
Pro Windows
Subsystem for
Linux (WSL)

Powerful Tools and Practices
for Cross-Platform Development
and Collaboration
—
Hayden Barnes

Pro Windows Subsystem
for Linux (WSL)

Powerful Tools and Practices
for Cross-Platform Development

and Collaboration

Hayden Barnes

Pro Windows Subsystem for Linux (WSL): Powerful Tools and Practices for
Cross- Platform Development and Collaboration

ISBN-13 (pbk): 978-1-4842-6872-8 ISBN-13 (electronic): 978-1-4842-6873-5
https://doi.org/10.1007/978-1-4842-6873-5

Copyright © 2021 by Hayden Barnes

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Joan Murray
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media LLC, 1 New York Plaza, Suite
4600, New York, NY 10004. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-sbm.
com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member (owner)
is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware
corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484268728. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Hayden Barnes
Columbus, GA, USA

https://doi.org/10.1007/978-1-4842-6873-5

This book is dedicated to the
Windows Subsystem for Linux community.

v

About the Author ��� xiii

About the Technical Reviewer ���xv

Acknowledgments ���xvii

Introduction ��xix

Table of Contents

Chapter 1: WSL Architecture �� 1

WSL 1 vs. WSL 2 ... 1

Kernel Drivers .. 1

Pico Processes .. 2

LxssManager ... 2

Syscall Translation in WSL 1 .. 3

WSL 2 .. 5

Hyper-V .. 6

Virtual Machine Platform ... 6

WSL 2 Kernel ... 7

WSL 1 vs. WSL 2 ... 9

Availability ... 9

Why You Would Choose WSL 1 ... 9

Why You Would Choose WSL 2 ... 10

The Future of WSL ... 10

GPU Compute .. 10

/dev/dxgkrnl .. 11

Direct3D 12 .. 12

DirectML .. 12

OpenGL and OpenCL .. 12

vi

Nvidia CUDA ... 13

Libraries... 14

GUI Support ... 14

Chapter 2: Enabling WSL �� 17

In Programs and Features ... 17

Using PowerShell .. 19

Using DISM .. 20

Using wsl.exe --install .. 21

Installing a Distribution with wsl.exe –install ... 22

Using DISM to Enable WSL in Images ... 23

In Hyper-V Guests .. 23

Installing a Linux Distribution on WSL ... 24

Choice of Distribution .. 24

Consideration: WSL Version When Installing .. 25

Install from the Microsoft Store ... 26

Sideload an .appx File in Developer Mode .. 27

Import a Tarball Using wsl.exe --import .. 29

WSL Installation Mechanics .. 35

Installation Location .. 35

WSL Tooling ... 37

WSL API in Windows 10 ... 40

Chapter 3: Managing WSL Distros �� 43

Listing All Distros .. 43

Listing Running Distros ... 44

Running a Default Distro ... 44

Setting a Default Distro ... 45

Running a Specific Distro .. 46

Running as a Specific User ... 48

Executing Single Commands .. 49

Shutdown .. 51

Table of ConTenTs

vii

Terminate .. 52

Converting Distros Between WSL Versions ... 53

Export/Backup Distro .. 53

Import/Restore Distro .. 54

Duplicate Distros ... 56

Resetting Distros ... 57

Open WSL Distro “App” Settings.. 57

Advanced Options in WSL Distro “App” Settings ... 59

Considerations: Resetting WSL Distro ... 60

Uninstall Distros from the Microsoft Store .. 61

From the Windows Start Menu .. 61

From Advanced Options in WSL Distro “App” Settings .. 62

Using PowerShell .. 63

Uninstall Distros Installed Using wsl.exe --import .. 64

WSL 2 Kernel Management ... 65

Checking for Available Updates .. 66

Checking Kernel Update Status .. 68

Rolling Back Kernel Updates ... 68

Mounting External Volumes .. 69

Unmounting from Windows ... 69

Chapter 4: Linux Distro Maintenance ��� 73

Packages... 73

Dependencies ... 74

Completing Administrative Tasks with sudo ... 75

Update Packages .. 75

Upgrade Packages .. 76

Installing Packages ... 78

Uninstalling Packages ... 79

Abandoned Dependencies .. 80

Table of ConTenTs

viii

Finding Packages .. 81

From the Terminal ... 81

Using a Terminal User Interface (TUI) .. 83

Using a Graphical User Interface (GUI) .. 84

Build Your Own Ubuntu WSL Image ... 87

Install an Image Bootstrapping Tool .. 88

Build Our Base Image ... 88

Customize Base Installation .. 90

Create rootfs tar .. 95

Import into WSL ... 97

Chapter 5: Configuring WSL Distros ��� 101

Setting Per-Distro Settings.. 101

Automount Settings ... 102

Enabling ... 102

Root ... 102

File System Tab ... 103

Mount Options ... 104

Metadata ... 104

Case Sensitivity ... 105

Changing the UID and GID of a Mount ... 108

Background on Linux File Permissions ... 110

Symbolic Form .. 110

Checking a File’s Permissions ... 111

Numeric Form .. 112

File Mask ... 113

Changing umask and fmask of a Mount .. 114

Cross-Distro Mounting ... 114

ldconfig .. 115

Network .. 117

Generate Hosts File ... 117

Table of ConTenTs

ix

Generate DNS File ... 119

Hostname .. 120

Interoperability .. 121

Enabling ... 121

Appending Windows Path .. 122

WSLENV ... 123

WSLENV Flags ... 126

Default User .. 127

Boot ... 127

Chapter 6: Configuring WSL 2 ��� 129

. wslconfig.. 129

Kernel .. 129

Kernel Command Line ... 130

Processors .. 131

Memory ... 133

Swap ... 134

Swap File .. 135

Page Reporting ... 135

Localhost Forwarding ... 136

Nested Virtualization ... 137

Debug Console .. 138

Tips ... 139

WSL Registry Settings... 141

Chapter 7: Customizing WSL �� 143

Using Graphical Applications with X ... 143

Install an X Server on Windows ... 143

Configure WSL to Forward X to Your Windows X Server .. 145

WSL 2, GUI Apps, and Windows Firewall ... 146

Install a GUI Application ... 153

Table of ConTenTs

x

Rolling Your Own init System .. 155

 .bashrc ... 156

Windows Services ... 159

Windows Task Scheduler ... 165

Boot Command ... 176

Chapter 8: Going Further with WSL 2 ��� 177

Running systemd .. 177

A Simple Approach to systemd ... 178

Building Your Own Kernel for WSL 2 ... 179

Installing a Guest Operating System on KVM on WSL ... 196

WSL 2 Advanced Networking .. 200

Chapter 9: Maximizing Windows Interoperability �� 209

wslpath ... 209

wslutilities ... 210

Redirecting Between Windows and Linux Applications .. 214

Piping... 215

Piping Between Windows and WSL ... 216

File Redirection .. 221

Heredocs ... 221

Environmental Variables ... 223

Mount File Systems in WSL 2 .. 225

Windows File Shares ... 226

SSHFS and Other FUSE-Based File Systems ... 227

Native Linux File Systems in a Disk Image or “Partition” .. 228

Table of ConTenTs

xi

Chapter 10: Using WSL for Enterprise Development ��� 233

Creating a Microk8s Workstation .. 233

Prerequisites for Microk8s .. 233

Installing Microk8s .. 235

Enabling Microk8s Add-Ons .. 235

Deploy a Cluster with Helm ... 237

Using Docker Desktop ... 238

Installing Docker Desktop on WSL ... 238

Building Docker Container ... 240

Connecting to Editors/IDEs.. 242

Visual Studio .. 242

Visual Studio Code ... 246

JetBrains IDEs ... 249

Utilizing GPU Compute Pass-Through ... 252

NVIDIA CUDA .. 252

DirectML for Non-NVIDIA GPUs .. 256

Chapter 11: Troubleshooting WSL ��� 257

Installation .. 257

Ensure the Windows Optional Features Are Enabled ... 257

Check Your Security Application .. 260

Get the Latest Distro from the Windows Store .. 260

Virtualization .. 261

Linux Component Dependencies ... 261

systemd ... 262

dbus ... 262

Kernel Modules .. 264

Linux Applications ... 264

Using “strace” on WSL 1 ... 265

Table of ConTenTs

xii

Chapter 12: Deploying WSL at Scale ��� 267

Considerations for Deploying .. 267

Using Intune to Deploy Ubuntu on WSL ... 268

Using Landscape to Manage Ubuntu on WSL.. 268

Enroll Ubuntu WSL into a Landscape Server ... 268

Executing a Script on the WSL Instance with Landscape .. 272

Managing Packages of the WSL Instance with Landscape ... 274

Using Ansible to Manage Ubuntu on WSL ... 278

 Index ��� 281

Table of ConTenTs

xiii

About the Author

Hayden Barnes is the Senior Engineering Manager for

Windows Containers at SUSE and a recognized Microsoft

MVP. Hayden was previously Engineering Manager

for Ubuntu on Windows Subsystem for Linux (WSL) at

Canonical. Hayden regularly presents on the topic of WSL

at conferences such as Microsoft Build and is the founder of

WSLConf, the first community conference dedicated to WSL.

He has consulted for enterprises, academic institutions,

and government agencies to help them deploy WSL. Before

joining Canonical, Hayden founded Whitewater Foundry,

the first company to create a custom Linux distribution

built specifically for WSL. He is passionate about WSL because it opens up a myriad

of opportunities for cross-platform development, open source development, and

collaboration between Linux and other communities.

xv

About the Technical Reviewer

Nuno Do Carmo is an IT professional with 20 years of

experience in various Windows domains, such as Windows

OS support, Active Directory management, and application

support.

He was also a Unix, HP/UX and Solaris 10, and Linux

system administrator for HP for more than five years.

It is this mix of experiences that motivated him to start

using WSL since its inception in 2016, and he was very happy

to find other (crazy) persons who had the same interest in

this incredible technology.

One of those persons was a certain Hayden Barnes.

Today, Nuno is a Microsoft MVP, Windows Insider MVP, CNCF Ambassador, and

Docker Captain, and he is specially interested or invested in bringing the Cloud Native

technologies to WSL to allow a broader user base to use these amazing projects.

On the personal side, Nuno lives in tiny Switzerland, the French side, with his wife,

stepdaughter, stepson, and four cats.

He can be reached at

LinkedIn: www.linkedin.com/in/ndocarmo/

Twitter: https://twitter.com/nunixtech

Website: https://wsl.dev

http://www.linkedin.com/in/ndocarmo/
https://urldefense.proofpoint.com/v2/url?u=https-3A__twitter.com_nunixtech&d=DwMGaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=xcIyEHOBDrqBsDpfs-jtsZsroIrOItY9CEdM2IbX3oc&m=KmER3DondVzDpSVT8LzwerA1T2FZ_bTh5ynCJfUH7MA&s=juQpQkPXx6FDIOM-P-0KYf_af5QEZUrw57r-dVZpWLo&e=
https://wsl.dev

xvii

Acknowledgments

I would like to acknowledge the following persons, without whom this book would not

be possible:

Taylor Brown

Kayla Cinnamon

Sarah Cooley

Nuno Do Carmo

Yosef Durr

Sven Groot

Scott Hanselman

Ben Hillis

Dustin Howett

Igor Ljubuncic

Daniel Llewellyn

Craig Loewen

Kim Mullis

Tara Raj

Carlos Ramirez

Sohini Roy

Clint Rutkas

Mark Shuttleworth

John Starks

Rich Turner

Martin Wimpress

Patrick Wu

And everyone at Microsoft who contributed to the development of WSL and the

community around WSL.

xix

Introduction

 Pro Windows Subsystem for Linux
This book will equip you with a wide breadth of WSL knowledge to tackle a range of

challenges on WSL, from IT administration to development work, including:

• Connecting to popular Integrated Development Environments

• Building a custom Linux kernel for WSL 2

• Building a derivative Linux distro with your own packages

• Automating emails in Outlook from a bash script in WSL

It will also cover advanced settings, customization, and optimizations for both WSL

and WSL 2, from the command line to the Registry. This will include each configuration

option in wsl.conf and .wslconfig and recommendations for best performance.

First, we will cover the early development of WSL.

 History of Windows Subsystem for Linux
What we now call WSL 1 began as an effort inside Microsoft, code-named Project

Astoria, to support Android applications on the ill-fated Windows Phone. Project Astoria,

known publicly as Windows Bridge for Android, was announced at the Microsoft Build

conference for developers in 2015 (Figure I-1).

xx

Project Astoria built on virtualization concepts from a Microsoft Research project

known as Project Drawbridge. Project Drawbridge was a prototype of a new form of

virtualization for application sandboxing based on pico processes. Project Drawbridge

included a version of Windows built to run inside pico processes. In Project Astoria, the

pico process environment was modified to run Linux-based Android applications.

A single build of Windows 10 Phone was leaked from Microsoft containing Project

Astoria. This build allowed rudimentary Android applications to be sideloaded and

run on Windows Phone devices. Project Astoria was never officially released and was

terminated by Microsoft along with Windows Phone in 2017. The underlying technology

in Project Astoria survived though. After all, Android is based on Linux.

 Bash on Ubuntu on Windows
In 2016, the technology underneath Project Astoria was recycled as Bash on Ubuntu on

Windows. Instead of running Android applications, the technology was used to run a

Bash terminal for developers on Windows (Figure I-2). The core of the technology was

a binary translation layer that ran Linux binaries on an NT kernel inside pico processes,

discussed in Chapter 1, “WSL Architecture.”

Figure I-1. Screenshot of original presentation on Project Astoria, 2015. Source:
https://channel9.msdn.com/Events/Build/2015/2- 702

InTroduCTIon

https://channel9.msdn.com/Events/Build/2015/2-702

xxi

Microsoft partnered with Canonical, the publishers of Ubuntu, to bring this first

version of WSL to Windows. Bash on Ubuntu on Windows shipped in Windows 10

Anniversary Update, also known as Windows 10 1607. The partnership between

Microsoft and Canonical was a milestone in Microsoft’s increasing adoption of Linux

and open source software.

 Windows Subsystem for Linux
In 2017, Bash on Ubuntu on Windows became Windows Subsystem for Linux with

Windows 10 1709. Linux distributions could now be installed on WSL from the Microsoft

Store (Figure I-3), and the number of available distributions expanded. A complete list of

available WSL distributions is in Chapter 2, “Enabling WSL.” This version of WSL based

on the binary translation layer is what we now call WSL 1 following the announcement of

WSL 2 in 2019.

Figure I-2. Screenshot of Bash on Ubuntu on Windows

InTroduCTIon

xxii

 Why “Windows Subsystem for Linux”?
Some people wonder why Windows Subsystem for Linux is so awkwardly named. From

a historical perspective, Windows Subsystem for Linux matches the naming structure

of Windows Services for UNIX, the previous POSIX compatibility layer for Windows

NT. According to Rich Turner, Senior Program Manager at Microsoft, it was trademark

concerns that prevented Microsoft from starting the product name with Linux. At the

time, WSL did not contain the Linux kernel like it would with WSL 2. We ended up with

Windows Subsystem for Linux, which you can think about as a subsystem of Windows to

run Linux.

Figure I-3. Ubuntu 18.04 LTS on the Microsoft Store

InTroduCTIon

xxiii

 Windows Subsystem for Linux 2
WSL 2 was announced at Microsoft Build 2019 and reached general availability in Windows

10 2004. The core of WSL 2 was not a binary translation layer like WSL 1 but a full Linux

kernel and environment running in a lightweight Hyper-V container. Unlike traditional

Hyper-V, which is limited to Windows 10 Enterprise, Professional, Education, and Server,

WSL 2 is available for all Windows 10 editions, including Windows 10 Home. WSL 2 offered

significant improvements in application compatibility and performance over WSL 1.

WSL 2 enabled several highly requested features to be brought to WSL, including GPU

acceleration, official GUI support, and nested virtualization for KVM guests.

InTroduCTIon

1
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_1

CHAPTER 1

WSL Architecture
To get the most out of Windows Subsystem for Linux, it is useful to understand its

underlying architecture and history. If you plan to hack on WSL or just deploy it in your

enterprise, it is necessary to know. This chapter will cover the architecture of WSL 1 and

WSL 2, how we got here, and then dive into some of the bleeding edge features on the

WSL platform.

 WSL 1 vs. WSL 2
WSL 1 creates a Linux environment on Windows through the use of a Linux binary

translation layer. WSL 2 does so with a lightweight virtualization platform based on

Hyper-V. Both are unique and fascinating approaches to achieving Linux and Windows

interoperability.

 Kernel Drivers
When WSL is enabled on Windows 10, two NT core kernel drivers are loaded by

Windows 10 (Figure 1-1). These drivers are Lxss.sys, a stub driver loaded early in the

boot process, and LxCore.sys, the full WSL driver, which is loaded later in the boot

process.

https://doi.org/10.1007/978-1-4842-6873-5_1#DOI

2

 Pico Processes

Linux applications in WSL are executed in pico processes, lightweight virtual spaces

created in Windows user space. LxCore.sys acts as a pico provider simulating a Linux

environment in the virtual space inside WSL pico processes. LxCore.sys also performs

the syscall translation in WSL 1, which is discussed in more detail below.

Linux applications running in a pico process are completely unaware they are

running on Windows. Pico process technology can theoretically be used to simulate any

operating system environment. Similar pico process technology is used by Microsoft to

allow Windows 10 IoT to run legacy Windows CE applications and was used, in reverse,

to port Microsoft SQL Server to Linux.

 LxssManager
LxssManager is a Windows Service (Figure 1-2) that serves as a broker to LxCore.sys. An

NT call to execute a Linux binary is routed by LxssManager to LxCore.sys. LxssManager

also monitors the WSL user state and ensures smooth installation and uninstallation of

WSL distributions (Figure 1-2).

Figure 1-1. Diagram of WSL 1 architecture

Chapter 1 WSL arChiteCture

3

 Syscall Translation in WSL 1
LxCore.sys must translate Linux kernel system calls from Linux applications into NT

system calls. System calls are the low-level requests made by compiled binaries to an

operating system kernel to perform tasks, such as apportion memory, open files, and

read from devices.

To read the system calls created by a simple application, install strace on Ubuntu on

WSL:

$ sudo apt install strace -y

Then run a simple application with strace, outputting the system call trace output to

a file called output.txt:

$ strace -o output.txt echo 'hello world'

You can then read the strace output with cat:

$ cat output.txt

Figure 1-2. Properties of the LxssManager service

Chapter 1 WSL arChiteCture

4

And you can see the Linux system calls made from simply running echo ‘hello world’

(Figure 1-3):

These system calls involve executing the binary, opening files, assigning memory,

and writing the output to the console.

The Linux and Windows NT kernels were both created in the early 1990s. Linux

was created by Linus Torvalds in 1991, inspired by MINIX, a research operating system,

which was itself inspired by UNIX from Bell Labs. The Windows NT kernel was designed

in 1993 by a team at Microsoft under David N. Cutler whose background at Digital

Equipment Corporation on the VMS operating system heavily influenced the design

of NT. Like Linux, NT was originally designed to be POSIX standards compatible. Like

Linux, NT also had distinct modes of execution, a kernel privileged mode and a user

unprivileged mode. Despite their very distinct implementations, the NT and Linux

kernels were influenced by the same operating system theories and trends in the early

to mid-1990s.

Figure 1-3. System calls made by the command echo ‘hello world’

Chapter 1 WSL arChiteCture

5

Despite their distinct implementations, thanks to their common influences in some

cases there are direct translations of Linux to NT kernel system calls. When a Linux

binary is executed in a pico process and a 1-1 Linux to NT system call exists, these can be

passed directly by LxCore.sys to the NT kernel (Figure 1-4).

When a 1-1 Linux to NT system call does not exist, but a similar NT system call exists

for a Linux system call, LxCore will translate the Linux system call into an NT system call

by reordering or refactoring the call from a Linux to an NT call.

In other cases, where there is no equivalent for a Linux system call. Here, LxCore

must handle the system call itself. This is handled in a clean room implementation of the

Linux kernel API and contains no Linux kernel code.

Not all possible Linux system calls are implemented in WSL 1, and some of the more

obscure system calls will never be. WSL 1 achieves close to 90% binary compatibility

with Linux with this translation layer. Early in WSL 1 development, the Linux Test Project

(https://linux- test- project.github.io/) was used to validate Linux compatibility.

 WSL 2
WSL 2 is a vastly different architectural approach from WSL 1. By leveraging a Linux

kernel and a lightweight Hyper-V container, WSL 2 addresses many of the issues users

encountered with WSL 1, such as syscall incompatibility.

Figure 1-4. Diagram of system call handling in WSL 1

Chapter 1 WSL arChiteCture

https://linux-test-project.github.io/

6

 Hyper-V
WSL 2 addresses the challenge of implementing complete system call translation

support for every possible Linux system call by implementing a true Linux kernel in a

lightweight virtualization platform built on Hyper-V (Figure 1-5).

Hyper-V is the native virtualization technology built into the Windows NT kernel,

equivalent to the native virtualization implementations such as KVM on Linux or

Hypervisor.Framework on macOS.

Hyper-V is a Type 1 hypervisor, which means it runs at the NT kernel level. Third-

party hypervisors, like VirtualBox and VMware, are Type 2 hypervisors which load

kernel-level drivers but are mostly implemented user space.

This is why Hyper-V and third-party hypervisors clash. You cannot run VirtualBox

and WSL 2 on the same Windows installation.

 Virtual Machine Platform
WSL 2 uses the Windows Host Compute Service, an API built on Hyper-V and exposed by

enabling the Virtual Machine Platform in Windows 10.

WSL 2 defines a lightweight Linux environment through a series of API calls to the

Host Compute Service, including attaching virtual file systems and virtual network

adapters.

Figure 1-5. Diagram of WSL 2 architecture

Chapter 1 WSL arChiteCture

7

In contrast with WSL 1, where calls to open files or to open a networking port on WSL

1 are handled directly by the NT kernel, calls to open files or a networking port on WSL 2

are handled by the Linux kernel which then interacts with virtual Hyper-V devices.

Calls to open files on WSL 2 are directed to the Linux kernel which interacts with

a virtual file system emulated by Hyper-V. The virtual file system is a hard disk image

mounted as a virtual block device upon which the file system is stored. This provides

greater performance and lower overhead than emulating a physical IDE, SATA, or NVMe

device.

Calls to open a networking port on WSL 2 are directed to the Linux kernel which

interacts with a virtual network adapter emulated by Hyper-V.

You can view the virtual file systems and network adapters in WSL 2 by running

$ lshw

The device drivers for these virtual Hyper-V file systems and devices have been

included in the upstream Linux kernel since 2009. Here is an example of a virtual

network adapter:

 *-network:0

 description: Ethernet interface

 physical id: 1

 logical name: eth0

 serial: 00:10:4d:eb:01:ab

 size: 10Gbit/s

 capabilities: ethernet physical

 configuration: autonegotiation=off broadcast=yes driver=hv_netvsc

duplex=full firmware=N/A ip=172.24.18.219 link=yes multicast=yes

speed=10Gbit/s

 WSL 2 Kernel
The Linux kernel in WSL 2 is a slightly modified Linux kernel optimized to run in the

Hyper-V-based WSL 2 environment. The source is made available under GPL 2.0 at

https://github.com/microsoft/WSL2- Linux- Kernel. Updates to the Linux kernel in

WSL 2 are provided by Windows Update (Figure 1-6).

Chapter 1 WSL arChiteCture

https://github.com/microsoft/WSL2-Linux-Kernel

8

Some users will need to manually install the WSL 2 kernel (Figure 1-7) from an

installer when upgrading from previous version of Windows 10 by downloading it from

https://aka.ms/wsl2kernel. A version of the WSL 2 kernel for ARM64 devices is also

available.

Building your own kernel for WSL is detailed in Chapter 8 “Going Further with WSL2”.

Figure 1-7. Screenshot of Windows Subsystem for Linux 2 kernel installer

Figure 1-6. Screenshot of Windows Update in Windows 10 Settings

Chapter 1 WSL arChiteCture

https://aka.ms/wsl2kernel

9

 WSL 1 vs. WSL 2
 Availability
WSL 1 is currently available on more versions of Windows 10, including Windows Server

2019. WSL 1 is your only choice on Windows 10 versions 1709 to 1809.

WSL 2 is available on the Windows 10 May 2019 update, known as version 1903, with

recent updates applied, specifically build 18362.1049 and higher. If you are running this

version of Windows 10 or higher, I strongly recommend you try WSL 2.

WSL 2 was originally launched on Windows 10 May 2020 Update, version 2004, but

was then backported to Windows 10 May 2019, version 1903, later in 2020.

 Why You Would Choose WSL 1
WSL 1 has lower system overhead than WSL 1. It may make a better choice on a lower-

resource machine, such as a Surface Go, on which power usage takes precedence over

performance.

WSL 1 also has simplified networking compared to WSL 2. WSL 1 simply adopts

the networking configuration of your host Windows machines, whereas WSL 2 must

implement an entire NAT network inside the virtual environment which can complicate

some workflows.

Note Nat stands for Network address translation. each WSL 2 distro has its own
individual ip address that is only accessible from the Windows device on which it
is running. Windows translates outgoing connections to look like they are coming
from the Windows device.

WSL 1 has compatibility with many Linux applications. If you are limited to WSL 1,

you should not be dismayed. It is still a viable option for some users. Note though it is

not expected to get new features.

Chapter 1 WSL arChiteCture

10

 Why You Would Choose WSL 2
You should choose WSL 2 if your application requires it, such as Docker or microk8s.

WSL 2 is also more performant than WSL 1, by a significant factor. If you want to

maximize WSL performance, then WSL 2 is a breakthrough for your workflow.

WSL 2 has a more complicated networking setup than WSL 1. WSL 2 implements an

entire NAT network inside the virtual environment. Extra steps are required to connect to

WSL 2 services from other devices, something to keep in mind while planning your WSL

deployment or migration from WSL 1 to WSL 2.

WSL 2 also allows you to compile and run your own Linux kernel if you need kernel

features not provided by the default Microsoft WSL 2 kernel.

 The Future of WSL
2020 brought announcements of more architectural changes to WSL 2. Chief among

them is support for GPU computing tasks, which are accelerated by DirectX, Direct3D,

and DirectML. Support for OpenGL, OpenCL, and Vulkan is expected later. These new

GPU compute features required updates to the WSL 2 kernel and how GPU devices are

handled by WSL 2. These represent the next major architectural advances since the

introduction of WSL 2.

 GPU Compute
Windows 10 builds with GPU compute support were released to the Insider Dev Channel

in June 2020 and are expected to be a feature in a release of Windows 10 in 2021.

The new GPU compute functionality is based on a para-virtualized GPU in the WSL 2

environment. GPU acceleration will allow a whole new category of GPU-driven compute,

artificial intelligence, machine learning, and statistical analysis workloads on WSL.

A GPU-accelerated workflow setup is detailed in Chapter 10, “Using WSL for

Enterprise Development.”

Chapter 1 WSL arChiteCture

11

 /dev/dxgkrnl
The para-virtualized GPU is powered by a new Linux kernel device. A new Linux kernel

driver, /dev/dxgkrnl, provides a series of device calls that are similar to what DirectX

provides in the NT kernel via the Windows Display Driver Model (WDDM). This allows

APIs and drivers written to work on WDDM to run within WSL.

/dev/dxgkrnl connects outside the WSL environment through the Hyper-V VM

Bus (Figure 1-8) using the WDDM Paravirtualization Protocol. /dev/dgkrnl then

communicates over the VM Bus directly with dxgkrnl, the DirectX component in the NT

kernel, which passes requests to the GPU kernel mode driver and ultimately the GPU.

The NT kernel treats GPU processes on WSL and Windows equally and will

dynamically allocate available GPU resources between them. /dev/dxgkrnl is a

pass-through driver, similar in some ways to accelerated graphics drivers on other

virtualization platforms, like VirtualBox.

Only GPU compute and off-screen rendering is currently provided by /dev/dxgkrnl;

there is no display capability. Read the following for more on official GUI support

coming to WSL 2.

Figure 1-8. Diagram of DirectX implementation in WSL 2

Chapter 1 WSL arChiteCture

12

/dev/dxgkrnl does not contain DirectX, but it is open source and can be viewed at

https://github.com/microsoft/WSL2- Linux- Kernel/tree/linux- msft- wsl- 4.19.y/

drivers/gpu/dxgkrnl. Microsoft has initiated the process for the driver to be sent

“upstream” to the mainline Linux kernel.

GPU compute currently requires at least Windows 10 build 20150 and WSL-aware

drivers for Windows from your GPU chipset manufacturer. Beta drivers for Nvidia GPU

chipsets are available through the Nvidia Developer Program. Eventually, these drivers

will be released via Windows Update.

 Direct3D 12
Direct3D is part of DirectX. Direct3D is a real-time API for rendering three-dimensional

graphics in applications and games. The extension of WDDM to Linux allowed Microsoft

to port the Direct3D 12 API to Linux. A complete Direct3D library is compiled for Linux

from the source code of the Windows Direct3D library. Currently, Direct3D can only be

used for off-screen rendering; see the following for more information on official GUI

support coming to WSL 2.

 DirectML
DirectML is a part of DirectX. DirectML is a low-level API for machine learning that

should be familiar with developers experienced in DirectX. DirectML is supported on all

DirectX-compatible hardware. Unlike CUDA, which requires a Nvidia GPU, DirectML

works on Intel and AMD GPUs. In conjunction with porting DirectML to WSL, Microsoft

also released a preview of TensorFlow with a DirectML backend. Microsoft is working

with the TensorFlow community to upstream the DirectML backend.

 OpenGL and OpenCL
Most graphics rendering on Linux uses the open source OpenGL and OpenCL APIs.

Microsoft has been working with Collabora to provide mapping layers for OpenGL and

OpenCL on top of DirectX through the open source Mesa library (Figure 1-9). This will

allow OpenGL and OpenCL applications to be seamlessly DirectX accelerated when

executed on WSL. This work is not complete and will be coming in an update to the

Mesa library in the future. Once distributions like Ubuntu update to the new Mesa

libraries, three-dimensional acceleration for OpenGL and OpenCL will be automatic.

Microsoft has said they are still exploring how best to support Vulkan on WSL.

Chapter 1 WSL arChiteCture

https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/drivers/gpu/dxgkrnl
https://github.com/microsoft/WSL2-Linux-Kernel/tree/linux-msft-wsl-4.19.y/drivers/gpu/dxgkrnl

13

 Nvidia CUDA
CUDA is a cross-platform parallel processing API created by Nvidia. Microsoft worked

with Nvidia to build a version of CUDA for Linux that targeted the WDDM layer through

the /dev/dxgkrnl device driver (Figure 1-10). This provides CUDA acceleration to

applications such as TensorFlow in WSL and to Docker containers run with the Nvidia

runtime.

Figure 1-9. Diagram of OpenGL and OpenCL implementation in WSL 2

Chapter 1 WSL arChiteCture

14

 Libraries
The libraries needed to access advanced GPU features in WSL are overlaid onto the WSL

file system at /usr/lib/wsl/lib for glibc-based distributions. No Linux-specific drivers

are required. Distributions such as Alpine which use musl libc instead of glibc are not

currently supported.

The Direct3D library (libd3d12), DirectML (libdirectml), CUDA (libcuda), and a

related driver ported to Linux, DxCore (libdxcore), are not open source.

 GUI Support
At Build 2020, Microsoft also announced that official GUI support would be coming

to WSL 2. As detailed in Chapter 7 “Customizing WSL,” it is possible to run a GUI

application on WSL 1 and 2 today using a Windows-based X server such as VcXsrv or

X410. More details about official GUI support for WSL 2 are coming in 2021.

Figure 1-10. Diagram of CUDA implementation in WSL 2

Chapter 1 WSL arChiteCture

15

We do know the forthcoming GUI support will use a Wayland compositor based

on Weston and also include PulseAudio support. Microsoft’s compositor will forward

raw visual elements over RDP to the RDP client built into Windows (Figure 1-11).

The graphical rendering itself occurs on Windows. The visual elements of the Linux

GUI, including application windows, are drawn by Windows using your computer’s

GPU. Windows will also listen for keyboard and mouse input to transmit back to Linux.

Microsoft’s Weston-based compositor will have support for Xwayland, a

compatibility layer for Linux GUI applications built against Xorg libraries (Figure 1-12).

Xwayland contains an Xserver that uses Wayland input devices and forwards output to

Wayland surfaces.

Figure 1-11. Diagram of Wayland application support in WSL 2

Figure 1-12. Diagram of Xorg application support in WSL 2

Chapter 1 WSL arChiteCture

16

As of writing, Microsoft uses the Remote Desktop Protocol (RDP) Remote

Application Integrated Locally (RAIL) channel to send graphical data from Linux to

Windows. Microsoft has proposed an extension to the RDP called Virtual Application

Integrated Locally (VAIL), which is currently only in use between Windows clients

(Figure 1-13).

