a virtual address to a physical address.
This mapping must be prepared upfront by the operating system’s Memory Manager, since
the CPU expects this mapping to be present.

On 64-bit systems, protected mode is called Long Mode, but it’s essentially the same
mechanism, extended to 64-bit addresses.

The mapping between virtual and physical addresses, as well as the management of memory
blocks on the OS level are performed in chunks called pages. This is necessary, since it’s not
possible to manage every single byte - the management structure will be much larger than
that byte. There are two supported page sizes, with a third size supported on Windows 10
and Server 2016 on x64 systems. Table 12-1 lists the page sizes for all architectures Windows
supports.

Table 12-1: Page sizes

Architecture Small (normal) page Large page Huge page
x86 4 KB 2 MB N/A
x64 4 KB 2 MB 1 GB
ARM 4 KB 4 MB N/A
ARM64 4 KB 2 MB N/A

Small (normal) pages are the default, and the term “page” used throughout this chapter (and
the next ones) means a small or normal page, which is 4 KB on all architectures. If a different
page size is mentioned, it will be accompanied by an explicit prefix of “large” or “huge”.
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Process Address Space

Each process has its own linear, virtual, private address space. The address space starts at
address zero and ends at some maximum value, based on the OS bitness (32 or 64) and
the process bitness, as we shall soon see. The important part here is “private”. For example,
stating that there is some data at address 0x100000 requires another question answered: in
which process? Every process has an address 0x100000, but that address may be mapped
to a different physical address, to a file, or to nothing at all. This conceptual mapping is
illustrated in figure 12-1, where two processes are mapping some of their pages to physical
memory (RAM), some of their pages to disk, and still others are unmapped.

Figure 12-1: Virtual address mapping

A process can directly access memory in its own address space. This means a process
cannot accidentally or maliciously read or write to another process’ address space simply by
manipulating a pointer. It is possible to access memory of another process, but that requires
calling a function (ReadProcessMemory or WriteProcessMemory, discussed later in this
chapter) with a strong-enough handle to the target process.
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The address space of a process is referred to as virtual. This refers to the fact that the address
space is just that: a space for potential memory mappings. Every process starts with very
modest usage of its virtual address space - the executable is mapped as well asNtDll.Dll. Then
the loader (part of NtDll) allocates some basic structures within the process address space,
such as the default process heap (discussed in the next chapter), the Process Environment
Block (PEB), the Thread Environment Block (TEB) for the first thread in the process. Most of
the address space is empty.

Page States

Each page in virtual memory can be in one of three states: free, committed and reserved. A
free page is unmapped, and so trying to access that page causes an access violation exception.
Most of a process’ address space starts as free.

A committed page is the opposite of free - this is a mapped page, to RAM or to a file, and
accessing that page should succeed (barring any conflicting page protection, discussed later
in this chapter). If the page is in RAM, the CPU accesses the data directly and moves on. If
the page is not in RAM (at least as far as the tables the CPU consults tell it), the CPU raises
an exception called page fault, which is captured by the memory manager. If the page does
indeed reside on disk, the memory manager brings it back to RAM, fixes the translation table
to point to the new address in RAM, and instructs the CPU to try again. The net result is that
the access succeeds from the point of view of the calling thread. if indeed I/O was involved,
the access is slower, but the calling thread does not need to know about this or do anything
special about it - it works transparently.

Technically, accessing a free page causes a page fault as well. In this case, the
memory manager concludes that there is nothing behind the given address and
raises an access violation exception.

Committed memory is what normally is called “allocated” memory. Calling C/C++ memory
allocation functions, such malloc, calloc, operator new, etc. always commit memory (if
they succeed, of course).

We’ll discuss memory allocation APIs in depth in the next chapter.
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The last page state is somewhere between free and committed called reserved. A reserved
page is similar to free, in the sense that accessing that page causes an access violation - there is
nothing there. The reserved page may be committed later on. A reserved page range ensures
that normal memory allocations do not use that range, because it’s reserved for another
purpose. We’ve seen this idea in the way a thread’s stack is managed. Since a thread’s stack
can grow, and must be contiguous in virtual memory, a range of pages is reserved so that
other allocations happening in the process don’t use the reserved address range.

Table 12-2 summarizes the pages states.

Table 12-2: Page states

Page state Meaning If accessed
Free Unallocated page Access violation exception
Committed Allocated page Success (assuming no page protection

restriction)
Reserved Unallocated page, reserved for future

use
Access violation exception

Address Space Layout

In this section, we’ll examine the address layout of processes on 32-bit and 64-bit systems.
Table 12-3 summarizes the address space sizes.

Table 12-3: Process virtual address size

OS Type Process type LARGEADDRESSAWARE

clear
LARGEADDRESSAWARE set

32-bit booted w/o
increase UVA

32-bit 2 GB 2 GB

32-bit booted w/ increase
UVA

32-bit 2 GB 2 GB to 3 GB

64-bit (Windows 8.1+) 32-bit 2 GB 4 GB
64-bit (Windows 8.1+) 64-bit 2 GB 128 TB
64-bit (up to Windows 8) 32-bit 2 GB 4 GB
64-bit (up to Windows 8) 64-bit 2 GB 8 TB

The LARGEADDRESSAWARE is a linker flag that can be specified when building an executable,
and is stored as part of the PE header. It can also be set later, without access to the source
code, using a PE-editing tool, such as the editbin.exe command-line tool, available in the
Windows SDK. What is the purpose of this flag?
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If the executable is signed, however, changing this flag (or any other flag for that
matter) will invalidate the signature.

Originally (before Windows NT 4), 32-bit processes could get 2 GB of address space only.
2 GB requires 31 bits to represent an address, so the most significant bit (MSB) is always
zero. Starting with NT 4, 32-bit Windows could boot with a 3 GB address space per process.
However, some developers could take advantage of the fact that any address they use has its
MSB set to zero, and use the free bit for some applicative purpose. Then, if such a process is
given more than 2 GB, where the MSB might be 1, the process will fail in some way, as it
will mask off the MSB before accessing memory. Setting the LARGEADDRESSAWARE bit states
that the developers for that executable did not mess around with the MSB of addresses, so
the process can accepts addresses larger than 2 GB (0x80000000) without any issue.

This bit only affects executables, not DLLs. DLLs must always work correctly and never
assume anything about the address values they are given.

You typically set this bit in Visual Studio, in the project properties / Linker / System (figure
12-2). The default is “No” for 32-bit configurations and “Yes” for 64-bit configurations. For
32-bit executables, assuming you don’t assume anything special about addresses, there is
almost no downside to setting the flag to “Yes”.

One downside does exist: if your process leaks memory, it will have more address
space to leak it, which means the system will consume more memory because of
your process.
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Figure 12-2: LARGEADDRESSAWARE flag in Visual Studio

You can use the Dumpbin.exe command-line tool to view information about a PE, including
the state of the LARGEADDRESSAWARE bit. Here is an example with Explorer.exe:

C:\>dumpbin /headers c:\windows\explorer.exe

Microsoft (R) COFF/PE Dumper Version 14.26.28720.3

Copyright (C) Microsoft Corporation. All rights reserved.

Dump of file c:\windows\explorer.exe

PE signature found

File Type: EXECUTABLE IMAGE

FILE HEADER VALUES

8664 machine (x64)
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8 number of sections

4D818882 time date stamp

0 file pointer to symbol table

0 number of symbols

F0 size of optional header

22 characteristics

Executable

Application can handle large (>2GB) addresses

...

As mentioned in chapter 5, there are several graphic tools that can show this information as
well, such as my own PE Explorer V2 (figure 12-3).

Figure 12-3: PE Explorer V2 showing PE properties

32-bit Systems

On 32-bit systems, two variants exits, listed in table 12-3 and shown graphically in figure
12-4.
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Figure 12-4: 32-bit address space layout

32-bit means 4 GB, which may have left you wondering why processes get only 2 GB. Figure
12-2 solves the mystery: the upper 2 GB are system space (also called kernel space). This
is where the operating system kernel itself resides, with all kernel device drivers, and the
memory they’re consuming in terms of code and data.

Notice that system space is a singleton - there us just one system, just one kernel. This
means addresses in system space are absolute, rather than relative; they mean the same
thing from every process context.

If the system boots with the “increase user virtual address” option, the system has to make
do with an address range of 1 GB only, and user processes get 2 GB to 3 GB (anything about
2 GB requires having the LARGEADDRESSAWARE flag in their PE header).

Booting a 32-bit systemwith the “increase UVA” option can be done by running the following
in an elevated command window, then rebooting the system:

c:\>bcdedit /set increaseuserva 3072

The number is the amount of user address space in MB, which can be from 2048 (2 GB
default) up to 3072 (3 GB).
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To remove this option, use bcdedit /deletevalue increaseuserva.

64-bit Systems

The 32-bit option to increase user address up to 3 GB is nice, but not nearly enough. This was
a step gap until true 64-bit operating systems are available. Today, most (if not all) desktop
Windows versions are 64-bit, not just servers. 64-bit systems offer several advantages, the
first of which is a radically increased address space.

The theoretical limit for 64 bits is 2 to the 64ʰ power, or 16 EB (Giga, Tera, Peta, Exa). This is a
literally astronomical address range, that seems unreachable in today’s systems. To make use
of such an address space you would have to have RAM plus paging files close to this number,
which is still far away from today’s systems. In fact, most modern processors support only
48 bits of virtual and physical addresses. This means that the maximum address range that is
possible to get is 2 to the 48ʰ power, or 256 TB. This is why on a 64-bit system each process
can have 128 TB of address space range, where the other 128 TB are for system space.

The Sunny Cove Intel microarchitecture supports 57 bits of virtual address space
and 52 bits of physical address space. This means address space with such
processors will be 64 PB per process and 64 PB for system space!

