Pro Wind;)ws

Subsystem for
Linux (WSL)

Powerful Tools and Practices
for Cross-Platform Development
and Collaboration

Hayden Barnes

Apress:

Pro Windows Subsystem
for Linux (WSL)

Powerful Tools and Practices
for Cross-Platform Development
and Collaboration

Hayden Barnes

Apress’

Pro Windows Subsystem for Linux (WSL): Powerful Tools and Practices for
Cross-Platform Development and Collaboration

Hayden Barnes
Columbus, GA, USA

ISBN-13 (pbk): 978-1-4842-6872-8 ISBN-13 (electronic): 978-1-4842-6873-5
https://doi.org/10.1007/978-1-4842-6873-5

Copyright © 2021 by Hayden Barnes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray

Development Editor: Laura Berendson

Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484268728. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6873-5

This book is dedicated to the
Windows Subsystem for Linux community.

Table of Contents

About the AULROKccvimriemmsnmsesmsenss s sann s n e nnnnnns Xiii
About the Technical REVIEWETccuserssassssnsssanssssssssnsssasssssssssnsssassssassssnsssassssasssansss XV
AcknNoWIedgmentsccccuuieenmmmssssnnnmsssssnnnmssssssnnmsssssnnnssssssnnnssssssnnnsssssnnnnssssnnnnssssnnns Xvii
L1 T LT (1 Xix
Chapter 1: WSL Architecturec..ccceummnnsmmnmmsssssnnsssssssssssssssssssssssssnsssssssssssssssssnnnsssss 1
WSL 1 US. WSL 2 ...ttt ss ettt 1
KEINEI DIIVELS ... e s n s p e nr e e 1

PICO PrOCESSESccucereeereecrencressee e ses e se s e e se e e s e nae e ae e s e e nns 2
G 1T P Vo OSSO 2
Syscall Translation in WSL 1 ..o s e s s e s ns 3

WL 2.ttt bbb R E A E e e 5
31701 6
Virtual Maching PIAtFOrM...........cccoveeireeresc s 6

L LS IR 4T T 7

WSL 1 US. WSL 2 ...t se e e bbbttt 9
LN 1L 1 1 PSS 9

Why You Would Cho0SE WSL T.....coveeereerresesinesessesesssesesesesssssssssesessesessssessssssssssssssssssssnsssnnes 9

Why You Would ChO0SE WSL 2.......cceoereecrerererrenereeesesesessese s sessssessesesessesessssesssssssssssssssnens 10

The FULUFE OF WSL.....coieceeccecee s s 10
(o U 111010 RS 10
F0 L7 D L 1 OSSR 11
DIrECE3D 12.....ciiicrrccirr 12
DIFECIIMIL ...ttt e e bR p e ne e R nr s 12
0pPeNnGL and OPENCL........ccoveerrrerireneree s sn e r e nr e s 12

TABLE OF CONTENTS

NVILIQ CUDA.......ooeeieerererisesesessseeses s se e e b 13
0] 1= 14
610 170010 o RS 14
Chapter 2: Enabling WSLccccunsemmmmmmsssnnmmsssssssmmssssssssessssssssssssssssssssssssssssssnnnnssss 17
In Programs and FEATUIES........ccv e 17
USING POWEISNEIL.......cveeeecireereses s 19
USING DISIVL....cvieetiietriee e b e e e e R e e n e 20
U 10 TS = (T T | OO 21
Installing a Distribution with wsl.exe —installc.cccocrirvrinnininir . 22
Using DISM to Enable WSL in IMAQESccccccrviernierineninnse st sesse e ssssesessssessssesenns 23
IN HYPEI-V GUESTS.....c.viiiir e e s e bbb e 23
Installing a Linux Distribution 0n WSL.........ccov i 24
Choice of DiStrDULIONcovcceeeeereer e 24
Consideration: WSL Version When Installing...........ccoveeerenerencrnnenennesesese s ssesesesenenns 25
Install from the MiCroSoft STOre........ccoverrirrerr s 26
Sideload an .appx File in Developer MOdE ... sees 27
Import a Tarball Using wsl.eXe =-import ..o e 29
WSL Installation MEChaNICSc.cuccverererrerernseresesese s s se s nennes 35
INStallation LOCALIONcccovveevererereser s s 35
WSL TOONNG -evveveuerenseerseesreesessese s ses e s e s e se s sas s s sse e s se s e e sse e sensssensnnens 37
WSL APHIN WINAOWS 10.....cvecercerenereeeresese s e sss s sesss e s e sessessssssssssssessssssssnens 40
Chapter 3: Managing WSL DiStrosccccsusssusmsssnsssssnsssssnsssssnsssssnsssssnsssssanssssnnssssanss 43
LiSTING All DISIIOS ...ueeveveeererseriesesseresessesesessessessssessessesssssssessesssssssessesasssssessessessessssessessessssensesses 43
Listing RUNNING DISTIOS......ccuceririiriinrie s sse s s s s se s s s s s s s sse s saesssssnesaesne s 44
Running a Default DiStro.......ccccvcriinisniene s s 44
Setting @ Default DiSIr0.......cccucvciininnr e ————————— 45
Running @ SPECifiC DISII0........ccceerrererrrereree s 46
Running @s @ SPECITIC USENccvurerrrrirrresersse s ss s e s s sssss s s snns 48
Executing Single COMMANGSccccveviririeniennnirsere s s sss e s s seesessesaesaes 49
E3] 1101001 51

TABLE OF CONTENTS

TEIMUNALE ... s 52
Converting Distros Between WSL VErSiONS ... sessesessssesssessssesessenens 53
EXPOrt/Backup DiSTr0cocciiiiiicircnesir st s 53
IMPOr/RESIONE DISII0......ciccieriecirsire et 54
DUPIICALE DISTI0S...cueivecieiriere s e e e s 56
RESEHING DISIIOS...cueiuerreieriereriesirsere st se s se s s s s e e e b e e e ae b e e e e aenaes 57
Open WSL Distro “App” SEHINGS.cuccvvrierrrirrerere s s e e se s ssssessessessesessessessens 57
Advanced Options in WSL Distro “App” SEHiNGScccvvrernnnininennsenene s sessenes 59
Considerations: Resetting WSL DiStroccccucuervrernnennnsensse s sss s ssssesens 60
Uninstall Distros from the MiCrosoft STOre..........ccvvrminnn s 61
From the Windows Start MENU............ccoviinnnn s 61
From Advanced Options in WSL Distro “App” Settingsccovvvververvrenverierenessensesessssessessenes 62
10T 011 =T] 1 T RS 63
Uninstall Distros Installed Using WSIL.eXe ==iMPOItcccvivrrvnreriennsnsenesssessesesesessessessens 64
WSL 2 Kernel ManagemeENt.........cceovveererveriersererserseresssssnsessessessssessessessessssessessesssssssessessssssssnsessens 65
Checking for Available UPates ..o se s ssssesessenens 66
Checking Kernel Update STatus ... s sessesne s 68
Rolling Back Kernel UPAAtes..........ccvrermrenerenernesese s se s sessssessesessssssenns 68
Mounting EXtrnal VOIUMEScceceriirenenerese s sssss s s senns 69
Unmounting from WINAOWSccveeernnennineresesese e s se s sessssesssssssssesessesenns 69

Chapter 4: Linux Distro Maintenancecccunsmmmmnmmmnmmmmsssssssssnsssssssssssssssssssssssss 73

o T 16 0TS 73
DEPENUBNCIEScvueieiecir et s e bR e e e e R b e e e nennan 74
Completing Administrative Tasks With SUHOcc.covrenreirecre s 75
00T E L o o = T TSR 75
UPQGrade PACKAGEScovrererresersesessesessessessessesessessessesessessessessssessssssessssssnsssssssssssnssssssessnnsnnssss 76
INSTAIING PACKAGEScveerereeriesirsere st sese s s s se e s s s s ae et s s aese e e s saese e e e e naennes 78
UNINSTAlliNg PACKAGES. ... cecerrerrerrrrerersertsserersessessssessessessssessessesssssssessesasssssessessesssssssessessessssensesaes 79
Abandoned DEPENUENCIEScccvcerrereriirirrrererrer e s e se s e e s s se s e e sn e s e s e e saesnesaennnnns 80

vii

TABLE OF CONTENTS

L1000 2 T T T 81
From the TErmMiNal ... s 81
Using a Terminal User Interface (TUI)ccooerirvrinneninrensie e s e s e s se e s 83
Using a Graphical User INterface (GUI)ccovrerererrerseressesensesessessssessessessssessessessessssessessens 84

Build Your Own Ubuntu WSL IMAQE.......ccvrerererersererersesessesesssssssessessessssessessesssssssessessessssessesses 87

Install an Image Bootstrapping TOOL.........ccciriiiininnn e 88

BUild OUr BASE IMAQEcoveeeereeerrecrireesee s 88

Customize Base INStallation...........ccoveeereierennnsrese e 90

Create rOOFS Tar........cvecernererese s 95

IMPOIE INTO WSL...oieiectcirsere e se s s sa e s s e e s s sa e e e e s sae e e e e e naennes 97

Chapter 5: Configuring WSL DiStroscccesrmssssnnsmsssssnnnsssssssnssssssssnssssssssnsssssssnnnss 101

Setting Per-Distro SEHiNgS........cccucrrirrirrrrr e 101
AUtomMOUNT SELHINGScovieire e a e e e 102
ENADIING......o o e e e 102
200 102
File SYSTEM TAD ...cvciriiericc et e s e e e s 103
MOUNT OPLIONS ...t e e s a e e e sae e e e e eaesa e e e e naennes 104
METdALA ..o s 104
CASE SENSILIVILY ..veveererrerrererserererersere s s s s e se s s e s s e e s ae e e e s s aesae e e e s aesaene e e nnenaees 105
Changing the UID and GID of @ MOUNTcccviererernerrereressereressssessesse e sessessessessssessessees 108
Background on Linux File PErMISSIONSccccvverierierrinnererser e sessessee e ssesesseessessessenns 110
3100 N 1] O 110
Checking @ File’s PEIrMISSIONS........ccucvrerrererrerserersessssessessessssessessesssssssessessessssessessesssssssesseses 111
NUMEKIC FOMM...eiiiccic e 112
FIle IMASKvoveeeerese et 113
Changing umask and fmask of @ MouNt..........ccccocvvrvnininnrsnr e 114
CroSS-DiStro MOUNTING.......cccvvererererrerieressssersessesresessessesaessssessessesasses e ssesaesessessesaessesessesneses 114
000 0o R 115

L0 o GO 117
GENErate HOSES Flececueecririricccc st 117

viii

TABLE OF CONTENTS

GENErate DNS File ..o s 119
HOSINAME ... 120
INTErOPEIADIIILY.....cceeverecircr e e nne 121
132 o] T3 o S 121
Appending Windows Path..........ccoeiiirienncrnse e 122
WSLENVoueieiesesersrssssssssssssse e e e e e s ss st ss s et se e e s s s s s s sssssssssssssnsnsas 123
WSLENV FIQQS ...uvueuirnrnrnrnssssssssesesesesesessanns 126
(0L b TR S 127
200 T 127
Chapter 6: Configuring WSL 2.......ccumneemmmmmmmmmmmmmssssssssmsmmmssssssssssssssssssssssssssssssssnns 129
BT (e10] 1o OSSOSO 129
KBIMBL .t 129
Kernel Command LiNE.........couumrennmnnnssesnsssse s s sssssessssssssssssesssssssssssesssssnsaes 130
Lo (T2 L0 O 131
MBIMOTY ... e e e e e e e R e e R e e e e ae 133
£ o OO RSPS S 134
SWAD FilB . e nnn 135
o 1o LN (=T o g (1o OSSN 135
LOCAINOSE FOrWAIMINGcccevverreiererereser s s sesesse e sesessesaesessessesaessssessessesaesessesaesaessssessesaens 136
Nested VIFtUALIZALION ..o 137
DEDUY CONSOIEccueieeeirceer et s p e e e s be e e e nne 138
T OSSOSO 139
WSL RegiStry SEHNGS......cccueerrrrerrreneresesinsesssessssse s s sss s sesss s s s s sessssssssssssssesesssssasennes 141
Chapter 7: Customizing WSLccccemmmsnnnmmmssssnnmmsssssnsnmssssssnnsssssssnsssssssnssessssnnnnss 143
Using Graphical Applications With X ..o s ssssesesaens 143
Install an X Server on WindOWS ... s sesssssssas 143
Configure WSL to Forward X to Your Windows X SErver ... 145
WSL 2, GUI Apps, and Windows FIireWallccccvverievnnnnenienienssessesesesessessessessssessesseses 146
Install @ GUI APPIICALION.......cccrerer e e 153

ix

TABLE OF CONTENTS

Rolling Your OWN iNit SYSTEMcccevieririrrerere e sse e sessesse s ssssessessesssssssessessesssssssesaens 155
DASKIC. .o ———————————————————— 156
WINAOWS SEIVICEScovrvivieieririssesse s e e s sn s sse e 159
Windows Task SCHEAUIET ..o 165

BOOE COMMEANGcovvccirerreee e 176

Chapter 8: Going Further with WSL 2cccccnnemmmmmmssssnmmmssssssmmssssssssssssssssssssnnns 177

RUNNING SYSIEM ... s 177

A Simple Approach to SYSTEMU ..o e 178

Building Your Own Kernel for WSL 2 ... ssssessssssessssesessesenns 179
Installing a Guest Operating System on KVM on WSLccococeeneernncsnnesnsese e 196
WSL 2 Advanced NetwWOorkingcuccuvenernsernsmssnesssssessssessssssssssesssssssssesssssssssssessssssssssnens 200

Chapter 9: Maximizing Windows Interoperabilitycccccusseemmmnssssnnnmnsssssnssssssnnnns 209

WSIPALN .. —————————————— 209

WSIULITIEIES . v vveeeeeeeesssss e bbb b e e 210

Redirecting Between Windows and Linux Applicationsccccccvvrinninvnieninsnsnsesessssensennens 214
PIDING. e —————————————————— 215
Piping Between Windows and WSL ... ssssesessssessnses 216
File REAIECTHION.ceeeeeeeecer e 221
gL T 0T 221

Environmental Variables ..o 223

Mount File SyStems iNWSL 2.........ccoeorrerrerereserssesesese e s sessesenns 225
WINnAOWS File SRAIEScoveeerecrerceree s s nnenens 226
SSHFS and Other FUSE-Based File SyStems...........ccccvvninvninnnnsncness s sessennens 227
Native Linux File Systems in a Disk Image or “Partition”...........cccccoreenresrnsnnsenenenenennes 228

TABLE OF CONTENTS

Chapter 10: Using WSL for Enterprise Development...........cccernnssmnnnnssssssnsssssssnnns 233
Creating a Microk8s WOrkStation............cccceeeerrreniresennscrnsesene s ses e sesesens 233
Prerequisites for MICIOKS8S ... s 233
INSTAllNG MICIOKS8Sccveoriirerc et s s e 235
Enabling Microk8S AQA-0NScccevverreriererensereressssessesessessssessessesssssssessessssssessessssssssssesaes 235
Deploy a Cluster With HElM..........cccciiiicnnnrnere s s snens 237
USiNG DOCKET DESKLOP.....covecrereerreerreserinesese e se s s se s s ne s 238
Installing Docker DESKIOP 0N WSL........cccoierernnerrreneseseres s sesss e sessesesssesennes 238
Building Docker CONTAINETccoerrenerrrrererereree s neens 240
Connecting t0 EAITOrS/IDES........c.ccovveerenenerenerisesese s se e s sssesessssnssssssessssenns 242
LT LIS (1o PSS SRSTR 242
Visual STUCIO COUE......c.vererrererreerenese s sre s e nne s 246
JELBIaiNS IDEScccovreerreeresesesese s ssssesesse e e se s se s s ssssssesss s sessssessssessssesesssenns 249
Utilizing GPU Compute Pass-TRrOUGNccouceemrinmrnseninesese s sssss e sessesenns 252
NVIDIA CUDAL.........ootiiririrccee sttt bbbttt 252
DireCtML for NON-NVIDIA GPUScccorrierrresesesesrs s sssseses e sessssesssssssssssesssssssssssssssssssnss 256

INSTAIALION ... ———————— 257
Ensure the Windows Optional Features Are Enabled............cccvverevenrenveniennsensessesesessensenns 257
Check Your Security ApPlICALION.......ccvcevevrrerrere st sr e eae s 260
Get the Latest Distro from the Windows StOreccooriinnnnnnnnsssscssssssssesesessssens 260
VIRtUNIZATION. ... 261

Linux Component DEPENENCIES........uvrrerrerereererserersessssersessessssessessessessssessesssssssessessesssssssessens 261
E3 1 110 S 262
ADUS ettt E g A e e e nan 262
Kernel MOGUIES.......ccoiirccrrcnce e 264

LinUX APPIICALIONSc..eviircrere i 264
USiNg “STrace” ONWSL 1 ..ot 265

xi

TABLE OF CONTENTS

Chapter 12: Deploying WSL at Scale.........cccrurssnmmrmmssssnnnmsssssnnsssssssnssssssssssssssssnnnnss 267
Considerations for DEPIOYINGccccuvevererererernerire s res e se s e e se s ses e seens 267
Using Intune to Deploy Ubuntu 0n WSL.........coiiinsrn s sse e s sessesnens 268
Using Landscape to Manage Ubuntu on WSL.........cocovinenernncssesese s sesese s sessesenns 268

Enroll Ubuntu WSL into @ LandSCape SEIVErcccvvrrerinninienesss s e s sssssssessesses 268
Executing a Script on the WSL Instance with Landscape........c..cccovvvnvninnnnsniennnensensennns 272
Managing Packages of the WSL Instance with LandsScapec.ccovverererernsesensesesnsenennes 274
Using Ansible to Manage Ubuntu 0n WSLccooiienninmnenersse s e sessesenns 278
INA@X iiiiiissnnnnnnnnnnnnssssssssnnnnnnnnnessssssssnnnnnnnnnsssssssssnnnnnnnesssssssssnnnnnnnnnssssssssnnnnnnnnnnsssssnnn 281

xii

About the Author

Hayden Barnes is the Senior Engineering Manager for
Windows Containers at SUSE and a recognized Microsoft
MVP. Hayden was previously Engineering Manager

for Ubuntu on Windows Subsystem for Linux (WSL) at
Canonical. Hayden regularly presents on the topic of WSL

at conferences such as Microsoft Build and is the founder of
WSLConf, the first community conference dedicated to WSL.
He has consulted for enterprises, academic institutions,

and government agencies to help them deploy WSL. Before

joining Canonical, Hayden founded Whitewater Foundry,
the first company to create a custom Linux distribution
built specifically for WSL. He is passionate about WSL because it opens up a myriad
of opportunities for cross-platform development, open source development, and
collaboration between Linux and other communities.

xiii

About the Technical Reviewer

Nuno Do Carmo is an IT professional with 20 years of
experience in various Windows domains, such as Windows
OS support, Active Directory management, and application
support.

He was also a Unix, HP/UX and Solaris 10, and Linux
system administrator for HP for more than five years.

It is this mix of experiences that motivated him to start

using WSL since its inception in 2016, and he was very happy
to find other (crazy) persons who had the same interest in
this incredible technology.

One of those persons was a certain Hayden Barnes.

Today, Nuno is a Microsoft MVP, Windows Insider MVP, CNCF Ambassador, and
Docker Captain, and he is specially interested or invested in bringing the Cloud Native
technologies to WSL to allow a broader user base to use these amazing projects.

On the personal side, Nuno lives in tiny Switzerland, the French side, with his wife,
stepdaughter, stepson, and four cats.

He can be reached at

LinkedIn: www.linkedin.com/in/ndocarmo/

Twitter: https://twitter.com/nunixtech

Website: https://wsl.dev

http://www.linkedin.com/in/ndocarmo/
https://urldefense.proofpoint.com/v2/url?u=https-3A__twitter.com_nunixtech&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=KmER3DondVzDpSVT8LzwerA1T2FZ_bTh5ynCJfUH7MA&s=juQpQkPXx6FDIOM-P-0KYf_af5QEZUrw57r-dVZpWLo&e=
https://wsl.dev

Acknowledgments

I would like to acknowledge the following persons, without whom this book would not
be possible:

Taylor Brown
Kayla Cinnamon
Sarah Cooley
Nuno Do Carmo
Yosef Durr

Sven Groot

Scott Hanselman
Ben Hillis

Dustin Howett
Igor Ljubuncic
Daniel Llewellyn
Craig Loewen
Kim Mullis

Tara Raj

Carlos Ramirez
Sohini Roy

Clint Rutkas
Mark Shuttleworth
John Starks

Rich Turner
Martin Wimpress
Patrick Wu

And everyone at Microsoft who contributed to the development of WSL and the
community around WSL.

Xvii

Introduction

Pro Windows Subsystem for Linux

This book will equip you with a wide breadth of WSL knowledge to tackle a range of
challenges on WSL, from IT administration to development work, including:

o Connecting to popular Integrated Development Environments
e Building a custom Linux kernel for WSL 2

e Building a derivative Linux distro with your own packages

e Automating emails in Outlook from a bash script in WSL

It will also cover advanced settings, customization, and optimizations for both WSL
and WSL 2, from the command line to the Registry. This will include each configuration
option in wsl.conf and .wslconfig and recommendations for best performance.

First, we will cover the early development of WSL.

History of Windows Subsystem for Linux

What we now call WSL 1 began as an effort inside Microsoft, code-named Project
Astoria, to support Android applications on the ill-fated Windows Phone. Project Astoria,
known publicly as Windows Bridge for Android, was announced at the Microsoft Build

conference for developers in 2015 (Figure I-1).

Xix

INTRODUCTION

Platform redirection

atform capabilities are re

File system
Contacts, photos,...
Sensors
Camera
Hardware accelerated graphics &
Direct X
Networking/sockets
Application lifecycle

* Resource management
Background execution model
Securitv model

Figure I-1. Screenshot of original presentation on Project Astoria, 2015. Source:
https://channel9.msdn.com/Events/Build/2015/2-702

Project Astoria built on virtualization concepts from a Microsoft Research project
known as Project Drawbridge. Project Drawbridge was a prototype of a new form of
virtualization for application sandboxing based on pico processes. Project Drawbridge
included a version of Windows built to run inside pico processes. In Project Astoria, the
pico process environment was modified to run Linux-based Android applications.

A single build of Windows 10 Phone was leaked from Microsoft containing Project
Astoria. This build allowed rudimentary Android applications to be sideloaded and
run on Windows Phone devices. Project Astoria was never officially released and was
terminated by Microsoft along with Windows Phone in 2017. The underlying technology
in Project Astoria survived though. After all, Android is based on Linux.

Bash on Ubuntu on Windows

In 2016, the technology underneath Project Astoria was recycled as Bash on Ubuntu on
Windows. Instead of running Android applications, the technology was used to run a
Bash terminal for developers on Windows (Figure I-2). The core of the technology was
a binary translation layer that ran Linux binaries on an NT kernel inside pico processes,
discussed in Chapter 1, “WSL Architecture.”

https://channel9.msdn.com/Events/Build/2015/2-702

INTRODUCTION

EN Administrator: Windows PowerShell — O X

PS C:\Windows\system32> bash -~
-- Beta feature --

This will install Ubuntu on Windows, distributed by Canonical
land licensed under its terms available here:
https://aka.ms/uowterms

Type "y" to continue: y

Downloading from the Windows Store... 100%

Extracting filesystem, this will take a few minutes...

< >

Figure I-2. Screenshot of Bash on Ubuntu on Windows

Microsoft partnered with Canonical, the publishers of Ubuntu, to bring this first
version of WSL to Windows. Bash on Ubuntu on Windows shipped in Windows 10
Anniversary Update, also known as Windows 10 1607. The partnership between
Microsoft and Canonical was a milestone in Microsoft’s increasing adoption of Linux
and open source software.

Windows Subsystem for Linux

In 2017, Bash on Ubuntu on Windows became Windows Subsystem for Linux with
Windows 10 1709. Linux distributions could now be installed on WSL from the Microsoft
Store (Figure I-3), and the number of available distributions expanded. A complete list of
available WSL distributions is in Chapter 2, “Enabling WSL.” This version of WSL based
on the binary translation layer is what we now call WSL 1 following the announcement of
WSL 2 in 2019.

INTRODUCTION

Microsaft Store

° You own this app.

ubuntu®

Available on
Ba rc

Description

Please note that Windows 10 S does not support running this app.

- o

4 Home Gaming Entertainment Productivity Deals P Search 0 +3

Install

Ubuntu 18.04 LTS Wish s

Canonical Group Limited + Developer tools > Servers

kkkk o+ 144 2 Share

Ubuntu 18,04 on Windows allows one to use Ubuntu Terminal and run
Ubuntu command line utilities including bash, ssh, git, apt and many
more.

More

m EVERYOME

ESRB

Overview Systemn Requirements Reviews Related

Ubuntu 18.04 on Windows allows one to use Ubuntu Terminal and run Ubuntu command line utilities
including bash, ssh, git, apt and many more.

X
|

Figure I-3. Ubuntu 18.04 LTS on the Microsoft Store

Why “Windows Subsystem for Linux”?

Some people wonder why Windows Subsystem for Linux is so awkwardly named. From

a historical perspective, Windows Subsystem for Linux matches the naming structure

of Windows Services for UNIX, the previous POSIX compatibility layer for Windows

NT. According to Rich Turner, Senior Program Manager at Microsoft, it was trademark

concerns that prevented Microsoft from starting the product name with Linux. At the
time, WSL did not contain the Linux kernel like it would with WSL 2. We ended up with
Windows Subsystem for Linux, which you can think about as a subsystem of Windows to

run Linux.

xxii

INTRODUCTION

Windows Subsystem for Linux 2

WSL 2 was announced at Microsoft Build 2019 and reached general availability in Windows
10 2004. The core of WSL 2 was not a binary translation layer like WSL 1 but a full Linux
kernel and environment running in a lightweight Hyper-V container. Unlike traditional
Hyper-V, which is limited to Windows 10 Enterprise, Professional, Education, and Server,
WSL 2 is available for all Windows 10 editions, including Windows 10 Home. WSL 2 offered
significant improvements in application compatibility and performance over WSL 1.

WSL 2 enabled several highly requested features to be brought to WSL, including GPU
acceleration, official GUI support, and nested virtualization for KVM guests.

xxiii

CHAPTER 1

WSL Architecture

To get the most out of Windows Subsystem for Linux, it is useful to understand its
underlying architecture and history. If you plan to hack on WSL or just deploy it in your
enterprise, it is necessary to know. This chapter will cover the architecture of WSL 1 and
WSL 2, how we got here, and then dive into some of the bleeding edge features on the
WSL platform.

WSL 1 vs. WSL 2

WSL 1 creates a Linux environment on Windows through the use of a Linux binary
translation layer. WSL 2 does so with a lightweight virtualization platform based on
Hyper-V. Both are unique and fascinating approaches to achieving Linux and Windows

interoperability.

Kernel Drivers

When WSL is enabled on Windows 10, two NT core kernel drivers are loaded by
Windows 10 (Figure 1-1). These drivers are Lxss.sys, a stub driver loaded early in the
boot process, and LxCore.sys, the full WSL driver, which is loaded later in the boot

process.

© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_1

https://doi.org/10.1007/978-1-4842-6873-5_1#DOI

CHAPTER 1 WSL ARCHITECTURE

Pico Processes

Windows User Space

Windows
Application
Processes

Linux
Application
Pico Processes

LxssManager t

Windows Kernel

Figure 1-1. Diagram of WSL 1 architecture

Linux applications in WSL are executed in pico processes, lightweight virtual spaces
created in Windows user space. LxCore.sys acts as a pico provider simulating a Linux
environment in the virtual space inside WSL pico processes. LxCore.sys also performs
the syscall translation in WSL 1, which is discussed in more detail below.

Linux applications running in a pico process are completely unaware they are
running on Windows. Pico process technology can theoretically be used to simulate any
operating system environment. Similar pico process technology is used by Microsoft to
allow Windows 10 IoT to run legacy Windows CE applications and was used, in reverse,
to port Microsoft SQL Server to Linux.

LxssManager

LxssManager is a Windows Service (Figure 1-2) that serves as a broker to LxCore.sys. An
NT call to execute a Linux binary is routed by LxssManager to LxCore.sys. LxssManager
also monitors the WSL user state and ensures smooth installation and uninstallation of
WSL distributions (Figure 1-2).

File Action View Help
| mMECScE BEm vonn
) Services (Local) | (W21 Sennces (Loca) 7
LussManager Nama - Nocrrintinn Sabie | StatupType Log On As
LassManages Properties (Local Computer) * | Manual (Tig.. Local Syste...
Stop the service :
e Manual (Trig... Local Syste...
Restart the service General On Recor Dependencies
C vy, Manual (Trig.. Local Syste..
Service name: LussManager Manual (Trig... Lecal Syste...
Description: Manual (Tig... Local Syste...
The LXSS Manager servic Display name: LussManaged b I(T'g (i IS:'
running native ELF binar e 68 — M‘nuol {Tr!g... L ‘I zﬁl
service provides the infrs Descripbion: ' Manager service supports Laning native nual (Trig.. Local Service
necessary for ELF binarie Eu __‘,_2:"',_' w“‘:'fﬂ“ﬂ_“.,,"’”‘,:: v Automatic Lecal Syste...
Windows. If the service it M I (Trig... Local Syste_.
disabled, those binariesy Pathto executable sl g | bocal
fun, C\Windows'system 32\svchost e netsves Automatic (T.. Local Syste...
Auvtomatic Local Syste...
Startp type Marud . Manual (Trig.. Local Syste...
Automatic Local Syste...
Manual (Trig... Local Syste...
Service status: Running Manual (Trig... MNetwork 5.
Manual (Trig... Metwork S..
e S Fae Flewis Manual Local Syste...
ou can spechy the stat parameters that 2poly when you start the service Manual Lecal Service
From here. Manual (Trig... Local Service
Automatic Lecal Syste..
Manual Local Syste...
Manual (Trig... Local Syste...
o Manual (Tig.. Local Syste..
ol i Manual Local Syste...
L Microsoft Account Sign-in ... Enables use.. Running Manual (Trig.. Local Syste...
Tl Microscft App-V Client Manages & Disabled Local Syste...
Q: Microscft Defender Antiviru.. Helps guard... Running Manual Lecal Service
Sl Microsoft Defender Anthviru... Helps prote.. Running Automatic Local Syste...

', Extended { Standard /

Figure 1-2. Properties of the LxssManager service

Syscall Translation in WSL 1

LxCore.sys must translate Linux kernel system calls from Linux applications into NT
system calls. System calls are the low-level requests made by compiled binaries to an
operating system kernel to perform tasks, such as apportion memory, open files, and

read from devices.

To read the system calls created by a simple application, install strace on Ubuntu on

WSL:

$ sudo apt install strace -y

Then run a simple application with strace, outputting the system call trace output to

a file called output.txt:
$ strace -o output.txt echo 'hello world'
You can then read the strace output with cat:

$ cat output.txt

WSL ARCHITECTURE

CHAPTER 1 WSL ARCHITECTURE

And you can see the Linux system calls made from simply running echo ‘hello world’
(Figure 1-3):

B roct@ARS-DEV: ~ X e = o x

root@ABS-DEV:~# strace -o output.txt echo ‘hello world’

‘hello world’

root@ABS-DEV:~8 cat output.txt

execve(" fusr/binfecho®, [®echo®, "\3u2\266\236hello”, "world\3u2\2001231"], 8xTFffedus6ase /e« 23 vars /) = @
bri(NULL) = BxTFFFdTTF1E60

arch_prctl(8x3801 /+ ARCH_??? #/, @xTfffdfidleed) = -1 EINVAL (Invalid argument)
access("fetc/ld.so.preload®, R_OK) = =1 ENOENT (No such file or directory)

openat(AT_FDOWD, */etc/ld.so.cache®, O_RDONLY|O_CLOEXEC) = 3

fstat(3, {st_mode=S_IFREG|@su4, st_size=27u42, ...}) = @

mmap(NULL, 27442, PROT_READ, MAP_PRIVATE, 3, 8) = 8x7fcaSe679088

close(3) =8

openat{AT_FDCWD, */lib/x86_su-linux-gnu/libc.so.6", O_RDONLY|O_CLOEXEC) = 3

read(3, "\ITTELFA2\INLAZ\@\e\e\a\e\e\e\e\3\e=\e\1\e\e\e\3eaq\2\e\e\e\e\e". .., 832) = 832

preaded(3, "\e\e\e\e\u\e\e\ep\s\e\e\e\e\e\eg\e\e\e\se\e\eg\e\e\e\e\e\e\e..., 784, 64) = TBU
preadsd(3, "\u\e\e\e\26\e\0\6\5\6\0\0GNUE\2\0\0\ 208\ d\8\e 8\ 3 \a\e\e\e\e\a\e", 32, Bug) = 32
preadsd(3, *\u\e\e\s\2u\e\e\e\38\8\0GNU\BcBR)310Y365\37012685W\ 242 \3u5)q\235A\1". .., 68, 886) = 68
fstat(3, {st_mode=5_IFREG|67TS5, st_size=2829224, ...}) = @

mmap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, -1, 8) = @xTfcaSesbaees
preadsu(3, *\e\e\e\e\u\e\e\ep\e\a\e\e\e\e\eg\e\e\e\e\a\e\eg\e\e\e\e\e\ee ..., Tad, &u) = Tau
preadsd(3, "\u\e\e\e\2e\e\e\e\s\e\e\ecNuie\2\e\e\3es\u\e\e\e\3\e\e\e\e\ee\er, 32, gug) = 32
preadeu(3, "\g\e\e\e\zu\e\e\e\3\e\e\ecNu\ecEr\348Y305\370\2609W\242\305)q\235A\1". .., 68, B88) = 68

wnap(NULL, 2836952, PROT_READ, MAP_PRIVATE|MAP_DENYWRITE, 3, 8) = @x7fcaSedsee0e

mprotect(@x7fcaSedas8ee, 1847295, PROT_NONE) = @

nnap(@xTfcabedasons, 1548096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 9x2506€) = @x7fcaSeda5ees
mnap(@xTfcaSes1dens, 383104, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x194668) = ex7fcaSe6ldess
nnap(@xTfcasec68008, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, @x1e7668) = Bx7fcaSec68009
nmap(BxTfcaSe66e000, 13528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 8) = @xTfcaSec6eee8
close(3) =48

arch_prctl{ARCH_SET_FS, @x7fcaSecblice) = @

mprotect(ex7fcaSes68686, 12288, PROT_READ) = @

Figure 1-3. System calls made by the command echo ‘hello world’

These system calls involve executing the binary, opening files, assigning memory,
and writing the output to the console.

The Linux and Windows NT kernels were both created in the early 1990s. Linux
was created by Linus Torvalds in 1991, inspired by MINIX, a research operating system,
which was itself inspired by UNIX from Bell Labs. The Windows NT kernel was designed
in 1993 by a team at Microsoft under David N. Cutler whose background at Digital
Equipment Corporation on the VMS operating system heavily influenced the design
of NT. Like Linux, NT was originally designed to be POSIX standards compatible. Like
Linux, NT also had distinct modes of execution, a kernel privileged mode and a user
unprivileged mode. Despite their very distinct implementations, the NT and Linux
kernels were influenced by the same operating system theories and trends in the early
to mid-1990s.

CHAPTER 1 WSL ARCHITECTURE

Linux
Application
System Call

Equivalent System Call* guee”

B No Equivalent System Call

Proagsed in
Lxcore.sys

Windows Kernel

Figure 1-4. Diagram of system call handling in WSL 1

Despite their distinct implementations, thanks to their common influences in some
cases there are direct translations of Linux to NT kernel system calls. When a Linux
binary is executed in a pico process and a 1-1 Linux to NT system call exists, these can be
passed directly by LxCore.sys to the NT kernel (Figure 1-4).

When a 1-1 Linux to NT system call does not exist, but a similar NT system call exists
for a Linux system call, LxCore will translate the Linux system call into an NT system call
by reordering or refactoring the call from a Linux to an NT call.

In other cases, where there is no equivalent for a Linux system call. Here, LxCore
must handle the system call itself. This is handled in a clean room implementation of the
Linux kernel API and contains no Linux kernel code.

Not all possible Linux system calls are implemented in WSL 1, and some of the more
obscure system calls will never be. WSL 1 achieves close to 90% binary compatibility
with Linux with this translation layer. Early in WSL 1 development, the Linux Test Project
(https://linux-test-project.github.io/)was used to validate Linux compatibility.

WSL 2

WSL 2 is a vastly different architectural approach from WSL 1. By leveraging a Linux
kernel and a lightweight Hyper-V container, WSL 2 addresses many of the issues users
encountered with WSL 1, such as syscall incompatibility.

https://linux-test-project.github.io/

CHAPTER 1 WSL ARCHITECTURE

Hyper-V

WSL 2 addresses the challenge of implementing complete system call translation
support for every possible Linux system call by implementing a true Linux kernel in a
lightweight virtualization platform built on Hyper-V (Figure 1-5).

Virtual Machine Platform

Ubuntu VHDX

Ubuntu

Lxss Manager

WSL 2 Linux Kernel

Figure 1-5. Diagram of WSL 2 architecture

Hyper-V is the native virtualization technology built into the Windows NT kernel,
equivalent to the native virtualization implementations such as KVM on Linux or
Hypervisor.Framework on macOS.

Hyper-Vis a Type 1 hypervisor, which means it runs at the NT kernel level. Third-
party hypervisors, like VirtualBox and VMware, are Type 2 hypervisors which load
kernel-level drivers but are mostly implemented user space.

This is why Hyper-V and third-party hypervisors clash. You cannot run VirtualBox
and WSL 2 on the same Windows installation.

Virtual Machine Platform

WSL 2 uses the Windows Host Compute Service, an API built on Hyper-V and exposed by
enabling the Virtual Machine Platform in Windows 10.

WSL 2 defines a lightweight Linux environment through a series of API calls to the
Host Compute Service, including attaching virtual file systems and virtual network
adapters.

CHAPTER 1 WSL ARCHITECTURE

In contrast with WSL 1, where calls to open files or to open a networking port on WSL
1 are handled directly by the NT kernel, calls to open files or a networking port on WSL 2
are handled by the Linux kernel which then interacts with virtual Hyper-V devices.

Calls to open files on WSL 2 are directed to the Linux kernel which interacts with
avirtual file system emulated by Hyper-V. The virtual file system is a hard disk image
mounted as a virtual block device upon which the file system is stored. This provides
greater performance and lower overhead than emulating a physical IDE, SATA, or NVMe
device.

Calls to open a networking port on WSL 2 are directed to the Linux kernel which
interacts with a virtual network adapter emulated by Hyper-V.

You can view the virtual file systems and network adapters in WSL 2 by running

$ 1lshw

The device drivers for these virtual Hyper-V file systems and devices have been
included in the upstream Linux kernel since 2009. Here is an example of a virtual
network adapter:

*-network:0
description: Ethernet interface
physical id: 1
logical name: etho
serial: 00:10:4d:eb:01:ab
size: 10Gbit/s
capabilities: ethernet physical
configuration: autonegotiation=off broadcast=yes driver=hv_netvsc
duplex=full firmware=N/A ip=172.24.18.219 link=yes multicast=yes
speed=10Gbit/s

WSL 2 Kernel

The Linux kernel in WSL 2 is a slightly modified Linux kernel optimized to run in the
Hyper-V-based WSL 2 environment. The source is made available under GPL 2.0 at
https://github.com/microsoft/WSL2-Linux-Kernel. Updates to the Linux kernel in
WSL 2 are provided by Windows Update (Figure 1-6).

https://github.com/microsoft/WSL2-Linux-Kernel

CHAPTER 1 WSL ARCHITECTURE

Windows Update

E Updates available
Last checked: Today, 406 PM

m for Linux Update - 4.19.121

- 0%

Update & Security

Z Windows Update : ; . —
ate for Microsoft Visual C++ 2010 Service Pack 1 Redistributable Pa

Delivery Optimization ownloading - 100%
Windows Security @ Pause updates for 7 days

Backup oy -
v Change active hours

tO

Figure 1-6. Screenshot of Windows Update in Windows 10 Settings

Some users will need to manually install the WSL 2 kernel (Figure 1-7) from an
installer when upgrading from previous version of Windows 10 by downloading it from
https://aka.ms/wsl2kernel. A version of the WSL 2 kernel for ARM64 devices is also

available.

I}:‘-’-r'

Windows Subsystem for Linux Update Setup
Wizard ended prematurely

Windows Subsystem for Linux Update Setup Wizard ended
prematurely because of an error, Your system has not been
modified. To install this program at a later time, run Setup
Wizard again. Click the Finish button to exit the Setup
Wizard.

Figure 1-7. Screenshot of Windows Subsystem for Linux 2 kernel installer

Building your own kernel for WSL is detailed in Chapter 8 “Going Further with WSL2".

https://aka.ms/wsl2kernel

CHAPTER 1 WSL ARCHITECTURE

WSL 1 vs. WSL 2
Availability

WSL 1 is currently available on more versions of Windows 10, including Windows Server
2019. WSL 1 is your only choice on Windows 10 versions 1709 to 1809.

WSL 2 is available on the Windows 10 May 2019 update, known as version 1903, with
recent updates applied, specifically build 18362.1049 and higher. If you are running this
version of Windows 10 or higher, I strongly recommend you try WSL 2.

WSL 2 was originally launched on Windows 10 May 2020 Update, version 2004, but
was then backported to Windows 10 May 2019, version 1903, later in 2020.

Why You Would Choose WSL 1

WSL 1 has lower system overhead than WSL 1. It may make a better choice on a lower-
resource machine, such as a Surface Go, on which power usage takes precedence over
performance.

WSL 1 also has simplified networking compared to WSL 2. WSL 1 simply adopts
the networking configuration of your host Windows machines, whereas WSL 2 must
implement an entire NAT network inside the virtual environment which can complicate
some workflows.

Note NAT stands for Network Address Translation. Each WSL 2 distro has its own
individual IP address that is only accessible from the Windows device on which it
is running. Windows translates outgoing connections to look like they are coming
from the Windows device.

WSL 1 has compatibility with many Linux applications. If you are limited to WSL 1,
you should not be dismayed. It is still a viable option for some users. Note though it is
not expected to get new features.

CHAPTER 1 WSL ARCHITECTURE

Why You Would Choose WSL 2

You should choose WSL 2 if your application requires it, such as Docker or microk8s.
WSL 2 is also more performant than WSL 1, by a significant factor. If you want to
maximize WSL performance, then WSL 2 is a breakthrough for your workflow.

WSL 2 has a more complicated networking setup than WSL 1. WSL 2 implements an
entire NAT network inside the virtual environment. Extra steps are required to connect to
WSL 2 services from other devices, something to keep in mind while planning your WSL
deployment or migration from WSL 1 to WSL 2.

WSL 2 also allows you to compile and run your own Linux kernel if you need kernel
features not provided by the default Microsoft WSL 2 kernel.

The Future of WSL

2020 brought announcements of more architectural changes to WSL 2. Chief among
them is support for GPU computing tasks, which are accelerated by DirectX, Direct3D,
and DirectML. Support for OpenGL, OpenCL, and Vulkan is expected later. These new
GPU compute features required updates to the WSL 2 kernel and how GPU devices are
handled by WSL 2. These represent the next major architectural advances since the
introduction of WSL 2.

GPU Compute

Windows 10 builds with GPU compute support were released to the Insider Dev Channel
in June 2020 and are expected to be a feature in a release of Windows 10 in 2021.

The new GPU compute functionality is based on a para-virtualized GPU in the WSL 2
environment. GPU acceleration will allow a whole new category of GPU-driven compute,
artificial intelligence, machine learning, and statistical analysis workloads on WSL.

A GPU-accelerated workflow setup is detailed in Chapter 10, “Using WSL for
Enterprise Development.”

10

CHAPTER 1 WSL ARCHITECTURE

/dev/dxgkrnl

The para-virtualized GPU is powered by a new Linux kernel device. A new Linux kernel
driver, /dev/dxgkrnl, provides a series of device calls that are similar to what DirectX
provides in the NT kernel via the Windows Display Driver Model (WDDM). This allows
APIs and drivers written to work on WDDM to run within WSL.

/dev/dxgkrnl connects outside the WSL environment through the Hyper-V VM
Bus (Figure 1-8) using the WDDM Paravirtualization Protocol. /dev/dgkrnl then
communicates over the VM Bus directly with dxgkrnl, the DirectX component in the NT
kernel, which passes requests to the GPU kernel mode driver and ultimately the GPU.

WSL 2 User Space

/dev/dxg

drivers/gpu/dxgkrnl

NT Kernel dxgkrnl

GPU driver

Figure 1-8. Diagram of DirectX implementation in WSL 2

The NT kernel treats GPU processes on WSL and Windows equally and will
dynamically allocate available GPU resources between them. /dev/dxgkrnl is a
pass-through driver, similar in some ways to accelerated graphics drivers on other
virtualization platforms, like VirtualBox.

Only GPU compute and off-screen rendering is currently provided by /dev/dxgkrnl;
there is no display capability. Read the following for more on official GUI support
coming to WSL 2.

11

CHAPTER 1 WSL ARCHITECTURE

/dev/dxgkrnl does not contain DirectX, but it is open source and can be viewed at
https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/
drivers/gpu/dxgkrnl. Microsoft has initiated the process for the driver to be sent
“upstream” to the mainline Linux kernel.

GPU compute currently requires at least Windows 10 build 20150 and WSL-aware
drivers for Windows from your GPU chipset manufacturer. Beta drivers for Nvidia GPU
chipsets are available through the Nvidia Developer Program. Eventually, these drivers
will be released via Windows Update.

Direct3D 12

Direct3D is part of DirectX. Direct3D is a real-time API for rendering three-dimensional
graphics in applications and games. The extension of WDDM to Linux allowed Microsoft
to port the Direct3D 12 API to Linux. A complete Direct3D library is compiled for Linux
from the source code of the Windows Direct3D library. Currently, Direct3D can only be
used for off-screen rendering; see the following for more information on official GUI
support coming to WSL 2.

DirectML

DirectML is a part of DirectX. DirectML is a low-level API for machine learning that
should be familiar with developers experienced in DirectX. DirectML is supported on all
DirectX-compatible hardware. Unlike CUDA, which requires a Nvidia GPU, DirectML
works on Intel and AMD GPUs. In conjunction with porting DirectML to WSL, Microsoft
also released a preview of TensorFlow with a DirectML backend. Microsoft is working
with the TensorFlow community to upstream the DirectML backend.

OpenGL and OpenCL

Most graphics rendering on Linux uses the open source OpenGL and OpenCL APIs.
Microsoft has been working with Collabora to provide mapping layers for OpenGL and
OpenCL on top of DirectX through the open source Mesa library (Figure 1-9). This will
allow OpenGL and OpenCL applications to be seamlessly DirectX accelerated when
executed on WSL. This work is not complete and will be coming in an update to the
Mesa library in the future. Once distributions like Ubuntu update to the new Mesa
libraries, three-dimensional acceleration for OpenGL and OpenCL will be automatic.
Microsoft has said they are still exploring how best to support Vulkan on WSL.

12

https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/drivers/gpu/dxgkrnl
https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/drivers/gpu/dxgkrnl

CHAPTER 1 WSL ARCHITECTURE

WSL 2 User Space

mesa

libd3d12 Direct3D driver

libdxcore

/dev/dxg

drive rs/gpdjdxgkrnl

NT Kernel dxgkrnl

GPU driver

Figure 1-9. Diagram of OpenGL and OpenCL implementation in WSL 2

Nvidia CUDA

CUDA is a cross-platform parallel processing API created by Nvidia. Microsoft worked
with Nvidia to build a version of CUDA for Linux that targeted the WDDM layer through
the /dev/dxgkrnl device driver (Figure 1-10). This provides CUDA acceleration to
applications such as TensorFlow in WSL and to Docker containers run with the Nvidia
runtime.

13

CHAPTER 1 WSL ARCHITECTURE

WSL 2 User Space

libcuda
D3DKMT

libdxcore

/dev/dxg

drivers/gpu/dxgkrnl

NT Kernel dxgkrnl

GPU driver

Figure 1-10. Diagram of CUDA implementation in WSL 2

Libraries

The libraries needed to access advanced GPU features in WSL are overlaid onto the WSL
file system at /usr/lib/wsl/lib for glibc-based distributions. No Linux-specific drivers
are required. Distributions such as Alpine which use musl libc instead of glibc are not
currently supported.

The Direct3D library (libd3d12), DirectML (libdirectml), CUDA (libcuda), and a
related driver ported to Linux, DxCore (libdxcore), are not open source.

GUI Support

At Build 2020, Microsoft also announced that official GUI support would be coming
to WSL 2. As detailed in Chapter 7 “Customizing WSL,” it is possible to run a GUI
application on WSL 1 and 2 today using a Windows-based X server such as VcXsrv or
X410. More details about official GUI support for WSL 2 are coming in 2021.

14

CHAPTER 1 WSL ARCHITECTURE

We do know the forthcoming GUI support will use a Wayland compositor based
on Weston and also include PulseAudio support. Microsoft’s compositor will forward
raw visual elements over RDP to the RDP client built into Windows (Figure 1-11).

The graphical rendering itself occurs on Windows. The visual elements of the Linux
GUI, including application windows, are drawn by Windows using your computer’s
GPU. Windows will also listen for keyboard and mouse input to transmit back to Linux.

Linux GUI app with
Wayland Support

Window

Windows RDP Client

RDP RAIL

Figure 1-11. Diagram of Wayland application support in WSL 2

Microsoft’s Weston-based compositor will have support for Xwayland, a
compatibility layer for Linux GUI applications built against Xorg libraries (Figure 1-12).
Xwayland contains an Xserver that uses Wayland input devices and forwards output to
Wayland surfaces.

Linux Xorg GUI app

Xwayland (X Server)

Windows RDP Client

RDP RAIL

Figure 1-12. Diagram of Xorg application support in WSL 2
15

CHAPTER 1 WSL ARCHITECTURE

As of writing, Microsoft uses the Remote Desktop Protocol (RDP) Remote
Application Integrated Locally (RAIL) channel to send graphical data from Linux to
Windows. Microsoft has proposed an extension to the RDP called Virtual Application
Integrated Locally (VAIL), which is currently only in use between Windows clients
(Figure 1-13).

Linux GUI app with
Wayland Support

Window

Windows RDP Client

Framebuffer — RDP VAIL

Figure 1-13. Diagram of RDP over VAIL

If VAIL is upstreamed into the RDP standard, then, instead of using the RAIL
channel to send graphical data, the video framebuffer could be copied directly from
Linux to Windows. This will dramatically improve GUI performance and is similar to
Intel GVT-g technology. It could also have other applications for remote and virtual
desktop interoperability between Windows and Linux. Microsoft has said their Wayland
compositor, contributions to FreeRDP, and RDP extension will be open source.

Microsoft has also announced that audio support will accompany GUI support in
WSL 2, provided by a minimal PulseAudio layer running in a special sidecar container,
which the UNIX domain socket needed for communication mounted into your WSL 2
distro.

The push toward using a real, open source Linux kernel with open protocols being
pushed upstream represents a dramatic shift for Microsoft. With an understanding of
the architecture of how WSL 1, WSL 2, and its pieces work together, we can begin to
understand how to exploit these pieces for fun and profit in the following chapters.

16

CHAPTER 2

Enabling WSL

WSL does not come enabled by default in Windows; it must be enabled via the GUI or
command line. WSL can be enabled on all editions or “SKUs” of Windows, including
Windows 10 Home, Professional, Enterprise, and Server. There are multiple ways to
enable WSL on Windows 10. How you enable WSL depends on your comfort level. New
users may wish to use the GUI option, experienced users may wish to use PowerShell,
and system administrators managing fleets of Windows machines may use DISM.

In Programs and Features

In Windows 10, click the Start button, type “features,” and select “Turn Windows
features on or off” In the “Windows Features” menu (Figure 2-1), scroll down, and check
“Windows Subsystem for Linux” to enable WSL 1. To enable WSL 2, also select “Virtual
Machine Platform.”

17
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_2

https://doi.org/10.1007/978-1-4842-6873-5_2#DOI

CHAPTER 2 ENABLING WSL

[l Windows Features - O X

Turn Windows features on or off

To turn a feature on, select its check box. To turn a feature off, clear its
check box. A filled box means that only part of the feature is turned on.

TFTP Client ~
Virtual Machine Platform

Windows Hypervisor Platform
Windows Identity Foundation 3.5
Windows PowerShell 2.0

Windows Process Activation Service
Windows Projected File System
Windows Sandbox

Windows Subsystem for Linux
Windows TIFF IFilter

Work Folders Client

] @

OO0RROOROORO

Figure 2-1. Graphical menu to turn Windows features on or off

Click “OK;” allow the features to be enabled, and then restart.

One disadvantage to the GUI method is that WSL 1 will remain your default even if
you enable WSL 2 on Windows 10 1909 and later. To set WSL 2 as your default (Figure 2-2),
open PowerShell as Administrator, and run

wsl.exe --set-default-version 2

E¥ Windows PowerShell O = (m] X

PS C:\> wsl.exe --set-default-version >
For information on key differences with WSL 2 please visit https://aka.ms/wsl2
PS C:\>

Figure 2-2. Setting WSL 2 as the default WSL version

18

CHAPTER 2 ENABLING WSL

Using PowerShell

To enable WSL using PowerShell (Figure 2-3), open PowerShell as Administrator, and
run

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-
Subsystem-Linux -NoRestart

EX Administrator: Windows Powert > == % - o x
PS C:\> Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-Subsystem-Li
nux -NoRestart
WARNING: Restart is suppressed because NoRestart is specified.

Path :
Online : True

RestartNeeded : True

PS C:\>

Figure 2-3. Enabling the WSL 1 feature in Windows 10 using PowerShell

To then enable WSL 2 on Windows 10 1909 or later (Figure 2-4), run

Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform
-NoRestart

EX Administrator: Windows Powert > == % - (m] X
PS C:\» Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform -MNoRest
art
WARNING: Restart is suppressed because NoRestart is specified.

Path 3
Online : True

RestartNeeded : True

PS C:\>

Figure 2-4. Enabling the WSL 2 feature in Windows 10 using PowerShell

Allow the features to be enabled, and then restart:
Restart-Computer

If you enabled WSL 2, you can set WSL 2 as your default (Figure 2-5). Open
PowerShell as Administrator, and run (Figure 2-5)

19

CHAPTER 2 ENABLING WSL

wsl.exe --set-default-version 2

E¥ Windows PowerShell X 4w = (] X
PS C:\> wsl.exe =--set-default-version :

For information on key differences with WSL 2 please visit https://aka.ms/wsl2
PS C:\>

Figure 2-5. Setting WSL 2 as the default WSL version

Using DISM

Some administrators may be more familiar with the Deployment Image Servicing and
Management (DISM) tool. To enable WSL 1 using DISM (Figure 2-6), open PowerShell as
Administrator, and run

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-
Linux /all /norestart

E¥ Administrator: Windows Powerl % | - o x|
PS C:\> dism.exe fonline fenable-feature /featurename:Microsoft-Windows-Subsystem=-Linux fall /norestart

Deployment Image Servicing and Management tool
Version: 10.8.28185.1608

Image Version: 16.8.28185.1888

Enabling feature(s)

168.]
The operaticn completed successfully.
PS C:\>

Figure 2-6. Enabling the WSL 1 feature in Windows 10 using DISM

Then, to enable WSL 2 using DISM (Figure 2-7), run

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /
norestart

20

CHAPTER 2 ENABLING WSL

EX Administrator: Windows PowerS % | &= % = o x
PS C:\> dism.exe fonline /enable-feature /featurename:VirtualMachinePlatform /all /norestart

Deployment Image Servicing and Management tool
Version: 168.0.20185.1808

Image Version: 19.8.28185.1808

Enabling feature(s)

1608. 1
The operation completed successfully.
PS C:\>

Figure 2-7. Enabling the WSL 2 feature in Windows 10 using DISM

Allow the features to be enabled, and then restart:
Restart-Computer

If you enabled WSL 2, you can set WSL 2 as your default (Figure 2-8). Open
PowerShell as Administrator, and run

wsl.exe --set-default-version 2

E¥ Windows PowerShell X 4w = (] X
PS C:\> wsl.exe =--set-default-version :
For information on key differences with WSL 2 please visit https://aka.ms/wsl2
PS C:\>

Figure 2-8. Setting WSL 2 as the default WSL version

Using wsl.exe --install

At Build 2020, Microsoft announced that a new feature would be coming to Windows
to enable WSL on all eligible versions of Windows 10. To enable WSL using this method
(Figure 2-9), open PowerShell as Administrator, and run

wsl.exe --install

21

CHAPTER 2 ENABLING WSL

EX Administrator: Windows Powers % | = = =] x

PS C:\> wsl.exe --install

Installing virtual Machine Platform

virtual Machine Platform is now installed.

Installing Windows Subsystem for Linux

Windows Subsystem for Linux is now installed.

The requested operation is successful. Changes will not be effective until the system is rebooted.
Ps C:\>

Figure 2-9. Enabling the WSL n Windows 10 using wsl.exe -install

This feature will eventually be backported to existing Windows 10 service channels
still in support. It will enable WSL 2 by default, update the WSL 2 kernel, and install GUI
support on eligible versions of Windows 10.

Installing a Distribution with wsl.exe —install

A further feature of the ws1. exe utility, made available in Windows builds numbered
20211 and above, is the capability to install Linux distributions directly from the
Windows Store, that is, without using the Store application to search for them.

To see a list of available distributions, run

wsl.exe --list --online

This will print a two-column table listing all the available distributions in the Windows
Store (Figure 2-10). The table shows each distribution’s name, as you will use to install with
wsl.exe, and a “friendly name” as a description allowing you to clearly see what each distro is.

E¥ Windows PowerShell X+ v =] X

C:\Users\Hayden> wsl.exe --list --online
The following is a list of valid distributions that can be installed.
Install using 'wsl ——install -d <Distro>'.

NAME FRIENDLY NAME

Ubuntu Ubuntu

Debian Debian GNU/Linux

kali-linux Kali Linux Rolling

openSUSE-42 openSUSE Leap 42

SLES-12 SUSE Linux Enterprise Server v12

Ubuntu-16.04 Ubuntu 16.04 LTS
Ubuntu-18.04 Ubuntu 18.04 LTS
Ubuntu-20.04 Ubuntu 20.04 LTS
C:\Users\Hayden>

Figure 2-10. The output of wsl.exe --list --online showing all installable distros
22

CHAPTER 2 ENABLING WSL
To install a distro from the list, such as “Ubuntu-16.04,” run (Figure 2-11)

wsl.exe --install -d Ubuntu-16.04

E¥ Windows PowerShell X 4+ v - O X |

C:\Users\Hayden> wsl --install -d Ubuntu-16.04

Downloading: Ubuntu 16.04 LTS

Installing: Ubuntu 16.04 LTS

Ubuntu 16.04 LTS has been installed.