If VAIL is upstreamed into the RDP standard, then, instead of using the RAIL

channel to send graphical data, the video framebuffer could be copied directly from

Linux to Windows. This will dramatically improve GUI performance and is similar to

Intel GVT-g technology. It could also have other applications for remote and virtual

desktop interoperability between Windows and Linux. Microsoft has said their Wayland

compositor, contributions to FreeRDP, and RDP extension will be open source.

Microsoft has also announced that audio support will accompany GUI support in

WSL 2, provided by a minimal PulseAudio layer running in a special sidecar container,

which the UNIX domain socket needed for communication mounted into your WSL 2

distro.

The push toward using a real, open source Linux kernel with open protocols being

pushed upstream represents a dramatic shift for Microsoft. With an understanding of

the architecture of how WSL 1, WSL 2, and its pieces work together, we can begin to

understand how to exploit these pieces for fun and profit in the following chapters.

Figure 1-13. Diagram of RDP over VAIL

Chapter 1 WSL arChiteCture

17
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_2

CHAPTER 2

Enabling WSL
WSL does not come enabled by default in Windows; it must be enabled via the GUI or

command line. WSL can be enabled on all editions or “SKUs” of Windows, including

Windows 10 Home, Professional, Enterprise, and Server. There are multiple ways to

enable WSL on Windows 10. How you enable WSL depends on your comfort level. New

users may wish to use the GUI option, experienced users may wish to use PowerShell,

and system administrators managing fleets of Windows machines may use DISM.

 In Programs and Features
In Windows 10, click the Start button, type “features,” and select “Turn Windows

features on or off.” In the “Windows Features” menu (Figure 2-1), scroll down, and check

“Windows Subsystem for Linux” to enable WSL 1. To enable WSL 2, also select “Virtual

Machine Platform.”

https://doi.org/10.1007/978-1-4842-6873-5_2#DOI

18

Click “OK,” allow the features to be enabled, and then restart.

One disadvantage to the GUI method is that WSL 1 will remain your default even if

you enable WSL 2 on Windows 10 1909 and later. To set WSL 2 as your default (Figure 2-2),

open PowerShell as Administrator, and run

wsl.exe --set-default-version 2

Figure 2-1. Graphical menu to turn Windows features on or off

Figure 2-2. Setting WSL 2 as the default WSL version

Chapter 2 enabling WSl

19

 Using PowerShell
To enable WSL using PowerShell (Figure 2-3), open PowerShell as Administrator, and

run

Enable-WindowsOptionalFeature -Online -FeatureName Microsoft-Windows-

Subsystem-Linux -NoRestart

To then enable WSL 2 on Windows 10 1909 or later (Figure 2-4), run

Enable-WindowsOptionalFeature -Online -FeatureName VirtualMachinePlatform

-NoRestart

Allow the features to be enabled, and then restart:

Restart-Computer

If you enabled WSL 2, you can set WSL 2 as your default (Figure 2-5). Open

PowerShell as Administrator, and run (Figure 2-5)

Figure 2-3. Enabling the WSL 1 feature in Windows 10 using PowerShell

Figure 2-4. Enabling the WSL 2 feature in Windows 10 using PowerShell

Chapter 2 enabling WSl

20

wsl.exe --set-default-version 2

 Using DISM
Some administrators may be more familiar with the Deployment Image Servicing and

Management (DISM) tool. To enable WSL 1 using DISM (Figure 2-6), open PowerShell as

Administrator, and run

dism.exe /online /enable-feature /featurename:Microsoft-Windows-Subsystem-

Linux /all /norestart

Then, to enable WSL 2 using DISM (Figure 2-7), run

dism.exe /online /enable-feature /featurename:VirtualMachinePlatform /all /

norestart

Figure 2-6. Enabling the WSL 1 feature in Windows 10 using DISM

Figure 2-5. Setting WSL 2 as the default WSL version

Chapter 2 enabling WSl

21

Allow the features to be enabled, and then restart:

Restart-Computer

If you enabled WSL 2, you can set WSL 2 as your default (Figure 2-8). Open

PowerShell as Administrator, and run

wsl.exe --set-default-version 2

 Using wsl.exe --install
At Build 2020, Microsoft announced that a new feature would be coming to Windows

to enable WSL on all eligible versions of Windows 10. To enable WSL using this method

(Figure 2-9), open PowerShell as Administrator, and run

wsl.exe --install

Figure 2-7. Enabling the WSL 2 feature in Windows 10 using DISM

Figure 2-8. Setting WSL 2 as the default WSL version

Chapter 2 enabling WSl

22

This feature will eventually be backported to existing Windows 10 service channels

still in support. It will enable WSL 2 by default, update the WSL 2 kernel, and install GUI

support on eligible versions of Windows 10.

 Installing a Distribution with wsl.exe –install
A further feature of the wsl.exe utility, made available in Windows builds numbered

20211 and above, is the capability to install Linux distributions directly from the

Windows Store, that is, without using the Store application to search for them.

To see a list of available distributions, run

wsl.exe --list --online

This will print a two-column table listing all the available distributions in the Windows

Store (Figure 2-10). The table shows each distribution’s name, as you will use to install with

wsl.exe, and a “friendly name” as a description allowing you to clearly see what each distro is.

Figure 2-10. The output of wsl.exe --list --online showing all installable distros

Figure 2-9. Enabling the WSL n Windows 10 using wsl.exe –install

Chapter 2 enabling WSl

23

To install a distro from the list, such as “Ubuntu-16.04,” run (Figure 2-11)

wsl.exe --install -d Ubuntu-16.04

A new terminal window should now pop up with the distro’s usual setup flow. For

Ubuntu-16.04, this involves setting a username and password for your Linux user.

 Using DISM to Enable WSL in Images
WSL can be enabled in a Windows image for imaging purposes using DISM. Create a

Windows image, enable WSL, sideload your WSL distro from the .appx, and then follow

the steps to generalize your image and create an installable derivative image:

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-

with-windows-images

 In Hyper-V Guests
WSL is supported in Windows 10 guests on Hyper-V. Hyper-V can be useful for trying

new features in WSL in Windows 10 Dev Channel and Beta Channel builds prior to

deployment into production.

Hyper-V requires Windows 10 Pro, Enterprise, or Education editions and an Intel

processor with VT-x virtualization extensions. The Intel virtualization extensions must

first be enabled in your system BIOS/EFI. As of this writing, Microsoft has announced

preliminary support for nested virtualization on AMD processors, with support for

nested KVM to follow.

Figure 2-11. Using wsl.exe to install Ubuntu 16.04 in WSL

Chapter 2 enabling WSl

https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-with-windows-images
https://docs.microsoft.com/en-us/windows-hardware/manufacture/desktop/work-with-windows-images

24

Once enabled in your BIOS/EFI, the virtualization extensions must be exposed to

your Hyper-V guest. To expose virtualization extensions to your Hyper-V guest, open

PowerShell as Administrator on your host device, and run (Figure 2-12)

Set-VMProcessor -VMName "Virtual Machine Name"

-ExposeVirtualizationExtensions $true

where “Virtual Machine Name” is the name of your Hyper-V guest. If you encounter

issues starting your Hyper-V guest or Hyper-V-related features in your guest are disabled,

double-check virtualization extensions are enabled in your BIOS/EFI and you have

exposed virtualization extensions for the correct Hyper-V guest.

 Installing a Linux Distribution on WSL
 Choice of Distribution
Once WSL is enabled, you must install a Linux distribution, commonly abbreviated

as “distro.” As of publication, the following distributions are available for WSL on the

Microsoft Store:

• Ubuntu

• Ubuntu 20.04 LTS

• Ubuntu 18.04 LTS

• Debian

• Pengwin

• Pengwin Enterprise

• Fedora Remix for WSL

Figure 2-12. Exposing virtualization extensions to a Hyper-V guest virtual
machine

Chapter 2 enabling WSl

25

• SUSE Linux Enterprise Server 15 SP1

• SUSE Linux Enterprise Server 12 SP5

• openSUSE Leap 15.2

• Alpine WSL

You may already be familiar with some of the preceding distributions. Factors to

consider when selecting a distribution include

Familiarity with distro-specific tools – For example, Ubuntu,

Debian, and Pengwin use the apt package manager, which use

.deb package files. Fedora uses dnf as a package manager, and

openSUSE and SUSE use zypper, which uses .rpm package files.

Distribution support by the Linux applications you would like to

use – You should check to make sure the Linux applications you

would like to use are available in the repositories of the distro

you choose. If not, many upstream projects will offer Ubuntu-

compatible .deb files or even their own apt repository.

Availability of support for WSL use in production environments –

Paid support is available from Canonical for Ubuntu and from

Whitewater Foundry for Pengwin.

WSL-specific features in distributions – Ubuntu, Pengwin, and

Fedora Remix for WSL include wslutilities, an open source set of

utilities for WSL.

 Consideration: WSL Version When Installing
When you enable WSL 1 and WSL 2, you have the option of installing distros under

either 1 or 2.

If you install a distro from the Store or manually using an .appx package file as

detailed in the following, it will install to your default WSL version choice.

To set your default WSL version choice, open PowerShell, and run

wsl.exe --set-default-version <version>

Chapter 2 enabling WSl

26

To set WSL 2 as your default, run the following (Figure 2-13):

wsl.exe --set-default-version 2

Converting distros between WSL 1 and 2 is covered in Chapter 3, “Managing WSL

Distros.”

 Install from the Microsoft Store
The recommended method of installing WSL distros is from the Microsoft Store. No

account is necessary to download free distributions like Ubuntu. To install a distribution,

search the Store for its entry. Once located (Figure 2-14), click “Get” followed by “Install.”

Wait for the download to complete, and then click “Launch.”

Figure 2-14. Ubuntu for WSL on the Microsoft Store

Figure 2-13. Setting WSL 2 as the default WSL version

Chapter 2 enabling WSl

27

You can also run the distro from the Start Menu or its executable alias from

PowerShell, for example, “ubuntu.exe” for Ubuntu. This book will primarily use Ubuntu

in examples.

On the first run, the distro will be unpacked, and you will set up a default non-root

user (Figure 2-15). This user is separate from your Windows username and password.

On most WSL distros, this non-root user will be added to the sudo or wheel

Linux user group, so you can issue privileged commands with sudo followed by an

administrative command. A more detailed discussion of sudo is included in Chapter 4,

“Linux Distro Maintenance.”

 Sideload an .appx File in Developer Mode
There are more options to install WSL distros if you do not have access to the Microsoft

Store. Linux distros on the Microsoft Store are packaged using the .appx application

packaging format. It is possible to sideload .appx packages on devices that do not have

the Microsoft Store enabled. To allow sideloading of applications, Windows 10 must

be set to developer mode. This can be done in Settings ➤ Update & Security ➤ For

developers and by toggling the switch for “Install apps from any source, including loose

files” to On (Figure 2-16).

Figure 2-15. Create a default new user on Ubuntu on WSL

Chapter 2 enabling WSl

28

You will be prompted with a message warning you about the risk of installing and

running apps from outside the Microsoft Store (Figure 2-17).

Figure 2-16. “For developers” panel in Windows 10 Settings to enable .appx
sideloading, also known as “developer mode”

Figure 2-17. Warning message displayed when enabling developer mode

Chapter 2 enabling WSl

29

There is a risk in sideloading .appx. You should treat .appx like you would an .exe

and verify its source before installation. WSL .appx are not contained like other Store

applications and have full access to most of your Windows system. You can enable

developer mode if you take reasonable precautions. Verified .appx of most Linux

distros available for WSL can be downloaded directly from Microsoft at https://docs.

microsoft.com/en-us/windows/wsl/install-manual.

You can also find .appx of Linux distros from projects on GitHub. Check the

reputation of the project before installing a WSL .appx you find online. A harmful .appx

could cause serious damage to your system.

To install an .appx, double-click the .appx in File Explorer, and click “Install”

(Figure 2-18).

 Import a Tarball Using wsl.exe --import
WSL distros can also be installed directly from a root file system tar file. A root file system,

called a rootfs, is a snapshot of a working Linux distribution installation, archived in a tar

file, and compressed as a gzip file. They will have a file extension of .tar.gz.

Figure 2-18. Install menu when sideloading a WSL distro from .appx

Chapter 2 enabling WSl

https://docs.microsoft.com/en-us/windows/wsl/install-manual
https://docs.microsoft.com/en-us/windows/wsl/install-manual

30

Rootfs can be downloaded directly from some Linux distributions. There are also

third-party rootfs builds on GitHub. Ubuntu provides nightly builds of rootfs for its Long

Term Support versions (18.04, 20.04, etc.) that are on the Microsoft Store. Ubuntu also

provides nightly builds of rootfs for its interim versions, which are released every six

months and have bleeding-edge versions of packages. Ubuntu publishes rootfs tarballs

for WSL on their cloud image server at https://cloud-images.ubuntu.com/ organized

by release code name (Figure 2-19).

Find the code name of the Ubuntu release you would like to download. To match

a code name to an Ubuntu version number, such as 20.04, check https://releases.

ubuntu.com/ (Figure 2-20).

Figure 2-19. Directory listing of Ubuntu images by release code name

Chapter 2 enabling WSl

https://cloud-images.ubuntu.com/
https://releases.ubuntu.com/
https://releases.ubuntu.com/

31

A detailed explanation of the Ubuntu release cycle can be found at https://ubuntu.com/
about/release-cycle.

In this example, we will download Ubuntu Groovy Gorilla, the code name of the

Ubuntu 20.10 interim release. We will begin at https://cloud-images.ubuntu.com/

(Figure 2-17). Click “groovy” and then “current,” and you will find yourself at a page

listing builds for a wide range of platforms (Figure 2-21).

Figure 2-21. Listing of builds of Ubuntu for a range of platforms

Figure 2-20. Listing of currently supported Ubuntu releases

Chapter 2 enabling WSl

https://ubuntu.com/about/release-cycle
https://ubuntu.com/about/release-cycle
https://cloud-images.ubuntu.com/

32

Builds for WSL end with -<platform>-wsl.rootfs.tar.gz. Locate the correct build for

your system architecture, either amd64 or arm64. Users on Intel and AMD processors

should download the amd64 image: groovy-server-cloudimg-amd64-wsl.rootfs.tar.

gz. If you are on an ARM device, such as the Surface Pro X, you should download the

arm64 image: groovy-server-cloudimg-arm64-wsl.rootfs.tar.gz.

Rootfs images from Ubuntu have “server” in the filename because they are built from

the same base as Ubuntu server.

To download the rootfs for your architecture, open PowerShell, and run

wsl.exe --import <name for distro> <location to unpack rootfs> <location of

rootfs> [optionally: --version <version of WSL to install in>]

For example, as seen in Figure 2-22:

wsl.exe --import UbuntuGroovy-2 C:\WSL\Ubuntu-Groovy-2 $HOME\Downloads\

groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz --version 2

It is possible to install the same rootfs under different distro names to have multiple

distros for different purposes. In Figure 2-22, you can see there are multiple versions

of Ubuntu Groovy installed, under Ubuntu-Groovy, Ubuntu-Groovy-2, and a special-

purpose one I created for GPU work called Ubuntu-Groovy-GPU. Duplicating installed

distros is covered in Chapter 3, “Managing WSL Distros.”

When you install a rootfs using wsl.exe --import, there is no icon created in the Start

Menu; you must launch the distro from PowerShell using

Figure 2-22. Importing an Ubuntu groovy build from rootfs and then listing all
installed WSL distros

Chapter 2 enabling WSl

https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz
https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz
https://cloud-images.ubuntu.com/groovy/current/groovy-server-cloudimg-arm64-wsl.rootfs.tar.gz

33

wsl.exe -d <name for distro>

However, if you are using the new Windows Terminal, it will automatically populate

with your imported distributions (Figure 2-23).

The new Windows Terminal is available to download from the Microsoft Store (www.

microsoft.com/store/productId/9N0DX20HK701) and GitHub (https://github.com/

microsoft/terminal).

Windows Terminal is a significant upgrade from the legacy console application in

Windows 10. It is highly recommended for use with WSL and PowerShell.

When you install a rootfs using wsl.exe –import, there is no default unprivileged user

created. Instead, you launch the distribution as root.

You can create a new default user on Ubuntu (Figure 2-24) with

$ adduser <username>

For example:

$ adduser hayden

Figure 2-23. Installed WSL distros listed in the new Windows Terminal

Chapter 2 enabling WSl

http://www.microsoft.com/store/productId/9N0DX20HK701
http://www.microsoft.com/store/productId/9N0DX20HK701
https://github.com/microsoft/terminal
https://github.com/microsoft/terminal

34

If you would like to use the sudo command as this new user, you should add the new

user to the sudo group:

$ usermod -aG sudo <username>

For example:

$ usermod -aG sudo hayden

To switch to this new user from root (Figure 2-25), use

$ su hayden

Figure 2-24. Manually creating a new user in Ubuntu

Figure 2-25. Using the su command to switch to a new user, followed by whoami
to verify

Chapter 2 enabling WSl

35

To start a distribution as a user you have created, from PowerShell (Figure 2-26), run

wsl.exe -d <distro name> -u <username>

For example:

wsl.exe -d Ubuntu-Groovy -u hayden

 WSL Installation Mechanics
 Installation Location
WSL distributions are installed as rootfs images, whether they come bundled from the

Store, in appx, or the raw rootfs. When installed from the Microsoft Store or sideloaded

via .appx, the rootfs is bundled with extra plumbing to register the distro via the WSL

API, create Start Menu icons, provide an executable alias (“ubuntu.exe”), and create a

default user with sudo privileges. This extra plumbing varies slightly based on distro. The

official template from Microsoft is available from https://github.com/microsoft/WSL-

DistroLauncher.

Distros installed from the Store or sideloaded via .appx will be installed alongside

other Windows UWP packages in C:\Users\<username>\AppData\Local\Packages\.

On WSL 1, the rootfs is unpacked on the first run into a file system at C:\

Users\<username>\AppData\Local\Packages\<Store package name>\LocalState

(Figure 2-27).

Figure 2-26. Starting a WSL distro as a specific user from PowerShell

Chapter 2 enabling WSl

https://github.com/microsoft/WSL-DistroLauncher
https://github.com/microsoft/WSL-DistroLauncher

36

On WSL 2, the rootfs is unpacked into a Hyper-V .vhdx file at C:\Users\<username>\

AppData\Local\Packages\<Store package name>\LocalState\ext4.vhdx (Figure 2-28).

Figure 2-27. Directory listing of WSL 1 unpacked file system

Figure 2-28. Directory listing of WSL 2 file system location in a VHDX file

Warning You should not attempt to access your WSl file system via this method;
doing so could cause irreparable damage to the data. You should only access your
WSl file system via \\wsl$\<distro name> or in the Quick access menu in File
explorer on Windows 10 version 2010 and later.

When you install a rootfs using wsl.exe --import, none of the extra plumbing beyond

registering the distro with WSL is included, and creation of a default user other than root

must be completed manually, if desired.

Chapter 2 enabling WSl

37

When you import a rootfs using wsl.exe --import, the rootfs will be unpacked at the

location specified in your command:

wsl.exe --import <name for distro> <location to unpack rootfs> <location of

rootfs> [optionally: --version <version of WSL to install in>]

For WSL 1, it will unpack the Linux file system, which as discussed earlier is

important you do not edit directly. For WSL 2, it will unpack into a VHDX, a virtual hard

disk image file (Figure 2-29).

 WSL Tooling
WSL 2 uses several components located at %SystemRoot%\system32\lxss\ to perform its

basic functions (Figure 2-30).

Figure 2-30. Directory listing of %SystemRoot%\system32\lxss\

Figure 2-29. Directory listing of WSL 2 file system custom location in a VHDX file

Chapter 2 enabling WSl

38

%SystemRoot%\system32\lxss\ contains

• LxssManager.dll – Services for managing the WSL environment

• LxssManagerProxyStub.dll – An initial stub for loading LxssManager.

dll later in the boot process

• tools/ – A folder containing several other tools (see in the following)

• lib/ – A folder containing several libraries (see in the following)

• wslclient.dll – A new library in builds 19555+ used to consolidate the

functionality of wsl.exe, bash.exe, wslhost.exe, wslconfig.exe, and

LxssManager.dll into a single library

• wslhost.exe – A tool used to maintain Windows interoperability for

background tasks on WSL 1

In the tools/ folder, there are several key components of WSL 2 (Figure 2-31).

The subdirectory \tools\ (Figure 2-31) is home to

• bsdtar – The utility for converting WSL installations to and from tar.gz

balls

• ext4.vhdx.gz – A preformatted blank ext4 file system

• init – The WSL 2 init process, which operates as PID 1 on WSL 2

containers

Figure 2-31. Directory listing of %SystemRoot%\system32\lxss\tools

Chapter 2 enabling WSl

39

• initrd.img – The initial RAM disk loaded by the WSL 2 kernel as part

of the “boot” process

• kernel – The WSL 2 Linux kernel

• license – A copy of the GNU General Public License 2 covering the

Linux kernel

In the lib/ folder, there are several libraries used by WSL 2 for GPU on builds 20150+

(Figure 2-30).

The subdirectory \lib\ (Figure 2-32) is home to the following:

• libcuda.so, libnvidia-ml.so.1, libnvwgf2umx.so, and related libraries

provide support for Nvidia CUDA, machine learning, and other GPU

compute functionalities.

• libdxcore.so, libd3d12.so, libd3d12core.so, libdirectml.so, and

related libraries provide support for DirectX-powered Direct3D GPU

acceleration and DirectML machine learning.

This subdirectory is linked into place inside WSL distros at /usr/lib/wsl/lib/

(Figure 2-33).

Figure 2-32. Directory listing of %SystemRoot%\system32\lxss\lib

Chapter 2 enabling WSl

40

 WSL API in Windows 10
For a closer examination of what occurs when a WSL distro is installed, the

WSL-DistroLauncher template provided by Microsoft can provide some insight.

DistroLauncher is comprised of a classic Win32 C++ application, launcher.exe, bundled

with Store Assets and a rootfs tarball into a UWP package. This code calls the WSL API in

Windows 10 to check the distro install status, install, and register the distro.

The main code in launcher.exe is located at DistroLauncher/DistroLauncher.cpp.

It checks if WSL is enabled, and if not, display a message:

if (!g_wslApi.WslIsOptionalComponentInstalled()) {

 Helpers::PrintMessage(MSG_MISSING_OPTIONAL_COMPONENT);

It then checks if the WSL distribution is installed and, if not, installs it:

if (!g_wslApi.WslIsDistributionRegistered()) {

// If the "--root" option is specified, do not create a user account.

 bool useRoot = ((installOnly) && (arguments.size() > 1) &&

(arguments[1] == ARG_INSTALL_ROOT));

 hr = InstallDistribution(!useRoot);

 if (FAILED(hr)) {

 if (hr == HRESULT_FROM_WIN32(ERROR_ALREADY_EXISTS)) {

 Helpers::PrintMessage(MSG_INSTALL_ALREADY_EXISTS);

 }

 } else {

Figure 2-33. Directory listing of /usr/lib/wsl/lib mirrored from %SystemRoot%\
system32\lxss\lib on Windows

Chapter 2 enabling WSl

41

 Helpers::PrintMessage(MSG_INSTALL_SUCCESS);

 }

 exitCode = SUCCEEDED(hr) ? 0 : 1;

}

Creating a new user and adding them to sudo is handled in DistroLauncher/

DistributionInfo.cpp and calls directly inside the WSL distro:

bool DistributionInfo::CreateUser(std::wstring_view userName)

{

 // Create the user account.

 DWORD exitCode;

 std::wstring commandLine = L"/usr/sbin/adduser --quiet --gecos '' ";

 commandLine += userName;

 HRESULT hr = g_wslApi.WslLaunchInteractive(commandLine.c_str(), true,

&exitCode);

 if ((FAILED(hr)) || (exitCode != 0)) {

 return false;

 }

 // Add the user account to any relevant groups.

 commandLine = L"/usr/sbin/usermod -aG adm,cdrom,sudo,dip,plugdev ";

 commandLine += userName;

 hr = g_wslApi.WslLaunchInteractive(commandLine.c_str(), true, &exitCode);

 if ((FAILED(hr)) || (exitCode != 0)) {

 // Delete the user if the group add command failed.

 commandLine = L"/usr/sbin/deluser ";

 commandLine += userName;

 g_wslApi.WslLaunchInteractive(commandLine.c_str(), true, &exitCode);

 return false;

 }

 return true;

}

Chapter 2 enabling WSl

42

The WSL API calls available in the Windows 10 WSL API from wslapi.dll are detailed

in DistroLauncher/WslApiLoader.cpp:

WslIsOptionalComponentInstalled()

WslIsDistributionRegistered()

WslRegisterDistribution()

WslConfigureDistribution()

WslLaunchInteractive()

WslLaunch()

These API calls are not otherwise documented. However, third-party projects, such

as Docker Desktop and Raft WSL, do use them. Community projects use them to create

custom launchers built on top of WSL.

Chapter 2 enabling WSl

43
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_3

CHAPTER 3

Managing WSL Distros
WSL includes a set of command line Linux distribution management tools. This chapter

will examine these tools with discussions, examples, and screenshots of each.

 Listing All Distros
The names, state, and WSL version number of all installed WSL distros can be listed

(Figure 3-1) by opening PowerShell and running

wsl.exe --list --verbose --all

Under “NAME,” you will see there are four distributions installed. This name is a

unique identifier in WSL for each distro installed. It is set by the publisher in WSL distros

that are installed from the Microsoft Store or sideloaded from an .appx package. The

name can be manually set when WSL distros are installed using wsl.exe --import (see

section “Import/Restore Distro”). Most WSL commands refer to the distro by this name.

An asterisk (*) appears next to your default WSL distro. For more on the default distro

setting, see section “Setting a Default Distro.”

Figure 3-1. Listing all WSL distros installed with their current state and WSL
version

https://doi.org/10.1007/978-1-4842-6873-5_3#DOI

44

Under “STATE,” you see that, here, none of them are running. WSL distros will open

when you open a WSL shell, run WSL from an existing shell, or browse WSL files using

\\wsl$\<distroname>, for example, \\wsl$\Ubuntu-20.04\, and in newer Windows 10

builds using \\wsl\<distroname>, for example, \\wsl\Ubuntu.

Under “VERSION,” you see that Ubuntu-Groovy, Ubuntu-Warty, and Ubuntu- Groovy-

GPU are installed as WSL 2 distros, while Ubuntu-20.04 is installed as a WSL 1 distro. It is

possible to have WSL 1 and 2 distributions side by side. It is easy to convert existing WSL

distros between WSL 1 and 2 (see section “Converting Distros Between WSL Versions”).

 Listing Running Distros
To see the names of the WSL distros that are running (Figure 3-2), use

wsl.exe --list –running

Example:

wsl.exe --list --running

 Running a Default Distro
WSL sets one of your distros as the default distro. This distro is launched when you run

wsl.exe from PowerShell without the -d parameter. To change the default distro, see the

“Setting a Default Distro” section.

Start the default WSL distro from PowerShell (Figure 3-3) using

wsl.exe

Figure 3-2. Listing the WSL distros that are running

Chapter 3 Managing WSL DiStroS

45

 Setting a Default Distro
As discussed in the preceding, the default distro is the distro launched when you run wsl.

exe without the -d parameter. Some third-party tools also use wsl.exe to interface with

WSL. You may need to change the default distro to work with your preferred distro in

these tools.

Set the default WSL distro (Figure 3-4) using

wsl.exe --set-default <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL you would

like to set as default. To see all the distros you have installed, see section “Listing All

Distros.”

Example:

wsl.exe --set-default Ubuntu-20.04

Figure 3-3. Starting the default WSL distro

Figure 3-4. Setting Ubuntu-20.04 as the default distro in WSL

Chapter 3 Managing WSL DiStroS

46

 Running a Specific Distro
Start a specific WSL distro (Figure 3-5), such as one other than your default, from

PowerShell using

wsl.exe --distribution <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL. You need

the exact name of the WSL distro; see the “Listing All Distros” section if you need to look

it up.

Example:

wsl.exe --distribution Ubuntu-20.04

WSL distros installed from the Microsoft Store or a sideloaded .appx package can

also be launched by their Start Menu icon (Figure 3-6).

Figure 3-5. Starting Ubuntu-20.04

Chapter 3 Managing WSL DiStroS

47

WSL distros installed from the Microsoft Store or a sideloaded .appx package also

include an application alias and can be run from PowerShell (Figure 3-7). These are not

created when manually importing WSL distros using wsl.exe --import.

Example:

ubuntu2004.exe will run Ubuntu 20.04 LTS from the Microsoft Store.

Figure 3-6. Icon for Ubuntu on Windows Start Menu next to some of the author’s
favorite development applications

Chapter 3 Managing WSL DiStroS

48

 Running as a Specific User
To start a specific WSL distro from PowerShell as a specific user (Figure 3-8), use

wsl.exe --distribution <name of distribution> --user <name of user>

where <name of distribution> is the name of the WSL distro registered in WSL you would

like to run and <name of user> is the username of an existing user you would like to start

the WSL distro as.

Example:

wsl.exe --distribution Ubuntu-20.04 --user root

Note that the user must exist in the WSL distro; otherwise, you will receive an error

(Figure 3-9).

Figure 3-7. Starting Ubuntu 20.04 installed from the Microsoft Store using the
application alias

Figure 3-8. Starting Ubuntu-20.04 as a specific user, in this case, the root user

Chapter 3 Managing WSL DiStroS

49

 Executing Single Commands
To run commands on your default WSL distribution (Figure 3-10), use

wsl.exe --exec <command to run>

where <command to run> is the command you would like to execute as the default user

on your default WSL distro.

Example:

wsl.exe --exec echo 'hello world'

To run commands on a specific WSL distribution, add --distribution and the name of

the distribution (Figure 3-11):

wsl.exe --distribution <name of distribution> --exec <command to run>

Figure 3-9. Error when starting Ubuntu-20.04 as a specific user when that user
does not exist

Figure 3-10. Running a single command on the default WSL distro using wsl.exe

Chapter 3 Managing WSL DiStroS

50

where <name of distribution> is the name of the WSL distro registered in WSL you would

like to run and <command to run> is the command you would like to execute on the

default shell.

Example:

wsl.exe --distribution Ubuntu-20.04 --exec cat /etc/os-release

You can optionally add --user and run the command as a specific user (Figure 3-12):

wsl.exe --distribution <name of distribution> --user <name of user> --exec

<command to run>

Example:

wsl.exe --distribution Ubuntu-20.04 --user root --exec whoami

Figure 3-12. Running a single command on a specific WSL distro as a specific user
using wsl.exe

Figure 3-11. Running a single command on a specific WSL distro using wsl.exe

Chapter 3 Managing WSL DiStroS

51

 Shutdown
Some tasks will require you to restart the WSL 2 virtual machine environment.

You must restart the WSL 2 environment after changing settings in your .wslconfig

such as setting a custom WSL kernel or changing your memory usage limits.

It is also possible, more so on Insider builds, that the WSL 2 environment could

become unstable, particularly if you are hacking on the subsystem like many of you will.

To shut down the WSL 2 environment (Figure 3-13), run the following:

wsl.exe --shutdown

This will initiate a shutdown, notifying running Linux processes of the shutdown via

SIGTERM, and then terminate the WSL instance. Starting any distro now will restart the

WSL 2 environment.

Example:

wsl.exe --shutdown

In the tab Ubuntu-20.04 was opened in, you will see (Figure 3-14) that it exited.

Figure 3-13. Shutting down the WSL 2 environment

Figure 3-14. The state of Ubuntu 20.04 after issuing the shutdown command

Chapter 3 Managing WSL DiStroS

52

 Terminate
Very rarely a WSL distro or Linux process in a WSL distro will become unresponsive, and

it becomes necessary to forcibly terminate it. Terminating a WSL distro immediately

halts all running processes and should be avoided if a process could be writing critical

data.

To terminate a WSL distro (Figure 3-15), run the following:

wsl.exe –terminate <name of distribution>

where <name of distribution> is the name of the WSL distro registered in WSL you would

like to terminate.

Example:

wsl.exe --terminate Ubuntu-20.04

In the tab Ubuntu-20.04 was opened in, you will see (Figure 3-16) that it exited.

Figure 3-16. The state of Ubuntu 20.04 after issuing the terminate command

Figure 3-15. Terminating a WSL distro

Chapter 3 Managing WSL DiStroS

53

 Converting Distros Between WSL Versions
Converting WSL distros between WSL 1 and 2 is relatively simple; however, large

installations can take time, so patience is required.

