
Introducing
the MySQL 8
Document Store

Building schemaless database
solutions
—
Charles Bell

www.allitebooks.com

http://www.allitebooks.org

Introducing the MySQL 8
Document Store

Charles Bell

www.allitebooks.com

http://www.allitebooks.org

Introducing the MySQL 8 Document Store

ISBN-13 (pbk): 978-1-4842-2724-4			 ISBN-13 (electronic): 978-1-4842-2725-1
https://doi.org/10.1007/978-1-4842-2725-1

Library of Congress Control Number: 2018945864

Copyright © 2018 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Jonathan Gennick
Development Editor: Laura Berendson
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York, 233 Spring Street,
6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@springer-
sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole member
(owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a
Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.com/
rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/9781484227244. For more
detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Charles Bell
Warsaw, Virginia, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-2725-1
http://www.allitebooks.org

I dedicate this book to the open source enthusiasts of
the world who make the MySQL ecosystem strong.

Live long and prosper, Sakila!

www.allitebooks.com

http://www.allitebooks.org

v

About the Author�� xiii

About the Technical Reviewer��xv

Acknowledgments��xvii

Introduction���xix

Table of Contents

Chapter 1: �Introducing MySQL 8—A New Beginning��� 1

Old Features New Again��� 3

JSON Data Type�� 4

MySQL Shell��� 8

X Plugin, X Protocol, and X DevAPI��� 12

InnoDB Improvements�� 14

New Features��� 16

Data Dictionary��� 17

Account Management�� 18

Removed Options, Variables, and Features�� 19

Paradigm Shifting Features��� 20

Group Replication��� 21

InnoDB Cluster�� 25

Summary��� 34

Chapter 2: �Getting Started with MySQL��� 37

Getting to Know MySQL��� 37

How Do I Connect to MySQL?��� 39

How to Get and Install MySQL�� 42

Configuring and Managing Access to MySQL��� 48

www.allitebooks.com

http://www.allitebooks.org

vi

A MySQL Primer��� 54

Creating Databases and Tables�� 54

Searching for Data�� 57

Creating Data ��� 61

Updating Data��� 62

Deleting Data�� 63

Using Indexes��� 64

Views�� 65

Triggers��� 65

Simple Joins��� 66

Stored Routines�� 69

Summary��� 70

Chapter 3: �JSON Documents�� 73

Concepts and Technologies: Jargon Explained�� 74

Origins: Key, Value Mechanisms��� 74

JSON��� 76

Application Programming Interface�� 76

NoSQL Interface�� 77

Document Store�� 78

Introducing JSON Documents�� 79

JSON Format Rules�� 79

Using JSON in MySQL��� 81

Path Expressions�� 86

JSON Functions�� 94

Combining SQL and JSON - Indexing JSON Data��� 125

Summary��� 133

Chapter 4: �The MySQL Shell��� 135

Getting Started��� 136

Features��� 137

Shell Commands�� 139

Options��� 141

Table of Contents

vii

Sessions and Modes��� 144

Connections�� 146

Set Up and Install��� 150

Install the MySQL Shell��� 151

Setup the X Plugin�� 155

Tutorial: MySQL Shell by Example�� 158

Installing the Sample Database�� 159

SQL��� 162

JavaScript��� 169

Python�� 172

Summary��� 174

Chapter 5: �X Developer API�� 175

Overview�� 176

Clients��� 177

Target Language Conformity�� 178

MySQL X Module�� 180

Classes and Methods��� 181

Session Class��� 185

CRUD Operations�� 191

Example Data Used in this Chapter�� 219

Working with Data Sets�� 220

Expressions�� 233

Warnings and Errors��� 236

Additional Features�� 244

Parameter Binding�� 244

Method Chaining�� 248

CRUD Prepared Statements�� 249

Asynchronous Execution�� 251

For More Information��� 252

Summary��� 253

Table of Contents

viii

Chapter 6: �X Plugin�� 255

Overview�� 255

Features��� 256

Going Deeper—Journey into the Source Code��� 260

Options and Variables�� 263

How to View Values of Variables�� 263

How to Set Values of Variables��� 266

System Variables and Startup Options��� 269

Status Variables�� 271

Monitoring the X Plugin�� 271

Communication�� 273

Connections�� 274

CRUD Operations�� 275

Errors and Warnings��� 276

Sessions��� 277

SSL��� 278

Statements��� 280

Worker Threads�� 281

Summary��� 282

Chapter 7: �X Protocol��� 285

Overview�� 285

Goals for the X Protocol�� 288

X Protocol and Protocol Buffers�� 290

X Protocol: Under the Hood�� 299

Protobuf Implementation�� 299

X Protocol Examples��� 304

X Protocol Walkthrough�� 309

Table of Contents

ix

Creating X Clients��� 315

Setup for the Examples�� 317

Document Store Example��� 319

Relational Data Example��� 325

Summary��� 329

Chapter 8: �Library Application: User Interface�� 331

Getting Started��� 332

Library Application�� 332

Setup Your Environment��� 333

Flask Primer��� 341

Terminology�� 343

Initialization and the Application Instance�� 345

HTML Files and Templates�� 354

Error Handlers�� 368

Redirects�� 370

Additional Features�� 371

Flask Review: Sample Application�� 372

Library Application User Interface Design�� 374

Preparing the Directory Structure�� 375

User Interface Features�� 376

Form Classes�� 380

View Functions��� 384

Templates��� 387

Application Code��� 393

Summary��� 397

Chapter 9: �Library Application: Database Implementations���������������������������������� 399

Version 1: Relational Database�� 400

Database Design�� 400

Database Code��� 404

Table of Contents

x

Application Code��� 417

Templates��� 431

Executing the Code��� 431

Observations��� 433

Version 2: Relational Database + JSON Fields (Hybrid)��� 434

Database Design�� 434

Database Code��� 437

Application Code��� 450

Templates��� 456

Executing the Code��� 458

Observations��� 461

Version 3: Document Store��� 461

Database Design�� 462

Database Code��� 463

Application Code��� 477

Templates��� 484

Executing the Code��� 486

Observations��� 489

Challenges��� 489

Summary��� 490

Chapter 10: �Planning for MySQL 8 and the Document Store��������������������������������� 491

Upgrading from MySQL 5.7 and Earlier�� 492

Types of Upgrades�� 492

Upgrade Practices�� 496

Reasons for Upgrading��� 501

Considerations for Upgrading to MySQL 8�� 502

Migrating to Schemaless Documents�� 504

Normalization vs. Denormalization��� 505

Formal Rules vs. Heuristics�� 505

Table of Contents

xi

Take Storage for Granted�� 507

Embed or Separate?��� 507

Strategies for Migrating to a Document Store�� 508

Document Store Tips and Tricks�� 522

Summary��� 524

�Index�� 525

Table of Contents

xiii

About the Author

Charles Bell conducts research in emerging technologies.

He is a member of the Oracle MySQL Development team,

and is a senior software developer for the MySQL Enterprise

Backup team. He lives in a small town in rural Virginia with

his wife. He received his doctor of philosophy in engineering

from the Virginia Commonwealth University in 2005. 

Charles is an expert in the database field and

has extensive knowledge and experience in software

development and systems engineering. His research

interests include 3D printers, microcontrollers, three-dimensional printing, database

systems, software engineering, and sensor networks. He spends his limited free time

as a practicing maker, focusing on microcontroller projects and refinement of three-

dimensional printers.

xv

About the Technical Reviewer

Paulo Jesus is currently a principal software developer at

Oracle, in the MySQL Engineering Team. He obtained his

PhD in distributed systems in 2012, from the MAP-i doctoral

program in computer science by the Universities of Minho,

Aveiro, and Porto (Portugal). He also has a MSc degree

in mobile systems (2007). His research interests include

distributed algorithms, fault tolerance, and mobile systems.  

xvii

Acknowledgments

I thank all the many talented and energetic professionals at Apress. I appreciate

the understanding and patience of my acquisition editor, Jonathan Gennick, and

coordinating editor, Jill Balzano. They were instrumental in the success of this project.

I also thank the army of publishing professionals at Apress for making me look so good

in print with a special thank you to the reviewers for their wise council and gentle nudges

in the right direction. Thank you all very much!

I also am indebted to the technical reviewer for his insight and guidance in making

this book the best book on the new MySQL Document Store.

Most important, I thank my wife, Annette, for her unending patience and

understanding while I spent so much time with my laptop.

xix

Introduction

NoSQL has been given a lot of hype in recent years. As with most new technologies, the

underlying principles are rarely truly new, rather, it is the unique combination of known

technologies that forms and transforms the whole to become more than the sum of its

parts. This is especially true for MySQL 8 and the new MySQL Document Store. Never

has MySQL offered so much for so many. Whether you want a traditional relational

database solution with a strong foundation or you want the ultimate flexibility to store

JSON documents in a document store—or anywhere in between, MySQL can do it.

The trick then is learning how to migrate your applications using each of these

technologies: whether you use traditional tables with fixed schemas or you have some

JSON fields to allow some freedom from rigid structure or you employ the flexibility of a

JSON-based document store.

This book will give you the knowledge you seek to navigate the MySQL Document

Store including how to migrate existing applications and best practices for using a

document store solution.

�Intended Audience
I wrote this book to share my passion for the new MySQL Document Store and Python.

I especially wanted to show how anyone can write document store solutions without

investing in learning a large, complex language and development environment. The

intended audience therefore includes anyone interested in learning about the MySQL

Document Store such as database administrators, developers, and information

technology managers and strategic planners.

�How This Book Is Structured
The book was written to guide the reader from a general knowledge of the new

features in MySQL 8 to detailed explanations of the components that make up the

MySQL Document Store. The first several chapters cover general topics including a

xx

short introduction to MySQL 8, how to install MySQL 8, and how to configure the new

document store components. Later chapters present more detailed coverage of the

MySQL Document Store components including the MySQL Shell, X DevAPI, X Plugin,

and more. Following those chapters is a pair of chapters that present an example

application for storing information on books written as a relational database, a hybrid,

and a document store. Thus, you can see how to migrate a single application through

those variants. The book concludes with some notes about upgrading to MySQL 8 and

best practices for using the MySQL Document Store including a recap of the migration

process. The following is a brief overview of each chapter included in this book.

•	 Chapter 1, “Introducing MySQL 8—A New Beginning”: This chapter

explores some of the highlights of the new MySQL server version

8.0. You will discover those features originally introduced in earlier

versions that have been adapted to the new paradigm that is version

8.0, features that are new, and those new features that are truly

revolutionary such as the document store, Group Replication, and

InnoDB Cluster.

•	 Chapter 2, “Getting Started with MySQL”: This chapter presents

a tutorial on MySQL discussing the power of using the MySQL

database server in its traditional role using the SQL interface; how to

issue commands for creating databases and tables for storing data

as well as commands for retrieving that data. Although this chapter

presents only a small primer on MySQL, you will learn how to get

started with your own installation of MySQL.

•	 Chapter 3, “JSON Documents”: This chapter explores the JSON

data type in more detail. You will see examples of how to work with

the JSON data in relational tables via the numerous built-in JSON

functions provided in MySQL. The JSON data type is key to allowing

users to develop hybrid solutions that span the gulf of SQL and

NoSQL applications.

•	 Chapter 4, “The MySQL Shell”: This chapter demonstrates how

to use the MySQL Shell including a look at the startup options,

shell commands, connections, sessions, and we even how to do a

bit of interactive scripting in JavaScript and Python. This chapter

Introduction

xxi

therefore is the key chapter for learning how to get started with the

MySQL Shell and working with JSON and relational data. Although

this chapter is not an exhaustive coverage of all the features of the

MySQL Shell, it provides a broad tutorial for how to use it for the most

common tasks.

•	 Chapter 5, “X Developer API”: This chapter explores the X DevAPI

and examines the major classes and methods available for

connecting to the MySQL server, creating collections, working with

results, and even how to work with relational data. Finally, you will

see a set of quick references tables that you can use as the primary

reference for developing document store applications.

•	 Chapter 6, “X Plugin”: This chapter discusses the X Plugin and how it

works. In particular, you will see how to configure the X Plugin such

as changing the port and enabling secure connections via SSL that

are separate from the server. The chapter also presents some of the

other system variables as well as a lengthy list of status variables that

you can use to monitor the X Plugin.

•	 Chapter 7, “X Protocol”: This chapter examines the X Protocol

starting with the motivations for why it was created, the chief tenets

or goals of the design, and how it was implemented using protobuf

as the foundation. You will see a walkthrough of how portions of the

X Protocol work for simple use cases. The chapter also presents an

example of how to use protobuf in our applications for moving data

(messages) around in the code (on disk, over the wire, etc.), which

illustrates the power of protobuf.

•	 Chapter 8, “Library Application: User Interface”: This chapter

presents a web application library for Python named Flask. You will

learn how Flask is built as an extensible framework that is easily

augmented with components to make your application more robust.

The chapter also presents an introduction to the user interface for the

library application built on the foundations of what we learned about

Flask.

Introduction

xxii

•	 Chapter 9, “Library Application: Database Implementations”: This

chapter explores the differences between a relational database

solution and a relational database solution augmented with JSON

fields, and finally a pure document store solution. This chapter

demonstrates how to build applications for any of these solutions

with complete code that demonstrates many of the tenets of the X

DevAPI and the MySQL Document Store.

•	 Chapter 10, “Planning for MySQL 8 and the Document Store”: This

chapter presents some strategies for migrating to MySQL 8 including

considerations and best practices for migrating applications to use

the document store with another example of migrating existing

database applications. The chapter concludes with some tips and

tricks for working with MySQL 8.

�How to Use This Book
This book is designed to guide you through learning more about MySQL 8, JSON, the

MySQL Document Store, discovering the power of X DevAPI, and learning how to

migrate existing and building new document store applications.

If you are new to MySQL, you should spend some time going through the first four

chapters including installing MySQL on your own system and learning how to use the

MySQL Shell.

If you are familiar with Python and have used the X DevAPI via the MySQL Shell,

you may want to read the chapters on the X DevAPI skimming through the examples.

On the other hand, if you have not used the X DevAPI or Python, you should attempt to

reproduce all the code examples in the chapters.

Once you are familiar with MySQL and the X DevAPI from reading the first seven

chapters, you can work through Chapters 8 and 9 that present a complete solution that

demonstrates how to build a relational database solution, the same solution as a hybrid

relational table with JSON columns, and a migration to a full document store solution.

Planners may find Chapter 10 especially helpful in planning to upgrade to MySQL 8

and to adapt the MySQL Document Store to your infrastructure.

Introduction

xxiii

�Downloading the Code
The code for the examples shown in this book is available on the Apress web site,

www.apress.com. You can find a link on the book’s information page on the Source

Code/Downloads tab. This tab is in the Related Titles section of the page.

�Contacting the Author
Should you have any questions or comments—or even spot a mistake you think I should

know about—you can contact me at drcharlesbell@gmail.com.

Introduction

http://www.apress.com/

1
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_1

CHAPTER 1

Introducing MySQL 8—A
New Beginning
It is a testament to the dedication of the Oracle MySQL engineers (and Oracle itself)

that MySQL continues to improve with new features. The drive within the MySQL

engineering division is to continue to develop disruptive database technologies for the

Internet. Oracle has not only fostered this aggressiveness but has continued to live up to

its promise to invest in and expand their MySQL business. The newest version, MySQL

8, proves conclusively that Oracle has fulfilled the promise to ensure MySQL will remain

the world’s most popular open source database system.

Previous versions of MySQL have added some new and interesting features since

MySQL 5.01 making MySQL a better product. Although the features have been well

received and used to solve a lot of problems, the changes were largely evolutionary

improvements rather than revolutionary changes.

This tendency is not unique to MySQL nor is it unusual in a stable, mature product.

That doesn’t mean evolutionary development is bad—it isn’t. However, given that

several competitive technologies have emerged, the MySQL engineers realized they

must reach higher and further if they are to continue to dominate the industry.

Thus, this new release of MySQL breaks many of the molds of previous versions

adding new, revolutionary features that change the firmament of how some will use

MySQL. Indeed, the version number alone has jumped from 5.x to 8.02 signifying the

jump in technological sophistication and the break from continuous development of the

5.x codebase, which lasted for over 13 years.

1�MySQL 5.0 was first released (alpha) in December 2003.
2�Some would say the change in version number is not only welcome but also long overdue.

2

The changes to MySQL 8.0 include changes to existing features as well as some new,

game changing features. This book examines one of the most important and newest

features: the MySQL Document Store. However, there are other equally as important

features such as Group Replication and the InnoDB Cluster. Although I focus on the

document store, I will also see how these other features can be leveraged to take your

MySQL installation into the future.

MYSQL—WHAT DOES IT MEAN?

The name MySQL is a combination of a proper name and an acronym. SQL is structured query

language. The My part isn’t a possessive form—it is a name. In this case, My is the name of the

founder’s daughter. As for pronunciation, MySQL experts pronounce it “My-S-Q-L”—not “my sequel.”

In this chapter, I examine some of the new features of MySQL 8 including a short

introduction to some of the features that were emerging technologies from previous

versions, new features unique to MySQL 8, and those revolutionary features that make

MySQL 8 the greatest MySQL release to date.

Note  This book is based on the MySQL 8.0.11 release with a focus on the
document store. There are many more new features than those that are listed in
this chapter. Be sure to consult the latest MySQL online MySQL reference manual
(https://dev.mysql.com/doc/refman/8.0/en/) for a complete list of the
new, updated, and removed features.3

The new features have a great deal of sophistication. As you will see, some of the

features are designed to work together and others are designed as add-ons. Rather than

explain every minor detail or list features and benefits, the following sections present the

basics of the various features available today in MySQL 8 so that you can get an idea of

what is available. You will also see just how far the new version has advanced beyond the

traditional MySQL mechanism of storage and retrieval.

Let’s begin with a look at some of the features that were part of earlier releases but

are now refined and more fully integrated into the server.

3�The online MySQL reference manual refers to the reference manual for MySQL Server.
References to other such manuals are prefaced with the product name.

Chapter 1 Introducing MySQL 8—A New Beginning

https://dev.mysql.com/doc/refman/8.0/en/

3

�Old Features New Again
The first category of features includes those under development in MySQL 5.7 either as

a separate, experimental development project; a plugin; or as a planned feature for a

later stable release. Thus, these features had already been released in some limited form.

Most were considered “development releases” and were accompanied with a disclaimer

that strongly suggested they not be used in a production environment. Some had been

included in the latest release candidate (RC) versions of the server.

To be more precise, Oracle released these features as early releases so that systems

and database administrators, information technology architects, and other planners

could try out the features and provide feedback to help the feature mature. It also allows

customers to adapt the technologies early in development environments in case the

features required changes to the infrastructure or applications.

WHAT IS A PLUGIN?

Plugins are means that add functionality to the server without having to compile and rebuild

the server proper to incorporate the new features. Plugin technology has been around for a

long time. In fact, MySQL originally supported pluggable storage engines that allowed you to

add and remove storage engine options on the fly. The MySQL plugin technology has evolved

since those days, but the concept is the same. As long as the plugin is compatible with the

server version, you can download MySQL plugins from Oracle and install them on your server

for immediate use.

Plugins are also a convenient way for Oracle to release new features into existing, stable

releases. For example, new features, such as Group Replication, have been introduced as

plugins (but are included in the latest release). Even if a plugin is released as a development

release (think early beta), you could still use it with the compatible GA (generally available)

release of the server. This allows Oracle to produce features much more quickly than having

to bundle them with a major server release. In the case of Group Replication and similar

technologies, this has saved Oracle years of development work by making the features

available to users in near record time.

There are several features that have evolved in the MySQL 5.7 code base. The

following are some of the key features that I explore in this book. These include the JSON

data type and the MySQL Shell.

Chapter 1 Introducing MySQL 8—A New Beginning

4

�JSON Data Type
As of MySQL version 5.7.8, MySQL supports a native JSON data type that enables

efficient access to data in JSON documents in a table row. Thus, you can have columns

in your table of the JSON data type. JSON stands for JavaScript Object Notation.4 The

new JSON data type is a key component to using MySQL as a document store. In short,

JSON is a markup language used to exchange data. Not only is it human readable, it

can be used directly in your applications to store and retrieve data to and from other

applications, servers, and even MySQL.

Note  I give a very brief overview of the JSON data type and JSON documents in
this section. I give an in-depth look at JSON in Chapter 3.

In fact, JSON looks familiar to programmers because it resembles other markup

schemes. JSON is also very simple in that it supports only two types of structures: 1) a

collection containing pairs (name, value), and 2) an ordered list (or array). Of course,

you can also mix and match the structures in an object. When we create a JSON object,

we call it a JSON document.

The JSON data type, unlike the normal data types in MySQL, allows you to store

JSON formatted objects (documents) in a column for a row. You can have more than

one JSON column (field) in a single table. Although you could do this with TEXT or

BLOB fields (and many people do), there is no facility built into MySQL to interact with

the data in TEXT and BLOB fields. Thus, manipulation of the data is largely application

dependent. In addition, the data is normally structured such that every row has the same

“format” for the column. Storing data in TEXT and BLOB fields is not new and has been

done for years.

This could work by using a single string or even a binary representation of data and

storing it in the TEXT or BLOB field. If the data is small enough, you could store it in a

VARCHAR and similar string column. To store and retrieve data in this manner, you have

to encode then decode the data—something that could be tedious—especially if you're

trying to ingest data from someone else.

4�http://www.json.org/

Chapter 1 Introducing MySQL 8—A New Beginning

http://www.json.org/

5

With the JSON data type, you don't have to write specialized code to store and

retrieve data. This is because JSON documents are well understood and many

programming environments and scripting languages support it natively. Think of JSON

as an outgrowth or extension of what XML documents were supposed to be. That is, they

offer a flexible way to store data that may differ from one application to another. JSON

allows you to store the data that you have at the time. Unlike a typical database table,

you don't have to worry about default values (they’re not allowed) or whether you have

enough columns or even master/detail relationships to normalize and store all of the

data in a nice, neat, structured package.

Let's take a look at a simple JSON document that we can store in MySQL. Let's say

we have a contact list in which each contact may or may not have an address on file, may

or may not have an email, multiple phone numbers, and so forth. If you were to create

a typical database table to store this information, you may go so far as to store a lot of

empty columns for entries that you only have a name and a single phone number.

In fact, we can add new data items any time we want without having to alter the

underlining table structure. For example, if you find you later need to add a Skype Id to

some of the records, you can do that in your code adding the key for those entries you

want without having to go back and change any existing data. The only catch is that your

code for reading the data will have to change to test for the existence of the key before

accessing it. I show an example of this in Chapters 8 and 9.

Let’s consider an example contact list that contains several people who perform a

service for me who live in my area. All I need to store is their name and phone number.

Sometimes I only know (or care to store) their first name. I don't need their address

because I never send them anything and they're just down the street after all.

Listing 1-1 demonstrates what some of the entries could look like. I chose to demonstrate

what JSON looks like by using SQL INSERT statements so that you can see one way

unstructured data can be inserted in our database.

Listing 1-1.  Example of JSON Documents

INSERT INTO rolodex.contacts (contact_info) VALUES ('

{

 "name": "Allen",

 "phones": [

 {

 "work": "212-555-1212"

 }

Chapter 1 Introducing MySQL 8—A New Beginning

6

]

}

');

INSERT INTO rolodex.contacts (contact_info) VALUES ('

{ "name": {

 "first": "Joe",

 "last": "Wheelerton"

 },

 "phones": [

 {

 "work": "212-555-1213"

 },

 {

 "home": "212-555-1253"

 }

],

 "address": {

 "street": "123 main",

 "city": "oxnard",

 "state": "ca",

 "zip": "90125"

 },

 "notes": "Excellent car detailer. Referrals get $20 off next detail!"

}

');

Note that I used a bit of formatting with newlines and whitespace to make the JSON

easier to read. However, that is not necessary. Indeed, if we query a table with JSON data

as in the rows in Listing 1-1, we would see the data would display a bit differently.

Listing 1-2 shows the output of a typical SELECT query.

Chapter 1 Introducing MySQL 8—A New Beginning

7

Listing 1-2.  SELECT with JSON Columns

mysql> SELECT * FROM rolodex.contacts \G

*************************** 1. row ***************************

 id: 1

contact_info: {"name": "Allen", "phones": [{"work": "212-555-1212"}]}

*************************** 2. row ***************************

 id: 2

contact_info: {"name": {"last": "Wheelerton", "first": "Joe"}, "notes":

"Excellent car detailer. Referrals get $20 off next detail!", "phones":

[{"work": "212-555-1213"}, {"home": "212-555-1253"}], "address": {"zip":

"90125", "city": "oxnard", "state": "ca", "street": "123 main"}}

2 rows in set (0.00 sec)

That isn’t very easy to read, is it? Not to worry because your applications can ingest

this data easily (those languages that support JSON) so it doesn’t matter so much.

If you want to experiment with this example, you will need to create the structure

and data. In this case, you will need a schema (think database) and collection (think

table). The following are the SQL statements that you need to create the schema and

collection. However, you normally would not use SQL statements with the document

store, but you can since the underlining storage for a collection in MySQL is a specially

formed table shown in the following.

CREATE DATABASE `rolodex`;

CREATE TABLE `rolodex`.`contacts` (

 `id` INT NOT NULL AUTO_INCREMENT,

 `contact_info` json DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4;

The JSON data type enables you to build flexibility into your data storage through

the support built into MySQL for working with the JSON documents as well as additional

facilities to enable interaction with JSON through the MySQL Shell, X Plugin, and X

Protocol. Let’s look at the MySQL Shell.

Chapter 1 Introducing MySQL 8—A New Beginning

8

�MySQL Shell
The MySQL Shell is another feature that was added during the MySQL 5.7 timeframe.

In this case, it was in the form of a new, separate product. The MySQL Shell is the next

generation of command-line client for MySQL. Not only can you execute traditional

SQL commands, you can also interact with the server using one of several programming

languages including Python and JavaScript. Furthermore, if you also have the X Plugin

installed, you can use MySQL Shell to work with both traditional relational data as well

as JSON documents. How cool is that?

Tip Y ou can download the MySQL Shell from http://dev.mysql.com/
downloads/shell/.

If you’re thinking, “It is about time!” that Oracle has made a new MySQL client,

you’re not alone. The MySQL Shell represents a bold new way to interact with

MySQL. There are many options and even different ways to configure and use the shell.

And although we will see more about the shell in Chapter 4, let’s see how to use the shell

to execute the same query shown previously. Figure 1-1 shows a snapshot of the new

MySQL Shell. Note that it provides a very familiar interface albeit a bit more modern and

far more powerful.

Figure 1-1.  The MySQL Shell

Chapter 1 Introducing MySQL 8—A New Beginning

http://dev.mysql.com/downloads/shell/
http://dev.mysql.com/downloads/shell/

9

Listing 1-3 shows how to start the shell and execute a SELECT statement displaying

the results. Note that the command used to launch the shell. In this case, we specify that

we want to use the shell in a manner that resembles the old client in SQL mode (--sql).

Listing 1-3.  Querying JSON data in the MySQL Shell

$ mysqlsh -uroot --sql

Creating a session to 'root@localhost'

Enter password:

Your MySQL connection id is 281 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl SQL > SELECT * FROM rolodex.contacts \G

*************************** 1. row ***************************

doc: {"_id": "9801A79DE093991311E7FFCB243C3451", "name": {"first":

"Allen"}, "phones": [{"work": "212-555-1212"}]}

_id: 9801A79DE093991311E7FFCB243C3451

*************************** 2. row ***************************

doc: {"_id": "9801A79DE0939E0411E7FFCB243DCDE3", "name": {"last":

"Wheelerton", "first": "Joe"}, "notes": "Excellent car detailer. Referrals

get $20 off next detail!", "phones": [{"work": "212-555-1213"}, {"home":

"212-555-1253"}], "address": {"zip": "90125", "city": "oxnard", "state":

"ca", "street": "123 main"}}

_id: 9801A79DE0939E0411E7FFCB243DCDE3

2 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > \exit

Bye!

Chapter 1 Introducing MySQL 8—A New Beginning

10

Note  These examples are executed with a server that has the X Plugin installed
and enabled. Chapter 2 demonstrates how to do this.

Although that is indeed nice, it is not so different than the old client. What makes the

shell really powerful is you can use a scripting language to process the data. Listing 1-4

shows how to launch the shell in Python mode (--python) and execute Python code to

retrieve the same result set. I also demonstrate a nice option that allows us to improve

the JSON output format (--json=pretty). Aha, so now we see that there is a nicer way

to see JSON in results! This option does tend to be rather verbose. I’ve suppressed some

of the more verbose output for clarity.

Listing 1-4.  Using the MySQL Shell with Python

$ mysqlsh -uroot --python --json=pretty

...

 MySQL localhost:33060+ ssl Py > \use rolodex

 �MySQL localhost:33060+ ssl rolodex Py > contacts = db.get_

collection("contacts")

 MySQL localhost:33060+ ssl rolodex Py > contacts.find()

{

 "documents": [

 {

 "_id": "9801A79DE093991311E7FFCB243C3451",

 "name": {

 "first": "Allen"

 },

 "phones": [

 {

 "work": "212-555-1212"

 }

]

 },

 {

 "_id": "9801A79DE0939E0411E7FFCB243DCDE3",

 "address": {

Chapter 1 Introducing MySQL 8—A New Beginning

11

 "city": "oxnard",

 "state": "ca",

 "street": "123 main",

 "zip": "90125"

 },

 "name": {

 "first": "Joe",

 "last": "Wheelerton"

 },

 �"notes": "Excellent car detailer. Referrals get $20 off next

detail!",

 "phones": [

 {

 "work": "212-555-1213"

 },

 {

 "home": "212-555-1253"

 }

]

 }

],

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": []

}

 MySQL localhost:33060+ ssl rolodex Py > \exit

Bye!

Ok, now we’re starting to see how much the shell changes our MySQL experience.

Note that the output is formatted to make it read better and the commands we used were

quite a bit different than the SQL commands previously. If you’re thinking, that looks

like application code, you’re on the right track! We’ll see more about the MySQL Shell

in Chapter 4. Let’s now discover what makes the shell powerful by examining the new

X Plugin and X Protocol.

Chapter 1 Introducing MySQL 8—A New Beginning

12

�X Plugin, X Protocol, and X DevAPI
MySQL has introduced a new protocol and API to work with JSON documents. Along

with supporting the JSON data type, we have three technologies prefixed with the

simple name “X”: the X Plugin, X Protocol, and X DevAPI. The X Plugin is a plugin that

enables the X Protocol. The X Protocol is designed to communicate with the server

using the X DevAPI. The X DevAPI is an application programming interface that (among

other things) permits you to develop NoSQL solutions for MySQL and use MySQL as a

document store.

I KNOW SQL, BUT WHAT IS NOSQL?

If you have worked with relational databases systems, you are no doubt very familiar with SQL

(structured query language) in which we use special statements (commands) to interact with the

data. In fact, most database systems have their own version of SQL that includes commands to

manipulating the data (DML; data manipulation language) as well as defining the objects to store

data (DDL; data definition language) and even administrative commands to manage the server.5

That is, you get result sets that have to use commands to search for the data then convert

results into internal programming structures making the data seem like an auxiliary

component rather than an integral part of the solution. NoSQL interfaces break this mold by

allowing you to use APIs (application programming interfaces) to work with the data. More

specific, you use programming interfaces rather than command based interfaces.

It is unfortunate that NoSQL can mean a number of things depending on your perspective

including “non-SQL,” “not only SQL,” or “nonrelational.” But they all refer to the fact that the

mechanism you’re using is not using a command based interface and most uses of the term

indicate you’re using a programming interface. For MySQL 8, access to JSON documents can

be either through SQL or NoSQL using the X Protocol and X DevAPI through the X Plugin.

5�Such as those in Oracle database: https://docs.oracle.com/cd/B14117_01/server.101/
b10759/statements_1001.htm

Chapter 1 Introducing MySQL 8—A New Beginning

https://docs.oracle.com/cd/B14117_01/server.101/b10759/statements_1001.htm
https://docs.oracle.com/cd/B14117_01/server.101/b10759/statements_1001.htm

13

The X Plugin is a great example of how Oracle makes use of the plugin technology

to enable new features. In this case, the X Plugin is a gateway from within the server to

allow communication using the X Protocol. The MySQL X Plugin comes with the server,

and is enabled by default. If you have an older release of MySQL Server, you can use the

MySQL Shell to enable the plugin with the following command.

$ mysqlsh -u root -h localhost --mysql --dba enableXProtocol

Creating a Classic session to 'root@localhost'

Enter password:

Your MySQL connection id is 527

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

enableXProtocol: X Protocol plugin is already enabled and listening for

connections on port 33060

Any client (not just the MySQL Shell) that supports the X Protocol can use the

associated X DevAPI to use MySQL as a document store. In fact, the X Protocol is

designed to expose the ACID (atomicity, consistency, isolation, and durability)

compliant storage abilities of MySQL as a document store enabling you to execute

Create, Read, Update, and Delete (CRUD) operations against JSON documents. The

X Protocol also supports the normal SQL interface to MySQL so you can build your

applications to use both SQL and NoSQL interfaces!

You may have wondered how the shell and the plugin interact with the server.

Figure 1-2 demonstrates how the components are “stacked.”

Figure 1-2.  X Protocol stack

Chapter 1 Introducing MySQL 8—A New Beginning

14

Note that the shell permits the use of the X DevAPI, which is communicated over the

wire to the server via the X Plugin. Thus, the X Plugin is an enabling technology with the

real power consisting of X Protocol and X DevAPI.

Now that we’ve seen the technologies that enable using MySQL as a document store,

let’s look at how the InnoDB storage engine has changed in recent releases.

�InnoDB Improvements
Since MySQL 5.6, InnoDB has been the flagship storage engine (and the default engine)

for MySQL. Oracle has slowly evolved away from the multiple storage engine model

focusing on what a modern database server should do—support transactional storage

mechanisms. InnoDB is the answer to that requirement and much more.

WHAT IS A STORAGE ENGINE?

A storage engine is a mechanism to store data in various ways. For example, there is a storage

engine that allows you to interact with comma separated values (text) files (CSV), another that

is optimized for writing log files (Archive), one that stores data in memory only (Memory), and

even one that doesn’t store anything at all (Blackhole). You can use them with your tables by

using the ENGINE= table option. Along with InnoDB, the MySQL server ships with the Archive,

Blackhole, CSV, Memory, MyISAM storage engines. The InnoDB storage engine is the only one

that supports transactions. For more information about the other storage engines including the

features of each and how they are used, see the “Alternative Storage Engines” section in the

online MySQL reference manual.

In the early days, InnoDB was a separate company and thus a separate product that

was neither part of MySQL nor was it owned by MySQL AB (the original owner of MySQL

now fully owned by Oracle). Eventually, Oracle came to own both InnoDB and MySQL

so it made sense to combine the two efforts because they have mutually inclusive goals.

Although there still is a separate InnoDB engineering team, they are fully integrated with

the core server development team.

This tight integration has led to many improvements in InnoDB including a host of

performance enhancements. This is readily apparent in how InnoDB continues to evolve

with those refinements.

Chapter 1 Introducing MySQL 8—A New Beginning

15

The list of refinements has grown since the 5.6 releases and although most of the

improvements are rather subtle in the sense you won’t notice them (except through

better performance and reliability, which are not to be taken lightly), most show a

dedication to making InnoDB the best transactional storage mechanism and through

extension MySQL a strong transactional database system. The following list a number

of the more interesting improvements to InnoDB that you will find in MySQL 8. Some

of these may seem to be very deep into the depths of the code, but those who have

optimized or otherwise tuned their InnoDB installation may need to take note of

these when planning to move to MySQL 8. What is not listed here are dozens of minor

improvements in reliability and performance.

•	 Crash recovery: Should the index tree become corrupt, InnoDB writes

a corruption flag to the redo log. This makes the corruption flag crash

safe (it is not lost on a forced restart). Likewise, InnoDB also writes an

in-memory corruption flag on each checkpoint. When crash recovery

is initiated, InnoDB can read the flags and use them to adjust

recovery operations.

•	 InnoDB memcached Plugin: Has been improved by permitting

fetching of multiple (key, value) pairs in a single memcached query.

•	 Deadlock detection: There are several new options, but the most

promising includes an option to dynamically configure deadlock

detection (innodb_deadlock_detect). This could permit additional

tuning control for high usage systems in which deadlock detection is

a detriment to performance.

•	 New INFORMATION_SCHEMA views: There are new views for

InnoDB, which includes the following:

•	 INNODB_CACHED_INDEXES is used to discover the number of index

pages cached in the InnoDB buffer pool for each index.

•	 INNODB_TABLESPACES_BRIEF is used to see the space, name, path,

flags, and space type for tablespaces.

•	 AUTO_INCREMENT: There are several minor improvements with auto-

increment fields including the following:

•	 The current maximum auto-increment value is now persistent

across server restarts.

Chapter 1 Introducing MySQL 8—A New Beginning

16

•	 A restart no longer cancels the effect of the AUTO_INCREMENT = N

table option.

•	 A server restart immediately following a ROLLBACK operation no

longer results in the reuse of auto-increment values that were

allocated to the rolled-back transaction.

•	 Setting an AUTO_INCREMENT column value to a value larger than

the current maximum is persisted and later new values (say after

a restart) start with the new, larger value.

•	 Temporary tables: All temporary tables are now created in the shared

temporary tablespace named ibtmp1.

Although this list seems focused on minor improvements, some of these are very

important to system administrators looking for help tuning and planning their database

server installations. If you would like to know more about any of these improvements or

see a list of all the latest changes, see the online MySQL reference manual.6

I also should note that this list is likely to grow as MySQL 8 matures and new features

are added. Indeed, the InnoDB Cluster is one such new feature that we discuss in the

section "InnoDB Cluster."

The next section describes those features that have been added to and are unique to

MySQL 8.

�New Features
Aside from those features that have been in development during the 5.7 server releases, there

are features that are unique to MySQL 8. That is to say, they are not currently (or even likely

to be incorporated) in the older releases. Part of this is because of how much the server code

base was changed to accommodate the new features. Those new features available in MySQL

8.0 include the new data dictionary and a new account management system.

Note  Some features are available as a separate download as a plugin that you
can install and may be released separately with a different rating than the server.
Some, such as Group Replication, can also be used with MySQL 5.7.

6�http://downloads.mysql.com/docs/refman-8.0-en.pdf.

Chapter 1 Introducing MySQL 8—A New Beginning

http://downloads.mysql.com/docs/refman-8.0-en.pdf

17

�Data Dictionary
If you have ever worked with MySQL trying to get information about the objects

contained in the databases; either to discover which objects are there, searching for

objects with a specific name prefix, or trying to discover which indexes exist, chances

are you have had to access the numerous tables in the mysql database or you’ve had to

navigate the views in INFORMATION_SCHEMA.

Although this has been the default for many years, there are a number of problems

with this mechanism. Most notable, there is no easy way to find things (you have to

“learn” where things are and then how to search them). More important, because the

data was in nontransactional tables (and metadata files), the mechanisms were not

transactional and, by extension, not crash safe.

Indeed, many a MySQL DBA has earned their salary by recovering data in the mysql

database, fixing corrupt or missing .frm files, and a host of other small plagues that can

visit a large MySQL installation. Happily, those days are gone with the addition of the

data dictionary!

WHAT’S AN FRM FILE?

If you examine the data directory of a MySQL installation for version 5.7 and earlier, you will

see a folder named data that contains subfolders named for each database created. In these

folders, you will see files named with the table names and a file extension of .frm. Many

MySQL developers call these files “FRM files.” The file is a specially formatted binary file that

describes the table's format (definition). Thus, a table named table1 in database1 has an

FRM file named /data/database1/table1.frm.

Sadly, because FRM files are binary files, they are not readable by normal means. In fact, the

format has been a mystery for many years (it uses a layout called Unireg). Because the FRM

files contain the metadata for the table, all the column definitions and table options, including

index definitions, are stored in the file. This means it should be possible to extract the data

needed to reconstruct the CREATE TABLE statement from a FRM file. Unfortunately, given the

interface and uniqueness of Unireg, it is not easy to parse these files for the information.

Fortunately, you can decipher the FRM files via a Python utility that is part of the MySQL

Utilities product. If you need to read an FRM file to recover a table, see the online MySQL

Utilities documentation for more details: http://dev.mysql.com/doc/mysql-

utilities/1.6/en/utils-task-get-structure.html.

Chapter 1 Introducing MySQL 8—A New Beginning

http://dev.mysql.com/doc/mysql-utilities/1.6/en/utils-task-get-structure.html
http://dev.mysql.com/doc/mysql-utilities/1.6/en/utils-task-get-structure.html

18

What you may find curious and even a bit strange is the fact that the data dictionary

implementation is hidden and very much behind the scenes. That is, data dictionary

tables are invisible and cannot be accessed directly. You won’t find the data dictionary

tables easily (although it is possible if you look hard enough). This was done primarily

to make the data dictionary crash safe and something you don’t have to manage.

Fortunately, you can access the information stored in the data dictionary via the

INFORMATION_SCHEMA database and even the SHOW commands. The mysql database still

exists, but it mainly contains extra information such as time zones, help, and similar

nonvital information.

Tip  The data dictionary is one of the key factors that you must understand when
planning any upgrades from older versions of MySQL. I examine a number of these
issues in Chapter 10.

For more information about the data dictionary, see the section "MySQL Data

Dictionary" in the online MySQL reference manual.

Adding the data dictionary has finally made possible a number of features that many

have wanted to implement for some time. One of the newest is a change in account

management.

�Account Management
If you have ever managed a MySQL database server (or many servers), chances are you

have encountered a situation where you need to assign the same privileges to a group

of users. For example, your server may support several applications or databases with

sets (groups) of users that have specific rights to database objects. In most cases, savvy

database administrators (DBAs) make a copy of the user privileges (often in the form of

GRANT statements) so that they can reuse them when they need to create another user

with the same privileges.

Although the MySQL Utilities product has a Python utility to help manage this

tedium (see “mysqluserclone” in http://dev.mysql.com/doc/mysql-utilities/1.6/

en/), having to create dozens of different “types” of users can be quite a challenge. What

is really needed is a way to create a role and tailor the privileges to the role then grant

the role to users. Fortunately, with the advent of the data dictionary, supporting roles in

MySQL has become a reality in MySQL 8!

Chapter 1 Introducing MySQL 8—A New Beginning

http://dev.mysql.com/doc/mysql-utilities/1.6/en/
http://dev.mysql.com/doc/mysql-utilities/1.6/en/

19

Roles can be created, dropped, privileges granted or revoked. We also can grant or

revoke roles to/from users. Roles finally make the tedium of managing user accounts

on MySQL much easier. For more information about roles, see Using Roles in the online

MySQL reference manual.

There also have been changes in the SSL (secure sockets layer) support in the server.

�Removed Options, Variables, and Features
The first thing you may notice about MySQL 8 is a host of small changes to startup

options, variables, and so forth. Fortunately, most of these are related to supporting

the newest features and the removal of old and obsolete settings. Also, many of those

options, variables, and features marked as deprecated in MySQL 5.7 (and prior) are

officially removed in MySQL 8. Some of the more familiar items removed in MySQL 8

include the following.

•	 --bootstrap: was used to control how the server started and was

typically used to create the MySQL privilege tables without having to

start a full MySQL server.

•	 --innodb_file_format_* : was used to configure the file format for

the InnoDB storage engine.

•	 --partition and --skip partition: was used to control user-

defined partitioning support in the MySQL server.

One of the consequences of the new data dictionary is removal of the need for .frm

files (FRM). Because the data dictionary contains all of the information about every

object in all of the databases hosted in a reliable, recoverable storage mechanism, there

is no longer a need to store such information in a separate file. Those of us who have

often fought with or otherwise had the unique frustration to attempt to repair a server

whose FRM files were lost or corrupt, the removal of the FRM files is a long overdue and

most welcome omission.

For those using SSL, one area that may be of concern is the removal of some

of the SSL options and the introduction of a new authentication plugin (caching_

sha2_password) to improve secure connections. The new authentication plugin was

introduced in release 8.0.4. Most installation packages give you the option to choose the

older authentication method should you require it, but it is strongly recommended that

you use the new authentication plugin.

Chapter 1 Introducing MySQL 8—A New Beginning

20

Error codes are another area where you will see some changes. Many error codes

were changed in the latest release including the removal of dozens of lesser known

(used) error codes. If your applications use the MySQL server error codes, you should

check the documentation to ensure the error codes have not changed or been removed.

There were also many minor items removed including the mysql_plugin utility,7

the embedded server (libmysqld), the generic partition engine (InnoDB now has

native partitioning), the mysql_install_db script (this has been replaced with the

--initialize option), and more.

As I mentioned in the previous sections, the list of features that were removed in

MySQL 8 will likely grow as more features become mature and are added. If you have

defined tuning procedures, stored procedures, DevOps,8 or other mechanisms that use

or interact with options and variables, you should carefully examine the entry in the

MySQL 8 documentation to ensure you can modify your tools.

Tip  See http://dev.mysql.com/doc/refman/8.0/en/added-removed-
variables-options.html for a complete list of features to be removed in
MySQL 8.

�Paradigm Shifting Features
When the MySQL engineers and product management teams decided to develop ground

breaking high availability features and a new way to store unstructured data, they knew

they were on to something that would change the MySQL world in dramatic fashion.

In this section, we look at two high availability features that are poised to change

MySQL high availability in a new and dramatic way. We will also see how the new

structured storage mechanism will change what you can store and indeed how you can

interact with MySQL to store data for applications where data can change allowing your

application to adapt without having to rebuild the storage layers.

Let’s begin with the high availability solutions.

7�I was the original designer and implementer of this utility. Improvements in plugin handling in
the server have made the utility unnecessary.

8�https://en.wikipedia.org/wiki/DevOps

Chapter 1 Introducing MySQL 8—A New Beginning

http://dev.mysql.com/doc/refman/8.0/en/added-removed-variables-options.html
http://dev.mysql.com/doc/refman/8.0/en/added-removed-variables-options.html
https://en.wikipedia.org/wiki/DevOps

21

�Group Replication
If you have used MySQL replication, you are no doubt very familiar with how to leverage

it when building high availability solutions. Indeed, it is likely you have discovered a host

of ways to improve availability in your applications with MySQL replication.

WHAT IS REPLICATION? AND HOW DOES IT WORK?

MySQL replication is an easy-to-use feature and yet a complex and major component of

the MySQL server. This section presents a bird’s-eye view of replication for the purpose of

explaining how it works and how to set up a simple replication topology. For more information

about replication and its many features and commands, see the online MySQL reference

manual (http://dev.mysql.com/doc/refman/8.0/en/replication.html).

Replication requires two or more servers. One server must be designated as the origin or master.

The master role means all data changes (writes) to the data are sent to the master and only the

master. All other servers in the topology maintain a copy of the master data and are by design

and requirement read-only servers. Thus, when your sensors send data for storage, they send it

to the master. Applications you write to use the sensor data can read it from the slaves.

The copy mechanism works using a technology called the binary log that stores the changes

in a special format, thereby keeping a record of all the changes. These changes are then

shipped to the slaves and executed there. Thus, once the slave executes the changes (called

events), the slave has an exact copy of the data.

The master maintains a binary log of the changes, and the slave maintains a copy of that

binary log called the relay log. When a slave requests data changes from the master, it reads

the events from the master and writes them to its relay log; then another thread in the slave

executes those events from the relay log. As you can imagine, there is a slight delay from

the time a change is made on the master to the time it is made on the slave. Fortunately, this

delay is almost unnoticeable except in topologies with high traffic (lots of changes).

Moreover, it has become apparent that the more your high availability needs and

your solution expands (grows in sophistication), the more you need to employ better

ways to manage the loss of nodes, data integrity, and general maintenance of the clusters

(groups of servers replicating data—sometimes called replicasets). In fact, most high

availability solutions have outgrown the base master and slaves topology evolving into

Chapter 1 Introducing MySQL 8—A New Beginning

http://dev.mysql.com/doc/refman/8.0/en/replication.html

22

tiers consisting of clusters of servers. Some have replicated a portion of the data for faster

throughput and for compartmental storage. All of these have led many to discover they

need more from MySQL replication. Oracle has answered these needs and more with

Group Replication.

Group Replication was released as GA in December 2016 and is bundled with the

server in the form of a plugin. Although it is a GA release, I list it here as a paradigm-

shifting feature because of the promise it provides for allowing MySQL high availability

to grow well beyond the confines of the original MySQL replication feature and thus

empower MySQL 8 to become an important component in high availability database

solutions.

Note  I touch on only the very basics of Group Replication to give you an idea
of its complexity and benefits. A deeper dive into using Group Replication and its
implementation is beyond the scope of this book.

Group Replication makes the topology eventually synchronous replication

(among the nodes belonging to the same group) a reality, whereas the existing MySQL

Replication feature is asynchronous (or at most semi-synchronous). Therefore, better

high availability guaranties can be provided, because transactions are delivered to all

members in the same order (despite being applied at its own pace in each member after

being accepted).

Group Replication does this via a distributed state machine with strong coordination

among the servers assigned to a group. This communication allows the servers to

coordinate replication automatically within the group. More specific, groups maintain

membership so that the data replication among the servers is always consistent at

any point in time. Even if servers are removed from the group, when they are added,

the consistency is initiated automatically. Further, there is also a failure detection

mechanism for servers that go offline or become unreachable. Figure 1-3 shows how you

would use Group Replication with our applications to achieve high availability.

Chapter 1 Introducing MySQL 8—A New Beginning

23

Note that Group Replication can be used with the MySQL Router to allow your

applications to have a layer of isolation from the cluster. We will see a bit about the router

when we examine the InnoDB Cluster.

Another important distinction between Group Replication and standard replication

is that all of the servers in the group can participate in updating the data with conflicts

resolved automatically. Yes, you no longer have to carefully craft your application to send

writes (updates) to a specific server! However, you can configure Group Replication to

allow updates by only one server (called the primary) with the other servers acting as

secondary servers or as a backup (for failover).

All of these capabilities and more are made possible using three specific

technologies built into Group Replication: group membership, failure detection, and

fault tolerance.9

Figure 1-3.  Using Group Replication with applications for high availability
(Courtesy of Oracle)

9�Failure detection and fault tolerance are required for successful high availability solutions.

Chapter 1 Introducing MySQL 8—A New Beginning

24

•	 Group membership: This manages whether servers are active (online)

and participating in the group. Also, ensures every server in the group

has a consistent view of the membership set. That is, every server

knows the complete list of servers in the group. When servers are

added to the group, the group membership service reconfigures the

membership automatically.

•	 Failure detection: A mechanism that is able to find and report which

servers are offline (unreachable) and assumed to be dead. The failure

detector is a distributed service that allows all servers in the group to

test the condition of the presumed dead server and in that way, the

group decides if a server is unreachable (dead). This allows the group

to reconfigure automatically by coordinating the process of excluding

the failed server.

•	 Fault tolerance: This service uses an implementation of the Paxos10

distributed algorithm to provide distributed coordination among the

servers. In short, the algorithm allows for automatic promotion of

roles within the group to ensure the group remains consistent (data

is consistent and available) even if a server (or several) fail or leave

the group. As with similar fault tolerance mechanisms, the number of

failures (servers that fail) is limited. Currently, Group Replication fault

tolerance is defined as n = 2f + 1, where n is the number of servers

needed to tolerate f failures. For example, if you want to tolerate up to

5 servers failing, you need at least 11 servers in the group.

Although Group Replication is a plugin, it is bundled with the server installation

today with MySQL 5.7 (starting with the 5.7.17 release) as well as MySQL 8.11

10�See https://en.wikipedia.org/wiki/Paxos_(computer_science).
11�See http://www.mysql.com/downloads/ for more information about downloading the server.

For more information about Group Replication, see the “Group Replication” section in the
online MySQL reference manual at http://dev.mysql.com/doc or visit http://dev.mysql.com/
doc/refman/8.0/en/group-replication.html.

Chapter 1 Introducing MySQL 8—A New Beginning

https://en.wikipedia.org/wiki/Paxos_(computer_science
http://www.mysql.com/downloads/
http://dev.mysql.com/doc
http://dev.mysql.com/doc/refman/5.7/en/group-replication.html
http://dev.mysql.com/doc/refman/5.7/en/group-replication.html

25

Tip  To learn more about the internal mechanisms, designs, implementation as
well as how to setup and use Group Replication, see the developer documentation
at http://mysqlhighavailability.com/mysqlha/gr/doc/index.html.

Rather than demonstrate Group Replication by itself, we will see just how powerful

this feature is when we explore another new feature named InnoDB Cluster in the

following section. As you will see in the demonstration of InnoDB Cluster, Group

Replication is easy to use and when part of InnoDB Cluster, both technologies change

the way we use MySQL replication in a most dramatic way.

�InnoDB Cluster
Another new and emerging feature is called InnoDB Cluster. It is designed to make

high availability easier to setup, use, and maintain. InnoDB Cluster works with the X

AdminAPI via the MySQL Shell and the Admin API, Group Replication, and the MySQL

Router12 to take high availability and read scalability to a new level. That is, it combines

new features in InnoDB for cloning data with Group Replication and the MySQL Shell

and MySQL Router to provide a new way to setup and manage high availability.

Note  The AdminAPI is a special API available via the MySQL Shell for configuring
and interacting with InnoDB Cluster. Therefore, the Admin API has features
designed to make working with InnoDB Cluster easier.

In this use case, the cluster is setup with a single primary (think master in standard

replication parlance), which is the target for all write (updates). Multiple secondary

servers (slaves) maintain replicas of the data, which can be read from and thus enable

reading data without burdening the primary thus enabling read out scalability (but

all servers participate in consensus and coordination). The incorporation of Group

Replication means the cluster is fault tolerant and group membership is managed

automatically. The MySQL router caches the metadata of the InnoDB Cluster and

performs high availability routing to the MySQL server instances making it easier to write

applications to interact with the cluster.

12�http://dev.mysql.com/doc/mysql-router/en/

Chapter 1 Introducing MySQL 8—A New Beginning

http://mysqlhighavailability.com/mysqlha/gr/doc/index.html
http://dev.mysql.com/doc/mysql-router/en/

26

You may wonder what makes this different from a readout scalability setup with

standard replication. At a high level, it may seem that the solutions are solving the same use

case. However, with InnoDB Cluster, you can create, deploy, and configure servers in your

cluster from the MySQL Shell providing a complete high availability solution that can be

managed easily. That is, you can use the InnoDB Cluster AdminAPI via the shell to create

and administer an InnoDB Cluster programmatically using either JavaScript or Python.

Let us now see these new technologies in action. What follows is a demonstration

of deploying three servers, configuring them as a cluster via Group Replication using

JavaScript commands in the new MySQL Shell. Although that sounds like a lot of effort,

it really isn’t and in fact is really easy.

Note  The following commands were run using InnoDB Cluster on a system with
MySQL 8.0.11, InnoDB Cluster, and MySQL Router installed.

Let’s begin by starting the shell and deploying three servers using the AdminAPI. In

this case, we will use the deploySandboxInstance() method in the dba object to

create new instances for each server. All of these will run on our localhost. Listing 1-5

demonstrates how to deploy three servers. I highlight the commands used to help identify

the commands from the messages.

Listing 1-5.  Creating Local Server Instances

$ mysqlsh

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL JS > dba.deploySandboxInstance(3307)

A new MySQL sandbox instance will be created on this host in

/Users/cbell/mysql-sandboxes/3307

Chapter 1 Introducing MySQL 8—A New Beginning

27

Please enter a MySQL root password for the new instance:

Deploying new MySQL instance...

Instance localhost:3307 successfully deployed and started.

Use shell.connect('root@localhost:3307'); to connect to the instance.

 MySQL JS > dba.deploySandboxInstance(3308)

A new MySQL sandbox instance will be created on this host in

/Users/cbell/mysql-sandboxes/3308

Please enter a MySQL root password for the new instance:

Deploying new MySQL instance...

Instance localhost:3308 successfully deployed and started.

Use shell.connect('root@localhost:3308'); to connect to the instance.

 MySQL JS > dba.deploySandboxInstance(3309)

A new MySQL sandbox instance will be created on this host in

/Users/cbell/mysql-sandboxes/3309

Please enter a MySQL root password for the new instance:

Deploying new MySQL instance...

Instance localhost:3309 successfully deployed and started.

Use shell.connect('root@localhost:3309'); to connect to the instance.

 MySQL JS >

Note that the text explains that we are using a sandbox, which is a term applied to

running servers on the localhost in a special directory: the mysql-sandboxes folder in

the user home. In particular in this case, we use /Users/cbell/mysql-sandboxes. Note

that we now have three servers running on ports 3307, 3308, and 3309. Note also that the

shell will prompt you for the new password.

Tip  JavaScript is case sensitive so make sure you use the correct spelling for
variables, objects, and methods. That is, a variable named abc is not the same
variable named Abc.

Chapter 1 Introducing MySQL 8—A New Beginning

28

The next thing we need to do is setup a new cluster. We do this with the

createCluster() method in the dba object. But first, we must connect to the server we

want to make our primary server. Listing 1-6 demonstrates how to create the cluster.

Note that this is a continuation of our shell session and demonstrates how to create a

new cluster.

Listing 1-6.  Creating a Cluster in InnoDB Cluster

MySQL JS > \connect root@localhost:3307

Creating a session to 'root@localhost:3307'

Enter password:

Your MySQL connection id is 12

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

 MySQL localhost:3307 ssl JS > my_cluster = dba.createCluster('my_cluster')

A new InnoDB cluster will be created on instance 'root@localhost:3307'.

Creating InnoDB cluster 'my_cluster' on 'root@localhost:3307'...

Adding Seed Instance...

Cluster successfully created. Use Cluster.addInstance() to add MySQL

instances.

At least 3 instances are needed for the cluster to be able to withstand up to

one server failure.

<Cluster:my_cluster>

Note that we named the cluster my_cluster and used a variable of the same name

to store the object returned from the createCluster() method. Note that the first server

we connected has become the primary (master).

Next, we add the other two server instances to complete the cluster using the

addInstance() of our new my_cluster object. These servers automatically become

secondary servers (slaves) in the group. Listing 1-7 shows how to add the instances to the

cluster.

Chapter 1 Introducing MySQL 8—A New Beginning

29

Listing 1-7.  Adding Instances to the Cluster

MySQL localhost:3307 ssl JS > my_cluster = dba.getCluster('my_cluster')

<Cluster:my_cluster>

MySQL localhost:3307 ssl JS > my_cluster.addInstance('root@

localhost:3308')

A new instance will be added to the InnoDB cluster. Depending on the amount

of data on the cluster this might take from a few seconds to several hours.

Please provide the password for 'root@localhost:3308':

Adding instance to the cluster ...

The instance 'root@localhost:3308' was successfully added to the cluster.

 MySQL localhost:3307 ssl JS > my_cluster.addInstance('root@

localhost:3309')

A new instance will be added to the InnoDB cluster. Depending on the amount

of data on the cluster this might take from a few seconds to several hours.

Please provide the password for 'root@localhost:3309':

Adding instance to the cluster ...

The instance 'root@localhost:3309' was successfully added to the cluster.

Once the cluster is created and the instances are added, we can get the status of the

cluster using the status() method of our my_cluster object as shown in Listing 1-8.

Listing 1-8.  Getting the Status of the Cluster

MySQL localhost:3307 ssl JS > my_cluster.status()

{

 "clusterName": "my_cluster",

 "defaultReplicaSet": {

 "name": "default",

 "primary": "localhost:3307",

 "ssl": "REQUIRED",

 "status": "OK",

 "statusText": "Cluster is ONLINE and can tolerate up to ONE failure.",

Chapter 1 Introducing MySQL 8—A New Beginning

30

 "topology": {

 "localhost:3307": {

 "address": "localhost:3307",

 "mode": "R/W",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE"

 },

 "localhost:3308": {

 "address": "localhost:3308",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE"

 },

 "localhost:3309": {

 "address": "localhost:3309",

 "mode": "R/O",

 "readReplicas": {},

 "role": "HA",

 "status": "ONLINE"

 }

 }

 }

}

 MySQL localhost:3307 ssl JS > \exit

Bye!

At this point, we’ve seen how InnoDB Cluster can setup servers and add them

to the group. What you do not see behind the scenes is all of the Group Replication

mechanisms—you get them for free! How cool is that?

Now that we have a cluster, there is one more thing we need to do to enable applications

to use the fault tolerance features of Group Replication. That is, we need to be able to

connect to the cluster and interact with MySQL even if one of the servers fails. Note that

because we only have three servers, we can only tolerate one failure. For example, solving

for f in the number of faults tolerated by Group Replication, we get 3 = 2f + 1 or f = 1.

Chapter 1 Introducing MySQL 8—A New Beginning

31

We must now use MySQL Router to manage the connections for our application.

Although we don’t have an application to demonstrate, we can see this in action using

the shell. Now let’s see how easy it is to set up the router. Listing 1-9 shows how to

start the router in bootstrap mode. Note that by connecting to the cluster, the router

automatically gets the members of the group. Recall from the previous section, this is

one of the tenets of Group Replication via the membership service.

Listing 1-9.  Setting Up the MySQL Router

& mysqlrouter --bootstrap localhost:3307 --user=cbell

Please enter MySQL password for root:

Bootstrapping system MySQL Router instance...

MySQL Router has now been configured for the InnoDB cluster 'my_cluster'.

The following connection information can be used to connect to the cluster.

Classic MySQL protocol connections to cluster 'my_cluster':

- Read/Write Connections: localhost:6446

- Read/Only Connections: localhost:6447

X protocol connections to cluster 'my_cluster':

- Read/Write Connections: localhost:64460

- Read/Only Connections: localhost:64470

& mysqlrouter &

Okay, now we have the router running. Our applications can use the features of the

router to automatically reroute our application connections should something happen

to one of the servers in the cluster.

Let’s see a short demonstration of this feature. In this case, we will use the shell to

connect to the cluster via the router on port 6446 as shown in Listing 1-9. We use this

port because the router is used to forward connections automatically. That is, if the

server we’re connected to goes down—for instance the one on port 3307—we do not

have to restart our application to reconnect to a server on another port. Thus, the router,

routes the communications for us. Let’s see this in action.

Listing 1-10 demonstrates connecting to the cluster via the router. We switch to SQL

mode in the shell and use an SQL command to see the port of the server where we’re

connected. We then switch back to JavaScript and use the AdminAPI to kill the instance.

We then attempt to issue the SQL command again and now notice that, once the shell

has automatically reconnected, we are now connected to another server. Cool!

Chapter 1 Introducing MySQL 8—A New Beginning

32

Listing 1-10.  Fault Tolerance Demonstration

$ mysqlsh --uri root@localhost:6446 --sql

Creating a session to 'root@localhost:6446'

Enter password:

Your MySQL connection id is 47

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:6446 ssl SQL > SELECT @@port;

+--------+

| @@port |

+--------+

| 3307 |

+--------+

1 row in set (0.00 sec)

 MySQL localhost:6446 ssl SQL > \js

Switching to JavaScript mode...

 MySQL localhost:6446 ssl JS > dba.killSandboxInstance(3307)

The MySQL sandbox instance on this host in

/Users/cbell/mysql-sandboxes/3307 will be killed

Killing MySQL instance...

Instance localhost:3307 successfully killed.

 MySQL localhost:6446 ssl JS > \sql

Switching to SQL mode... Commands end with ;

 MySQL localhost:6446 ssl SQL > SELECT @@port;

Chapter 1 Introducing MySQL 8—A New Beginning

33

ERROR: 2006 (HY000): MySQL server has gone away

The global session got disconnected.

Attempting to reconnect to 'root@localhost:6446'..

The global session was successfully reconnected.

 MySQL localhost:6446 ssl SQL > SELECT @@port;

+--------+

| @@port |

+--------+

| 3308 |

+--------+

1 row in set (0.00 sec)

 MySQL localhost:6446 ssl SQL > \quit

Bye!

Note that although the shell had lost the connection it automatically reconnected so

that we can retry the command. Very nice.

Finally, let’s discover how to put the instance that failed back into service. In this

case, we simulate recovering a downed server adding it back to the cluster where Group

Replication ensures that the new server becomes consistent by applying any missing

transactions. Listing 1-11 shows the commands you can use to recover the server.

Listing 1-11.  Recovering a Lost Server

$ mysqlsh --uri root@localhost:6446

 MySQL localhost:6446 ssl JS > dba.startSandboxInstance(3307)

The MySQL sandbox instance on this host in

/Users/cbell/mysql-sandboxes/3307 will be started

Starting MySQL instance...

Instance localhost:3307 successfully started.

 MySQL localhost:6446 ssl JS > my_cluster = dba.getCluster('my_cluster')

<Cluster:my_cluster>

MySQL localhost:6446 ssl JS > my_cluster.rejoinInstance('root

@localhost:3307')

Rejoining the instance to the InnoDB cluster. Depending on the original

problem that made the instance unavailable, the rejoin operation might not be

Chapter 1 Introducing MySQL 8—A New Beginning

34

successful and further manual steps will be needed to fix the underlying

problem.

Please monitor the output of the rejoin operation and take necessary action

if the instance cannot rejoin.

Please provide the password for 'root@localhost:3307':

Rejoining instance to the cluster ...

The instance 'root@localhost:3307' was successfully rejoined on the

cluster.

The instance 'localhost:3307' was successfully added to the MySQL Cluster.

 MySQL localhost:6446 ssl JS > \q

Bye!

It is clear that using the shell to setup and manage a cluster is a lot easier than setting

up and managing a standard Group Replication setup. In particular, you don’t have to

manually configure replication! Better still, should a server fail, you don’t have to worry

about reconfiguring your application or the topology to ensure the solution remains

viable—InnoDB Cluster does this automatically for you.

To learn more about InnoDB Cluster, see the online documentation at

https://dev.mysql.com/doc/mysql-innodb-cluster/en/.

�Summary
MySQL has come a long way since the days when developers downloaded the code,

modified it, and put it into use on their rapidly developed platforms. As one who has

watched and participated in its evolution, it is with some pride that I look back on the

bad old days and see just how far MySQL has come.

The journey hasn’t been easy. The engineering team alone has weathered two

acquisitions (Sun Microsystems and Oracle) in rapid succession and a host of smaller

team development and minor personnel changes. Through all of this, the engineering

team continued to improve features and add new technologies remaining dedicated to

making MySQL the best possible solution.

Chapter 1 Introducing MySQL 8—A New Beginning

https://dev.mysql.com/doc/mysql-innodb-cluster/en/

35

Users also have grown in how they use MySQL from stand alone, single database

server installations to massive high availability server farms. Through all of this, the

MySQL product has remained poised for something greater. Now, with MySQL 8.0,

Oracle has shown its hand and it’s loaded with top-notch technologies. Indeed, the

MySQL world is poised to discover new ways to leverage MySQL in a yet unknown

variety of methods. I am certain by the time you read this book you will have your own

ideas of how to revamp your use of MySQL.

In this chapter, we explored some of the highlights of the new MySQL server version 8.0.

We discovered those features originally introduced in earlier versions that have been

adapted to the new paradigm that is version 8.0, features that are new, and those new

features that are truly revolutionary such as the document store, Group Replication, and

InnoDB Cluster.

In Chapter 2, I take a short detour into a brief primer on installing and using

MySQL. If you have not used MySQL before or any form of a relational database system,

Chapter 2 will prepare you for how MySQL works in the more traditional manner via SQL

commands. If you have been using older versions of MySQL, you may still want to skim

the chapter to learn how to install and configure MySQL 8 for use with the document

store. I discuss more about the MySQL Shell in Chapter 4 and upgrading to MySQL 8 in

Chapter 10.

Chapter 1 Introducing MySQL 8—A New Beginning

37
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_2

CHAPTER 2

Getting Started
with MySQL
Perhaps you’ve never used a database system before or maybe you’ve used one as a user

but have never had any need to set up one from scratch. Or perhaps you’ve decided to

discover what all the fuss is about database systems in general. Or maybe you’ve used

MySQL only as a developer never seeing how to setup and configure the server.

In this chapter, I present a short introduction to MySQL in the general SQL interface

sense (traditional MySQL). Not only will you see how MySQL 8 is setup, you will also be

introduced to some of the basics of the SQL interface, which is necessary and indeed

required to fully manage a MySQL server. That is, the new shell, X protocol, X DevAPI,

and the features that build on it but do not offer a complete mechanism for managing

the server; you will need to continue to use SQL commands for those tasks.

So, although MySQL 8 offers an excellent NoSQL interface for both applications and

interactive sessions, you still need to know to use the SQL interface. Fortunately,

I present the basics in a short primer on how to use MySQL. Let’s begin with a brief foray

into what MySQL is and what it can do for us.

�Getting to Know MySQL
MySQL is the world’s most popular open source database system for many excellent

reasons. First, it is open source, which means anyone can use it for a wide variety of

tasks for free. Best of all, MySQL is included in many platform repositories this makes it

easy to get and install. If your platform doesn’t include MySQL in the repository (such as

aptitude), you can download it from the MySQL web site (http://dev.mysql.com).

http://dev.mysql.com/

38

The Oracle Corporation owns MySQL. Oracle obtained MySQL through an

acquisition of Sun Microsystems, which acquired MySQL from its original owners,

MySQL AB. Despite fears to the contrary, Oracle has shown excellent stewardship of

MySQL by continuing to invest in the evolution and development of new features as

well as faithfully maintaining its open source heritage. Although Oracle also offers

commercial licenses of MySQL—just as its prior owners did in the past—MySQL is still

open source and available to everyone.

IS OPEN SOURCE REALLY FREE?

Open source software grew from a conscious resistance to the corporate property mind-set.

Richard Stallman is credited as the father of the free software movement who pioneered

a licensing mechanism to help protect ownership of software and yet make the use of the

software and to some degree its revision free to all. The goal was to reestablish a community

of developers cooperating with a single imperative: to guarantee freedom rather than restrict it.

This ultimately led to the invention of some cleverly worded (read legally binding) licensing

agreements that permits the code to be copied and modified without restriction, states that

derivative works (the modified copies) must be distributed under the same license as the

original version without any additional restrictions. One such license (created by Stallman)

is called the GNU Public License (GPL). This is the license that is used by Oracle to license

MySQL and as such it is indeed free for anyone to use.

However, GPL and similar licenses are intended to guarantee freedom to use, modify, and

distribute; most never intended “free” to mean “no cost” or “free to a good home.” To counter

this misconception, the Open Source Initiative (OSI) formed and later adopted and promoted

the phrase open source to describe the freedoms guaranteed by the GPL license. For more

information about open source software and the GPL, visit www.opensource.org.

MySQL runs as a background process (or as a foreground process if you launch

it from the command line) on your system. As with most database systems, MySQL

supports structured query language (SQL). You can use SQL to create databases

and objects (using data definition language; DDL), write or change data (using data

manipulation language; DML), and execute various commands for managing the server.

Chapter 2 Getting Started with MySQL

http://www.opensource.org/

39

�How Do I Connect to MySQL?
We have already seen a brief look at the new MySQL Shell for connecting to and working

with MySQL servers, the AdminAPI to configure an InnoDB Cluster, and the X DevAPI

to access with data. However, there is another client that has been around in MySQL for

decades. It is an application named mysql, which enables you to connect to and run SQL

commands on the server. It is interesting that this MySQL client was originally named

the MySQL monitor but has long since been called simply the “MySQL client,” terminal

monitor, or even the MySQL command window.

NEW DEFAULT AUTHENTICATION

Prior to MySQL version 8.0.4, the default authentication mechanism used an authentication

plugin called the mysql_native_password plugin, which used the SHA1 algorithm. This

mechanism was fast and did not require an encrypted connection. However, since the National

Institute of Standards and Technology (NIST) suggested that they should stop using the SHA1

algorithm; Oracle has changed the default authentication plugin in MySQL version 8.0.4 to the

cachin_sha2_password plugin.

The consequences of this change should not be an issue to any organizations that install

MySQL 8.0.4 but may be a concern for those upgrading to 8.0.4 or those who have older

installations of MySQL. The biggest issue is that the older client utilities, such as the mysql

client from version 5.7, may not be able to connect to newer installations of MySQL 8.0.4 or

later.

Although you can change your MySQL 8.0.4 to use the older authentication mechanism, it is

not recommended and you should upgrade all your client tools to 8.0.4 or later to work with

the latest versions of MySQL.

If you would like to learn more about the changes including why Oracle made the change and

the advantages for users, see https://mysqlserverteam.com/mysql-8-0-4-new

default-authentication-plugin-caching_sha2_password/.

To connect to the server using the MySQL client (mysql), you must specify a user

account and the server to which you want to connect. If you are connecting to a server

on the same machine, you can omit the server information (host and port) because they

default to localhost on port 3306. The user is specified using the --user (or -u) option.

Chapter 2 Getting Started with MySQL

https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-plugin-caching_sha2_password/
https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-plugin-caching_sha2_password/

40

You can specify the password for the user on the command, but the more secure practice

is to specify --password (or -p), and the client will prompt you for the password. If you

do specify the password on the command line, you will be prompted with a warning

encouraging you to not use that practice.

Using the mysql client on the same machine without the --host (or -h) and --port

option does not use a network connection. If you want to connect using a network

connection or want to connect using a different port, you must use the loopback address.

For example, to connect to a server running on port 3307 on the same machine, use the

command mysql -uroot -p –h127.0.0.1 --port=3307. Listing 2-1 shows examples of

several SQL commands in action using the mysql client.

Tip  To see a list of the commands available in the client, type help; and press
Enter at the prompt.

Listing 2-1.  Commands Using the mysql Client

$ mysql -uroot -proot -h 127.0.0.1 --port=3307

mysql: [Warning] Using a password on the command line interface can be

insecure.

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 14

Server version: 8.0.11 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> CREATE DATABASE greenhouse;

Query OK, 1 row affected (0.00 sec)

mysql> CREATE TABLE greenhouse.plants (plant_name char(50), sensor_value

int, sensor_event timestamp);

Query OK, 0 rows affected (0.01 sec)

Chapter 2 Getting Started with MySQL

41

mysql> INSERT INTO greenhouse.plants VALUES ('living room', 23, NULL);

Query OK, 1 row affected (0.01 sec)

mysql> SELECT * FROM greenhouse.plants;

+-------------+--------------+--------------+

| plant_name | sensor_value | sensor_event |

+-------------+--------------+--------------+

| living room | 23 | NULL |

+-------------+--------------+--------------+

1 row in set (0.00 sec)

mysql> SET @@global.server_id = 106;

Query OK, 0 rows affected (0.00 sec)

mysql> quit

Bye

In this example, you see DDL in the form of the CREATE DATABASE and CREATE

TABLE statements, DML in the form of the INSERT and SELECT statements, and a

simple administrative command to set a global server variable. Next you see the creation

of a database and a table to store the data, the addition of a row in the table, and finally

the retrieval of the data in the table. Notice how I used capital letters for SQL command

keywords. This is a common practice and helps make the SQL commands easier to read

and easier to find user-supplied options or data.