Launching Ubuntu 16.64 LTS... |
C:\Users\Hayden>

Figure 2-11. Using wsl.exe to install Ubuntu 16.04 in WSL

A new terminal window should now pop up with the distro’s usual setup flow. For
Ubuntu-16.04, this involves setting a username and password for your Linux user.

Using DISM to Enable WSL in Images

WSL can be enabled in a Windows image for imaging purposes using DISM. Create a
Windows image, enable WSL, sideload your WSL distro from the .appx, and then follow
the steps to generalize your image and create an installable derivative image:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-
with-windows-images

In Hyper-V Guests

WSL is supported in Windows 10 guests on Hyper-V. Hyper-V can be useful for trying
new features in WSL in Windows 10 Dev Channel and Beta Channel builds prior to
deployment into production.

Hyper-V requires Windows 10 Pro, Enterprise, or Education editions and an Intel
processor with VTx virtualization extensions. The Intel virtualization extensions must
first be enabled in your system BIOS/EFI. As of this writing, Microsoft has announced
preliminary support for nested virtualization on AMD processors, with support for
nested KVM to follow.

23

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-with-windows-images
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-with-windows-images

CHAPTER 2 ENABLING WSL

Once enabled in your BIOS/EF]I, the virtualization extensions must be exposed to
your Hyper-V guest. To expose virtualization extensions to your Hyper-V guest, open
PowerShell as Administrator on your host device, and run (Figure 2-12)

Set-VMProcessor -VMName "Virtual Machine Name"
-ExposeVirtualizationExtensions $true

where “Virtual Machine Name” is the name of your Hyper-V guest. If you encounter
issues starting your Hyper-V guest or Hyper-V-related features in your guest are disabled,
double-check virtualization extensions are enabled in your BIOS/EFI and you have
exposed virtualization extensions for the correct Hyper-V guest.

E¥ Administrator: Windows Powers y gl = (=] =
PS C:\>» Set-VUMProcessor -VMName "Windows 18" -ExposeVirtualizationExtensions $true
PS C:\>

Figure 2-12. Exposing virtualization extensions to a Hyper-V guest virtual
machine

Installing a Linux Distribution on WSL
Choice of Distribution

Once WSL is enabled, you must install a Linux distribution, commonly abbreviated
as “distro.” As of publication, the following distributions are available for WSL on the
Microsoft Store:

e Ubuntu

e Ubuntu 20.04 LTS

e Ubuntu 18.04 LTS

e Debian

o Pengwin

o Pengwin Enterprise

o Fedora Remix for WSL

24

CHAPTER 2 ENABLING WSL

o SUSE Linux Enterprise Server 15 SP1
o SUSE Linux Enterprise Server 12 SP5
e 0penSUSE Leap 15.2

e Alpine WSL

You may already be familiar with some of the preceding distributions. Factors to
consider when selecting a distribution include

Familiarity with distro-specific tools - For example, Ubuntu,
Debian, and Pengwin use the apt package manager, which use
.deb package files. Fedora uses dnf as a package manager, and
openSUSE and SUSE use zypper, which uses .rpm package files.

Distribution support by the Linux applications you would like to
use - You should check to make sure the Linux applications you
would like to use are available in the repositories of the distro
you choose. If not, many upstream projects will offer Ubuntu-
compatible .deb files or even their own apt repository.

Availability of support for WSL use in production environments -
Paid support is available from Canonical for Ubuntu and from
Whitewater Foundry for Pengwin.

WSL-specific features in distributions - Ubuntu, Pengwin, and
Fedora Remix for WSL include wslutilities, an open source set of
utilities for WSL.

Consideration: WSL Version When Installing

When you enable WSL 1 and WSL 2, you have the option of installing distros under
either 1 or 2.

If you install a distro from the Store or manually using an .appx package file as
detailed in the following, it will install to your default WSL version choice.

To set your default WSL version choice, open PowerShell, and run

wsl.exe --set-default-version <version>

25

CHAPTER 2 ENABLING WSL
To set WSL 2 as your default, run the following (Figure 2-13):

wsl.exe --set-default-version 2

E¥ Windows PowerShell X 4 = o X
PS C:\> wsl.exe —--set-default-version :

For information on key differences with WSL 2 please visit https://aka.ms/wsl2
PS C:\>

Figure 2-13. Setting WSL 2 as the default WSL version

Converting distros between WSL 1 and 2 is covered in Chapter 3, “Managing WSL

Distros.”

Install from the Microsoft Store

The recommended method of installing WSL distros is from the Microsoft Store. No
account is necessary to download free distributions like Ubuntu. To install a distribution,
search the Store for its entry. Once located (Figure 2-14), click “Get” followed by “Install.”
Wait for the download to complete, and then click “Launch.”

Microscht Store. - a b

€ Home Gaming Entermainment Productivity Deals Osearch @

° You own this app.

Ubunty

Cangnical Greup Limited * Developer tools = Utilitles
*k ks 216 ¥ Share

Ubuntu on Windows allows you to use Ubuntu Terminal and run
Ubuntu command line utilities including bash, ssh, git, apt and many
more.

More

B EVERYOME
ESRB

Overview System Raquirements Feviews Related

Figure 2-14. Ubuntu for WSL on the Microsoft Store

26

CHAPTER 2 ENABLING WSL

You can also run the distro from the Start Menu or its executable alias from
PowerShell, for example, “ubuntu.exe” for Ubuntu. This book will primarily use Ubuntu
in examples.

On the first run, the distro will be unpacked, and you will set up a default non-root
user (Figure 2-15). This user is separate from your Windows username and password.

&) Select Ubuntu 20.04 LTS - o *
Installing, this may take a few minutes... A
Please create a default UNIX user account. The username does not need to match your Windows username.
For more information visit: https://aka.ms/wslusers

Enter new UNIX username:

Figure 2-15. Create a default new user on Ubuntu on WSL

On most WSL distros, this non-root user will be added to the sudo or wheel
Linux user group, so you can issue privileged commands with sudo followed by an
administrative command. A more detailed discussion of sudo is included in Chapter 4,

“Linux Distro Maintenance.”

Sideload an .appx File in Developer Mode

There are more options to install WSL distros if you do not have access to the Microsoft
Store. Linux distros on the Microsoft Store are packaged using the .appx application
packaging format. It is possible to sideload .appx packages on devices that do not have
the Microsoft Store enabled. To allow sideloading of applications, Windows 10 must

be set to developer mode. This can be done in Settings » Update & Security » For
developers and by toggling the switch for “Install apps from any source, including loose
files” to On (Figure 2-16).

27

CHAPTER 2 ENABLING WSL

“ Settings

0 Home

Find a setting

Update & Security

c Windows Update

Delivery Optimization

¢ E

Windows Security

=

Backup

Troubleshoot

Recovery

Activation

Find my device

For developers

& = B @ b %

Windows Insider Program

For developers

These settings are intended for development use only.

Learn more

Developer Mode

Install apps from any source, including loose files.

@ o

Device Portal

Tum on remote diagnostics over local area network connections.

@D o

Device discovery

Make your device visible to USB connections and your local network.
@D or

Mote: This requires version 1803 of the Windows 10 SDK or later.

File Explorer

Apply the it for a more developer friendly File Explorer.

g

Change settings to show file extensions Show setlings

Figure 2-16. “For developers” panel in Windows 10 Settings to enable .appx

sideloading, also known as “developer mode”

You will be prompted with a message warning you about the risk of installing and

running apps from outside the Microsoft Store (Figure 2-17).

Use developer features

Turning on developer mode, including installing and running apps from outside the
Microsoft Store, could expose your device and personal data to security risks or harm your

device.

Turn on developer mode?

Figure 2-17. Warning message displayed when enabling developer mode

28

CHAPTER 2 ENABLING WSL

There is a risk in sideloading .appx. You should treat .appx like you would an .exe
and verify its source before installation. WSL .appx are not contained like other Store
applications and have full access to most of your Windows system. You can enable
developer mode if you take reasonable precautions. Verified .appx of most Linux
distros available for WSL can be downloaded directly from Microsoft at https://docs.
microsoft.com/en-us/windows/wsl/install-manual.

You can also find .appx of Linux distros from projects on GitHub. Check the
reputation of the project before installing a WSL .appx you find online. A harmful .appx
could cause serious damage to your system.

To install an .appx, double-click the .appx in File Explorer, and click “Install”
(Figure 2-18).

Install Ubuntu 20.04 LTS?

ﬁ Trusted Microsoft Store App
Publisher: Canonical Group Limited
Version: 2004.2020.424.0

Capabilities:
« Uses all system resources

Launch when ready m

Figure 2-18. Install menu when sideloading a WSL distro from .appx

Import a Tarball Using wsl.exe --import

WSL distros can also be installed directly from a root file system tar file. A root file system,
called a rootfs, is a snapshot of a working Linux distribution installation, archived in a tar
file, and compressed as a gzip file. They will have a file extension of .tar.gz.

29

https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://docs.microsoft.com/en-us/windows/wsl/install-manual

CHAPTER 2 ENABLING WSL

Rootfs can be downloaded directly from some Linux distributions. There are also
third-party rootfs builds on GitHub. Ubuntu provides nightly builds of rootfs for its Long
Term Support versions (18.04, 20.04, etc.) that are on the Microsoft Store. Ubuntu also
provides nightly builds of rootfs for its interim versions, which are released every six
months and have bleeding-edge versions of packages. Ubuntu publishes rootfs tarballs
for WSL on their cloud image server at https://cloud-images.ubuntu.com/ organized
by release code name (Figure 2-19).

Ubuntu Cloud Images

Ubuntu Cloud images are the official Ubuntu images and are pre-installed disk images that have been customized by LUbuniu angineenng 1o run on public clouds that provide LI
MOrE.

For more information, please see the following:

Ubunty Cloud Portal

Commercial Support Options

Community Help Page

Cloud image specific bugs should be fled in the cloud-images project on Launchpad.nel

Name Last modified Size Description
. blonics 19-Jun-2820 82:58 - Ubuntu Server 18.84 LTS (Bionic Beaver) daily builds
E daily/ 24-Feb-2016 21:07 - Daily imege builds
B oocss 14-7un-2018 15:01
. soan/ 12-Jun-2820 82:58 = Ubuntu Server 19.18 (Eoan Ermine) daily builds
h focal/ 24-Jun-2020 92:58 - Ubuntu Server 29,04 LTS (Focal Fossa) dadly builds

22-Jun- 2020 ©2:58 = Ubuntu Server 20.18 (Groovy Gorilla) daily builds

248-Jun-2229 19:19 - Image Locator
©9-Jul-2018 89:32 - Ubuntu Server minimizea imsge builds
W 03-May-2017 82:58 - Ubuntu Server 12.84 LTS (Precise Pangolin) daily builds [EMD OF LIFE - for reference onl
ﬁ relaases/ 15-Apr-2829 13:52 - Releaze image bullds
- server/ 24-Jun-2020 20:59 = Ubuntu Server Cloud Image Builds
=] tru 11-Nov-2019 13:16 = Ubuntu Server 14.84 LTS (Trusty Tahr) caily beilds
& vagrant/ 25-Jan-2917 14:48 - Vagrant images
=] wenislf 19-Jun-2020 18:38 - Ubuntu Server 16.04 LTS (Xeniel Xerus) deily builds

Figure 2-19. Directory listing of Ubuntu images by release code name
Find the code name of the Ubuntu release you would like to download. To match

a code name to an Ubuntu version number, such as 20.04, check https://releases.
ubuntu.com/ (Figure 2-20).

30

https://cloud-images.ubuntu.com/
https://releases.ubuntu.com/
https://releases.ubuntu.com/

CHAPTER 2 ENABLING WSL

ubuntu® releases

These releases of Ubuntu are available

Ubuntu 18.04.4 LTS (Bionic Beaver) » Ubuntu 19.10 (Eoan Ermine) »
Ubuntu 16.04.6 LTS (Xenial Xerus) » Ubuntu 20.04 LTS (Focal Fossa) »

Figure 2-20. Listing of currently supported Ubuntu releases

A detailed explanation of the Ubuntu release cycle can be found at https://ubuntu.com/
about/release-cycle.

In this example, we will download Ubuntu Groovy Gorilla, the code name of the
Ubuntu 20.10 interim release. We will begin at https://cloud-images.ubuntu.com/
(Figure 2-17). Click “groovy” and then “current,” and you will find yourself at a page
listing builds for a wide range of platforms (Figure 2-21).

Ubuntu 20.10 (Groovy Gorilla) Daily Build [20200621]

The Ubuntu Cloud image can be run on your personal Ubuntu Cloud, or on public clouds that provide Ubuntu Cerlified Images

To find a listing of our public images on supported Clouds, please use the Cloud Image Locator:

« Released Image locator
« Daily image Localor

Cloud image specific bugs should be filed in the cloud-images project on L net
A full list of available fles can be found below.

Hame Last modified Size Description

a Parent Directory

— MDSSUMS. 21-Jun-2020 17:56 2.3K

— MDSSUMS.gpg 21-Jun-2020 17:56 836

—| SHAISUMS 21-Jun-2020 17:58 2.5K

—| sHAISUMS.gpg 21-Jun-2020 17:56 836

—! SHA2555UMS 21-Jun-2020 17:59 3.3K

— ' SHAZSESUMS.gpg 21-Jun-2020 17:59 836

—! groovy-server-cloudieg-and6d-azure.vhd.manifest 21-Jun-2020 11:58 16K Package manifest file

ﬂ groovy -server-cloudimg-and64-azure.vha.zip 21-Jun-2928 17:24 5244 MWindows Azure/Hyper-V image

== proovy-server-cloudieg-amd6d-disk-kva. ing 21-Jun-2820 11:58 S@IM Upuntu Server 20.19 (Groovy Gorilla) daily builas

Figure 2-21. Listing of builds of Ubuntu for a range of platforms

31

https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://cloud-images.ubuntu.com/

CHAPTER 2 ENABLING WSL

Builds for WSL end with -<platform>-wsl.rootfs.tar.gz. Locate the correct build for
your system architecture, either amd64 or arm64. Users on Intel and AMD processors
should download the amd64 image: groovy-server-cloudimg-amd64-wsl.rootfs.tar.
gz. If you are on an ARM device, such as the Surface Pro X, you should download the
arm64 image: groovy-server-cloudimg-armé4-wsl.rootfs.tar.gz.

Rootfs images from Ubuntu have “server” in the filename because they are built from
the same base as Ubuntu server.

To download the rootfs for your architecture, open PowerShell, and run

wsl.exe --import <name for distro> <location to unpack rootfs> <location of
rootfs> [optionally: --version <version of WSL to install in>]

For example, as seen in Figure 2-22:

wsl.exe --import UbuntuGroovy-2 C:\WSL\Ubuntu-Groovy-2 $HOME\Downloads\
groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz --version 2

X Windows PowerShell * 4+ w = o x
PS C:\» wsl.exe --import Ubuntu-Groovy-2 C:\WSL\Ubuntu-Groovy-2 $HOME\Downloads\groovy-ser
ver-cloudimg-amd6éu-wsl.rootfs.tar.gz --version
PS C:\> wsl.exe --list --all --verbose
NAME STATE VERSION

* Ubuntu-Groovy Stopped 2
Ubuntu-Minimal Stopped 2
Ubuntu Stopped 2
Ubuntu-Groovy-2 Stopped 2
Ubuntu-warty Stopped 2
Ubuntu-Focal Stopped 1
Ubuntu-Groovy-GPU Stopped 2
Ubuntu-26.64 Stopped 2

PS C:\>

Figure 2-22. Importing an Ubuntu groovy build from rootfs and then listing all
installed WSL distros

Itis possible to install the same rootfs under different distro names to have multiple
distros for different purposes. In Figure 2-22, you can see there are multiple versions
of Ubuntu Groovy installed, under Ubuntu-Groovy, Ubuntu-Groovy-2, and a special-
purpose one I created for GPU work called Ubuntu-Groovy-GPU. Duplicating installed
distros is covered in Chapter 3, “Managing WSL Distros.”

When you install a rootfs using wsl.exe --import, there is no icon created in the Start
Menu; you must launch the distro from PowerShell using

32

https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz
https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz
https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-arm64-wsl.rootfs.tar.gz

CHAPTER 2 ENABLING WSL

wsl.exe -d <name for distro>

However, if you are using the new Windows Terminal, it will automatically populate
with your imported distributions (Figure 2-23).

BN Windews PowerShall % 4|5 s o %

PS C:\> £ Windows PowerShell

Ubuntu-Groowy
¥ Azure Cloud Shell

Ubuntu-Groovy-GPU

PowerShell

Ubuntu-Warty

Ubuntu-Minimal

Ubuntu

Command Prompt

A

Ubuntu-20.04

Ubuntu-Groowvy-2

=
£ Settings

Feedback

4
)
A
ﬂ Ubuntu-Focal
b
A
o
£

Figure 2-23. Installed WSL distros listed in the new Windows Terminal

The new Windows Terminal is available to download from the Microsoft Store (Www.
microsoft.com/store/productId/9NODX20HK701) and GitHub (https://github.com/
microsoft/terminal).

Windows Terminal is a significant upgrade from the legacy console application in
Windows 10. It is highly recommended for use with WSL and PowerShell.

When you install a rootfs using wsl.exe -import, there is no default unprivileged user
created. Instead, you launch the distribution as root.

You can create a new default user on Ubuntu (Figure 2-24) with

$ adduser <username>
For example:

$ adduser hayden

33

http://www.microsoft.com/store/productId/9N0DX20HK701
http://www.microsoft.com/store/productId/9N0DX20HK701
https://github.com/microsoft/terminal
https://github.com/microsoft/terminal

CHAPTER 2 ENABLING WSL

D rcot@ABS-DEV: ~ % (RN B

root@ABS-DEV:~# adduser hayden
Adding user “hayden' ...
Adding new group ‘hayden' (1€€8) ...
Adding new user ‘hayden' (1868) with group ‘hayden' ...
Creating home directory ' /home/hayden' ...
Copying files from '/etc/skel' ...
New password:
Retype new password:
passwd: password updated successfully
Changing the user information for hayden
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
Work Phone []:
Home Phone []:
other []:
Is the information correct? [¥/n] vy
root@ABS-DEV:~#

Figure 2-24. Manually creating a new user in Ubuntu

If you would like to use the sudo command as this new user, you should add the new
user to the sudo group:

$ usermod -aG sudo <username>
For example:
$ usermod -aG sudo hayden
To switch to this new user from root (Figure 2-25), use

$ su hayden

O hayden@ABS-DEV: /root X [- o X

Adding new group ‘hayden' (1€€8) ...
Adding new user "hayden' (1808) with group "hayden' ...
Creating home directory °/home/hayden' ...
Copying files from ' /etc/skel' ...
New password:
Retype new password:
passwd: p d updated successfully
Changing the user information for hayden
Enter the new value, or press ENTER for the default
Full Name []:
Room Number []:
work Phone []:
Home Phone []:
other []:
Is the information correct? [v/n] y
root@ABS-DEV:~# su hayden
hayden@ABS-DEV: /root$ whoami
hayden
hayden@ABS-DEV: /root$

Figure 2-25. Using the su command to switch to a new user, followed by whoami
to verify

34

CHAPTER 2 ENABLING WSL
To start a distribution as a user you have created, from PowerShell (Figure 2-26), run
wsl.exe -d <distro name> -u <username>
For example:

wsl.exe -d Ubuntu-Groovy -u hayden

EX hayden@ABS-DEV: /mnt/c X [= (m] x

PS C:\> wsl.exe -d Ubuntu-Focal -u hayden
hayden@ABS-DEV: /mnt/c$ whoami

hayden

hayden@ABS-DEV: /mnt/c$

Figure 2-26. Starting a WSL distro as a specific user from PowerShell

WSL Installation Mechanics
Installation Location

WSL distributions are installed as rootfs images, whether they come bundled from the
Store, in appx, or the raw rootfs. When installed from the Microsoft Store or sideloaded
via .appx, the rootfs is bundled with extra plumbing to register the distro via the WSL
API, create Start Menu icons, provide an executable alias (“ubuntu.exe”), and create a
default user with sudo privileges. This extra plumbing varies slightly based on distro. The
official template from Microsoft is available from https://github.com/microsoft/WSL-
DistroLauncher.

Distros installed from the Store or sideloaded via .appx will be installed alongside
other Windows UWP packages in C: \Users\<username>\AppData\Local\Packages\.

On WSL 1, the rootfs is unpacked on the first run into a file system at C: \
Users\<username>\AppData\Local\Packages\<Store package name>\LocalState
(Figure 2-27).

35

https://github.com/microsoft/WSL-DistroLauncher
https://github.com/microsoft/WSL-DistroLauncher

CHAPTER 2 ENABLING WSL

B Windeows PowerShel « [== 0L

PS C:\Users\Hayden\AppData\Local\Packages‘\CanonicalGroupLimited.Ubuntu2e.ddonWindows_T9rhkplfndgsciLocalState\reotfs> dir

Directory:
C:\Users\Hayden\AppData\Local\Packages\CanonicalGrouplimited. Ubuntu2e. BdonWindows_79rhkplfndgsciLocalState\rootfs

Mode LastwriteTine Length Name
da~--~ /232028 2:u9 AM boot
da==== /232838 2:43 AM dev
da==== B/18/2028 4:28 PM ete
da=-== 8/18/2628 U:28 PM home
da——— u/23/2628 2:u8 AM media
da---- 8/18/2828 d4:24 PM nnt
da=-== 4/23/2020 2:48 AM opt
da---- u/15/2828 7:69 AM proc
da-=== /232028 2:43 AM root
da==== 4/23/20828 2:43 AM run
da==== 4/18/2028 18:57 AM snap
da—-—- U/23/2028 2:u8 AM STV
da---= 4/15/2828 7:89 AM sys

Figure 2-27. Directory listing of WSL 1 unpacked file system

On WSL 2, the rootfs is unpacked into a Hyper-V .vhdx file at C: \Users\<username>\
AppData\Local\Packages\<Store package name>\LocalState\ext4.vhdx (Figure 2-28).

Windows PowerShell S B = (m] x

PS C:\> cd C:\Users\Hayden\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu26.8uonwW
indows_79rhkplfndgsc\LocalState\

PS C:\Users\Hayden\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu26.8donWindows_7
9rhkplfndgsc\LocalState> dir

Directory: C:\Users\Hayden\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu2@.
BuonWindows_79rhkplfndgsciLocalsState

Mode LastWriteTime Length Name

= 8/18/2026 4:1e PM 1896873984 extd.vhdx

PS C:\Users\Hayden\AppData\Local\Packages\CanonicalGroupLimited.Ubuntu26.8uonWindows_7
grhkplfndgsci\LocalState>

Figure 2-28. Directory listing of WSL 2 file system location in a VHDX file

Warning You should not attempt to access your WSL file system via this method,;
doing so could cause irreparable damage to the data. You should only access your
WSL file system via \\wsl$\<distro name> or in the Quick Access menu in File
Explorer on Windows 10 version 2010 and later.

When you install a rootfs using wsl.exe --import, none of the extra plumbing beyond
registering the distro with WSL is included, and creation of a default user other than root
must be completed manually, if desired.

36

CHAPTER 2 ENABLING WSL

When you import a rootfs using wsl.exe --import, the rootfs will be unpacked at the

location specified in your command:

wsl.exe --import <name for distro> <location to unpack rootfs» <location of
rootfs> [optionally: --version <version of WSL to install in>]

For WSL 1, it will unpack the Linux file system, which as discussed earlier is

important you do not edit directly. For WSL 2, it will unpack into a VHDX, a virtual hard

disk image file (Figure 2-29).

Windows PowerShell X 4

PS C:\WsL\UbuntuMinimal> dir

Directory: C:\WSL\UbuntuMinimal

Mode LastwWriteTime Length Name

e 8/7/2020 8:02 PM

635437056 extu.vhdx

PS C:\WSL\UbuntuMinimal=>

Figure 2-29. Directory listing of WSL 2 file system custom location in a VHDX file

WSL Tooling

WSL 2 uses several components located at %SystemRoot%\system32\Ixss\ to perform its

basic functions (Figure 2-30).

EX Windows PowerShell BN

C:\>dir %SystemRoot%\system32\lxss\
Volume in drive C has no label.
Volume Serial Number is 8285-731D

Directory of C:\Windows\system32\lxss
81/22/2021 e4:18 PM <DIR>

B81/21/2821 68:47 PM <DIR> 1ib
81/16/2021 68:47 AM 1,171,456 LxssManager.dll

81/16/2021 88:47 AM 36,864 LxssManagerProxyStub.dll
81/21/2021 ©8:53 PM <DIR> tools
81/16/2021 ©8:47 AM 331,776 wslclient.dll
81/16/2021 68:47 AM 147,u56 wslhost.exe
4 File(s) 1,687,552 bytes

3 pir(s) 4u2,180,517,888 bytes free

c:\4|

= 0 x |

Figure 2-30. Directory listing of %SystemRoot% \system32\Ixss\

37

CHAPTER 2

Figure 2-31. Directory listing of %SystemRoot%\system32\Ixss\tools

38

ENABLING WSL

%SystemRoot%\system32\Ixss\ contains

LxssManager.dll - Services for managing the WSL environment

LxssManagerProxyStub.dll - An initial stub for loading LxssManager.

dll later in the boot process

tools/ - A folder containing several other tools (see in the following)
lib/ - A folder containing several libraries (see in the following)

wslclient.dll - A new library in builds 19555+ used to consolidate the
functionality of wsl.exe, bash.exe, wslhost.exe, wslconfig.exe, and
LxssManager.dll into a single library

wslhost.exe - A tool used to maintain Windows interoperability for

background tasks on WSL 1

In the tools/ folder, there are several key components of WSL 2 (Figure 2-31).

The subdirectory \tools\ (Figure 2-31) is home to

EX¥ Windows PowerShell

+ v

C:\>dir %SystemRoot%\system32\lxss\tools
Volume in drive C has no label.
Volume Serial Number is

Directory

81/21/2e21
B81/16/20821
81/16/2021
81/16/2021
81/16/2021
1e/29/2028
18/28/2028

of C:\Windows

88:53 PM
88:47 AM
B8:47 AM
8B:47 AM
88:47 AM
83:12 PM
18:21 AM
6 File(s)

B8285-731D
\system32\lxss\tools

<DIR> .
858,880 bsdtar

421,792 extd.vhdx.gz

1,256,064 init

59,392 initrd.img

63,899,184 kernel
19,292 license
65,714,524 bytes

1 Dir(s) 442,182,299,648 bytes free

x |

bsdtar - The utility for converting WSL installations to and from tar.gz

balls

ext4.vhdx.gz - A preformatted blank ext4 file system

init - The WSL 2 init process, which operates as PID 1 on WSL 2

containers

CHAPTER 2 ENABLING WSL
e initrd.img - The initial RAM disk loaded by the WSL 2 kernel as part
of the “boot” process
e kernel - The WSL 2 Linux kernel

o license - A copy of the GNU General Public License 2 covering the
Linux kernel

In the lib/ folder, there are several libraries used by WSL 2 for GPU on builds 20150+
(Figure 2-30).

Windows PowerShell % PEE N = a x®

C:\>dir %SystemRoot%\system32\lxss\lib\
Volume in drive C has no label.
Volume Serial Number is 8285-731D

Directory of C:\Windows\system32\lxss\lib

81/21/2021 ©8:47 PM <DIR> ;
12/15/20828 @67:32 PM 133,888 libcuda.so

12/15/2028 87:32 PM 133,088 libcuda.so.l
12/15/282¢ €7:32 PM 133,888 libcuda.so.1.1
81/16/2021 euU:59 AM 785,480 libd3dl2.se
81/16/2021 8uU:59 AM 5,3u6,368 libd3dl2core.so
81/16/2021 6U:59 AM 25,263,592 libdirectml.so
81/16/2021 64:59 AM 827,904 libdxcore.so
12/15/2020 ©7:32 PM 192,160 libnvidia-ml.so.l
12/15/2026 87:32 PM u8,666,768 Libnvwgflumx.so
9 File(s) 81,421,528 bytes

1 Dir(s) 442,215,612 416 bytes free

c:\g ;

Figure 2-32. Directory listing of %SystemRoot% \system32\Ixss\lib

The subdirectory \lib\ (Figure 2-32) is home to the following:

e libcuda.so, libnvidia-ml.so.1, libnvwgf2umx.so, and related libraries
provide support for Nvidia CUDA, machine learning, and other GPU
compute functionalities.

e libdxcore.so, libd3d12.so, libd3d12core.so, libdirectml.so, and
related libraries provide support for DirectX-powered Direct3D GPU
acceleration and DirectML machine learning.

This subdirectory is linked into place inside WSL distros at /usr/lib/wsl/lib/
(Figure 2-33).

39

CHAPTER 2 ENABLING WSL

O hayden®T730-DEV: / X = a X

:/$ 1s fusr/lib/wsl/lib/ I
libcuda.so libcuda.so.1.1 1libd3dl2core.so Llibdxcore.so libnvwgf2umx.so
libcuda.so.1 1libd3dl2.so libdirectml.so libnvidia-ml.so.1

$|

Figure 2-33. Directory listing of /usr/lib/wsl/lib mirrored from %SystemRoot%)\
system32\Ixss\lib on Windows

WSL API in Windows 10

For a closer examination of what occurs when a WSL distro is installed, the
WSL-DistroLauncher template provided by Microsoft can provide some insight.
DistroLauncher is comprised of a classic Win32 C++ application, launcher.exe, bundled
with Store Assets and a rootfs tarball into a UWP package. This code calls the WSL AP in
Windows 10 to check the distro install status, install, and register the distro.

The main code in launcher.exe is located at DistroLauncher/DistroLauncher.cpp.

It checks if WSL is enabled, and if not, display a message:

if ('g wslApi.Ws1lIsOptionalComponentInstalled()) {
Helpers: :PrintMessage(MSG_MISSING OPTIONAL_COMPONENT);

It then checks if the WSL distribution is installed and, if not, installs it:

if (!g wslApi.WslIsDistributionRegistered()) {

// If the "--root" option is specified, do not create a user account.
bool useRoot = ((installOnly) && (arguments.size() > 1) &&
(arguments[1] == ARG_INSTALL_ROOT));
hr = InstallDistribution(!useRoot);

if (FAILED(hr)) {
if (hr == HRESULT FROM_WIN32(ERROR_ALREADY EXISTS)) {
Helpers::PrintMessage(MSG_INSTALL ALREADY EXISTS);

}
} else {

40

CHAPTER 2 ENABLING WSL

Helpers::PrintMessage(MSG_INSTALL SUCCESS);

}
exitCode = SUCCEEDED(hr) ? 0 : 1;

Creating a new user and adding them to sudo is handled in DistroLauncher/
DistributionInfo.cpp and calls directly inside the WSL distro:

bool DistributionInfo::CreateUser(std::wstring view userName)
{
// Create the user account.
DWORD exitCode;
std::wstring commandLine = L"/usr/sbin/adduser --quiet --gecos '' ";
commandLine += userName;
HRESULT hr = g wslApi.WslLaunchInteractive(commandLine.c_str(), true,
8exitCode);
if ((FAILED(hr)) || (exitCode != 0)) {
return false;

}

// Add the user account to any relevant groups.
commandLine = L"/usr/sbin/usermod -aG adm,cdrom,sudo,dip,plugdev ";
commandLine += userName;
hr = g wslApi.WslLaunchInteractive(commandLine.c_str(), true, &exitCode);
if ((FAILED(hr)) || (exitCode != 0)) {
// Delete the user if the group add command failed.
commandLine = L"/usr/sbin/deluser ";
commandLine += userName;
g wslApi.WslLaunchInteractive(commandLine.c_str(), true, &exitCode);
return false;

}

return true;

41

CHAPTER 2 ENABLING WSL

The WSL API calls available in the Windows 10 WSL API from wslapi.dll are detailed
in DistroLauncher/WslApiLoader.cpp:

Ws1IsOptionalComponentInstalled()
Ws1IsDistributionRegistered()
Ws1RegisterDistribution()
Ws1ConfigureDistribution()
Ws1lLaunchInteractive()
Ws1Launch()

These API calls are not otherwise documented. However, third-party projects, such
as Docker Desktop and Raft WSL, do use them. Community projects use them to create
custom launchers built on top of WSL.

42

CHAPTER 3

Managing WSL Distros

WSL includes a set of command line Linux distribution management tools. This chapter
will examine these tools with discussions, examples, and screenshots of each.

Listing All Distros

The names, state, and WSL version number of all installed WSL distros can be listed
(Figure 3-1) by opening PowerShell and running

wsl.exe --1list --verbose --all

E¥ Windows PowerShell x 4 W - o X
PS C:\> wsl.exe --list --all --verbose

NAME STATE VERSION
* Ubuntu-Groovy Stopped 2

Ubuntu-20.04 Stopped 1

Ubuntu-wWarty Stopped 2

Ubuntu-Groovy-GPU Stopped 2
PS C:\>

Figure 3-1. Listing all WSL distros installed with their current state and WSL
version

Under “NAME,” you will see there are four distributions installed. This name is a
unique identifier in WSL for each distro installed. It is set by the publisher in WSL distros
that are installed from the Microsoft Store or sideloaded from an .appx package. The
name can be manually set when WSL distros are installed using wsl.exe --import (see
section “Import/Restore Distro”). Most WSL commands refer to the distro by this name.

An asterisk (*) appears next to your default WSL distro. For more on the default distro
setting, see section “Setting a Default Distro.”

43
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_3

https://doi.org/10.1007/978-1-4842-6873-5_3#DOI

CHAPTER 3 MANAGING WSL DISTROS

Under “STATE,” you see that, here, none of them are running. WSL distros will open
when you open a WSL shell, run WSL from an existing shell, or browse WSL files using
\\wsl$\<distroname>, for example, \\wsl$\Ubuntu-20.04\, and in newer Windows 10
builds using \\wsl\<distroname>, for example, \\wsl\Ubuntu.

Under “VERSION,” you see that Ubuntu-Groovy, Ubuntu-Warty, and Ubuntu-Groovy-
GPU are installed as WSL 2 distros, while Ubuntu-20.04 is installed as a WSL 1 distro. It is
possible to have WSL 1 and 2 distributions side by side. It is easy to convert existing WSL
distros between WSL 1 and 2 (see section “Converting Distros Between WSL Versions”).

Listing Running Distros
To see the names of the WSL distros that are running (Figure 3-2), use
wsl.exe --list -running

Example:

wsl.exe --list --running

EX Windows PowerShell < hayden@ABS-DEV: /mnt/c/User X | = [=l

PS C:\> wsl.exe --list --running

Windows Subsystem for Linux Distributions:
Ubuntu-20.064

PS C:\>

Figure 3-2. Listing the WSL distros that are running

Running a Default Distro

WSL sets one of your distros as the default distro. This distro is launched when you run
ws1.exe from PowerShell without the -d parameter. To change the default distro, see the
“Setting a Default Distro” section.

Start the default WSL distro from PowerShell (Figure 3-3) using

wsl.exe

44

CHAPTER 3 MANAGING WSL DISTROS

EX hayden@ABS-DEV: /mnt/c X =] x
PS C:\> wsl.exe

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

hayden@ABS-DEV: /mnt/c$

Figure 3-3. Starting the default WSL distro

Setting a Default Distro

As discussed in the preceding, the default distro is the distro launched when you run wsl.
exe without the -d parameter. Some third-party tools also use wsl.exe to interface with
WSL. You may need to change the default distro to work with your preferred distro in
these tools.

Set the default WSL distro (Figure 3-4) using

wsl.exe --set-default <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL you would
like to set as default. To see all the distros you have installed, see section “Listing All
Distros.”

Example:

wsl.exe --set-default Ubuntu-20.04

E¥ Windows PowerShell % e = o X
PS C:\> wsl.exe --set-default Ubuntu-20.e4
PS C:\>

Figure 3-4. Setting Ubuntu-20.04 as the default distro in WSL

45

CHAPTER 3 MANAGING WSL DISTROS

Running a Specific Distro

Start a specific WSL distro (Figure 3-5), such as one other than your default, from
PowerShell using

wsl.exe --distribution <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL. You need
the exact name of the WSL distro; see the “Listing All Distros” section if you need to look
itup.

Example:

wsl.exe --distribution Ubuntu-20.04

EN hayden@ABS-DEV: /mnt/c X = a X
PS C:\> wsl.exe --set-default Ubuntu-20.64
PS C:\> wsl.exe --distribution Ubuntu-26.84

To run a command as administrator (user "root"), use "sudo <command>".
See "man sudo_root" for details.

hayden@ABS-DEV:/mnt/c$

Figure 3-5. Starting Ubuntu-20.04

WSL distros installed from the Microsoft Store or a sideloaded .appx package can
also be launched by their Start Menu icon (Figure 3-6).

46

A'-__S
LCAN |

Microsoft Edge PowerShell 7
Canary (x64)

Visual Studio } ‘

2019

>
P |

Ubuntu Terminal Previ...

L Type here to search

CHAPTER 3

=]

PowerToys
(Preview)

Visual Studio
Code - Insiders

MANAGING WSL DISTROS

Figure 3-6. Icon for Ubuntu on Windows Start Menu next to some of the author’s

Jfavorite development applications

WSL distros installed from the Microsoft Store or a sideloaded .appx package also

include an application alias and can be run from PowerShell (Figure 3-7). These are not

created when manually importing WSL distros using wsl.exe --import.

Example:

ubuntu2004.exe will run Ubuntu 20.04 LTS from the Microsoft Store.

47

CHAPTER 3 MANAGING WSL DISTROS

EN hayden@ABS-DEV: ~ X PR = m] X
PS C:\> ubuntu2664.exe

To run a command as administrator (user "root"), use "sudo <command=>".
See "man sudo_root" for details.

hayden@ABS-DEV:~$

Figure 3-7. Starting Ubuntu 20.04 installed from the Microsoft Store using the
application alias

Running as a Specific User

To start a specific WSL distro from PowerShell as a specific user (Figure 3-8), use
wsl.exe --distribution <name of distribution> --user <name of user>

where <name of distribution> is the name of the WSL distro registered in WSL you would
like to run and <name of user> is the username of an existing user you would like to start
the WSL distro as.

Example:

wsl.exe --distribution Ubuntu-20.04 --user root

BN root@ABS-DEV: fmnt/c X PeEss = o x

PS C:\> wsl.exe --distribution Ubuntu-26.84 --user root
root@ABS-DEV: /mnt/c#

Figure 3-8. Starting Ubuntu-20.04 as a specific user, in this case, the root user

Note that the user must exist in the WSL distro; otherwise, you will receive an error
(Figure 3-9).

48

CHAPTER 3 MANAGING WSL DISTROS

EX Windows PowerShell b + v — o *
PS C:\> wsl.exe --distribution Ubuntu-20.64 --user craig
User not found.
PS5 C:\>

Figure 3-9. Error when starting Ubuntu-20.04 as a specific user when that user
does not exist

Executing Single Commands

To run commands on your default WSL distribution (Figure 3-10), use
wsl.exe --exec <command to run>

where <command to run> is the command you would like to execute as the default user
on your default WSL distro.
Example:

wsl.exe --exec echo 'hello world'

EX Windows PowerShell b + v — o *
PS C:\> wsl.exe ——exec echo 'hello world'
hello world
PS C:\>

Figure 3-10. Running a single command on the default WSL distro using wsl.exe

To run commands on a specific WSL distribution, add --distribution and the name of
the distribution (Figure 3-11):

wsl.exe --distribution <name of distribution> --exec <command to run>

49

CHAPTER 3 MANAGING WSL DISTROS

where <name of distribution> is the name of the WSL distro registered in WSL you would
like to run and <command to run> is the command you would like to execute on the
default shell.

Example:

wsl.exe --distribution Ubuntu-20.04 --exec cat /etc/os-release

Windows PowerShell R - o *®

PS C:\> wsl.exe --distribution Ubuntu-20.84 --exec cat /etc/os-release
NAME="Ubuntu"

VERSION="20.04 LTS (Focal Fossa)"

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 26.84 LTS"

VERSION_ID="20.84"

HOME_URL="https://wmw.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal

UBUNTU_CODENAME=focal

PS C:\>

Figure 3-11. Running a single command on a specific WSL distro using wsl.exe

You can optionally add --user and run the command as a specific user (Figure 3-12):

wsl.exe --distribution <name of distribution> --user <name of user> --exec
<command to run>

Example:

wsl.exe --distribution Ubuntu-20.04 --user root --exec whoami

E¥ Windows PowerShell x s —_ o x

PS C:\> wsl.exe --distribution Ubuntu-20.64 --user root --exec whoami
root
PS C:\>

|

Figure 3-12. Running a single command on a specific WSL distro as a specific user
using wsl.exe

50

CHAPTER 3 MANAGING WSL DISTROS

Shutdown

Some tasks will require you to restart the WSL 2 virtual machine environment.

You must restart the WSL 2 environment after changing settings in your .wslconfig
such as setting a custom WSL kernel or changing your memory usage limits.

It is also possible, more so on Insider builds, that the WSL 2 environment could
become unstable, particularly if you are hacking on the subsystem like many of you will.

To shut down the WSL 2 environment (Figure 3-13), run the following:

wsl.exe --shutdown

This will initiate a shutdown, notifying running Linux processes of the shutdown via
SIGTERM, and then terminate the WSL instance. Starting any distro now will restart the
WSL 2 environment.

Example:

wsl.exe --shutdown

Windows PowerShell %\ hayden@ABS-DEV:/mnt/c/U X |+ v - m] X

PS C:\> wsl.exe ——shutdown
PS C:\>

Figure 3-13. Shutting down the WSL 2 environment

In the tab Ubuntu-20.04 was opened in, you will see (Figure 3-14) that it exited.

X Windows PowerShell X) hayden®ABS-DEV: /mnt/c/U X | 4 W = O X

hayden@ABS-DEV: /mnt/c/Users/Hayden$
[process exited with code 1]

Figure 3-14. The state of Ubuntu 20.04 after issuing the shutdown command

51

CHAPTER 3 MANAGING WSL DISTROS

Terminate

Very rarely a WSL distro or Linux process in a WSL distro will become unresponsive, and
it becomes necessary to forcibly terminate it. Terminating a WSL distro immediately
halts all running processes and should be avoided if a process could be writing critical
data.

To terminate a WSL distro (Figure 3-15), run the following:

wsl.exe -terminate <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL you would
like to terminate.
Example:

wsl.exe --terminate Ubuntu-20.04

E¥ Windows PowerShi X (3 hayden@ABS-DEV: X | + = (] X

PS C:\> wsl.exe --terminate Ubuntu-20.e4
PS C:\>

Figure 3-15. Terminating a WSL distro

In the tab Ubuntu-20.04 was opened in, you will see (Figure 3-16) that it exited.

E¥ Windows PowerShe X) hayden@ABS-DEV: X 4+ v - m| X

hayden@ABS-DEV:/mnt/c/Users/Hayden$
[process exited with code 1]

Figure 3-16. The state of Ubuntu 20.04 after issuing the terminate command

52

CHAPTER 3 MANAGING WSL DISTROS

Converting Distros Between WSL Versions

Converting WSL distros between WSL 1 and 2 is relatively simple; however, large
installations can take time, so patience is required.

On arecent Intel Core i7 with moderate specs, converting a 500 MB environment
between WSL 1 and 2 takes about a minute. Large WSL distro installations, of 10 GB or
more, could take up to an hour depending on your hardware. If it appears stuck, give
“Enter” a try and see what happens.

To learn more about how WSL 1 and 2 files are managed, see section “WSL
Installation Mechanics” in Chapter 2, “Enabling WSL.”

To convert a distro between 1 and 2 (Figure 3-17), run

wsl.exe --set-version <name of distribution> <version number>

Note there is no status or progress indicator.
Examples:

wsl.exe --set-version Ubuntu-20.04 1
wsl.exe --set-version Ubuntu-20.04 2

EX Windows PowerShell X e — (m] »
PS C:\> wsl.exe --set-version Ubuntu-20.64

Conversion in progress, this may take a few minutes...

Conversion complete.

PS C:\> wsl.exe =-set-version Ubuntu-28.84

Conversion in progress, this may take a few minutes...

For information on key differences with WSL 2 please visit https://aka.ms/wsl2
Conversion complete.

PS C:\>

Figure 3-17. Converting a WSL distro between WSL 1 and 2

Export/Backup Distro

We should all make regular backups of our systems. This is particularly true if you have
configured your WSL distro with all your preferred packages and settings. You may also
want to share your WSL distro with a colleague working on the same project.

53

CHAPTER 3 MANAGING WSL DISTROS

The same warning about the length of time this process can take from the
“Converting Distros Between WSL Versions” section applies here too. This is a file
I/0-intensive process that can take a long time to complete.

To back up or export a WSL distribution (Figure 3-18), run the following:

wsl.exe --export <name of distribution> <filename of exported image>

where <name of distribution> is the name of the WSL distro registered in WSL you would
like to export and where <filename of exported image> is the filename of the WSL distro
image to export to. Note there is no status or progress indicator.

Example:

wsl.exe --export Ubuntu-20.04 C:\WSL\ubuntu-focal-backup.tar.gz

E¥ Windows PowerShell X [a — (m] X

PS C:\> wsl.exe —-export Ubuntu-20.04 C:\WSL\ubuntu-focal-backup.tar.gz
PS C:\> Lls C:\WSL

Directory: C:\WSL

Mode LastWriteTime Length Name
—-a-—— 8/29/2020 11:29 AM 1197301760 ubuntu-focal-backup.tar.gz
PS C:\>

Figure 3-18. Backing up or exporting a WSL distro

Import/Restore Distro

In addition to installing WSL distros from the Microsoft Store and sideloaded .appx
packages, you can also import Linux rootfs images directly into WSL. These can include

e Linuxrootfs images downloaded directly from Web, such as from
Ubuntu at https://cloud-images.ubuntu.com/

o WSL images exported for backup purposes

o WSLimages exported to have multiple WSL distributions from the
same image

Importing an image is accomplished as follows:

54

https://cloud-images.ubuntu.com/

CHAPTER 3 MANAGING WSL DISTROS

wsl.exe --import <name of imported distro> <location to store unpacked file
system> <filename of exported image> --version <1 or 2>

where <name of imported distro> is the unique name to register your WSL distro as in
WSL. This is the name you will use to interact with the distribution and what will appear
in wsl.exe -list and in the Windows Terminal drop-down.

<location to store unpacked file system> is a directory for storing WSL-related files.
This is handled automatically in WSL distros from the Microsoft Store and a sideloaded
.appx, but when importing manually, you must specify a directory. Your Windows user
must have read/write permissions for this folder. Using drives other than C:\ is possible,
but using network-mounted storage is not recommended.

<filename of exported image> is the filename of your Linux rootfs to import.

WSL will import the rootfs as WSL 1 or 2 based on your default setting. Reminder: To
set WSL 2 as your default, use wsl.exe --set-default-version 2.

--version <1 or 2> is an optional setting to override the default WSL setting and
import the rootfs specifically as WSL 1 or 2 (Figure 3-19).

Example:

wsl.exe --import Ubuntu-Groovy C:\WSL\Ubuntu-Groovy\ C:\Users\Hayden\
Downloads\groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz --version 2

This example imports the export of our Ubuntu 20.04 WSL 1 image as a WSL 2. This
way we can test the same Ubuntu 20.04 image we have customized for ourselves in WSL
1 or WSL 2.

E¥ Windows PowerShell * + v — (m] ®
PS C:\> wsl.exe --list --all --verbose
NAME STATE VERSION
* Ubuntu-20.064 Stopped 1
PS C:\> wsl.exe ==-import Ubuntu-Groovy C:\WSL\Ubuntu-Groovy\ C:\Users\Hayden\Down
loads\groovy-server-cloudimg-amdéu-wsl.rootfs.tar.gz --version
PS C:\> wsl.exe --list --all --verbose
NAME STATE VERSION
* Ubuntu-20.04 Stopped 1
Ubuntu-Groovy Stopped 2
PS C:\>

Figure 3-19. Restoring or importing a WSL distro

55

CHAPTER 3 MANAGING WSL DISTROS

Duplicate Distros

In certain cases, you may want to duplicate an existing WSL distro that is installed. This
is useful when you want to clone an existing development stack that you have configured
to your exact specifications, perhaps to test a change to the configuration without
disrupting your existing workflow. To do this, we export an image of the distro we want to
make a duplicate of and then import it under a new WSL distro name.

First, export

wsl.exe --export <name of distribution> <filename of exported image>
Example:

wsl.exe --export Ubuntu-20.04 C:\WSL\ubuntu-focal-backup.tar.gz
Then, we import the rootfs file under a new distro name (Figure 3-20):

wsl.exe --import <name of imported distro> <location to store unpacked file
system> <filename of exported image> --version <1 or 2>

Example:

wsl.exe --import Ubuntu-20.04-2 C:\WSL\Ubuntu-20.04-2\ C:\WSL\ubuntu-focal-
backup.tar.gz --version 2

Windows PowerShell X [a — (m] X

PS C:\> wsl.exe --1ist --all --verbose

NAME STATE VERSION
* Ubuntu-20.064 Stopped 1
PS C:\> wsl.exe —-export Ubuntu-26.e4 C:\WSL\ubuntu-focal-backup.tar.gz
PS C:\>» wsl.exe --import Ubuntu-20.04-2 C:\WSL\Ubuntu-20.04-2Y C:\WSL\ubuntu-foca
1-backup.tar.gz --version
PS C:\> wsl.exe --list --all --verbose
NAME STATE VERSION
* Ubuntu-26.04 Stopped 1
Ubuntu-20.04-2 Stopped 2
PS C:\>

Figure 3-20. Duplicating a WSL distro by combining the export and import
functions

56

CHAPTER 3 MANAGING WSL DISTROS

Resetting Distros

If you have installed your WSL distro from the Microsoft Store or a sideloaded .appx, you
have a few additional GUI options to manage your distro, including the option to “Reset”
to a fresh installation, by virtue of being bundled as UWP app.

Open WSL Distro “App” Settings

Click the Windows Start button, and locate your WSL distro in the Windows Start Menu,
either in the alphabetical list or on a pinned tile. Right-click your distro, hover over
“More,” and, in the expanded menu, click “App Settings” (Figure 3-21).

Spotify
B sticky Notes
u

Q Ubuntu {2 Pin to Start

vV More Pin to taskbar

m Video Editor [Uninstall Run as administrator

- Visual Studio 2019 App settings

B visual Studio 2019 Rate and review

B - i Share
- Visual Studio Code - Insiders

E Visual Studio Installer

m
Voice Recorder

Figure 3-21. Opening App Settings of a WSL distro installed from the Microsoft
Store

Alternatively, you can also access application settings by clicking the Windows Start
button and clicking the Settings gear icon (Figure 3-22).

57

CHAPTER 3 MANAGING WSL DISTROS

Figure 3-22. Opening Settings from the Windows Start button

Click Apps in Windows Settings (Figure 3-23).

= Apps
™ Uninstall, defaults, optional
features

Figure 3-23. The Apps category in Windows Settings

And then scroll down or search for your distro installed from the Microsoft Store in
“Apps & features” (Figure 3-24):

Apps & features

Choose where to get apps |
Installing apps only from Microsoft Store helps protect your device.
| Anywhere v

Apps & features
Optional features
App execution aliases

Search, sort, and filter by drive. If you would like to uninstall or move an
app. select it from the list.

Ubuntu =

Sort by: Name ~~ Filter by: All drives

1 app found
Ubuntu 432 MB
Canonical Group Limited 7/6/2020
Advanced options

Figure 3-24. Searching for “Ubuntu” in Apps & features in Windows Settings

58

CHAPTER 3 MANAGING WSL DISTROS

From “Apps & features,” you can easily relocate your WSL distro to another drive
(possible but not recommended) and uninstall. Before you attempt to move your WSL
distro to another drive, make sure you take a complete backup (see section “Export/
Backup Distro”).

Advanced Options in WSL Distro “App” Settings

To access additional options for your WSL distro, click “Advanced options,” which will
take you to the following pane (Figure 3-25).

<« Settings
@ Ubuntu

Specifications

Publisher Canonical Group Limited
Version 2004.2020.424.0

App 432 MB

Data 1.08 GB

Total usage 1.51 GB

App permissions

Background apps

@ on

Defaults

Select which apps to use to listen to music, look at pictures, check mail,
watch videos, and more.

Set default apps

Figure 3-25. Advanced options for Ubuntu installed from the Microsoft Store

Publisher and Version
This pane gives some basic information, such as WSL distro publisher and version.

59

CHAPTER 3 MANAGING WSL DISTROS

App Storage Space

The app storage space is the size of the original image published by the distro maker
that is unpacked on installation. A copy of this original image is kept on the system and is
updated behind the scenes when a new update is made available. However, this does not
update your existing distribution installation. Existing installations are updated via the
distro’s respective package manager, such as apt for Ubuntu. This updated image will be
unpacked when you reset as follows.

Data Storage Space

The data storage space is the size of your existing distribution installation, which
includes the unpacked image plus any additional programs and files you may have
installed.

Considerations: Resetting WSL Distro

If you wish to reset your existing WSL distro installation to the most recent original image
published by your distro publisher on the Microsoft Store, scroll down on the “Advanced
options” pane (Figure 3-26), and click “Reset.” There is no confirmation. This will
immediately and irreparably erase all files on your WSL distro at /. It will leave you with

a fresh WSL distro install. Make sure you have backed up all important files by copying
them to a secure location on Windows via /mnt/c or by making a backup image using
wsl.exe --export as described earlier.

60

CHAPTER 3 MANAGING WSL DISTROS

« Settings - a X

@ Ubuntu

Terminate

Immediately terminate this app and its related processes.

Terminate

Reset

If this app isn’t working right, we can try to repair it. The app's data
won't be affected.

Repair
If this app isn’t working right. reset it. The app’s data will be deleted.

Reset Vs

Uninstall

Uninstall this app and its settings. Your documents will not be affected.

Uninstall

Figure 3-26. Further down the “Advanced options” pane for Ubuntu installed
from the Microsoft Store, where the “Reset” option is visible

Uninstall Distros from the Microsoft Store

If you have installed your WSL distro from the Microsoft Store (or a sideloaded .appx),
you have some additional options for uninstalling.

From the Windows Start Menu

Click the Windows Start button, and locate your WSL distro, either in the alphabetical list
or on a pinned tile (Figure 3-27). Right-click your distro, and click “Uninstall”

61

CHAPTER 3 MANAGING WSL DISTROS

Visual Studio : ‘ Visual Studio

2019 Code - Insiders

Unpin from Start

Resize

More

Uninstall

Figure 3-27. Uninstalling a WSL distro from the Windows Start Menu

From Advanced Options in WSL Distro “App” Settings

Access the “Advanced options” pane as described earlier (Figure 3-28), but instead of
clicking “Reset,” click “Uninstall”

62

CHAPTER 3 MANAGING WSL DISTROS

« Settings - a x

@ Ubuntu
Reset

If this app isn’t working right, we can try to repair it. The app's data
won't be affected.

Repair
If this app isn't working right, reset it. The app’s data will be deleted.

Reset

Uninstall

Uninstall this app and its settings. Your documents will not be affected.

Uninstall

App add-ons & downloadable content

Search this list 0

Sort by: Name Filter by: All drives ~~

There are no add-ons currently installed for this app.

Figure 3-28. The “Advanced options” pane for Ubuntu installed from the
Microsoft Store, where the “Uninstall” option is visible

Using PowerShell

You may also remove a WSL distro installed from the Microsoft Store or a sideloaded
.appx using PowerShell.
First, locate the package’s full name (Figure 3-29) using:

Get-AppxPackage -Name "*<distroname>*" | Select PackageFamilyName
Example:

Get-AppxPackage -Name "*ubuntu*" | Select PackageFullName

63

CHAPTER 3 MANAGING WSL DISTROS

EX Administrator: Windows Powers X | & % = o X

PS C:\> Get-AppxPackage -Name "#ubuntux" | Select PackageFullName
PackageFullName

CanonicalGroupLimited.Ubuntu2e.edonWindows_2004.2020.812.0_x64__79rhkplfndgsc

PS C:\>

Figure 3-29. Output of installed appx packages containing “ubuntu” in
PowerShell

Then copy and paste the PackageFullName as follows (Figure 3-30):
Remove-AppxPackage -Package <PackageFullName>
Example:

Remove-AppxPackage -Package "CanonicalGrouplimited.
UbuntuonWindows 2004.2020.424.0 x64 _79rhkp1fndgsc"

EX Administrator: Windows Powers X | & % = o X

PackageFullName

PS C:\> Remove-AppxPackage -Package "CanonicalGroupLimited.Ubuntu2e.edonwindow
5_2004,2020.812.0_x64__79rhkplfndgsc"

Figure 3-30. Uninstalling the Ubuntu WSL appx package in PowerShell

Uninstall Distros Installed Using wsl.exe --import

If you manually import a WSL distro usingwsl.exe --import and wish to remove it, you
must unregister the distro. Unregister the distro as follows (Figure 3-31):

wsl.exe -unregister <name of distribution>
Example:

wsl.exe --unregister Ubuntu

64

CHAPTER 3 MANAGING WSL DISTROS

EN Administrator: Windows Powert X W - m] b4
PS C:\> wsl.exe ==list --verbose --all
NAME STATE VERSION
* Ubuntu Running 1
PS C:\> wsl.exe --unregister Ubuntu
Unregistering...
Ps C:\>

Figure 3-31. Manually unregistering a WSL distro installed via --import

After unregistering the WSL distro, you may then wish to delete the folder where
the WSL distro was originally unpacked. In PowerShell, this can be performed with
(Figure 3-32):

rmdir <path to WSL distro folder>
Example:

rmdir C:\WSL\ubuntu-hirsute

B3 Powershell - = o x

PS C:\> dir C:\WSL\ubuntu-hirsute)

Directory: C:\WsL\ubuntu-hirsute

Mode LastWriteTime Length Name
-a=-- 1/22/2021 3:24 PM 12ueu65488 extu.vhdx
PS C:\> wsl.exe =-unregister ubuntu-hirsute

Unregistering. ..

PS C:\> radir C:\WSL\ubuntu-hirsute\

PS C:\>

Figure 3-32. Removing the folder where the WSL distro was originally unpacked

WSL 2 Kernel Management

With the arrival of WSL 2, a Linux kernel is powering the WSL environment, to provide
complete application binary interface compatibility.

The WSL 2 kernel is distributed separately from the kernel inside a WSL image.
Changing the kernel inside the distribution will not change the “kernel” that WSL distros
are launched with.

65

CHAPTER 3 MANAGING WSL DISTROS

To change kernels and set kernel command line options, you must configure
.wslconfig, in your Windows user directory, which can be referred to by the Windows
environmental variable %USERPROFILE%. See “Configure WSL 2 Settings” for more
configuration settings in .wslconfig and “Customizing WSL” for how to build your own
WSL 2 kernel.

The standard WSL 2 kernel is updated via the Windows Update infrastructure.

To ensure Windows updates of the WSL 2 kernel, enable “Receive updates for other
Microsoft products when you update Windows” in the “Advanced options” page of
Windows Update (Figure 3-33).

< Settings - m} *
@ Advanced options

Update options

Receive updates for other Microsoft products when you update Windows.,
@D o
Download updates over metered connections (extra charges may apply).