On a recent Intel Core i7 with moderate specs, converting a 500 MB environment

between WSL 1 and 2 takes about a minute. Large WSL distro installations, of 10 GB or

more, could take up to an hour depending on your hardware. If it appears stuck, give

“Enter” a try and see what happens.

To learn more about how WSL 1 and 2 files are managed, see section “WSL

Installation Mechanics” in Chapter 2, “Enabling WSL.”

To convert a distro between 1 and 2 (Figure 3-17), run

wsl.exe --set-version <name of distribution> <version number>

Note there is no status or progress indicator.

Examples:

wsl.exe --set-version Ubuntu-20.04 1

wsl.exe --set-version Ubuntu-20.04 2

 Export/Backup Distro
We should all make regular backups of our systems. This is particularly true if you have

configured your WSL distro with all your preferred packages and settings. You may also

want to share your WSL distro with a colleague working on the same project.

Figure 3-17. Converting a WSL distro between WSL 1 and 2

Chapter 3 Managing WSL DiStroS

54

The same warning about the length of time this process can take from the

“Converting Distros Between WSL Versions” section applies here too. This is a file

I/O- intensive process that can take a long time to complete.

To back up or export a WSL distribution (Figure 3-18), run the following:

wsl.exe --export <name of distribution> <filename of exported image>

where <name of distribution> is the name of the WSL distro registered in WSL you would

like to export and where <filename of exported image> is the filename of the WSL distro

image to export to. Note there is no status or progress indicator.

Example:

wsl.exe --export Ubuntu-20.04 C:\WSL\ubuntu-focal-backup.tar.gz

 Import/Restore Distro
In addition to installing WSL distros from the Microsoft Store and sideloaded .appx

packages, you can also import Linux rootfs images directly into WSL. These can include

• Linux rootfs images downloaded directly from Web, such as from

Ubuntu at https://cloud- images.ubuntu.com/

• WSL images exported for backup purposes

• WSL images exported to have multiple WSL distributions from the

same image

Importing an image is accomplished as follows:

Figure 3-18. Backing up or exporting a WSL distro

Chapter 3 Managing WSL DiStroS

https://cloud-images.ubuntu.com/

55

wsl.exe --import <name of imported distro> <location to store unpacked file

system> <filename of exported image> --version <1 or 2>

where <name of imported distro> is the unique name to register your WSL distro as in

WSL. This is the name you will use to interact with the distribution and what will appear

in wsl.exe –list and in the Windows Terminal drop-down.

<location to store unpacked file system> is a directory for storing WSL-related files.

This is handled automatically in WSL distros from the Microsoft Store and a sideloaded

.appx, but when importing manually, you must specify a directory. Your Windows user

must have read/write permissions for this folder. Using drives other than C:\ is possible,

but using network-mounted storage is not recommended.

<filename of exported image> is the filename of your Linux rootfs to import.

WSL will import the rootfs as WSL 1 or 2 based on your default setting. Reminder: To

set WSL 2 as your default, use wsl.exe --set-default-version 2.

--version <1 or 2> is an optional setting to override the default WSL setting and

import the rootfs specifically as WSL 1 or 2 (Figure 3-19).

Example:

wsl.exe --import Ubuntu-Groovy C:\WSL\Ubuntu-Groovy\ C:\Users\Hayden\

Downloads\groovy-server-cloudimg-amd64-wsl.rootfs.tar.gz --version 2

This example imports the export of our Ubuntu 20.04 WSL 1 image as a WSL 2. This

way we can test the same Ubuntu 20.04 image we have customized for ourselves in WSL

1 or WSL 2.

Figure 3-19. Restoring or importing a WSL distro

Chapter 3 Managing WSL DiStroS

56

 Duplicate Distros
In certain cases, you may want to duplicate an existing WSL distro that is installed. This

is useful when you want to clone an existing development stack that you have configured

to your exact specifications, perhaps to test a change to the configuration without

disrupting your existing workflow. To do this, we export an image of the distro we want to

make a duplicate of and then import it under a new WSL distro name.

First, export

wsl.exe --export <name of distribution> <filename of exported image>

Example:

wsl.exe --export Ubuntu-20.04 C:\WSL\ubuntu-focal-backup.tar.gz

Then, we import the rootfs file under a new distro name (Figure 3-20):

wsl.exe --import <name of imported distro> <location to store unpacked file

system> <filename of exported image> --version <1 or 2>

Example:

wsl.exe --import Ubuntu-20.04-2 C:\WSL\Ubuntu-20.04-2\ C:\WSL\ubuntu-focal-

backup.tar.gz --version 2

Figure 3-20. Duplicating a WSL distro by combining the export and import
functions

Chapter 3 Managing WSL DiStroS

57

 Resetting Distros
If you have installed your WSL distro from the Microsoft Store or a sideloaded .appx, you

have a few additional GUI options to manage your distro, including the option to “Reset”

to a fresh installation, by virtue of being bundled as UWP app.

 Open WSL Distro “App” Settings
Click the Windows Start button, and locate your WSL distro in the Windows Start Menu,

either in the alphabetical list or on a pinned tile. Right-click your distro, hover over

“More,” and, in the expanded menu, click “App Settings” (Figure 3-21).

Alternatively, you can also access application settings by clicking the Windows Start

button and clicking the Settings gear icon (Figure 3-22).

Figure 3-21. Opening App Settings of a WSL distro installed from the Microsoft
Store

Chapter 3 Managing WSL DiStroS

58

Click Apps in Windows Settings (Figure 3-23).

And then scroll down or search for your distro installed from the Microsoft Store in

“Apps & features” (Figure 3-24):

Figure 3-23. The Apps category in Windows Settings

Figure 3-22. Opening Settings from the Windows Start button

Figure 3-24. Searching for “Ubuntu” in Apps & features in Windows Settings

Chapter 3 Managing WSL DiStroS

59

From “Apps & features,” you can easily relocate your WSL distro to another drive

(possible but not recommended) and uninstall. Before you attempt to move your WSL

distro to another drive, make sure you take a complete backup (see section “Export/

Backup Distro”).

 Advanced Options in WSL Distro “App” Settings
To access additional options for your WSL distro, click “Advanced options,” which will

take you to the following pane (Figure 3-25).

Publisher and Version
This pane gives some basic information, such as WSL distro publisher and version.

Figure 3-25. Advanced options for Ubuntu installed from the Microsoft Store

Chapter 3 Managing WSL DiStroS

60

App Storage Space
The app storage space is the size of the original image published by the distro maker

that is unpacked on installation. A copy of this original image is kept on the system and is

updated behind the scenes when a new update is made available. However, this does not

update your existing distribution installation. Existing installations are updated via the

distro’s respective package manager, such as apt for Ubuntu. This updated image will be

unpacked when you reset as follows.

Data Storage Space
The data storage space is the size of your existing distribution installation, which

includes the unpacked image plus any additional programs and files you may have

installed.

 Considerations: Resetting WSL Distro
If you wish to reset your existing WSL distro installation to the most recent original image

published by your distro publisher on the Microsoft Store, scroll down on the “Advanced

options” pane (Figure 3-26), and click “Reset.” There is no confirmation. This will

immediately and irreparably erase all files on your WSL distro at /. It will leave you with

a fresh WSL distro install. Make sure you have backed up all important files by copying

them to a secure location on Windows via /mnt/c or by making a backup image using

wsl.exe --export as described earlier.

Chapter 3 Managing WSL DiStroS

61

 Uninstall Distros from the Microsoft Store
If you have installed your WSL distro from the Microsoft Store (or a sideloaded .appx),

you have some additional options for uninstalling.

 From the Windows Start Menu
Click the Windows Start button, and locate your WSL distro, either in the alphabetical list

or on a pinned tile (Figure 3-27). Right-click your distro, and click “Uninstall.”

Figure 3-26. Further down the “Advanced options” pane for Ubuntu installed
from the Microsoft Store, where the “Reset” option is visible

Chapter 3 Managing WSL DiStroS

62

 From Advanced Options in WSL Distro “App” Settings
Access the “Advanced options” pane as described earlier (Figure 3-28), but instead of

clicking “Reset,” click “Uninstall.”

Figure 3-27. Uninstalling a WSL distro from the Windows Start Menu

Chapter 3 Managing WSL DiStroS

63

 Using PowerShell
You may also remove a WSL distro installed from the Microsoft Store or a sideloaded

.appx using PowerShell.

First, locate the package’s full name (Figure 3-29) using:

Get-AppxPackage -Name "*<distroname>*" | Select PackageFamilyName

Example:

Get-AppxPackage -Name "*ubuntu*" | Select PackageFullName

Figure 3-28. The “Advanced options” pane for Ubuntu installed from the
Microsoft Store, where the “Uninstall” option is visible

Chapter 3 Managing WSL DiStroS

64

Then copy and paste the PackageFullName as follows (Figure 3-30):

Remove-AppxPackage -Package <PackageFullName>

Example:

Remove-AppxPackage -Package "CanonicalGroupLimited.

UbuntuonWindows_2004.2020.424.0_x64__79rhkp1fndgsc"

 Uninstall Distros Installed Using wsl.exe --import
If you manually import a WSL distro using wsl.exe --import and wish to remove it, you

must unregister the distro. Unregister the distro as follows (Figure 3-31):

wsl.exe –unregister <name of distribution>

Example:

wsl.exe --unregister Ubuntu

Figure 3-30. Uninstalling the Ubuntu WSL appx package in PowerShell

Figure 3-29. Output of installed appx packages containing “ubuntu” in
PowerShell

Chapter 3 Managing WSL DiStroS

65

After unregistering the WSL distro, you may then wish to delete the folder where

the WSL distro was originally unpacked. In PowerShell, this can be performed with

(Figure 3-32):

rmdir <path to WSL distro folder>

Example:

rmdir C:\WSL\ubuntu-hirsute

 WSL 2 Kernel Management
With the arrival of WSL 2, a Linux kernel is powering the WSL environment, to provide

complete application binary interface compatibility.

The WSL 2 kernel is distributed separately from the kernel inside a WSL image.

Changing the kernel inside the distribution will not change the “kernel” that WSL distros

are launched with.

Figure 3-31. Manually unregistering a WSL distro installed via --import

Figure 3-32. Removing the folder where the WSL distro was originally unpacked

Chapter 3 Managing WSL DiStroS

66

To change kernels and set kernel command line options, you must configure

.wslconfig, in your Windows user directory, which can be referred to by the Windows

environmental variable %USERPROFILE%. See “Configure WSL 2 Settings” for more

configuration settings in .wslconfig and “Customizing WSL” for how to build your own

WSL 2 kernel.

The standard WSL 2 kernel is updated via the Windows Update infrastructure.

To ensure Windows updates of the WSL 2 kernel, enable “Receive updates for other

Microsoft products when you update Windows” in the “Advanced options” page of

Windows Update (Figure 3-33).

 Checking for Available Updates
Check for available kernel updates with the following. If no kernel updates are available,

the current kernel version will be displayed (Figure 3-34).

wsl.exe --update

Figure 3-33. “Advanced options” in “Windows Update” in Windows Settings

Chapter 3 Managing WSL DiStroS

67

Note that if you have installed a custom kernel, then updating the kernel with this

method will not affect the kernel you have specified in .wslconfig.

If you get the message “The requested operation requires elevation,” then you

need to run PowerShell as Administrator. To start an elevated prompt from an existing

PowerShell (Figure 3-35), run

Start-Process WT -Verb runAs

And then run wsl.exe --update again in the elevated PowerShell prompt window.

Figure 3-34. Updating the WSL kernel using wsl.exe --update

Figure 3-35. Launching an elevated Administrator PowerShell prompt to update
the WSL 2 kernel

Chapter 3 Managing WSL DiStroS

68

 Checking Kernel Update Status
Check the last update date, automatic update status, and current version of the WSL 2

kernel (Figure 3-36) with the following:

wsl.exe --update --status

 Rolling Back Kernel Updates
If a kernel upgrade were to cause a problem, there should be a built-in mechanism to roll

back to the most recent working kernel.

To roll back, you need to run PowerShell as Administrator. To start an elevated

prompt from an existing PowerShell, run

Start-Process WT -Verb runAs

Then to roll back the WSL 2 kernel update (Figure 3-37), run

wsl.exe --update --rollback

Figure 3-37. Rolling back the most recent WSL 2 kernel update to the previous
kernel

Figure 3-36. Checking the last update date, automatic update status, and current
version of the WSL 2 kernel

Chapter 3 Managing WSL DiStroS

69

 Mounting External Volumes
A new feature in Windows builds starting from number 20211 is the ability to use wsl.exe

to mount disks and disk images to your WSL distros. This lets you access a disk’s actual

file system data in addition to the files it stores. You cannot mount a disk or a partition

that is on your primary Windows drive that contains your C: partition.

 Unmounting from Windows
If your desired disk is currently accessible from within Windows via a drive letter, you

must first unmount it. Right-click the Windows Start Menu icon, and choose “Disk

Management” (Figure 3-38).

Figure 3-38. Opening Disk Management via the Start Menu

Chapter 3 Managing WSL DiStroS

70

You now need to locate the disk you wish to make available to WSL. Any mounted

partitions are labeled with their Windows drive letters to help you locate the drive. Once

you have located it in the bottom half of the Disk Management window, right-click the

disk, and choose “Offline” (Figure 3-39).

While you are here, make a note of the disk number. In this case, it is disk 3. We need

this number to mount the disk into WSL 2. Mounting disks into WSL requires running as

Administrator, so open a terminal as Administrator before continuing.

Figure 3-39. Setting a disk to “Offline” in Disk Management

Chapter 3 Managing WSL DiStroS

71

We can mount the drive to WSL and check that it is visible with (Figure 3-40)

wsl.exe --mount \\.\PHYSICALDRIVE<disk number> --bare

wsl.exe --exec lsblk

where <disk number> is the drive number from Disk Management.

Example:

wsl.exe --mount \\.\PHYSICALDRIVE3 --bare

wsl.exe --exec lsblk

We can double-check that we have the correct \\.\PHYSICALDRIVE path by running

wmic diskdrive list brief

Because we specified the –bare flag, the disk was inserted into WSL but not mounted,

instead exposing every partition for further use as we want. We can also mount

individual partitions and cause their file systems to be loaded in one step, so that we

do not need to determine the /dev node that is associated with the disk. Remembering

the limitation that we cannot mount partitions on the same disk as our C: partition, we

mount a partition with (Figure 3-41)

wsl.exe --mount \\.\PHYSICALDRIVE<disk number> --partition <partition

number> [optionally: --type <filesystem type>] [optionally: --options

<filesystem mount options>]

Figure 3-40. Mounting a block device into WSL 2 and showing it is present as sdg,
with a single partition numbered 2, via lsblk

Chapter 3 Managing WSL DiStroS

72

where <disk number> is the disk number from Disk Management; <partition number> is

the partition number from Disk Management; <filesystem type> is the type of file system

stored within the partition as Linux refers to it, the default being ext4; and <filesystem

mount options> is the parameters used in Linux to mount the file system as would be

used with Linux’s mount command’s -o flag.

Example:

wsl.exe --mount \\.\PHYSICALDRIVE0 --partition 2

Figure 3-41. Successfully mounting an ext4 partition in WSL

Chapter 3 Managing WSL DiStroS

73
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_4

CHAPTER 4

Linux Distro Maintenance
This chapter will discuss maintaining your Linux distro installed on WSL, beginning with

how the distro is updated, how to apply upgrades, and how to find and install specific

packages. The chapter will conclude with a guide on generating your own special-

purpose Ubuntu WSL image.

Once your Linux distro of choice is installed on WSL, you must maintain it. On WSL 2,

the Linux kernel and the underlying WSL platform in Windows 10 will be maintained by

Microsoft through Windows Update. However, updates to the respective Microsoft Store

app for your WSL distro do not automatically upgrade your WSL distro once it is installed.

The Microsoft Store and Windows Update do not reach inside your WSL distro to update

packages there. Everything inside your Linux distro is up to you and is managed with

distro-specific tools.

There is also no automatic upgrade mechanism in Linux distros on WSL at this

time; updates must be performed manually from the command line or scheduled to

occur automatically using a custom Windows Service, Windows Task Scheduler, or the

new [boot] option in Windows builds 21286+. See “Rolling your own init” in Chapter 7

“Customizing WSL” on ways to accomplish this.

It is important to understand how to update your WSL distro, which will depend

on your specific distro, because package management varies from distro to distro and

upgrades provide important feature and security updates.

 Packages
All Linux distributions come with a package manager and packages available in an

online repository or archive. Packages are how software and software updates are

delivered on Linux. The same applies to Linux distros on WSL. Learning how to use the

package manager for your Linux distro of choice will unlock thousands of free and open

source applications for you to explore. In fact, you may find the package manager to be a

major factor in which Linux distro you choose as your daily driver.

https://doi.org/10.1007/978-1-4842-6873-5_4#DOI

74

On Ubuntu, Debian, Pengwin, and Kali distros, WSL package management is done

with the apt package manager. This is the most common package manager you will find

on WSL distros. The instructions in this chapter are therefore focused on apt.

Other distros, like Fedora Remix, Alpine, and OpenSUSE, use their own package

managers, and you should refer to those respective distros’ documentation for usage of

their package managers. Covering the usage of every distro package manager could be

its own book.

The general principles here, regarding checking for updates, getting upgrades, and

the importance of doing so, are generally applicable to most Linux package managers,

even if the syntax and package names in other distro package managers may differ.

Distro Package Files Package Manager

Ubuntu, Debian, Pengwin, Kali .deb apt

Fedora .rpm dnf

OpenSUSE and SUSE Enterprise Linux .rpm zypper

Red Hat Enterprise Linux, Oracle Linux,

and Pengwin Enterprise

.rpm yum

Alpine .apk apk

 Dependencies
Often a package will rely on another package to provide some of its functionality, such as

a software library (which tends to start with “lib”). These are called dependencies. When

you install a package, you will see it installs other packages that are its dependencies.

Sometimes, dependencies can change, which is why when upgrading, you will

occasionally see new packages need to be installed and old packages will be reported as

no longer required.

CHAPtER 4 LinUx DiStRO MAintEnAnCE

75

 Completing Administrative Tasks with sudo
Most package operations, including installing and upgrading packages, are considered

administrator-level tasks and therefore require elevated privileges on Linux. If you

installed WSL from the Store and created a new WSL user account and password, you

have been added to the “sudo” or “wheel” user group in most distros, capable of running

elevated commands with the sudo command. You can execute commands with elevated

privilege by prefacing them with the sudo command followed by the command you want

to run with elevated privileges. You will then be prompted to enter your user password

before running the command with elevated privileges (Figure 4-1).

Tip if you manually imported a distro with --import, without creating a new user,
you are likely root by default and can omit sudo from the following commands.

 Update Packages
To check for available package upgrades in the repository of your distribution, run the

following on Debian, Ubuntu, Pengwin, Kali, and other Debian family distributions. This

will download the latest package metadata from the repository, compare it to the installed

packages in your distro, and determine which packages, if any, can be upgraded.

sudo apt update

Figure 4-1. Running apt without sudo, failing with permission denied, and then
again successfully with sudo

CHAPtER 4 LinUx DiStRO MAintEnAnCE

76

If package upgrades are available, a message will report how many can be upgraded

(Figure 4-2).

 Upgrade Packages
To apply available upgrades, run the following. Apt will examine the installed package

state, calculate upgrade changes, and then inform you of what changes will be made.

These changes can include upgraded packages, new packages, and packages that may

no longer be necessary:

sudo apt upgrade

In the following example (Figure 4-3), we see 158 installed packages have new

versions available in the Ubuntu archive, and they have 12 new dependencies, which will

be installed at the same time.

Figure 4-2. Updating package metadata from the Ubuntu archive repository with
sudo apt update

CHAPtER 4 LinUx DiStRO MAintEnAnCE

77

Before upgrading, you will be prompted to confirm the upgrade by pressing Enter

(the default is Y, the capital letter in the [Y/n]) or entering Y yourself and pressing Enter.

If you would like to upgrade without being prompted, you can automatically accept

the prompt by adding the -y flag to your command (Figure 4-4):

sudo apt -y upgrade

Figure 4-3. Upgrading packages with new versions available from the Ubuntu
archive with sudo apt upgrade

Figure 4-4. Upgrading packages with new versions available from the Ubuntu
archive automatically with sudo apt -y upgrade

CHAPtER 4 LinUx DiStRO MAintEnAnCE

78

 Installing Packages
To install an individual package, use the apt install command. For example, Ubuntu

ships with the nano text editor, but perhaps you prefer the neovim text editor. To install

neovim, we use

sudo apt install <package name>

Example:

sudo apt install neovim

This will install the text editor neovim as well as dependencies (Figure 4-5). Like

on apt upgrade, it will notify you of the changes to be made and request permission to

continue. To automatically approve changes on install, you can add the -y flag to the

command, and the install process will complete automatically (Figure 4-6):

sudo apt -y install neovim

Figure 4-5. Installing the neovim text editor with sudo apt install neovim

CHAPtER 4 LinUx DiStRO MAintEnAnCE

79

Tip if you do not know what package you would like to install or the name of the
package, see the following on how to find packages.

 Uninstalling Packages
Packages can be removed with the apt remove function (Figure 4-7):

sudo apt remove <package name>

Example:

sudo apt remove neovim

Figure 4-6. Installing the neovim text editor noninteractively with sudo apt -y
install neovim

Figure 4-7. Removing the neovim text editor with sudo apt remove neovim

CHAPtER 4 LinUx DiStRO MAintEnAnCE

80

Tip Caution is warranted when uninstalling packages that may be dependencies
of other applications you may run. Uninstalling a dependency of several
applications will uninstall all those applications that rely on that dependency. if
run interactively, apt will warn you of all the packages that will be removed or
abandoned by removing the package you specified.

You will see in the preceding example removing neovim will leave behind a handful

of packages that will no longer be required.

 Abandoned Dependencies
Occasionally, you will remove a package, and it will leave behind a dependency that

no other application relies upon (or you will upgrade a package that no longer relies

on a specific dependency). Apt will detect when this occurs, and you can automatically

remove those unneeded dependencies (Figure 4-8) with the apt autoremove function:

sudo apt autoremove

Example:

sudo apt autoremove

Here, we see several dependencies of neovim that were left behind when we

removed neovim will now be cleaned up.

Figure 4-8. Automatically removing unnecessary dependency packages with sudo
apt autoremove

CHAPtER 4 LinUx DiStRO MAintEnAnCE

81

 Finding Packages
Installing any distro on WSL gives you access to a vast library of free and open source

packages to begin tinkering and developing with, including development tools, libraries,

databases, web servers, document processing suites, scientific tools, games, and

productivity tools.

Sometimes locating those packages can be daunting from a command line. First, it

is not clear what is available out there. The average Linux distro has tens of thousands

of available packages. Second, you do not always know what that application’s package

name is. The name of packages can vary from distro to distro or be nonobvious.

For example, the web browser GNOME Web was previously known as Epiphany.

Running sudo apt install epiphany will install an open source clone of the game

Boulder Dash. To install GNOME Web, run sudo apt install epiphany-browser.

There are several ways to identify and locate the packages you need.

 From the Terminal
If you know the name of the software you are looking for, but perhaps not the exact

package name, you can search from the terminal using apt (Figure 4-9):

apt search <keyword>

Example:

apt search lynx

Figure 4-9. Searching for a package named lynx from the terminal using apt

CHAPtER 4 LinUx DiStRO MAintEnAnCE

82

If there are too many results from the search, you can use the | character, a pipe, to

pipe the results to the less command. Piping the results to less will allow you to browse

the results page by page (Figure 4-10).

apt search <keyword> | less

Example:

apt search gnome | less

Simple text stream management tools, like less, tail, cat, sed, and grep, can

become enormously powerful for you as you become more comfortable on the Linux

terminal. A manual for each of these tools is always close by, which can be accessed with

the man command (Figure 4-11):

man <name of application>

Example:

man tail

Figure 4-10. Paging through the output of apt-cache search gnome with less

CHAPtER 4 LinUx DiStRO MAintEnAnCE

83

 Using a Terminal User Interface (TUI)
If you cannot locate the application you are searching for by searching with the apt

command, you can use aptitude in Ubuntu, Debian, Pengwin, and Kali distros, a

terminal user interface with menus and mouse functionality to search, install, upgrade,

and remove packages. Aptitude is installed like any other package:

sudo apt -y install aptitude

Then start aptitude as an elevated user:

sudo aptitude

Figure 4-11. The manual page of tail, opened by running man tail

CHAPtER 4 LinUx DiStRO MAintEnAnCE

84

Tip if you ever get “stuck” in a Linux application you cannot seem to escape, try
the following:

• :q

• <Ctrl>-C

• <Ctrl>-x

 Using a Graphical User Interface (GUI)
If you are new to the Linux terminal using apt and aptitude will have a learning curve,

you may wish to start with the traditional graphical user interface. Getting a graphical

user interface started on WSL is not a small feat by itself; it requires setting up and

configuring an X server, at least until official GUI support lands in WSL 2 later in 2021.

You can read more on setting up your own X server for now in Chapter 7 “Customizing

WSL.”

Once an X server is configured and running on Windows, you can install a GUI apt

package manager called synaptic (Figure 4-13):

sudo apt install synaptic

Figure 4-12. Browsing aptitude on Ubuntu. Now that Windows Terminal has
mouse support, you can use your mouse in aptitude

CHAPtER 4 LinUx DiStRO MAintEnAnCE

85

Figure 4-13. Installing the synaptic GUI package manager with apt

Once synaptic is installed, you must run as an elevated user just as you would apt or

aptitude on the command line:

sudo synaptic

Within synaptic, you can search for packages by name or description, browse by

category or installation status, and select packages to install or remove (Figure 4-14).

Figure 4-14. Browsing available packages in synaptic

CHAPtER 4 LinUx DiStRO MAintEnAnCE

86

When you apply the changes, a list of packages to be installed, upgraded, or removed

will be presented for confirmation (Figure 4-15).

The changes will then be applied:

Figure 4-15. Confirming the changes installing lp-solve using synaptic

Figure 4-16. Synaptic installing packages selected for installation

CHAPtER 4 LinUx DiStRO MAintEnAnCE

87

Once the changes have been applied, you will be notified (Figure 4-17), and you may

then exit synaptic.

 Build Your Own Ubuntu WSL Image
Canonical, the publisher of Ubuntu, makes standardized images of Ubuntu available

for WSL on the Microsoft Store, its cloud images website, and through wsl.exe --install.

These images contain a base set of packages which will meet most users’ initial needs.

They closely track the default packages on an Ubuntu server in the cloud, have been

extensively tested by internal Canonical QA processes, and have paid support options for

enterprise organizations.

However, there may be circumstances where you want to build your own image of

Ubuntu with a custom set of packages. For example, if you are the administrator of a

university computer lab with a focus on geographic information systems (GIS) and want

Ubuntu WSL in your lab to come preloaded with specific GIS-related packages, you

can generate a custom Ubuntu WSL image with those packages, export the image, and

distribute to students or systematically apply to all the computers in your GIS lab.

This is accomplished by

 1. Installing an Ubuntu image bootstrapping tool

 2. Creating a temporary folder in which we will bootstrap our image

 3. Bootstrapping a very basic Ubuntu image in that folder from the

minimum packages to run Ubuntu

 4. Customizing the Ubuntu image in that folder by running

commands “inside” the image using chroot, installing packages

we want for our image, and setting custom options

Figure 4-17. Synaptic changes applied confirmation dialog box

CHAPtER 4 LinUx DiStRO MAintEnAnCE

88

 5. Building a tarball archive of the Ubuntu image from the temporary

folder and copying it to the Windows file system

 6. Importing that Ubuntu image tarball into WSL as a custom

WSL image

 Install an Image Bootstrapping Tool
To begin, install debootstrap, which will allow us to bootstrap an Ubuntu image from

packages in the Ubuntu archive (Figure 4-18):

sudo apt -y install debootstrap

 Build Our Base Image
Next, we create a folder in which we will build our Ubuntu image. After the next step,

this folder will contain the complete Ubuntu file system of our image in its own directory

before we pack it up into a tarball archive that we can then import as its own WSL distro.

We create a folder with (Figure 4-19)

mkdir /tmp/wslchroot

Figure 4-18. Installing debootstrap to build our Ubuntu image

CHAPtER 4 LinUx DiStRO MAintEnAnCE

89

Next, we will run debootstrap (Figure 4-20) to create a base Ubuntu image.

debootstrap has several required settings. First, we specify our system architecture with

--arch “amd64”. The --include setting specifies the base image should also include the

sudo and python3 packages in the bootstrapped image. The remaining settings specify the

image will be built from Ubuntu release code-named focal (equivalent to Ubuntu 20.04

LTS), in our folder at /tmp/wslchroot, from the main Ubuntu archive repository URL:

sudo debootstrap --arch "amd64" --include=sudo focal /tmp/wslchroot http://

archive.ubuntu.com/ubuntu/

For more help with debootstrap, remember you can always run man debootstrap.

You can tweak debootstrap settings to build for arm64 (though cross-compilation

of images between different architectures gets more complicated); build from different

Ubuntu releases, such as the Ubuntu release code-named hirsute for Ubuntu 21.04; or

use a local Ubuntu archive mirror.

Figure 4-19. Creating a folder to build our Ubuntu image inside

Figure 4-20. Bootstrapping our Ubuntu image with debootstrap into /tmp/wslchroot

CHAPtER 4 LinUx DiStRO MAintEnAnCE

90

 Customize Base Installation
Once the bootstrap is complete, we have a complete minimal Ubuntu image in our

folder at /tmp/wslchroot. We can run commands inside that folder; they are being run

natively on that image using the chroot command.

As an elevated user, as root or with sudo, run the chroot command, specify the

chroot folder (here being /tmp/wslchroot), and follow it by the command to be run

inside the image.

For example, we can clean up the apt metadata cache inside the Ubuntu image we

just created as follows (Figure 4-21):

sudo chroot /tmp/wslchroot/ apt clean

Tip Cleaning the apt metadata cache inside the image is useful if you would tend
to reuse it or share it as this information will expire and will just take up space in
your image.

As this is a new image, it does not have default language settings set, which should be

set as follows:

sudo chroot /tmp/wslchroot/ dpkg-reconfigure locales

Figure 4-21. Running commands inside our Ubuntu image using chroot to clean
the apt package cache

CHAPtER 4 LinUx DiStRO MAintEnAnCE

91

You will then be asked what language and text encoding settings to generate in your

base image. For American English, select en_US as the language and UTF-8 encoding

(Figure 4-22). You can select another language here if your preferred is not American

English and even select more than one language. Some non-Latin alphabets will require

distinct ISO encodings to render correctly, which you can also specify here.

You will then be prompted to select the default language and encoding for the

system environment (Figure 4-23). Again, for American English, you will want to specify

en_US.UTF-8.

Figure 4-22. Specifying which languages and text encodings to be installed on our
Ubuntu image

CHAPtER 4 LinUx DiStRO MAintEnAnCE

92

The selected languages and text encodings will be generated, and the default will be

set (Figure 4-24).

We can now do some more customization of our image before packing it up into a

tarball file for import into WSL as its own distro.

Figure 4-24. Selected languages and text encoding settings generated and applied
in our Ubuntu image

Figure 4-23. Select the default language and text encoding for the system
environment in our Ubuntu image

CHAPtER 4 LinUx DiStRO MAintEnAnCE

93

For example, we can install additional packages, such as software-properties-

common, which contains add-apt-repository to easily enable additional Ubuntu

repositories, like universe and multiverse, which, in turn, grants us access to even more

packages for our distro, including third-party software.

We install software-properties-common into the image as follows (Figure 4-25):

sudo chroot /tmp/wslchroot/ apt install software-properties-common

Now, using the add-apt-repository, we can enable the Ubuntu universe and

multiverse repositories to get access to additional packages from apt, aptitude, or

synaptic from our Ubuntu image. We do this with (Figure 4-26)

sudo chroot /tmp/wslchroot/ add-apt-repository universe && sudo chroot /

tmp/wslchroot/ add-apt-repository multiverse

Figure 4-25. Installing software-properties-common in our Ubuntu image

CHAPtER 4 LinUx DiStRO MAintEnAnCE

94

Tip Linux commands can be combined and run sequentially by separating them
with &&.