Tip Y ou can exit the MySQL client by typing the command quit. On Linux and Unix
systems, you can press Ctrl+D to exit the client.

A great many commands are available in MySQL. Fortunately, you need master only

a few of the more common ones. The following are the commands you will use most

often. The portions enclosed in <> indicate user-supplied components of the command,

and […] indicates that additional options are needed.

•	 CREATE DATABASE <database_name>: creates a database

•	 USE <database>: sets the default database (not an SQL command)

Chapter 2 Getting Started with MySQL

42

•	 CREATE TABLE <table_name> [...]: creates a table or structure to

store data

•	 INSERT INTO <table_name> [...]: adds data to a table

•	 UPDATE [...]: changes one or more values for a specific row

•	 DELETE FROM <table_name> [...]: removes data from a table

•	 SELECT [...]: retrieves data (rows) from the table

•	 SHOW [...]: shows a list of the objects

Note Y ou must terminate each command with a semicolon (;) or \G.

Although this list is only a short introduction and not a complete syntax guide, there is an

excellent online MySQL reference manual that explains every command (and much more)

in greater detail. You should refer to the online MySQL reference manual whenever you have

a question about anything in MySQL. You can find it at http://dev.mysql.com/doc/.

One of the more interesting commands shown allows you to see a list of objects.

For example, you can see the databases with SHOW DATABASES, a list of tables (once you

change to a database) with SHOW TABLES, and even the permissions for users with SHOW

GRANTS. I find myself using these commands frequently.

If you think that there is a lot more to MySQL than a few simple commands, you are

correct. Despite its ease of use and fast start-up time, MySQL is a full-fledged relational

database management system (RDBMS). There is much more to it than you’ve seen

here. For more information about MySQL, including all the advanced features, see the

online MySQL reference manual.

�How to Get and Install MySQL
The MySQL server is available for a variety of platforms including most Linux and Unix

platforms, Mac OS X, and Windows. As of this writing, MySQL 8 was not a GA release

and as such only offered as a development milestone release (DMR). DMRs are an

excellent way for you to try out new versions and features before they are released as

GA. Generally, non-GA releases are considered developmental or in the case of early

release candidates such as MySQL 8.0.4, a release candidate. Thus, you should not install

and use DMR releases on your production machines.

Chapter 2 Getting Started with MySQL

http://dev.mysql.com/doc/

43

To download GA releases of MySQL 8, visit http://dev.mysql.com/downloads/

and click Community, then MySQL Community. You can also click on the link near the

bottom of the downloads page named Community (GPL) Downloads, then click MySQL

Community Server. This is the GPLv2 license of MySQL. The page will automatically

detect your operating system. If you want to download for another platform, you can

select it from the dropdown list.

The download page will list several files for download. Depending on your platform,

you may see several options including compressed files, source code, and installation

packages. Most will choose the installation package for installation on a laptop or

desktop computer. Figure 2-1 shows an example of the various download options for

macOS platforms.

One of the most popular platforms is Microsoft Windows. Oracle has provided a

special installation packaging for Windows named the Windows Installer. This package

includes all the MySQL products available under the community license including

MySQL Server, Workbench, Utilities, and all of the available connectors (program

libraries for connecting to MySQL). This makes installing on Windows a one-stop,

one-installation affair. Figure 2-2 shows the download page for the Windows installer.

Figure 2-1.  Download page for macOS

Chapter 2 Getting Started with MySQL

http://dev.mysql.com/downloads/

44

However, you should note that some of the more advanced features and some of the

plugins that also are in a developer milestone release (DMR) state may not be included

in the Windows Installer. Thus, you should consider installing by using the server

package. We see these below the Windows Installer download link in Figure 2-2. You can

choose either the Windows Installer 32- or 64-bit installation. Note that the package may

be nothing more than a .zip file containing the server code. In this case, you may need

to either run the server from the unzipped folder or do a local, manual install.

Fortunately, as MySQL 8 matures, more packaging options will become available

allowing you to use a semi-automated installation mechanism. Let’s see one of those

in action. In this scenario, we will install MySQL 8 on a macOS Sierra machine. In this

case, I have downloaded the file mysql-8.0.11-macos10.13-x86_64.dmg, which is

a compressed file containing a package installation program named mysql-8.0.11-

macos10.13-x86_64.pkg for macOS. Once I launch the installer, the first step is agreeing

to the license. Figure 2-3 shows the license agreement panel of the installation dialog.

Figure 2-2.  Download page for Windows Installer

Chapter 2 Getting Started with MySQL

45

The license shown is the GPLv2 license for the community edition. You can read

the license and when ready, click Continue. You will see an acceptance dialog open,

which will give you another chance to read the license.1 When you’re ready to accept the

license, click Accept. Figure 2-4 shows the license acceptance dialog.

1�You really should read the license at least once.

Figure 2-3.  License agreement

Figure 2-4.  Accept license

Chapter 2 Getting Started with MySQL

46

The next panel displays the setup or installation type. Early releases such as this

version may not show any installation types to choose from. If you run the Windows

Installer, you will see several options. For most platforms, the default installation type is

all you will need to get started. Figure 2-5 shows the installation type panel. When ready,

click Install.

The installation may ask you to authorize the installation and once done, it will

proceed rather quickly installing MySQL in the /usr/local/mysql folder (e.g., on Sierra).

If this is the first time you’ve installed MySQL 8, you will see a dialog that displays

the default password for the root account. This was a change made in MySQL 5.7, which

eliminated anonymous accounts and made server installations more secure. You should

take note of this password, as it is a general random collection of characters and symbols

that you won’t be able to guess. Figure 2-6 shows one such example dialog.

Figure 2-5.  Installation type

Chapter 2 Getting Started with MySQL

47

Figure 2-7 shows how you can recover this dialog on macOS from the notification

center if you, like me, tend to dismiss dialogs without fully reading them.2

Once complete, you will get a completion dialog, which you can safely dismiss.

Finally, you will be asked whether you want to keep the installation file (the .dmg) or

delete it. If you are experimenting with MySQL 8 or think you may want to install it some

other place, do not delete the file.

Tip  It may be a good idea to add the path /usr/local/mysql/bin to your
default PATH variable if it is not already set. It makes starting the MySQL client
tools much easier.

2�Yes, I know. A shameful practice for which I must do penance. Admit it. You do it too, don’t you?

Figure 2-6.  Root password notice

Figure 2-7.  Root password notice in macOS notification center

Chapter 2 Getting Started with MySQL

48

As you may have surmised, you need to change the root password as your first action

after installation. Doing so is easy. Just open the MySQL client (mysql) and issue the

following SQL statement. Because we installed the server in the default location, we can

start the client with only the user and password prompts like this: mysql -uroot -p. The

client will prompt you for the password.

SET PASSWORD='NEW_PASSWORD_GOES_HERE';

If you get a message that you cannot connect to the server, it may mean the server

has not been started. You can start the server on macOS with the following command.

sudo launchctl load -F /Library/LaunchDaemons/com.oracle.oss.mysql.mysqld.

plist

Note W hen installing MySQL 8 on Windows, be sure to check the box marked
Enable X Protocol/MySQL as a Document Store during the installation to ensure the
X Plugin and X Protocol are enabled.

Okay, now that we have the MySQL 8 server installed, we can begin configuring the

server for use. You could install the MySQL Shell at this point, but we will explore how to

install the MySQL Shell in more detail in Chapter 4.

�Configuring and Managing Access to MySQL
Now that you know how to install MySQL, let’s briefly discuss how to configure MySQL

and how to grant access to the server (and databases) to others as well as how to setup

the X Plugin (the key component to enable the document store). We begin with a look at

the configuration file used to define the behavior and configure options in MySQL.

�Configuration Files

The primary way to configure start-up options and variables in MySQL is accomplished

using a text file named my.cnf (or my.ini on Windows). This file is normally located on

Posix systems in the /etc folder. For example, on macOS, the file is named /etc/my.cnf.

Listing 2-2 shows the first few dozen lines from a typical MySQL configuration file.

Chapter 2 Getting Started with MySQL

49

Listing 2-2.  MySQL Configuration File Excerpt

Example MySQL config file for small systems.

#

This is for a system with little memory (<= 64M) where MySQL is only used

from time to time and it's important that the mysqld daemon

doesn't use much resources.

#

MySQL programs look for option files in a set of

locations which depend on the deployment platform.

You can copy this option file to one of those

locations. For information about these locations, see:

http://dev.mysql.com/doc/mysql/en/option-files.html

#

In this file, you can use all long options that a program supports.

If you want to know which options a program supports, run the program

with the "--help" option.

The following options will be passed to all MySQL clients

[client]

port = 3306

socket = /tmp/mysql.sock

Here follows entries for some specific programs

The MySQL server

[mysqld]

port = 3306

socket = /tmp/mysql.sock

skip-external-locking

key_buffer_size = 16K

max_allowed_packet = 1M

table_open_cache = 4

sort_buffer_size = 64K

read_buffer_size = 256K

read_rnd_buffer_size = 256K

net_buffer_length = 2K

Chapter 2 Getting Started with MySQL

50

thread_stack = 1024K

...

innodb_log_file_size = 5M

innodb_log_buffer_size = 8M

innodb_flush_log_at_trx_commit = 1

innodb_lock_wait_timeout = 50

innodb_log_files_in_group = 2

slow-query-log

general-log

...

Note that we have settings grouped by section defined using square brackets [].

For example, we see a section named [client], which is used to define options for

any MySQL client that reads the configuration file. Likewise, we see a section named

[mysqld], which applies to the server process (because the executable is named mysqld).

Note that we also see settings for basic options like port, socket, and so forth. However,

we also can use the configuration file to set options for InnoDB, replication, and more.

I recommend that you locate and browse the configuration file for your installation

so you can see the options and their values. If you encounter a situation in which you

need to change an option—say to test the effect or perhaps to experiment—you can use

the SET command to change values either as a global setting (affects all connections) or a

session setting (applies only to the current connection).

However, if you change a global setting that is also in the configuration file, the value

(state) will remain only until the server is rebooted. Thus, if you want to keep global

changes, you should consider placing them in the configuration file.

On the other hand, setting a value at the session level could be beneficial for a limited

time or may be something you want to do only for a specific task. For example, the

following turns off the binary log, executes a SQL command, and then turns the binary

log back on. The following is a simple but profound example of how to perform actions

on a server that participate in replication without having the actions affect other servers.3

SET sql_log_bin=0;

CREATE USER 'hvac_user1'@'%' IDENTIFIED BY 'secret';

SET sql_log_bin=1;

3�Or worse, introduce errant transactions. See https://dev.mysql.com/doc/mysql-
utilities/1.6/en/utils-task-slavetrx.html.

Chapter 2 Getting Started with MySQL

https://dev.mysql.com/doc/mysql-utilities/1.6/en/utils-task-slavetrx.html
https://dev.mysql.com/doc/mysql-utilities/1.6/en/utils-task-slavetrx.html

51

For more information about the configuration file and how to use it to configure

MySQL 8 including using multiple option files and where the files exist on each platform,

see the section, “Using Option Files” in the online MySQL reference manual (http://

dev.mysql.com/doc/refman/8.0/en/).

�Creating Users and Granting Access

There are two additional administrative operations you need to understand before

working with MySQL: creating user accounts and granting access to databases. MySQL

can perform both with the GRANT statement, which automatically creates a user if one

does not exist. But the more pedantic method is first to issue a CREATE USER command

followed by one or more GRANT commands. For example, the following shows the creation

of a user named hvac_user1 and grants the user access to the database room_temp:

CREATE USER 'hvac_user1'@'%' IDENTIFIED BY 'secret';

GRANT SELECT, INSERT, UPDATE ON room_temp.* TO 'hvac_user1'@'%';

The first command creates the user named hvac_user1, but the name also has an

@ followed by another string. This second string is the host name of the machine with

which the user is associated. That is, each user in MySQL has both a user name and a

host name, in the form user@host, to uniquely identify them. That means the user and

host hvac_user1@10.0.1.16 and the user and host hvac_user1@10.0.1.17 are not the

same. However, the % symbol can be used as a wildcard to associate the user with any

host. The IDENTIFIED BY clause sets the password for the user.

A NOTE ABOUT SECURITY

It is always a good idea to create a user for your application that does not have full access to

the MySQL system. This is so you can minimize any accidental changes and also to prevent

exploitation. For example, it is recommended that you create a user with access only to those

databases in which you store (or retrieve) data.

Also be careful about using the wildcard % for the host. Although it makes it easier to create a

single user and let the user access the database server from any host, it also makes it much

easier for someone bent on malice to access your server (once they discover the password).

Chapter 2 Getting Started with MySQL

http://dev.mysql.com/doc/refman/8.0/en/
http://dev.mysql.com/doc/refman/8.0/en/

52

The second command allows access to databases. There are many privileges that

you can give a user. The example shows the most likely set that you would want to give

a user of a sensor network database: read (SELECT), add data (INSERT), and change data

(UPDATE). See the online MySQL reference manual for more about security and account

access privileges.

The command also specifies a database and objects where to grant the privilege.

Thus, it is possible to give a user read (SELECT) privileges to some tables and write

(INSERT, UPDATE) privileges to other tables. This example gives the user access to all

objects (tables, views, and so on) in the room_temp database.

As mentioned, you can combine these two commands into a single command. You

are likely to see this form more often in the literature. The following shows the combined

syntax. In this case, all you need to do is add the IDENTIFIED BY clause to the GRANT

statement. Cool!

GRANT SELECT, INSERT, UPDATE ON room_temp.* TO 'hvac_user1'@'%' IDENTIFIED

BY 'secret';

Next, let’s see how to configure the server for use with the document store; to be

more specific by installing the X Plugin.

�Configuring the Document Store

The last thing you want to do before exploring the MySQL Document Store is to ensure

the X Plugin is installed. If you installed MySQL on Windows, and you chose to enable

the Enable X Protocol/MySQL as a Document Store, you can skip this step. However,

other platforms may require configuring the server for use with the document store.

To enable the X Protocol on older MySQL servers, we need to install the X Plugin.

The X Plugin is named MySQLX and is easily installed with the following command. The

INSTALL PLUGIN command takes the name of the plugin (mysqlx) and the name of the

shared library. By convention, shared libraries are named the same as the plugin with

the .so suffix (Windows machines use .dll).

INSTALL PLUGIN mysqlx SONAME 'mysqlx.so';

Note  MySQL release 8.0.11 and later enable the X Plugin by default.

Chapter 2 Getting Started with MySQL

53

You can check to see what plugins are enabled using the following command. You

will see all plugins installed and their current state. Note that we see the X Plugin in the

list as enabled.

mysql> SHOW PLUGINS \G

*************************** 1. row ***************************

 Name: keyring_file

 Status: ACTIVE

 Type: KEYRING

Library: keyring_file.so

License: GPL

*************************** 2. row ***************************

 Name: binlog

 Status: ACTIVE

 Type: STORAGE ENGINE

Library: NULL

License: GPL

...

*************************** 43. row ***************************

 Name: mysqlx

 Status: ACTIVE

 Type: DAEMON

Library: mysqlx.so

License: GPL

43 rows in set (0.00 sec)

That’s all there is to it. Once enabled, your server will communicate with the X Protocol

to the MySQL Shell or any other system, service, or application that uses the X Protocol.

If there is a need to uninstall the X Plugin, you can do so with the following command:

UNINSTALL PLUGIN mysqlx;

In the following section, I take a longer tour of the MySQL server, to show how to use

basic SQL commands. There will be more about the document store in later chapters.

Chapter 2 Getting Started with MySQL

54

�A MySQL Primer
If you have never used a database system, learning and mastering the system requires

training, experience, and a good deal of perseverance. Chief among the knowledge

needed to become proficient is how to use the common SQL commands and concepts.

This section completes the primer on MySQL by introducing the most common MySQL

commands and concepts as a foundation for learning how to use the document store.

Note  Rather than regurgitate the online MySQL reference manual, this section
introduces the commands and concepts at a higher level. If you decide to use any
of the commands or concepts, please refer to the online MySQL reference manual
for additional details, complete command syntax, and additional examples.

This section reviews the most common SQL and MySQL-specific commands that

you will need to know to get the most out of your MySQL server databases. Although you

have already seen some of these in action, this section provides additional information

to help you use them.

One important rule to understand is user-supplied variable names are case sensitive

and obey case sensitivity of the host platform. For example, resolving last_name versus

Last_Name is not consistent across platforms. That is, case-sensitivity behavior is

different on Windows than it is on macOS. Check the online MySQL reference manual

for your platform to see how case sensitivity affects user-supplied variables.

�Creating Databases and Tables
The most basic commands you will need to learn and master are the CREATE DATABASE

and CREATE TABLE commands. Recall that database servers such as MySQL allow you to

create any number of databases that you can add tables and store data in a logical manner.

To create a database, use CREATE DATABASE followed by a name for the database. If

you are using the MySQL client, you must use the USE command to switch to a specific

database. The client focus is the latest database specified either at startup (on the

command line) or via the USE command.

Chapter 2 Getting Started with MySQL

55

You can override this by referencing the database name first. For example, SELECT *

FROM db1.table1 will execute regardless of the default database set. However, leaving off

the database name will cause the mysql client to use the default database. The following

shows two commands to create and change the focus of the database:

mysql> CREATE DATABASE greenhouse;

mysql> USE greenhouse;

Tip  If you want to see all the databases on the server, use the SHOW DATABASES
command.

Creating a table requires the, yes, CREATE TABLE command. This command has

many options allowing you to specify not only the columns and their data types but also

additional options such as indexes, foreign keys, and so on. An index also can be created

using the CREATE INDEX command (see the following code). The following code shows

how to create a simple table for storing plant sensor data such as what may be used for

monitoring a personal greenhouse.4

CREATE TABLE `greenhouse`.`plants` (

 `plant_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 �sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_level` char(5) DEFAULT NULL,

 PRIMARY KEY `plant_name` (`plant_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Note here that I specified the table name (plants) and four columns (plant_name,

sensor_value, sensor_event, and sensor_level). I used several data types. For plant_

name, I used a character field with a maximum of 30 characters, a floating-point data type

for sensor_value, a timestamp value for sensor_event, and another character field for

sensor_level of five characters.

4�I call it a greenhouse, but it is essentially our sun porch. During the summer there are only a few
plants but in winter it becomes a small conservatory.

Chapter 2 Getting Started with MySQL

56

The TIMESTAMP data type is of particular use any time you want to record the date

and time of an event or action. For example, it is often helpful to know when a sensor

value is read. By adding a TIMESTAMP column to the table, you do not need to calculate,

read, or otherwise format a date and time at the sensor or even aggregate node.

Note also that I specified that the plant_name column be defined as a key, which

creates an index. In this case, it is also the primary key. The PRIMARY KEY phrase tells the

server to ensure that there exists one and only one row in the table that matches the value

of the column. You can specify several columns to be used in the primary key by repeating

the keyword. Note that all primary key columns must not permit nulls (NOT NULL).

If you cannot determine a set of columns that uniquely identify a row (and you want

such a behavior—some favor tables without this restriction, but a good DBA will not),

you can use an artificial data type option for integer fields called AUTO INCREMENT. When

used on a column (this must be the first column), the server automatically increases

this value for each row inserted. In this way, it creates a default primary key. For more

information about auto increment columns, see the online MySQL reference manual.

Tip  Best practices suggest using a primary key on a character field to be
suboptimal in some situations such as tables with large values for each column
or many unique values. This can make searching and indexing slower. In this
case, you could use an auto increment field to artificially add a primary key that is
smaller in size (but somewhat more cryptic).

There are far more data types available than those shown in the previous example.

You should review the online MySQL reference manual for a complete list of data types.

See the section “Data Types.” If you want to know the layout or “schema” of a table, use

the SHOW CREATE TABLE command.

Tip  Like databases, you can also get a list of all the tables in the database with
the SHOW TABLES command.

Chapter 2 Getting Started with MySQL

57

�Searching for Data
The most used basic command you need to know is the command to return the data

from the table (also called a result set or rows). To do this, you use the SELECT statement.

This SQL statement is the workhorse for a database system. All queries for data will

be executed with this command. As such, we will spend a bit more time looking at the

various clauses (parts) that can be used starting with the column list.

Note A lthough we examine SELECT statements first, if you want to try these out
on your system, be sure to run the INSERT statements first.

The SELECT statement allows you to specify which columns you want to choose from

the data. The list appears as the first part of the statement. The second part is the FROM

clause, which specifies the table(s) you want to retrieve rows from.

Note  The FROM clause can be used to join tables with the JOIN operator.

The order that you specify the columns determines the order shown in the result set.

If you want all of the columns, use an asterisks (*) instead. Listing 2-3 demonstrates three

statements that generate the same result sets. That is, the same rows will be displayed in

the output of each. In fact, I am using a table with only four rows for simplicity.

Listing 2-3.  Example SELECT Statements

mysql> SELECT plant_name, sensor_value, sensor_event, sensor_level FROM

greenhouse.plants;

+------------------------+--------------+---------------------+--------------+

| plant_name | sensor_value | sensor_event | sensor_level |

+------------------------+--------------+---------------------+--------------+

| fern in den | 0.2319 | 2015-09-23 21:04:35 | NULL |

| fern on deck | 0.43 | 2015-09-23 21:11:45 | NULL |

| flowers in bedroom1 | 0.301 | 2015-09-23 21:11:45 | NULL |

| weird plant in kitchen | 0.677 | 2015-09-23 21:11:45 | NULL |

+------------------------+--------------+---------------------+--------------+

4 rows in set (0.00 sec)

Chapter 2 Getting Started with MySQL

58

mysql> SELECT * FROM greenhouse.plants;

+------------------------+--------------+---------------------+--------------+

| plant_name | sensor_value | sensor_event | sensor_level |

+------------------------+--------------+---------------------+--------------+

| fern in den | 0.2319 | 2015-09-23 21:04:35 | NULL |

| fern on deck | 0.43 | 2015-09-23 21:11:45 | NULL |

| flowers in bedroom1 | 0.301 | 2015-09-23 21:11:45 | NULL |

| weird plant in kitchen | 0.677 | 2015-09-23 21:11:45 | NULL |

+------------------------+--------------+---------------------+--------------+

4 rows in set (0.00 sec)

mysql> SELECT sensor_value, plant_name, sensor_level, sensor_event FROM

greenhouse.plants;

+--------------+------------------------+--------------+---------------------+

| sensor_value | plant_name | sensor_level | sensor_event |

+--------------+------------------------+--------------+---------------------+

| 0.2319 | fern in den | NULL | 2015-09-23 21:04:35 |

| 0.43 | fern on deck | NULL | 2015-09-23 21:11:45 |

| 0.301 | flowers in bedroom1 | NULL | 2015-09-23 21:11:45 |

| 0.677 | weird plant in kitchen | NULL | 2015-09-23 21:11:45 |

+--------------+------------------------+--------------+---------------------+

4 rows in set (0.00 sec)

Note that the first two statements result in the same rows as well as the same

columns in the same order. However, the third statement although it generates the same

rows, displays the columns in a different order.

You also can use functions in the column list to perform calculations and similar

operations. One special example is using the COUNT() function to determine the number

of rows in the result set, as shown here. See the online MySQL reference manual for more

examples of functions supplied by MySQL.

SELECT COUNT(*) FROM greenhouse.plants;

The next clause in the SELECT statement is the WHERE clause. This is where you specify

the conditions you want to use to restrict the number of rows in the result set. That is,

only those rows that match the conditions. The conditions are based on the columns and

can be quite complex. That is, you can specify conditions based on calculations, results

from a join, and more. But most conditions will be simple equalities or inequalities on

Chapter 2 Getting Started with MySQL

59

one or more columns to answer a question. For example, suppose you wanted to see the

plants where the sensor value read is less than 0.40? In this case, we issue the following

query and receive the results. Note that I specified only two columns: the plant name

and the value read from sensor.

mysql> SELECT plant_name, sensor_value FROM greenhouse.plants WHERE sensor_

value < 0.40;

+---------------------+--------------+

| plant_name | sensor_value |

+---------------------+--------------+

| fern in den | 0.2319 |

| flowers in bedroom1 | 0.301 |

+---------------------+--------------+

2 rows in set (0.01 sec)

There are additional clauses you can use including the GROUP BY clause, which is

used for grouping rows for aggregation or counting, and the ORDER BY clause, which is

used to order the result set. Let’s take a quick look at each starting with aggregation.

Suppose you wanted to average the sensor values read in the table for each sensor.

In this case, we have a table that contains sensor readings over time for a variety of

sensors. Although the example contains only four rows (and thus may not be statistically

informative), the example demonstrates the concept of aggregation quite plainly, as

shown in Listing 2-4. Note that what we receive is simply the average of the four sensor

values read.

Listing 2-4.  GROUP BY Example

mysql> SELECT plant_name, sensor_value FROM greenhouse.plants WHERE plant_

name = 'fern on deck';

+--------------+--------------+

| plant_name | sensor_value |

+--------------+--------------+

| fern on deck | 0.43 |

| fern on deck | 0.51 |

| fern on deck | 0.477 |

| fern on deck | 0.73 |

+--------------+--------------+

4 rows in set (0.00 sec)

Chapter 2 Getting Started with MySQL

60

mysql> SELECT plant_name, AVG(sensor_value) AS avg_value FROM greenhouse.

plants WHERE plant_name = 'fern on deck' GROUP BY plant_name;

+--------------+-------------------+

| plant_name | avg_value |

+--------------+-------------------+

| fern on deck | 0.536750003695488 |

+--------------+-------------------+

1 row in set (0.00 sec)

Note that I specified the average function, AVG(), in the column list and passed in

the name of the column I wanted to average. There are many such functions available in

MySQL to perform some powerful calculations. Clearly, this is another example of how

much power exists in the database server that would require many more resources on a

typical lightweight sensor or aggregator node in the network.

Also note that I renamed the column with the average using the AS keyword. You can

use this to rename any column specified, which changes the name in the result set, as

you can see in the listing.

Another use of the GROUP BY clause is counting. In this case, we replaced AVG() with

COUNT() and received the number of rows matching the WHERE clause. More specific, we

want to know how many sensor values were stored for each plant.

mysql> SELECT plant_name, COUNT(sensor_value) as num_values FROM

greenhouse.plants GROUP BY plant_name;

+------------------------+------------+

| plant_name | num_values |

+------------------------+------------+

| fern in den | 1 |

| fern on deck | 4 |

| flowers in bedroom1 | 1 |

| weird plant in kitchen | 1 |

+------------------------+------------+

4 rows in set (0.00 sec)

Now let’s say we want to see the results of our result set ordered by sensor value. We

use the same query that selected the rows for the fern on the deck, but we order the rows

by sensor value in ascending and descending order using the ORDER BY clause. Listing 2-5

shows the results of each option.

Chapter 2 Getting Started with MySQL

61

Listing 2-5.  ORDER BY Examples

mysql> SELECT plant_name, sensor_value FROM greenhouse.plants WHERE plant_

name = 'fern on deck' ORDER BY sensor_value ASC;

+--------------+--------------+

| plant_name | sensor_value |

+--------------+--------------+

| fern on deck | 0.43 |

| fern on deck | 0.477 |

| fern on deck | 0.51 |

| fern on deck | 0.73 |

+--------------+--------------+

4 rows in set (0.00 sec)

mysql> SELECT plant_name, sensor_value FROM greenhouse.plants WHERE plant_

name = 'fern on deck' ORDER BY sensor_value DESC;

+--------------+--------------+

| plant_name | sensor_value |

+--------------+--------------+

| fern on deck | 0.73 |

| fern on deck | 0.51 |

| fern on deck | 0.477 |

| fern on deck | 0.43 |

+--------------+--------------+

4 rows in set (0.00 sec)

As I mentioned, there is a lot more to the SELECT statement than shown here, but

what we have seen will get you very far, especially when working with data typical of

most small- to medium-sized database solutions.

�Creating Data
Now that you have a database and tables created, you will want to load or insert data into

the tables. You can do so using the INSERT INTO statement. Here we specify the table and

the data for the row. The following shows a simple example:

INSERT INTO greenhouse.plants (plant_name, sensor_value) VALUES ('fern in

den', 0.2319);

Chapter 2 Getting Started with MySQL

62

In this example, I am inserting data for one of my plants by specifying the name

and value. What about the other columns, you wonder? In this case, the other columns

include a timestamp column, which will be filled in by the database server. All other

columns (just the one) will be set to NULL, which means no value is available, the value is

missing, the value is not zero, or the value is empty.

Note that I specified the columns before the data for the row. This is necessary

whenever you want to insert data for fewer columns than what the table contains. To be

more specific, leaving the column list off means you must supply data (or NULL) for all

columns in the table. Also, the order of the columns listed can be different from the order

they are defined in the table. Leaving the column list off will result in the ordering the

column data based on how they appear in the table.

You can also insert several rows using the same command by using a comma

separated list of the row values, as shown here:

INSERT INTO greenhouse.plants (plant_name, sensor_value) VALUES ('flowers

in bedroom1', 0.301), ('weird plant in kitchen', 0.677), ('fern on deck',

0.430);

Here I’ve inserted several rows with the same command. Note that this is just a

shorthand mechanism, and except for automatic commits, no different than issuing

separate commands.

�Updating Data
There are times when you want to change or update data. You may have a case where

you need to change the value of one or more columns, replace the values for several

rows, or correct formatting or even scale of numerical data. To update data, we use

the UPDATE command. You can update a particular column, update a set of columns,

perform calculations on one or more columns, and more.

What may be more likely is you or your users will want to rename an object in your

database. For example, suppose we determine the plant on the deck is not actually a fern

but was an exotic flowering plant. In this case, we want to change all rows that have a plant

name of “fern on deck” to “flowers on deck.” The following command performs the change:

UPDATE greenhouse.plants SET plant_name = 'flowers on deck' WHERE plant_

name = 'fern on deck';

Chapter 2 Getting Started with MySQL

63

Note that the key operator here is the SET operator. This tells the database to assign

a new value to the column(s) specified. You can list more than one set operation in the

command.

Note I used a WHERE clause here to restrict the UPDATE to a particular set of rows. This

is the same WHERE clause as you saw in the SELECT statement, and it does the same thing;

it allows you to specify conditions that restrict the rows affected. If you do not use the

WHERE clause, the updates will apply to all rows.

Caution D on’t forget the WHERE clause! Issuing an UPDATE command without a
WHERE clause will affect all rows in the table!

�Deleting Data
Sometimes you end up with data in a table that needs to be removed. Maybe you used

test data and want to get rid of the fake rows. Perhaps you want to compact or purge

your tables or you want to eliminate rows that no longer apply. To remove rows, use the

DELETE FROM command.

Let’s look at an example. Suppose you have a plant-monitoring solution under

development and you’ve discovered that one of your sensors or sensor nodes are reading

values that are too low because of a coding, wiring, or calibration error. In this case, we want

to remove all rows with a sensor value less than 0.20. The following command does this:

DELETE FROM plants WHERE sensor_value < 0.20;

Caution D on’t forget the WHERE clause! Issuing a DELETE FROM command
without a WHERE clause will permanently delete all rows in the table!

Note that I used a WHERE clause here. That is, a conditional statement to limit the

rows acted on. You can use whatever columns or conditions you want; just be sure you

have the correct ones! I like to use the same WHERE clause in a SELECT statement first. For

example, I would issue the following first to check that I am about to delete the rows I

want and only those rows. Note that it is the same WHERE clause.

SELECT * FROM plants WHERE sensor_value < 0.20;

Chapter 2 Getting Started with MySQL

64

�Using Indexes
Tables are created without the use of any ordering; that is, they are unordered. Although

it is true MySQL will return the data in the same order each time, there is no implied

(or reliable) ordering unless you create an index. The ordering I am referring to here is

not what you think when sorting (that’s possible with the ORDER BY clause in the SELECT

statement).

Rather, indexes are mappings that the server uses to read the data when queries are

executed. For example, if you had no index on a table and wanted to select all rows with

a value greater than a certain value for a column, the server will have to read all rows to

find all the matches. However, if we added an index on that column, the server would

have to read only those rows that match the criteria.

I should note that there are several forms of indexes. What I am referring to here is a

clustered index where the value for column in the index is stored in the index, allowing

the server to read the index only and not the rows to do the test for the criteria.

To create an index, you can either specify the index in the CREATE TABLE statement

or issue a CREATE INDEX command. The following shows a simple example:

CREATE INDEX plant_name ON plants (plant_name);

This command adds an index on the plant_name column. Observe how this affects

the table.

CREATE TABLE `plants` (

 `plant_name` char(30) NOT NULL,

 `sensor_value` float DEFAULT NULL,

 �sensor_event` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `sensor_level` char(5) DEFAULT NULL,

 PRIMARY KEY (`plant_name`),

 KEY `plant_name` (`plant_name`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1

Indexes created like this do not affect the uniqueness of the rows in the table. In

other words, make sure that there exists one and only one row that can be accessed by

a specific value of a specific column (or columns). What I am referring to is the concept

of a primary key (or primary index), which is a special option used in the creation of the

table as described earlier.

Chapter 2 Getting Started with MySQL

65

�Views
Views are logical mappings of results of one or more tables. They can be referenced as

if they were tables in queries, making them a powerful tool for creating subsets of data

to work with. You create a view with CREATE VIEW and give it a name similar to a table.

The following shows a simple example where we create a test view to read values from

a table. In this case, we limit the size of the view (number of rows), but you could use a

wide variety of conditions for your views, including combining data from different tables.

CREATE VIEW test_plants AS SELECT * FROM plants LIMIT 5;

Views are not normally encountered in small- or medium-sized database solutions,

but I include them to make you aware of them in case you decide to do additional

analysis and want to organize the data into smaller groups for easier reading.

�Triggers
Another advanced concept (and associated SQL command) is the use of an event-driven

mechanism that is “triggered” when data is changed. That is, you can create a short set of

SQL commands (a procedure) that will execute when data is inserted or changed.

There are several events or conditions under which the trigger will execute. You

can set up a trigger either before or after an update, insert, or delete action. A trigger is

associated with a single table and has as its body a special construct that allows you to

act on the rows affected. The following shows a simple example:

DELIMITER //

CREATE TRIGGER set_level BEFORE INSERT ON plants FOR EACH ROW

BEGIN

 IF NEW.sensor_value < 0.40 THEN

 SET NEW.sensor_level = 'LOW';

 ELSEIF NEW.sensor_value < 0.70 THEN

 SET NEW.sensor_level = 'OK';

 ELSE

 SET NEW.sensor_level = 'HIGH';

 END IF;

END //

DELIMITER ;

Chapter 2 Getting Started with MySQL

66

This trigger will execute before each insert into the table. As you can see in the

compound statement (BEGIN . . . END), we set a column called sensor_level to LOW, OK,

or HIGH depending on the value of the sensor_value. To see this in action, consider the

following command. The FOR EACH ROW syntax allows the trigger to act on all rows in the

transaction.

INSERT INTO plants (plant_name, sensor_value) VALUES ('plant1', 0.5544);

Because the value we supplied is less than the middle value (0.70), we expect the

trigger to fill in the sensor_level column for us. The following shows this indeed is what

happened when the trigger fired:

+------------+--------------+---------------------+--------------+

| plant_name | sensor_value | sensor_event | sensor_level |

+------------+--------------+---------------------+--------------+

| plant1 | 0.5544 | 2015-09-23 20:00:15 | OK |

+------------+--------------+---------------------+--------------+

1 row in set (0.00 sec)

This demonstrates an interesting and powerful way you can create derived columns

with the power of the database server and save the processing power and code in

your applications. I encourage you to consider this and similar powerful concepts for

leveraging the power of the database server.

�Simple Joins
One of the most powerful concepts of database systems is the ability to make

relationships (hence the name relational) among the data. That is, data in one table can

reference data in another (or several tables). The most simplistic form of this is called a

master-detail relationship in which a row in one table references or is related to one or

more rows in another.

A common (and classic) example of a master-detail relationship is from an order-

tracking system where we have one table containing the data for an order and another

table containing the line items for the order. Thus, we store the order information such

as customer number and shipping information once and combine or “join” the tables

when we retrieve the order proper.

Chapter 2 Getting Started with MySQL

67

Let’s look at an example from the sample database named world. You can find this

database on the MySQL web site (http://dev.mysql.com/doc/index-other.html).

Feel free to download it and any other sample database. They all demonstrate various

designs of database systems. You also will find it handy to practice querying the data as it

contains more than a few, simple rows.

Note  If you want to run the following examples, you need to install the world
database as described in the documentation for the example (http://dev.
mysql.com/doc/world-setup/en/world-setup-installation.html).

Listing 2-6 shows an example of a simple join. There is a lot going on here, so take

a moment to examine the parts of the SELECT statement, especially how I specified the

JOIN clause. You can ignore the LIMIT option because that simply limits the number of

rows in the result set.

Listing 2-6.  Simple JOIN Example

mysql> USE world;

mysql> SELECT Name, Continent, Language FROM Country JOIN CountryLanguage

ON Country.Code = CountryLanguage.CountryCode LIMIT 10;

+-------------+---------------+------------+

| Name | Continent | Language |

+-------------+---------------+------------+

| Aruba | North America | Dutch |

| Aruba | North America | English |

| Aruba | North America | Papiamento |

| Aruba | North America | Spanish |

| Afghanistan | Asia | Balochi |

| Afghanistan | Asia | Dari |

| Afghanistan | Asia | Pashto |

| Afghanistan | Asia | Turkmenia |

| Afghanistan | Asia | Uzbek |

| Angola | Africa | Ambo |

+-------------+---------------+------------+

10 rows in set (0.00 sec)

Chapter 2 Getting Started with MySQL

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/world-setup/en/world-setup-installation.html
http://dev.mysql.com/doc/world-setup/en/world-setup-installation.html

68

Here I used a JOIN clause that takes two tables specified such that the first table is

joined to the second table using a specific column and its values (the ON specifies the

match). What the database server does is read each row from the tables and returns only

those rows where the value in the columns specified a match. Any rows in one table that

are not in the other are not returned.

Tip Y ou can retrieve those rows with different joins. See the online MySQL
reference manual on inner and outer joins for more details.

Note that I included only a few columns. In this case, I specified the country

name and continent from the Country table and the language column from the

CountryLanguage table. If the column names were not unique (the same column

appears in each table), I would have to specify them by table name such as Country.

Name. In fact, it is considered good practice to always qualify the columns in this manner.

There is one interesting anomaly in this example that I feel important to point out.

In fact, some would consider it a design flaw. Note in the JOIN clause that I specified the

table and column for each table. This is normal and correct, but note that the column

name does not match in both tables. Although this really doesn’t matter, and creates

only a bit of extra typing, some DBAs would consider this erroneous and would have a

desire to make the common column name the same in both tables.

Another use for a join is to retrieve common, archival, or lookup data. For example,

suppose you had a table that stored details about things that do not change (or rarely

change) such as cities associated with ZIP codes or names associated with identification

numbers (e.g., SSN). You could store this information in a separate table and join

the data on a common column (and values) whenever you needed. In this case, that

common column can be used as a foreign key, which is another advanced concept.

Foreign keys are used to maintain data integrity (i.e., if you have data in one table

that relates to another table but the relationship needs to be consistent). For example,

if you wanted to make sure when you delete the master row that all of the detail rows

are also deleted, you could declare a foreign key in the master table to a column

(or columns) to the detail table. See the online MySQL reference manual for more

information about foreign keys.

Chapter 2 Getting Started with MySQL

69

This discussion on joins touches only the very basics. Indeed, joins are arguably one

of the most difficult and often confused areas in database systems. If you find you want to

use joins to combine several tables or extend data so that the data is provided from several

tables (outer joins), you should spend some time with an in-depth study of database

concepts such as Clare Churcher’s book Beginning Database Design (Apress, 2012).

�Stored Routines
There are many more concepts and commands available in MySQL, but two that may be

of interest are PROCEDURE and FUNCTION, sometimes called stored routines. I introduce

these concepts here so that if you want to explore them, you understand how they are

used at a high level.

Suppose you need to run several commands to change data. That is, you need to

do some complex changes based on calculations. For these types of operations, MySQL

provides the concept of a stored procedure. The stored procedure allows you to execute

a compound statement (a series of SQL commands) whenever the procedure is called.

Stored procedures are sometimes considered an advanced technique used mainly for

periodic maintenance, but they can be handy in even the more simplistic situations.

For example, suppose you want to develop your own database application that uses

SQL, but because you are developing it, you need to periodically start over and want to

clear out all the data first. If you had only one table, a stored procedure would not help

much, but suppose you have several tables spread over several databases (not unusual

for larger databases). In this case, a stored procedure may be helpful.

Tip W hen entering commands with compound statements in the MySQL client,
you need to change the delimiter (the semicolon) temporarily so that the semicolon
at the end of the line does not terminate the command entry. For example, use
DELIMITER // before writing the command with a compound statement, use //
to end the command, and change the delimiter back with DELIMITER ;. This is
only when using the client.

Because stored procedures can be quite complicated, if you decide to use them,

read the “CREATE PROCEDURE and CREATE FUNCTION Syntax” section of the online MySQL

reference manual before trying to develop your own. There is more to creating stored

procedures than described in this section.

Chapter 2 Getting Started with MySQL

70

Now suppose you want to execute a compound statement and return a result—

you want to use it as a function. You can use functions to fill in data by performing

calculations, data transformation, or simple translations. Functions therefore can be

used to provide values to populate column values, provide aggregation, provide date

operations, and more.

You have already seen a couple of functions (COUNT, AVG). These are considered

built-in functions, and there is an entire section devoted to them in the online MySQL

reference manual. However, you also can create your own functions. For example, you

may want to create a function to perform data normalization on your data. More specific,

suppose you have a sensor that produces a value in a specific range, but depending on

that value and another value from a different sensor or lookup table, you want to add,

subtract, average, and so on the value to correct it. You could write a function to do this

and call it a trigger to populate the value for a calculation column.

Tip  Use a new column for calculated values so that you preserve the original
value.

WHAT ABOUT CHANGING OBJECTS?

You may wonder what you to do when you need to modify a table, procedure, trigger, and

so on. Rest easy, you do not have to start over from scratch! MySQL provides an ALTER

command for each object. That is, there is an ALTER TABLE, ALTER PROCEDURE, and so

on. See the online MySQL reference manual section, “Data Definition Statements” for more

information about each ALTER command.

�Summary
The MySQL database server is a powerful tool. Given its unique placement in the market

as the database server for the Internet, it is not surprising that web developers (as well

as many startup and similar Internet properties) have chosen MySQL for their solutions.

Not only is the server robust and easy to use, it is also available as a free community

license that you can use to keep your initial investment within budget.

Chapter 2 Getting Started with MySQL

71

In this chapter, you discovered some of the power of using the MySQL database

server in its traditional role using the SQL interface; how to issue commands for creating

databases and tables for storing data as well as commands for retrieving that data.

Although this chapter presents only a small primer on MySQL, you learned how to get

started with your own installation of MySQL.

In Chapter 3, we look at the NoSQL interface for MySQL. In particular, we look at

using MySQL as a document store.

Chapter 2 Getting Started with MySQL

73
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_3

CHAPTER 3

JSON Documents
Now that we have the MySQL server installed, we can begin to learn more about what the

document store is and how we can begin to work with it. The core concept is JavaScript

Object Notation (JSON) documents. What we discover is that MySQL has two ways to

work with JSON documents: a pure NoSQL document store mechanism complete with

a full developer application programming interface and a very cool integration of JSON

with relational databases.

The origins of the MySQL document store lie in several technologies that are

leveraged together to form the document store. In particular, Oracle has combined a key,

value mechanism with a new data type, a new programming library, and a new access

mechanism to create what is now the document store. As we learned in Chapter 1, not

only does this allow us to use MySQL with a NoSQL interface, it also allows us to build

hybrid solutions that leverage the stability and structure of relational data while adding

the flexibility of JSON documents.

In this chapter, we learn how MySQL supports JSON documents including how

to add, find, update, and remove data (commonly referred to as create, read, update,

and delete, respectfully). We begin with more information about the concepts and

technologies you will encounter throughout this book. We then move on to learning

more about the JSON data type and the JSON functions in the MySQL server. Although

this chapter focuses on using JSON with relational data, a firm foundation on how

to use JSON is required to master the MySQL document store NoSQL interface—the

X Developer API (X DevAPI).

Let’s begin with a review of the concepts and technologies we will encounter when

working with the document store and JSON in MySQL.

74

�Concepts and Technologies: Jargon Explained
As we learned in Chapter 1, there are several new concepts and technologies and

associated jargon to navigate to learn how to use the document store in MySQL. We

encountered some of these terms in Chapter 1, but we explore them in a little more

detail here in the context of MySQL. That is, we see how these concepts and technologies

explain what comprises the JSON data type and document store interface. Let’s begin

with most basic concept that JSON uses: key, value mechanisms.

�Origins: Key, Value Mechanisms
As with most things in this world, nothing is truly new in the sense that it is completely

original without some form of existence that came before and is typically built from

existing technologies applied in novel ways. Key, value mechanisms are a prime example

of a base technology. I use the term, mechanism, because the use of the key allows you to

access the value.

When we say key, value we mean there exists some tag (normally a string) that forms

the key and each key is associated with a value. For example, "name":"George" is an

example where key (name) has a value (George). Although the values in a key, value store

are normally short strings, values can be complex: numeric; alphanumeric; lists; or even

nested key, value sets.

Key, value mechanisms are best known for being easy to use programmatically while

still retaining readability. That is, with diligent use of whitespace, a complex nested

key, value data structure can be read by humans. The following shows one example

formatted in a manner how developers would format code. As you can see, it is very easy

to see what this set of key, values are storing: name, address, and phone numbers.

{ "name": {

 "first":"George",

 "last":"Folger"

 },

 "phones": [

 {

 "work":"555-1212"

 },

Chapter 3 JSON Documents

75

 {

 "cell":"555-2121"

 }

],

 "address": {

 "street":"123 Main Street",

 "city":"melborne",

 "state":"California",

 "zip":"90125"

 }

}

Recall from Chapter 1, we saw some examples of these constructs. Now we know

how and why they are constructed.

One example of a key, value mechanism (or storage) is Extensible Markup Language

(XML), which has been around for some time. The following is a simple example of XML

using the data above. It is the result of a SQL SELECT query with the output (rows) shown

in XML format.1 Note how XML uses tags like HTML (because it is derived from HTML)

along with the key, value storage of the data. Here, the keys are <row>, <field> and the

values the contents between the start and end tag symbols (<field> </field>).

<?xml version="1.0"?>

<resultset statement="select * from thermostat_model limit 1;"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <row>

 <field name="model_id">acme123</field>

 <field name="brand">Lennox</field>

 </row>

</resultset>

There are systems designed around key, value mechanisms (called key, value or

relational stores) such as the Semantic Web.2 In short, the Semantic Web is an attempt

to leverage associations of data to describe things, events, and so forth. Sometimes

the terms relation store or triple store are used to describe the types of storage systems

1�The old MySQL client can do this using the --xml command line option.
2�See https://www.w3.org/RDF/Metalog/docs/sw-easy.

Chapter 3 JSON Documents

https://www.w3.org/RDF/Metalog/docs/sw-easy

76

employed. There are several forms of key, value mechanisms used in the Sematic Web

including Resource Description Framework (RDF), Web Ontology Language (OWL),

and XML.

There are other examples of key, value mechanisms but the one most pertinent to

the document store is JSON.

�JSON
I gave a brief description of JSON in Chapter 1. Recall that JSON is a human and

machine readable data exchange format. It is also platform independent, which means

that there are no concepts of the format that prohibit it from being used in almost any

programming language. In addition, JSON is a widely popular format that is used on the

Internet.

JSON allows you to describe data in any way you want to without forcing any

structure. In fact, you can format (lay out) your data any way you want to. The only real

restriction is the proper use of the descriptors (curly braces, square brackets, quotes,

commas, etc.) that must be aligned and in some cases paired correctly. When supported

in programming languages, developers can easily read the data by accessing it via the

keys. Better still, developers don’t need to know what the keys are (but it helps!) because

they can use the language support mechanisms to get the keys and iterate over them. In

this way, like XML, the data is self-describing.

Now let’s look at another key component of the document store—the NoSQL

interface starting with the programming library.

�Application Programming Interface
An application programming interface (API), sometimes simply called a library or

programming library, is a set of classes and methods that support operations for

one or more capability. These capabilities, through the classes and methods, allow a

programmer to use the classes and methods to perform various tasks.

For example, when we use any application with a graphical user interface on our

phone, tablet, or computer, the application was built using one of several APIs. The

graphical user interface itself was built using one or more APIs that encapsulated a set

of classes and methods for drawing windows, creating buttons, and so forth—all of the

things that the graphical user interface was engineered to provide for developers.

Chapter 3 JSON Documents

77

In the case of the MySQL document store, we use the X DevAPI to access the server

through a set of classes and methods that provide connectivity to the server, abstractions

of concepts (such as collections, tables, SQL operations), and more. As we learned

earlier, the X DevAPI is also built on several other technologies including the X Protocol

enabled through the X Plugin. These technologies are combined for a NoSQL interface to

the MySQL server.

�NoSQL Interface
There are several sometimes conflicting definitions (if not examples) of NoSQL. For the

purpose of this book and MySQL in general, a NoSQL interface is an API that does not

require the use of SQL statements to access data. The API itself provides the connection

to the server as well as classes and methods for creating, retrieving, updating, and

deleting data.

For example, if you want to fetch all the data that meets a specific criterion, you must

first create a connection to the server, request access to the object containing the data,

and then fetch the data. Each of these steps requires creating object instances and calling

the methods for those object instances to manipulate the API.

In contrast, the normal mechanism used to interact with MySQL is through a SQL

interface in which you must form all your interactions with objects and data with

strictly formatted SQL commands. You issue the command and read the results. If you

want to write an application that uses the SQL interface, say for getting data, you must

use commands to search for the data then convert results into internal programming

structures making the data seem like an auxiliary component rather than an integral part

of the solution.

NoSQL interfaces break this mold by allowing you to use APIs to work with the data.

More specific, you use programming interfaces rather than command-based interfaces.

It is at this point that you’re wondering about how MySQL handles the hybrid option

of using JSON documents with relational data. In basic terms, MySQL has been designed

to permit storing and retrieving JSON documents in the relational data (via the SQL

interface). That is, the server has been modified to handle the JSON document. There

is also a set of functions that allows you to do all manner of things with the JSON data

making it easy to use JSON via the SQL interface.

However, you also can use JSON documents via the NoSQL X DevAPI either through

an SQL command or as a pure document store using the special classes and methods of

the X DevAPI. We will learn more about the X DevAPI in Chapter 5.

Chapter 3 JSON Documents

78

�Document Store
A document store (also known as a document-oriented database) is a storage and

retrieval system for managing semistructured data (hence documents). Modern

document store systems support a key, value construct such as those found in XML and

JSON. Document store systems are therefore sometimes considered a subclass of key,

value storage systems.

Document store systems also are commonly accessed by a NoSQL interface

implemented as a programming interface (API) that permits developers to incorporate

the storage and retrieval of documents in their programs without need of a third-party

access mechanism (the API implements the access mechanism). Indeed, the metadata

that describes the data is embedded with the data itself. Roughly, this means the keys

and the layout (arrangement or nesting) of the keys form the metadata and the metadata

becomes opaque to the storage mechanism. More specific, how the data is arranged

(how the document is formed or describes the data) is not reflected in or managed

by the storage mechanism. Access to the semistructured data requires accessing the

mechanism designed to process the document itself using the NoSQL interface.

These two qualities: semistructured data and NoSQL interfaces are what separate

document stores from relational data. Relational data requires structure that is not

flexible forcing all data to conform to a specific structure. Data is also grouped together

with the same structure and there is often little allowance for data that can vary in

content. Thus, we don’t normally see document store accessible via traditional relational

data mechanism. That is, until now.

One thing that is interesting about working with the document store is you don’t

need to be an expert on JavaScript or Python to learn how to work with the document

store. Indeed, most of what you will do doesn’t require mastery of any programming

language.3 That is, there are plenty of examples of how to do things so you need not learn

all that there is to know about the language to get started. In fact, you can pick up what

you need very quickly and then learn more about the language as your needs mature.

Now, let’s dive into what JSON documents are and how we can use them with

MySQL.

3�But it would help, of course.

Chapter 3 JSON Documents

79

�Introducing JSON Documents
In MySQL 5.7.8 and beyond, we can use the JSON data type to store a JSON document in

a column in a table. Recall from Chapter 1 that although it is possible to embed JSON in

a TEXT or BLOB field, there are several very good reasons not to but the most compelling

reason is because you would have to add the parsing of the data to your program thereby

making it more complex and potentially error prone. The JSON data type overcomes this

problem in two big ways.

•	 Validation: The JSON data type provides document validation. That

is, only valid JSON can be stored in a JSON column.

•	 Efficient access: When a JSON document is stored in a table, the

storage engine packs the data into a special optimized binary format

allowing the server fast access to the data elements rather than

parsing the data each time it is accessed.

This opens a whole new avenue for storing unstructured data in a structured form

(relational data). However, Oracle didn’t stop with simply adding a JSON data type to

MySQL. Oracle also added a sophisticated programming interface as well as the concept

of storing documents as collections in the database. We’ll see more about these aspects

later in the book. For now, let’s see how to use JSON with relational data.

�JSON Format Rules
JSON data is formed using strings bracketed with certain symbols. Although we have

been discussing key, value mechanisms as they relate to JSON, there are two types of

JSON attributes: arrays formed by a comma separated list and objects formed from a set

of key, value pairs. You also can nest JSON attributes. For example, an array can contain

objects and values in object keys can contain arrays or other objects. The combination of

JSON arrays and objects is called a JSON document.

A JSON array contains a list of values separated by commas and enclosed within

square brackets ([]). For example, the following are valid JSON arrays.

["red", "green", "yellow", "blue"]

[1,2,3,4,5,6]

[true, false, false]

Chapter 3 JSON Documents

80

Note that we started and ended the array with square brackets and used a comma

to separate the values. Although I did not use whitespace, you can use whitespace and,

depending on your programming language, you may be able to also use newlines, tabs,

and carriage returns. For example, the following is still a valid JSON array.

["red", 27, "yellow", 4.75, "blue", false]

A JSON object is a set of key, value pairs where each key, value pair is enclosed

within open and close curly braces ({ }) and separated by commas. For example, the

following are valid JSON objects. Note that the key address has a JSON object as its value.

{"address": {

 "street": "123 First Street",

 "city": "Oxnard",

 "state": "CA",

 "zip": "90122"

}}

{"address": {

 "street":"4 Main Street",

 "city":"Melborne",

 "state":"California",

 "zip":"90125"

}}

{"address": {

 "street":"173 Caroline Ave",

 "city":"Montrose",

 "state":"Georgia",

 "zip":"31505"

}}

JSON arrays are typically used to contain lists of related (well, sometimes) things,

and JSON objects are used to describe complex data. JSON arrays and objects can

contain scalar values such as strings or numbers, the null literal (just like in relational

data), or Boolean literals true and false. Keys must always be strings and are commonly

enclosed in quotes. Finally, JSON values can also contain time information (date, time,

or datetime). For example, the following shows a JSON array with time values.

["03:22:19.012000", "2016-02-03", "2016-02-03 03:22:19.012000"]

Chapter 3 JSON Documents

81

The following section describes how we can use JSON in MySQL. In this case, we

are referring to relational data but the formatting of JSON documents is the same in the

document store.

�Using JSON in MySQL
When used in MySQL, JSON documents are written as strings. MySQL parses any string

used in a JSON data type validating the document. If the document is not valid—it’s not

a properly formed JSON document—the server will produce an error. You can use JSON

documents in any SQL statement where it is appropriate. For example, you can use it in

INSERT and UPDATE statements as well as in clauses like the WHERE clause.

Properly formatting JSON documents can be a bit of a challenge for some, especially

those not used to formatting data structures in programming or scripting languages. The

things to remember most is to balance your quotes, use commas correctly, and balance

all curly braces and square brackets. Easy, right? There’s just one thing that can stymie

some people: quotes!

When you specify keys and values as strings, you must use the double quote

character ("), not the single quote ('). Because MySQL expects JSON documents as

strings, you can use the single quote around the entire JSON document, but not within

the document itself. Fortunately, MySQL provides a host of special functions that you

can use with JSON documents, one of which is the JSON_VALID() function that permits

you to check a JSON document for validity. It returns a 1 if the document is valid and a

0 if it is not. The following shows the results of an attempt to validate a JSON document

with single quotes for the keys and values versus a properly formatted JSON document

with double quotes.

Tip  If you want to use the MySQL Shell for SQL commands, be sure to start in
SQL mode (--sql) or you can switch to SQL mode with \sql command once the
shell is started.

MySQL localhost:33060+ ssl JS > \sql

Switching to SQL mode... Commands end with ;

MySQL localhost:33060+ ssl SQL > SELECT JSON_VALID("{'address':

{'street': '123 First Street','city': 'Oxnard','state': 'CA','zip': '90122'}}");

Chapter 3 JSON Documents

82

+---+

| JSON_VALID("{'address': {'street': '123 First Street','city':

'Oxnard','state': 'CA','zip': '90122'}}") |

+---+

| 0 |

+---+

1 row in set (0.00 sec)

MySQL localhost:33060+ ssl SQL > SELECT JSON_VALID('{"address":

{"street": "123 First Street","city": "Oxnard","state":

"CA","zip": "90122"}}');

+---+

| JSON_VALID('{"address": {"street": "123 First Street","city":

"Oxnard","state": "CA","zip": "90122"}}') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

Note that the string with the double quotes inside is valid but not the one with single

quotes. This is what most people stumble over first when working with JSON.

Let’s look at how to use the JSON document in SQL statements. Suppose we wanted

to store the addresses listed previously in a table. For this example, we keep it simple

and insert the data in a very simple table. Listing 3-1 shows a transcript of the exercise

starting with creating a test table then inserting the first two addresses.

Tip  You can use the \G command that is appended to an SQL command to
display the result in a vertical format to make it easier to read.

Listing 3-1.  Using JSON with SQL Statements

MySQL localhost:33060+ ssl Py > \sql

Switching to SQL mode... Commands end with ;

 MySQL localhost:33060+ ssl SQL > CREATE DATABASE `test`;

Chapter 3 JSON Documents

83

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > USE `test`;

Query OK, 0 rows affected (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > CREATE TABLE `test`.`addresses`

(`id` int(11) NOT NULL AUTO_INCREMENT, `address` json DEFAULT NULL,

PRIMARY KEY (`id`)) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`addresses`

VALUES (NULL, '{"address": {"street": "123 First Street","city":

"Oxnard","state": "CA","zip": "90122"}}');

Query OK, 1 row affected (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`addresses` VALUES

(NULL, '{"address": {"street":"4 Main Street","city":"Melborne","state":

"California","zip":"90125"}}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM `test`.`addresses` \G

*************************** 1. row ***************************

 id: 1

address: {"address": {"zip": "90122", "city": "Oxnard", "state":

"CA", "street": "123 First Street"}}

*************************** 2. row ***************************

 id: 2

address: {"address": {"zip": "90125", "city": "Melborne", "state":

"California", "street": "4 Main Street"}}

2 rows in set (0.00 sec)

Note that in the CREATE statement we used the data type JSON. This signals MySQL to

allocate special storage mechanisms in the storage engine for handling JSON. Contrary

to some reports, the JSON data type is not simply direct storage of a string. On the

contrary, it is organized internally to optimize retrieval of the elements. Thus, it is very

important that the JSON be formatted correctly. You can have multiple JSON columns in

a table. However, the sum of the JSON documents in a table row is limited to the value of

the variable max_allowed_packet.

Chapter 3 JSON Documents

84

Note  JSON columns cannot have a default value like other columns (data types)
in a table.

Now, let’s see what happens if we use an invalid JSON document (string) in the SQL

statement. The following shows an attempt to insert the last address from the previous

example only without the correct quotes around the keys. Note the error thrown.

MySQL localhost:33060+ ssl SQL > INSERT INTO test.addresses VALUES (NULL,

'{"address": {street:"173 Caroline Ave",city:"Monstrose",state:"Georgia",

zip:31505}}');

ERROR: 3140: Invalid JSON text: "Missing a name for object member." at

position 13 in value for column 'addresses.address'.

You can expect to see errors like this and others for any JSON document that isn’t

formatted correctly. If you want to test your JSON first, use the JSON_VALID() function.

However, there are two other functions that may also be helpful when building JSON

documents: JSON_ARRAY() and JSON_OBJECT().

The JSON_ARRAY() function takes a list of values and returns a valid formatted JSON

array. The following shows an example. Note that it returned a correctly formatted JSON

array complete with correct quotes (double instead of single) and the square brackets.

MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY(1, true, 'test', 2.4);

+----------------------------------+

| JSON_ARRAY(1, true, 'test', 2.4) |

+----------------------------------+

| [1, true, "test", 2.4] |

+----------------------------------+

1 row in set (0.00 sec)

The JSON_OBJECT() function takes a list of key, value pairs and returns a valid JSON

object. The following shows an example. Note that here I used single quotes in calling

the function. This is just one example in which it is confusing which quotes to use. In

this case, the parameters for the function are not JSON documents; they’re normal SQL

strings, which can use single or double quotes.

Chapter 3 JSON Documents

85

MySQL localhost:33060+ ssl SQL > SELECT JSON_OBJECT("street","

4 Main Street","city","Melborne",'state','California','zip',90125);

+---+

| JSON_OBJECT("street","4 Main Street","city","Melborne",'state','California',

'zip',90125) |

+---+

| {"zip": 90125, "city": "Melborne", "state": "California", "street": "4

Main Street"} |

+---+

1 row in set (0.00 sec)

Note once again that the automatic conversion of the quotes in the function result.

This can be helpful if you need to build JSON on the fly (dynamically).

There is one other useful function for constructing JSON documents: the JSON_

TYPE() function. This function takes a JSON document and parses it into a JSON value.

It returns the value's JSON type if it is valid or throws an error if it is not valid. The

following shows use of this function with the above statements.

MySQL localhost:33060+ ssl SQL > SELECT JSON_TYPE('[1, true, "test", 2.4]');

+-------------------------------------+

| JSON_TYPE('[1, true, "test", 2.4]') |

+-------------------------------------+

| ARRAY |

+-------------------------------------+

1 row in set (0.00 sec)

MySQL localhost:33060+ ssl SQL > SELECT JSON_TYPE('{"zip": 90125, "city":

"Melborne", "state": "California", "street": "4 Main Street"}') \G

*************************** 1. row ***************************

JSON_TYPE('{"zip": 90125, "city": "Melborne", "state": "California",

"street": "4 Main Street"}'): OBJECT

1 row in set (0.00 sec)

There are more functions that MySQL provides to work with the JSON data type.

We will see more about these in a later section.

Chapter 3 JSON Documents

86

This section described only the basics for using JSON with MySQL in SQL

statements. In fact, the formatting of the JSON document also applies to the document

store. However, there is one item we haven’t talked about yet—how to access the

elements in a JSON document.

To access an element—via its key—we use special notation called path expressions.

The following shows a simple example. Note the WHERE clause. This shows a path

expression in which I check to see if the address column includes the JSON key ‘city’

referenced with the special notation address->'$.address.city'. We see more details

about path expressions in the "Path Expressions" section.

MySQL localhost:33060+ ssl SQL > SELECT id, address->'$.address.city'

FROM test.addresses WHERE address->'$.address.zip' = '90125';

+----+---------------------------+

| id | address->'$.address.city' |

+----+---------------------------+

| 2 | "Melborne" |

+----+---------------------------+

1 row in set (0.00 sec)

�Path Expressions
If you consider that a JSON document can be a complex set of semistructured data and

that at some point you will need to access certain elements in the document, you also

may be wondering how to go about getting what you want from the JSON document.

Fortunately, there is a mechanism to do this and it is called a path expression. More

specific, it is shortcut notation that you can use in your SQL commands (or in the

X DevAPI) to get an element without additional programming or scripting.

As you will see, it is a very specific syntax that, although not very expressive (it

doesn’t read well in English), the notation can get you what you need without a lot of

extra typing. Path expressions are initiated with the dollar sign symbol ($) enclosed in

a string. But this notation must have a context. When using path expressions in SQL

statements, you must use the JSON_EXTRACT() function, which allows you to use a path

expression to extract data from a JSON document. This is because, unlike the X DevAPI

classes and methods, path expressions are not directly supported in all SQL statements

(but are for some, as we will see). For example, if you wanted the third item in an array,

you would use the function as follows.

Chapter 3 JSON Documents

87

MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT('[1,2,3,4,5,6]', '$[2]');

+---------------------------------------+

| JSON_EXTRACT('[1,2,3,4,5,6]', '$[2]') |

+---------------------------------------+

| 3 |

+---------------------------------------+

1 row in set (0.00 sec)

Note that this accesses data in a JSON array. Here we use an array subscript with

square brackets around the index (elements start at 0) as you would for an array in many

programming languages.

Tip T he use of path expressions in the SQL interface is limited to either one of
the JSON functions or used only in specific clauses that have been modified to
accept path expressions such as SELECT column lists or WHERE, HAVING, ORDER
BY, or GROUP BY clauses.

Now suppose you wanted to access an element by key. You can do that too. In this

case, we use the dollar sign followed by a period then the key name. The following shows

how to retrieve the last name for a JSON object containing the name and address of an

individual.

MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT('{"name":

{"first":"Billy-bob","last":"Throckmutton"},"address": {"street":"4 Main

Street","city":"Melborne","state":"California","zip":"90125"}}', '$.name.

first') AS Name;

+-------------+

| Name |

+-------------+

| "Billy-bob" |

+-------------+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

88

Note that I had to use two levels of access. That is, I wanted the value for the

key named first from the object named name. Hence, I used '$.name.first'. This

demonstrates how to use path expressions to drill down into the JSON document. This

also is why we call this a path expression because the way we form the expression gives

us the “path” to the element.

Now that we’ve seen a few examples, let’s review the entire syntax for path

expressions; both for use in SQL and the NoSQL interfaces. Unless otherwise stated, the

syntax aspects apply to both interfaces.

Once again, a path expression starts with the dollar sign and can optionally be

followed by several forms of syntax called selectors that allow us to request a part of the

document. These selectors include the following:

•	 A period followed by the name of a key name references the value for

that key. The key name must be specified within double quotation

marks if the name without quotes is not valid (it requires quotes to be

a valid identifier such as a key name with a space).

•	 Use square brackets with an integer index ([n]) to select an element

in an array. Indexes start at 0.

•	 Paths can contain the wildcards * or ** as follows.

•	 .[*] evaluates to the values of all members in a JSON object.

•	 [*] evaluates to the values of all elements in a JSON array.

•	 A sequence such as prefix**suffix evaluates to all paths that begin

with the named prefix and end with the named suffix.

•	 Paths can be nested using a period as the separator. In this case, the

path after the period is evaluated within the context of the parent

path context. For example, $.name.first limits the search for a key

named first to the name JSON object.

If a path expression is evaluated as false or fails to locate a data item, the server will

return null. For example, the following returns null because there are only 6 items in

the array. Can you see why? Remember, counting starts at 0. This is a common mistake

for those new to using path expressions (or arrays in programming languages).

Chapter 3 JSON Documents

89

MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT('[1,2,3,4,5,6]', '$[6]');

+---------------------------------------+

| JSON_EXTRACT('[1,2,3,4,5,6]', '$[6]') |

+---------------------------------------+

| NULL |

+---------------------------------------+

1 row in set (0.00 sec)

But wait, there’s one more nifty option for path expressions. We can use a shortcut!

That is, the dash and greater than symbol (->) can be used in place of the JSON_

EXTRACT() function when accessing data in SQL statements by column. How cool is that?

The use of the -> operation is sometimes called an inline path expression. For example,

we could have written the example above to find the third item in a JSON array from a

table as follows.

 MySQL localhost:33060+ ssl SQL > USE test;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > CREATE TABLE ex1 (id int AUTO_INCREMENT

PRIMARY KEY, recorded_data JSON);

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

JSON_ARRAY(1,2,3,4,5,6));

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

JSON_ARRAY(7,8,9));

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test.ex1 WHERE recorded_

data->'$[2]' = 3;

+----+--------------------+

| id | recorded_data |

+----+--------------------+

| 1 | [1, 2, 3, 4, 5, 6] |

+----+--------------------+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

90

Note that I simply used the column name, recorded_data, and appended the -> to

the end then listed the path expression. Brilliant!

There is one other form of this shortcut. If the result of the -> operation (JSON_

EXTRACT) evaluates to a quoted string, we can use the ->> symbol (called the inline

path operator) to retrieve the value without quotes. This is helpful when dealing with

values that are numbers. The following shows two examples. One example is with the ->

operation and the same with the ->> operation.

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

'{"name":"will","age":"43"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

'{"name":"joseph","age":"11"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test.ex1 WHERE recorded_

data->>'$.age' = 43;

+----+-------------------------------+

| id | recorded_data |

+----+-------------------------------+

| 3 | {"age": "43", "name": "will"} |

+----+-------------------------------+

1 row in set (0.00 sec)

MySQL localhost:33060+ ssl SQL > SELECT * FROM test.ex1 WHERE recorded_

data->'$.age' = 43;

Empty set (0.00 sec)

Note that the recorded_data values (age and name) were stored as a string. But what

if the data were stored as an integer? Observe.

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

'{"name":"amy","age":22}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test.ex1 WHERE recorded_

data->'$.age' = 22;

Chapter 3 JSON Documents

91

+----+----------------------------+

| id | recorded_data |

+----+----------------------------+

| 5 | {"age": 22, "name": "amy"} |

+----+----------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test.ex1 WHERE recorded_

data->>'$.age' = 22;

+----+----------------------------+

| id | recorded_data |

+----+----------------------------+

| 5 | {"age": 22, "name": "amy"} |

+----+----------------------------+

1 row in set (0.00 sec)

Aha! So, the ->> operation is most useful when values must be unquoted. If they

were already unquoted (such as an integer), the ->> operation returns the same as the ->

operation.

Now, let’s see a few more examples of path expressions. Listing 3-2 shows several

examples without explanation. Take a few minutes to look through these and examine

the data it is operating on so you can see how each works. With a little imagination, you

can drill down to a single data element!

Listing 3-2.  Examples of Path Expressions

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

'{"name": {"last": "Throckmutton", "first": "Billy-bob"}, "address":

{"zip": "90125", "city": "Melborne", "state": "California", "street":

"4 Main Street"}}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data FROM test.ex1

WHERE recorded_data->'$.name' IS NOT NULL \G

*************************** 1. row ***************************

recorded_data: {"age": "43", "name": "will"}

*************************** 2. row ***************************

recorded_data: {"age": "11", "name": "joseph"}

Chapter 3 JSON Documents

92

*************************** 3. row ***************************

recorded_data: {"age": 22, "name": "amy"}

*************************** 4. row ***************************

recorded_data: {"name": {"last": "Throckmutton", "first": "Billy-bob"},

"address": {"zip": "90125", "city": "Melborne", "state": "California",

"street": "4 Main Street"}}

4 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data->'$.name' FROM

test.ex1 WHERE recorded_data->'$.name' IS NOT NULL;

+--+

| recorded_data->'$.name' |

+--+

| "will" |

| "joseph" |

| "amy" |

| {"last": "Throckmutton", "first": "Billy-bob"} |

+--+

4 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data->'$.name.first' as

first, recorded_data->'$.name.last' as last FROM test.ex1 WHERE recorded_

data->'$.name.first' IS NOT NULL;

+-------------+----------------+

| first | last |

+-------------+----------------+

| "Billy-bob" | "Throckmutton" |

+-------------+----------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.ex1 VALUES (NULL,

'{"phones": [{"work": "555-1212"}, {"cell": "555-2121"}]}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data->>'$.phones' FROM

test.ex1 WHERE recorded_data->>'$.phones' IS NOT NULL;

+--+

| recorded_data->>'$.phones' |

+--+

Chapter 3 JSON Documents

93

| [{"work": "555-1212"}, {"cell": "555-2121"}] |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data->'$.phones[1]'

FROM test.ex1 WHERE recorded_data->>'$.phones' IS NOT NULL;

+------------------------------+

| recorded_data->'$.phones[1]' |

+------------------------------+

| {"cell": "555-2121"} |

+------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT recorded_data->'$.phones[1].

cell' FROM test.ex1 WHERE recorded_data->>'$.phones' IS NOT NULL;

+-----------------------------------+

| recorded_data->'$.phones[1].cell' |

+-----------------------------------+

| "555-2121" |

+-----------------------------------+

1 row in set (0.00 sec)

Note that I use the path expression in the WHERE clause checking to see if the result

is not NULL. This is a good trick on selecting rows in a table that have the elements

you’re looking for in the document. That is, you want only the rows that contain a

specific data element (via the path expression).

However, the use of the shortcuts (inline path expressions) is not a direct

replacement for the JSON_EXTRACT() function. The following summarizes the

limitations.

•	 Data source: When used in a SQL statement, the inline path

expression uses the field (column) specified only. The function can

use any JSON typed value.

•	 Path expression string: An inline path expression must use a plain

string; the function can use any string typed value.

•	 Number of expressions: An inline path expression can use only one

path expression against a single field (column). The function can use

multiple path expressions against a JSON document.

Chapter 3 JSON Documents

94

Tip  For more information about path expressions, see the section, “The JSON
Data Type” in the online MySQL reference manual.

Now let’s look at the various JSON functions that we can use to work with JSON

documents.

�JSON Functions
There are several functions for working with JSON in MySQL. I describe many of the

functions available in this section. Although we won’t explore the nuance of every

function, we will see the more commonly used functions for working with JSON

documents. Let’s begin with an overview in the form of a list of the available functions.

Table 3-1 lists the JSON functions available in MySQL 8.0.11.

