
Forensic Analysts are on the front lines of 
computer investigations. This guide aims to 
support Forensic Analysts in their quest to 
uncover the truth. 

grep's strength is extracting information from 
text files. grep operates on one or multiple 
files when provided with a command line 
argument(s) that can also include wildcards: 
 
Example: grep "John" addressbook  
Would return the lines that contained the 
"John" string in the addressbook text file 
 
Some useful flags: 
 
-A Print number of lines after the match 
-B Print number of lines before match 
-c Report number of occurrences 
-f Reads one or more patterns from a file. 

Pattern are terminated by a newline 
-h Suppress the file names on the output 
-i Ignore case 
-l Report matching files, not matching lines 
-P Interpret pattern as a Perl Regex 
-v  Reverse operation: return the lines not 

matching the string 
 
The egrep (extended grep) utility can be useful 
to match several possible strings at the same 
time (in an OR mode):  
 
egrep "John|Peter" addressbook  
grep "John\|Peter" addressbook 
 

grep/egrep 

Purpose 

How To Use This Sheet 

When performing an investigation it is helpful to be 
reminded of the powerful options available to the 
investigator.  This document is aimed to be a 
reference to the tools that could be used. 
 
 

This sheet is split into these sections: 
 
• Hex File Headers 
• grep/egrep 
• sort 
• awk 
• sed 
• uniq 
• date 
• Windows findstr 
 

The key to successful forensics is minimizing 
your data loss, accurate reporting, and a 
thorough investigation.   
 

File headers are used to identify a file by 
examining the first 4 or 5 bytes of its 
hexadecimal content. 
 
Filetype    Start     Start ASCII 
       Translation 
 
ani  52 49 46 46   RIFF 
au  2E 73 6E 64   snd 
bmp  42 4D F8 A9   BM 
bmp  42 4D 62 25   BMp% 
bmp  42 4D 76 03   BMv 
cab  4D 53 43 46   MSCF 
dll  4D 5A 90 00   MZ 
Excel  D0 CF 11 E0 
exe  4D 5A 50 00   MZP (inno) 
exe  4D 5A 90 00   MZ 
flv  46 4C 56 01   FLV 
gif  47 49 46 38 39 61  GIF89a 
gif  47 49 46 38 37 61  GIF87a 
gz  1F 8B 08 08     
ico  00 00 01 00 
jpeg  FF D8 FF E1   
jpeg  FF D8 FF E0   JFIF 
jpeg  FF D8 FF FE   JFIF 
Linux bin 7F 45 4C 46   ELF 
png  89 50 4E 47   PNG 
msi  D0 CF 11 E0 
mp3  49 44 33 2E   ID3 
mp3  49 44 33 03   ID3 
OFT  4F 46 54 32   OFT2 
PPT  D0 CF 11 E0 
PDF  25 50 44 46   %PDF  
rar  52 61 72 21   Rar! 
sfw  43 57 53 06/08  cws 
tar  1F 8B 08 00 
tgz  1F 9D 90 70     
Word  D0 CF 11 E0 
wmv  30 26 B2 75 
zip  50 4B 03 04   PK 

Hex File Header and ASCII Equivalent  

 

 

Hex File Headers and  
Regex for Forensics  

Cheat Sheet v1.0 
SANS Forensics 

 
http://computer-forensics.sans.org 

http://blogs.sans.org/computer-forensics 
By Guy Bruneau, gbruneau@sans.org 

sort 

sort, as its name implies, will sort the 
output. There are a few interesting options you 
can use: 
 
-d Uses dictionary order. Only letters, 

digits and blanks. 
-n  will sort the output assuming it is 

numerical (instead of string) 
-u will remove redundant line, 'uniquing' 

the results 
 



 

awk is an extremely useful tool, especially for 
parsing data structured in columns. It is 
straightforward to use for simple purposes. Its 
basic use is to select some particular columns 
from the output: column 1 is referred to as $1, 
column 2 as $2, etc. 
 
The space is the default awk separator. However 
if you want to be able to parse data separated 
by some other character, e.g. ":", you can use 
the -F flag. 
 
Example:  echo "hello:goodbye" | awk -F: 
'{print $2}'  
 
Would return "goodbye" as an output 

awk 

sed is an excellent command for character 
substitution. Example: if you want to 
substitute the first occurrence of the 'a' 
character by an 'e': 
 

echo "hallo" | sed 's/a/e/' 
 
The output would be: hello 
You can use the g modifier to substitute all 
instances: 
 

echo "Hallo Janny" | sed 's/a/e/g' 
 
The output would be: Hello Jenny 

sed 

 

Forensic Analysis  
Cheat Sheet  

Forensics 
  

MANDIANT 
contact@mandiant.com 

703.683.3141 
http://www.mandiant.org 

 

The Windows findstr has one interesting 
feature that differs from grep. If you need 
to search for multiple strings, you need to 
separate them with a space.  
 
For example, you want or need to look for a 
match for WHITE or GREEN in a text file, you 
write your command like this: 
 
findstr "WHITE GREEN" textfile  
 
To make the search case insensitive, add the 
/I to print all variant of WHITE or GREEN. 
 
Windows findstr Command List 
 
/B Matches pattern if at the beginning of 
 a line. 
/E Matches pattern if at the end of a 

line. 
/L Uses search strings literally. 
/R Uses search strings as regular 

expressions. 
/S Searches for matching files in the 

current directory and all 
subdirectories. 

/I Specifies that the search is not to be 
case-sensitive. 

/X Prints lines that match exactly. 
/V Prints only lines that do not contain 

a match. 
/N Prints the line number before each 

line that matches. 
/M Prints only the filename if a file 

contains a match. 
/O Prints character offset before each 

matching line. 
/P Skip files with non-printable 

characters. 
 

Windows findstr 

Check the date man page for more options. 
 
Returns the real date from epoch time: 
date –d @1284127201 
 
Return an epoch time of 1288756800: 
date +%s -d “2010-11-03”  
 
Return a 2 days old date:  
date --date="-2 days"  +"%Y-%m-%d" 
 
Return 20:00 hours: 
date -d @1288310401 +%k:%M  

The uniq command reads the input and compares 
adjacent lines. If two or more adjacent lines 
are identical, all but one is removed.  
 
Here is a list of the most common options used 
with uniq: 
 
-c     Prefix line with number of occurrence 
-f     Avoid comparing the first N fields 
-i     Ignore case 
-s     Avoid comparing the first N characters 
-u     Only print unique lines 
 
Consider this input file: 
     a 
     b 
     c     
     b 
Now run uniq on it: sort testfile | uniq 
     a 
     b 
     c 
Now run uniq -c on it: 
           
     1   a 
    2   b 
    1   c    

uniq 

Date 