@D off

Restart this device as soon as possible when a restart is required to install an update. Windows will display a notice before the
restart, and the device must be on and plugged in.

@ o

Update notifications

Show a notification when your device requires a restart to finish updating.

@ o

Pause updates

Temporarily pause updates from being installed on this device for up to 7 days. When you reach the pause limit, your device
will need to get new updates before you can pause again.

Pause until

Jr..J_.a.]

Figure 3-33. “Advanced options” in “Windows Update” in Windows Settings

Checking for Available Updates

Check for available kernel updates with the following. If no kernel updates are available,
the current kernel version will be displayed (Figure 3-34).

wsl.exe --update

66

CHAPTER 3 MANAGING WSL DISTROS

EX Administrator: Windows Powert 3 | W = |

PS5 C:\> wsl.exe —-update

Checking for updates...

Downloading updates...

Installing updates...

This change will take effect on the next full restart of WSL. To force a restart, please run 'wsl --shutdown'.
Hernel version: 4.19.128

PS C:i\>

Figure 3-34. Updating the WSL kernel using wsl.exe --update

Note that if you have installed a custom kernel, then updating the kernel with this
method will not affect the kernel you have specified in .wslconfig.

If you get the message “The requested operation requires elevation,” then you
need to run PowerShell as Administrator. To start an elevated prompt from an existing
PowerShell (Figure 3-35), run

Start-Process WT -Verb runAs

EX Windows PowerShell X [

PS C:\> Start-Process WT -Verb runAs
PS C:\z

E¥ Administrator: Windows PowerS X 4

PS C:\>

Figure 3-35. Launching an elevated Administrator PowerShell prompt to update
the WSL 2 kernel

And thenrunwsl.exe --update again in the elevated PowerShell prompt window.

67

CHAPTER 3 MANAGING WSL DISTROS

Checking Kernel Update Status

Check the last update date, automatic update status, and current version of the WSL 2
kernel (Figure 3-36) with the following:

wsl.exe --update --status

E¥ Administrator: Windows PowerS > + v - O X

PS C:\> wsl.exe --update --status

Windows Subsystem for Linux was last updated on 9/1/2020
WSL automatic updates are on.

Kernel version: 4.19.128

PS C:\>

Figure 3-36. Checking the last update date, automatic update status, and current
version of the WSL 2 kernel

Rolling Back Kernel Updates

If a kernel upgrade were to cause a problem, there should be a built-in mechanism to roll
back to the most recent working kernel.
To roll back, you need to run PowerShell as Administrator. To start an elevated

prompt from an existing PowerShell, run
Start-Process WT -Verb runAs
Then to roll back the WSL 2 kernel update (Figure 3-37), run

wsl.exe --update --rollback

X Windews PowerShell X
EX administrator: Windows PowerShell

ants! https://aka.ms/F

Figure 3-37. Rolling back the most recent WSL 2 kernel update to the previous
kernel

68

CHAPTER 3 MANAGING WSL DISTROS

Mounting External Volumes

A new feature in Windows builds starting from number 20211 is the ability to use wsl.exe
to mount disks and disk images to your WSL distros. This lets you access a disk’s actual
file system data in addition to the files it stores. You cannot mount a disk or a partition
that is on your primary Windows drive that contains your C: partition.

Unmounting from Windows

If your desired disk is currently accessible from within Windows via a drive letter, you
must first unmount it. Right-click the Windows Start Menu icon, and choose “Disk
Management” (Figure 3-38).

Apps and Features
Power Options

Event Viewer

Systemn

Device Manager
MNetwork Connections
Disk Management
Computer Management
Windows PowerShell

Windows PowerShell (Admin)

Task Manager
Settings

File Explorer
Search

Run

Shut down or sign out

Desktop

Figure 3-38. Opening Disk Management via the Start Menu
69

CHAPTER 3 MANAGING WSL DISTROS

You now need to locate the disk you wish to make available to WSL. Any mounted
partitions are labeled with their Windows drive letters to help you locate the drive. Once
you have located it in the bottom half of the Disk Management window, right-click the
disk, and choose “Offline” (Figure 3-39).

& Disk Management = (m} e
File Action View Help

= m o= BB

Volume 1 Layout Type] File System Status I Capacity l Free Sp.. | % Free
- () Simple Basic MNTFS Healthy (B.. 930.35 GB 59032GB 63 %
== (Disk 0 partition 1) Simple Basic Healthy {(E.. 100 MB 100 MB 100 %
== (Disk 0 partition 2) Simple Basic Healthy (P.. 93141 GB 93141GB 100%
== (Disk 1 partition 1) Simple Basic Healthy (E.. 200 MB 200 MB 100 %
== (Disk 1 partition 2) Simple Basic Healthy (P.. 46544 GB 46544 GB 100 %
== (Disk 2 partition 1) Simple Basic Healthy (E.. 100 MB 100 MB 100 %
== (Disk 2 partition 4) Simple Basic Healthy (R.. 523 MB 523 MB 100 %
== (Disk 2 partition 5) Simple Basic Healthy (R.. 553 MB 553 MB 100 %
= Eksturnal (G2 Simple Basic NTFS Healthy (B.. 1862.82 GB 1672.02.. 90%

New Spanned Volume_
New Striped Volume..
New Mirrored Volume-

New RAID-5 Volume.. .

= Disk 2 S TEE——

Convert to Dynamic Disk...

Basic

931.50 GB Convert to MER Disk 523 MB 553 MB

Online Offline 2 File, Crash Dump, Basic D. | | Healthy (Recovery | | Healthy (Recovery P
Properties =

= Disk 3 eeee—m——————=————=—

Basic Help wrnal (G:)

1863.02 GB 200 MB 1862.82 GB NTFS

Online Unallocated Healthy (Basic Data Partition)

B Unallocated Il Primary partition

Figure 3-39. Setting a disk to “Offline” in Disk Management

While you are here, make a note of the disk number. In this case, it is disk 3. We need
this number to mount the disk into WSL 2. Mounting disks into WSL requires running as
Administrator, so open a terminal as Administrator before continuing.

70

CHAPTER 3 MANAGING WSL DISTROS
We can mount the drive to WSL and check that it is visible with (Figure 3-40)

wsl.exe --mount \\.\PHYSICALDRIVE<disk numbery> --bare
wsl.exe --exec lsblk

where <disk number> is the drive number from Disk Management.
Example:

wsl.exe --mount \\.\PHYSICALDRIVE3 --bare
wsl.exe --exec lsblk

EY Administrator: Windows Powers X+ 57 - m] X

C:\Users\Hayden> wsl.exe —-mount \\.\PHYSICALDRIVE3 --bare
C:\Users\Hayden> wsl.exe —-exec lsblk
NAME MAJ:MIN RM SIZE RO TYPE MOUNTPOINT

loop® 7:0 0 383.3M 1 loop /mnt/wsl/docker-desktop/cli-tools
loopl 7:1 ® 308M 1 loop
| sda 8:0 @ 256G @ disk
sdb 8:16] 256G 0 disk
sdc 8:32 © 256G 0O disk /mnt/wsl/docker-desktop/docker-desktop-p
sdd 8:48 © 256G 0O disk /mnt/wsl/docker-desktop-data/isocache
sde 8:60 0 256G @ disk /
sdf 8:80] 256G 0 disk
sdg 8:96 e 1.8T © disk
Lsdg2 8:98 © 1.8T 0 part

C:\Users\Hayden>

Figure 3-40. Mounting a block device into WSL 2 and showing it is present as sdg,
with a single partition numbered 2, via lsblk

We can double-check that we have the correct \\.\PHYSICALDRIVE path by running
wmic diskdrive list brief

Because we specified the -bare flag, the disk was inserted into WSL but not mounted,
instead exposing every partition for further use as we want. We can also mount
individual partitions and cause their file systems to be loaded in one step, so that we
do not need to determine the /dev node that is associated with the disk. Remembering
the limitation that we cannot mount partitions on the same disk as our C: partition, we
mount a partition with (Figure 3-41)

wsl.exe --mount \\.\PHYSICALDRIVE<disk number> --partition <partition
number> [optionally: --type <filesystem type>] [optionally: --options
<filesystem mount options>]

71

CHAPTER 3 MANAGING WSL DISTROS

where <disk number> is the disk number from Disk Management; <partition number> is
the partition number from Disk Management; <filesystem type> is the type of file system
stored within the partition as Linux refers to it, the default being ext4; and <filesystem
mount options> is the parameters used in Linux to mount the file system as would be
used with Linux’s mount command’s -o flag.

Example:

wsl.exe --mount \\.\PHYSICALDRIVEO --partition 2

EX Administrator: Windows Powers > - = a X

C:\Users\Hayden> wsl.exe ——mount \\.\PHYSICALDRIVE® —-partitien
The disk \\.\PHYSICALDRIVE® was successfully mounted under the name 'PHYSI
CALDRIVE®p2'. The mountpoint can be found under the path pointed to by the
automount setting (default: /mnt/wsl).
| To unmount and detach the disk, run 'wsl --unmount \\.\PHYSICALDRIVE®'.
| C:\Users\Hayden>

Figure 3-41. Successfully mounting an ext4 partition in WSL

72

CHAPTER 4

Linux Distro Maintenance

This chapter will discuss maintaining your Linux distro installed on WSL, beginning with
how the distro is updated, how to apply upgrades, and how to find and install specific
packages. The chapter will conclude with a guide on generating your own special-
purpose Ubuntu WSL image.

Once your Linux distro of choice is installed on WSL, you must maintain it. On WSL 2,
the Linux kernel and the underlying WSL platform in Windows 10 will be maintained by
Microsoft through Windows Update. However, updates to the respective Microsoft Store
app for your WSL distro do not automatically upgrade your WSL distro once it is installed.
The Microsoft Store and Windows Update do not reach inside your WSL distro to update
packages there. Everything inside your Linux distro is up to you and is managed with
distro-specific tools.

There is also no automatic upgrade mechanism in Linux distros on WSL at this
time; updates must be performed manually from the command line or scheduled to
occur automatically using a custom Windows Service, Windows Task Scheduler, or the
new [boot] option in Windows builds 21286+. See “Rolling your own init” in Chapter 7
“Customizing WSL’ on ways to accomplish this.

It is important to understand how to update your WSL distro, which will depend
on your specific distro, because package management varies from distro to distro and
upgrades provide important feature and security updates.

Packages

All Linux distributions come with a package manager and packages available in an
online repository or archive. Packages are how software and software updates are
delivered on Linux. The same applies to Linux distros on WSL. Learning how to use the
package manager for your Linux distro of choice will unlock thousands of free and open
source applications for you to explore. In fact, you may find the package manager to be a
major factor in which Linux distro you choose as your daily driver.

73
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_4

https://doi.org/10.1007/978-1-4842-6873-5_4#DOI

CHAPTER 4 LINUX DISTRO MAINTENANCE

On Ubuntu, Debian, Pengwin, and Kali distros, WSL package management is done
with the apt package manager. This is the most common package manager you will find
on WSL distros. The instructions in this chapter are therefore focused on apt.

Other distros, like Fedora Remix, Alpine, and OpenSUSE, use their own package
managers, and you should refer to those respective distros’ documentation for usage of
their package managers. Covering the usage of every distro package manager could be
its own book.

The general principles here, regarding checking for updates, getting upgrades, and
the importance of doing so, are generally applicable to most Linux package managers,
even if the syntax and package names in other distro package managers may differ.

Distro Package Files Package Manager

Ubuntu, Debian, Pengwin, Kali .deb apt

Fedora .rpm dnf

OpenSUSE and SUSE Enterprise Linux .rpm zypper

Red Hat Enterprise Linux, Oracle Linux, .rpm yum

and Pengwin Enterprise

Alpine .apk apk
Dependencies

Often a package will rely on another package to provide some of its functionality, such as
a software library (which tends to start with “lib”). These are called dependencies. When
you install a package, you will see it installs other packages that are its dependencies.
Sometimes, dependencies can change, which is why when upgrading, you will
occasionally see new packages need to be installed and old packages will be reported as

no longer required.

74

CHAPTER 4 LINUX DISTRO MAINTENANCE

Completing Administrative Tasks with sudo

Most package operations, including installing and upgrading packages, are considered
administrator-level tasks and therefore require elevated privileges on Linux. If you
installed WSL from the Store and created a new WSL user account and password, you
have been added to the “sudo” or “wheel” user group in most distros, capable of running
elevated commands with the sudo command. You can execute commands with elevated
privilege by prefacing them with the sudo command followed by the command you want
to run with elevated privileges. You will then be prompted to enter your user password
before running the command with elevated privileges (Figure 4-1).

A hayden@T730:/ < [W - o x

hayden@T738: /% apt update

Reading package lists... Done

E: Could not open lock file /var/lib/apt/lists/lock - open (13: Permission denied)

E: Unable to lock directory /var/lib/apt/lists/

W: Problem unlinking the file /var/cache/apt/pkgcache.bin - RemoveCaches (13: Permission denied)

W: Problem unlinking the file /var/cache/apt/srcpkgcache.bin - RemoveCaches (13: Permission denied)
hayden@T738:/$ sudo apt update

[sude] password for hayden:

Hit:1 http://archive.ubuntu.com/ubuntu bionic InRelease

Get:2 http://security.ubuntu.com/ubuntu bionic-security InRelease [88.7 kB]

Get:3 http://archive.ubuntu.com/ubuntu bicnic-updates InRelease [88.7 k8]

Get:4 http://archive.ubuntu.com/ubuntu bionic-backports InRelease [74.6 kB]

Get:5 http://archive.ubuntu.com/ubuntu bionic-updates/universe amdéd Packages [1787 kB]

Fetched 1959 kB in 2s (906 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

ALL packages are up to date.

hayden@T730:/$]

Figure 4-1. Running apt without sudo, failing with permission denied, and then
again successfully with sudo

Tip If you manually imported a distro with --import, without creating a new user,
you are likely root by default and can omit sudo from the following commands.

Update Packages

To check for available package upgrades in the repository of your distribution, run the
following on Debian, Ubuntu, Pengwin, Kali, and other Debian family distributions. This
will download the latest package metadata from the repository, compare it to the installed
packages in your distro, and determine which packages, if any, can be upgraded.

sudo apt update

75

CHAPTER 4 LINUX DISTRO MAINTENANCE

If package upgrades are available, a message will report how many can be upgraded
(Figure 4-2).

& hayden@T7a0: x - B8 x

haydengT736:/$ sudo apt update
[suda] password for hayden:
Hit:1 http://archive.ubuntu.com/ubuntu focal InRelease

Get:2 http://security.ubuntu.com/ubuntu focal-security InRelease [189 k8]

Get:3 http://archive.ubuntu.com/ubuntu focal-updates InRelease [114 kB]

Get:d http://security.ubuntu.comfubuntu focal-security/main amd6d Packages [d54 kB]

Get:5 http://security. ubuntu.com/ubuntu focal-security/main Translation-en [181 kB]

Get:6 http://security.ubuntu.com/ubuntu focal-security/main amd6d c-n-f Metadata [5872 B]

Get:7 http://security. ubuntu.com/ubuntu focal-security/restricted amdéu Packages [114 k8]
B

Get:B http://security.ubuntu.com/ubuntu focal-security/restricted Translation-en [16.8 k8]
Get:9 http://security.ubuntu.com/ubuntu focal-security/restricted amdéd c-n-f Metadata [392 B]
Get:18 http://security.ubuntu.com/ubuntu focal-security/universe amd6d Packages [527 k@]
Get:11 http://security.ubuntu.com/ubuntu focal-security/universe Translation-en [71.7 k8]
Get:12 http://security.ubuntu.com/ubuntu focal-security/universe amd6d c-n-f Metadata [9568 B]
Get:13 http://security.ubuntu.com/ubuntu focal-security/multiverse amdsd Packages [19.4 kB)
Get:14 http://security.ubuntu.com/ubuntu focal-security/multiverse Translation-en [2876 B]
Get:15 http://security.ubuntu.com/ubuntu focal-security/multiverse amdsd c-n-f Metadata [284 B]
Get:16 http://archive.ubuntu.com/ubuntu focal-backports InRelease [101 kel

Get:17 http://archive.ubuntu.com/ubuntu focal/universe amd6u Packages [8628 WB]

Get:18 http://archive.ubuntu.com/ubuntu focal/universe Translation-en [5124 ke]

Get:19 http://archive.ubuntu.com/ubuntu focal/universe amd6d c-n-f Metadata [265 k8]

Get:28 http://archive.ubuntu.com/ubuntu focal/multiverse amdéd Packages [1uy k8]

Get:21 http://archive.ubuntu.com/ubuntu focal/multiverse Translation-en [16u kB]

Get:22 http://archive.ubuntu.com/ubuntu focal/multiverse amdéu c-n-f Metadata [9136 B]

Get:23 http://archive.ubuntu.com/ubuntu focal-updates/main amd6d Packages [768 ki)

Get:24 http://archive. ubuntu.com/ubuntu focal-updates/main Translation-en [188 kB]

Get:25 http://archive. ubuntu.com/ubuntu focal-updates/main amdsd c-n-f Metadata [11.6 kB]
Get:26 http://archive ubuntu.com/ubuntu focal-updates/restricted amdéd Packages [137 kB]
Get:27 http://archive. ubuntu.com/ubuntu focal-updates/restricted Translation-en [28.3 kB]
Get:28 http://archive_ubuntu.com/ubuntu focal-updates/restricted amdGd c-n-f Metadata [436 B8]
Get:29 http://archive.ubuntu.com/ubuntu focal-updates/universe amd6u Packages [727 kB]

Get:38 http://archive.ubuntu.com/ubuntu focal-updates/universe Translation-en [148 kB]

Get:31 http://archive.ubuntu.com/ubuntu focal-updates/universe amd6uy c-n—f Metadata [15.4 k8]
Get:32 http://archive.ubuntu.com/ubuntu focal-updates/multiverse amdsd Packages [16.6 k8]
Get:33 http://archive.ubuntu.com/ubuntu focal-updates/multiverse Translation-en [ug6d B)
Get:34 http://archive.ubuntu.com/ubuntu focal-updates/multiverse amdsd c-n-f Metadata [564 B]
Get:35 http://archive.ubuntu.com/ubuntu focal-backports/main amdéd c-n-f Metadata [112 B]
Get:36 http://archive.ubuntu.com/ubuntu focal-backports/restricted andsd c-n-f Metadata [116 B]
Get:37 http://archive.ubuntu.com/ubuntu focal-backports/universe amdsy Packages [4832 B)
Get:38 http://archive.ubuntu.com/ubuntu focal-backports/universe Translation-en [1uus B]
Get:39 http://archive.ubuntu.com/ubuntu focal-backports/universe amdéud c-n-f Metadata [224 8]
Get:U@ http://archive.ubuntu.com/ubuntu focal-backports/multiverse amdsd c-n-f Metadata [116 B]
Fetched 18.8 MB in s (UBU6 kB/s)

Reading package lists... Done

Building dependency tree

Reading state information... Done

158 packages can be upgraded. Run 'apt list --upgradable' to see them,

haydengT738: /§

Figure 4-2. Updating package metadata from the Ubuntu archive repository with
sudo apt update

Upgrade Packages

To apply available upgrades, run the following. Apt will examine the installed package
state, calculate upgrade changes, and then inform you of what changes will be made.
These changes can include upgraded packages, new packages, and packages that may
no longer be necessary:

sudo apt upgrade

In the following example (Figure 4-3), we see 158 installed packages have new
versions available in the Ubuntu archive, and they have 12 new dependencies, which will
be installed at the same time.

76

CHAPTER 4 LINUX DISTRO MAINTENANCE

A hayseetrios < [A = o xl

hayden@T738: /% sudo apt upgrade

Reading package lists... Done

Building dependency tree

Reading state inforsation... Done

Calculating upgrade... Done

The folloming WEW packages will be installed:
alsa-utils libatepology2? libfftw3-single3 libgompl libllvmll libsamplerate® Llibxcb-xfixes® motd-news-config

pexp python3-ptyp: python3=xkit ubuntu-drivers-common

Tlle following packages will be upgraded:
ac:ountuervi:e alsa-ucm-conf apport apt apt-utils base-files bcache-tools bind9-dnsutils bind9-host bind9-libs bolt
bsdutils busybex-initramfs yb atic ca-certificates cloud-init command-not-found cryptsetup cryptsetup-bin
cryptsetup-initranfs cryptsetup-run curl distro-info-data fdisk finalrd goc-1é-base girl.2-packagekitglib-1.8
initramfs-tools initramfs-tools=-bin initramfs-tools-core krbS-locales language-selector-common libaccountsservices
libapt-pkg6.8 libasound2 libasoundi-data libblkidl libbrotlil libc-bin libcé libcryptsetupl2 libcurl3-gnutls libcurld
libdns-export1189 libdre-amdgpul libdrm-commen libdrm-intell libdre-nouveau? libdrm-radeonl libdrm2 libefibootl libefivarl
Iibf\‘hskl libfreetypeé libgcc-s1 Llibgll libgll-mesa-dri libglapi-mesa libglvnd® libglx-mesa® Libglxé Llibgnutls3e

rb5-2 1ibis: portlles libkScrypto3d libkrbs-3 libkrbSsupporté libldap-2.4-2 libldap-comeon liblzmas

libmaxlinddbs libmountl Llibnetplan® libnss-systemd libpll-kité libpackagekit-glib2-18 libpam-wodules libpam-modules-bin
libpam-runtime libpam-systemd libpamég libparted2 Llibperl5.38 libplymouthS libproxylv5 Llibpulse® libpulsedsp Libpython3.8
libpython3.8-minimal libpython3.B8-stdlib libsmartcolsl libssl1.1 libstdc++6 libsystemdd libudevl libuuwidl libuvl libx11-6
Llibxll-data Libx1l-xcbl lecales lsof mdadm mesa-vulkan-drivers mount netplan.io open-vm-tools openssl packagekit
packagekit-teols parted perl perl-base perl-modules-5.38 plymcuth plymouth-theme-ubuntu-text pulseaudio-utils
pythen-apt-coemon python3-appert python3-apt pythons und python3-cr python3-di ade
python3-distutils python3-gdbm python3-1ib2to3 python3-preblem-report pyth t properties pyth p
python3-urllib3 python3.8 python3.8-minimal rsyslog show-motd snapd software-properties-common sosreport sude sysl.wd
systemd-sysv systemd-timesyncd tar tmux tzdata ubuntu-minimal ubuntu-release-upgrader-core ubuntu-server ubuntu-standard
ubuntu-wsl udev unattended-upgrades update-manager-core update-motd update-notifier-common util-linux wuid-runtime
xz-utils zliblg

158 upgraded, 12 nemly installed, @ to remove and ® not upgraded.

Meed to get 114 MB of archives.

After this operation, 124 MB of additional disk space will be used.

Do you want to centinue? [v/n]

Figure 4-3. Upgrading packages with new versions available from the Ubuntu
archive with sudo apt upgrade

Before upgrading, you will be prompted to confirm the upgrade by pressing Enter
(the default is Y, the capital letter in the [Y/n]) or entering Y yourself and pressing Enter.

If you would like to upgrade without being prompted, you can automatically accept
the prompt by adding the -y flag to your command (Figure 4-4):

sudo apt -y upgrade

O haydenoTTI:/ x| - o = |

Reading package lists... Daone

Building dependency tree

Reading state information... Done

Calculating upgrade... Done

The following NEW packages will be installed:
alsa-utils libatopology2 libfftw3-single3 libgompl libllwmill libsamplerate® libxcb-xfixes® motd-nems-config
python3-pexpect python3-ptyprocess python3-xkit ubuntu-drivers-common

The folloming packages will be upgraded:
accountsservice alsa-ucm-conf appert apt apt-utils base-files bcache-tools bind9-dnsutils bind9-host bind9-libs
bolt bsdutils initramfs busybox-static ca-certificates cloud-init command-not-found cryptsetup
cryptsetup-bin cryptsetup-initramfs cryptsetup-run curl distro-info-data fdisk finalrd gcc-le-base
glrl 2-pa:!<agek1tgl:lb-vl -] m.ltralrfs-tnnls initramfs-tools-bin initramfs-tools-core krb3-locales

lector 1i rvice® libapt-phgé.@ libasound2 libasound2-data libblkidl libbretlil

'I.ibc~n1n libes liberyptsetupl? libeurl3-gnutls libecurld libdns-exportll89 libdrm-amdgpul libdre-commen
libdrm-intell libdrm-nouveau2 libdrm-radeonl libdrm2 libefibootl libefivarl libfdiskl libfreetypes libgcc-si
1ibgll libgll-mesa-dri libglapi-mesa libglvnde libglx-mesa@ libglxe Llibgnutls3e 1ib i-krbs-2 libi portlles
libkscrypto3 libkrb5-3 libkrbSsupporte® libldap-2.4-2 libldap-common liblzma5 libmaxminddbe libmountl libnetplane
libnss-systemd 1ibpll-kité libpackagekit-glib2-18 libpam-wmodules libpam-modules-bin libpam-runtime libpam-systesd
libpamBg libparted2 libperl5.38 libplymouthS5 Llibproxylvs libpulse® libpulsedsp libpython3.& Llibpython3.8-minimal

hayden@T7368:/$ sude apt -y upgrade ‘

Figure 4-4. Upgrading packages with new versions available from the Ubuntu
archive automatically with sudo apt -y upgrade

77

CHAPTER 4 LINUX DISTRO MAINTENANCE

Installing Packages

To install an individual package, use the apt install command. For example, Ubuntu
ships with the nano text editor, but perhaps you prefer the neovim text editor. To install

neovim, we use
sudo apt install <package name>
Example:

sudo apt install neovim

O hayden@TTR 7 < - o x

hayden@T7368:/$ sude apt install neovim

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
1ibluajit-5.1-2 libluajit-5.1-common libmsgpackc2 libtermkeyl libunibiliumd libvterm® lua-luv neovie-runtime
python3-greenlet python3-msgpack python3-neovim python3-pynvim xclip

Suggested packages:
ctags vim-scripts python-greenlet-doc python-greenlet-dev python3-greenlet-dbg

The following NEW packages will be installed:
libluajit-5.1-2 libluajit-5.1-common libmsgpacke2 libtermhkeyl libunibiliumy libvterm@ lua-luv neovie neovim-runtime
python3-greenlet python3-msgpack python3-neovim pythen3-pynvim xclip

@ upgraded, 14 newly installed, & to remove and 158 not upgraded.

Need to get 5398 kB of archives.

After this operation, 24.8 ME of additional disk space will be used.

Do you want to continue? [¥/n]

Figure 4-5. Installing the neovim text editor with sudo apt install neovim

This will install the text editor neovim as well as dependencies (Figure 4-5). Like
on apt upgrade, it will notify you of the changes to be made and request permission to
continue. To automatically approve changes on install, you can add the -y flag to the
command, and the install process will complete automatically (Figure 4-6):

sudo apt -y install neovim

78

CHAPTER 4 LINUX DISTRO MAINTENANCE

O hoyden@TI:/ N - o xl

hayden@T736: /% sudo apt -y install neovim

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
1ibluajit-5.1-2 libluajit-5.1-common libmsgpackc2 libtermkeyl libunibiliumd libvterm® lua-luv neovie-runtime
python3-greenlet python3-msgpack python3-neovim python3-pynvim xclip

Suggested packages:
ctags vim-scripts python-greenlet-doc python-greenlet-dev python3-greenlet-dbg

The following MEW packages will be installed:
Llibluajit-5.1-2 1ibluajit-5.1-common libmsgpackc2 libtermheyl libunibiliumu libvtermé lua-luv neovims
neovim-runtime python3-greenlet python3-msgpack pythen3-neovim python3-pynvim xclip

@ upgraded, 14 newly installed, & to remove and 158 not upgraded.

setting up libunibiliumy:amdéd (2.0.8-5) ...

setting up neovim-runtime (9.4.3-3) ...

setting up libmsgpacke2:amdéd (3.9.1-3) ...

setting up libvterme:amdsd (6.1.2-2) ...

Setting up lua-luv:amdey (1.36.1-1-2) ...

setting up python3-greenlet (6.4.15-4.1) ...

setting up libluajit-5.1-common (2.1.8~beta3+dfsg-5.1build1) ...

Figure 4-6. Installing the neovim text editor noninteractively with sudo apt -y
install neovim

Tip If you do not know what package you would like to install or the name of the
package, see the following on how to find packages.

Uninstalling Packages

Packages can be removed with the apt remove function (Figure 4-7):
sudo apt remove <package name>
Example:

sudo apt remove neovim

O hoyden@TI:/ N - - o x

hayden@T7368:/$ sude apt remove neovim

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required:
1ibluajit-5.1-2 libluajit-5.1-common libmsgpackc2 libtermkeyl libunibiliumd libvterm® lua-luv neovie-runtime
python3-greenlet python3-msgpack python3-neovim python3-pynvim xclip

Use 'sudo apt autoremove' to remove them.

The following packages will be REMOVED:
neovim

@ upgraded, @ newly installed, 1 to remove and 158 not upgraded.

After this operation, 3515 KB disk space will be freed.

Do you want te continue? [¥/n] y

(Reading database ... 33489 files and directories currently installed.)

Removing neovim (@.4.3-3) ...

hayden®T738:/$

Figure 4-7. Removing the neovim text editor with sudo apt remove neovim

79

CHAPTER 4 LINUX DISTRO MAINTENANCE

Tip Caution is warranted when uninstalling packages that may be dependencies
of other applications you may run. Uninstalling a dependency of several
applications will uninstall all those applications that rely on that dependency. If
run interactively, apt will warn you of all the packages that will be removed or
abandoned by removing the package you specified.

You will see in the preceding example removing neovim will leave behind a handful
of packages that will no longer be required.

Abandoned Dependencies

Occasionally, you will remove a package, and it will leave behind a dependency that
no other application relies upon (or you will upgrade a package that no longer relies
on a specific dependency). Apt will detect when this occurs, and you can automatically
remove those unneeded dependencies (Figure 4-8) with the apt autoremove function:

sudo apt autoremove
Example:

sudo apt autoremove

A hayden@TrEn X [= (a] x

hayden@T7368:/$ sude apt autoremove

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages will be REMOVED:
libluajit-5.1-2 libluajit-5.1-common libmsgpackc2 libtermkeyl libunibiliumd libvterm® lua-luv neovie-runtime
python3-greenlet python3-msgpack python3-neovim python3-pynvim xclip

@ upgraded, @ newly installed, 13 to remove and 158 not upgraded.

After this operation, 20.5 MB disk space will be freed.

Do you want to continue? [¥/n]

Figure 4-8. Automatically removing unnecessary dependency packages with sudo
apt autoremove

Here, we see several dependencies of neovim that were left behind when we
removed neovim will now be cleaned up.

80

CHAPTER 4 LINUX DISTRO MAINTENANCE

Finding Packages

Installing any distro on WSL gives you access to a vast library of free and open source
packages to begin tinkering and developing with, including development tools, libraries,
databases, web servers, document processing suites, scientific tools, games, and
productivity tools.

Sometimes locating those packages can be daunting from a command line. First, it
is not clear what is available out there. The average Linux distro has tens of thousands
of available packages. Second, you do not always know what that application’s package
name is. The name of packages can vary from distro to distro or be nonobvious.

For example, the web browser GNOME Web was previously known as Epiphany.
Running sudo apt install epiphany will install an open source clone of the game
Boulder Dash. To install GNOME Web, run sudo apt install epiphany-browser.

There are several ways to identify and locate the packages you need.

From the Terminal

If you know the name of the software you are looking for, but perhaps not the exact
package name, you can search from the terminal using apt (Figure 4-9):

apt search <keyword>
Example:

apt search lynx

B hapden@T730: ~ X — O X |

hayden@T738:~% apt search lynx
Sorting... Done
Full Text Search... Done
aview/bionic 1.3.8rcl-9buildl amdeu
A high quality ASCII art image viewer and video player

cc65/bionic 2.16-2 amd6u
complete cross development package for &5(C)82 systems

chipw/bionic 2.8.6-1.2build2 amd6d
custom level editor for TileWorld / Chip's Challenge™

elinks/bionic 8.12~pre6-13 amdsy
advanced text-mode WwW browser

elinks-data/bionic 8.12~preé-13 all
advanced text-mode WwW browser - data files

elinks-doc/bionic 9.12~pres-13 all
advanced text-mode WwWW browser - documentation

gt5/bionic 1.5.8~28111228+bzr2%-2 all
shell program to display visual disk usage with navigation

Figure 4-9. Searching for a package named lynx from the terminal using apt

81

CHAPTER 4 LINUX DISTRO MAINTENANCE

pipe the results to the less command. Piping the results to less will allow you to browse

If there are too many results from the search, you can use the | character, a pipe, to

the results page by page (Figure 4-10).

apt search <keyword> | less

Example:

apt search gnome | less

Figure 4-10. Paging through the output of apt-cache search gnome with less

become enormously powerful for you as you become more comfortable on the Linux
terminal. A manual for each of these tools is always close by, which can be accessed with

B hayden@T730: = X [k

Serting...

Full Text Search...

abicheck/bionic 1.2-Subuntul all
binary compatibility checking tool

accerciser/bionic 3.22.e-5 all
interactive Python accessibility explorer for the GNOME desktop

adwaita-icon-theme/bionic 3.28.8-lubuntul all
default icon theme of GNOME (small subset)

adwaita-icon-theme-full/bionic 3.28.@-lubuntul all
default icon theme of GNOME

adwaita-qt/bionic 1.8-2 amdéu
Qt 5 port of GNOME's Adwaita theme

aewm++/bionic 1.1.2-5.1 amdéu
minimal window manager written in C++

aisleriot/bionic 1:3.22.5-1 amdsy
GNOME solitaire card game collection

Simple text stream management tools, like less, tail, cat, sed, and grep, can

the man command (Figure 4-11):

man <name of application>

Example:

man tail

82

CHAPTER 4 LINUX DISTRO MAINTENANCE

D hayden@T730:/ xR = o x
TAIL(1) User Commands TAIL(1)
NAME

tail - output the last part of files

SYNOPSIS
tail [QPTION]... [EILE]...

DESCRIPTION
Print the last 10 lines of each FILE to standard output. With more than one FILE, pre-
cede each with a header giving the file name.
with ne FILE, or when FILE is -, read standard input.

Mandatory arguments to long options are mandatory for short options too.

-¢, —-bytes=[+INUM
output the last NUM bytes; or use -c +NUM to output starting with byte NUM of

Manual page tail(l) line 1 (press h for help or gq to guit)

Figure 4-11. The manual page of tail, opened by running man tail

Using a Terminal User Interface (TUI)

If you cannot locate the application you are searching for by searching with the apt
command, you can use aptitude in Ubuntu, Debian, Pengwin, and Kali distros, a
terminal user interface with menus and mouse functionality to search, install, upgrade,
and remove packages. Aptitude is installed like any other package:

sudo apt -y install aptitude

D hayden@T730:/ X = o *

hayden@T730:/$ sudo apt -y install aptitude

[sudo] password for hayden:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
aptitude-common libboost-iostreamsl.71.8 libegi-fast-perl libegi-pm-perl
libclass-accessor-perl libcwidgetd libencode-locale-perl Llibfcgi-perl libhtml-parser-perl
libhtml-tagset-perl libhttp-date-perl libhttp-message-perl libio-html-perl libio-string-perl
liblwp-mediatypes—perl libparse-debianchangelog-perl libsigc++-2.8-8v5 libsub-name-perl
libtimedate-perl liburi-perl libxapian3e

Suggested packages:
aptitude-doc-en | aptitude-doc apt-xapian-index debtags tasksel libewidget-dev
libdata-dump-perl libhtml-template-perl libxml-simple-perl libwww-perl xapian-tools

The following NEW packages will be installed:
aptitude aptitude-common libboost-iostreamsl.71.8 libcgi-fast-perl libcgi-pm-perl
libclass-accessor-perl libcwidgetd libencode-locale-perl Llibfcgi-perl libhtml-parser-perl
libhtml-tagset-perl libhttp-date-perl libhttp-message-perl libio-html-perl libio-string-perl
liblwp-mediatypes-perl libparse-debianchangelog-perl libsigc++-2.8-8v5 libsub-name-perl

Then start aptitude as an elevated user:

sudo aptitude

83

CHAPTER 4 LINUX DISTRO MAINTENANCE

Search Options ew Help
snload/Install/Remove Pkgs

 Comeeerroen

Figure 4-12. Browsing aptitude on Ubuntu. Now that Windows Terminal has
mouse support, you can use your mouse in aptitude

Tip If you ever get “stuck” in a Linux application you cannot seem to escape, try
the following:

°
e <(Ctrl>-C
o <Ctrl>-X

Using a Graphical User Interface (GUI)

If you are new to the Linux terminal using apt and aptitude will have a learning curve,
you may wish to start with the traditional graphical user interface. Getting a graphical
user interface started on WSL is not a small feat by itself; it requires setting up and
configuring an X server, at least until official GUI support lands in WSL 2 later in 2021.
You can read more on setting up your own X server for now in Chapter 7 “Customizing
WSL”

Once an X server is configured and running on Windows, you can install a GUI apt
package manager called synaptic (Figure 4-13):

sudo apt install synaptic

84

CHAPTER 4 LINUX DISTRO MAINTENANCE

D hayden@T730:/ X 4 = o *

hayden@T738:/$ sudo apt install synaptic

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
adwaita-icon-theme at-spi2-core cpp cpp-92 fontconfig gcc-9-base girl.2-atk-1.8
girl.2-freedesktop girl.2-gdkpixbuf-2.6 girl.2-gtk-3.@ girl.2-pango-1.@ gtk-update-icon-cache
hicolor-icon-theme humanity-icon-theme libatk-bridge2.8-6 libatkl.e-e libatkl.@-data
libatspi2.e-8 libauthen-sasl-perl libavahi-client3 libavahi-common-data libavahi-common3
libcairo-gobject-perl libcairo-gobject2 libcaire-perl libcairo2 libcolord2 libcups2
libdata-dump-perl libdatriel libdpkg-perl libepoxy® libeptl.6.8 libextutils-depends-perl
libextutils-pkgconfig-perl libfile-basedir-perl libfile-desktopentry-perl
libfile-fentlleck-perl libfile-listing-perl libfile-mimeinfo-perl libfont-afm-perl
libgdk-pixbuf2.6-8 libgdk-pixbuf2.8-bin libgdk-pixbuf2.8-common
libglib-object-introspection-perl libglib-perl libgraphite2-3 libgtk-3-6 libgtk-3-bin
libgtk-3-common libgtk3-perl libharfbuzzeb libhtml-form-perl libhtml-format-perl
libhtml-tree-perl libhttp-cookies-perl libhttp-daemon-perl libhttp-negotiate-perl
libio-socket-ssl-perl libio-stringy-perl libipc-system-simple-perl libisl22 libjbige
libjpeg-turbo8 libjpeg8 liblems2-2 liblwp-protocol-https-perl libmailtools-perl libmpc3

Figure 4-13. Installing the synaptic GUI package manager with apt

Once synaptic is installed, you must run as an elevated user just as you would apt or

aptitude on the command line:
sudo synaptic

Within synaptic, you can search for packages by name or description, browse by
category or installation status, and select packages to install or remove (Figure 4-14).

B radend T < e~ = o]
haydengT738:/$ sudo synaptic

B Synaptc Paciage Masager - o x
File Edit Package Settings Help

¢ @ R Q
Reload Mark All Upgrades Properties Search
Libraries - Old (multiverse] 5 Puc kage Installed Verslor Latest Version Description
Librasies - O (restncted) | Esd 1.07.1-2build) 1.67.1-Zbuildl GNU be arbitrary precision calculator language
Librasies - Old luriverse) 03 de 1.07.1-Fhuild) N de arbitracy precision reverse-polish caleulator
Lisp Programming Language [] 3 gnome.calculator 1:3.36.0- luburitul GNOME desktop calculator
Lisp Programming Language (] <3 liblpeohvess-dey 5.5.0.15-abuildl Solve (mixed integer) linear programming problems - library
N for LibreOffica

Localization [0 <2 liroaffice-nipsclver

9+Lib06.4.6-0ubs
Localization (universe) buildl S

linear programming problems

Mathematics (multiverse)
Mathermatics [universel
Mets Packages

Meta Packages Imultiverse)
Muta Packages unbrersel Get screanshat Get Changalog Visit Homepage

Solve (mixed integer) linear programming problems 5

Miscellaneous - Graphical

The linear programeming (L8) problem can be formulated as: Solve Ax ==
Miscellaneous - Graphical me.

W1, with V2. maximal. A is a matrix, x i a vector of (nonnegativel
e vanables, V1 is a vector called the nght hand side. and V2 is a vector
specifying the objective function.
Satus
An integer linear programming (ILP) problem is an LP with the
Origin constraint that all the variables are integers, In a mived integer
lingar programming {MILP] problem, some of the vanables are integer
Custom Filtors
ard others are real,

Search Results
The program Ip_schve solves LB, ILP, and MILP problems. it is slightly

Architecture mcre general than suggested above, in that evaery row of A (specifying

E packages listed, 738 installed, © brolen. O to installjupgrade. 0 to remove

Figure 4-14. Browsing available packages in synaptic

85

CHAPTER 4 LINUX DISTRO MAINTENANCE

When you apply the changes, a list of packages to be installed, upgraded, or removed
will be presented for confirmation (Figure 4-15).

File Edit Package Settings Help

e = & R Q

Aeload Mark All Upgrades Apply Properties Search
Amateur Radio (universe) s Fackage installed Versior Latest Version Description
i S T i = SR
Communication L y— g quage

Communication (multiverse]

o Lpolish ealeulator
Communication (universel g 0 Apply the following changes?
Thi:

Crass Platform imming problems - libeary

5 is your last opportunity to look through the list of marked changes before they are applied.

Cross Platform (multiverse) [¥ extencion for LibreOffice
Cross Platform {universe) E o b led mming problems
Databases libeolamd2
Databases (multiverse) libsuitesparseconfigs
Databases (universel lp-solve
Debug * Unchanged
Debug (multiverse)
Debug {universe) Summary Show Details
Development 158 packages will be held back and not upgraded
Development (multiverse] 3 new packages will be installed
807 kB of extra space will be uzed
Sections 310 kB have to be downloaded
Stakus Downlead package files only
Origin Cancel Apply
linear programming (MILP) problem, some of the vanables are integer
Custom Filters
and othars are real.
search Results
The program |p_sclve solves LP. ILP, and MILP problems. it is slightly
Architecture more gereral than suggested above. in that every row of A (specifying
& packages listed, 736 installed, 0 broken. 3 to installjupgrade, 0 to remove; 807 kB will be used

Figure 4-15. Confirming the changes installing Ip-solve using synaptic

The changes will then be applied:

5 Package Installed Versior Latest Version Description

@ Apphying Changes = ®

Installing software

The marked changes are now being applied. This can take some tme. Please wait.

kage Installed lp-solve (amdBd)

Automatically cluse after the changes have been successiully applied

¥ Details

Figure 4-16. Synaptic installing packages selected for installation
86

CHAPTER 4 LINUX DISTRO MAINTENANCE

Once the changes have been applied, you will be notified (Figure 4-17), and you may
then exit synaptic.

2 Changes applied - X

@ Changes applied
successfully applied all changes. You can close the window now.

Automatically close after the changes have been successfully applied

» Details

Close

Figure 4-17. Synaptic changes applied confirmation dialog box

Build Your Own Ubuntu WSL Image

Canonical, the publisher of Ubuntu, makes standardized images of Ubuntu available

for WSL on the Microsoft Store, its cloud images website, and through wsl.exe --install.
These images contain a base set of packages which will meet most users’ initial needs.
They closely track the default packages on an Ubuntu server in the cloud, have been
extensively tested by internal Canonical QA processes, and have paid support options for
enterprise organizations.

However, there may be circumstances where you want to build your own image of
Ubuntu with a custom set of packages. For example, if you are the administrator of a
university computer lab with a focus on geographic information systems (GIS) and want
Ubuntu WSL in your lab to come preloaded with specific GIS-related packages, you
can generate a custom Ubuntu WSL image with those packages, export the image, and
distribute to students or systematically apply to all the computers in your GIS lab.

This is accomplished by

1. Installing an Ubuntu image bootstrapping tool
2. Creating a temporary folder in which we will bootstrap our image

3. Bootstrapping a very basic Ubuntu image in that folder from the
minimum packages to run Ubuntu

4. Customizing the Ubuntu image in that folder by running
commands “inside” the image using chroot, installing packages

we want for our image, and setting custom options
87

CHAPTER 4 LINUX DISTRO MAINTENANCE

5. Building a tarball archive of the Ubuntu image from the temporary
folder and copying it to the Windows file system

6. Importing that Ubuntu image tarball into WSL as a custom
WSL image

Install an Image Bootstrapping Tool

To begin, install debootstrap, which will allow us to bootstrap an Ubuntu image from
packages in the Ubuntu archive (Figure 4-18):

sudo apt -y install debootstrap

B hayden@TT30:/ < = 0O x

hayden@T738:/$ sudo apt -y install debootstrap
[sudo] password for hayden:
Reading package lists... Done
Building dependency tree
Reading state information... Done
Suggested packages:
arch-test squid-deb-proxy-client
The following NEW packages will be installed:
debootstrap
@ upgraded, 1 newly installed, & to remove and 158 not upgraded.
Need to get 39.4 kB of archives.
After this operation, 368 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu focal-updates/main amdeu debootstrap all 1.e.118ubuntul.3 [39.4 k8]
Fetched 39.4 kB in 8s (118 kB/s)
Selecting previously unselected package debootstrap.
(Reading database ... 47956 files and directories currently installed.)
Preparing to unpack .../debootstrap_1.6.118ubuntul.3_all.deb ...
Unpacking debootstrap (1.8.118ubuntul.3) ...
Setting up debootstrap (1.8.118ubuntul.3) ...
Processing triggers for man-db (2.9.1-1) ...
hayden@T730: /%

Figure 4-18. Installing debootstrap to build our Ubuntu image

Build Our Base Image

Next, we create a folder in which we will build our Ubuntu image. After the next step,

this folder will contain the complete Ubuntu file system of our image in its own directory

before we pack it up into a tarball archive that we can then import as its own WSL distro.
We create a folder with (Figure 4-19)

mkdir /tmp/wslchroot

88

CHAPTER 4 LINUX DISTRO MAINTENANCE

O hayden@T730:/ X [= o X

hayden@T730:/$ mkdir /tmp/wslchroot
hayden@T730:/%

Figure 4-19. Creating a folder to build our Ubuntu image inside

Next, we will run debootstrap (Figure 4-20) to create a base Ubuntu image.
debootstrap has several required settings. First, we specify our system architecture with
--arch “amd64”. The --include setting specifies the base image should also include the
sudo and python3 packages in the bootstrapped image. The remaining settings specify the
image will be built from Ubuntu release code-named focal (equivalent to Ubuntu 20.04
LTS), in our folder at /tmp/wslchroot, from the main Ubuntu archive repository URL:

sudo debootstrap --arch "amd64" --include=sudo focal /tmp/wslchroot http://
archive.ubuntu.com/ubuntu/

For more help with debootstrap, remember you can always run man debootstrap.

You can tweak debootstrap settings to build for arm64 (though cross-compilation
of images between different architectures gets more complicated); build from different
Ubuntu releases, such as the Ubuntu release code-named hirsute for Ubuntu 21.04; or
use a local Ubuntu archive mirror.

| A hayden@TTi0:/ < e = 0O x

Inayden@T?}G:fﬁ mkdir /tmp/wslchroot

| haydengT738:/4 sudo debootstrap --arch "amdé4" --include=sudo,python3 focal /tmp/wslchroot http://archive.u
| buntu.com/ubuntu/

|I: Retrieving InRelease

| I: Checking Release signature

: Valid Release signature (key id F6ECB3762474EDASD21B7822871926D1991BCI3C)
: Retrieving Packages

: Validating Packages

: Resolving dependencies of required packages...

: Resolving dependencies of base packages...

: Checking component main on http://archive.ubuntu.com/ubuntu. ..

: Retrieving adduser 3.118ubuntu2

: validating adduser 3.118ubuntu2

: Retrieving apt 2.8.2

: Validating apt 2.8.2

: Retrieving apt-utils 2.8.2

: validating apt-utils 2.e.2

: Retrieving base-files 1lubuntuS

: Validating base-files 1llubuntub

: Retrieving base-passwd 3.5.47

e e e R R R R R]

Figure 4-20. Bootstrapping our Ubuntu image with debootstrap into /tmp/wslchroot
89

CHAPTER 4 LINUX DISTRO MAINTENANCE

Customize Base Installation

Once the bootstrap is complete, we have a complete minimal Ubuntu image in our

folder at /tmp/wslchroot. We can run commands inside that folder; they are being run

natively on that image using the chroot command.

As an elevated user, as root or with sudo, run the chroot command, specify the

chroot folder (here being /tmp/wslchroot), and follow it by the command to be run

inside the image.

For example, we can clean up the apt metadata cache inside the Ubuntu image we

just created as follows (Figure 4-21):

sudo chroot /tmp/wslchroot/ apt clean

O hayden@T730:/ * [=

: Configuring python3-netifaces...

: Configuring lsb-release...

: Configuring python3-cffi-backend...
: Configuring python3-pkg-resources...
: Configuring python3-dbus...

: Configuring python3-yaml...

: Configuring netplan.io...

: Configuring ubuntu-advantage-tools...
: Configuring python3-nacl...

: Configuring networkd-dispatcher...

: Configuring python3-pymacaroons...

: Configuring console-setup-linux...

: Configuring console-setup...

: Configuring kbd...

: Configuring ubuntu-minimal...

: Configuring libc-bin...

: Configuring systemd...

: Configuring ca-certificates...

I: Base system installed successfully.
hayden@T730:/% sudo chroot /tmp/wslchroot/ apt clean
hayden@T730:/$

o H O H H H O H HHH HHHHH

Figure 4-21. Running commands inside our Ubuntu image using chroot to clean

the apt package cache

Tip Cleaning the apt metadata cache inside the image is useful if you would tend
to reuse it or share it as this information will expire and will just take up space in

your image.

As this is a new image, it does not have default language settings set, which should be

set as follows:

sudo chroot /tmp/wslchroot/ dpkg-reconfigure locales

90

CHAPTER 4 LINUX DISTRO MAINTENANCE

You will then be asked what language and text encoding settings to generate in your
base image. For American English, select en_US as the language and UTF-8 encoding
(Figure 4-22). You can select another language here if your preferred is not American
English and even select more than one language. Some non-Latin alphabets will require
distinct ISO encodings to render correctly, which you can also specify here.

Configuring locales

Figure 4-22. Specifying which languages and text encodings to be installed on our
Ubuntu image

You will then be prompted to select the default language and encoding for the
system environment (Figure 4-23). Again, for American English, you will want to specify
en_US.UTF-8.

91

CHAPTER 4 LINUX DISTRO MAINTENANCE

O root@®ABS-DEV: ~ X = u] X

Package configuration

1 Configuring locales ¢}
Many packages in Debian use locales to display text in the correct
language for the user. You can choose a default locale for the system
from the generated locales.

This will select the default language for the entire system. If this
system is a multi-user system where not all users are able to speak the
default language, they will experience difficulties.

Default locale for the system environment:

None
C.UTF-8

en_US.UTF-8

<Cancel>

Figure 4-23. Select the default language and text encoding for the system
environment in our Ubuntu image

The selected languages and text encodings will be generated, and the default will be
set (Figure 4-24).

O hayden@T730:/ < v = o X

hayden@T736:/$ sudo chroot /tmp/wslchroot/ dpkg-reconfigure locales
Generating locales (this might take a while)...
en_US.UTF-8... done
Generation complete.
hayden@T730:/%

Figure 4-24. Selected languages and text encoding settings generated and applied
in our Ubuntu image

We can now do some more customization of our image before packing it up into a
tarball file for import into WSL as its own distro.

92

CHAPTER 4 LINUX DISTRO MAINTENANCE

For example, we can install additional packages, such as software-properties-
common, which contains add-apt-repository to easily enable additional Ubuntu
repositories, like universe and multiverse, which, in turn, grants us access to even more
packages for our distro, including third-party software.

We install software-properties-common into the image as follows (Figure 4-25):

sudo chroot /tmp/wslchroot/ apt install software-properties-common

B hapden@T730: ~ X - D xl

haydeng@T736:~% sudo chroot /tmp/wslchroot/ apt -y install software-properties-common

[sude] password for hayden:

Reading package lists... Done

Building dependency tree... Done

The following additional packages will be installed:
dbus-user-session dconf-gsettings-backend dconf-service dirmngr girl.2-packagekitglib=1.8 glib-networking
glib-networking-common glib-networking-services gnupg gnupg-118n gnupg-utils gpg gpg-agent gpg-wks-client
gpg-wks-server gpgconf gpgsm gsettings-desktop-schemas iso-codes krb5-locales libappstreami
libasnl-8-heimdal libassuan@ libbrotlil libdconfl libglib2.e-bin libgssapi-krb5-2 libgssapi3-heimdal
libgstreamerl.8-8 libhcryptotd-heimdal libheimbasel-heimdal libheimntlm@-heimdal libhx589-5-heimdal
libkScrypto3 libkeyutilsl libkrb5-26-heimdal libkrb5-3 libkrb5support® libksbas libldap-2.u4=-2
libldap-common liblmdb@ libnpthe libpackagekit-glib2-18 libpelkit-agent-1-8 libpelkit-gobject-1-8
libproxylvs libpsl5 librokenl8-heimdal libsasl2-2 libsasl2-modules libsasl2-modules-db libsoup2.u-1
libstemmeréd libwinde-heimdal packagekit packagekit-tools pinentry-curses policykit-1 publicsuffix
python-apt-common python3-apt python3-certifi python3-chardet python3-distro-info python3-idna
python3-requests python3-requests-unixsocket python3-software-properties python3-urllib3
unattended-upgrades

Suggested packages:
pinentry-gnome3 tor parcimeonie xloadimage scdaemon isoquery krbS-doc krbS-user gstreamerl.@-tools
libsasl2-modules-gssapi-mit | libsasl2-modules-gssapi-heimdal libsasl2-modules-ldap libsasl2-modules-otp
libsasl2-modules-sql appstream pinentry-dec python3-apt-dbg python-apt-doc python3-cryptography
python3-openssl python3-socks bsd-mailx default-mta | mail-transport-agent needrestart powermgmt-base

The following NEW packages will be installed:

Figure 4-25. Installing software-properties-common in our Ubuntu image

Now, using the add-apt-repository, we can enable the Ubuntu universe and
multiverse repositories to get access to additional packages from apt, aptitude, or
synaptic from our Ubuntu image. We do this with (Figure 4-26)

sudo chroot /tmp/wslchroot/ add-apt-repository universe && sudo chroot /
tmp/wslchroot/ add-apt-repository multiverse

93

CHAPTER 4 LINUX DISTRO MAINTENANCE

D hayden@TTi0: ~ < P —

haydeng@T738:~% sudo chroot /tmp/wslchroot/ add-apt-repository universe && sudo chroot /tmp/wslchroot/
add-apt-repository multiverse

‘universe’' distribution component enabled for all sources.

Hit:1 http://archive.ubuntu.com/ubuntu focal InRelease

Get:2 http://archive.ubuntu.com/ubuntu focal/main Translation-en [5686 kB]

Get:3 http://archive.ubuntu.com/ubuntu focal/universe amded Packages [8628 kB]
Get:d http://archive.ubuntu.com/ubuntu focal/universe Translation-en [5124 kB]
Fetched 14.3 ME in 3s (uu37 kB/s)

Reading package lists... Dene

'multiverse' distribution component emabled for all sources.

Hit:1 http://archive.ubuntu.com/ubuntu focal InRelease

Get:2 http://archive.ubuntu.com/ubuntu focal/multiverse amd6y4 Packages [144 kB]
Get:3 http://archive.ubuntu.com/ubuntu focal/multiverse Translation-en [184 kB]
Fetched 209 kB in 1s (267 kB/s)

Reading package lists... Done

hayden@T738:~%

haydeng@T736:~%

Figure 4-26. Enabling universe and multiverse Ubuntu repositories in our
Ubuntu image

Tip Linux commands can be combined and run sequentially by separating them
with &&.

Finally, let’s install some packages we want for our hypothetical Ubuntu GIS WSL
distro image. The gis-workstation meta-package is an Ubuntu package that uses the
dependencies capability in apt to install dozens of GIS-related tools without the need to
install each one individually. It is installed as follows (Figure 4-27):

sudo chroot /tmp/wslchroot/ apt install gis-workstation

B hayden@T7i0: - < PR - 0o x

haydeng@T738:~$% sudo chroot /tmp/wslchroot/ apt -y install gis-werkstation

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
accountsservice acl adwaita-icon-theme alsa-topolegy-conf alsa-ucm-conf apg apport apport-symptoms
aptdaemon aptdaemon-data aspell aspell-en at-spi2-core autoconf automake autotools-dev avahi-daemon
avahi-utils avced® bind9-host bind9-libs binutils binutils-common binutils-x86-6U-linux-gnu blt
bluez bolt bsdmainutils bubblewrap cheese-common colerd colord-data cpp cpp-9 cracklib-runtime crda
cups-pk-helper cython3 dbus-x11 dconf-cli default-libmysgqlclient-dev desktop-file-utils
dictionaries-common dmidecode dns-root-data dnsmasq-base docbook-xml dsh ef@compr emacsen-common
enchant=2 epsilon=bin evolution-data-server evolution-data-server-common fontconfig
fontconfig-config fonts-dejavu fonts-dejavu-core fonts-dejavu-extra fonts-droid-fallback fonts-lyx
fonts-noto-mono fonts-urw-base35 fprintd freeglut3 g++ g++-9 gcc gcc-T-base gcc-8-base gec-9
gcc-9-base gcr gdal-bin gdal-data gdm3 geoclue-2.8 geographiclib-teools geoip-bin geoip-database
geotiff-bin gettext-base ghostscript girl.2-accountsservice-1.8 girl.2-atk-1.6 girl.2-atspi-2.e
girl.2-freedesktop girl.2-gck-1 girl.2-gcr-3 girl.2-gdesktopenums-3.8 girl.2-gdkpixbuf-2.@
girl.2-gdm-1.8 girl.2-geoclue-2.8 girl.2-gnomebluetooth-1.8 girl.2-gnomedesktop-3.8

Figure 4-27. Installing the gis-workstation metapackage in our Ubuntu image
containing dozens of GIS-related applications

94

CHAPTER 4 LINUX DISTRO MAINTENANCE

Create rootfs tar

Once we are done building our Ubuntu image in /tmp/wslchroot, it is time to pack it up
as a tarball archive file for export and then import to WSL as its own WSL distro.