Table 3-1.  JSON Functions in MySQL

Function Description and Use

JSON_ARRAY() Evaluates a list of values and returns a JSON array containing those

values

JSON_ARRAYAGG() Aggregates a result set as a single JSON array whose elements

consist of the rows

JSON_ARRAY_APPEND() Appends values to the end of the indicated arrays within a JSON

document and returns the result

JSON_ARRAY_INSERT() Updates a JSON document, inserting an array within the document

and returning the modified document

JSON_CONTAINS() Returns 0 or 1 to indicate whether a specific value is contained in a

target JSON document, or, if a path argument is given, at a specific

path within the target document

JSON_CONTAINS_PATH() Returns 0 or 1 to indicate whether a JSON document contains data

at a given path or paths

JSON_DEPTH() Returns the maximum depth of a JSON document

(continued)

Chapter 3 JSON Documents

95

Function Description and Use

JSON_EXTRACT() Returns data from a JSON document, selected from the parts of the

document matched by the path arguments

JSON_INSERT() Inserts data into a JSON document and returns the result

JSON_KEYS() Returns the keys from the top-level value of a JSON object as a

JSON array, or, if a path argument is given, the top-level keys from

the selected path

JSON_LENGTH() Returns the length of JSON document, or, if a path argument is

given, the length of the value within the document identified by the

path

JSON_MERGE() Merges two or more JSON documents and returns the merged

result

JSON_MERGE_PATCH() Merges two or more JSON documents replacing values where keys

are duplicated

JSON_MERGE_PRESERVE() Merges two or more JSON documents saving values where keys

are duplicated

JSON_OBJECT() Evaluates a list of key/value pairs and returns a JSON object

containing those pairs

JSON_OBJECTAGG() Takes two column names or expressions as arguments, the first of

these being used as a key and the second as a value, and returns a

JSON object that contains key/value pairs

JSON_PRETTY() Prints a nicer looking layout of the JSON document

JSON_QUOTE() Quotes a string as a JSON value by wrapping it with double quote

characters and escaping interior quote and other characters, then

returned the result as a utf8mb4 string

JSON_REMOVE() Removes data from a JSON document and returns the result

JSON_REPLACE() Replaces existing values in a JSON document and returns the result

JSON_SEARCH() Returns the path to the given string within a JSON document

JSON_SET() Inserts or updates data in a JSON document and returns the result

(continued)

Table 3-1.  (continued)

Chapter 3 JSON Documents

96

Note T he JSON_MERGE() function was deprecated in version 8.0.3 (and also in
5.7.22).

Mastery of these functions is not essential to working with the document store,

but can help greatly when developing hybrid solutions in which you use JSON in SQL

statements.

These functions can be grouped into categories based on how they are used. We will

see functions useful for adding data, those for retrieving (searching) data, and more. The

following show how to use the functions using brief examples.

Most functions take a JSON document as the first parameter and a path expression

and value as the second and third parameters. Path expressions must be valid for the

document and must not contain the wildcards * or **. The functions also return the

result so you can use them in SQL statements.

�Creating JSON Data

There are several useful functions for creating JSON data. We have already seen two

important functions; JSON_ARRAY() that builds a JSON array type and JSON_OBJECT()

that builds a JSON object type. This section discusses some of the other functions

Function Description and Use

JSON_STORAGE_FREE() Displays amount of space remaining in a JSON column following a

partial update

JSON_STORAGE_SIZE() Displays the storage used by a JSON value

JSON_TABLE() Extracts data from a JSON document and returns it as a relational

table

JSON_TYPE() Returns a utf8mb4 string indicating the type of a JSON value

JSON_UNQUOTE() Removes quotes from the JSON value and returns the result as a

utf8mb4 string

JSON_VALID() Returns 0 or 1 to indicate whether a value is a valid JSON

document

Table 3-1.  (continued)

Chapter 3 JSON Documents

97

that you can use to help create JSON documents including functions for aggregating,

appending, and inserting data in JSON arrays.

The JSON_ARRAYAGG() function is used to create an array of JSON documents from

several rows. It can be helpful when you want to summarize data or combine data from

several rows. The function takes a column name and combines the JSON data from the

rows into a new array. Listing 3-3 shows examples of using the function. This example

takes the rows in the table and combines them to form a new array of JSON objects.

Listing 3-3.  Using the JSON_ARRAYARG Function

 MySQL localhost:33060+ ssl SQL > CREATE TABLE test.favorites (id int

AUTO_INCREMENT PRIMARY KEY, preferences JSON);

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.favorites VALUES

(NULL, '{"color": "red"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.favorites VALUES

(NULL, '{"color": "blue"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO test.favorites VALUES

(NULL, '{"color": "purple"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test.favorites;

+----+---------------------+

| id | preferences |

+----+---------------------+

| 1 | {"color": "red"} |

| 2 | {"color": "blue"} |

| 3 | {"color": "purple"} |

+----+---------------------+

3 rows in set (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAYAGG(preferences) FROM

test.favorites;

Chapter 3 JSON Documents

98

+--+

| JSON_ARRAYAGG(preferences) |

+--+

| [{"color": "red"}, {"color": "blue"}, {"color": "purple"}] |

+--+

1 row in set (0.00 sec)

The JSON_ARRAY_APPEND() is an interesting function that allows you to append

data to a JSON array either at the end or immediately after a given path expression. The

function takes as parameters a JSON array, a path expression, and the value (including a

JSON document) to be inserted. Listing 3-4 shows several examples.

Listing 3-4.  Using the JSON_ARRAY_APPEND Function

 �MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":"

red"},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_APPEND(@base, '$',

"banana");

+---+

| JSON_ARRAY_APPEND(@base, '$', "banana") |

+---+

| ["apple", "pear", {"grape": "red"}, "strawberry", "banana"] |

+---+

1 row in set (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_APPEND(@base,

'$[2].grape', "green");

+--+

| JSON_ARRAY_APPEND(@base, '$[2].grape', "green") |

+--+

| ["apple", "pear", {"grape": ["red", "green"]}, "strawberry"] |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grape":"red"}';

Query OK, 0 rows affected (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_APPEND(@base,

'$', '{"grape":"red"}');

Chapter 3 JSON Documents

99

+--+

| JSON_ARRAY_APPEND(@base, '$', '{"grape":"red"}') |

+--+

| [{"grape": "red"}, "{\"grape\":\"red\"}"] |

+--+

1 row in set (0.00 sec)

Note that the first example simply adds a new value to the end of the array. The

second example changes the value of the key in the JSON object in the third index to an

array and adds a new value. This is an interesting by-product of this function. We see this

again in the third example where we change a basic JSON object to a JSON array of JSON

objects.

The JSON_ARRAY_INSERT() function is similar except it inserts the value before the

path expression. The function takes as parameters a JSON array, a path expression, and

the value (including a JSON document) to be inserted. When including multiple path

expression and value pairs, the effect is cumulative where the function evaluates the first

path expression and value applying the next pair to the result, and so on. Listing 3-5

shows some examples using the new function, which are similar to the previous

examples. Note that the positions of the data inserted is before the path expression.

Listing 3-5.  Using the JSON_ARRAY_INSERT Function

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",

{"grape":["red","green"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_INSERT(@base, '$[0]',

"banana");

+--+

| JSON_ARRAY_INSERT(@base, '$[0]', "banana") |

+--+

| ["banana", "apple", "pear", {"grape": ["red", "green"]}, "strawberry"] |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_INSERT(@base,

'$[2].grape[0]', "white");

Chapter 3 JSON Documents

100

+---+

| JSON_ARRAY_INSERT(@base, '$[2].grape[0]', "white") |

+---+

| ["apple", "pear", {"grape": ["white", "red", "green"]}, "strawberry"] |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = '[{"grape":"red"}]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_INSERT(@base, '$[0]',

'{"grape":"red"}');

+---+

| JSON_ARRAY_INSERT(@base, '$[0]', '{"grape":"red"}') |

+---+

| ["{\"grape\":\"red\"}", {"grape": "red"}] |

+---+

1 row in set (0.00 sec)

The JSON_INSERT() function is designed to take a JSON document and inserts one or

more values at a specified path expression. That is, you can pass pairs of path expression

and value at one time. But there is a catch. The path expression in this case must not

evaluate to an element in the document. As with the last function, when including

multiple path expressions, the effect is cumulative where the function evaluates the first

path expression applying the next path expression to the result, and so on. Listing 3-6

shows an example. Note that the third path expression and value is not inserted because

the path expression, $[0], evaluates to the first element, apple.

Listing 3-6.  Using the JSON_INSERT Function

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":[

"red","green"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_INSERT(@base, '$[9]',

"banana", '$[2].grape[3]', "white", '$[0]', "orange");

Chapter 3 JSON Documents

101

+---+

| JSON_INSERT(@base, '$[9]', "banana", '$[2].grape[3]', "white", '$[0]', "orange") |

+---+

| ["apple", "pear", {"grape": ["red", "green", "white"]}, "strawberry", "banana"] |

+---+

1 row in set (0.00 sec)

The JSON_MERGE_PATCH() and JSON_MERGE_PRESERVE() functions are designed to

take two or more JSON documents and combine them. The JSON_MERGE_PATH() function

replaces values for duplicate keys whereas the JSON_MERGE_PRESERVE() preserves the

values for duplicate keys. As with the previous function, you can include as many JSON

documents as you want. Note how I used this function to build the example JSON

document from the earlier examples. Listing 3-7 shows an example using the methods.

Listing 3-7.  Using the JSON_MERGE_PATCH and JSON_MERGE_PRESERVE Functions

 MySQL localhost:33060+ ssl SQL > SELECT JSON_MERGE_

PATCH('["apple","pear"]', '{"grape":["red","green"]}', '["strawberry"]');

+---+

| JSON_MERGE_PATCH('["apple","pear"]', '{"grape":["red","green"]}',

'["strawberry"]') |

+---+

| ["strawberry"] |

+---+

1 row in set (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_MERGE_PRESERVE('{"grape":["

red","green"]}', '{"grape":["white"]}');

+---+

| JSON_MERGE_PRESERVE('{"grape":["red","green"]}', '{"grape":["white"]}') |

+---+

| {"grape": ["red", "green", "white"]} |

+---+

1 row in set (0.00 sec)

If any JSON function is passed an invalid parameter, invalid JSON document, or the

path expression does not find an element, some functions return null whereas others

may return the original JSON document. Listing 3-8 shows an example. In this case,

there is no element at position 8 because the array only has 4 elements.

Chapter 3 JSON Documents

102

Listing 3-8.  Using the JSON_ARRAY_APPEND Function

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",

{"grape":"red"},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_ARRAY_APPEND(@base, '$[7]',

"flesh");

+---+

| JSON_ARRAY_APPEND(@base, '$[7]', "flesh") |

+---+

| ["apple", "pear", {"grape": "red"}, "strawberry"] |

+---+

1 row in set (0.00 sec)

Now let’s see functions that we can use to modify JSON data.

�Modifying JSON Data

There are several useful functions for modifying JSON data. This section discusses

functions that you can use to help modify JSON documents by removing, replacing, and

updating elements in the JSON document.

The JSON_REMOVE() function is used to remove elements that match a path

expression. You must provide the JSON document to operate on and one or more path

expressions and the result will be the JSON document with the elements removed.

When including multiple path expressions, the effect is cumulative where the function

evaluates the first path expression applying the next path expression to the result, and

so on. Listing 3-9 shows an example. Note that I had to imagine what the intermediate

results would be—that is, I used $[0] three times because the function removed the first

element twice leaving the JSON object as the first element.

Listing 3-9.  Using the JSON_REMOVE Function (Single)

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":

["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_REMOVE(@base, '$[0]',

'$[0]', '$[0].grape[1]');

Chapter 3 JSON Documents

103

+---+

| JSON_REMOVE(@base, '$[0]', '$[0]', '$[0].grape[1]') |

+---+

| [{"grape": ["red"]}, "strawberry"] |

+---+

1 row in set (0.00 sec)

This may take a little getting used to but you can use the function multiple times or

nested as shown in the examples in Listing 3-10.

Listing 3-10.  Using the JSON_REMOVE Function (Nested)

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":

["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = JSON_REMOVE(@base, '$[0]');

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = JSON_REMOVE(@base, '$[0]');

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_REMOVE(@base, '$[0].grape[1]');

+-------------------------------------+

| JSON_REMOVE(@base, '$[0].grape[1]') |

+-------------------------------------+

| [{"grape": ["red"]}, "strawberry"] |

+-------------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":

["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_REMOVE(JSON_REMOVE(JSON_

REMOVE(@base, '$[0]'), '$[0]'), '$[0].grape[1]');

+---+

| JSON_REMOVE(JSON_REMOVE(JSON_REMOVE(@base, '$[0]'), '$[0]'), '$[0].grape[1]') |

+---+

| [{"grape": ["red"]}, "strawberry"] |

+---+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

104

The JSON_REPLACE() function takes a JSON document and pairs of path expression

and value replacing the element that matches the path expression with the new value.

Once again, the results are cumulative and work in order left to right. There is a catch

with this function too. It ignores any new values or path expressions that evaluate to new

values. Listing 3-11 shows an example. Note that the third pair was not removed because

there is no tenth element.

Listing 3-11.  Using the JSON_REPLACE Function

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":

["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_REPLACE(@base, '$[0]',

"orange", '$[2].grape[0]', "green", '$[9]', "waffles");

+---+

| JSON_REPLACE(@base, '$[0]', "orange", '$[2].grape[0]', "green", '$[9]',

"waffles") |

+---+

| ["orange", "pear", {"grape": ["green", "white"]}, "strawberry"] |

+---+

1 row in set (0.00 sec)

The JSON_SET() function is designed to modify JSON document elements. As with

the other functions, you pass a JSON document as the first parameter and then one or

more pairs of path expression and value to replace. However, this function also inserts

any elements that are not in the document (the path expression is not found). Listing 3-12

shows an example. Note that the last element did not exist so it adds it to the documents.

Listing 3-12.  Using the JSON_SET Function

 MySQL localhost:33060+ ssl SQL > SET @base = '["apple","pear",{"grape":

["red","white"]},"strawberry"]';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_SET(@base, '$[0]',

"orange", '$[2].grape[1]', "green", '$[9]', "123");

Chapter 3 JSON Documents

105

+---+

| JSON_SET(@base, '$[0]', "orange", '$[2].grape[1]', "green", '$[9]', "123") |

+---+

| ["orange", "pear", {"grape": ["red", "green"]}, "strawberry", "123"] |

+---+

1 row in set (0.00 sec)

IGNORE OR NOT IGNORE, WHICH DOES WHAT?

One issue with the JSON functions is that some will operate on values that exist, others ignore

values that exist, some add values that do not already exist, and so forth. It can become

confusing if you aren’t familiar with all the functions. The following summarizes the differences

for those functions that can be the most confusing.

•	 JSON_INSERT(): adds new values but does not replace existing values

•	 JSON_REMOVE(): removes elements that exist in the document and

ignores those that do not exist

•	 JSON_REPLACE(): replaces existing values and ignores new values

•	 JSON_SET(): replaces values for paths that exist and adds values for

paths that do not exist

If you want to use these functions, be sure to check them with sample data until you

understand the conditions.

Now let’s look at the JSON functions you can use to find elements in the document.

�Searching JSON Data

Another important operation for working with SQL and JSON data is searching for data

in the JSON document. We discovered previously in the chapter how to reference data

in the document with the special notation (path expressions), and we learned there are

JSON functions that we can use to search for the data. In fact, we saw these two concepts

used together in the previous section. In this section, we review the JSON data searching

mechanism because you are likely to use these functions more than any other, especially

in your queries.

Chapter 3 JSON Documents

106

There are four JSON functions that allow you to search JSON documents. As with the

previous functions, these operate on a JSON document with one or more parameters. I

call them searching functions not because they allow you to search a database or table

for JSON data, but rather they allow you to find things in JSON documents. The functions

include those for checking to see if a value or element exists in the document, whether

a path expression is valid (something can be found using it), and retrieving information

from the document.

The JSON_CONTAINS() function has two options: you can use it to return whether a

value exists anywhere in the document or if a value exists using a path expression (the

path expression is an optional parameter). The function returns a 0 or 1 where a 0 means

the value was not found. An error occurs if either document argument is not a valid JSON

document, the path argument is not a valid path expression, or contains a * or ** wildcard.

There is another catch. The value you pass in must be a valid JSON string or document.

Listing 3-13 shows several examples of using the function to search a JSON document.

Listing 3-13.  Using the JSON_CONTAINS Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,'["red",

"white","green"]');

+--+

| JSON_CONTAINS(@base,'["red","white","green"]') |

+--+

| 0 |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,'{"grapes":

["red","white","green"]}');

+---+

| JSON_CONTAINS(@base,'{"grapes":["red","white","green"]}') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

107

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,'["red",

"white","green"]','$.grapes');

+---+

| JSON_CONTAINS(@base,'["red","white","green"]','$.grapes') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,'

"blackberry"','$.berries');

+---+

| JSON_CONTAINS(@base,'"blackberry"','$.berries') |

+---+

| 0 |

+---+

1 row in set (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,

'blackberry','$.berries');

ERROR: 3141: Invalid JSON text in argument 2 to function json_contains:

"Invalid value." at position 0.

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS(@base,'"red"',

'$.grapes');

+---+

| JSON_CONTAINS(@base,'"red"','$.grapes') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

As you can see, this is a very useful function but it requires a bit of care to use

properly. That is, you must make sure the value is a valid string. In all examples save one,

I am searching the JSON document for either a JSON document (that makes searching

for nested data easier), or a single value using a path expression. Remember, the function

searches for values, not keys.

Note the second to last example: this returns an error because the value is not a valid

JSON string. You must use double quotes around it to correct it as shown in the following

example.

Chapter 3 JSON Documents

108

The JSON_CONTAINS_PATH() function uses a parameter strategy that is a little

different. The function searches a JSON document to see if a path expression exists but

it also allows you to find the first occurrence or all occurrences. It also can take multiple

paths and evaluate them either as an “or” or “and” condition depending on what value

you pass as the second parameter as in the following:

•	 If you pass one, the function will return 1 if at least one path

expression is found (OR).

•	 If you pass all, the function will return 1 only if all path expressions

are found (AND).

The function returns 0 or 1 to indicate whether a JSON document contains data at

a given path or paths. Note that it can return null if any of the path expressions or the

document is null. An error occurs if the JSON document, or any path expression is not

valid, or the second parameter is not one or all. Listing 3-14 shows several examples of

using the function.

Listing 3-14.  Using the JSON_CONTAINS_PATH Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],"

numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,'one','$');

+-------------------------------------+

| JSON_CONTAINS_PATH(@base,'one','$') |

+-------------------------------------+

| 1 |

+-------------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,'all','$');

+-------------------------------------+

| JSON_CONTAINS_PATH(@base,'all','$') |

+-------------------------------------+

| 1 |

+-------------------------------------+

Chapter 3 JSON Documents

109

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'all','$.grapes','$.berries');

+--+

| JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries') |

+--+

| 1 |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'all','$.grapes','$.berries','$.numbers');

+--+

| JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.numbers') |

+--+

| 1 |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'all','$.grapes','$.berries','$.num');

+--+

| JSON_CONTAINS_PATH(@base,'all','$.grapes','$.berries','$.num') |

+--+

| 0 |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'one','$.grapes','$.berries','$.num');

+--+

| JSON_CONTAINS_PATH(@base,'one','$.grapes','$.berries','$.num') |

+--+

| 1 |

+--+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

110

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'one','$.grapes');

+--+

| JSON_CONTAINS_PATH(@base,'one','$.grapes') |

+--+

| 1 |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'all','$.grape');

+---+

| JSON_CONTAINS_PATH(@base,'all','$.grape') |

+---+

| 0 |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'one','$.berries');

+---+

| JSON_CONTAINS_PATH(@base,'one','$.berries') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_CONTAINS_PATH(@base,

'all','$.berries');

+---+

| JSON_CONTAINS_PATH(@base,'all','$.berries') |

+---+

| 1 |

+---+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

111

Take some time to look through these examples so you can see how they work. Note

that in the first two commands I used a path expression of a single dollar sign. This is

simply the path expression to the entire document so naturally, it exists. Note also the

differences in the use of one or all for the last two examples.

The JSON_EXTRACT() function is one of the most used functions. It allows you to

extract a value, JSON array, JSON object, and so forth from a JSON document using

one or more path expressions. We have already seen a couple of examples. Recall the

function returns the portion of the JSON document that matches the path expression.

Listing 3-15 shows a few more examples using complex path expressions.

Listing 3-15.  Using the JSON_EXTRACT Function

 MySQL localhost:33060+ ssl SQL > SET@base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],

"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$');

+---+

| JSON_EXTRACT(@base,'$')

+---+

| {"grapes": ["red", "white", "green"], "berries": ["strawberry",

"raspberry", "boysenberry", "blackberry"], "numbers": ["1", "2", "3", "4",

"5"]} |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.grapes');

+--------------------------------+

| JSON_EXTRACT(@base,'$.grapes') |

+--------------------------------+

| ["red", "white", "green"] |

+--------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.grapes[*]');

Chapter 3 JSON Documents

112

+-----------------------------------+

| JSON_EXTRACT(@base,'$.grapes[*]') |

+-----------------------------------+

| ["red", "white", "green"] |

+-----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.grapes[1]');

+-----------------------------------+

| JSON_EXTRACT(@base,'$.grapes[1]') |

+-----------------------------------+

| "white" |

+-----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.grapes[4]');

+-----------------------------------+

| JSON_EXTRACT(@base,'$.grapes[4]') |

+-----------------------------------+

| NULL |

+-----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.berries');

+---+

| JSON_EXTRACT(@base,'$.berries') |

+---+

| ["strawberry", "raspberry", "boysenberry", "blackberry"] |

+---+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,'$.berries[2]');

+------------------------------------+

| JSON_EXTRACT(@base,'$.berries[2]') |

+------------------------------------+

| "boysenberry" |

+------------------------------------+

1 row in set (0.00 sec)

 �MySQL localhost:33060+ ssl SQL > SELECT JSON_EXTRACT(@base,

'$.berries[2]','$.berries[3]');

Chapter 3 JSON Documents

113

+---+

| JSON_EXTRACT(@base,'$.berries[2]','$.berries[3]') |

+---+

| ["boysenberry", "blackberry"] |

+---+

1 row in set (0.00 sec)

Note what happens when we use the single dollar sign. The function returns the entire

document. Also, note what happens when we use a path expression, although its syntax is

valid it does not evaluate to an element in the document (see the fifth command).

Note the last example where we pass in two path expressions. Then notice how

it returns a JSON array whereas the example before it with only one path expression

returns a JSON string value. This is one of the trickier aspects of the function. So long as

you remember it returns a valid JSON string, array, or object, you will be able to use the

function without issue.

The JSON_SEARCH() function is interesting because it is the opposite of the

JSON_EXTRACT() function. More specific, it takes one or more values and returns path

expressions to the values if they are found in the document. This makes it easier to

validate your path expressions or to build path expressions on the fly.

As with the JSON_CONTAINS_PATH() function, the JSON_SEARCH() function also

allows you to find the first occurrence or all occurrences returning the path expressions

depending on what value you pass as the second parameter as in the following:

•	 If you pass one, the function will return the first match.

•	 If you pass all, the function will return all matches.

But there is a trick here too. The function takes a third parameter that forms a special

search string that works as the LIKE operator in SQL statements. That is, search string

argument can use the % and _ characters the same way as the LIKE operator. Note that to

use a % or _ as a literal, you must precede it with the \ (escape) character.

The function returns 0 or 1 to indicate whether a JSON document contains the

values. Note that it can return null if any of the path expressions or the document is null.

An error occurs if the JSON document, or any path expression is not valid, or the second

parameter is not one or all. Listing 3-16 shows several examples of using the function.

Chapter 3 JSON Documents

114

Listing 3-16.  Using the JSON_SEARCH Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],

"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_SEARCH(@base,'all','red');

+--------------------------------+

| JSON_SEARCH(@base,'all','red') |

+--------------------------------+

| "$.grapes[0]" |

+--------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_SEARCH(@base,'all','gr____');

+-----------------------------------+

| JSON_SEARCH(@base,'all','gr____') |

+-----------------------------------+

| NULL |

+-----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_SEARCH(@base,'one','%berry');

+-----------------------------------+

| JSON_SEARCH(@base,'one','%berry') |

+-----------------------------------+

| "$.berries[0]" |

+-----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_SEARCH(@base,'all','%berry');

+--+

| JSON_SEARCH(@base,'all','%berry') |

+--+

| ["$.berries[0]", "$.berries[1]", "$.berries[2]"] |

+--+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

115

Now let’s look at the last group of JSON functions; those that are utilitarian in

nature allowing you to get information about the JSON document and perform simple

operations to help work with JSON documents.

�Utility Functions

Last, there are several functions that can return information about the JSON document,

help add or remove quotes, and even find the keys in a document. We have already

seen several of the utility JSON_TYPE() and JSON_VALID() functions. The following are

additional utility functions you may find useful when working with JSON documents.

The JSON_DEPTH() function returns the maximum depth of a JSON document. If

the document is an empty array, object, or a scalar value; the function returns a depth

of 1. An array containing only elements of depth 1 or nonempty objects containing only

member values of depth 1 returns a depth of 2. Listing 3-17 shows several examples.

Listing 3-17.  Using the JSON_DEPTH Function

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH('8');

+-----------------+

| JSON_DEPTH('8') |

+-----------------+

| 1 |

+-----------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH('[]');

+------------------+

| JSON_DEPTH('[]') |

+------------------+

| 1 |

+------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH('{}');

+------------------+

| JSON_DEPTH('{}') |

+------------------+

| 1 |

+------------------+

Chapter 3 JSON Documents

116

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH('[12,3,4,5,6]');

+----------------------------+

| JSON_DEPTH('[12,3,4,5,6]') |

+----------------------------+

| 2 |

+----------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH('[[], {}]');

+------------------------+

| JSON_DEPTH('[[], {}]') |

+------------------------+

| 2 |

+------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],

"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH(@base);

+-------------------+

| JSON_DEPTH(@base) |

+-------------------+

| 3 |

+-------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_DEPTH(JSON_EXTRACT(@base,

'$.grapes'));

+---+

| JSON_DEPTH(JSON_EXTRACT(@base, '$.grapes')) |

+---+

| 2 |

+---+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

117

The JSON_KEYS() function is used to return a list of keys from the top-level value of

a JSON object as a JSON array. The function also allows you to pass a path expression,

which results in a list of the top-level keys from the selected path expression value.

An error occurs if the json_doc argument is not a valid JSON document or the path

argument is not a valid path expression or contains a * or ** wildcard. The resulting array

is empty if the selected object is empty.

There is one limitation. If the top-level value has nested JSON objects, the array

returned does not include keys from those nested objects. Listing 3-18 shows several

examples of using this function.

Listing 3-18.  Using the JSON_KEYS Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],

"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_KEYS(@base);

+----------------------------------+

| JSON_KEYS(@base) |

+----------------------------------+

| ["grapes", "berries", "numbers"] |

+----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_KEYS(@base,'$');

+----------------------------------+

| JSON_KEYS(@base,'$') |

+----------------------------------+

| ["grapes", "berries", "numbers"] |

+----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_KEYS('{"z":123,"x":

{"albedo":50}}');

Chapter 3 JSON Documents

118

+--+

| JSON_KEYS('{"z":123,"x":{"albedo":50}}') |

+--+

| ["x", "z"] |

+--+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_KEYS('{"z":123,"x":

{"albedo":50}}', '$.x');

+---+

| JSON_KEYS('{"z":123,"x":{"albedo":50}}', '$.x') |

+---+

| ["albedo"] |

+---+

1 row in set (0.00 sec)

The JSON_LENGTH() function returns the length of the JSON document passed. It also

allows you to pass in a path expression and if provided, will return the length of the value

that matches the path expression. An error occurs if the json_doc argument is not a valid

JSON document or the path argument is not a valid path expression or contains a * or **

wildcard. However, the value returned has several constraints as in the following:

•	 A scalar has length 1.

•	 An array has a length equal to the number of array elements.

•	 An object has a length equal to the number of object members.

However, there is one surprising limitation: the length returned does not count the

length of nested arrays or objects. Thus, you must use this function carefully using the

path expression for nested documents.

Listing 3-19 shows several examples of using the function.

Listing 3-19.  Using the JSON_LENGTH Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"grapes":["red","white",

"green"],"berries":["strawberry","raspberry","boysenberry","blackberrry"],

"numbers":["1","2","3","4","5"]}';

Query OK, 0 rows affected (0.00 sec)

Chapter 3 JSON Documents

119

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$');

+------------------------+

| JSON_LENGTH(@base,'$') |

+------------------------+

| 3 |

+------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$.grapes');

+-------------------------------+

| JSON_LENGTH(@base,'$.grapes') |

+-------------------------------+

| 3 |

+-------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$.grapes[1]');

+----------------------------------+

| JSON_LENGTH(@base,'$.grapes[1]') |

+----------------------------------+

| 1 |

+----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$.grapes[4]');

+----------------------------------+

| JSON_LENGTH(@base,'$.grapes[4]') |

+----------------------------------+

| NULL |

+----------------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$.berries');

+--------------------------------+

| JSON_LENGTH(@base,'$.berries') |

+--------------------------------+

| 4 |

+--------------------------------+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

120

 MySQL localhost:33060+ ssl SQL > SELECT JSON_LENGTH(@base,'$.numbers');

+--------------------------------+

| JSON_LENGTH(@base,'$.numbers') |

+--------------------------------+

| 5 |

+--------------------------------+

1 row in set (0.00 sec)

Note the fourth command returns null because the path expression, although valid

syntax, does not evaluate to a value or nested JSON array or object.

The JSON_QUOTE() function is a handy function to use that will help you add quotes

where they are appropriate. That is, the function quotes a string as a JSON string

by wrapping it with double quote characters and escaping interior quote and other

characters and returns the result. Note that this function does not operate on a JSON

document, rather, only a string.

You can use this function to produce a valid JSON string literal for inclusion within a

JSON document. Listing 3-20 shows a few short examples of using the function to quote

JSON strings.

Listing 3-20.  Using the JSON_QUOTE Function

 MySQL localhost:33060+ ssl SQL > SELECT JSON_QUOTE("test");

+--------------------+

| JSON_QUOTE("test") |

+--------------------+

| "test" |

+--------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_QUOTE('[true]');

+----------------------+

| JSON_QUOTE('[true]') |

+----------------------+

| "[true]" |

+----------------------+

1 row in set (0.00 sec)

Chapter 3 JSON Documents

121

 MySQL localhost:33060+ ssl SQL > SELECT JSON_QUOTE('90125');

+---------------------+

| JSON_QUOTE('90125') |

+---------------------+

| "90125" |

+---------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_QUOTE('["red","white","green"]');

+---------------------------------------+

| JSON_QUOTE('["red","white","green"]') |

+---------------------------------------+

| "[\"red\",\"white\",\"green\"]" |

+---------------------------------------+

1 row in set (0.00 sec)

Note that in the last example the function adds the escape character (\) because the

string passed contains quotes. Why is this happening? Remember, this function takes a

string, not a JSON array as the parameter.

The JSON_UNQUOTE() function is the opposite of the JSON_QUOTE() function. The

JSON_UNQUOTE() function removes quotes JSON value and returns the result as a

utf8mb4 string. The function is designed to recognize and not alter markup sequences as

in the following:

•	 \": A double quote (") character

•	 \b: A backspace character

•	 \f: A formfeed character

•	 \n: A newline (linefeed) character

•	 \r: A carriage return character

•	 \t: A tab character

•	 \\: A backslash (\) character

Listing 3-21 shows examples of using the function.

Chapter 3 JSON Documents

122

Listing 3-21.  Using the JSON_UNQUOTE Function

 MySQL localhost:33060+ ssl SQL > SELECT JSON_UNQUOTE("test 123");

+--------------------------+

| JSON_UNQUOTE("test 123") |

+--------------------------+

| test 123 |

+--------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_UNQUOTE('"true"');

+------------------------+

| JSON_UNQUOTE('"true"') |

+------------------------+

| true |

+------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_UNQUOTE('\"true\"');

+--------------------------+

| JSON_UNQUOTE('\"true\"') |

+--------------------------+

| true |

+--------------------------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_UNQUOTE('9\t0\t125\\');

+-----------------------------+

| JSON_UNQUOTE('9\t0\t125\\') |

+-----------------------------+

| 9 0 125\ |

+-----------------------------+

1 row in set (0.00 sec)

The JSON_PRETTY() function formats a JSON document for easier viewing. You

can use this to produce an output to send to users or to make the JSON look a bit nicer

in the shell. Listing 3-22 shows an example without the function and the same with the

function. Note how much easier it is to read when using JSON_PRETTY().

Chapter 3 JSON Documents

123

Listing 3-22.  Using the JSON_PRETTY Function

 MySQL localhost:33060+ ssl SQL > SET @base = '{"name": {"last":

"Throckmutton", "first": "Billy-bob"}, "address": {"zip": "90125", "city":

"Melborne", "state": "California", "street": "4 Main Street"}}';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT @base \G

*************************** 1. row ***************************

@base: {"name": {"last": "Throckmutton", "first": "Billy-bob"}, "address":

{"zip": "90125", "city": "Melborne", "state": "California", "street":

"4 Main Street"}}

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT JSON_PRETTY(@base) \G

*************************** 1. row ***************************

JSON_PRETTY(@base): {

 "name": {

 "last": "Throckmutton",

 "first": "Billy-bob"

 },

 "address": {

 "zip": "90125",

 "city": "Melborne",

 "state": "California",

 "street": "4 Main Street"

 }

}

1 row in set (0.00 sec)

There are also functions for checking size; JSON_STORAGE_FREE() and JSON_STORAGE_

SIZE(). The first is used after a partial update and the second is used to get the size of the

binary representation of the JSON document. See the online MySQL reference manual

for more details on these functions as they are new and not commonly used except for

very special circumstances in which size is a concern.

Chapter 3 JSON Documents

124

Finally, there is a new function released in version 8.0.4 intriguingly named JSON_

TABLE(). This function takes a JSON document and returns a tabular data list. In basic

terms, rather than returning output as JSON, this function returns rows as a result set.

Thus, you can use this function where you need more traditional rows to work within

your applications.

The function has some peculiar syntax. It takes as parameters a JSON document

(array), and an expression path and column definition. The last two are not separated

by a comma (strangely). This arrangement makes the function a bit harder to use but

once you see a working example it is easier to understand. So, let’s do that. Listing 3-23

demonstrates how to use the function.

Listing 3-23.  Using the JSON_TABLE Function

MySQL localhost:33060+ SQL > set @phones = '[{"name":"Bill Smith","phone":

"8013321033"},{"name":"Folley Finn","phone":"9991112222"},{"name":"Carrie

Tonnesth","phone":"6498881212"}]';

Query OK, 0 rows affected (0.00 sec)

MySQL localhost:33060+ SQL > SELECT * FROM JSON_TABLE(@phones, "$[*]"

COLUMNS(name char(20) PATH '$.name', phone char(16) PATH '$.phone')) as

phone_list;

 +-----------------+------------+

| name | phone |

+-----------------+------------+

| Bill Smith | 8013321033 |

| Folley Finn | 9991112222 |

| Carrie Tonnesth | 6498881212 |

+-----------------+------------+

3 rows in set (0.00 sec)

Note that we are using a JSON array of names and phone numbers to keep it

simple. The function is used as if it were a table so we add it to the FROM clause on a

SELECT statement. The parameters are the JSON document, then the path and column

definition. The expression path used is simply retrieving the entire element from the

array. You can use a variety of path expression here if you wanted to select only part of

the document to operate on. Next is the column definition and this should look familiar

Chapter 3 JSON Documents

125

to you—it’s like column definitions for tables. The difference is we append a path

expression on the end with the keyword PATH. This simply locates the value in the JSON

document.

As you can imagine, you can form complex definitions drilling down to precisely the

elements you want. The demand and use cases for this function will likely grow given

that it is a recent addition, but if you need to turn a JSON document into a result set, this

function can achieve those results albeit with some creativity and path expressions.

For more information about the JSON_TABLE() function, see the section entitled

“JSON Table Functions” in the online MySQL reference manual.

Tip  For more information about JSON functions, see the online MySQL reference
manual. The JSON functions are listed with the other functions based on use.
I recommend searching the document for the function you want to learn more
about or use the index entitled, “Function Index,” which lists all the functions in
alphabetical order.

Now that we know more about JSON, the "Combining SQL and JSON—Indexing

JSON DATA" section presents some advanced topics for working with JSON in SQL

statements.

�Combining SQL and JSON - Indexing JSON Data
One of the definitions of NoSQL is “not only SQL” and that moniker applies to MySQL

when you consider that you can use JSON documents with your relational data. As we

have seen in the examples describing the JSON functions, you can add JSON columns to

your tables and store JSON data in the fields.

However, instead of storing the JSON document as a string, MySQL stores the JSON

document using a special internal structure that permits MySQL to access, find, and

extract the JSON document elements quickly from the row data. Note that this does

not mean that MySQL can index the JSON data. In fact, JSON data columns cannot be

indexed. At least, not directly. In this section, we will see how to index JSON data to help

optimize searching on data elements for rows that contain JSON documents.

Chapter 3 JSON Documents

126

WHAT ABOUT CONVERTING TEXT TO JSON?

If you have a database in which you have stored semistructured data in a TEXT or BLOB field,

you may want to consider converting the data to JSON documents. The JSON functions we’ve

seen in this chapter are your key to successfully converting the data such as JSON_ARRAY(),

JSON_OBJECT(), and JSON_VALID(). I will discuss more about this topic in Chapter 9,

including suggestions and examples on how to convert existing data. You may also want to

check out various blogs on converting data to JSON—just google phrases similar to, “convert

to JSON.” Although most blogs are Java-based, you can use them to get ideas for how to

convert your own data.

Some may think the restriction prohibiting indexing of JSON columns an oversight,

but it isn’t. Consider the fact that JSON documents are semistructured data that is

not required to conform to any specific layout. That is, one row could contain a JSON

document that not only has different keys but also may arrange the document in a

different order.

Although this isn’t necessarily a show stopper for indexing and despite the special,

internal mechanism used to access data in the document, indexing JSON documents

directly would be cumbersome and likely to perform poorly. However, all is not lost.

MySQL 5.7 introduced a new feature called generated columns (sometimes called virtual

columns) .

Generated columns are dynamically resolved columns that are defined by the

CREATE or ALTER TABLE statements. There are two types of virtual columns: those that

are generated on demand (called virtual generated columns), which do not use any

additional storage; and those generated columns that can be stored in the rows. Virtual

generated columns use the VIRTUAL option and stored generated columns use the

STORED option in the CREATE or ALTER TABLE statement.

So how does this work? We create the generated column to extract data from the

JSON document then use that column to create an index. Thus, the index can be used

to find rows more quickly. That is if you want to perform grouping, ordering, or want to

search for a subset of rows that predicate on the JSON data, you can create and index for

the optimizer to use to retrieve the data more quickly.

Chapter 3 JSON Documents

127

Let’s see an example. The following shows a table I created to store information in a

JSON column.

CREATE TABLE `test`.`thermostats` (

 `model_number` char(20) NOT NULL,

 `manufacturer` char(30) DEFAULT NULL,

 `capabilities` json DEFAULT NULL,

 PRIMARY KEY (`model_number`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO `test`.`thermostats` VALUES ('AB-90125-C1', 'Jasper', '{"rpm":

1500, "color": "beige", "modes": ["ac"], "voltage": 110, "capability":

"auto fan"}');

INSERT INTO `test`.`thermostats` VALUES ('ODX-123','Genie','{"rpm": 3000,

"color": "white", "modes": ["ac", "furnace"], "voltage": 220, "capability":

"fan"}');

Note that this table has a single JSON field and a single character field for the model

number that is also the primary key. Suppose the rows contain JSON data such as the

following in the capabilities column.

 MySQL localhost:33060+ ssl SQL > SELECT * FROM `test`.`thermostats` LIMIT 2 \G

*************************** 1. row ***************************

model_number: AB-90125-C1

manufacturer: Jasper

capabilities: {"rpm": 1500, "color": "beige", "modes": ["ac"], "voltage":

110, "capability": "auto fan"}

*************************** 2. row ***************************

model_number: ODX-123

manufacturer: Genie

capabilities: {"rpm": 3000, "color": "white", "modes": ["ac", "furnace"],

"voltage": 220, "capability": "fan"}

2 rows in set (0.00 sec)

Now suppose we wanted to execute queries to select rows by one or more of the

data elements in the JSON document. For example, suppose we wanted to run queries

that locate rows that have fans that operate at 110 volts. If the table contains hundreds

of thousands or even tens of millions of rows and there is not index, the optimizer must

Chapter 3 JSON Documents

128

read all the rows (a table scan). However, if there is an index on the data, the optimizer

merely needs to generate the virtual generated column, which is potentially more

efficient.

To mitigate the potential performance issue, we can add a virtual generated column

on the table using the voltage element. The following shows the ALTER TABLE statements

we can use to add the virtual generated column.

ALTER TABLE `test`.`thermostats` ADD COLUMN voltage INT GENERATED ALWAYS AS

(capabilities->'$.voltage') VIRTUAL;

ALTER TABLE `test`.`thermostats` ADD INDEX volts (voltage);

Note  If you leave off the option, the generated column generated is a virtual
generated column.

You also can recreate the table if you want, but that will require reloading the data.

However, I show the new CREATE TABLE statement below so you can see how to create a

virtual generated column on the table at the time that it is created.

CREATE TABLE `test`.`thermostats` (

 `model_number` char(20) NOT NULL,

 `manufacturer` char(30) DEFAULT NULL,

 `capabilities` json DEFAULT NULL,

 �voltage` int(11) GENERATED ALWAYS AS (json_extract(`capabilities`,

'$.voltage')) VIRTUAL,

 PRIMARY KEY (`model_number`),

 KEY `volts` (`voltage`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Note that I used the shortcut -> in the ALTER TABLE statement but the CREATE TABLE

statement has the JSON_EXTRACT() function instead.

If you’re curious if adding the virtual generated column and index makes a

difference, Listing 3-24 shows how the optimizer would run the query before adding the

column and after adding the column.

Chapter 3 JSON Documents

129

Listing 3-24.  Optimizer EXPLAIN Results for Query

 MySQL localhost:33060+ ssl SQL > DROP TABLE IF EXISTS

`test`.`thermostats`;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > CREATE TABLE `test`.`thermostats`

(`model_number` char(20) NOT NULL,`manufacturer` char(30) DEFAULT

NULL,`capabilities` json DEFAULT NULL,PRIMARY KEY (`model_number`))

ENGINE=InnoDB DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`thermostats`

VALUES ('ODX-123','Genie','{"rpm": 3000, "color": "white", "modes": ["ac",

"furnace"], "voltage": 220, "capability": "fan"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`thermostats` VALUES

('AB-90125-C1', 'Jasper', '{"rpm": 1500, "color": "beige", "modes": ["ac"],

"voltage": 110, "capability": "auto fan"}');

Query OK, 1 row affected (0.00 sec)

Query without virtual generated column.

 MySQL localhost:33060+ ssl SQL > EXPLAIN SELECT * FROM thermostats WHERE

capabilities->'$.voltage' = 110 \G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: thermostats

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

 rows: 23302

Chapter 3 JSON Documents

130

 filtered: 100.00

 Extra: Using where

1 row in set, 1 warning (0.00 sec)

Note (code 1003): /* select#1 */ select `test`.`thermostats`.`model_

number` AS `model_number`,`test`.`thermostats`.`manufacturer` AS `man

ufacturer`,`test`.`thermostats`.`capabilities` AS `capabilities` from

`test`.`thermostats` where (json_extract(`test`.`thermostats`.`capabilities`,

'$.voltage') = 110)

 MySQL localhost:33060+ ssl SQL > ALTER TABLE `test`.`thermostats`

ADD COLUMN color char(20) GENERATED ALWAYS AS (capabilities->'$.color')

VIRTUAL;

Query OK, 0 rows affected (0.00 sec)

Query with virtual generated column.

 MySQL localhost:33060+ ssl SQL > DROP TABLE `test`.`thermostats`;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > CREATE TABLE `thermostats` (`model_

number` char(20) NOT NULL, `manufacturer` char(30) DEFAULT NULL,

`capabilities` json DEFAULT NULL, `voltage` int(11) GENERATED ALWAYS AS

(json_extract(`capabilities`,'$.voltage')) VIRTUAL, PRIMARY KEY (`model_

number`), KEY `volts` (`voltage`)) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > EXPLAIN SELECT * FROM thermostats WHERE

capabilities->'$.voltage' = 110 \G

*************************** 1. row ***************************

 id: 1

 select_type: SIMPLE

 table: thermostats

 partitions: NULL

 type: ALL

possible_keys: NULL

 key: NULL

 key_len: NULL

 ref: NULL

Chapter 3 JSON Documents

131

 rows: 1102

 filtered: 100.00

 Extra: Using where

1 row in set, 1 warning (0.00 sec)

Note (code 1003): /* select#1 */ select `test`.`thermostats`.`model_number`

AS `model_number`,`test`.`thermostats`.`manufacturer` AS `manufacturer`,

`test`.`thermostats`.`capabilities` AS `capabilities`,`test`.`thermostats`.

`color` AS `color` from `test`.`thermostats` where (json_extract(`test`.

`thermostats`.`capabilities`,'$.voltage') = 110)

Note that the first EXPLAIN shows no use of an index (no key, key_len) whereas the

second does show the use of an index. The rows result shows how many rows (estimated)

will be read to make the comparison. It is clear that adding a generated column and an

index can help us optimize our queries of JSON data in relational tables. Cool.

However, there is one thing the example did not cover. If the JSON data element is a

string, you must use the JSON_UNQUOTE() function to remove the quotes from the string.

Let’s suppose we wanted to add a generated column for the color data element. If we add

the column and index with the ALTER TABLE statements without removing the quotes,

we will get some unusual results as shown in Listing 3-25.

Listing 3-25.  Removing Quotes for Generated Columns on JSON Strings

 MySQL localhost:33060+ ssl SQL > DROP TABLE IF EXISTS `test`.`thermostats`;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > CREATE TABLE `test`.`thermostats`

(`model_number` char(20) NOT NULL,`manufacturer` char(30) DEFAULT

NULL,`capabilities` json DEFAULT NULL,PRIMARY KEY (`model_number`))

ENGINE=InnoDB DEFAULT CHARSET=latin1;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`thermostats`

VALUES ('ODX-123','Genie','{"rpm": 3000, "color": "white", "modes": ["ac",

"furnace"], "voltage": 220, "capability": "fan"}');

Query OK, 1 row affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > INSERT INTO `test`.`thermostats` VALUES

('AB-90125-C1', 'Jasper', '{"rpm": 1500, "color": "beige", "modes": ["ac"],

"voltage": 110, "capability": "auto fan"}');

Query OK, 1 row affected (0.00 sec)

Chapter 3 JSON Documents

132

 MySQL localhost:33060+ ssl SQL > ALTER TABLE `test`.`thermostats`

ADD COLUMN color char(20) GENERATED ALWAYS AS (capabilities->'$.color')

VIRTUAL;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT model_number, color FROM

thermostats WHERE color = "beige";

Empty set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT model_number, color FROM

thermostats LIMIT 2;

+--------------+---------+

| model_number | color |

+--------------+---------+

| AB-90125-C1 | "beige" |

| ODX-123 | "white" |

+--------------+---------+

2 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > ALTER TABLE thermostats DROP COLUMN color;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > ALTER TABLE thermostats ADD COLUMN color

char(20) GENERATED ALWAYS AS (JSON_UNQUOTE(capabilities->'$.color')) VIRTUAL;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SELECT model_number, color FROM

thermostats WHERE color = 'beige' LIMIT 1;

+--------------+-------+

| model_number | color |

+--------------+-------+

| AB-90125-C1 | beige |

+--------------+-------+

1 row in set (0.00 sec)

Note that in the first SELECT statement, there is nothing returned. This is because the

virtual generated column used the JSON string with the quotes. This is often a source of

confusion when mixing SQL and JSON data. Note that in the second SELECT statement,

we see there should have been several rows returned. Note also that after I dropped the

column and added it again with the JSON_UNQUOTE() function, the SELECT returns the

correct data.

Chapter 3 JSON Documents

133

We normally use a virtual generated column so that we don’t store anything extra in

the row. This is partly because we may not use the index on the JSON data very often and

may not need it maintained, but more important because there are restrictions on how you

can use/define a stored generated column. The following summarize the restrictions.

•	 The table must have a primary key defined.

•	 You must use either a FULLTEXT or RTREE index (instead of the

default BTREE).

However, if you have a lot of rows or are using the index on the JSON data frequently

or have more than one index on the JSON data, you may want to consider using the

stored generated column because virtual generated columns can be computationally

taxing when accessing complex or deeply nested data frequently.

Tip  For more information about virtual columns, see the section, “CREATE TABLE
and Generated Columns” or “ALTER TABLE and Generated Columns” in the online
MySQL reference manual (https://dev.mysql.com/doc/refman/8.0/en/).

�Summary
The addition of the JSON data type to MySQL has ushered a paradigm shift for how we

use MySQL. For the first time, we can store semistructured data inside our relational

data (tables). Not only does this give us far more flexibility that we ever had before, it

also means we can leverage modern programming techniques to access the data in our

applications without major efforts and complexity. JSON is a well-known format and

used widely in many applications.

Understanding the JSON data type is key to understanding the document store. This

is because the JSON data type, while designed to work with relational data, forms the

pattern for how we store data in the document store—in JSON documents! We will see

more about the document store in later chapters.

In this chapter, we explored the JSON data type in more detail. We saw examples

of how to work with the JSON data in relational tables via the numerous built-in JSON

functions provided in MySQL. The JSON data type is key to allowing users to develop

hybrid solutions that span the gulf of SQL and NoSQL applications.

In Chapter 4, I explore the MySQL Shell in more detail including an introduction on

how to use the MySQL Shell to develop your applications.

Chapter 3 JSON Documents

https://dev.mysql.com/doc/refman/8.0/en/

135
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_4

CHAPTER 4

The MySQL Shell
One of the largest missing features in the old MySQL client (mysql) was the absence of

any form of scripting capability. However, it is possible to use the old client to process

a batch of SQL commands and there is limited support in the client for writing stored

routines (procedures and functions). For those who wanted to create and use scripts

for managing their databases (and server), to date there have been external tool

options including the MySQL Workbench and MySQL Utilities but nothing dedicated to

incorporating multiple scripting languages.

MySQL Workbench is a fantastically popular product from Oracle. MySQL Workbench

is a GUI tool designed as a workstation-based administration tool. It provides a host of

features including tools for database design and modeling, SQL development, database

administration, database migration, and scripting support with Python. For more

information about MySQL Workbench, see http://dev.mysql.com/doc/workbench/en/.

MySQL Utilities on the other hand, is a set of Python tools that are used to assist

in maintaining and administering MySQL servers, achieving with a single command

what would otherwise involve many steps or complex scripting. There are tools for

administering the server, working with replication, and more. A library of Python classes

is included for those who want to write their own Python scripts. For more information

about MySQL Utilities, see https://dev.mysql.com/doc/mysql-utilities/1.6/en/.

Note  MySQL Utilities is currently limited for use with MySQL 5.7. There is no
release available that works with MySQL 8.0 or the document store.

Aside from these products, there has been no answer to requests to add scripting

languages to the MySQL client. That is, until now. However, rather than retool the

existing (and quite long lived) MySQL client tool, Oracle has released a new client called

the MySQL Shell, which supports scripting languages, the X DevAPI, as well as SQL

commands and more. But there is far more to the new shell than that.

http://dev.mysql.com/doc/workbench/en/
https://dev.mysql.com/doc/mysql-utilities/1.6/en/

136

In this chapter, we explore the MySQL Shell in more detail. We saw the shell in action

in Chapter 3, but in this chapter we learn more about its major features and options as

well as see how to use the new shell to execute scripts interactively. As you will see, the

MySQL Shell is another critical element of the future of MySQL.

I recommend reading through the sections in this chapter leading up to the

examples at least once before trying out the MySQL Shell yourself. The information

presented will help you adjust to using the new commands and connections, which can

sometimes be a bit confusing until you understand the concepts.

Note  I use the term, shell to refer to features or objects supported by the MySQL
Shell. I use MySQL Shell to refer to the product itself.

�Getting Started
MySQL Shell is a new and exciting addition to the MySQL portfolio. MySQL Shell

represents the first modern and advanced client for connecting to and interacting with

MySQL. The shell can be used as a scripting environment for developing new tools and

applications for working with data. Although it does support an SQL mode, its main

purpose is to permit access to data with the JavaScript and Python languages. That’s

right; you can write Python scripts and execute them within the shell interactively or as a

batch. Cool!

Recall from Chapter 1, that the MySQL Shell is designed to use the new X Protocol

for communicating with the server via the X Plugin. However, the shell can also connect

to the server using the older protocol albeit with limited features in the scripting modes.

What this means is, the shell allows you to work with both relational (SQL), JSON

documents (NoSQL), or both.

The addition of the SQL mode provides an excellent stepping-stone to learn how to

manage your data with scripts. That is, you can continue to use your SQL commands (or

batches) until you convert them to JavaScript or Python. Furthermore, you can use both

to ensure your migration is complete. Figure 4-1 shows an example of launching MySQL

Shell. Note the nifty prompt that displays the MySQL logo, connection information, and

mode. Nice!

Chapter 4 The MySQL Shell

137

The following sections present the major features of the shell at a high level. We will

not explore every detail of every feature or option, rather, this chapter provides a broad

overview so that you can get started quickly and, more important, learn enough about

the shell so that you can follow along with the examples in this book.

For more information about the MySQL Shell, see the section entitled, “MySQL Shell

User Guide” in the online MySQL reference manual.

�Features
The MySQL Shell has many features including support for traditional SQL command

processing, script prototyping, and even support for customizing the shell. In the

following I list some of the major features of the shell. Most of the features can be

controlled via command line options or with special shell commands. I take a deeper

look at some of the more critical features in later sections.

•	 Logging: You can create a log of your session for later analysis or to

keep a record of messages. You can set the level of detail with the

--log-level option ranging from 1 (nothing logged) to 8

(max debug).

Figure 4-1.  The MySQL Shell

Chapter 4 The MySQL Shell

138

•	 Output formats: The shell supports three format options: table

(--table), which is the traditional grid format you’re used to from

the old client; tabbed, which presents information using tabs for

spacing and is used for batch execution; and JSON (--json), which

formats the JSON documents in an easier to read manner. These are

command-line options you specify when launching the shell.

•	 Interactive code execution: The default mode for using the shell is

interactive mode, which works as a traditional client where you enter

a command and get a response.

•	 Batch code execution: If you want to run your script without the

interactive session, you can use the shell to run the script in batch

mode. However, the output is limited to nonformatted output (but

can be overridden with the --interactive option).

•	 Scripting languages: The shell supports both JavaScript and Python

although you can use only one at a time.

•	 Sessions: Sessions are essentially connections to servers. The shell

allows you to store and remove sessions. We will see more about

sessions in a later section.

•	 Startup scripts: you can define a script to execute when the shell

starts. You can write the script in either JavaScript or Python.

•	 Command history and command completion: The shell saves the

commands you enter allowing you to recalling them using the up and

down arrow keys. The shell also provides code completion for known

keywords, API functions, and SQL keywords.

•	 Global variables: The shell provides a few global variables you can

access when in interactive mode. These include the following:

•	 session: global session object if established

•	 db: schema if established via a connection

•	 dba: the AdminAPI object for working with the InnoDB Cluster

•	 shell: general purpose functions for using the shell

•	 util: utility functions for working with servers

Chapter 4 The MySQL Shell

139

•	 Customize the prompt: You also can change the default prompt by

updating a configuration file named ~/.mysqlsh/prompt.json using

a special format or by defining an environment variable named

MYSQLSH_PROMPT_THEME. See the MySQL Shell reference manual for

more details about changing the prompt.

•	 Auto completion: Starting in 8.0.4, the shell permits users to press

the TAB key to auto complete keywords in SQL mode and the major

classes and methods in JavaScript and Python modes.

�Shell Commands
As with the original MySQL client, there are some special commands that control the

application itself rather than interact with data (via SQL or the X DevAPI). To execute

a shell command, issue the command with a slash (\). For example, \help prints the

help for all of the shell commands. Table 4-1 lists some of the more frequently used shell

commands.

Table 4-1.  Shell Commands

Command Shortcut Description

\ Start multiline input (SQL mode only)

\connect (\c) Connect to a server

\help (\?,\h) Print the help text

\js Switch to JavaScript mode

\nowarnings (\w) Don't show warnings

\py Switch to Python mode

\quit (\q,\exit) Quit

\source (\.) Executes the script file specified

\sql Switch to SQL mode

\status (\s) Print information about the connection

\use (\u) Set the schema for the session

\warnings (\W) Show warnings after each statement

Chapter 4 The MySQL Shell

140

Note that you can use the \sql, \js, and \py shell commands to switch the mode

on the fly. This makes working with SQL and NoSQL data much easier because you

don’t have to exit the application to switch modes. Furthermore, you can use these shell

commands even if you used the startup option to set the mode.

Tip  To get help with any shell command, use the \help command. For example,
to learn more about the \connect command, enter \help connect.

Finally, note the way you exit the shell (\q or \quit). If you type quit as you used to

in the old client, the shell will respond differently depending on the mode you’re in. The

following presents an example of what happens in each mode.

MySQL SQL > quit;

ERROR: You have an error in your SQL syntax; check the manual that

corresponds to your MySQL server version for the right syntax to use near

'quit' at line 1

 MySQL SQL > \js

Switching to JavaScript mode...

 MySQL JS > quit

ReferenceError: quit is not defined

 MySQL JS > \py

Switching to Python mode...

 MySQL Py > quit

Use quit() or Ctrl-D (i.e. EOF) to exit

 MySQL Py > \q

Bye!

You may see similar oddities if you are used to the old MySQL client and accidentally

use an old client command, but it only takes a bit of regular use to remind you of the

correct commands to use. Now, let’s look at the startup options for the shell.

Note  Unlike the old client, which requires a server connection to launch, when
you launch the shell without specifying a server connection, the shell will run but
it is not connected to a server. You must use the \connect shell command to
connect to a server.

Chapter 4 The MySQL Shell

141

�Options
The shell can be launched using several startup options that control the mode, connection,

behavior, and more. This section introduces some of the more common options that you

may want to use. We will see more about connection options in a later section. Table 4-2

shows a list of common shell options.

Table 4-2.  Common MySQL Shell Options

Option Description

-f, --file=file Processes file for execution

-e, --execute=<cmd> Executes command and quit

--uri Connects via a Uniform Resource Identifier (URI)

-h, --host=name Hostname to use for connection

-P, --port=# Port number to use for connection

-S, --socket=sock Socket name to use for connection in UNIX or a named pipe name

in Windows (only classic sessions)

-u, --dbuser=name User to use for the connection

--user=name An alias for dbuser

--dbpassword=name Password to use when connecting to server

--password=name An alias for dbpassword

-p Requests password prompt to set the password

-D --schema=name Schema to use

--database=name An alias for --schema

--sql Starts in SQL mode

--sqlc Starts in SQL mode using a classic session

--sqlx Starts in SQL mode using Creating an X protocol session

--js Starts in JavaScript mode

--py Starts in Python mode

--json Produces output in JSON format

--table Produces output in table format (default for interactive mode)

(continued)

Chapter 4 The MySQL Shell

142

Option Description

-i,

--interactive[=full]

To use in batch mode, it forces emulation of interactive mode

processing. Each line on the batch is processed as if it were in

interactive mode.

--log-level=value The log level; value must be an integer between 1 and 8 or any

of [none, internal, error, warning, info, debug,

debug2, debug3]

--mx --mysqlx Creates an X protocol session (simply called Session)

--mc --mysql Creates a classic (old protocol) session

--ma Creates session with automatic protocol selection

--nw, --no-wizard Disables wizard mode (noninteractive) for executing scripts.

--ssl-mode Enables SSL for connection (automatically enabled with other flags)

--ssl-key=name X509 keys in PEM format

--ssl-cert=name X509 certs in PEM format

--ssl-ca=name CA file in PEM format (check OpenSSL docs)

--ssl-capath=dir CA directory.

--ssl-cipher=name SSL Cipher to use.

--ssl-crl=name Certificate revocation list.

--ssl-crlpath=dir Certificate revocation list path.

--tls-version=version TLS version to use, permitted values are: TLSv1, TLSv1.1.

--auth-method=method Authentication method to use.

--dba=enableXProtocol Enables the X Protocol in the server connected to. Must be used

with --mysql.

Table 4-2.  (continued)

Note that there are aliases for some of the options that have the same purpose as

the original client. This makes switching to the shell a bit easier if you have scripts for

launching the client to perform operations. Note that there is also a set of options for

using a secure socket layer (SSL) connection.

Most of these are self-explanatory and we’ve seen several of these previously. Let’s

now look at the sessions and connections available and how to use them.

Chapter 4 The MySQL Shell

143

For a complete list of options, execute the shell with the --help option as shown in

the following.

$ mysqlsh --help

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective owners.

Usage: mysqlsh [OPTIONS] [URI]

 mysqlsh [OPTIONS] [URI] -f <path> [script args...]

 mysqlsh [OPTIONS] [URI] --dba [command]

 mysqlsh [OPTIONS] [URI] --cluster

 -?, --help Display this help and exit.

 -e, --execute=<cmd> Execute command and quit.

 -f, --file=file Process file.

 --uri=value Connect to Uniform Resource Identifier. Format:

 [user[:pass]@]host[:port][/db]

 -h, --host=name Connect to host.

 -P, --port=# Port number to use for connection.

 -S, --socket=sock Socket name to use in UNIX, pipe name to use in

 Windows (only classic sessions).

 -u, --dbuser=name User for the connection to the server.

 --user=name see above

 -p, --password[=name] Password to use when connecting to server.

 --dbpassword[=name] see above

 -p Request password prompt to set the password

 -D, --schema=name Schema to use.

 --database=name see above

 --recreate-schema Drop and recreate the specified schema.Schema

 will be deleted if it exists!

 -mx, --mysqlx Uses connection data to create Creating an X

 protocol session.

 -mc, --mysql Uses connection data to create a Classic Session.

 -ma Uses the connection data to create the session

 withautomatic protocol detection.

...

Chapter 4 The MySQL Shell

144

�Sessions and Modes
As with the original client and indeed most MySQL client applications, you will need to

connect to a MySQL server so that you can run commands. The MySQL Shell supports

several ways to connect to a MySQL server and a variety of options for interacting with

the server (called a session). Within a session, you can change the way the shell accepts

commands (called modes) to include SQL, JavaScript, or Python commands.

Given all the different and new concepts of working with servers, those new to using

the shell may find the difference subtle and even at times confusing. Indeed, the online

MySQL Shell reference manual and various blogs and other reports sometimes use mode

and session interchangeably, but as you will see, they are different (however subtle). The

following sections clarify each of the major concepts including sessions, modes, and

connections so that you can get accustomed to the new methods faster. I introduce the

concepts first with some simple examples then discuss making connections in detail

with examples. Let’s begin by looking at the session objects available.

�Session Objects

The first thing to understand about sessions is that a session is a connection to a single

server. The second thing to understand is that each session can be started using one of

two session objects that exposes a specific object for use in working with the MySQL

server using a specific communication protocol. That is, sessions are connections to

servers (with all parameters defined), and a session object is what the shell uses to

interact with a server in one of several ways. More specific, a MySQL Shell session object

simply defines how you interact with the server including what modes are supported

and even how the shell communicates with the server. The shell supports two session

objects as in the following:

•	 Session: An X Protocol session is used for application development

and supports the JavaScript, Python, and SQL modes. Typically

used to develop scripts or execute scripts. To start the shell with this

option, use the --mx (--mysqlx) option.

•	 Classic session: Uses the older server communication protocol with

very limited support for the DevAPI. Use this mode with older servers

that do not have the X Plugin or do not support the X Protocol.

Typically used for SQL mode with older servers. To start the shell with

this option, use the --mc (--mysqlc) option.

Chapter 4 The MySQL Shell

145

Note A classic session is only available in the MySQL Shell. It is not part of the
X DevAPI. Only the session connection via the X Protocol is available via the X
DevAPI.

You can specify the session object (protocol) to use when you use the \connect shell

command by specifying -mc for classic session, -mx for X Protocol session, or -ma for

automatic protocol selection. The following shows each of these in turn. Note that <URI>

specifies a uniform resource identifier.

•	 \connect -mx <URI>: Use the X Protocol (session)

•	 \connect -mc <URI>: Use the classic protocol (classic session)

•	 \connect -ma <URI>: Use automatic protocol selection

Recall sessions are loosely synonymous with a connection. However, a session is a

bit more than just a connection because all the settings used to establish the connection

including the session object are included as well as the communication protocol used

with the server. Thus, we sometimes encounter the term, “protocol” for describing a

session. We will see more examples of using sessions in later sections.

WAIT, WHAT SESSION WAS THAT???

It is likely you will see the sessions described using several names. In particular, the normal,

default session is called Session, X Protocol Session, or more rarely, X Session. These refer

to a session object (connection) that communicates with MySQL via the X Protocol. The older

server communication protocol is supported in a session called Classic Session, Classic, or

more rarely, Old Protocol. These refer to a session object (connection) that communicates with

a MySQL server via the old protocol. Sadly, these multiple names can make reading different

texts a challenge. You should strive to read Session and Classic Session whenever these

alternative terms are used.

For more information about using sessions programmatically, see the online MySQL

Shell reference manual.

Chapter 4 The MySQL Shell

146

�Modes Supported

The shell supports three modes (also called language support or simply the active

language); SQL, JavaScript, and Python. Recall that we can initiate any one of these modes

by using a shell command. You can switch modes (languages) as often as you want without

disconnection each time. The following lists the three modes and how to switch to each.

•	 \sql: Switch to the SQL language

•	 \js: Switch to the JavaScript language (default mode)

•	 \py: Switch to the Python language

Now that we understand sessions, session objects, modes, we can look at how to

make connections to MySQL servers.

�Connections
Making connections in the shell is one area that may take some getting used to doing

differently than the original MySQL client.1 You can use a specially formatted URI

string or connect to a server using individual options by name (like the old client). SSL

connections are also supported. Connections can be made via startup options, shell

commands, and in scripts. However, all connections are expected to use a password.

Thus, unless you state otherwise, the shell will prompt for a password if one is not given.

Note  If you want to use a connection without a password (not recommended),
you must use the --password option or, if using an URI, include an extra colon to
take the place of the password.

Rather than discuss all the available ways to connect and all the options to do so, the

following presents one example of each method of making a connection in the following

sections.

1�However, if you’ve used MySQL Fabric or Utilities, using an URI for a connection will look very
familiar.

Chapter 4 The MySQL Shell

147

�Using a URI

A URI in the case of a MySQL Shell connection is a special string coded using the

following format: <dbuser>[:<dbpassword>]@host[:port][/schema/] where <>

indicates string values for the various parameters. Note that the password, port, and

schema are optional but the user and host are required. Schema in this case is the

default schema (database) that you want to use when connecting.

Note  The default port for the X Protocol is 33060.

To connect to a server using a URI on the command line when starting the shell,

specify it with the --uri option as follows.

$ mysqlsh --uri root:secret@localhost:33060

The shell assumes all connections require a password and will prompt for a

password if one is not provided.2 Listing 4-1 shows the same connection earlier made

without the password. Note how the shell prompts for the password.

Tip  The world_x database is a sample database you can download from
https://dev.mysql.com/doc/index-other.html.

Listing 4-1.  Connecting with a URI

$ mysqlsh --uri root@localhost:33060/world_x

Creating a session to 'root@localhost:33060/world_x'

Enter password:

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 13 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

Default schema `world_x` accessible through db.

MySQL Shell 8.0.11

2�Although you can specify passwords in a URI, it is a poor security practice.

Chapter 4 The MySQL Shell

https://dev.mysql.com/doc/index-other.html

148

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ world_x JS >

Note that I also specified the default schema (world_x) with the /schema option in

the URI.

�Using Individual Options

You also can specify connections on the shell command line using individual options.

The available connection options available are those shown in Table 4-1. For backward

compatibility (and to make the transition to the MySQL Shell easier, the shell also supports

--user in place of --dbuser, --password in place of --dbpassword, and --database in place

of --schema. Listing 4-2 shows how to connect to a MySQL server using individual options.

Listing 4-2.  Connecting Using Individual Options

$ mysqlsh --dbuser root --host localhost --port 33060 --schema world_x --py -mx

Creating an X protocol session to 'root@localhost:33060/world_x'

Enter password:

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 14 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

Default schema `world_x` accessible through db.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Chapter 4 The MySQL Shell

149

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ world_x Py >

Note that I changed the mode (language) to Python with the --py option.

�Using Connections in Scripts

If you plan to use the shell to create scripts or simply as a prototyping tool, you also will

want to use sessions in your scripts. In this case, we will create a variable to contain the

session once it is fetched. A session created in this manner is called a global session

because once it is created, it is available to any of the modes.

However, depending on the session object we’re using (recall this is classic or X

Protocol), we will use a different method of the mysqlx object to create an X or classic

session. We use the getSession() method for an X Protocol session object, and the

getClassicSession() method for a classic session object.

Tip  If you want to know more about the internals of the MySQL Shell including
more about the mysql and mysqlx modules, see http://dev.mysql.com/
doc/dev/mysqlsh-devapi/.

The following demonstrates getting an X Protocol session object in JavaScript. Note

that I specify the password in an URI as the method parameter.

 MySQL JS > var js_session = mysqlx.getSession('root@localhost:33060', 'secret')

 MySQL JS > print(js_session)

<Session:root@localhost:33060>

The following demonstrates getting a Classic session object in JavaScript.

 MySQL JS > var js_session = mysql.getClassicSession('root@

localhost:3306', 'secret')

 MySQL JS > print(js_session)

<ClassicSession:root@localhost:3306>

Chapter 4 The MySQL Shell

http://dev.mysql.com/doc/dev/mysqlsh-devapi/
http://dev.mysql.com/doc/dev/mysqlsh-devapi/

150

WHAT HAPPENED TO PORT 3306?

If you’ve been following along with the examples in this section, you may have noticed that

the port we are using is 33060. That is not a typographical error. The X Plugin listens on port

33060 by default rather than port 3306 as the original default port of the server. In fact, port

3306 is still the default for the old protocol and you can connect to the server using port 3306,

but you must use the classic session (mysqlsh --classic -uroot -hlocalhost --port=3306).

Although this shows that you can connect to a server using the old protocol, recall that it does

limit what you can do because the DevAPI is not fully supported in the classic session object.

�Using SSL Connections

You also can create SSL connections for secure connections to your servers. To use SSL,

you must configure your server to use SSL. To use SSL on the same machine where

MySQL is running, you can use the --ssl-mode=REQUIRED option. You also can specify

the SSL options as shown in Table 4-1. You can specify them on the command line using

the command line options or as an extension to the \connect shell command. The

following shows how to connect to a server using SSL and command line options.

$ mysqlsh -uroot -h127.0.0.1 --port=33060 --ssl-mode=REQUIRED

Tip  See the section, “Using Encrypted Connections” in the online MySQL Shell
reference manual for more details about encrypted connections.

Now that we know how to connect to our servers, let’s review how to set up and

install the shell and, more important, ensure the X Plugin is set up correctly.

�Set Up and Install
Recall from Chapter 2, we need to install the MySQL Shell as a separate product from

the server. We also must enable the X Plugin in the server. The following sections

demonstrate the steps needed to install the MySQL Shell and how to configure the X

Plugin for use. Although we saw a short example of how to install the X Plugin in Chapter 2,

this section goes into greater detail including how to automatically install the X Plugin

using the MySQL Shell.

Chapter 4 The MySQL Shell

151

Caution  If you are installing the MySQL Shell version 8.0.4 or later to be
used with MySQL Server version 8.0.4 or later, you will be using the new
caching_sha2_password authentication plugin to use SSL connections.
This is normally done during setup by default, but if you installed the server
without the automatic installation, or you are using an older version of the server,
you may need to configure the server to use SSL connections. See the online
MySQL reference manual for more information or for more information about the
change to the authentication default, read the engineering blog at https://
mysqlserverteam.com/mysql-8-0-4-new-default-authentication-
plugin-caching_sha2_password.

�Install the MySQL Shell
Installing the MySQL Shell follows the same pattern as installing the MySQL server.

That is, you can simply download the installer for your platform and install it by clicking

through the dialog panels. There is one exception, however. At the time of this writing,

the latest release of the MySQL Shell is not part of the MySQL Windows Installer.

You can find the installation package on http://dev.mysql.com/downloads/shell/.

Just select the latest version and package for your platform (in this case, macOS) and

install the shell.

When you launch the installer (.pkg or .dmg), you will be presented with a

welcome dialog that contains the name and version of the product you are going to

install. Figure 4-2 shows the welcome panel for the MySQL Shell installer.

Chapter 4 The MySQL Shell

https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-plugin-caching_sha2_password
https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-plugin-caching_sha2_password
https://mysqlserverteam.com/mysql-8-0-4-new-default-authentication-plugin-caching_sha2_password
http://dev.mysql.com/downloads/shell/

152

Note that in Figure 4-2 I am installing a release candidate version of the MySQL Shell,

namely, version 8.0.11. You should install the latest version of the shell available for your

platform to ensure you have the latest features.

Once you are ready, click Continue. You will then be presented with the end-user

license agreement as shown in Figure 4-3.

Figure 4-2.  Installer welcome panel

Chapter 4 The MySQL Shell

153

Once you have read the license,3 click Continue. You will be asked to accept the

license as shown in Figure 4-4. Click Agree to continue.

Figure 4-3.  License panel

3�No, really. You should read it.

Once you’ve accepted the license, and are okay with installing in the default location

(for macOS that’s always a good idea), click Continue. You will be asked to approve the

installation as shown in Figure 4-5. Click Install when ready to begin the installation.

Figure 4-4.  Destination folder panel

Chapter 4 The MySQL Shell

154

Tip  When installing on Windows, you may be asked by Windows to approve the
escalation of the installation.

This will begin the copy of files to the destination along with settings on your system

to ensure you can launch the application correctly. Depending on the speed of your

system, it should only take about 2 to 3 minutes at the most to complete.

Once the installation is complete, you will be presented with a completion dialog as

shown in Figure 4-6. When ready, click Close to complete the installation. If you choose

to launch the shell, you will see a new command window open and the shell will start.

Figure 4-5.  Installation panel

Chapter 4 The MySQL Shell

155

Recall you can launch the shell without specifying a server and the shell will run but

it is not connected to any MySQL server. You must use the \connect shell command to

connect to a server if you do not specify a server connection (URI or individual options)

on the command line.

Now that the MySQL Shell is installed, we need to configure the X Plugin.

�Setup the X Plugin
If you installed MySQL 8.0.11 or later on your system, you already have the X Plugin

installed and enabled. However, some of the older installations do not setup or enable

the X Plugin by default. Thus, you may need to enable the plugin to connect to your

server with the shell. Although you can still use the shell to connect using a classic session

object, you won’t be able to use the X Protocol session object until the X Plugin is enabled.