Finally, let’s install some packages we want for our hypothetical Ubuntu GIS WSL

distro image. The gis-workstation meta-package is an Ubuntu package that uses the

dependencies capability in apt to install dozens of GIS-related tools without the need to

install each one individually. It is installed as follows (Figure 4-27):

sudo chroot /tmp/wslchroot/ apt install gis-workstation

Figure 4-26. Enabling universe and multiverse Ubuntu repositories in our
Ubuntu image

Figure 4-27. Installing the gis-workstation metapackage in our Ubuntu image
containing dozens of GIS-related applications

CHAPtER 4 LinUx DiStRO MAintEnAnCE

95

 Create rootfs tar
Once we are done building our Ubuntu image in /tmp/wslchroot, it is time to pack it up

as a tarball archive file for export and then import to WSL as its own WSL distro.

Here’s how to set the proper file structure for our image, drop down into our image

folder (Figure 4-28):

cd /tmp/wslchroot/

If you take a quick look in this folder before proceeding with ls, you will see we have

built a complete Ubuntu installation in this folder that resembles the root file system of

any Ubuntu Linux image (Figure 4-29):

ls -a

Now, we will compress our bootstrapped and customized Ubuntu image folder as a

tarball archive file for export and then import to WSL as its own WSL distro.

Figure 4-28. Dropping down into our Ubuntu image folder at /tmp/wslchroot
before we archive the folder as a tarball

Figure 4-29. Viewing the Ubuntu image folder contents of /tmp/wslchroot

CHAPtER 4 LinUx DiStRO MAintEnAnCE

96

Run tar to compress the Ubuntu image folder into a rootfs tar file called /tmp/

ubuntu-gis-wsl.tar.gz (Figure 4-30). Depending on the size of the Ubuntu image you

created, and your system’s performance capabilities, this can take a few minutes. In our

example, gis-workstation installed about 3 GB of additional packages, which will take

some time to compress.

sudo tar --ignore-failed-read -czf /tmp/ubuntu-gis-wsl.tar.gz *

Now, we must move the tarball to our Windows file system so that we can import it

into WSL as its own distro. I prefer to create a handy WSL folder at C:\WSL for custom

WSL-related files and folders, but it can be anywhere your Windows user has write

permission. This can be done from WSL as follows (Figure 4-31):

mkdir /mnt/c/WSL

Figure 4-30. Compressing our Ubuntu image folder into a tarball at /tmp/
ubuntu-gis-wsl.tar.gz

Figure 4-31. Creating a folder at C:\WSL to store our tarball and later to unpack
our custom Ubuntu GIS image

CHAPtER 4 LinUx DiStRO MAintEnAnCE

97

Next, we move our tarball. You could use cp or mv, but I prefer to use rsync here to

move the file as it gives us a nice progress status (Figure 4-32).

sudo rsync --progress --remove-source-files /tmp/ubuntu-gis-wsl.tar.gz

/mnt/c/WSL/

 Import into WSL
Now, we follow the standard procedure for importing a WSL image file discussed in

Chapter 2 “Installing WSL.”

First, we drop down into a Windows Command Prompt from our current WSL

session with cmd.exe (Figure 4-33):

cmd.exe

Figure 4-32. Moving ubuntu-gis-wsl.tar.gz to C:\WSL\ on our Windows file system
using rsync

Figure 4-33. Launching a Windows Command Prompt from our current WSL
session

CHAPtER 4 LinUx DiStRO MAintEnAnCE

98

Then, we call wsl.exe with --import to import our Ubuntu image, naming our new

custom WSL distro “Ubuntu-GIS,” storing the VHDX file containing the WSL file system

in C:\WSL\Ubuntu-GIS, and set it as a WSL 2 distro (Figure 4-34):

wsl.exe --import "Ubuntu-GIS" C:\WSL\Ubuntu-GIS C:\WSL\ubuntu-gis-wsl.tar.

gz --version 2

We can test that the distro was properly imported by running wsl.exe --distribution

Ubuntu-GIS (Figure 4-35). If we are successful, we will be root user in our new distro.

wsl.exe --distribution Ubuntu-GIS

We can test to make sure everything is in place and working with a few commands:

cat /etc/os-release verifies we are running an Ubuntu 20.04 LTS focal image

(Figure 4-36).

Figure 4-35. Launching our custom Ubuntu GIS WSL distro to test if it was
properly loaded

Figure 4-34. Importing our custom Ubuntu GIS image using wsl.exe --import

CHAPtER 4 LinUx DiStRO MAintEnAnCE

99

Figure 4-36. Verifying the base OS of our custom Ubuntu GIS WSL distro

After closing and reopening Windows Terminal, our custom Ubuntu GIS WSL distro

will now be auto populated in the shell drop-down box (Figure 4-37).

With a properly configured third-party X server, as discussed in Chapter “Customizing

WSL,” or in the forthcoming native GUI support for WSL 2, we can test the GIS applications

we built into our Ubuntu GIS WSL distro, for example, qgis (Figure 4- 38):

qgis

Figure 4-37. Verifying Ubuntu-GIS is visible in Windows Terminal

CHAPtER 4 LinUx DiStRO MAintEnAnCE

100

This chapter discussed maintaining your WSL Linux distro, including the distro-

specific package management tools. We covered upgrading packages, various ways to

find and install specific packages, and removing packages on Ubuntu, Debian, Kali,

Pengwin, and other apt-based Linux distros. The chapter concluded with a guide on

generating your own custom special-purpose Ubuntu WSL image.

Figure 4-38. QGIS running from our custom Ubuntu GIS WSL distro

CHAPtER 4 LinUx DiStRO MAintEnAnCE

101
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_5

CHAPTER 5

Configuring WSL Distros
Once you have a WSL distro installed, there are several settings unique to WSL that you

do not find in a standard Linux distribution and unique ways to continue them. These

settings are divided into “per-distro” settings, which are adjusted in each individual

distro installation, and “global” WSL settings, which affect all WSL distros on a single

device.

 Setting Per-Distro Settings
Per-distro settings are set in /etc/wsl.conf in each respective distro. This file is read on

“boot” by WSL. Some distro publishers publishing images for WSL include a wsl.conf file

with default settings. But if it is not present in your distro, then you may manually create

or edit this file if you want to override the default WSL settings. The default settings are

represented here (Figure 5-1).

Figure 5-1. /etc/wsl.conf with common default settings

https://doi.org/10.1007/978-1-4842-6873-5_5#DOI

102

 Automount Settings
The automount settings include the ability to mount Windows drives, such as the C drive

under /mnt/c to provide file system interoperability.

 Enabling
Automount is enabled by setting the “enabled” Boolean value to true in /etc/wsl.conf:

[automount]

enabled = true

The default is true, to mount Windows drives automatically. If you wish to isolate

your WSL instance from the Windows file system, you should set this to false:

[automount]

enabled = false

 Root
The root folder for mounting Windows drives is set in /etc/wsl.conf with the “root” string

value:

[automount]

enabled = true

root = /mnt/

The default is /mnt/. If you wish to mount your Windows drives in another folder,

you can specify where here. For example, to mount them at /windrives/, set

[automount]

enabled = true

root = /windrives/

Keep in mind that the root folder must exist; if not, you need to create it:

sudo mkdir /windrives

Chapter 5 Configuring WSL DiStroS

103

 File System Tab
/etc/fstab is the traditional Linux file system configuration file. The option to load it or

not on WSL boot can be set in /etc/wsl.conf with the “mountFsTab” Boolean value:

[automount]

enabled = true

mountFsTab = true

The default is true.

You can configure /etc/fstab (Figure 5-2) to perform more advanced mounting

functions on WSL boot. This can include virtual disks and network file shares.

If you do not want WSL to parse this file, for example, for greater isolation of the WSL

environment, you can set this value to false:

[automount]

enabled = true

mountFsTab = false

Keep in mind, however, the root file system will be automatically mounted on boot,

and without parsing /etc/fstab, it will be mounted with the default WSL settings. It can

be useful to enable or disable this for troubleshooting advanced mounting settings.

Figure 5-2. /etc/fstab default in Ubuntu

Chapter 5 Configuring WSL DiStroS

104

 Mount Options
DrvFs is the file system that allows WSL to mount Windows drives. This allows WSL to

access files on the Windows file system and handle permissions.

These options are set in /etc/wsl.conf with the “options” string value, for example:

[automount]

enabled = true

mountFsTab = true

options = "metadata,umask=22,fmask=11"

A note on how file permissions work on WSL:

On the Linux file system in WSL, the file permissions follow common Linux

standards, with read, write, and execute settings for the user, group, and other. When

accessing the Windows file system from WSL, the file permissions are interpreted from

NTFS into those common Linux permissions. New files and folders created in WSL on

the Windows system will inherit the parent folder permissions.

This can be altered, however, with the metadata option.

 Metadata
By specifying the metadata option in mount options, it is possible to read and store Linux

file system permissions separate from NTFS permissions in extended file attributes

on NTFS files and folders. This is useful if you want to restrict access to make a file or

folder read-only from WSL without changing the permissions in Windows. New files and

folders created in WSL on the Windows system will inherit the permissions stored by

umask in WSL.

By default, WSL will mount the Windows file system with the UID and GID of the

default distro user, usually 1000 and 1000, respectively.

We can achieve the same result by running the following command:

sudo mount -t drvfs C: /mnt/c -o metadata,uid=1000,gid=1000,umask=22,

fmask=11

If you are familiar with the Linux mount command, you may recognize some of these

settings.

In addition to altering how NTFS and Linux system permissions are handled, it is

also possible to alter how case sensitivity is handled between Linux and Windows.

Chapter 5 Configuring WSL DiStroS

105

 Case Sensitivity
One big difference users may notice between Linux and the Windows Terminal is the

handling of case sensitivity of files.

On Linux file systems, FILE.TXT and file.txt would be considered separate files that

can coexist in the same directory. Linux file systems would therefore be considered case

sensitive.

On Windows file systems, by default, Windows would not allow you to create a file

called file.txt in a directory with a file already called FILE.TXT, because it would consider

them the same file; the case of the filename is disregarded. The default on Windows file

systems would therefore be considered case insensitive. Windows 10, as a descendant

of Windows NT, which aimed for a degree of POSIX compatibility, has the native

capability to treat files with case sensitivity, like Linux; it is simply disabled for backward

compatibility with Windows 98 applications and other tools that have come to expect

case insensitivity from Windows.

This setting can be modified globally, for all of Windows, via a setting in the Windows

Registry, but note that changing this setting can result in unusual behavior in third-party

applications, including breakage and data loss. So how does WSL handle case sensitivity

when mounting Windows folders? It uses another mechanism that bypasses the registry

key, allowing WSL distros to access files that differ only by case and therefore behave in

the standard “Linux” way.

When dealing with files accessed from both WSL and Windows, this can still cause

issues though, particularly for Windows programs accessing case-sensitive files in folders

modified from WSL. Rather than forcing users to change the aforementioned global

registry key, potentially breaking third-party applications, the WSL team introduced

per- directory case sensitivity in Windows 10 build 17107.

If a folder is shared between WSL and Windows programs, for example,

C:\WSLworkspace and /mnt/c/WSLworkspace, where case sensitivity is expected

by WSL programs but an issue for Windows programs, it is possible to enable case

sensitivity in Windows just for C:\WSLworkspace. The functionality is built into fsutil.

exe.

To check the status of this per-directory case sensitivity from Windows, open

PowerShell, and run (Figure 5-3)

fsutil.exe file queryCaseSensitiveInfo <path>

Chapter 5 Configuring WSL DiStroS

106

For example, on our sample directory C:\WSLworkspace:

fsutil.exe file queryCaseSensitiveInfo C:\WSLworkspace\

To enable case sensitivity for a Windows directory, open PowerShell as

Administrator, and run (Figure 5-4)

fsutil.exe file setCaseSensitiveInfo <path> enable

For example:

fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ enable

To disable case sensitivity for a Windows directory, open PowerShell as

Administrator, and run (Figure 5-5)

fsutil.exe file setCaseSensitiveInfo <path> enable

For example:

fsutil.exe file setCaseSensitiveInfo C:\WSLworkspace\ disable

Figure 5-4. Enabling per-directory case sensitivity in Windows using fsutil

Figure 5-3. Checking per-directory case sensitivity in Windows using fsutil

Chapter 5 Configuring WSL DiStroS

107

Applying per-directory case sensitivity in Windows using fsutil is not inheritable,

meaning the case sensitivity of any new of existing subdirectories will not be modified by

the setting of the parent directory.

Case sensitivity can also be managed as an automount options setting with the case

setting, for example:

[automount]

enabled = true

mountFsTab = true

options = "metadata,case=off,umask=22,fmask=11"

Setting case=dir is the default, and new directories created by WSL on Windows file

systems will be case sensitive.

Setting case=off means new directories created by WSL on Windows file systems will

be case insensitive and follow the traditional Windows method.

In practice, there are very few situations in which you will be creating a lot of

directories from WSL on Windows systems that will need to be case insensitive to work

with Windows programs, but the need could arise.

Note in WSL 1, on Windows builds 17692+, it is also possible to change the
per-directory Windows case sensitivity from WSL. in this implementation, the case
sensitivity was inheritable. however, this feature was deprecated in WSL 2. Check
the status of per-directory case sensitivity with

getfattr -n system.wsl_case_sensitive <path>

Figure 5-5. Disabling per-directory case sensitivity in Windows using fsutil

Chapter 5 Configuring WSL DiStroS

108

to enable case sensitivity for a Windows directory:

setfattr -n system.wsl_case_sensitive -v 1 <path>

to disable case sensitivity for a Windows directory

setfattr -n system.wsl_case_sensitive -v 0 <path>

 Changing the UID and GID of a Mount
If you do not want the Windows file system to be mounted with the UID and GID

of default WSL distro user, it is possible to override this in mount options, to limit

ownership of the mounted Windows file system to specific users, groups, or none.

You can do this by setting values for the following options in the options string:

uid – A unique user number linked to each user on a Linux device.

Root will have UID 0. UID 1–500 are commonly reserved by

Linux for system-related accounts. Distros will create new users

beginning at UID 1000, but some create new users starting at UID

500. UIDs are stored in the /etc/passwd file.

gid – A unique group number linked to groups of users on a Linux

device. Root will have GID 0, and GID 1–100 will be reserved

by Linux for system-related groups. Normal user accounts are

created at GID 100 or 1000. GIDs are stored in the /etc/groups

file. Note a user will have a primary GID but often as several

secondary GIDs, as it is not uncommon for a user to belong to

multiple groups.

To check your user’s UID and primary GID (Figure 5-6), use

id

Chapter 5 Configuring WSL DiStroS

109

To check the UID and GID of another user (Figure 5-7), use

id <username>

Example:

id root

Changing the UID and GID on the mounted device will affect the accessibility of

existing files and folders.

It is also possible to customize the permissions on newly created files and folders,

by setting the user file creation mask. The user file creation mask is the template

for permissions on new files and folders. The purpose of the mask is to strip away

extraneous permissions and set a secure standard set of permissions for new files. The

mask is a shortened form of the longer Linux octal format for permissions, which you

may have used before.

Figure 5-6. Checking your uid and gid with id

Figure 5-7. Checking root’s uid and gid with id

Chapter 5 Configuring WSL DiStroS

110

 Background on Linux File Permissions
Every file on Linux has three classes of permissions associated with it; those are the

permissions of a

User – By default the user who created the file, unless modified

Group – Users in a group with assigned access to the file

Other – All other users, who are not the owner or in the group

associated with the file

The permissions can consist of a combination of the following permissions for each

class:

Read or r

Write or w

Execute or x

No permissions or -

These permissions can then be expressed in symbolic or numeric form.

 Symbolic Form
In symbolic form, permissions are represented as a nine-character string, consisting of r,

w, x, and -.

Example:

rwxr-xr--

rwx – The first three characters correspond to owner permissions.

Here, we see rwx. The owner of this file has read, write, and

execute permissions.

r-x – The next three characters correspond to group permissions.

Here, we see r-x. Users in the group for this file are assigned to

have read and execute permissions, but not write.

r-- – The final three characters correspond to permissions for all
other users. Here, we see r--. Other users can only read this file.

Chapter 5 Configuring WSL DiStroS

111

rwxr-xr-- in summary is

rwx permissions for the owner

r-x permissions for members of the group

r-- permissions for all other users

 Checking a File’s Permissions
You can find a file’s symbolic form permissions with the ls -l command (Figure 5-8):

ls -l

The preceding permissions are

rw-r--r--

rw permissions for owner, “user1”

r for members of the assigned group, “wslusers”

r for all other users

Additional details before and after the symbolic notation can also tell us

d is appended – This is a directory.

<user> – The user who owns the file.

<group> – The group to which the user is assigned.

4096 – The file or folder size. In the case of a folder, this is not

the size of the folder’s contents; it is the content of the folder’s

metadata, the minimum of which is 4096 bytes on ext4.

Figure 5-8. Checking a file’s permissions

Chapter 5 Configuring WSL DiStroS

112

<date> – The date the file or folder was created.

<time> – The date the file or folder was created.

Other useful information here could include

l – Indicates a symbolic link

b – Indicates a block device

c – Indicates a serial device

 Numeric Form
Permissions can also be represented in number form, using octal notation. Read, write,

and execute are represented as one of the eight options:

0 – No permissions or ---

1 – Execute only or --x

2 – Write only or -w-

3 – Write and execute or -wx

4 – Read only or r--

5 – Read and execute or r-x

6 – Read and write or rw-

7 – Read, write, and execute or rwx

Our permissions from the preceding example, rwxr-xr--, then become

rwx for the owner = 7

r-x for members of the group = 5

r-- for all other users = 4

or simply = 754

In many places, the octal permissions will have a digit prefix. You may see 754

expressed as 0754. This prefix contains the setting for suid, sgid, and “sticky” bits, which

are advanced Linux permissions that are outside of the scope of this book, but give you

the option, among other things, to prevent writes or deletion of a file even if a user has

permission, but is not the file’s owner.

Chapter 5 Configuring WSL DiStroS

113

 File Mask
The user file creation mask or umask helps define a standard for permissions on newly

created files and folders.

By default, Linux assigns all new files the octal permissions 666 and all new folders

the octal permissions 777.

The file mask is then subtracted from the octal permissions to set the permissions

applied by the system.

umask is a bitmask; its bits are subtracted from “masking” the default Linux

permissions.

Example:
A umask of 022 is the default for Ubuntu.

In this case, a new file would be created starting with octal permissions of 666 and

then subtracting the “mask” of 022 resulting in permissions of 644.

All new files would be created as 644 or

6 – rw- for the owner

4 – Read or r-- for members of the group

4 – Read or r-- for all other users

umask – The standard umask, for example, 022, for both new files

and new folders

fmask – The umask permissions to use just for new files

dmask – The umask permissions just for new folders

Fmask and dmask exist for setting different umask settings for files and folders,

separately.

As discussed earlier, files start at 666 and have umask subtracted. Folders start at 777

and have umask subtracted.

Umask only allows you to subtract the same level of permissions from both, for

example, 022. However, using fmask or dmask, you can set separate masks, distinct delta

from the standard 777/666 permission levels, for new files and folders.

Chapter 5 Configuring WSL DiStroS

114

 Changing umask and fmask of a Mount
In our example from earlier

[automount]

enabled = true

mountFsTab = true

options = "metadata,umask=22,fmask=11"

new files and folders would be created with permissions starting at 666 and 777,

respectively.

Then applying the umask of 22 would result in permissions of 644 for files and 755

for folders.

However, by applying the fmask of 11, which overrides the umask for new files, you

would get permissions of 666 minus 11 or 655 for new files.

New folders would be created with the system-wide umask of 22, resulting in 777

minus 22 or 755 for new directories.

You could override this too with dmask if you choose.

You may want to adjust different masks for files and folders if you want to heavily

limit read access in other directories (a high dmask) but give broad access in user’s own

directories (a low fmask).

Other mount settings
Note that other mount settings that would usually be set by additional flags using

mount cannot be inserted here. For additional fine-grained control, you must edit /etc/

fstab. See section “File System Tab” on the setting to ensure /etc/fstab is being read.

 Cross-Distro Mounting
[automount]

crossDistro = true

Cross-distro mounting enables a space, /mnt/wsl, where any folder mounted by any

one distro is visible to all other distros.

The default is true.

This is useful for sharing files between distros.

For example, with crossDistro enabled in both distros, you could mount a folder from

your Ubuntu WSL distro to be accessible from your Fedora Remix distro (Figure 5- 9).

Chapter 5 Configuring WSL DiStroS

115

In Ubuntu WSL:

mkdir ~/ubuntufolder

touch ~/ubuntufolder/helloworld

mkdir /mnt/wsl/sharedfolder

sudo mount --bind ${HOME}/sharedfolder /mnt/wsl/sharedfolder

Then, in Fedora Remix for WSL, you can view the file (Figure 5-10) at

ls /mnt/wsl/sharedfolder/

Alternatively, in an enterprise environment, you may wish to disable cross-distro

mounting to isolate your WSL distros for security purposes.

 ldconfig
Libraries, which are collections of common tasks and subroutines relied upon by

applications, are “located” in a cache generated from a set of paths specified in ldconfig

settings.

Figure 5-9. Creating a folder, inserting a file, and mounting it to /mnt/wsl to be
shared across distros

Figure 5-10. Viewing the file in the shared folder from the cross-distro mount

Chapter 5 Configuring WSL DiStroS

116

The primary ldconfig settings file is located at /etc/ld.so.conf but in most distros,

that file directs ldconfig to load additional paths from multiple configuration files located

in /etc/ld.so.conf.d/.

/etc/ld.so.conf will point to /etc/ld.so.conf.d/* which will, for example,

contain /etc/ld.so.conf.d/libc.conf which contains the path to the default GNU

C Library path /usr/local/lib (Figure 5-11). The configuration files in /etc/ld.so.

conf.d/* are loaded alphabetically.

Beginning in Windows 10 build 20150, WSL automatically inserts an additional file in

/etc/ld.so.conf.d/ called ld.wsl.conf which adds the path to libraries at /usr/lib/

wsl/lib to ldconfig (Figure 5-12).

This enables access to WSL-specific libraries for CUDA, DirectML, and other GPU

compute functions (the ones located in %SystemRoot%\system32\lxss\lib).

Figure 5-12. ld.wsl.conf in /etc/ld.so.conf.d/ adding /usr/lib/wsl/lib to the list
of directories for ldconfig to cache

Figure 5-11. Examining how /etc/ld/so.conf loads all *.conf files in /etc/ld.so.
conf.d/ which point to library paths, such as /usr/local/lib

Chapter 5 Configuring WSL DiStroS

117

Generally, you will want WSL to load these directories to enable GPU compute. The

setting to load them is set as an automount setting:

[automount]

ldconfig = true

The default is true.

However, there may be circumstances in which you want to disable GPU compute

functionality, perhaps to benchmark performance with and without GPU enabled, or

you want to substitute other drivers. In this case, you can specify

[automount]

ldconfig = false

to disable insertion of ld.wsl.conf. Note that after disabling ld.wsl.conf, you will want to

regenerate your ldconfig cache with

sudo ldconfig

 Network
 Generate Hosts File
A hosts file, on both Windows and Linux, is a file that allows you to manually configure

the resolution of domain names on your device.

When your computer resolves a domain name, like ubuntu.com, it will first consult

the hosts file, then a local cache of recently resolved domains, and then finally issue the

request to your network DNS server.

You can manually set a host name in your hosts file if you want to easily reach other

devices on your network by their host name but do not want to set up your own DNS

server.

If you are building and testing a website locally, you could edit your hosts file so

that links on your test site resolve back to your test site on your device and not the live

website on the Web.

By default, WSL will copy your Windows hosts file at C:\Windows\System32\

drivers\etc\hosts over your WSL distro hosts file at /etc/hosts on each launch. Yes,

Windows and Linux hosts files are compatible.

Chapter 5 Configuring WSL DiStroS

118

The option to copy your Windows hosts file (Figure 5-13) to your WSL distro

(Figure 5-14) is set in /etc/wsl.conf with the “generateHosts” Boolean value:

[network]

generateHosts = true

The default is true.
You may wish to set generating hosts to false if you want to maintain a separate Linux

hosts file for your own WSL distro. Note that while additions to the Windows hosts file

(Figure 5-14) will be copied to WSL, additions to the WSL distro hosts file will not be

synchronized back to Windows. The WSL distro hosts file will be overwritten from the

Windows hosts file on each new launch.

Figure 5-13. Viewing the contents of Windows hosts

Chapter 5 Configuring WSL DiStroS

119

 Generate DNS File
resolv.conf, located at /etc/resolv.conf, is a file that allows you to manually configure

where your device will look to resolve domain names that are not in the hosts file or the

local DNS cache:

[network]

generateHosts = true

generateResolvConf = true

The default is true.

Like your hosts file, resolv.conf is automatically generated for your distro by WSL

from your Windows networking settings.

The WSL environment networking is managed by the Host Networking Service, a

Windows Service, on a virtual Ethernet adapter, like other Hyper-V network adapters.

The IP address of the nameserver will be the same as the IP address of the virtual

network adapter. For example, compare the IP address in /etc/resolv.conf (Figure 5-15)

to the IPv4 address of the adapter itself (Figure 5-16).

Figure 5-14. Viewing the contents of /etc/hosts in Ubuntu

Chapter 5 Configuring WSL DiStroS

120

In limited circumstances, you may wish to override this; one example may be if you

have connected windows through a VPN and need to manually set a DNS server.

 Hostname
Traditionally, your WSL instance inherits the device name of your Windows device. WSL

overwrites /etc/hostname in your distro with your Windows hostname on “boot,” like

how /etc/hosts is overwritten.

Figure 5-15. Viewing the contents of /etc/resolv.conf in Ubuntu

Figure 5-16. Viewing the IP address of the WSL virtual network adapter

Chapter 5 Configuring WSL DiStroS

121

On Windows 10 builds 20180 and greater, it is also possible to configure this behavior

and set a custom hostname for your WSL instance:

[network]

generateHosts = true

generateResolvConf = true

hostname = Biswa96

The default is to inherit the device name of your Windows device. However,

customizing your WSL instance hostname can be useful for specific advanced

networking functions. By altering the hostname for your WSL distro (or distros), you can

have separate hostnames for each WSL distro and Windows.

 Interoperability
 Enabling
WSL interoperability includes the ability to run Windows programs from Linux

(Figure 5- 17), Linux programs from Windows, and shared environment variables. The

interop setting in wsl.conf allows you to enable or disable the ability to run Windows

programs from Linux. Beginning in Windows build 20190, it is also possible to run

Windows app execution aliases, such as those for UWP apps, from WSL. See Chapter 9,

“Maximizing Windows Interoperability,” for more tricks on how to get the most out of

this unique feature of WSL.

[interop]

enabled = true

The default is true.

Chapter 5 Configuring WSL DiStroS

122

You may wish to disable this to confine your WSL distro, for example, if you have git

and python installed on Windows that can sometimes cause issues if you also have git

and python installed on WSL.

It is also possible to enable or disable this feature in a single session, without altering

wsl.conf. To temporarily disable Windows programs in Linux, run

echo 0 > /proc/sys/fs/binfmt_misc/WSLInterop

To reenable Windows programs in Linux, run

echo 1 > /proc/sys/fs/binfmt_misc/WSLInterop

Note that this setting will not persist between sessions. To permanently disable WSL

interop, you will need to make the needed change to your wsl.conf file.

 Appending Windows Path
Another feature of WSL interoperability is the appending of the Windows path variable

to the WSL distro path variable. This adds all directories in your Windows path variable

to your Linux distro's existing path variables, making binaries in both platforms

accessible from WSL (Figure 5-18).

[interop]

enabled = true

appendWindowsPath = true

Figure 5-17. Launching Notepad from WSL

Chapter 5 Configuring WSL DiStroS

123

The default is true. Although you may disable this, leave interop enabled so that you

limit Windows programs accessible to WSL to programs discoverable with your WSL

distro PATH.

 WSLENV
While not specific to this config file, now is a good place to mention WSLENV. WSLENV

is a special meta environment variable that exists in both Windows and WSL. WSLENV

defines which environment variables are shared between Windows and WSL. WSLENV

contains a list of these other environment variables, separated by a colon in WSL or a

semicolon in Windows, with flags for how each of the environment variables should be

interpreted.

Windows environment variables can be viewed by searching for “Edit the system

environment variables” from the Windows Start Menu (Figure 5-19).

Figure 5-18. Viewing the $PATH variable in WSL with appendWindowsPath set
to true

Chapter 5 Configuring WSL DiStroS

124

Linux environment variables can be viewed with the printenv command (Figure 5- 20).

Figure 5-19. Windows environment variables

Chapter 5 Configuring WSL DiStroS

125

Why is sharing environment variables between Windows and WSL useful? The same

reason WSL is generally useful, you get the best of both Linux and Windows. You might

also end up having a project you want to work on from both Linux and Windows. Let us

say you wanted to share a path, set as PATHTOPROJECT, from a WSL to Windows.

We define PATHTOPROJECT in WSL:

export PATHTOPROJECT=~/project

Then add PATHTOPROJECT to WSLENV:

export WSLENV=PATHTOPROJECT/p

Now, switch to Windows and read it back:

cmd.exe

set PATHTOPROJECT

Windows will have PATHTOPROJECT as an environment variable (Figure 5-21).

Tip if you are setting DiSpLaY to point WSL to an X server on Windows, you can
then export that DiSpLaY variable to all other WSL distros with

export WSLENV=DISPLAY

Figure 5-20. Output of printenv on WSL showing Linux environment variables

Chapter 5 Configuring WSL DiStroS

126

 WSLENV Flags
What is that /p? There are four flags to define handling of variables between Windows

and WSL:

/p – Translates a path between Windows and WSL paths, as

demonstrated earlier

/l – Indicates a list of paths

Suppose you have several paths stored as a list in WSL:

export PROJECTLIST=/opt/project1:/opt/project2/

To make this accessible in Windows, we would

export WSLENV=PROJECTLIST/l

/u – Shares the variable only from Windows to WSL

/w – Shares the variable only from WSL to Windows

Tip WSL variables are only propagated when executing a Windows command
from the WSL session through interop. Likewise, the inverse only occurs when
crossing the boundary in the other direction – be that via opening a new terminal
or executing a command with wsl.exe.

Figure 5-21. Using WSLENV to share environment variables between Windows
and WSL

Chapter 5 Configuring WSL DiStroS

127

What if you already have something defined in WSLENV and do not want to overwrite

it, but instead append to it? In WSL, you would export that variable, adding one of the four

flags mentioned earlier as needed, and then append the existing $WSLENV as follows:

export WSLENV=PROJECTLIST/l:$WSLENV

 Default User
When WSL “boots,” you will be running as the default user.

Here, you can set the default user:

[user]

default = root

The default built into WSL is root, but most distros, including Ubuntu, will create a

new user with sudo privileges on installation from the Microsoft Store and set it as the

default user.

 Boot
Speaking of boot, beginning in Windows 10 build 21286, the ability to run startup

commands was added to WSL:

[boot]

command = <string>

For example:

[boot]

command = apt update && apt upgrade -y

This brand-new feature, as of writing this book, unlocks new potential for running

tasks at WSL “boot” time. This can replace clunky scripts previously stored in ~/.bashrc

or /etc/profile. The commands are executed as root, allowing high-level changes to the

environment. These commands are only run when the WSL is manually launched from

the Start Menu or Windows Terminal, so it does not replace the ability to use a Windows

Service to run WSL tasks in the background or automate tasks on WSL using Windows

Task Scheduler, but it does complement those.

Chapter 5 Configuring WSL DiStroS

129
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_6

CHAPTER 6

Configuring WSL 2
WSL 2 brings several new settings to WSL because of its architecture. As a lightweight

VM, some of these settings may be familiar to users of other virtualization software, such

as Hyper-V or VirtualBox, where you can define the amount of memory or processors for

a specific VM. In WSL 2, you can define these parameters for the WSL 2 environment.

The following settings require WSL 2 and are available in Windows 10 build 18980 or

higher.

 .wslconfig
WSL 2-specific settings are defined in a separate file. It is located in your Windows user

home folder in a file named .wslconfig. The settings are global for all WSL 2 distros,

unlike /etc/wsl.conf, which are distinct for each WSL distro. If this file does not exist,

then the defaults for WSL 2 are applied. So, in general, you only need this file if you wish

to override the default WSL 2 settings.

 Kernel
WSL 2 ships with a kernel that is stored in Windows 10 at %SystemRoot%\system32\lxss\

tools\kernel and is updated through Windows Update automatically or manually with

wsl.exe --update

This is the officially supported kernel for WSL 2 from Microsoft, which contains a

handful of optimizations specifically for WSL 2, such as memory compaction discussed

in the “Page Reporting” section.