Here’s how to set the proper file structure for our image, drop down into our image
folder (Figure 4-28):

cd /tmp/wslchroot/

A hayden@T730: /tmp/wsichroot + v — o x

hayden@T736:/$ cd /tmp/wslchroot/
hayden@T73@: /tmp/wslchroot$

Figure 4-28. Dropping down into our Ubuntu image folder at /tmp/wslchroot
before we archive the folder as a tarball

If you take a quick look in this folder before proceeding with 1s, you will see we have
built a complete Ubuntu installation in this folder that resembles the root file system of
any Ubuntu Linux image (Figure 4-29):

1s -a

A hayden@T730: /tmp/wsichroot + v — o x

hayden@T73@8:/$ cd /tmp/wslchroot/
hayden@T736:/tmp/wslchroot$ 1s -a

bin dev home 1ib32 1ibx32 mnt proc run srv - var
. boot etc lib lib64 media opt root sbin sys usr
hayden@T73@: /tmp/wslchroot$

Figure 4-29. Viewing the Ubuntu image folder contents of /tmp/wslchroot

Now, we will compress our bootstrapped and customized Ubuntu image folder as a
tarball archive file for export and then import to WSL as its own WSL distro.

95

CHAPTER 4 LINUX DISTRO MAINTENANCE

Run tar to compress the Ubuntu image folder into a rootfs tar file called /tmp/
ubuntu-gis-wsl.tar.gz (Figure 4-30). Depending on the size of the Ubuntu image you
created, and your system’s performance capabilities, this can take a few minutes. In our
example, gis-workstation installed about 3 GB of additional packages, which will take
some time to compress.

sudo tar --ignore-failed-read -czf /tmp/ubuntu-gis-wsl.tar.gz *

D hayden®@T730: ftmplwsichroot X 4 W = o 9%

hayden@T736:/$ cd /tmp/wslchroot/
hayden@T736:/tmp/wslchroot$ 1s -a
bin dev home 1ib32 1ibx32 mnt proc run srv - var
. boot ete 1lib libsd media opt root sbin sys usr
hayden@T73@:/tmp/wslchroot$ sudo tar --ignore-failed-read -czf /twmp/ubuntu-gis-wsl.tar.gz

*

hayden@T738: /tmp/wslchroot$

Figure 4-30. Compressing our Ubuntu image folder into a tarball at /tmp/
ubuntu-gis-wsl.tar.gz

Now, we must move the tarball to our Windows file system so that we can import it
into WSL as its own distro. I prefer to create a handy WSL folder at C:\WSL for custom
WSL-related files and folders, but it can be anywhere your Windows user has write
permission. This can be done from WSL as follows (Figure 4-31):

mkdir /mnt/c/WSL

D hayden®@T730: ftmpfwsichroot X 4 W = o 9%

hayden@T736:/$ cd /tmp/wslchroot/
hayden@T736:/tmp/wslchroot$ 1s -a
bin dev home 1ib32 1ibx32 mnt proc run srv - var
. boot etc lib lib64 media opt root sbin sys usr
hayden@T73@:/tmp/wslchroot$ sudo tar --ignore-failed-read -czf /twmp/ubuntu-gis-wsl.tar.gz
-
hayden@T736:/tmp/wslchroot$ mkdir /mnt/c/WSL
hayden@T73@: /tmp/wslchroot$

Figure 4-31. Creating a folder at C:\WSL to store our tarball and later to unpack
our custom Ubuntu GIS image

96

CHAPTER 4 LINUX DISTRO MAINTENANCE

Next, we move our tarball. You could use cp or mv, but I prefer to use rsync here to
move the file as it gives us a nice progress status (Figure 4-32).

sudo rsync --progress --remove-source-files /tmp/ubuntu-gis-wsl.tar.gz
/mnt/c/WSL/

D hayden®T730 tmpiwsichroot % | W - o x

hayden@T738:/tmp/wslchroot$ sudo rsync --progress --remove-source-files /tmp/ubuntu-gis-wsl.tar.gz /mnt/c/wWsL/
| [sudo] password for hayden:

| ubuntu-gis-wsl._tar.gz

776,306,688 U1% 206.9UMB/s 8:86:8U

Figure 4-32. Moving ubuntu-gis-wsl.tar.gz to C:\WSL\ on our Windows file system
using rsync

Import into WSL

Now, we follow the standard procedure for importing a WSL image file discussed in
Chapter 2 “Installing WSL.”

First, we drop down into a Windows Command Prompt from our current WSL
session with cmd.exe (Figure 4-33):

cmd . exe

B CwWindows\system3Biemders X | 4 W = (=] e

hayden@T738:/tmp/wslchroot$ sudo rsync --progress --remove-source-files /tmp/ubuntu-gis-wsl.tar.gz /mnt/c/WSL/
ubuntu-gis-wsl.tar.gz
1,850,672,982 100% 226.76MB/s 8:008:87 (xfr#l, to-chk=6/1)
hayden@T738: /tep/wslchroot$ cmd.exe
"\\wsl$\Ubuntu-20.84\tnp\wslchroot"
CMD.EXE was started with the above path as the current directory.
UNC paths are not supported. Defaulting to windows directory.
Microsoft Windows [Version 18.8.198u2.782]
(c) 2828 Microsoft Corporation. ALl rights reserved.

C:\Windoms>

Figure 4-33. Launching a Windows Command Prompt from our current WSL
session

97

CHAPTER 4 LINUX DISTRO MAINTENANCE

Then, we call wsl.exe with --import to import our Ubuntu image, naming our new
custom WSL distro “Ubuntu-GIS,” storing the VHDX file containing the WSL file system
in C:\WSL\Ubuntu-GIS, and set it as a WSL 2 distro (Figure 4-34):

wsl.exe --import "Ubuntu-GIS" C:\WSL\Ubuntu-GIS C:\WSL\ubuntu-gis-wsl.tar.
gz --version 2

A CWindows\system3Ziemders ¥ | W — @ |

hayden@T736: /tmp/wslchroot$ sudo rsync --progress —-remove-source-files /tmp/ubuntu-gis-wsl.tar.gz /mnt/c/WsL/
ubuntu-gis-wsl.tar.gz
1,850,672,982 100% 226.76MB/s 8:008:87 (xfr#l, to-chk=6/1)
hayden@T738: /tep/wslchroot$ cmd.exe
"\iwsl$\Ubuntu-20.8u\tnp\wslchroot"
CMD.EXE was started with the above path as the current directory.
UNC paths are not supported. Defaulting to windows directory.
Microsoft Windows [Version 18.6.198u2.782]
(c) 2828 Microsoft Corporation. ALl rights reserved.

C:\Windows>wsl.exe --import "Ubuntu-GI5S" C:\WSL\Ubuntu-GI5S C:‘\WSL\ubuntu-gis-wsl.tar.gz --version 2

C:\Windows>

Figure 4-34. Importing our custom Ubuntu GIS image using wsl.exe --import

We can test that the distro was properly imported by running wsl.exe --distribution
Ubuntu-GIS (Figure 4-35). If we are successful, we will be root user in our new distro.

wsl.exe --distribution Ubuntu-GIS

D root®TI0 /meticWindows % | W = g X
hayden@T736: /tmp/wslchroot$ sudo rsync --progress --remove-source-files /tmp/ubuntu-gis-wsl.tar.gz /mnt/c/WSL/
ubuntu-gis-wsl.tar.gz
1,850,672,982 100% 226.76MB/s 8:008:87 (xfr#l, to-chk=6/1)
hayden@T738: /tep/wslchroot$ cmd.exe
"\iws1$\Ubuntu-20. 84\tmp\wslchroot"
CMD.EXE was started with the above path as the current directory.
UNC paths are not supported. Defaulting to windows directory.
Microsoft Windows [Version 18.6.198u2.782]
(c) 2828 Microsoft Corporation. ALl rights reserved.

C:\Windows>wsl.exe --import "Ubuntu-GI5S" C:\WSL\Ubuntu-GI5S C:‘\WSL\ubuntu-gis-wsl.tar.gz --version 2

C:\Windows>wsl.exe --distribution Ubuntu-GIS
roct@T738: /mnt/c/Windows#

Figure 4-35. Launching our custom Ubuntu GIS WSL distro to test if it was
properly loaded

We can test to make sure everything is in place and working with a few commands:
cat /etc/os-release verifies we are running an Ubuntu 20.04 LTS focal image

(Figure 4-36).

98

CHAPTER 4 LINUX DISTRO MAINTENANCE

B root@TT0 imrtjicWindows ¥ | W o o % |

C:\Windoms>wsl.exe --distribution Ubuntu-GIS
root@T738: /mnt/c/Windows# cat /etc/os-release
NAME="Ubuntu"

VERSION="28.84 LTS (Focal Fossa)”

ID=ubuntu

ID_LIKE=debian

PRETTY_NAME="Ubuntu 20.84 LTS"

VERSION_ID="28.84"
HOME_URL="https://www.ubuntu.com/"
SUPPORT_URL="https://help.ubuntu.com/"
BUG_REPORT_URL="https://bugs.launchpad.net/ubuntu/"
PRIVACY_POLICY_URL="https://www.ubuntu.com/legal/terms-and-policies/privacy-policy"
VERSION_CODENAME=focal

UBUNTU_CODENAME=focal

root@T73e:/mnt/c/Windows#

Figure 4-36. Verifying the base OS of our custom Ubuntu GIS WSL distro

After closing and reopening Windows Terminal, our custom Ubuntu GIS WSL distro
will now be auto populated in the shell drop-down box (Figure 4-37).

D hayden@T730:/ 4+ v = (u] *
hayden@T736:/$ EY PowerShell Ctrl+ Shifts1

A Ubuntu Ctri+Shift+2

A Ubuntu-20.04 Ctr+Shift+3

D Ubuntu-GIS CrlsShin-4 I

@ Settings Ctri+,

& Feedback

? About

Figure 4-37. Verifying Ubuntu-GIS is visible in Windows Terminal

With a properly configured third-party X server, as discussed in Chapter “Customizing
WSL,” or in the forthcoming native GUI support for WSL 2, we can test the GIS applications
we built into our Ubuntu GIS WSL distro, for example, qgis (Figure 4-38):

qgis

99

CHAPTER 4 LINUX DISTRO MAINTENANCE

B o0 . = g *
FostaTTIE: /W cgls
Warning: Q5tardardFaths: XOG_RUNTINE_OIR net set, defaulting to */tmp/rantime-root®
G el Pt - 2085
L e
BRRE O ApAPR . [P L] & #Ls- M
LL A AN " - ® 28
Brawer 55 News
LTt e =
a

QGIS 3.14 Changelog now avallable!

Spatl Bockmact o oo sain
b Mmessape to o the i your browier. il the key rew
To3ELNBS i 83CN 86259, £3cN featirs dose mmumawmm“wmm;pamuwmnqm.rww
- ratefd acknowledgment £ our many sustainng memke
Spanalite -
0 reanun
P w550
& oax
B whLAMTS
@ X0z Thet
@ wes A message from Marco Bernasocchl, Incoming OGIS Project Chalrman -
e D QGIS communiy. wa recently comploted the 2010 PSC election process whersy [ha COmmMuRity volss for rair taveurte
Lo i Leen eotnmten
reprsanting our fantasisc comemnity and | am realy bapgy 13 forve wch an amarig PSC belping me in Gaking GG(S bo v
Layers o= reater hesghts. To i Cul Mare 300UT the SURTEME of the OGS PSC elctions. the AGM and my vieon doulle-click the
o & . & vl
o e S Project Templates

Figure 4-38. QGIS running from our custom Ubuntu GIS WSL distro

This chapter discussed maintaining your WSL Linux distro, including the distro-
specific package management tools. We covered upgrading packages, various ways to
find and install specific packages, and removing packages on Ubuntu, Debian, Kali,
Pengwin, and other apt-based Linux distros. The chapter concluded with a guide on

generating your own custom special-purpose Ubuntu WSL image.

100

CHAPTER 5

Configuring WSL Distros

Once you have a WSL distro installed, there are several settings unique to WSL that you
do not find in a standard Linux distribution and unique ways to continue them. These
settings are divided into “per-distro” settings, which are adjusted in each individual
distro installation, and “global” WSL settings, which affect all WSL distros on a single

device.

Setting Per-Distro Settings

Per-distro settings are set in /etc/wsl.conf in each respective distro. This file is read on
“boot” by WSL. Some distro publishers publishing images for WSL include a wsl.conf file
with default settings. But if it is not present in your distro, then you may manually create
or edit this file if you want to override the default WSL settings. The default settings are
represented here (Figure 5-1).

O hayden@T730: ~ X 1r AT = a X

GNU nano 4.8 fetc/wsl.conf Modified
[automount]
enabled = true
root = /mnt/
options = "metadata,umask=22,fmask=11"
mountFsTab = true

[network]
generateHosts = true
generateResolvConf = true

gle Get Help ¢ Write Out @Y% Where Is Cut Text @B Justify e Cur Pos
@y Exit Read File @\ Replace Paste Textgll]l To Spell § M Go To Line I

Figure 5-1. /etc/wsl.conf with common default settings

101
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_5

https://doi.org/10.1007/978-1-4842-6873-5_5#DOI

CHAPTER5 CONFIGURING WSL DISTROS

Automount Settings

The automount settings include the ability to mount Windows drives, such as the C drive
under /mnt/c to provide file system interoperability.

Enabling

Automount is enabled by setting the “enabled” Boolean value to true in /etc/wsl.conf:

[automount]
enabled = true

The default is true, to mount Windows drives automatically. If you wish to isolate
your WSL instance from the Windows file system, you should set this to false:

[automount]
enabled = false

Root

The root folder for mounting Windows drives is set in /etc/wsl.conf with the “root” string

value:

[automount]
enabled = true
root = /mnt/

The default is /mnt/. If you wish to mount your Windows drives in another folder,
you can specify where here. For example, to mount them at /windrives/, set

[automount]
enabled = true
root = /windrives/

Keep in mind that the root folder must exist; if not, you need to create it:

sudo mkdir /windrives

102

CHAPTER5 CONFIGURING WSL DISTROS

File System Tab

/etc/fstab is the traditional Linux file system configuration file. The option to load it or
not on WSL boot can be set in /etc/wsl.conf with the “mountFsTab” Boolean value:

[automount]
enabled = true
mountFsTab = true

O hayden@T730: ~ X . = m} X
GNU nano 4.8 /etc/fstab
LABEL=cloudimg-rootfs [/ extd defaults ee

[Read 1 line]
W Get Help @v Write Out @V Where Is @I Cut Text [N Justify @« Cur Pos
@ Exit Read File g\ Replace [l Paste Textjg] To Spell [Go To Line ||

Figure 5-2. /etc/fstab default in Ubuntu

The default is true.

You can configure /etc/fstab (Figure 5-2) to perform more advanced mounting
functions on WSL boot. This can include virtual disks and network file shares.

If you do not want WSL to parse this file, for example, for greater isolation of the WSL
environment, you can set this value to false:

[automount]
enabled = true
mountFsTab = false

Keep in mind, however, the root file system will be automatically mounted on boot,
and without parsing /etc/fstab, it will be mounted with the default WSL settings. It can
be useful to enable or disable this for troubleshooting advanced mounting settings.

103

CHAPTER5 CONFIGURING WSL DISTROS

Mount Options

DrvFs is the file system that allows WSL to mount Windows drives. This allows WSL to
access files on the Windows file system and handle permissions.
These options are set in /etc/wsl.conf with the “options” string value, for example:

[automount]

enabled = true

mountFsTab = true

options = "metadata,umask=22,fmask=11"

A note on how file permissions work on WSL:

On the Linux file system in WSL, the file permissions follow common Linux
standards, with read, write, and execute settings for the user, group, and other. When
accessing the Windows file system from WSL, the file permissions are interpreted from
NTFS into those common Linux permissions. New files and folders created in WSL on
the Windows system will inherit the parent folder permissions.

This can be altered, however, with the metadata option.

Metadata

By specifying the metadata option in mount options, it is possible to read and store Linux
file system permissions separate from NTFS permissions in extended file attributes
on NTES files and folders. This is useful if you want to restrict access to make a file or
folder read-only from WSL without changing the permissions in Windows. New files and
folders created in WSL on the Windows system will inherit the permissions stored by
umask in WSL.

By default, WSL will mount the Windows file system with the UID and GID of the
default distro user, usually 1000 and 1000, respectively.

We can achieve the same result by running the following command:

sudo mount -t drvfs C: /mnt/c -o metadata,uid=1000,gid=1000,umask=22,
fmask=11

If you are familiar with the Linux mount command, you may recognize some of these
settings.

In addition to altering how NTFS and Linux system permissions are handled, it is
also possible to alter how case sensitivity is handled between Linux and Windows.

104

CHAPTER5 CONFIGURING WSL DISTROS

Case Sensitivity

One big difference users may notice between Linux and the Windows Terminal is the
handling of case sensitivity of files.

On Linux file systems, FILETXT and file.txt would be considered separate files that
can coexist in the same directory. Linux file systems would therefore be considered case
sensitive.

On Windows file systems, by default, Windows would not allow you to create a file
called file.txt in a directory with a file already called FILE.TXT, because it would consider
them the same file; the case of the filename is disregarded. The default on Windows file
systems would therefore be considered case insensitive. Windows 10, as a descendant
of Windows NT, which aimed for a degree of POSIX compatibility, has the native
capability to treat files with case sensitivity, like Linux; it is simply disabled for backward
compatibility with Windows 98 applications and other tools that have come to expect
case insensitivity from Windows.

This setting can be modified globally, for all of Windows, via a setting in the Windows
Registry, but note that changing this setting can result in unusual behavior in third-party
applications, including breakage and data loss. So how does WSL handle case sensitivity
when mounting Windows folders? It uses another mechanism that bypasses the registry
key, allowing WSL distros to access files that differ only by case and therefore behave in
the standard “Linux” way.

When dealing with files accessed from both WSL and Windows, this can still cause
issues though, particularly for Windows programs accessing case-sensitive files in folders
modified from WSL. Rather than forcing users to change the aforementioned global
registry key, potentially breaking third-party applications, the WSL team introduced
per-directory case sensitivity in Windows 10 build 17107.

If a folder is shared between WSL and Windows programs, for example,
C:\WSLworkspace and /mnt/c/WSLworkspace, where case sensitivity is expected
by WSL programs but an issue for Windows programs, it is possible to enable case
sensitivity in Windows just for C:\WSLworkspace. The functionality is built into fsutil.
exe.

To check the status of this per-directory case sensitivity from Windows, open
PowerShell, and run (Figure 5-3)

fsutil.exe file queryCaseSensitiveInfo <path>

105

CHAPTER 5 CONFIGURING WSL DISTROS
For example, on our sample directory C:\WSLworkspace:

fsutil.exe file queryCaseSensitiveInfo C:\WSLworkspace\

EY PowerShell SO - o X
PS C:\> fsutil.exe file queryCaseSensitiveInfo C:\WSLworkspace\
Case sensitive attribute on directory C:\WSLworkspace\ is disabled.
PS C:\>

Figure 5-3. Checking per-directory case sensitivity in Windows using fsutil

To enable case sensitivity for a Windows directory, open PowerShell as
Administrator, and run (Figure 5-4)

fsutil.exe file setCaseSensitivelInfo <path> enable
For example:

fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ enable

E¥ Administrator: PowerShell X + hd = (m] v 4

PS C:\> fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ enable
Case sensitive attribute on directory C:\WSLworkspace\ is enabled.
PS C:\>

Figure 5-4. Enabling per-directory case sensitivity in Windows using fsutil

To disable case sensitivity for a Windows directory, open PowerShell as
Administrator, and run (Figure 5-5)

fsutil.exe file setCaseSensitiveInfo <path> enable
For example:

fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ disable

106

CHAPTER5 CONFIGURING WSL DISTROS

E¥ Administrator: PowerShell X + v = o X

PS C:\> fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ disable
Case sensitive attribute on directory C:\WSLworkspace\ is disabled.
PS C:\>

Figure 5-5. Disabling per-directory case sensitivity in Windows using fsutil

Applying per-directory case sensitivity in Windows using fsutil is not inheritable,
meaning the case sensitivity of any new of existing subdirectories will not be modified by
the setting of the parent directory.

Case sensitivity can also be managed as an automount options setting with the case
setting, for example:

[automount]

enabled = true

mountFsTab = true

options = "metadata,case=off,umask=22,fmask=11"

Setting case=dir is the default, and new directories created by WSL on Windows file
systems will be case sensitive.

Setting case=off means new directories created by WSL on Windows file systems will
be case insensitive and follow the traditional Windows method.

In practice, there are very few situations in which you will be creating a lot of
directories from WSL on Windows systems that will need to be case insensitive to work
with Windows programs, but the need could arise.

Note InWSL 1, on Windows builds 17692+, it is also possible to change the
per-directory Windows case sensitivity from WSL. In this implementation, the case
sensitivity was inheritable. However, this feature was deprecated in WSL 2. Check
the status of per-directory case sensitivity with

getfattr -n system.wsl case sensitive <path>

107

CHAPTER5 CONFIGURING WSL DISTROS

To enable case sensitivity for a Windows directory:
setfattr -n system.wsl case sensitive -v 1 <path>
To disable case sensitivity for a Windows directory

setfattr -n system.wsl case sensitive -v 0 <path>

Changing the UID and GID of a Mount

If you do not want the Windows file system to be mounted with the UID and GID

of default WSL distro user, it is possible to override this in mount options, to limit

ownership of the mounted Windows file system to specific users, groups, or none.
You can do this by setting values for the following options in the options string:

uid - A unique user number linked to each user on a Linux device.
Root will have UID 0. UID 1-500 are commonly reserved by

Linux for system-related accounts. Distros will create new users
beginning at UID 1000, but some create new users starting at UID
500. UIDs are stored in the /etc/passwd file.

gid - A unique group number linked to groups of users on a Linux
device. Root will have GID 0, and GID 1-100 will be reserved

by Linux for system-related groups. Normal user accounts are
created at GID 100 or 1000. GIDs are stored in the /etc/groups
file. Note a user will have a primary GID but often as several
secondary GIDs, as it is not uncommon for a user to belong to
multiple groups.

To check your user’s UID and primary GID (Figure 5-6), use
id

108

CHAPTER5 CONFIGURING WSL DISTROS

A hayden@T730: ~ x [N = o X

hayden@T730:~% id

uid=18088(hayden) gid=1@8e(hayden) groups=1886(hayden),ud(adm),28(dialout),2u(cdrom)
,25(floppy), 27(sudo) ,29(audio), 30(dip),4u(video) ,u6(plugdev), 117(netdev)
hayden@T7308:~%

Figure 5-6. Checking your uid and gid with id

To check the UID and GID of another user (Figure 5-7), use
id <username>

Example:

id root

O hayden@T730: ~ x [= o X

hayden@T738:~% id root
uid=8(root) gid=6(root) groups=6(root)
hayden@T738:~%

Figure 5-7. Checking root’s uid and gid with id

Changing the UID and GID on the mounted device will affect the accessibility of
existing files and folders.

It is also possible to customize the permissions on newly created files and folders,
by setting the user file creation mask. The user file creation mask is the template
for permissions on new files and folders. The purpose of the mask is to strip away
extraneous permissions and set a secure standard set of permissions for new files. The
mask is a shortened form of the longer Linux octal format for permissions, which you

may have used before.

109

CHAPTER5 CONFIGURING WSL DISTROS

Background on Linux File Permissions

Every file on Linux has three classes of permissions associated with it; those are the

permissions of a
User - By default the user who created the file, unless modified
Group - Users in a group with assigned access to the file

Other - All other users, who are not the owner or in the group
associated with the file

The permissions can consist of a combination of the following permissions for each

class:
Read orr
Write orw
Execute or x
No permissions or -

These permissions can then be expressed in symbolic or numeric form.

Symbolic Form

In symbolic form, permissions are represented as a nine-character string, consisting ofr,
w, X, and -.

Example:

TWXY-XT--

1wx - The first three characters correspond to owner permissions.
Here, we see rwx. The owner of this file has read, write, and
execute permissions.

1-X - The next three characters correspond to group permissions.
Here, we see r-x. Users in the group for this file are assigned to
have read and execute permissions, but not write.

1-- - The final three characters correspond to permissions for all
other users. Here, we see r--. Other users can only read this file.

110

CHAPTER5 CONFIGURING WSL DISTROS

IWXY-XT-- in summary is
rwx permissions for the owner
r-x permissions for members of the group

r-- permissions for all other users

Checking a File’s Permissions

You can find a file’s symbolic form permissions with the Is -1 command (Figure 5-8):

1s -1

O hayden@T730: fopt X T = o *®

hayden@T730:/opt$ 1s -1

total @

-rw-r--r-- 1 userl wslusers @ Sep 19 13:17 advancedwsl.txt
hayden@T730: /opt$

Figure 5-8. Checking a file’s permissions

The preceding permissions are

IW-T--T--

rw permissions for owner, “user1”
r for members of the assigned group, “wslusers”
r for all other users
Additional details before and after the symbolic notation can also tell us
d is appended - This is a directory.
<user> - The user who owns the file.
<group> - The group to which the user is assigned.

4096 - The file or folder size. In the case of a folder, this is not
the size of the folder’s contents; it is the content of the folder’s
metadata, the minimum of which is 4096 bytes on ext4.

111

CHAPTER5 CONFIGURING WSL DISTROS

<date> - The date the file or folder was created.

<time> - The date the file or folder was created.
Other useful information here could include

1 - Indicates a symbolic link

b - Indicates a block device

c - Indicates a serial device

Numeric Form

Permissions can also be represented in number form, using octal notation. Read, write,

and execute are represented as one of the eight options:
0 - No permissions or ---
1 - Execute only or --x
2 - Write only or -w-
3 - Write and execute or -wx
4 - Read only or r--
5 - Read and execute or r-x
6 - Read and write or rw-
7 - Read, write, and execute or rwx

Our permissions from the preceding example, rwxr-x1- -, then become

rwx for the owner =7
r-x for members of the group =5
r-- for all other users = 4
or simply = 754

In many places, the octal permissions will have a digit prefix. You may see 754
expressed as 0754. This prefix contains the setting for suid, sgid, and “sticky” bits, which
are advanced Linux permissions that are outside of the scope of this book, but give you
the option, among other things, to prevent writes or deletion of a file even if a user has
permission, but is not the file’s owner.

112

CHAPTER5 CONFIGURING WSL DISTROS

File Mask

The user file creation mask or umask helps define a standard for permissions on newly
created files and folders.

By default, Linux assigns all new files the octal permissions 666 and all new folders
the octal permissions 777.

The file mask is then subtracted from the octal permissions to set the permissions
applied by the system.

umask is a bitmask; its bits are subtracted from “masking” the default Linux
permissions.

Example:

A umask of 022 is the default for Ubuntu.

In this case, a new file would be created starting with octal permissions of 666 and
then subtracting the “mask” of 022 resulting in permissions of 644.

All new files would be created as 644 or

6 - rw- for the owner

4 - Read or r-- for members of the group

4 - Read or 1-- for all other users

umask - The standard umask, for example, 022, for both new files
and new folders

fmask - The umask permissions to use just for new files
dmask - The umask permissions just for new folders

Fmask and dmask exist for setting different umask settings for files and folders,
separately.

As discussed earlier, files start at 666 and have umask subtracted. Folders start at 777
and have umask subtracted.

Umask only allows you to subtract the same level of permissions from both, for
example, 022. However, using fmask or dmask, you can set separate masks, distinct delta
from the standard 777/666 permission levels, for new files and folders.

113

CHAPTER5 CONFIGURING WSL DISTROS

Changing umask and fmask of a Mount

In our example from earlier

[automount]

enabled = true

mountFsTab = true

options = "metadata,umask=22,fmask=11"

new files and folders would be created with permissions starting at 666 and 777,
respectively.

Then applying the umask of 22 would result in permissions of 644 for files and 755
for folders.

However, by applying the fmask of 11, which overrides the umask for new files, you
would get permissions of 666 minus 11 or 655 for new files.

New folders would be created with the system-wide umask of 22, resulting in 777
minus 22 or 755 for new directories.

You could override this too with dmask if you choose.

You may want to adjust different masks for files and folders if you want to heavily
limit read access in other directories (a high dmask) but give broad access in user’s own
directories (a low fmask).

Other mount settings

Note that other mount settings that would usually be set by additional flags using
mount cannot be inserted here. For additional fine-grained control, you must edit /etc/
fstab. See section “File System Tab” on the setting to ensure /etc/fstab is being read.

Cross-Distro Mounting

[automount]
crossDistro = true

Cross-distro mounting enables a space, /mnt/wsl, where any folder mounted by any
one distro is visible to all other distros.

The default is true.

This is useful for sharing files between distros.

For example, with crossDistro enabled in both distros, you could mount a folder from
your Ubuntu WSL distro to be accessible from your Fedora Remix distro (Figure 5-9).

114

CHAPTER5 CONFIGURING WSL DISTROS

O hayden@T730:/ <) hayden@/mnt/c/Users/Hayden X 4 = gl e

hayden@T736:/$ mkdir ~/ubuntufolder
hayden@T73@:/$ touch ~/ubuntufolder/helloworld
hayden@T730:/$% mkdir /mnt/wsl/sharedfolder

hayden@T738:/$% sudo mount --bind ${HOME}/ubuntufolder /mnt/wsl/sharedfolder
hayden@T730:/$

Figure 5-9. Creating a folder, inserting a file, and mounting it to /mnt/wsl to be
shared across distros

In Ubuntu WSL:

mkdir ~/ubuntufolder

touch ~/ubuntufolder/helloworld

mkdir /mnt/wsl/sharedfolder

sudo mount --bind ${HOME}/sharedfolder /mnt/wsl/sharedfolder

Then, in Fedora Remix for WSL, you can view the file (Figure 5-10) at

1s /mnt/wsl/sharedfoldex/

O hayden@®@T730:/ X D hayden@ymnt/c/Users/Hayden X | - o X

[hayden@T73@ Haydenl$ ls /mnt/wsl/sharedfolder/
helloworld
[hayden@T736 Hayden]$

Figure 5-10. Viewing the file in the shared folder from the cross-distro mount

Alternatively, in an enterprise environment, you may wish to disable cross-distro
mounting to isolate your WSL distros for security purposes.

Idconfig

Libraries, which are collections of common tasks and subroutines relied upon by

applications, are “located” in a cache generated from a set of paths specified in ldconfig
settings.

115

CHAPTER5 CONFIGURING WSL DISTROS

The primary ldconfig settings file is located at /etc/1d.so.conf but in most distros,
that file directs ldconfig to load additional paths from multiple configuration files located
in /etc/1d.so.conf.d/.

/etc/1d.so.conf will point to /etc/1d.so.conf.d/* which will, for example,
contain /etc/1d.so.conf.d/libc.conf which contains the path to the default GNU
C Library path /usr/local/1lib (Figure 5-11). The configuration files in /etc/1d.so.
conf.d/* are loaded alphabetically.

O hayden@T730:/ S T - o *

hayden@T738:/$ cat fetc/ld.so.conf
include /fetc/ld.so.conf.d/*.conf

hayden@T738:/$% 1s /fetc/ld.so.conf.d/*.conf
fetc/1d.so.conf.d/libc.conf /etc/ld.so.conf.d/x86_6U-linux-gnu.conf
hayden@T738:/$ cat /etc/ld.so.conf.d/libc.conf

libc default configuration

Sfusr/local/lib

hayden@T738:/%$

Figure 5-11. Examining how /etc/ld/so.confloads all *.conf files in /etc/ld.so.
conf.d/ which point to library paths, such as /usr/local/lib

Beginning in Windows 10 build 20150, WSL automatically inserts an additional file in
/etc/1d.so.conf.d/ called 1d.wsl.conf which adds the path to libraries at /usr/1ib/
ws1/1ib to ldconfig (Figure 5-12).

This enables access to WSL-specific libraries for CUDA, DirectML, and other GPU
compute functions (the ones located in %SystemRoot%\system32\1xss\1ib).

A hayden@T730-08V:/ [& g x

hayden@T736-DEV:/$ 1s /etc/ld.so.conf.d/

1d.wsl.conf 1libc.conf x86_64-Llinux-gnu.conf

haydengT736-DEV:/$ cat fetc/ld.so.conf.d/ld.wsl.conf

This file was automatically generated by WSL. To stop automatic generation of this file, add the followi
ng entry to /etc/wsl.conf:

[automount]

ldconfig = false

Jusr/Lib/wsl/1ib

hayden@T738-DEV:/$ 1s fusr/lib/wsl/lib/

libcuda.so libcuda.so.1.1 libd3dl2cere.so libdxcore.so libnvwgf2umx.so
libcuda.so.1 1libd3d12.so libdirectwml.so libnvidia-ml.sec.1
haydengT738-DEV: /$

Figure 5-12. 1d.wsl.conf 1in /etc/ld.so.conf.d/ adding /usr/lib/wsl/lib to the list
of directories for ldconfig to cache

116

CHAPTER5 CONFIGURING WSL DISTROS

Generally, you will want WSL to load these directories to enable GPU compute. The
setting to load them is set as an automount setting:

[automount]
ldconfig = true

The default s true.

However, there may be circumstances in which you want to disable GPU compute
functionality, perhaps to benchmark performance with and without GPU enabled, or
you want to substitute other drivers. In this case, you can specify

[automount]
ldconfig = false

to disable insertion of 1d.wsl.conf. Note that after disabling 1d.wsl.conf, you will want to
regenerate your ldconfig cache with

sudo ldconfig

Network
Generate Hosts File

A hosts file, on both Windows and Linux, is a file that allows you to manually configure
the resolution of domain names on your device.

When your computer resolves a domain name, like ubuntu.com, it will first consult
the hosts file, then a local cache of recently resolved domains, and then finally issue the
request to your network DNS server.

You can manually set a host name in your hosts file if you want to easily reach other
devices on your network by their host name but do not want to set up your own DNS
server.

Ifyou are building and testing a website locally, you could edit your hosts file so
that links on your test site resolve back to your test site on your device and not the live
website on the Web.

By default, WSL will copy your Windows hosts file at C: \Windows\System32\
drivers\etc\hosts over your WSL distro hosts file at /etc/hosts on each launch. Yes,
Windows and Linux hosts files are compatible.

117

CHAPTER5 CONFIGURING WSL DISTROS

The option to copy your Windows hosts file (Figure 5-13) to your WSL distro
(Figure 5-14) is set in /etc/wsl.conf with the “generateHosts” Boolean value:

[network]
generateHosts = true

The default is true.

You may wish to set generating hosts to false if you want to maintain a separate Linux
hosts file for your own WSL distro. Note that while additions to the Windows hosts file
(Figure 5-14) will be copied to WSL, additions to the WSL distro hosts file will not be
synchronized back to Windows. The WSL distro hosts file will be overwritten from the
Windows hosts file on each new launch.

O hayden@T730: ~ % E¥ Windows PowerShell x N - (u] G

PS C:\Windows\System32\drivers\etc> cat hosts
Copyright (c) 1993-2809 Microsoft Corp.

This is a sample HOSTS file used by Microsoft TCP/IP for Windows.

#

#

#

#

This file contains the mappings of IP addresses to host names. Each
entry should be kept on an individual line. The IP address should

be placed in the first column followed by the corresponding host name.
The IP address and the host name should be separated by at least one
space.

#

Additionally, comments (such as these) may be inserted on individual
lines or following the machine name denoted by a '#' symbol.

#
#
#
#
#

For example:

162.54.94.97 rhino.acme.com # source server
38.25.63.18 X.acme.com # x client host

localhost name resolution is handled within DNS itself.
127.0.0.1 localhost

ke b localhost

P

S C:\Windows\System32\drivers\etc>

Figure 5-13. Viewing the contents of Windows hosts

118

CHAPTER5 CONFIGURING WSL DISTROS

O bayden@T730: ~ % EX Windows PowerShell il o o e = o X

hayden@T738:~% cat /etc/hosts

This file was automatically generated by WSL. To stop automatic generation of t
his file, add the following entry to /etc/wsl.conf:

[network]

generateHosts = false

127.6.6.1 localhost

127.6.1.1 T730.localdomain T738

The following lines are desirable for IPv6 capable hosts
S ip6-localhost ipé6-loopback

fe@0::0 ip6-localnet

ff00::0 ip6-mcastprefix

ff@2::1 ip6-allnodes

ffe2::2 ip6-allrouters

hayden@T730:~%

Figure 5-14. Viewing the contents of /etc/hosts in Ubuntu

Generate DNS File

resolv.conf, located at /etc/resolv.conf, is a file that allows you to manually configure
where your device will look to resolve domain names that are not in the hosts file or the
local DNS cache:

[network]
generateHosts = true
generateResolvConf = true

The default s true.

Like your hosts file, resolv.conf is automatically generated for your distro by WSL
from your Windows networking settings.

The WSL environment networking is managed by the Host Networking Service, a
Windows Service, on a virtual Ethernet adapter, like other Hyper-V network adapters.

The IP address of the nameserver will be the same as the IP address of the virtual
network adapter. For example, compare the IP address in /etc/resolv.conf (Figure 5-15)
to the IPv4 address of the adapter itself (Figure 5-16).

119

CHAPTER5 CONFIGURING WSL DISTROS

O hayden@T730:/

x|

hayden@T738:/$ cat fetc/resolv.conf

This file was automatically generated by WSL. To stop automatic generation of this file, add the

follewing entry to /etc/wsl.conf:

[network]

generateResolvConf = false
nameserver 172.27.112.1

hayden@T7308:/%

Figure 5-15. Viewing the contents of /etc/resolv.confin Ubuntu

Figure 5-16. Viewing the IP address of the WSL virtual network adapter

have connected windows through a VPN and need to manually set a DNS server.

EY PowerShell

+

PS C:\> Get-NetIPAddress -InterfaceAlias #WSLw

IPAddress
InterfacelIndex
InterfaceAlias
AddressFamily
Type
PrefixLength
PrefixOrigin
SuffixOrigin
Addressstate
ValidLifetime

SkipAsSource
PolicyStore

IPAddress
InterfacelIndex
InterfaceAlias
AddressFamily
Type
PrefixLength
PrefixOrigin
Suffixorigin
AddressState
validLifetime

ShipAsSource
PolicyStore

PS C:\>

Hostname

Traditionally, your WSL instance inherits the device name of your Windows device. WSL
overwrites /etc/hostname in your distro with your Windows hostname on “boot,” like

: fe80::ddeb:cdl8:7013:e7b1458

: 58

: vEthernet (WsL)

: IPvéE

: Unicast

: 64

¢ Wellknown

: Link

: Preferred

: Infinite ([TimeSpan]::MaxValue)
preferredLifetime :
: False

: ActiveStore

Infinite ([TimeSpan]::Maxvalue)

i 172.27.112.1

: 58

: vEthernet (wsL)

@ IPvy

: Unicast

: 20

: Manual

: Manual

: Preferred

: Infinite ([TimeSpan]::Maxvalue)
PreferredLifetime :
: False

: ActiveStore

Infinite ([TimeSpan]::MaxValue)

In limited circumstances, you may wish to override this; one example may be if you

how /etc/hosts is overwritten.

120

CHAPTER5 CONFIGURING WSL DISTROS

On Windows 10 builds 20180 and greater, it is also possible to configure this behavior
and set a custom hostname for your WSL instance:

[network]

generateHosts = true
generateResolvConf = true
hostname = Biswa96

The default is to inherit the device name of your Windows device. However,
customizing your WSL instance hostname can be useful for specific advanced
networking functions. By altering the hostname for your WSL distro (or distros), you can
have separate hostnames for each WSL distro and Windows.

Interoperability
Enabling

WSL interoperability includes the ability to run Windows programs from Linux

(Figure 5-17), Linux programs from Windows, and shared environment variables. The
interop setting in wsl.conf allows you to enable or disable the ability to run Windows
programs from Linux. Beginning in Windows build 20190, it is also possible to run
Windows app execution aliases, such as those for UWP apps, from WSL. See Chapter 9,
“Maximizing Windows Interoperability,” for more tricks on how to get the most out of
this unique feature of WSL.

[interop]
enabled = true

The default is true.

121

CHAPTER5 CONFIGURING WSL DISTROS

A hayden@T730:/ X = o X
hayden@T730:/$ notepad.exe

) Untitled - Notepad - o)4
File Edit Format View Help

Figure 5-17. Launching Notepad from WSL

You may wish to disable this to confine your WSL distro, for example, if you have git
and python installed on Windows that can sometimes cause issues if you also have git
and python installed on WSL.

It is also possible to enable or disable this feature in a single session, without altering
wsl.conf. To temporarily disable Windows programs in Linux, run

echo 0 > /proc/sys/fs/binfmt_misc/WSLInterop
To reenable Windows programs in Linux, run
echo 1 > /proc/sys/fs/binfmt_misc/WSLInterop

Note that this setting will not persist between sessions. To permanently disable WSL
interop, you will need to make the needed change to your wsl.conf file.

Appending Windows Path

Another feature of WSL interoperability is the appending of the Windows path variable
to the WSL distro path variable. This adds all directories in your Windows path variable
to your Linux distro's existing path variables, making binaries in both platforms
accessible from WSL (Figure 5-18).

[interop]
enabled = true
appendilindowsPath = true

122

CHAPTER5 CONFIGURING WSL DISTROS

O hayden@T730:/ X e s = o X

hayden@T730:/$ echo $PATH

Jusr/local/sbin: fusr/local/bin: fusr/sbin: fusr/bin: /sbin:/bin: fusr/games: fusr/local/games: /mnt/c/
windows/system32: /mnt/c/Windows: /mnt/c/Windows/System32/Wbem: /mnt/c/Windows/System32/WindowsPowe
rShell/vl.8/:/mnt/c/Windows/System32/0pensSH/: /mnt/c/Program Files/Google/Google Apps Sync/:/mnt
/e/Program Files/Google/Google Apps Migratien/:/mnt/c/Program Files (x86)/NVIDIA Corporation/Phy
sX/Common: /mnt/c/Program Files/PowerShell/7-preview/previen:/mnt/c/Program Files/dotnet/:/mnt/c/
Users/Hayden/.nimble/bin: /mnt/c/Users/Hayden/scoop/apps/gcc/current/bin: /mnt/c/Users/Hayden/scoo
p/shims:/mnt/c/Users/Hayden/AppData/Local/Microsoft/WindowsApps: /mnt/c/Users/Hayden/AppData/Loca
1/Programs/Microsoft VS Code/bin:/mnt/c/Users/Hayden/AppData/Local/GitHubDesktop/bin:/mnt/c/User
s/Hayden/.dotnet/tools: /snap/bin

hayden@T730:/$

Figure 5-18. Viewing the $PATH variable in WSL with appendWindowsPath set
to true

The default is true. Although you may disable this, leave interop enabled so that you
limit Windows programs accessible to WSL to programs discoverable with your WSL
distro PATH.

WSLENV

While not specific to this config file, now is a good place to mention WSLENV. WSLENV
is a special meta environment variable that exists in both Windows and WSL. WSLENV
defines which environment variables are shared between Windows and WSL. WSLENV
contains a list of these other environment variables, separated by a colon in WSL or a
semicolon in Windows, with flags for how each of the environment variables should be
interpreted.

Windows environment variables can be viewed by searching for “Edit the system
environment variables” from the Windows Start Menu (Figure 5-19).

123

CHAPTER5 CONFIGURING WSL DISTROS

Environment Variables X
User variables for Hayden
Variable Value
OneDrive C\Users\Hayden\OneDrive
OneDriveConsumer C\Users\Hayden\OneDrive
Path C\Users\Hayden\AppData\Local\Microsoft\WindowsApps;
TEMP C:\Users\Hayden\AppData\Local\Temp
T™P C:\Users\Hayden\AppData\Local\Temp
New... Edit... Delete
System variables
Variable Value ~
ComSpec C:\Windows\system32\cmd.exe
DriverData C\Windows\System32\Drivers\DriverData
NUMBER_OF_PROCESSORS 4
0s Windows_NT
Path C:\Windows\system32;C:\Windows;C:\Windows\System32\Whbe...
PATHEXT JCOM;.EXE;.BAT;.CMD;.VBS;.VBE; JS; JSE;. WSF,.WSH;.MSC
PROCESSOR_ARCHITECTURE AMD64
PROCFSSOR IDENTIFIFR Intelfd Familv & Model 78 Stennina 3. Genuinelntel ~
New... Edit... Delete

Figure 5-19. Windows environment variables

Linux environment variables can be viewed with the printenv command (Figure 5-20).

124

CHAPTER5 CONFIGURING WSL DISTROS

D hayden@TTI0:/ < [- o x

hayden@T73@:/$ printenv | tail

¥DG_DATA_DIRS=/usr/local/share: fusr/share:/var/lib/snapd/desktop

SHELL=/bin/bash

TERM=xterm-256color

SHLVL=1

LOGNAME=hayden

PATH=/usr/lecal/sbin: /usr/local/bin: fusr/sbin: fusr/bin:/sbin:/bin: fusr/games: /usr/local/games: /mnt/c/Windo
ws/system32: /mnt/c/Windows: /mnt/c/Windows/Systen32/whben: /mnt/c/Windows/System32/WindowsPowershell/vl.o/f:/m
nt/c/Windows/Systen32/0pensSH/: /fent/c/Program Files/Google/Google Apps Sync/:/mnt/c/Program Files/Google/G
oogle Apps Migratien/:/mnt/c/Program Files (x86)/NVIDIA Corporation/PhysX/Common:/mnt/c/Program Files/Powe
rshell/7-preview/preview: /mnt/c/Program Files/dotnet/:/mnt/c/Users/Hayden/.nimble/bin:/mnt/c/Users/Hayden/
scoop/apps/gcc/current/bin: /mnt/c/Users/Hayden/scoop/shims: /mnt/c/users/Hayden/appData/Local/Microsoft/Win
dowsApps : /mnt/c/Users/Hayden/AppData/Local/Programs/Microsoft VS Code/bin:/mnt/c/Users/Hayden/AppData/Loca
1/GitHubDesktop/bin: /ant/c/Users/Hayden/.dotnet/tools:/snap/bin
WSLENV=WT_SESSION:BASH_ENV/u:WT_PROFILE_ID

LESSOPEN=| /usr/bin/lesspipe %s

WT_PROFILE_ID={2ctde342-38b7-51cf-bouUe~-2309a097f518}

_=/usr/bin/printenv

haydengT736: /%

Figure 5-20. Output of printenv on WSL showing Linux environment variables

Why is sharing environment variables between Windows and WSL useful? The same
reason WSL is generally useful, you get the best of both Linux and Windows. You might
also end up having a project you want to work on from both Linux and Windows. Let us
say you wanted to share a path, set as PATHTOPROJECT, from a WSL to Windows.

We define PATHTOPROJECT in WSL:

export PATHTOPROJECT="/project

Then add PATHTOPROJECT to WSLENV:
export WSLENV=PATHTOPROJECT/p

Now, switch to Windows and read it back:

cmd . exe
set PATHTOPROJECT

Windows will have PATHTOPROJECT as an environment variable (Figure 5-21).

Tip If you are setting DISPLAY to point WSL to an X server on Windows, you can
then export that DISPLAY variable to all other WSL distros with

export WSLENV=DISPLAY

125

CHAPTER5 CONFIGURING WSL DISTROS

O
X

6 CAWindows\system3Qemd.exe X | o W =

hayden@T738:~% export PATHTOPROJECT=~/project

hayden@T730:~% export WSLENV=PATHTOPROJECT/p

hayden@T730:~%$ cmd.exe

"\\ws1$\Ubuntu\home\hayden"'

CMD.EXE was started with the above path as the current directory.

UNC paths are not supported. Defaulting to Windows directory.

Microsoft Windows [Version 10.8.19642.5u1] 1
(c) 2020 Microsoft Corporation. All rights reserved.

C:\Windows>set PATHTOPROJECT
PATHTOPROJECT=\\ws1$\Ubuntu\home\hayden\project

C:\Windows>

Figure 5-21. Using WSLENYV to share environment variables between Windows
and WSL

WSLENV Flags

What is that /p? There are four flags to define handling of variables between Windows
and WSL:

/p - Translates a path between Windows and WSL paths, as
demonstrated earlier

/1 - Indicates a list of paths
Suppose you have several paths stored as a list in WSL:
export PROJECTLIST=/opt/projecti:/opt/project2/
To make this accessible in Windows, we would
export WSLENV=PROJECTLIST/1

/u - Shares the variable only from Windows to WSL

/w - Shares the variable only from WSL to Windows

Tip WSL variables are only propagated when executing a Windows command
from the WSL session through interop. Likewise, the inverse only occurs when
crossing the boundary in the other direction — be that via opening a new terminal
or executing a command with wsl.exe.

126

CHAPTER5 CONFIGURING WSL DISTROS

What if you already have something defined in WSLENV and do not want to overwrite
it, but instead append to it? In WSL, you would export that variable, adding one of the four
flags mentioned earlier as needed, and then append the existing SWSLENV as follows:

export WSLENV=PROJECTLIST/1:$WSLENV

Default User

When WSL “boots,” you will be running as the default user.
Here, you can set the default user:

[user]
default = root

The default built into WSL is root, but most distros, including Ubuntu, will create a
new user with sudo privileges on installation from the Microsoft Store and set it as the
default user.

Boot

Speaking of boot, beginning in Windows 10 build 21286, the ability to run startup
commands was added to WSL:

[boot]

command = <string»
For example:

[boot]

command = apt update && apt upgrade -y

This brand-new feature, as of writing this book, unlocks new potential for running
tasks at WSL “boot” time. This can replace clunky scripts previously stored in ~/.bashrc
or /etc/profile. The commands are executed as root, allowing high-level changes to the
environment. These commands are only run when the WSL is manually launched from
the Start Menu or Windows Terminal, so it does not replace the ability to use a Windows
Service to run WSL tasks in the background or automate tasks on WSL using Windows
Task Scheduler, but it does complement those.

127

CHAPTER 6

Configuring WSL 2

WSL 2 brings several new settings to WSL because of its architecture. As a lightweight
VM, some of these settings may be familiar to users of other virtualization software, such
as Hyper-V or VirtualBox, where you can define the amount of memory or processors for
a specific VM. In WSL 2, you can define these parameters for the WSL 2 environment.
The following settings require WSL 2 and are available in Windows 10 build 18980 or
higher.

.wslconfig

WSL 2-specific settings are defined in a separate file. It is located in your Windows user
home folder in a file named .wslconfig. The settings are global for all WSL 2 distros,
unlike /etc/wsl.conf, which are distinct for each WSL distro. If this file does not exist,
then the defaults for WSL 2 are applied. So, in general, you only need this file if you wish
to override the default WSL 2 settings.

Kernel

WSL 2 ships with a kernel that is stored in Windows 10 at %SystemRoot%\system32\1xss\
tools\kernel and is updated through Windows Update automatically or manually with

wsl.exe --update

This is the officially supported kernel for WSL 2 from Microsoft, which contains a
handful of optimizations specifically for WSL 2, such as memory compaction discussed
in the “Page Reporting” section.

It is, however, possible to replace this kernel with your own kernel, using kernel=in
.wslconfig. I would recommend one built and modified from the official WSL 2 kernel,
which carries over the optimizations Microsoft has made. However, it is possible to

129
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_6

https://doi.org/10.1007/978-1-4842-6873-5_6#DOI

CHAPTER6 CONFIGURING WSL 2

take most common Linux kernels and use one here. Note, though, if you do not use
the official WSL 2 kernel, you may lose some of those WSL-specific optimizations. The
good news is that the WSL 2 kernel is open source, available at https://github.com/
microsoft/WSL2-Linux-Kernel, and can be easily tailored to your needs, if the default,
for example, doesn't contain support for a specific file system or other kernel features.
Note that adding kernel drivers to the WSL 2 kernel will not necessarily enable support
for that hardware in WSL 2, which is still contained in a lightweight virtualization
container. In other words, even with certain hardware drivers, the kernel cannot “see”
those devices.

WSL 2 will default to the built-in kernel. You only need to specify a kernel here if you
wish to override this default:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage

Note that the path to the kernel must be absolute, so you should avoid using
environmental variables here. You should also use escaped backslashes \\ in your path

to the compiled kernel.

Tip bzImage is the commonly used filename for a compressed Linux kernel.
You may also see kernel files in their commonly used uncompressed filename
vmlinux. WSL 2 can boot either.

Kernel Command Line

The kernel command line is a way to configure advanced elements of the Linux kernel,
such as enabling specific security features like AppArmor, debugging features, or

tuning driver options. Because WSL 2 operates in a VM, some of those driver options

are limited regarding hardware (which WSL 2 cannot directly reach from inside the
lightweight Hyper-V container), but optimizations regarding threading, syscall handling,
networking, and use of a RAM disk are available. The available options will depend on
what is enabled in the kernel, either built-in or added as a module.

130

https://github.com/microsoft/WSL2-Linux-Kernel
https://github.com/microsoft/WSL2-Linux-Kernel

CHAPTER6 CONFIGURING WSL 2

By default, the built-in command line options will load the default kernel and init.
You only need to specify a kernelCommandLine= to set additional kernel parameters, for
example, vsyscall=emulate, to support older Linux distributions:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate

Quotes around the Linux command line are not required; simply type the command
line you wish to pass after the =.

Processors

WSL 2 will take advantage of all available cores on your computer’s processor. Most
consumer- and office-grade computers have one processor with between 4 and 8 cores.
This is sufficient for most use cases, even compiling and debugging software. However,
some high-performance workstations intended for AI/ML, CAD, or video rendering have
as many as 16 or 32 cores per processor and can support multiple processors, such as the
Lenovo ThinkStation P900 series. Recent high-end AMD Ryzen Threadripper-branded
processors have as many as 64 cores. Regardless of whether you have 4 or 32 cores, you
can configure WSL 2 to balance core usage against other tasks you might be running.

You can see the number of cores your device has on the Performance tab of Windows
Task Manager (Figure 6-1).

131

CHAPTER6 CONFIGURING WSL 2

17 Task Manager — a X
Eile Options View

Processes Performance App history Startup Users Details Services

O cpu = ,
S CPU intel(R) Core(TM) i7-9700K CPU @ 3.60GHz
% Utilization 100%
O Memory
8.2/31.9 GB (26%)
O Disk 0 (C)
ssD —— =
2% s = —— -
60 seconds
O Disk1 (Y3 Utilization Speed Base speed: 3.60 GHz
HDD praee
i 15% 380GHz S '
Cores: 8
" . Processes Threads Handles Logical processors: 8
e %‘gk i 238 3118 116805 Virtualization: Enabled
0% L1 cache: 512K8B
tptime L2 cache: 2.0MB
O Ethernet 1:03:19:51 L3 cache: 12.0MB
Ethernet v

“) Fewer details @OpenRescurceMonitcr

Figure 6-1. Viewing the number of CPUs and cores in Windows Task Manager

WSL 2 will default to using all the cores available on the Windows device.

You can limit the number of cores that WSL 2 utilizes with processors=, such as
if you wish to assign a specific number of cores to WSL and keep the others free for
Windows-based tasks.

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
processors=4

You can see here in Figure 6-2 on the same system used in Figure 6-1, with 8 cores,
we have limited the number of cores in WSL to 4 with processors= and confirmed
(after a wsl.exe --shutdown and reopening Ubuntu) by grepping /proc/cpuinfo.

132

CHAPTER6 CONFIGURING WSL 2

O hayden@TT30:/ x [- o

hayden@T736:/$ cat /mnt/c/Users/Hayden/.wslconfig
[ws12]

kernel=C:\\Users\\Hayden\\vmLlinux

precessors=u

hayden@T738: /% grep processor /proc/cpuinfo
processor =8

precessor .
processor
processor
hayden@T738: /%

WM e

Figure 6-2. Limiting the number of available cores to 4 with .wslconfig and
confirming with grep processor /proc/cpuinfo

Memory

WSL 2 automatically assigns memory to the WSL distro as needed and reclaims it as it
is freed from tasks. Beginning in Windows build 20175, WSL 2 will default to assigning
up to 50% of your available RAM or 8 GB, whichever is less. This means if you are in a
workstation with 32 GB of RAM and you want to make 16 GB available to WSL 2, you will
need to set the memory= option in .wslconfig. Doing this will maximize the amount of
performance you can get from your workstation and WSL.

Conversely, if you are on a low-resource machine, you may want to restrict the RAM
usage even further. A small shell and some terminal tasks are very usable at just 1 GB
of RAM on a low-power machine. Note, though, applications like GUI apps, developing
with larger frameworks such as NodeJS or large compilation tasks, may slow down
significantly or even fail with such a small amount of RAM. If you are going to compile
Chromium from source, you need at least 4 GB of RAM.

[wsl2]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
processors=4

memoxy=12GB

Memory is set as gigabytes or megabytes as whole number integers followed by GB or
MB, respectively.

133

CHAPTER6 CONFIGURING WSL 2

Swap

Swap storage is disk-based random access memory (RAM) the WSL distro utilizes when
demand for memory exceeds the available hardware RAM, either because of setting the
memory= option too low or the hardware limitations of the Windows device.

WSL 2 will default the swap file size to 25% of the available RAM of the Windows
device, rounded up to the nearest whole GB. To adjust the size of the swap space, set
swap= in .wslconfig:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=6GB

Swap is set as gigabytes or megabytes as whole number integers followed by GB or MB,
respectively.

If you are performing RAM-intensive tasks, such as compiling Chromium from
source, you may need additional swap space as your available hardware RAM is
consumed. This may also be necessary on devices with lower amounts of RAM, such as
under 8 GB. Note that swap space, because it is written to disk, is inherently slower than
hardware RAM. However, it can solve problems when you are out of available hardware
RAM. You can also disable swap on WSL 2 by setting this value to zero; however, this
is generally not advised, and doing so may cause out of memory problems in some
applications. On the other hand, if you are doing Kubernetes-related development,
where swap is not yet supported, you may wish to disable swap to better emulate your
deployment environment. This is done by setting swap=0:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=0

134

CHAPTER6 CONFIGURING WSL 2

Swap File

WSL 2 will default to storing your swap file at ZJUSERPROFILE%\AppData\Local\Temp\
swap.vhdx.

WSL 2 automatically creates this file; there is no need to create it manually. However,
you can specify where you would like the swap to be stored if necessary, with the
swapfile=location.

Like the kernel path, this too must be absolute and use escaped backslashes:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

Page Reporting

WSL 2 will default to freeing unused memory by the WSL distro and returning it back to
Windows. This feature relies on a patch in the WSL 2 kernel from Microsoft. This is why
I recommend building a custom kernel from the official WSL 2 kernel sources, so those
patches come over to your custom kernel.

The Linux kernel allocates available memory into pages, which it then maps to
running processes. An APl in the Linux kernel can, when running as a guest such as in
WSL 2, report to the host hypervisor when pages of memory are no longer being used.
This enables WSL to reclaim that memory and move it back to the pool of available
memory in Windows where it can be reused by Windows applications or taken up again
by another WSL process.

This only occurs when the CPU is near idle. You can see this in action when you
enable the debug console (Figure 6-3). For more on the debug console, read the
following.

135

CHAPTER6 CONFIGURING WSL 2

B WSL Debug Console - a X

[1.464331] init: (1) ERROR: MountPlan9wWithRetry:285: mount drvfs on /mnt/d (cache=mmap,noatime
,Msize=262144,trans=virtio,aname=drvfs;path=D:\;uid=-1000;gid=100@; symlinkroot=/mnt/
[1.464332]) failed: 13
[1.7€4349] IPv6: ADDRCONF(NETDEV_CHANGE): eth@: link becomes ready

49.509085] hv_balloon: Max. dynamic memory size: 8192 MB

122.€31179] WSL2: Performing memory compaction.