The transition to 64-bit systems was mostly painless because of the ability to run 32-bit x86
processes on a 64-bit x64 system without any change to the original binary. This will be
discussed further in the section “WOW64”, later in this chapter. 32-bit executables that have
the LARGEADDRESSAWARE bit get 4 GB of address space on a 64-bit system. This makes sense,
as the transition from 3 GB to 4 GB does require extra bits, so a process that can handle 3
GB can certainly handle 4 GB.

A canonical example of an executable that leverages this capability is Visual Studio
(devenv.exe). Visual Studio is a 32-bit process, and since developers use 64-bit systems,
Visual Studio gets 4 GB of address space. Some people claim it allows Visual Studio to leak
more memory :)
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There was some pain in the transition from 32-bit to 64-bit. The pain was in
converting device drivers from 32-bit to 64-bit. There is no “WOW64” layer in
the kernel. Complex kernel drivers, such as display drivers had stability issues in
the early 64-bit days. Fortunately, these are all behind us now.

Figure 12-5 shows the address space layouts on 64-bit systems, for 32-bit and 64-bit processes.

Figure 12-5: Address layouts on 64-bit systems

64-bit versions of Windows 8 and earlier only support 8 TB of user address space
and 8 TB for system space. This was due to an implementation detail in the kernel
that was fixed in Windows 8.1.

64-bit systems are not all rose gardens, however. 64-bit processes can leak memory to the
point of bringing the system to its knees, as the address space is practically unlimited
- RAM plus page files will be full before a 64-bit process’ address space runs out. Also,
address translation requires an extra level compared to 32-bit systems, which could be
slower if the Translation Lookaside Buffer (TLB) cache is not used effectively (see later in
this chapter).
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Address Space Usage

We’ve seen in broad strokes the amount of virtual memory space available to various types
of processes. However, not the entire user address space range is usable. To get a sense of
what is and is not usable, we can call the GetSystemInfo function, and its sister function,
GetNativeSystemInfo:

VOID GetSystemInfo(_Out_ LPSYSTEM_INFO lpSystemInfo);

VOID GetNativeSystemInfo(_Out_ LPSYSTEM_INFO lpSystemInfo);

Both functions return a SYSTEM_INFO structure defined like so:

typedef struct _SYSTEM_INFO {

union {

DWORD dwOemId; // Obsolete, do not use

struct {

WORD wProcessorArchitecture;

WORD wReserved;

};

};

DWORD dwPageSize;

LPVOID lpMinimumApplicationAddress;

LPVOID lpMaximumApplicationAddress;

DWORD_PTR dwActiveProcessorMask;

DWORD dwNumberOfProcessors;

DWORD dwProcessorType; // obsolete

DWORD dwAllocationGranularity;

WORD wProcessorLevel;

WORD wProcessorRevision;

} SYSTEM_INFO, *LPSYSTEM_INFO;

The structure contains some system-level information, including the minimum and max-
imum usable address for user-mode processes. The GetSystemInfo function takes into
account the calling process bitness. A 32-bit process on a 64-bit system can only “see” 32-
bit values. GetNativeSystemInfo allows looking at the “real” values - up to a point. For a
32-bit process on a 32-bit system and for a 64-process on a 64-bit system, the functions are
identical.

The sysinfo application displays some of the information available in a SYSTEM_INFO
structure. It starts simply by calling GetSystemInfo:
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SYSTEM_INFO si;

::GetSystemInfo(&si);

DisplaySystemInfo(&si, "System information");

Whatever is returned from GetSystemInfo is passed to the helper function, DisplaySys-
temInfo to display the results.

If the current process is 32-bit on a 64-bit system (WOW64 process), a second call is made to
GetNativeSystemInfo to display more accurate information:

BOOL isWow = FALSE;

if (sizeof(void*) == 4 && ::IsWow64Process(::GetCurrentProcess(), &isWow) && is\

Wow) {

::GetNativeSystemInfo(&si);

printf("\n");

DisplaySystemInfo(&si, "Native System information");

}

The question is how to check if a process is a WOW64 process. The functions Is-
Wow64Process and the newer IsWow64Process2 can help:

BOOL IsWow64Process(

_In_ HANDLE hProcess,

_Out_ PBOOL Wow64Process);

// Windows 10+ only

BOOL IsWow64Process2(

_In_ HANDLE hProcess,

_Out_ USHORT* pProcessMachine,

_Out_opt_ USHORT* pNativeMachine);

IsWow64Process returns TRUE in Wow64Process if it’s a WOW64 process. It’s important to
note that the function sets Wow64Process to FALSE if running on a 32-bit system.

The newer IsWow64Process2 function provides more information about the processor
powering the process and the native processor on the machine. pProcessMachine returns
one of the IMAGE_FILE_MACHINE_* constants defined in <winnt.h>. If the value is IMAGE_-
FILE_MACHINE_UNKNOWN, it means the process is not WOW. If pNativeMachine is not NULL,
it returns the native machine identifier from the same list.
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The code in sysinfo checks if the current process is 32-bit (sizeof(void*) == 4) and is a
WOW64 process. If both are true, then the native system is different from the current process
and so a call to GetNativeSystemInfo is merited.

Task Manager provides a column named Platform in the Details tab, that shows
the “bitness” of each process.

DisplaySystemInfo is mostly straightforward, displaying most of the information from a
SYSTEM_INFO instance:

const char* GetProcessorArchitecture(WORD arch) {

switch (arch) {

case PROCESSOR_ARCHITECTURE_AMD64: return "x64";

case PROCESSOR_ARCHITECTURE_INTEL: return "x86";

case PROCESSOR_ARCHITECTURE_ARM: return "ARM";

case PROCESSOR_ARCHITECTURE_ARM64: return "ARM64";

}

return "Unknown";

}

void DisplaySystemInfo(const SYSTEM_INFO* si, const char* title) {

printf("%s\n%s\n", title, std::string(::strlen(title), '-').c_str());

printf("%-24s%s\n", "Processor Architecture:",

GetProcessorArchitecture(si->wProcessorArchitecture));

printf("%-24s%u\n", "Number of Processors:", si->dwNumberOfProcessors);

printf("%-24s0x%llX\n", "Active Processor Mask:",

(DWORD64)si->dwActiveProcessorMask);

printf("%-24s%u KB\n", "Page Size:", si->dwPageSize >> 10);

printf("%-24s0x%p\n", "Min User Space Address:",

si->lpMinimumApplicationAddress);

printf("%-24s0x%p\n", "Max User Space Address:",

si->lpMaximumApplicationAddress);

printf("%-24s%u KB\n", "Allocation Granularity:",

si->dwAllocationGranularity >> 10);

}

Here is an example output on a 64-bit system when compiling the app to 64-bit:



Chapter 12: Memory Management Fundamentals 574

System information

------------------

Processor Architecture: x64

Number of Processors: 16

Active Processor Mask: 0xFFFF

Page Size: 4 KB

Min User Space Address: 0x0000000000010000

Max User Space Address: 0x00007FFFFFFEFFFF

Allocation Granularity: 64 KB

Notice the lowest usable address is 0x10000, meaning the first 64 KB of virtual address space
are unusable. These are traditionally used to catch NULL pointers. Similarly, the upper 64 KB
of address space, just before system space starts, are unusable as well. In short, it means the
usable address space range is 128 KB less than perhaps expected. For 64-bit processes, this is
completely unnoticeable.

Running the same application as a 32-bit executable on a 64-bit system yields the following:

System information

------------------

Processor Architecture: x86

Number of Processors: 16

Active Processor Mask: 0xFFFF

Page Size: 4 KB

Min User Space Address: 0x00010000

Max User Space Address: 0x7FFEFFFF

Allocation Granularity: 64 KB

Native System information

-------------------------

Processor Architecture: x64

Number of Processors: 16

Active Processor Mask: 0xFFFF

Page Size: 4 KB

Min User Space Address: 0x00010000

Max User Space Address: 0xFFFEFFFF

Allocation Granularity: 64 KB

We can see that the same 64 KB from the bottom and top are unusable. The native system
information is accurate in terms of processor architecture (x64), while the “local” version
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claims the processor is x86. In terms of addresses, the upper limit in the native output assumes
the entire 4 GB of 32-bit address space is available, which it is if the executable has the
LARGEADDRESSAWARE linker flag set.

In all these cases, the page size reported is 4 KB (the small page size is the one reported). Also
of note is something called allocation granularity, which, as we’ll see later, is the granularity
of allocations made with the VirtualAlloc family of functions. It is currently 64 KB on all
Windows architectures and versions.

Here is another output on 32-bit Windows 8.1 with 4 logical processors:

System information

------------------

Processor Architecture: x86

Number of Processors: 4

Active Processor Mask: 0xF

Page Size: 4 KB

Min User Space Address: 0x00010000

Max User Space Address: 0x7FFEFFFF

Allocation Granularity: 64 KB

The memory-related values are identical to the WOW64 version, since this system was not
booted in “increase UVA” mode.

Memory Counters

Developers often want to understand how their processes are doing in terms of memory
usage. Is the process consuming a lot of memory? Is there perhaps a memory leak? What
about the system itself? Windows provides many counters related to memory, and making
sense of them is very important, as some have somewhat cryptic names, and in some cases
different tools call the same counters by different names.

The first tool developers usually use to get a sense of what’s going on on a system is Task
Manager. Its Performance tab with the Memory sub-tab selected, shows system memory-
related information. Figure 12-6 shows a snapshot with added annotations.
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Figure 12-6: Task Manager’s Performance/Memory information

Table 12-4 summarizes the pieces of information shown in figure 12-6.