It is, however, possible to replace this kernel with your own kernel, using kernel= in

.wslconfig. I would recommend one built and modified from the official WSL 2 kernel,

which carries over the optimizations Microsoft has made. However, it is possible to

https://doi.org/10.1007/978-1-4842-6873-5_6#DOI

130

take most common Linux kernels and use one here. Note, though, if you do not use

the official WSL 2 kernel, you may lose some of those WSL-specific optimizations. The

good news is that the WSL 2 kernel is open source, available at https://github.com/

microsoft/WSL2- Linux- Kernel, and can be easily tailored to your needs, if the default,

for example, doesn't contain support for a specific file system or other kernel features.

Note that adding kernel drivers to the WSL 2 kernel will not necessarily enable support

for that hardware in WSL 2, which is still contained in a lightweight virtualization

container. In other words, even with certain hardware drivers, the kernel cannot “see”

those devices.

WSL 2 will default to the built-in kernel. You only need to specify a kernel here if you

wish to override this default:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

Note that the path to the kernel must be absolute, so you should avoid using

environmental variables here. You should also use escaped backslashes \\ in your path

to the compiled kernel.

Tip bzImage is the commonly used filename for a compressed Linux kernel.
You may also see kernel files in their commonly used uncompressed filename
vmlinux. WSL 2 can boot either.

 Kernel Command Line
The kernel command line is a way to configure advanced elements of the Linux kernel,

such as enabling specific security features like AppArmor, debugging features, or

tuning driver options. Because WSL 2 operates in a VM, some of those driver options

are limited regarding hardware (which WSL 2 cannot directly reach from inside the

lightweight Hyper-V container), but optimizations regarding threading, syscall handling,

networking, and use of a RAM disk are available. The available options will depend on

what is enabled in the kernel, either built-in or added as a module.

Chapter 6 Configuring WSL 2

https://github.com/microsoft/WSL2-Linux-Kernel
https://github.com/microsoft/WSL2-Linux-Kernel

131

By default, the built-in command line options will load the default kernel and init.

You only need to specify a kernelCommandLine= to set additional kernel parameters, for

example, vsyscall=emulate, to support older Linux distributions:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

Quotes around the Linux command line are not required; simply type the command

line you wish to pass after the =.

 Processors
WSL 2 will take advantage of all available cores on your computer’s processor. Most

consumer- and office-grade computers have one processor with between 4 and 8 cores.

This is sufficient for most use cases, even compiling and debugging software. However,

some high-performance workstations intended for AI/ML, CAD, or video rendering have

as many as 16 or 32 cores per processor and can support multiple processors, such as the

Lenovo ThinkStation P900 series. Recent high-end AMD Ryzen Threadripper-branded

processors have as many as 64 cores. Regardless of whether you have 4 or 32 cores, you

can configure WSL 2 to balance core usage against other tasks you might be running.

You can see the number of cores your device has on the Performance tab of Windows

Task Manager (Figure 6-1).

Chapter 6 Configuring WSL 2

132

WSL 2 will default to using all the cores available on the Windows device.

You can limit the number of cores that WSL 2 utilizes with processors=, such as

if you wish to assign a specific number of cores to WSL and keep the others free for

Windows-based tasks.

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

processors=4

You can see here in Figure 6-2 on the same system used in Figure 6-1, with 8 cores,

we have limited the number of cores in WSL to 4 with processors= and confirmed

(after a wsl.exe --shutdown and reopening Ubuntu) by grepping /proc/cpuinfo.

Figure 6-1. Viewing the number of CPUs and cores in Windows Task Manager

Chapter 6 Configuring WSL 2

133

 Memory
WSL 2 automatically assigns memory to the WSL distro as needed and reclaims it as it

is freed from tasks. Beginning in Windows build 20175, WSL 2 will default to assigning

up to 50% of your available RAM or 8 GB, whichever is less. This means if you are in a

workstation with 32 GB of RAM and you want to make 16 GB available to WSL 2, you will

need to set the memory= option in .wslconfig. Doing this will maximize the amount of

performance you can get from your workstation and WSL.

Conversely, if you are on a low-resource machine, you may want to restrict the RAM

usage even further. A small shell and some terminal tasks are very usable at just 1 GB

of RAM on a low-power machine. Note, though, applications like GUI apps, developing

with larger frameworks such as NodeJS or large compilation tasks, may slow down

significantly or even fail with such a small amount of RAM. If you are going to compile

Chromium from source, you need at least 4 GB of RAM.

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

processors=4

memory=12GB

Memory is set as gigabytes or megabytes as whole number integers followed by GB or

MB, respectively.

Figure 6-2. Limiting the number of available cores to 4 with .wslconfig and
confirming with grep processor /proc/cpuinfo

Chapter 6 Configuring WSL 2

134

 Swap
Swap storage is disk-based random access memory (RAM) the WSL distro utilizes when

demand for memory exceeds the available hardware RAM, either because of setting the

memory= option too low or the hardware limitations of the Windows device.

WSL 2 will default the swap file size to 25% of the available RAM of the Windows

device, rounded up to the nearest whole GB. To adjust the size of the swap space, set

swap= in .wslconfig:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=6GB

Swap is set as gigabytes or megabytes as whole number integers followed by GB or MB,

respectively.

If you are performing RAM-intensive tasks, such as compiling Chromium from

source, you may need additional swap space as your available hardware RAM is

consumed. This may also be necessary on devices with lower amounts of RAM, such as

under 8 GB. Note that swap space, because it is written to disk, is inherently slower than

hardware RAM. However, it can solve problems when you are out of available hardware

RAM. You can also disable swap on WSL 2 by setting this value to zero; however, this

is generally not advised, and doing so may cause out of memory problems in some

applications. On the other hand, if you are doing Kubernetes-related development,

where swap is not yet supported, you may wish to disable swap to better emulate your

deployment environment. This is done by setting swap=0:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=0

Chapter 6 Configuring WSL 2

135

 Swap File
WSL 2 will default to storing your swap file at %USERPROFILE%\AppData\Local\Temp\

swap.vhdx.

WSL 2 automatically creates this file; there is no need to create it manually. However,

you can specify where you would like the swap to be stored if necessary, with the

swapfile= location.

Like the kernel path, this too must be absolute and use escaped backslashes:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

 Page Reporting
WSL 2 will default to freeing unused memory by the WSL distro and returning it back to

Windows. This feature relies on a patch in the WSL 2 kernel from Microsoft. This is why

I recommend building a custom kernel from the official WSL 2 kernel sources, so those

patches come over to your custom kernel.

The Linux kernel allocates available memory into pages, which it then maps to

running processes. An API in the Linux kernel can, when running as a guest such as in

WSL 2, report to the host hypervisor when pages of memory are no longer being used.

This enables WSL to reclaim that memory and move it back to the pool of available

memory in Windows where it can be reused by Windows applications or taken up again

by another WSL process.

This only occurs when the CPU is near idle. You can see this in action when you

enable the debug console (Figure 6-3). For more on the debug console, read the

following.

Chapter 6 Configuring WSL 2

136

You can manually trigger memory compaction in WSL with the following as root:

echo 1 | sudo tee /proc/sys/vm/compact_memory

You can disable the Page Reporting feature so that WSL retains all the memory it has

claimed from Windows without releasing any back when it is freed in WSL:

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

localhostforwarding=true

pageReporting=false

 Localhost Forwarding
WSL 2 will default to making connections bound to localhost in the WSL 2 environment

available to Windows, also on localhost. This is like the network handling in WSL 1. The

difference being in WSL 1 is that there is no separate network stack; there is just localhost.

In WSL 2, the WSL distro is networked on a virtual subnet with NAT and configured with

DHCP. This can make some networking configuration trickier. However, with localhost

forwarding, you can mimic most of that WSL 1 network experience in WSL 2.

Figure 6-3. Viewing the WSL 2 debug console

Chapter 6 Configuring WSL 2

137

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

localhostforwarding=true

 Nested Virtualization
Nested virtualization allows you to run virtual machines (VMs) inside of WSL 2, most

commonly using KVM, the native virtualization tooling built into the Linux kernel. It

specifically allows the needed processor extensions for virtualization to pass through

to the lightweight virtualization container that WSL 2 runs in and makes them available

to the kernel there to then run other virtual machines, hence “nested.” This was my first

request of the WSL team when I first learned of WSL 2, because it allows the creation of

Linux VMs, from different distros, and even other operating systems, such as Windows,

Haiku, BSDs, and legacy operating systems. Because this is one of my favorite features, I

will go more in depth about it in Chapter 8 “Going Further with WSL 2.”

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

localhostforwarding=true

nestedVirtualization=true

Nested virtualization requires at least Windows 10 build 19645 and is enabled by

default as of build 20175.

Chapter 6 Configuring WSL 2

138

 Debug Console
When WSL 2 boots the kernel, where are those logs? How do you debug the kernel and

kernel command line issues? With the debugging console. Debug console provides a

window in which kernel messages are printed. It is spawned each time the WSL 2 kernel

is loaded. Having this enabled will also tell you how often the kernel gets reloaded and

when, in some surprising circumstances, it is, for example, when opening File Explorer if

you have WSL folders mounted.

This is particularly useful when building and testing your own kernel. You can

monitor this and watch memory compaction at work (Figure 6-4). If a large WSL 2 task is

stalling, you can check debug to see if perhaps you’ve run out of RAM and need to assign

more or add swap space.

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

kernelCommandLine= vsyscall=emulate

memory=12GB

processors=6

swap=4GB

swapfile=C:\\wslswap.vhdx

localhostforwarding=true

nestedVirtualization=true

debugConsole=true

Chapter 6 Configuring WSL 2

139

 Tips
When editing .wslconfig, you must shut down the WSL 2 environment for settings to

take.

You can do this with wsl.exe --shutdown.

While it is possible to edit WSL config from WSL, you should convert the line endings

to CRLF Windows-style line endings.

If you create the file with notepad.exe, then nano and other editors should preserve

the CRLF Windows-style line endings.

Figure 6-4. Observing WSL 2 memory compaction on the WSL debug console

Figure 6-5. Shutting down WSL from PowerShell using wsl.exe --shutdown

Chapter 6 Configuring WSL 2

140

You can also easily switch back and forth between line ending styles in VS Code by

clicking CRLF or LF in the status bar of Microsoft VS Code.

Figure 6-7. Switching between Linux LF line endings and Windows CRLF line
endings in VS Code

Figure 6-6. Editing .wslconfig in nano. Note the “Converted from DOS format”
message

Chapter 6 Configuring WSL 2

141

Figure 6-8. Viewing WSL distributions in the Windows Registry

Figure 6-9. Viewing individual WSL distribution settings in the Windows Registry

 WSL Registry Settings
It is possible to configure some WSL settings from the Windows Registry. I would

recommend using the settings available from wsl.exe, .wslconfig, and wsl.conf before

using the registry. However, in a pinch, it can suffice. All the requisite warnings regarding

editing your registry go here as well.

WSL-related settings are found at

\HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion\Lxss

DefaultDistribution contains the GUID of your default WSL distro.

DefaultVersion contains the default version of WSL, either 1 or 2.

Each WSL distro installed is then listed by GUID, which resembles {66dfcb00-cc73-

4054-a9cd-70f4149c8209}.

Chapter 6 Configuring WSL 2

142

Each distro will have a BasePath containing the location of the WSL distro installed,

a DistributionName, and Version, either WSL 1 or 2.

Distros installed from the Microsoft Store will have more details stored in the

registry.

Distros installed manually, with wsl.exe --import, will have fewer details

(Figure 6-10).

Again, it is generally not recommended that you edit these values manually. Doing

so while the WSL distro is running could leave the distro in an unstable state, and this

could cause data loss.

However, since you are reading this book and reading about Windows Registry

settings, you probably understand the risk here, and seeing some of these values, you

may think of something you might want to tweak. Go for it. Just make sure you keep

backups.

Figure 6-10. Viewing the individual WSL distribution settings of a manually
installed distro in Windows Registry

Chapter 6 Configuring WSL 2

143
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_7

CHAPTER 7

Customizing WSL
Now that you know the architecture of WSL and are familiar with setting it up and

configuring it, let us talk about some things you can do to customize WSL.

 Using Graphical Applications with X
Official support for installing graphical Linux applications on WSL, called WSLg, is currently

in preview in the Windows Insider Dev Channel and to be released in versions of Windows

later. It is possible to use graphical Linux applications on WSL in released versions of

Windows today, though. For now, it requires a third-party X server running on Windows and

a bit of configuration to point the WSL distro at the X server on the Windows side.

If you install graphical applications in your WSL distro, they will often bring in the

distro’s X server as a dependency, but we are not actually using that X server. Instead,

we will be forwarding the X output from each application to the X server running on

Windows over a local port.

 Install an X Server on Windows
First, you will need to select and install an X server on Windows. Any of the following

should work:

• VcXsrv

• X410

• Xmanager

• Xming

• Cygwin/X

• MobaXterm

https://doi.org/10.1007/978-1-4842-6873-5_7#DOI

144

The two most common X servers you will find in the WSL community are X410 and

VcXsrv. VcXsrv is free, open source, and built from the upstream Xorg code base. It can

be slightly more challenging to get running correctly, though. X410 is paid and only

available through the Microsoft Store, but it is nicely polished and requires less manual

configuration.

Figure 7-1. Microsoft Store listing for X410, a Windows X server

Chapter 7 Customizing WsL

145

 Configure WSL to Forward X to Your Windows X Server
Once your X server is installed and running on Windows, you will need to forward your

distro’s X output to the X server on Windows.

This is very straightforward in WSL 1:

export DISPLAY=127.0.0.1:0.0

In WSL 2, we must forward to the IP address of our host Windows environment. We can

grab this IP address from the DNS settings that WSL has configured in /etc/resolv.conf:

export DISPLAY=$(awk '/nameserver/ {print $2}' /etc/resolv.conf 2>/dev/null):0

If you have overridden the autogeneration of resolv.conf in wsl.conf, it may not be

updated with your host Windows environment IP address; in this case, you will need to

script a way to grab that from your Windows system, such as

export DISPLAY= $ (powershell.exe -c "(Get-NetIPAddress -InterfaceAlias

'*wsl*' -AddressFamily IPv4).ipaddress + ':0.0'")

Figure 7-2. VcXsrv project page on SourceForge.net, a Windows X server

Chapter 7 Customizing WsL

146

If you intend to run GUI applications on a regular basis, you should place this

command in your .bashrc file, or in Windows 10 builds 21286 or higher, as a [boot]

command option in /etc/wsl.conf. Read the following for more on the .bashrc file if

you’re not familiar.

If the GUI application you are running offers libGL graphics acceleration, you should

also set the following, which will offload the rendering from WSL to your Windows-side

X server:

export LIBGL_ALWAYS_INDIRECT=1

This will accelerate rendering of OpenGL 1.4 and older graphics.

 WSL 2, GUI Apps, and Windows Firewall
On WSL 2, you will need to open access in your Windows Firewall for the Windows-side

X server.

In X410, right-click the tray icon, select “Allow Public Access,” check “Public

networks” on the Windows Firewall prompt, and then restart X410.

Figure 7-3. Allowing public access to enable X410 on WSL 2

Chapter 7 Customizing WsL

147

In VcXsrv, check “Disable access control” when configuring XLaunch and, like X410,

check “Public networks” on the Windows Firewall prompt.

Figure 7-4. Check “Public networks” on the Windows Firewall prompt to enable
X410 on WSL 2

Chapter 7 Customizing WsL

148

Figure 7-5. Check “Disable access control” in VcXsrv settings to enable VcXsrv on
WSL 2

Chapter 7 Customizing WsL

149

You may ask yourself, isn’t opening a service in my firewall on public networks a

security risk? Absolutely it is.

There are two things you can do about this. Never use a GUI app when connected

to a public network, like at a café or on an airplane. Alternatively, you can configure a

Windows Firewall rule that limits your exposure by only allowing TCP public access to

your X server from your local WSL distro’s subnet.

From WSL, open your advanced Windows Firewall settings:

cmd.exe /C wf.msc

Figure 7-6. Check “Public networks” on the Windows Firewall prompt to enable
VcXsrv on WSL 2

Chapter 7 Customizing WsL

150

In the “Inbound Rules” tab, find your X server in the list of applications. There will

be rules for public and private networks and TCP and UDP protocols. We are editing the

public network TCP protocol rule.

Figure 7-7. Locating your Windows X server, in this case X410, in Windows
Firewall settings

Figure 7-8. Locating “public” inbound Firewall rules for our Windows X server, in
this case X410

Chapter 7 Customizing WsL

151

You may have to scroll over to the “Protocol” column to see the TCP/UDP distinction.

Open the public TCP inbound rule for your X server by right-clicking and selecting

“Properties.”

Under “General,” select “Allow the connection.”

Figure 7-9. Locating the “public” TCP inbound Firewall rule for our Windows X
server

Figure 7-10. Allowing the inbound connection on the “public” TCP inbound
Firewall rule

Chapter 7 Customizing WsL

152

Next, go to the “Protocols and Ports” tab, set “Protocol type” to “TCP,” and in “Local

port” select “Specific Ports” and enter port 6000.

Go to the “Scope” tab, select “These IP addresses” ➤ “Add…,” and paste in

172.16.0.0/12.

172.16.0.0/12 is the range of the WSL virtual subnet.

Figure 7-11. Limiting the inbound connection on the “public” TCP inbound
Firewall rule to the X port, port 6000

Chapter 7 Customizing WsL

153

Click “OK” and “Apply.”

Finally, you can set or leave the public UDP rule for your X server as “Block the

connection,” as the X protocol does not normally use UDP.

Your X server is now more secure.

 Install a GUI Application
Once the X server is installed, firewall ports are open for WSL 2, and we have configured

redirection for the WSL distro, it is time to install a GUI application. This will likely bring

in several Xorg-related dependencies, including an X server, but we will not be running

the X server from the WSL distro:

sudo apt -y install synaptic

If everything is configured correctly, you should be able to run your GUI application

now:

sudo synaptic

Figure 7-12. Limiting the inbound connection on the “public” TCP inbound
Firewall rule to the IP address range of the WSL virtual subnet

Chapter 7 Customizing WsL

154

 Debugging GUI Applications

The most common error encountered when trying to run GUI applications on WSL 2

is something like “cannot open display:” or “Unable to init server: Could not connect:

Connection refused”. This is because your WSL distro cannot connect to your Windows

environment X server.

Figure 7-14. An example of a GUI app failing to start because it cannot open the
display

Figure 7-13. Synaptic, a simple GUI package manager for Ubuntu, Debian, and
other apt-based Linux distributions

Chapter 7 Customizing WsL

155

Checklist:

• X server installed, such as VcXsrv or X410

• X server running – check your tray area

• DISPLAY variable set properly depending on whether you are

running WSL 1 or WSL 2

 dbus

Occasionally a Linux GUI application will not launch because it cannot reach the bus.

dbus is a device messaging service for the Linux desktop. If X is properly configured

and you can run other GUI applications, but one application is failing, it may be worth

trying to set up and configure dbus, particularly if you see dbus mentioned in the error

message.

Install dbus as you would any other Linux package:

sudo apt install dbus-x11

Generate a dbus device ID, which you will only need to do once per WSL distro

installation:

sudo dbus-uuidgen –ensure

Then run dbus-launch before starting your GUI application:

dbus-launch --exit-with-x11

 Rolling Your Own init System
WSL does not have a traditional init like SysVinit, systemd-init, or OpenRC. It does

have an init program that handles some basic tasks, like Windows interoperability, file

sharing, and networking. But it does not start services, nor is it addressable by most

Linux applications looking for an init.

If you would like to start services every time WSL is opened, you have two basic

options. You may script it as part of the shell, or you may run a command using Windows

Task Scheduler.

Chapter 7 Customizing WsL

156

 .bashrc
Adding shell commands to your bash config file is the simplest way to automate

commands that you want to run on each launch. Bash will execute this file every time a

new window is opened, either in the traditional console or in the new Windows Terminal.

.bashrc is a good place to set environmental variables, such as the display variable

for using an external X server (Figure 7-15).

It usually contains some boilerplate configuration set by your WSL distro; just

append what you need underneath that.

.bashrc is located in your user home folder at ~ or /home/<username>. It can be

opened with the nano text editor as follows:

nano ~/.bashrc

.bashrc is Bash specific. If you change to an alternate shell, such as fish, zsh, csh,

or ksh, you will need to specify the command you want to run in each launch in the

respective config files for each of those shells.

.bashrc is user specific. If you create another user and launch WSL as that user, for

example, by using wsl.exe -u or by changing the default user, you will need to add these

commands to the .bashrc for that user, in their respective home directory.

Figure 7-15. A sample .bashrc file in Ubuntu

Chapter 7 Customizing WsL

157

If you would like to make a script execute on launch for all users, you will need to

create a new script in /etc/profile.d/ such as

sudo nano /etc/profile.d/displayvar.sh

Then copy and paste:

#!/bin/bash

export DISPLAY=$(awk '/nameserver / {print $2; exit}' /etc/resolv.conf 2>

/dev/null):0

export LIBGL_ALWAYS_INDIRECT=1

Exit nano (Ctrl+X and then “Y”), confirming changes, and make the script executable:

sudo chmod /etc/profile.d/displayvar.sh

Note that /etc/profile.d/ scripts are only executed in interactive shells; those

are shells launched on the terminal. It will not execute when you launch WSL in the

background with the VS Code WSL remote extension. In these cases, you should add the

needed scripting to /etc/bash.bashrc and then set a Windows environmental variable

for WSL to read /etc/bash.bashrc on each launch:

export WSLENV="BASH_ENV/u"

Non-POSIX-compatible shells, like fish, may not read /etc/profile.d/* or /etc/

bash.bashrc files on launch; you will need to consult the documentation for those shells

on how to properly script launch behavior.

If you have a script that starts an application or service in the background (Figure 7- 16),

it will be triggered every time you open a new terminal; this could result in duplicate

applications running or hangs.

Chapter 7 Customizing WsL

158

Therefore, you may need to add some scripting that first checks if an application is

running before trying to start it, such as

#!/bin/bash

SERVICE="dbus-daemon"

if pgrep -x "$SERVICE" >/dev/null

then

 echo "$SERVICE is running"

else

 echo "$SERVICE stopped"

 sudo /etc/init.d/dbus start

fi

You could place this script in your bashrc file or create a new script in your /etc/

profile.d/ folder for all users, but be sure to append a prefix to a new script with the

proper shebang, for example, #!/bin/bash, and make it executable with chmod.

Even though there is no traditional init in WSL, the classic init scripts located in

/etc/init.d/ can still be very useful for starting and stopping services on WSL. The

service command also works on WSL. Even though it is commonly associated with

systemd, service is actually a helper script that will default to the init.d scripts if necessary.

Experienced shell users may notice a problem in the preceding script; it calls sudo.

This would require a user to enter their administrative password on each launch. This

can be onerous, so what can we do about it? We can add an exception for this specific

command to the sudoers file.

Figure 7-16. apache2 running on a WSL distro

Chapter 7 Customizing WsL

159

Sudoers, for those unfamiliar, is the file that controls what escalation is permitted

with the sudo command (Figure 7-17). To edit the sudoers file, you must use visudo. Do

not manually edit this file with another editor; it will break your sudoers configuration

and could prevent further changes requiring you to reset your WSL distro or resulting in

potential data loss.

Thankfully, visudo no longer uses the vi editor but defaults to nano on Ubuntu,

which is much easier to use. Open the sudoers file:

sudo visudo

And then append

ALL ALL=NOPASSWD: /etc/init.d/dbus start

Exit nano (Ctrl+X and then “Y”), and confirm changes.

 Windows Services
What if you wanted to start a Linux application or service when you logged into

Windows, without launching the Windows Terminal or opening WSL in the background

in an IDE like Code?

The best way to do this, currently, is to create a Windows Service that launches WSL

and runs the commands in the background.

Figure 7-17. Editing the sudoers file with the visudo command

Chapter 7 Customizing WsL

160

For this example, we will use the Apache web server.

Install Apache:

sudo apt -y install apache2

Create a shell script:

sudo nano /opt/runapache.sh

Copy and paste the shell script, customizing as needed to the service you would like

to start (Figure 7-18):

#!/bin/bash

SERVICE="apache2"

if pgrep -x "$SERVICE" >/dev/null

then

 echo "$SERVICE is running"

else

 echo "$SERVICE stopped"

 sudo /etc/init.d/apache2 start

fi

Make the shell script executable:

sudo chmod /opt/runapache.sh

Figure 7-18. Editing the script to launch Apache in nano

Chapter 7 Customizing WsL

161

Change the owner of the shell script to our primary user:

sudo chown hayden /opt/runapache.sh

Create a Windows batch file in your Windows home directory to call the shell script

(Figure 7-19):

nano $(wslpath $(wslvar USERPROFILE))/runapache.bat

Copy and paste as follows, customizing as needed:

@echo off

wsl.exe /opt/runapache.sh

Note wsl.exe, without any specific parameters, will call your default distro, as set with

wsl.exe --setdefault <distribution>.

If you want to use another distro, you can substitute its .exe alias, such as

ubuntu1804.exe if it was installed from the Store or a sideloaded .appx, or use

wsl.exe –d Ubuntu2004 followed by your command:

wsl.exe -d Ubuntu-20.04 sudo /etc/init.d/apache2 start

If you want to run the application as another user, you can specify that with -u:

wsl.exe -u apacheuser sudo /etc/init.d/apache2 start

You will see this command has a sudo prefix, meaning you will need to add the

command to the sudoers file for your default user or the user specified with -u.

Figure 7-19. Editing a Windows batch file to call our script

Chapter 7 Customizing WsL

162

Run

sudo visudo

And add

ALL ALL=NOPASSWD: /etc/init.d/apache2 start

It is possible to specify -u root and bypass the need for a sudoers file addition, but

this is not recommended. Running network services, which are potentially accessible

from the web, as root, is a bad idea.

Next, test the Windows batch file we created. Open PowerShell, and make sure

apache2 is not running:

wsl.exe --exec ps -A

You should not see any apache2 processes; if you do, run

wsl.exe --exec sudo killall apache2

Then run the batch file as follows:

C:\Users\Hayden\runapache.bat

Figure 7-20. Adding /etc/init.d/apache2 start to the sudoers file

Chapter 7 Customizing WsL

163

If successful, we should see that apache2 is detected as not running and then started.

We should then be able to see the apache2 default landing page in any browser at

localhost.

Figure 7-21. Testing the batch file that calls our shell script to start apache2

Figure 7-22. Testing apache2 batch file/script file worked by opening localhost in
a web browser

Chapter 7 Customizing WsL

164

Note, if you run the batch file immediately again, it will detect apache2 is already

running and not launch a second instance.

Finally, use the Windows Service Control Manager, sc.exe, to schedule the Windows

batch file to run on Windows boot.

Open PowerShell as Administrator, and run

sc create 'Apache in WSL' binpath= C:\Users\Hayden\runapache.bat type=

share start= auto displayname= 'Apache in WSL'

Note the space after the “=” in the sc create command.

This service can now be controlled from the Windows Services pane.

Figure 7-23. Running apache2 batch/script file again, which detects apache2 is
already running

Chapter 7 Customizing WsL

165

 Windows Task Scheduler
If editing bash scripts and batch files seems like overkill to automate some WSL

commands from Windows, there is a simpler option: using Windows Task Scheduler.

Figure 7-24. Managing the Apache on WSL service from the Windows Services
pane

Chapter 7 Customizing WsL

166

Windows Task Scheduler is a friendlier way to automate tasks in Windows and can

run commands in WSL.

Open Windows Task Scheduler in Windows, and click “Create Basic Task….” In our

example, we are going to implement unattended upgrades in Ubuntu.

Figure 7-25. Windows Task Scheduler

Chapter 7 Customizing WsL

167

For the Name field, type “Unattended Upgrades in Ubuntu.”

Figure 7-26. Naming our new task

Chapter 7 Customizing WsL

168

Set the trigger for the task; in our example, we will run “Daily.”

Figure 7-27. Setting the task to run daily

Chapter 7 Customizing WsL

169

And then set the task to run at 1 AM.

Figure 7-28. Setting the time to run the task

Chapter 7 Customizing WsL

170

We will want our task to “Start a program.”

We are going to start wsl.exe with the arguments:

 -u root -e apt update.

This will have apt check for package updates from the Ubuntu repository as root.

Note that this will execute in the default WSL distro; if you have multiple WSL distros

installed and want to run on a specific distro, specify the distro with -d, such as -d

Ubuntu, as necessary.

Figure 7-29. Specifying the task will start a program

Chapter 7 Customizing WsL

171

Finalize the new task, checking “Open the Properties dialog for this task when I click

Finish” because we are not done yet (Figure 7-31). We have, so far, created an action to

check for package updates from the Ubuntu repository. However, we still need to add the

next step, which will apply the available upgrades.

Figure 7-30. Specifying the program to run, wsl.exe, and arguments, -u root -e
apt update

Chapter 7 Customizing WsL

172

In Properties, click the “Actions” tab (Figure 7-32), and then click “New” because

now we are going to add the apt package upgrade command after checking for package

updates from the Ubuntu repository.

Figure 7-31. Finishing creating our new task

Chapter 7 Customizing WsL

173

In the New Action window, we are going to run wsl.exe with the arguments:

-u root -e apt -y upgrade

This will run the apt package upgrade command noninteractively as root.

Figure 7-32. Opening the Actions tab of our new task to add additional steps

Chapter 7 Customizing WsL

174

The Actions pane will now show both commands in this task (Figure 7-33).

Figure 7-33. Our two actions in our task, checking for updates and then applying
available upgrades

Chapter 7 Customizing WsL

175

By running the apt update action first, we check for available package updates, and

then we run the apt upgrade action to apply those available upgrades.

Click “OK,” and you are done.

You can now find the task we created in Task Scheduler under “Active Tasks.”

To test the task we just created, double-click the task, and then click “Run” under

“Selected Item” on the right (Figure 7-35).

Figure 7-34. Locating the task under Active Tasks in Task Scheduler

Chapter 7 Customizing WsL

176

 Boot Command
In Windows 10 builds 21286 or higher, it is now possible to manually enable startup

commands in your WSL distro in /etc/wsl.conf.

These commands are executed as root. This can function as a minimal init system

when launching WSL as a terminal.

It will not start services automatically in the background, like a scheduled Windows

Service, or run as a scheduled task like with Task Scheduler, but only when opening a

WSL distro in a terminal. However, it may fit your needs if you simply need a service

launched that is more complicated than you would fit in a .bashrc file.

For more on this option, see Chapter 5, “Configuring WSL Distros,” where options for

/etc/wsl.conf are discussed in detail.

Figure 7-35. Opening and, if necessary, editing the task, by double-clicking it in
Active Tasks. We can also run the task by clicking Run under Selected Item on the
right-hand side

Chapter 7 Customizing WsL

177
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_8

CHAPTER 8

Going Further with WSL 2
Now that we have set up graphical user applications and started our own services at

launch, we are ready to go a bit deeper into the things we can do with WSL, specifically

WSL 2.

These steps require some familiarity with Linux in general, but if these are new to

you, we will do our best to tell you what you need to know to make them work on WSL.

 Running systemd
systemd is a lot of things. At its core, it is a set of tools between the kernel and your

applications on Linux, to handle all the messy stuff in the middle. systemd is most

known for its init system, which starts and stops background services on Linux. It

replaces legacy init systems such as Upstart and SysVinit. When a traditional Linux distro

boots, systemd figures out the services you need to be started and in what order so that

you land on a working desktop or server.

systemd has many modular components, and not all Linux distros make use of all

the available components. One of my favorite components is systemd-nspawn, which

is a replacement for the traditional chroot and in my experience handles cross-platform

containers better than some of the other options.

Many applications can still run without systemd, and there are several distributions

of Linux that do not rely on systemd, such as Devuan, which still uses SysVinit or

replacements such as OpenRC.

Systemd is comparable in some ways to the Solaris Service Management Facility or

SMF. systemd is a relatively new development in the world of Linux, becoming standard

in Ubuntu in 2015, but it has since been widely adopted and become a common

dependency by some advanced Linux applications.

The future of mainstream Linux is going to be based on systemd at least until a future

replacement comes along.

https://doi.org/10.1007/978-1-4842-6873-5_8#DOI

178

Currently, WSL does not support systemd. WSL has its own simplified init process

that allows environmental variable interoperability and mounts your Windows drives

within the WSL environment at /mnt/c. It also enables file sharing along with some

other environmental housekeeping. If you have a dependency on systemd, you will need

to start it manually. One problem you may face here is that systemd cannot run as the

primary Linux process known as PID 1, which is where many applications that rely on

systemd expect to find it.