Furthermore, if you installed the server on Windows using the Windows Installer, you

can enable the X Plugin during installation by checking the Enable X Protocol/MySQL as

a Document Store checkbox. If you did not do that or are installing on a different platform,

there are at least two other methods for enabling the X Plugin; you can use the new MySQL

Shell or you can use the old client. The following demonstrates each option.

Figure 4-6.  Installation complete

Chapter 4 The MySQL Shell

156

Tip  If you have trouble connecting to a MySQL server on a fresh installation of
MySQL, be sure to enable the X Plugin as shown in this section.

�Enable the X Plugin Using the MySQL Shell

To enable the X Plugin using the MySQL Shell, start a classic session using

individual options for the user and host as well as specifying the --mysql and --dba

enableXProtocol options as shown following. We use a classic session object because

we do not have the X Protocol enabled yet.

$ mysqlsh -uroot -hlocalhost --mysql --dba enableXProtocol

Creating a Classic session to 'root@localhost'

Enter password:

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 285

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

enableXProtocol: Installing plugin mysqlx...

enableXProtocol: done

�Enable the X Plugin Using the MySQL Client

To enable the X Plugin using the old MySQL client, you must connect to the server and

install the plugin manually. That is, there is no new magical command option to turn it on

for you. This involves using the INSTALL PLUGIN SQL command as shown in Listing 4-3.

Listing 4-3.  Enabling the X Plugin Using the MySQL Client

$ mysql -uroot -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 343

Server version: 8.0.11 MySQL Community Server (GPL)

Copyright (c) 2000, 2018, Oracle and/or its affiliates. All rights reserved.

Chapter 4 The MySQL Shell

157

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> INSTALL PLUGIN mysqlx SONAME 'mysqlx.so';

Query OK, 0 rows affected (0.00 sec)

mysql> SHOW PLUGINS \G

*************************** 1. row ***************************

 Name: keyring_file

 Status: ACTIVE

 Type: KEYRING

Library: keyring_file.so

License: GPL

...

*************************** 43. row ***************************

 Name: mysqlx

 Status: ACTIVE

 Type: DAEMON

Library: mysqlx.so

License: GPL

43 rows in set (0.00 sec)

Note that I used the SHOW PLUGINS SQL command to list the plugins installed before

and after the command. I omit some of the lengthy output for clarity.

Tip Y ou can perform these operations in the shell using a classic session object.
I show the commands using the old client for readers accustomed to using the
old client.

It is interesting that you also can uninstall a plugin using the UNINSTALL PLUGIN SQL

command as follows. This may be helpful if you need to diagnose connections using the X

Protocol or want to test scripts with the MySQL Shell using only the classic session object.

Chapter 4 The MySQL Shell

158

mysql> UNINSTALL PLUGIN mysqlx;

Query OK, 0 rows affected (0.80 sec)

Now, let’s see the MySQL Shell in action by way of a demonstration of executing a

simple task in each of the three modes (SQL, JavaScript, and Python).

�Tutorial: MySQL Shell by Example
The following sections demonstrate how to use the MySQL shell in each of the three

modes. The example is inserting new data in the world_x database. A brief overview of

the built-in X DevAPI objects via the shell will be presented along with how to get started

installing the sample database.

This tutorial is designed to present a complete example of how to use the MySQL

Shell to solve a task in all the modes (languages) supported. Thus, we will see the same

tasks performed using SQL, JavaScript, and Python commands.

The task is to insert new data in the database then conduct a search to retrieve

rows that meet criteria that contains the new data. I use a relational table to illustrate

the concepts because that is easier for those of us familiar with “normal” database

operations. However, we will see in later chapters how to work with pure documents

(collections) in the document store.

Each session presented begins with an example of how to connect to the server, learn

about what the server supports (what databases exist), how to insert new data, and how

to query for data. As you will see, some of the commands are quite different but they all

produce the same results. Although the SQL commands shown will be familiar to most

readers, I include them here to show how to equate those commands with your scripting

language of choice.

Note R ecall from Chapter 3, it is not a requirement to be a JavaScript master
or even a Pythonista4 to get started writing scripts in the shell. Indeed, most of
what you need to do can be found by way of examples in this book and the online
MySQL Shell reference manual.

4�Python masters often refer to themselves in this manner. Not to be confused with the Knights
who say “Ni!”.—https://en.wikipedia.org/wiki/Knights_who_say_Ni

Chapter 4 The MySQL Shell

https://en.wikipedia.org/wiki/Knights_who_say_Ni

159

The operations we will see for JavaScript and Python work with CRUD operations

on relational tables. As such, we aren’t using collections; rather, we’re using a relational

table that has a JSON data type column. We will see examples of inserting data (create),

select data (read), updating data (updated), and deleting data (delete).

Before we begin our journey, let’s take a moment to install the sample database we

will need, the world_x sample MySQL database from Oracle.

�Installing the Sample Database
Oracle provides several sample databases for you to use in testing and developing your

applications. Sample databases can be downloaded from http://dev.mysql.com/doc/

index-other.html. The sample database we want to use is named world_x to indicate it

contains JSON documents and is intended for testing with the X DevAPI, the shell, and

so forth. Go ahead and navigate to that page and download the database.

The sample database contains several relational tables (country, city, and

countrylanguage) as well as a collection (countryinfo). We will only use the relational

tables in this chapter, but will see more examples working with collections in later chapters.

Once you’ve downloaded the file, uncompress it and note the location of the

files. You will need that when we import it. Next, start the MySQL Shell and make a

connection to your server. Use the \sql shell command to switch to SQL mode then the

\source shell command to read the world_x.sql file and process all its statements.

Listing 4-4 shows an excerpt of the commands and the responses you should see.

I highlight the commands and a row in the output to show that this world database does

indeed permit storing of JSON documents in a table.

Listing 4-4.  Installing the world_x Database in SQL Mode

 MySQL JS > \connect root@localhost:33060

Creating a session to 'root@localhost:33060'

Enter password:

Your MySQL connection id is 9 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

 MySQL localhost:33060+ ssl JS > \sql

Switching to SQL mode... Commands end with ;

 �MySQL localhost:33060+ ssl SQL > \source /Users/cbell/Downloads/world_x-

db/world_x.sql

Chapter 4 The MySQL Shell

http://dev.mysql.com/doc/index-other.html
http://dev.mysql.com/doc/index-other.html

160

...

Query OK, 0 rows affected (0.00 sec)

MySQL localhost:33060+ ssl SQL > SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| animals |

| contact_list1 |

| contact_list2 |

| contact_list3 |

| greenhouse |

| information_schema |

| library_v1 |

| library_v2 |

| library_v3 |

| mysql |

| performance_schema |

| rolodex |

| sys |

| test |

| world_x |

+--------------------+

15 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > USE world_x;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SHOW TABLES;

+-------------------+

| Tables_in_world_x |

+-------------------+

| city |

| country |

| countryinfo |

| countrylanguage |

+-------------------+

4 rows in set (0.00 sec)

Chapter 4 The MySQL Shell

161

MySQL localhost:33060+ ssl SQL > EXPLAIN city;

+-------------+----------+------+-----+---------+----------------+

| Field | Type | Null | Key | Default | Extra |

+-------------+----------+------+-----+---------+----------------+

| ID | int(11) | NO | PRI | NULL | auto_increment |

| Name | char(35) | NO | | | |

| CountryCode | char(3) | NO | | | |

| District | char(20) | NO | | | |

| Info | json | YES | | NULL | |

+-------------+----------+------+-----+---------+----------------+

5 rows in set (0.00 sec)

Note that the \source shell command is a way to load a file and execute the

commands in a batch. This is a very popular method of replaying frequently used

command sequences and it does work for JavaScript and Python commands too.

Tip  If the path to the file has spaces in it, you should include the path within
double quotes.

You can also install the sample database using the --recreate-schema option on the

command line as follows. Note that this will delete and recreate the database if it already

exists. This is another example of running the SQL commands as a batch.

$ mysqlsh -uroot -hlocalhost --sql --recreate-schema --schema=world_x

< ~/Downloads/world_x-db/world_x.sql

Enter password:

Recreating schema world_x...

Of course, you could install the sample database with the old client by using the

similar source command, but where’s the fun in that?

Now, let’s see our example task in SQL mode.

Chapter 4 The MySQL Shell

162

�SQL
The task we want to do is to insert two rows into the city table adding a JSON document

in each and then read data from the table only those rows that have the extra data. More

specific, we are going to be adding a list of places of interest to the table so that we can

ask questions later about which cities have places of interest. Think of it as a way to add

your own comments about places you’ve visited in those cities that you found interesting

and would recommend to others.

Because this exercise is an example, we will also see how to delete the data we added

so that we return the database to its original state. It also helps to do this if you plan to

follow along with these examples so that completing one doesn’t affect trying out the

next.

Let’s begin with listing the databases on the server then listing the tables in the

world_x database. Listing 4-5 shows a transcript of the familiar SQL commands to

accomplish these steps. I omit some of the messages for brevity. Note that I started the

shell in the SQL mode using the command option.

Listing 4-5.  Listing and Using Databases—SQL Mode

$ mysqlsh -uroot -hlocalhost --sql

Creating a session to 'root@localhost'

Enter password:

Your MySQL connection id is 13 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

Chapter 4 The MySQL Shell

163

 MySQL localhost:33060+ ssl SQL > SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| animals |

| contact_list1 |

| contact_list2 |

| contact_list3 |

| greenhouse |

| information_schema |

| library_v1 |

| library_v2 |

| library_v3 |

| mysql |

| performance_schema |

| rolodex |

| sys |

| test |

| world_x |

+--------------------+

15 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > USE world_x;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SHOW TABLES;

+-------------------+

| Tables_in_world_x |

+-------------------+

| city |

| country |

| countryinfo |

| countrylanguage |

+-------------------+

4 rows in set (0.00 sec) ... ;

Query OK, 0 rows affected (0.00 sec)

Chapter 4 The MySQL Shell

164

 MySQL localhost:33060+ ssl SQL > SHOW TABLES;

+-------------------+

| Tables_in_rolodex |

+-------------------+

| contacts |

+-------------------+

1 row in set (0.00 sec)

Next, let’s insert some data. We will insert two rows into the table; one for each city

I’ve visited recently (Charlotte, North Carolina and Daytona, Florida). In this step, we will

use the INSERT SQL command to insert data. Recall from earlier, we need to format our

JSON document carefully so that we don’t encounter errors. In particular, we want to add

structured data including the name, country code, and district but we also want to add a

JSON document that contains the population and a list (array) of places of interest. Recall

from Chapter 1, we can do this in the INSERT statement by creating the JSON document

inline. The following shows each of the commands we would use to insert the rows.

INSERT INTO world_x.city (Name, CountryCode, District, Info) VALUES

('Charlotte', 'USA', 'North Carolina', '{"Population": 792862, "Places_

of_interest": [{"name": "NASCAR Hall of Fame"}, {"name": "Charlotte Motor

Speedway"}]}');

INSERT INTO world_x.city (Name, CountryCode, District, Info) VALUES

('Daytona', 'USA', 'Florida', '{"Population": 590280, "Places_of_interest":

[{"name": "Daytona Beach"}, {"name": "Motorsports Hall of Fame of

America"}, {"name": "Daytona Motor Speedway"}]}');

Caution  Do not use spaces in key names in JSON documents. The SQL functions
cannot correctly identify keys with spaces in them.

Although that seems a bit messy (and it is), if you read the statements carefully,

you will see the JSON document is encoded as a string. For example, a well-formatted

version of the JSON document for the first insert is shown following. Clearly, that’s a lot

easier to read. You could enter the statement using formatting like this, but the results

will be shown without the extra formatting.

Chapter 4 The MySQL Shell

165

Note that we retain the population key per the other rows in the table (select some

and see) and we also add an array named Places_of_interest to list those places we

may want to visit.

{

 "Population": 792862,

 "Places_of_interest": [

 {

 "name": "NASCAR Hall of Fame"

 },

 {

 "name": "Charlotte Motor Speedway"

 }

]

}

Note  I truncated the table formatting rows (the dashed lines) from the examples
for brevity.

Now, let’s see how the data looks if we use a SELECT SQL statement. In this case, we’ll

just select the two rows by city name because they are unique in the table. The following

is an excerpt of the results.

MySQL localhost:33060+ ssl SQL > SELECT * FROM city WHERE Name in

('Charlotte', 'Daytona') \G

*************************** 1. row ***************************

 ID: 3818

 Name: Charlotte

CountryCode: USA

 District: North Carolina

 Info: {"Population": 540828}

*************************** 2. row ***************************

 ID: 4080

 Name: Charlotte

CountryCode: USA

 District: North Carolina

Chapter 4 The MySQL Shell

166

 Info: {"Population": 792862, "Places_of_interest": [{"name": "NASCAR

Hall of Fame"}, {"name": "Charlotte Motor Speedway"}]}

*************************** 3. row ***************************

 ID: 4081

 Name: Daytona

CountryCode: USA

 District: Florida

 Info: {"Population": 590280, "Places_of_interest": [{"name":

"Daytona Beach"}, {"name": "Motorsports Hall of Fame of America"}, {"name":

"Daytona Motor Speedway"}]}

That’s interesting, but it doesn’t answer the question we want to ask. That is, which

cities have places of interest? To do that, we need to use a number of special functions

designed for the JSON data type. All of the functions begin with the name JSON_*. Let’s

see each of these in turn starting with a way to search for rows that have a specific key

in the JSON document. In this case, we select all of the data for rows that have places of

interest.

To determine if a JSON document has a specific key, we use the JSON_CONTAINS_

PATH() function. Recall a path is simply a resolution of the keys in the document. In this

case, we want to know if the JSON document contains a path for Places_of_interest.

Because the function returns a 0 for no match and 1 for at least one match, we check

to see if it is equal to 1. You can omit the equality, but it is best to be pedantic when

experimenting with new features and commands. We also use the ‘all’ option to tell

the function to return all of the matches (values) as opposed to ‘one’, which returns only

the first occurrence. You can also use the slightly more correct IS NOT NULL comparison.

MySQL localhost:33060+ ssl SQL > SELECT * FROM city WHERE JSON_CONTAINS_

PATH(info, 'all', '$.Places_of_interest') = 1 \G

*************************** 1. row ***************************

 ID: 4080

 Name: Charlotte

CountryCode: USA

 District: North Carolina

 Info: {"Population": 792862, "Places_of_interest": [{"name": "NASCAR

Hall of Fame"}, {"name": "Charlotte Motor Speedway"}]}

Chapter 4 The MySQL Shell

167

*************************** 2. row ***************************

 ID: 4081

 Name: Daytona

CountryCode: USA

 District: Florida

 Info: {"Population": 590280, "Places_of_interest": [{"name":

"Daytona Beach"}, {"name": "Motorsports Hall of Fame of America"}, {"name":

"Daytona Motor Speedway"}]}

2 rows in set (0.00 sec)

Now, let’s say we only want to see those places of interest and not the entire JSON

document. In this case, we need to use the JSON_EXTRACT() function to extract the values

from the document. In particular, we want to search the info column for all values in the

array Places_of_interest. Although that seems complicated, it isn’t too bad as you can

see in the following.

MySQL localhost:33060+ ssl SQL > SELECT Name, District, JSON_

EXTRACT(info, '$.Places_of_interest') as Sights FROM city WHERE JSON_

EXTRACT(info, '$.Places_of_interest') IS NOT NULL \G

*************************** 1. row ***************************

 Name: Charlotte

District: North Carolina

 Sights: [{"name": "NASCAR Hall of Fame"}, {"name": "Charlotte Motor

Speedway"}]

*************************** 2. row ***************************

 Name: Daytona

District: Florida

 Sights: [{"name": "Daytona Beach"}, {"name": "Motorsports Hall of Fame of

America"}, {"name": "Daytona Motor Speedway"}]

2 rows in set (0.00 sec)

Now, what if we wanted to only retrieve the values for the Places_of_interest

array? In this case, we can use a special format of the JSON access to get these values

from the array. The following demonstrates the technique. Note the portion highlighted

in bold.

Chapter 4 The MySQL Shell

168

MySQL localhost:33060+ ssl SQL > SELECT Name, District, JSON_

EXTRACT(info, '$.Places_of_interest[*].name') as Sights FROM city WHERE

JSON_EXTRACT(info, '$.Places_of_interest') IS NOT NULL \G

*************************** 1. row ***************************

 Name: Charlotte

District: North Carolina

 Sights: ["NASCAR Hall of Fame", "Charlotte Motor Speedway"]

*************************** 2. row ***************************

 Name: Daytona

District: Florida

 Sights: ["Daytona Beach", "Motorsports Hall of Fame of America", "Daytona

Motor Speedway"]

2 rows in set (0.00 sec)

Okay, now that’s a lot easier to read, isn’t it? It’s also a bit messy SQL command.

And if all of that seemed a bit painful, you’re right, it was. Working with JSON data in

SQL works with the help of the JSON functions, but it is an extra step and can be a bit

confusing in syntax. See the online MySQL reference manual for full explanations of

each of the JSON_* functions.

If you’ve used the old MySQL client much to query data with wide rows, chances are

you’ve used the \G option to display the results in a vertical format, which makes reading

the data easier. With the shell, we don’t have that option but we can display data using

the --json option. Although the option is easier to read, it tends to be a bit verbose. We

will see this in action in the Python section.

Finally, we can remove the rows with the DELETE SQL command as shown in the

following.

MySQL localhost:33060+ ssl SQL > DELETE FROM city WHERE Name in

('Charlotte', 'Daytona');

Query OK, 3 rows affected (0.00 sec)

Now, let’s see the same operations performed using JavaScript.

Chapter 4 The MySQL Shell

169

�JavaScript
To execute the example task in JavaScript, we’re going to start the shell with the X

Protocol session object and pass in the world_x schema to demonstrate how you can

save a step. We will then use the getTables() method of the global db object (sometimes

called a variable) to get the list of tables the world_x database. Listing 4-6 demonstrates

these commands.

Listing 4-6.  Listing and Using Databases—JavaScript Mode

$ mysqlsh -uroot -hlocalhost -mx --schema=world_x

Creating an X protocol session to 'root@localhost/world_x'

Enter password:

Your MySQL connection id is 15 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

Default schema `world_x` accessible through db.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world_x JS > db

<Schema:world_x>

 MySQL localhost:33060+ ssl world_x JS > db.getTables();

[

 <Table:city>,

 <Table:country>,

 <Table:countrylanguage>

]

Now, let’s insert the data. Note that in Listing 4-6, the result of the db.getTables()

method shows three tables. We can use the table name to reference a table object by

name. For example, to access the city table, we use db.city. To insert data, we will use

the db.city.insert() method as shown in the following.

Chapter 4 The MySQL Shell

170

 MySQL localhost:33060+ ssl world_x JS > db.city.insert("Name",

"CountryCode", "District", "Info").values('Charlotte', 'USA', 'North

Carolina', '{"Population": 792862, "Places_of_interest": [{"name": "NASCAR

Hall of Fame"}, {"name": "Charlotte Motor Speedway"}]}');

Query OK, 1 item affected (0.00 sec)

 MySQL localhost:33060+ ssl world_x JS > db.city.insert("Name",

"CountryCode", "District", "Info").values('Daytona', 'USA', 'Florida',

'{"Population": 590280, "Places_of_interest": [{"name": "Daytona Beach"},

{"name": "Motorsports Hall of Fame of America"}, {"name": "Daytona Motor

Speedway"}]}');

Query OK, 1 item affected (0.00 sec)

Note  When running code interactively, you can omit the execute() function
call for most create, read, update, and delete operations because the MySQL Shell
explicitly executes the statements in interactive mode. For example, the insert()
function would normally require chaining the execute() function to complete the
operation, but you can omit it in interactive mode.

Now that we have the data, let’s select the rows with the following code. Here we

use the db.city.select() method along with the where() method for the TableSelect

object (the object returned from db.city.select). Note that we specify the list of

columns quoted and listed inside square brackets. Within that list, we can specify data

in a JSON document using the column name and the special -> operator to extract a key.

In this case, we want the Places_of_interest key (path) in the document stored in the

Info column.

MySQL localhost:33060+ ssl world_x JS > db.city.select(["Name",

"District", "Info->'$.Places_of_interest'"]).where("Info->'$.Places_of_

interest' IS NOT NULL");

+-----------+----------------+--+

| Name | District | JSON_EXTRACT(`Info`,'$.Places_of_interest')|

+-----------+----------------+--+

| Charlotte | North Carolina | �[{"name": "NASCAR Hall of Fame"}, {"name":

"Charlotte Motor Speedway"}] |

Chapter 4 The MySQL Shell

171

| Daytona | Florida | �[{"name": "Daytona Beach"}, {"name":

"Motorsports Hall of Fame of America"},

{"name": "Daytona Motor Speedway"}] |

+-----------+----------------+--+

2 rows in set (0.00 sec)

Note the column type in the result. It’s a JSON function! That means we can use a

JSON function in our code to narrow the resulting column data to only the values for the

Places_of_interest array as we did in the SQL example as shown in the following. How

cool is that?

MySQL localhost:33060+ ssl world_x JS > db.city.select(["Name",

"District", "JSON_EXTRACT(info, '$.Places_of_interest[*].name')"]).

where("Info->'$.Places_of_interest' IS NOT NULL");

+-----------+----------------+--+

| Name | District | �JSON_EXTRACT(`info`,'$.Places_of_

interest[*].name') |

+-----------+----------------+--+

| Charlotte | North Carolina | �["NASCAR Hall of Fame", "Charlotte Motor

Speedway"] |

| Daytona | Florida | �["Daytona Beach", "Motorsports Hall of Fame

of America", "Daytona Motor Speedway"] |

+-----------+----------------+--+

2 rows in set (0.00 sec)

Now, let’s remove the rows we added to restore the data.

MySQL localhost:33060+ ssl world_x JS > db.city.delete().where("Name in

('Charlotte', 'Daytona')");

Query OK, 2 items affected (0.00 sec)

Okay, that wasn’t so bad. If you’re thinking it seems more programmatic than SQL

and perhaps even a bit more intuitive, they you’re on the right track. Don’t worry if it

seems a bit strange. The more you use scripting in the shell, the easier and more natural

it will become. It is also good practice because the future of working with MySQL is the

MySQL Shell and scripting languages!

Now, let’s see the same script executed as Python.

Chapter 4 The MySQL Shell

172

�Python
Because we’ve already seen the task demonstrated twice, I skip the details of the

execution of each step and show you the transcript of my Python session.

One thing you will notice right away is that once we get the tables from the db

object, the code is the same as the JavaScript example except the names of the functions

are spelled a bit different. This is by design. Because the db object is actually a special

variable in the shell, it has the same syntax in both languages. You only see differences

when you start using the X DevAPI objects, which we will see in more detail in Chapter 5.

Note  The general rule is that JavaScript uses camelCase and Python uses
underscore_separated names when the function is composed by multiple names.
For example, createCluster() and create_cluster(), respectively. In cases
where the functions are a single word, the names are the same, that is, “select”,
“insert”, “delete”.

Listing 4-7 shows the complete transcript of running the task using Python. Note that

the only difference is the call for getting tables. In this case, we use db.get_tables()

method in Python. It’s the same method with the same functionality only it is named

differently in accordance with typical Python naming conventions.

Listing 4-7.  Listing, Inserting, Selecting, and Deleting in Databases—Python Mode

$ mysqlsh -uroot -hlocalhost -mx --py --schema=world_x

Creating an X protocol session to 'root@localhost/world_x'

Enter password:

Your MySQL connection id is 19 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

Default schema `world_x` accessible through db.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Chapter 4 The MySQL Shell

173

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl world_x Py > db

<Schema:world_x>

 MySQL localhost:33060+ ssl world_x Py > db.get_tables()

[

 <Table:city>,

 <Table:country>,

 <Table:countrylanguage>

]

 MySQL localhost:33060+ ssl world_x Py > db.city.insert("Name",

"CountryCode", "District", "Info").values ('Charlotte', 'USA', 'North

Carolina', '{"Population": 792862, "Places_of_interest": [{"name": "NASCAR

Hall of Fame"}, {"name": "Charlotte Motor Speedway"}]}')

Query OK, 1 item affected (0.00 sec)

 MySQL localhost:33060+ ssl world_x Py > db.city.insert("Name", "CountryCode",

"District", "Info").values('Daytona', 'USA', 'Florida', '{"Population": 590280,

"Places_of_interest": [{"name": "Daytona Beach"}, {"name": "Motorsports Hall of

Fame of America"}, {"name": "Daytona Motor Speedway"}]}')

Query OK, 1 item affected (0.00 sec)

 MySQL localhost:33060+ ssl world_x Py > db.city.select(["Name",

"District", "JSON_EXTRACT(info, '$.Places_of_interest[*].name')"]).

where("Info->'$.Places_of_interest' IS NOT NULL")

+-----------+----------------+--+

| Name | District | �JSON_EXTRACT(`info`,'$.Places_of_

interest[*].name') |

+-----------+----------------+--+

| Charlotte | North Carolina | �["NASCAR Hall of Fame", "Charlotte Motor

Speedway"] |

| Daytona | Florida | �["Daytona Beach", "Motorsports Hall of Fame

of America", "Daytona Motor Speedway"] |

+-----------+----------------+--+

2 rows in set (0.00 sec)

 MySQL localhost:33060+ ssl world_x Py > db.city.delete().where("Name in

('Charlotte', 'Daytona')")

Query OK, 2 items affected (0.00 sec)

Chapter 4 The MySQL Shell

174

Note how the code is similar to the JavaScript version. This makes learning the X

DevAPI easier because you can use your favorite language and even when you must use

another language, everything is familiar. Cool.

WHAT ABOUT OTHER LANGUAGES?

Although the shell currently only supports JavaScript and Python, the X DevAPI is not limited

to these languages. In fact, you can also use Java, .Net, and also C++ via the appropriate

connector to work with the X DevAPI. See the links under the X DevAPI heading on

http://dev.mysql.com/doc/ for more information about writing applications with

the X DevAPI using the respective connector.

�Summary
The MySQL Shell is a huge leap forward in technology for MySQL clients. Not only is

it designed to work with SQL in MySQL in a smarter way; it is also designed to enable

prototyping of JavaScript and Python. You can work with any language you want and

switch between them easily without having to restart the application or drop the

connection. How cool is that?

If that wasn’t enough, the added benefit of the X DevAPI and built-in objects make

using the shell as a front end to the document store means you don’t have to write

separate applications to manage your data. You simply choose the mode (language) that

fits your needs, switch to that language, and perform the tasks. As we learned in Chapter

1, the shell also forms the front end to the newest features including the InnoDB Cluster

giving you a one-stop client for all your MySQL administrative, programming, and high

availability needs.

In this chapter, we learned how to use the MySQL Shell including a look at the start-up

options, shell commands, connections, sessions, and we even learned how to do a bit of

interactive scripting in JavaScript and Python. This chapter therefore is the key chapter for

learning how to get started with the MySQL Shell and working with JSON and relational

data. Although this chapter is not an exhaustive coverage of all the features of the MySQL

Shell, it provides a broad tutorial for how to use it for the most common tasks.

In Chapter 5, I explore X DevAPI in more detail including a closer look at the objects

and facilities available for writing applications and scripts. I discuss full scripts in both

JavaScript and Python to access the document store.

Chapter 4 The MySQL Shell

http://dev.mysql.com/doc/

175
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_5

CHAPTER 5

X Developer API
The X Developer Application Programming Interface, or X DevAPI, is a library of classes

and methods that implement a new NoSQL interface for MySQL. To be specific, the X

DevAPI is designed to allow easy interaction with JSON documents and relational data.

The X DevAPI has classes devoted to supporting both concepts allowing developers to

use either (or both) in their applications. The X DevAPI together with the X Protocol,

X Plugin, and clients written to expose the X DevAPI, forms the new MySQL 8 Document

Store feature.

As we will see, there are many aspects to working with the X DevAPI. However,

once you master the basics of connecting and requesting object instances, forming

expressions, and working with the JSON documents, the X DevAPI is very easy to learn

and is efficient for writing document store or relational data applications.

We have already seen several examples of the X DevAPI in action throughout this book

for relational data as most database administrators are familiar with that form of database

interaction. However, we have not seen a comprehensive list of the classes and methods

provided for the document store. This chapter contains nearly all the public classes and

methods available in the X DevAPI (some lesser used classes are omitted for brevity).

Although all the X DevAPI client connectors support all the classes, there are

some minor differences in how each of the clients implements the X DevAPI. In

particular, the names of classes and methods vary slightly to match the development

practices for the language. For example, the accepted style guide for a language may

discourage camelCase names whereas the style guide for another may suggest the use of

underscores and no capitalization.

When learning to use the X DevAPI, it can be helpful to review examples from

other languages. Although the naming schemes may differ and the syntax may be quite

different, the basic classes and methods are similar enough that you can still learn

what methods to use. This is the major reason I use Python examples. You can use the

Python examples to see how to use the classes and although the methods may have

176

slightly different naming schemes, the methods and practices are the same from one

language to another. Plus, Python is easy to read and you do not need large, complicated

development tools (e.g., a C++ or .Net compiler). All you need is a Python interpreter and

it is available for almost all platforms.

Although this chapter contains some similar information from other chapters, it uses

a stepwise approach to demonstrate the X DevAPI via a series of code examples. A set of

tables describing the major classes and their methods is included as a reference to use as

a guide when writing your own code for a document store application.

I begin with a comprehensive overview of the characteristics of the X DevAPI and

then I move on to a detailed reference of the major classes and methods. Along the way I

give many examples using the X DevAPI. We will not see every possible class or method

that is part of the X DevAPI, but we will see the major components (classes and methods)

that you will need to master to write document store applications. If you need additional

information for the less frequently used classes and methods, see the

"For More Information" section for references to developer documentation.

�Overview
There are several powerful features in the X DevAPI. We have seen most of these in

action in previous chapters but now we will see the features that the X DevAPI provides.

Recall that these features are realized through the clients that support the X Protocol as

well as the X DevAPI. The features included in the X DevAPI include the following. We

will see these features and how they are realized later in this chapter.

•	 MySQLX: A module used to get a session object resulting from an X

Protocol connection to a MySQL server.

•	 Sessions: A connection to a MySQL server.

•	 Collections: An organizational abstraction for storing JSON

documents.

•	 Documents: JSON documents are the primary storage mechanism for

data in collections.

•	 CRUD operations: Simple methods for create, read, update,

and delete operations. Read operations are simple and easy to

understand.

Chapter 5 X Developer API

177

•	 Relational data: Implements CRUD operations for traditional

relational data including SQL statement execution and results

processing.

•	 Expressions: Use modern practices and syntax styles are used to get

away from traditional SQL-String-Building for finding things in your

collections and documents.

•	 Parallel execution: Nonblocking, asynchronous calls follow common

host language patterns.

•	 Method chaining: The API is built so that methods that create or

retrieve (get) an object return an instance of that object. This allows

us to combine several methods together (called method chaining).

Although method chaining is neither a new concept nor unique to

the X DevAPI, it is a very powerful mechanism for making our code

more expressive and easier to read.

Note T he X DevAPI is only available when using the X Plugin. You cannot use
the X DevAPI without the X Plugin installed and then only through an X Protocol
enabled client or database connector.

�Clients
The X DevAPI is only available through one of the clients that implement the X Protocol.

Furthermore, to use any of these clients, you also must have the X Plugin installed and

configured for use on your server. In particular with any of the following:

•	 MySQL Shell: version 8.0.4 and later (https://dev.mysql.com/

downloads/shell/)

•	 Connector/J: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/j/)

Chapter 5 X Developer API

https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/

178

•	 Connector/Net: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/net/)

•	 Connector/Node.js: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/nodejs/)

•	 Connector/Python: version 8.0.5 and later (https://dev.mysql.com/

downloads/connector/python/)

•	 Connector/C++: version 8.0.6 and later (https://dev.mysql.com/

downloads/connector/cpp/)

Note  Some of the database connector versions are not yet generally available (GA)
releases. In those cases, you can find the correct version by clicking on the
Development Releases tab on the download page. As long as you’re not using
them in production, using a DMR release should be fine. Be sure to contact your
MySQL sales representative for assistance if you do not see a GA release of a
component you want to use.

�Target Language Conformity
When you encounter a new API such as the X DevAPI, it is often the case that you would

expect the names of classes and methods to be the same from one language to another.

That is, a class with a method named getSomething() would be spelled the same from one

language to another. However, it is a common (and some would say preferred) practice to

obey platform- and language-specific naming conventions sacrifice commonality in the

API to ensure continued compliance for the language naming standard. If you work with

different programming languages as I do, you will find this is common place and thus one

knows to expect some variations from one language to another for the same API.

The X DevAPI subscribes to this practice and the clients that implement the API

conform to their platform and language standards. In most cases, this may be only a

change in the use of capital letters in the name but may also result in the addition (or

omission) of underscores. We have already discovered that Connector/Python (C/Py)

uses underscores in the names and does not use capital letters. Connector/Java (C/J),

Connector/Node.js (C/Node.js), Connector/.Net (C/Net), and Connector/C++ (C/C++)

use slightly different capitalization.

Chapter 5 X Developer API

https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/nodejs/
https://dev.mysql.com/downloads/connector/nodejs/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/cpp/
https://dev.mysql.com/downloads/connector/cpp/

179

It is not just the method names that have different spellings. There also may be subtle

differences in how you work with the results from methods or interact with objects. That

is, the clients conform to the normal practices for the language for common constructs

and concepts such as iteration. For example, if the language has a concept of a list for

returning multiple items (say versus an array), the methods will return a list. Although

this may seem strange as you read more about the X DevAPI, it does pay benefits. That is,

the resulting code you write is compliant with your choice of language standards.

To demonstrate the differences, Table 5-1 shows an example of the minor differences

in languages for the MySQL X package method names. Note that even the package name

is spelled differently from one language to another. A Python developer would see the

Python naming scheme and not think it unusual but the Java example may seem strange.

Table 5-1.  MySQL X Module

Returns Name Method Language Parameters

Session

Object

MysqlxSessionFactory getSession() Java Connection URI or

connection properties

mysqlx getSession() Node.js Connection URI or

connection properties

MySQLX GetSession() DotNet Connection URI or

connection data object

mysqlx get_session() Python Connection dictionary

There is one other difference you may notice when exploring the X DevAPI. The

clients that implement the API have some very different mechanisms for how to work

with data. In some cases, such as C/Net, everything is a class and it is common to use a

class to contain data but in C/Py, the use of lists and dictionaries are preferred. Thus, the

clients (specifically the database connectors) may implement some of the mechanisms

for iteration, retrieval, and encapsulation differently. However, as with the naming

conventions, the differences are for the benefit of the developer so that the X DevAPI

“works” the way it should in the target language.

Let’s look at one more example of the differences. Table 5-2 shows the method

available for working with schemas. I’ve included the four languages for the four

database connectors (but group Java and JavaScript) as well as a short description of the

task, parameter, and return type for each method.

Chapter 5 X Developer API

180

Table 5-2.  Session—Create Schema Method

Description Returns Language Method Parameters

Create a new

schema

Schema

object

Java/Node.js createSchema() String—schema name

DotNet CreateSchema() String—schema name

Python create_schema() String—schema name

In the next section, we examine the major code module, named mysqlx, for the X

DevAPI.

Note T he code examples in this chapter are written in Python as scripts that
use the Connector/Python database connector. Thus, you will need the connector
installed to use these examples. Finally, to run the examples, you execute them
with the python command like this: python ./script1.py.

The mysqlx module (sometimes called a package) works with a Session (X Protocol).

There is also a module for working with InnoDB Cluster (named dba), and several

common classes including those for columns, rows, and so forth.

Note T his chapter contains a lot of information about objects and classes. Objects
are an instance of a code class (at execution) and a class is simply the code construct.

�MySQL X Module
The mysqlx module is the entry point for writing your document store applications

and communicating with the X DevAPI. We use this module to pass connection

information to the server in the form of a connection string or a language-specific

construct (e.g., a dictionary in Python) to pass the connection parameters either as a URI

or a connection dictionary as the parameter (not both). Recall that a uniform resource

identifier (URI) a special string coded uses the following format:

ConnectURI ::= ' 'user_id' ':' 'user_password' '@' 'hostname' ':' 'port_

number' '/' 'default_schema_name' '

Chapter 5 X Developer API

181

Note that the password, port, and schema are optional but the user and host are

required. Schema in this case is the default schema (database) that you want to use when

connecting. The method to get a session object is shown in the following.

get_session(<URI or connection dictionary>)

The following shows examples of getting a session object instance using a dictionary of

connection options and getting a session object instance using a connection string (URI) .

import mysqlx

mysqlx_session1 = mysqlx.get_session({'host': 'localhost', 'port': 33060,

'user': 'root', 'password': 'secret'})

mysqlx_session2 = mysqlx.get_session('root:secret@localhost:33060')

The resulting variable will point to an object instance should the connection

succeed. If it fails, you could get an error or an uninitialized connection as the result. We

will see more about checking errors in a later section.

In the next section, we begin our exploration of the classes and methods

(components) in the X DevAPI.

�Classes and Methods
The following sections examine each of the major classes and their methods (features)

for the mysqlx module. These classes are only accessible from a Session object—the

same returned from the get_session( ) method. Because this book is about the document

store, we focus on those classes for the mysqlx module.

We will discover the methods including classes and for working with schemas

(databases), managing transactions, and checking or closing the connection. The

material presented includes the most frequently used classes and methods grouped

by use or application rather than a strict hierarchy. This allows for a shorter overview

that follows a more logical path exploring the API. If you want to see all the details

of the modules and classes as well as the raw Doxygen documentation for the code,

see the “For More Information” section at the end of the chapter for links to the API

documentation for each database connector. I include examples in this chapter that

illustrates many of the methods presented.

Let’s begin with a brief overview of the mysqlx module. Table 5-3 shows the objects

available in the module. Use this table as a quick reference guide to the X DevAPI.

Chapter 5 X Developer API

182

Ta
bl

e
5-

3.
 O

bj
ec

ts
 in

 th
e

m
ys

ql
x

M
od

u
le

Ar
ea

M
et

ho
d

De
sc

rip
tio

n

Co
nn

ec
tio

n
Se
ss
io
n

En
ab

le
s

in
te

ra
ct

io
n

w
ith

 a
n

X
Pr

ot
oc

ol
 e

na
bl

ed
 M

yS
QL

 P
ro

du
ct

CR
UD

Sc
he
ma

A
cl

ie
nt

-s
id

e
re

pr
es

en
ta

tio
n

of
 a

 d
at

ab
as

e
sc

he
m

a;
 p

ro
vi

de
s

ac
ce

ss
 to

 th
e

sc
he

m
a

co
nt

en
ts

Co
ll
ec
ti
on

Re
pr

es
en

ts
 a

 c
ol

le
ct

io
n

of
 d

oc
um

en
ts

 o
n

a
sc

he
m

a

Ta
bl
e

Re
pr

es
en

ts
 a

 d
at

ab
as

e
ta

bl
e

on
 a

 s
ch

em
a

Vi
ew

Re
pr

es
en

ts
 a

 d
at

ab
as

e
vi

ew
 o

n
a

sc
he

m
a

Re
su

lt
Co
lu
mn
Me
ta
Da
ta

Re
tu

rn
s

m
et

ad
at

a
on

 th
e

co
lu

m
ns

Ro
w

Re
pr

es
en

ts
 a

 ro
w

 e
le

m
en

t r
et

ur
ne

d
fro

m
 a

 S
ELE

C
T

qu
er

y

Re
su
lt

Al
lo

w
s

re
tri

ev
in

g
in

fo
rm

at
io

n
ab

ou
t n

on
qu

er
y

op
er

at
io

ns
 p

er
fo

rm
ed

 o
n

th
e

da
ta

ba
se

Bu
ff
er
in
gR
es
ul
t

Pr
ov

id
es

 b
as

e
fu

nc
tio

na
lit

y
fo

r b
uf

fe
rin

g
re

su
lt

ob
je

ct
s

Ro
wR
es
ul
t

Al
lo

w
s

tra
ve

rs
in

g
th

e
Ro

w
 o

bj
ec

ts
 re

tu
rn

ed
 b

y
a

Ta
bl

e.
se

le
ct

 o
pe

ra
tio

n

Sq
lR
es
ul
t

Re
pr

es
en

ts
 a

 re
su

lt
fro

m
 a

 S
QL

 s
ta

te
m

en
t

Chapter 5 X Developer API

183

Ar
ea

M
et

ho
d

De
sc

rip
tio

n

St
at

em
en

t
Db
Do
c

Re
pr

es
en

ts
 a

 g
en

er
ic

 d
oc

um
en

t i
n

JS
ON

 fo
rm

at

St
at
em
en
t

Pr
ov

id
es

 b
as

e
fu

nc
tio

na
lit

y
fo

r s
ta

te
m

en
t o

bj
ec

ts

Fi
lt
er
ab
le
St
at
em
en
t

A
st

at
em

en
t t

o
be

 u
se

d
w

ith
 fi

lte
ra

bl
e

st
at

em
en

ts

Sq
lS
ta
te
me
nt

A
st

at
em

en
t f

or
 S

QL
 e

xe
cu

tio
n

Fi
nd
St
at
em
en
t

A
st

at
em

en
t d

oc
um

en
t s

el
ec

tio
n

on
 a

 c
ol

le
ct

io
n

Ad
dS
ta
te
me
nt

A
st

at
em

en
t f

or
 d

oc
um

en
t a

dd
iti

on
 o

n
a

co
lle

ct
io

n

Re
mo
ve
St
at
em
en
t

A
st

at
em

en
t f

or
 d

oc
um

en
t r

em
ov

al
 fr

om
 a

 c
ol

le
ct

io
n

Mo
di
fy
St
at
em
en
t

A
st

at
em

en
t f

or
 d

oc
um

en
t u

pd
at

e
op

er
at

io
ns

 o
n

a
co

lle
ct

io
n

Se
le
ct
St
at
em
en
t

A
st

at
em

en
t f

or
 re

co
rd

 re
tri

ev
al

 o
pe

ra
tio

ns
 o

n
a

ta
bl

e

In
se
rt
St
at
em
en
t

A
st

at
em

en
t f

or
 in

se
rt

op
er

at
io

ns
 o

n
ta

bl
e

De
le
te
St
at
em
en
t

A
st

at
em

en
t t

ha
t d

ro
ps

 a
 ta

bl
e

Up
da
te
St
at
em
en
t

A
st

at
em

en
t f

or
 re

co
rd

 u
pd

at
e

op
er

at
io

ns
 o

n
a

ta
bl

e

Cr
ea
te
Co
ll
ec
ti
on
In
de
xS
ta
te
me
nt

A
st

at
em

en
t t

ha
t c

re
at

es
 a

n
in

de
x

on
 a

 c
ol

le
ct

io
n

Re
ad
St
at
em
en
t

Pr
ov

id
e

ba
se

 fu
nc

tio
na

lit
y

fo
r r

ea
d

op
er

at
io

ns

Wr
it
eS
ta
te
me
nt

Pr
ov

id
e

co
m

m
on

 w
rit

e
op

er
at

io
n

at
tri

bu
te

s

Ta
bl

e
5-

3.
 (

co
n

ti
n

u
ed

)

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

184

Ar
ea

M
et

ho
d

De
sc

rip
tio

n

Er
ro

rs
Da
ta
Er
ro
r

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
po

rti
ng

 p
ro

bl
em

s
w

ith
 p

ro
ce

ss
ed

 d
at

a

Da
ta
ba
se
Er
ro
r

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
la

te
d

to
 th

e
da

ta
ba

se

Er
ro
r

Ex
ce

pt
io

n
th

at
 is

 b
as

e
cl

as
s

fo
r a

ll
ot

he
r e

rr
or

 e
xc

ep
tio

ns

In
te
gr
it
yE
rr
or

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
ga

rd
in

g
re

la
tio

na
l i

nt
eg

rit
y

In
te
rf
ac
eE
rr
or

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
la

te
d

w
ith

 th
e

in
te

rfa
ce

In
te
rn
al
Er
ro
r

Ex
ce

pt
io

n
fo

r i
nt

er
na

l d
at

ab
as

e
er

ro
rs

No
tS
up
po
rt
ed
Er
ro
r

Ex
ce

pt
io

n
fo

r e
rr

or
s

w
he

n
an

 u
ns

up
po

rte
d

da
ta

ba
se

 fe
at

ur
e

w
as

 u
se

d

Op
er
at
io
na
lE
rr
or

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
la

te
d

to
 a

 d
at

ab
as

e
op

er
at

io
n

Po
ol
Er
ro
r

Ex
ce

pt
io

n
fo

r e
rr

or
s

re
la

tin
g

to
 c

on
ne

ct
io

n
po

ol
in

g

Pr
og
ra
mm
in
gE
rr
or

Ex
ce

pt
io

n
fo

r e
rr

or
s

pr
og

ra
m

m
in

g
er

ro
rs

Ta
bl

e
5-

3.
 (

co
n

ti
n

u
ed

)

Chapter 5 X Developer API

185

Let’s begin our tour of the X DevAPI with the Session class.

�Session Class
The Session class is the major class we will use to begin working with a document store.

Once we have a connection, the next step is to get the session object. From there, we

can begin working with the document store. The following is a tour of the classes and

methods grouped by area and application. We start with the schema methods.

�Schema Methods

The X DevAPI uses the term schema to refer to a set of collections; the collections are a

collection of documents. However, when working with relational data, we use “database”

to refer to a collection of tables and similar objects. One may be tempted to conclude

“schema” is synonymous with “database” and for older versions of MySQL that is true.

However, when working with the document store and the X DevAPI, you should use

“schema” and when you refer to relational data, you should use “database.”

SCHEMA OR DATABASE: DOES IT MATTER?

Since MySQL 5.0.2, the two terms have been synonyms via the CREATE DATABASE and

CREATE SCHEMA SQL commands. However, other database systems make a distinction. That

is, some state a schema is a collection of tables and a database is a collection of schemas.

Others state a schema is what defines the structure of data. If you use other database

systems, be sure to check the definitions so that you use the terms correctly.

When starting work with a document store, the first item you will need to do is either

select (get) an existing schema, delete an existing schema, or create a new one. You also

may want to list the schemas on the server. The Session class provides several methods

for performing these operations. Table 5-4 lists the methods, parameters, and return

values for the methods concerning schemas.

Chapter 5 X Developer API

186

Listing 5-1 shows an example of how you can work with session objects to create a

schema object. Once again, we will expand on this example as we examine more classes

and methods. In this case, we use the session object to work with a schema.

Listing 5-1.  Working with Schemas

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Get an unknown schema

schema1 = mysqlx_session.get_schema("not_there!")

Does it exist?

print("Does not_there! exist? {0}".format(schema1.exists_in_database()))

Create the schema

schema = mysqlx_session.create_schema("test_schema")

Does it exist?

print("Does test_schema exist? {0}".format(schema.exists_in_database()))

mysqlx_session.close()

Note the code to retrieve a schema that doesn’t exist. I use a method of the

schema object to check to see if it exists then print out the result. Assuming the

schema not_there! doesn't exist, the code will print “False.” Finally, I create the schema

test_schema at the end of the code. We will see the schema class in more detail in a later

Table 5-4.  Session Class—Schema Methods

Method Returns Description

create_schema(str name) Schema Creates a schema on the database and returns the

corresponding object

get_schema(str name) Schema Retrieves a schema object from the current session

through its name

get_default_schema() Schema Retrieves the schema configured as default for the

session

drop_schema(str name) None Drops the schema with the specified name

Chapter 5 X Developer API

187

section as well as a better way to check to see if a schema exists. If you save this code to a

file named listing5-1.py and execute it, you will see output like the following.

$ python ./listing5-1.py

Does not_there! exist? False

Does test_schema exist? True

Let us now look at the transactional methods for performing ACID compliant

transactions.

�Transaction Methods

Transactions provide a mechanism that permits a set of operations to execute as a single

atomic operation. For example, if a database were built for a banking institution, the

macro operations of transferring money from one account to another would preferably

be executed completely (money removed from one account and placed in another)

without interruption.

Transactions permit these operations to be encased in an atomic operation that

will back out any changes should an error occur before all operations are complete,

thus avoiding data being removed from one table and never making it to the next table.

A sample set of operations in the form of SQL statements encased in transactional

commands is the following:

START TRANSACTION;

UPDATE SavingsAccount SET Balance = Balance – 100

WHERE AccountNum = 123;

UPDATE CheckingAccount SET Balance = Balance + 100

WHERE AccountNum = 345;

COMMIT;

MySQL’s InnoDB storage engine (the default storage engine) supports ACID

transactions that ensure data integrity with the ability to only commit (save) the resulting

changes if all operations succeed or rollback (undo) the changes if any one of the

operations fail.

Chapter 5 X Developer API

188

WHAT IS ACID?

ACID stands for atomicity, consistency, isolation, and durability. Perhaps one of the most

important concepts in database theory, it defines the behavior that database systems must

exhibit to be considered reliable for transaction processing.

Atomicity means that the database must allow modifications of data on an “all or nothing”

basis for transactions that contain multiple commands. That is, each transaction is atomic. If a

command fails, the entire transaction fails, and all changes up to that point in the transaction

are discarded. This is especially important for systems that operate in highly transactional

environments, such as the financial market. Consider for a moment the ramifications of a

money transfer. Typically, multiple steps are involved in debiting one account and crediting

another. If the transaction fails after the debit step and doesn’t credit the money back to the

first account, the owner of that account will be very angry. In this case, the entire transaction

from debit to credit must succeed, or none of it does.

Consistency means that only valid data will be stored in the database. That is, if a command in

a transaction violates one of the consistency rules, the entire transaction is discarded, and the

data is returned to the state they were in before the transaction began. On the other hand, if a

transaction completes successfully, it will alter the data in a manner that obeys the database

consistency rules.

Isolation means that multiple transactions executing at the same time will not interfere with

one another. This is where the true challenge of concurrency is most evident. Database

systems must handle situations in which transactions cannot violate the data (alter, delete,

etc.) being used in another transaction. There are many ways to handle this. Most systems

use a mechanism called locking that keeps the data from being used by another transaction

until the first one is done. Although the isolation property does not dictate which transaction is

executed first, it does ensure they will not interfere with one another.

Durability means that no transaction will result in lost data nor will any data created or altered

during the transaction be lost. Durability is usually provided by robust backup-and-restore

maintenance functions. Some database systems use logging to ensure that any uncommitted

data can be recovered on restart.

The Session classes implement methods for transaction processing that mirror the

SQL commands shown previously. Table 5-5 lists the transaction methods.

Chapter 5 X Developer API

189

Table 5-5.  Transaction Methods

Method Returns Description

start_transaction() None Starts a transaction context on the server

commit() None Commits all the operations executed after a call

to startTransaction()

rollback() None Discards all the operations executed after a call

to startTransaction()

set_savepoint(str name="") str Creates or replaces a transaction savepoint with

the given name

release_savepoint(str name) None Removes a savepoint defined on a transaction

rollback_to(str name) None Rolls back the transaction to the named

savepoint without terminating the transaction

Table 5-6.  Connection Methods

Method Returns Description

close() None Closes the session

is_open() Bool Returns true if session is known to be open

Note that the last three methods allow you to create a named transaction savepoint,

which is an advanced form of transaction processing. See the online MySQL reference

manual for more information about savepoints and transactions.

We will see an example of transactions later in this chapter. Now, let’s look at the

methods that concern the connection to the server.

�Connection Methods

There are two methods for the underlining connection. One to check to see if the

connection is open and another to close the connection. Table 5-6 shows the remaining

utility methods available in the Session class.

Chapter 5 X Developer API

190

The following shows how to use these methods if you want to check the connection

as an extra step in your application.

Listing 5-2.  Working with Sessions

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

else:

 print("Connection succeeded.")

Close the connection

mysqlx_session.close()

If you save this code to a file named listing5-2.py and execute it, you will see

output like the following.

$ python ./listing5-2.py

Connection succeeded.

�Miscellaneous Methods

There are also several utility methods in the Session class. Table 5-7 lists the additional

functions. See the online X DevAPI reference for more information about these methods.

Table 5-7.  Miscellaneous Methods

Method Returns Description

Is_open() Bool True if the connection is open and active

sql(str sql) SqlStatement Creates a SqlStatement object to allow running the

received SQL statement on the target MySQL server

Chapter 5 X Developer API

191

�CRUD Operations
The X DevAPI implements a create, read, update, and delete (CRUD) model for working

with the objects that are contained in a schema. A schema can contain any number of

collections, documents, tables, views, and other relational data objects (i.e., triggers).

In this section, we see an overview of the schema, collection, tables (relational data),

and data sets. The CRUD model is implemented for all objects in the schema that can

contain data for both document store and relational data.

Most of the examples in the book up to this point have used relational data for

demonstration because most readers are familiar with working with SQL. This chapter

continues the discussion from Chapter 3 to complete the introduction to working with

the X DevAPI to build document store applications.

Document store data CRUD operations use the verbs add, find, modify, and remove

whereas relational data uses terms that match the equivalent SQL command. Table 5-8

provides a quick look at how the methods are named as well as a brief description of

each. Furthermore, we use the Collection class for document store data and the Table

class for relational data.

Table 5-8.  CRUD Operations for Document Store and Relational Data

CRUD Operation Description Document Store Relational Data

Create Add a new item/object collection.add() table.insert()

Read Retrieve/search for data collection.find() table.select()

Update Modify data collection.modify() table.update()

Delete Remove item/object collection.remove() table.delete()

We will see the methods specific to each class (Schema, Collection, Table, and View)

in the following sections. Let’s begin with a look at the details of the Schema class.

�Schema Class

The schema is a container for the objects that store your data. Recall that this can be a

collection for document store data or a table or view for relational data. Much like the old

days working with relational data, you must select (or use) a schema for storing data in

either a collection, table, or view.

Chapter 5 X Developer API

192

Although you can mix the use of document store data (collections) and relational

data (tables, views), to keep things easy to remember, we will examine the Schema class

methods as they pertain to each in turn starting with the document store methods.

The document store methods of the Schema class include methods for creating

collections, using, and finding collections. Table 5-9 shows the document store methods

for working with collections and tables. Note the create and get methods return an

instance of an object. For example, the get_collection() method returns a Collection

object. This is another example of how you can use the X DevAPI to combine several

operations into a single statement.

Table 5-9.  Schema Class—Document Store and Table Methods

Method Returns Description

get_tables() List Returns a list of tables for this

schema

get_collections() List Returns a list of collections for this

schema

get_table(str name) Table Returns the table of the given name

for this schema

get_collection(str name) Collection Returns the collection of the given

name for this schema

get_collection_as_table(str name) Table Returns a Table object representing

a collection on the database

create_collection(str name) Collection Creates in the current schema a

new collection with the specified

name and retrieves an object

representing the new collection

created

Now, let’s continue our example and show some of the Schema methods for working

with collections in action. Listing 5-3 shows how to create a schema and create several

collections then list the collections in the schema. Note that I use the name property of

the collection object.

Chapter 5 X Developer API

193

Listing 5-3.  Collection Methods

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(-1)

Get the schema

schema = mysqlx_session.create_schema("test_schema")

Create a new collection

testCol = schema.create_collection('test_collection1', True)

Create a new collection

testCol = schema.create_collection('test_collection2', True)

Show the collections.

collections = schema.get_collections()

for col in collections:

 print(col.name)

mysqlx_session.close()

If you save this code to a file named listing5-3.py and execute it, you will see

output like the following.

$ python ./listing5-3.py

test_collection1

test_collection2

Note that in the table there is a method to retrieve a document as a relational

table. This method, get_collection_as_table() allows developers who want to store

standard SQL columns with documents can convert (cast) a collection to a table. That is,

the collection can be fetched as a table object, which then behaves as a normal relational

table. Accessing data in the table object using CRUD operations use the following syntax.

doc->'$.field_name'

Chapter 5 X Developer API

194

This syntax is supported by most connectors.1 You can form complex document

paths (like those we saw in Chapter 3) as well.

doc->'$.something_else.field_name.like[1].other_thing'

The reason we need this syntax is because a collection returned as a table results in

a table with only two fields: doc and _id, where doc is where the document is store and

_id is the document id. Listing 5-4 shows how to use this syntax.

Listing 5-4.  Collection as Table Example

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Get the schema

schema = mysqlx_session.create_schema("test_schema")

Create a new collection

pets = schema.create_collection("pets_json")

Insert some documents

pets.add({'name': 'Violet', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

pets.add({'name': 'JonJon', 'age': 15, 'breed':'poodle', 'type':'dog'}).

execute()

pets.add({'name': 'Mister', 'age': 4, 'breed':'siberian khatru',

'type':'cat'}).execute()

pets.add({'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'}).

execute()

pets.add({'name': 'Charlie', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

Fetch collection as Table

pets_tbl = schema.get_collection_as_table('pets_json')

Now do a find operation to retrieve the inserted document

result = pets_tbl.select(["doc->'$.name'", "doc->'$.age'"]).execute()

1�The current release of Connector/Python does not support the syntax.

Chapter 5 X Developer API

195

record = result.fetch_one()

Print the first row

print("Name : {0}, Age: {1}".format(record[0], record[1]))

Drop the collection

schema.drop_collection("pets_json")

Close the session

mysqlx_session.close()

If you save this code to a file named listing5-4.py and execute it, you will see

output like the following.

$ python ./listing5-4.py

Name : "Violet", Age: 6

�Collection Class

The Collection class is used to store documents (data). You can consider it the same

organizational concept as a table in relational data. The Collection class therefore

implements the CRUD operations for documents as well as a few utility methods such

as those for creating an index or counting the documents in the collection. Table 5-10

shows the methods for the collection class.

Table 5-10.  Collection Class

Method Returns Description

add(*values) AddStatement Inserts one or more documents into a

collection

find(str search_condition) FindStatement Retrieves documents from a collection,

matching a specified criterion

remove(str search_condition) RemoveStatement Creates a document deletion handler

modify(str search_condition) ModifyStatement Modifies documents matching a

specified criterion

drop_index(str name) None Drops an index from a collection

replace_one(str id,

document doc)

Result Replaces an existing document with a

new document

(continued)

Chapter 5 X Developer API

196

Method Returns Description

add_or_replace_one(str id,

document doc)

Result Replaces or adds a document in a

collection

remove_one(str id) Result Removes document with the given

_id value

get_one(str id) Document Fetches the document with the given

_id from the collection

Table 5-10.  (continued)

Note one thing about this table that each of the CRUD operations returns an object

instance for the operation. For example, the find() method returns a FindStatement

object. As you may surmise, this means that the resulting object instance has methods

we can use to do more with the statement. We will see those classes and methods next.

For now, let’s see an example using the base CRUD operations.

Now that we have enough knowledge about the X DevAPI, we can start reviewing

examples that are more complete. That is, examples that do something with data.

Listing 5-5 shows a complete Python script that demonstrates how to work with a

collection. I include the session code and connection error handling as we’ve seen

previously. The example is a simple document store for recoding information about pets.

Listing 5-5.  CRUD Example Using a Collection

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Create a schema.

schema = mysqlx_session.create_schema("animals")

Create a new collection

pets = schema.create_collection("pets_json", True)

Chapter 5 X Developer API

197

Insert some documents

pets.add({'name': 'Violet', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

pets.add({'name': 'JonJon', 'age': 15, 'breed':'poodle', 'type':'dog'}).

execute()

pets.add({'name': 'Mister', 'age': 4, 'breed':'siberian khatru',

'type':'cat'}).execute()

pets.add({'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'}).execute()

pets.add({'name': 'Charlie', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

Do a find on the collection - find the fish

mydoc = pets.find("type = 'fish'").execute()

print(mydoc.fetch_one())

Drop the collection

mysqlx_session.drop_schema("animals")

Close the connection

mysqlx_session.close()

The script creates a new schema then creates a new collection named animals

and within the schema a collection named pets_json. The script then adds several

documents (pets) to the collection. To demonstrate the find operation, the script calls

the find() method on the pets collection looking for all of the fish. That is, a document

that has a type equal to ‘fish’. We will see more about expressions you can use in the

find() method in a later section.

If you save this code to a file named listing5-5.py and execute it, you will see

output like the following. We found the fish!

$ python ./listing5-5.py

{"breed": "koi", "age": 7, "_id": "7c3c0201f5e24bd99f586e772aad0369",

"type": "fish", "name": "Spot"}

Rather than issue a separate add() method for each document, you can add more

than one document at the same time by combining the data in a list (array). This is like

using a bulk insert option for relational data. The following code is equivalent to the five

add() method calls above.

Chapter 5 X Developer API

198

Insert some documents

pets.add([{'name': 'Violet', 'age': 6, 'breed':'dachshund', 'type':'dog'},

 {'name': 'JonJon', 'age': 15, 'breed':'poodle', 'type':'dog'},

 {'name': 'Mister', 'age': 4, 'breed':'siberian khatru', 'type':'cat'},

 {'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'},

 �{'name': 'Charlie', 'age': 6, 'breed':'dachshund', 'type':'dog'}]).

execute()

Note the syntax used inside the add() method. This is a special notation that

all document store class methods use for specifying JSON documents and listing

expressions. In this example, the syntax is optional syntax and is normally used to specify

multiple documents. That is, you enclose the documents inside [] comma-separated as

in the following. In this case, I am adding two documents with one method call. Thus, for

one document, the [] are optional.

pets.add([

 {'name': 'whizzy', 'age': 2, 'breed':'carp', 'type':'fish'},

 {'name': 'blobby', 'age': 3, 'breed': 'carp', 'type': 'fish'},

]).execute()

Although this streamlines the code a bit, there may be a reason you would want to

add a document at a time. For example, if you need to use the resulting object returned

from the add() method to get more information or check warnings, you may want to add

one document at a time.

Recall from Table 5-10 that the CRUD methods each return an object instance for a

class. These classes have several methods that you can use to work with the statements

appropriate for the operation. Table 5-11 shows the classes and their methods.

Chapter 5 X Developer API

199

Ta
bl

e
5-

11
. 

C
la

ss
es

 fo
r

C
R

U
D

 O
pe

ra
ti

on
s

fo
r

D
oc

u
m

en
t S

to
re

 D
at

a

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Ad
dS

ta
te

m
en

t
A

st
at

em
en

t f
or

 d
oc

um
en

t a
dd

iti
on

 o
n

a
co

lle
ct

io
n

ad
d(
*v
al
ue
s)

Ad
dS
ta
te
me
nt

Ad
ds

 a
 li

st
 o

f d
oc

um
en

ts
 in

to
 a

 c
ol

le
ct

io
n

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
va
lu
es
()

li
st

Re
tu

rn
s

th
e

lis
t o

f v
al

ue
s

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

is
_u
ps
er
t(
)

bo
ol

Re
tu

rn
s

tru
e

if
it’

s
an

 u
ps

er
t

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

up
se
rt
(v
al
=T
ru
e)

Se
ts

 th
e

up
se

t fl
ag

 to
 th

e
bo

ol
ea

n
of

 th
e

va
lu

e

pr
ov

id
ed

(c
on

ti
n

u
ed

)
 

Chapter 5 X Developer API

200

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Fi
nd

St
at

em
en

t
Fi

nd
 d

oc
um

en
ts

 in
 a

 c
ol

le
ct

io
n

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

fie
ld
s(
*fi
el
ds
)

Fi
nd
St
at
em
en
t

Se
ts

 a
 d

oc
um

en
t fi

el
d

fil
te

r

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(
)

in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

gr
ou
p_
by
(*
fie
ld
s)

Re
ad
St
at
em
en
t

Se
ts

 a
 g

ro
up

in
g

cr
ite

rio
n

fo
r t

he
 re

su
lts

et

ha
vi
ng
(c
on
di
ti
on
)

Re
ad
St
at
em
en
t

Se
ts

 a
 c

on
di

tio
n

fo
r r

ec
or

ds
 to

 b
e

co
ns

id
er

ed
 in

ag
gr

eg
at

e
fu

nc
tio

n
op

er
at

io
ns

Ta
bl

e
5-

11
. 

(c
on

ti
n

u
ed

)
Chapter 5 X Developer API

201

Ta
bl

e
5-

11
. 

(c
on

ti
n

u
ed

)

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

is
_l
oc
k_
ex
cl
us
iv
e(

)
bo
ol

Re
tu

rn
s

tru
e

if
is

 E
XC
LU

SI
VE
 L
OC
K

is
_l
oc
k_
sh
ar
ed
()

bo
ol

Re
tu

rn
s

tru
e

if
is

 S
HA
RE

D
LO
CK

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r d

oc
um

en
ts

to
 b

e
re

tu
rn

ed

lo
ck
_e
xc
lu
si
ve
()

Re
ad
St
at
em
en
t

Ex
ec

ut
es

 a
 re

ad
 o

pe
ra

tio
n

w
ith

 E
XC
LU
SI
VE
 L
OC
K;

on
ly

 o
ne

 lo
ck

 c
an

 b
e

ac
tiv

e
at

 a
 ti

m
e

lo
ck
_s
ha
re
d(
)

Re
ad
St
at
em
en
t

Ex
ec

ut
es

 a
 re

ad
 o

pe
ra

tio
n

w
ith

 S
HA
RE
D
LO
CK

; o
nl

y

on
e

lo
ck

 c
an

 b
e

ac
tiv

e
at

 a
 ti

m
e

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

so
rt
(*
so
rt
_c
la
us
es

)
Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

202

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

M
od

ify
St

at
em

en
t

M
od

ify
 d

oc
um

en
ts

 in
 a

 c
ol

le
ct

io
n

ar
ra
y_
ap
pe
nd
(d
oc
_p
at
h,

va
lu
e)

Mo
di
fy
St
at
em
en
t

In
se

rts
 a

 v
al

ue
 in

to
 a

 s
pe

ci
fic

 p
os

iti
on

 in
 a

n
ar

ra
y

at
tri

bu
te

 in
 d

oc
um

en
ts

 o
f a

 c
ol

le
ct

io
n

ar
ra
y_
in
se
rt
(fi
el
d,

va
lu
e)

Mo
di
fy
St
at
em
en
t

In
se

rts
 a

 v
al

ue
 in

to
 th

e
sp

ec
ifi

ed
 a

rr
ay

 in
 d

oc
um

en
ts

of
 a

 c
ol

le
ct

io
n

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ch
an
ge
(d
oc
_p
at
h,
 v
al
ue
)

Mo
di
fy
St
at
em
en
t

Ad
ds

 a
n

up
da

te
 to

 th
e

st
at

em
en

t s
et

tin
g

th
e

fie
ld

, i
f

it
ex

is
ts

 a
t t

he
 d

oc
um

en
t p

at
h,

 to
 th

e
gi

ve
n

va
lu

e

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t.

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(
)

in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

Ta
bl

e
5-

11
. 

(c
on

ti
n

u
ed

)
Chapter 5 X Developer API

203

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

ge
t_
up
da
te
_o
ps
()

li
st

Re
tu

rn
s

th
e

lis
t o

f u
pd

at
e

op
er

at
io

ns

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r d

oc
um

en
ts

to
 b

e
re

tu
rn

ed

pa
tc
h(
do
c)

Mo
di
fy
St
at
em
en
t

In
se

rts
 a

 v
al

ue
 in

to
 a

 s
pe

ci
fic

 p
os

iti
on

 in
 a

n
ar

ra
y

at
tri

bu
te

 in
 d

oc
um

en
ts

 o
f a

 c
ol

le
ct

io
n

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

se
t(
do
c_
pa
th
,
va
lu

e)
Mo
di
fy
St
at
em
en
t

Se
ts

 o
r u

pd
at

es
 a

ttr
ib

ut
es

 o
n

do
cu

m
en

ts
 in

 a

co
lle

ct
io

n.

so
rt
(*
so
rt
_c
la
us
es

)
Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia
.

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

un
se
t(
*d
oc
_p
at
hs
)

Mo
di
fy
St
at
em
en
t

Re
m

ov
es

 a
ttr

ib
ut

es
 fr

om
 d

oc
um

en
ts

 in
 a

 c
ol

le
ct

io
n

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

Ta
bl

e
5-

11
. 

(c
on

ti
n

u
ed

)

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

204

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Re
m

ov
eS

ta
te

m
en

t
Re

m
ov

e
do

cu
m

en
ts

 fr
om

 a
 c

ol
le

ct
io

n

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(
)

in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r d

oc
um

en
ts

to
 b

e
re

tu
rn

ed

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

so
rt
(*
so
rt
_c
la
us
es

)
Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

Ta
bl

e
5-

11
. 

(c
on

ti
n

u
ed

)
Chapter 5 X Developer API

205

Note that we now see there is more you can do than simply call the add(), find(),

modify(), and remove() methods. Because each of these returns an object instance of

another class, we can either use a variable to store the object instance and then if you

need to specify additional information for the operation, we can call the appropriate

method of the new object.

In fact, many of the objects returned have the capability to chain other methods to

help filter or modify the search. Table 5-12 lists some of the common methods available

for searching documents. Optional methods are shown in []. Also shown are those

methods where they can be used.

Table 5-12.  Common Methods for Searching Documents

Method Description Used By

[.fields(...)] This function sets the fields

to be retrieved from each

document matching the criteria

on this find operation.

find(),

[.group_by(...)

[.having(searchCondition)]]

Sets a grouping criteria for the

result set. The having clause

sets a condition for records to

be considered in aggregate

function operations.

find(),

[.sort(...)] If used, the operation will

return the records sorted with

the defined criteria.

find(), remove(),

modify()

[.limit(numberOfRows) If used, the operation will

return at most numberOfRows

documents.

find(), remove(),

modify()

[.bind(placeHolder, value)

[.bind(...)]]

Binds a value to a specific

placeholder used on this object

find(), remove(),

modify()

execute() Executes the operation with all

the configured options

add(), find(),

remove(), modify()

(continued)

Chapter 5 X Developer API

206

Method Description Used By

[.set(...)] Adds an operation into the

modify handler to set an

attribute on the documents that

were included on the selection

filter and limit

modify()

[.unset(String attribute)] Removes attributes from

documents in a collection

modify()

[.patch(...)] Performs modifications on a

document based on a patch

JSON object

modify()

[.array_insert(...)] Adds an operation into the

modify handler to insert a value

into an array attribute on the

documents that were included

on the selection filter and limit

modify()

[.array_append(...)] Adds an operation into the

modify handler to append a

value into an array attribute

on the documents that were

included on the selection filter

and limit

modify()

For example, suppose we want to limit the fields for the find() call in the example

code used in Listing 5-5. That is, we only want the name and breed of the pet that meets

the criteria. We can use the fields() method of the FindStatement class to project the

correct fields. Listing 5-6 shows the code to do this.

Listing 5-6.  Demonstration of the FindStatement Class

Import the MySQL X module

import mysqlx

Get a session with a URI

Table 5-12.  (continued)

Chapter 5 X Developer API

207

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Create a schema.

schema = mysqlx_session.create_schema("animals")

Create a new collection

pets = schema.create_collection("pets_json", True)

Insert some documents

pets.add({'name': 'Violet', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

pets.add({'name': 'JonJon', 'age': 15, 'breed':'poodle', 'type':'dog'}).

execute()

pets.add({'name': 'Mister', 'age': 4, 'breed':'siberian khatru',

'type':'cat'}).execute()

pets.add({'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'}).execute()

pets.add({'name': 'Charlie', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

Do a find on the collection - find the fish

find = pets.find("type = 'fish'")

filterable = find.fields(['name','type'])

mydoc = filterable.execute()

print(mydoc.fetch_one())

Note the find() method, here we see once again the use of [] to specify a list. In this

case, it is a list of fields for the operations. This is a common syntax that you will see in

many of the CRUD methods.

If you save this code to a file named listing5-6.py and execute it, you will see

output like the following.

$ python ./listing5-6.py

{"type": "fish", "name": "Spot"}

Note also that we have set a variable to receive the object instance from each

method. However, we can chain these methods into a single line of code as follows. Just

replace the three lines in Listing 5-6 with the one chained method call.

Chapter 5 X Developer API

208

Do a find on the collection - find the fish

mydoc = pets.find("type = 'fish'").fields(['name','type']).execute()

print(mydoc.fetch_one())

Although these new classes may seem a lot of extra work, as you become more

accustomed to using them, they will become more intuitive. Indeed, if you are used to

working with relational data, some of the methods may seem familiar in concept.

Note also that some of the methods allow you to pass in conditions, which are

expressions that you can build to form criteria for the operation. We will discuss

expressions in a later section. Now, let’s look at the Table class.

�Table Class

The table is the major organizational mechanism for relational data. In the X DevAPI, a

table is the same relational data construct with which we are all familiar. The X DevAPI

has a Table (you can use them with views too) class complete with CRUD operations

(select, insert, update, and delete) as well as additional methods for counting the rows or

whether the base object is a view. Table 5-13 shows the methods for the Table class.

Table 5-13.  Table Class

Method Returns Description

am_i_real() bool Verifies if this object exists in the database

count() int Counts the rows in the table.

delete(condition=None) DeleteStatement Creates a new mysqlx.DeleteStatement

object

exists_in_database() bool Verifies if this object exists in the database

get_connection() Connection Returns the underlying connection

get_name() String Returns the name of this database object

get_schema() Schema Returns the schema object of this database

object

insert(*fields) InsertStatement Creates a new mysqlx.InsertStatement

object

(continued)

Chapter 5 X Developer API

209

Method Returns Description

is_view() bool Determines if the underlying object is a view

or not

name str The name of this database object

schema Schema The Schema object

select(*fields) SelectStatement Creates a new mysqlx.SelectStatement

object

update() UpdateStatement Creates a new mysqlx.UpdateStatement

object

who_am_i() String Returns the name of this database object

Table 5-13.  (continued)

Note that there aren’t methods for creating the table. We must use the CREATE TABLE

SQL command to do this or the sql() method to execute the SQL statement. In fact, there

are no methods to create any relational data objects. You must use SQL to issue the

appropriate create statement to create the objects. For example, to create a table for our

pets data in the previous example, we can use the following CREATE TABLE statement.

CREATE TABLE `animals`.`pets_sql` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `name` char(20) DEFAULT NULL,

 `age` int(11) DEFAULT NULL,

 `breed` char(20) DEFAULT NULL,

 `type` char(12) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Tip T here are no create methods to create table or views. You must pass the SQL
command to the sql() method to create these (and other relational data) objects.

Let’s take the script from the previous document store example and rewrite it to use

relational data. In this case, I create a new table named pets_sql in the schema named

animals and insert a few rows then select one of them. Listing 5-7 shows the code for this

example.