Table 12-4: Memory information in Task Manager

Name Description
Memory usage graph Shows the physical memory (RAM) consumption for the past

60 seconds
In Use The current physical memory in Use
(Compressed) The amount of compressed memory (see the sidebar

“Memory Compression”)
Committed / Commit Limit Total committed memory / committed memory limit before

page file expansion
Memory Composition - Modified Memory that is not yet written to disk
Memory Composition - Free Free pages (most of them are zero pages)
Cached Memory that can be repurposed if required (Standby +

Modified)
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Table 12-4: Memory information in Task Manager

Name Description
Available Available physical memory (Standby + Free)
Paged pool / Non-paged pool Kernel pools memory usage

Memory Compression
Memory compression was added inWindows 10, as a way to save memory by compressing
not-currently needed memory, especially useful for UWP processes when they go to the
background, as they don’t consume CPU, so that any private physical memory used
by these processes can be given away. Instead, the memory is compressed, still leaving
free pages for other processes. When the process wakes up, the memory is quickly
decompressed and ready to be used, avoiding I/O to a page file.

In the first two versions of Windows 10, the compressed memory was stored in the user-
mode address space of the system process. This was too visible in tools, so starting with
Windows 10 version 1607, a special process, Memory Compression (a minimal process),
is the one holding on to the compressed memory. Furthermore, Task Manager explicitly
does not show this process at all. Other tools, such as Process Explorer, show this process
normally.

The Memory Composition bar in figure 12-6 indicates, in broad strokes, how physical pages
are managed internally. The “In use” part are pages currently considered part of processes
and the system’s working set. The Standby pages is memory that has its backup stored on
disk, but the relation to the owning process is still preserved. If the process now touches one
of these pages, they immediately go back to its working set (become “in use”). If such pages
were immediately thrown to the “free” pile of pages, an I/O would have been needed to get
the page(s) back to RAM.

The Modified part represents pages whose contents has not yet been written to a backing
store (typically a page file), so these cannot be discarded. If the number of modified pages
becomes to large, or the standby and free page count becomes too small, modified pages will
be written to their backing file, and they will move to the standby state.

All these transitions and management is geared towards reducing I/O. A more precise view
of these physical page list management is available in the System Information view in Process
Explorer, in the Memory tab, shown in figure 12-7. (Use View / System Information… menu
to open it.)
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Figure 12-7: System Information for memory in Process Explorer

The paging lists part in figure 12-7 details the various lists used by the executive’s Memory
Management to manage physical pages. Zeroed pages are pages containing zeros only, and
these are the majority compared to Free pages, which contain garbage. A special executive
thread called the Zero page thread, that runs in priority 0 (the only thread that has this
priority), is the one zeroing out free pages. The reason zero pages are important, is to satisfy
a security requirement, where allocated memory cannot ever include data once belonging
to another process, even if that process no longer exists. The Free part in the memory
composition in figure 12-6 includes the free and zero pages combined.

Another interesting part of figure 12-7 is the fact that there is no single standby list of pages,
but eight of them, based on priority. This is known as Memory Priority, and can be seen
in Process Explorer on a thread by thread basis, although this is also a process property,
inherited by default by each thread.

Memory priority is used when pages from the standby list need to be moved to become free
pages, because processes or the system need physical memory. The question is, which pages
should be “let go” first (and lose their connection to the original process)? A simple approach
is to use a FIFO queue, where the first page to be removed form a process’ working set is



Chapter 12: Memory Management Fundamentals 579

the first to become free. However, this is too simplistic. Suppose a process works a lot in the
background, such as anti-malware or a backup application. These processes obviously use
memory, but they are not as important as the applications the user is working with directly.
So if physical memory is needed, their standby pages should be the first to go, even if they
were relatively recently used. This is where memory priority comes in.

The default memory priority is 5. In chapter 6, we looked at background mode for processes
and threads, where the CPU priority is reduced to 4, and the memory priority is reduced to
1, making standby pages used by that process more likely to be reused before processes with
a higher memory priority.

Sometimes, you may want to change the memory priority without entering background
mode. Windows 8 and later provide this capability with the functions SetProcessInfor-
mation for a process-wide default, or SetThreadInformation on a thread by thread basis:

BOOL SetProcessInformation(

_In_ HANDLE hProcess,

_In_ PROCESS_INFORMATION_CLASS ProcessInformationClass,

_In_ LPVOID ProcessInformation,

_In_ DWORD ProcessInformationSize);

BOOL SetThreadInformation(

_In_ HANDLE hThread,

_In_ THREAD_INFORMATION_CLASS ThreadInformationClass,

_In_ LPVOID ThreadInformation,

_In_ DWORD ThreadInformationSize);

These functions are fairly generic, accepting several possible values for the PROCESS_IN-
FORMATION_CLASS and THREAD_INFORMATION_CLASS enumerations. For memory priority,
the enums are ProcessMemoryPriority and ThreadMemoryPriority, where the value of
the priority is between 1 and 5. This means only lowering memory priority is permitted.

Figure 12-7 shows priorities 6 and 7. These are used by services such as superfetch that
attempt to load code and data before the processes that use this memory even start. Such
pages should remain in RAM for as long as possible, since they may serve more than a
single process.
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For a process, the handle must have the PROCESS_SET_INFORMATION access mask. For a
thread, the handle must have the THREAD_SET_INFORMATION access mask.

Here is an example where the current thread reduces its own memory priority to 2:

DWORD priority = 2;

::SetThreadInformation(::GetCurrentThread(), ThreadMemoryPriority,

&priority, sizeof(priority));

Naturally, the complementary functions exist as well:

BOOL GetProcessInformation(

_In_ HANDLE hProcess,

_In_ PROCESS_INFORMATION_CLASS ProcessInformationClass,

_Out_writes_bytes_(ProcessInformationSize) LPVOID ProcessInformation,

_In_ DWORD ProcessInformationSize);

BOOL GetThreadInformation(

_In_ HANDLE hThread,

_In_ THREAD_INFORMATION_CLASS ThreadInformationClass,

_Out_writes_bytes_(ThreadInformationSize) LPVOID ThreadInformation,

_In_ DWORD ThreadInformationSize);

The above “set” functions are thin wrappers over the native
NtSetInformationProcess and NtSetInformationThread func-
tions. Similarly, the “get” functions are thin wrappers around
NtQueryInformationProcess and NtQueryInformationThread.

Process Memory Counters

Process-related memory counters in Task Manager are somewhat confusing. The first issue
with TaskManager, is the default memory counter shown in theDetails tab:Memory (private
working set) or Memory (active private working set) (the latter appeared in Windows 10
version 1903). Let’s dissect these terms:

• Working Set - physical memory used by the process
• Private - memory private to the process (not shared)
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• Active - does not include UWP processes that are in the background

The problem with these counters is theWorking Set part. They indicate the private memory
that is currently in RAM. However, this is an unstable counter, that may go up and down
depending on the process activity. If you’re trying to determine how much memory is
committed (allocated) by the process or if a process leaks memory, these are not the counters
to look at.

The fact that these counters show private memory only is generally a good thing, since
shared memory (such as used by DLL code) is constant, so there is little anyone can do
about it. Private memory is the memory controlled by the process.

So what is the correct counter to look at? It’s Commit Size. To make things more confusing,
Process Explorer and Performance Monitor call this counter Private Bytes. Figure 12-8 shows
Task Manager, which Commit Size and Active Private Working Set side by side, sorted by
commit size.

Figure 12-8: Task Manager
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Commit size is also about private memory, so it’s on equal footing as private working set. The
difference is the memory that is not in the working set. If both counters are close, it means
either the process is fairly active, and works with most of its memory, or that Windows is
not low on free memory, so the memory manager is not quick to remove pages fromworking
sets.

In some cases, the difference between the two counters can be quite large. In figure 12-8,
the process Code (PID 34316) has most of its committed memory not part of its working
set. This is why looking at private working set counter can be misleading. It looks like
that process consumes roughly 97 MB, but it actually consumes about 368 MB of memory.
Granted, currently in RAM it only uses 97 MB, but the committed memory does consume
page tables (used for mapping the committed memory), and that memory counts against the
system’s commit limit (shown in figure 12-6).

The bottom line: use the Commit size column in Task Manager to determine the memory
consumption of a process. It does not include shared memory, but this is not important (in
most cases).

With Process Explorer, the equivalent of Commit size is Private Bytes. Both Task Manager
and Process Explorer contain more columns related to memory (Procss Explorer has more
than Task Manager). One column in particular, has no close equivalent, and that is the
Virtual Size column, shown in figure 12-9.
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Figure 12-9: Virtual Size column in Process Explorer

The virtual Size column counts all pages that are not in the free state - that is, committed
and reserved. This is essentially the amount of address space consumed by a process. For
64-bit processes where the potential address space is 128 TB, this matters very little. For 32
bit processes, this may be an issue. Even if the committed memory is not too high, having
large reserved memory regions limits the available address space for new allocations, which
can cause allocation failures even though the system as a whole may have plenty of free
memory.

The previously described counters don’t include reserved memory, and for good reason.
Reserved memory costs very little, since from the CPU’s perspective it’s the same as free -
no page tables are needed to describe reserved memory. In fact, starting from Windows 8.1,
reserved memory costs even less.
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Some of the numbers in theVirtual Size column in figure 12-9may seem somewhat alarming.
Several processes seem to have a virtual size of roughly 2 TB. The Private Bytes column
shows much smaller numbers, which means most of the memory size described by Virtual
Size is reserved. The real reason some processes have this huge reserved chunk is because of a
Windows 10 security feature, calledControl Flow Guard (CFG). You can add the CFG column
in Process Explorer, and you’ll see the tight correlation between a process that supports CFG
and the huge ∼2 TB reserved region.

We will look at CFG more closely in chapter 16 (in Part 2), “Security”.