Instead, you will need to start systemd manually and then spawn a new environment

in which systemd will operate as PID 1. This can be accomplished in a couple of different

ways, as with everything in Linux. There are a handful of projects, listed as follows, that

handle this for you as of this writing:

• one-script-wsl-systemd, https://github.com/diddledan/one-

script-wsl2-systemd

• Genie, https://github.com/arkane-systems/genie

• Subsystemctl, https://github.com/sorah/subsystemctl

 A Simple Approach to systemd
To enable systemd (Figure 8-1) in your active terminal, without using one of the

preceding projects, we will start a new process namespace with systemd running as PID

1 and then switch the terminal session into that namespace.

First, we install the daemonize utility:

sudo apt -y install daemonize

Then, we use daemonize and unshare to set up a process namespace, calling

systemd to run inside that specific namespace:

sudo daemonize unshare --fork --pid --mount-proc /lib/systemd/systemd &

Next, we get the process ID of the systemd process from outside the process

namespace so that we can enter the namespace correctly:

SYSTEMD_PID="$(ps -eo pid=,args= | awk '$2=="/lib/systemd/systemd" {print

$1}')"

Chapter 8 GoinG Further with wSL 2

https://github.com/diddledan/one-script-wsl2-systemd
https://github.com/diddledan/one-script-wsl2-systemd
https://github.com/arkane-systems/genie
https://github.com/sorah/subsystemctl

179

Finally, we move our user session into the process namespace with nsenter, so that

we can control system and systemd will appear as PID1:

sudo /usr/bin/nsenter --all --target "$SYSTEMD_PID" -- su - "$USER"

 Building Your Own Kernel for WSL 2
Microsoft provides a Linux kernel optimized for WSL 2. This optimized kernel contains

patches for the WSL 2 environment including device support and memory management.

You can use any other kernel from third parties, or you built yourself from upstream, but

it will lack these specific WSL 2 patches.

Figure 8-1. Creating and entering a process namespace running systemd

Chapter 8 GoinG Further with wSL 2

180

There may be times when you would like to use a kernel feature that is not enabled

by default in the WSL 2 kernel. You can either port the patches for WSL by Microsoft from

their WSL 2 kernel into your own kernel or rebuild the Microsoft kernel with your needed

optimizations. The latter is my recommendation unless you are familiar with handling

patches between different kernels and can reconcile any differences.

One such example of a feature that I have enabled in WSL 2 kernel is acceleration for

KVM guests in WSL. This requires downloading and tweaking the kernel configuration

and rebuilding the kernel. It also requires Windows 10 build 20175 or higher and an

Intel CPU. I will show you how it is done here. The purpose of this exercise is to get you

more familiar with different methods of kernel configuration, including editing the raw

configuration file and using the kernel menu configuration tool.

The Microsoft WSL 2 kernel can be found on GitHub at https://github.com/

microsoft/WSL2-Linux-Kernel/

Let us use git in WSL to clone the WSL 2 kernel source code, with a depth of 1, a

“shallow clone” because we do not need the entire commit history for the Linux kernel

for our purposes (Figure 8-2):

git clone --depth 1 https://github.com/microsoft/WSL2-Linux-Kernel

Install needed dependencies for building our kernel using apt (Figure 8-3):

sudo apt -y install build-essential libncurses-dev bison flex libssl-dev

libelf-dev

Figure 8-2. Cloning the Microsoft WSL 2 kernel from GitHub

Chapter 8 GoinG Further with wSL 2

https://github.com/microsoft/WSL2-Linux-Kernel/
https://github.com/microsoft/WSL2-Linux-Kernel/

181

Change directories, dropping down into the Git project folder (Figure 8-4):

cd WSL2-Linux-Kernel/

We are then going to start from Microsoft’s kernel config file as a starting point,

which we will copy into the root project folder as .config (Figure 8-5):

cp Microsoft/config-wsl .config

Hint use the Microsoft/config-wsl-arm64 file if you are building for an arM64
device.

Figure 8-3. Installing the dependencies needed for building a kernel on Ubuntu

Figure 8-4. Entering the WSL2-Linux-Kernel directory we cloned from GitHub

Chapter 8 GoinG Further with wSL 2

182

If you prefer to manually edit your kernel config file, you can now open the config file

in nano, VS Code (Figure 8-6), or even Notepad and make those manual changes:

code .config

The manual changes to make are

KVM_GUEST=y

CONFIG_KVM=y

CONFIG_KVM_INTEL=m

CONFIG_VHOST=y

Figure 8-5. Copying Microsoft’s default kernel config file to the root project folder
as .config

Figure 8-6. Manually editing the kernel config file in VS Code

Chapter 8 GoinG Further with wSL 2

183

I am somewhat “old-school” and prefer the traditional terminal menu interface for

editing kernel options; this can be launched with the appropriate make command:

make menuconfig

After a bit of compilation, you will arrive at the Linux kernel configuration menu

(Figure 8-7). Use the up and down arrow keys to move up and down the options, space

to select between build options for each item (on, off, and module, if module is available

for that option), and enter to enter a subdirectory as indicated by the ---> symbol. Use

the left and right arrow keys to select functions at the bottom, including Exit to go up one

level in the menu to the top menu, where Exit will then prompt you to save before exiting

the configuration tool. You can also save and load different config files.

First, navigate to the “Processor type and features” directory (Figure 8-8), using the

up and down arrow keys and then the Enter key to enter the directory.

Figure 8-7. Configuring the kernel using menuconfig

Chapter 8 GoinG Further with wSL 2

184

Next, navigate to the “Linux guest support” directory, and enter the directory

(Figure 8-9). It should already be enabled, but we are going to enable some additional

guest support features.

Figure 8-9. Highlighting the Linux guest support directory

Figure 8-8. Highlighting the Processor type and features directory

Chapter 8 GoinG Further with wSL 2

185

In the Linux guest support directory, enable “KVM Guest support” by using the

arrow keys to navigate to the item (Figure 8-10) and then pressing the space bar to mark

the feature with a * or, alternatively, the Y key (Figure 8-11).

Figure 8-10. Selecting KVM Guest support in the Linux guest support directory

Figure 8-11. Enabled KVM Guest support in the Linux guest support
directory

Chapter 8 GoinG Further with wSL 2

186

Next, use the left and right arrow keys to select Exit, and press Enter twice to go

up two levels to the top level of the configuration directory. Then scroll down to the

“Virtualization” directory (Figure 8-12).

Use the Enter key to enter the “Virtualization” directory. Here, use the space bar or Y

key to mark it with a * to enable “Kernel-based Virtual Machine (KVM) support.” Then,

for our purposes, we are going to enable “KVM for Intel processors support” as a module

that we can load and unload as needed. Highlight it and press the space bar to mark it

with an M or M key to mark it with an M (Figure 8-13).

The difference here is that items marked with a * will be built into the monolithic

kernel. Items marked with an M are modular and can be loaded or unloaded as needed.

In this exercise, we are building “KVM for Intel processors support” as a module so that

we can modify its settings and quickly apply those settings by unloading and reloading

the module. This is also to introduce you to these concepts and working with kernel

modules if you are unfamiliar. Once you have settled on KVM settings for your use case,

you may wish to return to this exercise and rebuild the kernel with this feature built in

so you don’t have to load the module each time you wish to work with it, or alternatively

add the kernel module name to the kernel command line in .wslconfig.

Figure 8-12. Highlighting the Virtualization directory

Chapter 8 GoinG Further with wSL 2

187

After enabling “Kernel-based Virtual Machine (KVM) support” as built-in and “KVM

for Intel processors support” as a module, select Exit twice, and you will be prompted to

save your new configuration (Figure 8-14). Select Yes.

Figure 8-13. Enabling Kernel-based Virtual Machine (KVM) support and KVM
for Intel processors support as a module

Figure 8-14. Prompt to save your new Kernel configuration, which will be saved
to .config by default

Chapter 8 GoinG Further with wSL 2

188

Next, we build our kernel. We use the make command. You can dramatically speed up

build time by setting the -j flag followed by the number of cores your device has (or that

you have specified in .wslconfig). In this case, we have 8 cores, so we run (Figure 8-15)

make -j 8

Sit back and enjoy a cup of tea while your Linux kernel builds (Figure 8-16).

If compilation is successful, you will be informed (Figure 8-17):

Kernel: arch/x86/boot/bzImage is ready

Figure 8-15. Building our new Linux kernel using make

Figure 8-16. Ah, the joys of watching the Linux kernel build

Chapter 8 GoinG Further with wSL 2

189

Our monolithic kernel has been built, and it is in a subdirectory of our current

directory at arch/x86/boot/bzImage.

But we are not done yet. Now, we must build and install those features we flagged as

modules. They will be installed on our distro file system at /lib/modules because they

are not built into the kernel. Run the make command as follows to complete building the

modules, and install them in the appropriate directories (Figure 8-18):

sudo make modules_install

Now, with our modules installed on /lib/modules, we return to our monolithic

kernel file, arch/x86/boot/bzImage. We need to move it to our Windows file system to

make it accessible to WSL 2. I recommend your Windows user home directory. We can

Figure 8-17. Successful compilation of the Linux kernel

Figure 8-18. Successful compilation and installation of Linux kernel modules

Chapter 8 GoinG Further with wSL 2

190

do this in the following command which copies the built kernel there (Figure 8-19).

wslvar, part of wslutilities, will retrieve the %USERPROFILE% environment variable from

Windows which we then convert to Linux format with wslpath:

cp arch/x86/boot/bzImage $(wslpath $(wslvar USERPROFILE))

Next, we need to configure WSL 2 to use our custom kernel. We do this with .wslconfig

in our Windows user home directory. Open .wslconfig as follows (Figure 8-20):

nano $(wslpath $(wslvar USERPROFILE))/.wslconfig

If the file does not yet exist, nano will create the file for us. Copy the following to

.wslconfig, adjusting for your username in the path or the overall path if you placed your

kernel somewhere besides your Windows user home directory:

Figure 8-19. Copying our compiled Linux kernel to our Windows user home folder

Figure 8-20. Configuring .wslconfig to use our custom Linux kernel and enable
nested virtualization

Chapter 8 GoinG Further with wSL 2

191

[wsl2]

kernel=C:\\Users\\Hayden\\bzImage

nestedVirtualization=true

The path to our custom Linux kernel must be absolute, no variables are permitted

here, and backslashes require double backslashes. Beginning in Windows 10 build

20175, nested virtualization is enabled by default, so if you are on a more recent build,

this may be omitted. I still leave it on for good measure.

Next, we can set options for our “KVM for Intel processors support” module, referred to

as a kvm-intel. Open/create /etc/modprobe.d/kvm-nested.conf as follows (Figure 8-21):

sudo nano /etc/modprobe.d/kvm-nested.conf

Copy the following to /etc/modprobe.d/kvm-nested.conf, enabling nested

virtualization and advanced options to optimize the speed of nested virtual machines:

options kvm-intel nested=1

options kvm-intel enable_shadow_vmcs=1

options kvm-intel enable_apicv=1

options kvm-intel ept=1

Save to /etc/modprobe.d/kvm-nested.conf, and exit.

Next, we are going to reboot our WSL environment with our new kernel. Open a new

PowerShell tab, and shut down WSL as follows (Figure 8-22):

wsl.exe --shutdown

Figure 8-21. Editing nested KVM options in /etc/modprobe.d/kvm-nested.conf

Chapter 8 GoinG Further with wSL 2

192

If you return to your Ubuntu tab, you should see that the process has exited

(Figure 8-23).

Close that tab, and reopen a new Windows Terminal tab for our distro. This will

effectively “reboot” our WSL environment, with the new kernel loaded.

Once “booted,” you can confirm that you are running a new kernel by running

uname and checking the build date and time, which should show the current date and

the time a few minutes ago you finished building the kernel (Figure 8-24):

uname -ar

Figure 8-22. Shutting down WSL

Figure 8-23. Confirming that WSL has been shut down

Chapter 8 GoinG Further with wSL 2

193

Next, install a tool called kvm-ok to confirm availability of nested KVM functionality

we built into the kernel, as follows:

sudo apt -y install cpu-checker

Then run kvm-ok as follows (Figure 8-25):

kvm-ok

This will report that KVM support is not available, that /dev/kvm does not exist. We

need one more step, to load the “KVM for Intel processors support” feature we built as a

module, also known as kvm_intel, which we do as follows (Figure 8-26):

sudo modprobe kvm_intel

Figure 8-24. Confirming you are running your custom kernel with uname

Figure 8-25. Running kvm-ok before loading the kvm_intel kernel module results
in an error message

Chapter 8 GoinG Further with wSL 2

194

Hint if you get the error message “Module kvm_intel not found in directory /lib/
modules/4.19.84-microsoft-standard+”, you forgot the preceding sudo make
modules_install step.

Now rerun kvm-ok (Figure 8-27):

kvm-ok

If you receive the message “KVM acceleration can be used,” we have successfully

loaded the kernel module, and KVM is now working.

We can then confirm KVM nested virtualization support by checking one of the

parameters provided directly by the kvm_intel module as follows (Figure 8-28):

cat /sys/module/kvm_intel/parameters/nested

Figure 8-26. Loading the kvm_intel kernel module. An uneventful affair when
successful

Figure 8-27. Running kvm-ok after loading the kvm_intel kernel module results in
a message /dev/kvm exists

Chapter 8 GoinG Further with wSL 2

195

The final step in configuring KVM for use is making /dev/kvm accessible by setting

proper access permissions for our user, which we set as follows (Figure 8-29):

sudo chmod 666 /dev/kvm

Because we built it as a module, you will need to manually load kvm_intel on each

launch of WSL you intend to utilize KVM.

As you experiment with running different guest operating systems, you may need to

edit the settings in /etc/modprobe.d/kvm-nested.conf.

The way to do this is to unload kvm_intel with

sudo modprobe -r kvm_intel

Then make the appropriate edits to /etc/modprobe.d/kvm-nested.conf and finally

reload the kvm_intel module as before:

sudo modprobe kvm_intel

Figure 8-28. Confirming nested virtualization support in the kvm_intel kernel
module

Figure 8-29. Setting access permissions for /dev/kvm

Chapter 8 GoinG Further with wSL 2

196

As discussed earlier, once you have settled on settings for kvm-nested.conf, you

might then choose to rebuild your kernel with kvm_intel built-in, not as a module. This

avoids the need to manually load the module on each launch of WSL. You could also add

sudo modprobe kvm_intel as a [boot] command in Windows 10 builds 21286+.

 Installing a Guest Operating System on KVM on WSL
We have learned how to build a custom kernel, load modules, apply custom kernel

module settings, and install a custom kernel in WSL 2; what can we do with this? With

nested KVM support, we can use tools like minikube that depend on KVM to run

Kubernetes containers. We can also run other entire operating systems directly using

QEMU, not just Linux guests but also macOS, Arca Noae, OpenIndiana, or Haiku.

Let us run through an example with Kubuntu, the KDE flavor of Ubuntu. First, install

qemu-kvm, the set of tools for running guest operating systems, as well as aria2, a tool for

downloading large files that we are going to use to download an ISO to boot (Figure 8-30):

sudo apt -y install qemu-kvm aria2

QEMU will display a window via X, so you need to have a third-party X server

configured as detailed in Chapter “Customizing WSL” or have official GUI app support

in WSL when it lands. As a quick reminder, you can point your WSL instance at your

running X server on Windows with

export DISPLAY=$(cat /etc/resolv.conf | grep nameserver | awk '{print

$2;}'):0.0

Figure 8-30. Installing qemu-kvm for booting guest operating systems with KVM
and aria2 for downloading large files, like guest operating system install ISOs

Chapter 8 GoinG Further with wSL 2

197

Next, let’s grab a bootable ISO (cd-rom image) of a guest operating system. ISOs tend

to be large, which is why I recommend using aria2 with download multithreading vs.

basic wget or curl. Download the Kubuntu install ISO torrent file with aria2 as follows

(Figure 8-31):

aria2c -x 10 --seed-time=0 http://cdimage.ubuntu.com/kubuntu/

releases/20.04/release/kubuntu-20.04.2-desktop-amd64.iso.torrent

Next, we need to create a virtual hard drive to install Kubuntu to in QEMU, not unlike

the VHDX our WSL 2 environment is stored in. To create a virtual hard drive for Kubuntu,

run qemu-img create as follows creating a 20 G drive in qcow2 format, the native virtual

drive format for QEMU (Figure 8-32):

qemu-img create -f qcow2 kubuntu.qcow2 20G

Protip: qemu-img can convert images between QCOW used by QEMU, VHDX used by

Hyper-V, and VMDK used by VirtualBox.

Figure 8-31. Downloading the Kubuntu install ISO with aria2

Figure 8-32. Creating a virtual hard drive for Kubuntu with qemu-img create

Chapter 8 GoinG Further with wSL 2

198

Next, we will boot Kubuntu (Figure 8-33). Do the following:

• Mount kubuntu.qcow2 as a virtual hard drive to install to.

• Mount the Kubuntu ISO as a read-only CD-ROM file.

• Enable network access with a virtual network interface card (NIC).

• Assign 5172 MB of RAM.

• Enable a virtual VGA port, which will be forwarded to our screen via

an X window.

• Enable KVM acceleration.

• Assign 4 virtual CPU cores.

• Enable advanced CPU options to take advantage of the nested

virtualization settings we enabled in kvm_intel discussed earlier.

Run as follows:

qemu-system-x86_64 \

 -drive file=kubuntu.qcow2,format=qcow2 \

 -drive file=kubuntu-20.04.2-desktop-amd64.iso,media=cdrom,readonly \

 -net nic -net user \

 -m 5172 \

 -vga qxl \

 --enable-kvm \

 -smp 4 \

 -cpu kvm64,+vmx,+vme,+msr,+x2apic,+hypervisor

Chapter 8 GoinG Further with wSL 2

199

Provided everything was successful, you should now see a window with the Kubuntu

installer window. You can now try the live image or install to the virtual hard drive we

created. You can store this QEMU command in a shell script (Figure 8-34), for example:

nano start_kubuntu.sh

Copy the following:

#!/bin/bash

qemu-system-x86_64 \

 -drive file=kubuntu.qcow2,format=qcow2 \

 -net nic -net user \

 -m 5172 \

 -vga qxl \

 --enable-kvm \

 -smp 4 \

 -cpu kvm64,+vmx,+vme,+msr,+x2apic,+hypervisor

Exit, save, and do not forget to make it executable:

sudo chmod +x start_kubuntu.sh

Figure 8-33. Kubuntu install screen running in QEMU

Chapter 8 GoinG Further with wSL 2

200

Once you install to the virtual hard drive, you may omit the reference to the ISO and

delete it if you choose. You can also adjust the RAM and core requirements to optimize

performance. This approach can be adapted to booting other operating systems from

their installer ISOs.

 WSL 2 Advanced Networking
WSL 1 networking was relatively basic. Because WSL 1 was a system call translation

layer, the WSL environment shared the same networking stack with the Windows

environment. In other words, localhost was localhost.

In WSL 2, networking is a bit more complicated. The WSL 2 network has its own IP

address on a DHCP NAT subnet.

This can introduce some complications. Once such complication is with X,

addressed in the previous chapter setting up X on WSL 2. The second complication

is accessing services running in WSL 2 from outside your device. This also requires

opening a port in Windows Firewall and then forwarding the port to the WSL 2

environment IP.

In this example, we will set up an apache web server and then enable access from

our LAN.

First, install apache (Figure 8-35):

sudo apt -y install apache2

Figure 8-34. Creating a script to launch Kubuntu

Chapter 8 GoinG Further with wSL 2

201

Figure 8-35. Installing the Apache web server

Figure 8-36. Starting Apache using the service command

Once installed, we now start the web server using the service command as follows

(Figure 8-36):

sudo service apache2 start

We can now use wslview, part of wslutilities bundled in several WSL distros and

available for others, to open the default landing page for Apache running on localhost

(Figure 8-37):

wslview http://localhost

Chapter 8 GoinG Further with wSL 2

202

The default landing page for Apache should be visible on localhost (Figure 8-38), but

it is only accessible on localhost. How do we make it accessible to other devices on our

local area network (LAN)?

First, we open PowerShell and retrieve the IP address of our Windows device’s

Ethernet or Wi-Fi connection. These IP addresses are visible and accessible to other

devices on the LAN (Figure 8-39):

Get-NetIPAddress

Figure 8-37. Opening the default landing page for Apache using wslview

Figure 8-38. The default landing page for Apache web server running on
localhost

Chapter 8 GoinG Further with wSL 2

203

Next, we identify the virtual IP address that has been assigned to our WSL environment

with ip a (Figure 8-40), specifically the eth0 device. Unlike the Windows device IP address,

our WSL IP address is not accessible by default to other devices on the LAN. We need to set

up forwarding to make the service running in WSL accessible to the LAN via the Windows

IP address. Then we need to open the proper ports in the Windows firewall.

ip a

Figure 8-39. Identifying the IP address of our Windows device using
Get-NetIPAddress

Figure 8-40. Identifying the virtual IP address assigned to our WSL environment
ip a

Chapter 8 GoinG Further with wSL 2

204

You can alternatively use the following to locate your WSL environment IP address

(Figure 8-41):

ip addr show eth0 | awk -F'[/]+' '$2=="inet" {print $3}'

If you were to attempt to access Apache from another device on the LAN at either

of these IP addresses at this point, the connection would time out (Figure 8-42). The

connection is not being forwarded from Windows into the WSL environment, and it is

also being blocked by the Windows Firewall.

Figure 8-41. Identifying the virtual IP address assigned to our WSL environment
by parsing the output of ip addr

Figure 8-42. Attempting to connect to either IP address results in a connection
timeout

Chapter 8 GoinG Further with wSL 2

205

Open PowerShell as Administrator on Windows, and we will create a forwarding port

proxy that links our Windows IP address to our WSL environment IP address on port 80,

the port used by Apache as follows (Figure 8-43):

netsh interface portproxy add v4tov4 listenaddress=192.168.4.122

listenport=80 connectaddress=172.28.202.134 connectport=80

While still in PowerShell as Administrator, we will open a port in our Windows

Firewall to allow inbound connections on port 80 as follows (Figure 8-44):

netsh advfirewall firewall add rule name="Open Port 80 for WSL2" dir=in

action=allow protocol=TCP localport=80

Figure 8-43. Creating a port proxy on Windows to forward incoming traffic to our
Windows IP address on port 80 to our WSL environment IP address on port 80

Figure 8-44. Creating a Windows Firewall rule that allows inbound traffic on port
80 on our Windows device

Chapter 8 GoinG Further with wSL 2

206

Alternatively, we can create a Windows Firewall rule that allows all incoming traffic

to traverse to the virtual Ethernet adapter for WSL, but caution should be used here as

this opens your WSL environment completely to the network, without the protection of

the Windows Firewall. This is done as follows (Figure 8-45):

New-NetFirewallRule -DisplayName "WSL" -Direction Inbound -InterfaceAlias

"vEthernet (WSL)" -Action Allow -EdgeTraversalPolicy Allow

But once we have forwarded our port and opened a port in our firewall, the Apache

service now becomes accessible via our Windows IP address to other devices on our

LAN (Figure 8-46).

Figure 8-45. Creating a Windows Firewall rule that permits all incoming traffic to
be forwarded to your WSL environment, use with caution

Chapter 8 GoinG Further with wSL 2

207

One important caveat is that the IP address of your WSL environment changes every

time it is launched, so on reboot, you will need to reconfigure port forwarding each time,

to forward to the proper port. You can automate this with PowerShell or bash commands

in your .bashrc file or using the new [boot] command= option in Windows 10 builds

21286 or higher.

For example, the following script may be called by your [boot] command= option in

Windows 10 builds 21286 or later, or your .bashrc file, to configure a port forward from

your physical network to your WSL instance. You can discover your network adapter’s

interface index by executing Get-NetIPAddress -AddressFamily IPv4 in PowerShell

(Figure 8-47).

Figure 8-46. Accessing Apache running on WSL from another device on our land
after successfully configuring port forwarding and opening a port in our firewall

Chapter 8 GoinG Further with wSL 2

208

#!/bin/bash

Configuration

INTERFACE_IDX=9 # Your Windows network device's InterfaceIndex from

Get-NetIPAddress in PowerShell

PORT=80

The script

IPADDRESS="$(ip addr show eth0 | awk -F'[/]+' '$2=="inet" {print $3}')"

powershell.exe -Command "

\$WINIPADDR=Get-NetIPAddress -AddressFamily ipv4 -InterfaceIndex

$INTERFACE_IDX | Select-Object -ExpandProperty IPAddress

Start-Process -Verb RunAs -FilePath netsh.exe -ArgumentList @

('interface', 'portproxy', 'add', 'v4tov4', \"listenaddress=\$WINIPADDR\",

'listenport=$PORT', 'connectaddress=$IPADDRESS', 'connectport=$PORT')"

Figure 8-47. Getting the InterfaceIndex for my Windows PC’s main network
interface card – here it is index number 9

Chapter 8 GoinG Further with wSL 2

209
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_9

CHAPTER 9

Maximizing Windows
Interoperability
When working with WSL, you may find you need to use utilities or files from Windows

in your workflow or vice versa. Thankfully, there are several ways that you can blur

the barrier between your WSL distro and Windows allowing a much more productive

environment than Windows, or a Linux Distro, would provide on their own.

 wslpath
wslpath is a tool built into WSL that allows for simple conversion of paths between WSL

and their Windows equivalents and vice versa (Figure 9-1):

wslpath C:\\Users\\Hayden returns /mnt/c/Users/Hayden

wslpath -w /mnt/c/Users/Hayden returns C:\Users\Hayden

wslpath is useful when scripting tasks in Windows from WSL, without having to parse

and rearrange the characters, particularly all those \ and /s that must be escaped in sed

and grep. wslpath is particularly powerful when paired with wslenv, detailed as follows.

Figure 9-1. Using wslpath to convert paths between WSL and Windows
equivalents

https://doi.org/10.1007/978-1-4842-6873-5_9#DOI

210

 wslutilities
wslutilities are a collection of tools by Patrick Wu that have been adopted by several

WSL distros published on the Microsoft Store. Ubuntu and Pengwin include wslutilities

by default. wslutilities are available for several other distros, including SUSE, Alpine,

Debian, CentOS, and openSUSE. wslutilities include the following tools:

wslusc allows you to create a shortcut to Linux applications on the Windows

desktop. For example, install the GNOME text editor gedit (Figure 9-2):

sudo apt -y install gedit

Next, locate an acceptable icon for gedit by searching /usr/share/icons for icons

containing the name gedit (Figure 9-3):

find /usr/share/icons/ -name "*gedit*.svg"

Figure 9-2. Installing gedit

Chapter 9 MaxiMizing WindoWs interoperability

211

Then, run wslusc, specifying gedit is a GUI application with the -g flag; name the

shortcut gedit with -n ‘gedit’, specifying an icon we found with -i, followed by the gedit

command (Figure 9-4):

wslusc -g -n 'gedit' -i /usr/share/icons/Humanity/apps/48/gedit-icon.svg

gedit

And you now have a shortcut for gedit on your desktop (Figure 9-4). Note that GUI

applications still require an X server to be running on Windows until official GUI app

support lands in WSL.

wslsys provides some basic system information, useful when filing WSL-related bug

reports (Figure 9-5).

Figure 9-3. Searching for icons for gedit in /usr/share/icons

Figure 9-4. Creating a shortcut to gedit on the Windows desktop using wslusc

Chapter 9 MaxiMizing WindoWs interoperability

212

The output of wslsys can also be grepped for use in scripts. For example

wslsys | grep 'Theme' | sed 's/^.*: //'

will return simply “light” or “dark” for the Windows Theme.

wslfetch is like tools such as neofetch but also provides information about the host

Windows 10 system, such as the Windows 10 build number (Figure 9-6).

wslvar allows you to retrieve Windows environmental variables, such as

%APPDATA% and %USERPROFILE%. For example, if you want to share a script that

writes to a Windows user home folder, you will not want to hardcode /mnt/c/Users/

Hayden because other users’ usernames and paths would be different.

Figure 9-5. System information provided by wslsys

Figure 9-6. Splash screen by wslfetch

Chapter 9 MaxiMizing WindoWs interoperability

213

You can use a combination of wslpath and $(wslvar USERPROFILE) instead to

retrieve that location and then convert it to Linux path that WSL would understand, for

example (Figure 9-7):

touch hello

cp hello $(wslpath $(wslvar USERPROFILE))

wslview registers itself as the default web browser in WSL that when run will open

the corresponding URL in the default web browser in Windows. For example, the

following will open the URL in Microsoft Edge, the default browser I have set on my

Windows 10 (Figure 9-8):

wslview http://boxofcables.dev

Figure 9-7. Creating an empty file named hello and copying it to the current
Windows user’s home folder

Figure 9-8. Using wslview to open web URLs in the default web browser in Windows

Chapter 9 MaxiMizing WindoWs interoperability

214

However, wslview does not stop at URLs. You can use wslview to open any file in WSL

using the default application for that file type in Windows. For example, the following

will open the file in Notepad, the default editor for .txt files, on Windows 10 (Figure 9-9):

echo 'hello Patrick' > textfile.txt

wslview textfile.txt

 Redirecting Between Windows and Linux
Applications
Redirection is a mechanism where you can take the output from running a command

and feed it into the input for another command. This is often known as “piping” and is

common to use on the command line. In a Linux shell, this is usually marked by the |

character, which on most keyboard layouts is accessed with shift+\.

Another common pattern is to use the content of a file as the input for a command

or write the output from a command to a file. These are usually denoted with the << and

>> symbols. (Those are two < characters and two > characters, not the single guillemet

characters of « and ».)

Figure 9-9. Opening a .txt file with Notepad on Windows using wslview

Chapter 9 MaxiMizing WindoWs interoperability

215

 Piping
When using the pipe mechanism, commands can be created that perform complex

action chains without requiring you to write a program to perform the complete process.

For example, you could use gzip to compress a file, convert it to base64 encoding so that

it is suitable for displaying or sending in a text format, and forward the base64 text into

gnupg to sign it using a “PGP” key and print the result to the terminal.

The command for the described chain of events is (Figure 9-10)

gzip --stdout /etc/hosts | base64 | gpg --clear-sign

If you do not have a default GPG key, you can create one with

gpg --full-gen-key

If you receive the error message “gpg: signing failed: Inappropriate ioctl

for device,” then set

export GPG_TTY=$(tty)

The example shows how we take the output of the command on the left of the |

character and “pipe” the output to the command on the right. Here, we use the pipe

mechanism twice, where the first pipe takes the output from gzip and passes it into

Figure 9-10. Pipeline to compress a file, convert it to text, and sign it with PGP

Chapter 9 MaxiMizing WindoWs interoperability

216

base64 and the second takes the output from the base64 command and passes it to gpg.

We could do this with a separate program that saves the outputs and feeds them to the

inputs of the next command. We would, however, need to write that program, and the

pipe mechanism is much simpler to immediately understand and can be written quickly

and easily.

 Piping Between Windows and WSL
With WSL on Windows, we can use the piping mechanism to redirect input and output

to and from commands between Windows and WSL and vice versa. This gets powerful

when you realize you can make the hop between Windows and WSL multiple times in a

single pipeline.

 Piping from WSL to Windows

For a simple example, we can use clip.exe on Windows combined with a pipe from

WSL to easily put text into the Windows clipboard for use with the paste feature of your

favorite programs.

cowsay "Hi readers!" | clip.exe

This gives the following in our clipboard for pasting with Ctrl+V (Figure 9-11):

< Hi readers! >

 \ ^__^

 \ (oo)_______

 (__)\)\/\

 ||----w |

 || ||

Chapter 9 MaxiMizing WindoWs interoperability

217

By default, the PATH variable from Windows is passed through to WSL so you can

execute programs using the same expectation of it working as if you were executing

directly from Windows’ command line. For executables that are not in the locations

included in the PATH, you may also use the full location.

The equivalent to the preceding, using the full location of clip.exe, could be

cowsay "Hi readers!" | /mnt/c/Windows/System32/clip.exe

Expanding on this, we can replace clip.exe with a short PowerShell script that uses

Windows’ “Component Object Model” (COM) API to compose a new email in Microsoft

Outlook with the text from the pipeline inserted into the body.

Here, we use git format-patch to create a source code diff, sign it with our PGP key,

and put the signed result into an email body in Microsoft Outlook:

git format-patch --stdout HEAD~1 | \

GPG_TTY=$(tty) gpg --clear-sign | \

powershell.exe '

 $M=(New-Object -ComObject Outlook.Application).CreateItem(0);

 $M.Body=$input | %{$r=""}{$r+="$_`n"}{$r}; $M.BodyFormat=1;

 $M.Display()'

We could save the PowerShell code to a reusable file; let us call it sendmail.ps1 and

pass the path to that instead of rewriting it verbatim every time we need it (Figure 9-12).