663.871665] WSL2: Performing memory compaction.

732.880767] WSL2: Performing memory compaction.

793.€91924] WSL2: Performing memory compaction.

855.113498] WSL2: Performing memory compaction.

916.126019] WSL2: Performing memory compaction.

977.135087] WSL2: Performing memory compaction.

>

Figure 6-3. Viewing the WSL 2 debug console

You can manually trigger memory compaction in WSL with the following as root:
echo 1 | sudo tee /proc/sys/vm/compact memory

You can disable the Page Reporting feature so that WSL retains all the memory it has
claimed from Windows without releasing any back when it is freed in WSL:

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx
localhostforwarding=true
pageReporting=false

Localhost Forwarding

WSL 2 will default to making connections bound to localhost in the WSL 2 environment
available to Windows, also on localhost. This is like the network handling in WSL 1. The
difference being in WSL 1 is that there is no separate network stack; there is just localhost.
In WSL 2, the WSL distro is networked on a virtual subnet with NAT and configured with
DHCP. This can make some networking configuration trickier. However, with localhost
forwarding, you can mimic most of that WSL 1 network experience in WSL 2.

136

CHAPTER6 CONFIGURING WSL 2

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx
localhostforwarding=true

Nested Virtualization

Nested virtualization allows you to run virtual machines (VMs) inside of WSL 2, most
commonly using KVM, the native virtualization tooling built into the Linux kernel. It
specifically allows the needed processor extensions for virtualization to pass through

to the lightweight virtualization container that WSL 2 runs in and makes them available
to the kernel there to then run other virtual machines, hence “nested.” This was my first
request of the WSL team when I first learned of WSL 2, because it allows the creation of
Linux VMs, from different distros, and even other operating systems, such as Windows,
Haiku, BSDs, and legacy operating systems. Because this is one of my favorite features, I
will go more in depth about it in Chapter 8 “Going Further with WSL 2.”

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx
localhostforwarding=true
nestedVirtualization=true

Nested virtualization requires at least Windows 10 build 19645 and is enabled by
default as of build 20175.

137

CHAPTER6 CONFIGURING WSL 2

Debug Console

When WSL 2 boots the kernel, where are those logs? How do you debug the kernel and
kernel command line issues? With the debugging console. Debug console provides a
window in which kernel messages are printed. It is spawned each time the WSL 2 kernel
is loaded. Having this enabled will also tell you how often the kernel gets reloaded and
when, in some surprising circumstances, it is, for example, when opening File Explorer if
you have WSL folders mounted.

This is particularly useful when building and testing your own kernel. You can
monitor this and watch memory compaction at work (Figure 6-4). If a large WSL 2 task is
stalling, you can check debug to see if perhaps you've run out of RAM and need to assign
more or add swap space.

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
kernelCommandLine= vsyscall=emulate
memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx
localhostforwarding=true
nestedVirtualization=true
debugConsole=true

138

CHAPTER6 CONFIGURING WSL 2

%1 WSL Debug Console - o X

-~
562026] hv_pci d84f1991-8818-4307-bc7a-a95280f7719d: PCI VMBus probing: Using version @x10e82
562786] 9pnet_virtio: no channels available for device drvfs

566977] WARNING: mount: waiting for virtio device...

600456] hv_pci d84f1991-e818-4307-bc7a-a95280f7719d: PCI host bridge to bus bc7a:ee

682991] pci_bus bc7a:008: root bus resource [mem Bxed0004008-0xe00006fFf window]

685798] pci bc7a:00:00.8: [1af4:1849] type 8@ class @x@10660

688535] pci bc7a:00:80.8: reg 8x18: [mem DxedB804000-BxelOBRAffT 64bit]
611855] pci bc7a:00:00.9: reg x18: [mem Oxe@0005000-0xe@0885fff 64bit]
613644] pci bc73:00:00.9: reg 8x20: [mem Oxed0006000-0xc@eed6fff 64bit]
617989] pci bc7a:00:00.8: BAR 8: assigned [mem exc00084800-8xcdoeedfff 64bit]
628783] pci bc7a:008:00.8: BAR 2: assigned [mem Oxef8005000-0xed00esfff 64bit]

623294] pci bc7a:@09:80.8: BAR 4: assigned [mem 8xe00086080-8xe80006TFf 64bit]

654245] IPv6: ADDRCONF(NETDEV_CHANGE): eth®: link becomes ready

672456] hv_pci 2b8fd587-6a88-483f-8331-f5d11386b17c: PCI VMBus probing: Using version @x10062
711299] hv_pci 2b8fd587-6a88-403f-8331-f5d11386b17c: PCI host bridge to bus 8331:e8

713912] pci_bus 8331:00: root bus resource [mem 6xefOPe8008-oxepoddafff window]

716687] pci 8331:80:00.8: [1af4:1849] type 80 class BxP1eess

719399] pci 8331:00:00.9: reg 8x10: [mem OxefO805000-0xe@080ETTf 64bit]

722889] pci 8331:00:00.8: reg 9x18: [mem Oxe@0009000-0xed080offf 64bit]

.724168] init: (1) ERROR: MountPlandWithRetry:285: mount drvfs on /mnt/d (cache-mmap,ncatime,msize=-26214
|, trans=virtio,aname«drvfs;path«D:\;uid=1006;gid=1000; symlinkroot=/mnt/

724170]) failed: 13

724628] pci 8331:00:00.8: reg 8x20: [mem DxedB80aPOD-BxedBBBafff 64bit]

735388] pci 8331:00:90.8: BAR 8: assigned [mem ©xeB8008000-8xe@0008Tff 64bit]

738844] pci 8331:00:00.9: BAR 2: assigned [mem 8xc80009000-8xcdpeeofff 64bit]

740886] pci 8331:00:00.8: BAR 4: assigned [mem @xc0000a00e-8xedeedafff 64bit]

514446] hv_balloon: Max. dynamic memory size: 8192 MB

886124] WsL2: Performing memory compaction.

B b e e b B b e R S

RO

o b

Figure 6-4. Observing WSL 2 memory compaction on the WSL debug console

Tips
When editing .wslconfig, you must shut down the WSL 2 environment for settings to

take.
You can do this with wsl.exe --shutdown.

N Windcows PowerShell X = a x

Windows PowersShell
Copyright (C) Microsoft Corporation. ALl rights reserved.

Install the latest PowerShell for new features and improvements! https://aka.ms/PSWindows
PS C:\Users\Hayden> notepad.exe .wslconfig

PS C:\Users\Hayden> wsl.exe --shutdown
PS C:\Users\Hayden>

Figure 6-5. Shutting down WSL from PowerShell using wsl.exe --shutdown

While it is possible to edit WSL config from WSL, you should convert the line endings
to CRLF Windows-style line endings.

If you create the file with notepad.exe, then nano and other editors should preserve
the CRLF Windows-style line endings.

139

CHAPTER6 CONFIGURING WSL 2

E¥ Windows PowerShell X Ch hayden@T730-DEV: /mnt/c/Use * + " = O b4
GNU nano 4.8 .wslconfig
[ws12]

debugConsole=false

[Read 2 lines (Converted from DOS format)]
¢ Get Help [d¢ Write Out Wl Where Is Q8 Cut Text [Justify [d& Cur Pos
Exit Read File gl Replace [l Paste Textjg] To Spell [Go To Line

Figure 6-6. Editing .wslconfig in nano. Note the “Converted from DOS format”
message

You can also easily switch back and forth between line ending styles in VS Code by
clicking CRLF or LF in the status bar of Microsoft VS Code.

) File Edit Selection View Go --- wslconfig - Visual Studio ..

= .wslco | elect End of Lin

LF
CRLF

Ln3,Col1 Spaces:4 UTF-8 CRLF PlainTet & 0

Figure 6-7. Switching between Linux LF line endings and Windows CRLF line
endings in VS Code

140

CHAPTER6 CONFIGURING WSL 2

WSL Registry Settings

It is possible to configure some WSL settings from the Windows Registry. I would
recommend using the settings available from wsl.exe, .wslconfig, and wsl.conf before
using the registry. However, in a pinch, it can suffice. All the requisite warnings regarding
editing your registry go here as well.

WSL-related settings are found at

\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Lxss

B Registry Editor - 0 X
File Edit View Favorites Help
(cmpul!f\HKE\"_CURRENI_Ll::r\\ M ft\Wind C i XS5
ImmersiveShell A || Name Type Data
:"m“sem". 3 (Default) REG_SZ (value not set)
L"“:‘;: Settings at) DefaultDistribution REG.SZ (dee20666-bab3-45d-a84b-fb8TT5d88 1a)
Tt 48| DefaultVersion REG_DWORD 0<00000002 (2)

{66 cb00-ccT3-4034-28¢d-T0FL
{dee2f666-bab3-4f5d-a%4b-fbaT

Mobility

Netifications

PenWorkspace

Policies

PrecisionTouchPad

Privacy

PushNetifications

Figure 6-8. Viewing WSL distributions in the Windows Registry

DefaultDistribution contains the GUID of your default WSL distro.

DefaultVersion contains the default version of WSL, either 1 or 2.

Each WSL distro installed is then listed by GUID, which resembles {66dfcb00-cc73-
4054-a9cd-7014149c8209}.

i Registry Editor = o e
File Edit View Favorites Help
Computer\HKEY_CURRENT_USERY! i 2\ i {dee2f666-babd-4f5d- a54b-fb3T75085F 1a)
ImmersiveShell Al Mame Type Data
Iekaltsariice %) {Default) REG_SZ (value not se)
L:‘::;t,s;:mgi 28] BasePath REG_SZ CA\Users\Hayden\AppDatalLocal\Packages\CananicalGre]
X i ab) DefaultEnvirenment REG_MULT_SZ HOSTTYPE=x86_64 LANG=en_US.UTF-8 PATH= fusr/local’|
(661cb0-ceT-A054 a0cd-P41a5ca209) || PADSSoultid REG_DWORD OxO000038 (1000)
(dee2i666-bab3-4f5d-204b-b8775d88fa) || - DistributionName REG_SZ Ubuntu
Mobility 54 Flags REG_DWORD O O00D000F (15)
Metifications 5] KernelCommandLine REG_SZ BOOT_IMAGE=/kemel init=/mit
PenWorkspace 35| PackageFamityName REG_SZ CanonicalGroupLimited UbuntuonWindaws_TSrhkp 1 fndgl
Policies #2|State REG_DWORD 00000001 (1)
PrecisionTouchPad T Version REG_DWORD 00000002 (2)
Privacy
PushMNetifications -
< > < >

Figure 6-9. Viewing individual WSL distribution settings in the Windows Registry

141

CHAPTER6 CONFIGURING WSL 2

Each distro will have a BasePath containing the location of the WSL distro installed,
aDistributionName, and Version, either WSL 1 or 2.

Distros installed from the Microsoft Store will have more details stored in the
registry.

Distros installed manually, with wsl.exe --import, will have fewer details
(Figure 6-10).

[Registry Editor - c % |
File Edit View Favorites Help
< {KEV_CURRENT_ Microsoft\Wind fersion Lxss) T3-4054-29¢d- T0F4149¢E209}
ImmersiveShell A || Mame Type Data
:m.llSu:: 2] (Default) REG_SZ (value not set)
Lm;n: ings b BasePath REG_SZ WACAWSL\UbuntuMinimal
reen
I L:’; - | Defaultlid REG_DWORD 000000000 (0)
3] Di i -Mini
{66lfcb00-ccT3-4054-a8cd-P0A4149c209) || Emm i :G':,Z O ibwum M'r.';m
{dee2f666-bat3-25d-a0db-1b87T5dEe 1) || PTI98 . owoRD s
Mobiliy 4| Seate REG_DWORD 00000001 (1)
Notifcations 4] Version REG_DWORD (00000002 (2)
PenWorkspace
Policies
PrecisionTouchPad
Privacy
PushNotifications

nnnnn Y
< » ||« >

Figure 6-10. Viewing the individual WSL distribution settings of a manually
installed distro in Windows Registry

Again, it is generally not recommended that you edit these values manually. Doing
so while the WSL distro is running could leave the distro in an unstable state, and this
could cause data loss.

However, since you are reading this book and reading about Windows Registry
settings, you probably understand the risk here, and seeing some of these values, you
may think of something you might want to tweak. Go for it. Just make sure you keep
backups.

142

CHAPTER 7

Customizing WSL

Now that you know the architecture of WSL and are familiar with setting it up and
configuring it, let us talk about some things you can do to customize WSL.

Using Graphical Applications with X

Official support for installing graphical Linux applications on WSL, called WSLg, is currently
in preview in the Windows Insider Dev Channel and to be released in versions of Windows
later. It is possible to use graphical Linux applications on WSL in released versions of
Windows today, though. For now, it requires a third-party X server running on Windows and
a bit of configuration to point the WSL distro at the X server on the Windows side.

If you install graphical applications in your WSL distro, they will often bring in the
distro’s X server as a dependency, but we are not actually using that X server. Instead,
we will be forwarding the X output from each application to the X server running on
Windows over a local port.

Install an X Server on Windows

First, you will need to select and install an X server on Windows. Any of the following

should work:
e VcXsrv
e X410
o Xmanager
e Xming
o Cygwin/X

¢ MobaXterm

143
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_7

https://doi.org/10.1007/978-1-4842-6873-5_7#DOI

CHAPTER 7 CUSTOMIZING WSL

The two most common X servers you will find in the WSL community are X410 and
VcXsrv. VeXsrv is free, open source, and built from the upstream Xorg code base. It can
be slightly more challenging to get running correctly, though. X410 is paid and only
available through the Microsoft Store, but it is nicely polished and requires less manual

configuration.
| Microsoft Store - o X |
& Home Gaming Entertainment Productivity Deals O Search o
SAVE $40.00
X410
Choung Networks = Developer tools
2 Share

X410 is an X Window server for Windows 10. When you want to use X Window GUI apps
on remote servers, simply run X410 and connect to your server via SSH with X11
forwarding. Once connected, just launch your GUI app from the command prompt; it'll

More

B

X410
Buy as gift
B EVERYONE <2 Wish list
ESRB

Overview System Requirements Reviews Related

Figure 7-1. Microsoft Store listing for X410, a Windows X server

144

CHAPTER 7 CUSTOMIZING WSL

SOURCEFORGE
Open Source Software. Business Software Resources

I VeXsrv Windows X Server

VcXsrv Windows X Server

Brought to you by:

' 0. 0. 0. 9.1 Downloads: Last Update:

Download Share This

Files Reviews Support Wiki Tickets = Discussion Code
Windows X-server based on the xorg git sources (like xming or cygwin's xwin), but compiled with Visual C++ 2012 Express Edition. Source code
can also be compiled with V52008, V52008 Express Edition and V52010 Express Edition, although current project and makefile are not fully

compatible anymore.

Versions starting from 1.14.3.0 are not compatible with Windows XP anymore.

Features

* NSEerver

Figure 7-2. VcXsrv project page on SourceForge.net, a Windows X server

Configure WSL to Forward X to Your Windows X Server

Once your X server is installed and running on Windows, you will need to forward your
distro’s X output to the X server on Windows.
This is very straightforward in WSL 1:

export DISPLAY=127.0.0.1:0.0

In WSL 2, we must forward to the IP address of our host Windows environment. We can
grab this IP address from the DNS settings that WSL has configured in /etc/resolv. conf:

export DISPLAY=$(awk '/nameserver/ {print $2}' /etc/resolv.conf 2>/dev/null):0

If you have overridden the autogeneration of resolv.conf in wsl.conf, it may not be
updated with your host Windows environment IP address; in this case, you will need to
script a way to grab that from your Windows system, such as

export DISPLAY= $ (powershell.exe -c "(Get-NetIPAddress -InterfaceAlias
"fwsl*' -AddressFamily IPv4).ipaddress + ':0.0'")

145

CHAPTER 7 CUSTOMIZING WSL

If you intend to run GUI applications on a regular basis, you should place this
command in your .bashrec file, or in Windows 10 builds 21286 or higher, as a [boot]
command option in /etc/wsl.conf. Read the following for more on the .bashrc file if
you're not familiar.

If the GUI application you are running offers libGL graphics acceleration, you should
also set the following, which will offload the rendering from WSL to your Windows-side
X server:

export LIBGL ALWAYS INDIRECT=1

This will accelerate rendering of OpenGL 1.4 and older graphics.

WSL 2, GUI Apps, and Windows Firewall

On WSL 2, you will need to open access in your Windows Firewall for the Windows-side
X server.

In X410, right-click the tray icon, select “Allow Public Access,” check “Public
networks” on the Windows Firewall prompt, and then restart X410.

© & Windowed Apps
Floating Desktop
il 4 Full Desktop (CTRL+ALT+BACKSPACE)

DPI Scaling >
Shared Clipboard >
Miscellaneous Options >

- Allow Public Access

:_ About
PO it
| | 'l‘: 0 L.! r" r
o W
[. ‘l. ;l‘ \... i
= e 2:42PM
=D 600 B

Figure 7-3. Allowing public access to enable X410 on WSL 2

146

CHAPTER 7 CUSTOMIZING WSL

@ Windows Security Alert X

@ Windows Defender Firewall has blocked some features of this
app

Windows Defender Firewall has blocked some features of x410 on all public and private

networks.
@ Name: x410
Publisher: Unknown
Path: C:\program files\windowsapps

\choungnetworksus.x410_2.8.2.0_x64__vvzc8y2tzcnsr
L A1ALAIN A

Allow x410 to communicate on these networks:
[] private networks, such as my home or work network

[#] Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing an app through a firewall?

Figure 7-4. Check “Public networks” on the Windows Firewall prompt to enable
X410 on WSL 2

In VcXsrv, check “Disable access control” when configuring XLaunch and, like X410,
check “Public networks” on the Windows Firewall prompt.

147

CHAPTER 7 CUSTOMIZING WSL

Extra settings X

Extra settings

[V Clipboard
Start the integrated clipboard manager
[V Primary Selection
Also map the PRIMARY selection to the windows clipboard.
[V Native opengl
Use the native windows opengl library (wgl). Make sure to export the
LIBGL_ALWAYS_INDIRECT environment variable.
[Disable access control
Use this when you want vcxsrv to accept connections from all clients.

Addttional parameters for VicXsrv

< Back Next > Cancel |

Figure 7-5. Check “Disable access control” in VcXsrv settings to enable VcXsrv on
WSL 2

148

CHAPTER 7 CUSTOMIZING WSL

@ Windows Security Alert X

@ Windows Defender Firewall has blocked some features of this
app

Windows Defender Firewall has blocked some features of VcXsrv windows xserver on all public

and private networks.
Name: VcXsrv windows xserver
Publisher: Unknown
Path: C:\program files\vexsrv\vexsrv.exe

Allow VeXsrv windows xserver to communicate on these networks:
Private networks, such as my home or work network

Public networks, such as those in airports and coffee shops (not recommended
because these networks often have little or no security)

What are the risks of allowing an app through a firewall?

Figure 7-6. Check “Public networks” on the Windows Firewall prompt to enable
VeXsrv on WSL 2

You may ask yourself, isn’t opening a service in my firewall on public networks a
security risk? Absolutely it is.

There are two things you can do about this. Never use a GUI app when connected
to a public network, like at a café or on an airplane. Alternatively, you can configure a
Windows Firewall rule that limits your exposure by only allowing TCP public access to
your X server from your local WSL distro’s subnet.

From WSL, open your advanced Windows Firewall settings:

cmd.exe /C wf.msc

149

CHAPTER 7 CUSTOMIZING WSL

File Action View Help

| m 2

@ Windows Defender Firewall wit]
Inbound Rules
&3 Outbound Rules
%% Connection Security Rules
> B Monitoring

0 Wmdows Defender Firewall with Advanced Security

Inbound Rules

Name " Profile Er~
xa10 Public Ve
@ xa10 Private Ve
@ x410 Private Ye
®
9 @FirewallAPI.dIl,-20201
@ @FirewzlIAPI.dIl,-80206 All Yz
0 Skype All Ye
@ Skype Al Ye
@ Alloyn Router (TCP-In) Domai... Ye
@ Allloyn Router (UDP-In) Domai... Ye
@ App Installer Domai... Ye
BranchCache Content Retrieval (HTTP-In) All N
BranchCache Hosted Cache Server (HTTP... All N
BranchCache Peer Discovery (WSD-In) All N
@ Cast to Device functionality (qWave-TCP... Private... Ve
€ Cast to Device functionality (qWave-UDP... Private.. Ye
@ Cast to Device SSDP Discovery (UDP-In) Public Ve
@ Cast to Device streaming server (HTTP-St... Public Ye
Private Ye Y

Cast to Device streamina server (HTTP-St...
< >

Actions

Inbound Rules

&3 NewRule..

7 Filter by Profile

W Filter by State

7 Filter by Group
View

G Refresh

|5 Export List...

Help

x410

v v w w

& Disable Rule
& Cut

52 Copy

K Delete
Properties
Help

Figure 7-7. Locating your Windows X server, in this case X410, in Windows

Firewall settings

In the “Inbound Rules” tab, find your X server in the list of applications. There will

be rules for public and private networks and TCP and UDP protocols. We are editing the

public network TCP protocol rule.

Inbound Rules

Name
Y x410

9 x410
& xa10

) x410

Profile Enabled
Public Yes
Private Yes
Private Yes
Public Yes

Action Override
Block No
Allow No
Allow No
Block No

F
(
(
(
(

Figure 7-8. Locating “public” inbound Firewall rules for our Windows X server, in

this case X410

150

CHAPTER 7 CUSTOMIZING WSL

You may have to scroll over to the “Protocol” column to see the TCP/UDP distinction.

Inbound Rules

rerride Program Local Address Remote Address Protocol Local Port Remo »
> Ci\progr... Any Any ubpP Any Any
) C\progr... Any Any upp Any Any
Any

C\progr... Any
C:\progr... 172.16.0.0/12

Figure 7-9. Locating the “public” TCP inbound Firewall rule for our Windows X
server

Open the public TCP inbound rule for your X server by right-clicking and selecting

“Properties.”
Under “General,” select “Allow the connection.”

%410 Properties X

Protocols and Pots Scope Advanced Local Principals Remote Users
General Programs and Services Remote Computers

General

q Name:
[x410 |
Description:

x410

[Enabled
Action
~34 (@ Alow the connection
ﬁ @ (O Allow the connection if it is secure

o - .
Lusiomize

(O Block the connection

Figure 7-10. Allowing the inbound connection on the “public” TCP inbound
Firewall rule

151

CHAPTER 7 CUSTOMIZING WSL

Next, go to the “Protocols and Ports” tab, set “Protocol type” to “TCP,” and in “Local
port” select “Specific Ports” and enter port 6000.

% 1

x410 Properties
General Programs and Services Remote Computers
Protocols and Pots ~ Scope Advanced Local Principals Remote Users
Protocols and ports
| s Protocol type: Tep v I
Protocol number: 6=
Local port: Specific Ports v
(6000
Example: 80, 443, 5000-5010
Remote port: Al Ports B

Example: 80. 443, 5000-5010

Intemet Control Message Protocol
(ICMP) settings:

Figure 7-11. Limiting the inbound connection on the “public” TCP inbound
Firewall rule to the X port, port 6000

Go to the “Scope” tab, select “These IP addresses” » “Add...,” and paste in

172.16.0.0/12.
172.16.0.0/12 is the range of the WSL virtual subnet.

152

x410 Properties

General Programs and Services

CHAPTER 7 CUSTOMIZING WSL

X

Remote Computers

Protocols and Pots ~ Scope Advanced Local Principals ~ Remote Users |

Local IP address
| ™ IP address
=T O Any
= ® These IP addresses:

172.16.0.0/12

Remote IP address
B @ AnyIP address
"5
(O These IP addresses:

Figure 7-12. Limiting the inbound connection on the “public” TCP inbound
Firewall rule to the IP address range of the WSL virtual subnet

Click “OK” and “Apply.”

Finally, you can set or leave the public UDP rule for your X server as “Block the

connection,” as the X protocol does not normally use UDP.

Your X server is now more secure.

Install a GUI Application

Once the X server is installed, firewall ports are open for WSL 2, and we have configured

redirection for the WSL distro, it is time to install a GUI application. This will likely bring

in several Xorg-related dependencies, including an X server, but we will not be running

the X server from the WSL distro:

sudo apt -y install synaptic

If everything is configured correctly, you should be able to run your GUI application

now:

sudo synaptic

153

CHAPTER 7 CUSTOMIZING WSL

B Syraptic Package Manages
File Edit Package Settings Help
&) @
Reload Mark All Upgrades

tnstalled Version Latest Version Deseription
Amatewr Radic [universe)
Communication
X
Communication luniversel

haydengT738:~% sudo synaptic Cross Platform
Croas Platform (deps-r1d)
Crozs Platform (multiverse)
Cross Platform (universel
Catabases

0.0.23.1-4ubuntu3 Real-time strategy game of ancient warfare

0.0.23.1-1 Real-time strategy game of ancient warfare (data files)
0.0.23.1-1 Real-time strategy game of ancient warfare (comman data
2.15.1-1 eross-distribution packaging system

21521 cross-distribution packaging system [non-GUI parts]

081 Open Free Flasco Firmware Flasher

0.1.6-2buildl mathematics based puzzle game

431 Ping utility to determine directional packet loss
3.8.2-0ubuntuz 2103 binary using python3

O raysenoTIae - |4

oOOooO0OO00000 -

Catabases {universe]
Dobug
ebug (deps-r1d)
Debug imultiverse)
Debug (universe)
Development
Develcoment [dees-r1d]
Sections

Figure 7-13. Synaptic, a simple GUI package manager for Ubuntu, Debian, and
other apt-based Linux distributions

Debugging GUI Applications

The most common error encountered when trying to run GUI applications on WSL 2

is something like “cannot open display:” or “Unable to init server: Could not connect:
Connection refused”. This is because your WSL distro cannot connect to your Windows
environment X server.

O hayden@T730: ~ ¥ [N2 = o %

hayden@T730:~$ gedit
Unable to init server: Could not connect: Connection refused

(gedit:672): Gtk-WARNING %%: 14:35:36.238: cannot open display:
hayden@T730:~%

Figure 7-14. An example of a GUI app failing to start because it cannot open the
display

154

CHAPTER 7 CUSTOMIZING WSL

Checklist:
e Xserverinstalled, such as VcXsrv or X410
e Xserver running - check your tray area

o DISPLAY variable set properly depending on whether you are
running WSL 1 or WSL 2

dbus

Occasionally a Linux GUI application will not launch because it cannot reach the bus.
dbus is a device messaging service for the Linux desktop. If X is properly configured
and you can run other GUI applications, but one application is failing, it may be worth
trying to set up and configure dbus, particularly if you see dbus mentioned in the error
message.

Install dbus as you would any other Linux package:

sudo apt install dbus-x11

Generate a dbus device ID, which you will only need to do once per WSL distro

installation:
sudo dbus-uuidgen -ensure
Then run dbus-1aunch before starting your GUI application:

dbus-launch --exit-with-x11

Rolling Your Own init System

WSL does not have a traditional init like SysVinit, systemd-init, or OpenRC. It does
have an init program that handles some basic tasks, like Windows interoperability, file
sharing, and networking. But it does not start services, nor is it addressable by most
Linux applications looking for an init.

If you would like to start services every time WSL is opened, you have two basic
options. You may script it as part of the shell, or you may run a command using Windows
Task Scheduler.

155

CHAPTER 7 CUSTOMIZING WSL

.bashrc

Adding shell commands to your bash config file is the simplest way to automate
commands that you want to run on each launch. Bash will execute this file every time a
new window is opened, either in the traditional console or in the new Windows Terminal.
.bashrc is a good place to set environmental variables, such as the display variable
for using an external X server (Figure 7-15).
It usually contains some boilerplate configuration set by your WSL distro; just
append what you need underneath that.

ﬂ hayden@T730: /mnt/c/Users/Hr = + = o %
GNU nano 4.8 /home /hayden/.bashrc
fi

enable programmable completion features (you don't need to enable
this, if it's already enabled in /etc/bash.bashrc and fetc/profile
sources /etc/bash.bashrc).
if ! shopt -oq posix; then

if [-f /usr/share/bash-completion/bash_completion]; then

. fusr/share/bash-completion/bash_completion

elif [-f /etc/bash_completion]; then
. [/etc/bash_completion

fi
fi

export PATH="$PATH:/home/hayden/flutter/bin"
export DISPLAY=$(awk '/nameserver / {print $2; exit}' fetc/resolv.conf 2>/dev/null):e
export LIBGL_ALWAYS_INDIRECT=1

ge Get Help ¢ Write out H§U Where Is Cut Text ab Justify gle Cur Pos Undo |
B Exit Read File [@] Replace Paste Text gl To Spell WM Go To Line Redo

Figure 7-15. A sample .bashrc file in Ubuntu

.bashrc is located in your user home folder at ~ or /home/<username>. It can be
opened with the nano text editor as follows:

nano ~/.bashrc

.bashrc is Bash specific. If you change to an alternate shell, such as fish, zsh, csh,
or ksh, you will need to specify the command you want to run in each launch in the
respective config files for each of those shells.

.bashrc is user specific. If you create another user and launch WSL as that user, for
example, by usingwsl.exe -u or by changing the default user, you will need to add these
commands to the .bashrc for that user, in their respective home directory.

156

CHAPTER 7 CUSTOMIZING WSL

If you would like to make a script execute on launch for all users, you will need to
create a new scriptin /etc/profile.d/ such as

sudo nano /etc/profile.d/displayvar.sh
Then copy and paste:

#1/bin/bash

export DISPLAY=$(awk '/nameserver / {print $2; exit}' /etc/resolv.conf 2>
/dev/null):0

export LIBGL ALWAYS_ INDIRECT=1

Exit nano (Ctrl+X and then “Y”), confirming changes, and make the script executable:
sudo chmod /etc/profile.d/displayvar.sh

Note that /etc/profile.d/ scripts are only executed in interactive shells; those
are shells launched on the terminal. It will not execute when you launch WSL in the
background with the VS Code WSL remote extension. In these cases, you should add the
needed scripting to /etc/bash.bashrc and then set a Windows environmental variable
for WSL to read /etc/bash.bashrc on each launch:

export WSLENV="BASH ENV/u"

Non-POSIX-compatible shells, like fish, may not read /etc/profile.d/* or /etc/
bash.bashrc files on launch; you will need to consult the documentation for those shells
on how to properly script launch behavior.

If you have a script that starts an application or service in the background (Figure 7-16),
it will be triggered every time you open a new terminal; this could result in duplicate
applications running or hangs.

157

CHAPTER 7 CUSTOMIZING WSL

A hayden@T730: ~ X PN = o X
hayden@T730:~% ps -A
PID TTY TIME CMD
1 7 00:00:00 init
8 ? 00:00:00 init
9 7? 00:00:00 init
10 pts/e 00:00:00 bash
1701 ? 00:00:00 init
1725 ? 00:00:00 apache2
1728 7 00:00:00 apache2
1729 ? 00:00:00 apache2

1796 pts/e 00:00:00 ps
hayden@T730:~%

Figure 7-16. apache2 running on a WSL distro

Therefore, you may need to add some scripting that first checks if an application is
running before trying to start it, such as

#!/bin/bash
SERVICE="dbus-daemon"
if pgrep -x "$SERVICE" >/dev/null
then

echo "$SERVICE is running"
else

echo "$SERVICE stopped"

sudo /etc/init.d/dbus start
fi

You could place this script in your bashrc file or create a new script in your /etc/
profile.d/ folder for all users, but be sure to append a prefix to a new script with the
proper shebang, for example, #!/bin/bash, and make it executable with chmod.

Even though there is no traditional init in WSL, the classic init scripts located in
/etc/init.d/ can still be very useful for starting and stopping services on WSL. The
service command also works on WSL. Even though it is commonly associated with
systemd, service is actually a helper script that will default to the init.d scripts if necessary.

Experienced shell users may notice a problem in the preceding script; it calls sudo.
This would require a user to enter their administrative password on each launch. This
can be onerous, so what can we do about it? We can add an exception for this specific
command to the sudoers file.

158

CHAPTER 7 CUSTOMIZING WSL

Sudoers, for those unfamiliar, is the file that controls what escalation is permitted
with the sudo command (Figure 7-17). To edit the sudoers file, you must use visudo. Do
not manually edit this file with another editor; it will break your sudoers configuration
and could prevent further changes requiring you to reset your WSL distro or resulting in
potential data loss.

O hayden@T730: /ete/init.d X |4 v = (] »
GNU nano 4.8 /etc/sudoers. tmp

#

This file MUST be edited with the 'visudo' command as root.

#

Please consider adding local content in /etc/sudoers.d/ instead of

directly modifying this file.

See the man page for details on how to write a sudoers file.

#

Defaults env_reset

Defaults mail_badpass

Defaults secure_path="/usr/local/sbin: /usr/local/bin:/usr/sbin:/usr/bin:/sbin:/bin:/snap/g

Host alias specification

User alias specification
Wl Get Help # Write Out W' Where Is gl Cut Text bl Justify gls Cur Pos
@4 Exit Read File @l Replace Wl Paste Text | To Spell 8 Go To Line

Figure 7-17. Editing the sudoers file with the visudo command

Thankfully, visudo no longer uses the vi editor but defaults to nano on Ubuntu,
which is much easier to use. Open the sudoers file:

sudo visudo
And then append
ALL ALL=NOPASSWD: /etc/init.d/dbus start

Exit nano (Ctrl+X and then “Y”), and confirm changes.

Windows Services

What if you wanted to start a Linux application or service when you logged into
Windows, without launching the Windows Terminal or opening WSL in the background
in an IDE like Code?

The best way to do this, currently, is to create a Windows Service that launches WSL
and runs the commands in the background.

159

CHAPTER 7 CUSTOMIZING WSL

For this example, we will use the Apache web server.
Install Apache:

sudo apt -y install apache2
Create a shell script:

sudo nano /opt/runapache.sh

Copy and paste the shell script, customizing as needed to the service you would like
to start (Figure 7-18):

#!/bin/bash
SERVICE="apache2"
if pgrep -x "$SERVICE" >/dev/null
then

echo "$SERVICE is running"
else

echo "$SERVICE stopped"

sudo /etc/init.d/apache2 start
fi

O hoyden@T730: /mntfe/Users/Hi X 4 W = (m] b

GNU nano 2.9.3 Jopt/runapache.sh Modified

#!/bin/bash
SERVICE="apache2"
if pgrep -x "$SERVICE" >/dev/null
then

echo "$SERVICE is running"
else

echo "$SERVICE stopped"

sudo /etc/init.d/apache2 start
fi

ie Get Help ¢ Write Out Wl Where Is Cut Text W Justify Wle Cur Pos Undo
B Exit Read File g\ Replace Uncut Text g To Linter |Gl Go To Line Redo

Figure 7-18. Editing the script to launch Apache in nano

Make the shell script executable:

sudo chmod /opt/runapache.sh

160

CHAPTER7 CUSTOMIZING WSL
Change the owner of the shell script to our primary user:
sudo chown hayden /opt/runapache.sh

Create a Windows batch file in your Windows home directory to call the shell script
(Figure 7-19):

nano $(wslpath $(wslvar USERPROFILE))/runapache.bat

Copy and paste as follows, customizing as needed:

@echo off
wsl.exe /opt/runapache.sh

EF Administrator: PowerShell X) hayden@T730: /mnt/c/Users/Hi X+ =] X
GNU nano 2.9.3 runapache.bat Modified
@echo off

wsl.exe /opt/runapache.sh

W¢ Get Help ¢ Write out @U Where Is Cut Text | Justify pe Cur Pos
W Exit Read File @AY Replace Uncut Text gy To Spell Ul Go To Line

Figure 7-19. Editing a Windows batch file to call our script

Note wsl.exe, without any specific parameters, will call your default distro, as set with
wsl.exe --setdefault <distribution>.

If you want to use another distro, you can substitute its .exe alias, such as
ubuntu1804.exe if it was installed from the Store or a sideloaded .appx, or use
wsl.exe -d Ubuntu2004 followed by your command:

wsl.exe -d Ubuntu-20.04 sudo /etc/init.d/apache2 start
If you want to run the application as another user, you can specify that with -u:
wsl.exe -u apacheuser sudo /etc/init.d/apache2 start

You will see this command has a sudo prefix, meaning you will need to add the
command to the sudoers file for your default user or the user specified with -u.

161

CHAPTER7 CUSTOMIZING WSL
Run

sudo visudo
And add

ALL ALL=NOPASSWD: /etc/init.d/apache2 start

A hayden@T730: /mnt/c/Users/H: X+ W - o x
GNU nano 2.9.3 /etc/sudoers.tmp Modified

sadmin ALL=(ALL) ALL

Allow members of group sudo to execute any command
%sudo ALL=(ALL:ALL) ALL

See sudoers(5) for more information on "#include" directives:
#includedir /etc/sudoers.d

ALL ALL=NOPASSWD: /etc/init.d/apache2 start

Wc Get Help Q¥ wWrite out QY Where Is Cut Text {B) Justify (& Cur Pos
@4 Exit Read File R} Replace Uncut Textlfl] To Spell M Go To Line

Figure 7-20. Adding /etc/init.d/apache?2 start to the sudoers file

It is possible to specify -u root and bypass the need for a sudoers file addition, but
this is not recommended. Running network services, which are potentially accessible
from the web, as root, is a bad idea.

Next, test the Windows batch file we created. Open PowerShell, and make sure
apache2 is not running:

wsl.exe --exec ps -A

You should not see any apache?2 processes; if you do, run
wsl.exe --exec sudo killall apache2

Then run the batch file as follows:

C:\Users\Hayden\runapache.bat

162

CHAPTER 7 CUSTOMIZING WSL

Administrator: PowerShell %\ hayden@T730: /mnt/cUsers/Hi X |+ - o X
PS C:\> wsl.exe —--exec ps -A
PID TTY TIME CMD
172 00:00:00 init
12 2 00:00:00 init
13 ? 00:00:00 init
14 pts/e 00:00:00 bash
182 7 00:00:00 init
183 7 00:00:00 init

184 pts/1 00:00:00 ps
PS C:\> C:\Users\Hayden\runapache.bat
apache2 stopped
* Starting Apache httpd web server apache2
*

PS C:\>

Figure 7-21. Testing the batch file that calls our shell script to start apache2

If successful, we should see that apache2 is detected as not running and then started.
We should then be able to see the apache2 default landing page in any browser at
localhost.

[Apache2 Ubuntu Default Page: I X

localhost

@ Apache2 Ubuntu Default Page

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at /var/www/html/index.html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means
that the site is currently unavailable due to maintenance. If the problem persists, please contact the
site's administrator.

Configuration Overview

Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in /usr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doc package was installed on this server.

T £ i L= & £ A | PN | 1™ i eallaei Lk + Iy i £all

Figure 7-22. Testing apache2 batch file/script file worked by opening localhost in
a web browser

163

CHAPTER 7 CUSTOMIZING WSL

Note, if you run the batch file immediately again, it will detect apache2 is already
running and not launch a second instance.

E¥ Administrator: PowerShell %) hayden@T730: /mnt/c/Users/Hi X | + = O X
17 00:00:00 init
12 ? 00:00:00 init
13 ? 00:00:00 init
14 pts/e 00:00:00 bash
182 ? 00:00:00 init
183 ? 00:00:00 init

184 pts/1 00:00:00 ps

PS C:\> C:\Users\Hayden\runapache.bat
apache2 stopped

* Starting Apache httpd web server apache2

*
PS C:\> C:\Users\Hayden\runapache.bat
apache2 is running
PS C:\>

Figure 7-23. Running apache2 batch/script file again, which detects apache2 is
already running

Finally, use the Windows Service Control Manager, sc.exe, to schedule the Windows
batch file to run on Windows boot.
Open PowerShell as Administrator, and run

sc create 'Apache in WSL' binpath= C:\Users\Hayden\runapache.bat type=
share start= auto displayname= 'Apache in WSL'

u_n

Note the space after the “=" in the sc create command.
This service can now be controlled from the Windows Services pane.

164

CHAPTER 7

CUSTOMIZING WSL

£} Sewices

File Action View Melp

e|mczHm »mnw

) Senvces (Local) m Apache in WSL Properties (Local Computer)

Description Sty General LogOn Recovery Dependences

Select an item to view its description. Name

EhActiveX Installer (AxinstSV) Provides Us...
(5 Agent Activation Runtime_.. Runtime for..
“Eh Alleyn Router Service Routes Allkz...
E Apache in WL

&l App Readiness Gets apps 1e...
Eh Application ldentity Deterrmines ...
) Application Information Facilitates ..
‘) Application Layer Gateway .. Provides su...
T Application Mansgement Processes in...
El AppX Deployment Service [. Provides inf..
3 Assiomedd Se.. Assigned

) Aute Time Zone Updster Automstica...
EhAVCTP senvice Thisis Audi...
T Background inteligent Tean... Tramsfers fil..
1) Background Tasks Infrastruc... Windaws in...
'l Base Filtering Engine The Base Fil...
) BaLecker Drive Encryption .. BDESVC hes...
&) Block Level Backup Engine .. The WBENG...
 Bluetooth Audic Gateway 5. Service Sup..
) Blustooth Support Service The Blustoo...
G Bruetooth User Support Ser.. The Bluetoo..
‘Eh BranchCache This service ..

Runn

Runn

Funn

Runn

Runn
Runn
Runn

Runn
Runn

Senicename: Apachein WSL
Display rame: Agache in WSL
Descrprcn: [

Fathto executable:
C:\Users Hayden'vunapache bat

Stast Step Pauss
from here. ik el o
vt parsten: ||
T
ot

Extended { Standard [

Figure 7-24. Managing the Apache on WSL service from the Windows Services

pane

Windows Task Scheduler

If editing bash scripts and batch files seems like overkill to automate some WSL

commands from Windows, there is a simpler option: using Windows Task Scheduler.

165

CHAPTER 7 CUSTOMIZING WSL

@Task Scheduler
File Action View Help

&< |m Hm

(%) Task Scheduler (Local)
> & Task Scheduler Library

[Overview of Task Scheduler

= ~

¢ L\“ You can use Task Scheduler to create and
./ manage common tasks that your computer
~ will carry out automatically at the times you
specify. To begin, click a command in the
Action menu.

Tacke ars charad in faldarc in the Tack N

Task Status -

Status of tasks that have sta... [Lm 24 hours

|

Summary: 0 total - 0 running, 0 succeeded, 0 stopped, 0 ...

Task Name Run Result Run

Last refreshed at 2/3/2021 11:17:40 AM

Task Scheduler Summary (Last refreshed: 2/3/2021 11:17:40 AM) i

Connect to Another Compute...

Create Basic Task...

Create Task...

Import Task...

Display All Running Tasks
Enable All Tasks History

AT Service Account Configurat...
View

Refresh

Help

Figure 7-25. Windows Task Scheduler

Windows Task Scheduler is a friendlier way to automate tasks in Windows and can
run commands in WSL.

Open Windows Task Scheduler in Windows, and click “Create Basic Task....” In our
example, we are going to implement unattended upgrades in Ubuntu.

166

CHAPTER 7 CUSTOMIZING WSL

For the Name field, type “Unattended Upgrades in Ubuntu.”

" Create Basic Task Wizard X

| "®| Create a Basic Task

Create a Basic Task Use this wizard to quickly schedule a common task. For more advanced options or settings
Trigger such as multiple task actions or triggers, use the Create Task command in the Actions pane.
Action Name: |Unattended Upgrades in Ubuntu|

Exesh Description:

Figure 7-26. Naming our new task

167

CHAPTER 7 CUSTOMIZING WSL

”

Set the trigger for the task; in our example, we will run “Daily

" Create Basic Task Wizard

| ”gl Task Trigger

Create a Basic Task When do you want the task to start?
Tri e
Ot
ion
Weekl
Finish O Weekly
O Monthly
O Onetime

(O When the computer starts
(O When | log on
(O When a specific event is logged

< Back Cancel

Figure 7-27. Setting the task to run daily

168

CHAPTER 7 CUSTOMIZING WSL

And then set the task to run at 1 AM.

" Create Basic Task Wizard
n@l Daily

ic T: -
:Tm“ BastciRsk Start: | Y 3201 B~ | | 1:00:88 AM g:-:.l [Synchronize across time zones
rigger

Recur every: El days
Action
Finish

< Back Cancel

Figure 7-28. Setting the time to run the task

169

CHAPTER 7 CUSTOMIZING WSL

We will want our task to “Start a program.”

Create Basic Task Wizard
. ®| Action

Create a Basic Task
What action do you want the task to perform?

Trigger
Daily
@) Start a program
Finish (O Send an e-mail (deprecated)

(O Display a message (deprecated)

< Back Cancel

Figure 7-29. Specifying the task will start a program

We are going to start ws1.exe with the arguments:

-u root -e apt update.

This will have apt check for package updates from the Ubuntu repository as root.
Note that this will execute in the default WSL distro; if you have multiple WSL distros
installed and want to run on a specific distro, specify the distro with -d, such as -d

Ubuntu, as necessary.

170

Create Basic Task Wizard

. ”gl Start a Program

Create a Basic Task

CHAPTER 7 CUSTOMIZING WSL

| Browse...

Trigger Program/script:
Dby [wsl.exe
Action
Add arguments (optional):
pe Start in (optional):

—u root -e apt update|

< Back Cancel

Figure 7-30. Specifying the program to run, wsl.exe, and arguments, -u root -e

apt update

Finalize the new task, checking “Open the Properties dialog for this task when I click
Finish” because we are not done yet (Figure 7-31). We have, so far, created an action to
check for package updates from the Ubuntu repository. However, we still need to add the

next step, which will apply the available upgrades.

171

CHAPTER 7 CUSTOMIZING WSL

" Create Basic Task Wizard

| ”@ Summary

Create a Basic Task
Trigger

Daily
Action

Start a Program

Name Unattended Upgrades in Ubuntu

Description:

Tigger. |Daily; At 1:00 AM every day |

Action: IStart a program; wsl.exe -u root -e apt update I

[“] Open the Properties dialog for this task when | click Finish
When you click Finish, the new task will be created and added to your Windows schedule.

< Back Cancel

Figure 7-31. Finishing creating our new task

In Properties, click the “Actions” tab (Figure 7-32), and then click “New” because
now we are going to add the apt package upgrade command after checking for package

updates from the Ubuntu repository.

172

CHAPTER 7 CUSTOMIZING WSL

(B Unattended Upgrades in Ubuntu Properties (Local Computer) X

General Triggers Actions Conditions Settings History (disabled)

When you create a task, you must specify the action that will occur when your task starts.

Action Details

Start a program wsl.exe -u root -e apt update

< re
New.. | | Edit. | Delete

Figure 7-32. Opening the Actions tab of our new task to add additional steps

In the New Action window, we are going to run wsl.exe with the arguments:
-u root -e apt -y upgrade

This will run the apt package upgrade command noninteractively as root.

173

CHAPTER 7 CUSTOMIZING WSL

The Actions pane will now show both commands in this task (Figure 7-33).

(5 Unattended Upgrades in Ubuntu Properties (Local Computer) x|

General Triggers Actions Conditions Settings History (disabled)

When you create a task, you must specify the action that will occur when your task starts.

Action Details
Start a program wsl.exe -u root -e apt update
| Start a program wsl.exe -u root -e apt -y upgrade
I -
i
|
1 < >

Eéi | | o

OK Cancel

Figure 7-33. Our two actions in our task, checking for updates and then applying
available upgrades

174

CHAPTER 7 CUSTOMIZING WSL

By running the apt update action first, we check for available package updates, and
then we run the apt upgrade action to apply those available upgrades.
Click “OK,” and you are done.

You can now find the task we created in Task Scheduler under “Active Tasks.

(® Task Scheduler
File Action View Help
= |m BE
p—— | o
ve g"‘;’:""".’ by o | Tosk scheduter -
Connect to Ancther Compute...
E] Create Basic Task...
M Create Task...
Import Task...
[Display All Running Tasks

> [Lenovo [Active Tosks =
» [Microsoft
1 Mozl Active tasks are tasks that are currently enabled and have not expired.

Summary: 123 total

Task Mame Triggers Location ~ &1 Enable ANl Tasks History
Unattended Upgrades in Ubuntu 4 At 1:00 AM every day AT Service Account Configurat...
Schedule Scan 27472021 123913 AM At 1200 PM on 17172019, \Microsoft\Windows\U... View]
Mecroseft Compatibility Appraiser 2472021 3:13:10 AM Multiple triggers defined \MicrosoftiWindaws\A.. (@ Retresh
Device 27472021 3:32:02 AM Multiple triggers defined \Microzoft\Windows\De...
Office Autornatic Updates 2.0 20412021 5:44:06 AM Multiple triggers defined \Microsaft\Office " H Hep
v
Last refreshed at 273/2021 11:17:40 AM | Refrsh |

Figure 7-34. Locating the task under Active Tasks in Task Scheduler

To test the task we just created, double-click the task, and then click “Run” under
“Selected Item” on the right (Figure 7-35).

175

CHAPTER 7 CUSTOMIZING WSL

(@) Tosk Schedules - o %
File Action View Help
e 2@ B
[E] h*;:::::‘::::‘ Hame Status Triggers Next Run Time Lsf | Actions
o Iy, . H
1 Agent Activation Run || © GeogieUpda.. Ready Muliple riggers defined 2/3/2021 S:4216PM 2§ | Tsk Schedules Library 24
3 Bl Lenovo (& Googlelpda... Ready At 542 PM every day - After triggered, repeat every 1 hour for & duration of 1 day. 2/3/2021 11:42:06 &M 2/, @ Create Basic Task... 1
» B Miicrosoft B M Ready Multiple triggers defined AN AZEPM 2 | o erate Task.
1 Mexzilla (B MicrosoftEd... Ready At 11:42 PM every day - After triggered, repeat every 1 hour for a duration of 1 day. /32021 1142718 AM 27 i Tk
(MyBrosdcast.. Running At log on of any user 2 ot N
(5 OneDrive St.. Ready At 1200 AM on 57171592 - After triggered, repeat every 1.00:00:00 indefinitely. 2042021 1Ea4 AN 273 | 5 Display Al Running Tasks
® Unattencled ... Running At 1:00 AM every day 242021 10000 AM 11 | 5 Enatle All Tasks History
£ Mew Folder...
View b
< > |0 Refresh
General Triggers Actions Conditions Settings History (disabled) B +ep
Narre: Unattended Upgrades in Ubuntu | ™ | Selected item -
Location: \ b Run
Author: T30 Hayden = End
Description: | -] & Dizable
Export..
% Propertie
K Delete
Security options B rep
Wihen running the task, use the fallowing user sccount:
Hayden
Run only when user is logged on
Run whether user is lagged an or nat
Do not store password. The task will only have sccess to local rescurces
Run with highest privileges
& 5 Hidden Configurefor | Windows Vista™, Windows Server™ 2008 -

Figure 7-35. Opening and, if necessary, editing the task, by double-clicking it in
Active Tasks. We can also run the task by clicking Run under Selected Item on the
right-hand side

Boot Command

In Windows 10 builds 21286 or higher, it is now possible to manually enable startup
commands in your WSL distro in /etc/wsl.conf.

These commands are executed as root. This can function as a minimal init system
when launching WSL as a terminal.

It will not start services automatically in the background, like a scheduled Windows
Service, or run as a scheduled task like with Task Scheduler, but only when opening a
WSL distro in a terminal. However, it may fit your needs if you simply need a service
launched that is more complicated than you would fit in a .bashrc file.

For more on this option, see Chapter 5, “Configuring WSL Distros,” where options for
/etc/wsl.conf are discussed in detail.

176

CHAPTER 8

Going Further with WSL 2

Now that we have set up graphical user applications and started our own services at
launch, we are ready to go a bit deeper into the things we can do with WSL, specifically
WSL 2.

These steps require some familiarity with Linux in general, but if these are new to
you, we will do our best to tell you what you need to know to make them work on WSL.

Running systemd

systemd is a lot of things. At its core, it is a set of tools between the kernel and your
applications on Linux, to handle all the messy stuff in the middle. systemd is most
known for its init system, which starts and stops background services on Linux. It
replaces legacy init systems such as Upstart and SysVinit. When a traditional Linux distro
boots, systemd figures out the services you need to be started and in what order so that
you land on a working desktop or server.

systemd has many modular components, and not all Linux distros make use of all
the available components. One of my favorite components is systemd-nspawn, which
is a replacement for the traditional chroot and in my experience handles cross-platform
containers better than some of the other options.

Many applications can still run without systemd, and there are several distributions
of Linux that do not rely on systemd, such as Devuan, which still uses SysVinit or
replacements such as OpenRC.

Systemd is comparable in some ways to the Solaris Service Management Facility or
SME systemd is a relatively new development in the world of Linux, becoming standard
in Ubuntu in 2015, but it has since been widely adopted and become a common
dependency by some advanced Linux applications.

The future of mainstream Linux is going to be based on systemd at least until a future
replacement comes along.

177
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_8

https://doi.org/10.1007/978-1-4842-6873-5_8#DOI

CHAPTER 8 GOING FURTHER WITH WSL 2

Currently, WSL does not support systemd. WSL has its own simplified init process
that allows environmental variable interoperability and mounts your Windows drives
within the WSL environment at /mnt/c. It also enables file sharing along with some
other environmental housekeeping. If you have a dependency on systemd, you will need
to start it manually. One problem you may face here is that systemd cannot run as the
primary Linux process known as PID 1, which is where many applications that rely on
systemd expect to find it.

Instead, you will need to start systemd manually and then spawn a new environment
in which systemd will operate as PID 1. This can be accomplished in a couple of different
ways, as with everything in Linux. There are a handful of projects, listed as follows, that
handle this for you as of this writing:

o one-script-wsl-systemd, https://github.com/diddledan/one-
script-wsl2-systemd

o Genie, https://github.com/arkane-systems/genie
o Subsystemctl, https://github.com/sorah/subsystemctl

A Simple Approach to systemd

To enable systemd (Figure 8-1) in your active terminal, without using one of the
preceding projects, we will start a new process namespace with systemd running as PID
1 and then switch the terminal session into that namespace.

First, we install the daemonize utility:

sudo apt -y install daemonize

Then, we use daemonize and unshare to set up a process namespace, calling
systemd to run inside that specific namespace:

sudo daemonize unshare --fork --pid --mount-proc /lib/systemd/systemd &

Next, we get the process ID of the systemd process from outside the process
namespace so that we can enter the namespace correctly:

SYSTEMD PID="$(ps -eo pid=,args= | awk '$2=="/1ib/systemd/systemd" {print
$1}I)II

178

https://github.com/diddledan/one-script-wsl2-systemd
https://github.com/diddledan/one-script-wsl2-systemd
https://github.com/arkane-systems/genie
https://github.com/sorah/subsystemctl

CHAPTER 8 GOING FURTHER WITH WSL 2

Finally, we move our user session into the process namespace with nsenter, so that
we can control system and systemd will appear as PID1:

sudo /usr/bin/nsenter --all --target "$SYSTEMD PID" -- su - "$USER"

hayden@Tuld:~$ sude fusr/bin/daemonize fusr/binfunshare --fork —-pid --mount-proc flib/systemd/systemd
hayden@Tuue:~§ SYSTEMD_PID="%(ps -eo pid=,args= | amk '$2=="/lib/systemd/systemd" {print $1}')"
haydenBTu4e:~§ echo $SYSTEMD_PID

uag

hayden@Tule:~% sudo fusr/bin/nsenter --all --target "$SYSTEMD_PID" -- su - “$USER"

[sudo] passwerd for hayden:

Welcome to Ubuntu 28.84.1 LTS (GNU/Linux 5.4.72-microsoft-standard-w5SL2 xBG6_6U)

* Documentation: https://help.ubuntu.com
* Management: https://landscape.canonical.com
* Support: https://ubuntu.con/advantage

System information as of Fri Feb 12 15:17:58 GMT 2021

System load: 6.1 Processes: 28
Usage of /: 9.6% of 258.98GBE Users logged in: 2]
Memory usage: 15% IPvl address for eth®: 172.17.19.98

Swap usage: a%

162 updates can be installed immediately.
71 of these updates are security updates.
To see these additional updates run: apt list --upgradable

This message is shown ence once a day. Te disable it please create the
/home/hayden/ . hushlogin file.
hayden@Tuue:~% ps -eo pid=,args=
Slib/systemd/systend
uy /lib/systemd/systemd-journald
62 /lib/systemd/systemd-udevd
78 /lib/systemd/systemd-networkd
254 /lib/systemd/systemd-resolved
257 fusr/libfaccountsservice/accounts-daemon
258 fusr/bin/dbus-daemon --system --address=systemd: --nofork --nopidfile —-systemd-activation --sysleg-on
261 fusr/bin/python3 /fusr/bin/networkd-dispatcher --run-startup-triggers
262 fusr/sbin/rsyslegd -n —iNONE
265 /lib/systemd/systemd-logind
279 fusr/lib/policykit-1/polkitd ——ne-debug
294 fusr/sbinfcron -f
297 Jusr/bin/python3 /fusr/share/unattended-upgrades/unattended-upgrade-shutdown --wait-for-signal
208 Jfusr/sbin/atd -f
310 sshd: fusr/sbin/sshd -D [listener] @ of 16-100 startups
698 snapfuse fvar/lib/snapd/snaps/snapd_85U2.snap fsnap/snapd/85U2 -0 ro,nodev,allow_other, suid
B34 fusr/lib/snapd/snapd
1843 snapfuse fvar/lib/snapd/snaps/corel8_1888.snap /snap/corel8/1888 -o ro,nodev,allow_other,suid
1196 snapfuse /var/lib/snapd/snaps/lxd_16558.snap /snap/lxd/16558 -o ro,nodev,allew_other, suid
1785 /sbin/agetty -o -p -- \u --noclear ttyl Llinux
1732 su - hayden
1734 /lib/systemd/systemd --user
1735 (sd-pan)
1748 -bash
1888 ps -eo pid=, args=
haydenBTuUle:~$

b

Figure 8-1. Creating and entering a process namespace running systemd

Building Your Own Kernel for WSL 2

Microsoft provides a Linux kernel optimized for WSL 2. This optimized kernel contains
patches for the WSL 2 environment including device support and memory management.
You can use any other kernel from third parties, or you built yourself from upstream, but
it will lack these specific WSL 2 patches.

179

CHAPTER 8 GOING FURTHER WITH WSL 2

There may be times when you would like to use a kernel feature that is not enabled
by default in the WSL 2 kernel. You can either port the patches for WSL by Microsoft from
their WSL 2 kernel into your own kernel or rebuild the Microsoft kernel with your needed
optimizations. The latter is my recommendation unless you are familiar with handling
patches between different kernels and can reconcile any differences.

One such example of a feature that I have enabled in WSL 2 kernel is acceleration for
KVM guests in WSL. This requires downloading and tweaking the kernel configuration
and rebuilding the kernel. It also requires Windows 10 build 20175 or higher and an
Intel CPU. I will show you how it is done here. The purpose of this exercise is to get you
more familiar with different methods of kernel configuration, including editing the raw
configuration file and using the kernel menu configuration tool.