Some of the global memory information is available by calling GlobalMemoryStatusEx:

typedef struct _MEMORYSTATUSEX {

DWORD dwLength;

DWORD dwMemoryLoad;

DWORDLONG ullTotalPhys;

DWORDLONG ullAvailPhys;

DWORDLONG ullTotalPageFile;

DWORDLONG ullAvailPageFile;

DWORDLONG ullTotalVirtual;

DWORDLONG ullAvailVirtual;

DWORDLONG ullAvailExtendedVirtual; // always zero

} MEMORYSTATUSEX, *LPMEMORYSTATUSEX;

BOOL GlobalMemoryStatusEx(_Inout_ LPMEMORYSTATUSEX lpBuffer);

The function name is somewhat misleading - only some of the members of MEMORYSTATUSEX
refer to system-wide information. Other members are related to the calling process.
The dwLength member of MEMORYSTATUSEX must be filled with the size of the structure
prior to the call. Here is a drill down of the members:

• dwMemoryLoad - a number between 0 and 100 indicating the physical memory load on
the system (in percent)

• ullTotalPhys - total system physical memory (in bytes)
• ullAvailPhys - available physical memory in bytes (sum of standby, free and zero
lists)
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• ullTotalPageFile - commit size in bytes for the system or the calling process (not
directly related to a page file), whichever is smaller

• ullAvailPageFile - maximum bytes the calling process can commit
• ullTotalVirtual - virtual address size of the calling process
• ullAvailVirtual - available address space in the calling process (free pages)

There is another function that fills in the gaps for system-wide information (#include
<psapi.h>):

typedef struct _PERFORMANCE_INFORMATION {

DWORD cb;

SIZE_T CommitTotal;

SIZE_T CommitLimit;

SIZE_T CommitPeak;

SIZE_T PhysicalTotal;

SIZE_T PhysicalAvailable;

SIZE_T SystemCache;

SIZE_T KernelTotal;

SIZE_T KernelPaged;

SIZE_T KernelNonpaged;

SIZE_T PageSize;

DWORD HandleCount;

DWORD ProcessCount;

DWORD ThreadCount;

} PERFORMANCE_INFORMATION, *PPERFORMANCE_INFORMATION;

BOOL GetPerformanceInfo (

PPERFORMANCE_INFORMATION pPerformanceInformation,

DWORD cb);

GetPerformanceInfo returns system-wide information only, unrelated to the calling pro-
cess (but on 64-bit Windows, the values may be wrong if called from a 32-bit process, as
SIZE_T is 32-bit in a 32-bit process). cb show be set to sizeof(PERFORMANCE_INFORMA-
TION).

Keep in mind that the values in PERFORMANCE_INFORMATION related to memory are in pages,
rather than bytes. The structure is kind enough to provide the page size (which as we know
is 4 KB on all supported architectures).
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The structure also returns the kernel memory size, and the current number of processes,
threads, and handles.

Build an application that shows as many values as possible from Task Manager’s
Performance / Memory tab and update the values every second. Correlate with
Task Manager.

Process Memory Map

A process’ address space must contain everything that is used by the process in terms of
memory: The executable’s code and global data, DLLs code and global data, Threads stacks,
heaps (discussed in the next chapter), and any other memory committed and/or reserved by
the process. Figure 12-10 shows a typical example of a virtual address space of a process.
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Figure 12-10: Process virtual address space example

You can probably guess the meaning of some of the parts in figure 12-10. We will discuss
heaps and the VirtualAlloc function in the next chapter. Figure 12-10 is just a minimal
example. A typical process loads dozens of DLLs and may use many threads. Frameworks
such as .NET have their own DLLs and heaps, but all these seemingly different things are
made of the same “stuff”.

To view the actual memorymap of a process, you can use theVMMap tool from Sysinternals.
When VMMap is launched, it immediately shows a process selection dialog box, where
you can select the process of interest (figure 12-11). The Show All Processes button allows
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launching VMMap with admin rights, allowing access to more processes. However, VMMap
is still limited to user mode access, and cannot open protected processes.

Figure 12-11: Selecting a process in VMMap

Once a process is selected, the main view of VMMap is filled by three distinct horizontal
sections (figure 12-12 shows an instance of Explorer.exe).
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Figure 12-12: Process open in VMMap

The top section shows three counters:

• Committed memory - total committed memory in the process (including private and
shared pages)

• Private Bytes - private committed memory
• Working set - total working set (physical memory used by private and shared pages)

Each counter is accompanied by a histogram of sorts, showing the type of memory regions
contained within that counter. The region types are shown on the second section. Table 12-5
summarizes the types of regions shown by VMMap.
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Table 12-5: Region types in VMMap

Type Description
Image Mapped images (EXEs and DLLs)
Mapped File Mapped files (other than images)
Shareable Memory-mapped files backed up by a page file
Heap Memory used by heaps
Managed Heap Memory managed by the .NET runtime (CLR or CoreCLR)
Stack Memory for threads stacks
Private Data Generic memory allocated with VirtualAlloc

Unusable Memory blocks that cannot be used (smaller than the 64 KB allocation
granularity)

Free Free pages

The lower section shows the regions according to the currently selected region type. You
can sort by any column, and dig into a region by expanding Address nodes, exposing the
blocks within. The node itself was made by a single call to VirtualAlloc that reserved
a chunk of memory. Then, blocks within that reserved region may have been committed,
or left reserved. Each block has a common page state and protection (discussed in the next
section).

The Details column provides more information, if available, on a reserved region or a block.
VMMap uses various techniques to display useful information about a region or block. The
simplest is calling the GetMappedFileName function to retrieved the file that is mapped (if
any) at some address:

DWORD GetMappedFileName(

_In_ HANDLE hProcess,

_In_ LPVOID lpv,

_Out_ LPTSTR lpFilename,

_In_ DWORD nSize

);

The process handle must have the PROCESS_QUERY_INFORMATION access mask bit. Given the
address in the lpv parameter, the function returns the file name in lpFileName (if any). The
return value from the function is the number of characters copied to lpFileName or zero
if the function fails. The only wrinkle in this faction is that it returns the file name in NT
device form (\Device\harddiskVolume3\…), which may require conversion to Win32 form
for use with APIs such as CreateFile. You can use the technique from chapter 7 to do the
conversion.
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You can probably think of other ways that VMMap can extract details. For example, thread
stacks can be reported by enumerating threads in the process (shown in chapter 10), and
then using the native NtQueryInformationThread to retrieve the undocumented Thread
Environment Block (TEB) structure, in which the stack sizes of a thread are stored.

If you need to get a summary view of a process memory usage, the PSAPI function
GetProcessMemoryInfo can help:

BOOL GetProcessMemoryInfo(

HANDLE Process,

PPROCESS_MEMORY_COUNTERS ppsmemCounters,

DWORD cb);

The function accepts a process handle that must have the PROCESS_VM_READ access mask
and either PROCESS_QUERY_INFORMATION or PROCESS_QUERY_LIMITED_INFORMATION. The
current process handle (GetCurrentProcess) is a natural candidate, as it has a full access
mask.

The information is returned in one of two structures, based on the size passed in the cb
parameter:

typedef struct _PROCESS_MEMORY_COUNTERS {

DWORD cb;

DWORD PageFaultCount;

SIZE_T PeakWorkingSetSize;

SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

} PROCESS_MEMORY_COUNTERS;

typedef PROCESS_MEMORY_COUNTERS *PPROCESS_MEMORY_COUNTERS;

typedef struct _PROCESS_MEMORY_COUNTERS_EX {

DWORD cb;

DWORD PageFaultCount;

SIZE_T PeakWorkingSetSize;
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SIZE_T WorkingSetSize;

SIZE_T QuotaPeakPagedPoolUsage;

SIZE_T QuotaPagedPoolUsage;

SIZE_T QuotaPeakNonPagedPoolUsage;

SIZE_T QuotaNonPagedPoolUsage;

SIZE_T PagefileUsage;

SIZE_T PeakPagefileUsage;

SIZE_T PrivateUsage;

} PROCESS_MEMORY_COUNTERS_EX;

typedef PROCESS_MEMORY_COUNTERS_EX *PPROCESS_MEMORY_COUNTERS_EX;

The extended structure has two extra members compared to the original. Here is a rundown
of the members (all memory sizes are in bytes):

• cb - size of the structure
• PageFaultCount - number of page fault exceptions that occurred in the process
• PeakWorkingSetSize - peak physical memory consumption
• WorkingSetSize - current physical memory consumption
• QuotaPeakPagedPoolUsage - peak paged pool usage caused by the process
• QuotaPagedPoolUsage - current paged pool usage caused by the process
• QuotaPeakNonPagedPoolUsage - peak non-paged pool usage caused by the process
• QuotaNonPagedPoolUsage - current non-paged pool usage caused by the process
• PagefileUsage - current commit size of the process (private committed memory)
(Windows 8+)

• PeakPagefileUsage - peak commit size for the process
• PrivateUsage - same as PagefileUsage (works for Windows 7 and earlier as well)

The kernel’s page pool and non-paged pool values require further discussion. The kernel has
two basic memory pool types: paged pool, which holds memory that can be paged to disk,
and non-paged pool, which by its definition is always resident in RAM, and is never paged
out to disk. These memory pools are used by the kernel and device drivers, and their current
sizes is visible in tools such as Task Manager. However, user-mode processes also contribute
to these pools indirectly by using certain APIs. For example, creating any kernel object uses
paged pool for the handle itself (16 bytes on 64-bit systems, see chapter 2).

The pools values can also be viewed by Task Manager, by adding the appropriate columns
(Paged pool and NP pool).

As a quick example, you can run the command-line tool TestLimit from Sysinternals to
create as many handles as possible:
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C:\>testlimit -h

Testlimit v5.24 - test Windows limits

Copyright (C) 2012-2015 Mark Russinovich

Sysinternals - www.sysinternals.com

Process ID: 35288

Creating handles...