Chapter 5 X Developer API

210

Listing 5-7.  CRUD Example Using a Table

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Create a schema.

schema = mysqlx_session.create_schema("animals")

Create a new table

mysqlx_session.sql("CREATE TABLE animals.pets_sql ("

 "`id` int auto_increment primary key, "

 "`name` char(20), "

 "`age` int, "

 "`breed` char(20), "

 "`type` char(12))").execute()

pets = schema.get_table("pets_sql", True)

Insert some documents

pets.insert().values([None, 'Violet', 6, 'dachshund', 'dog']).execute()

pets.insert().values([None, 'JonJon', 15,'poodle', 'dog']).execute()

pets.insert().values([None, 'Mister', 4,'siberian khatru', 'cat']).execute()

pets.insert().values([None, 'Spot', 7,'koi', 'fish']).execute()

pets.insert().values([None, 'Charlie', 6,'dachshund', 'dog']).execute()

Do a select (find) on the table - find el gato

mydoc = pets.select().where("type = 'cat'").execute()

print(", ".join("{0}".format(c.get_column_name()) for c in mydoc.columns))

print(", ".join("{0}".format(r) for r in mydoc.fetch_one()))

Drop the collection

mysqlx_session.drop_schema("animals")

Close the connection

mysqlx_session.close()

Chapter 5 X Developer API

211

If you save this code to a file named listing5-7.py and execute it, you will see

output like the following.

$ python ./listing5-7.py

id, name, age, breed, type

3, Mister, 4, siberian khatru, cat

Although I put the CREATE TABLE statement in the example code, it is not normal

practice to do so. In fact, most developers will create the table separately from the

application. That is, they would execute the CREATE SQL statements manually (or possibly

through a DevOps2 tool) and not include them in the application. However, there are

some arguments for using temporary tables in which case you would likely include those

in the application, but in general, permanent database objects are created separately from

the application. The next example shows how to get the table from an existing schema.

Note that there are some interesting new method calls. First, unlike the add()

method for collections, the insert() method uses additional chained methods. In this

case, we needed the values() method to add the values. This is because the insert()

method returns an instance of the InsertStatement class.

This may seem strange until you consider the syntax for the SQL INSERT statement.

In particular, the equivalent statements in SQL for these operations are as follows. As you

can see, we have a VALUES clause.

INSERT INTO animals.pets VALUES (Null, 'Violet', 6, 'dachshund', 'dog');

INSERT INTO animals.pets VALUES (Null, 'JonJon', 15,'poodle', 'dog');

INSERT INTO animals.pets VALUES (Null, 'Mister', 4,'siberian khatru', 'cat');

INSERT INTO animals.pets VALUES (Null, 'Spot', 7,'koi', 'fish');

INSERT INTO animals.pets VALUES (Null, 'Charlie', 6,'dachshund', 'dog');

The same is true for the select() method, which returns a SelectStatement object

where we chained the where() clause. As you may have surmised, the same thing

happens for the update() and delete() methods. This is natural for those used to using

the SQL statements. Table 5-14 lists the methods for each of the classes related to the

CRUD operations for relational data.

2�https://en.wikipedia.org/wiki/DevOps

Chapter 5 X Developer API

https://en.wikipedia.org/wiki/DevOps

212

Ta
bl

e
5-

14
. 

C
la

ss
es

 fo
r

C
R

U
D

 O
pe

ra
ti

on
s

fo
r

R
el

at
io

n
al

 D
at

a

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Se
le

ct
St

at
em

en
t

A
st

at
em

en
t f

or
 re

co
rd

 re
tri

ev
al

 o
pe

ra
tio

ns
 o

n
a

ta
bl

e.

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(
)

in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

ge
t_
sq
l(
)

St
ri
ng

Re
tu

rn
s

th
e

ge
ne

ra
te

d
SQ

L

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

gr
ou
p_
by
(*
fie
ld
s)

Re
ad
St
at
em
en
t

Se
ts

 a
 g

ro
up

in
g

cr
ite

rio
n

fo
r t

he
 re

su
lts

et

ha
vi
ng
(c
on
di
ti
on
)

Re
ad
St
at
em
en
t

Se
ts

 a
 c

on
di

tio
n

fo
r r

ec
or

ds
 to

 b
e

co
ns

id
er

ed
 in

ag
gr

eg
at

e
fu

nc
tio

n
op

er
at

io
ns

 

Chapter 5 X Developer API

213

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

is
_l
oc
k_
ex
cl
us
iv
e(
)

bo
ol

Re
tu

rn
s

tru
e

if
is

 E
XC

LU
SI
VE
 L
OC
K

is
_l
oc
k_
sh
ar
ed
()

bo
ol

Re
tu

rn
s

tru
e

if
is

 S
HA

RE
D
LO
CK

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r

do
cu

m
en

ts
 to

 b
e

re
tu

rn
ed

lo
ck
_e
xc
lu
si
ve
()

Re
ad
St
at
em
en
t

Ex
ec

ut
es

 a
 re

ad
 o

pe
ra

tio
n

w
ith

 E
XC
LU
SI
VE

LO
CK

; o
nl

y
on

e
lo

ck
 c

an
 b

e
ac

tiv
e

at
 a

 ti
m

e

lo
ck
_s
ha
re
d(
)

Re
ad
St
at
em
en
t

Ex
ec

ut
es

 a
 re

ad
 o

pe
ra

tio
n

w
ith

 S
HA
RE
D
LO
CK

;

on
ly

 o
ne

 lo
ck

 c
an

 b
e

ac
tiv

e
at

 a
 ti

m
e

or
de
r_
by
(*
cl
au
se
s)

Se
le
ct
St
at
em
en
t

Se
ts

 th
e

or
de

r b
y

cr
ite

ria
.

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

so
rt
(*
so
rt
_c
la
us
es
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

Ta
bl

e
5-

14
. 

(c
on

ti
n

u
ed

)

(c
on

ti
n

u
ed

)
 

Chapter 5 X Developer API

214

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

In
se

rtS
ta

te
m

en
t

A
st

at
em

en
t f

or
 in

se
rt

op
er

at
io

ns
 o

n
ta

bl
e

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
va
lu
es
()

li
st

Re
tu

rn
s

th
e

lis
t o

f v
al

ue
s

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

is
_u
ps
er
t(
)

bo
ol

Re
tu

rn
s

tru
e

if
it’

s
an

 u
ps

er
t

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

up
se
rt
(v
al
=T
ru
e)

Se
ts

 th
e

up
se

rt
fla

g
to

 th
e

bo
ol

ea
n

of
 th

e
va

lu
e

pr
ov

id
ed

; s
et

tin
g

of
 th

is
 fl

ag
 a

llo
w

s
up

da
tin

g
of

th
e

m
at

ch
ed

 ro
w

s/
do

cu
m

en
ts

 w
ith

 th
e

pr
ov

id
ed

va
lu

e

va
lu
es
(*
va
lu
es
)

In
se
rt
St
at
em
en
t

Se
ts

 th
e

va
lu

es
 to

 b
e

in
se

rte
d

Ta
bl

e
5-

14
. 

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

215

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Up
da

te
St

at
em

en
t

A
st

at
em

en
t f

or
 re

co
rd

 u
pd

at
e

op
er

at
io

ns
 o

n
a

ta
bl

e

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(
)

in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

ge
t_
up
da
te
_o
ps
()

li
st

Re
tu

rn
s

th
e

lis
t o

f u
pd

at
e

op
er

at
io

ns

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r

do
cu

m
en

ts
 to

 b
e

re
tu

rn
ed

(c
on

ti
n

u
ed

)

Ta
bl

e
5-

14
. 

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

216

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

se
t(
fie
ld
,
va
lu
e)

Up
da
te
St
at
em
en
t

Up
da

te
s

th
e

co
lu

m
n

va
lu

e
on

 re
co

rd
s

in
 a

 ta
bl

e

so
rt
(*
so
rt
_c
la
us
es
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

De
le

te
St

at
em

en
t

A
st

at
em

en
t t

ha
t d

ro
ps

 a
 ta

bl
e

bi
nd
(*
ar
gs
)

Fi
lt
er
ab
le
St
at
em
en
t

Bi
nd

s
a

va
lu

e
to

 a
 s

pe
ci

fic
 p

la
ce

ho
ld

er

ex
ec
ut
e(
)

Re
su
lt

Ex
ec

ut
es

 th
e

st
at

em
en

t

ge
t_
bi
nd
in
g_
ma
p(
)

di
ct

Re
tu

rn
s

th
e

bi
nd

in
g

m
ap

 d
ic

tio
na

ry

ge
t_
bi
nd
in
gs
()

li
st

Re
tu

rn
s

th
e

bi
nd

in
gs

 li
st

ge
t_
gr
ou
pi
ng
()

li
st

Re
tu

rn
s

th
e

gr
ou

pi
ng

 e
xp

re
ss

io
n

lis
t

ge
t_
ha
vi
ng
()

ob
je
ct

Re
tu

rn
s

th
e

ha
vi

ng
 e

xp
re

ss
io

n

ge
t_
li
mi
t_
of
fs
et
()

in
t

Re
tu

rn
s

th
e

lim
it

of
fs

et

ge
t_
li
mi
t_
ro
w_
co
un
t(

)
in
t

Re
tu

rn
s

th
e

lim
it

ro
w

 c
ou

nt

Ta
bl

e
5-

14
. 

(c
on

ti
n

u
ed

)
Chapter 5 X Developer API

217

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

ge
t_
pr
oj
ec
ti
on
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

pr
oj

ec
tio

n
ex

pr
es

si
on

ge
t_
so
rt
_e
xp
r(
)

ob
je
ct

Re
tu

rn
s

th
e

so
rt

ex
pr

es
si

on

ge
t_
wh
er
e_
ex
pr
()

ob
je
ct

Re
tu

rn
s

th
e

w
he

re
 e

xp
re

ss
io

n

is
_d
oc
_b
as
ed
()

bo
ol

Ch
ec

ks
 if

 it
 is

 d
oc

um
en

t b
as

ed

li
mi
t(
ro
w_
co
un
t,

of
fs
et
=0
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

m
ax

im
um

 n
um

be
r o

f r
ec

or
ds

 o
r

do
cu

m
en

ts
 to

 b
e

re
tu

rn
ed

sc
he
ma

Sc
he
ma

Th
e

Sc
he

m
a

ob
je

ct

so
rt
(*
so
rt
_c
la
us
es
)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

so
rti

ng
 c

rit
er

ia

ta
rg
et

ob
je
ct

Th
e

da
ta

ba
se

 o
bj

ec
t t

ar
ge

t

wh
er
e(
co
nd
it
io
n)

Fi
lt
er
ab
le
St
at
em
en
t

Se
ts

 th
e

se
ar

ch
 c

on
di

tio
n

to
 fi

lte
r

Ta
bl

e
5-

14
. 

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

218

Before we proceed, let us review the sample data needed to execute the examples in

the rest of this chapter.

WHAT ABOUT CLASSICSESSION?

If you’ve read the documentation for the MySQL Shell, you may have encountered a global

object named mysqlx, which mirrors the mysqlx module. You also may have encountered a

session object named ClassicSession that exists in the mysql global object. This object is

only available via the MySQL Shell and is not to be confused with the module named mysql in

the Connector/Python code—they are not the same. In fact, the X DevAPI does not have any

objects named ClassicSession.

Because this book focuses on the MySQL Document Store and the X DevAPI we present a brief

list of the methods in the ClassicSession class. The following lists the commonly used

methods.

•	 close(): Closes the internal connection to the MySQL server held on

this session object.

•	 start_transaction(): Starts a transaction context on the server.

•	 commit(): Commits all the operations executed after a call to

startTransaction().

•	 rollback(): Discards all the operations executed after a call to

startTransaction().

•	 get_uri(): Retrieves the URI string.

•	 run_sql(str query, list args=[]): Executes a query and returns

the corresponding ClassicResult object.

•	 query(str query, list args=[]): Executes a query and returns

the corresponding ClassicResult object.

•	 is_open(): Returns True if the session is open.

Once again, these methods are for the ClassicSession class, which is only available

through the MySQL Shell. This brief sidebar was included for completeness and to clarify the

origins of the class.

Chapter 5 X Developer API

219

�Example Data Used in this Chapter
The example code for the rest of this chapter uses data we created in the previous

examples. I include it here for your convenience. More specific, I include the SQL

statements for creating the relational data and a short script for creating the document

store data. Listing 5-8 is the code needed for creating the sample document store.

Listing 5-8.  Sample Document Store

Create a schema.

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Create a schema.

schema = mysqlx_session.create_schema("animals")

Create a new collection

pets = schema.create_collection("pets_json", True)

Insert some documents

pets.add({'name': 'Violet', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

pets.add({'name': 'JonJon', 'age': 15, 'breed':'poodle', 'type':'dog'}).execute()

pets.add({'name': 'Mister', 'age': 4, 'breed':'siberian khatru',

'type':'cat'}).execute()

pets.add({'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'}).execute()

pets.add({'name': 'Charlie', 'age': 6, 'breed':'dachshund', 'type':'dog'}).

execute()

Close the connection

mysqlx_session.close()

You may note that this resembles many of the previous listings. However,

because from this point on we will be using the animals schema, we have omitted the

drop_schema( ) call at the end.

Chapter 5 X Developer API

220

Listing 5-9 includes the SQL statements for creating the sample relational data.

Listing 5-9.  Sample Relational Data

CREATE TABLE `animals`.`pets_sql` (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `name` char(20) DEFAULT NULL,

 `age` int(11) DEFAULT NULL,

 `breed` char(20) DEFAULT NULL,

 `type` char(12) DEFAULT NULL,

 PRIMARY KEY (`id`)

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO animals.pets_sql VALUES (Null, 'Violet', 6, 'dachshund', 'dog');

INSERT INTO animals.pets_sql VALUES (Null, 'JonJon', 15,'poodle', 'dog');

INSERT INTO animals.pets_sql VALUES (Null, 'Mister', 4,'siberian khatru', 'cat');

INSERT INTO animals.pets_sql VALUES (Null, 'Spot', 7,'koi', 'fish');

INSERT INTO animals.pets_sql VALUES (Null, 'Charlie', 6,'dachshund', 'dog');

CREATE VIEW `animals`.`num_pets` AS

SELECT type as Type, COUNT(*) as Num

FROM animals.pets_sql

GROUP BY type;

Although the preceding examples create these objects, you may want to refer to this

section when experimenting with the examples and when running the examples later in

the chapter.

Now let’s see the classes for working with results and data sets from the find(),

select(), and other methods that return results.

�Working with Data Sets
Until now we have seen a few simple examples of working with results and while it may

appear all results are the same class, there are several result classes. The object instance

for the Result class returned depends on the operation. Table 5-15 shows the type of

object instance returned by the origin operation as well as the type of data returned.

Chapter 5 X Developer API

221

Table 5-15.  Result Classes (Object Instances) Returned

Object Instance Origin Description Content Returned

Result Create, update,

delete

Returned by add().

execute(), modify().

execute(),

remove().execute()

affected_item_count,

auto_increment_value,

last_document_id

SqlResult Session Returned by session.sql() auto_increment_value,

affected_row_count,

fetched data – data set

RowResult Relational Data

select

Returned by select().

execute()

fetched data—data set

Note that the content column shows either a result or data set as the content

returned. The X DevAPI uses the term data set to refer to the data returned from the read

CRUD operation (find(), select(), and sql() methods) and result3 to refer to the data

returned from a create, update and delete CRUD operation.

Also, note that there are different objects returned for each of the class of operations.

The classes RowResult and SqlResult inherit from a base class (BaseResult) and thus

have a lot of the same methods. What sets these apart from the Result class returned

from the create, update, and delete operations is the Result class does not support

an iterator. This is because a Result object contains the data returned from the server

pertaining to the create, update, and delete operations, which do not return any data but

may return warnings and similar metadata and is equivalent to the results returned from

traditional SQL INSERT, UPDATE, and DELETE statements in MySQL.

Table 5-16 shows all the classes and their methods that you will encounter when

working with data sets and results.

3�Sadly, this is sometimes called a result set in the documentation and blogs, which may be
confusing because result set is a common term used in relational data to mean the same thing as
data set. When working with the X DevAPI, it is best to think result set and data set as synonyms.

Chapter 5 X Developer API

222

Ta
bl

e
5-

16
. 

C
la

ss
es

 a
n

d
M

et
ho

ds
 fo

r
W

or
ki

n
g

w
it

h
D

at
a

Se
ts

 a
n

d
R

es
u

lt
s

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Ro
w

Re
su

lt
Al

lo
w

s
tra

ve
rs

in
g

th
e

Ro
w

 o
bj

ec
ts

 re
tu

rn
ed

 b
y

a
Ta

bl
e.

se
le

ct
 o

pe
ra

tio
n

co
lu
mn
s

li
st

Th
e

lis
t o

f c
ol

um
ns

co
un
t

in
t

Th
e

to
ta

l o
f i

te
m

s

fe
tc
h_
al
l(
)

li
st

Fe
tc

he
s

al
l i

te
m

s

fe
tc
h_
on
e(
)

my
sq
lx
.R
ow
 o
r
my
sq
lx
.D
bD
oc

Fe
tc

he
s

on
e

ite
m

ge
t_
wa
rn
in
gs
()

li
st

Re
tu

rn
s

th
e

w
ar

ni
ng

s

ge
t_
wa
rn
in
gs
_c
ou
nt
()

in
t

Re
tu

rn
s

th
e

nu
m

be
r o

f w
ar

ni
ng

s

in
de
x_
of
(c
ol
_n
am
e)

in
t

Re
tu

rn
s

th
e

in
de

x
of

 th
e

co
lu

m
n

se
t_

cl
os

ed
(fl

ag
)

Se
ts

 if
 re

su
lts

et
 fe

tc
h

is
 d

on
e

se
t_

ge
ne

ra
te

d_
id

(g
en

er
at

ed
_i

d)
Se

ts
 th

e
ge

ne
ra

te
d

ID

se
t_

ha
s_

m
or

e_
re

su
lts

(fl
ag

)
Se

ts
 if

 h
as

 m
or

e
re

su
lts

et
s

se
t_

ro
w

s_
af

fe
ct

ed
(to

ta
l)

Se
ts

 th
e

nu
m

be
r o

f r
ow

s
af

fe
ct

ed

Chapter 5 X Developer API

223

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Sq
lR

es
ul

t
Re

pr
es

en
ts

 a
 re

su
lt

fro
m

 a
 S

QL
 s

ta
te

m
en

t

co
lu
mn
s

li
st

Th
e

lis
t o

f c
ol

um
ns

co
un
t

in
t

Th
e

to
ta

l o
f i

te
m

s

fe
tc
h_
al
l(
)

li
st

Fe
tc

he
s

al
l i

te
m

s

fe
tc
h_
on
e(
)

my
sq
lx
.R
ow
 o
r
my
sq
lx
.D
bD
oc

Fe
tc

he
s

on
e

ite
m

ge
t_
au
to
in
cr
em
en
t_
va
lu
e(
)

st
ri
ng

Re
tu

rn
s

th
e

id
en

tifi
er

 fo
r t

he
 la

st

re
co

rd
 in

se
rte

d

ge
t_
wa
rn
in
gs
()

li
st

Re
tu

rn
s

th
e

w
ar

ni
ng

s

ge
t_
wa
rn
in
gs
_c
ou
nt
()

in
t

Re
tu

rn
s

th
e

nu
m

be
r o

f w
ar

ni
ng

s

in
de
x_
of
(c
ol
_n
am
e)

in
t

Re
tu

rn
s

th
e

in
de

x
of

 th
e

co
lu

m
n

ne
xt
_r
es
ul
t(
)

bo
ol

Pr
oc

es
se

s
th

e
ne

xt
 re

su
lt

se
t_
cl
os
ed
(fl
ag
)

Se
ts

 if
 re

su
lts

et
 fe

tc
h

is
 d

on
e

se
t_
ge
ne
ra
te
d_
id
(g
en
er
at
ed
_

id
)

Se
ts

 th
e

ge
ne

ra
te

d
ID

se
t_
ha
s_
mo
re
_r
es
ul
ts
(fl
ag
)

Se
ts

 if
 h

as
 m

or
e

re
su

lts
et

s

Ta
bl

e
5-

16
. 

(c
on

ti
n

u
ed

)

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

224

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Bu
ffe

rin
gR

es
ul

t
Pr

ov
id

es
 b

as
e

fu
nc

tio
na

lit
y

fo
r b

uf
fe

rin
g

re
su

lt
ob

je
ct

s

co
un
t

in
t

Th
e

to
ta

l o
f i

te
m

s

fe
tc
h_
al
l(
)

li
st

Fe
tc

he
s

al
l i

te
m

s

fe
tc
h_
on
e(
)

my
sq
lx
.R
ow
 o
r
my
sq
lx
.D
bD
oc

Fe
tc

he
s

on
e

ite
m

ge
t_
wa
rn
in
gs
()

li
st

Re
tu

rn
s

th
e

w
ar

ni
ng

s

ge
t_
wa
rn
in
gs
_c
ou
nt
()

in
t

Re
tu

rn
s

th
e

nu
m

be
r o

f w
ar

ni
ng

s

in
de
x_
of
(c
ol
_n
am
e)

in
t

Re
tu

rn
s

th
e

in
de

x
of

 th
e

co
lu

m
n

se
t_
cl
os
ed
(fl
ag
)

Se
ts

 if
 re

su
lts

et
 fe

tc
h

is
 d

on
e

se
t_
ge
ne
ra
te
d_
id
(g
en
er
at
ed
_

id
)

Se
ts

 th
e

ge
ne

ra
te

d
ID

se
t_
ha
s_
mo
re
_r
es
ul
ts
(fl
ag
)

Se
ts

 if
 h

as
 m

or
e

re
su

lts
et

s

se
t_
ro
ws
_a
ff
ec
te
d(
to
ta
l)

Se
ts

 th
e

nu
m

be
r o

f r
ow

s
af

fe
ct

ed

Ta
bl

e
5-

16
. 

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

225

Cl
as

s
M

et
ho

d
Re

tu
rn

s
De

sc
rip

tio
n

Re
su

lt
Al

lo
w

s
re

tri
ev

in
g

in
fo

rm
at

io
n

ab
ou

t n
on

qu
er

y
op

er
at

io
ns

 p
er

fo
rm

ed
 o

n
th

e
da

ta
ba

se

ap
pe
nd
_w
ar
ni
ng
(l
ev
el

,
co
de
,

ms
g)

Ap
pe

nd
s

a
w

ar
ni

ng

ge
t_
af
fe
ct
ed
_i
te
ms
_c

ou
nt
()

in
t

Re
tu

rn
s

th
e

nu
m

be
r o

f a
ffe

ct
ed

 it
em

s

fo
r t

he
 la

st
 o

pe
ra

tio
n

ge
t_
au
to
in
cr
em
en
t_
va

lu
e(
)

in
t

Re
tu

rn
s

th
e

la
st

 in
se

rt
id

 a
ut

o

ge
ne

ra
te

d

ge
t_
do
cu
me
nt
_i
d(
)

St
ri
ng

Re
tu

rn
s

ID
 o

f t
he

 la
st

 d
oc

um
en

t

in
se

rte
d

in
to

 a
 c

ol
le

ct
io

n

ge
t_
do
cu
me
nt
_i
ds
()

li
st

Re
tu

rn
s

th
e

lis
t o

f g
en

er
at

ed

do
cu

m
en

ts
 ID

s

ge
t_
wa
rn
in
gs
()

li
st

Re
tu

rn
s

th
e

w
ar

ni
ng

s

Ta
bl

e
5-

16
. 

(c
on

ti
n

u
ed

)

Chapter 5 X Developer API

226

The three classes that have iterators implement two methods: fetch_one() and

fetch_all(). They work as you would imagine and return either a data set or a set of

objects for a set of documents. The fetch_one() method returns the next data item in the

data set or NULL if there are no more data items and fetch_all() returns all the data items.

More specific, fetch_one() retrieves one data item at a time from the server whereas

fetch_all() retrieves all the data from the server in one pass. Which one you would use

depends on the size of the data set and how you would want to process the data.

Note O nce you fetch a data item, you cannot fetch it again. That is, the iterators
are forward only.

Before we look at how to access data in the data set, let us review document

identifiers and auto increment columns.

Tip  From this point on in the examples, you should have the JSON data loaded as
described in Listing 5-8 and the relational data as described in Listing 5-9.

�Document Identifiers

Recall each document you store in a document store collection has a document

identifier (doc id or document id), which is a string of characters that uniquely identifies

the document in a collection.4 You do not need to create your own document ids—they

are assigned for you automatically.

There are two methods available to retrieve the document id from the Result class

(the content returned for create, update, and delete operations). In particular, you can

use the get_document_id() method to retrieve the last document id assigned or the

get_document_ids() to return a list of the document ids for the bulk add option for the

add() method as described above. Listing 5-10 demonstrates retrieving the document

ids when adding documents.

4�Equivalent in principle to a primary key (such as an auto increment column).

Chapter 5 X Developer API

227

Note T he listing from this point on assumes the animals collection does not
exist. If you are planning to run the code examples one after another, you should
add the drop_schema() call shown in Listing 5-5.

Listing 5-10.  Getting Document Ids

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Drop the collection

mysqlx_session.drop_schema("animals")

Create a schema.

schema = mysqlx_session.create_schema("animals")

Create a new collection

pets = schema.create_collection("pets_json")

Insert some documents and get the document ids.

res = pets.add({'name': 'Violet', 'age': 6, 'breed':'dachshund',

'type':'dog'}).execute()

print("New document id = '{0}'".format(res.get_document_id()))

res = pets.add({'name': 'JonJon', 'age': 15, 'breed':'poodle',

'type':'dog'}).execute()

print("New document id = '{0}'".format(res.get_document_id()))

res = pets.add({'name': 'Mister', 'age': 4, 'breed':'siberian khatru',

'type':'cat'}).execute()

print("New document id = '{0}'".format(res.get_document_id()))

res = pets.add({'name': 'Spot', 'age': 7, 'breed':'koi', 'type':'fish'}).

execute()

print("New document id = '{0}'".format(res.get_document_id()))

Chapter 5 X Developer API

228

res = pets.add({'name': 'Charlie', 'age': 6, 'breed':'dachshund',

'type':'dog'}).execute()

print("New document id = '{0}'".format(res.get_document_id()))# Drop the

collection

mysqlx_session.drop_schema("animals")

Close the connection

mysqlx_session.close()

If you run the code snippet, you will see the document ids as in the following.

New document id = '9801A79DE0939A8311E805FB3419B12B'

New document id = '9801A79DE093B93111E805FB341CC7B5'

New document id = '9801A79DE093AD4311E805FB341CF6D9'

New document id = '9801A79DE09397AD11E805FB341D1F87'

New document id = '9801A79DE09382E911E805FB341D4568'

�Auto Increment

If you are working with relational data and have specified an auto increment field,

you can retrieve the last auto increment value using the get_autoincrement_value()

method of the SqlResult and Result classes. This method returns the auto increment

value generated, which can be helpful if you need to retrieve the last row inserted by the

surrogate primary key.

�Accessing Data in Data Sets

Let us consider accessing data in data sets. In this case, we issue a find() method on a

collection that returns several documents as represented by a specific result object. In

this case, we have a set of DbDoc objects to fetch.

There are three ways we can access the data in the data item; we can simply get the

data item as a string (naturally), we can access the data elements via a property with

the name of the key for the data element, or we can use an array index to find the data

element with its key. Listing 5-11 shows a complete script with an example of each

mechanism. Note that you should have created the schema and collection populating it

with the data using Listing 5-8.

Chapter 5 X Developer API

229

Listing 5-11.  Reading Data from a Data Set

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Get the collection.

pets = mysqlx_session.get_schema("animals").get_collection("pets_json")

Do a find on the collection - find the dog

find = pets.find("type = 'dog'").execute()

res = find.fetch_one()

while (res):

 print("Get the data item as a string: {0}".format(res))

 �print("Get the data elements: {0}, {1}, {2}".format(res.name, res.age,

res['breed']))

 res = find.fetch_one()

Close the connection

mysqlx_session.close()

Note how I retrieved the data set with the find().execute() method, which returns

an object that I can iterate over. In this case, I fetch the first data item then a while loop

to loop through the items. Inside the while loop, I print the string returned from the fetch

and demonstrate how to retrieve data elements by property (e.g., res.age, res.name) or

by array index using the key name (e.g., res['breed']).

If you save this code to a file named listing5-11.py and execute it, you will see

output like the following.

$ python ./listing5-11.py

Get the data item as a string: {"breed": "dachshund", "age": 6, "_id":

"9801A79DE093B2B011E805FBCB1FAC51", "type": "dog", "name": "Violet"}

Get the data elements: Violet, 6, dachshund

Get the data item as a string: {"breed": "poodle", "age": 15, "_id":

"9801A79DE093B43A11E805FBCB215AFA", "type": "dog", "name": "JonJon"}

Chapter 5 X Developer API

230

Get the data elements: JonJon, 15, poodle

Get the data item as a string: {"breed": "dachshund", "age": 6, "_id":

"9801A79DE093BFD511E805FBCB21CF30", "type": "dog", "name": "Charlie"}

Get the data elements: Charlie, 6, dachshund

Now lets’ see how to get rows from a relational data query.

�Accessing Metadata in Results

When using relational data and the table or view select() method. This returns an

SQL data set that represents the rows you would expect to get from a typical SQL SELECT

query. We can then access the data in the row by column name as a property, column

index number as the array index, or by column name as the array index. Listing 5-12

demonstrates both methods of getting the data from the row.

Listing 5-12.  Data Set Example—Relational Data

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Get the collection.

pets = mysqlx_session.get_schema("animals").get_table("pets_sql")

Do a select (find) on the table - find the dogs

res = pets.select().where("type = 'dog'").execute()

Working with column properties

print("Get the data using column names as properties:")

for row in res.fetch_all():

 for col in res.columns:

 print(row.get_string(col.get_column_name())),

 print("")

Working with column indexes

print("Get the data using column index by integer:")

Chapter 5 X Developer API

231

for row in res.fetch_all():

 for i in range(0,len(res.columns)):

 print(row[i]),

 print("")

Working with column names

print("Get the data using column index by name:")

for row in res.fetch_all():

 for col in res.columns:

 print(row[col.get_column_name()]),

 print("")

Close the connection

mysqlx_session.close()

If you save this code to a file named listing5-12.py and execute it, you will see

output as the following.

$ python ./listing5-12.py

Get the data using column names as properties:

1 Violet 6 dachshund dog

2 JonJon 15 poodle dog

5 Charlie 6 dachshund dog

Get the data using column index by integer:

1 Violet 6 dachshund dog

2 JonJon 15 poodle dog

5 Charlie 6 dachshund dog

Get the data using column index by name:

1 Violet 6 dachshund dog

2 JonJon 15 poodle dog

5 Charlie 6 dachshund dog

Note how I retrieve the data set with the select().execute() method, which returns

an object that I can iterate over. In this case, I fetch the items (rows) using a for loop.

Inside the for loop, I use the Row object’s get_string() method, which takes a key name

for the column or in this case column name. I use a little trick with iterating over the

columns inside a nested for loop. I discuss how to work with the column metadata in the

next section.

Chapter 5 X Developer API

232

�Column Metadata

The two result classes for relational data (RowResult and SqlResult) support the

concept of columns as you would expect from a typical SQL SELECT query. You can get

the columns using the columns() method (columns property), which returns a list of

Column objects. You can then use the properties in that object to discover more about

the columns in the data set. Table 5-17 shows the ColumnMetaData class and its methods.

Table 5-17.  ColumnMetaData Class

Method Returns Description

get_schema_name() str Retrieves the name of the schema where the

column is defined

get_table_name() str Retrieves table name where the column is defined

get_table_label() str Retrieves table alias where the column is defined

get_column_name() str Retrieves column name

get_column_label() str Retrieves column alias

get_type() Type Retrieves column type

get_length() int Retrieves column length

get_fractional_digits() int Retrieves the fractional digits if applicable

is_number_signed() bool Indicates if a numeric column is signed

get_collation_name() str Retrieves the collation name

get_character_set_name() str Retrieves the character set name

Note that there are several interesting methods including those for discovering the

type, character and collation, size, and more. Note also there are methods for getting the

name or label of the column. The name is the name from the operation whereas the label

is alias or alternative labeling specified in the operation. To see the difference, consider

the following SQL statement.

SELECT pet_name as name, age as years_young FROM animals.pets_sql

Chapter 5 X Developer API

233

When you call the get_column_name() and get_column_label() methods, you get

the following values. Listing 5-13 demonstrates how to work with these methods.

Listing 5-13.  Working with Column Names and Labels

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

res = mysqlx_session.sql("SELECT name as pet_name, age as years_young FROM

animals.pets_sql").execute()

cols = res.columns

for col in cols:

 print "name =", col.get_column_name(), "label =", col.get_column_label()

mysqlx_session.close()

If you save this code to a file named listing5-13.py and execute it, you will see

output like the following.

$ python ./listing5-13.py

name = name label = pet_name

name = age label = years_young

Now let’s discuss the use of expressions to filter data.

�Expressions
Expressions are another element in the X DevAPI that is a simple, yet powerful feature.

Expressions are synonymous with the clauses we use in SQL statements for filtering data

in CRUD statements. There are several forms of expressions. We can use strings, Boolean

expressions, or embed actual expressions such as equality or inequality. Let’s examine

each of these.

Chapter 5 X Developer API

234

�Expression Strings

Expression strings are those strings that need to be evaluated at runtime. Typically, they

use one or more variables “bound” (called parameter binding) to placeholders in the

string. This permits you to assign values at runtime for dynamic filtering rather than

static values as we will see in the next section. We will see more about parameter binding

in a later section.

Listing 5-14 shows an example like one we used in a previous example looking for

the fish in our pets_json collection. However, in this case, we use a parameter to contain

the type, which could presumably be read at runtime and thus allow us to make our code

dynamically filter the collection find results.

Listing 5-14.  Expression Strings

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Get the collection.

pets = mysqlx_session.get_schema("animals").get_collection("pets_json")

Do a find on the collection - find the fish with an expression string and

parameter binding

fish_type = 'fish'

mydoc = pets.find("type = :mytype").bind('mytype', fish_type).execute()

print(mydoc.fetch_one())

Close the connection

mysqlx_session.close()

If you save this code to a file named listing5-14.py and execute it, you will see

output like the following.

$ python ./listing5-14.py

{"breed": "koi", "age": 7, "_id": "9801A79DE0938FBD11E805FBCB21AB35",

"type": "fish", "name": "Spot"}

Chapter 5 X Developer API

235

�Boolean Expression Strings

This form of expression uses a string much like we use in the WHERE clause for SQL

statements. That is, we express the filter using natural language where the comparison is

either true or false. Listing 5-15 are Boolean expression strings from previous examples.

The first line is a relational data example in which we want the results to include only

those items whose type column is equal to “dog.” The second is a document store

example in which we want the results to include only those items whose type element

has the value “fish.”

Listing 5-15.  Boolean Expression Strings

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Get the collection.

pets_json = mysqlx_session.get_schema("animals").get_collection("pets_

json")

Get the table.

pets_sql = mysqlx_session.get_schema("animals").get_table("pets_sql")

res = pets_sql.select().where("type = 'dog'").limit(1).execute()

print("SQL result ="),

for row in res.fetch_all():

 for i in range(0,len(res.columns)):

 print("{0}".format(row[i])),

print("")

mydoc = pets_json.find("type = 'fish'").execute()

print("JSON result = {0}".format(mydoc.fetch_one()))

Close the connection

mysqlx_session.close()

Chapter 5 X Developer API

236

If you save this code to a file named listing5-15.py and execute it, you will see

output like the following.

$ python ./listing5-15.py

SQL result = 1 Violet 6 dachshund dog

JSON result = {"breed": "koi", "age": 7, "_id":

"9801A79DE0938FBD11E805FBCB21AB35", "type": "fish", "name": "Spot"}

Tip  You can find a complete set of extended Backus-Naar form5 drawings for
expressions and method chaining in the X DevAPI Users guide at https://dev.
mysql.com/doc/x-devapi-userguide/en/.

�Warnings and Errors
Another area in which we need to spend some time learning about is the report of

warnings sent from the server and handling errors from the X DevAPI. Fortunately, the X

DevAPI has facilities for getting the warnings. However, errors will take a bit more work.

Let’s look at warnings first.

�Warnings from the Server

Handling warnings is easy because the X DevAPI has a mechanism built in to help you

get the warnings information. The Warning class has three properties as shown in the

following. We can use these to get the warnings should they occur.

•	 Level—level of the warning

•	 Code—warning code

•	 Message—warning message

5�Extended Backus-Naar form is a style of diagraming used to document context-free grammars.
See https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form.

Chapter 5 X Developer API

https://dev.mysql.com/doc/x-devapi-userguide/en/
https://dev.mysql.com/doc/x-devapi-userguide/en/
https://en.wikipedia.org/wiki/Extended_Backus%E2%80%93Naur_form

237

Note  By default, all warnings are sent from the server to the client. However, you
can suppress warnings to save bandwidth. Use the set_fetch_warnings() in
the Session class to control whether warnings are discarded at the server or sent
to the client. Use the get_fetch_warnings() method to get the active setting.

In fact, we can use the get_warnings() method to check to see if there are warnings

we need to process. However, the X DevAPI sends warnings to the client each time

they occur so if you want to check for warnings, you must do so after each execution.

Listing 5-16 shows one way you can write code to handle errors. It is by no means the

only way, but does demonstrate the Warning class methods.

Note T his example requires the animals database setup. See the “Example
Data Used in this Chapter” section previously for how to setup the database.

Listing 5-16.  Processing Warnings

#This method checks the result for warnings and prints them

if any exist.

#

result[in] result object

def process_warnings(result):

 if result.get_warnings_count():

 for warning in result.get_warnings():

 print("WARNING: Type {0} (Code {1}): {2}".format(*warning))

 else:

 print "No warnings were returned."

Import the MySQL X module

import mysqlx

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Chapter 5 X Developer API

238

6�See https://en.wikipedia.org/wiki/Exception_handling.

Get the animals schema.

schema = mysqlx_session.get_schema("animals")

Try to create the table using a SQL string. It should throw a warning.

res = mysqlx_session.sql("CREATE TABLE IF NOT EXISTS animals.pets_sql ("

 "`id` int auto_increment primary key, "

 "`name` char(20), "

 "`age` int, "

 "`breed` char(20), "

 "`type` char(12))").execute()

process_warnings(res)

Close the connection

mysqlx_session.close()

Note that I wrote a method named process_warnings() that takes a result object

and checks to see if there are errors by calling the get_warnings_count() method. If this

method returns a positive integer, it means there are warnings and if so, I get the type,

code, and message from the warning object and print the data. If there are no warnings, I

print a message stating there were no errors (but you probably don’t want to know that).

If you save this code to a file named listing5-16.py and execute it, you will see

the following results. Note that you may have to run it a second time if you deleted the

animals collection.

$ python ./listing5-16.py

WARNING: Type 1 (Code 1050): Table 'pets_sql' already exists

Now let’s see how we can handle errors from the X DevAPI.

�Errors from the X DevAPI

As I mentioned, there is nothing implemented in the X DevAPI specifically for handling

errors, but there are facilities that we can use. In this case, we’re going to get some help from

our database connectors. That is, the database connectors implement the language-specific

error handling (exception handling) mechanisms making it natural to handle errors from

the X DevAPI methods. In other words, they implement exception handling.6

Chapter 5 X Developer API

https://en.wikipedia.org/wiki/Exception_handling

239

Using Python as an example, the Python language implements a try...exception

block (sometimes called a try or exception block). This construct allows code that “raises”

an exception in the form of the raise() method to have the exception captured by the

calling code (the code with the nearest try block). The syntax is as follows.

try:

 # some operation 1

 # some operation 2

 # some operation 3

 # some operation 4

 # some operation 5

except:

 # catch the exception

finally:

 # do this after the success or capture

What this allows us to do is “try” an operation (or more) and if they fail by raising an

exception, the code will skip any remaining operations in the try segment and skip to the

except segment.

Let’s look at what happens when you do not use exception handling and the code

fails. That is, the X DevAPI throws an exception. Listing 5-17 shows a simple script with

errors. Can you spot them? Hint: check the password and what happens when you try to

create a table that already exists?

Listing 5-17.  Not Handling Errors

Import the MySQL X module

import mysqlx

import getpass

Get a session with a URI

mysqlx_session = mysqlx.get_session("root:wrongpassworddude!

@localhost:33060")

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Get the animals schema.

Chapter 5 X Developer API

240

schema = mysqlx_session.get_schema("animals")

Try to create the table using a SQL string. It should throw an

error that it already exists.

res = mysqlx_session.sql("CREATE TABLE animals.pets_sql ("

 "`id` int auto_increment primary key, "

 "`name` char(20), "

 "`age` int, "

 "`breed` char(20), "

 "`type` char(12))").execute()

Close the connection

mysqlx_session.close()

If you save this code to a file named listing5-17.py and execute it, you will see the

following results (extraneous data removed for brevity).

$ python ./listing5-17.py

Traceback (most recent call last):

 File "./listing5-17.py", line 6, in <module>

 mysqlx_session = mysqlx.get_session("root:wrongpassworddude!@

localhost:33060")

...

 File "/Library/Python/2.7/site-packages/mysqlx/protocol.py", line 129, in

read_auth_ok

 raise InterfaceError(msg.msg)

mysqlx.errors.InterfaceError: Invalid user or password

Oh, dear, that’s terrible! What we’ve got here is a traceback dump, which is how

Python communicates unhandled exceptions. The key message we should heed is the

first line that shows us the line of code in the script that started a sequence of method

calls that resulted in the exception thrown as shown in the last two lines. Here we see

that the get_session() call resulted in a mysqlx.errors.InterfaceError thrown from

the X Protocol code in the connector. This demonstrates how badly things can go if you

do not use exception handling. But we can make it a lot better.

Let’s look at an example with exception handling. Listing 5-18 shows a script with

deliberate errors that will cause the X DevAPI to throw exceptions. In this case, it is the

CREATE TABLE SQL statement that will fail. More specific, it will fail because the table

already exists.

Chapter 5 X Developer API

241

If you run this script and it does not fail, be sure to check that the table already exists.

We are using the fact that the table already exists so when the CREATE is executed, we

will get an exception. As you will see, the exception is not easily understood either.

Listing 5-18.  Handling Errors—Global Exception

Import the MySQL X module

import mysqlx

try:

 # Get a session with a URI

 mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

 # Check the connection

 if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

 # Get the animals schema.

 schema = mysqlx_session.get_schema("animals")

 # Try to create the table using a SQL string. It should throw an error

 # that it already exists.

 res = mysqlx_session.sql("CREATE TABLE animals.pets_sql ("

 "`id` int auto_increment primary key, "

 "`name` char(20), "

 "`age` int, "

 "`breed` char(20), "

 "`type` char(12))").execute()

except Exception as ex:

 print("ERROR: {0}:{1}".format(*ex))

Close the connection

mysqlx_session.close()

When we run this code, we get a much better result. If you save this code to a file

named listing5-18.py and execute it, you will see the following results. Note that

the output you can expect from this improved version. It is easier to read and more

informative.

$ python ./listing5-18.py

ERROR: -1: Table 'pets_sql' already exists

Chapter 5 X Developer API

242

Although there is no tried and true rule for how much you can place in an exception

block, you should keep exception blocks small—say isolated to a single concept or

process—to avoid cases where debugging the code makes it difficult to know which of

the dozens of method calls triggered the exception. If you use a language like Python that

throws a call stack trace, that may not be difficult but if your language doesn’t have it or

rerunning the code to create one is not possible, keeping the exception blocks small can

help you isolate the code where the problem occurred.

Listing 5-19 shows an example that includes try blocks around each X DevAPI

statement. It also demonstrates how to capture specific exceptions thrown. That is,

the except: syntax allows you to specify a specific exception. In this case, I capture the

exception thrown by the X DevAPI.

Listing 5-19.  Handling Errors—Local Exceptions

Import the MySQL X module

import mysqlx

import getpass

Get a session with a URI

mysqlx_session = None

try:

 mysqlx_session = mysqlx.get_session("root:wrongpassworddude!

@localhost:33060")

except mysqlx.errors.InterfaceError as ex:

 print("ERROR: {0} : {1}".format(*ex))

 passwd = getpass.getpass("Wrong password, try again: ")

finally:

 �mysqlx_session = mysqlx.get_session("root:{0}@localhost:33060".

format(passwd))

Check the connection

if not mysqlx_session.is_open():

 print("Connection failed!")

 exit(1)

Demostrate error from get_schema()

schema = mysqlx_session.get_schema("animal")

if (not schema.exists_in_database()):

 print("Schema 'animal' doesn't exist.")

Chapter 5 X Developer API

243

Get the animals schema.

schema = mysqlx_session.get_schema("animals")

try:

 # Try to create the table using a SQL string. It should throw an

 # error that it already exists.

 res = mysqlx_session.sql("CREATE TABLE animals.pets_sql ("

 "`id` int auto_increment primary key, "

 "`name` char(20), "

 "`age` int, "

 "`breed` char(20), "

 "`type` char(12))").execute()

except mysqlx.errors.OperationalError as ex:

 print("ERROR: {0} : {1}".format(*ex))

Close the connection

if mysqlx_session:

 mysqlx_session.close()

If you save this code to a file named listing5-19.py and execute it, you will see the

following results. Be sure to enter the correct password when prompted. This is because

there is only one test for a correct password. Your challenge is to determine a way to

improve the code by allowing multiple retries. Hint: use a loop.

$ python ./listing5-19.py

ERROR: -1 : Invalid user or password

Wrong password, try again:

Schema 'animal' doesn't exist.

ERROR: -1 : Table 'pets_sql' already exists

The example also shows an interesting way you can handle exceptions—retrying

the statement. Normally, you would place the statement you want to retry in a loop or

similar structure with a time or attempt limit. Here I just retry the session method once

prompting the user for the password.

Chapter 5 X Developer API

244

Tip  For best results, encapsulate your code using shorter exception blocks so
that you can isolate the code that caused the error easily.

Now let’s look at the additional features available when using the X DevAPI.

�Additional Features
Now that we have seen all the major classes and methods available in the X DevAPI,

let us now examine some of the features that are exposed by the X DevAPI; specifically,

examples of parameter binding, chaining methods, prepared statements, and

asynchronous execution.

Note T his example uses the world_x database, which you can download from
https://dev.mysql.com/doc/index-other.html. Simply download the
compressed file, uncompress it, then include it in the MySQL Shell with the
\source command or use the mysql client and the source command. For a
walk-through of how to install the world_x database, see the “Installing the
Sample Database” section in Chapter 4.

�Parameter Binding
Parameter binding allows us to apply values to expressions at runtime. Parameter

binding is typically used for filters and is done prior to executing the operation (hence

you will see .bind().execute() often). Therefore, the benefits of parameter binding are

that it allows you to separate values from your expressions. This is accomplished with the

bind() method for all classes that support parameter binding.

Parameters can be "bound" using one of two methods: you can use anonymous

parameters or you can use named parameters. However, there are restrictions on when

you can use each. In particular, anonymous parameters can only be used in SQL strings

(expression) whereas named parameters are used in CRUD operations. Let's see an

example of each.

Chapter 5 X Developer API

https://dev.mysql.com/doc/index-other.html

245

Listing 5-20 shows an example of using anonymous parameters. Anonymous

parameters are signified by using a question mark. Note how we do this in the SQL

statements in the following.

Listing 5-20.  Parameter Binding Example (MySQL Shell)

$ mysqlsh root@localhost:33060 --sql

Creating a session to 'root@localhost:33060'

Enter password:

Your MySQL connection id is 74 (X protocol)

Server version: 8.0.11 MySQL Community Server (GPL)

No default schema selected; type \use <schema> to set one.

MySQL Shell 8.0.11

Copyright (c) 2016, 2018, Oracle and/or its affiliates. All rights

reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type '\help' or '\?' for help; '\quit' to exit.

 MySQL localhost:33060+ ssl SQL > PREPARE STMT FROM 'SELECT * FROM

world_x.city WHERE name like ? LIMIT ?';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @name_wild = 'Ar%';

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > SET @numrows = 1;

Query OK, 0 rows affected (0.00 sec)

 MySQL localhost:33060+ ssl SQL > EXECUTE STMT USING @name_wild, @numrows;

+----+--------+-------------+------------+------------------------+

| ID | Name | CountryCode | District | Info |

+----+--------+-------------+------------+------------------------+

| 18 | Arnhem | NLD | Gelderland | {"Population": 138020} |

+----+--------+-------------+------------+------------------------+

Chapter 5 X Developer API

246

1 row in set (0.00 sec)

 MySQL localhost:33060+ ssl SQL > \q

Bye!

We can take away a couple of things from this example. First, anonymous parameters

are only used in SQL statements. Second, anonymous parameters are completed (values

provided) in the order they appear in the SQL statement. Third, and finally anonymous

parameters can be used with prepared statements.7

Listing 5-21 shows several examples of using named parameters. The key point to

notice is how the parameter is given a name preceded by a colon. When the bind()

method is called, we supply the named parameter (without the colon) and its value.

Listing 5-21.  Parameter Binding Example

Import the MySQL X module

import mysqlx

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

schema = mysqlx_session.get_schema("world_x")

Collection.find() function with hardcoded values

myColl = schema.get_collection('countryinfo')

myRes1 = myColl.find("GNP >= 828").execute()

print(myRes1.fetch_one())

Using the .bind() function to bind parameters

myRes2 = myColl.find('Name = :param1 and GNP = :param2').

bind('param1','Aruba').bind('param2', '828').execute()

print(myRes2.fetch_one())

Using named parameters

myColl.modify('Name = :param').set('GNP', '829').bind('param', 'Aruba').

execute()

Binding works for all CRUD statements except add()

myRes3 = myColl.find('Name LIKE :param').bind('param', 'Ar%').execute()

print(myRes3.fetch_one())

7�For more information about anonymous parameters, see the SELECT Syntax section in the
MySQL online reference manual.

Chapter 5 X Developer API

247

Ok, now put the candle back...

myColl.modify('Name = :param').set('GNP', '828').bind('param', 'Aruba').

execute()

Close the connection

mysqlx_session.close()

Note how we pass multiple parameters to be bound. In this case, we simply call

bind() as many times as we have parameters to bind. This is possible due to the method

chaining feature as described in the next section. That is, the bind() method returns an

instance of itself and thus when we call the next bind() method, it is repeating the call

but with a different parameter and its value.

Tip  Named parameters may not start with a number. For example,:1test is not
a valid named parameter name.

If you save this code to a file named listing5-21.py and execute it, you will see the

following results.

$ python ./listing5-21.py

{"GNP": "828", "Name": "Aruba", "government": {"GovernmentForm":

"Nonmetropolitan Territory of The Netherlands", "HeadOfState": "Beatrix"},

"demographics": {"LifeExpectancy": 78.4000015258789, "Population":

103000}, "_id": "ABW", "IndepYear": null, "geography": {"SurfaceArea": 193,

"Region": "Caribbean", "Continent": "North America"}}

{"GNP": "828", "Name": "Aruba", "government": {"GovernmentForm":

"Nonmetropolitan Territory of The Netherlands", "HeadOfState": "Beatrix"},

"demographics": {"LifeExpectancy": 78.4000015258789, "Population":

103000}, "_id": "ABW", "IndepYear": null, "geography": {"SurfaceArea": 193,

"Region": "Caribbean", "Continent": "North America"}}

{"GNP": "829", "Name": "Aruba", "government": {"GovernmentForm":

"Nonmetropolitan Territory of The Netherlands", "HeadOfState": "Beatrix"},

"demographics": {"LifeExpectancy": 78.4000015258789, "Population":

103000}, "_id": "ABW", "IndepYear": null, "geography": {"SurfaceArea": 193,

"Region": "Caribbean", "Continent": "North America"}}

Now let's look at method chaining and how it works.

Chapter 5 X Developer API

248

�Method Chaining
Method chaining (also known as named parameter idiom), is a design constraint in

object-oriented programming where each method (that supports chaining) returns an

instance of an object. Thus, one can access (call) any method on the returned object

simply by adding the call to the end of the first method.

For example, if a class X has a method a() that returns object Y with a method b(), we

can chain calls together as follows.

x = something.get_x()

res = x.a().b()

In this case, the x.a() method executes first, then when it returns with a Y object

instance, it calls the b() method on the Y object instance.

Where method chaining shines in the X DevAPI is in the implementation of the

relational data methods. In particular, those classes and methods that support the SQL

CRUD commands. Listing 5-22 is an example of a complex SELECT operation for a table.

Listing 5-22.  Method Chaining

Import the MySQL X module

import mysqlx

mysqlx_session = mysqlx.get_session("root:secret@localhost:33060")

Get the table

city = mysqlx_session.get_schema("world_x").get_table("city")

Perform a complex select

res = city.select(['Name', 'District']).where("Name LIKE :param1").order_

by(["District", "Name"]).bind('param1', 'X%').limit(1).execute()

Show results

print("SQL result ="),

for row in res.fetch_all():

 for i in range(0,len(res.columns)):

 print("{0}".format(row[i])),

print("")

Close the connection

mysqlx_session.close()

Chapter 5 X Developer API

249

If you save this code to a file named listing5-22.py and execute it, you will see the

following results.

$ python ./listing5-22.py

SQL result = Xuangzhou Anhui

Here we see two lines of code and several object instances in use and a host of

methods. On the second code line (ignoring comments), we use a mysqlx session

object to get a schema object then chain that with a call to the Schema class method

get_table(), which returns a table object instance.

On the third code line, we are using the table object instance calling the select()

method, which returns a SelectStatement object instance that we chain by calling

its where() method, which returns the same SelectStatement object and we call its

order_by() method, which returns the same SelectStatement object then we bind the

parameter with the bind() method that returns the same SelectStatement object, and

finally we call the execute() method, which returns a SqlResult object. Wow!

If you're getting the idea that method chaining hides a lot of the details about objects

and avoids repetitious code of storing object instances in variables, you're right! That's

exactly what we're doing.

As you can see, method chaining allows us to express concepts in our code much

more clearly that the older style of classes with methods do not return object instances

(or even older styles that simply return 0 or 1 to indicate success or failure8). Mastering

the X DevAPI means mastering how you can chain methods together to simplify and

make your code easier to read and understand. Cool, eh?

For more information about the concepts of method chaining, see

https://en.wikipedia.org/wiki/Method_chaining.

�CRUD Prepared Statements
Prepared CRUD statements are cases in which we want to perform a number of

operations on an object prior to calling the execute() method. In this way, we "prepare"

the object instance (statement) for execution. That is, instead of directly binding and

executing CRUD operations by chaining bind() and execute() or simply execute() it,

8�One of the things I disliked about the older code in the server was most methods returned a 0
or 1 passing objects and variables by pointers for returning data. Method chaining is far more
elegant and useful for writing applications quickly.

Chapter 5 X Developer API

https://en.wikipedia.org/wiki/Method_chaining

250

we can manipulate the CRUD operation to store such things as filters and other criteria

in a variable for later execution.

The advantage of doing this means we can bind several parameters or sets of

variables to the expressions. This gives us better performance because we can “prepare”

variables ahead of time and execute them later. This can give us get better performance

when executing many similar operations.

You may be thinking that CRUD prepared statements are similar in concept to SQL

prepared statements. This is true, but unlike SQL prepared statements, CRUD prepared

statements are implemented in class methods and thus can be incorporated in our code

with very little effort.

Let's look at an example. Listing 5-23 shows an example of preparing a CRUD

statement. In this case, we prepare a find() statement using a parameter and save the

result (the FindStatement object) to a variable. When we want to execute this statement,

we use the variable to call the bind() method providing a value then the execute()

method to execute the FindStatement.

Listing 5-23.  CRUD Prepared Statements

Import the MySQL X module

import mysqlx

Get a session with a URI

mysql_session = mysqlx.get_session("root:secret@localhost:33060")

Check the connection

if not mysql_session.is_open():

 print("Connection failed!")

 exit(1)

Create a schema.

schema = mysql_session.get_schema("animals")

Create a new collection

pets = schema.get_collection("pets_json")

Prepare a CRUD statement.

find_pet = pets.find("name = :param")

Now execute the CRUD statement different ways.

mydoc = find_pet.bind('param', 'JonJon').execute()

print(mydoc.fetch_one())

mydoc = find_pet.bind('param', 'Charlie').execute()

Chapter 5 X Developer API

251

print(mydoc.fetch_one())

mydoc = find_pet.bind('param', 'Spot').execute()

print(mydoc.fetch_one())

Close the connection

mysql_session.close()

Note the three find_pet.bind() method calls. Here we execute the find statement

three times; once for each pet’s name we want to find. Clearly, this is only a small

example but demonstrates the power of using CRUD prepared statements.

If you save this code to a file named listing5-23.py and execute it, you will see the

following results.

$ python ./listing5-23.py

{"breed": "poodle", "age": 15, "_id": "9801A79DE093B43A11E805FBCB215AFA",

"type": "dog", "name": "JonJon"}

{"breed": "dachshund", "age": "6", "_id":

"9801A79DE093BFD511E805FBCB21CF30", "type": "dog", "name": "Charlie"}

{"breed": "koi", "age": 7, "_id": "9801A79DE0938FBD11E805FBCB21AB35",

"type": "fish", "name": "Spot"}

�Asynchronous Execution
For those clients that support asynchronous programming such as C/J, C/Node.js, and

C/Net, the X DevAPI permits the use of asynchronous mechanisms such as callbacks,

async() calls, and so forth. These mechanisms make it possible to allow an operation to

run in parallel with other operations. Let's see an example from Java.

Note  Currently, neither the C/Py nor C/C++ permit asynchronous execution but
may in the future. Check new releases of these connectors for updates.

Table employees = db.getTable("employee");

// execute the query asynchronously, obtain a future

CompletableFuture<RowResult> rowsFuture = employees.select("name", "age").

where("name like :name").orderBy("name").bind("name", "m%").executeAsync();

Chapter 5 X Developer API

252

Here we see the executeAsync() method, which is how the Java connector permits

the asynchronous execution of the execute() method. That is, the select() runs

asynchronously and when it returns (finishes), it triggers the future defined by the

CompletableFuture template/class (or generic class in Java9).

Note  Depending on which language you are using, the X DevAPI may implement
a function such as executeAsync() in addition to or instead of execute().
Check the X DevAPI documentation for your chosen connector for the correct
method names and uses.

For more information about asynchronous execution, see the X DevAPI guide for the

connector that matches your choice of language.

�For More Information
If you would like to know more detailed information about the implementations of

the X DevAPI in the database connectors and MySQL Shell, visit the following links for

descriptions and lists of all classes, methods, properties, and help functions. The sites

are developer focused and may not include detailed explanations or examples.

•	 MySQL Shell: there are several resources available including the

following

•	 https://dev.mysql.com/doc/mysql-shell-excerpt/5.7/en/

•	 https://dev.mysql.com/doc/mysql-shell-excerpt/8.0/en/

•	 https://dev.mysql.com/doc/dev/mysqlsh-api-

javascript/8.0/

•	 https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/

•	 MySQL Connector/J: http://dev.mysql.com/doc/dev/

connector-j/

•	 MySQL Connector/Node.js: http://dev.mysql.com/doc/dev/

connector-nodejs/

9�See https://docs.oracle.com/javase/tutorial/java/generics/types.html

Chapter 5 X Developer API

https://dev.mysql.com/doc/mysql-shell-excerpt/5.7/en/
https://dev.mysql.com/doc/mysql-shell-excerpt/8.0/en/
https://dev.mysql.com/doc/dev/mysqlsh-api-javascript/8.0/
https://dev.mysql.com/doc/dev/mysqlsh-api-javascript/8.0/
https://dev.mysql.com/doc/dev/mysqlsh-api-python/8.0/
http://dev.mysql.com/doc/dev/connector-j/
http://dev.mysql.com/doc/dev/connector-j/
http://dev.mysql.com/doc/dev/connector-nodejs/
http://dev.mysql.com/doc/dev/connector-nodejs/
https://docs.oracle.com/javase/tutorial/java/generics/types.html

253

•	 MySQL Connector/Net: http://dev.mysql.com/doc/dev/

connector-net/

•	 MySQL Connector/Python: http://dev.mysql.com/doc/dev/

connector-python

•	 MySQL Connector/C++: https://dev.mysql.com/doc/dev/

connector-cpp/

Note  Some of the documentation for these components may not match
the version numbers listed at the beginning of the chapter. It is fine if the
documentation is for a newer release and you should install the newest releases.
However, at the time of this writing, the MySQL Shell Users Guide was in the
process of being updated. Check back regularly to ensure you are using the latest
documentation available.

�Summary
The X DevAPI is a marvel of sophistication to the point of simplification for

NoSQL interface with a MySQL server. The X DevAPI introduces a new, modern and

easy-to-learn way to work with your data.

The X DevAPI is the primary mechanism you will use to build document store

applications. Although the X DevAPI isn’t a standalone library—you must use a client

that exposes the X DevAPI through the X Protocol—the X DevAPI is still a major effort to

change the way you interact with MySQL. For the first time, we now have both an SQL

and a NoSQL interface for MySQL.

In this chapter, we explored the X DevAPI and examined the major classes and

methods available for connecting to the MySQL server, creating collections, working

with results, and even how to work with relational data. Finally, we also saw a set of quick

references tables that you can use as the primary reference for developing document

store applications.

In Chapter 6, we have a deep dive into the X Plugin, which will give you a better

understanding of what the X Plugin does, how to configure it, and how best to manage it

as part of your normal database administration tasks. Following that chapter, we will see

the details of the X Protocol and later a working example of a document store application.

Chapter 5 X Developer API

http://dev.mysql.com/doc/dev/connector-net/
http://dev.mysql.com/doc/dev/connector-net/
http://dev.mysql.com/doc/dev/connector-python
http://dev.mysql.com/doc/dev/connector-python
https://dev.mysql.com/doc/dev/connector-cpp/
https://dev.mysql.com/doc/dev/connector-cpp/

255
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_6

CHAPTER 6

X Plugin
The X Dev API is a great new way to interact with MySQL. As we learned, the new NoSQL

mechanism is built on the X DevAPI, X Plugin, and the X Protocol. You may have the

impression these technologies are just there and once enabled nothing more is needed.

That is largely true, but as with all good features, there is more to the story than simply

enabling the feature.

In this chapter, we take a closer look at the X Plugin. As you will see, there is more to

it than simply turning it on. The fact that it just works with the defaults means it is very

stable and is applicable in most cases. However, you can configure it in several ways

including a very interesting option for securing connections. However, there is more

about this and even how to monitor the X Plugin in following sections.

Note  I use the term, plugin in this chapter to refer to plugins in general and X
Plugin to refer to specific features of the X Plugin.

�Overview
Recall from Chapter 2 that the X Plugin is a separately compiled component of MySQL

that can be loaded and unloaded at runtime. Oracle named the X Plugin mysqlx and

it is listed with that name in the server. Once loaded (installed), the plugin will start

automatically each time the server is restarted. Also, recall that the plugin feature in

MySQL is the primary mechanism Oracle uses to extend the functionality of the server

without having to rebuild the code from scratch. Although plugin technology has been

in MySQL for some time and initially used for storage engines, it has become the default

mechanism Oracle uses for expanding and adding new features to the server.

256

In that respect, the X Plugin is an excellent example of the power that a plugin can

bring to the server. For example, by default, the server communicated with clients using

a fixed protocol commonly referred to as the MySQL client/server protocol or simply, the

MySQL protocol or the old protocol. This protocol was built into the server and except

for some minor changes through the lifetime of MySQL; it hasn’t changed much since

the MySQL 4.X code base. Until the X Plugin came about, this was the only way clients

could communicate with the server.1 Now, once you load the X Plugin, it enables a new

communication protocol for the client and server using the X Protocol.

HOW DO MYSQL PLUGINS WORK?

In the most general sense, when a plugin is installed or started on startup, the server and

plugin communicate using a special plugin API that allows the plugin to register itself as

part of the server. For instance, the plugin provides callback methods for processing status

variables as well as methods for enabling its functionality. This negotiation process is how a

plugin can extend the functionality of the server without having to force the server to restart

and does not require a recompile of the server.

That said, it is important to note that plugins are compiled against the common server libraries

and as such must match the server for specific versions as well as platform (e.g., you cannot

use a plugin compiled for Linux on Windows). Detection of compatibility is provided using a

special versioning mechanism that is checked during startup of the plugin. Most plugins are

published clearly listing the versions of the server supported. When you decide to use a new

plugin, be sure to check that it is compatible with your server version. For more information

about plugins, see the section “The MySQL Plugin API” in the online MySQL reference manual.

�Features
Once again, the X Plugins primary purpose is to support the X Protocol for

communication with the server to enable the X DevAPI (NoSQL) interface. Although

that is its primary focus, there are some interesting features that you can use to help

make the experience better. These including configuring the plugin to use different

secure socket layer (SSL) settings than the server and changing the behavior of the

1�It should be noted that MySQL Replication uses extensions built into the original protocol.

Chapter 6 X Plugin

257

plugin using system variables. We will see how to change the SSL settings and how

to change the default port in the following sections. We will see more about the other

system variables in a later section.

Note  Although the documentation and other text show variables for the X
Plugin with initial capital letters, the variables are shown in the SQL results with
lowercase names. For example, you may see a prefix of Mysqlx_, but the output
from the server with display as mysqlx_. Fortunately, most SQL commands on
most platforms will accept either version.

�Secure Socket Layer (SSL) Connections

If you use SSL connections on your MySQL servers and want to use secure connections

for the X Plugin (and your NoSQL applications), you can setup the X Plugin to use

different values for the SSL options than the server. This means you can setup the X

Plugin to use one SSL certificate and the server to use another. This can be very helpful

in making your NoSQL applications secure without sharing the SSL data among client/

server and X Protocols.

You can place the system variables and their values in the my.cnf file or pass the

system variables on the server startup command (command-line). When used in this

manner, system variables are often referred to as startup options. Listing the system

variables and their current values can be accomplished using the following command.

Note that I used the MySQL Shell to get the information using batch mode.

Chapter 6 X Plugin

258

$ mysqlsh -uroot -hlocalhost --sql -e "SHOW VARIABLES LIKE 'mysqlx_ssl%'"

Enter password:

+--------------------+-------+

| Variable_name | Value |

+--------------------+-------+

| mysqlx_ssl_ca | |

| mysqlx_ssl_capath | |

| mysqlx_ssl_cert | |

| mysqlx_ssl_cipher | |

| mysqlx_ssl_crl | |

| mysqlx_ssl_crlpath | |

| mysqlx_ssl_key | |

+--------------------+-------+

You can set these variables in your configuration file (my.cnf) by placing them in the

section for the server named [msyqld] but you should omit the dashes. The following

shows an excerpt demonstrating how to use a different SSL configuration for the server

and X Plugin.

[mysqld]

...

ssl-ca=/my_ssl/certs/ca_server.pem

ssl-cert=/my_ssl/certs/server-cert.pem

ssl-key=/my_ssl/certs/server-key.pem

...

mysqlx-ssl-ca=/my_ssl/certs/ca_xplugin.pem

mysqlx-ssl-cert=/my_ssl/certs/xplugin-cert.pem

mysqlx-ssl-key=/my_ssl/certs/xplugin-key.pem

...

Note that I have included both sets of SSL options only the X Plugin options are

named with the mysqlx_ prefix.

Chapter 6 X Plugin

259

Note  In general, most system variables have corresponding startup options and
are used in the configuration file with the same name only the underscores are
changed to dashes. For example, the startup option for the mysqlx_ssl_ca system
variable is --mysqlx-ssl-ca. However, the --mysqlx_ssl_ca version also works
for those who forget.

To change the values temporarily or as part of a shell or batch file, you can specify the

system variables as options on the command line as shown in the following. Note that

we used the same values as shown previously.

$ mysqld ... --mysqlx-ssl-ca=/my_ssl/certs/ca_xplugin.pem

--mysqlx-ssl-cert=/my_ssl/certs/xplugin-cert.pem \

 --mysqlx-ssl-key=/my_ssl/certs/xplugin-key.pem

Although you can use the options on the command line like this, it is not the best

method. This is because unless you record the new command line somewhere or use

it in a shell or batch command (and even then), it is very easy to forget what value you

used or even which system variables were used. Thus, for the best method, always place

custom system variable changes in your MySQL configuration file.

�Changing the Default Port

Recall the X Plugin uses a different port than the server. The default port is 33060. If you

want to change the default port, you can do so using the mysqlx_port system variable. As

with the SSL options, you can place this in the my.cnf file or pass it as a startup option on

the server startup command (command-line). You can also check the default port with

the following command. The valid range of values is 1-65535. For example, you can setup

the X Plugin to use port 3307.

$ mysqlsh -uroot -hlocalhost --sql -e "SHOW VARIABLES LIKE 'mysqlx_port'"

Enter password:

+---------------+-------+

| Variable_name | Value |

+---------------+-------+

| mysqlx_port | 3307 |

+---------------+-------+

Chapter 6 X Plugin

260

Because the mysqlx_port system variable is only read at startup (for obvious

reasons), changing the value requires a restart to use a different port.

As with the SSL options, you can set the port on the command line as shown in the

following. In this case, we start the server on port 3307 and the X Plugin listens on port 3308.

$ mysqld --port=3307 --datadir... --socket=...mysql.sock

--mysqlx-port=3308 --mysqlx-socket=...mysqlx.sock

Once again, this is not the recommended method because command-line options

tend to be forgotten if not placed in a shell or batch file.

�Going Deeper—Journey into the Source Code
If you want to see how the X Plugin works by examining the source code, you can do so

by downloading the source code from http://dev.mysql.com/downloads/mysql/. To

download the MySQL 8 source code, select Source Code from the platform dropdown

box and download the file that matches your platform. If you do not see one that

matches your platform, and you just want to explore the source code, choose the generic

Linux option. Figure 6-1 shows an excerpt from the website highlighting the tab and drop

down box.

Figure 6-1.  Downloading the MySQL 8 source code

Chapter 6 X Plugin

http://dev.mysql.com/downloads/mysql/

261

Once downloaded, you can find the X Plugin source code in the rapid/plugin/x

folder. You can browse the source code and see how it works and even how it negotiates

with the server on startup. For example, to see the system variables, open the

xpl_plugin.cc file in the rapid/plugin/x/src folder and scroll down to about line

number 240 or so. You will find a structure like the example in Listing 6-1 that lists the

variables supported by the plugin.

Listing 6-1.  System Variable Definition (X Plugin)

...

static struct st_mysql_sys_var* xpl_plugin_system_variables[]= {

 MYSQL_SYSVAR(port),

 MYSQL_SYSVAR(max_connections),

 MYSQL_SYSVAR(min_worker_threads),

 MYSQL_SYSVAR(idle_worker_thread_timeout),

 MYSQL_SYSVAR(max_allowed_packet),

 MYSQL_SYSVAR(connect_timeout),

 MYSQL_SYSVAR(ssl_key),

 MYSQL_SYSVAR(ssl_ca),

 MYSQL_SYSVAR(ssl_capath),

 MYSQL_SYSVAR(ssl_cert),

 MYSQL_SYSVAR(ssl_cipher),

 MYSQL_SYSVAR(ssl_crl),

 MYSQL_SYSVAR(ssl_crlpath),

 MYSQL_SYSVAR(socket),

 MYSQL_SYSVAR(bind_address),

 MYSQL_SYSVAR(port_open_timeout),

 MYSQL_SYSVAR(wait_timeout),

 MYSQL_SYSVAR(interactive_timeout),

 MYSQL_SYSVAR(read_timeout),

 MYSQL_SYSVAR(write_timeout),

 NULL

};

...

Chapter 6 X Plugin

262

Note that there is a macro definition, MYSQL_SYSVAR, that is used to define the system

variables. There is also system variables listed by their names. Once the plugin is started,

you can see system variables using the command in Listing 6-2. Note that the variables

are named with the prefix mysqlx_ and all 14 are present (the host system was running

macOS—your results may vary).

Listing 6-2.  Listing the System Variables for the X Plugin

MySQL localhost:33060+ ssl SQL > SHOW VARIABLES LIKE 'mysqlx_%';

+-----------------------------------+------------------+

| Variable_name | Value |

+-----------------------------------+------------------+

| mysqlx_bind_address | * |

| mysqlx_connect_timeout | 30 |

| mysqlx_idle_worker_thread_timeout | 60 |

| mysqlx_max_allowed_packet | 1048576 |

| mysqlx_max_connections | 100 |

| mysqlx_min_worker_threads | 2 |

| mysqlx_port | 33060 |

| mysqlx_port_open_timeout | 0 |

| mysqlx_socket | /tmp/mysqlx.sock |

| mysqlx_ssl_ca | |

| mysqlx_ssl_capath | |

| mysqlx_ssl_cert | |

| mysqlx_ssl_cipher | |

| mysqlx_ssl_crl | |

| mysqlx_ssl_crlpath | |

| mysqlx_ssl_key | |

+-----------------------------------+------------------+

16 rows in set (0.00 sec)

We discover more about the system variables in the next section. If you’re

adventurous, keep reading the code in that file for more clues about status variables.

Hint: look at the file named xpl_global_status_variables.h.

Chapter 6 X Plugin

263

�Options and Variables
As we saw in the previous section, the X Plugin has several system variables that can

be set at startup either in the configuration file or on the server command line. The

configuration items that can be controlled include such items as the default port,

configure parameters for connections, and establish timeout limits. You also can see

several status variables that the X Plugin reports concerning performance, statistics,

and more. These status variables can be used to monitor the X Plugin to help you tune

its options to match your environment. I explore the commonly used startup options,

system variables, and status variables in the following sections.

Note  I use the term variable to apply to qualities and features that are common
to startup options, system variables, and status variables.

Variables can have two scope levels: global that apply to all connections and session

that apply only to the current connection (session), that is, the connection you are

currently using. There is no provision to capture data from other sessions that you are

not currently using.

Variables also can support dynamic values that can be set at runtime and values that

can only be set at startup. Although you can view the values of any variable regardless

of scope, you can only set values at runtime for dynamic variables. You must take care

when setting global variables so that you do not adversely affect other connections.

�How to View Values of Variables
There are several ways to see the values of variables. We saw in the last section that you

can use the SQL commands SHOW VARIABLES to see system variables and SHOW STATUS

command to see the values of status variables. Remember, startup options are associated

with a system variable so using the SHOW VARIABLES command is all you need to see

those.

You can also see the values of system variables by using a special form of the SELECT

command using a special notation or shortcut in the form of @@GLOBAL for the value at

the global scope and @@SESSION for the value at the session scope. Although there are

currently no session level system variables for the X Plugin, the following shows the

global system variable mysqlx_connect_timeout.