The Microsoft WSL 2 kernel can be found on GitHub at https://github.com/
microsoft/WSL2-Linux-Kernel/

Let us use git in WSL to clone the WSL 2 kernel source code, with a depth of 1, a
“shallow clone” because we do not need the entire commit history for the Linux kernel
for our purposes (Figure 8-2):

git clone --depth 1 https://github.com/microsoft/WSL2-Linux-Kernel

I
| O hayden@T720: - < L = o b4

hayden@T738:~% git clone --depth 1 https://github.com/microsoft/WSL2-Linux-Kernel
Cloning into 'WSL2-Linux-Kernel'...
| remote: Enumerating objects: 65592, done.
remote: Counting objects: 100% (65592/65592), done.
remote: Compressing objects: 61% (36957/668378)

Figure 8-2. Cloning the Microsoft WSL 2 kernel from GitHub

Install needed dependencies for building our kernel using apt (Figure 8-3):

sudo apt -y install build-essential libncurses-dev bison flex libssl-dev
libelf-dev

180

https://github.com/microsoft/WSL2-Linux-Kernel/
https://github.com/microsoft/WSL2-Linux-Kernel/

CHAPTER 8 GOING FURTHER WITH WSL 2

A hayden@T730: ~ xS = a b4

remote: Total 69981 (delta 5379), reused 20594 (delta 2981), pack-reused @

Receiving objects: 188% (69981/69981), 185.38 MiB | 2.64 MiB/s, done.

Resolving deltas: 1ee% (5379/5379), done.

Updating files: 1e8% (65859/65859), done.

hayden@T738:~% sudo apt -y install build-essential libncurses-dev bison flex libssl-dev libelf-d

ev

[sude] password for hayden:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
binutils binutils-common binutils-x86-6u4-linux-gnu cpp cpp-9 dpkg-dev fakeroot g++ g++-9 gcc
gec=-9 geec-9-base libalgorithm-diff-perl libalgorithm-diff-xs-perl libalgorithm-merge-perl

Figure 8-3. Installing the dependencies needed for building a kernel on Ubuntu

Change directories, dropping down into the Git project folder (Figure 8-4):

cd WSL2-Linux-Kernel/

B hayden@T730: ~/WSL2-Linuek. %X |+ W - o e

Setting up libstdc++-9-dev:amdéu (9.3.8-17ubuntul~20.64) ...
Setting up gcec (4:9.3.0-1lubuntu2) ...

Setting up libelf-dev:amdéy (8.176-1.1buildl) ...

Setting up g++-92 (9.3.8-17ubuntul~208.84) ...

Setting up g++ (4:9.3.8-1lubuntu2) ...

update-alternatives: using /usr/bin/g++ to provide /usr/bin/c++ (c++) in auto mode
Setting up build-essential (12.8ubuntul.l) ...

Processing triggers for libe-bin (2.31-8ubuntu9) ...
Processing triggers for man-db (2.9.1-1) ...

Processing triggers for install-info (6.7.8.dfsg.2-5) ...
hayden@T738:~$ cd WSL2-Linux-Kernel/
hayden@T738:~/WSL2-Linux-Kernel$

Figure 8-4. Entering the WSL2-Linux-Kernel directory we cloned from GitHub

We are then going to start from Microsoft’s kernel config file as a starting point,
which we will copy into the root project folder as .config (Figure 8-5):

cp Microsoft/config-wsl .config

Hint Use the Microsoft/config-wsl-arm64 file if you are building for an ARM64
device.

181

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden@TT30: -/ WSL2-Linne-K % | W = (] *

Setting up libstdc++-9-dev:amdéd (9.3.6-17ubuntul~20.64) ...
Setting up gcc (4:9.3.8-1lubuntu2) ...

Setting up libelf-dev:amdéd (P.176-1.1buildl) ...

Setting up g++-9 (9.3.8-17ubuntul~28.84) ...

Setting up g++ (4:9.3.8-1lubuntu2) ...

update-alternatives: using /usr/bin/g++ to provide /usr/binfc++ (c++) in auto mode
Setting up build-essential (12.8ubuntul.1) ...

Processing triggers for libc-bin (2.31-8ubuntu9) ...

Processing triggers for man-db (2.9.1-1) ...

Processing triggers for install-info (6.7.6.dfsg.2-5) ...
hayden@T738:~% cd WSL2-Linux-Kernel/
hayden@T736:~/WSL2-Linux-Hernel$ cp Microsoft/config-wsl .config
hayden@T730:~/WSL2-Linux-Hernel$

Figure 8-5. Copying Microsoft’s default kernel config file to the root project folder
as .config

If you prefer to manually edit your kernel config file, you can now open the config file
in nano, VS Code (Figure 8-6), or even Notepad and make those manual changes:

code .config

12, Buburtul 1) ...
-bim (2.31-8ubuntud) ...

ggers for man-db (2,

ggers for install-infe (6.7.8.d¢sp.2-8) ...

cd WSL2-Linuwe-HernelS

5 cp Micresoft/config-wsl .config
haydengTI30:~/WELY 3 code .config
Installing VS Code 64 (e5aszub? SELEL

bewnloading: 1ee%w
Urpaciing: 18e%
i files and “olders to iy 39Tedcucs

Figure 8-6. Manually editing the kernel config file in VS Code

The manual changes to make are

KVM_GUEST=y
CONFIG_KVM=y
CONFIG_KVM_INTEL=m
CONFIG_VHOST=y

182

CHAPTER 8 GOING FURTHER WITH WSL 2

I am somewhat “old-school” and prefer the traditional terminal menu interface for
editing kernel options; this can be launched with the appropriate make command:

make menuconfig

After a bit of compilation, you will arrive at the Linux kernel configuration menu
(Figure 8-7). Use the up and down arrow keys to move up and down the options, space
to select between build options for each item (on, off, and module, if module is available
for that option), and enter to enter a subdirectory as indicated by the ---> symbol. Use
the left and right arrow keys to select functions at the bottom, including Exit to go up one
level in the menu to the top menu, where Exit will then prompt you to save before exiting
the configuration tool. You can also save and load different config files.

O heyden@T730: ~/WSL2-Linux-k X | 5 = x

Linux/x86 5.4.91 Hernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

Compiler: gee (Ubuntu

General setup --->

64-bit kernel

Processor type and features --->

Power management and ACPI options --->

Bus options (PCI etc.) --->

Binary Emulations --->

Firmware Drivers --->
[*] virtualization --->

General architecture-dependent options --—->
ll:*l Enable loadable medule support ---=>
=(+)

<select>- |[EEIME < Help> < Save > < Load >

Figure 8-7. Configuring the kernel using menuconfig

First, navigate to the “Processor type and features” directory (Figure 8-8), using the
up and down arrow keys and then the Enter key to enter the directory.

183

CHAPTER 8 GOING FURTHER WITH WSL 2

O heayden@T730: ~/WSL2-Linux-k X | W - [m} b4

Linux/x86 5.4.91 Hernel Configuration
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

=#» Compiler: gcc (Ubuntu 7.5.68-3ubuntul~18.84) 7.5.8 wxw
General setup --->
[*] 6u-bit kernel

I sor type and features ---3|

Power management and ACPI options --->

Bus options (PCI etc.) --->

Binary Emulations --->

Firmware Drivers --->
[*] virtualization --->

General architecture-dependent options --—->
[*] Enable loadable module
<+

t ———>

EOEE < cExit> <Help> < Save > < Load >

Figure 8-8. Highlighting the Processor type and features directory

Next, navigate to the “Linux guest support” directory, and enter the directory
(Figure 8-9). It should already be enabled, but we are going to enable some additional
guest support features.

O heayden@T730: ~/WSL2-Linux-k X | W - [m} b4

Processor type and features
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

Support for extended (non-PC) x86 platforms
Intel Low Power Subsystem Support

AMD ACPI2Platform devices support

Intel SoC IOSF Sideband support for SoC platforms
Single-depth WCHAN out

Processor family

Supported processor vendors --->
Enable DMI scanning

0ld AMD GART IOMMU support

IBM Calgary IOMMU support

EOEE < cExit> <Help> < Save > < Load >

Figure 8-9. Highlighting the Linux guest support directory

184

CHAPTER 8 GOING FURTHER WITH WSL 2

In the Linux guest support directory, enable “KVM Guest support” by using the
arrow keys to navigate to the item (Figure 8-10) and then pressing the space bar to mark
the feature with a * or, alternatively, the Y key (Figure 8-11).

O heayden@T730: ~/WSL2-Linux-k X | W - [m} b4

Linux guest support
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

=== Linux guest suppert
-#- Enable paravirtualization code
[1 paravirt-ops debugging

[1 Paravirtualization layer for spinlocks

[1] xen uut support

[H st support (includin Lo

[B | Disabl.e host llaltpo‘l.‘l. when ‘I.oading haltpou driver
[1 Support for running PVH guests

[] Paravirtual steal time accounting

[1 Jailhouse non-root cell support

[] ACRN Guest support

EOEE < cExit> <Help> < Save > < Load >

Figure 8-10. Selecting KVM Guest support in the Linux guest support directory

A bayden@TTI0: - WSL2-LinxK X | W - o x |

Linux guest support
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus --——-).
Highlighted letters are hotkeys. Pressing <v> includes, <N> excludes, <M> modularizes features.
Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in [] excluded
<M> module < > module capable

=== Linux guest support
Enable paravirtualization code
paravirt-ops debugging
Paravirtualization layer for spinlocks
rt

hnst ha‘l.tpell uhen ng haltpoll driver
Support for running PVH guests
Enable debug information for VM Guests in debugfs (NEW)
Paravirtual steal time accounting
Jailhouse non-reoot cell support
ACRN Guest support

BEOTES <cexit> <iHelp> < save> < load >

Figure 8-11. Enabled KVM Guest support in the Linux guest support
directory

185

CHAPTER 8 GOING FURTHER WITH WSL 2

Next, use the left and right arrow keys to select Exit, and press Enter twice to go
up two levels to the top level of the configuration directory. Then scroll down to the
“Virtualization” directory (Figure 8-12).

O heyden@T730: ~/WSL2-Linux-k X | W & = x

Linux/x86 5.4.91 Hernel Configuratieon
Arrow keys navigate the menu. <Enter> selects submenus ---> (or empty submenus ----).
Highlighted letters are hotkeys. Pressing <Y> includes, <N> excludes, <M> modularizes
features. Press <Esc><Esc> to exit, <?> for Help, </> for Search. Legend: [*] built-in
[] excluded <M> module < > module capable

=#» Compiler: gcc (Ubuntu 7.5.68-3ubuntul~18.84) 7.5.8 wxw
General setup --->

64-bit kernel |
Processor type and features ---> |
Power management and ACPI options --->
Bus options (PCI etc.) --->

Binary Emulations --->

Firmware Drivers --->

AL1ZaTion >
General architecture-dependent options --—->

[*] Enable loadable module
<+

——

ppor.

EOEE < cExit> <Help> < Save > < Load >

Figure 8-12. Highlighting the Virtualization directory

Use the Enter key to enter the “Virtualization” directory. Here, use the space bar or Y
key to mark it with a * to enable “Kernel-based Virtual Machine (KVM) support.” Then,
for our purposes, we are going to enable “KVM for Intel processors support” as a module
that we can load and unload as needed. Highlight it and press the space bar to mark it
with an M or M key to mark it with an M (Figure 8-13).

The difference here is that items marked with a * will be built into the monolithic
kernel. Items marked with an M are modular and can be loaded or unloaded as needed.
In this exercise, we are building “KVM for Intel processors support” as a module so that
we can modify its settings and quickly apply those settings by unloading and reloading
the module. This is also to introduce you to these concepts and working with kernel
modules if you are unfamiliar. Once you have settled on KVM settings for your use case,
you may wish to return to this exercise and rebuild the kernel with this feature built in
so you don’t have to load the module each time you wish to work with it, or alternatively
add the kernel module name to the kernel command line in .wslconfig.

186

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden@7I: /WL ik X - o x I

virtualization
mu keys numu tne lem ¢intu-=- ntem submenus -—-> (or empty submenus ----). Highlighted letters
=M> modularizes features. Press <Esc><Esc> to exit, <7
fer Help, </> for seam Legend: [*3 built-in [] excluded <M> module < > module capable

=-- virtualization

KVM for Intel processors support
HKVM for AMD processors support
Audit HVM MMU
Host kernel accelerater for virtio net
vhost virtio-vsock driver
Cross-endian support for vhost

ENTEE < exit > < Help >

Figure 8-13. Enabling Kernel-based Virtual Machine (KVM) support and KVM
for Intel processors support as a module

After enabling “Kernel-based Virtual Machine (KVM) support” as built-in and “KVM
for Intel processors support” as a module, select Exit twice, and you will be prompted to
save your new configuration (Figure 8-14). Select Yes.

A hayden@TTI0: - WSL2- LK X | W =

Do you wish to save your new configuration?
(Press <ESC><ESC> to continue kernel configuration.)

W < e -

Figure 8-14. Prompt to save your new Kernel configuration, which will be saved
to .config by default

187

CHAPTER 8 GOING FURTHER WITH WSL 2

Next, we build our kernel. We use the make command. You can dramatically speed up
build time by setting the -j flag followed by the number of cores your device has (or that
you have specified in .wslconfig). In this case, we have 8 cores, so we run (Figure 8-15)

make -j 8

O hayden@T730: ~/WsL2-Limx-K X 4 W — G
hayden@T738:~/WSL2-Linux-Kernel$ make menuconfig
scripts/kconfig/mconf Heonfig
configuration written to .config

*** End of the configuration.
=** Execute 'make' to start the build or try 'make help'.

hayden@T736:~/WSL2-Linux-Kernel$ make -j 8

Figure 8-15. Building our new Linux kernel using make

Sit back and enjoy a cup of tea while your Linux kernel builds (Figure 8-16).

B hayden@T730: ~/WSL2-Linux-K X | 4 = o x
LD /home/hayden/WSL2-Linux-Kernel/tools/objtool/arch/x86/objtool-in.o
cc /home/hayden/WSL2-Linux-Kernel/tools/objtool/sigchain.o

cc /home /hayden/WSL2-Linux-Kernel/tools/objtool/subcmd-config.o

ccC /home/hayden/WSL2-Linux-Kernel/tools/objtool/elf.o

cc /home/hayden/WSL2-Linux-Kernel/tools/objtool/special.o

LD /home/hayden/WSL2-Linux-Kernel/tools/objtool/libsubcmd-in.o

AR /home/hayden/WSL2-Linux-Kernel/tools/objtool/libsubcmd.a

cC /home/hayden/WSL2-Linux-Kernel/tools/objtool/objtool.o

cc /home/hayden/WSL2-Linux-Kernel/tools/objtool/libstring.o

cc /home/hayden/WSL2-Linux-Kernel/tools/objtool/libctype.o

cc /home/hayden/WSL2-Linux-Kernel/tools/objtool/str_error_r.o

HOSTCC scripts/genksyms/genksyms.o

Figure 8-16. Ah, the joys of watching the Linux kernel build

If compilation is successful, you will be informed (Figure 8-17):

Kernel: arch/x86/boot/bzImage is ready

188

CHAPTER 8 GOING FURTHER WITH WSL 2
B hayden@T730: ~/WSL2-Linux-K X 4 = = o x
As arch/x86/boot/compressed/piggy.o
LD arch/x86/boot/compressed/vmlinux

ZOFFSET arch/x86/boot/zoffset.h

0BJCOPY arch/x86/boot/vmlinux.bin

AS arch/x86/boot/header.o

LD arch/x86/boot/setup.elf

0BJCOPY arch/x86/boot/setup.bin

BUILD arch/x86/boot/bzImage
Setup is 16412 bytes (padded to 16896 bytes).
System is 9589 kB
CRC c6BceOUf
Kernel: arch/x86/boot/bzImage is ready (#1)
hayden@T738:~/WSL2-Linux-Kernel$

Figure 8-17. Successful compilation of the Linux kernel

Our monolithic kernel has been built, and it is in a subdirectory of our current

directory at arch/x86/boot/bzImage.

But we are not done yet. Now, we must build and install those features we flagged as

modules. They will be installed on our distro file system at /1ib/modules because they

are not built into the kernel. Run the make command as follows to complete building the

modules, and install them in the appropriate directories (Figure 8-18):

sudo make modules install

O hayden@T730: ~WSL2-Linux-k X | W

cc arch/x86/boot/compressed/misc.o
GZIP arch/x86/boot/compressed/vmlinux.bin.gz
MKPIGGY arch/x86/boot/compressed/piggy.s
AS arch/x86/boot/compressed/piggy.o
LD arch/x86/boot/compressed/vmlinux
ZOFFSET arch/x86/boot/zoffset.h
0BJCOPY arch/x86/boot/vmlinux.bin
AS arch/x86/boot/header.o
LD arch/x86/boot/setup.elf
OBJCOPY arch/x86/boot/setup.bin
BUILD arch/x86/boot/bzImage
Setup is 15612 bytes (padded to 15872 bytes).
System is Bu69 kB
CRC 1f3a92fe
Hernel: arch/x86/boot/bzImage is ready (#1)
hayden@T738:~/WSL2-Linux-Hernel$ sude make modules_install
[sudo] password for hayden:
INSTALL arch/x86/kvm/kvm-intel.ko
INSTALL arch/x86/kvm/kvm.ko
INSTALL virt/lib/irgbypass.ko
DEPMOD 4.19.84-microsoft-standard+
hayden@T730:~/W5L2-Linux-HKernel$

Figure 8-18. Successful compilation and installation of Linux kernel modules

Now, with our modules installed on /1ib/modules, we return to our monolithic
kernel file, arch/x86/boot/bzImage. We need to move it to our Windows file system to

make it accessible to WSL 2. I recommend your Windows user home directory. We can

189

CHAPTER 8 GOING FURTHER WITH WSL 2

do this in the following command which copies the built kernel there (Figure 8-19).
wslvar, part of wslutilities, will retrieve the %USERPROFILE% environment variable from
Windows which we then convert to Linux format with wslpath:

cp arch/x86/boot/bzImage $(wslpath $(wslvar USERPROFILE))

B hayden@T730: ~/WSL2-Linux-K X 4 = ™ o x

OBJCOPY arch/x86/boot/vmlinux.bin

AS arch/x86/boot/header.o

LD arch/x86/boot/setup.elf

0BJCOPY arch/x86/boot/setup.bin

BUILD arch/x86/boot/bzImage
Setup is 16412 bytes (padded to 16896 bytes).
System is 9589 kB
CRC c68ceeUf
Kernel: arch/x86/boot/bzImage is ready (#1)
hayden@T738:~/WSL2-Linux-Kernel$ cp arch/x86/boot/bzImage $(wslpath $(wslvar USERPROFILE))
hayden@T738:~/WSL2-Linux-Kernel$ ls /mnt/c/Users/Hayden/bzImage
/mnt/c/Users/Hayden/bzImage
hayden@T7368:~/WSL2-Linux-Kernel$

Figure 8-19. Copying our compiled Linux kernel to our Windows user home folder

Next, we need to configure WSL 2 to use our custom kernel. We do this with .wslconfig
in our Windows user home directory. Open .wslconfig as follows (Figure 8-20):

nano $(wslpath $(wslvar USERPROFILE))/.wslconfig

B hayden@T730: ~WSL2-LimaK X | W - o %

GNU nano 4.8 /mnt/c/Users/Hayden/.wslconfig
[ws12]
kernel=C:\\Users\\Hayden\\bzImage
nestedvirtualization=true

Get Help Write Out W% Where Is Cut Text g Justify e Cur Pos
Exit Read File |} Replace Paste Text [To Spell Wl Go To Line

Figure 8-20. Configuring .wslconfig to use our custom Linux kernel and enable
nested virtualization

If the file does not yet exist, nano will create the file for us. Copy the following to
.wslconfig, adjusting for your username in the path or the overall path if you placed your
kernel somewhere besides your Windows user home directory:

190

CHAPTER 8 GOING FURTHER WITH WSL 2

[ws12]
kernel=C:\\Users\\Hayden\\bzImage
nestedVirtualization=true

The path to our custom Linux kernel must be absolute, no variables are permitted
here, and backslashes require double backslashes. Beginning in Windows 10 build
20175, nested virtualization is enabled by default, so if you are on a more recent build,
this may be omitted. I still leave it on for good measure.

Next, we can set options for our “KVM for Intel processors support” module, referred to
as a kvm-intel. Open/create /etc/modprobe.d/kvm-nested. conf as follows (Figure 8-21):

sudo nano /etc/modprobe.d/kvm-nested.conf

8 hayden®T730-DEV: - < 4w - (a ®

GNU nano 5.3 Jfetc/modprobe.d/kvm-nested.conf
options kvm-intel nested=1
options kvm-intel enable_shadow_vmcs=1
options kve-intel enable_apicv=1
options kve-intel ept=1

We Help wWrite Out WY Where Is @l Execute Locatien Ll Undo
W4 Exit i Read File B! Replace B Justify Go To Line [f3 Redo

Figure 8-21. Editing nested KVM options in /etc/modprobe.d/kvm-nested. conf

Copy the following to /etc/modprobe.d/kvm-nested. conf, enabling nested
virtualization and advanced options to optimize the speed of nested virtual machines:

options kvm-intel nested=1

options kvm-intel enable shadow vmcs=1
options kvm-intel enable apicv=1
options kvm-intel ept=1

Save to /etc/modprobe.d/kvm-nested.conf, and exit.
Next, we are going to reboot our WSL environment with our new kernel. Open a new
PowerShell tab, and shut down WSL as follows (Figure 8-22):

wsl.exe --shutdown

191

CHAPTER 8 GOING FURTHER WITH WSL 2

A hayden@T730-DEV: ~ 3 EX Windows PowerShell S - o xl

Windows PowerShell
Copyright (C) Microsoft Corporation. All rights reserved. |

Install the latest Powershell for new features and improvements! https://aka.ms/PSWindows

PS C:\Users\Hayden> wsl.exe —-shutdown
PS5 C:\Users\Hayden>

Figure 8-22. Shutting down WSL

If you return to your Ubuntu tab, you should see that the process has exited
(Figure 8-23).

D heyden@T730-DEV: ~WSL2-Le % | BN Windaws PowerShell X+ ¥ - o o |

GZIP arch/x86/boot/compressed,/valinux.bin.gz
MHPIGGY arch/x86/boot/compressed/piggy.s
AS arch/xB6/boot/compressed/piggy.o
LD arch/x86/boot/compressed/vnlinux
ZOFFSET arch/x86/boot/zoffset.h
0BJCOPY arch/x86/boot/valinux.bin
AS arch/x86/boot/header.o
LD arch/xB6/boot/setup.elf
QBJCOPY arch/x86/boot/setup.bin
BUILD arch/x86/boot/bzImage
Setup is 15932 bytes (padded to 16384 bytes).
System is 8685 KB
CRC dBauiécs
Hernel: arch/xB6/boot/bzImage is ready (#1)
hayden@T738-DEV: ~/WSL2-Linux-Kernel$ cp arch/x86/boot/bzImage $(wslpath $(wslvar USERPROFILE))
hayden@T738=DEV:~/WsL2=-Linux-Hernel$ nano $(wslpath $(wslvar USERPROFILE))/.wslconfig
hayden@T738-DEV:~/WSL2-Linux-Kernel$ sudo nano fetc/modprobe.d/kvm-nested.conf
[sudo] password for hayden:
hayden@T738-DEV:~/W5L2-Linux-Kernel$
[process exited with cede 1]

Figure 8-23. Confirming that WSL has been shut down

Close that tab, and reopen a new Windows Terminal tab for our distro. This will
effectively “reboot” our WSL environment, with the new kernel loaded.

Once “booted,” you can confirm that you are running a new kernel by running
uname and checking the build date and time, which should show the current date and
the time a few minutes ago you finished building the kernel (Figure 8-24):

uname -ar

192

CHAPTER 8 GOING FURTHER WITH WSL 2

D hayden@T730-DEV: ~ -

hayden@T728-DEV:~$ uname -ar

= (m] X

Linux T736-DEV 5.4.72-microsoft-standard-wWsSL2+ #1 SMP Wed Nov 18 13:80:41 EST 2028 x86_6U XB6_6

4 %86_6U GNU/Linux
hayden@T738-DEV:~$

Figure 8-24. Confirming you are running your custom kernel with uname

Next, install a tool called kvi-ok to confirm availability of nested KVM functionality
we built into the kernel, as follows:

sudo apt -y install cpu-checker

Then run kvm-ok as follows (Figure 8-25):

kvm-ok

O heyden@T730-DEV: ~ T

After this operation, 21.5 kB of additional disk space will be used.
Get:1 http://archive.ubuntu.com/ubuntu focal/main amdéd cpu-checker amdsy ©.7-1.1 [6936 B]
Fetched 6936 B in 8s (19.9 KkB/s)

Selecting previously unselected package cpu-checker.

(Reading database ... 53174 files and directories currently installed.)
Preparing to unpack .../ cpu-checker_6.7-1.1_amdéd.deb ...

Unpacking cpu-checker (8.7-1.1) ...

Setting up cpu-checker (9.7-1.1) ...

Processing triggers for man-db (2.9.1-1) ...

haydeng@T738-DEV:~% kvm-ok

INFO: /dev/kvm does not exist

HINT: sudo modprobe kvm_intel

INFO: For more detailed results, you should run this as root

HINT: sudo /fusr/sbin/kvm-ok

hayden@T738-DEV:~$

Figure 8-25. Running kvm-ok before loading the kvm_intel kernel module results
in an error message

This will report that KVM support is not available, that /dev/kvm does not exist. We
need one more step, to load the “KVM for Intel processors support” feature we built as a
module, also known as kvm_intel, which we do as follows (Figure 8-26):

sudo modprobe kvm_intel

193

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden@TT30-DEV: ~WSL2-Lir X | 4w = o X

hayden@T736-DEV:~/WSL2-Linux-Kernel$ sudo modprobe kvm_intel
hayden@T736-DEV:~/WSL2-Linux-Kernel$

Figure 8-26. Loading the kvm_intel kernel module. An uneventful affair when
successful

Hint If you get the error message “Module kvm_intel not found in directory /lib/
modules/4.19.84-microsoft-standard+", you forgot the preceding sudo make
modules_install step.

Now rerun kvm-ok (Figure 8-27):

kvm-ok

O hayden@®T730-DEV: ~WSL2-Lin X | 4+ W = o X |

hayden@T736-DEV:~/WSL2-Linux-Kernel$ sudo modprobe kvm_intel
hayden@T738-DEV:~/WSL2-Linux-Kernel$ kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used
hayden@T736-DEV:~/WSL2-Linux-Kernel$

Figure 8-27. Running kvm-ok after loading the kvm_intel kernel module results in
a message /dev/kvm exists

If you receive the message “KVM acceleration can be used,” we have successfully
loaded the kernel module, and KVM is now working.

We can then confirm KVM nested virtualization support by checking one of the
parameters provided directly by the kvm_intel module as follows (Figure 8-28):

cat /sys/module/kvm_intel/parameters/nested

194

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden®TTI0-DEV: ~WSL2-Lir X | 4 W - @

hayden@T736-DEV:~/WSL2-Linux-Kernel$ sudo modprobe kvm_intel
hayden@T738-DEV:~/WSL2-Linux-Hernel$ kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used

hayden@T736-DEV:~/WSL2-Linux-Kernel$ cat /sys/module/kvm_intel/parameters/nested
Y

hayden@T738-DEV:~/WSL2-Linux-Hernel$

Figure 8-28. Confirming nested virtualization support in the kvm_intel kernel
module

The final step in configuring KVM for use is making /dev/kvm accessible by setting
proper access permissions for our user, which we set as follows (Figure 8-29):

sudo chmod 666 /dev/kvm

A hayden@TT30-DEV: ~WSL2Ln X | v - o x |

hayden@T736-DEV:~/WSL2-Linux-Kernel$ sudo modprobe kvm_intel
hayden@T738-DEV:~/WSL2-Linux-Hernel$ kvm-ok

INFO: /dev/kvm exists

KVM acceleration can be used

hayden@T736-DEV:~/WSL2-Linux-Kernel$ cat /sys/module/kvm_intel/parameters/nested
Y

hayden@T736-DEV:~/WSL2-Linux-Kernel$ sudo chmod 666 /dev/kvm
hayden@T736-DEV:~/WSL2-Linux-Kernel$

Figure 8-29. Setting access permissions for /dev/kvm

Because we built it as a module, you will need to manually load kvm_intel on each
launch of WSL you intend to utilize KVM.

As you experiment with running different guest operating systems, you may need to
edit the settings in /etc/modprobe.d/kvm-nested.cont.

The way to do this is to unload kvm_intel with

sudo modprobe -r kvm intel

Then make the appropriate edits to /etc/modprobe.d/kvm-nested.conf and finally
reload the kvimn_intel module as before:

sudo modprobe kvm_intel

195

CHAPTER 8 GOING FURTHER WITH WSL 2

As discussed earlier, once you have settled on settings for kvm-nested. conf, you
might then choose to rebuild your kernel with kvm_intel built-in, not as a module. This
avoids the need to manually load the module on each launch of WSL. You could also add
sudo modprobe kvm intel as a [boot] command in Windows 10 builds 21286+.

Installing a Guest Operating System on KVM on WSL

We have learned how to build a custom kernel, load modules, apply custom kernel
module settings, and install a custom kernel in WSL 2; what can we do with this? With
nested KVM support, we can use tools like minikube that depend on KVM to run
Kubernetes containers. We can also run other entire operating systems directly using
QEMU, not just Linux guests but also macOS, Arca Noae, OpenIndiana, or Haiku.

Let us run through an example with Kubuntu, the KDE flavor of Ubuntu. First, install
gemu-kvm, the set of tools for running guest operating systems, as well as aria2, a tool for
downloading large files that we are going to use to download an ISO to boot (Figure 8-30):

sudo apt -y install gemu-kvm aria2

O hayden@T730-DEV: - X A = o x

hayden@T738-DEV:~§ sudo apt -y install aria2 gemu-kvm

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
adwaita-icon-theme at-spi2-core fontconfig gstreamerl.@-plugins-base gstreamerl.@-plugins-good
gstreamerl.8-x gtk-update-icon-cache hicelor-icon-theme humanity-icon-theme ibverbs-providers
ipxe-gemu ipxe-qemu-256k-compat-efi-roms libaal libaria2-e libatk-bridge2.e-e libatkl.e-e
libatkl.e-data libatspi2.e-e libavahi-client3 libavahi-common-data libavahi-common3 libavel39d-8
libboost-iostreams1.71.8 libboost-threadl.71.6 libbrlapi®.7 libc-ares2 libcaca® libcacarde
libcairo-gobject2 libcairo2 libcdparanoia@ libcolord2 libcups2 libdatriel libdvid libepoxy@ libfdtl |
libgbml libgdk-pixbuf2.8-8 libgdk-pixbuf2.8-bin libgdk-pixbuf2.e-common libgraphitez-3
libgstreamer-plugins-basel.@-@ libgstreamer-plugins-goodl.e-8 libgtk-3-@ libgtk-3-bin
libgtk-3-common libharfbuzzeb libibverbsl libiec61883-8 libiscsi7 libjack-jackd2-8 libjbige
libjpeg-turbo8 libjpegs8 liblcms2-2 libmp3lameé libmpgl23-8 libnl-3-280 libnl-route-3-280 libnspru
libnss3 libopus® liborc-8.4-8 lib 1.8-8 libpangocairo-1.8-8 libpangoft2-1.8-8 libpcsclitel |

Figure 8-30. Installing gemu-kvm for booting guest operating systems with KVM
and aria2 for downloading large files, like guest operating system install ISOs

QEMU will display a window via X, so you need to have a third-party X server
configured as detailed in Chapter “Customizing WSL’ or have official GUI app support
in WSL when it lands. As a quick reminder, you can point your WSL instance at your
running X server on Windows with

export DISPLAY=$(cat /etc/resolv.conf | grep nameserver | awk '{print
$2;}'):0.0

196

CHAPTER 8 GOING FURTHER WITH WSL 2

Next, let’s grab a bootable ISO (cd-rom image) of a guest operating system. ISOs tend
to be large, which is why I recommend using aria2 with download multithreading vs.
basic wget or curl. Download the Kubuntu install ISO torrent file with aria2 as follows
(Figure 8-31):

aria2c -x 10 --seed-time=0 http://cdimage.ubuntu.com/kubuntu/
releases/20.04/release/kubuntu-20.04.2-desktop-amd64.iso.torrent

O hayden@TT20-DEV: ~ X o e = E M l

hayden@T738-DEV:~$ aria2c -x 18 --seed-time=6 http://cdimage.ubuntu.com/kubuntu/releases/20.84/release/k
ubuntu-28.84 ., 2-desktop-amd6ll . iso.torrent

82/89 12:48:17 [NOTICE] Downloading 1 item(s)

B82/89 12:u8:17 [NOTICE] File already exists. Renamed to /home/hayden/kubuntu-28.84,2-desktop-amdéd.iso.1
.torrent.

82/89 12:u8:17 [NOTICE] Downleoad complete: /home/hayden/kubuntu-20.84.2-desktop-amdst.iso.l.torrent
©82/89 12:48:17 [NOTICE] IPvd DHT: listening on UDP port 6931
©82/89 12:48:17 [NOTICE] IPvd4 BitTorrent: listening on TCP port 6973 |

82/09 12:u8:17 [NOTICE] IPv6 BitTorrent: listening on TCP port 6973
[#588ab9 ©B/2.4GiB(6%) CN:u4y 5D:0 DL:8B]

Figure 8-31. Downloading the Kubuntu install ISO with aria2

Next, we need to create a virtual hard drive to install Kubuntu to in QEMU, not unlike
the VHDX our WSL 2 environment is stored in. To create a virtual hard drive for Kubuntu,
run gemu-img create as follows creating a 20 G drive in qcow2 format, the native virtual
drive format for QEMU (Figure 8-32):

gemu-img create -f qcow2 kubuntu.qcow2 20G

) haycden@T730-DEV: ~ X | = @ %

hayden@T738-DEV:~$ gemu-img create —-f qcow2 kubuntu.qcow2 206

Formatting 'kubuntu.qcow2', fmt=qcow2 size=2147u836488 cluster_size=65536 lazy_refcounts=off
refcount_bits=16

hayden@T736-DEV:~$

Figure 8-32. Creating a virtual hard drive for Kubuntu with gemu-img create

Protip: gemu-1img can convert images between QCOW used by QEMU, VHDX used by
Hyper-V, and VMDK used by VirtualBox.

197

CHAPTER 8 GOING FURTHER WITH WSL 2

Next, we will boot Kubuntu (Figure 8-33). Do the following:
e Mount kubuntu.qcow? as a virtual hard drive to install to.
e Mount the Kubuntu ISO as a read-only CD-ROM file.
e Enable network access with a virtual network interface card (NIC).
e Assign 5172 MB of RAM.

o Enable a virtual VGA port, which will be forwarded to our screen via

an X window.
¢ Enable KVM acceleration.
e Assign 4 virtual CPU cores.

e Enable advanced CPU options to take advantage of the nested
virtualization settings we enabled in kvm_intel discussed earlier.

Run as follows:

gemu-system-x86_64 \
-drive file=kubuntu.qcow2,format=qcow2 \
-drive file=kubuntu-20.04.2-desktop-amd64.iso,media=cdrom,readonly \
-net nic -net user \
-m 5172 \
-vga gxl \
--enable-kvm \
-smp 4 \
-cpu kvm64,+vmx,+vme,+msr,+x2apic,+hypervisor

198

CHAPTER 8 GOING FURTHER WITH WSL 2

Welcome

=hubuntu.
= =drive fileskubuntu-20.8d.2-d
» =net nic =-net user \

\

=vga > == 5172 \

> =uga gl \

» ==enable-kvm \

> =smp 4\

> =CpU KURBH, $VEX, $VER, +RET, *X.

Try Kubuntu Install Kubunty

‘You can try Kubuntu without making any changes to your compater, directty from this OO

O you're resdy, you can install Kubuntu slongride (or instead of) you Tent operating syscem. This shouldn't take toa
kg

You may wish 10 read tha raleate notes.

Figure 8-33. Kubuntu install screen running in QEMU

Provided everything was successful, you should now see a window with the Kubuntu
installer window. You can now try the live image or install to the virtual hard drive we
created. You can store this QEMU command in a shell script (Figure 8-34), for example:

nano start_kubuntu.sh
Copy the following:

#!/bin/bash
gemu-system-x86_64 \
-drive file=kubuntu.qcow2,format=qcow2 \
-net nic -net user \
-m 5172 \
-vga gxl \
--enable-kvm \
-smp 4\
-cpu kvmé4,+vmx,+vme,+msr,+x2apic,+hypervisor

Exit, save, and do not forget to make it executable:

sudo chmod +x start_kubuntu.sh

199

CHAPTER 8 GOING FURTHER WITH WSL 2

O heyden@T730-DEV: ~ X 4w - O x

GNU nano 4.8 start_kubuntu.sh Modified
#1/bin/bash

gemu-system-xB6_s4

-drive file=kubuntu.qcow2, format=qcow2

-net nic -net user \

-m 5172 \

-vga gxl \

=-enable-kvm %

-smp 4 \

-cpu kvmGd +vmx, +vme +msr, +x2apic, +hypervisor

Get Help B write out where Is cut Text BE Justify R cur pos undo
Exit gl Read File Replace Paste Text i To Spell g Go To Line Redo

Figure 8-34. Creating a script to launch Kubuntu

Once you install to the virtual hard drive, you may omit the reference to the ISO and
delete it if you choose. You can also adjust the RAM and core requirements to optimize
performance. This approach can be adapted to booting other operating systems from
their installer ISOs.

WSL 2 Advanced Networking

WSL 1 networking was relatively basic. Because WSL 1 was a system call translation
layer, the WSL environment shared the same networking stack with the Windows
environment. In other words, localhost was localhost.

In WSL 2, networking is a bit more complicated. The WSL 2 network has its own IP
address on a DHCP NAT subnet.

This can introduce some complications. Once such complication is with X,
addressed in the previous chapter setting up X on WSL 2. The second complication
is accessing services running in WSL 2 from outside your device. This also requires
opening a port in Windows Firewall and then forwarding the port to the WSL 2
environment IP.

In this example, we will set up an apache web server and then enable access from
our LAN.

First, install apache (Figure 8-35):

sudo apt -y install apache2

200

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden@T730: ~ x |+ = o %

hayden@T738:~$% sudo apt -y install apache2

[sudo] password for hayden:

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following additional packages will be installed:
apache2-bin apache2-data apache2-utils libaprl libaprutill libaprutill-dbd-sqlite3
libaprutill-ldap libjanssond4 liblua5.2-8 ssl-cert

Suggested packages:
apache2-doc apache2-suexec-pristine | apache2-suexec-custom openssl-blacklist

The following NEW packages will be installed:
apache2 apache2-bin apache2-data apache2-utils libaprl libaprutill libaprutilil-dbd-sqlite3 |
libaprutili-ldap libjanssond liblua5.2-8 ssl-cert

8 upgraded, 11 newly installed, @ to remove and 128 not upgraded.

Need to get 1865 kB of archives.

Figure 8-35. Installing the Apache web server

Once installed, we now start the web server using the service command as follows
(Figure 8-36):

sudo service apache2 start

D hayden@®T730: ~ = = o X

hayden@T730:~% sudo service apache2 start
#* Starting Apache httpd web server apache2
*

hayden@T736:~%

Figure 8-36. Starting Apache using the service command

We can now use wslview, part of wslutilities bundled in several WSL distros and
available for others, to open the default landing page for Apache running on localhost
(Figure 8-37):

wslview http://localhost

201

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden@T730: - X [e

hayden@T730:~% sudo service apache2 start

* Starting Apache httpd web server apache2
*

hayden@T738:~% wslview http://localhost:86
hayden@T730:~%

Figure 8-37. Opening the default landing page for Apache using wslview

The default landing page for Apache should be visible on localhost (Figure 8-38), but
itis only accessible on localhost. How do we make it accessible to other devices on our
local area network (LAN)?

[Apache2 Ubuntu Default Page: 1 x | 4+

O @ localhost Eon @

@ Apache2 Ubuntu Default Page

I%_I

This is the default welcome page used to test the correct operation of the Apache2 server after
installation on Ubuntu systems. It is based on the equivalent page on Debian, from which the Ubuntu
Apache packaging is derived. If you can read this page, it means that the Apache HTTP server installed
at this site is working properly. You should replace this file (located at fvar/uww/html/index. html)
before continuing to operate your HTTP server.

If you are a normal user of this web site and don't know what this page is about, this probably means
that the site is currently u ilable due to mai ance. If the problem persists, please contact the
site's administrator.

I Configuration Overview I
Ubuntu's Apache2 default configuration is different from the upstream default configuration, and split
into several files optimized for interaction with Ubuntu tools. The configuration system is fully
documented in fusr/share/doc/apache2/README.Debian.gz. Refer to this for the full
documentation. Documentation for the web server itself can be found by accessing the manual if the
apache2-doc package was installed on this server.

The configuration layout for an Apache2 web server installation on Ubuntu systems is as follows: ¥

Figure 8-38. The default landing page for Apache web server running on
localhost

First, we open PowerShell and retrieve the IP address of our Windows device’s
Ethernet or Wi-Fi connection. These IP addresses are visible and accessible to other
devices on the LAN (Figure 8-39):

Get-NetIPAddress

202

CHAPTER 8 GOING FURTHER WITH WSL 2

O hayden®T730: ~ X M Windows PowerShell X 4 = o X
SkipAsSource : False
PolicyStore : ActiveStore
IPAddress :192.168.4.122
Interfacelndex 6
InterfaceAlias : Ethernet
AddressFamily 1 IPvil
Type : Unicast
PrefixLength ;22
PrefixOrigin : Dhep
SuffixOrigin : Dhep
AddressState : Preferred
ValidLifetime : @83:24:83
PreferredLifetime : €3:24:03
SkipAsSource : False
PolicyStore : ActiveStore
IPAddress : 169.254.246. 44
InterfaceIndex : 7
InterfaceAlias t Wi-Fi

Figure 8-39. Identifying the IP address of our Windows device using
Get-NetIPAddress

Next, we identify the virtual IP address that has been assigned to our WSL environment
with ip a (Figure 8-40), specifically the eth0 device. Unlike the Windows device IP address,
our WSL IP address is not accessible by default to other devices on the LAN. We need to set
up forwarding to make the service running in WSL accessible to the LAN via the Windows
IP address. Then we need to open the proper ports in the Windows firewall.

ip a

D hayden®T730: ~ * EH Windows PowerShell X |+ v - (m] *

hayden@T730:~% ip a
1: lo: <LOOPBACHK,UP,LOWER_UP> mtu 65536 gqdisc noqueue state UNKNOWN group default qlen 1000
link/loopback 68:09:00:80:80:00 brd ©0:00:00:00:00:00
inet 127.8.0.1/8 scope host lo
valid_lft forever preferred_lft forever
ineté ::1/128 scope host
valid_lft forever preferred_lft forever
2: bond@: <BROADCAST,MULTICAST,MASTER> mtu 1560 qdisc noop state DOWN group default glen 1806
link/ether ee:1f:8f:fd:7a:dc brd ff:ff:ff ff:ff:ff
3: dummy®: <BROADCAST,NOARP> mtu 1568 qdisc noop state DOWN group default qlen 1606
link/ether 12:c6:4b:30:fl:e@ brd ff:ff:ff ff:ff:ff
4: ‘ethe: <BROADCAST,MULTICAST,UP,LOWER_UP> mtu 1506 qdisc mq state UP group default gqlen 1leee
link/ether €0:15:5d:cf:7F:84 brd ff:ff:ff Ff:Ff:FF
inet 172.28.202.134/20 brd 172.28.207.255 scope global ethe
valid_lft forever preferred_lft forever
ineté fe88::215:5dff:fecf:7f8u/64 scope link
valid_lft forever preferred_lft forever
5: sit@@NONE: <NOARP> mtu 1488 qdisc noop state DOWN group default qlen 1666
link/sit ©.e.9.8 brd 6.8.8.8
hayden@T730:~%

Figure 8-40. Identifying the virtual IP address assigned to our WSL environment
ip a

203

CHAPTER 8 GOING FURTHER WITH WSL 2

You can alternatively use the following to locate your WSL environment IP address
(Figure 8-41):

ip addr show etho | awk -F'[/]+" '$2=="inet" {print $3}'

O hayden@t730: ~ X e = o x

hayden@t738:~% ip addr show eth@ | awk -F'[/]+' '$2=="inet” {print $3}'
172.28.148.167
haydengt738:~$

Figure 8-41. Identifying the virtual IP address assigned to our WSL environment
by parsing the output of ip addr

If you were to attempt to access Apache from another device on the LAN at either
of these IP addresses at this point, the connection would time out (Figure 8-42). The
connection is not being forwarded from Windows into the WSL environment, and it is
also being blocked by the Windows Firewall.

hayden@130S: ~

hayden@130s:~$ curl http://192.168.4.122 --connect-timeout 15 -v
o Trying 192.168.4.122:80...

* TCP_NODELAY set

* Connection timed out after 15001 milliseconds

* Closing connection ©

curl: (28) Connection timed out after 15001 milliseconds
hayden@1305:~$ curl http://172.28.202.134 --connect-timeout 15 -v
ol Trying 172.28.202.134:80...

* TCP_NODELAY set

* Connection timed out after 15001 milliseconds

* Closing connection @

curl: (28) Connection timed out after 15001 milliseconds
hayden@130s:~5 [J

Figure 8-42. Attempting to connect to either IP address results in a connection
timeout

204

CHAPTER 8 GOING FURTHER WITH WSL 2

Open PowerShell as Administrator on Windows, and we will create a forwarding port
proxy that links our Windows IP address to our WSL environment IP address on port 80,
the port used by Apache as follows (Figure 8-43):

netsh interface portproxy add v4tov4 listenaddress=192.168.4.122
listenport=80 connectaddress=172.28.202.134 connectport=80

BN Administrator: Windows PowerS > 4 W = o X

PS C:\Users\Hayden> netsh interface portproxy add vitovd listenaddress=192.168.4.122
listenport=86 connectaddress=172.28.202.134 connectport=8e

PS C:\Users\Hayden>

Figure 8-43. Creating a port proxy on Windows to forward incoming traffic to our
Windows IP address on port 80 to our WSL environment IP address on port 80

While still in PowerShell as Administrator, we will open a port in our Windows
Firewall to allow inbound connections on port 80 as follows (Figure 8-44):

netsh advfirewall firewall add rule name="Open Port 80 for WSL2" dir=in
action=allow protocol=TCP localport=80

EN Administrator: Windows PowerS > 4 W = o X

PS C:\Users\Hayden> netsh interface portproxy add vitovid listenaddress=192.168.4.122
listenport=86 connectaddress=172.28.202.13U connectport=8e

P5 C:\Users\Hayden> netsh advfirewall firewall add rule name="Open Port 8@ for WSL2"
dir=in action=allow protocol=TCP localport=8e
ok.

PS C:\Users\Hayden>

Figure 8-44. Creating a Windows Firewall rule that allows inbound traffic on port
80 on our Windows device

205

CHAPTER 8 GOING FURTHER WITH WSL 2

Alternatively, we can create a Windows Firewall rule that allows all incoming traffic
to traverse to the virtual Ethernet adapter for WSL, but caution should be used here as
this opens your WSL environment completely to the network, without the protection of
the Windows Firewall. This is done as follows (Figure 8-45):

New-NetFirewallRule -DisplayName "WSL" -Direction Inbound -InterfaceAlias
"vEthernet (WSL)" -Action Allow -EdgeTraversalPolicy Allow

E¥ Administrator: Windows Powerf % | & = (m] x |

i

PS C:\> New-NetFirewallRule =-DisplayMame "WSL" =-Direction Inbound =-InterfaceAlias "vEthernet (WSL)" =-A

ction Allow -EdgeTraversalPolicy Allow
{

Name : {881Bbcel1-37af-ue87-8fae-Gedfeebefaud}

DisplayName : WSL

Description z

DisplayGroup

Group 5

Enabled : True

Profile : Any

Platform : {}

Direction : Inbound

Action 1 Allow

EdgeTraversalPolicy : Allow

LooseSourceMapping : False

LocalonlyMapping : False

Owner z

PrimaryStatus Hl

Status : The rule was parsed successfully from the store. (65536)

EnforcementStatus : NotApplicable

PolicyStoreSource : PersistentStore

PolicyStoreSourceType : Local

RemoteDynamicHeywordAddresses : {}

PS C:\>

Figure 8-45. Creating a Windows Firewall rule that permits all incoming traffic to
be forwarded to your WSL environment, use with caution

But once we have forwarded our port and opened a port in our firewall, the Apache
service now becomes accessible via our Windows IP address to other devices on our
LAN (Figure 8-46).

206

CHAPTER 8 GOING FURTHER WITH WSL 2

[Apache2 Ubuntu DefaultF x +
« O A Notsecure | 192.168.4.122 H = @ &
@ Apache2 Ubuntu Default Page

%_

This is the default welcome page used to test the correct operation of the Apache2 server after installz
systems Itis based on the equwalenl page on Deblen from h|ch rhe Ubuntu Apache packaging is d

A page a at the Apac 5 d I ing properly. You shc
r HTTP server.

is probably means 1
the site’s administrat

hayden@1305:~% curl http://192.168.4.122 --connect-timeout 15 -v

* Trying 192.168.4.122:80...
* TCP_NODELAY set figuration, and split in
* Connected to 192.168.4.122 (192.168.4.122) port 80 (#9) imented in
> GET / HTTP/1.1 lation. Documentatio
> Host: 192.168.4.122 was installed on thi:
> User-Agent: curl/7.68.0 . .
> Accept: */* proasiolows:
>
* Mark bundle as not supporting multiuse
< HTTP/1.1 266 OK
< Date: Thu, 19 Nov 2020 16:57:86 GMT
< Server: Apache/2.4.41 (Ubuntu)
< Last-Modified: Thu, 19 Nov 2020 16:24:40 GMT
< ETag: "2aa6-5b47s82a3saffe”
[7 % conf
I 1., eitac.anahlad

Figure 8-46. Accessing Apache running on WSL from another device on our land
after successfully configuring port forwarding and opening a port in our firewall

One important caveat is that the IP address of your WSL environment changes every
time it is launched, so on reboot, you will need to reconfigure port forwarding each time,
to forward to the proper port. You can automate this with PowerShell or bash commands
in your .bashrc file or using the new [boot] command= option in Windows 10 builds
21286 or higher.

For example, the following script may be called by your [boot] command= option in
Windows 10 builds 21286 or later, or your .bashrec file, to configure a port forward from
your physical network to your WSL instance. You can discover your network adapter’s
interface index by executing Get-NetIPAddress -AddressFamily IPv4 in PowerShell
(Figure 8-47).

207

CHAPTER 8 GOING FURTHER WITH WSL 2

C:\> Get 55 =AddressFamily IPvd

IPAddress + 192.168.1.137

Interfacelndex ;8

InterfaceAlias : vEthernet (LAN Hyper-v switch)

AddressFamily ¢ IPvY

Type ! Unicast |
PrefixLength T4

PrefixOrigin : Dhep

SuffixOrigin : Dhep

AddressState : Preferred

ValidLifetime : 18:15:54 |
PreferredLifetime : 18:15:54

SkipAsSource : False

PolicyStore : ActiveStore

IPAddress 1 172.17.16.1

Interfacelndex : 87

InterfaceAlias : vEthernet (WSL) |
AddressFamily 1 IPvl |

Figure 8-47. Getting the Interfacelndex for my Windows PC’s main network
interface card - here it is index number 9

#!1/bin/bash

Configuration

INTERFACE_IDX=9 # Your Windows network device's InterfaceIndex from
Get-NetIPAddress in PowerShell

PORT=80

The script
IPADDRESS="$(ip addr show etho | awk -F'[/]+" '$2=="inet" {print $3}')"

powershell.exe -Command "
\$WINIPADDR=Get-NetIPAddress -AddressFamily ipv4 -InterfaceIndex
$INTERFACE_IDX | Select-Object -ExpandProperty IPAddress

Start-Process -Verb RunAs -FilePath netsh.exe -ArgumentlList @
('interface', 'portproxy', 'add', 'v4tov4', \"listenaddress=\$WINIPADDR\",
'listenport=$PORT", 'connectaddress=$IPADDRESS', 'connectport=$PORT")"

208

CHAPTER 9

Maximizing Windows
Interoperability

When working with WSL, you may find you need to use utilities or files from Windows
in your workflow or vice versa. Thankfully, there are several ways that you can blur
the barrier between your WSL distro and Windows allowing a much more productive
environment than Windows, or a Linux Distro, would provide on their own.

wslpath

wslpath is a tool built into WSL that allows for simple conversion of paths between WSL
and their Windows equivalents and vice versa (Figure 9-1):

wslpath C:\\Users\\Hayden returns /mnt/c/Users/Hayden
wslpath -w /mnt/c/Users/Hayden returns C:\Users\Hayden

ws1lpath is useful when scripting tasks in Windows from WSL, without having to parse
and rearrange the characters, particularly all those \ and /s that must be escaped in sed
and grep. wslpath is particularly powerful when paired with wslenv, detailed as follows.

A hayden@t730: ~ % T %

hayden@t73e:~% wslpath C:\\Users\\Hayden
/mnt/c/Users/Hayden

hayden@t736:~% wslpath -w /mnt/c/Users/Hayden
C:\Users\Hayden

hayden@t73e:~$

Figure 9-1. Usingwslpath to convert paths between WSL and Windows
equivalents

209
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_9

https://doi.org/10.1007/978-1-4842-6873-5_9#DOI

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

wslutilities

wslutilities are a collection of tools by Patrick Wu that have been adopted by several

WSL distros published on the Microsoft Store. Ubuntu and Pengwin include wslutilities

by default. wslutilities are available for several other distros, including SUSE, Alpine,

Debian, CentOS, and openSUSE. wslutilities include the following tools:

wslusc allows you to create a shortcut to Linux applications on the Windows

desktop. For example, install the GNOME text editor gedit (Figure 9-2):

sudo apt -y install gedit

A hayden@7a0: - * e

hayden@t738:~% sudo apt -y install gedit

Reading package lists... Done

Building dependency tree

Reading state information... Done

The following packages were automatically installed and are no longer required:
libperl5.38 libpython3.8 libpython3.8-minimal libpython3.8-stdlib perl-modules-5.38 python3.8
python3.8-minimal

Use 'sudo apt auteremove' to remove them.

Suggested packages:
gedit-plugins

The following NEW packages will be installed:
gedit

@ upgraded, 1 newly installed, @ to remove and @ not upgraded.

Need to get 371 kB of archives.

After this operation, 1811 kB of additional disk space will be used.

Get:1 http://archive.ubuntu.com/ubuntu hirsute/main amd6y gedit amd64 3.38.1-1 [371 k8]

Fetched 371 kB in 1s (311 kB/s)

Selecting previously unselected package gedit.

(Reading database ... 72694 files and directories currently installed.)

Preparing to unpack .../ /gedit_3.38.1-1_amdéd.deb ...

unpacking gedit (3.38.1-1) ...

Setting up gedit (3.38.1-1) ...

ode

Processing triggers for mailcap (3.68ubuntul) ...

Processing triggers for desktop-file-utils (@.2d=-lubuntud) ...
Processing triggers for gnome-menus (3.36.8-lubuntul) ...
hayden@t738;:~$

update-alternatives: using /usr/bin/gedit to provide /usr/bin/gnome-text-editor (gnome-text-editor) in auto m

Figure 9-2. Installing gedit

Next, locate an acceptable icon for gedit by searching /usx/share/icons for icons

containing the name gedit (Figure 9-3):

find /usr/share/icons/ -name "*gedit*.svg"

210

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

O hoyden@r30: - x [- n xl

haydengt738:~$ find /usr/share/icons/ -name "*gedit=*.svg"
fusr/share/icons/Humanity/apps/u8/gedit-icon.svg
fusr/share/icons/Humanity/apps/u8/gedit-logo.svg
Jusr/share/icons/Humanity/apps/2u4/gedit-icon.svg
fusr/share/icons/Humanity/apps/2u/gedit-logo.svg
fusr/share/icons/Humanity/apps/16/gedit-icon.svg
fusr/share/icons/Humanity/apps/16/gedit-logo.svg
fusr/share/icons/Humanity/apps/32/gedit-icon.svg
fusr/share/icons/Humanity/apps/32/gedit-logo.svg
Jusr/share/icons/Humanity/apps/22/gedit-icon.svg
fusr/share/icons/Humanity/apps/22/gedit-logo.svg
/usr/share/icons/hicoler/symbolic/apps/org.gnome.gedit-symbolic.svg
/usr/share/icons/hicolor/scalable/apps/org.gnome.gedit.svg
hayden@t730:~$

Figure 9-3. Searching for icons for gedit in /usr/share/icons

Then, run wslusc, specifying gedit is a GUI application with the -g flag; name the
shortcut gedit with -n ‘gedit, specifying an icon we found with -i, followed by the gedit
command (Figure 9-4):

wslusc -g -n 'gedit' -i /usr/share/icons/Humanity/apps/48/gedit-icon.svg
gedit

D hayden@iT30 - x [EENe

haydengt738:~% wsluse -g -n 'gedit' -i /fusr/share/icons/Husanity/apps/ug/gedit-icen.svg gedit
[infe] ¥ou choose to use custom icon: fusr/share/icons/Husanity/apps/u8/gedit-lcon.svg. Processing...

[info] Converting swvg icon to ice...
[info] Create shortcut gedit.lnk successful
haydengt7ie:~$

Figure 9-4. Creating a shortcut to gedit on the Windows desktop using wslusc

And you now have a shortcut for gedit on your desktop (Figure 9-4). Note that GUI
applications still require an X server to be running on Windows until official GUI app
support lands in WSL.

wslsys provides some basic system information, useful when filing WSL-related bug
reports (Figure 9-5).

211

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

D hayden@t730:/ * 4 e — (m] >

hayden@t73e:/$ wslsys

WSL Version: 2

Locale: en_Us

Release Install Date: Mon Aug 31 18:31:83 EDT 2628
Branch: vb_release

Build: 19842

Full Build: 19841.1.amdéUfre.vb_release.191206-1486
Display Scaling: 1

Windows Theme: light

Windows Uptime: &d &h 23m

WSL Uptime: @d @h Tm

WSL Release: Ubuntu Hirsute Hippo (development branch)
WSL Hernel: Linux 4.19.184-microsoft-standard
Packages Count: 935

hayden@t730:/$

Figure 9-5. System information provided by ws1sys

The output of wslsys can also be grepped for use in scripts. For example
wslsys | grep 'Theme' | sed 's/*.*: //'

will return simply “light” or “dark” for the Windows Theme.
wslfetch is like tools such as neofetch but also provides information about the host
Windows 10 system, such as the Windows 10 build number (Figure 9-6).