Created 16711496 handles. Lasterror: 1450

Looking at Task Manager for the TestLimit.exe process, shows the image in figure 12-13.

Figure 12-13: Paged pool usage with TestLimit

Notice the paged pool size for the process is about 256 MB. This makes sense, as around 16
M handles were created, each consuming 16 bytes.

Page Protection

Every committed page in a process virtual address space has protection flags. These can be set
with the VirtualAlloc or VirtualProtect functions, discussed in the next chapter. Table
12-6 shows the page protection attributes, from which one can be specified for a committed
page. Any access that violates a page’s protection causes an access violation exception.

Table 12-6: Basic protection flags

Protection flag Description
PAGE_NOACCESS page is inaccessible
PAGE_READONLY read access only
PAGE_READWRITE read and write access
PAGE_WRITECOPY copy on write access (discussed in the section “Sharing Memory”)
PAGE_EXECUTE execute access
PAGE_EXECUTE_READ execute and read access
PAGE_EXECUTE_READWRITE all possible access
PAGE_EXECUTE_WRITECOPY execute access and copy on write
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Apart from the above values, there are a few protection constants that can be added, listed
in table 12-7.

Table 12-7: Optional protection flags

Protection flag Description
PAGE_GUARD a guard page. Any access causes a page guard exception
PAGE_NOCACHE non-cachable page. Should only be used when memory is accessed

by a kernel driver and the driver requires it
PAGE_WRITECOMBINE An optimization that some kernel drivers are able to use. Should

not be generally used
PAGE_TARGETS_INVALID (Windows 10+) page is an invalid target for CFG (see chapter 16 for

more on CFG)
PAGE_TARGETS_NO_UPDATE (Windows 10+) do not update CFG information while protection is

being changed with VirtualProtect (see chapter 16)

Page protection is set initially when calling VirtualAlloc for new allocations, and can be
changed by calling VirtualProtect for exiting pages. We’ll look at both these functions in
the next chapter.

We’ve seen how guard pages are used to extend a thread’s stack (chapter 5), but guard pages
can also be used as a generic mechanism to detect when memory is being accessed. If such
exception is raised because of a guard page access, the PAGE_GUARD flag is automatically
removed, so it does not cause further exceptions when accessing the same page. You can use
VirtualProtect to re-establish the guard page, if required.

Enumerating Address Space Regions

How does VMMap get information about the various regions? The fundamental function
that returns this data is VirtualQuery for the current process, or VirtualQueryEx for any
process for which a strong-enough handle can be obtained:
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SIZE_T VirtualQuery(

_In_opt_ LPCVOID lpAddress,

_Out_ PMEMORY_BASIC_INFORMATION lpBuffer,

_In_ SIZE_T dwLength);

SIZE_T VirtualQueryEx(

_In_ HANDLE hProcess,

_In_opt_ LPCVOID lpAddress,

_Out_ PMEMORY_BASIC_INFORMATION lpBuffer,

_In_ SIZE_T dwLength);

The process handle to VirtualQueryEx must have the PROCESS_QUERY_INFORMATION
access mask. This explains why protected processes are off-limits, as this access mask is not
attainable from user mode. Apart from the process handle, both functions work the same
way. lpAddress is the address for which information is requested. The address is always
rounded down to the nearest page boundary. The functions return a MEMORY_BASIC_INFOR-
MATION that describes the region included in the lpAddress parameter:

typedef struct _MEMORY_BASIC_INFORMATION {

PVOID BaseAddress;

PVOID AllocationBase;

DWORD AllocationProtect;

SIZE_T RegionSize;

DWORD State;

DWORD Protect;

DWORD Type;

} MEMORY_BASIC_INFORMATION, *PMEMORY_BASIC_INFORMATION;

The dwLength parameter should be set to the size of the MEMORY_BASIC_INFORMATION
structure. The function returns the number of bytes written to the buffer (sizeof(MEMORY_-
BASIC_INFORMATION) on success) or zero if the function fails.

dwLength and the return value are typed as SIZE_T, which is unusual and unnecessary, as
the value is at most the size of MEMORY_BASIC_INFORMATION. It should have been typed
as a simple DWORD.
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The members of MEMORY_BASIC_INFORMATION are as follows:

• BaseAddress - the address of the start of this block. It’s equal to the lpAddress
parameter if no rounding down was necessary

• AllocationBase - the original region base address allocated with VirtualAlloc.
BaseAddress is containedwithin this region. AllocationBase is howVMMap chunks
blocks into regions.

• AllocationProtect - the original page protection specified in the VirtualAlloc call
(see previous section).

• RegionSize - the size of this block. The size spans pageswhile the state (Statemember
- committed, reserved, free), protection (Protect member), and type (Type member -
private, image, mapped) are the same.

• State - either MEM_COMMIT, MEM_FREE or MEM_RESERVED
• Protect - current protection flags
• Type - the types of allocation for a committed region - MEM_IMAGE (mapped DLL or
EXE), MEM_MAPPED (mapped file that is not a PE), or MEM_PRIVATE (private data)

Some members have meaning in certain cases only. For example, Type and Protect have
meaning only if State is MEM_COMMITTED. AllocationProtect and AllocationBase have
no meaning if State is MEM_FREE.

The Simple VMMap Application

The SimpleVMMap console application puts QueryVirtualEx to good use and lists the
blocks for an input process with the details provided by MEMORY_BASIC_INFORMATION and,
for mapped image regions, the path to the mapped file.
The heart of the application is fairly simple. Most of the work is about displaying the
information properly.

The main function accepts a process ID, and if not provided uses the current process as the
target:
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int main(int argc, const char* argv[]) {

DWORD pid;

if (argc == 1) {

printf("No PID specified, using current process...\n");

pid = ::GetCurrentProcessId();

}

else {

pid = atoi(argv[1]);

}

Now we can open a handle to the target process, and call the workhorse of the application
to display the memory map:

HANDLE hProcess = ::OpenProcess(PROCESS_QUERY_INFORMATION, FALSE, pid);

if (!hProcess)

return Error("Failed to open process");

printf("Memory map for process %d (0x%X)\n\n", pid, pid);

ShowMemoryMap(hProcess);

::CloseHandle(hProcess);

ShowMemoryMap starts from address zero, and walks the regions in a loop, calling a helper
function to display each line of data for a region:

void ShowMemoryMap(HANDLE hProcess) {

BYTE* address = nullptr;

MEMORY_BASIC_INFORMATION mbi;

DisplayHeaders();

for (;;) {

if (0 == ::VirtualQueryEx(hProcess, address, &mbi, sizeof(mbi)))

break;

DisplayBlock(hProcess, mbi);
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address += mbi.RegionSize;

}

}

When VirtualQueryEx returns zero, this means we reached the end of the legal address
space, and we’re done. The address is incremented by the region size. Typing it as BYTE*
allows easy pointer addition, and just like any pointer, automatically casts to void*, which
is what VirtualQueryEx expects.

DisplayHeaders just displays the various headers in preparation for the actual data.
DisplayBlock is called for each region:

void DisplayBlock(HANDLE hProcess, MEMORY_BASIC_INFORMATION& mbi) {

printf("%s", mbi.AllocationBase == mbi.BaseAddress ? "*" : " ");

printf("0x%16p", mbi.BaseAddress);

printf(" %11llu KB", mbi.RegionSize >> 10);

printf(" %-10s", StateToString(mbi.State));

printf(" %-17s", mbi.State != MEM_COMMIT ? "" :

ProtectionToString(mbi.Protect).c_str());

printf(" %-17s", mbi.State == MEM_FREE ? "" :

ProtectionToString(mbi.AllocationProtect).c_str());

printf(" %-8s", mbi.State == MEM_COMMIT ? MemoryTypeToString(mbi.Type) : ""\

);

printf(" %s\n", GetDetails(hProcess, mbi).c_str());

}

An asterisk is added if the address is the beginning of a reservation region (allocation base
is equal to the base address). DisplayBlock uses more helpers to convert various values to
strings suitable for display. Finally, GetDetails uses GetMappedFileName to retrieve the
file name for mapped pages:
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std::string GetDetails(HANDLE hProcess, MEMORY_BASIC_INFORMATION& mbi) {

if (mbi.State != MEM_COMMIT)

return "";

if (mbi.Type == MEM_IMAGE || mbi.Type == MEM_MAPPED) {

char path[MAX_PATH];

if (::GetMappedFileNameA(hProcess, mbi.BaseAddress, path, sizeof(path))\

> 0)

return path;

}

return "";

}

Be careful not to use a 32-bit process to enumerate the address space of a 64-
process, as you’ll get wrong results. This is because MEMORY_BASIC_INFORMATION
holds 32-bit pointers and sizes when compiled for 32-bit. However, there are
32-bit and 64-bit specific structures named MEMORY_BASIC_INFORMATION32 and
MEMORY_BASIC_INFORMATION64. The latter could be used in such a case.

Here is an example (truncated) run:

c:\>SimpleVMMap 42504

emory map for process 42504 (0xA608)

Base Address Size State Protection Alloc. Protecti\

on Type Details

-------------------------------------------------------------------------------\

---------------------

*0x0000000000000000 2097024 KB Free

*0x000000007FFE0000 4 KB Committed Read Read \

Private

0x000000007FFE1000 32 KB Free

*0x000000007FFE9000 4 KB Committed Read Read \

Private

0x000000007FFEA000 920090968 KB Free

*0x000000DBDDE40000 4 KB Reserved Read/Write

0x000000DBDDE41000 12 KB Committed Read/Write/Guard Read/Write \
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Private

0x000000DBDDE44000 1008 KB Committed Read/Write Read/Write \

Private

0x000000DBDDF40000 768 KB Free

...