Figure 9-11. Copying the output of piping to clip.exe into Notepad

Chapter 9 MaxiMizing WindoWs interoperability

218

Note slashes / are used to separate the Windows file path because bash in Wsl
will interpret the backslash \ as a special character requiring a double backslash
\\ instead – powershell is fine with this, but other programs may be less forgiving.

We can then run the following to create a new Outlook message from our command

output (Figure 9-13):

git format-patch --stdout HEAD~1 | GPG_TTY=$(tty) gpg --clear-sign |

powershell.exe -File C:/Users/Hayden/sendmail.ps1

Figure 9-12. Saving PowerShell code to a reusable file that can be called from WSL

Chapter 9 MaxiMizing WindoWs interoperability

219

 Piping from Windows to WSL

Much like piping from WSL to Windows, we can perform the inverse operation. We can

execute a command in Windows and pipe its output into another command in WSL. Let

us consider that we want to find all the Windows Services that are Xbox related. To achieve

this, we will use PowerShell’s Get-Service “cmdlet” and pipe the output into grep in WSL

to filter the output to only lines of text that include the word Xbox (Figure 9- 14):

Get-Service | wsl.exe -d Ubuntu-20.04 grep Xbox

Figure 9-13. A new Outlook email compose window with the output of “git
format-patch” inserted to the email body

Chapter 9 MaxiMizing WindoWs interoperability

220

We can also take the output from the WSL command and pass it back into another

PowerShell cmdlet. Replacing the grep with a similar awk command, which we also use

to extract just the second column, we can start and stop all the services together. In the

following, I show this to start and stop the ssh-agent service by filtering on the text ssh

as Administrator.

If you receive the error "Start-Service: Service 'OpenSSH Authentication

Agent (ssh-agent)' cannot be started due to the following error: Cannot

start service 'ssh-agent' on computer '.'.", then you need to enable manual

launch of the ssh-agent (Figure 9-15):

Set-Service ssh-agent -StartupType Manual

Figure 9-14. Using PowerShell to list Windows Services and filtering the result
with “grep” in WSL

Figure 9-15. Using PowerShell to start the ssh-agent service in Windows by
filtering the list of services through AWK in WSL

Chapter 9 MaxiMizing WindoWs interoperability

221

 File Redirection
Redirecting files allows you to save the output of a command to a file or use a file as

input to a command. An input file is indicated in Bash with a < symbol followed by the

filename whose content you want to use as input to the command, while an output file

is, conversely, indicated with a > symbol followed by the filename of the file to save the

output of the command into.

For a simple file redirection example, we use the content of /etc/hosts as the input

to the base64 command; we write that as

base64 < /etc/hosts

With base64, it would be simpler to write base64 /etc/hosts without the file

redirection, but this only helps with commands that allow usage of a filename as a

parameter. It would also have not illustrated file redirection.

Likewise, to save the output of the tar command, which creates archives of any

number of files, we write it as

tar c /etc/hosts > hosts.tar

Again, tar has a built-in parameter that is easier to perform this action with:

tar cf hosts.tar /etc/hosts

Windows’ command line and PowerShell both also support the concept of file

redirections, which means we can use them to redirect a file in a command line or

PowerShell window to a WSL command. In the following, we take the content of the

Windows hosts file and copy it verbatim into the hosts file in our default WSL distro:

wsl.exe -u root tee /etc/hosts < C:\Windows\System32\drivers\etc\hosts

 Heredocs
Along with file redirection, Bash provides a feature called “heredocs.” These enable you

to write long multiline text input to a command without requiring to first write the text

to a file. The “heredoc” is defined with << followed by any unique word that will be used

to indicate the end of the input text. A heredoc needs to be at the end of the command

or pipeline that it is to be the input for. The end of input indicator word needs to be on a

Chapter 9 MaxiMizing WindoWs interoperability

222

line by itself, with no leading spaces or tabs, and can be any word you desire if it does not

occur naturally in the text. A common end of input indicator is EOF.

For example, here is a simple command to print the input text back to the console to

show how it works:

cat <<ENDOFINPUTINDICATOR

Hi readers!

The next line indicates the end of this input text

ENDOFINPUTINDICATOR

We can use this feature to send any arbitrary text to our commands, including those

on Windows. The following is an example (Figure 9-16) using the sendmail.ps1 we used

earlier in the “Piping Between Windows and WSL” section to write a new email in the

terminal (Figure 9-17):

powershell.exe -File C:/Users/Hayden/sendmail.ps1 <<EOF

Hi, Readers

This text will be used as the body or a new email message in Microsoft

Outlook. Congratulations on learning about Heredocs.

Best regards,

Hayden

EOF

Figure 9-16. Writing an email from WSL using PowerShell

Chapter 9 MaxiMizing WindoWs interoperability

223

 Environmental Variables
Windows and WSL can share environmental variables. These are small in-memory

text data entries that are forwarded to and program you run. By default, the Windows

environment variables and those in WSL are separate, but this can be configured with

a specially named variable in called WSLENV. This variable is interrogated every time the

border between Windows and WSL is crossed, so you can change it whenever it suits

your workflow.

For example, you can specify that the environment variable JAVA_HOME, which points

to the installed Java runtime location, transitions the border when crossing between

Windows and WSL by setting the WSLENV variable to JAVA_HOME/p.

You can add any number of environment variable names to the WSLENV configuration

by separating each entry with a colon. Here, we have JAVA_HOME and OneDrive specified

(Figure 9-18).

Figure 9-17. Example new email message composer in Microsoft Outlook created
with the content of a heredoc in WSL

Chapter 9 MaxiMizing WindoWs interoperability

224

The /p part of each of the preceding configured variables tells WSL to translate

between Windows and WSL paths in the values of each of those variables. For example,

with the preceding WSLENV set in Windows, the variables in Windows look like this:

C:\Program Files\AdoptOpenJDK\jdk-14.0.2.12-hotspot\

C:\Users\Hayden\OneDrive

While in WSL, they look like this, due to the path translation indicated by the /p:

/mnt/c/Program Files/AdoptOpenJDK/jdk-14.0.2.12-hotspot/

/mnt/c/Users/Hayden/OneDrive

There are other suffixes in addition to /p. All the usable suffixes are

• /p – Indicate that the variable should have its value treated as a path

and translate between Windows and WSL equivalent representations.

• /l – Indicate that the variable should be treated as a colon-

delimited list of paths in WSL or a semicolon-delimited list of paths

in Windows. Like /p, each individual path in the list is converted

between Windows and WSL representations.

Figure 9-18. Windows’ environment variable configuration dialog with
“WSLENV” set

Chapter 9 MaxiMizing WindoWs interoperability

225

• /u – Indicate that the variable should be forwarded from Windows to

WSL but not from WSL to Windows.

• /w – Indicate the inverse of /u. The variable should be forwarded

from WSL to Windows but not from Windows to WSL.

You may also combine /u and /w with either /p or /l. For example, the following are

some variants you may use, but not an exhaustive list:

• /pu – The variable contains a path to be translated, and the variable

should only propagate from Windows to WSL.

• /lw – The variable contains a list of paths to be translated, and the

variable should only propagate from WSL to Windows.

 Mount File Systems in WSL 2
File systems come in many forms, and Windows does not support Linux-specific ones.

We can use WSL 2 to access these previously inaccessible locations and expose them to

Windows applications via the WSL-to-Windows special path \\wsl$ and the Linux node

in Windows Explorer (Figure 9-19).

Figure 9-19. Windows Explorer showing the Linux node with installed WSL
distros

Chapter 9 MaxiMizing WindoWs interoperability

226

 Windows File Shares
Windows file sharing is supported via drvfs, which forwards locations known to

Windows into the WSL environment. First, let us see how to do this with a Windows

Share mapping to a Drive Letter in Windows:

 1. In Windows, navigate to the Network item in Windows Explorer.

 2. Navigate into the server object that holds your share.

 3. Right-click your share, and choose “Map network drive.”

 4. In the new window, choose Z:, and then close the dialog.

 a. Enter your username and password for the share if prompted or you have

chosen to use alternative credentials.

 5. In WSL, run sudo mkdir /mnt/z; sudo mount -t drvfs

Z: /mnt/z.

 6. You will now find your network share’s files accessible under the

path /mnt/z.

 7. To ensure that the drive is remounted when WSL restarts, add the

following line into /etc/fstab: Z: /mnt/z drvfs defaults 0 0.

As an alternative to mapping the Share to a drive letter, we can use the “UNC” path

when calling mount. The caveat here is that Windows will use a default set of credentials,

and these cannot be overridden with this method. If you need to use different

credentials, you must use the preceding drive letter mapping method.

 1. In WSL, run the following, ensuring that you replace \\server\

share-name with the UNC path of your share:

sudo mkdir /mnt/file-share; sudo mount -t drvfs '\\

server\share-name' /mnt/file-share

 2. To ensure that the drive is remounted when WSL restarts, add the

following line into /etc/fstab:

\\server\share-name /mnt/file-share drvfs defaults 0 0

Chapter 9 MaxiMizing WindoWs interoperability

227

 SSHFS and Other FUSE-Based File Systems
One of the great features of Linux that you can use with WSL 2 is the support for “FUSE”-

based file systems. FUSE is an acronym for “Filesystem in User space” where the actual

file system driver is run as a program rather than as a part of the kernel. This means that

you can use any file system that has a FUSE driver without learning how to and using

a customized rebuilt kernel. A great file system that FUSE allows is the “SSHFS,” which

uses Secure Shell connections to a remote PC and exposes the remote file system locally.

To mount an SSHFS file system, we must first edit the file /etc/fuse.conf to add

a line containing user_allow_other. This will allow us to use the allow_root option

when mounting the file system. Note this requires sshfs to be installed and ssh keys to be

generated.

We can now call sshfs, after creating a folder owned by the user who executes sshfs:

sshfs -o idmap=user,uid=1000,gid=1000,allow_root server:/root/test /mnt/test

By using FUSE-based file systems in WSL with the allow_root option specified

when mounting, we allow Windows Explorer to see the files using the Linux node in

the sidebar. The file system is also exposed via the UNC path \\wsl$\distro\path\to\

mountpoint (Figure 9-20).

Figure 9-20. A mounted SSHFS file system accessed through Windows Explorer

Chapter 9 MaxiMizing WindoWs interoperability

228

The magic thing this allows is for any FUSE file system, which is not supported

by Windows natively such as SSHFS, to be usable from any Windows application that

supports opening a UNC path. For example, we could open a file on a remote server

through WSL 2 into notepad.exe (Figure 9-21).

 Native Linux File Systems in a Disk Image or “Partition”
This is a powerful feature, so do not attempt if you are at all uncomfortable.

With that said, Linux supports a bewildering array of file systems, some more

recognizable than others. The usual Linux suspects are ext2/3/4, XFS, and btrfs.

With WSL 2, we can mount these file systems in our distro and then access them from

Windows. This means that, through WSL 2, Windows now supports any native Linux file

system.

You can find which file systems are supported by your currently running kernel by

executing the following inside WSL 2:

cat /proc/filesystems

Figure 9-21. notepad.exe window showing the ability to open a file from a
mounted “sshfs” file system inside WSL 2

Chapter 9 MaxiMizing WindoWs interoperability

229

 In a Partition

If you have a hard disk with native Linux partitions on it, then you can expose them to

your WSL 2 distro by using the --mount parameter to wsl.exe. This has the caveat that it

requires that the partition be on a disk that is currently not used by Windows, such as if

the partition is a secondary partition on your Windows boot device.

You need to know the Windows internal disk path when using wsl.exe –mount, which

you can find by running the following in a command line or PowerShell window:

wmic diskdrive list brief

This will show an output like the one in Figure 9-22.

Once you have found your DeviceID, which looks like \\.\PHYSICALDRIVEn where n

is a number starting from 0, you can construct the wsl.exe command as follows:

wsl.exe --mount \\.\PHYSICALDRIVE1 --partition 2

 In a Disk Image (VHDX File)

You can, instead of using a physical disk or partition, use a virtual hard disk image stored

as a .vhdx file. These are typically created by Windows Hyper-V virtualization system, of

which WSL 2 is a very specialized variant.

This method is very similar to using a physical disk or partition with the difference

being that instead of physically attaching the disk, you will use PowerShell to mount the

.vhdx file into Windows and then proceed the same as for a physical disk or partition.

Figure 9-22. Output of “wmic” command showing available physical disks

Chapter 9 MaxiMizing WindoWs interoperability

230

To mount the .vhdx file in Windows, run the following in a PowerShell window, after

ensuring you replace <pathToVHDX> with the full path to your .vhdx file:

Write-Output \\.\PhysicalDrive$((Mount-VHD -Path <pathToVHDX> -PassThru |

Get-Disk).Number)

This will mount the virtual disk file and then print out its \\.\PhysicalDrive name,

which you can use in the wsl.exe --mount commands.

 Mounting Options

You may also optionally add any of the following parameters which mirror their Linux

counterparts:

 1. Specify the file system in case it is not automatically detected:

-t <FileSystem>

For example:

wsl.exe --mount \\.\PHYSICALDRIVE1 --partition 2 -t ext4

 2. Specify any Linux file system mount options:

-o <options>

For example:

wsl.exe –mount \\.\PHYSICALDRIVE1 --partition 2 -o

noatime,uid=1000,gid=1000

 3. You can also pass through the whole device instead of a single

partition with

--bare

This requires that you omit the --partition, the -t, and the -o

parameters. For example:

wsl.exe –mount \\.\PHYSICALDRIVE1 --bare

When you have a mounted file system in WSL 2, the normal methods of accessing

from Windows apply, such as the Linux node in Explorer and the \\wsl$ UNC paths.

Chapter 9 MaxiMizing WindoWs interoperability

231

When you are finished with your disk or disk image, you can remove it from WSL 2,

with the --unmount command:

wsl.exe --unmount <DiskPath>

For example:

wsl.exe --unmount \\.\PHYSICALDRIVE1

Alternatively, you can unmount all disks and images by omitting the disk path

parameter:

wsl.exe –unmount

Chapter 9 MaxiMizing WindoWs interoperability

233
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_10

CHAPTER 10

Using WSL for Enterprise
Development
With the interoperable nature of WSL, you can run your favorite IDE or editor in

Windows while keeping the compatibility of running your project inside a real Linux

environment. Because WSL 2 uses the Linux kernel, exciting new opportunities are

opened such as the ability to run a Kubernetes distribution for developing microservices

architecture systems. There is also the enticing ability to use your workstation or laptop’s

Graphics Processor (GPU) to accelerate machine learning tasks.

 Creating a Microk8s Workstation
The computing world is abuzz with the idea of microservice development and

deployment patterns. These concepts are made possible by the software Kubernetes,

which is difficult to have not heard mention of. Canonical, the company behind the ever-

popular Ubuntu, has packaged a distribution of Kubernetes that they call “microk8s.”

The great thing about microk8s is that it is fully self-contained and is installable with a

single command.

 Prerequisites for Microk8s
The great thing about microk8s is that it is packaged into a Snap package. Snaps are

self-contained bundles that include everything an application requires to operate

and are installed simply and quickly. This guide requires that you have an operational

systemD-enabled distribution in WSL 2 as Snaps require systemD to operate correctly.

Make sure to read Chapter 7, “Customizing WSL” for details on enabling systemd in your

environment.

https://doi.org/10.1007/978-1-4842-6873-5_10#DOI

234

To verify that your environment is set up correctly, run (Figure 10-1):

snap version

If your system is correctly set up, this will report your Snap and Snapd versions along

with the distribution you are running and the WSL 2 kernel version.

Now that we have verified that Snapd is at least responding, try installing and

running hello-world:

sudo snap install hello-world

hello-world

This should successfully install the hello-world Snap from the Snap Store and

execute the new command. If everything worked, the hello-world command will print a

welcome message (Figure 10-2).

Figure 10-1. Running “snap version” in WSL 2 with an operational systemd

Figure 10-2. Successfully installing and running the “hello-world” Snap package

Chapter 10 Using WsL for enterprise DeveLopment

235

 Installing Microk8s
Congratulations, you now have everything you need to install microk8s. Let us install it

then:

sudo snap install microk8s --classic

sudo usermod -a -G microk8s $USER

newgrp microk8s

sudo chown -f -R $USER ~/.kube

microk8s status

 Enabling Microk8s Add-Ons
Now that microk8s is installed, you may access the Kubernetes control plane with

kubectl as normal and deploy and manage services and pods with the usual tools

you would use to administer an in-production cluster. You can also quickly enable

and disable various add-ons via microk8s enable and microk8s disable commands

(Figure 10-3).

Figure 10-3. Successful installation of microk8s

Chapter 10 Using WsL for enterprise DeveLopment

236

For example, most workloads deployed to a Kubernetes cluster usually access other

services on the same cluster via DNS names. These are names internal to the cluster

that are resolved to their respective IP addresses via normal DNS lookups. Due to the

minimalist nature of microk8s, the DNS service provided by CoreDNS is not enabled out

of the box, but is easily enabled (Figure 10-4):

microk8s enable dns

You may remove the CoreDNS feature again when it is not needed any longer with

microk8s disable dns

Helm can be enabled for installing Helm charts with (Figure 10-5):

microk8s enable helm3

Figure 10-4. Enabling CoreDNS service on microk8s

Figure 10-5. Enabling Helm 3 for microk8s

Chapter 10 Using WsL for enterprise DeveLopment

237

 Deploy a Cluster with Helm
A common way to deploy workloads to a Kubernetes cluster is via the use of Helm. This

is accessed in microk8s with the microk8s.helm or microk8s.helm3 commands. The

first is for Helm 2 and the second for Helm 3. Which you choose is up to you and likely

depends on the version you use for your production environment. If you do not have a

preference, then start with Helm 3. Whichever you choose, you must enable it in your

microk8s system with the enable command:

microk8s enable helm3

To be able to reach our services, we need to enable microk8s’ ingress controller

(Figure 10-6) with:

microk8s enable ingress

Now we can install the Ghost blog (Figure 10-7) with:

microk8s.helm3 repo add groundhog2k https://groundhog2k.github.io/helm-

charts/

microk8s.helm3 repo update

microk8s.helm3 install ghost groundhog2k/ghost

Figure 10-6. Enabling microk8s’ ingress controller

Chapter 10 Using WsL for enterprise DeveLopment

238

You can now use microk8s.helm3 for development as you would use Helm in

your production environment. See microk8s.helm3 help for usage information and

https://helm.sh/ for documentation on Helm if you get stuck.

 Using Docker Desktop
 Installing Docker Desktop on WSL
Once you have installed Docker Desktop onto Windows from www.docker.com/get-

started, we can configure it to enable support for WSL. Find the Docker icon in your

system tray (next to your taskbar’s clock), and double-click it (Figure 10-8).

Figure 10-7. Installing Ghost blog with Microk8s and helm3

Chapter 10 Using WsL for enterprise DeveLopment

https://helm.sh/
http://www.docker.com/get-started
http://www.docker.com/get-started

239

From the new window, click the settings icon at the top right – it looks like a gear.

The first option to make sure is enabled is to use the WSL 2–based engine

(Figure 10-9). This replaces the Docker Desktop virtual machine with a lightweight

environment utilizing the WSL 2 infrastructure.

Figure 10-8. Showing the Docker Desktop icon in the system tray

Figure 10-9. Enabling the option to use the WSL 2–based engine for Docker
Desktop

Chapter 10 Using WsL for enterprise DeveLopment

240

Now, navigate to Resources followed by WSL Integration. Here, we can enable and

disable Docker Desktop integration with our WSL distros to enable use of the same

Docker Engine from Windows and each of our enabled Distros (Figure 10-10).

 Building Docker Container
After configuring WSL integration in the Docker Desktop settings window, we can

use Docker commands inside our WSL distro the same way we would on Windows in

PowerShell or cmd.exe. To prove this, we will use Docker’s getting-started example

application to show that you can build container images from WSL using Docker

Desktop.

First, use git to clone https://github.com/docker/getting-started:

git clone https://github.com/docker/getting-started

Move into the getting-started directory, and execute the Docker build command.

The build will, when finishing successfully, show an image ID which we will use to run a

container (Figure 10-11):

cd getting-started

docker build .

Figure 10-10. Configuring Docker Desktop’s WSL Integration for our distros

Chapter 10 Using WsL for enterprise DeveLopment

https://github.com/docker/getting-started

241

We can now navigate to http://127.0.0.1/ in a web browser in Windows to view

the example web page (Figure 10-12).

Figure 10-11. Successful build and launch of the getting-started Docker example
container

Figure 10-12. The getting-started web page served from the container we just built
and started using Docker Desktop’s WSL integration

Chapter 10 Using WsL for enterprise DeveLopment

http://127.0.0.1/

242

 Connecting to Editors/IDEs
 Visual Studio
The de facto standard IDE for enterprises is Microsoft’s Visual Studio, which can be

integrated with WSL to build and debug .NET Core and .NET 5.0 applications for

deployment to Linux systems.

 Installing in Visual Studio Version 16.8 and Earlier

In Visual Studio 16.8 and earlier, enable the feature with the following steps:

 1. Open Visual Studio, and select “Continue without code.”

 2. Find and open the Extensions menu, and select “Manage

Extensions.”

 3. Type into the search box the word Dot-Net-Core-Debugging-

With-Wsl2.

 4. Click the Download button on the item labeled “.NET Core

Debugging with WSL 2 – Preview” (Figure 10-13).

 5. Once the download is complete, close Visual Studio, and let the

installer finish (be ready for a UAC prompt).

Chapter 10 Using WsL for enterprise DeveLopment

243

 Installing in Visual Studio Version 16.9 and Later

The feature is included as part of Visual Studio 16.9 and later, so to enable, we will use

the “Visual Studio Installer” application – this is the same application that you use to

initially install Visual Studio on a workstation, update it to newer versions, and add and

remove features.

You can enable the “.NET Core Debugging with WSL 2” feature either as part of the

“.NET Core cross-platform development” item in the workload tab or by selecting it from

the “Individual components” tab (Figure 10-14).

Figure 10-13. Downloading and installing .NET Core Debugging with WSL 2
Visual Studio extension

Chapter 10 Using WsL for enterprise DeveLopment

244

 Debugging Your App in WSL

To be able to debug your app in WSL 2, it must target .NET Core or .NET 5.0. You can

create a new project that is compatible by selecting Linux from the platforms drop-down

in the “New project” window (Figure 10-15).

Figure 10-14. Selecting the .NET Core Debugging with WSL 2 item in Visual
Studio Installer

Chapter 10 Using WsL for enterprise DeveLopment

245

Once you have a compatible project, the drop-down to select which platform to use

for debugging should list “WSL 2” as an option (Figure 10-16). When you select this item,

it will configure your WSL environment to run .NET Core or .NET 5.0 applications and

then allow you to launch your debugging session.

Figure 10-15. Creating a new project that targets Linux

Figure 10-16. Selecting “WSL 2” as the environment to debug within

Chapter 10 Using WsL for enterprise DeveLopment

246

 Visual Studio Code
Many developers are moving to using Visual Studio Code as their editor of choice. Code

allows for seamless integration with WSL by using its “WSL Remote” extension. With

this extension to Code, the editor is split into two parts where the User Interface runs

on Windows, but the tools that are used for development and debugging are started in

WSL. You can even open a terminal inside Code that shows you a Bash shell from the

WSL environment.

To get started, we need to install the “WSL Remote” extension inside Code:

 1. To Start Code, select it from the Start/Flag menu in Windows; or

open the run dialog (windows key + R), type code, and hit enter;

or use Windows search by pressing the Windows key on your

keyboard, then type code, and finally press enter.

 2. Press Ctrl+P, and type ext install remote-wsl, and then press

Enter. This will open the extensions screen with the WSL Remote

extension.

 3. Click the “Install” button in the right-hand pane of Code

underneath the extension title “Remote – WSL” (Figure 10-17).

Figure 10-17. Installation screen of WSL Remote extension for Visual Studio Code

Chapter 10 Using WsL for enterprise DeveLopment

247

Now that we have the extension, we may open a file or folder from our WSL distro:

 1. Press Ctrl+Shift+P.

 2. Type remote-wsl.

 3. Choose the “New Window…” option to open a new window with

the default WSL distro, or “New Window using distro…” to choose

which distro you want to use (Figure 10-18).

 4. Select “Open Folder” to find and open a folder from your WSL

distro (Figure 10-19).

Figure 10-18. Opening a new Code window connected to WSL

Chapter 10 Using WsL for enterprise DeveLopment

248

You will note that when you connect to a WSL instance, the terminal automatically

opens in the bottom right of the Visual Studio Code window. This terminal is a direct

view to BASH running inside WSL, so anything that would be possible on the command

line without Code is possible here (Figure 10-20).

Figure 10-19. Opening a folder from the now-connected WSL instance

Figure 10-20. Showing that the terminal inside Code is the real WSL terminal

Chapter 10 Using WsL for enterprise DeveLopment

249

With the client-server mechanism that Code uses, you can even debug your code

running in WSL from Code running in Windows. Here, we are hitting a breakpoint in a .NET

web application that is running in WSL with Code running in Windows (Figure 10-21).

 JetBrains IDEs
JetBrains IDEs support opening a project from within a WSL 2 instance by showing the

\\wsl$ special paths in the File ➤ Open dialog (Figure 10-22). When opening or creating

a project from a \\wsl$ path, the JetBrains IDE will automatically switch to using Git

from within the WSL instance.

Figure 10-21. Debugger hitting a breakpoint in Windows while debugging a .NET
web app running in WSL

Chapter 10 Using WsL for enterprise DeveLopment

250

Like with Visual Studio and Visual Studio Code’s remote debugging in WSL, JetBrains

IDEs are growing support for executing more build and debug steps within the WSL

instance. One of the better supported experiences is within WebStorm when building a

NodeJS project. When creating a project, you can specify that WebStorm uses the node

and npm executables from your WSL instance.

When creating a new project, you can specify tooling inside WSL:

 1. Select the “Node interpreter” drop-down, and choose add

(Figure 10-23).

Figure 10-22. The JetBrains IDE’s “Open File or Project” window showing
available WSL paths

Chapter 10 Using WsL for enterprise DeveLopment

251

 2. Inside the new dialog, enter the path to your node executable,

which is likely /usr/bin/node but might be different on your

system (Figure 10-24).

Figure 10-23. Adding a new “Node interpreter” to WebStorm

Figure 10-24. Setting the path to the “node” executable in the Ubuntu WSL
distribution

Chapter 10 Using WsL for enterprise DeveLopment

252

 3. Now, add any code, and then run or debug your application using

the normal JetBrains methods. In the following, you see that a

trivial example is indeed executing inside WSL as indicated by the

word “linux” in the output “Hello linux World!” (Figure 10-25).

 Utilizing GPU Compute Pass-Through
Artificial intelligence and machine learning (AI/ML) are becoming almost a staple

requirement for many projects. One of the most popular AI/ML frameworks is

TensorFlow by Google. With TensorFlow, use comes a lot of compute-intensive

calculations, which do not perform well on a generic CPU, and TensorFlow recommends

using a GPU to accelerate the calculation speed by many orders of magnitude.

However, in WSL 2, the GPU is being used in Windows to run your display, and

it cannot be detached from Windows to be dedicated to the WSL 2 virtual machine

via a virtualization technology known as PCI pass-through or GPU pass-through. AI/

ML workflows are enabled beginning with Windows Insider Build number 20150 and

available in Windows 21H1 release to the public, where WSL 2 exposes an API to access

your workstation’s GPU without using pass-through to detach it from your Windows

system.

 NVIDIA CUDA
• To enable NVIDIA CUDA, you must have an NVIDIA GPU and have

downloaded and installed the developer drivers from NVIDIA at

https://developer.nvidia.com/cuda/wsl.

Figure 10-25. Running a trivial example to show it is executing in WSL

Chapter 10 Using WsL for enterprise DeveLopment

https://developer.nvidia.com/cuda/wsl

253

The best experience with TensorFlow for NVIDIA CUDA is to use Docker inside your

WSL instance. If you have Docker Desktop installed on Windows, please ensure that WSL

integration is disabled for the WSL instance because we will install a native Docker on

that system. Docker Desktop support for GPU Compute is planned.

 1. Install Docker in your WSL instance. Here, we are assuming either

Debian or Ubuntu:

sudo apt -y install docker.io

sudo adduser $USER docker

 2. Enable the NVIDIA APT repositories:

distribution=$(. /etc/os-release; echo IDVERSION_ID)

curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey |

sudo apt-key add

curl -s -L https://nvidia.github.io/nvidia-

docker/$distribution/nvidia-docker.list | sudo tee /etc/

apt/sources.list.d/nvidia-docker.list

curl -s -L https://nvidia.github.io/libnvidia-container/

experimental/$distribution/libnvidia-container-

experimental.list | sudo tee /etc/apt/sources.list.d/

libnvidia-container-experimental.list

 3. Refresh your APT caches, and install the NVIDIA runtime to

support our containers’ access to our workstation’s GPU:

sudo apt update

sudo apt install -y nvidia-docker2

 4. It is necessary, now, to shut down the WSL instance. Assuming it

is called Ubuntu-20.04, run

wsl.exe --terminate Ubuntu-20.04

Chapter 10 Using WsL for enterprise DeveLopment

254

 5. Now, run a benchmark to test that CUDA is working correctly. It

should report your GPU Device name; here, it is “GeForce GTX

960” (Figure 10-26).

docker run --gpus all nvcr.io/nvidia/k8s/cuda-sample:nbody

nbody -gpu -benchmark

 6. We can now start to play around with TensorFlow. Start a new

container running Jupyter Notebooks (Figure 10-27):

docker run -u $(id -u):$(id -g) -it --gpus all -p 8888:8888

tensorflow/tensorflow:latest-gpu-py3-jupyter

Figure 10-26. Running an NVIDIA CUDA benchmark in a Docker container

Chapter 10 Using WsL for enterprise DeveLopment

255

 7. Find the URL on the last line of the output from starting the

container, and copy it into your browser’s address bar, replace

127.0.0.1 with the word localhost, and press enter to navigate

there (Figure 10-28).

You are now all set to start using TensorFlow with NVIDIA CUDA inside WSL 2.

Figure 10-27. Successfully starting Jupyter Notebooks with TensorFlow

Figure 10-28. The welcome page of Jupyter Notebooks showing the tensorflow-
tutorials subfolder

Chapter 10 Using WsL for enterprise DeveLopment

256

 DirectML for Non-NVIDIA GPUs
• To enable DirectML on an AMD GPU or an AMD CPU that has

graphics built into the CPU, you must download and install the

developer drivers from AMD at www.amd.com/en/support/kb/

release-notes/rn-rad-win-wsl-support.

• To enable DirectML on an Intel GPU or an Intel CPU that has

graphics built into the CPU, you must download and install the

developer drivers from Intel at https://downloadcenter.intel.

com/download/29526.

We will install TensorFlow with DirectML support using “Miniconda.”

 1. Download and install Miniconda:

wget https://repo.anaconda.com/miniconda/Miniconda3-

latest-Linux-x86_64.sh

bash Miniconda3-latest-Linux-x86_64.sh

 2. Create a new Python environment, and activate it inside your

current shell session:

conda create --name directml python=3.6

conda activate directml

 3. Install the TensorFlow package using “PIP,” the Python package installer:

pip install tensorflow-directml

 4. Verify that you can run accelerated workloads with a simple

example. Paste the following code into an interactive Python

session, which can be started by running python:

import tensorflow.compat.v1 as tf

tf.enable_eager_execution(tf.ConfigProto(log_device_placement=True))

print(tf.add([1.0, 2.0], [3.0, 4.0]))

For more examples, see Microsoft’s GitHub repository at https://github.com/

microsoft/DirectML.

Chapter 10 Using WsL for enterprise DeveLopment

http://www.amd.com/en/support/kb/release-notes/rn-rad-win-wsl-support
http://www.amd.com/en/support/kb/release-notes/rn-rad-win-wsl-support
https://downloadcenter.intel.com/download/29526
https://downloadcenter.intel.com/download/29526
https://github.com/microsoft/DirectML
https://github.com/microsoft/DirectML

257
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_11

CHAPTER 11

Troubleshooting WSL

 Installation
When it comes to installing WSL, it is generally smooth sailing, but there are a few

scenarios where things can go wrong. In this section, we will go through a few of these

scenarios and things to check.

 Ensure the Windows Optional Features Are Enabled
The first thing to check when you have problems enabling WSL is that the required

bits of Windows are enabled. You must ensure that the Windows components are

named “Virtual Machine Platform” and “Windows Subsystem for Linux.” The easiest

way to do this, without navigating through menus, is to open a PowerShell window

as Administrator and execute two commands. These two commands will enable the

required Windows Optional Features. Alternatively, you may use the “Turn Windows

features on or off” dialog (Figure 11-1).

https://doi.org/10.1007/978-1-4842-6873-5_11#DOI

258

To turn the Windows features on using PowerShell (Figure 11-2), press the Windows

key on your keyboard, and type “powershell”:

 1. Click the item in the right-hand pane labeled “Run as

Administrator.”