A hayden@ero/ * [= (=] x

hayden@t7368:/$ wslfetch -c

.-/+oossssoot/-. wWindows Subsystem for Linux (WSL2)
I +S55555555555555555+4 haydengt738
~+555555555555555555) Y5555+~ Build: 19842
.0SS55555555555555SSdMMNNySSSS0. Branch: vb_release
/55555555555 NNmmyNM} 555555/ Release: Ubuntu Hirsute Hippo (development branch)
+555555555hmydH Y55555555+ Kernel: Linux 4.19.184-microsoft-standard
/sssssssshNMMMyhhy NMHHNhSSSSSSSS/ Uptime: 8d ©h 24m
.ssss5555d ihsssssssssshi s5555555.
+S5SS NMMNySSS55S5SSSSSyNMMNySSSSSSs+
ossyNHMMNYMMhSSS55555555555 S5555550
055y h NyMMhsssss h h
+555§ " MMHySSSSSSS+
.5555555SdMMAN MMMdssss55SS.
/sssssssshiMMMyh I Nhssssssss/
+sssssssssduydHMMHMMMN /SSSSSSSS+
/55555555555hdmNNNNnyNMHHMhsSSS5S/
.05555555555555555550MMNNyss550.

~+55555555555555555))y S555+~
" 14555555555555555555+:
.=f+o0ssss00+/~,

haydengt730: /%

Figure 9-6. Splash screen by wslfetch

wslvar allows you to retrieve Windows environmental variables, such as
%APPDATA% and %USERPROFILE%. For example, if you want to share a script that
writes to a Windows user home folder, you will not want to hardcode /mnt/c/Users/
Hayden because other users’ usernames and paths would be different.

212

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

You can use a combination of wslpath and $(wslvar USERPROFILE) instead to
retrieve that location and then convert it to Linux path that WSL would understand, for
example (Figure 9-7):

touch hello
cp hello $(wslpath $(wslvar USERPROFILE))

D hayden@t730: ~ < = = =

hayden@t73@:~% touch hello

hayden@t738:~% wslvar USERPROFILE

c:\Users\Hayden

haydengt738:~% wslpath $(wslvar USERPROFILE)
J/mnt/c/Users/Hayden

hayden@t738:~% cp hello $(wslpath $(wslvar USERPROFILE))
haydenpt7308:~% 1s $(wslpath $(wslvar USERPROFILE))/hello
/mnt/c/Users/Hayden/hello

hayden@t730:~%

Figure 9-7. Creating an empty file named hello and copying it to the current
Windows user’s home folder

wslview registers itself as the default web browser in WSL that when run will open
the corresponding URL in the default web browser in Windows. For example, the
following will open the URL in Microsoft Edge, the default browser I have set on my
Windows 10 (Figure 9-8):

wslview http://boxofcables.dev

& roygergtra -

haydengt730:~$ wslview hitp.f/boxofcables. dev
yengt73a: =5

Deploying Rancher on
k3s on WSL 2

Running k3s server on WSL2 and
then installing Ranches on it

- #Git m Ll

Figure 9-8. Using wslview to open web URLSs in the default web browser in Windows
213

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

However, wslview does not stop at URLs. You can use wslview to open any file in WSL
using the default application for that file type in Windows. For example, the following
will open the file in Notepad, the default editor for .txt files, on Windows 10 (Figure 9-9):

echo 'hello Patrick' > textfile.txt
wslview textfile.txt

ﬂ hayden@t730: ~ * + W
hayden@t738:~$ echo ‘hello Patrick’ > textfile.txt
hayden@t738:~$% wslview textfile.txt
hayden@t73e:~%

| textfile - Notepad

File Edit Format View Help
[hello Patrick?

Ln 1, Col1 100% Unix (LF)

Figure 9-9. Opening a .txt file with Notepad on Windows using wslview

Redirecting Between Windows and Linux
Applications

Redirection is a mechanism where you can take the output from running a command
and feed it into the input for another command. This is often known as “piping” and is
common to use on the command line. In a Linux shell, this is usually marked by the |
character, which on most keyboard layouts is accessed with shift+\.

Another common pattern is to use the content of a file as the input for a command
or write the output from a command to a file. These are usually denoted with the << and
>> symbols. (Those are two < characters and two > characters, not the single guillemet
characters of « and ».)

214

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY
Piping
When using the pipe mechanism, commands can be created that perform complex
action chains without requiring you to write a program to perform the complete process.
For example, you could use gzip to compress a file, convert it to base64 encoding so that
it is suitable for displaying or sending in a text format, and forward the base64 text into

gnupg to sign it using a “PGP” key and print the result to the terminal.
The command for the described chain of events is (Figure 9-10)

gzip --stdout /etc/hosts | base64 | gpg --clear-sign

A hayden@T730:~ X = =k s

hayden@T7308:~$ gzip --stdout /etc/hosts | base6d | gpg --clear-sign
----- BEGIN PGP SIGNED MESSAGE-—----
Hash: SHA512

HUsSICCpC818AAZhvVCIRZAFWQQWY DMAYFz /OVEPSEPUKG LQR232CH\!QITj BBCR25NXSvY6rL8+8kh
WZh9sbunnp68g/bsELjnEVadQN+Yrpgded5PcMKAUTP2BE3WEf5aQEuQmIatb+1xFIAS80p2DTrv
PUSWSD2NLPpWAABCIMGCPbPZ j8oWhYBulg8+APFKEFMLTHFpMiRMBgdU+oarqY1HKred8sbiziaur
hLXHXxTRYhV5iuTADIWbtvwDeBZQdIOKPYUXd+axGeHnT7PoDRiwyydVINUBE+bjg8/E1cKho6bSTH
Y1lk2TbmlyBLK2gle jUUSRLTUJI/M6e2Yuf x tIEiywXmGKG2NME6he SKTABLQEAAA==

==-===BEGIN PGP SIGNATURE-----

1QGzZBAEBCGAdFiEECAZVIpto5Djun9sooMThj3oUUzZAFAL/ZRDMACgkQoMTh]j3oU
UzBuJwv/eyxJBT]jqBqFv3yFdCjOYEhiizI+EmUfUMYKKkEmNNLhKUSuy/rbTWMZR
WELYutvJ+gWshDgB0od7P8d3mSwOOdWCSHCLury91BIjvefyStwb23i6xEULLCSKZ
mwPr60XRMUTILYOIRhRS+TeBm6IXqNpRFmZgtl1bxYJy jwzDM+6EULYSNI+iUBsz
vIiE/WZuTpehWdlHizeHoxYLtbd+MIMyPD2fHUZSRWRPLDxySpmMIInhRX1/bADV
ERuTsHfLdFMMy+nTnyh3yXMEz jQvfeQd5Df 1uAHUPXWWGENWUSFBUxhwKZwTgFEjc
kMrDaw/tZ5W/ jIbqmiF7peRCLWIOICELYW2YXHEZ1XXL jXUNMIG+GeILQ5NxcdMu
eJdr3jqmp/s1qwwe0HAL/MhrlFUBLRF3CoEORDgoDL XqOVRCcCBE139ABUMRRAISX
b621PrpZLe0SB7bVZgPEAQYRME/XWT IceUXri/TPMAXY2AHPSOXNTUWYXfIeEXgSC
WAeGEDnP

=5Lx2

=====END PGP SIGNATURE=-=----

hayden@T738:~%

Figure 9-10. Pipeline to compress a file, convert it to text, and sign it with PGP

If you do not have a default GPG key, you can create one with
gpg --full-gen-key

If you receive the error message “gpg: signing failed: Inappropriate ioctl
for device, then set

export GPG TTY=$(tty)

The example shows how we take the output of the command on the left of the |
character and “pipe” the output to the command on the right. Here, we use the pipe
mechanism twice, where the first pipe takes the output from gzip and passes it into

215

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

base64 and the second takes the output from the base64 command and passes it to gpg.
We could do this with a separate program that saves the outputs and feeds them to the
inputs of the next command. We would, however, need to write that program, and the
pipe mechanism is much simpler to immediately understand and can be written quickly
and easily.

Piping Between Windows and WSL

With WSL on Windows, we can use the piping mechanism to redirect input and output
to and from commands between Windows and WSL and vice versa. This gets powerful
when you realize you can make the hop between Windows and WSL multiple times in a
single pipeline.

Piping from WSL to Windows

For a simple example, we can use clip.exe on Windows combined with a pipe from
WSL to easily put text into the Windows clipboard for use with the paste feature of your
favorite programs.

cowsay "Hi readers!" | clip.exe

This gives the following in our clipboard for pasting with Ctr1+V (Figure 9-11):

\ /_/\
\ (00)\
) N/

== |

216

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

O hayden@t730:/ x [- o x

hayden@t730:/$ cowsay "Hi readers!"™ | clip.exe

hayden@t73e:/$
] *Untitled - Notepad - [m] x
File Edit Format View Help

< Hi readers! >

v (oo)\
N JAYAY
[]--=w |
I I

Figure 9-11. Copying the output of piping to clip.exe into Notepad

By default, the PATH variable from Windows is passed through to WSL so you can
execute programs using the same expectation of it working as if you were executing
directly from Windows’ command line. For executables that are not in the locations
included in the PATH, you may also use the full location.

The equivalent to the preceding, using the full location of clip.exe, could be

cowsay "Hi readers!" | /mnt/c/Windows/System32/clip.exe

Expanding on this, we can replace clip.exe with a short PowerShell script that uses
Windows’ “Component Object Model” (COM) API to compose a new email in Microsoft
Outlook with the text from the pipeline inserted into the body.

Here, we use git format-patch to create a source code diff, sign it with our PGP key,
and put the signed result into an email body in Microsoft Outlook:

git format-patch --stdout HEAD~1 | \

GPG_TTY=$(tty) gpg --clear-sign | \

powershell.exe '
$M=(New-Object -ComObject Outlook.Application).CreateItem(0);
$M.Body=$input | %{$r=""}{$r+="$ "n"}{$r}; $M.BodyFormat=1;
$M.Display()"

We could save the PowerShell code to a reusable file; let us call it sendmail.ps1 and
pass the path to that instead of rewriting it verbatim every time we need it (Figure 9-12).

217

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

1| sendmail - Notepad

File Edit Format View Help
BH-(NeN-Object -ComObject Outlook.Application).Createltem(@);

$M.Body=%input | %{$r=""}{$r+="%_"n"}{$r}; $M.BodyFormat=1;
$M.Display()

Ln1, Col1 100% Windows (CRLF) UTF-8

Figure 9-12. Saving PowerShell code to a reusable file that can be called from WSL

Note Slashes / are used to separate the Windows file path because Bash in WSL
will interpret the backslash \ as a special character requiring a double backslash
\\ instead — PowerShell is fine with this, but other programs may be less forgiving.

We can then run the following to create a new Outlook message from our command

output (Figure 9-13):
git format-patch --stdout HEAD~1 | GPG_TTY=$(tty) gpg --clear-sign |