*0x000001FB57C40000 8 KB Committed Read/Write Read/Write \

Private

0x000001FB57C42000 56 KB Free

*0x000001FB57C50000 804 KB Committed Read Read \

Mapped \Device\HarddiskVolume3\Windows\System32\locale.nls

0x000001FB57D19000 28 KB Free

*0x000001FB57D20000 68 KB Committed Read Read \

Mapped \Device\HarddiskVolume3\Windows\System32\C_1252.NLS

0x000001FB57D31000 124 KB Free

...

0x00007FF5A47B0000 8779072 KB Free

*0x00007FF7BC500000 4 KB Committed Read Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe

0x00007FF7BC501000 196 KB Committed Execute/Read Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe

0x00007FF7BC532000 44 KB Committed Read Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe

0x00007FF7BC53D000 8 KB Committed Read/Write Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe

0x00007FF7BC53F000 8 KB Committed WriteCopy Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe

...

More Address Space Information

If you take another look at VMMap (figure 12-12), you’ll see that for every blockVMMap pro-
vides information such as working set (RAM) sizes for the block (private, shared, sharable).
This extra information is available with another PSAPI function, QueryWorkingSetEx:
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BOOL QueryWorkingSetEx(

_In_ HANDLE hProcess,

_Out_ PVOID pv,

_In_ DWORD cb);

The process handle must have the PROCESS_QUERY_INFORMATION access mask. pv must
point to one or more structures of type PSAPI_WORKING_SET_EX_INFORMATION:

typedef union _PSAPI_WORKING_SET_EX_BLOCK {

ULONG_PTR Flags;

union {

struct {

ULONG_PTR Valid : 1;

ULONG_PTR ShareCount : 3;

ULONG_PTR Win32Protection : 11;

ULONG_PTR Shared : 1;

ULONG_PTR Node : 6;

ULONG_PTR Locked : 1;

ULONG_PTR LargePage : 1;

ULONG_PTR Reserved : 7;

ULONG_PTR Bad : 1;

#if defined(_WIN64)

ULONG_PTR ReservedUlong : 32;

#endif

};

struct {

ULONG_PTR Valid : 1; // Valid = 0 in this format.

ULONG_PTR Reserved0 : 14;

ULONG_PTR Shared : 1;

ULONG_PTR Reserved1 : 15;

ULONG_PTR Bad : 1;

#if defined(_WIN64)

ULONG_PTR ReservedUlong : 32;

#endif

} Invalid;

};

} PSAPI_WORKING_SET_EX_BLOCK, *PPSAPI_WORKING_SET_EX_BLOCK;



Chapter 12: Memory Management Fundamentals 602

typedef struct _PSAPI_WORKING_SET_EX_INFORMATION {

PVOID VirtualAddress;

PSAPI_WORKING_SET_EX_BLOCK VirtualAttributes;

} PSAPI_WORKING_SET_EX_INFORMATION, *PPSAPI_WORKING_SET_EX_INFORMATION;

The structuremay look complex, but it’s nothingmore than an address of interest (VirtualAddress)
and a set of flags (VirtualAttributes). Here is the rundown of the flags:

• Valid - set if the page is in the process’ working set. If clear, the Invalid part of the
union should be consulted - most of the other flags are meaningless.

• Shared - indicates if the page is shareable. If clear, the page is private.
• ShareCount - if Shared is set, indicates the share count. If greater than 1, the page is
being shared. The maximum count of this member is 7, so it should not be treated as
an accurate share count.

• Win32Protection - basic protection flags, also available with VirtualQuery(Ex).
• Node - the NUMA node this page is part of.
• Locked - if set, locked in physical memory (see next chapter for more on locked pages.)
• LargePage - if set, this is a large page. (see next chapter for more on large pages.)
• Bad - if set, this is a bad page (from a hardware perspective). Technically, can also
represent a memory enclave (Windows 10+) (see next chapter for more on enclaves.)

The SimpleVMMap2 application is an enhancement of SimpleVMMap, that adds for each
committed block its working set attributes (if resident).

The DisplayBlock function has an added call for querying a committed page range:

if (mbi.State == MEM_COMMIT)

DisplayWorkingSetDetails(hProcess, mbi);

DisplayWorkingSetDetails does all the hard work:
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void DisplayWorkingSetDetails(HANDLE hProcess, MEMORY_BASIC_INFORMATION& mbi) {

auto pages = mbi.RegionSize >> 12;

PSAPI_WORKING_SET_EX_INFORMATION info;

ULONG attributes = 0;

void* address = nullptr;

SIZE_T size = 0;

for (decltype(pages) i = 0; i < pages; i++) {

info.VirtualAddress = (BYTE*)mbi.BaseAddress + (i << 12);

if (!::QueryWorkingSetEx(hProcess, &info,

sizeof(PSAPI_WORKING_SET_EX_INFORMATION))) {

printf(" <<<Unable to get working set information>>>\n");

break;

}

if (attributes == 0) {

address = info.VirtualAddress;

attributes = (ULONG)info.VirtualAttributes.Flags;

size = 1 << 12;

}

else if(attributes == (ULONG)info.VirtualAttributes.Flags) {

size += 1 << 12;

}

if(attributes != (ULONG)info.VirtualAttributes.Flags || i == pages - 1)\

{

printf(" Address: %16p (%10llu KB) Attributes: %08X %s\n",

address, size >> 10, attributes,

AttributesToString(

*(PSAPI_WORKING_SET_EX_BLOCK*)&attributes).c_str());

size = 1 << 12;

attributes = (ULONG)info.VirtualAttributes.Flags;

address = info.VirtualAddress;

}

}

}

The function first calculates the number of pages in the block. Then it loops over each page
and uses QueryWorkingSetEx to query its working set status. The only challenge in the code
is not to display the state of every page, but to group all contiguous pages that share the same
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attributes. As long as attributes are the same, the chunk size is increased by a page and the
loop continues. If the attributes change, the existing stats are displayed and the variables
reset to the next values.

The last piece is the AttributesToString helper that returns a string representation of the
attributes:

std::string AttributesToString(PSAPI_WORKING_SET_EX_BLOCK attributes) {

if (!attributes.Valid)

return "(Not in working set)";

std::string text;

if (attributes.Shared)

text += "Shareable, ";

else

text += "Private, ";

if(attributes.ShareCount > 1)

text += "Shared, ";

if (attributes.Locked)

text += "Locked, ";

if (attributes.LargePage)

text += "Large Page, ";

if (attributes.Bad)

text += "Bad, ";

// eliminate last command and space

return text.substr(0, text.size() - 2);

}

Here is an example run:
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C:\>SimpleVMMap2.exe 42504

Memory map for process 42504 (0xA608)

Base Address Size State Protection Alloc. Protecti\

on Type Details

-------------------------------------------------------------------------------\

---------------------

*0x0000000000000000 2097024 KB Free

*0x000000007FFE0000 4 KB Committed Read Read \

Private

Address: 000000007FFE0000 ( 4 KB) Attributes: 4000802F Shareable, Sha\

red

0x000000007FFE1000 32 KB Free

*0x000000007FFE9000 4 KB Committed Read Read \

Private

Address: 000000007FFE9000 ( 4 KB) Attributes: 4000802F Shareable, Sha\

red

0x000000007FFEA000 920090968 KB Free

*0x000000DBDDE40000 4 KB Reserved Read/Write

0x000000DBDDE41000 12 KB Committed Read/Write/Guard Read/Write \

Private

Address: 000000DBDDE43000 ( 4 KB) Attributes: 00000000 (Not in workin\

g set)

...

*0x000001FB57C00000 116 KB Committed Read Read \

Mapped

Address: 000001FB57C00000 ( 56 KB) Attributes: 4000802F Shareable, Sha\

red

Address: 000001FB57C0E000 ( 16 KB) Attributes: 40008000 (Not in workin\

g set)

Address: 000001FB57C12000 ( 16 KB) Attributes: 4000802F Shareable, Sha\

red

Address: 000001FB57C16000 ( 4 KB) Attributes: 40008000 (Not in workin\

g set)

Address: 000001FB57C17000 ( 24 KB) Attributes: 4000802F Shareable, Sha\

red

...

0x00007FF7BC559000 56 KB Committed Read Execute/WriteCo\

py Image \Device\HarddiskVolume3\Windows\System32\cmd.exe
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Address: 00007FF7BC559000 ( 12 KB) Attributes: 4000802F Shareable, Sha\

red

Address: 00007FF7BC55C000 ( 4 KB) Attributes: 00400000 (Not in workin\

g set)

Address: 00007FF7BC55D000 ( 4 KB) Attributes: 4000802F Shareable, Sha\

red

Address: 00007FF7BC55E000 ( 36 KB) Attributes: 40008000 (Not in workin\

g set)

...

Sharing Memory

Generally, processes have separate address spaces that don’t mix. However, it’s sometimes
beneficial to be able to share memory between processes. The canonical example is
DLLs. All user-mode processes need NtDll.dll, and most need Kernel32.Dll, KernelBase.dll,
AdvApi32.Dll, and many others. If each process had its own copy of the DLL in physical
memory, it would quickly run out. In fact, one of the primary motivations to have DLLs in
the first place, is the ability to share (at least their code). Code is by convention read-only, so
can safely be shared. The same goes for executable code coming from an EXE file. If multiple
processes execute based on the same image file, there is no reason not to share (at least the
code). This idea is depicted in figure 12-14, where the Kernel32.dll is shared between two
processes.
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Figure 12-14: Sharing code pages

The virtual addresses of a the DLL in figure 12-14 in all processes that share it is the same.
This is necessary, since not all code is relocatable. This will be discussed further in chapter
15.

What about global data? If we declare a variable in global scope like so:

int x;

void main() {

x++;

//...