Figure 11-1. Enabling Windows features GUI

Chapter 11 troubleshooting Wsl

259

 2. In the new PowerShell window, run as follows (Figure 11-3):

Enable-WindowsOptionalFeature -Online -FeatureName

VirtualMachinePlatform

Enable-WindowsOptionalFeature -Online -FeatureName

Microsoft-Windows-Subsystem-Linux

Figure 11-2. Locating PowerShell using the Windows key and running as
Administrator

Figure 11-3. Enabling WSL 1 and 2 using PowerShell

Chapter 11 troubleshooting Wsl

260

 Check Your Security Application
Some third-party antivirus applications can prevent WSL from running. The most

common way they impact WSL is by blocking access to “lxcore” or “lxsys.” These are

required for WSL to operate correctly. You should check that they are not being blocked

by your antivirus application or that they are added to the antivirus’ Allow-list.

 Get the Latest Distro from the Windows Store
It is always a good idea to ensure you have the latest launcher for your distro installed.

The launcher is what is downloaded from the Windows Store, so you should check that it

is up to date with the standard Windows Store methods.

Navigate to the Microsoft Store entry for your preferred WSL Distro (Figure 11-4),

and click “Install,” if it is not currently installed, or “Update,” if there are any updates

available.

Alternatively, navigate to the Store’s “Downloads and Updates” page to see if your

distro has an update available (Figure 11-5).

Figure 11-4. Ubuntu WSL distro entry on the Microsoft Store

Chapter 11 troubleshooting Wsl

261

 Virtualization
Another common issue is encountered when running Windows inside of a virtual

machine such as those created by VirtualBox. Unless your virtualization platform allows

you to expose “nested virtualization,” WSL 2 will not run. You may find that you can still

use WSL 1 when you are running inside a virtual machine because WSL 1 does not rely

on hardware-based virtualization technologies, sometimes known as VT-x (Intel’s name)

or SVM (AMD’s name).

 Linux Component Dependencies
Like any complex operating system, the Linux ecosystem is heavily intertwined with

dependencies. Many applications will require features to be available and running to

work. Some of these include “systemd,” “DBUS,” and kernel modules.

Figure 11-5. Checking for updated WSL distro images in Downloads and updates
section of the Microsoft Store

Chapter 11 troubleshooting Wsl

262

 systemd
The standard mechanism for handling system services in a Linux distro is usually

provided by “Systemd.” This is normally the first process that starts when booting up.

Due to the way that WSL 1 and WSL 2 are implemented, Systemd is either blocked from

running, in WSL 1, or requires a work-around using Process Namespaces, in WSL 2.

When you issue a command that interacts with the Systemd process, such as systemctl

to manage services, it will emit the following (Figure 11-6).

This indicates that Systemd is inoperable and that you need to find an alternative

way of running your application.

Some applications will refuse to start unless they are run through Systemd. One

prime example is the Snapd daemon that manages Linux Snap Packages (see https://

snapcraft.io/ for information about Snaps.) This means that Snaps are not usable in

WSL without work-arounds.

 dbus
Common in GUI applications, the DBUS service is used to pass messages between

applications in a consistent way. Normally the DBUS service is started and stopped

with your session by the Systemd process. In WSL, however, Systemd is nonoperational

by default as we explored earlier. When an application tries to use the DBUS service, it

will likely emit messages to the console indicating the error, or it might refuse to start

(Figure 11-7).

Figure 11-6. A Linux application failing to run because of a systemd dependency

Chapter 11 troubleshooting Wsl

https://snapcraft.io/
https://snapcraft.io/

263

You can fix this with the following command every time you enter the WSL

environment:

dbus-launch --exit-with-x11

It might be useful to add the line into your WSL user’s .bashrc file so that it is run

every time you start a shell. However, the first time you try this, you will receive an error

message (Figure 11-8).

To fix this, run the following (Figure 11-9). It is only required once:

sudo dbus-uuidgen –ensure

Figure 11-7. A Linux GUI application attempting to contact DBUS

Figure 11-8. DBUS refusing to run without a unique DBUS UUID

Chapter 11 troubleshooting Wsl

264

 Kernel Modules
Some applications might require specific kernel modules to be enabled. These require

that you use WSL 2 for its native Linux kernel so that you can use real Linux kernel

modules. However, the kernel supplied by Microsoft might not include the module that

your application requires. You can discover this by examining the output of running your

application for warnings or errors indicating the kernel module is missing, or the output

of dmesg, which is a utility to show the internal kernel log messages.

 Linux Applications
When a Linux application fails, there are a few tools that you may find useful:

• GDB – The GNU debugger

• strace – Trace system calls and signals

The most useful of these for WSL is “strace,” which allows us to see into the system

calls that an application uses.

Figure 11-9. Having generated a DBUS UUID and manually started DBUS, our
Linux GUI application now starts successfully

Chapter 11 troubleshooting Wsl

265

 Using “strace” on WSL 1
Since WSL 1 is a translation layer that has been written from scratch without using any

Linux source code, some system calls may be unimplemented. We can use “strace” to see

all the system calls that an application makes to try to pinpoint a missing feature in WSL 1.

For an example, consider that we want to investigate the ls command’s system calls.

We prefix the command with strace and execute (Figure 11-10):

strace ls

This will output a lot of log messages as the command runs. It can be useful to restrict

the system calls that are monitored by adding the -e flag. The following command will

restrict the output to only the openat and close system calls (Figure 11-11):

strace -e openat,close ls

Figure 11-10. Output of an strace on the ls command

Chapter 11 troubleshooting Wsl

266

You can find a list of Linux system calls in the “manpage” documentation at

https://man7.org/linux/man-pages/man2/syscalls.2.html, or with the following

command, if you have the manpages-dev package installed:

man 2 syscalls

If you use the man command, navigate the manpage with the page up and page down

buttons or the arrow keys, and quit by typing q.

Figure 11-11. Using strace options to limit output to file operations

Chapter 11 troubleshooting Wsl

https://man7.org/linux/man-pages/man2/syscalls.2.html

267
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5_12

CHAPTER 12

Deploying WSL at Scale

 Considerations for Deploying
Deploying WSL at scale requires you to be aware of some important things for the best

experience.

It is important to make sure that when a user restarts their system, the %APPDATA%\

local directory of their user account is preserved. If the directory is erased, the user

will need to reinstall their WSL distro(s) every time that they log in to Windows. This

is because the WSL file systems are stored within this directory. As an alternative, you

could install the distros on behalf of the user via automation with the wsl.exe --import

command, which allows you to specify where to save the WSL file system. This would let

you choose a location that is persistent.

Once a WSL distro has been installed, it is important to remember that the user of

the Windows PC will have root access to the WSL distro. The Linux root user is like the

Windows Administrator account in that it is fully privileged within the Linux distro.

While the user will have root access to their WSL distros, and can do anything inside

that distro, your Windows security policies will still apply to Windows resources. So, even

with root access in the WSL distros the user has installed, they will only have as much

access to Windows resources as their Windows account allows.

You will likely find that managing multiple PCs and users with WSL installations is

challenging. It is advised to use Ansible or Landscape or another management system to

ensure that you have full visibility into the distros you have deployed.

With Windows use comes the inevitable challenge of keeping the systems clear of

malware and viruses. If you are using a third-party security system, you may find that

they block the WSL drivers from being loaded. Make sure you test the deployment before

rolling out to your users to help prevent any unexpected surprises.

https://doi.org/10.1007/978-1-4842-6873-5_12#DOI

268

 Using Intune to Deploy Ubuntu on WSL
In the enterprise world, Mobile Device Management is a common practice to ensure

that all business computers and mobile devices have a standard set of applications and

settings. To fill the MDM role, Microsoft has its Intune product, which you can use to

preload your users’ Windows systems with WSL distros direct from the Windows Store.

By using Intune to deliver WSL distros, your users will have WSL ready to go as soon as

they log in to a corporate device.

 Using Landscape to Manage Ubuntu on WSL
Canonical’s Landscape server is the officially blessed way to manage large Ubuntu on

WSL installations, such as an enterprise network. It allows you to monitor and actively

maintain your fleet of Ubuntu systems by running scripts or installing packages on a

subset or all systems.

 Enroll Ubuntu WSL into a Landscape Server
We will assume you have a Landscape server installed by following the instructions at

https://docs.ubuntu.com/landscape/en/.

This chapter builds on the SystemD-enabled environment we explored earlier,

because landscape-client expects to be managed by the systemd process.

The first step, once you have Launchpad server running, is to log in to the Launchpad

admin screen (Figure 12-1) and navigate to the instructions to find your registration and

ping URLs. Click the link on the leftmost panel of the admin pages labeled following

these instructions. It is important to note that the ping URL is always HTTP (non-

secure), while the registration URL is likely HTTPS (secure).

Chapter 12 Deploying WSl at SCale

https://docs.ubuntu.com/landscape/en/

269

The instructions are reproduced in summary as follows:

 1. Update the repositories:

sudo apt-get update

 2. Install the client:

sudo apt-get install landscape-client

Figure 12-1. The Launchpad admin screen showing the link to instructions for
registering new computers

Chapter 12 Deploying WSl at SCale

270

 3. If you followed the Quickstart installation instructions for your

Landscape server, you will also need to copy the server encryption

key to each host, because it is not signed by a recognized or your

company’s own SSL Certification Authority.

 a. Log in to the Landscape server’s console, and copy the file from /etc/ssl/

certs/landscape_server_ca.crt to a known shared location.

 b. On each system you want to add to the Landscape server, copy the file we

saved earlier in 3.a to /etc/landscape/server.pem on the client.

 c. When you run the command in 4., append the following parameter to use

the saved public key:

--ssl-public-key /etc/landscape/server.pem

 4. Register the computer – your landscape-url will likely differ, you

will want to change My Computer Title to a suitable description

of your WSL instance, and you may need to change the account

name to the name of your Launchpad organization. If in doubt

about the organization name or landscape-url, then consult the

instructions in your Launchpad admin pages.

Figure 12-2. Installing landscape-client through apt-get

Chapter 12 Deploying WSl at SCale

271

sudo landscape-config --computer-title "My Computer Title"

--account-name "standalone" --url https://landscape-url/

message-system --ping-url http://landscape-url/ping

To be able to run commands as root, you need to add the username

when prompted for users that landscape is allowed to use to run

script. In the screenshot, it is configured as the special keyword ALL

which means that landscape may use any user.

Figure 12-3. Successfully registering with Landscape

Chapter 12 Deploying WSl at SCale

272

 5. If the registration is successful, you must accept the computer

by navigating to the Launchpad “Pending Computers” page. The

registration might fail if the hostname is not resolvable by DNS, in

which case you can either use an IP address or add the hostname

to your WSL instance’s /etc/hosts file.

 Executing a Script on the WSL Instance with Landscape
Now that we have the connection established, we can start to run scripts or update

packages. First, we will run a script to show the disk usage of the WSL instance. Navigate

to the computer, and select “scripts” along the top of the rightmost panel.

Figure 12-4. Pending registration for the new computer

Chapter 12 Deploying WSl at SCale

273

Figure 12-5. Configuring the Get Disk usage script

Insert the following script into the Code box:

#!/bin/bash

echo "Free Disk Space"

df –h

echo # blank line to separate the scripts

echo "Disk Usage by top-level folder"

du -sh --exclude=/mnt --exclude=/proc /*

Scroll to the “Run as user” box, and input “root” or another user of your choice – this

user must be allowed by the landscape-client configuration, which is prompted when

you first set up the client. Finally, click the “Run” button at the bottom of the page, and

wait till the script finishes, at which point the page will update to indicate success or

failure.

Chapter 12 Deploying WSl at SCale

274

You can then click the command status to see the output of the script.

 Managing Packages of the WSL Instance with Landscape
We can also manage installed packages by navigating to the Packages tab. To install a

package, enter its name, for example, ffmpeg, into the Search for packages box, and then

click the magnifying glass, or press Enter.

Figure 12-6. Successful execution of our Get Disk usage script

Figure 12-7. The results of running our Get Disk usage script

Chapter 12 Deploying WSl at SCale

275

In the search results page, use the symbol next to any packages you wish to install.

In this example, we have selected the ffmpeg package only.

Click the “Apply changes” button at the bottom, and wait for the task to finish.

Figure 12-8. Searching for a package

Figure 12-9. Selecting a package to install

Chapter 12 Deploying WSl at SCale

276

Finally, we can also perform complete upgrades or security-only upgrades. For

security-only upgrades, if there are any available, you will see a screen similar to the

following on the Packages tab.

You will also see the following information on the Organization tab and the Alerts

drop-down.

Figure 12-10. Successful package installation

Figure 12-11. Available upgrades on the Packages tab

Chapter 12 Deploying WSl at SCale

277

Clicking through the alerts or selecting the computer(s) and choosing the Packages

tab will take you to the same screen where you may select which upgrades to apply.

Here, packages can either be removed by clicking the symbol or upgraded by clicking

the symbol (Figure 12-13). In either case, you apply the changes with the “Apply

changes” button at the bottom.

Figure 12-12. Organization alerts showing available upgrades

Figure 12-13. Selecting a package to upgrade

Chapter 12 Deploying WSl at SCale

278

 Using Ansible to Manage Ubuntu on WSL
Ansible is one of the leading configuration management automation platforms. Being

open source, it is readily available for download from https://github.com/ansible/

ansible and is also available in the Ubuntu APT repository. Developed by Red Hat, there

are also paid plans for support through your journey available at https://ansible.com.

You need a Linux or macOS system to host the server-side part of Ansible, as

Windows is currently unsupported for the server. For the systems you want to manage

from Ansible, you also need to run an SSH server such as OpenSSH. On an Ubuntu WSL

distro, you can install OpenSSH through APT:

sudo apt install openssh-server

However, as WSL does not start services automatically, you will need to set up the

systemd environment as we discussed earlier. Alternatively, if you do not want to run a

SystemD setup, you must invoke the sshd command via some other means such as by a

Windows Task Scheduler job. The Windows Task Scheduler job should run on login to

Windows and use the wsl.exe command to start the distro(s) and sshd within.

To manage multiple WSL distros with Ansible on the same Windows PC, you need

to configure each WSL distro’s sshd to use a unique network “port,” unless both the

management server and the managed WSL 2 instances are on the same PC, the reason

being that you cannot have multiple services listening to the same port; and to manage

from a remote server, rather than the same PC, you need to target the Windows PC’s

hostname or IP address to access the port that is proxied to Windows from each WSL

instance. By default, sshd binds to port 22.

If the server and managed WSL clients are all on the same PC in separate WSL 2

distros, and the distros are using WSL 2, then you may target the relevant distros by their

internal addresses instead of changing the port number of each of the sshd services.

However, the server and clients must use WSL 2 to be reachable by an internal address

separate from the PC’s physical network.

When creating the host inventory for Ansible, you must add the relevant port

number if the WSL distro is configured to use anything other than port 22. On the

management server, create a file at /etc/ansible/hosts to hold your hostnames, or IP

addresses, and optionally their port numbers if not 22:

Chapter 12 Deploying WSl at SCale

https://github.com/ansible/ansible
https://github.com/ansible/ansible
https://ansible.com

279

192.0.2.50

windows-pc.example.org

windows-pc.example.org:8022 ; alternative port number 8022.

You should set up an SSH key pair on the server, with ssh-keygen, and configure

each client to use that for authentication. Ubuntu is set up to support public-key

identification out of the box. You need to copy the SSH public key into each client’s

$HOME/.ssh/authorized_keys file for the user you will be connecting from the server

as. This can be streamlined by using the ssh-copy-id command on a system with both

public and private keys installed, the easiest place being the system you ran ssh-keygen

upon. You might need to reconfigure the clients’ sshd to allow password authentication

for ssh-copy-id to copy the SSH key correctly.

Chapter 12 Deploying WSl at SCale

281
© Hayden Barnes 2021
H. Barnes, Pro Windows Subsystem for Linux (WSL), https://doi.org/10.1007/978-1-4842-6873-5

Index

A
Ansible, 278–279
Apache web server

connection timeout, 204
installation, 201
InterfaceIndex, 208
IP address identification, 203
landing page, 202
localhost, 202
parsing process, 204
port configuration, 207
proxy creation, 205
service command, 201
virtual IP address, 203
Windows Firewall rule, 205–206

Artificial intelligence and machine
learning (AI/ML), 252

B
Base image

bootstrapping, 89
folder creation, 89–90
installation

commands, 90
GIS-workstation metapackage, 94
languages/text encodings, 91–92
software-properties, 93
system environment, 92
universe/multiverse, 94

.bashrc file
config file, 156
distro, 158
script execution, 157
Ubuntu, 156
sudoers file/visudo command, 159

Boot commands, 176
Bootstrapping tool image, 88

C
Component object model (COM), 217

D, E, F
Dependencies, 80
Deployment

distro(s), 267
Intune product, 268
landscape server, 268–277

Deployment Image Servicing and
Management (DISM) tool

imaging purposes, 23
PowerShell, 20–21
WSL version, 21

Distro configuration
automount settings, 101–102
boot, 127
case sensitivity, 105–108
cross-distro mounting, 114–115
default user, 127

https://doi.org/10.1007/978-1-4842-6873-5#DOI

282

enabled option, 102
file permissions, 110
file’s symbolic form

permissions, 111–112
file system tab, 103
fsutil, 106
interoperability

enable option, 121–122
launching notepad, 122
Windows path, 122–123
WSLENV, 123–126

ldconfig settings, 115–117
mask/umask creation, 113
metadata option, 104
mount options, 104
network

DNS file, 119–120
hostname, 120–121
hosts file, 117–118
Ubuntu, 119
virtual network adapter, 120

numeric form, 112
per-distro settings, 101
root folder, 102
symbolic form, 110–111
UID/GID option, 108–109
umask/fmask, 114

Distros
app information

access additional options, 59–60
apps/features, 58
categories, 58
considerations, 60–61
data storage space, 60
expanded menu, 57–59
Microsoft Store, 57
Windows Start button, 58

backing up/exporting, 54–55
converting option, 53
default distro setting, 45
duplication, 56
favorite development applications, 47
import/restore, 54–55
kernel management

advanced options, 65–66
checking/automatic updates, 68
rolling back, 68
updates, 66–67

Microsoft Store, 48
mounting external volumes

block device, 71
disk management, 69
disks/disk images, 69
offline disk information, 70
partition, 72

root user, 48–49
running default screen, 44–45
running option, 44
shutdown command, 51
single command execution, 49–50
specific information, 46–48
state/version, 43
termination, 52
uninstallation, 61

advanced options, 62–63
PowerShell, 63–64
Windows start menu, 62
wsl.exe import, 64–65

Docker desktop
configuration, 240
container images, 240–241
infrastructure, 239
integration, 240
system tray, 238–239
web page, 241

Distro configuration (cont.)

Index

283

G
Geographic information

systems (GIS), 87
Graphical Linux applications (X server)

configuration, 145–146
GUI application

configuration, 153–154
dbus configuration, 155
debugging option, 154–155

installation, 143
VcXsrv project page, 145
Windows, 143–145
WSL 2/GUI apps/firewall

disable access control, 147–148
general connection, 151
inbound connection, 153
inbound firewall rules, 150
networks, 147–149
ports/protocol tab, 152
protocol column, 151
public access, 146–153
TCP public access, 149, 150

Graphical user interface (GUI)
browsing process, 85
confirmation dialog box, 86–87
lp-solve installation, 86
synaptic installation, 84–85
synaptic packages, 86

H
Hyper-V, 23–24

I
init system, 155
Integrated development environment

(IDE), 242–252

J
JetBrains

node execution, 251
interpreter/WebStorm, 251
open file/project, 249–250
trivial execution, 252

K
Kernel-based Virtual Machine

(KVM), 186
configuration, 187
Intel processors, 186–187
guest support selection, 185
nested options, 191

Kernel optimization, 179
access permissions, 195
building process, 188
compilation/installation, 189
config file, 182
confirmation, 193
dependencies, 181
different methods, 180
directories, 181
editing process, 182
error message, 193
GitHub, 180
guest support directory, 184
home directory, 190
KVM (see Kernel-based Virtual

Machine (KVM))
kvm_intel kernel module, 194
make–j 8, 188
menuconfig, 183
monolithic kernel, 189
nested virtualization, 195
operating systems, 196–200
PowerShell tab, 191

Index

284

processor type/features directory, 184
Ubuntu tab, 192
virtualization directory, 186
Windows user home folder, 190
WSL 2/networking, 200–208
.wslconfig configuration, 190

Kubuntu installation
downloading process, 197
properties, 197–198
script creation, 200
virtual hard drive creation, 197
welcome screen, 199

L
Linux

.appx file packages, 27–29
DBUS service, 262–264
developer mode, 28
distribution, 24–25
distro maintenance

administrative tasks, 75
dependencies, 74
installation, 73
packages (see Packages)
sudo/wheel, 75

file system
mounting options, 230–231
partition, 229
physical disk image, 229
wmic command, 228–229

kernel (see Kernel)
kernel modules, 264
Microsoft Store, 26–27
piping (see Piping)
systemd dependency, 262
Tarball (wsl.exe)

directory, 30
groovy build, 32
PowerShell, 35
range platforms, 31
rootfs, 30
Ubuntu release, 30
user creation, 34
whoami verification, 34
Windows terminal, 33

Ubuntu, 26
warning message, 28
WSL version, 25–26

Linux ecosystem, 264
LxssManager services, 2

M
Microk8s workstation

CoreDNS service, 236–238
creation, 233
helm enable command, 237
ingress controller, 237
installation, 235
snap package, 233–234

Mount file systems
file sharing, 226
FUSE/SSHFS, 227–228
Linux

mounting options, 230–231
partition, 229
wmic command, 229
physical disk image, 228–229

Windows Explorer, 225

N, O
Network Address

Translation (NAT), 9

Kernel optimization (cont.)

Index

285

P, Q
Packages

apt-cache search, 82
general principles, 73–74
GUI apt package

manager, 84–87
improvement (upgrades), 76–77
installation, 78–79
manual page, 83
neovim text editor, 78
open source packages, 81
terminal, 81–83
TUI searching, 83–84
uninstalling process, 79
update option, 75–76

PCI pass-through/GPU pass-through
AI/MI workflows, 252
DirectML, 256
Jupyter notebooks, 255
NVIDIA CUDA, 252–255
TensorFlow, 255

Pico process technology, 2
Piping

email process, 222
error message, 215
file compress, 215
file redirection, 221
heredocs, 221–223
meaning, 214
WSL/Windows

cmdlet, 219
component object model, 217
feature, 216
grep services, 220
outlook email compose

window, 219
output process, 217

piping mechanism, 216
PowerShell code, 218
ssh-agent service, 220

PowerShell code, 19–20, 218

R
rootfs tar file

file structure, 95
folder creation, 96
folder view, 95
tarball, 96
Windows file system, 97

S
Solaris Service Management Facility

(SMF), 177
System information

init system, 177–178
modular components, 177
namespace process, 179–180
Solaris service management

facility, 177

T
Terminal User Interface

(TUI), 83–84
Troubleshooting

distro image, 260–261
installation, 257
Linux (see Linux)
security application, 260
virtualization, 261
Windows features

enable option, 257–258
PowerShell code, 258–259

Index

286

U
Ubuntu, 87–88

Ansible, 278–279
groovy build, 32
images, 30
Intune product, 268
landscape server, 268

apt-get, 270
Launchpad admin screen, 268
package installation, 274–277
pending registration, 272
Quickstart installation, 270
registration, 270–271

Linux, 27
package management

installation, 276
organization alerts, 277
packages tab, 276
search option, 274
selection, 275
upgrade process, 277

releases, 31

V
Virtual Application Integrated Locally

(VAIL), 16
Virtualization extensions, 23
Visual Studio

debugging app, 244–245
16.9 version/later, 243
.NET Core debugging, 244
source code

debugging process, 249
distro, 247
folder process, 248
installation screen, 246

terminal inside code, 248
window connection, 247

version 16.8/earlier, 242–243

W, X, Y, Z
Windows interoperability

environmental variables, 223–225
file systems (see Mount file systems)
piping (see Piping)
WSLENV, 223
Wslpath tool, 209
Wslutilities tool

empty file creation, 213
gedit installation, 210
icons search, 211
shortcut creation, 211
splash screen, 212
system information, 212
tools, 210
.txt file, 214
web browser, 213
wslvar, 212
wslview, 213

Windows services
apache2 batch file/script file, 163–164
Apache web server, 159
batch file testing, 161–163
pane management, 165
shell script, 160
sudoers file, 162
task scheduler, 165, 166

actions tab, 172–174
active tasks, 175–176
naming field, 167
program specification, 171
properties dialog, 171–172
start program, 170

Index

287

time setting, 169
trigger option, 168

Windows Subsystem for Linux (WSL)
architecture, 1
file system location, 36
GPU compute support

/dev/dxgkrnl, 11–12
DirectML, 12
DirectX implementation, 11
libraries, 14
Nvidia CUDA, 13
OpenGL/OpenCL

implementation, 12–13
workflow setup, 10

graphical menu, 18
GUI application

VAIL, 16
Wayland application support, 15
Xorg application support, 15

imporing process
base verification, 99
distro test, 98
QGIS running, 100
terminal process, 99
Windows command prompt, 97
wsl.exe, 98

installation location, 35–37
PowerShell, 19, 20
programs/features, 17–18
system call handling, 5
tooling, 37–40
Windows 10, 40–42
WSL 1 vs. WSL 2

availability, 9
Docker/microk8s, 10
kernel drivers, 1
LxssManager, 2
networking configuration, 9

pico processes, 2
syscall translation, 3–5

WSL 2 (see WSL 2 configuration)
WSL 2 configuration

command line, 131
debugging console, 138–139
grep processor, 133
Hyper-V, 6
kernel, 7–8, 129–130
Linux LF/Windows CRLF line

endings, 140
localhost forwarding, 136–137
memory, 133
nested virtualization, 137
page reporting, 135–136
PowerShell, 139
processors, 131–133
registry process, 141

distributions, 141
distro view, 142
individual WSL distribution, 141

swap file, 135–136
swap storage, 134
virtual machine platform, 6–7
Windows subsystem, 8
.wslconfig, 129–140
wsl.exe--shutdown, 139

WSLENV
definition, 123
flags, 126–127
printenv output, 125
share environment variables, 126
system environment variables,

123–124
wsl.exe installation

distributions, 22–23
enable option, 22
Ubuntu, 23

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: WSL Architecture
	WSL 1 vs. WSL 2
	Kernel Drivers
	Pico Processes
	LxssManager
	Syscall Translation in WSL 1

	WSL 2
	Hyper-V
	Virtual Machine Platform
	WSL 2 Kernel

	WSL 1 vs. WSL 2
	Availability
	Why You Would Choose WSL 1
	Why You Would Choose WSL 2

	The Future of WSL
	GPU Compute
	/dev/dxgkrnl
	Direct3D 12
	DirectML
	OpenGL and OpenCL
	Nvidia CUDA
	Libraries

	GUI Support

	Chapter 2: Enabling WSL
	In Programs and Features
	Using PowerShell
	Using DISM
	Using wsl.exe --install
	Installing a Distribution with wsl.exe –install
	Using DISM to Enable WSL in Images
	In Hyper-V Guests
	Installing a Linux Distribution on WSL
	Choice of Distribution
	Consideration: WSL Version When Installing
	Install from the Microsoft Store
	Sideload an .appx File in Developer Mode
	Import a Tarball Using wsl.exe --import

	WSL Installation Mechanics
	Installation Location
	WSL Tooling
	WSL API in Windows 10

	Chapter 3: Managing WSL Distros
	Listing All Distros
	Listing Running Distros
	Running a Default Distro
	Setting a Default Distro
	Running a Specific Distro
	Running as a Specific User
	Executing Single Commands
	Shutdown
	Terminate
	Converting Distros Between WSL Versions
	Export/Backup Distro
	Import/Restore Distro
	Duplicate Distros
	Resetting Distros
	Open WSL Distro “App” Settings
	Advanced Options in WSL Distro “App” Settings
	Considerations: Resetting WSL Distro

	Uninstall Distros from the Microsoft Store
	From the Windows Start Menu
	From Advanced Options in WSL Distro “App” Settings
	Using PowerShell
	Uninstall Distros Installed Using wsl.exe --import

	WSL 2 Kernel Management
	Checking for Available Updates
	Checking Kernel Update Status
	Rolling Back Kernel Updates
	Mounting External Volumes
	Unmounting from Windows

	Chapter 4: Linux Distro Maintenance
	Packages
	Dependencies
	Completing Administrative Tasks with sudo
	Update Packages
	Upgrade Packages
	Installing Packages
	Uninstalling Packages
	Abandoned Dependencies
	Finding Packages
	From the Terminal
	Using a Terminal User Interface (TUI)
	Using a Graphical User Interface (GUI)

	Build Your Own Ubuntu WSL Image
	Install an Image Bootstrapping Tool
	Build Our Base Image
	Customize Base Installation
	Create rootfs tar
	Import into WSL

	Chapter 5: Configuring WSL Distros
	Setting Per-Distro Settings
	Automount Settings
	Enabling
	Root
	File System Tab
	Mount Options
	Metadata
	Case Sensitivity
	Changing the UID and GID of a Mount
	Background on Linux File Permissions
	Symbolic Form
	Checking a File’s Permissions
	Numeric Form
	File Mask
	Changing umask and fmask of a Mount
	Cross-Distro Mounting
	ldconfig

	Network
	Generate Hosts File
	Generate DNS File
	Hostname

	Interoperability
	Enabling
	Appending Windows Path
	WSLENV
	WSLENV Flags

	Default User
	Boot

	Chapter 6: Configuring WSL 2
	.wslconfig
	Kernel
	Kernel Command Line
	Processors
	Memory
	Swap
	Swap File
	Page Reporting
	Localhost Forwarding
	Nested Virtualization
	Debug Console
	Tips
	WSL Registry Settings

	Chapter 7: Customizing WSL
	Using Graphical Applications with X
	Install an X Server on Windows
	Configure WSL to Forward X to Your Windows X Server
	WSL 2, GUI Apps, and Windows Firewall
	Install a GUI Application
	Debugging GUI Applications
	dbus

	Rolling Your Own init System
	.bashrc
	Windows Services
	Windows Task Scheduler

	Boot Command

	Chapter 8: Going Further with WSL 2
	Running systemd
	A Simple Approach to systemd
	Building Your Own Kernel for WSL 2
	Installing a Guest Operating System on KVM on WSL
	WSL 2 Advanced Networking

	Chapter 9: Maximizing Windows Interoperability
	wslpath
	wslutilities
	Redirecting Between Windows and Linux Applications
	Piping
	Piping Between Windows and WSL
	Piping from WSL to Windows
	Piping from Windows to WSL

	File Redirection
	Heredocs

	Environmental Variables
	Mount File Systems in WSL 2
	Windows File Shares
	SSHFS and Other FUSE-Based File Systems
	Native Linux File Systems in a Disk Image or “Partition”
	In a Partition
	In a Disk Image (VHDX File)
	Mounting Options

	Chapter 10: Using WSL for Enterprise Development
	Creating a Microk8s Workstation
	Prerequisites for Microk8s
	Installing Microk8s
	Enabling Microk8s Add-Ons

	Deploy a Cluster with Helm
	Using Docker Desktop
	Installing Docker Desktop on WSL
	Building Docker Container

	Connecting to Editors/IDEs
	Visual Studio
	Installing in Visual Studio Version 16.8 and Earlier
	Installing in Visual Studio Version 16.9 and Later
	Debugging Your App in WSL

	Visual Studio Code
	JetBrains IDEs

	Utilizing GPU Compute Pass-Through
	NVIDIA CUDA
	DirectML for Non-NVIDIA GPUs

	Chapter 11: Troubleshooting WSL
	Installation
	Ensure the Windows Optional Features Are Enabled
	Check Your Security Application
	Get the Latest Distro from the Windows Store
	Virtualization

	Linux Component Dependencies
	systemd
	dbus
	Kernel Modules

	Linux Applications
	Using “strace” on WSL 1

	Chapter 12: Deploying WSL at Scale
	Considerations for Deploying
	Using Intune to Deploy Ubuntu on WSL
	Using Landscape to Manage Ubuntu on WSL
	Enroll Ubuntu WSL into a Landscape Server
	Executing a Script on the WSL Instance with Landscape
	Managing Packages of the WSL Instance with Landscape

	Using Ansible to Manage Ubuntu on WSL

	Index