Chapter 6 X Plugin

264

MySQL localhost:33060+ ssl SQL > SELECT @@GLOBAL.mysqlx_connect_timeout;

+---------------------------------+

| @@GLOBAL.mysqlx_connect_timeout |

+---------------------------------+

| 30 |

+---------------------------------+

1 row in set (0.00 sec)

You also can see the values of variables using the PERFORMANCE_SCHEMA tables

(views). In this case, you can see the status variables either by session or global scope. Or

you can write a SQL query to combine the data with scope and shown in Listing 6-3 (your

results may vary). I formatted the following SQL statement to make it easier to read.

SELECT *, 'SESSION' as SCOPE FROM PERFORMANCE_SCHEMA.session_status

WHERE variable_name LIKE 'mysqlx_%'

UNION SELECT *, 'GLOBAL' as SCOPE FROM PERFORMANCE_SCHEMA.global_status

WHERE variable_name LIKE 'mysqlx_%'

Listing 6-3.  X Plugin Status Variables with Scope

MySQL localhost:33060+ ssl SQL > SELECT *, 'SESSION' as SCOPE FROM

PERFORMANCE_SCHEMA.session_status WHERE variable_name LIKE 'mysqlx_%' UNION

SELECT *, 'GLOBAL' as SCOPE FROM PERFORMANCE_SCHEMA.global_status WHERE

variable_name LIKE 'mysqlx_%' \G

*************************** 1. row ***************************

 VARIABLE_NAME: Mysqlx_address

VARIABLE_VALUE: ::

 SCOPE: SESSION

*************************** 2. row ***************************

 VARIABLE_NAME: Mysqlx_bytes_received

VARIABLE_VALUE: 1002

 SCOPE: SESSION

*************************** 3. row ***************************

 VARIABLE_NAME: Mysqlx_bytes_sent

VARIABLE_VALUE: 8851

 SCOPE: SESSION

Chapter 6 X Plugin

265

*************************** 4. row ***************************

 VARIABLE_NAME: Mysqlx_connection_accept_errors

VARIABLE_VALUE: 0

 SCOPE: SESSION

*************************** 5. row ***************************

 VARIABLE_NAME: Mysqlx_connection_errors

VARIABLE_VALUE: 0

 SCOPE: SESSION

...

*************************** 119. row ***************************

 VARIABLE_NAME: Mysqlx_worker_threads

VARIABLE_VALUE: 2

 SCOPE: GLOBAL

*************************** 120. row ***************************

 VARIABLE_NAME: Mysqlx_worker_threads_active

VARIABLE_VALUE: 1

 SCOPE: GLOBAL

120 rows in set (0.00 sec)

Note that we see the same variables and their scope.

Note  A complete description and tutorial of using the Performance Schema
is beyond the scope of this book. For more information about the performance
schema, see the section “MySQL Performance Schema” in the online MySQL
reference manual.

You may have noticed in previous examples that I used the SHOW SQL command

to see the values of variables. There are two SHOW commands: one for system variables

(SHOW VARIABLES) and another for status variables (SHOW STATUS). You can use the LIKE

clause to find all the X Plugin variables. The LIKE clause allows you to specify part of a

name and use wildcards. For example, you can find all the system and status variables

for the X Plugin using the following two commands.

SHOW VARIABLES LIKE 'mysqlx_%';

SHOW STATUS LIKE 'mysqlx_%';

Chapter 6 X Plugin

266

Note that I use the LIKE clause using mysqlx_%. This will show all the variables that

start with mysqlx_. Because all X Plugin variables have this prefix, we see all the variables

for the X Plugin.

Tip  The LIKE clause can be very handy in another way. You can use it to search
for a variable that you may have forgotten its name simply by using a keyword.
For example, if you wanted to see all the variables that have dir in the name, use
LIKE '%dir%'.

By now you may be thinking that we’re using a lot of SQL commands. You may be

wondering if there is a way to see the values of variables using the NoSQL interface. As of

this writing, there are no objects in the X DevAPI or part of the MySQL Shell that you can

use to get information about variables and their values.2 This is the reason I mentioned

earlier in the book that the SQL interface is still needed for some routine maintenance

tasks. Checking and setting variables is one of the maintenance and configuration tasks

that require the use of SQL commands.

WHAT ABOUT INFORMATION_SCHEMA?

If you are familiar with the special INFORMATION_SCHEMA database, you may be wondering

what happened to using the session_* and global_* tables (views) for showing values of

variables. Starting with server version 5.7.6, these tables (views) were deprecated. This is

because they were replaced with tables (views) in PERFORMANCE_SCHEMA. For more information

about the changes and migrating to PERFORMANCE_SCHEMA, see the section “Migrating to

Performance Schema System and Status Variable Tables” in the online MySQL reference manual.

�How to Set Values of Variables
We have already discovered we can set system variables in the configuration file and we

can use startup options to set the system variables. These methods are used for variables

that can only be set at startup. However, for those variables that can be set dynamically,

2�If we had such objects, it would make interacting with the server a lot easier.

Chapter 6 X Plugin

267

you can change their values for session or global scope using the SET command and the

@@SESSION and @@GLOBAL notation shown previously. However, because there are

no session variables currently, we can only set the values for global variables as shown in

Listing 6-4.

Listing 6-4.  Setting Global System Variables

$ mysqlsh -uroot -hlocalhost --sql --json=pretty -e "SELECT @@GLOBAL.

mysqlx_connect_timeout"

{

 "password": "Enter password: "

}

{

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": [],

 "rows": [

 {

 "@@GLOBAL.mysqlx_connect_timeout": 30

 }

],

 "hasData": true,

 "affectedRowCount": 0,

 "autoIncrementValue": 0

}

$ mysqlsh -uroot -hlocalhost --sql --json=pretty -e "SET

@@GLOBAL.mysqlx_connect_timeout = 90"

{

 "password": "Enter password: "

}

{

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": [],

 "rows": [],

Chapter 6 X Plugin

268

 "hasData": false,

 "affectedRowCount": 0,

 "autoIncrementValue": 0

}

$ mysqlsh -uroot -hlocalhost --sql --json=pretty -e "SELECT

@@GLOBAL.mysqlx_connect_timeout"

{

 "password": "Enter password: "

}

{

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": [],

 "rows": [

 {

 "@@GLOBAL.mysqlx_connect_timeout": 90

 }

],

 "hasData": true,

 "affectedRowCount": 0,

 "autoIncrementValue": 0

}

Should session dynamic system variables be introduced, you can set their values

with the SET @@SESSION.<variable_name> command.

Tip  System variables that can be changed at runtime are known as dynamic
variables. This only applies to those system variables that can be changed while
the X Plugin is running.

Now that we know more about variables and how to see and set values, let’s look at

the specific variables for the X Plugin. Let’s begin with those system variables that you

can place in the configuration file.

Chapter 6 X Plugin

269

�System Variables and Startup Options
Recall that most system variables have a corresponding option that you can use to

configure the system at startup. That is, we call system variables that can be set in this

manner startup options. Other system variables can be changed at runtime and are often

referred to as dynamic system variables. However, there are some variables that can

only be used in the configuration file or the command line. As you can surmise, some

variables can be used as startup options. Table 6-1 lists those system variables that can

be used as startup options (as well as those are also system variables) for the X Plugin.

I also include which variables can be set dynamically and a short description of each.

Table 6-1.  System Variables and Startup Options (X Plugin)

Name Default SysVar Dynamic Description

mysqlx_bind_address * Yes No The network address that X Plugin

uses for connections.

mysqlx_connect_

timeout

30 Yes Yes Number of seconds to wait for the

first packet to be received from

newly connected clients

mysqlx_idle_worker_

thread_timeout

60 No No Time in seconds after which an idle

worker thread is terminated

mysqlx_max_allowed_

packet

1048576 No Yes The Maximum size of a network

packet that X Plugin can process.

mysqlx_max_

connections

100 Yes Yes The Maximum number of

concurrent client connections the X

Plugin can accept.

mysqlx_min_worker_

threads

2 No Yes The minimum number of worker

threads the X Plugin uses for

handling client requests.

mysqlx_port 33060 Yes No Specifies the port where the X

Plugin listens for connections

(continued)

Chapter 6 X Plugin

270

Name Default SysVar Dynamic Description

mysqlx_port_open_

timeout

0 Yes No The amount of time in seconds that

X Plugin waits for a TCP/IP port to

become free.

mysqlx_socket Platform

dependent

Yes No The socket where X Plugin listens

for connections.

mysqlx_ssl_ca Yes No The path to a file with a list of

trusted SSL CAs.

mysqlx_ssl_capath Yes No The path to a directory that

contains trusted SSL CA certificates

in PEM format.

mysqlx_ssl_cert Yes No The name of the SSL certificate

file to use for establishing a secure

connection.

mysqlx_ssl_cipher No No The list of permissible ciphers to

use for SSL encryption.

mysqlx_ssl_crl Yes No The path to a file containing

certificate revocation lists in PEM

format.

mysqlx_ssl_crl_path Yes No The path to a directory that

contains files containing certificate

revocation lists in PEM format.

mysqlx_ssl_key Yes No The name of the SSL key file to

use for establishing a secure

connection.

Table 6-1.  (continued)

As you can see, there are a number things we can set for the X Plugin including

setting up the SSL connection, tuning the X Plugin with maximum connections limit,

minimum of worker threads, and even setting the size of the data packet (how much data

can be sent over the network in a single packet). Of course, we also can change the port

that the X Plugin uses.

Chapter 6 X Plugin

271

�Status Variables
Recall system variables are those variables that only report statistics and other data from

the plugin. Status variables cannot be set at runtime. However, most are reset whenever

the server restarts. That is, counters are reset at reboot.

There are quite a few status variables for the X Plugin that report on several areas

in the X Plugin. Rather than look at the status variables individually (there are over 120

if you count session and global scope), we look at the groups or areas that the status

variables report on. We will see more about specific status variables in the next section

where we see how to monitor the X Plugin.

The following lists a few of the more common status variables and a brief description

of why you may want to examine the values. The notation, mysqlx_* indicates the status

variables for the area contain several variables. For example, mysqlx_bytes_* includes

mysqlx_bytes_sent and mysqlx_bytes_received.

•	 mysqlx_connections_*: the number of connections accepted,

rejected, and closed.

•	 mysqlx_sessions_*: statistics about sessions such as accepted,

closed, killed, and rejected.

•	 mysqlx_stmt_*: statistics for execution, drop, list, and create for

collections.

There are a few other discrete status variables that you may want to examine

including errors on startup (mysqlx_init_error) and the number of rows sent to clients

(mysqlx_rows_sent). For a complete list of the available status variables for the X Plugin,

see the section “Status Variables for X Plugin” in the online MySQL reference manual.

Now let’s briefly look at some ways you can monitor the X Plugin and why you would

want to do so.

�Monitoring the X Plugin
If you want to keep an eye on the X Plugin either to ensure all is working correctly,

diagnose problems, verify configuration, or tune performance, you can monitor the X

Plugin using the system variables for the X Plugin. This requires reading the values at

a specific time or when an event has occurred. Recall that some status variables have

Chapter 6 X Plugin

272

both a session and global scope. Thus, you may want to use the @@ notation discussed

previously to query the session or global scope values.

You can see the values of status variables in several ways including using the SHOW

STATUS command as well as reading the tables (views) from the PERFORMANCE_SCHEMA

database. Listing 6-5 shows the tables (views) that can be used to read the values of

status variables.

Listing 6-5.  Performance Schema Views for Status Variables

$ mysqlsh -uroot -hlocalhost --sql -e "SHOW TABLES FROM PERFORMANCE_SCHEMA

LIKE '%status%'"

Enter password:

+---+

| Tables_in_performance_schema (%status%) |

+---+

| global_status |

| replication_applier_status |

| replication_applier_status_by_coordinator |

| replication_applier_status_by_worker |

| replication_connection_status |

| session_status |

| status_by_account |

| status_by_host |

| status_by_thread |

| status_by_user |

+---+

Note that there are a few tables (views) for status variables including those for

replication and by scope. Just remember to use the LIKE clause when querying for status

variables for the X Plugin. However, as I mentioned previously, a complete tutorial of

using the performance schema is beyond the scope of this book. Fortunately, the SHOW

STATUS and SELECT with @@ notation SQL commands work well enough for most uses.3

3�Some may say the SQL commands are easier to use.

Chapter 6 X Plugin

273

Although there are a lot of status variables for the X Plugin, the status variables

can be organized in several areas. The following list summarizes the categories I have

defined.

•	 Communication: Information about messages and data sent and

received.

•	 Connections: Information about connections including accepted,

rejected, and deleted.

•	 CRUD operations: Statistics on created, read, updated, and deleted

operations.

•	 Errors and warnings: Information about errors or warnings at startup

or sent to the client.

•	 Sessions: Information about sessions including accepted, rejected,

and deleted.

•	 SSL: Information about secure connections.

•	 Statements: Statistics about execution, creation, and more for the

document store.

•	 Worker threads: Information about the worker threads in the

X Plugin.

The following sections describe the eight areas in more detail including suggestions

for tasks that you may want to perform using the variables. Each section also includes

a complete list of the associated status variables, their scope and a brief description.

You can use the sections as a guide when exploring the X Plugin during your diagnostic

procedures or simply for curiosity.

�Communication
The communication category includes status variables that report information that is

transmitted to or received from the clients. You can observe the amount of traffic over

the network for both a session or globally, see the number of rows sent to the client both

session and globally, and check the expectation blocks for the X Protocol.

Chapter 6 X Plugin

274

Expectation blocks are a mechanism the X Protocol uses to manage situations

when there are messages in the pipeline that may have failed. That is, other, dependent

tasks that are executed prior to the end of block. Expectation blocks are a way to ensure

safe, reliable failure of the entire block (think transaction). There are several facets

to expectation blocks and it is unlikely that you will be required to monitor them. If

you’d like to know more about expectation blocks, see https://dev.mysql.com/doc/

internals/en/x-protocol-expect-expectations.html.

Table 6-2 lists all the status variables for the communication category.

The types of tasks where you may want to use these status variables include

observing how much data is sent and received and how many rows are sent to the client

(in a result set). You also can see the expectation blocks data, but that may be a more

advanced than what most will need when monitoring the X Plugin.

�Connections
The connections category includes status variables for checking the state of connections.

There are connection errors variables that you can use to see how many connections

have had errors. These variables have both session and global scope, which makes them

interesting for diagnosing individual connection issues. You also can see statistics for

the number of connections that have been accepted (open), closed, and rejected (due to

login failures, insufficient privileges, wrong password, etc.). These status variables only

have global scope so they only show aggregates from all connections. Table 6-3 lists all

the status variables for the connection category.

Table 6-2.  Communication Status Variables (X Plugin)

Variables Scope Description

mysqlx_bytes_received Both The number of bytes received through the network.

mysqlx_bytes_sent Both The number of bytes sent through the network.

mysqlx_expect_close Both The number of expectation blocks closed.

mysqlx_expect_open Both The number of expectation blocks opened.

mysqlx_rows_sent Both The number of rows sent back to clients.

Chapter 6 X Plugin

https://dev.mysql.com/doc/internals/en/x-protocol-expect-expectations.html
https://dev.mysql.com/doc/internals/en/x-protocol-expect-expectations.html

275

The types of tasks where you may want to use these status variables include

monitoring the connection errors status variables for cases when there are a lot of

failures (errors). This could be as simple as an application that is using the wrong

credentials or could be as nefarious as attempts to discover a login account and

password.

You also can use the accepted, closed, and rejected system variables to keep an eye

on the number of connections that are used. That is, if your application is used by less

than 10 users, you would expect to see rather low values for these status variables. High

numbers could indicate applications that connect and disconnect too often (not always

a bad thing) or cases where you have more instances of the application(s) than you

thought.

�CRUD Operations
The CRUD operations category provides statistics for the create, read (find), update, and

delete operations on the document store. Note that these are counters used for the X

DevAPI and not specifically for the SQL statement execution. You can see values for each

of the CRUD operations at either session or global scope. Table 6-4 lists all the status

variables for the CRUD operations category.

Table 6-3.  Connection Status Variables (X Plugin)

Variables Scope Description

mysqlx_connection_accept_

errors

Both The number of connections that have caused accept

errors.

mysqlx_connection_errors Both The number of connections that have caused errors.

mysqlx_connections_accepted Global The number of connections that have been accepted.

mysqlx_connections_closed Global The number of connections that have been closed.

mysqlx_connections_rejected Global The number of connections that have been rejected.

Chapter 6 X Plugin

276

The types of tasks where you may want to use these status variables include

monitoring a document store application for activity such as how many requests for

deletes are issued, number of new data items added (inserted), and so on. Because

the status variables have both a session and global scope, you can see the activity for a

specific session and compare that to the values for the global scope (overall statistics).

�Errors and Warnings
The errors and warning category provides a means to see the number of errors that have

occurred at startup and notices or errors sent to the client. All the status variables in this

category have both session and global scope and thus can be used to check statistics for

an individual connection (session) or aggregate values from all sessions.

Notices are a way for the X Protocol to send additional information to the client

at either session or global scope. When sent at the sessions level (referred to as local

in the internal manual), these can include a list of committed transaction identifiers,

transaction state changes, SQL warnings, and changes to variables. When sent at the

global level, these can include server shutdown, disconnections in group replication,

table drops, and so forth. Keep in mind that status variables are only counters so

although you cannot see the messages (notices) themselves, you can see how many

have been sent and whether they are informational (warning) or a response to an error

or another serious event. For more information about notices in the X Protocol, see

http://dev.mysql.com/doc/internals/en/x-protocol-notices-notices.html.

Table 6-4.  CRUD Status Variables (X Plugin)

Variables Scope Description

mysqlx_crud_create_view Both The number of create view requests received.

mysqlx_crud_delete Both The number of delete requests received.

mysqlx_crud_drop_view Both The number of drop view requests received.

mysqlx_crud_find Both The number of find requests received.

mysqlx_crud_insert Both The number of insert requests received.

mysqlx_crud_modify_view Both The number of modify view requests received.

mysqlx_crud_update Both The number of update requests received.

Chapter 6 X Plugin

http://dev.mysql.com/doc/internals/en/x-protocol-notices-notices.html

277

Table 6-5 lists all the status variables for the errors and warnings category.

The types of tasks where you may want to use these status variables include checking

for excessive errors for a session, which may indicate something is wrong with the

application (or users’ use thereof). The notices status variables may be helpful to gather

data for diagnosing errors and warnings sent to the clients. That is, it may indicate there

is additional data that you may want to look for in the logs. For example, a high count

for these variables at the session level could indicate the application is attempting to do

something it should not do or is performing the operations too often.

However, the most important status variable in this category to watch when starting

out with the X Plugin or when changing its configuration is the mysqlx_init_error

status variable. Check this variable to ensure there are no errors at startup (initialization)

and if there are issues, track them down to make sure you have everything configured

correctly. Although sometimes an error might be okay, in general you should not see any

errors registered for initialization.

�Sessions
The session category provides a way to track how many sessions have been

created (accepted), closed, resulted in being closed due to an error, were killed

unceremoniously, or rejected due to login or other errors when establishing the session.

All the available status variables have only global scope. Table 6-6 lists all the status

variables for the session category.

Table 6-5.  Errors and Warnings Status Variables (X Plugin)

Variables Scope Description

mysqlx_errors_sent Both The number of errors sent to clients.

mysqlx_init_error Both The number of errors during initialization.

mysqlx_notice_other_sent Both The number of other types of notices sent back to clients.

mysqlx_notice_warning_sent Both The number of warning notices sent back to clients.

Chapter 6 X Plugin

278

The types of tasks where you may want to use these status variables include checking

to see how many sessions failed (msyqlx_sessions_fatal_error), were killed by

someone like an admin (mysqlx_sessions_killed), and how many were opened or

closed successfully. As with connection attempts, you could use the status variables in

this category to monitor how often and how many sessions are being created and used.

Too many may indicate more sessions than you originally planned, widespread use has

increased, and so forth. Check these status variables whenever you have or think there

may be issues with creating sessions or when sessions begin to fail frequently.

�SSL
The SSL category is one of the largest categories and includes a host of status variables

for monitoring secure connections. This is very important due to the continued vigilance

information technology specialists must maintain to protect systems and data from

unintended use, misuse, or exploitation. If you decide to use SSL connections, you will

want to check these status variables to ensure your SSL connection settings are working

properly. You can check the certificate status for validity, see a list of ciphers, the version

of SSL employed, and more. Table 6-7 lists all the status variables for the SSL category.

Table 6-6.  Session Status Variables (X Plugin)

Variables Scope Description

mysqlx_sessions Global The number of sessions that have been opened.

mysqlx_sessions_accepted Global The number of session attempts that have been accepted.

mysqlx_sessions_closed Global The number of sessions that have been closed.

mysqlx_sessions_fatal_

error

Global The number of sessions that have closed with a fatal error.

mysqlx_sessions_killed Global The number of sessions that have been killed.

mysqlx_sessions_

rejected

Global The number of session attempts that have been rejected.

Chapter 6 X Plugin

279

The types of tasks where you may want to use these status variables include checking

to ensure SSL is turned on for a session or for all sessions (mysqlx_ssl_active), viewing

the number of SSL connections accepted (mysqlx_ssl_finished_accepts), and the

dates for valid SSL certificates. This last operation can save you from a host of rabbit hole

diagnosis4 chasing down strange error messages.

Note that some of the variables have both a session and global scope so you can use

these to help diagnose SSL connection issues at the session level. For example, if a client

cannot connect properly to the X Plugin with SSL, takes a long time to connect, or there

are errors during the connection.

For more information about these status variables, you can see the section “Using

Secure Connections” in the online MySQL reference manual. Because most of these status

variables are the same as those used by the server, the same techniques and descriptions

apply.

4�I call this rabbit hole diagnosis because it is often frustrating and seldom results in a correct
diagnosis. SSL certificate expiration is one such cause.

Table 6-7.  SSL Status Variables (X Plugin)

Variables Scope Description

mysqlx_ssl_accepts Global The number of accepted SSL connections

mysqlx_ssl_active Both If SSL is active

mysqlx_ssl_cipher Both The current SSL cipher (empty for non-SSL connections)

mysqlx_ssl_cipher_list Both A list of possible SSL ciphers (empty for non-SSL

connections)

mysqlx_ssl_ctx_verify_depth Both The certificate verification depth limit currently set in ctx

mysqlx_ssl_ctx_verify_mode Both The certificate verification mode currently set in ctx

mysqlx_ssl_finished_accepts Global The number of successful SSL connections to the server

mysqlx_ssl_server_not_after Global The last date for which the SSL certificate is valid

mysqlx_ssl_server_not_before Global The first date for which the SSL certificate is valid

mysqlx_ssl_verify_depth Global The certificate verification depth for SSL connection

mysqlx_ssl_verify_mode Global The certificate verification mode for SSL connection

mysqlx_ssl_version Both The name of the protocol used for the connection ssl

Chapter 6 X Plugin

280

�Statements
The statements category is a very interesting category and can be quite handy in

diagnosing or observing operations related to the X DevAPI. In particular, there are

status variables that count the number of collection creates and drops, collection

indexing, number of execution events, listing clients, and more.

Recall that a statement in the X DevAPI parlance is an action that exercises one or

more of the CRUD operations. Even though CRUD operations are the major focus for this

category of status variables, we also use that term for SQL commands there are status

variables for SQL statements. The available status variables have both a session and

global scope so they can be used for monitoring activities for a session or for aggregate

details. Table 6-8 lists all the status variables for the statement category.

Table 6-8.  Statement Status Variables (X Plugin)

Variables Scope Description

mysqlx_stmt_create_collection Both The number of create collection statements

received.

mysqlx_stmt_create_collection_

index

Both The number of create collection index

statements received.

mysqlx_stmt_disable_notices Both The number of disable notice statements

received.

mysqlx_stmt_drop_collection Both The number of drop collection statements

received.

mysqlx_stmt_drop_collection_

index

Both The number of drop collection index

statements received.

mysqlx_stmt_enable_notices Both The number of enable notice statements

received.

mysqlx_stmt_ensure_collection Both The number of ensure collection statements

received.

mysqlx_stmt_execute_mysqlx Both The number of StmtExecute messages

received with namespace set to mysqlx.

(continued)

Chapter 6 X Plugin

281

The types of tasks where you may want to use these status variables include

monitoring the document store for creation and drop of collections and related indexes.

This could be helpful if you are monitoring a document store application for how it is

using collections. That is, frequent collection creation may indicate that the data is not

being saved often or is being generated on the fly. This may lead you to discover ways to

improve how your applications use data.

Other tasks include monitoring the notices (messages), number of times client kill

requests were sent (not necessarily successfully executed), and listing notices, clients,

and objects. Most of these status variables are beyond the scope of normal monitoring

that most will require. Indeed, some of these status variables are referenced only briefly

in the documentation and rarely anywhere else other than the source code itself.

One last status variable that may be helpful is the mysqlx_stmt_ping status variable

to see how many times clients checked the server to see if it is alive. High values here

could indicate potential network connectivity issues.

�Worker Threads
The worker threads are the threads used by the X Plugin to execute tasks. There are only

two status variables in this category that allow you to see the total number of worker

threads available (global only) and the number of threads currently active (also global

Variables Scope Description

mysqlx_stmt_execute_sql Both The number of StmtExecute requests received

for the SQL namespace.

mysqlx_stmt_execute_xplugin Both The number of StmtExecute requests received

for the X Plugin namespace.

mysqlx_stmt_kill_client Both The number of kill client statements received.

mysqlx_stmt_list_clients Both The number of list client statements received.

mysqlx_stmt_list_notices Both The number of list notice statements received.

mysqlx_stmt_list_objects Both The number of list object statements received.

mysqlx_stmt_ping Both The number of ping statements received.

Table 6-8.  (continued)

Chapter 6 X Plugin

282

only). You can increase the minimum number of worker threads using the mysqlx_min_

worker_threads system variable. Table 6-9 lists all the status variables for the threads

category.

The types of tasks where you may want to use these status variables include when

there are performance problems regarding slower execution. This can happen if more

worker threads are active than what the system can handle or if there are not enough

worker threads available for all the connections and requests for execution of tasks.

As the X Plugin matures, there are likely to be more tasks that you may want to

perform for diagnosing problems or tuning performance, or simply configuring the

plugin. If you are interested in monitoring the X Plugin, be sure to check the online

MySQL reference manual as each new release of MySQL 8 is announced for updates to

the status variables as well as tasks for monitoring the X Plugin.

�Summary
The X Plugin is an extension to the MySQL Server that can be loaded dynamically. This

is very significant because the X Plugin enables the document store feature permitting

the storing and retrieving of JSON documents. In particular, the X Plugin permits

communication between the server and clients using the X Protocol and interact with

the X DevAPI to permit ACID compliant storage. Further, using the X DevAPI you can

use a NoSQL like syntax to execute CRUD operations against the document store. It is the

X Plugin the ties all the functionality together to turn the MySQL server into a document

store.

In this chapter, we learned more about the X Plugin and how it works. In particular,

we saw how to configure the X Plugin such as changing the port and enabling secure

connections via SSL that are separate from the server. We also discovered the other

system variables as well as a lengthy list of status variables that you can use to monitor

Table 6-9.  Worker Threads Status Variables (X Plugin)

Variables Scope Description

mysqlx_worker_threads Global The number of worker threads available

mysqlx_worker_threads_active Global The number of worker threads currently used.

Chapter 6 X Plugin

283

the X Plugin. Finally, we discovered some interesting internal facts about the X Plugin

such as how it registers system variables.

If you are still curious about the X Plugin and how it works internally, there is no

better document to examine than the source code itself. Although it may not be for the

uninitiated,5 studying the source code is akin to reading the Greek originals.

In the next chapter, I take a closer look at how the new X Protocol works including a

look at how the server exchanges packets with clients. As you will see, it is quite different

than the old protocol. This is mostly due to the building blocks used to design and

implement the new protocol.

5�The source code is written in C++ and in true C++ form (sadly) the code has very little inline
documentation.

Chapter 6 X Plugin

285
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_7

CHAPTER 7

X Protocol
The X Protocol represents the first major deviation from the existing client/server

protocol in MySQL. The X Protocol is designed to be extensible, maximize security, and

ensure good performance. All three of these categories were at the top of the list for

must-have features and requirements when the X Protocol was designed.

Although the X Protocol is mainly hidden behind an abstraction layer by the

clients that wrapper (implement it) such as the X Plugin and database connectors, it

is important to learn how it works if you ever plan to implement your own application

using the X Protocol. We will do so in Chapters 8 and 9. Even if you never intend to

develop a MySQL client, a closer look at the X Protocol will reveal and further emphasize

an example of the leap in technology under the hood in MySQL 8.

In this chapter, we explore the X Protocol and discover how it works. We also look

at how to get started working with the X Protocol through a database connector. We see

some examples of writing small scripts to interact with the X Protocol in Python via the

Connector/Python library. Let’s get started with a detailed overview of the X Protocol

and its origins.

Note  I present a lot of the concepts we discovered in the previous chapters
with minimal explanation for brevity only duplicating information where clarity is
needed.

�Overview
If you have ever written a communication protocol either designed from scratch or if you

have had to write code to implement a communication protocol, then you are aware of

the complexities and strict need to handle data exchange with unwavering precision.

There simply isn’t a quality of “good enough” when it comes to exchanging messages

286

from one system to another. The arrangement of the data sent to or received from

another system must be arranged in an agreed format—both data alignment (what goes

first) and how it is represented (encoding). Failure to get it right can lead to disaster.

The older client/server MySQL protocol is an excellent example of a communication

protocol designed from scratch. Although it has been used for decades with only

relatively minor changes, for some time it limited the MySQL engineers. They have

struggled repeatedly when trying to implement new features because the old client/

server protocol is not extensible.

However, adding new features isn’t the only issue one must deal with during the

evolution of the protocol. In the case of the client/server protocol in MySQL, security is

a major concern. Although SSL extensions were added to the protocol, security was not

enforced by default. That is, except for the exchange of the login password, the client/

server messages are not required to be encrypted. Thus, it is possible for someone to

discover the data being sent to/from the server if SSL or other form of encryption is not

enabled.

Performance is another area where existing protocols designed for a specific, limited

set of commands and messages can suffer. That is, newer technologies have shown it

is possible to achieve better performance if one were to design the protocol exchanges

using techniques like pipelining.

Adding these qualities to the existing client/server protocol isn’t feasible. More

specific, the engineers knew that to extend the client/server protocol, every system

(client, application, server, etc.) that uses the protocol must be updated or modified

to work with the new extensions. This is serious because you simply cannot expect

every user of MySQL to suddenly update every version of their MySQL tools, custom

applications, scripts, and so forth to comply with a new extension of the protocol. For

this reason and many similar reasons, changing the client/server protocol in the past

had been forbidden and limited to only those changes that ensure existing clients can

continue to work despite the changes.

Despite this mandate, there have been a few minor changes along the way to the

client/server protocol. The most recent occurred during the version 5.7 development

releases concerning the returning of the Ok message. But even this minor change was

built to ensure backward compatibility. To date, the client/server protocol continues

to support pre- and post-Ok message protocol changes. Such is the bane of long-

lived communication protocols: always having to maintain some level of backward

compatibility at the expense of progress.

Chapter 7 X Protocol

287

When the engineers began designing what is now the document store in MySQL

including the new MySQL Shell, X Plugin, and X DevAPI, it became very clear that it was

time to implement a new protocol that could enhance the new features. More specific, it

was clear that the existing client/server protocol wasn’t going to be sufficient to meet all

the goals for MySQL 8 features and products. Hence, we needed a new protocol, which

was dubbed the X Protocol to follow the new naming conventions.1

The X Protocol has been integrated in most of the MySQL suite of products including

the following. I include a link for downloading each of the products listed. Note

that there are several database connectors included (language-specific libraries for

interacting with the MySQL server using either the client/server protocol or the

X Protocol). Look for more products to implement the X Protocol in the future.

•	 X Plugin: integrated in the MySQL server (https://dev.mysql.com/

downloads/mysql/)

•	 Shell: version 8.0.4 or later (https://dev.mysql.com/downloads/

shell/)

•	 Connector/J: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/j/)

•	 Connector/Net: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/net/)

•	 Connector/Node.js: version 8.0.8 and later (https://dev.mysql.com/

downloads/connector/nodejs/)

•	 Connector/Python: version 8.0.5 and later (https://dev.mysql.com/

downloads/connector/python/)

Note  Connector products are often abbreviated such as C/J, C/Net, C/Node.js,
and C/Py.

1�Then, why is it MySQL 8 and not MySQL X?

Chapter 7 X Protocol

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/j/
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/net/
https://dev.mysql.com/downloads/connector/nodejs/
https://dev.mysql.com/downloads/connector/nodejs/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/

288

We will see an example of how the Connector/Python connector implements and

exposes the X Protocol in a later section. Now let’s look at the goals and their motivations

for developing and implement the X Protocol.

�Goals for the X Protocol
As mentioned, the three main areas (called design constraints or simply goals) that the

X Protocol was designed to address include extensibility, security, and performance.

The next few sections present some of the driving motivations for the three major design

constraints for the X Protocol.

Tip  If you want to see some of the actual engineering documents used to design
the X Protocol, see the worklog2 for the project at http://dev.mysql.com/
worklog/task/?id=8639.

WHAT ABOUT THE CLIENT/SERVER PROTOCOL?

You may be wondering if the X Protocol works only for all things X. That is, it doesn’t work with the

old protocol. The answer is the X Protocol also supports the client/server protocol. This is how the

MySQL Shell can connect to older servers without the need for using an intermediate library. More

specific, the X Protocol includes an option to communicate using the older client/server protocol.

2�A worklog is an internal document used to capture design and requirements for implementing
features in MySQL.

Chapter 7 X Protocol

http://dev.mysql.com/worklog/task/?id=8639
http://dev.mysql.com/worklog/task/?id=8639

289

�Extensibility

When software is said to have the goal of extensibility, it means the software must

be capable of being modified to add new features without requiring major rework or

retooling. Although organizations may have slightly different definitions or examples of

what rework means, in the case of the client/server protocol, it is not extensible because

there is very little room for extending the protocol to include new messages, commands,

and data without major changes to the code and the potential incompatibility with older

products.

The engineers wanted to ensure the new protocol would be built from the start with

extensibility in mind. In this case, extensibility includes the ability to add capabilities

and features without causing existing products to fail or be reworked to comply with the

changes.

Some of the areas where the X Protocol needed extensibility includes being able

to add new messages, add new features (e.g., ensuring the protocol supports things

such as pipelining to reduce round trips), permit the addition of new authentication

mechanisms, change or add new encryption and compression facilities, and more.

�Security

In this modern world of the Internet of Things and the rapid escalation of the population

of modern civilizations becoming continuously connected, it has never been more

important for systems to be as secure as possible. That is, to provide the very best options

to permit data and users to be protected against accidental or deliberate exploitation.

Tip  For more information about the Internet of Things and MySQL, see my book,
MySQL for the Internet of Things, Charles Bell (Apress 2016) https://www.
apress.com/us/book/9781484212943.

The engineers at Oracle take security very seriously. Indeed, it is a key aspect in almost

every design, review, and quality control mechanism. At Oracle, security is paramount.

Thus, when it came time to develop a new protocol, the security mechanisms were

Chapter 7 X Protocol

https://www.apress.com/us/book/9781484212943I added your name to the reference here; please ok
https://www.apress.com/us/book/9781484212943I added your name to the reference here; please ok

290

vastly improved from the client/server protocol. In particular, security defaults in the X

Protocol use only trusted, proven standards such as transport layer security (TLS)3 and

simple authentication and security layer (SASL).4

�Performance

As with security, performance is another key area that Oracle uses to evaluate the quality

of products. In this case, performance must be such that the system can perform its tasks

appropriately without unnecessary wait times, lag, or long running tasks. Unlike security,

performance is often evaluated subjectively and anecdotally. That is, newer releases

must run no slower than the previous release.

In the case of the X Protocol, performance goals are ensured by using sound

foundational technologies and by leveraging features such as pipelining, which allows

more than one message to be passed at a time, reducing the number of round trips

(to/from the server and back to the client), and not waiting for a response from the server

when sending multiple commands thereby not tying up a client to wait for a response.

In the next section, we look at the underpinnings of the X Protocol by studying the

foundation of the design.

�X Protocol and Protocol Buffers
One of the biggest things that the MySQL engineers wanted to overcome is the lengthy time

required to develop the various aspects of a protocol mechanism from scratch. In particular,

the engineers wanted to take advantage of established, well-documented, and superior

technologies. After all, the problems of creating an extensible, secure, and high performance

communication protocol have been solved by a lot of people to varying degrees of success.

Although several options were evaluated and discussed, it was important that the

technology be well established and open source. Furthermore, the technology must

support rapid implementation with little or no third-party dependencies, be language

and platform independent,5 and not require retooling of the development tools and

processes to use it.

3�An evolution of SSL: https://en.wikipedia.org/wiki/Transport_Layer_Security.
4�A framework for authentication and data security: https://en.wikipedia.org/wiki/
Simple_Authentication_and_Security_Layer.

5�Asymptotically successful at best; there’s always a fly in the ointment somewhere.

Chapter 7 X Protocol

https://en.wikipedia.org/wiki/Transport_Layer_Security
https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer
https://en.wikipedia.org/wiki/Simple_Authentication_and_Security_Layer

291

The technology that was chosen is called Protocol Buffers from Google (https://

developers.google.com/protocol-buffers/). Google Protocol Buffers, affectionately

named protobuf, is an extensible, language and platform independent mechanism

for serializing structured data. It is designed for speed, compactness, and simplicity.

Protobuf permits you to define a message exchange protocol quickly and easily. In that

respect, protobuf is loosely similar to XML and other variants. Protobuf is available for

several languages including C++, C#, Go, Java, and Python. The latest version of protobuf

(version 3) supports additional languages such as Ruby.

However, language support in this sense means there is a compiler option available

to translate the protobuf definition files into language-specific code that can be used

by that language. For example, to use protobuf in C++, you must compile the protobuf

definition files from their native, protobuf definition to files that can be read and

compiled by the C++ compiler.

Protobuf is essentially a way to organize data so that it can be defined in a structured

manner (called a message). That is, we can define a precise assembly of how the data

is to be represented. This allows you to transmit and receive the data in an agreed

on structure. This may not sound like a big deal until you consider the extensibility

aspect where older messages are still valid even though there are newer versions of the

message. Structured data mechanisms are supported in most languages with various

degrees of type strictness. However, these are rarely extensible and any change to the

structure renders the format incompatible (well, mostly). Protobuf is designed to allow

you to extend the data organization without having to rebuild.

To understand the power of protobuf, let’s look at a short example. In this case, we

will use a variation of the rolodex of contacts example from earlier chapters. We need

two messages (data structures); a way to store contact name and phone numbers (there

may be more than one for each contact), and a message to store all the contacts. As you

will see, this allows us to write some very simple code to read and write data.

Note A lthough a complete tutorial of protobuf is beyond the scope of this book,
the following will give you a bird’s eye view of protobuf. However, Google has
provided ample documentation should you need to know more about protobuf.

Chapter 7 X Protocol

https://developers.google.com/protocol-buffers/
https://developers.google.com/protocol-buffers/

292

�Installing the Protobuf Compiler

There two things we need to install. We must have the protobuf compiler and the

protobuf libraries installed.

You can download the protobuf compiler from https://github.com/google/

protobuf/releases/tag/v3.0.0. Scroll down to the bottom of the page and download

the file that matches your platform. Most are in the form of a compressed file that you

can download and uncompress. For most platforms, no installation is required. You can

run the protobuf compiler (named protoc) from the bin folder of the download. For

example, I downloaded the file for macOS named protoc-3.0.2-osx-x86_64.zip and

thus can run the protobuf compiler as ./protoc-3.0.2-osx-x86_64/bin/protoc. Or,

you can place the location of protoc in your path.

You can install the protobuf libraries in several ways. See the runtime installation

instructions for your language at https://github.com/google/protobuf/#protobuf-

runtime-installation for instructions on how to install protobuf. For Linux and macOS

platforms, you can use PyPi (pip) to install protobuf libraries as shown in the following.

Note that if you installed pip using elevated privileges (e.g. sudo), you may need to

specify sudo to install protobuf.

$ pip install protobuf

Collecting protobuf

 Downloading protobuf-3.5.1-py2.py3-none-any.whl (388kB)

 100% |█████████████████████| 389kB 1.0MB/s

Requirement already satisfied: setuptools in /System/Library/Frameworks/

Python.framework/Versions/2.7/Extras/lib/python (from protobuf)

Requirement already satisfied: six>=1.9 in /Library/Frameworks/Python.

framework/Versions/2.7/lib/python2.7/site-packages/six-1.10.0-py2.7.egg

(from protobuf)

Installing collected packages: protobuf

Successfully installed protobuf-3.5.1

Note  You also must have Python installed on your system. See https://www.
python.org/ for downloading and installing Python on your system. The example
scripts in this chapter were written for and execute correctly for Python version 2.7. If
you are using Python 3.0 or later, you may need to make minor changes to the code.

Chapter 7 X Protocol

https://github.com/google/protobuf/releases/tag/v3.0.0
https://github.com/google/protobuf/releases/tag/v3.0.0
https://github.com/google/protobuf/#protobuf-runtime-installation
https://github.com/google/protobuf/#protobuf-runtime-installation
https://www.python.org/
https://www.python.org/

293

�Protobuf Example

Let’s begin with a look at the protobuf definition file. Protobuf files are named with a

.proto extension. We will name our protobuf definition file contacts.proto. Listing 7-1

shows the contents of the protobuf file contacts.proto. Place this file in a folder as we will

be adding additional files to compile and test the protobuf definition. This is a standard

example pattern that you will see in other documentation—a data item definition followed

by an array (or list) containing the data items.

Listing 7-1.  Contacts Protobuf Definition

syntax = "proto2";

message Contact {

 required string first = 1;

 required int32 id = 2;

 optional string last = 3;

 message PhoneNumber {

 required string number = 1;

 }

 repeated PhoneNumber phones = 5;

}

message Contacts {

 repeated Contact list = 1;

}

Here we see code that looks a lot like C++. That is no accident and was chosen

because several languages use similar syntax making this familiar to most developers.

The first line we see is a directive for the protobuf compiler to use version 2 of the

language (version 3 is the current version). MySQL uses version 2 as well.

In the first message, named Contact, we define two required fields, an id and a first

name. The Id is an integer and the first name is a string. We can also define an optional

field for the last name. Within that message is another message, named PhoneNumber,

that stores a required field for the phone number. However, because this is a message, we

add another field named phones to store 0 or more phone numbers. That is, the repeated

declaration indicates it can contain 0 or more messages. Note the = N for each data item.

Chapter 7 X Protocol

294

This is a required tag that must be unique. Most people just use a number starting from 1.

Finally, we see a message named Contacts that we store 0 or more contacts named list.

To use the new protobuf definition, we must compile it. For this example, I will

compile it for use with Python. The command to use is as follows. This generates a file

named contacts_pb2.py, which we can import in our Python script. We use the option

--python_out to tell the compiler two things: 1) that we want to compile for Python;

and 2) that we want the output of the compiler to appear in the current folder (.). You

will not see any additional output from this command—it is all written to the file. Be sure

you have the protoc executable location on your path or call it directly using the location

(path) as shown in the following.

$ protoc-3.0.2-osx-x86_64/bin/protoc --python_out=. contacts.proto

Recall that protobuf supports several languages. The following lists the languages

supported and the correct option to use when compiling (<out dir> is the output

directory for the resulting source files). As you can see, there are several options that

cover most of the programming languages in use today. If you want to implement this

example in another programming language, use the option shown in the following for

your programming language.

•	 C++: --cpp_out=<out_dir>

•	 C# --csharp_out=<out_dir>

•	 Java: --java_out=<out_dir>

•	 Java Nano --javanano_out=<out_dir>

•	 JavaScript: --js_out=<out_dir>

•	 Objective C: --objc_out=<out_dir>

•	 Python: --python_out=<out_dir>

•	 Ruby: --ruby_out=<out_dir>

The contents of the contacts_pb2.py file isn’t very interesting. In fact, it’s quite

complex. What is more interesting is how we use the new protocol. Because this is a

data structure for storing contacts, let’s write a script that is to write a couple of contacts

to a file using the new messages. Listing 7-2 shows a simple Python script to write

two contacts to a binary file. Why binary? Because protobuf is designed to allow us

to serialize data quickly and easily while preserving typed (binary) data. As with the

Chapter 7 X Protocol

295

previous examples in the book, don’t worry too much if you don’t know Python. It’s a

very easy scripting language (see the side bar later in the chapter for more details).

Listing 7-2.  Writing Contacts to a File (Protobuf Example)

import contacts_pb2

Open the file

f = open("my_contacts", "wb")

Create a contacts class instance

contacts = contacts_pb2.Contacts()

Create a new contact message

new_contact = contacts.list.add()

new_contact.id = 90125

new_contact.first = "Andrew"

Add phone numbers

phone_number = new_contact.phones.add()

phone_number.number = '212-555-1212'

phone_number = new_contact.phones.add()

phone_number.number = '212-555-1213'

Create a new contact message

new_contact = contacts.list.add()

new_contact.id = 90126

new_contact.first = "William"

new_contact.last = "Edwards"

Add phone numbers

phone_number = new_contact.phones.add()

phone_number.number = '301-555-1111'

phone_number = new_contact.phones.add()

phone_number.number = '301-555-3333'

Write the data

f.write(contacts.SerializeToString())

Close the file

f.close()

Chapter 7 X Protocol

296

I used an inline coding style here rather than a loop to show you how to add new

messages using the add() method from protobuf. However, note first that we must

import the file we created with the protobuf compiler (contacts_pbs2). Then we create

an instance to the Contacts class generated by the protobuf compiler. Recall this is an

array (list) of type Contact. When calling the add() method, we get an instance to a

Contact structure, which we can assign values using the field names. Thus, I set the id,

first name, and then add phone numbers by creating a new phone number structure

by referencing the nested message named phones and then populating it. Note that

you must call add() each time you want to add a new message. Finally, I use the

SerializeToString() method to serialize all the messages I’ve built in memory and

write that to a file named my_contacts. Take a few moments to read through the code

until you understand how it works.

Tip  Don’t worry too much about the minor details or ways you can improve the
code. I include the example code to demonstrate protobuf rather than demonstrate
using Python. We’ll see more about Python in a later section.

If you’re following along and want to run the code, create a file named

write_contacts.py, enter the code, save it, and then execute it with a command as in

the following. You won’t see any output here either because it creates the file

my_contacts.

$ python ./write_contacts.py

If you’re wondering what this data looks like in the file, the following shows a hex

dump of the file, my_contacts. Note that it is indeed a binary file.

$ hexdump -C my_contacts

00000000 0a 2c 0a 06 41 6e 64 72 65 77 10 8d c0 05 2a 0e |.,..Andrew....*.|

00000010 0a 0c 32 31 32 2d 35 35 35 2d 31 32 31 32 2a 0e |..212-555-1212*.|

00000020 0a 0c 32 31 32 2d 35 35 35 2d 31 32 31 33 0a 36 |..212-555-1213.6|

00000030 0a 07 57 69 6c 6c 69 61 6d 10 8e c0 05 1a 07 45 |..William......E|

00000040 64 77 61 72 64 73 2a 0e 0a 0c 33 30 31 2d 35 35 |dwards*...301-55|

00000050 35 2d 31 31 31 31 2a 0e 0a 0c 33 30 31 2d 35 35 |5-1111*...301-55|

00000060 35 2d 33 33 33 33 |5-3333|

00000066

Chapter 7 X Protocol

297

Now, let’s see how we can read the contacts from the file. This code is considerably

shorter and easier to read. Once again, we import the contacts_pb2 file and then open

the file for reading. However, in this case, we create a new instance of the Contacts

class and then read from the file using the ParseFromString() method. This creates

the contact list in memory, which we can then iterate through and print the data. The

following shows the complete code for reading the contact lists.

import contacts_pb2

contacts = contacts_pb2.Contacts()

Read the existing contacts.

with open("my_contacts", "rb") as f:

 contacts.ParseFromString(f.read())

Print out the contacts

for contact in contacts.list:

 print contact

f.close()

As in the write example, we can execute this code but in this case, we will see the

contact list printed out. Listing 7-3 shows the output. Note that we see a nicely formatted

output that resembles C++ (and JSON a bit).

Listing 7-3.  Reading the Contact List (protobuf example)

$ python ./read_contacts.py

first: "Andrew"

id: 90125

phones {

 number: "212-555-1212"

}

phones {

 number: "212-555-1213"

}

first: "William"

id: 90126

last: "Edwards"

Chapter 7 X Protocol

298

phones {

 number: "301-555-1111"

}

phones {

 number: "301-555-3333"

}

Of course, you could write the code to access individual fields with dotted syntax. For

example, you could print out just the first and last name with the following sample code.

Print out the contacts

for contact in contacts.list:

 print contact.first, contact.last,

 for phone in contact.phones:

 print phone.number,

 print

When you execute this file, you see output like the following.

$ python ./read_contacts.py

Andrew 212-555-1212 212-555-1213

William Edwards 301-555-1111 301-555-3333

As you can see, working with protobuf makes reading and writing structured data

easier with far less complexity than if we wrote our own structures. If this example is

intriguing, I encourage you to play around with it and embellish it to your whim. If you

want to know more about protobuf including how to get started building your own

messages and protocol, see the online documentation at https://developers.google.

com/protocol-buffers/docs/overview.

So, what is the MySQL protobuf called X Protocol then? Shouldn’t it have been

named, “MySQL Protocol Buffer”? Recall protobuf is a technology that can be leveraged

to design protocols. The X Protocol therefore is a product of using the protobuf to

define the messages, commands, and so forth that make up the new protocol. Thus, the

X Protocol is a definition of a communication protocol using the language of protobuf.

Cool, eh?

Now that we know more about the X Protocol, how (and why) it was designed, let’s

take a closer look at how it works at the code and protobuf level.

Chapter 7 X Protocol

https://developers.google.com/protocol-buffers/docs/overview
https://developers.google.com/protocol-buffers/docs/overview

299

�X Protocol: Under the Hood
Although it is true that developers are unlikely to have a need to write such low-level

code that interfaces directly with the X Protocol, it is helpful to take a tour of how the

X Protocol is implemented. In the interest of brevity, we will only see a few parts of the

X Protocol before embarking on a detailed look at how one of the database connectors

implements the X Protocol. If you’re a code junky, you can assume your best coding

posture now.6

Let’s begin with a look at the protobuf definition files that define the MySQL

X Protocol.

�Protobuf Implementation
The MySQL protobuf definition files can be found in the source code download of any

product that implements the X Protocol. For example, you can find them in the source

code for the MySQL server in the rapid/plugin/x/protocol folder named with a prefix

of mysqlx and a file extension of .proto. You can also see and download the X Protocol

protobuf definition files from GitHub at https://github.com/mysql/mysql-server/

blob/5.7/rapid/plugin/x/protocol.

I show the Github repository rather than having you download the server code

because you can use the Github repository to drill down and view files without having

to download anything. Just use the previous URL and click on the mysqlx.proto file link.

Figure 7-1 shows an example of viewing the file in Github.

6�In other words, place your chair in a semireclined state, put on your favorite music, and make
sure plenty of your favorite beverage is near at hand.

Chapter 7 X Protocol

https://github.com/mysql/mysql-server/blob/5.7/rapid/plugin/x/protocol
https://github.com/mysql/mysql-server/blob/5.7/rapid/plugin/x/protocol

300

However, if you prefer to download the server code, you can. Just visit https://dev.

mysql.com/downloads/mysql/, choose the source code entry in the Select Operating

System dropdown list, choose a file for your platform, and download it. Once you unzip

(untar) the file, you can explore the server source code on your own PC.

These are the uncompiled, original protobuf definition files. Table 7-1 lists the

protobuf definition files that comprise the X Protocol including the name of the file and a

short description. Note that the file names are associated with the major concepts in the

X DevAPI showing a clear mapping of the protobuf to the X Protocol.

Figure 7-1.  The mysqlx.proto file (Github)

Chapter 7 X Protocol

https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/

301

To give you a glimpse at what the files contain, Listing 7-4 shows the error message

from the mysqlx.proto file.

Listing 7-4.  Generic Error Message (mysqlx.proto)

...

// generic Error message

//

// A ``severity`` of ``ERROR`` indicates the current message sequence is

// aborted for the given error and the session is ready for more.

//

// In case of a ``FATAL`` error message the client should not expect

// the server to continue handling any further messages and should

// close the connection.

//

Table 7-1.  Protobuf Definition Files (X Protocol)

File Description

mysqlx.proto Defines messages for client, server, and general Ok and error

messages; this is the main file that imports all the other files.

mysqlx_connection.proto Defines messages for determining capabilities of the server

during the connection negotiation process (see later)

mysqlx_crud.proto Defines messages for handling the CRUD operations

mysqlx_datatypes.proto Defines messages for working with scalar data types

mysqlx_expect.proto Defines messages for working with pipelined messages

mysqlx_expr.proto Defines messages for working with expressions

mysqlx_notice.proto Defines messages for posting notices such as session and

variable state changes

mysqlx_resultset.proto Defines messages for result sets including rows and columns;

this file is a key component of the X Protocol and demonstrates

the power of protobuf.

mysqlx_sql.proto Defines messages for executing statements

mysqlx_session.proto Defines messages to manage sessions

Chapter 7 X Protocol

302

// :param severity: severity of the error message

// :param code: error-code

// :param sql_state: SQL state

// :param msg: human readable error message

message Error {

 optional Severity severity = 1 [default = ERROR];

 required uint32 code = 2;

 required string sql_state = 4;

 required string msg = 3;

 enum Severity {

 ERROR = 0;

 FATAL = 1;

 };

}

...

Note that the message is very well defined and includes what you would expect

to see if you’ve looked at the client/server protocol. In particular, we see an optional

severity setting, error code, SQL state code (string), and an error message (string).

Severity is an enumerated value and currently can be set to ERROR (0) or FAIL (1).

Cool, eh?

You may be wondering what the protobuf compiler does to this code when compiled.

Let’s look at the resulting Python code. Listing 7-5 shows the compiled code for the

generic error message. I omit some of the code for brevity.

Listing 7-5.  Python Generic Error Message (mysqlx_pb2.proto)

...

_ERROR = _descriptor.Descriptor(

 name='Error',

 full_name='Mysqlx.Error',

 filename=None,

 file=DESCRIPTOR,

 containing_type=None,

Chapter 7 X Protocol

303

 fields=[

 _descriptor.FieldDescriptor(

 name='severity', full_name='Mysqlx.Error.severity', index=0,

 number=1, type=14, cpp_type=8, label=1,

 has_default_value=False, default_value=0,

 message_type=None, enum_type=None, containing_type=None,

 is_extension=False, extension_scope=None,

 options=None),

 _descriptor.FieldDescriptor(

 name='code', full_name='Mysqlx.Error.code', index=1,

 number=2, type=13, cpp_type=3, label=1,

 has_default_value=False, default_value=0,

 message_type=None, enum_type=None, containing_type=None,

 is_extension=False, extension_scope=None,

 options=None),

...

],

 extensions=[

],

 nested_types=[],

 enum_types=[

 _ERROR_SEVERITY,

],

 options=None,

 is_extendable=False,

 syntax='proto3',

 extension_ranges=[],

 oneofs=[

],

 serialized_start=872,

 serialized_end=1001,

)

...

Chapter 7 X Protocol

304

Gah! That’s not even remotely as simple nor is easy to read. This is an excellent

example to show how much protobuf can do for us. Clearly, defining the messages in

protobuf is orders of magnitude (relatively speaking) than doing it in Python. In case

you’re curious, compiling the protobuf definition files in other languages creates equally

as complex and seemingly incomprehensible code. But don’t worry; we don’t need to

read the compiled files directly! That’s good, isn't it?

To get a sense of the complexity (and completeness) of the X Protocol, let’s look at

how Connector/Python implements the X Protocol. In the next section, we will see how

the X Protocol works using a few simple examples including the connection procedure.

Tip  I encourage you to explore the other *.proto files to see the messages
they define.

�X Protocol Examples
We explore two examples of the X Protocol in action: 1) an overview of how a connection

is established starting with negotiation, authentication, and then commands; and 2) how

SQL inserts are handled. These examples are easy to understand and, if you’re curious,

can be found easily in the protobuf definition files.

�Example 1: Authentication

Let’s assume we want to connect to a server using the older authentication for simplicity.

This will give you a good idea of how a communication protocol works without the

heavy lifting we see in the newer mechanisms. The goal is to understand how a

typical communication protocol works by way of example. After all, it is not likely that

you will build your own authentication protocol (but you can by building your own

authentication plugin).

The life cycle of the procedure begins with a negotiation phase where the client

requests from the server the authentication (and other) capabilities using the

CapabilitiesGet() method. The server responds with the CapabilitiesGet message

(defined in the mysqlx_connection.proto file). The client then sets the capabilities

(such as setting the authentication extensions like TLS) sending the completed message

back via the CapabilitiesSet() method. Assuming the data is correct, the server replies

with the Ok message.

Chapter 7 X Protocol

305

Authentication is then initiated by the client using the AuthenticateStart()

method. The server can then issue an AuthenticateContinue() method call to

request more data from the client. The client can then respond with the same

AuthenticateContinue() method call and once the authentication is complete, the

server responds with the AuthenticateOk() method call. From there, the client can

initiate commands. Figure 7-2 shows the life cycle example with the direction of the

message transports (the result of executing the associated methods).

Let’s look at the CapabilitiesSet message. Listing 7-6 shows an excerpt from the

mysqlx_connection.proto file.

Figure 7-2.  X Protocol connection procedure (Courtesy of Oracle)

Chapter 7 X Protocol

306

Listing 7-6.  CapabilitiesSet Message (mysqlx_connection.proto)

...

// a Capability

//

// a tuple of a ``name`` and a :protobuf:msg:`Mysqlx.Datatypes::Any`

message Capability {

 required string name = 1;

 required Mysqlx.Datatypes.Any value = 2;

}

// Capabilities

message Capabilities {

 repeated Capability capabilities = 1;

}

...

// :precond: active sessions == 0

// :returns: :protobuf:msg:`Mysqlx::Ok` or :protobuf:msg:`Mysqlx::Error`

message CapabilitiesSet {

 required Capabilities capabilities = 1;

};

...

Note that we see the CapabilitiesSet message has one field named capabilities of

the type Capabilities message. This is used as a placeholder for the client to complete

the message with data and send it back to the server. The other values include SCALAR (1),

OBJECT (2), or ARRAY (3) and can be found in the mysqlx_datatypes.proto file.

�Example 2: Simple Inserts

In this example, we are going to examine what happens when an SQL statement is

issued. In particular, two INSERT statements are executed against a simple table. At this

point, we are working with an SQL object and the StmtExecute messages located in the

however strangely named mysqlx_sql.proto file.

The procedure begins with the client sending the statement to the server using the

Sql.StmtExecute() method. The server can then respond with the Sql.StmtExecuteOk()

method. This process is repeated for the next INSERT statement as shown in Figure 7-3.

Chapter 7 X Protocol

307

Let’s look at the Sql.StmtExecute message. Listing 7-7 shows an excerpt from the

mysqlx_sql.proto file.

Listing 7-7.  Sql.StmtExecute Message (mysqlx_sql.proto)

...

// execute a statement in the given namespace

//

// .. uml::

//

// client -> server: StmtExecute

// ... zero or more Resultsets ...

// server --> client: StmtExecuteOk

//

// Notices:

// �This message may generate a notice containing WARNINGs generated by

its execution.

// �This message may generate a notice containing INFO messages generated

by its execution.

//

Figure 7-3.  X Protocol simple inserts (Courtesy of Oracle)

Chapter 7 X Protocol

308

// :param namespace: namespace of the statement to be executed

// :param stmt: statement that shall be executed.

// :param args: values for wildcard replacements

// :param compact_metadata: send only type information for

:protobuf:msg:`Mysqlx.Resultset::ColumnMetadata`, skipping names and others

// :returns:

// * zero or one :protobuf:msg:`Mysqlx.Resultset::` followed by

:protobuf:msg:`Mysqlx.Sql::StmtExecuteOk`

message StmtExecute {

 optional string namespace = 3 [default = "sql"];

 required bytes stmt = 1;

 repeated Mysqlx.Datatypes.Any args = 2;

 optional bool compact_metadata = 4 [default = false];

}

...

Note that we have fields for the namespace (set to SQL by default), the SQL statement

stored in stmt. Note that it is of type byte so we can handle any character set including

binary data. We then can have zero or more arguments (args) to allow for parameterized

queries. Finally, we can have an optional compact_metadata setting to allow the server to

only send the type information back to the client.

As you can see, the X Protocol has a lot going on under the hood. However, we don’t

have to know all there is to know about the X Protocol to use it. In fact, the best way to

use the X Protocol is through the MySQL Shell, which we saw in detail in Chapter 4 or

through the database connectors that support the X Protocol. Let’s look at how one

database connector implements the X Protocol.

WAIT! WHERE’S THE REST OF THE CODE?

If you take time to examine the protobuf definition files, you may notice two major things that

are missing. Protobuf is a protocol definition language (API) but it does not include any support

for direct transport of messages over the wire nor is there any direct support for encryption,

compression, and other techniques for transmitting data.

Chapter 7 X Protocol

309

The X Protocol therefore is where all this code exists. Now you can see why the X Protocol

is more than just a protobuf implementation. There are other facilities that the X Protocol

implements that isn’t part of the protobuf message definitions. These include handshaking

with the server, error message definitions, and much more.

�X Protocol Walkthrough
To better understand the power and elegance of the X Protocol, we will examine how

one of the database connectors implements the X Protocol. This presents an abstraction

layer over the protobuf definition files, which given what we learned about how the

protobuf, is a very good thing. As you will see, the connectors make working with the

X Protocol very easy thus continuing the goals of protobuf to make communication

protocols easy to create and use.

The database connector we use in this section and in the next is Connector/Python,

C/Py. Once again, I chose C/Py for its simplicity and readability. If you want to follow

along and see the code in context, you can download the source code for Connector/

Python version 8.0.5 or later at http://dev.mysql.com/downloads/connector/python/.

Note that you may need to click on the Development Releases tab then select the Platform

Independent entry from the dropdown list.

We look at the C/Py code for each of the examples in the previous section. Thus, we

will see the code for connecting to the server and executing an SQL INSERT statement.

�Example 1: Authentication

We find the code for the authentication process in the C/Py source code file named

connection.py found in the /lib/mysqlx folder. Listing 7-8 shows an excerpt of the

source code (methods) that implements the procedure. I omit the specifics of collecting

and passing connection information for brevity. The starting point to focus on is the

connect() method in the Connection class.

Listing 7-8.  Connection Methods for Authenticate Procedure (C/Py)

...

def connect(self):

 # Loop and check

 error = None

Chapter 7 X Protocol

http://dev.mysql.com/downloads/connector/python/

310

 while self._can_failover:

 try:

 self.stream.connect(self._connection_params())

 self.reader_writer = MessageReaderWriter(self.stream)

 self.protocol = Protocol(self.reader_writer)

 self._handle_capabilities()

 self._authenticate()

 return

 except socket.error as err:

 error = err

 if len(self._routers) <= 1:

 raise InterfaceError("Cannot connect to host: {0}".format(error))

 raise InterfaceError("Failed to connect to any of the routers.", 4001)

def _handle_capabilities(self):

 if self.settings.get("ssl-mode") == SSLMode.DISABLED:

 return

 if self.stream.is_socket:

 if self.settings.get("ssl-mode"):

 _LOGGER.warning("SSL not required when using Unix socket.")

 return

 data = self.protocol.get_capabilites().capabilities

 if not (get_item_or_attr(data[0], "name").lower() == "tls"

 if data else False):

 self.close_connection()

 raise OperationalError("SSL not enabled at server.")

 is_ol7 = False

 if platform.system() == "Linux":

 # pylint: disable=W1505

 distname, version, _ = platform.linux_distribution()

 try:

 �is_ol7 = "Oracle Linux" in distname and version.split(".")[0]

== "7"

 except IndexError:

Chapter 7 X Protocol

311

 is_ol7 = False

 if sys.version_info < (2, 7, 9) and not is_ol7:

 self.close_connection()

 raise RuntimeError("The support for SSL is not available for "

 "this Python version.")

 self.protocol.set_capabilities(tls=True)

 self.stream.set_ssl(self.settings.get("ssl-mode", SSLMode.REQUIRED),

 self.settings.get("ssl-ca"),

 self.settings.get("ssl-crl"),

 self.settings.get("ssl-cert"),

 self.settings.get("ssl-key"))

def _authenticate(self):

 auth = self.settings.get("auth")

 if (not auth and self.stream.is_secure()) or auth == Auth.PLAIN:

 self._authenticate_plain()

 elif auth == Auth.EXTERNAL:

 self._authenticate_external()

 else:

 self._authenticate_mysql41()

...

Note that in the connect() method, we see a couple of things occur. First, we see the

C/Py opens a stream connection to the server (via the _connection_params() method

that returns the data set previously) then the code creates an instance to a reader/writer.

This is how the connector transports the messages to/from the server.

Next, the code instantiates an instance of the Protocol class, which is the abstraction

of the X Protocol. We’ll see more details of that code later.

Now, focus on the last two statements in the connect() method. Here we see method

calls for the CapabilitiesGet/Set methods in _handle_capabilities() and the authenticate

phase in _authenticate(). Take a few moments to read through the code so you can see

that all the steps from Figure 7-1 are shown.

The CapabilitiesGet/Set methods of the Protocol class can be found in the protocol.

py file found in the /lib/mysqlx folder of the C/Py source code and are shown in

Listing 7-9.

Chapter 7 X Protocol

312

Listing 7-9.  CapabilitiesGet/Set Methods for Authenticate Procedure (C/Py)

...

def get_capabilites(self):

 msg = Message("Mysqlx.Connection.CapabilitiesGet")

 self._writer.write_message(

 mysqlxpb_enum("Mysqlx.ClientMessages.Type.CON_CAPABILITIES_GET"),

 msg)

 return self._reader.read_message()

def set_capabilities(self, **kwargs):

 capabilities = Message("Mysqlx.Connection.Capabilities")

 for key, value in kwargs.items():

 capability = Message("Mysqlx.Connection.Capability")

 capability["name"] = key

 capability["value"] = self._create_any(value)

 capabilities["capabilities"].extend([capability.get_message()])

 msg = Message("Mysqlx.Connection.CapabilitiesSet")

 msg["capabilities"] = capabilities

 self._writer.write_message(

 mysqlxpb_enum("Mysqlx.ClientMessages.Type.CON_CAPABILITIES_SET"),

 msg)

 return self.read_ok()

)

...

It is at this point where we can see calls to the protobuf code by way of the MySQLx*

classes that are generated by the protobuf compiler.

�Example 2: Simple Inserts

This example is a bit easier to view so we’ll go a bit deeper than the last example. We find

the code for the authentication process in the C/Py source code file named statement.

py in the /lib/mysqlx folder of the C/Py source code. Listing 7-10 shows an excerpt of

the source code that implements a class for executing INSERT SQL statements.

Chapter 7 X Protocol

313

Listing 7-10.  SQL INSERT Class (C/Py)

...

class InsertStatement(WriteStatement):

 """A statement for insert operations on Table.

 Args:

 table (mysqlx.Table): The Table object.

 *fields: The fields to be inserted.

 """

 def __init__(self, table, *fields):

 super(InsertStatement, self).__init__(table, False)

 self._fields = flexible_params(*fields)

 def values(self, *values):

 """Set the values to be inserted.

 Args:

 *values: The values of the columns to be inserted.

 Returns:

 mysqlx.InsertStatement: InsertStatement object.

 """

 self._values.append(list(flexible_params(*values)))

 return self

 def execute(self):

 """Execute the statement.

 Returns:

 mysqlx.Result: Result object.

 """

 return self._connection.send_insert(self)

...

As you can see, the code is easy to read. The first thing to notice is the class is derived

from a base class named WriteStatement (also in statement.py). That base class has

an abstract (virtual) method named execute(), which this derived class implements.

However, in this case, it calls the send_insert() method from the connection class

(in connection.py). The following shows the send_insert() method.

Chapter 7 X Protocol

314

@catch_network_exception

def send_insert(self, statement):

 self.protocol.send_insert(statement)

 ids = None

 if isinstance(statement, AddStatement):

 ids = statement._ids

 return Result(self, ids)

As you can see, this calls the Protocol class method send_insert() in the protocol.py

file with the statement as shown in Listing 7-11.

Listing 7-11.  The send_insert() Method in the Protocol Class (C/Py)

...

def send_insert(self, stmt):

 data_model = mysqlxpb_enum("Mysqlx.Crud.DataModel.DOCUMENT"

 if stmt._doc_based else

 "Mysqlx.Crud.DataModel.TABLE")

 collection = Message("Mysqlx.Crud.Collection",

 name=stmt.target.name,

 schema=stmt.schema.name)

 msg = Message("Mysqlx.Crud.Insert", data_model=data_model,

 collection=collection)

 if hasattr(stmt, "_fields"):

 for field in stmt._fields:

 expr = ExprParser(field, not stmt._doc_based) \

 .parse_table_insert_field()

 msg["projection"].extend([expr.get_message()])

 for value in stmt._values:

 row = Message("Mysqlx.Crud.Insert.TypedRow")

 if isinstance(value, list):

 for val in value:

 row["field"].extend([build_expr(val).get_message()])

Chapter 7 X Protocol

315

 else:

 row["field"].extend([build_expr(value).get_message()])

 msg["row"].extend([row.get_message()])

 msg["upsert"] = stmt._upsert

 self._writer.write_message(

 mysqlxpb_enum("Mysqlx.ClientMessages.Type.CRUD_INSERT"), msg)

...

As in the previous example, we can now see the protobuf interface and follow along

in the code to see the steps outlined in Figure 7-2 in the code.

Tip  If you want to learn more about how the X Protocol works, see the MySQL
Internals documentation at https://dev.mysql.com/doc/internals/en/
x-protocol.html.

Now that we know a lot more about the X Protocol and can appreciate the

abstraction provided by the X Plugin and Shell as well as the database connectors, let’s

look at how we can write client applications that take advantage of the X Protocol as

provided by the MySQL connectors. In this case, we’ll continue our quest to master the

X Protocol by using the Connector/Python.

�Creating X Clients
Creating MySQL client applications that use the X Protocol is best executed using either

the MySQL Shell or ultimately one of the database connectors together with installing

the X Plugin on the server. In this section, we will see two examples of standalone clients.

One that was written using MySQL as a document store and another using only the

relational data model.

The programming language we will use is a very easy scripting language called

Python. As you will see, the commands are quite intuitive and very expressive. For the

purposes of this demonstration, you do not need to be an expert with the language. I will

provide all the code and commands you need as we go along.

Chapter 7 X Protocol

https://dev.mysql.com/doc/internals/en/x-protocol.html
https://dev.mysql.com/doc/internals/en/x-protocol.html

316

PYTHON? ISN’T THAT A SNAKE?

The Python programming language is a high-level language designed to be as close to reading

English as possible while being simple, easy to learn, and very powerful. Pythonistas will tell

you the designers have indeed met these goals.

Python does not require a compilation step prior to being used. Rather, Python applications

(whose file names end in .py) are interpreted on the fly. This is very powerful; but unless you

use a Python development environment, some syntax errors (such as incorrect indentation)

will not be discovered until the application is executed. Fortunately, Python provides a robust

exception-handling mechanism.

If you have never used Python or you would like to know more about it, the following are a few

good books that introduce the language. A host of resources are also available on the Internet,

including the Python documentation pages at http://www.python.org/doc/:

•	 Programming the Raspberry Pi, by Simon Monk (McGraw-Hill, 2013).

•	 Beginning Python from Novice to Professional, 2nd Ed., by Magnus Lie Hetland

(Apress, 2008).

•	 Python Cookbook, by David Beazley and Brian K. Jones (O’Reilly Media, 2013).

Interestingly, Python was named after the British comedy troupe Monty Python and not the

reptile. As you learn Python, you may encounter campy references to Monty Python episodes.

Having a fondness for Monty Python, I find these references entertaining. Of course, your

mileage may vary.

To get started, you can either enter the code as shown in the examples or download

the source code from the Apress site for this book. You can use any code editor you

want when writing Python scripts. We begin with a short description of how to setup the

environment to run the examples.

Chapter 7 X Protocol

http://www.python.org/doc/

317

Tip T here are many available including a very powerful IDE from JetBrains
named PyCharm (http://www.jetbrains.com/pycharm/). If you want a great
open source for Python, check out PyCharm Community Edition.

�Setup for the Examples
There are a couple of things you need to have installed to work with the examples in

this section. You must download the Google Protocol Buffers Python library and install

the programming language runtime. You must also have the source code for C/Py

downloaded.

Recall, we need to have the protobuf compiler and protobuf libraries installed. If you

have not already done this, please refer the previous section, “Installing the Protobuf

Compiler.”

The language-specific runtime libraries can be downloaded from https://github.

com/google/protobuf. You should download the entire package by clicking on the

Clone or Download button. Once the download is complete, you will see a file named

protobuf-master.zip that you can uncompress. To install the library for your chosen

language, navigate to the folder named for the language and read the README.md file

for specific installation instructions. For example, we will be using Python in this chapter.

The folder is named /protobuf-master/python. To install the Python on macOS, you

run the following commands.

$ python ./setup.py build

$ sudo python ./setup.py install

Installing the Python libraries on other systems is similar. The only difference for

installing it on Windows is you do not need to use sudo (super user). However, on my

system there was an issue with locating the protobuf compiler. I received an error similar

to the following.

protoc is not installed nor found in ../src. Please compile it or install

the binary package.

Once I placed the protobuf compiler executable (protoc) in the specified directory

(../src), I could install the Python protobuf libraries with the previous commands.

You may encounter similar issues on other platforms.

Chapter 7 X Protocol

http://www.jetbrains.com/pycharm/
https://github.com/google/protobuf
https://github.com/google/protobuf

318

Tip  Scroll down to the bottom of the page on https://github.com/google/
protobuf and click on the links in the table to see instructions for installing the
protobuf libraries for other languages.

If you haven’t already, you must download the source code for the C/Py version

8.0.5 or later from http://dev.mysql.com/downloads/connector/python/. Be sure to

download the Platform Independent option from the dropdown list. We will be using

some of the source files from the C/Py source tree in our example.