}

And we run two instances of this executable - what would be the value of x in the second
instance? The answer is 1. x is global to a process, not to the system. This works the same
with a DLL. If a DLL declares a global variable, it’s only global to each process the DLL is
loaded into.

In most cases, this is what we want. This works by utilzing a page protection called Copy on
Write (PAGE_WRITECOPY). The idea is that all processes using the same variable (declared in
the executable or in a DLL used by these processes) map the page this variable is located to
the same physical page (figure 12-15). If a process changes the value of that variable (process
A in figure 12-16), an exception is thrown, causing the memory manager to create a copy of
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the page and hand it to the calling process as a private page, removing the Copy-on-Write
protection (page 3 in figure 12-16).

Figure 12-15: Copy on Write - before

Figure 12-16: Copy on Write - after
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It would have been simpler just to duplicate any global data to every process that uses it, but
that would waste physical memory. If the data isn’t changed, no copy needs to be made.

In some cases, sharing data between processes is desired. One relatively simple mechanism
is to use global variables, but to specify that the page(s) should be protected by a normal
PAGE_READWRITE and not PAGE_WRITECOPY.

This can be done by building a new data segment in the executable or DLL, and specifying
its desired properties. The following shows how this can be accomplished:

#pragma data_seg("shared")

int x = 0;

#pragma data_seg()

#pragma comment(linker, "/section:shared,RWS")

The data_seg pragma creates a new section in the PE. Its name can be anything (up to 8
characters), called “shared” in the above code for clarity. Then, all variables that should be
shared are placed in that section, and they must be initialized explicitly, otherwise they
will not be stored in that section.

Technically, if you have several variables, only the first needs to be explictly initialized.
Still, it’s best to initialize them all.

The second #pragma is an instruction to the linker to create the section with the attributes
RWS (read, write, shared). That little “S” is the key. When the image is mapped, it will not
have the PAGE_WRITECOPY protection, and so is shared between all processes that use the
same PE.

Such variables are shared, which means concurrent access is possible. You may
need to protect access to these with a mutex, for instance.

The SimpleShare application demonstrates the use of this technique. Figure 12-17 shows the
application’s dialog when it’s first launched.
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Figure 12-17: SimpleShare at launch

Now you can launch more instances, and click the Increment button to increment the value
shown by 1. You’ll notice all instances follow suit. Each application has a 1-second timer
that just reads the current value and displays it. Figure 12-18 shows some instances with
matching values.

Figure 12-18: SimpleShare instances synchronized

The application declares a global shared variable as described above:

#pragma data_seg("shared")

int SharedValue = 0;

#pragma data_seg()

#pragma comment(linker, "/section:shared,RWS")

Every click of the Increment button does a simple increment of the variable:
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LRESULT CMainDlg::OnIncrement(WORD, WORD wID, HWND, BOOL&) {

SharedValue++;

return 0;

}

The timer handler just reads the shared value and outputs it:

LRESULT CMainDlg::OnTimer(UINT, WPARAM id, LPARAM, BOOL&) {

if (id == 1)

SetDlgItemInt(IDC_VALUE, SharedValue);

return 0;

}

A more general technique for sharing memory between processes is usingMemory Mapped
Files, which we’ll discuss in detail in chapter 14.

Page Files

Processors can only access code and data in physical memory (RAM). If some executable
is launched, Windows maps the executable’s code and data (and NTdll.dll) into the process’
address space. Then, the process’ first thread starts execution. This causes the code it executes
(first inNtDll.dll and then the executable) to be mapped to physical memory and loaded from
disk so that the CPU can execute it.

Suppose that process’s threads are all in a wait state, perhaps the process has a user interface,
and the user minimized the application’s window and didn’t work with the application for
a while. Windows can repurpose the RAM used by the executable for other processes that
need it. Now suppose the user restores the application’s window - Windows nowmust bring
back the application’s code into RAM. Where would the code be read from? The executable
file itself.

This means executables and DLLs are their own backup. In fact, Windows creates aMemory
Mapped File for executables and DLLs (which also explains why such files cannot be deleted
since there is at least one open handle to the files).

What about data? If some data is not accessed for a long time (or Windows is low on free
memory), the memory manager can write the data to disk - to a page file. A page file is used
as backup for private, committed memory. Using a page file is not required - Windows can
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function just finewithout one. But this reduces the amount ofmemory that can be committed
at a time.

Furthermore, Windows supports up to 16 page files. They must be in different disk partitions
and are named pagefile.sys, located at the root’s partition (the files are hidden by default).
Having more than one page file may be beneficial if one partition is too full, or another
partition is a separate physical disk, which can increase I/O throughput.

Windows on ARM devices only supports 2 page files.

Windows 8 and later have another special page file named Swapfile.sys that is used in some
scenarios by UWP processes.

The commit limit shown in TaskManager (figure 12-6) is essentially the amount of RAMplus
the current size of all page files. Each page file can have an initial size and a maximum size. If
the system reaches its commit limit, the page files are increased to their configuredmaximum
value, so the commit limit is now increased (at the possible performance degradation because
of more I/O). If the committed memory drops below the original commit limit, the page file
sizes will reduce back to their initial sizes.

Configuring the page file(s) sizes is possible by going to the System properties, and then
selecting Advanced System settings, then selecting Settings in the Performance section, then
selecting the Advanced tab, and finally selecting Change… in the Virtual Memory section,
resulting in the dialog in figure 12-19. Before clicking the last button, notice the current size
of the paging files is displayed near the button.
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Figure 12-19: Page files configuration dialog

Normally, the top checkbox is checked, telling Windows to take care of the page file sizes
automatically. Starting with Windows 10, this is my recommended choice. Earlier Windows
versions used a heuristic where the initial page file size is 1 x RAM size and the maximum
size is 3 x RAM (Windows 8+ capped it at 32 GB). The problem with these heuristics is that
the amount of RAM a system has is not really related to the actual work done by the user.

For example, suppose some user requires 40 GB of committed memory for her work. If the
machine has 8 GB of RAM, then the page file size should be set to around 32 GB. If, on the



Chapter 12: Memory Management Fundamentals 614

other hand, the machine has 32 GB of RAM, only 8 GB of page file size is needed. If that
system has 64 GB of RAM, no page file is needed at all!

Of course having more RAM is beneficial, since it reduces the likelihood of page file usage,
but the page file size has nothing to do with the amount of RAM on the system.

Windows 10 uses a much better scheme for determining the required page file sizes if
“automatically manage” is selected. It tracks committed memory usage for the past 14 days,
and adjusts the size accordingly, which is of course related to what the actual user is doing,
regardless of the system RAM size.

In any case, the “automatically manage” checkbox can be unchecked, allowing configuration
to be made with custom initial and maximum size, or remove the paging file entirely.

The maximum page file size is 16 TB, except on ARM, where it’s limited to 4 GB.

The page file configuration is stored (like most things in Windows) in the
registry at HKLM\SYSTEM\CurrentControlSet\Control\Session Manager\Memory
Management\PagingFiles

WOW64

TheWindows onWindows 64 (WOW64) is a software layer that allows 32-bit x86 executables
to run on an x64 64-bit system without any change. In this section, we’ll take a look at how
this works and the implications not already discussed earlier in this chapter.

On a 64-bit Windows (x64), you’ll find two sets of DLLs and executables. The native (64-
bit) images are stored in the System32 directory (e.g. c:\Windows\System32), while the set
of 32-bit images are stored in the SysWow64 directory (e.g. c:\Windows\SysWow64). This is
required because a fundamental rule Windows enforces is that a 32-bit process cannot load
a 64-bit DLL and vice versa. This makes sense, since pointer sizes are different and address
ranges are different - this just cannot work correctly.
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The exception to this rule is that a DLL that only contains resources (strings, bitmap, etc.)
with no code can be loaded by any process.

The net result of these restrictions is that a 32-bit executable must link and load 32-bit DLLs.
This is why there is a separate directory (SysWow64) that contains all theWindows-provided
32-bit DLLs.

The SysWow64 directory also contains 32-bit versions of standard applications, such as
Notepad, mspaint, cmd, etc.

The problem with the use of 32-bit DLLs is that the kernel is still 64-bit, which means any
system call must be called as 64-bit, normally provided by the 64-bit NtDll. Furthermore, the
standard 32-bit NtDll on a 32-bit system invokes a system call directly, which cannot work.
This means that a 64-bit system has a special 32-bit NtDll that does not invoke system calls.
Instead it calls into some helper DLLs that provide the necessary system call translation
(changing pointer sizes and other arguments), and then calling on the real 64-bit NtDll. This
architecture is shown in figure 12-20.
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Figure 12-20: WOW64 architecture

The fact that 32-bit and 64-bit DLLs are loaded into the same process may be confusing.
From the kernel’s perspective, there is no such thing as a true 32-bit process. The 32-bit code
has no idea there is more to the 4 GB maximum address space it can see. It’s like having
two-dimensional creatures living on a table, that have no idea there is a third dimension.

Figure 12-21 shows a screenshot from Process Explorer showing the two versions of NtDll in
the same process. One is from System32 and loaded in a high address, well above 4 GB, and
the other from SysWow64, loaded below 2 GB (the Base column indicates the address into
which an image is loaded).
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Figure 12-21: Two NtDll.Dll images loaded into a 32-bit process

You can also find the three translation-related DLLs in the process address space as well.

There are other changes for 32-bit WOW64 processes. There are two stacks per thread, along
with two Thread Environment Block structures per thread. One is while the thread is in
32-bit mode, and the other for when the thread moves to the 64-bit environment when the
“translation layer” DLLs are invoked. Although interesting from an architecture perspective,
these changes should not affect the way code executes.

There are some APIs that do not work in a WOW64 process. The Ad-
dress Windowing Extension (AWE) and the functions ReadFileScatter and
WriteFileGather. Fortunately, these are fairly rare, so unlikely to be problematic
in practice.