powershell.exe -File C:/Users/Hayden/sendmail.ps1

218

CHAPTER9 MAXIMIZING WINDOWS INTEROPERABILITY

B
~~~~ -BEGIN PGP SIGNED MESSAGE=---—-
Hash: 5HABL2
= From T5T2a64F I8 Mon Sep 17 99:09:00
2001

From: Test User <tostPexample.com>
Date: Wed, 2 Dec 2628 01:d6:03 +0008
Subject: [PATCH] Ensure tea is made

README-Microsoft WSL2 | 1 +
1 file changed, 1 insertion(+)

diff --git a/README-Microsoft.WSL2 b/README-Microsoft.WSL2

index aSeThSBodeed. UcdT8a38aB11 108644

= === afREADME-Microsoft.wsL2

+++ b/README-Microsoft WSL2

&9 -3,3 +3,4 p@ Build instructions:

1. Install a recent Ubuntu distribution

2. sudo install build-essential flex bison libssl-dev libelf-dev
3. make KCONFIG_CONFIG=Microsoft/config-wsl

+3.2. go make a cup of tea

2.25.1

=——=-BEGIN PGP SIGNATURE----—

o oAdFAEE4Py: [125UnCgleQs zkiuHBE X
DmJUHgwAhg Y2931 85 «ZY pYdX 2nH2Faiiz 2yL reCrBpl bwiAAsDY It 2BGOBEF wMkh
PFILLTq/6hgH 3 IHBMREGL pyvdLy/me Tl
FLpTHdgQC ENH/REG128, JubiAMC: TohR
RS gl 32C IvCVsAl

gl 13t vk 21 5sTdBpnPGLXRAWZ D65AT1LSLA6WFhge I/ /
whitYLVKE/CP 95 YETHAC LhFIALTYY
BxVtds qeTzzgnlBhyhis+yy L
" AWVFHANFTXZY30not65B+eMIZIrognSez
L9sLDwxg

=I+I1
-—--END PGP SIGNATURE-——-—

Figure 9-13. A new Outlook email compose window with the output of “git
Jformat-patch” inserted to the email body

Piping from Windows to WSL

Much like piping from WSL to Windows, we can perform the inverse operation. We can
execute a command in Windows and pipe its output into another command in WSL. Let
us consider that we want to find all the Windows Services that are Xbox related. To achieve
this, we will use PowerShell’s Get-Service “cmdlet” and pipe the output into grep in WSL
to filter the output to only lines of text that include the word Xbox (Figure 9-14):

Get-Service | wsl.exe -d Ubuntu-20.04 grep Xbox

219



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

B¥ PowerShell X [ ae = o ®
PS C:\Users\Hayden> Get-Service | wsl.exe -d Ubuntu grep Xbox
Running XblAuthManager Xbox Live Auth Manager
Stopped XblGameSave Xbox Live Game Save
Stopped XboxGipSvc Xbox Accessory Management Service
Stopped XboxNetApiSvc Xbox Live Networking Service

PS C:\Users\Hayden> [

Figure 9-14. Using PowerShell to list Windows Services and filtering the result
with “grep” in WSL

We can also take the output from the WSL command and pass it back into another
PowerShell cmdlet. Replacing the grep with a similar awk command, which we also use
to extract just the second column, we can start and stop all the services together. In the
following, I show this to start and stop the ssh-agent service by filtering on the text ssh

as Administrator.
Administrator: PowerShell EE - o e
PS C:\Users\Hayden> Get-Service | wsl.exe -d Ubuntu grep ssh
Stopped ssh-agent OpenSSH nuthent::at:nn Agent

PS C:\Users\Hayden> Get e | wsl.exe -d Ubuntu awk '/ssh/ { print \$2 }' | Start-Service
PS C:\Users\Hayden> Get e | ..-:'_ exe =d Ubuntu grep ssh

Running ssh-agent OpenSSH nuthent:cat:on Agent

PS C:\Users\Hayden>

Figure 9-15. Using PowerShell to start the ssh-agent service in Windows by
filtering the list of services through AWK in WSL

If you receive the error "Start-Service: Service 'OpenSSH Authentication
Agent (ssh-agent)' cannot be started due to the following error: Cannot
start service 'ssh-agent' on computer '.'.", thenyou need to enable manual
launch of the ssh-agent (Figure 9-15):

Set-Service ssh-agent -StartupType Manual

220



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

File Redirection

Redirecting files allows you to save the output of a command to a file or use a file as
input to a command. An input file is indicated in Bash with a < symbol followed by the
filename whose content you want to use as input to the command, while an output file
is, conversely, indicated with a > symbol followed by the filename of the file to save the
output of the command into.

For a simple file redirection example, we use the content of /etc/hosts as the input
to the base64 command; we write that as

base64 < /etc/hosts

With base64, it would be simpler to write base64 /etc/hosts without the file
redirection, but this only helps with commands that allow usage of a filename as a
parameter. It would also have not illustrated file redirection.

Likewise, to save the output of the tar command, which creates archives of any
number of files, we write it as

tar ¢ /etc/hosts > hosts.tar
Again, tar has a built-in parameter that is easier to perform this action with:
tar cf hosts.tar /etc/hosts

Windows’ command line and PowerShell both also support the concept of file
redirections, which means we can use them to redirect a file in a command line or
PowerShell window to a WSL command. In the following, we take the content of the
Windows hosts file and copy it verbatim into the hosts file in our default WSL distro:

wsl.exe -u root tee /etc/hosts < C:\Windows\System32\drivers\etc\hosts

Heredocs

Along with file redirection, Bash provides a feature called “heredocs.” These enable you
to write long multiline text input to a command without requiring to first write the text
to a file. The “heredoc” is defined with << followed by any unique word that will be used
to indicate the end of the input text. A heredoc needs to be at the end of the command
or pipeline that it is to be the input for. The end of input indicator word needs to be on a

221



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

line by itself, with no leading spaces or tabs, and can be any word you desire if it does not
occur naturally in the text. A common end of input indicator is EOF.
For example, here is a simple command to print the input text back to the console to

show how it works:

cat <<ENDOFINPUTINDICATOR

Hi readers!

The next line indicates the end of this input text
ENDOFINPUTINDICATOR

We can use this feature to send any arbitrary text to our commands, including those
on Windows. The following is an example (Figure 9-16) using the sendmail.ps1 we used
earlier in the “Piping Between Windows and WSL’ section to write a new email in the
terminal (Figure 9-17):

powershell.exe -File C:/Users/Hayden/sendmail.ps1 <<EOF
Hi, Readers

This text will be used as the body or a new email message in Microsoft
Outlook. Congratulations on learning about Heredocs.

Best regards,
Hayden
EOF

O hayden@TT30: imnt/e/Users/He X 4w - o X

hayden@T738: /mnt/c/Users/Hayden$ powershell.exe -File C:/Users/Hayden/sendmail.psl <<EOF

> Hi, Readers

>

> This text will be used as the body or a new email message in Microsoft Outlook. Congratulations
on learning about Heredocs.

>

> Best regards,

> Hayden

> EOF

hayden@T736: /mnt/c/Users/Hayden$

Figure 9-16. Writing an email from WSL using PowerShell

222



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

H 5 C Untitled - Message (Plain Text) Jia) - ] X
Message Insert Options Format Text Review Help Q Tell me what you want to do

B I U 4 Koo s | v @ e

=
<

Hi, Readers

This text will be used as the body or a new email message in Microsoft
QOutlook. Congratulations on learning about Heredocs.

Best regards,
Hayden

Figure 9-17. Example new email message composer in Microsoft Outlook created
with the content of a heredoc in WSL

Environmental Variables

Windows and WSL can share environmental variables. These are small in-memory

text data entries that are forwarded to and program you run. By default, the Windows
environment variables and those in WSL are separate, but this can be configured with
a specially named variable in called WSLENV. This variable is interrogated every time the
border between Windows and WSL is crossed, so you can change it whenever it suits
your workflow.

For example, you can specify that the environment variable JAVA_HOME, which points
to the installed Java runtime location, transitions the border when crossing between
Windows and WSL by setting the WSLENV variable to JAVA_HOME/p.

You can add any number of environment variable names to the WSLENV configuration
by separating each entry with a colon. Here, we have JAVA_HOME and OneDrive specified
(Figure 9-18).

223



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

User variables for yabea

= Variable Value
Edit User Variable x
Variable name: | WSLENV
Variable value: JAVA_HOME/p;OneDrive/p \
Browse Directory... Browse File... Cancel
NEW.. EQnT T Delete
Currtam wariahlae

Figure 9-18. Windows’ environment variable configuration dialog with
“WSLENV” set

The /p part of each of the preceding configured variables tells WSL to translate
between Windows and WSL paths in the values of each of those variables. For example,
with the preceding WSLENV set in Windows, the variables in Windows look like this:

C:\Program Files\AdoptOpenJDK\jdk-14.0.2.12-hotspot\
C:\Users\Hayden\OneDrive

While in WSL, they look like this, due to the path translation indicated by the /p:

/mnt/c/Program Files/AdoptOpenIDK/jdk-14.0.2.12-hotspot/
/mnt/c/Users/Hayden/OneDrive

There are other suffixes in addition to /p. All the usable suffixes are

o /p-Indicate that the variable should have its value treated as a path
and translate between Windows and WSL equivalent representations.

o /1 -Indicate that the variable should be treated as a colon-
delimited list of paths in WSL or a semicolon-delimited list of paths
in Windows. Like /p, each individual path in the list is converted
between Windows and WSL representations.

224



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

e /u-Indicate that the variable should be forwarded from Windows to
WSL but not from WSL to Windows.

e /w-Indicate the inverse of /u. The variable should be forwarded
from WSL to Windows but not from Windows to WSL.

You may also combine /u and /w with either /p or /1. For example, the following are

some variants you may use, but not an exhaustive list:

o /pu- The variable contains a path to be translated, and the variable
should only propagate from Windows to WSL.

e /1w - The variable contains a list of paths to be translated, and the
variable should only propagate from WSL to Windows.

Mount File Systems in WSL 2

File systems come in many forms, and Windows does not support Linux-specific ones.
We can use WSL 2 to access these previously inaccessible locations and expose them to
Windows applications via the WSL-to-Windows special path \\ws1$ and the Linux node
in Windows Explorer (Figure 9-19).

Q » = | Linux = ] X
Home Share View 0
&« « 1+ > lnux > (VI J} D Search Linux
» o Quick access Alpine Debian
- o
> @ Nextcloud
docker-desktop docker-desktop-data
» o OneDrive
o -
> _®This PC
kali-linux openSUSE-Leap-15.2
> ¥ Network < -
> O tinux SLES-15-5P1 Uburtu
o b o
Ubuntu-20.04

<

Figure 9-19. Windows Explorer showing the Linux node with installed WSL
distros

225



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

Windows File Shares

Windows file sharing is supported via drvfs, which forwards locations known to
Windows into the WSL environment. First, let us see how to do this with a Windows
Share mapping to a Drive Letter in Windows:

1. In Windows, navigate to the Network item in Windows Explorer.
2. Navigate into the server object that holds your share.

3. Right-click your share, and choose “Map network drive.”

4. Inthe new window, choose Z:, and then close the dialog.

a. Enter your username and password for the share if prompted or you have
chosen to use alternative credentials.

5. InWSL, run sudo mkdir /mnt/z; sudo mount -t drvfs
Z: /mnt/z.

6. You will now find your network share’s files accessible under the
path /mnt/z.

7. To ensure that the drive is remounted when WSL restarts, add the
following line into /etc/fstab: Z: /mnt/z drvfs defaults 0 o.

As an alternative to mapping the Share to a drive letter, we can use the “UNC” path
when calling mount. The caveat here is that Windows will use a default set of credentials,
and these cannot be overridden with this method. If you need to use different
credentials, you must use the preceding drive letter mapping method.

1. In WSL, run the following, ensuring that you replace \\server\
share-name with the UNC path of your share:

sudo mkdir /mnt/file-share; sudo mount -t drvfs '\\
server\share-name' /mnt/file-share

2. To ensure that the drive is remounted when WSL restarts, add the
following line into /etc/fstab:

\\server\share-name /mnt/file-share drvfs defaults 0 0

226



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

SSHFS and Other FUSE-Based File Systems

One of the great features of Linux that you can use with WSL 2 is the support for “FUSE”-
based file systems. FUSE is an acronym for “Filesystem in User space” where the actual
file system driver is run as a program rather than as a part of the kernel. This means that
you can use any file system that has a FUSE driver without learning how to and using
a customized rebuilt kernel. A great file system that FUSE allows is the “SSHFS,” which
uses Secure Shell connections to a remote PC and exposes the remote file system locally.
To mount an SSHFS file system, we must first edit the file /etc/fuse.conf to add
aline containing user_allow_other. This will allow us to use the allow_root option
when mounting the file system. Note this requires sshfs to be installed and ssh keys to be
generated.
We can now call sshfs, after creating a folder owned by the user who executes sshfs:

sshfs -o idmap=user,uid=1000,gid=1000,allow root server:/root/test /mnt/test

By using FUSE-based file systems in WSL with the allow_root option specified
when mounting, we allow Windows Explorer to see the files using the Linux node in
the sidebar. The file system is also exposed via the UNC path \\ws1$\distro\path\to\
mountpoint (Figure 9-20).

i A1 = [ MwshUbunt\mntisshis = ] X
Home  Share  View (7]
“— L % Linex » Ubuntu > mnt » sshis » v 4] Search sshfs
| Name Jate modified ype Size
o Quick access
homes
& Nestcloud ccage
& Orlnive so-images
media 3/12/2020 15:57 File folder
» This PC sdstorage
o Network veenter-backups
config-iscsi-viware json
2 tiw ] freenas-v1.db

Figure 9-20. A mounted SSHFS file system accessed through Windows Explorer

227



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

The magic thing this allows is for any FUSE file system, which is not supported
by Windows natively such as SSHFS, to be usable from any Windows application that
supports opening a UNC path. For example, we could open a file on a remote server
through WSL 2 into notepad. exe (Figure 9-21).

{ | Open x
1 « Ubuntu > mnt » sshfs » v | O = Search sshfs
Organise ~ New folder - @ ©
it Name ) Date modified Ty -
# Quick access
media
@ Nextcloud s3storage
& OneDrive veenter-backups
.config-iscsi-vmware.json
5 This PC freenas-v1.db

il Mia .o e B

File name: | config-iscsi-vmware json

Encoding: Auto-Detect

Ln1,Col1 100%  Windows (CRLF) UTF-8

Figure 9-21. notepad.exe window showing the ability to open a file from a
mounted “sshfs” file system inside WSL 2

Native Linux File Systems in a Disk Image or “Partition”

This is a powerful feature, so do not attempt if you are at all uncomfortable.

With that said, Linux supports a bewildering array of file systems, some more
recognizable than others. The usual Linux suspects are ext2/3/4, XFS, and btrfs.
With WSL 2, we can mount these file systems in our distro and then access them from
Windows. This means that, through WSL 2, Windows now supports any native Linux file
system.

You can find which file systems are supported by your currently running kernel by
executing the following inside WSL 2:

cat /proc/filesystems

228



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

In a Partition

If you have a hard disk with native Linux partitions on it, then you can expose them to
your WSL 2 distro by using the - -mount parameter to wsl.exe. This has the caveat that it
requires that the partition be on a disk that is currently not used by Windows, such as if
the partition is a secondary partition on your Windows boot device.

You need to know the Windows internal disk path when using wsl.exe -mount, which
you can find by running the following in a command line or PowerShell window:

wmic diskdrive list brief

This will show an output like the one in Figure 9-22.

EX Administrator: PowerShell X A = O x
| PS C:\Users\Hayden> wmnic diskdrive list brief
| Caption DeviceID Model
Partitions Size
5T1888DME83-156182 ‘\\.\PHYSICALDRIVE® 5T1886DMEE3-15B182

1 1800202273280
| NVMe SAMSUNG MZVLBS512 SCSI Disk Device \\.\PHYSICALDRIVE2 NVMe SAMSUNG MZVLB512 SCSI Disk Device

3 512185932868
WDC WDS588G2BOA-8B5M58 \\.\PHYSICALDRIVE1 WDC WDS568G2BOA-885M58
2 5001652U9280

PS5 C:\Users\Hayden>

Figure 9-22. Output of “wmic” command showing available physical disks

Once you have found your DeviceID, which looks like \\ . \PHYSICALDRIVEn where n
is a number starting from 0, you can construct the wsl.exe command as follows:

wsl.exe --mount \\.\PHYSICALDRIVE1l --partition 2

In a Disk Image (VHDX File)

You can, instead of using a physical disk or partition, use a virtual hard disk image stored
as a .vhdx file. These are typically created by Windows Hyper-V virtualization system, of
which WSL 2 is a very specialized variant.

This method is very similar to using a physical disk or partition with the difference
being that instead of physically attaching the disk, you will use PowerShell to mount the
.vhdx file into Windows and then proceed the same as for a physical disk or partition.

229



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

To mount the .vhdx file in Windows, run the following in a PowerShell window, after
ensuring you replace <pathToVHDX> with the full path to your .vhdx file:

Write-Output \\.\PhysicalDrive$((Mount-VHD -Path <pathToVHDX> -PassThru |
Get-Disk).Number)

This will mount the virtual disk file and then print out its \\.\PhysicalDrive name,
which you can use in thewsl.exe --mount commands.

Mounting Options

You may also optionally add any of the following parameters which mirror their Linux

counterparts:
1. Specify the file system in case it is not automatically detected:
-t <FileSystem>
For example:
wsl.exe --mount \\.\PHYSICALDRIVE1 --partition 2 -t ext4
2. Specify any Linux file system mount options:
-0 <options>
For example:

wsl.exe -mount \\.\PHYSICALDRIVE1 --partition 2 -o
noatime,uid=1000,gid=1000

3. You can also pass through the whole device instead of a single
partition with

--bare

This requires that you omit the --partition, the -t, and the -o
parameters. For example:

wsl.exe -mount \\.\PHYSICALDRIVE1 --bare

When you have a mounted file system in WSL 2, the normal methods of accessing
from Windows apply, such as the Linux node in Explorer and the \\ws1$ UNC paths.

230



CHAPTER9  MAXIMIZING WINDOWS INTEROPERABILITY

When you are finished with your disk or disk image, you can remove it from WSL 2,
with the --unmount command:

wsl.exe --unmount <DiskPath>
For example:
wsl.exe --unmount \\.\PHYSICALDRIVE1

Alternatively, you can unmount all disks and images by omitting the disk path
parameter:

wsl.exe -unmount

231



CHAPTER 10

Using WSL for Enterprise
Development

With the interoperable nature of WSL, you can run your favorite IDE or editor in
Windows while keeping the compatibility of running your project inside a real Linux
environment. Because WSL 2 uses the Linux kernel, exciting new opportunities are
opened such as the ability to run a Kubernetes distribution for developing microservices
architecture systems. There is also the enticing ability to use your workstation or laptop’s
Graphics Processor (GPU) to accelerate machine learning tasks.

Creating a Microk8s Workstation

The computing world is abuzz with the idea of microservice development and
deployment patterns. These concepts are made possible by the software Kubernetes,
which is difficult to have not heard mention of. Canonical, the company behind the ever-
popular Ubuntu, has packaged a distribution of Kubernetes that they call “microk8s.”
The great thing about microk8s is that it is fully self-contained and is installable with a
single command.

Prerequisites for Microk8s

The great thing about microk8s is that it is packaged into a Snap package. Snaps are
self-contained bundles that include everything an application requires to operate

and are installed simply and quickly. This guide requires that you have an operational
systemD-enabled distribution in WSL 2 as Snaps require systemD to operate correctly.
Make sure to read Chapter 7, “Customizing WSL’ for details on enabling systemd in your
environment.

233
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_10


https://doi.org/10.1007/978-1-4842-6873-5_10#DOI

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT
To verify that your environment is set up correctly, run (Figure 10-1):

snap version

O hayden@T730: ~ P = m] X

hayden@T738:~%$ snap version

snap 2.u8+18.04

snapd  2.48+18.64

series 16

ubuntu 18.84

kernel 4.19.128-microsoft-snapd+
hayden@T730:~$

Figure 10-1. Running “snap version” in WSL 2 with an operational systemd

If your system is correctly set up, this will report your Snap and Snapd versions along
with the distribution you are running and the WSL 2 kernel version.

Now that we have verified that Snapd is at least responding, try installing and
running hello-world:

sudo snap install hello-world
hello-world

This should successfully install the hello-world Snap from the Snap Store and
execute the new command. If everything worked, the hello-world command will print a
welcome message (Figure 10-2).

B hayden@T730: ~ X N = g =

hayden@T73@:~$ sudo snap install hello-world
hello-world 6.4 from Canonicalv installed
hayden@T73@:~$ hello-world

Hello World!

hayden@T73e:~%

Figure 10-2. Successfully installing and running the “hello-world” Snap package

234



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Installing Microk8s

Congratulations, you now have everything you need to install microk8s. Let us install it
then:

sudo snap install microk8s --classic
sudo usermod -a -G microk8s $USER
newgrp microk8s

sudo chown -f -R $USER ~/.kube
microk8s status

Enabling Microk8s Add-Ons

Now that microk8s is installed, you may access the Kubernetes control plane with
kubectl as normal and deploy and manage services and pods with the usual tools
you would use to administer an in-production cluster. You can also quickly enable
and disable various add-ons viamicrok8s enable and microk8s disable commands
(Figure 10-3).

hayden@tuue:~$ microk8s status
microk8s is running
high-availability: ne
datastore master nodes: 127.8.8.1:19801
datastore standby nodes: none I}
addons: i
enabled: |
ha-cluster # Configure high availability on the current node
disabled:
ambassador # Ambassador API Gateway and Ingress
cilium # SDN, fast with full network peolicy
dashboard # The Hubernetes dashboard
dns # CoreDNS
Fluentd # Elasticsearch-Fluentd-Hibana logging and monitering
apu # Automatic enablement of Nvidia CUDA 1
helm # Helm 2 - the package manager for Hubernetes
helm3 # Helm 3 - Hubernetes package manager
host-access # Allow Pods connecting to Host services smoothly
ingress # Ingress controller for external access
istio # Core Istio service mesh services
jaeger # Hubernetes Jaeger operator with its simple config
keda # Kubernetes-based Event Driven Autescaling
knative # The Hnative framework on Hubernetes.
kubeflow it Hubeflow for ecasy ML deployments
linkerd # Linkerd is a service mesh for Hubernetes and other frameworks
metallb # Loadbalancer for your Hubernetes cluster
metrics-server # KBs Metrics Server for API access to service metrics
multus # Multus CNI enables attaching multiple network interfaces to pods
portainer # Portainer UI for your Hubernetes cluster
promethaus # Prometheus operator for monitoring and logging
rbac # Role-Based Access Control for autherisation
registry # Private image registry exposed on localhost:32000
storage # Storage class; allocates storage from host directory
traefik # traefik Ingress controller for external access
haydenftude:~$

Figure 10-3. Successful installation of microk8s

235



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

For example, most workloads deployed to a Kubernetes cluster usually access other
services on the same cluster via DNS names. These are names internal to the cluster
that are resolved to their respective IP addresses via normal DNS lookups. Due to the
minimalist nature of microk8s, the DNS service provided by CoreDNS is not enabled out
of the box, but is easily enabled (Figure 10-4):

microk8s enable dns

portainer # Portainer UI for your Hubernetes cluster

prometheus # Prometheus eperater for monitering and logging

rbac # Role-Based Access Control for autherisation
registry # Private image registry exposed on localhost:32000
storage # Storage class; allocates storage from host directory
traefik # traefik Ingress controller fer external access

hayden@tudd:~$ microk&s enable dns

Enabling DNS

Applying manifest

serviceaccount/coredns created

configmap/coredns created

deployment . apps/coredns created

service/kube-dns created
clusterrole.rbac.authorization.k8s.io/coredns created
clusterrolebinding.rbac.authorization.kBs.io/coredns created
Restarting kubelet

DNS is enabled

hayden@tuus:~§

Figure 10-4. Enabling CoreDNS service on microk8s

You may remove the CoreDNS feature again when it is not needed any longer with
microk8s disable dns
Helm can be enabled for installing Helm charts with (Figure 10-5):

microk8s enable helm3

clusterrole.rbac.authorization.k8s.io/coredns created
clusterrolebinding.rbac.authorization.kBs.io/coredns created
Restarting hubelet I
DNS is enabled
hayden@tude:~$ microk8s enable helm3
Enabling Helm 3
Fetching helm version v3.0.2.

% Total % Received % Xferd Average Speed Time Time Time Current

Dload Uplead Total Spent Left Speed

100 11.5M 188 11.5M L:} 8 21.6M B ==i==i== ==pe=i=s ==ie=ie= 209N
Helm 3 is enabled
haydenftude:~$

Figure 10-5. Enabling Helm 3 for microk8s

236



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Deploy a Cluster with Helm

A common way to deploy workloads to a Kubernetes cluster is via the use of Helm. This
is accessed in microk8s with the microk8s.helm or microk8s.helm3 commands. The
first is for Helm 2 and the second for Helm 3. Which you choose is up to you and likely
depends on the version you use for your production environment. If you do not have a
preference, then start with Helm 3. Whichever you choose, you must enable it in your
microk8s system with the enable command:

microk8s enable helm3

To be able to reach our services, we need to enable microk8s’ ingress controller
(Figure 10-6) with:

microk8s enable ingress

haydengtuun:~$ microk8s enable ingress
Enabling Ingress
ingressclass.networking.k8s.io/public created
namespace/ingress created
serviceaccount/nginx-ingress-microk8s-serviceaccount created |
clusterrole.rbac.authorization.k8s.io/nginx-ingress-microk8s-clusterrole created |
role.rbac.authorization.k8s.io/nginx-ingress-microk8s-role created |
clusterrolebinding.rbac.authorization.k8s.io/nginx-ingress-microk8s created
rolebinding.rbac.authorization.k8s.io/nginx-ingress-microk8s created
configmap/nginx-load-balancer-microk8s-conf created
configmap/nginx-ingress-tcp-microk8s-conf created
configmap/nginx-ingress-udp-microk8s-conf created
daemonset.apps/nginx-ingress-microk8s-controller created

Ingress is enabled 1
hayden@tuug:~$

Figure 10-6. Enabling microk8s’ ingress controller

Now we can install the Ghost blog (Figure 10-7) with:

microk8s.helm3 repo add groundhog2k https://groundhog2k.github.io/helm-
charts/

microk8s.helm3 repo update

microk8s.helm3 install ghost groundhog2k/ghost

237



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

daemonset.apps/nginx-ingress-microk8s-controller created [
Ingress is enabled

haydengtuue:~$ microk8s.helm3 repo add groundhog2k https://groundhog2k.github.io/helm-charts/
"groundhog2k" has been added to your repositories

hayden@tuue:~$ microk8s.helm3 repo update

Hang tight while we grab the latest from your chart repositories... |
...Successfully get an update from the "groundheg2k" chart repesitory
Update Complete. & Happy Helming!s

haydengtuuo:~% microk8s.helm3 install ghost groundhog2k/ghost

NAME: ghost

LAST DEPLOYED: Fri Feb 12 19:27:00 2021

NAMESPACE: default

STATUS: deployed

REVISION: 1

hayden@tuug:~$

Figure 10-7. Installing Ghost blog with Microk8s and helm3

your production environment. See microk8s.helm3 help for usage information and

You can now use microk8s.helm3 for development as you would use Helm in

https://helm.sh/ for documentation on Helm if you get stuck.

Using Docker Desktop
Installing Docker Desktop on WSL

Once you have installed Docker Desktop onto Windows from www.docker.com/get-
started, we can configure it to enable support for WSL. Find the Docker icon in your

system tray (next to your taskbar’s clock), and double-click it (Figure 10-8).

238


https://helm.sh/
http://www.docker.com/get-started
http://www.docker.com/get-started

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

F

p

rosoft -Bing

10123-1645
19:33
12/02/2021

Figure 10-8. Showing the Docker Desktop icon in the system tray

From the new window, click the settings icon at the top right - it looks like a gear.

The first option to make sure is enabled is to use the WSL 2-based engine
(Figure 10-9). This replaces the Docker Desktop virtual machine with a lightweight
environment utilizing the WSL 2 infrastructure.

W docker

Settings

Figure 10-9. Enabling the option to use the WSL 2-based engine for Docker
Desktop

239



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Now, navigate to Resources followed by WSL Integration. Here, we can enable and
disable Docker Desktop integration with our WSL distros to enable use of the same
Docker Engine from Windows and each of our enabled Distros (Figure 10-10).

b docker

Settings

Figure 10-10. Configuring Docker Desktop’s WSL Integration for our distros

Building Docker Container

After configuring WSL integration in the Docker Desktop settings window, we can
use Docker commands inside our WSL distro the same way we would on Windows in
PowerShell or cmd.exe. To prove this, we will use Docker’s getting-started example
application to show that you can build container images from WSL using Docker
Desktop.

First, use git to clone https://github.com/docker/getting-started:

git clone https://github.com/docker/getting-started

Move into the getting-started directory, and execute the Docker build command.
The build will, when finishing successfully, show an image ID which we will use to run a
container (Figure 10-11):

cd getting-started
docker build .

240


https://github.com/docker/getting-started

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Step 19/22 : RUN mkdocs build

---* Using cache

===> Blbcfbealcfd

Step 28/22 : FROM nginx:alpine

===> 629dFfO2bUTcE

Step 21/22 : COPY --from=app-zip-creater /app.zip /usr/share/nginx/html/assets/app.zip

---> d5c36eccBdTb

Step 22/22 : COPY --from=build fapp/site fusr/share/nginx/html

---> Bfc6e32fScie

Successfully built 8fcte32f5che

hayden@tuus:~/getting-started$ docker run --rm -it -p 808:80 8fcbe32fS5ce

/docker-entrypoint.sh: /docker-entrypoint.d/ is not empty, will attempt to perform configuration
/docker-entrypoint.sh: Looking for shell scripts in /docker-entrypoint.d/
/docker-entrypoint.sh: Launching /docker-entrypoint.d/18-listen-on-ipv6é-by-default.sh
18-listen-on-ipvé-by-default.sh: info: Getting the chechsum of /etc/nginx/conf.d/default.conf
18-listen-on-ipvé-by-default.sh: info: Enabled listen on IPv6 in /etc/nginx/conf.d/default.conf
fdocker-entrypoint.sh: Launching /docker-entrypoint.d/28-envsubst-on-templates.sh
fdocker-entrypeint.sh: Configuration complete; ready for start up

Figure 10-11. Successful build and launch of the getting-started Docker example
container

We can now navigate to http://127.0.0.1/ in a web browser in Windows to view
the example web page (Figure 10-12).

1 & o0

*dod(-n e Getting Started

Getting Started

The command you just ran

docker run <@ -p BDIBD docher/getting-sterted

Figure 10-12. The getting-started web page served from the container we just built
and started using Docker Desktop’s WSL integration

241


http://127.0.0.1/

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Connecting to Editors/IDEs
Visual Studio

The de facto standard IDE for enterprises is Microsoft’s Visual Studio, which can be
integrated with WSL to build and debug .NET Core and .NET 5.0 applications for
deployment to Linux systems.

Installing in Visual Studio Version 16.8 and Earlier

In Visual Studio 16.8 and earlier, enable the feature with the following steps:
1. Open Visual Studio, and select “Continue without code.”

2. Find and open the Extensions menu, and select “Manage
Extensions.

3. Type into the search box the word Dot-Net-Core-Debugging-
With-Wsl2.

4. Click the Download button on the item labeled “NET Core
Debugging with WSL 2 - Preview” (Figure 10-13).

5. Once the download is complete, close Visual Studio, and let the
installer finish (be ready for a UAC prompt).

242



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

[l T ot Doy with WILE v | o
! g T v e L o
s w1

S ety popreay
e

Figure 10-13. Downloading and installing .NET Core Debugging with WSL 2
Visual Studio extension

Installing in Visual Studio Version 16.9 and Later

The feature is included as part of Visual Studio 16.9 and later, so to enable, we will use
the “Visual Studio Installer” application - this is the same application that you use to
initially install Visual Studio on a workstation, update it to newer versions, and add and
remove features.

You can enable the “NET Core Debugging with WSL 2” feature either as part of the
“NET Core cross-platform development” item in the workload tab or by selecting it from
the “Individual components” tab (Figure 10-14).

243



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

eatalling — Visual St Community 2019 Previem — 1630 Preview 2.0
Waorkloads  Individual components  Language packs  Installation locations

wl x Installation details
Detugging snd tasting = Visual Studio core editor

MY Core Debugging with WSL 2 Fhe Visal Shudsa core thed evpemience, inchiting
syt smare codda eding. sourte code control and
worl it ruanaspri

Locaton
CProy 7 sl Change

By contining, you qeoe 1 the Eoerrs e tha Vinual Studky edition you selected. We abio ofler the ablity 1o downioad other soltware with Visual Studic.
This software & lcormed separately, a5 set out in the dl Farky NoSices of in it g cerse. Vou ks e

Figure 10-14. Selecting the .NET Core Debugging with WSL 2 item in Visual
Studio Installer

Debugging Your App in WSL

To be able to debug your app in WSL 2, it must target .NET Core or .NET 5.0. You can
create a new project that is compatible by selecting Linux from the platforms drop-down
in the “New project” window (Figure 10-15).

244



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Create a new
project

Search for ternplates (AlL+S) L~

ko i i

Recent project templates ‘All platforms
ﬁ' Console App (NET Core) | Android
f+) ASP.NET Core Web 25 A project for aeating a cc Azure n run on NET Core on
Application Windows, Linux and Mact i0s

Clear all

[« Linwex macds | Linux
macO5
VB -~ "
h Console App [NET Core) | 1,
A project for creating a oo n run on MET Core on

Windows, Linux and Mac( ]
Windows

Visual Basic Windows ¥hox e

@ ASPNET Core Web Application
2 Project termplates lor creating ASP.INET Core web apps and web APls for Windows,
Linurx and macOS using MET Core or NET Framework. Create web apps with Razor
Pages, MVC, or Single Page Apps (SPA) using Angular. React, or React + Redux.
c* Linwx macOs ‘Windows Cloud Service Web

m Blazor App

Nt

Figure 10-15. Creating a new project that targets Linux

Once you have a compatible project, the drop-down to select which platform to use
for debugging should list “WSL 2” as an option (Figure 10-16). When you select this item,
it will configure your WSL environment to run .NET Core or .NET 5.0 applications and

then allow you to launch your debugging session.

s 5P NET Coresun.ifes

Figure 10-16. Selecting “WSL 2” as the environment to debug within

245



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Visual Studio Code

Many developers are moving to using Visual Studio Code as their editor of choice. Code
allows for seamless integration with WSL by using its “WSL Remote” extension. With
this extension to Code, the editor is split into two parts where the User Interface runs
on Windows, but the tools that are used for development and debugging are started in
WSL. You can even open a terminal inside Code that shows you a Bash shell from the
WSL environment.

To get started, we need to install the “WSL Remote” extension inside Code:

1. To Start Code, select it from the Start/Flag menu in Windows; or
open the run dialog (windows key + R), type code, and hit enter;
or use Windows search by pressing the Windows key on your

keyboard, then type code, and finally press enter.

Press Ctrl+P, and type ext install remote-wsl, and then press
Enter. This will open the extensions screen with the WSL Remote
extension.

Click the “Install” button in the right-hand pane of Code
underneath the extension title “Remote - WSL” (Figure 10-17).

»] File Edit Selecion View Go Run Terminal Help Extension: Remote - WSL - Visual Studio Code

0 ¥ D : Extension: Remote - WSL X m
Remote - WSL ms-vscode-remote.remote-wsl
»~ INSTALLED a ) h
e S Microsoft b 4854724 7 %4k Repository ns
Python 202012428 Open any folder in the Windows Subsystem for Linux (WSL) and take advantage ...
Linting, Debugging (multi-threaded,
Microsaft

C/Cos 11

C/C#+ IntelliSense, debugging. and

Details

Feature Contributions Changelog

grates ESLint kavascript into VS

Dirk Bacumer [ instan | . .
Visual Studio Code Remote - WSL
Prettier - Code formatter 220
Code formatter using prettier
Prettier  instai | The Remote - WSL extension lets you use VS Code on Windows 1o build Linux applications that run on the
Pe R Windows Subsystem for Linux (W5L). You get all the productivity of Windows while developing with Linux-based

tools, runtimes, and utilities,

C# for Visual Studio Code (powered

~ RECOMMENDED

2

Figure 10-17. Installation screen of WSL Remote extension for Visual Studio Code

246

Open any folder in the Windows Sub..
Microsoft install

Debugger for Firefox 201
Dby L

web application or brow.

Remote - WSL lets you use VS Code in WSL just as you would from Windows.
Why do | need Remote - WSL?
Why WSL?

WL lets you run 3 Linux environment -« including command-line tocls and applications -- directly on Windows,




Now that we have the extension, we may open a file or folder from our WSL distro:

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

1. Press Ctrl+Shift+P.

2. Type remote-wsl.

3. Choose the “New Window...” option to open a new window with
the default WSL distro, or “New Window using distro...” to choose
which distro you want to use (Figure 10-18).

] File Edit Selection View

Figure 10-18. Opening a new Code window connected to WSL

4. Select “Open Folder” to find and open a folder from your WSL

" Remote-WSL |

Go  Run  Terminal Help

7 | »remote-ws!

Remote Explores: Focus o
Remote-WSL H
Remote-WSL |

Visual Studio Code Remote - WSL

distro (Figure 10-19).

Extension: Remote - WL - Visual Studio Code

247



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

»] File Edit Selection View Go Run Terminal Help Welcome - Visul Studio Code = o ®
] welcome x Open Folder M -

o [ e
: .

3 Azure, Docker and

fim, Sublime, Atom an

Figure 10-19. Opening a folder from the now-connected WSL instance

You will note that when you connect to a WSL instance, the terminal automatically
opens in the bottom right of the Visual Studio Code window. This terminal is a direct
view to BASH running inside WSL, so anything that would be possible on the command
line without Code is possible here (Figure 10-20).

File it ection View Go Run  Terminal Help -MicrosofWSL2 - WSL2-Linux-Eernel [WSL Ubuntu-20.10] - Visual Studic Code  —
File Edi Sehecti R T 1} p README-h SL2 - WSL2-Li L 4 [WSL W 0.10] | 51 Cod o x
@ EXPLORE - README-Microsoft WSL2 X 1 0O

» OPEM EDITORS S EADME-M N

w WSLZ-LINUX-KERMEL [WSL: UBUNTU-20.... 1 Bulld instructions: . — -

1. Install a recent Ubuntu distribution
2. sudo install build-essential flex bison libssl-dev libelf-dev
3. make KCONFIG_CONFIG=Hicrosoft/config-wsl

RMINAL 1: bash + [

derfiT7 301/ WSL2- Linw-Kernel$ ]

» QUTUNE
> TIMELINE

* WSL Ubuntu-2010  FPmaster O ®0A0 Ln1,Col1 Spacesd4 UTFE LF PainTed & 0

Figure 10-20. Showing that the terminal inside Code is the real WSL terminal

248



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

With the client-server mechanism that Code uses, you can even debug your code
running in WSL from Code running in Windows. Here, we are hitting a breakpoint in a .NET
web application that is running in WSL with Code running in Windows (Figure 10-21).

File Edit Selection View Go Run Terminal He neescshir - asp-example [WSL: Ubuntu-20.04] - Visual Studio Code - o x
]
D MNETCorelau~ 4% 49 - Indexeshtom 0 2 ¥ T O 0O m .-
< WARIABLES JE exnc
- Locals 1 @page

oy~ Taur g v le P Faoe 2 gmodel IndexModel
3 ef
CEl'} VienData["Title®] = "Home page";|
}

Spacer 4 UTF-8with BOM  CRUF  ampnctcorerazor & 0

Figure 10-21. Debugger hitting a breakpoint in Windows while debugging a .NET
web app running in WSL

JetBrains IDEs

JetBrains IDEs support opening a project from within a WSL 2 instance by showing the
\\ws1$ special paths in the File » Open dialog (Figure 10-22). When opening or creating
a project from a \\ws1$ path, the JetBrains IDE will automatically switch to using Git
from within the WSL instance.

249



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

m Open File or Project X
« [ S G Hide path
\\wslS\Ubuntu\home\hayden v [

? boot
? dev
? | etc
v home
b .cache
> W .gnupg
> [ snap |
> ubuntu-wsl2-systemd-script
= .bash_history |
= .bash_logout
= .bashrc
= .profile

5 .sudo_as_admin_successful
= .systemd-env
> lib

Figure 10-22. The JetBrains IDE’s “Open File or Project” window showing
available WSL paths

Like with Visual Studio and Visual Studio Code’s remote debugging in WSL, JetBrains
IDEs are growing support for executing more build and debug steps within the WSL
instance. One of the better supported experiences is within WebStorm when building a
Node]JS project. When creating a project, you can specify that WebStorm uses the node
and npm executables from your WSL instance.

When creating a new project, you can specify tooling inside WSL:

1. Select the “Node interpreter” drop-down, and choose add
(Figure 10-23).

250



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

B8 New Project

— a X
+' Empty Project New project
* ¥ Angular CLI
: 4] Angular)s Location: C:\Users\Hayden\WebstormProjects\untitied
I Bacitonp Node interpreter: ( D.owni.oa.;:lﬂ.t;«.:le.j;; 14.15.0 =
& Cordova >
X Express Pl ioge yranaen node No executable found in %PATH%
[ HTMLS Boilerplate Download Nede.js 14.15.0
, Meteor
Figure 10-23. Adding a new “Node interpreter” to WebStorm
2. Inside the new dialog, enter the path to your node executable,
which is likely /usr/bin/node but might be different on your
system (Figure 10-24).
B 1 C
s/ Empty Project New project
| “ Angular CLI
| 9 Angular)s Location: C:A\Users\Hayden\Wet Projects\untitled
| I Sockamp Nodeinterpreter: | Download Nodejs 18150 *
& Cordova
X Express Package manager: | npm ~\AppData\Roaming\JetBrains\Web5torm2020.3\node\node-v1 N v !
B HTMLS Boilerplate
s Meteor
il Add WSL Node | X
React Native N Ptk
¥ Vuejs Linux distribution: Ubuntu v
WSL Node js interpreter:  /ust/bin/node =

Figure 10-24. Setting the path to the “node” executable in the Ubuntu WSL
distribution

251



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

3. Now, add any code, and then run or debug your application using
the normal JetBrains methods. In the following, you see that a
trivial example is indeed executing inside WSL as indicated by the
word “linux” in the output “Hello linux World!” (Figure 10-25).

W [l [0t Yew Nssgae Code Belactor Fun [ook VS Wiedow Lo I o x
Nest e propet s mang ~ | @ Ba

2 tost-nodeje project console. oo Hells S{require( ss'}.platfara(}} Wwarld };
& mains I

Figure 10-25. Running a trivial example to show it is executing in WSL

Utilizing GPU Compute Pass-Through

Artificial intelligence and machine learning (AI/ML) are becoming almost a staple
requirement for many projects. One of the most popular AI/ML frameworks is
TensorFlow by Google. With TensorFlow, use comes a lot of compute-intensive
calculations, which do not perform well on a generic CPU, and TensorFlow recommends
using a GPU to accelerate the calculation speed by many orders of magnitude.
However, in WSL 2, the GPU is being used in Windows to run your display, and
it cannot be detached from Windows to be dedicated to the WSL 2 virtual machine
via a virtualization technology known as PCI pass-through or GPU pass-through. Al/
ML workflows are enabled beginning with Windows Insider Build number 20150 and
available in Windows 21H1 release to the public, where WSL 2 exposes an API to access
your workstation’s GPU without using pass-through to detach it from your Windows
system.

NVIDIA CUDA

o To enable NVIDIA CUDA, you must have an NVIDIA GPU and have
downloaded and installed the developer drivers from NVIDIA at
https://developer.nvidia.com/cuda/wsl.

252


https://developer.nvidia.com/cuda/wsl

CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

The best experience with TensorFlow for NVIDIA CUDA is to use Docker inside your
WSL instance. If you have Docker Desktop installed on Windows, please ensure that WSL
integration is disabled for the WSL instance because we will install a native Docker on
that system. Docker Desktop support for GPU Compute is planned.

1. Install Docker in your WSL instance. Here, we are assuming either
Debian or Ubuntu:

sudo apt -y install docker.io
sudo adduser $USER docker

2. Enable the NVIDIA APT repositories:
distribution=$(. /etc/os-release; echo $ID$VERSION ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey |
sudo apt-key add

curl -s -L https://nvidia.github.io/nvidia-
docker/$distribution/nvidia-docker.list | sudo tee /etc/
apt/sources.list.d/nvidia-docker.list

curl -s -L https://nvidia.github.io/libnvidia-container/
experimental/$distribution/libnvidia-container-
experimental.list | sudo tee /etc/apt/sources.list.d/
libnvidia-container-experimental.list

3. Refresh your APT caches, and install the NVIDIA runtime to
support our containers’ access to our workstation’s GPU:

sudo apt update
sudo apt install -y nvidia-docker2

4. Itis necessary, now, to shut down the WSL instance. Assuming it
is called Ubuntu-20.04, run

wsl.exe --terminate Ubuntu-20.04

253



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

Figure 10-26. Running an NVIDIA CUDA benchmark in a Docker container

254

5.

6.

hayden@tiue: ~§

Now, run a benchmark to test that CUDA is working correctly. It
should report your GPU Device name; here, it is “GeForce GTX
960" (Figure 10-26).

docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody
nbody -gpu -benchmark

Ua2BaS5T3fcc2: Full complete

T1aB8f1lfcba: Full complete

11819d591d86: Pull complete

18f986646u36: Pull complete

9b61TbTT1963: Full complete

6515364916d7: Full complete

Digest: sha256:aaca698913e7c35073df88519FU3Tfa32dldf59a8%ef1e812360Fbecl652UecE
Status: Downloaded newer image for nvcr.io/nvidia/k8s/cuda-sample:nbedy

Run "nbody -benchmark [-numbedies=<numBcdies>]" to measure performance.

~fullscreen (run n-body simulation in fullsereen mode)

—Fp6l (use double precision floating point values for simulation)

~hostmem (stores simulation data in host memory)

—benchmark (run benchmark to measure performance)

-numbodies=<N> (number of bodies (»= 1) to run in simulation)

~device=<d> (where d=8,1,2.... for the CUDA device to use)

-numdevices=<i>  (where i=(number of CUDA devices > @) to use for simulation)

=compare (compares simulation results running once on the default GPU and once on the CPU)
—cpu (run n-body simulation on the CPU)

—tipsy=<file.bin> (load a tipsy model file for simulation)
NOTE: The CUDA Samples are not meant feor performance measurements. Results may vary when GPU Boost is enabled.

> Windowed mode

> Simulation data stored in video memory

> Single precision floating point simulation

> 1 Devices used for simulation

GPU Device 8: "GeForce GTX 968" with cempute capability 5.2

> Compute 5.2 CUDA device: [GeForce GTX 968]

8192 bodies, total time for 10 iteratiocns: 7.569 ms

= B9.368 billion interactions per second

= 1787.366 single-precision GFLOP/s at 28 flops per interaction

We can now start to play around with TensorFlow. Start a new
container running Jupyter Notebooks (Figure 10-27):

docker run -u $(id -u):$(id -g) -it --gpus all -p 8888:8888
tensorflow/tensorflow:latest-gpu-py3-jupyter



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

9f1bFfT26c909: Full complete
Digest: sha256:991b827b19d18aabdd79ebbdu5fUlBeeddbfa209f6aldbT1041b5bBacludfeas
Status: Downloaded newer image for tensorflow/tensorflow:latest-gpu-py3-jupyter

T Ty T A T N
/ / T Wil s / VRV
i ! f_f 1 07 FARY St i/ f_/ / / /
[I 21:24:32,273 Notebookhpp] Writing notebook server cockie secret to /.local/share/jupyter/runtime/notebook_c

ookie_secret
fusr/local/lib/python3.6/dist-packages/IPython/paths. py:67: UserWarning: IPython parent '/' is not a writable
location, using a temp d:rectury.
" using a temp dlrectory .format(parent))
ookh

[I 21:24:32. ] Serving noctebooks from local directory: /tf

[I 21:24:32. | The Jupyter Notebook is running at:

[1 21:24:32. 1 http://fuf715b7d5fc: 8888/ 7token=b8acSe2e0e30d24F00UdcId6F23027524cd9F cd80cbeBb5f
[1 21:20:32. ] or http://127.0.8.1:8888/tck bBac5el2cBe30d2uf de9d62302752Ucd9FcdB9cboBbSF
[1 21:24:32. ] Use Control-C to stop this server and shut down all kernels (twice to skip confir
mation).

[C 21:24:32.445 NotebookApp]

To access the notebook, open this file in a browser:
file:///.local/share/jupyter/runtime/nbserver-1-open.html
Or copy and paste one of these URLs:
http://fuf715b7d5Fc: 8888/ ?token=bBac5e2cBe39d2Uf90Udcod6f23027520cd9F cd89cheBbSf
or http://127.8.0.1:8888/?token=bBac5e2cle39d2ufI90udc9d6Ff23027528cd9F cdBScbedbsf

Figure 10-27. Successfully starting Jupyter Notebooks with TensorFlow

7. Find the URL on the last line of the output from starting the
container, and copy it into your browser’s address bar, replace
127.0.0.1 with the word localhost, and press enter to navigate
there (Figure 10-28).

— Jupyter

Soloct iloms 1o DOMOM SEH0NS on thiem Upioad Mew~ &

- . Name &

| oo fiow-lutoria) a yoar ago

Figure 10-28. The welcome page of Jupyter Notebooks showing the tensorflow-
tutorials subfolder

You are now all set to start using TensorFlow with NVIDIA CUDA inside WSL 2.

255



CHAPTER 10  USING WSL FOR ENTERPRISE DEVELOPMENT

DirectML for Non-NVIDIA GPUs

o To enable DirectML on an AMD GPU or an AMD CPU that has
graphics built into the CPU, you must download and install the
developer drivers from AMD at www.amd.com/en/support/kb/
release-notes/rn-rad-win-wsl-support.

o To enable DirectML on an Intel GPU or an Intel CPU that has
graphics built into the CPU, you must download and install the
developer drivers from Intel at https://downloadcenter.intel.
com/download/29526.

We will install TensorFlow with DirectML support using “Miniconda.”

1. Download and install Miniconda:

wget https://repo.anaconda.com/miniconda/Miniconda3-
latest-Linux-x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh

2. Create a new Python environment, and activate it inside your

current shell session:
conda create --name directml python=3.6
conda activate directml
3. Install the TensorFlow package using “PIP” the Python package installer:
pip install tensorflow-directml

4. Verify that you can run accelerated workloads with a simple
example. Paste the following code into an interactive Python
session, which can be started by running python:

import tensorflow.compat.vi as tf
tf.enable eager execution(tf.ConfigProto(log device placement=True))
print(tf.add([1.0, 2.0], [3.0, 4.0]))

For more examples, see Microsoft’s GitHub repository at https://github.com/
microsoft/DirectML.

256


http://www.amd.com/en/support/kb/release-notes/rn-rad-win-wsl-support
http://www.amd.com/en/support/kb/release-notes/rn-rad-win-wsl-support
https://downloadcenter.intel.com/download/29526
https://downloadcenter.intel.com/download/29526
https://github.com/microsoft/DirectML
https://github.com/microsoft/DirectML

CHAPTER 11

Troubleshooting WSL

Installation

When it comes to installing WSL, it is generally smooth sailing, but there are a few
scenarios where things can go wrong. In this section, we will go through a few of these
scenarios and things to check.

Ensure the Windows Optional Features Are Enabled

The first thing to check when you have problems enabling WSL is that the required
bits of Windows are enabled. You must ensure that the Windows components are
named “Virtual Machine Platform” and “Windows Subsystem for Linux.” The easiest
way to do this, without navigating through menus, is to open a PowerShell window
as Administrator and execute two commands. These two commands will enable the
required Windows Optional Features. Alternatively, you may use the “Turn Windows
features on or off” dialog (Figure 11-1).

© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_11

257


https://doi.org/10.1007/978-1-4842-6873-5_11#DOI

CHAPTER 11 TROUBLESHOOTING WSL

Q Windows Features

Turn Windows features on or off @

To turn a feature on, select its checkbox. To turn a feature off, clear its
checkbox. A filled bax means that only part of the feature is turned on.

SMB Direct A
Telnet Client

TFTP Client

Virtual Machine Platform

Windows Hypervisor Platform
Windows Identity Foundation 3.5
Windows PowerShell 2.0

Windows Process Activation Service
Windows Projected File System
Windows Sandbox

Windows Subsystem for Linux
Windows TIFF IFilter

Work Folders Client

ROROOORORROO0

Cancel

Figure 11-1. Enabling Windows features GUI

To turn the Windows features on using PowerShell (Figure 11-2), press the Windows
key on your keyboard, and type “powershell”:

1. Click the item in the right-hand pane labeled “Run as
Administrator”

258



Apps Documents Web

Best match

E Windows PowerShell
App

Apps

B Windows PowerShell ISE

¥ Windows PowerShell ISE (x86)
B Windows PowerShell (x86)
Settings

B PowerShell Developer Settings

ff  Allow local PowerShell scripts to run
without signing

& Replace Command Prompt with
Windows PowerShell in the Win + X

Search the web
pe powershell - See web results

Documents (2+)

cf

CHAPTER 11

Windows PowerShell

App

Open
Run as Administrator
Run |SE as Administrator

Windows PowerShell ISE

TROUBLESHOOTING WSL

2 powershell

Figure 11-2. Locating PowerShell using the Windows key and running as
Administrator

2.

In the new PowerShell window, run as follows (Figure 11-3):

Enable-WindowsOptionalFeature -Online -FeatureName

VirtualMachinePlatform

Enable-WindowsOptionalFeature -Online -FeatureName

Microsoft-Windows-Subsystem-Linux

Corpora All rights res

er

Enable-WindowsOptionalFeature: Microsoft-Windows-Subsystem-Linux

Running

[ocoooooooo

Figure 11-3. Enabling WSL 1 and 2 using PowerShell

259



CHAPTER 11 TROUBLESHOOTING WSL

Check Your Security Application

Some third-party antivirus applications can prevent WSL from running. The most
common way they impact WSL is by blocking access to “Ixcore” or “Ixsys.” These are
required for WSL to operate correctly. You should check that they are not being blocked
by your antivirus application or that they are added to the antivirus’ Allow-list.

Get the Latest Distro from the Windows Store

It is always a good idea to ensure you have the latest launcher for your distro installed.
The launcher is what is downloaded from the Windows Store, so you should check that it
is up to date with the standard Windows Store methods.

Navigate to the Microsoft Store entry for your preferred WSL Distro (Figure 11-4),
and click “Install,” if it is not currently installed, or “Update,” if there are any updates
available.

€  Home Gaming Entertsinment Productivity Deals 2 search o % LD

[ |
Ubuntu T

Canonical Group Limited *+ Developer tools > Utilities
¥ Share

Ubantu on Windows allows you to use Ubuntu Terminal and run Ubuntu
command line utilities including bash, ssh, git, apt and mary mare

Figure 11-4. Ubuntu WSL distro entry on the Microsoft Store

Alternatively, navigate to the Store’s “Downloads and Updates” page to see if your
distro has an update available (Figure 11-5).

260



CHAPTER 11 TROUBLESHOOTING WSL

- o x
€ Home Gaming Enterftainment Productivity Deals O search o
| v orary Downloads and updates e
# Al owned Recent activity
B Installed

g 3134
‘\-. Raft-WsL Apg 21210

<> Ready to install

I + Downloads . YYour Phone App 21012.180.0 Modified 27137202
M Incleded with device
@ Ubuntu Agp B04.2019.521.0 Modified 2/12/202
ﬂ Windows Calculator Agp
- Windows Terminal Pr... agp
- Windows Terminal
- Windows Voice Recor... aop
- Windows Maps

Figure 11-5. Checking for updated WSL distro images in Downloads and updates
section of the Microsoft Store

Virtualization

Another common issue is encountered when running Windows inside of a virtual
machine such as those created by VirtualBox. Unless your virtualization platform allows
you to expose “nested virtualization,” WSL 2 will not run. You may find that you can still
use WSL 1 when you are running inside a virtual machine because WSL 1 does not rely
on hardware-based virtualization technologies, sometimes known as VT-x (Intel’s name)
or SVM (AMD’s name).

Linux Component Dependencies

Like any complex operating system, the Linux ecosystem is heavily intertwined with
dependencies. Many applications will require features to be available and running to
work. Some of these include “systemd,” “DBUS,” and kernel modules.

261



CHAPTER 11 TROUBLESHOOTING WSL

systemd

The standard mechanism for handling system services in a Linux distro is usually
provided by “Systemd.” This is normally the first process that starts when booting up.
Due to the way that WSL 1 and WSL 2 are implemented, Systemd is either blocked from
running, in WSL 1, or requires a work-around using Process Namespaces, in WSL 2.
When you issue a command that interacts with the Systemd process, such as systemctl
to manage services, it will emit the following (Figure 11-6).

B haydenmrarnc + v = o ot

hayden@Tu7e:~§ systemctl status dbus.service

System has not been booted with systemd as init system (PID 1). Can't operate.
Failed to connect to bus: Host is down

hayden@Tu7e:~%§

Figure 11-6. A Linux application failing to run because of a systemd dependency

This indicates that Systemd is inoperable and that you need to find an alternative
way of running your application.

Some applications will refuse to start unless they are run through Systemd. One
prime example is the Snapd daemon that manages Linux Snap Packages (see https://
snapcraft.io/ for information about Snaps.) This means that Snaps are not usable in
WSL without work-arounds.

dbus

Common in GUI applications, the DBUS service is used to pass messages between
applications in a consistent way. Normally the DBUS service is started and stopped
with your session by the Systemd process. In WSL, however, Systemd is nonoperational
by default as we explored earlier. When an application tries to use the DBUS service, it
will likely emit messages to the console indicating the error, or it might refuse to start
(Figure 11-7).

262


https://snapcraft.io/
https://snapcraft.io/

CHAPTER 11 TROUBLESHOOTING WSL

A raydengrae - + v = o x

:~% export DISPLAY=§(awk '/nameserver/ { print $2 }' /etc/resolv.conf):0.8
~$ pidgin

| (Pidgin:1788): libunity-CRITICAL #%: 16:34:59.323: file unity-launcher.c: line 1618: unexpected error: Error spawning co
| mmand line “dbus-launch --autolaunch= --binary-syntax --clese-stderr”: Child process exited with code 1 (g-spawn-exit-er
| ror-quark, 1)

| (Pidgin:1788): libunity-CRITICAL #%: 16:34:59.324: unity_launcher_entry_dbus_impl_construct: assertion 'conn != HULL' fa
| iled

|
(Pidgin:1788): Llibunity=-CRITICAL +=: 16:34:59.327: unity-inspector.vala:96: Unable to connect to session bus: Error spam
| ning command line “dbus-launch --autolaunch= --binary-syntax --close-stderr”: Child process exited with code 1

Figure 11-7. A Linux GUI application attempting to contact DBUS

You can fix this with the following command every time you enter the WSL
environment:

dbus-launch --exit-with-x11

It might be useful to add the line into your WSL user’s .bashzrc file so that it is run
every time you start a shell. However, the first time you try this, you will receive an error
message (Figure 11-8).

‘ A haengrane - . - 0 x

hayden@Tu70:~% dbus-launch --exit-with-x11

| Session lifetime based on X11 requested, but machine UUID unavailable: D-Bus library appears to be incorrectly set up: s
ee the manual page for dbus-uuidgen to correct this issue. (Failed to open "/var/lib/dbus/machine-id": Ne such file or d
irectory; UUID file 'fetc/machine-id' should contain a hex string of length 32, not length &, with no other text).
hayden@Td78:~$

Figure 11-8. DBUS refusing to run without a unique DBUS UUID

To fix this, run the following (Figure 11-9). It is only required once:

sudo dbus-uuidgen -ensure

263



CHAPTER 11 TROUBLESHOOTING WSL

:~$ sudo dbus-uuidgen —-ensure f

:~% dbus-launch ——2xit—wjth—ul w‘
N_BUS_ADDRESS=unix:abstract=/tmp/dbus-L , guid=b b3FSTIF 1b79cd5Fe22148
DBUS_SESSION_BUS_PID=1T718 a

DBUS_SESSION_BUS_WINDOWID=B388689 Welcome to Pidgin!
hayden@Tu78:~% pidgin

Yeu have no accounts enabled.
[Enable your IM accounts from the
Welcome to Pidgin! Accounts window at
AccountssManage Accounts.
You have no IM accounts configured, To start connecting with Onee you enable aceounts, you'll
Pidgin press the Add... button below and configure your first e able to sign on, set your status,
account. If you want Pidgin te connect to multiple 1M and talk to your frends.
accounts, press Add... again to confgure them all,

You can come back to this window to add, edit, or remove
accounts from Accounts=Manage Accounts in the Buddy
List window

e add... l & Modify I @ Delete | K close |

Figure 11-9. Having generated a DBUS UUID and manually started DBUS, our
Linux GUI application now starts successfully

Kernel Modules

Some applications might require specific kernel modules to be enabled. These require
that you use WSL 2 for its native Linux kernel so that you can use real Linux kernel
modules. However, the kernel supplied by Microsoft might not include the module that
your application requires. You can discover this by examining the output of running your
application for warnings or errors indicating the kernel module is missing, or the output
of dmesg, which is a utility to show the internal kernel log messages.

Linux Applications

When a Linux application fails, there are a few tools that you may find useful:
e GDB - The GNU debugger
e strace - Trace system calls and signals

The most useful of these for WSL is “strace,” which allows us to see into the system
calls that an application uses.

264



CHAPTER 11 TROUBLESHOOTING WSL

Using “strace” on WSL 1

Since WSL 1 is a translation layer that has been written from scratch without using any
Linux source code, some system calls may be unimplemented. We can use “strace” to see
all the system calls that an application makes to try to pinpoint a missing feature in WSL 1.

For an example, consider that we want to investigate the 1s command’s system calls.
We prefix the command with strace and execute (Figure 11-10):

strace 1s

B raydengrare - + - o X

haydengTu7e:~§ strace ls

execve("/ust/bin/ls", ["Ls"], OxTfffcidedBbd /¢ 22 vars «/) = @

brk(NULL) = BxTFFFddab96oe

arch_pretl(9x3001 /+ ARCH_T77 =/, @x7TfffeS5cETued) = -1 EINVAL (Invalid argusent)
access("/ete/1d. so.preload™, R_OK) = -1 ENOEMT (No such file or directary)
openat(AT_FOCWD, */etc/ld.so.cache”, O_RDONLY |0 cm:::c) =3

fstat(3, (st_mode=5_IFREG|06au, st_size=u7eau, ...)) =

mnap(NULL, 97624, PROT_READ, MAP_PRIVATE, 3, 9) = ax'r!ssa-.-emaa

close(3) =8

openat (AT_FOCWD, */Lib/x836_64-Llinux-gnu/libselinux.s0.1%, O_ROONLY|O_CLOEXEC) = 3
read(3, “\ITTELFAZ\INI\G\BYGYE\0VO\O\G\0\ 310>\ 1\0\0N0BR\OVONGNG\OND" . ., 832) = 832
fstat(3, {st_modes=S_IFREG|86QU, st_size=163208, ...}) = @

mnap(NULL, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_ANONYMOUS, =1, @) = @xTF530ci70900

mmap(NULL, 174600, PROT_READ, MAP_PRIVATE|MAP_CENYWRITE, 3, 0) = 0x7f530c9¢0000

mprotect (0x7530c0U6080, 135168, PROT_NONE) = 0

mnap(@xTF510co06000, 102408, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x6080) = 0x7f530cOU608
mnap(8xTFSI0CO5FO00, 28672, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 0x1f000) = 0x74530c95F000
mnap(BxTF5I8cT6TE00, 8192, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, 6x26880) = 6x7f530c067008
mRap(BxTF538cT69000, 6664, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, 8) = @x7¢538c965000
cleose(3) =Q

openat (AT_FOCWD, */Llib/x86_64-linux-gnu/libc.so.6%, O_RDONLY|O_CLOEXEC) = 3

read(3, "\ITTELFAININING\0\0\0\0\0 01010\ 31010\ 1\0\0\ 0\ 3609\ 2\0\0\0\0N0" . . ., 832) = 832

preadsu(3, *\61040401\4\010\08\0\0\0\01010 1080 \0\0\ DO V0N 0RO\ \O\ONONEND". .., T4, G4) = TEBW

preadiu(d, \H\B\ﬂ\ﬂ\2&\8\!\9\5\D\ﬂ\GGNU\O\Z\G\G\M!\“\O\G\G\3\0\!\9\0\0\0\8 32, M) = 32

preadsu(l, \I-l\B\0\0\2ll\ﬂ\0\0\3\0\9\OGNIJ\OCE!\MG\BOS\B‘JB\ZM\RHQ\MS)Q\2!Sl\l ., 68, BBQ) = 68

Fstat(3, {st_mede=S_IFREG|O7S5, st_sizes=2829224, ...}) =
preadsu(l, \a\B\a\0\M\B\B\Bl\l\s\e\3\B\B\8B\9\9\G\B\B\G\Q\O\G\B\l\ﬂ\ﬂ\ﬂ - TBM, 64} = TBU
preadeu(3, =\u\ \28181,81845) 216N 3 o 32, Bu8) = 32

preadeu(3, \U\E\a\?\ZM\G\E\U\S\Q\G\WU\KB!\3“8\355\379\2699‘\2”2\3“5)‘]\?53\}'. .+, 68, 880) = 68

mmap(NULL, 2036952, PROT_READ, MAP_PRIVATE |MAP_DENYWRITE, 3, 8) = Ox7536cT46688

mprotect (0x7F530cT65000, 1847196, PAOT_NONE) = @

mmap(@xTF530cT65000, 1548096, PROT_READ|PROT_EXEC, MAP_PRIVATE|MAP_FINED|MAP_DENYWRITE, 3, Bx25000) = 0xTf538c765000
mnap(Bx7F530cBdd000, 103106, PROT_READ, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, Bx19d680) = 8x7¢530c8ddood
mnap(@xTF5310cO28000, 24576, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, OxleT008) = 8xTf510c928000
mnap({@xTF530c52e000, 13528, PROT_READ|PROT_WRITE, MAP_PRIVATE|MAP_FIXED|MAP_ANONYMOUS, -1, B) = 8xTF530c02e000
close(3) =8

openat (AT_FOCWD, */Lib/x86_su-linux-gnu/libpcre2-8.s0.8%, O_RDONLY|O, CLOE}:EC) =3

read(3, \IWELF\l\l\1\8\5\E\E\?\O\G\B\E\;\UF\O\1\5\5\5\3“9\ \eve\evene\e..., 832) = 832

Fstat(3, {st_sode=S_IFREG|B6Qu, st_size=58u393, D=8

mmap(NULL, 586536, PROT_READ, MAP_PAIVATE|MAP_ cﬂmxlz 3, 0) = GxTF530c6b0000

mmap(@xTF530c6b2000, 499500, PROT_READ|PROT_ENEC, MAP_PRIVATE|MAP_FIXED|MAP_DENYWRITE, 3, @x2000) = @x7f530c6b2008
mnap(0xTF530cT16000, 163840, PROT_READ, MAP_PRIVATE|MAP_FINED|MAP_DENYWRITE, 3, 0xG60040) = BxTf530c716000
maap{8xTF530cTIe00, 8192, mr ﬂZﬁ(HPm'l URITE MAP_PRIVATE | MAP_FIXED|MAP_| DENMITE 3, 0xEd0BE) = OxTF530cTIeddd
clese()

openat (AT_FDCWD, */Lib/x86_64-1inux- gnu!'l ibd'l 50.2%, O_RDONLY|O_CLOEXEC) = 3

read(3, \1?1!LF\2\1\1\8\8\9\9\0\0\#\8\9\3\9*\0\1\G\l\ﬂ \azvehe\ehe\e\er. .., 832) = 832

Figure 11-10. Output of an strace on the Is command

This will output a lot of log messages as the command runs. It can be useful to restrict
the system calls that are monitored by adding the -e flag. The following command will
restrict the output to only the openat and close system calls (Figure 11-11):

strace -e openat,close 1s

265



CHAPTER 11 TROUBLESHOOTING WSL

You can find a list of Linux system calls in the “manpage” documentation at
https://man7.org/linux/man-pages/man2/syscalls.2.html, or with the following
command, if you have the manpages-dev package installed:

man 2 syscalls

If you use the man command, navigate the manpage with the page up and page down
buttons or the arrow keys, and quit by typing q.

D haydengan - + - o %

haydengTu70:~§ strace -e openat,close ls
openat (AT_FDCWD, */etc/ld.so.cache™, O_RDONLY|O_CLOEXEC) = 3

close(3)

apenat [AT_FDCWD, */Lib/x86_64-linux-gnu/libselinux.s0.1%, O_RDONLY|O_CLOEXEC) = 3
close(3) =

openat (AT_FDOWD, */Lib/xB6_64-1inux-gnu/Libe.so.6%, O_RDONLY|O_CLOEXEC) = 3
close(3) =

openat (AT_FDOWD, ',.l’Liw::ab_oli-Linux-qnﬂ(libp:re:—ﬂ.so.e'. 0_RDONLY |0_CLOEXEC) = 3
close(3)

openat (AT_FDOWD, ~/1ib/xB6_64-1inux~ gnu!liml 50.2%, O_RDONLY |O_CLDEXEC) =

close(3)

openat (AT_FDCWD, */1ib/x86_64- llnux-unuﬂib’thrﬂd $0.9%, O_RDONLY|O_CLOEXEC) = 3
close(3)

openat (AT_FDCWD, */proc/filesystems®, O_l?wll.\"lﬂ CLOEXEC) = 3

close(3)

openat (AT_FDOWD, '.l"uir-‘\1|J.l’luch'|.l.|’1utile-uthlur', O_RDONLY | 0_CLOEXEC) = 3
close(3) =a

openat (AT_FDOWD, *fusr/share/locale/locale.alias®, O_RDONLY|O_CLOEXEC) = 3
close(3) =8

openat (AT_FDCWD, */usr/lib/lecale/C.UTF-8/LC_TDENTIFICATION®, O_RDOMLY|0_CLOEXEC) = 3
close(3) =8

openat (AT_FDCWD, *fusr/Lib/xB6_64-1linux-gnu/gconv/gconv-modules.cache”, O_RDONLY) = 3
close(3) =8

openat (AT_FDOWD, */usr/Lib/locale/C.UTF-8/LC_MEASUREMENT®, O_RDONLY|O_CLOEXEC) = 3
close(3) =0

openat (AT_FDOWD, */fusr/Lib/lecale/C.UTF-8/LC_TELEPHONE", O_RDONLY|O_CLOEXEC) = 3
close(3) =

openat(AT_FDOWD, *fusr/lib/lecale/C.UTF-8/LC_ADDRESS®, O_RDONLY|O_CLOEXEC) =
close(3) =80

openat (AT_FDOWD, */usr/Lib/locale/C.UTF-8/LC_NAME®, O_RDONLY|O_CLOEXEC) =
close(3) =8

openat (AT_FDCWD, */usr/lib/locale/C.UTF-8/LC_PAPER™, O_RDONLY|O_CLOEXEC) = 3
close(3) =8

openat (AT_FDCWD, */usr/Lib/lecale/C.UTF-8/LC_MESSAGES", O_RDONLY|O_CLOEXEC) = 3
close(3) =4

openat (AT_FDOWD, *fusr/Libflecale/C.UTF-8/LC_MESSAGES/SYS_LC_MESSAGES", O_RDONLY|O_CLOEXEC) = 3
close(3) =9

openat (AT_FDCWD, *fusr/Lib/lecale/C.UTF-8/LC_MONETARY", O_RDONLY|O_CLOEXEC) = 3
close(3) =8

openat (AT_FDOWD, */usr/libflecale/C.UTF-8/LC_COLLATE®, O_RDONLY|O_CLOEXEC) = 3
close(3) =8

openat (AT_FDCWD, */usr/Lib/locale/C.UTF-8/LC_TIME®, O_RDONLY|O_CLOEXEC) =
close(3) =0

openat (AT_FDCWD, */usr/lib/flocale/C.UTF-8/LC_NUMERIC®, O_RDONLY|O_CLOEXEC) = 3
close(3) =4

openat (AT_FDCWD, */usr/lib/locale/C.UTF=8/LC_CTYPE™, O_RDONLY|O_CLOEXEC) = 3

Figure 11-11. Using strace options to limit output to file operations

266


https://man7.org/linux/man-pages/man2/syscalls.2.html

CHAPTER 12

Deploying WSL at Scale

Considerations for Deploying

Deploying WSL at scale requires you to be aware of some important things for the best
experience.

It is important to make sure that when a user restarts their system, the APPDATA%\
local directory of their user account is preserved. If the directory is erased, the user
will need to reinstall their WSL distro(s) every time that they log in to Windows. This
is because the WSL file systems are stored within this directory. As an alternative, you
could install the distros on behalf of the user via automation with the wsl.exe --import
command, which allows you to specify where to save the WSL file system. This would let
you choose a location that is persistent.

Once a WSL distro has been installed, it is important to remember that the user of
the Windows PC will have root access to the WSL distro. The Linux root user is like the
Windows Administrator account in that it is fully privileged within the Linux distro.
While the user will have root access to their WSL distros, and can do anything inside
that distro, your Windows security policies will still apply to Windows resources. So, even
with root access in the WSL distros the user has installed, they will only have as much
access to Windows resources as their Windows account allows.

You will likely find that managing multiple PCs and users with WSL installations is
challenging. It is advised to use Ansible or Landscape or another management system to
ensure that you have full visibility into the distros you have deployed.

With Windows use comes the inevitable challenge of keeping the systems clear of
malware and viruses. If you are using a third-party security system, you may find that
they block the WSL drivers from being loaded. Make sure you test the deployment before
rolling out to your users to help prevent any unexpected surprises.

267
© Hayden Barnes 2021

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_12


https://doi.org/10.1007/978-1-4842-6873-5_12#DOI

CHAPTER 12  DEPLOYING WSL AT SCALE

Using Intune to Deploy Ubuntu on WSL

In the enterprise world, Mobile Device Management is a common practice to ensure
that all business computers and mobile devices have a standard set of applications and
settings. To fill the MDM role, Microsoft has its Intune product, which you can use to
preload your users’ Windows systems with WSL distros direct from the Windows Store.
By using Intune to deliver WSL distros, your users will have WSL ready to go as soon as
they log in to a corporate device.

Using Landscape to Manage Ubuntu on WSL

Canonical’s Landscape server is the officially blessed way to manage large Ubuntu on
WSL installations, such as an enterprise network. It allows you to monitor and actively
maintain your fleet of Ubuntu systems by running scripts or installing packages on a
subset or all systems.

Enroll Ubuntu WSL into a Landscape Server

We will assume you have a Landscape server installed by following the instructions at
https://docs.ubuntu.com/landscape/en/.

This chapter builds on the SystemD-enabled environment we explored earlier,
because landscape-client expects to be managed by the systemd process.

The first step, once you have Launchpad server running, is to log in to the Launchpad
admin screen (Figure 12-1) and navigate to the instructions to find your registration and
ping URLs. Click the link on the leftmost panel of the admin pages labeled following
these instructions. Itis important to note that the ping URL is always HTTP (non-
secure), while the registration URL is likely HTTPS (secure).

268


https://docs.ubuntu.com/landscape/en/

L landscape

COrganl

isation

CHAPTER 12 DEPLOYING WSL AT SCALE

Account

Organisation
Account name:

Registered computers:
Remaining full registrations
Registered VMs:

Remaining VM registrations
Registered containers:

Remaining container registrations:

Registration key:

el ak

Settings  Administrators

Roles 855 gro 5 Graph Profile: Alerts
standalone
10
0 There are no ac ing
Activities in progre

Mo registration key is

required

Thir 14 lan 1A-SQ1ITC

Figure 12-1. The Launchpad admin screen showing the link to instructions for

registering new computers

The instructions are reproduced in summary as follows:

1. Update the repositories:

sudo apt-get update

2. Install the client:

sudo apt-get install landscape-client

269



CHAPTER 12  DEPLOYING WSL AT SCALE

| A haydengTaan - . v = a] x

hayden@Tuus:~% sudo apt-get update
Hit:1 http://archive.ubuntu.com/ubuntu focal InRelease
Hit:2 http://archive.ubuntu.com/ubuntu focal-updates InRelease
Hit:3 http://archive.ubuntu.com/ubuntu focal-backports InRelease
Hit:d http://security.ubuntu.com/ubuntu focal-security InRelease
Reading package lists... Done
hayden@Tuue:~$ sude apt-get install landscape-client
Reading package lists... Done
Building dependency tree
Reading state information... Done
The following additional packages will be installed:
python3-pycurl
Suggested packages:
libcurli-gnutls-dev python-pycurl-doc pythen3-pycurl-dbg
The following MEW packages will be installed:
landscape-client python3-pycurl
8 upgraded, 2 newly installed, ® te remove and 99 not upgraded.
Need to get 155 kB of archives.
After this operation, 791 kB of additional disk space will be used.
Do you want to continue? [Y/n] y
Get:1 http://archive.ubuntu.com/ubuntu focal/main amd6t python3-pycurl amdéd 7.43.8.2-lubuntu5 [46.9 kB]
Get:2 http://archive.ubuntu.com/ubuntu focal-updates/main amd6d landscape-client amd6u 19.12-8Bubuntud.l [188 kB]
Fetched 155 kB in 8s (983 kB/s)
Preconfiguring packages ...
Selecting previously unselected package pythen3-pycurl.
(Reading database ... 42826 files and directories currently installed.)
Preparing to unpack .../python3-pycurl_7.43.0.2-1lubuntu5_amd6d.deb ..
Unpacking python3-pycurl (7.43.0.2-1lubuntus) ...
Selecting previously unselected package landscape-client.
Preparing to unpack .../landscape-client_19.12-8ubuntud,l_amd6d.deb ...
Unpacking landscape-client (19.12-8ubuntud.l) ...
Setting up python3-pyeurl (7.43.0.2-lubuntus) ...
Setting up landscape-client (19.12-8ubuntud.l) ...
Processing triggers for man-db (2.9.1-1) ...
hayden@Tuug:~$

Figure 12-2. Installing landscape-client through apt-get

270

3.

If you followed the Quickstart installation instructions for your
Landscape server, you will also need to copy the server encryption
key to each host, because it is not signed by a recognized or your
company’s own SSL Certification Authority.

a. Login to the Landscape server’s console, and copy the file from /etc/ssl/
certs/landscape_server ca.crt to a known shared location.

b. On each system you want to add to the Landscape server, copy the file we
saved earlier in 3.a to /etc/landscape/server.pemon the client.

c. When you run the command in 4., append the following parameter to use
the saved public key:

--ssl-public-key /etc/landscape/server.pem

Register the computer - your landscape-url will likely differ, you
will want to change My Computer Title to a suitable description
of your WSL instance, and you may need to change the account
name to the name of your Launchpad organization. If in doubt
about the organization name or landscape-url, then consult the
instructions in your Launchpad admin pages.



CHAPTER 12  DEPLOYING WSL AT SCALE

sudo landscape-config --computer-title "My Computer Title"
--account-name "standalone" --url https://landscape-url/
message-system --ping-url http://landscape-url/ping

To be able to run commands as root, you need to add the username
when prompted for users that landscape is allowed to use to run
script. In the screenshot, it is configured as the special keyword ALL
which means that landscape may use any user.

A hayden®Tadn: - < [ W - o X

haydenpTuup:~% sudo landscape-config --cemputer-title "Test WSL Instance" --account-name "standalone™ --url http
s://landscape-test/) ge-system --ping-url https://landscape-test/ping --ssl-public-key /etc/landscape/server.

pem
disabled
The Landscape client must be started on boot to operate correctly.

Start Landscape client on boot? [¥/n]:
Created symlink /etc/systemd/system/sulti-user.target.wants/landscape-client.service + /lib/systemd/system/lands
cape-client.service.

This script will interactively set up the Landscape client. It will
ask you a few questiens about this computer and your Landscape
account, and will submit that information to the Landscape server.
| After this computer is registered it will need to be approved by an
account administrator on the pending computers page.

Please see https://landscape.cancnical.cem for more information.

A registration key may be associated with your Landscape
account to prevent unauthorized registration attempts. This

is not your personal login password. It is optional, and unless
| explicitly set on the server, it may be skipped here.

| If you don't remember the registration hey you can find it
at https://landscape.canonical.com/account/standalone
|

Account registration key:

The Landscape client communicates with the server over HTTP and
HTTPS. If your network requires you teo use a proxy to access HTTP
and/or HTTPS web sites, please provide the address of these
proxies now. If you don't use a proxy, leave these fields empty.

| HTTP proxy URL:
HTTPS proxy URL:

Landscape has a feature which enables administrators to run
arbitrary scripts on machines under their control. By default this
feature is disabled in the client, disallewing any arbitrary script
execution. If enabled, the set of users that scripts may run as is
also configurable.

Enable script execution? [¥/n]:

By default, scripts are restricted to the 'landscape' and

‘nobody' users. Please enter a comma-delimited list of users

that scripts will be restricted te. Te allew scripts to be run

by any user, enter "ALL".

Script users [ALL]:

You may provide an access group for this computer e.g. webservers.
Access group:

You may provide tags for this computer e.g. server,precise.

Tags:
Please wait...

Request a new registration for this computer nom? [Y/n]:
System successfully registered.
hayden@Tuug:~$

Figure 12-3. Successfully registering with Landscape

271



CHAPTER 12  DEPLOYING WSL AT SCALE

5. Ifthe registration is successful, you must accept the computer
by navigating to the Launchpad “Pending Computers” page. The
registration might fail if the hostname is not resolvable by DNS, in
which case you can either use an IP address or add the hostname

to your WSL instance’s /etc/hosts file.

Organisation

undalons Computers needing authorization

Name Hostname Pending since

doimain

Activities waiting for approval

Activities in progress

Landscape On Premises releases

Figure 12-4. Pending registration for the new computer

Executing a Script on the WSL Instance with Landscape

Now that we have the connection established, we can start to run scripts or update
packages. First, we will run a script to show the disk usage of the WSL instance. Navigate
to the computer, and select “scripts” along the top of the rightmost panel.

272



CHAPTER 12 DEPLOYING WSL AT SCALE

Run a script

Title

Q Get Disk usage

Actess Groups

Code

Figure 12-5. Configuring the Get Disk usage script

Insert the following script into the Code box:

#!/bin/bash
echo "Free Disk Space"
df -h

echo # blank line to separate the scripts

echo "Disk Usage by top-level folder"
du -sh --exclude=/mnt --exclude=/proc /*

Scroll to the “Run as user” box, and input “root” or another user of your choice - this
user must be allowed by the landscape-client configuration, which is prompted when
you first set up the client. Finally, click the “Run” button at the bottom of the page, and
wait till the script finishes, at which point the page will update to indicate success or
failure.

273



CHAPTER 12  DEPLOYING WSL AT SCALE

(L F ity - Larddicape +
q o B A Motsecure | landscape-testiaccount/standalon puter/] factaaty ®a » =
1 I —— i
Run script: Get Disk usage
. -
&.: cccccccc P o
Refine search ae Yovar
Status Description Computer
Figure 12-6. Successful execution of our Get Disk usage script
You can then click the command status to see the output of the script.
@ (1 - Activity - Landucape + = D ®
q o B A Motsecure | landscape-testiaccount/standalon puter/] factaaty ®a » =
1 I —— i

Run script: Get Disk usage

a S8 Details

Figure 12-7. The results of running our Get Disk usage script

Managing Packages of the WSL Instance with Landscape

We can also manage installed packages by navigating to the Packages tab. To install a
package, enter its name, for example, ffmpeg, into the Search for packages box, and then
click the magnifying glass, or press Enter.

274



CHAPTER 12  DEPLOYING WSL AT SCALE

@ (1) Package management - Lar. X 4

All packages Hmpea

fccess Groups

Summary

global (1)

1 computer has upgrades to inst

Security issues

USH CVE(s)

affects a supported release of Lbunty, M

Figure 12-8. Searching for a package

4 < B & MNotsecure | landscape-testisccount/standalone/computer/1/)
computer
avallabie 1

Search for packages

1 computer has secusity ugrades to install

ks P A »

o Acthities  Mardwace  Monmitoring  Scripts  Processes  Packages  Users  Reparts

1 computer

A0 Ubunity Securty Notice  (USH) Is issued when a security vilneraility

Hs are derived

= & (CVE) reports

In the search results page, use the + symbol next to any packages you wish to install.
In this example, we have selected the ffmpeg package only.

@ () - Package Lnting - Landucape X 4

Select packages

All packages natching  Fimpeg
Q
ATass Groups
elect A
global (1}
Name

L wisi-l 6B fimpeg

- we- frmpegFs

- BB ffmpeg-doc

- BEE Fmpagthumbs
- ffmpeg2theora

- BE= libspa-fimpeg

- W= baresip-Hfmpeg

4 [+ B A Notsecure | landscape-test/account/standalone/computer/ 1 fpackag

= o 3
gz kst Mhiter = Sog = fhmpegBo= 108y =7 0 A » =
o Activiies Mardwate Manitoring  Scripts  Processes  Packages  Users  Reports
Show 25 = items per page
1-250f many Nest
Summary
Tools for ing, 3t ' ing of imedia fil

Fuse Multi Media Filesystem

Decumentation of the FFmpeg multimedia framework

umbnail generator using fimpeg
Theora video encoder using fimpeg
libraries for the Pipewire multimedia server - fmpeg plugins

portable and moduilar SIP ser-agent - FFmpeg codecs and farmats

Figure 12-9. Selecting a package to install

Click the “Apply changes” button at the bottom, and wait for the task to finish.

275



CHAPTER 12  DEPLOYING WSL AT SCALE

O (2 - Activity - Landucape x + - 0 x
4 < B & Notsecure | landscape-testiaccount/standalone/actiity, 11 oA » =
1 ‘e:"e‘-: Account  Settings  Administrators  Roles  Accessgroups  Scripts  Graphs  Profiles 4l her & 1 -
g glsason Install package ffmpeg
ster v ot
Computer Ts tarce
atu —
Created at Today at 19 c
Select: Al None  Refine search ae 1-1ef1
Status Description Computer
@ Succeeded  Install 101 packages TWSL

Figure 12-10. Successful package installation

Finally, we can also perform complete upgrades or security-only upgrades. For

security-only upgrades, if there are any available, you will see a screen similar to the
following on the Packages tab.

@ (21 - Package management - Lan. X 4 = o ®
4 b C B A MNotsecure | landscape-test/sccount/standalone/computer | fpackage P A » =
gl SedIC Ol PdlRdyES -
All packages ~ Q
Q
Access Croups
Summary

1 computer has 5o

1 computer has upgrade

Security issues

UsH CVE(s) Summary

Affected
& 1 computer
affectsa '... :':';‘".e'!‘l‘r‘.ed. ie
Package information
o sttt | endiia | iimareias T iasas

Figure 12-11. Available upgrades on the Packages tab

You will also see the following information on the Organization tab and the Alerts
drop-down.

276



CHAPTER 12  DEPLOYING WSL AT SCALE

@ (31 - Account - Landscape x|+

4 [+ B & Notsecure |l

Landscape On Premises releases

angtcape On Premises rebeases are xailable

Alerts

Description

hitplandscape-fest/acoount/tandalonsindex b acoourt -global-alerts-meny

Figure 12-12. Organization alerts showing available upgrades

Clicking through the alerts or selecting the computer(s) and choosing the Packages
tab will take you to the same screen where you may select which upgrades to apply.
Here, packages can either be removed by clicking the = symbol or upgraded by clicking
the # symbol (Figure 12-13). In either case, you apply the changes with the “Apply

changes” button at the bottom.

@ (1) - Package Lnting - Landucape X 4

Select packages

Security uogrades~  matching

Figure 12-13. Selecting a package to upgrade

q < B & MNotsecure | landscape-testaccount/standalone/computers/crieria/alert 3Asecurity-upgrades  packages Bt Hilter=se

2 e nfo  Activities Hardware Mositoring  Scripks

i (=] ®
P A n =
e ek ages !
® page
1of
1 security upgrade

277



CHAPTER 12  DEPLOYING WSL AT SCALE

Using Ansible to Manage Ubuntu on WSL

Ansible is one of the leading configuration management automation platforms. Being
open source, it is readily available for download from https://github.com/ansible/
ansible and is also available in the Ubuntu APT repository. Developed by Red Hat, there
are also paid plans for support through your journey available at https://ansible.com.

You need a Linux or macOS system to host the server-side part of Ansible, as
Windows is currently unsupported for the server. For the systems you want to manage
from Ansible, you also need to run an SSH server such as OpenSSH. On an Ubuntu WSL
distro, you can install OpenSSH through APT:

sudo apt install openssh-server

However, as WSL does not start services automatically, you will need to set up the
systemd environment as we discussed earlier. Alternatively, if you do not want to run a
SystemD setup, you must invoke the sshd command via some other means such as by a
Windows Task Scheduler job. The Windows Task Scheduler job should run on login to
Windows and use the ws1.exe command to start the distro(s) and sshd within.

To manage multiple WSL distros with Ansible on the same Windows PC, you need
to configure each WSL distro’s sshd to use a unique network “port,” unless both the
management server and the managed WSL 2 instances are on the same PC, the reason
being that you cannot have multiple services listening to the same port; and to manage
from a remote server, rather than the same PC, you need to target the Windows PC’s
hostname or IP address to access the port that is proxied to Windows from each WSL
instance. By default, sshd binds to port 22.

If the server and managed WSL clients are all on the same PC in separate WSL 2
distros, and the distros are using WSL 2, then you may target the relevant distros by their
internal addresses instead of changing the port number of each of the sshd services.
However, the server and clients must use WSL 2 to be reachable by an internal address
separate from the PC’s physical network.

When creating the host inventory for Ansible, you must add the relevant port
number if the WSL distro is configured to use anything other than port 22. On the
management server, create a file at /etc/ansible/hosts to hold your hostnames, or IP
addresses, and optionally their port numbers if not 22:

278


https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://ansible.com

CHAPTER 12 DEPLOYING WSL AT SCALE

192.0.2.50
windows-pc.example.org
windows-pc.example.org:8022 ; alternative port number 8022.

You should set up an SSH key pair on the server, with ssh-keygen, and configure
each client to use that for authentication. Ubuntu is set up to support public-key
identification out of the box. You need to copy the SSH public key into each client’s
$HOME/ . ssh/authorized_keys file for the user you will be connecting from the server
as. This can be streamlined by using the ssh-copy-id command on a system with both
public and private keys installed, the easiest place being the system you ran ssh-keygen
upon. You might need to reconfigure the clients’ sshd to allow password authentication

for ssh-copy-1id to copy the SSH key correctly.

279



Index

A

Ansible, 278-279
Apache web server
connection timeout, 204
installation, 201
Interfacelndex, 208
IP address identification, 203
landing page, 202
localhost, 202
parsing process, 204
port configuration, 207
proxy creation, 205
service command, 201
virtual IP address, 203
Windows Firewall rule, 205-206
Artificial intelligence and machine
learning (AI/ML), 252

B

Base image
bootstrapping, 89
folder creation, 89-90
installation

commands, 90

GIS-workstation metapackage, 94
languages/text encodings, 91-92

software-properties, 93
system environment, 92
universe/multiverse, 94

© Hayden Barnes 2021

.bashrc file

config file, 156

distro, 158

script execution, 157

Ubuntu, 156

sudoers file/visudo command, 159
Boot commands, 176
Bootstrapping tool image, 88

C

Component object model (COM), 217

D,E,F

Dependencies, 80

Deployment
distro(s), 267
Intune product, 268
landscape server, 268-277

Deployment Image Servicing and

Management (DISM) tool

imaging purposes, 23
PowerShell, 20-21
WSL version, 21

Distro configuration
automount settings, 101-102
boot, 127
case sensitivity, 105-108
cross-distro mounting, 114-115
default user, 127

281

H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5


https://doi.org/10.1007/978-1-4842-6873-5#DOI

INDEX

Distro configuration (cont.)

enabled option, 102
file permissions, 110
file’s symbolic form
permissions, 111-112
file system tab, 103
fsutil, 106
interoperability
enable option, 121-122
launching notepad, 122
Windows path, 122-123
WSLENYV, 123-126
Idconfig settings, 115-117
mask/umask creation, 113
metadata option, 104
mount options, 104
network
DNS file, 119-120
hostname, 120-121
hosts file, 117-118
Ubuntu, 119
virtual network adapter, 120
numeric form, 112
per-distro settings, 101
root folder, 102
symbolic form, 110-111
UID/GID option, 108-109
umask/fmask, 114

Distros

app information
access additional options, 59-60
apps/features, 58
categories, 58
considerations, 60-61
data storage space, 60
expanded menu, 57-59
Microsoft Store, 57
Windows Start button, 58

282

backing up/exporting, 54-55
converting option, 53
default distro setting, 45
duplication, 56

favorite development applications, 47

import/restore, 54-55

kernel management
advanced options, 65-66
checking/automatic updates, 68
rolling back, 68
updates, 66-67

Microsoft Store, 48

mounting external volumes
block device, 71
disk management, 69
disks/disk images, 69
offline disk information, 70
partition, 72

root user, 48-49

running default screen, 44-45

running option, 44

shutdown command, 51

single command execution, 49-50

specific information, 46-48

state/version, 43

termination, 52

uninstallation, 61
advanced options, 62-63
PowerShell, 63-64
Windows start menu, 62
wsl.exe import, 64-65

Docker desktop

configuration, 240
container images, 240-241
infrastructure, 239
integration, 240

system tray, 238-239

web page, 241



G

Geographic information
systems (GIS), 87
Graphical Linux applications (X server)
configuration, 145-146
GUI application
configuration, 153-154
dbus configuration, 155
debugging option, 154-155
installation, 143
VcXsrv project page, 145
Windows, 143-145
WSL 2/GUI apps/firewall
disable access control, 147-148
general connection, 151
inbound connection, 153
inbound firewall rules, 150
networks, 147-149
ports/protocol tab, 152
protocol column, 151
public access, 146-153
TCP public access, 149, 150
Graphical user interface (GUI)
browsing process, 85
confirmation dialog box, 86-87
Ip-solve installation, 86
synaptic installation, 84-85
synaptic packages, 86

H

Hyper-V, 23-24

init system, 155
Integrated development environment
(IDE), 242-252

INDEX

J

JetBrains
node execution, 251
interpreter/WebStorm, 251
open file/project, 249-250
trivial execution, 252

K

Kernel-based Virtual Machine
(KVM), 186

configuration, 187
Intel processors, 186-187
guest support selection, 185
nested options, 191

Kernel optimization, 179
access permissions, 195
building process, 188
compilation/installation, 189
config file, 182
confirmation, 193
dependencies, 181
different methods, 180
directories, 181
editing process, 182
error message, 193
GitHub, 180
guest support directory, 184
home directory, 190
KVM (see Kernel-based Virtual

Machine (KVM))

kvim_intel kernel module, 194
make-j 8, 188
menuconfig, 183
monolithic kernel, 189
nested virtualization, 195
operating systems, 196-200
PowerShell tab, 191

283



INDEX

Kernel optimization (cont.)
processor type/features directory, 184
Ubuntu tab, 192
virtualization directory, 186
Windows user home folder, 190
WSL 2/networking, 200-208
.wslconfig configuration, 190

Kubuntu installation
downloading process, 197
properties, 197-198
script creation, 200
virtual hard drive creation, 197
welcome screen, 199

L
Linux

.appx file packages, 27-29

DBUS service, 262-264

developer mode, 28

distribution, 24-25

distro maintenance
administrative tasks, 75
dependencies, 74
installation, 73
packages (see Packages)
sudo/wheel, 75

file system
mounting options, 230-231
partition, 229
physical disk image, 229
wmic command, 228-229

kernel (see Kernel)

kernel modules, 264

Microsoft Store, 26-27

piping (see Piping)

systemd dependency, 262

Tarball (wsl.exe)

284

directory, 30
groovy build, 32
PowerShell, 35
range platforms, 31
rootfs, 30
Ubuntu release, 30
user creation, 34
whoami verification, 34
Windows terminal, 33
Ubuntu, 26
warning message, 28
WSL version, 25-26
Linux ecosystem, 264
LxssManager services, 2

Microk8s workstation
CoreDNS service, 236-238
creation, 233
helm enable command, 237
ingress controller, 237
installation, 235
snap package, 233-234
Mount file systems
file sharing, 226
FUSE/SSHFS, 227-228
Linux
mounting options, 230-231
partition, 229
wmic command, 229
physical disk image, 228-229
Windows Explorer, 225

N,O
Network Address
Translation (NAT), 9



P, Q

Packages
apt-cache search, 82
general principles, 73-74
GUI apt package
manager, 84-87
improvement (upgrades), 76-77
installation, 78-79
manual page, 83
neovim text editor, 78
open source packages, 81
terminal, 81-83
TUI searching, 83-84
uninstalling process, 79
update option, 75-76
PCI pass-through/GPU pass-through
AI/MI workflows, 252
DirectML, 256
Jupyter notebooks, 255
NVIDIA CUDA, 252-255
TensorFlow, 255
Pico process technology, 2
Piping
email process, 222
error message, 215
file compress, 215
file redirection, 221
heredocs, 221-223
meaning, 214
WSL/Windows
cmdlet, 219
component object model, 217
feature, 216
grep services, 220
outlook email compose
window, 219
output process, 217

INDEX

piping mechanism, 216

PowerShell code, 218

ssh-agent service, 220
PowerShell code, 19-20, 218

R

rootfs tar file
file structure, 95
folder creation, 96
folder view, 95
tarball, 96
Windows file system, 97

S

Solaris Service Management Facility
(SMF), 177
System information
init system, 177-178
modular components, 177
namespace process, 179-180
Solaris service management
facility, 177

T

Terminal User Interface
(TUI), 83-84
Troubleshooting
distro image, 260-261
installation, 257
Linux (see Linux)
security application, 260
virtualization, 261
Windows features
enable option, 257-258
PowerShell code, 258-259

285



INDEX

U terminal inside code, 248
window connection, 247

Ubuntu, 87-88 ) )
version 16.8/earlier, 242-243

Ansible, 278-279
groovy build, 32
images, 30 W XY,Z
Intune product, 268
landscape server, 268

apt-get, 270

Launchpad admin screen, 268

Windows interoperability
environmental variables, 223-225
file systems (see Mount file systems)

) ) piping (see Piping)
pacl;a'lge 1nst.allat1'on, 274-277 WSLENV, 223
peI_l ling reg1streﬁ10?1, 272270 Wslpath tool, 209
Quickstart installation, Wlutilities tool

registration, 270-271
Linux, 27
package management
installation, 276
organization alerts, 277
packages tab, 276
search option, 274
selection, 275
upgrade process, 277
releases, 31

empty file creation, 213
gedit installation, 210
icons search, 211
shortcut creation, 211
splash screen, 212
system information, 212
tools, 210

xt file, 214

web browser, 213
wslvar, 212

wslview, 213

\V} Windows services

apache2 batch file/script file, 163-164
Apache web server, 159
batch file testing, 161-163
Virtualization extensions, 23 pane management, 165

Visual Stu@io shell script, 160
debugging app, 244-245 sudoers file, 162

16.9 version/later, 243 task scheduler, 165, 166
.NET Core debugging, 244 actions tab, 172-174

source cod.e active tasks, 175-176
debugging process, 249 naming field, 167

distro, 247 program specification, 171

folder pfocess, 248 properties dialog, 171-172
installation screen, 246 start program, 170

Virtual Application Integrated Locally
(VAIL), 16

286



INDEX

time setting, 169 pico processes, 2
trigger option, 168 syscall translation, 3-5
Windows Subsystem for Linux (WSL) WSL 2 (see WSL 2 configuration)
architecture, 1 WSL 2 configuration
file system location, 36 command line, 131
GPU compute support debugging console, 138-139
/dev/dxgkrnl, 11-12 grep processor, 133
DirectML, 12 Hyper-V, 6
DirectX implementation, 11 kernel, 7-8, 129-130
libraries, 14 Linux LF/Windows CRLF line
Nvidia CUDA, 13 endings, 140
OpenGL/OpenCL localhost forwarding, 136-137
implementation, 12-13 memory, 133
workflow setup, 10 nested virtualization, 137
graphical menu, 18 page reporting, 135-136
GUI application PowerShell, 139
VAIL, 16 processors, 131-133
Wayland application support, 15 registry process, 141
Xorg application support, 15 distributions, 141
imporing process distro view, 142
base verification, 99 individual WSL distribution, 141
distro test, 98 swap file, 135-136
QGIS running, 100 swap storage, 134
terminal process, 99 virtual machine platform, 6-7
Windows command prompt, 97 Windows subsystem, 8
wsl.exe, 98 .wslconfig, 129-140
installation location, 35-37 wsl.exe--shutdown, 139
PowerShell, 19, 20 WSLENV
programs/features, 17-18 definition, 123
system call handling, 5 flags, 126-127
tooling, 37-40 printenv output, 125
Windows 10, 40-42 share environment variables, 126
WSL 1 vs. WSL 2 system environment variables,
availability, 9 123-124
Docker/microk8s, 10 wsl.exe installation
kernel drivers, 1 distributions, 22-23
LxssManager, 2 enable option, 22
networking configuration, 9 Ubuntu, 23

287



	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: WSL Architecture
	WSL 1 vs. WSL 2
	Kernel Drivers
	Pico Processes
	LxssManager
	Syscall Translation in WSL 1

	WSL 2
	Hyper-V
	Virtual Machine Platform
	WSL 2 Kernel

	WSL 1 vs. WSL 2
	Availability
	Why You Would Choose WSL 1
	Why You Would Choose WSL 2

	The Future of WSL
	GPU Compute
	/dev/dxgkrnl
	Direct3D 12
	DirectML
	OpenGL and OpenCL
	Nvidia CUDA
	Libraries

	GUI Support

	Chapter 2: Enabling WSL
	In Programs and Features
	Using PowerShell
	Using DISM
	Using wsl.exe --install
	Installing a Distribution with wsl.exe –install
	Using DISM to Enable WSL in Images
	In Hyper-V Guests
	Installing a Linux Distribution on WSL
	Choice of Distribution
	Consideration: WSL Version When Installing
	Install from the Microsoft Store
	Sideload an .appx File in Developer Mode
	Import a Tarball Using wsl.exe --import

	WSL Installation Mechanics
	Installation Location
	WSL Tooling
	WSL API in Windows 10


	Chapter 3: Managing WSL Distros
	Listing All Distros
	Listing Running Distros
	Running a Default Distro
	Setting a Default Distro
	Running a Specific Distro
	Running as a Specific User
	Executing Single Commands
	Shutdown
	Terminate
	Converting Distros Between WSL Versions
	Export/Backup Distro
	Import/Restore Distro
	Duplicate Distros
	Resetting Distros
	Open WSL Distro “App” Settings
	Advanced Options in WSL Distro “App” Settings
	Considerations: Resetting WSL Distro

	Uninstall Distros from the Microsoft Store
	From the Windows Start Menu
	From Advanced Options in WSL Distro “App” Settings
	Using PowerShell
	Uninstall Distros Installed Using wsl.exe --import

	WSL 2 Kernel Management
	Checking for Available Updates
	Checking Kernel Update Status
	Rolling Back Kernel Updates
	Mounting External Volumes
	Unmounting from Windows


	Chapter 4: Linux Distro Maintenance
	Packages
	Dependencies
	Completing Administrative Tasks with sudo
	Update Packages
	Upgrade Packages
	Installing Packages
	Uninstalling Packages
	Abandoned Dependencies
	Finding Packages
	From the Terminal
	Using a Terminal User Interface (TUI)
	Using a Graphical User Interface (GUI)

	Build Your Own Ubuntu WSL Image
	Install an Image Bootstrapping Tool
	Build Our Base Image
	Customize Base Installation
	Create rootfs tar
	Import into WSL

	Chapter 5: Configuring WSL Distros
	Setting Per-Distro Settings
	Automount Settings
	Enabling
	Root
	File System Tab
	Mount Options
	Metadata
	Case Sensitivity
	Changing the UID and GID of a Mount
	Background on Linux File Permissions
	Symbolic Form
	Checking a File’s Permissions
	Numeric Form
	File Mask
	Changing umask and fmask of a Mount
	Cross-Distro Mounting
	ldconfig

	Network
	Generate Hosts File
	Generate DNS File
	Hostname

	Interoperability
	Enabling
	Appending Windows Path
	WSLENV
	WSLENV Flags

	Default User
	Boot

	Chapter 6: Configuring WSL 2
	.wslconfig
	Kernel
	Kernel Command Line
	Processors
	Memory
	Swap
	Swap File
	Page Reporting
	Localhost Forwarding
	Nested Virtualization
	Debug Console
	Tips
	WSL Registry Settings

	Chapter 7: Customizing WSL
	Using Graphical Applications with X
	Install an X Server on Windows
	Configure WSL to Forward X to Your Windows X Server
	WSL 2, GUI Apps, and Windows Firewall
	Install a GUI Application
	Debugging GUI Applications
	dbus


	Rolling Your Own init System
	.bashrc
	Windows Services
	Windows Task Scheduler

	Boot Command

	Chapter 8: Going Further with WSL 2
	Running systemd
	A Simple Approach to systemd
	Building Your Own Kernel for WSL 2
	Installing a Guest Operating System on KVM on WSL
	WSL 2 Advanced Networking


	Chapter 9: Maximizing Windows Interoperability
	wslpath
	wslutilities
	Redirecting Between Windows and Linux Applications
	Piping
	Piping Between Windows and WSL
	Piping from WSL to Windows
	Piping from Windows to WSL

	File Redirection
	Heredocs

	Environmental Variables
	Mount File Systems in WSL 2
	Windows File Shares
	SSHFS and Other FUSE-Based File Systems
	Native Linux File Systems in a Disk Image or “Partition”
	In a Partition
	In a Disk Image (VHDX File)
	Mounting Options



	Chapter 10: Using WSL for Enterprise Development
	Creating a Microk8s Workstation
	Prerequisites for Microk8s
	Installing Microk8s
	Enabling Microk8s Add-Ons

	Deploy a Cluster with Helm
	Using Docker Desktop
	Installing Docker Desktop on WSL
	Building Docker Container

	Connecting to Editors/IDEs
	Visual Studio
	Installing in Visual Studio Version 16.8 and Earlier
	Installing in Visual Studio Version 16.9 and Later
	Debugging Your App in WSL

	Visual Studio Code
	JetBrains IDEs

	Utilizing GPU Compute Pass-Through
	NVIDIA CUDA
	DirectML for Non-NVIDIA GPUs


	Chapter 11: Troubleshooting WSL
	Installation
	Ensure the Windows Optional Features Are Enabled
	Check Your Security Application
	Get the Latest Distro from the Windows Store
	Virtualization

	Linux Component Dependencies
	systemd
	dbus
	Kernel Modules

	Linux Applications
	Using “strace” on WSL 1


	Chapter 12: Deploying WSL at Scale
	Considerations for Deploying
	Using Intune to Deploy Ubuntu on WSL
	Using Landscape to Manage Ubuntu on WSL
	Enroll Ubuntu WSL into a Landscape Server
	Executing a Script on the WSL Instance with Landscape
	Managing Packages of the WSL Instance with Landscape

	Using Ansible to Manage Ubuntu on WSL

	Index