I chose to do it this way to help you see the details of how protobuf works with

Python and how C/Py implements the X Protocol. Although the examples will show

the X Protocol abstraction layer in C/Py, you can use your favorite debugger or Python

IDE to drill down into the code and see how things work. Therefore, I have setup this

example for the curious among us.7 However, you need not go that far if you do not

want to. Rather, you can concentrate on how the examples work to give you a better

understanding of how to work with the new X Protocol via a database connector.

Perhaps more important, because the C/Py example we are using is a development

milestone release (think beta), copying the source code will not affect any other

installation of C/Py on your system thereby allowing you to run these examples and not

have to install the development milestone release of the connector.

The files we need are in the /lib/mysqlx folder. But first, create a new folder on your

system. Name it whatever you like such as xclient. Next, copy the mysqlx folder from

the C/Py archive into the xclient folder. When you create the files for the following

examples, save them in the xclient folder. For example, I named the document store

example xclient_json.py and the relational data example xclient_sql.py.

Tip  If you get an error that one or more libraries cannot be found, ensure you
have copied the mysqlx folder into the same folder as the xclient_json.py and
xclient_sql.py files.

7�Or as I am sometimes accused of “not leaving things well enough alone.” Guilty. I’ve been taking
things apart since I was a child. And sometimes I’d put them back together!

Chapter 7 X Protocol

https://github.com/google/protobuf
https://github.com/google/protobuf
http://dev.mysql.com/downloads/connector/python/

319

�Document Store Example
This example creates a simple client to demonstrate how to use the X Protocol

abstraction available in C/Py. The example uses the concept of the rolodex of contacts

we encountered in Chapter 1. In this case, the code will connect to the server, create

a schema and collection in the schema and populate the collection with documents.

The code will then retrieve all the documents and print them. But we don’t just print

the raw document. The code demonstrates how to do a find operation on the collection

and iterate over the documents printing the phone numbers for each contact document

found.

The following briefly describes the code portions. I highlight the pertinent code

statements to draw your attention to the X Protocol abstraction methods. Most of the

calls will be familiar to you because we encountered them in Chapter 5 and elsewhere

in the book. Thus, I keep the explanations brief. Refer to Chapter 5 if you need more

information about the classes and methods used in the example.

The first thing that we need to do is import the mysqlx library. Recall this is the set

of files from the C/Py download. It contains the C/Py abstraction for the X Protocol

files that we saw earlier. If you examine that folder, you will notice the .proto files

are missing. This is because we only need the .py files that were generated when the

protobuf compiler was run. Fortunately, all those files exist in the mysqlx folder.

Next, we ask the user to provide the logon credentials (user id, password, host, and

port). We use this information to open a session (a connection) to the server. For this, we

use the get_session() method and assign the resulting instance of the session object

to a variable mysqlx_session. If something should happen that we cannot connect,

we check the status of the session and if it is not open, exit. Note that we are using an X

Session in this example because we are only going to execute CRUD operations and do

not need any SQL support.

Next, we use the mysqlx_session object instance and attempt to get the schema

with the get_schema() method.8 This sets the default schema so that when we create

a collection (or other objects perhaps); they will be contained in the schema. I use a

constant to store the schema name and the collection name. If the schema is not on

the server, we create it with the create_schema() method. Either way, we get a schema

object instance, which we can use to create the collection with the create_collection()

8�In SQL terms use it.

Chapter 7 X Protocol

320

method, which gives us an object instance to the collection. Note that I use the remove()

method to empty the collection. This permits us to rerun the code without duplicating

data (I am not checking document Ids).

Let’s look at the code before we continue. Listing 7-12 shows the completed code.

Take some time to read through the code so that you can see all the methods and actions

described thus far. All of the code up to the contacts.remove() call should be familiar to

you. If you want to execute this code to see what it does, you can place this code in a file

named xclient_json.py.

Listing 7-12.  X Client Source Code (JSON)

#

Introducing the MySQL 8 Document Store - xclient_json

#

This file contains and example of how to read a collection from a MySQL

server using the X Protocol via a Session object

#

Dr. Charles Bell, 2018

#

import getpass

import mysqlx

Declarations

TEST_SCHEMA = "rolodex"

TEST_COL = "contacts"

Get user information

print("Please enter the connection information.")

user = raw_input("Username: ")

passwd = getpass.getpass("Password: ")

host = raw_input("Hostname [localhost]: ") or 'localhost'

port = raw_input("Port [33060]: ") or '33060'

Get a session object using a dictionary of terms

mysqlx_session = mysqlx.get_session({'host': host, 'port': port, 'user':

user, 'password': passwd})

Chapter 7 X Protocol

321

Check to see that the session is open. If not, quit.

if not mysqlx_session.is_open():

 exit(1)

Get the schema and create it if it doesn't exist

schema = mysqlx_session.get_schema(TEST_SCHEMA)

if not schema.exists_in_database():

 schema = mysqlx_session.create_schema(TEST_SCHEMA)

Create a collection or use it if it already exists

contacts = schema.create_collection(TEST_COL)

Empty the collection

contacts.remove()

Insert data with inline JSON

contacts.add({"name": {"first": "Allen"},

 "phones": [{"work": "212-555-1212"}]}).execute()

contacts.add({"name": {"first": "Joe", "last": "Wheelerton"},

 "phones": [{"work": "212-555-1213"}, {"home": "212-555-1253"}],

 �"address": {"street": "123 main", "city": "oxnard",

"state": "ca", "zip": "90125"},

 �"notes": "Excellent car detailer. Referrals get $20 off next

detail!"}).execute()

Get all of the data

doc_results = contacts.find().execute()

Show the results

print("\nList of Phone Numbers")

document = doc_results.fetch_one()

while document:

 print("{0}:\t".format(document.name['first'])),

 for phone in document.phones:

 for key, value in phone.iteritems():

 print("({0}) {1}".format(key, value)),

 print("")

 document = doc_results.fetch_one()

Chapter 7 X Protocol

322

Drop the collection

schema.drop_collection(TEST_COL)

Drop the schema

mysqlx_session.drop_schema(TEST_SCHEMA)

Close the session

mysqlx_session.close()

Tip  If you are using Python 3.0 or later, you will need to change the
raw_input() calls to input() and the iteritems() to items(). This is
because raw_input() and iteritems() are no longer supported in later
releases of Python.

Next, we can add some contacts. We do this using the add() method for the

collection object instance. In this case, we add a couple of documents; one for a person

that we only know their first name and a phone number, and another for someone that

we know their full name, several phone numbers, and some notes we’ve made about

them. This illustrates the power of using a document store: store what you need and

don’t force the data to comply with a strict structure or the storage mechanism!

Once the documents are added, we use the find() method on the collection

without any expressions. We chain the find operation with the execute() method. This

simply returns all the documents in the collection in the form of a document result

object instance. We can then use that object to iterate over the documents with the

fetch_one() method. Note that this returns a document object instance, which we can

use to get the data elements directly using named attributes (a powerful expression).

Take a moment to read through the code for fetching the documents. Note that when the

collection is at the end, the fetch_one() returns None and the while loop terminates.

Finally, we drop the collection with the drop_collection() method and drop

the schema with the drop_schema() method so that we can rerun the code and avoid

duplication. However, you may notice I’ve added code to protect against accidental

execution. For example, if you use the debugger and terminate the code before the end,

the statements at the top of the code will use the schema if it already exists and empty

the collection.

Chapter 7 X Protocol

323

Now let’s see the script in action. In this case, we expect to see only the first name

and a list of phone numbers for the people in our rolodex (in this case only two entries).

$ python ./xclient_json.py

Please enter the connection information.

Username: root

Password:

Hostname [localhost]:

Port [33060]:

List of Phone Numbers

Joe: (work) 212-555-1213 (home) 212-555-1253

Allen: (work) 212-555-1212

In case you’re wondering if this is all an elaborate ruse and that the collection

and documents we created are somehow stored elsewhere in MySQL, if you disable

the drop_*() calls and run the program again, you can log into the server and see the

construction of the underlying tables as shown in Listing 7-13.

Listing 7-13.  Definition of the Contacts Collection

$ mysqlsh root@localhost:33060 --sql --json=pretty --schema=rolodex -e

"EXPLAIN contacts"

{

 "password": "Enter password: "

}

{

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": [],

 "rows": [

 {

 "Field": "doc",

 "Type": "json",

 "Null": "YES",

 "Key": "",

Chapter 7 X Protocol

324

 "Default": null,

 "Extra": ""

 },

 {

 "Field": "_id",

 "Type": "varchar(32)",

 "Null": "NO",

 "Key": "PRI",

 "Default": null,

 "Extra": "STORED GENERATED"

 }

],

 "hasData": true,

 "affectedRowCount": 0,

 "autoIncrementValue": 0

}

If you run a SELECT statement to get all the data from that table, you will see the

results similar to those shown in Listing 7-14. The order of the results may differ but you

should see the same data in the results. Note that the document ids are added to each of

the JSON documents.

Listing 7-14.  Results of SELECT Statement for Contacts Collection

$ mysqlsh root@localhost:33060 --sql --json=pretty --schema=rolodex -e

"SELECT * FROM contacts"

{

 "password": "Enter password: "

}

{

 "executionTime": "0.00 sec",

 "warningCount": 0,

 "warnings": [],

Chapter 7 X Protocol

325

 "rows": [

 {

 �"doc": "{\"_id\": \"9801A79DE09382A811E806BFAD2FA2CF\",

\"name\": {\"first\": \"Allen\"}, \"phones\": [{\"work\":

\"212-555-1212\"}]}",

 "_id": "9801A79DE09382A811E806BFAD2FA2CF"

 },

 {

 �"doc": "{\"_id\": \"9801A79DE0938DFD11E806BFAD314DE1\",

\"name\": {\"last\": \"Wheelerton\", \"first\": \"Joe\"},

\"notes\": \"Excellent car detailer. Referrals get $20 off

next detail!\", \"phones\": [{\"work\": \"212-555-1213\"},

{\"home\": \"212-555-1253\"}], \"address\": {\"zip\":

\"90125\", \"city\": \"oxnard\", \"state\": \"ca\", \"street\":

\"123 main\"}}",

 "_id": "9801A79DE0938DFD11E806BFAD314DE1"

 }

],

 "hasData": true,

 "affectedRowCount": 0,

 "autoIncrementValue": 0

}

That’s cool, isn’t it? We will see more code like this in Chapter 8 when we explore a

full document store application example. But first, let’s see an example of Connector/

Python using the X Protocol for executing SQL commands.

�Relational Data Example
Now let’s look at a relational data example using the X Protocol. We will use the same

code from C/Py as the last example only this time we’re going to execute an SQL

statement rather than work with data. I chose this simple example because, if not at

first, eventually your MySQL document store applications will use less and less SQL

operations. Even so, you may need to execute an SQL statement now and again if you

want to check variables, status, or similar operations with the server.

Chapter 7 X Protocol

326

This example connects to the server using a Session and executes the SQL statement,

SHOW VARIABLES LIKE, to retrieve all the system variables for the X Plugin. This is the

same SQL statement we saw in Chapter 6. Although we aren’t accessing any data, the

result set returned from the SHOW VARIABLES statement is the same as would be returned

if querying a table. So, we will see how to handle a result set from a SQL command

without the need to create any sample data.

As in the last example, we begin by importing the mysqlx library and prompt the

user for the logon credentials. Note that I demonstrate how to use defaults for user

input. Next, we get a Session with the get_session() method. This returns a Session

object instance. We then check to see if the connection is open and if it is not (e.g., the

connection failed), we exit. Listing 7-15 shows the complete code for this example. Take

a moment to read through it so that you can see all the concepts discussed thus far.

Listing 7-15.  X Client Source Code (SQL)

#

Introducing the MySQL 8 Document Store - xclient_sql

#

This file contains an example of how to read a database (SQL) from a MySQL

server using the X Protocol via a Session object

#

Dr. Charles Bell, 2018

#

import getpass

import mysqlx

Get user information

print("Please enter the connection information.")

user = raw_input("Username: ")

passwd = getpass.getpass("Password: ")

host = raw_input("Hostname [localhost]: ") or 'localhost'

port = raw_input("Port [33060]: ") or '33060'

Get a session object since we want to execute SQL statements

mysqlx_session = mysqlx.get_session({'host': host, 'port': port, 'user':

user, 'password': passwd})

Chapter 7 X Protocol

327

Check to see that the session is open. If not, quit.

if not mysqlx_session.is_open():

 exit(1)

Get an SqlStatements object

sql_stmt = mysqlx_session.sql("SHOW VARIABLES LIKE 'mysqlx_%'")

Execute and get a SqlResult object

sql_result = sql_stmt.execute()

print("\nVariables for the X Plugin:")

Print the column labels (names)

for col in sql_result.columns:

 print("{0}\t".format(col.get_column_name())),

print("\n---")

Print the rows

for row in sql_result.fetch_all():

 for col in row:

 print("{0}\t".format(col)),

 print("")

Close the session

mysqlx_session.close()

Tip  If you are using Python 3.0 or later, you may need to change the
raw_input() calls to input(). This is because raw_input() is no longer
supported in later releases of Python.

To execute a SQL statement, we need to ask the session for a SqlStatement object

instance by passing in the SQL statement we want to execute. We do that by calling

the sql() method for the session object instance. We can use that object to execute the

statement and get a result object instance in return.

Next, we can iterate over the columns in the result set printing their names. This

illustrates how to capture the column names in a result set.

Chapter 7 X Protocol

328

Next, we use the fetch_all() method to get all the rows in a list, loop through them

in a for loop and print the value for each column found. Note we use “row” and “column”

here because this is not a document being returned—it’s an old-fashioned SQL result set

(well, via the X Protocol). Finally, we close the session. Listing 7-16 shows an example of

the script running. You should be able to equate the output with the print() statements

in the source code. Note that later versions of MySQL may have additional variables and

some default values may differ.

Listing 7-16.  X Client Results (SQL)

$ python ./xclient_sql.py

Please enter the connection information.

Username: root

Password:

Hostname [localhost]:

Port [33060]:

Variables for the X Plugin:

Variable_name Value

mysqlx_bind_address *

mysqlx_connect_timeout 30

mysqlx_idle_worker_thread_timeout 60

mysqlx_max_allowed_packet 1048576

mysqlx_max_connections 100

mysqlx_min_worker_threads 2

mysqlx_port 33060

mysqlx_port_open_timeout 0

mysqlx_socket /tmp/mysqlx.sock

mysqlx_ssl_ca

mysqlx_ssl_capath

mysqlx_ssl_cert

mysqlx_ssl_cipher

mysqlx_ssl_crl

mysqlx_ssl_crlpath

mysqlx_ssl_key

Chapter 7 X Protocol

329

Note here that we see all the system variables for the X Plugin (those that start with

mysqlx_). We also see the values for each system variable. The SSL entries do not have

any values because the connection used in the example is not connecting via a secure

connection.

As you can see, even with a language like Python, it is very easy to write clients that

take advantage of the X Protocol and the X DevAPI. Of course, this is all possible with

Connector/Python, which implements the X Protocol. For more information about the

X Protocol, see the “X Protocol” section in the online MySQL internals reference manual

at https://dev.mysql.com/doc/internals/en/. For specific information about writing

clients with the connectors, see the individual connector online documentation at

https://dev.mysql.com/doc. You can find information about using the X DevAPI with

Connector/Python at https://dev.mysql.com/doc/dev/connector-python/.

�Summary
The X Protocol is a revolutionary new feature in MySQL that overcomes a lot of the

limitations of the older client/server protocol. The X Protocol is designed for extensibility

so it can be extended without affecting the clients that rely on it. The X Protocol is also

designed with a greater level of security and greater performance. For the first time in

decades, MySQL clients can connect and interact with the server using modern, reliable

technologies and promises to be the catalyst for many more new features in the future.

In this chapter, we examined the X Protocol starting with the motivations for why it

was created, the chief tenets or goals of the design, and how it was implemented using

protobuf as the foundation. We also saw a walkthrough of how portions of the X Protocol

work for simple use cases. We then looked at how to use protobuf in our applications

for moving data (messages) around in the code (on disk, over the wire, etc.), which

illustrates the power of protobuf.

We also took a short tour of how C/Py implements the X Protocol by examining

portions of the actual C/Py source code. We then used the X Protocol abstraction layer

in C/Py in standalone Python scripts to demonstrate how well the X Protocol works—its

ease of implementation as well as a concrete example of the technologies presented this

far in the book.

Chapter 7 X Protocol

https://dev.mysql.com/doc/internals/en/
https://dev.mysql.com/doc
https://dev.mysql.com/doc/dev/connector-python/

330

As with the X Plugin, we also discovered that the X Protocol is much more than

a feature, it’s a carefully crafted and well abstracted mechanism that is one of the

underpinnings for the future of MySQL. Even though we know we’re using the X Protocol

when using those connectors that support it, the X Protocol, it just works and works very

well.

In Chapter 8, I provide a tutorial on writing applications using the X DevAPI, which

we now know is enabled through the X Plugin and X Protocol. The project will use the

MySQL document store to build a Python web-based solution for storing information

about books.

Chapter 7 X Protocol

331
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_8

CHAPTER 8

Library Application: User
Interface
Now that we’ve learned what the MySQL Document Store is and how to use it via the

MySQL Shell, we can explore a more complex example that demonstrates the three

forms of data storage described: a pure relational database solution, a hybrid solution

where we use one or more JSON fields using the SQL features of the X DevAPI, and a

pure document store solution that uses the X DevAPI exclusively (a NoSQL solution).

Therefore, we will see the application implemented in three separate implementations.

However, we must first understand how the sample application is designed and how

it works. After all, the best examples should be something the reader can use in their

own environment. Thus, the example must be complex enough and complete enough to

be meaningful.

To continue the understandability of code in the previous chapters, we will be using

Python for the application because Python is very easy to learn and the code reads

with a level of clarity better than other languages. But don’t worry if you prefer another

language. You can easily rewrite the code in this chapter into any of the languages with

connectors that support the X DevAPI.

The user interface on the other hand complicates things a bit. We can mitigate that

by using a user interface design that is familiar. For this, we will use a web application. It

is unfortunate that writing a web application in pure Python is tedious and requires more

knowledge of how web application works than what one can expect in a work of this size.

To overcome that challenge, we will use one of the popular Python web application

frameworks. In this case, we will use Flask complete with a primer, tutorial, and walk-

through of the user interface code. As you will see, Flask is also easy to learn with only a

moderate number of nuances and concepts to learn. Flask was originally developed by

Armin Ronacher and has proven to be one of the easiest and most stable web platforms

for Python.

332

In Chapter 9, we will complete the application adding the database access methods

described previously.

�Getting Started
If you want to follow along and implement the sample projects, you will need a few

things installed on your computer to get going. This section will help you prepare your

computer with the tools needed: what you need to install and how to configure your

environment. We will also see a short primer on the user interface tools. Let’s begin with

a more detailed description of the application.

�Library Application
The example application in this chapter is a rather simple application designed to

demonstrate concepts. It is complete in that it supports the create, read, update, and

delete (CRUD) operations on data. Error handling and the user interface components

have less sophistication to keep the focus on the interaction with data. That said we will

see how to implement a robust and nice looking web interface in Python using Flask.

The data for the application is a simple book database. We will be storing basic

information about books such as the ISBN, title, publisher, and so forth. We also will

have a notes section so we can keep notes on the books. I used something similar to this

for many of my research papers and even some more advanced projects. The concept of

operations was to record the bibliography information for each book along with notes

about the content so that later it could be used to create a list of references. For example,

if a book contained information pertinent to a topic in the paper, I would add a note

indicating the subject and list page numbers and other important information. The

information in the notes varied based on what I was recording, so all that was required

was a search in a simple text field.

Unlike the application I used for research that permitted storing information

about books, magazines, articles, blogs, and so forth, the application for this chapter

has been simplified to store only books. This keeps the project small enough to be

discussed without unnecessary detail. The focus for the chapter is to examine the

benefits of migrating to a document store, not how best to implement a media reference

application.

Chapter 8 Library Application: User Interface

333

Thus, the basic operations will be to store and retrieve information about books,

authors, and publishers. The user interface is designed to present a list of all the books

in the database with the option to edit any book in the list. The default view is books but

the first versions of the application (1 and 2) will allow you to view lists of authors and

publishers. Users will also be permitted to create new books (authors, and publishers),

edit, and delete books.

Each version of the application will behave slightly differently as we see how changing

the way the data is stored and retrieved affects application design. A more detailed

explanation of each project is included in later sections that discuss the project versions.

Now, let’s look at how to setup our computers to run the sample application projects.

�Setup Your Environment
The changes to your environment are not difficult nor are they lengthy. We will be

installing Flask and a few extensions, which are needed for the application user

interface. Flask is one of several web libraries you can use with Python. These web

libraries make developing web applications with Python much easier than using raw

HTML code and writing your own handlers and code for the requests. Plus, Flask is not

difficult to learn.

The libraries we need to install are shown in Table 8-1. The table lists the name of the

library/extension, a short description, and the URL for the product documentation.

Table 8-1.  List of Libraries Required

Library Description Documentation

Flask Python Web API http://flask.pocoo.org/

docs/0.12/installation/

Flask-Script Scripting support for Flask https://flask-script.

readthedocs.io/en/latest/

Flask-Bootstrap User interface improvements and

enhancements

https://pythonhosted.org/

Flask-Bootstrap/

Flask-WTF WTForms integration https://flask-wtf.readthedocs.

io/en/latest/

WTForms Forms validation and rendering https://wtforms.readthedocs.

io/en/latest/

Chapter 8 Library Application: User Interface

http://flask.pocoo.org/docs/0.12/installation/
http://flask.pocoo.org/docs/0.12/installation/
https://flask-script.readthedocs.io/en/latest/
https://flask-script.readthedocs.io/en/latest/
https://pythonhosted.org/Flask-Bootstrap/
https://pythonhosted.org/Flask-Bootstrap/
https://flask-wtf.readthedocs.io/en/latest/
https://flask-wtf.readthedocs.io/en/latest/
https://wtforms.readthedocs.io/en/latest/
https://wtforms.readthedocs.io/en/latest/

334

Note  Depending on how your system is configured, you may see additional or
fewer components installed for the components installed in this section.

Of course, you should already have Python installed on your system. If not, be sure

to download and install the latest version of either the 2.X or 3.X editions. The example

code in this chapter was tested with Python 2.7.10 and Python 3.6.0.

To install the libraries, we can use the Python package manager, pip, to install

the libraries from the command line. The pip utility is included in most Python

distributions, but if you need to install it, you can see the installation documentation at

https://pip.pypa.io/en/latest/installing/.

If you need to install pip on Windows, you will need to download an installer, get-

pip.py (https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py),

and then add the path to the installed directory to the PATH environment variable.

There are several articles that document this process in more detail. You can google for

“installing pip on Windows 10” and find several including https://matthewhorne.me/

how-to-install-python-and-pip-on-windows-10/, which is among the most accurate.

Note I f you have multiple versions of Python installed on your system, the pip
command will install into whichever Python version environment is the default.
To use pip to install to a specific version, use pipN where N is the version. For
example, pip3 installs packages in the Python 3 environment.

The pip command is very handy because it makes installing registered Python

packages—those packages registered in the Python Package Index, abbreviated as

PyPI1 (https://pypi.python.org/pypi)—very easy. The pip command will download,

unpack, and install using a single command. Let’s discover how to install each of the

packages we need.

1�Also called the cheese shop, which is a reference to the Cheese Shop skit from Monty Python’s
Flying Circus (https://en.wikipedia.org/wiki/Cheese_Shop_sketch).

Chapter 8 Library Application: User Interface

https://pip.pypa.io/en/latest/installing/
https://pip.pypa.io/en/stable/installing/#installing-with-get-pip-py
https://matthewhorne.me/how-to-install-python-and-pip-on-windows-10/
https://matthewhorne.me/how-to-install-python-and-pip-on-windows-10/
https://pypi.python.org/pypi)—very
https://en.wikipedia.org/wiki/Cheese_Shop_sketch

335

Caution S ome systems may require running pip with elevated privileges such
as sudo (Linux, macOS), or in a command window run as an administrator user
(Windows 10). You will know if you need elevated privileges if the install fails to
copy files due to permission issues.

�Installing Flask

Listing 8-1 demonstrates how to install Flask using the command, pip install flask.

Note that the command downloads the necessary components, extracts them, and then

runs the setup for each. In this case, we see Flask is composed of several components

including Werkzeug, MarkupSafe, and Jinja2. We will learn more about some of these in

the “Flask Primer” section.

Listing 8-1.  Installing Flask

$ pip3 install flask

Collecting flask

 Using cached Flask-0.12.2-py2.py3-none-any.whl

Collecting Werkzeug>=0.7 (from flask)

 Downloading Werkzeug-0.14.1-py2.py3-none-any.whl (322kB)

 100% |██████████████████████████
██████| 327kB 442kB/s

Collecting Jinja2>=2.4 (from flask)

 Using cached Jinja2-2.10-py2.py3-none-any.whl

Collecting itsdangerous>=0.21 (from flask)

 Using cached itsdangerous-0.24.tar.gz

Collecting click>=2.0 (from flask)

 Downloading click-6.7-py2.py3-none-any.whl (71kB)

 100% |██████████████████████████
██████| 71kB 9.4MB/s

Collecting MarkupSafe>=0.23 (from Jinja2>=2.4->flask)

 Using cached MarkupSafe-1.0.tar.gz

Installing collected packages: Werkzeug, MarkupSafe, Jinja2, itsdangerous,

click, flask

 Running setup.py install for MarkupSafe ... done

Chapter 8 Library Application: User Interface

336

 Running setup.py install for itsdangerous ... done

Successfully installed Jinja2-2.10 MarkupSafe-1.0 Werkzeug-0.14.1 click-6.7

flask-0.12.2 itsdangerous-0.24

�Installing Flask-Script

Listing 8-2 demonstrates how to install Flask-Script using the command, pip install

flask-script. Note that in this case, we see the installation checking for prerequisites

and their versions.

Listing 8-2.  Installing Flask-Script

$ pip3 install flask-script

Collecting flask-script

 Using cached Flask-Script-2.0.6.tar.gz

Requirement already satisfied: Flask in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-script)

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-

script)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-

script)

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-

script)

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask-

>flask-script)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from

Jinja2>=2.4->Flask->flask-script)

Installing collected packages: flask-script

 Running setup.py install for flask-script ... done

Successfully installed flask-script-2.0.6

Chapter 8 Library Application: User Interface

337

�Installing Flask-Bootstrap

Listing 8-3 demonstrates how to install Flask-Bootstrap using the command,

pip install flask-bootstrap. Once again, we see the installation checking for

prerequisites and their versions as well as installation of dependent components.

Listing 8-3.  Installing Flask-Bootstrap

$ pip3 install flask-bootstrap

Collecting flask-bootstrap

 Downloading Flask-Bootstrap-3.3.7.1.tar.gz (456kB)

 100% |██████████████████████████
██████| 460kB 267kB/s

Requirement already satisfied: Flask>=0.8 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-bootstrap)

Collecting dominate (from flask-bootstrap)

 Downloading dominate-2.3.1.tar.gz

Collecting visitor (from flask-bootstrap)

 Downloading visitor-0.1.3.tar.gz

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8->flask-

bootstrap)

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask>=0.8-

>flask-bootstrap)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from

Jinja2>=2.4->Flask>=0.8->flask-bootstrap)

Installing collected packages: dominate, visitor, flask-bootstrap

 Running setup.py install for dominate ... done

Chapter 8 Library Application: User Interface

338

 Running setup.py install for visitor ... done

 Running setup.py install for flask-bootstrap ... done

Successfully installed dominate-2.3.1 flask-bootstrap-3.3.7.1 visitor-0.1.3

�Installing Flask-WTF

Listing 8-4 demonstrates how to install Flask-WTF using the command, pip install

flask-wtf.

Listing 8-4.  Installing Flask-WTF

$ pip3 install flask-wtf

Collecting flask-wtf

 Downloading Flask_WTF-0.14.2-py2.py3-none-any.whl

Requirement already satisfied: WTForms in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-wtf)

Requirement already satisfied: Flask in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from flask-wtf)

Requirement already satisfied: Jinja2>=2.4 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

Requirement already satisfied: click>=2.0 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

Requirement already satisfied: Werkzeug>=0.7 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from Flask->flask-wtf)

Requirement already satisfied: itsdangerous>=0.21 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from Flask->

flask-wtf)

Requirement already satisfied: MarkupSafe>=0.23 in /Library/Frameworks/

Python.framework/Versions/3.6/lib/python3.6/site-packages (from

Jinja2>=2.4->Flask->flask-wtf)

Installing collected packages: flask-wtf

Successfully installed flask-wtf-0.14.2

�Installing WTForms

The following demonstrates how to install WTForms using the command, pip install

WTforms. In this case, the installation is simple because we only need the one package.

Chapter 8 Library Application: User Interface

339

$ pip3 install wtforms

Collecting wtforms

 Using cached WTForms-2.1.zip

Installing collected packages: wtforms

 Running setup.py install for wtforms ... done

Successfully installed wtforms-2.1

USING PYTHON VIRTUAL ENVIRONMENTS

One of the nice things about working with Python is you can use a virtual environment to try

things out. A virtual environment is a local (think private) installation of Python, which you can

install packages and make changes to the Python environment without affecting the global

Python installation on your system. So, for example, if you used a virtual environment to

install Flask, it is only available to that virtual environment – it doesn’t affect any other virtual

environment or the global Python installation.

To use a virtual environment, you must have the virtualenv application installed. Not all

systems have this and indeed it isn’t supported on all platforms (but is on many). To install

virtual environment on Linux, use the command, sudo apt-get install python-

virtualenv. To install virtual environment on macOS, use the command, sudo easy_

install virtualenv. To install virtual environment on Windows 10, you must download

ez_setup.py (part of setuptools) from https://github.com/pypa/setuptools.

Once downloaded, open a command window with administrative privileges then enter the

command, python ez_setup.py to install easy_install then enter the command,

easy_install virtualenv to install virtual environment.

To create and use a virtual environment, issue the command, virtualenv project1. This

creates a folder name project1 with the virtual environment files that keep track of all

the changes made when in that environment. To activate the environment, use the source

./project1/bin/activate command. Note that we are invoking a script in the new

virtual environment folder. This will change your prompt to indicate you’re using a virtual

environment. To deactivate the environment, use the deactivate command while the virtual

environment is active. This will return your Python environment back to the global defaults. The

following demonstrates these commands on macOS.

Chapter 8 Library Application: User Interface

https://github.com/pypa/setuptools

340

$ mkdir virtual_environments

$ cd virtual_environments

$ virtualenv project1

New python executable in /virtual_environments/project1/bin/python

Installing setuptools, pip, wheel...done.

$ source ./project1/bin/activate

[Do something Python related here. Changes apply only to the active

virtual environment.]

(project1) $ deactivate

Removing a virtual environment is simply done by deleting the environment folder (after

deactivating it):

$ deactivate

$ rm -r /virtual_environments/project1

Some recommend always using a virtual environment when experimenting with new things

in Python, and for some things such as untrusted or untried libraries or libraries that conflict

with existing installed libraries, which is a good practice. However, for mainstream items such

as Flask and its supporting libraries, it isn't needed. If you want to use a virtual environment

for the proceeding projects, feel free to do so. Just remember to activate it before issuing any

Python commands and deactivate it when you’re finished.

To learn more about virtual environments, see https://virtualenv.pypa.io/en/stable/.

You should also have the MySQL Connector/Python 8.0.5 or later database

connector installed. If you do not, download it from https://dev.mysql.com/

downloads/connector/python/ and install it. If you have multiple versions of Python

installed, be sure to install it in all Python environments you want to use. Otherwise, you

may see an error like the following when starting the code.

$ python3 ./mylibrary_v1.py runserver -p 5001

Traceback (most recent call last):

 File "./mylibrary_v1.py", line 18, in <module>

 from database.library_v1 import Library, Author, Publisher, Book

 File ".../Ch08/version1/database/library_v1.py", line 15, in <module>

 import mysql.connector

ModuleNotFoundError: No module named 'mysql'

Chapter 8 Library Application: User Interface

https://virtualenv.pypa.io/en/stable/
https://dev.mysql.com/downloads/connector/python/
https://dev.mysql.com/downloads/connector/python/

341

Pip also can be used to install MySQL Connector/Python. The following shows how

to use PIP to install the connector.

$ pip3 install mysql-connector-python

Collecting mysql-connector-python

 Downloading mysql_connector_python-8.0.6-cp36-cp36m-macosx_10_12_x86_64.

whl (3.2MB)

 100% |██████████████████████████
██████| 3.2MB 16.9MB/s

Installing collected packages: mysql-connector-python

Successfully installed mysql-connector-python-8.0.6

If you installed MySQL Connector/Python manually or from source, you also may

need to install Protobuf. You can use pip to install it as shown in the following.

$ pip3 install protobuf

Collecting protobuf

 Downloading protobuf-3.5.1-py2.py3-none-any.whl (388kB)

 100% |██████████████████████████
██████| 389kB 414kB/s

Requirement already satisfied: setuptools in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages (from protobuf)

Requirement already satisfied: six>=1.9 in /Library/Frameworks/Python.

framework/Versions/3.6/lib/python3.6/site-packages/six-1.10.0-py3.6.egg

(from protobuf)

Installing collected packages: protobuf

Successfully installed protobuf-3.5.1

Now that our computer is setup, let’s take a crash course on Flask and its associated

extensions.

�Flask Primer
Flask is one of several web application libraries (sometimes called frameworks or

application programming interfaces—APIs) for use with Python. Flask is unique among

the choices in that it is small and, once you are familiar with how it works, easy to use.

That is, once you write the initialization code, most of your work with Flask will be

limited to creating web pages, redirecting responses, and writing your feature code.

Chapter 8 Library Application: User Interface

342

Flask is considered a micro framework because it is small and lightweight, and it

doesn’t force you into a box writing code specifically to interact with the framework. It

provides everything you need leaving the choice of what to use in your code up to you.

Flask is made of two major components that provide the basic functionality: a Web

Server Gateway Interface (WSGI) that handles all the work hosting web pages; and a

template library for easier web page development that reduces the need to learn HTML,

removes repetitive constructs, and provides a scripting capability for HTML code. The

WSGI component is named Werkzeug, which loosely translated from German means,

“work stuff” (http://werkzeug.pocoo.org/). The template component is named Jinja2

and is modelled after Django (http://jinja.pocoo.org/docs/2.10/). Both were

developed and maintained by the originators of Flask. Finally, both components are

installed when you install Flask.

Flask is also an extensible library allowing other developers to create additions

(extensions) to the basic library to add functionality. We saw how to install some of the

extensions available for Flask in the previous section. We will be using the scripting,

bootstrap, and WTForms extensions in this chapter. Having the ability to pick and

choose the extensions you want means you can keep your application as small as

necessary adding only what you need.

One of the components that you may consider “missing” from flask is the ability

to interact with other services such as database systems. This was a purposeful design

and functionality like this can be achieved through extensions. In fact, there are several

database extensions available for Flask including those that allow you to work with

MySQL. However, because we want to use the X DevAPI, we must use the Oracle-

provided connector, MySQL Connector/Python. This is not only possible, it also illustrates

the freedom you have when using Flask; we aren’t limited to certain functionality as

database server access, we can use any other Python library we want or require.2

Tip I f you’re curious about the MySQL support for Flask, see http://flask-
mysql.readthedocs.io/en/latest/.

2�If you use enough frameworks, you will eventually encounter those that are not extensible and
force you to use their database features, which are often too limited and may not meet your
needs. How sad it is to discover a new framework only to find out you can’t get to your data or
you must refactor your database to use it in the framework.

Chapter 8 Library Application: User Interface

http://werkzeug.pocoo.org/
http://jinja.pocoo.org/docs/2.10/
http://flask-mysql.readthedocs.io/en/latest/
http://flask-mysql.readthedocs.io/en/latest/

343

Flask, together with the extensions described previously, provides all the wiring

and plumbing you need to make a Web application in Python. It removes almost all the

burdens required to write web applications such as interpreting client response packets,

routing, HTML form handling, and more. If you’ve ever written a web application in

Python, you will appreciate the ability to create robust web pages without the complexity

of writing HTML and style sheets. Once you’re familiar with how to use Flask, it will

allow you to focus on the code for your application rather than spending a lot of time

writing the user interface.

Now, let’s get started learning Flask! If you take your time and try the sample

application, your first Flask application will work on the first try. The hardest part of

learning Flask is already past—installing Flask and its extensions. The rest is learning the

concepts of writing applications in Flask. Before we do that, let’s learn more about the

terminology in Flask as well as how to setup the base code we will use to initialize the

application instance that we will be using in this chapter.

Tip I f you want to explore Flask further, you should consider reading the online
documentation, user guide, and examples at http://flask.pocoo.org/
docs/0.12/.

�Terminology
Flask is designed to make a lot of the tedium of writing web applications easier. In Flask

parlance, a web page is rendered using two parts of your code: a view, which is defined

in the HTML file(s) and a route, which processes the requests from a client. Recall, we

can see one of two requests: a GET request that requests loading of a web page (read from

the client’s perspective), and a POST request that sends data from the client via the web

page to the server (write from the client’s perspective). Both requests are handled in

Flask using functions you define.

These functions then render the web page to send back to the client to satisfy the

request. Flask calls the functions view functions (or views for short). The way Flask

knows which method to call is using decorators that identify the URL path (called a

route in Flask). You can decorate a function with one or more routes making it possible

to provide multiple ways to reach the view. The decorator used is @app.route(<path>).

The following shows an example of multiple routes for a view function.

Chapter 8 Library Application: User Interface

http://flask.pocoo.org/docs/0.12/
http://flask.pocoo.org/docs/0.12/

344

@app.route('/book', methods=['GET', 'POST'])

@app.route('/book/<string:isbn_selected>', methods=['GET', 'POST'])

def book(isbn_selected=None):

 notes = None

 form = BookForm()

 form.publisher.choices = []

 form.authors.choices = []

 new_note = ""

 if request.method == 'POST':

 pass

 return render_template("book.html", form=form, notes=notes)

Note that there are multiple decorators. The first is book, which allows us to use

a URL such as localhost:5000/book, which causes Flask to route execution to the

book() function. The second is book/<isbn_selected>, which demonstrates how to

use variables to pass information to the view. In this case, if the user (the application)

uses the URL localhost:5000/book/978-1-4842-1294-3, which Flask places the value,

978-1-4842-1294-3, in the isbn_selected variable. In this way, we can pass information

dynamically to our views.

Note also that the routes specify the methods allowed for each route. In this

application, we can have a GET or POST for either route. If you leave these off the

decorator, the default is GET only making the web page read only.

Finally, note that at the end of the function we return with a call to the render_

template() function (imported from the flask module) that tells flask to return (refresh)

the web page with data we’ve acquired or assigned. The web page, book.html, although

part of the view is called a form in Flask. It is this concept that we will use to retrieve

information from the database and send it to the user. We can return a simple HTML

string (or an entire file) or what is called a form. Because we are using the Flask-WTF and

WTForms extensions, we can return a template rendered as a form class. We will discuss

forms, form classes, and other routes and views for the chapter project in a later section.

As you will see, templates are another powerful feature making it easy to create web pages.

Chapter 8 Library Application: User Interface

345

WHAT’S A DECORATOR?

In Python, we can specify special handling parameters by using decorators. Decorators are

simply a way to change the behavior of functions. For example, you can use decorators to

add stronger type checking, define macros, and invoke functions before and after execution.

Decorators in Flask for routing are some of the best examples of using decorators correctly. To

learn more about decorators, see https://www.python.org/dev/peps/pep-0318.

Flask builds a list of all the routes in the application making it easy for the application

to route execution to the correct function when requested. But, what happens when a

route is requested but it doesn’t exist in the application? By default, you will get a generic

error message like “Not Found. The requested URL was not found on the server.”

We will see how to add our own custom error handling routes in a later section.

Now that we know more about the terminology used in Flask and how it is structured

to work with web pages, let’s look at how a typical Flask application with the extensions

we need is constructed.

�Initialization and the Application Instance
Flask and its extensions provide the entry point for your web application. Instead of

writing all that onerous code yourself, Flask does it for you! The Flask extensions we will

be using in this chapter include Flask-Script, Flask-Bootstrap, Flask-WTF, and WTForms.

The following sections briefly describe each.

�Flask-Script

Flask-Script enables scripting in Flask applications by adding a command-line parser

(manifested as manager) that you can use to link to functions you’ve written. This is

enabled by decorating the function with @manager.command. The best way to understand

what this does for us is through an example.

Chapter 8 Library Application: User Interface

https://www.python.org/dev/peps/pep-0318

346

The following is a basic, raw Flask application that does nothing. It’s not even a

“hello, world” example because nothing is shown and there are no web pages hosted—

it’s just the raw Flask application.

from flask import Flask # import the Flask framework

app = Flask(__name__) # initialize the application

if __name__ == "__main__": # guard for running the code

 app.run() # launch the application

Note the app.run() call. This is called the server startup and is executed when we

load the script using the Python interpreter. When we run this code, all we see is the

default message from Flask as shown in the following. Note that we don’t have any

way to see help as there are no such options. We also see that the code launches using

defaults for the web server (which we can change in code if we desire). For example, we

can change the port that the server is listening.

$ python ./flask-ex.py --help

 * Running on http://127.0.0.1:5000/ (Press CTRL+C to quit)

With Flask-Script, we add not only a help option but options to control the server.

The following code shows how easy it is to add the statements to enable Flask-Script. The

new statements are highlighted in bold.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

app = Flask(__name__) # initialize the application

manager = Manager(app) # initialize the script manager class

Sample method linked as a command-line option

@manager.command

def hello_world():

 """Print 'Hello, world!'"""

 print("Hello, world!")

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

Chapter 8 Library Application: User Interface

347

When this code is run, we can see there are additional options available. Note that

the documentation string (immediately following the method definition) is shown as the

help text for the command added.

$ python ./flask-script-ex.py --help

usage: flask-script-ex.py [-?] {hello_world,shell,runserver} ...

positional arguments:

 {hello_world,shell,runserver}

 hello_world Print 'Hello, world!'

 shell Runs a Python shell inside Flask application context.

 runserver Runs the Flask development server i.e. app.run()

optional arguments:

 -?, --help show this help message and exit

Note that we see the command line arguments (commands) we added, hello_world,

but we also see two new ones supplied by Flask-Script; shell and runserver. You must

choose one of these commands when launching the server. The shell command allows

you to use the code in a Python interpreter or similar tool and the runserver executes

the code starting the web server.

Not only can we get help about the commands and options, Flask-Script also

provides more control over the server from the command line. In fact, we can see all the

options for each command by appending the --help option as shown in the following.

$ python ./flask-script-ex.py runserver --help

usage: flask-script-ex.py runserver [-?] [-h HOST] [-p PORT] [--threaded]

 [--processes PROCESSES]

 [--passthrough-errors] [-d] [-D] [-r] [-R]

 [--ssl-crt SSL_CRT] [--ssl-key SSL_KEY]

Runs the Flask development server i.e. app.run()

optional arguments:

 -?, --help show this help message and exit

 -h HOST, --host HOST

 -p PORT, --port PORT

 --threaded

 --processes PROCESSES

Chapter 8 Library Application: User Interface

348

 --passthrough-errors

 -d, --debug enable the Werkzeug debugger (DO NOT use in production

 code)

 -D, --no-debug disable the Werkzeug debugger

 -r, --reload monitor Python files for changes (not 100% safe for

 production use)

 -R, --no-reload do not monitor Python files for changes

 --ssl-crt SSL_CRT Path to ssl certificate

 --ssl-key SSL_KEY Path to ssl key

Note here that we can control all manner of things about the server including the

port, host, and even how it executes.

Finally, we can execute the method we’ve decorated as a command-line option as

shown in the following.

$ python ./flask-script-ex.py hello_world

Hello, world!

Thus, Flask-Script provides some very powerful features with only a few lines of code.

You’ve got to love that!

�Flask-Bootstrap

Flask-Bootstrap was originally developed by Twitter for making uniform, nice-looking

web clients. It is fortunate that they’ve made it a Flask extension so that everyone can

take advantage of its features. Flask-Bootstrap is a framework on its own and provides

even more command-line control as well as user interface components for clean,

attractive web pages. It also is compatible with the newest web browsers.

The framework does its magic behind the scenes as a client library of cascading style

sheets (CSS) and scripts that are invoked from the HTML templates (commonly referred

to as either HTML files or template files) in Flask. We will learn more about templates

in a later section. Because it is client-side, we won’t see much by initializing it in the

main application. Regardless, the following shows how to add Flask-bootstrap to our

application code. Here, we see we have a skeleton with Flask-Script and Flask-Bootstrap

initialized and configured.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

Chapter 8 Library Application: User Interface

349

from flask_bootstrap import Bootstrap # import the flask bootstrap

extension

app = Flask(__name__) # initialize the application

manager = Manager(app) # initialize the script manager class

bootstrap = Bootstrap(app) # initialize the bootstrap extension

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

�WTForms

WTForms is a component we need to support the Flask-WTF extension. It provides much

of the functionality that the Flask-WTF component provides (because the Flask-WTF

component is a Flask-specific wrapper for WTForms). Therefore, we need only install it

as a prerequisite for Flask-WTF and we will discuss it in the context of Flask-WTF.

Note S ome package installations of Flask-WTF may include WTForms.

�Flask-WTF

The Flask-WTF extension is an interesting component providing several very useful

additions: most notable for our purposes integration with WTForms (a framework

agnostic component) that permits the creation of form classes, and additional web

security in the form of cross-site request forgery (CSRF) protection. These two features

allow you to take your web application to a higher level of sophistication.

Form Classes

Form classes provide a hierarchy of classes that make defining web pages more logical.

With Flask-WTF, you can define your form using two pieces of code; a special class

derived from FormForm class (imported from the Flask framework) that you use to

define fields using one or more additional classes that provide programmatic access to

data, and an HTML file (or template) for rendering the web page. In this way, we see an

abstraction layer (form classes) over the HTML files. We will see more about the HTML

files in the next section.

Chapter 8 Library Application: User Interface

350

Using form classes, you can define one or more fields such as TextField for text,

StringField for a string, and more. Better still, you can define validators that allow you

to programmatically describe the data. For example, you can define a minimum and

maximum number of characters for a text field. If the number of characters submitted

is outside of the range, an error message is generated. And, yes, you can define an error

message! The following lists some of the validators available. See http://wtforms.

readthedocs.io/en/latest/validators.html for a complete list of validators.

•	 DataRequired: Determines if input field is empty

•	 Email: Ensures the field follows email ID conventions

•	 IPAddress: Validates IP addresses

•	 Length: Ensures length of text is in given range

•	 NumberRange: Ensures text is numeric and within given range

•	 URL: Validates URLs

To form classes, we must import the class and any field classes we want to use in

the preamble of the application. The following shows an example of importing the form

class and form field classes. In this example, we also import some validators that we will

use for validating the data automatically.

from flask_wtf import FlaskForm

from wtforms import (HiddenField, TextField, TextAreaField, SelectField,

 SelectMultipleField, IntegerField, SubmitField)

from wtforms.validators import Required, Length

To define a form class, we must derive a new class from FlaskForm. From there, we

can construct the class however we want but it is intended to allow you to define the

fields. The FlaskForm parent class includes all the necessary code that Flask needs to

instantiate and use the form class.

Let’s look at a simple example. The following shows the form class for the author

web page. The author table, which we will link to this code via the view function,

contains three fields; an auto increment field (authorid), the first name of the author

(firstname), and the last name of the author (lastname). Because the author id field is

not something users need to see, we make that field a hidden field and the other fields

derivatives of the TextField() class. Note how these were defined in the listing with

names (labels) as the first parameter.

Chapter 8 Library Application: User Interface

http://wtforms.readthedocs.io/en/latest/validators.html
http://wtforms.readthedocs.io/en/latest/validators.html

351

class AuthorForm(FlaskForm):

 authorid = HiddenField('AuthorId')

 firstname = TextField('First name', validators=[

 Required(message=REQUIRED.format("Firstname")),

 Length(min=1, max=64, message=RANGE.format("Firstname", 1, 64))

])

 lastname = TextField('Last name', validators=[

 Required(message=REQUIRED.format("Lastname")),

 Length(min=1, max=64, message=RANGE.format("Lastname", 1, 64))

])

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

Note also that we defined an array of validators in the form of function calls imported

from the WTForms component for the fields. In each case, we used strings for the messages

to make the code easier to read and more uniform. These strings include the following.

REQUIRED = "{0} field is required."

RANGE = "{0} range is {1} to {2} characters."

We use the Required() validator that indicates the field must have a value. We

augment the default error message with the name of the field to make it easier for the user

to understand. We also use a Length() validator function that defines the minimal and

maximum length of the field data. Once again, we augment the default error message.

Validators are applied only on POST operations (when a submit event has occurred).

Next, we see there are two SubmitField() instances: one for a create (add) button,

and another for a delete button. As you may surmise, in HTML parlance, these fields are

rendered as <input> fields with a type of “submit”.

Finally, to use a form class we instantiate the class in a view function. The following

shows a stub for the author view function. Note that we instantiate the form class named

AuthorForm() and assign it to a variable named form, which is passed to the render_

template() function.

@app.route('/author', methods=['GET', 'POST'])

@app.route('/author/<int:author_id>', methods=['GET', 'POST'])

def author(author_id=None):

 form = AuthorForm()

Chapter 8 Library Application: User Interface

352

 if request.method == 'POST':

 pass

 return render_template("author.html", form=form)

There are several field classes available for use. Table 8-2 shows a sample of the most

commonly used field classes (also called HTML fields). You also can derive from these

fields to create custom field classes and provide text for the label that you can display

next to the field (or as the button text for example). We will see an example of this in a

later section.

Table 8-2.  WTForms Field Classes

Field Class Description

BooleanField A checkbox with True and False values

DateField Accepts date values

DateTimeField Accepts datetime values

DecimalField Accepts decimal values

FileField File upload field

FloatField Accepts a floating-point value

HiddenField Hidden text field

IntegerField Accepts integer values

PasswordField A password (masked) text field

RadioField A list of radio buttons

SelectField A dropdown list (choose one)

SelectMultipleField A dropdown list of choices (choose one or more)

StringField Accepts simple text

SubmitField Form submit button

TextAreaField Multiline text field

Chapter 8 Library Application: User Interface

353

CSRF Protection

CSRF Protection is a technique that permits developers to sign web pages with an

encrypted key that makes it more difficult for hackers to spoof a GET or POST request.

This is accomplished by first placing a special key in the application code and then

referencing the key in each of our HTML files. The following shows an example of the

preamble of an application. Note that all we need to do is assign the SECRET_KEY index of

the app.config array with a phrase. This should be a phrase that is not easily guessed.

from flask import Flask # import the Flask framework

from flask_script import Manager # import the flask script manager class

from flask_bootstrap import Bootstrap # import the flask bootstrap

extension

app = Flask(__name__) # initialize the application

app.config['SECRET_KEY'] = "He says, he's already got one!"

manager = Manager(app) # initialize the script manager class

bootstrap = Bootstrap(app) # initialize the bootstrap extension

if __name__ == "__main__": # guard for running the code

 manager.run() # launch the application via manager class

To activate the CSRF in our web pages, we merely add the form.csrf_token to the

HTML file. This is a special hidden field that Flask uses to validate the requests. We will

see more about where to place this in a later section. But first, let’s see a cool feature of

Flask called flash.

�Message Flashing

There are many cool features in Flask. The creators and the creators of the Flask

extensions seem to have thought of everything—even error messaging. Consider a

typical web application. How do you communicate errors to the user? Do you redirect

to a new page,3 issue a popup,4 or perhaps display the error on the page? Flask has a

solution for this called message flashing.

3�Which I find particularly annoying when entering data as it is often lost when you return to the
page. Please, don’t use this method.

4�If you have locked down your browser for better security, allowing popups can be problematic.

Chapter 8 Library Application: User Interface

354

Message flashing is accomplished using the flash() method from the Flask

framework. We simply import it in the preamble of our code then when we want to

display a message, we call the flash() function passing in the error message we want

to see. Flask will present the error in a nicely formatted box presented at the top of the

form. It doesn’t replace the form and isn’t a popup but it does allow the user to dismiss

the message. You can use flash messaging to communicate errors, warnings, and

even state changes to the user. Figure 8-1 shows an example of a flash message. In this

example, we see two flash messages that demonstrate you can display multiple messages

at the same time. Note the small X to the right of the message used to dismiss the image.

We will see a mechanism to build flash messaging into all our web pages in the next

section.

�HTML Files and Templates
Let’s review our tour so far. We have discovered how to initialize an application with the

various components, learned how Flask uses routes via the decorators to create a set of

URLs for the application, these routes are directed to a view function, which instantiates

the form class. The next piece of the puzzle is how to link the HTML web page to the

form class.

Recall, this is done via the render_template() function where we pass in the name

of a HTML file for processing. The reason template is in the name is because we can

use the Jinja2 template component to make writing web pages easier. More specific, the

HTML file contains both HTML tags and Jinja2 template constructs.

Figure 8-1.  Example flash message

Chapter 8 Library Application: User Interface

355

Note A ll HTML files (templates) must be stored in the templates folder in the
same location as the main application code. For example, if your code is in a file
named my-flask-app.py, there should be a templates folder in the same
folder as my-flask-app.py. If you place them anywhere else, Flask won’t be
able to find the HTML files.

Templates together with form classes are where the user interface is designed. In

short, templates are used to contain presentation logic and HTML files are used to contain

the presentation data. These topics are likely to be the areas where some may need to

spend some time experimenting with how to use them. The following sections give you

a brief overview of Jinja2 templates and how to use them in our HTML files through

demonstration of working examples. See the online Flask documentation noted for more

details.

�Jinja2 Templates Overview

Jinja2 templates, (or templates), are used to contain any presentation logic like looping

through data arrays, making decisions on what to display, and even formatting and

presentation settings. If you are familiar with other web development environments, you

may have seen this encapsulated in scripts or enabled through embedded scripting such

as JavaScript.

Recall we rendered our web pages in our main code. This function tells Flask to read

the file specified and convert the template constructs (render them) into HTML. That is,

Flask will expand and compile the template constructs into HTML that the web server

can present to the client.

There are several template constructs you can use to control the flow of execution,

loops, and even comments. Whenever you want to use a template construct (think

scripting language), you enclose it with {% %} prefix and suffix. This enables the Flask

framework to recognize the construct as a template operation rather than HTML.

However, it is not unusual and quite normal to see the template constructs

intermixed with HTML tags. In fact, that is exactly how you should do it. After all, the files

you will create are named .html. They just happen to contain template constructs. Does

that mean you can only use templates when working with Flask? No, certainly not. If you

want, you can render a pure HTML file!

Chapter 8 Library Application: User Interface

356

At first, looking at templates can be quite daunting. But it isn’t that difficult. Just look

at all the lines with the {% and %} as the “code” portions.5 You also may see comments in

the form of {# #} prefix and suffix.

Caution A ll template constructs require a space after the {% and before the %}.

If you look at the template, you will see the constructs and tags and formatted using

indentation of two spaces. Indentation and whitespace in general doesn’t matter outside

the tags and constructs. However, most developers will use some form of indentation to

make the file easier to read. In fact, most coding guidelines require indentation.

One of the cool features of templates beyond the constructs (think code) is the ability

to create a hierarchy of templates. This allows you to create a “base” template that your

other templates can use. For example, you can create a boilerplate of template constructs

and HTML tags so that all your web pages look the same.

Recall from our look at Flask-Bootstrap, bootstrap provides several nice formatting

features. One of those features is creating a pleasant looking navigation bar. Naturally,

we would want this to appear on all our web pages. We can do this by defining it in the

base template and extending it in our other template (HTML) files. Let’s look at a base

template for the library application. Listing 8-5 shows the base template for the library

application. Line numbers have been added for ease of discussion.

Listing 8-5.  Sample Base Template

01 {% extends "bootstrap/base.html" %}

02 {% block title %}MyLibrary{% endblock %}

03 {% block navbar %}

04 <div class="navbar navbar-inverse" role="navigation">

05 <div class="container">

06 <div class="navbar-header">

07 �<button type="button" class="navbar-toggle" data-

toggle="collapse" data-target=".navbar-collapse">

08 Toggle navigation

09

5�Few will use this word to describe the template constructs and although not accurate, it is okay to
consider it a code-like component if it helps to learn how to use Jinja2 templates.

Chapter 8 Library Application: User Interface

357

10

11

12 </button>

13 MyLibrary Base

14 </div>

15 <div class="navbar-collapse collapse">

16 <ul class="nav navbar-nav">

17 Books

18

19 <ul class="nav navbar-nav">

20 Authors

21

22 <ul class="nav navbar-nav">

23 Publishers

24

25 </div>

26 </div>

27 </div>

28 {% endblock %}

29

30 {% block content %}

31 <div class="container">

32 {% for message in get_flashed_messages() %}

33 <div class="alert alert-warning">

34 �<button type="button" class="close" data-dismiss="alert">×

</button>

35 {{ message }}

36 </div>

37 {% endfor %}

38 {% block page_content %}{% endblock %}

39 </div>

40 {% endblock %}

Wow, there is a lot going on here! Note the first line. This tells us that we’re inheriting

(extending) another template named bootstrap/base.html template. This is provided

for you free when you install Flask-Bootstrap and it is this template that contains support

Chapter 8 Library Application: User Interface

358

for the bootstrap navigation bar feature. This is a very common method of building a set

of HTML files for a Flask application as we will see later in this section.

Let’s start our tour with a bird’s eye view. Note that there are two “blocks” designated

with {% block <> %} and {% endblock %} (lines 2, 3, 28, 30, 38, and 40). These are logical

sections where we can apply formatting to the tags and constructs inside the block. In

coding terms, this would be like a code block. The first block defines the title for the page.

In this case, MyLibrary, which is the executable name for the library application.

The second block defines the navigation bar (think menu) for the application.

Note in that section lines 5–27 define simple HTML <div> tags forming the items on

the navigation bar. Of note are line 13, which specifies text to be used as the name of

the application, which appears to the left of the navigation bar and acts like a “home”

link. Lines 15–24 define the navigation bar items (submit buttons) for three web

pages (forms). Note also the collapse keyword. This indicates it is possible to collapse

the navigation bar. So, what does the navigation bar look like? Figure 8-2 shows the

navigation bar for the library application in normal, collapsed, and expanded mode.

The normal and collapsed mode operates based on the size of the browser window

collapsing when the navigation item labels cannot be displayed. The expanded mode

operates when users click on the button to the right when in collapsed mode. Cool, eh?

Figure 8-2.  Bootstrap navigation bar demonstration

Chapter 8 Library Application: User Interface

359

The last block in lines 30–39 defines the template construct and HTML tags for the

flash messages. Let’s take a deeper look at this code (repeated here for convenience).

30 {% block content %}

31 <div class="container">

32 {% for message in get_flashed_messages() %}

33 <div class="alert alert-warning">

34 �<button type="button" class="close" data-dismiss="alert">×

</button>

35 {{ message }}

36 </div>

37 {% endfor %}

38 {% block page_content %}{% endblock %}

39 </div>

40 {% endblock %}

Here, we see another <div> tag that contains a button. This is the button we use to

dismiss the flash message. Note that this tag is placed inside a for loop as designated

with {% for ... %} and ended with {% endfor %}. In this case, we are looping over

the messages returned from the get_flashed_messages() function, which is collected

by the flash() function in our application code. This tells us several things: we can use

loops in our templates, the template allows the display of multiple images (which we saw

earlier), and templates can call functions! This is an example of the power of templates.

Note T emplates are not required to be formatted in any manner. That is,
whitespace doesn’t do anything outside the HTML tags or template constructs.

Finally, note the variable we defined in the for loop in line 32. This variable, message,

is defined local to the block in which it appears (in this case, the for loop), and can be

referenced at any point by enclosing it in {{ }}. For example, we see in line 35 we use

{{ message }} inside the <div> tag, which means this text will appear on the client

rendered in place by Flask. The use of variables will become more important when we

discuss how to build user interfaces with templates.

Chapter 8 Library Application: User Interface

360

�Template Language Constructs

The Jinja2 template features are many and a complete discussion of all features is

beyond the scope of this book. However, it is handy to have a quick reference for the

major constructs of Jinja2. The following present some of the commonly used constructs

including some that we discovered in the last section (for completeness). Each is

presented with a short example of how the construct would appear in a template. Feel

free to refer to this section when exploring the library application later in the chapter or

when writing your own Flask applications.

Comments

You can embed your own comments in your templates. You may want to do this to

ensure you sufficient explain what you are doing and as a reminder in case you reuse

the code later.6 The following is an example of using comments in templates. Recall,

comments begin with {# and end with #} and can span multiple lines.

{# This is a line comment written by Dr. Charles Bell on Dec. 12, 2017. #}

{#

 Introducing the MySQL 8 Document Store

 This template defines the base template used for all of the HTML forms

and

 responses in the MyLibrary application. It also defines the menu for the

 basic operations.

 Dr. Charles Bell, 2017

#}

Include

If your template files grow and you find there are portions that are reusable such as a

<div> tag, you can save the tag and template constructs in a separate file and include it

in other templates using the {% include %} construct. The {% include %} construct

6�The older you get, the more often you read code and say, “who wrote this?” Sadly, it’s often your
own code! A few comments here and there will go a long ways toward remembering what you
were doing (and why).

Chapter 8 Library Application: User Interface

361

takes as a parameter the name of the file you want to include. As with templates, these

must reside in the templates folder. In this way, we avoid repetition and the hassle and

error-prone task of maintaining repetitive code.

{# Include the utilities common tags for a list. #}

{% include 'utilities.html' %}

Macros

Another form of reducing repetitive code is to create a macro for use in your templates

(think functions). In this case, we use the {% macro … %} and {% endmacro %}

constructs to define a macro that we can call (use) later in our code. The following shows

an example of defining a simple macro and later using it inside a loop. Note how we pass

variables to the macro for operating on the data.

{# Macro definition #}

{% macro bold_me(data) %}

 {{ data }}

{% endmacro %}

{# Invoke the macro #}

{% for value in data %}

 {{ bold_me(value) }}

{% endfor %}

Import

One of the best ways to use macros is to place them in a separate code file therefore

further enhancing reusability. To use a macro from a separate file, we use the {% import

… %} construct supplying the name of the file from which to import. The following shows

an example of importing the macro defined previously in a separate file. As with the

include, this file must be in the templates folder. Note we can use an alias and refer to the

macros using dot notation.

{% import 'utilities.html' as utils %}

...

{{ utils.bold_me(value) }}

Chapter 8 Library Application: User Interface

362

Extend (Inherit)

We can use a hierarchy of templates by inheriting (extending) them. We saw this earlier

when we examined a base template. In this case, we use the {% extend … %} construct

supplying the name of the template we want to extend. The following shows an example

from the base template previously.

{% extends "base.html" %}

Blocks

Blocks are used to isolate execution and scope (for variables). We use blocks whenever

we want to isolate a set of template constructs (think a code block). The {% block … %}

construct is used with the {% endblock %} construct to define the block. The constructs

allow you to name the block. The following shows an example.

{% block if_true %}

...

{% endblock if_true %}

Loops

Loops are a way to execute the same block multiple times. We do this with the {% for

<variable> in <data_array> %} construct. In this case, the loop will iterate over the

array replacing the value in <variable> with the value in each index of the array. This

construct is great for looping through an array to create a table, show a list of data, and

similar presentation activities. The following shows a for loop using in constructing a

table. Note that we use two for loops: one to loop over the columns in an array named

columns, and another to loop over the rows in an array named rows.

<table border="1" cellpadding="1" cellspacing="1">

 <tr>

 <td style="width:80px">Action</td>

 {% for col in columns %}

 {{ col|safe }}

 {% endfor %}

 </tr>

 {% for row in rows %}

 <tr>

Chapter 8 Library Application: User Interface

363

 <td>Modify</td>

 {% for col in row[1:] %}

 <td> {{ col }} </td>

 {% endfor %}

 </tr>

 {% endfor %}

</table>

You may be wondering at this point how the data in columns and rows gets to

the template. Recall the render_template() function. If you want to pass data to the

template, you simply list it in the parameters when you render the template. In this case,

we would pass the columns and rows as follows. In this case, row_data and col_data are

variables defined in the view function and passed to the rows and columns variables in

the template through assignment. Cool, eh?

render_template("list.html", form=form, rows=row_data, columns=col_data)

Conditionals

Conditionals or “if” statements (called tests in the Jinja2 documentation) allow you to

make decisions in your template. We use the {% if <condition> %} construct, which

is concluded with the {% endif %} construct. If you want an “else”, you can use the {%

else %} construct. Further, you may chain conditions with the {% elif <condition>

%}. You typically use variables or form elements in the conditions and can use the

common comparators (for a list of tests, see http://jinja.pocoo.org/docs/2.10/

templates/#builtin-tests).

For example, you may want to change the label of a submit field depending on some

event. You may want to define one submit button for adding or updating data. That is,

when the web page is used to add a new data item, the text should read “Add” but when

you update the data using the same web page, we want the text to read “Update”. This is

one of the keys to reusing the template for both GET and POST requests (read and write).

The following shows an example of a conditional used in this manner.

{% if form.create_button.label.text == "Update" %}

 {{ form.new_note.label }}

 {{ form.new_note(rows='2',cols='100') }}

{% endif %}

Chapter 8 Library Application: User Interface

http://jinja.pocoo.org/docs/2.10/templates/#builtin-tests
http://jinja.pocoo.org/docs/2.10/templates/#builtin-tests

364

{% if form.del_button %}

 {{ form.del_button }}

{% endif %}

There are two conditions in this example. The first demonstrates how to check

the text of a label on the form. Note that here we reference the element on the form

with form.create_button, which is the name of the field class we defined in the form

class, which was instantiated prior to rendering the template (we will see how to do

this in a later section). The form variable is passed to the template in the render_

template("book.html", form=form) call. In this case, we only display the new_note

field and its label if the button text was set to “Update.”

The second example shows a simple test that if the delete_button on the form

is active (not hidden or deleted), we display it. This is an example of how to display

optional submit fields.

Variables and Variable Filters

Variables are a way to save data values for later processing. The most common use of

variables is referencing data passed to the template from the view function (via the

render_template() function). We can also use variables in our templates to save data

such as counters, for loop data values, and more. Recall we reference a variable by

enclosing it in curly braces {{ variable }} or in the case of the for loop, it is defined in

the for loop construct. Note that when referenced inside HTML tags, the spaces inside

the construct are ignored.

You can also use a filter in your template to change the values in variables. Variable

filters are a way to programmatically change values for use in your presentation logic.

You can change the case, remove whitespace, and even strip HTML tags or use the

raw text directly. In this last case, we use the safe filter, which tells the template to use

the text even if it has HTML tags. This is a little tricky because it could open a path

for exploitation but if you use the special security feature of WTForms (shown in the

next section), it is normally okay to do this but do so sparingly. Table 8-3 shows the

commonly used variable filters.

Chapter 8 Library Application: User Interface

365

Tip F or a more in-depth look at Jinja2 template constructs, see
http://jinja.pocoo.org/.

Now that we have an overview of how templates work and have defined a base

template for the library application, let’s look at how to use the base template to form

the HTML files for our web pages. As you will see, it involves three concepts we’ve

been discussing and will bring the discussion to a conclusion of how Flask works when

building web pages and sending them to the client. We will look at getting data from the

client in a later section.

�HTML Files Using Templates

Now we are ready to see how to manifest the field classes we defined in our form classes.

Let’s begin the discussion with a walkthrough of how to present data for the publisher

data in the library application. We begin with the form class and the field classes defined

to the view function, which renders the template and finally the template itself.

Recall, that the form class is where we define one or more form fields. We will use

these field class instances to access the data in our view functions and in the template.

Listing 8-6 show the form class (without database access).

Table 8-3.  Variable Filters

Filter Description

Capitalize Converts the first character of the text to uppercase

Lower Converts the text to lowercase characters

Safe Renders the text without escaping special characters

Striptags Removes HTML tags from text

Title Capitalizes each word in the string

Trim Removes leading and trailing whitespace

Upper Converts the text to uppercase

Chapter 8 Library Application: User Interface

http://jinja.pocoo.org/

366

Listing 8-6.  Publisher Form Class (No Database Code)

class PublisherForm(FlaskForm):

 publisherid = HiddenField('PublisherId')

 name = TextField('Name', validators=[

 Required(message=REQUIRED.format("Name")),

 Length(min=1, max=128, message=RANGE.format("Name", 1, 128))

])

 city = TextField('City', validators=[

 Required(message=REQUIRED.format("City")),

 Length(min=1, max=32, message=RANGE.format("City", 1, 32))

])

 url = TextField('URL/Website')

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

Note that the form class creates three fields: one for the publisher name (name),

one for the city in which the publisher is based (city), and another for the publisher

URL (url). We also see two submit fields (buttons): one for creating new publisher data

(create_button), and one for deleting publisher data (del_button). We also have a

hidden field for the publisher id.

We pass the form data to the template when it is rendered after instantiating it in

the view function. Listing 8-7 shows the view function for the publisher data. Here, we

instantiate the publisher form class first then pass it to the template.

Listing 8-7.  Publisher View Function

#

Publisher

#

This page allows creating and editing publisher records.

#

@app.route('/publisher', methods=['GET', 'POST'])

@app.route('/publisher/<int:publisher_id>', methods=['GET', 'POST'])

def publisher(publisher_id=None):

 form = PublisherForm()

Chapter 8 Library Application: User Interface

367

 if request.method == 'POST':

 pass

 return render_template("publisher.html", form=form)

Note here that we see the routes we’ve defined for the view. Note also that we have

set the methods for requests to include both GET and POST. We can check to see if the

request is a POST (submission of data). It is in this condition that we can retrieve data

from the form class instance and save it to the database. We’ll look at that a bit more

when we add database capabilities.

Finally, note that we instantiate an instance of the publisher form class (form) and later

pass that as a parameter to the render_template("publisher.html", form=form) call. In

this case, we now render the publisher.html template stored in the templates folder.

Ok, now we have our form class and view function. The focus now is what happens

when we render the HTML template file. Listing 8-8 shows the HTML file (template) for

the publisher data.

Listing 8-8.  Publisher HTML File

{#

 Introducing the MySQL 8 Document Store

 This template defines the publisher template for use in the MyLibrary

application

 using the base template.

 Dr. Charles Bell, 2017

#}

{% extends "base.html" %}

{% block title %}MyLibrary Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Publisher - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;s>

 {{ form.name.label }}

 {{ form.name(size=64) }}

 {{ form.city.label }}

Chapter 8 Library Application: User Interface

368

 {{ form.city(size=48) }}

 {{ form.url.label }}

 {{ form.url(size=75) }}

 {{ form.create_button }}

 {% if form.del_button %}

 {{ form.del_button }}

 {% endif %}

 </div>

 </fieldset>

 </form>

{% endblock %}

Note that the template begins with extending (inheriting) the base.html template

file that we discussed earlier. We see a block defining the title and another block defining

the page content. In that block, we see how to define the fields on the page referencing

the field class instances from the form class instance (form). Indeed, note that we

reference the label of the field as well as the data. The label is defined when you declare

that the field class and the data is where the values are stored. When we want to populate

a form (GET) we set the data element to the value and when we want to read the data

(POST), we reference the data element.

Note that we also added the CSRF token for security, rendered the hidden fields

with the form.hidden_tag() function, and included the submit fields conditionally by

including the delete submit field (del_button).

Whew! That’s how Flask works to present a web page. Once you’re used to it, it is a

nifty way to separate several layers of functionality and make it easy to get data from the

user or present it to the user.

Now, let’s look at how to build custom error handlers into our application and later

how to redirect control in our application to the correct view functions.

�Error Handlers
Recall I mentioned it was possible to create your own error handling mechanisms for

errors in your application. There are two such error mechanisms you should consider

making: one for the 404 (not found) error, and another for 500 (application errors). To

define each, we first make a view function decorated with @app.errorhandler(num), a

view function, and an HTML file. Let’s look at each example.

Chapter 8 Library Application: User Interface

369

�Not Found (404) Errors

To handle 404 (not found) errors, we create a view function with the special error

handler routing function, which renders the HTML file. Flask will automatically direct

all not found error conditions to this view. The following shows the view function for the

404 not found error handler. As you can see, it is simple.

@app.errorhandler(404)

def page_not_found(e):

 return render_template('404.html'), 404

The associated error handler HTML code is in the file named 404.html as shown

in the following. Note that we inherit it from the base.html file so the resulting web

page looks the same as any other in the application complete with the menu from the

bootstrap component. Note that we also can define the text for the error message and a

title. Feel free to embellish your own error handlers to make things more interesting for

your users.7

{% extends "base.html" %}

{% block title %}MyLibrary ERROR: Page Not Found{% endblock %}

{% block page_content %}

<div class="page-header">

 <h1>Page not found.</h1>

</div>

{% endblock %}

�Application (500) Errors

To handle 500 (application) errors, follow the same pattern as before. The following is

the error handler for the application errors.

@app.errorhandler(500)

def internal_server_error(e):

 return render_template('500.html'), 500

7�An example of great custom error handlers can be found on Github. They have a custom
background and style sheet that puts the boring 404 errors of other websites to shame.

Chapter 8 Library Application: User Interface

370

The associated error handler HTML code is in the file named 500.html as shown

in the following. Note that we inherit it from the base.html file so the resulting web

page looks the same as any other in the application complete with the menu from the

bootstrap component.

{% extends "base.html" %}

{% block title %}MyLibrary ERROR{% endblock %}

{% block page_content %}

<div class="page-header">

 <h1>OOPS! Application error.</h1>

</div>

{% endblock %}

Creating these basic error handlers is highly recommended for all Flask applications.

You may find the application error handler most helpful when developing your

application. You can even augment the code to provide debug information to be

displayed in the web page.

�Redirects
At this point, you may be wondering how a Flask application can programmatically

direct execution from one view to another. The answer is another simple construct in

Flask: redirects. We use the redirect() function (imported from the flask module) with

a URL to redirect control to another view. For example, suppose you had a list form and,

depending on which button the user clicks (submitting the form via POST), you want

to display a different web page. The following demonstrates how to use the redirect()

function to do this.

if kind == 'book' or not kind:

 if request.method == 'POST':

 return redirect('book')

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

elif kind == 'author':

 if request.method == 'POST':

 return redirect('author')

 return render_template("list.html", form=form, rows=rows,

Chapter 8 Library Application: User Interface

371

 columns=columns, kind=kind)

elif kind == 'publisher':

 if request.method == 'POST':

 return redirect('publisher')

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

Here, we see there are three redirects after a POST request. In each case, we are

using one of the routes defined in our application to tell Flask to call the associated view

function. In this way, we can create a menu or a series of submit fields to allow the user

to move from one page to another.