WOW64 Redirections

What happens if a 32-bit WOW64 process calls GetSystemDirectory? or perhaps loads a
DLL directly from a path like c:\Windows\System32\ws2.dll? As discussed earlier, a 32-bit
process cannot load a 64-bit DLL. But the executable has no idea it’s running on a 64-bit
system - this is the point of WOW64.
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Windows provides file system redirection, so that any attempt to get to System32 is
automatically and transparently redirected to Syswow64. This works with explicit paths
as well as function calls such as GetSystemDirectory. A similar redirection occurs when
accessing the Program Files directory - it’s redirected to Program Files (x86).

A thread can opt-out of this redirection temporarily by calling Wow64DisableWow64FsRedirection:

BOOL Wow64DisableWow64FsRedirection(_Out_ PVOID* OldValue);

The OldValue parameter is an opaque value that should be passed to
Wow64RevertWow64FsRedirection to re-enable redirection:

BOOL Wow64RevertWow64FsRedirection(_In_ PVOID OldValue);

Disabling redirection can be useful for an application that is aware of WOW64 and does I/O
operations that need to see things as they are. The application may have been written as
32-bit for convenience, allowing it to run unchanged on 32-bit and 64-bit systems.

Disabling redirection only works for the current thread. Other threads in the
process are unaffected, unless they too request disabling file system redirection.

To access the real System32 without a redirection, use the virtual path
c:\Windows\Sysnative.

Another form of redirection automatically employed by the WOW64 layer is for certain
Registry keys. These will be discussed in chapter 17.

Virtual Address Translation

In this last section of this chapter, we’ll look at the basics of how virtual addresses are
translated into physical addresses. This section is strictly optional, and can be skipped
entirely. A detailed discussion of the translation tables is beyond the scope of this book;
see chapter 5 for more on that in the “Windows Internals 7ʰ edition, Part 1” book.

The translation itself is automatic, so when a CPU sees an instruction like:
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mov eax, [100000H]

It knows that the address 0x100000 is virtual rather than physical (since the CPU is
configured to run in protected mode / long mode). The CPU must now look at tables that
were prepared beforehand by the memory manager, that describe where that page is in
RAM, if at all. If it’s not in RAM (marked by a zero in a Valid bit checked by the CPU in
the translation tables), it raises a page fault exception, to be handled appropriately by the
memory manager. The basic components involved in address translation are shown in figure
12-22.

Figure 12-22: Virtual address translation

The CPU is provided with a virtual address as input, and should output (and use) a physical
address. Since everything works in terms of pages, the lower 12 bit of an address (the offset
within a page) are never translated, and pass as-is to the final address.

The CPU needs context for translation. Each process has a single initial structure that always
resides in RAM. For 32-bit systems, it’s called Page directory pointer table, and for 64-bit
systems it’s page map level 4 (these is the Intel terminology). From this initial structure,
other structures are used including page directories and finally page tables (the leaves of the
translation “tree”). Page table entries are the ones pointing to the physical page address (if
the valid bit is set). When a page is moved to the page file, the memory manager marks the
corresponding page table entry as invalid, so that the next time the CPU encounters that
page, it will raise a page fault exception.

Finally, the Translation Lookaside Buffer (TLB) is a cache of recently translated pages,
so accessing these pages does not require going through multiple levels of structures for
translation purposes. This cache is relatively small and is very important from a practical
perspective. This emphasizes some of the things we looked at in chapter 10 related to caching
and contiguous memory: working with the same range of memory address at close times is
great for utilizing the TLB cache.
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Summary

In this chapter, we began our journey into the world of virtual and physical memory. We
looked at process’ address space, page states and more. In the next chapter (and next book),
we’ll learn how to use memory-related APIs effectively in our applications.


	Table of Contents
	Introduction
	Who Should Read This Book
	What You Should Know to Use This Book
	Sample Code

	Chapter 1: Foundations
	Windows Architecture Overview
	Processes
	Dynamic Link Libraries
	Virtual Memory
	Threads
	General System Architecture

	Windows Application Development
	Your First Application

	Working with Strings
	Strings in the C/C++ Runtime
	String Output Parameters
	Safe String Functions

	32-bit vs. 64-bit Development
	Coding Conventions
	C++ Usage

	Handling API Errors
	Defining Custom Error Codes

	The Windows Version
	Getting the Windows Version

	Exercises
	Summary

	Chapter 2: Objects and Handles
	Kernel Objects
	Running a Single Instance Process

	Handles
	Pseudo Handles
	RAII for Handles
	Using WIL

	Creating Objects
	Object Names
	Sharing Kernel Objects
	Sharing by Name
	Sharing by Handle Duplication

	Private Object Namespaces
	Bonus: WIL Wrappers for Private Namespaces

	Other Objects and Handles
	User Objects
	GDI Objects

	Summary

	Chapter 3: Processes
	Process Basics
	Processes in Process Explorer

	Process Creation
	The main Functions
	Process Environment Variables

	Creating Processes
	Handle Inheritance
	Process Drive Directories
	Process (and Thread) Attributes
	Protected and PPL Processes
	UWP Processes
	Minimal and Pico Processes

	Process Termination
	Enumerating Processes
	Using EnumProcesses
	Using the Toolhelp Functions
	Using the WTS Functions
	Using the Native API

	Exercises
	Summary

	Chapter 4: Jobs
	Introduction to Jobs
	Creating Jobs
	Nested Jobs
	Querying Job Information
	Job Accounting Information
	Querying for Job Process List

	Setting Job Limits
	CPU Rate Limit
	User Interface Limits

	Job Notifications
	Silos
	Exercises
	Summary

	Chapter 5: Threads Basics
	Introduction
	Sockets, Cores and Logical Processors

	Creating and Managing Threads
	The Primes Counter Application
	Running Primes Counter

	Terminating Threads
	A Thread's Stack
	A Thread's Name
	What About the C++ Standard Library?
	Exercises
	Summary

	Chapter 6: Thread Scheduling
	Priorities
	Scheduling Basics
	Single CPU Scheduling
	The Quantum

	Processor Groups
	Multiprocessor Scheduling
	Affinity
	CPU Sets vs. Hard Affinity
	System CPU Sets
	Revised Scheduling Algorithm

	Observing Scheduling
	General Scheduling
	Hard Affinity
	CPU Sets

	Background Mode
	Priority Boosts
	Completing I/O Operations
	Foreground Process
	GUI Thread Wakeup
	Starvation Avoidance

	Other Aspects of Scheduling
	Suspend and Resume
	Suspending and Resuming a Process
	Sleeping and Yielding

	Summary

	Chapter 7: Thread Synchronization (Intra-Process)
	Synchronization Basics
	Atomic Operations
	The Simple Increment Application
	The Interlocked Family of Functions

	Critical Sections
	Locks and RAII
	Deadlocks
	The MD5 Calculator Application
	Calculating MD5 Hash
	The Hash Cache
	Image Loads Notifications
	Event Parsing
	Putting it All Together

	Reader Writer Locks
	RAII Wrappers
	MD5 Calculator 2

	Condition Variables
	The Queue Demo Application

	Waiting on Address
	Synchronization Barriers
	What About the C++ Standard Library?
	Exercises
	Summary

	Chapter 8: Thread Synchronization (Inter-Process)
	Dispatcher Objects
	Succeeding a Wait

	The Mutex
	The Mutex Demo Application
	Abandoned Mutex

	The Semaphore
	The Queue Demo Application

	The Event
	Working with Events

	The Waitable Timer
	Other Wait Functions
	Waiting in Alertable State
	Waiting on GUI Threads
	Waiting for an Idle GUI Thread
	Signaling and Waiting Atomically

	Exercises
	Summary

	Chapter 9: Thread Pools
	Why Use a Thread Pool?
	Thread Pool Work Callbacks
	The Simple Work Application
	Controlling a Work Item
	The MD5 Calculator Application

	Thread Pool Wait Callbacks
	Thread Pool Timer Callbacks
	The Simple Timer Sample

	Thread Pool I/O Callbacks
	Thread Pool Instance Operations
	The Callback Environment
	Private Thread Pools
	Cleanup Groups
	Exercises
	Summary

	Chapter 10: Advanced Threading
	Thread Local Storage
	Dynamic TLS
	Static TLS

	Remote Threads
	The Breakin Application

	Thread Enumeration
	The thlist Application

	Caches and Cache Lines
	Wait Chain Traversal
	The Deadlock Detector Application
	Asynchronous WCT Sessions

	User Mode Scheduling
	Init Once Initialization
	Debugging Multithreaded Applications
	Breakpoints
	Parallel Stacks
	Parallel Watch
	Thread Names

	Exercises
	Summary

	Chapter 11: File and Device I/O
	The I/O System
	The CreateFile Function
	Working with Symbolic Links
	Path Length
	Directories
	Files
	Setting File Information

	Synchronous I/O
	Asynchronous I/O
	ReadFileEx and WriteFileEx
	Manually Queued APC

	I/O Completion Ports
	The Bulk Copy Application
	Using the Thread Pool for I/O Completion
	The Bulk Copy 2 Application

	I/O Cancellation
	Devices
	Pipes and Mailslots
	Pipes

	Transactional NTFS
	File Search and Enumeration
	NTFS Streams
	Summary

	Chapter 12: Memory Management Fundamentals
	Basic Concepts
	Process Address Space
	Page States
	Address Space Layout
	32-bit Systems
	64-bit Systems
	Address Space Usage

	Memory Counters
	Process Memory Counters

	Process Memory Map
	Page Protection
	Enumerating Address Space Regions
	The Simple VMMap Application
	More Address Space Information

	Sharing Memory
	Page Files
	WOW64
	WOW64 Redirections

	Virtual Address Translation
	Summary