The redirect() function requires a valid route and for most cases, it is simply the

text you supplied in the decorator. However, if you need to form a complex URL path, you

can use the url_for() function to validate the route before you redirect. The function

also helps avoid broken links if you reorganize or change your routes. For example, you

can use redirect(url_for(“author”)) to validate the route and form a URL for it.

�Additional Features
There is much more to Flask than what we’ve seen in this crash course. Some of the

things not discussed that you may be interested in learning more about include the

following (these are just a few of them). If these interest you, consider looking them up in

the online documentation.

•	 Application and request context: There are variables you can use

to capture application context such as session, global, request,

and more. For more information, see http://flask.pocoo.org/

docs/0.12/appcontext/.

•	 Cookies: You can work with cookies if you require. For more

information, see http://flask.pocoo.org/docs/0.12/

quickstart/#cookies.

•	 Flask-Moment—Localization of dates and times: If you need to work

with localization of date and time, see the Flask-Moment extension at

https://github.com/miguelgrinberg/Flask-Moment.

Chapter 8 Library Application: User Interface

http://flask.pocoo.org/docs/0.12/appcontext/
http://flask.pocoo.org/docs/0.12/appcontext/
http://flask.pocoo.org/docs/0.12/quickstart/#cookies
http://flask.pocoo.org/docs/0.12/quickstart/#cookies
https://github.com/miguelgrinberg/Flask-Moment

372

�Flask Review: Sample Application
Now that we’ve had a brief primer on Flask, let’s see how all of this works. In this section,

we review what we have learned in the form of a basic layout for a typical Flask web

application. We will be using this as a guide for writing the library application later in

this chapter. Don’t worry too much about executing this code as it doesn’t do much and

is intended as a jumpstart for the chapter project. However, it does demonstrate how all

the parts we’ve learned are pieced together to get the Flask web application running with

no forms defined.

Listing 8-9 shows the sample application layout for the library application. Take a

moment to read it through. You should find all the topics we’ve discussed thus far with

placeholders for field classes, form classes, and view functions.

Listing 8-9.  Sample Flask Application Template

#

Introducing the MySQL 8 Document Store - Template

#

This file contains a template for building Flask applications. No form

classes, routes, or view functions are defined but placeholders for each

are defined in the comments.

#

Dr. Charles Bell, 2017

#

from flask import Flask, render_template, request, redirect, flash

from flask_script import Manager

from flask_bootstrap import Bootstrap

from flask_wtf import FlaskForm

from wtforms import (HiddenField, TextField, TextAreaField, SelectField,

 SelectMultipleField, IntegerField, SubmitField)

from wtforms.validators import Required, Length

#

Setup Flask, Bootstrap, and security.

#

app = Flask(__name__)

app.config['SECRET_KEY'] = "He says, he's already got one!"

Chapter 8 Library Application: User Interface

373

manager = Manager(app)

bootstrap = Bootstrap(app)

#

Utility functions

#

def flash_errors(form):

 for error in form.errors:

 flash("{0} : {1}".format(error, ",".join(form.errors[error])))

#

Customized fields for skipping prevalidation

#

<custom field classes go here>

#

Form classes - the forms for the application

#

<form classes go here>

#

Routing functions - the following defines the routing functions for the

menu including the index or "home", book, author, and publisher.

#

<routing functions (view functions) go here>

#

Error handling routes

#

@app.errorhandler(404)

def page_not_found(e):

 return render_template('404.html'), 404

@app.errorhandler(500)

def internal_server_error(e):

 return render_template('500.html'), 500

#

Main entry

Chapter 8 Library Application: User Interface

374

#

if __name__ == '__main__':

 manager.run()

Note that there is one thing in this template we haven’t talked about yet—utility

functions. These are your own functions to support your application. One function

you may want to consider including in all your Flask applications is a function to loop

through the errors on a form and display them in a flash message. Recall flash messages

are displayed as popup boxes on the web page. The following presents the utility

function for clarity. Note that we use a for loop to loop through the errors array of the

form instance flashing each message. This permits you to display multiple messages on

the web page.

def flash_errors(form):

 for error in form.errors:

 flash("{0} : {1}".format(error, ",".join(form.errors[error])))

Feel free to use this template when creating your own Flask applications. We will also

be using it in the next section to define the user interface for the library application.

Tip F or more information about Flask and how to use it and its associated
packages, the following book is an excellent reference on the topic: Flask Web
Development: Developing Web Applications with Python 2nd ed., Miguel Grinberg,
(O'Reilly Media, 2018).

Now that we’ve setup the Flask environment and discovered Flask and its extensions,

let’s look at the user interface common to the three versions of the application.

�Library Application User Interface Design
Now that we know a lot more about Flask and how to build Flask applications, let’s look

at the library application user interface. As you may surmise, we build the database

access as a separate set of classes but the user interface can be built nearly completely

without it. Examining the user interface separate from the database access mechanisms

makes it easier to focus on each part. We will discuss the database access mechanisms in

the next section.

Chapter 8 Library Application: User Interface

375

The user interface for the library application is the same code for all three versions

of the application with some modifications to the code to adapt to the different database

mechanisms. In particular, we have the full interface as presented here in version 1

(relational database), a reduced user interface for version 2 (hybrid: relational database

with JSON), and version 3 will be more concise (document store). Therefore, we will

write the form classes, view functions, and templates for all the web pages hosted in the

user interface.

However, before we embark on writing the form classes, view functions, and

templates for the application, we need to create a few directories.

�Preparing the Directory Structure
Before we embark on implementing the three versions of the library application, we

need to make a few folders (directories). Recall from the Flask Primer, we need folders

to contain the .html files (form templates). We also place the code for interfacing with

MySQL in a folder named database. Finally, we need a separate folder for each version of

the application. Listing 8-10 shows the folder structure you will need. You can name the

version folders however you wish, but the database and templates folder must be named

as shown. Note we also have a folder named “base” that will contain the base user

interface design without the database folder as discussed in the next section.

Listing 8-10.  Directory Structure

root folder

 |

 +- base

 | |

 | +-- templates

 |

 +- version1

 | |

 | +-- database

 | |

 | +-- templates

 |

 +- version2

Chapter 8 Library Application: User Interface

376

 | |

 | +-- database

 | |

 | +-- templates

 |

 +- version3

 |

 +-- database

 |

 +-- templates

�User Interface Features
The library application will host three types of data: books, authors, and publishers

linking them to form a library of books. The default view of the application will be a list

of the books, which presents all the books in the form of an abbreviated bibliography.

There will also be views for all the authors and all the publishers. Users will also be

able to view the data for a specific book, author, or publisher allowing them to update

or delete data items. Thus, the library application demonstrates the basic create, read,

update, and delete (CRUD) operations for data.

Recall we will be using the bootstrap navigation bar, which has menu items for each

of the views: books, authors, and publishers. Let’s look at the default view—the list of

books. Figure 8-3 shows the default view (without data). Note that the navigation bar and

the choices for each of the views. Recall also that we specified the default view (reached

by clicking on MyLibrary Base) is the same view of the books. In other words, it’s the

typical index.html or home of other web applications.

Figure 8-3.  MyLibrary application book list (default view)

Chapter 8 Library Application: User Interface

377

Although there is no data in this example, we will write the code to make a link for

each item in the list that the user can click on to edit the data in the row. You will see

how that is done in a later section. Note also the New button. Users can use this to create

a new view as shown in Figure 8-4. This uses the same form class, view function, and

template for viewing and editing the data. Recall also we will place a delete button on the

view to allow users to delete the data as an option when editing it. This extra step—edit

first, then delete—is a way to avoid the tired “are you sure?” question common to most

applications for verifying delete operations. This way allows the user to edit the data

and view it before deleting it. You be the judge as to whether it is better than the “are you

sure?” prompt.

Note that on the form there is a select (dropdown) field. This field is populated with

the names of the publishers in the database. Likewise, there is a multiselect field that

allows users to select one or more authors in the database. As you will see when we

discuss the database design, this layout is somewhat forced on us when using relational

Figure 8-4.  Book detail view

Chapter 8 Library Application: User Interface

378

data. We will populate these lists in the view function. Note also we see both the Add

and Delete submit fields (buttons). Recall, we will disable the Delete button in the

template—it would not normally be enabled when adding a new data item.

Next is the author view. Here, as with the books view, is a list of the authors in the

database complete with links for editing rows and a new button for creating new authors.

Figure 8-5 shows the author view.

When the user clicks on New (or later, the edit link in the list), the author detail view

is shown. Figure 8-6 shows the author detail view.

Note that the form is very short. It shows only the two fields along with the Add and

Delete button, which will be controlled in the template.

Finally, we have the publisher view, which displays a list of all the publishers in the

database. Figure 8-7 shows the publisher view.

Figure 8-5.  Author list view

Figure 8-6.  Author detail view

Chapter 8 Library Application: User Interface

379

Finally, when users click on New or the edit link in the list, the publisher detail view

is displayed as shown in Figure 8-8. Note here we have the three fields for the publisher

data along with the Add and Delete buttons.

Now that we have had a look at the basic user interface, let’s look at how to build

the form classes for the three form classes for the detail views and a single form class for

presenting the list, which uses inheritance and a bit of template constructs to share the

form class and template among all three list views. Cool, eh?

Figure 8-7.  Publisher view

Figure 8-8.  Publisher detail view

Chapter 8 Library Application: User Interface

380

�Form Classes
The form classes for the library application require three form classes. There will be one

for each of the author, publisher, and book views along with a form class for the reusable

list view. Let’s begin with the simplest form class (author) and work our way to the more

complex (book).

�Author Form Class

The author form is very simple and requires only three fields: one to store the primary

key for the row using a HiddenField field class, one for the first name, and one for the

last name. Both name fields use a TextField field class. Validation for the name fields

set both to required (hint: they’re defined as NOT NULL in the database table) along with

minimal and maximum length checks. We also need two SubmitField field classes:

one for Add and another for Delete. Recall, we will control programmatically the delete

button in the template. Listing 8-11 shows the AuthorForm form class.

Listing 8-11.  AuthorForm Class

class AuthorForm(FlaskForm):

 authorid = HiddenField('AuthorId')

 firstname = TextField('First name', validators=[

 Required(message=REQUIRED.format("Firstname")),

 Length(min=1, max=64, message=RANGE.format("Firstname", 1, 64))

])

 lastname = TextField('Last name', validators=[

 Required(message=REQUIRED.format("Lastname")),

 Length(min=1, max=64, message=RANGE.format("Lastname", 1, 64))

])

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

Chapter 8 Library Application: User Interface

381

�Publisher Form Class

The publisher form also is very simple and requires only four fields: one to store the

primary key for the row using a HiddenField field class, one for the publisher name,

one for the publisher city of origin, and another for the URL for the publisher. All three

visible fields use a TextField field class. Validation for the name and city fields set

both to required (hint: they’re defined as NOT NULL in the database table) along with

minimal and maximum length checks. The URL field as no validators because it is an

optional field for the data (it can be NULL in the database table). We also see the two

SubmitFields() for the Add and Delete buttons. Listing 8-12 shows the PublisherForm

form class.

Listing 8-12.  PublisherForm Class

class PublisherForm(FlaskForm):

 publisherid = HiddenField('PublisherId')

 name = TextField('Name', validators=[

 Required(message=REQUIRED.format("Name")),

 Length(min=1, max=128, message=RANGE.format("Name", 1, 128))

])

 city = TextField('City', validators=[

 Required(message=REQUIRED.format("City")),

 Length(min=1, max=32, message=RANGE.format("City", 1, 32))

])

 url = TextField('URL/Website')

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

�Book Form Class

The book form is a bit more complex with many fields for the data. In fact, there are 10

fields. Table 8-4 lists the fields needed for the book form class. Included are the name of

the field, the field class used, and validation choices.

Chapter 8 Library Application: User Interface

382

Before we discuss the form class for the book detail view, there is a small issue that

needs to be overcome. There is a commonly known catch when using the SelectField()

and SelectMultipleField() field classes. The prevalidation code can present some

unusual results when validated if there is no default selected or if you set the default

programmatically. To overcome these limitations, we can create our own derived field

class and override the prevalidation code. Listing 8-13 shows the code used to create

custom versions of these field classes to overcome the limitation. You will need to place

these in your code if you want to use either of these field classes.

Listing 8-13.  Creating Custom Field Classes

class NewSelectMultipleField(SelectMultipleField):

 def pre_validate(self, form):

 # Prevent "not a valid choice" error

 pass

 def process_formdata(self, valuelist):

 if valuelist:

 self.data = ",".join(valuelist)

 else:

 self.data = ""

Table 8-4.  Field Classes for the Book Form Class

Field Name Field Class Validation

ISBN TextField() Required(), Length()

Title TextField() Required()

Year IntegerField() Required()

Edition IntegerField() None

Language TextField() Required(), Length()

Publisher NewSelectField() Required()

Authors NewSelectMultipleField() Required()

create_button SubmitField() N/A

del_button SubmitField() N/A

new_note TextAreaField() None

Chapter 8 Library Application: User Interface

383

class NewSelectField(SelectField):

 def pre_validate(self, form):

 # Prevent "not a valid choice" error

 pass

 def process_formdata(self, valuelist):

 if valuelist:

 self.data = ",".join(valuelist)

 else:

 self.data = ""

Note that in each case, we override the pre_validate() and process_formdata()

methods allowing us to ignore prevalidation and make it easier to update the values.

Now let’s look at the code for the book form class. Listing 8-14 shows the code for the

BookForm form class. Note that we use the new field classes for the authors and publisher

fields. We also see the two SubmitFields() for the Add and Delete buttons.

Listing 8-14.  BookForm Class

class BookForm(FlaskForm):

 isbn = TextField('ISBN ', validators=[

 Required(message=REQUIRED.format("ISBN")),

 Length(min=1, max=32, message=RANGE.format("ISBN", 1, 32))

])

 title = TextField('Title ',

 validators=[Required(message=REQUIRED.format("Title"))])

 year = IntegerField('Year ',

 validators=[Required(message=REQUIRED.format("Year"))])

 edition = IntegerField('Edition ')

 language = TextField('Language ', validators=[

 Required(message=REQUIRED.format("Language")),

 Length(min=1, max=24, message=RANGE.format("Language", 1, 24))

])

 publisher = NewSelectField('Publisher ',

 validators=[Required(message=REQUIRED.format("Publisher"))])

 authors = NewSelectMultipleField('Authors ',

 validators=[Required(message=REQUIRED.format("Author"))])

Chapter 8 Library Application: User Interface

384

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

 new_note = TextAreaField('Add Note')

�List Form Class

To save duplicate code, we will create a simple form class that we can use to create a

simple list of rows in the form of an HTML table. The code for this is very simple because

all the presentation code will be in the template file. The following is the code for the

ListForm form class.

class ListForm(FlaskForm):

 submit = SubmitField('New')

Now that we’ve seen all the form classes for the library application, we now examine

the associated view functions.

�View Functions
View functions are where and how Flask applications direct execution. Together with

the routes we define, we can build our application without loops or polling. Let’s dive

in starting with the simplest view function. We will see the view functions with the

routes defined (via decorators). The basic code for the author, publisher, and book view

functions are the same and need no additional discussion. The only differences are the

routes and the population or the select and multiselect fields in the book view function.

Each function is show in Listing 8-15 (named author), Listing 8-16 (named publisher),

and Listing 8-17 (named book).

Listing 8-15.  Author View Function

@app.route('/author', methods=['GET', 'POST'])

@app.route('/author/<int:author_id>', methods=['GET', 'POST'])

def author(author_id=None):

 form = AuthorForm()

 if request.method == 'POST':

 pass

 return render_template("author.html", form=form)

Chapter 8 Library Application: User Interface

385

Listing 8-16.  Publisher View Function

@app.route('/publisher', methods=['GET', 'POST'])

@app.route('/publisher/<int:publisher_id>', methods=['GET', 'POST'])

def publisher(publisher_id=None):

 form = PublisherForm()

 if request.method == 'POST':

 pass

 return render_template("publisher.html", form=form)

Listing 8-17.  Book View Function

@app.route('/book', methods=['GET', 'POST'])

@app.route('/book/<string:isbn_selected>', methods=['GET', 'POST'])

def book(isbn_selected=None):

 notes = None

 form = BookForm()

 form.publisher.choices = []

 form.authors.choices = []

 new_note = ""

 if request.method == 'POST':

 pass

 return render_template("book.html", form=form, notes=notes)

The list view function is more complicated. Recall, we want to create a list that we

can reuse. Thus, we will need to be able to create an HTML table with a list of column

names and the rows we want to display. We can pass the columns and rows using

parameters in the render_template() function. We also want to define the size of the

columns. We can do this by passing HTML code to the template. In this case, we define

them as HTML tags for the column names and in the template, use the safe filter to

display it without translation.

We also want to create a link for each row that contains the primary key for the row,

which we will pass as the first data item in each row. For authors and publishers, it is

the auto increment primary key. For books, it is the ISBN. Thus, ISBN will be listed twice

in the row. To determine which data we want, we use a variable in the list route. For

example, if we want books, our URL would be localhost:5000/list/book. Cool.

Chapter 8 Library Application: User Interface

386

Finally, because this view function is a default view, the routes are simple: the default

(index) and list. Listing 8-18 shows the complete code for the list view function named

simple_list. Take some time to read through it so you understand the code.

Listing 8-18.  List View Function

@app.route('/', methods=['GET', 'POST'])

@app.route('/list/<kind>', methods=['GET', 'POST'])

def simple_list(kind=None):

 rows = []

 columns = []

 form = ListForm()

 if kind == 'book' or not kind:

 if request.method == 'POST':

 return redirect('book')

 columns = (

 '<td style="width:200px">ISBN</td>',

 '<td style="width:400px">Title</td>',

 '<td style="width:200px">Publisher</td>',

 '<td style="width:80px">Year</td>',

 '<td style="width:300px">Authors</td>',

)

 kind = 'book'

 # Here, we get all books in the database

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 elif kind == 'author':

 if request.method == 'POST':

 return redirect('author')

 # Just list the authors

 columns = (

 '<td style="width:100px">Lastname</td>',

 '<td style="width:200px">Firstname</td>',

)

 kind = 'author'

 # Here, we get all authors in the database

Chapter 8 Library Application: User Interface

387

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 elif kind == 'publisher':

 if request.method == 'POST':

 return redirect('publisher')

 columns = (

 '<td style="width:300px">Name</td>',

 '<td style="width:100px">City</td>',

 '<td style="width:300px">URL/Website</td>',

)

 kind = 'publisher'

 # Here, we get all publishers in the database

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 else:

 flash("Something is wrong!")

 return

Now that we’ve seen the code for the form classes and view functions, let’s look at the

remaining piece of the puzzle: templates.

�Templates
Templates are where we place all our HTML and template constructs for building our

web pages (in the context of a database application, a data view or simply view8). The

templates are presented with short descriptions and are provided for reference so that

you can see all the parts together. Because we have four view functions, we will create

four template files all of which will use the base template explained earlier. Recall, the

base template defines the bootstrap navigation bar and a for loop for displaying an array

of flash messages.

Note R emember, template files are in the templates folder and named XXX.html
by convention.

8�Which is unfortunate because it can easily be confused with Flask view functions.

Chapter 8 Library Application: User Interface

388

�Author Template

The author template creates a form for viewing, editing, and creating author data. As

such, we give the page a legend, host the hidden field (for the auto increment primary

key), and place the label and form field on the form for each of the fields. We keep it

simple by listing the fields vertically (but you can use any format you want). We also set

the size of the fields using the form fields default function. For example, to set the size for

the first name field to 75 characters, we use form.firstname(size=75). Finally, we see

the logic to turn on the delete button if it is defined (we will see how to disable it later).

Listing 8-19 shows the completed template for the author data (named author.html).

Listing 8-19.  Author Template (author.html)

{% extends "base.html" %}

{% block title %}MyLibrary Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Author - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;s>

 {{ form.firstname.label }}

 {{ form.firstname(size=75) }}

 {{ form.lastname.label }}

 {{ form.lastname(size=75) }}

 {{ form.create_button }}

 {% if form.del_button %}

 {{ form.del_button }}

 {% endif %}

 </div>

 </fieldset>

 </form>

{% endblock %}

Chapter 8 Library Application: User Interface

389

�Publisher Template

The publisher template creates a form for viewing, editing, and creating publisher data.

As such, we give the page a legend, host the hidden field (for the auto increment primary

key), and place the label and form field on the form for each of the fields. We keep it

simple by listing the fields vertically (but you can use any format you want). We also set

the size of the fields. Finally, we see the logic to turn on the delete button if it is defined

(we will see how to disable it later). Listing 8-20 shows the completed template for the

publisher data (named publisher.html).

Listing 8-20.  Publisher Template (publisher.html)

{% extends "base.html" %}

{% block title %}MyLibrary Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Publisher - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;s>

 {{ form.name.label }}

 {{ form.name(size=64) }}

 {{ form.city.label }}

 {{ form.city(size=48) }}

 {{ form.url.label }}

 {{ form.url(size=75) }}

 {{ form.create_button }}

 {% if form.del_button %}

 {{ form.del_button }}

 {% endif %}

 </div>

 </fieldset>

 </form>

{% endblock %}

Chapter 8 Library Application: User Interface

390

�Book Template

The book template is a bit more complex. We start out with a legend and the hidden tag,

which stores the ISBN for the current data, then build the form listing the labels and the

fields vertically setting the size of the fields as we go. So far, this is similar to how we built

the author and publisher templates.

Things get a bit more interesting when we try to set the field size for the select fields.

In this case, we need to use the style parameter passing in the width parameter using

units in pixels. This is one of the very few nuances of Flask templates that can be a bit

tricky because the size parameter doesn’t apply to the select fields (but now you know

how to get around it). As with the previous templates, we see the logic to turn on the

delete button if it is defined (we will see how to disable it later).

After that, we see some additional logic for working with notes. The notes feature

allows users to add notes to the book after it has been created. Thus, we need to both

show any existing notes and provide a means to add a new note, but only when the page

is used for update operations. You can see how this is done near the bottom of the file.

Listing 8-21 shows the completed template for the publisher data (named book.html).

Take some time to read through the file until you are confident you understand how it

works.

Listing 8-21.  Book Template (book.html)

{% extends "base.html" %}

{% block title %}MyLibrary Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Book - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;>

 {{ form.isbn.label }}

 {{ form.isbn(size=32) }}

 {{ form.title.label }}

 {{ form.title(size=100) }}

 {{ form.year.label }}

 {{ form.year(size=10) }}

 {{ form.edition.label }}

Chapter 8 Library Application: User Interface

391

 {{ form.edition(size=10) }}

 {{ form.language.label }}

 {{ form.language(size=34) }}

 {{ form.publisher.label }}

 {{ form.publisher(style="width: 300px;") }}

 {{ form.authors.label }}

 {{ form.authors(style="width: 300px;") }}

 {# Show the new note text field if this is an update. #}

 {% if form.create_button.label.text == "Update" %}

{{ form.new_note.label }}

 {{ form.new_note(rows='2',cols='100') }}

 {% endif %}

 {{ form.create_button }}

 {% if form.del_button %}

 {{ form.del_button }}

 {% endif %}

 </div>

 {# Show the list of existing notes if there is a list. #}

 {% if notes %}

 <div>

 <table border="1" cellpadding="1" cellspacing="1">

 <tr><td>Notes</td></tr>

 {% for note in notes %}

 <tr><td style="width:600px"> {{ note }} </td></tr>

 {% endfor %}

 </table>

 </div>

 {% endif %}

 </fieldset>

 </form>

{% endblock %}

Chapter 8 Library Application: User Interface

392

�List Template

Despite the rather complex view function for the list feature, the template for the list

view is rather straightforward. We simply add the New button (submit field) at the top,

provide a legend, and then format the table using the columns array from the view

function. We then build the HTML table using the rows also provided from the view

function. Listing 8-22 shows the completed template for the list data (named list.html).

Listing 8-22.  List Template (list.html)

{% extends "base.html" %}

{% block title %}MyLibrary Query Results{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 {{ form.submit }}

 </fieldset>

 </form>

 <legend>Query Results</legend>

 <table border="1" cellpadding="1" cellspacing="1">

 <tr>

 <td style="width:80px">Action</td>

 {% for col in columns %}

 {{ col|safe }}

 {% endfor %}

 </tr>

 {% for row in rows %}

 <tr>

 <td>Modify</td>

 {% for col in row[1:] %}

 <td> {{ col }} </td>

 {% endfor %}

 </tr>

 {% endfor %}

 </table>

{% endblock %}

Chapter 8 Library Application: User Interface

393

�Other Templates

Recall, there are three other templates that we’ve seen previously that we will be using:

the 404 and 500 error handlers (404.html, 500.html) as described in the section, “Error

Handlers” and the base template (base.html) as shown in Listing 8-5.

�Application Code
Now, let’s put these concepts together in the application code completing the basic

layout presented previously. Listing 8-23 shows the application code for the library

application. Because this is the base version of the library application, we name the

file mylibrary_base.py. We can use it as the basis for the three versions of the library

application (named mylibrary_v1.py, mylibrary_v2.py, and mylibrary_v3.py).

The listing is presented for completeness without additional discussion. The

portions of the code previously discussed are marked with [...] placeholders to avoid

duplication. Rather, the listing is provided as reference for later sections that discuss the

three versions. Feel free to read through the code to ensure you understand all the parts

of the code and refer to it when reading the sections on the different versions.

Listing 8-23.  Base MyLibrary Application Code

#

Introducing the MySQL 8 Document Store - Base

#

This file contains the sample Python + Flask application for

demonstrating

how to build a simple relational database application. Thus, it relies on

a database class that encapsulates the CRUD operations for a MySQL

database

of relational tables.

#

Dr. Charles Bell, 2017

#

from flask import Flask, render_template, request, redirect, flash

from flask_script import Manager

from flask_bootstrap import Bootstrap

from flask_wtf import FlaskForm

Chapter 8 Library Application: User Interface

394

from wtforms import (HiddenField, TextField, TextAreaField, SelectField,

 SelectMultipleField, IntegerField, SubmitField)

from wtforms.validators import Required, Length

#

Strings

#

REQUIRED = "{0} field is required."

RANGE = "{0} range is {1} to {2} characters."

#

Setup Flask, Bootstrap, and security.

#

app = Flask(__name__)

app.config['SECRET_KEY'] = "He says, he's already got one!"

manager = Manager(app)

bootstrap = Bootstrap(app)

#

Utility functions

#

def flash_errors(form):

[...]

#

Customized fields for skipping prevalidation

#

class NewSelectMultipleField(SelectMultipleField):

[...]

class NewSelectField(SelectField):

[...]

#

Form classes - the forms for the application

#

class ListForm(FlaskForm):

[...]

Chapter 8 Library Application: User Interface

395

class PublisherForm(FlaskForm):

[...]

class AuthorForm(FlaskForm):

[...]

class BookForm(FlaskForm):

[...]

#

Routing functions - the following defines the routing functions for the

menu including the index or "home", book, author, and publisher.

#

#

Simple List

#

This is the default page for "home" and listing objects. It reuses a

single template "list.html" to show a list of rows from the database.

Built into each row is a special edit link for editing any of the rows,

which redirects to the appropriate route (form).

#

@app.route('/', methods=['GET', 'POST'])

@app.route('/list/<kind>', methods=['GET', 'POST'])

def simple_list(kind=None):

[...]

#

Author

#

This page allows creating and editing author records.

#

@app.route('/author', methods=['GET', 'POST'])

@app.route('/author/<int:author_id>', methods=['GET', 'POST'])

def author(author_id=None):

[...]

Chapter 8 Library Application: User Interface

396

#

Publisher

#

This page allows creating and editing publisher records.

#

@app.route('/publisher', methods=['GET', 'POST'])

@app.route('/publisher/<int:publisher_id>', methods=['GET', 'POST'])

def publisher(publisher_id=None):

[...]

#

Book

#

This page allows creating and editing book records.

#

@app.route('/book', methods=['GET', 'POST'])

@app.route('/book/<string:isbn_selected>', methods=['GET', 'POST'])

def book(isbn_selected=None):

[...]

#

Error handling routes

#

@app.errorhandler(404)

def page_not_found(e):

[...]

@app.errorhandler(500)

def internal_server_error(e):

[...]

#

Main entry

#

if __name__ == '__main__':

 manager.run()

Chapter 8 Library Application: User Interface

397

Now that we have a firm foundation in Flask and how the user interface is designed,

we are ready to begin writing the code for each of the versions of the application starting

with the relational database version.

�Summary
Building MySQL applications using a good framework for not only the database access,

but more important for the user interface. Deciding on a language and platform to use

can sometimes become a science project or even an academic exercise or perhaps a

mandate that cannot be overridden. Presenting concepts such as the document store

with examples can be even more complicated as you must choose a language and

framework that is easy to use and easy to understand. Perhaps even more challenging,

choosing an application that illustrates the concepts in a meaningful manner.9

In this book, the choice for these technologies is Python, the Flask framework, and

of course the MySQL Connector/Python database connector and the X DevAPI. Python

is easy to read and anyone—even those who don’t write a lot of code—can understand

it. Plus, it is a very powerful language. However, user interfaces in Python are limited to

command-line (terminal) output unless you use a user interface framework. Once again,

choosing one can be a challenge. However, frameworks for web applications are just the

ticket to help build a decent looking example that readers can use as the basis for their

own experiments and applications.

In this chapter, we learned a new web application library for Python named Flask.

We also saw how Flask is built as an extensible framework that is easily augmented with

components to make your application more robust. We also covered an introduction

to the user interface for the library application building on the foundations of what we

learned about Flask.

In the next chapter, I look at three versions of the application: a pure relational

database solution that uses the old protocols, a relational database with JSON (hybrid)

that uses the X DevAPI and SQL statements, and a pure document store version. Each

version presents foundations on how to build the application using a different database

access mechanism. As you will see, there is a profound transition from the old to the new.

9�Sadly, most well-documented tutorials rarely have an example you can actually use to build on.
“Hello, World!” examples only go so far after all.

Chapter 8 Library Application: User Interface

399
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_9

CHAPTER 9

Library Application:
Database Implementations
Now that we have a firm foundation in Flask and how the user interface is designed, we

are ready to begin writing the code for each of the versions of the application starting

with the relational database version.

As you will see, the evolution of the application from a pure relational model to a

document model demonstrates how we can avoid some of the messier aspects of using

relational data—even in the hybrid example. One element that may surprise you is

the length and complexity of the code for the document store version is considerably

shorter and easier to understand. What better reason to consider writing all your future

applications using the MySQL Document Store!

The following sections describe the three versions of the library application. Because

they all use the same user interface code, we omit discussions of the user interface for

brevity and present only snapshots of the application executing where appropriate

to illustrate the differences. The following briefly recaps the versions. Each version

implements a different form of data storage.

•	 Version 1—relational database: implements a traditional relational

database model using only the nondocument store features.

•	 Version 2—relational database + JSON fields (hybrid): implements a

relational database model augmented with JSON fields.

•	 Version 3—document store: implements a pure document store

(NoSQL) solution.

The following sections present the entire code for the database components for each

version along with the appropriate changes to the user interface. Rather than present

snippets of code potentially out of context, the entire code for each version is presented

for clarity and completeness. As a result, this chapter is a bit longer.

400

Note  Recall from Chapter 8 that we used a directory structure to organize the
code. For example, we have folders named version1, version2, and version3
for each version of the application. If you are following along, be sure to place the
files discussed in the appropriate folder.

�Version 1: Relational Database
This version implements a traditional relational database solution in which we model the

data based on the views or data items. For the purposes of demonstration, we will implement

the database code in a code module that we can import into the application code. This code

module will use the older MySQL Connector/Python protocol and API. That is, we will not be

using the X DevAPI and will rely on SQL statements to work with the data.

Let’s start with a brief overview of the database design. Because relational database

is familiar to most readers interested in the MySQL Document Store, we will skip any

lengthy discussions and present the database with a brief introduction and a look at the

SQL CREATE statements.

�Database Design
The database for this version is named library_v1. In the spirit of good relational

database design, we will create a table to store the data in discrete tables for authors,

publishers, and books. We will also create a separate table to store the notes because this

data is referenced less often and could be potentially long strings. We will use foreign

keys to ensure consistency between these three tables. Because we can have more

than one author for each book, we need to create a join table to manage the many-to-

many relationship between books and authors. Thus, we will create five tables in total.

Figure 9-1 shows the Entity Relationship Diagram (ERD) for the library_v1 database

complete with indexes and foreign keys.

Chapter 9 Library Application: Database Implementations

401

We also need a way to retrieve the primary keys from the authors table for a given

book via the ISBN column. We use this data when we query the database for the

data for a given book. To make it easier to maintain, we will create a stored routine

(function) to retrieve a comma-separated list of the AuthorId column in the authors

table. We use this to populate the SelectMultipleField in the book template. Finally,

we will need another stored routine (function) that retrieves the author names for a

given book via the ISBN column. We then will use this data to populate the list view of

the books table.

Listing 9-1 shows the CREATE statements for all seven of these objects. If you want to

follow along building this version of the application as you read, you should create a file

named library_v1.sql so you can recreate the database later if needed. The database

uses only tables and stored routines to keep the discussion short.

Figure 9-1.  ERD diagram—library database (version 1)

Chapter 9 Library Application: Database Implementations

402

Listing 9-1.  Library Version 1 Database Create Script (library_v1.sql)

CREATE DATABASE `library_v1`;

CREATE TABLE `library_v1`.`authors` (

 `AuthorId` int(11) NOT NULL AUTO_INCREMENT,

 `FirstName` varchar(64) DEFAULT NULL,

 `LastName` varchar(64) DEFAULT NULL,

 PRIMARY KEY (`AuthorId`)

) ENGINE=InnoDB;

CREATE TABLE `library_v1`.`publishers` (

 `PublisherId` int(11) NOT NULL AUTO_INCREMENT,

 `Name` varchar(128) NOT NULL,

 `City` varchar(32) DEFAULT NULL,

 `URL` text,

 PRIMARY KEY (`PublisherId`)

) ENGINE=InnoDB;

CREATE TABLE `library_v1`.`books` (

 `ISBN` char(32) NOT NULL,

 `Title` text NOT NULL,

 `Year` int(11) NOT NULL DEFAULT '2017',

 `Edition` int(11) DEFAULT '1',

 `PublisherId` int(11) DEFAULT NULL,

 `Language` char(24) NOT NULL DEFAULT 'English',

 PRIMARY KEY (`ISBN`),

 KEY `pub_id` (`PublisherId`),

 CONSTRAINT `books_ibfk_1` FOREIGN KEY (`PublisherId`)

 REFERENCES `library_v1`.`publishers` (`publisherid`)

) ENGINE=InnoDB;

CREATE TABLE `library_v1`.`notes` (

 `NoteId` int(11) NOT NULL AUTO_INCREMENT,

 `ISBN` char(32) NOT NULL,

 `Note` text,

 PRIMARY KEY (`NoteId`,`ISBN`),

 KEY `ISBN` (`ISBN`),

Chapter 9 Library Application: Database Implementations

403

 CONSTRAINT `notes_fk_1` FOREIGN KEY (`ISBN`)

 REFERENCES `library_v1`.`books` (`isbn`)

) ENGINE=InnoDB;

CREATE TABLE `library_v1`.`books_authors` (

 `ISBN` char(32) NOT NULL,

 `AuthorId` int(11) DEFAULT NULL,

 KEY `auth_id` (`AuthorId`),

 KEY `isbn_id` (`ISBN`),

 CONSTRAINT `books_authors_fk_1` FOREIGN KEY (`ISBN`)

 REFERENCES `library_v1`.`books` (`isbn`),

 CONSTRAINT `books_authors_fk_2` FOREIGN KEY (`AuthorId`)

 REFERENCES `library_v1`.`authors` (`authorid`)

) ENGINE=InnoDB;

DELIMITER //

CREATE FUNCTION `library_v1`.`get_author_ids`(isbn_lookup char(32))

 RETURNS varchar(128) DETERMINISTIC

 RETURN (

 �SELECT GROUP_CONCAT(library_v1.authors.AuthorId SEPARATOR ', ')

AS author_ids

 FROM library_v1.books_authors JOIN library_v1.authors

 ON books_authors.AuthorId = authors.AuthorId

 WHERE ISBN = isbn_lookup GROUP BY library_v1.books_authors.ISBN

)//

CREATE FUNCTION `library_v1`.`get_author_names`(isbn_lookup char(32))

 RETURNS varchar(128) DETERMINISTIC

 RETURN (

 �SELECT GROUP_CONCAT(library_v1.authors.LastName SEPARATOR ', ') AS

author_names

 FROM library_v1.books_authors JOIN library_v1.authors

 ON books_authors.AuthorId = authors.AuthorId

 WHERE ISBN = isbn_lookup GROUP BY library_v1.books_authors.ISBN

)//

DELIMITER ;

Chapter 9 Library Application: Database Implementations

404

Now that the database has been created, let’s see the code for the database class.

Tip T here is a database creation script for each version in the sample code for
this book. See the Apress web site for this book to download the source code.

�Database Code
The code for working with the database is placed in a file named library_v1.py in the

database folder under the version1 folder as described in Chapter 8 under the section,

“Preparing the Directory Structure.” Because most of the code is common to older

Python applications that use the MySQL Connector/Python connector, we discuss only

the salient points for each portion of the code.

That said the code implements four classes: one for each of the data views (author,

publisher, book) and another class for interfacing with the server. These classes are

named Author, Publisher, Book, and Library, respectfully.

Note T o use the library placed in the database folder, you must create an empty
file named __init__.py in the database folder.

�SQL Strings

To make the code easier to maintain and to modify it if any changes are needed for the

SQL statements, we place these in the preamble of the code module as strings that we

can reference later in the code. Doing this also helps keep code line lengths shorter.

Listing 9-2 shows the preamble for the library_v1.py code module. Note that it begins

with importing the MySQL Connector/Python library.

Listing 9-2.  Initialization and SQL Statements (library_v1.py)

import mysql.connector

ALL_BOOKS = """

 SELECT DISTINCT book.ISBN, book.ISBN, Title, publisher.Name as Publisher,

 Year, library_v1.get_author_names(book.ISBN) as Authors

 FROM library_v1.books As book

Chapter 9 Library Application: Database Implementations

405

 INNER JOIN library_v1.publishers as publisher ON

 book.PublisherId=publisher.PublisherId

 INNER JOIN library_v1.books_authors as book_author ON

 book.ISBN = book_author.ISBN

 INNER JOIN library_v1.authors as a ON book_author.AuthorId = a.AuthorId

 ORDER BY book.ISBN DESC

"""

GET_LASTID = "SELECT @@last_insert_id"

#

Author SQL Statements

#

INSERT_AUTHOR = """

 INSERT INTO library_v1.authors (LastName, FirstName) VALUES ('{0}','{1}')

"""

GET_AUTHORS = "SELECT AuthorId, LastName, FirstName FROM library_v1.authors {0}"

UPDATE_AUTHOR = """

 UPDATE library_v1.authors SET LastName = '{0}',

 FirstName='{1}' WHERE AuthorId = {2}

"""

DELETE_AUTHOR = """

 DELETE FROM library_v1.authors WHERE AuthorId = {0}

"""

#

Publisher SQL Statements

#

INSERT_PUBLISHER = """

 INSERT INTO library_v1.publishers (Name, City, URL) VALUES ('{0}','{1}','{2}')

"""

GET_PUBLISHERS = "SELECT * FROM library_v1.publishers {0}"

UPDATE_PUBLISHER = "UPDATE library_v1.publishers SET Name = '{0}'"

DELETE_PUBLISHER = "DELETE FROM library_v1.publishers WHERE PublisherId = {0}"

Chapter 9 Library Application: Database Implementations

406

#

Book SQL Statements

#

INSERT_BOOK = """

 INSERT INTO library_v1.books (ISBN, Title, Year, PublisherId, Edition,

 Language) VALUES ('{0}','{1}','{2}','{3}',{4},'{5}')

"""

INSERT_BOOK_AUTHOR = """

 INSERT INTO library_v1.books_authors (ISBN, AuthorId) VALUES ('{0}', {1})

"""

INSERT_NOTE = "INSERT INTO library_v1.notes (ISBN, Note) VALUES ('{0}','{1}')"

GET_BOOKS = "SELECT * FROM library_v1.books {0}"

GET_NOTES = "SELECT * FROM library_v1.notes WHERE ISBN = '{0}'"

GET_AUTHOR_IDS = "SELECT library_v1.get_author_ids('{0}')"

UPDATE_BOOK = "UPDATE library_v1.books SET ISBN = '{0}'"

DELETE_BOOK = "DELETE FROM library_v1.books WHERE ISBN = '{0}'"

DELETE_BOOK_AUTHOR = "DELETE FROM library_v1.books_authors WHERE ISBN = '{0}'"

DELETE_NOTES = "DELETE FROM library_v1.notes WHERE ISBN = '{0}'"

That’s a lot of SQL, isn’t it? If it seems daunting, consider that most relational database

applications have a similar set of SQL statements. Consider also that this example

application is purposefully small and limited. Taking those into account, imagine the

number and complexity of SQL statements for a much larger application. Wow.

Next, let’s look at the Author class.

�Author Class

The Author class is the least complicated and forms a model for how the other data

classes are constructed. In particular, we save an instance of the Library class via the

constructor and reference this instance whenever we execute queries (or use any of

the methods in the Library class). We then build four functions—one each for create,

read, update, and delete. Listing 9-3 shows the Author class code. The read operation is

designed to return one row if the primary key is passed as a parameter or all rows if no

parameter is supplied.

Chapter 9 Library Application: Database Implementations

407

Note that we use the Library class function sql() to execute queries. For example,

self.library.sql(“COMMIT”) executes the COMMIT SQL command. We use the strings

created previously using the format() function to fill in the optional parameters. We will

see this function in more detail later in this section. Take some time to read through the

code to ensure you understand it.

Listing 9-3.  Author Class (library_v1.py)

class Author(object):

 """Author class

 This class encapsulates the authors table permitting CRUD operations

 on the data.

 """

 def __init__(self, library):

 self.library = library

 def create(self, LastName, FirstName):

 assert LastName, "You must supply a LastName for a new author."

 assert FirstName, "You must supply a FirstName for a new author."

 query_str = INSERT_AUTHOR

 last_id = None

 try:

 self.library.sql(query_str.format(LastName, FirstName))

 last_id = self.library.sql(GET_LASTID)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot add author: {0}".format(err))

 return last_id

 def read(self, AuthorId=None):

 query_str = GET_AUTHORS

 if not AuthorId:

 # return all authors

 query_str = query_str.format("")

 else:

 # return specific author

Chapter 9 Library Application: Database Implementations

408

 �query_str = query_str.format("WHERE AuthorId = '{0}'".format(AuthorId))

 return self.library.sql(query_str)

 def update(self, AuthorId, LastName, FirstName):

 assert AuthorId, "You must supply an AuthorId to update the author."

 assert LastName, "You must supply a LastName for the author."

 assert FirstName, "You must supply a FirstName for the author."

 query_str = UPDATE_AUTHOR

 try:

 self.library.sql(query_str.format(LastName, FirstName, AuthorId))

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot update author: {0}".format(err))

 def delete(self, AuthorId):

 assert AuthorId, "You must supply an AuthorId to delete the author."

 query_str = DELETE_AUTHOR.format(AuthorId)

 try:

 self.library.sql(query_str)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot delete author: {0}".format(err))

Next, let’s look at the Publisher class.

�Publisher Class

The Publisher class is very similar to the Author class and is implemented in the same

manner. The only difference is in the SQL statements used. To be complete, Listing 9-4

shows the complete code for the Publisher class.

Listing 9-4.  Publisher Class (library_v1.py)

class Publisher(object):

 """Publisher class

 This class encapsulates the publishers table permitting CRUD operations

 on the data.

 """

Chapter 9 Library Application: Database Implementations

409

 def __init__(self, library):

 self.library = library

 def create(self, Name, City=None, URL=None):

 assert Name, "You must supply a Name for a new publisher."

 query_str = INSERT_PUBLISHER

 last_id = None

 try:

 self.library.sql(query_str.format(Name, City, URL))

 last_id = self.library.sql(GET_LASTID)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot add publisher: {0}".format(err))

 return last_id

 def read(self, PublisherId=None):

 query_str = GET_PUBLISHERS

 if not PublisherId:

 # return all authors

 query_str = query_str.format("")

 else:

 # return specific author

 query_str = query_str.format(

 "WHERE PublisherId = '{0}'".format(PublisherId))

 return self.library.sql(query_str)

 def update(self, PublisherId, Name, City=None, URL=None):

 assert PublisherId, "You must supply a publisher to update the author."

 query_str = UPDATE_PUBLISHER.format(Name)

 if City:

 query_str = query_str + ", City = '{0}'".format(City)

 if URL:

 query_str = query_str + ", URL = '{0}'".format(URL)

 query_str = query_str + " WHERE PublisherId = {0}".format(PublisherId)

 try:

 self.library.sql(query_str)

 self.library.sql("COMMIT")

Chapter 9 Library Application: Database Implementations

410

 except Exception as err:

 print("ERROR: Cannot update publisher: {0}".format(err))

 def delete(self, PublisherId):

 �assert PublisherId, "You must supply a publisher to delete the

publisher."

 query_str = DELETE_PUBLISHER.format(PublisherId)

 try:

 self.library.sql(query_str)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot delete publisher: {0}".format(err))

Next, a look at the Book class.

�Book Class

The Book class has the same methods as the last two, but the code for create, update,

and delete is a little more complex. This is because we must execute multiple statements

to work with the data. Therefore, we implicitly start a transaction inside a try block and

if any of the queries fail, we rollback the transaction. This is very common for relational

database solutions. Listing 9-5 shows the complete code for the Book class. Take your

time to read through the code to understand how it was constructed.

Listing 9-5.  Book Class (library_v1.py)

class Book(object):

 """Book class

 This class encapsulates the books table permitting CRUD operations

 on the data.

 """

 def __init__(self, library):

 self.library = library

 def create(self, ISBN, Title, Year, PublisherId, Authors=[], Edition=1,

 Language='English'):

 assert ISBN, "You must supply an ISBN for a new book."

Chapter 9 Library Application: Database Implementations

411

 assert Title, "You must supply Title for a new book."

 assert Year, "You must supply a Year for a new book."

 assert PublisherId, "You must supply a PublisherId for a new book."

 assert Authors, "You must supply at least one AuthorId for a new book."

 last_id = ISBN

 #

 # We must do this as a transaction to ensure all tables are updated.

 #

 try:

 self.library.sql("START TRANSACTION")

 query_str = INSERT_BOOK.format(ISBN, Title, Year, PublisherId,

 Edition, Language)

 self.library.sql(query_str)

 query_str = INSERT_BOOK_AUTHOR

 for AuthorId in Authors.split(","):

 self.library.sql(query_str.format(ISBN, AuthorId))

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot add book: {0}".format(err))

 self.library.sql("ROLLBACK")

 return last_id

 def read(self, ISBN=None):

 query_str = GET_BOOKS

 if not ISBN:

 # return all authors

 query_str = query_str.format("")

 else:

 # return specific author

 query_str = query_str.format("WHERE ISBN = '{0}'".format(ISBN))

 return self.library.sql(query_str)

 def read_notes(self, ISBN):

 assert ISBN, "You must supply an ISBN to get the notes."

 query_str = GET_NOTES.format(ISBN)

 return self.library.sql(query_str)

Chapter 9 Library Application: Database Implementations

412

 def read_author_ids(self, ISBN):

 assert ISBN, "You must supply an ISBN to get the list of author ids."

 query_str = GET_AUTHOR_IDS.format(ISBN)

 return self.library.sql(query_str)

 def update(self, old_isbn, ISBN, Title=None, Year=None, PublisherId=None,

 Authors=None, Edition=None, Language=None, Note=None):

 assert ISBN, "You must supply an ISBN to update the book."

 last_id = None

 #

 # Build the book update query

 #

 book_query_str = UPDATE_BOOK.format(ISBN)

 if Title:

 book_query_str += ", Title = '{0}'".format(Title)

 if Year:

 book_query_str += ", Year = {0}".format(Year)

 if PublisherId:

 book_query_str += ", PublisherId = {0}".format(PublisherId)

 if Edition:

 book_query_str += ", Edition = {0}".format(Edition)

 book_query_str += " WHERE ISBN = '{0}'".format(old_isbn)

 #

 # We must do this as a transaction to ensure all tables are updated.

 #

 try:

 self.library.sql("START TRANSACTION")

 #

 # If the ISBN changes, we must remove the author ids first to

 # avoid the foreign key constraint error.

 #

 if old_isbn != ISBN:

 self.library.sql(DELETE_BOOK_AUTHOR.format(old_isbn))

 self.library.sql(book_query_str)

 last_id = self.library.sql(GET_LASTID)

 if Authors:

Chapter 9 Library Application: Database Implementations

413

 # First, clear the author list.

 self.library.sql(DELETE_BOOK_AUTHOR.format(ISBN))

 query_str = INSERT_BOOK_AUTHOR

 for AuthorId in Authors:

 self.library.sql(query_str.format(ISBN,AuthorId))

 if Note:

 self.add_note(ISBN, Note)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot update book: {0}".format(err))

 self.library.sql("ROLLBACK")

 return last_id

 def delete(self, ISBN):

 assert ISBN, "You must supply a ISBN to delete the book."

 #

 # Here, we must cascade delete the notes when we delete a book.

 # We must do this as a transaction to ensure all tables are updated.

 #

 try:

 self.library.sql("START TRANSACTION")

 query_str = DELETE_NOTES.format(ISBN)

 self.library.sql(query_str)

 query_str = DELETE_BOOK_AUTHOR.format(ISBN)

 self.library.sql(query_str)

 query_str = DELETE_BOOK.format(ISBN)

 self.library.sql(query_str)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot delete book: {0}".format(err))

 self.library.sql("ROLLBACK")

 def add_note(self, ISBN, Note):

 assert ISBN, "You must supply a ISBN to add a note for the book."

 assert Note, "You must supply text (Note) to add a note for the book."

 query_str = INSERT_NOTE.format(ISBN, Note)

Chapter 9 Library Application: Database Implementations

414

 try:

 self.library.sql(query_str)

 self.library.sql("COMMIT")

 except Exception as err:

 print("ERROR: Cannot add publisher: {0}".format(err))

Finally, we look at the Library class.

�Library Class

Recall, the Library class is used to encapsulate working with the MySQL server. Thus, we

create functions for working with the connection (connect, disconnect, is_connected).

We also create a function that we can use to execute queries. This is mainly for convenience

and not generally required. The function is named sql() and handles returning result sets or

errors as necessary. The last function is used to return an abbreviated dataset of the books

in the database, which is used to populate the book list page. Listing 9-6 shows the code for

the Library class. As you will see, it too is very straightforward.

Listing 9-6.  Library Class (library_v1.py)

class Library(object):

 """Library master class

 Use this class to interface with the library database. It includes

 utility functions for connections to the server as well as running

 queries.

 """

 def __init__(self):

 self.db_conn = None

 def connect(self, username, passwd, host, port, db=None):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 'database': db,

 }

Chapter 9 Library Application: Database Implementations

415

 try:

 self.db_conn = mysql.connector.connect(**config)

 except mysql.connector.Error as err:

 print("CONNECTION ERROR:", err)

 self.db_conn = None

 raise

 #

 # Return the connection for use in other classes

 #

 def get_connection(self):

 return self.db_conn

 #

 # Check to see if connected to the server

 #

 def is_connected(self):

 return (self.db_conn and (self.db_conn.is_connected()))

 #

 # Disconnect from the server

 #

 def disconnect(self):

 try:

 self.db_conn.disconnect()

 except:

 pass

 #

 # Execute a query and return any results

 #

 # query_str[in] The query to execute

 # fetch Execute the fetch as part of the operation and

 # use a buffered cursor (default is True)

 # buffered If True, use a buffered raw cursor (default is False)

 #

 # Returns result set or cursor

Chapter 9 Library Application: Database Implementations

416

 #

 def sql(self, query_str, fetch=True, buffered=False):

 # If we are fetching all, we need to use a buffered

 if fetch:

 cur = self.db_conn.cursor(buffered=True)

 else:

 cur = self.db_conn.cursor(raw=True)

 try:

 cur.execute(query_str)

 except Exception as err:

 cur.close()

 print("Query error. Command: {0}:{1}".format(query_str, err))

 raise

 # Fetch rows (only if available or fetch = True).

 if cur.with_rows:

 if fetch:

 try:

 results = cur.fetchall()

 except mysql.connector.Error as err:

 print("Error fetching all query data: {0}".format(err))

 raise

 finally:

 cur.close()

 return results

 else:

 # Return cursor to fetch rows elsewhere (fetch = false).

 return cur

 else:

 return cur

 #

 # Get list of books

 #

 def get_books(self):

Chapter 9 Library Application: Database Implementations

417

 try:

 results = self.sql(ALL_BOOKS)

 except Exception as err:

 print("ERROR: {0}".format(err))

 raise

 return results

Now that we have the database code module, let’s look at the application code.

�Application Code
There are only a few areas in the application code from the base code we saw earlier

where we need to add more code. This includes adding the import statement for the

database code module, setting up the Library class instance, and adding code to the

author, publisher, and book view functions to use the classes in the database code

module. It is fortunate that the template files we created in the user interface discussion

can be used without modification.

To build this version of the application, you should copy the base/mylibrary_base.

py file to version1/mylibrary_v1.py and either enter the code below or retrieve it from

the Apress book web site.

Although the code may appear to be long, it isn’t complicated. Further, except for the

book view function, the logic is the same pattern for the author and publisher view. The

book view has more logic to enable the add note feature. The following sections discuss

the changes needed for each area. Recall, we need the mylibrary_base.py code we saw

in an earlier section.

�Setup and Initialization

The code for setup and initialization for the Library class is simple. We need only import

the classes from the code module and then create an instance of the Library class and

call the connect() function as shown in the following. The import statement goes at the

end of the other import statements and the Library setup code can go anywhere after

that. In the example code, this code is placed before the first form class function.

Chapter 9 Library Application: Database Implementations

418

from database.library_v1 import Library, Author, Publisher, Book

[...]

#

Setup the library database class

#

library = Library()

Provide your user credentials here

library.connect(<user>, <password>, 'localhost', 3306)

Note B e sure to change the <user> and <password> entries to match your
MySQL configuration. These are placeholders for the user account and password.

�List View Function

The list view function requires only a few modifications. We will use the Library class

instance (named library) to get the data from the database to be displayed in the list

on the page. For books, this is simply calling the library.get_books() function. For

authors, we instantiate an instance of the Author and Publisher classes then call the

read() function without any parameters. Recall from the previous sections, this results

in reading all the rows in the table. Listing 9-7 shows the changes needed for the simple_

list() view function. The new lines of code are in bold. As you can see, we’re only

adding five lines of code. Simple!

Listing 9-7.  List View Function (Version 1)

def simple_list(kind=None):

 rows = []

 columns = []

 form = ListForm()

 if kind == 'book' or not kind:

 if request.method == 'POST':

 return redirect('book')

Chapter 9 Library Application: Database Implementations

419

 columns = (

 '<td style="width:200px">ISBN</td>',

 '<td style="width:400px">Title</td>',

 '<td style="width:200px">Publisher</td>',

 '<td style="width:80px">Year</td>',

 '<td style="width:300px">Authors</td>',

)

 kind = 'book'

 # Here, we get all books in the database

 rows = library.get_books()

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 elif kind == 'author':

 if request.method == 'POST':

 return redirect('author')

 # Just list the authors

 columns = (

 '<td style="width:100px">Lastname</td>',

 '<td style="width:200px">Firstname</td>',

)

 kind = 'author'

 # Here, we get all authors in the database

 author = Author(library)

 rows = author.read()

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 elif kind == 'publisher':

 if request.method == 'POST':

 return redirect('publisher')

 columns = (

 '<td style="width:300px">Name</td>',

 '<td style="width:100px">City</td>',

 '<td style="width:300px">URL/Website</td>',

)

 kind = 'publisher'

Chapter 9 Library Application: Database Implementations

420

 # Here, we get all publishers in the database

 publisher = Publisher(library)

 rows = publisher.read()

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 else:

 flash("Something is wrong!")

 return

�Author View Function

The changes for the author view function are a bit more complicated. Because the

author, publisher, and book view functions follow the same pattern, we will discuss the

pattern in general first then see the code for view each function. Because the concept

of GET and POST operations may be new to you, we will take a moment and discuss the

differences.

We want to use this view function for both GET and POST operations. In particular,

when the user clicks on an author in the list, we want to display the data from that

row in the table. Or, if the user clicks on the New button, we want to present an empty

HTML form for the user to complete. So far, these are GET operations. If the user then

clicks on the submit field (either Add, Update, or Delete), we then want to take the data

from the user and either create, update, or delete the data. These are POST operations.

How this works in a view function is not immediately obvious. However, it makes sense

once you get used to it. Let’s run through the conditions for how a view function is

called. Table 9-1 lists the different conditions (or mode).

Table 9-1.  Operations (Modes) for View Functions

Operation Type Action

Add GET Present an empty form and provide a submit field named Add

Create POST Save data to the database for one data item

Read GET Show data from the database for one data item and provide submit

fields named Update and Delete

Update POST Save updated data to the database for existing data item

Delete POST Remove the data item from the database

Chapter 9 Library Application: Database Implementations

421

Note that there are two GET operations and three POST operations. The GET

operations are to present either an empty form or to read from a row in the table. The

POST operations are events that occur when the user clicks on one of the submit fields

resulting in either a create, update, or delete.

Returning the to the author view function, we need to add code for the operations

listed above. Rather than discuss the code at length then present it, Listing 9-8 shows the

completed code for the author view function. Line numbers have been added to make it

easier to see the lines of code discussed. Detailed discussions of the database code are

included after the listing.

Listing 9-8.  Author View Function (Version 1)

01 def author(author_id=None):

02 author = Author(library)

03 form = AuthorForm()

04 # Get data from the form if present

05 form_authorid = form.authorid.data

06 firstname = form.firstname.data

07 lastname = form.lastname.data

08 # �If the route with the variable is called, change the create

button to update

09 # �then populate the form with the data from the row in the table.

Otherwise,

10 # remove the delete button because this will be a new data item.

11 if author_id:

12 form.create_button.label.text = "Update"

13 # Here, we get the data and populate the form

14 data = author.read(author_id)

15 if data == []:

16 flash("Author not found!")

17 form.authorid.data = data[0][0]

18 form.firstname.data = data[0][1]

19 form.lastname.data = data[0][2]

20 else:

21 del form.del_button

22 if request.method == 'POST':

Chapter 9 Library Application: Database Implementations

422

23 # First, determine if we must create, update, or delete when form posts.

24 operation = "Create"

25 if form.create_button.data:

26 if form.create_button.label.text == "Update":

27 operation = "Update"

28 if form.del_button and form.del_button.data:

29 operation = "Delete"

30 if form.validate_on_submit():

31 # Get the data from the form here

32 if operation == "Create":

33 try:

34 author.create(LastName=lastname, FirstName=firstname)

35 flash("Added.")

36 return redirect('/list/author')

37 except Exception as err:

38 flash(err)

39 elif operation == "Update":

40 try:

41 �author.update(AuthorId=form_authorid,

LastName=lastname,

42 FirstName=firstname)

43 flash("Updated.")

44 return redirect('/list/author')

45 except Exception as err:

46 flash(err)

47 else:

48 try:

49 author.delete(form_authorid)

50 flash("Deleted.")

51 return redirect('/list/author')

52 except Exception as err:

53 flash(err)

54 else:

55 flash_errors(form)

56 return render_template("author.html", form=form)

Chapter 9 Library Application: Database Implementations

423

The first thing we do is add an instance of the Author class and pass it to the Library

class instance as shown in line 2. Next, to cover operations where we need the data from

the form, we place code at the top of the view function to copy data from the form to

local variables as shown in lines 4–7. This ensures if the view function is called again for

a POST operation that we capture any data entered by the user. If we hadn’t done this, we

could not use the view function for new and existing data.

Next, we must cover the route where we pass in the primary key (in this case author_id).

If the author_id is present, we change the label of one of the submit fields (add) to

Update. We also know we must read data from the database, which we do with the

author.read(author_id) call on line 14 and if we retrieve the row without errors, we

place the data from the table into the fields in lines 17—19. If the author_id variable is

not present, we remove the delete submit field on line 21.

At this point, we’ve covered the operations of add and read shown in Table 9-1. The

create, update, and delete operations are executed only when the request is a POST. To

determine this, we check the value of the request.method attribute on line 22. If it is

POST, we then must decide which operation is active. We can do this by checking the text

of the submit fields. We use a default of create but change it to update or delete based on

which submit field was clicked. You can see these operations in lines 24–29.

In particular, if a submit field is clicked, on POST, the data attribute will be True.

Thus, we can see which operation we need to perform based on which button was

clicked. In the case of the create button, we know it is create unless the label was

changed to update and in that case the operation matches—update. On the other hand,

if the delete button was not removed and it was clicked, the operation is delete. This is

one method of how you can reuse a view function for multiple operations.

Now that we know which operation is active, we execute the action. However, we

only do so if the fields have all passed their validation checks. The code on line 30 will

return True if all fields have been validated. Thus, we only execute the active operation if

the form fields are validated.

The create operation is shown in lines 33–38. Note that we use a try block to detect

errors. To create a new author, we simply call the author.create() function with the

data from the form. Likewise, the update operation is shown in lines 40–45. Once again,

we use a try block to detect errors. To update an existing author, we call the author.

update() function with the data from the form. Finally, the delete operation is shown in

lines 46–53. Again, we use a try block to detect errors. To delete an existing author, we

call the author.delete() function with the author_id from the form.

Now, let’s look at the publisher view function, which is very similar.

Chapter 9 Library Application: Database Implementations

424

�Publisher View Function

Because the publisher view function is very similar to the author view function (it is

the same design or pattern), I only summarize the code describing only the database

operations in detail. Listing 9-9 shows the completed code for the publisher view

function. Line numbers have been added to make it easier to see the lines of code

discussed. Detailed discussions of the database code are included after the listing.

Listing 9-9.  Publisher View Function (Version 1)

01 def publisher(publisher_id=None):

02 publisher = Publisher(library)

03 form = PublisherForm()

04 # Get data from the form if present

05 form_publisherid = form.publisherid.data

06 name = form.name.data

07 city = form.city.data

08 url = form.url.data

09 # �If the route with the variable is called, change the create

button to update then populate the form with the data from the

10 # row in the table. Otherwise, remove the delete button because

11 # this will be a new data item.

12 if publisher_id:

13 # Here, we get the data and populate the form

14 form.create_button.label.text = "Update"

15 # Here, we get the data and populate the form

16 data = publisher.read(publisher_id)

17 if data == []:

18 flash("Publisher not found!")

19 form.publisherid.data = data[0][0]

20 form.name.data = data[0][1]

21 form.city.data = data[0][2]

22 form.url.data = data[0][3]

23 else:

24 del form.del_button

25 if request.method == 'POST':

Chapter 9 Library Application: Database Implementations

425

26 # �First, determine if we must create, update, or delete when

form posts.

27 operation = "Create"

28 if form.create_button.data:

29 if form.create_button.label.text == "Update":

30 operation = "Update"

31 if form.del_button and form.del_button.data:

32 operation = "Delete"

33 if form.validate_on_submit():

34 # Get the data from the form here

35 if operation == "Create":

36 try:

37 publisher.create(Name=name, City=city, URL=url)

38 flash("Added.")

39 return redirect('/list/publisher')

40 except Exception as err:

41 flash(err)

42 elif operation == "Update":

43 try:

44 �publisher.update(PublisherId=form_publisherid,

Name=name,

45 City=city, URL=url)

46 flash("Updated.")

47 return redirect('/list/publisher')

48 except Exception as err:

49 flash(err)

50 else:

51 try:

52 publisher.delete(form_publisherid)

53 flash("Deleted.")

54 return redirect('/list/publisher')

55 except Exception as err:

56 flash(err)

57 else:

58 flash_errors(form)

59 return render_template("publisher.html", form=form)

Chapter 9 Library Application: Database Implementations

426

A with the author view function, line 2 instantiates an instance of the Publisher class

and lines 4–8 fetch data from the form for use later. Line 12 begins the section to read

data from the database, line 14 changes the label of the add submit button to update,

and lines 16–22 store that data in the form. Finally, lines 27–32 determine the active

operation for a POST request and line 33 ensures the form fields are validated before we

execute the database operations.

The create operation is shown in lines 36–41. To create a new publisher, we simply

call the publisher.create() function with the data from the form. Likewise, the

update operation is shown in lines 43–49. To update an existing publisher, we call the

publisher.update() function with the data from the form. Finally, the delete operation

is shown in lines 51–56. To delete an existing publisher, we call the publisher.delete()

function with the publisher_id from the form.

POP QUIZ

Did you notice a small difference in how we handled the publisher_id? Instead of using the

variable from the route, we get the publisher id from the hidden field on the form. This was

done intentionally to show an alternative way to save data to the form.

But there is a good reason to use this technique even though it does duplicate a small bit

of data. For example, it is possible the user will want to change the ISBN. Because the ISBN

is the primary key for the table, if we use the ISBN from the GET request (the /book/978-

1-4842-2724-4 route), the database operation will fail to located the row because the ISBN

was changed on the form.

This also demonstrates how surrogate primary keys such as auto increment fields can help

save you from this potential data land mine.

Now, let’s look at the book view function, which follows the same pattern but

requires a bit more logic.

�Book View Function

The book view function is more complicated than the author or publisher view function

for three reasons: 1) it has more fields, 2) there are select fields that require populating,

and 3) there is an additional feature for update operations to add notes to the database

for the book.

Chapter 9 Library Application: Database Implementations

427

However, the code follows the same pattern as the previous view functions. Listing 9-10

shows the book view function code in its entirety. Once again, line numbers have been

added to enhance readability and discussion of the code follows the listing.

Listing 9-10.  Book View Function (Version 1)

01 def book(isbn_selected=None):

02 notes = None

03 book = Book(library)

04 form = BookForm()

05 # Get data from the form if present

06 isbn = form.isbn.data

07 title = form.title.data

08 year = form.year.data

09 authorids = form.authors.data

10 publisherid = form.publisher.data

11 edition = form.edition.data

12 language = form.language.data

13 #

14 # Here, we get the choices for the select lists

15 #

16 publisher = Publisher(library)

17 publishers = publisher.read()

18 publisher_list = []

19 for pub in publishers:

20 publisher_list.append((pub[0], '{0}'.format(pub[1])))

21 form.publisher.choices = publisher_list

22 author = Author(library)

23 authors = author.read()

24 author_list = []

25 for author in authors:

26 �author_list.append((author[0],'{0}, {1}'.format(author[2],

author[1])))

27 form.authors.choices = author_list

28 new_note = form.new_note.data

Chapter 9 Library Application: Database Implementations

428

29 # �If the route with the variable is called, change the create

button to update then populate the form with the data from

30 # �the row in the table. Otherwise, remove the delete button

31 # because this will be a new data item.

32 if isbn_selected:

33 # Here, we get the data and populate the form

34 data = book.read(isbn_selected)

35 if data == []:

36 flash("Book not found!")

37

38 #

39 # Here, we populate the data

40 #

41 form.isbn.data = data[0][0]

42 form.title.data = data[0][1]

43 form.year.data = data[0][2]

44 form.edition.data = data[0][3]

45 form.publisher.process_data(data[0][4])

46 form.language.data = data[0][5]

47 #

48 # Here, we get the author_ids for the authors

49 #

50 author_ids = book.read_author_ids(isbn_selected)[0][0]

51 form.authors.data = set(author_ids)

52

53 # We also must retrieve the notes for the book.

54 all_notes = book.read_notes(isbn_selected)

55 notes = []

56 for note in all_notes:

57 notes.append(note[2])

58 form.create_button.label.text = "Update"

59 else:

60 del form.del_button

61 if request.method == 'POST':

Chapter 9 Library Application: Database Implementations

429

62 # �First, determine if we must create, update, or delete when

form posts.

63 operation = "Create"

64 if form.create_button.data:

65 if form.create_button.label.text == "Update":

66 operation = "Update"

67 if form.del_button and form.del_button.data:

68 operation = "Delete"

69 if form.validate_on_submit():

70 # Get the data from the form here

71 if operation == "Create":

72 try:

73 book.create(ISBN=isbn, Title=title, Year=year,

74 �PublisherId=publisherid,

Authors=authorids,

75 Edition=edition, Language=language)

76 flash("Added.")

77 return redirect('/list/book')

78 except Exception as err:

79 flash(err)

80 elif operation == "Update":

81 try:

82 �book.update(isbn_selected, ISBN=isbn,

Title=title, Year=year,

83 �PublisherId=publisherid,

Authors=authorids,

84 Edition=edition, Language=language,

85 Note=new_note)

86 flash("Updated.")

87 return redirect('/list/book')

88 except Exception as err:

89 flash(err)

90 else:

91 try:

92 book.delete(isbn)

Chapter 9 Library Application: Database Implementations

430

93 flash("Deleted.")

94 return redirect('/list/book')

95 except Exception as err:

96 flash(err)

97 else:

98 flash_errors(form)

99 return render_template("book.html", form=form, notes=notes)

First, you may notice we have a new variable named notes, which is set to None. We

do this here because we will use this variable to contain all the notes for the book as read

from the database. More on that later.

As with the author and publisher view functions, line 3 instantiates an instance of

the Book class and lines 6–12 fetch data from the form for use later. Next is the code for

populating the select fields with values from the database. We do this because the book

table is dependent on the authors (technically via the books_authors join table, and

publishers tables. Thus, we need to fetch the rows from both tables to populate the

dropdown and multiple select lists.

Lines 16–21 are for the publisher data. Here, we first instantiate an instance of the

Publisher class then retrieve all the data from the table. Next, we loop through the rows

adding the publisher id and name to a list, which is then assigned to the data attribute

for the select field choices attribute (form.publisher.choices). Why do we include the

publisher id? Because the publisher id is only stored in the book table.

Likewise, lines 22–27 do the same for author data creating an instance of the Author

class retrieving all the rows then looping through the data to add the author id, and

concatenated last and first name. As with the select field, we populate the field data with

the new array. At this point, we have both select fields populated. How to set the value to

match the rows comes next along with retrieving the data from the database.

Line 32 begins the section to read data from the database. Lines 34–57 retrieve the

data from the database and populates for form. For the select fields, setting the data

attribute ensures the values are selected. In the case of the publisher, we set the select

field data and the item that matches is selected by default. In the case of the select

multiple field, we pass a comma-separated list as shown in lines 50–51 where we retrieve

a list of author ids from the database. Next, we retrieve the notes for the book and

populate an array we use in the template to populate the HTML table.

Chapter 9 Library Application: Database Implementations

431

Wow! That’s a lot of work, isn’t it? All of that work was to setup the form for the add

and read operations. Fortunately, the create, update, and delete setup is the same as the

other view functions. You can see this in lines 63–9.

The database operations thankfully are familiar. The create operation is shown in

lines 72–79. To create a new book, we simply call the book.create() function with the

data from the form. Likewise, the update operation is shown in lines 81–89. To update an

existing book, we call the book.update() function with the data from the form. Finally,

the delete operation is shown in lines 91–96. To delete an existing book, we call the book.

delete() function with the isbn from the form.

�Templates
There were no changes to the template files from the base version. All you need to

do is create a new folder and copy the files from the base. In particular, copy base/

templates/* to version1/templates/.

The only change you need to make is to change the “base” text in the base.html file

to “V1” as shown in the difference example in the following where the line with the “-” is

removed and the line with the “+” is added.

- MyLibrary Base

+ MyLibrary v1

Now that we have the code updated, let’s see how it works!

�Executing the Code
Now that the code is written, let’s give it a test drive. Be sure to create the database and

any tables necessary first. If you saved the previous SQL statements in a file named

library_v1.sql, you can use the SOURCE command in the mysql client as follows.

mysql> SOURCE <path>/version1/library_v1.sql;

To execute the application, you can launch it with the Python interpreter specifying

the runserver command. The following shows an example of executing the application.

Note that we used the port option to specify the port. You should enter this command

from the version1 folder. Note that we specify the port as 5001. We will use 5002

for version 2 and 5003 for version 3. This will allow you to run all three versions

simultaneously.

Chapter 9 Library Application: Database Implementations

432

$ cd version1

$ python ./mylibrary_v1.py runserver -p 5001

 * Running on http://127.0.0.1:5001/ (Press CTRL+C to quit)

The application will launch and run but there isn’t any data in the database yet.

You should start by grabbing a couple of your favorite books and enter the authors and

publishers first then enter the book data. Don’t worry about the notes just yet. Once you’ve

added a few books, you should see them in the default view (by clicking on MyLibrary v1

or Books in the navigation bar. Figure 9-2 shows an example of what you should see. The

other views are similar and are left as an exercise for the reader to explore.

Figure 9-3.  Notes list example (version 1)

Figure 9-2.  Library application book list (version 1)

Next, try out the notes feature. Click on the Modify link in the list for one of the books

in the books list and then add a note and click Update. When you next view the data by

clicking on the Modify link, you will see the note appear. Figure 9-3 shows an excerpt of

the notes list for a book.

Before we move on to version 2, let’s take a moment to discuss some observations

about this version of the application.

Chapter 9 Library Application: Database Implementations

433

�Observations
The following are some observations about this version of the application. Some are

consequences of the database design, others are from the code, and others are things

we may want to change to make the application a bit better. The observations are

presented in the form of an unordered list. If you want to experiment with this version

of the application, you can consider some of these are challenges for improving the

application. Otherwise, consider this list something to think about for the next version.

•	 Lengthy code: The code for the application is quite long (over 400

lines).

•	 Lengthy database code module: The code for the database code

module is also quite long (over 400 lines).

•	 Over-designed tables: The many-to-many table is unnecessarily

complicated, which makes working with SQL a bit more difficult.

•	 Database design can be improved: Savvy database administrators will

undoubtedly spot areas that can be improved in the database design.

For example, the use of a view can replace the query used in the

get_books() function of the Library class.

•	 Over-analyzed data: One of the banes of relational database design

is overuse of normal forms in the face of usability. In this case, it is

unlikely the user will care to know a list of authors because there is

no additional meaningful information—just the author’s first and last

name.

•	 Simplistic read: The default mechanism to view data is a list. Although

this works fine for authors and publishers, it is restrictive for books

because you must click on the Modify link to see the notes for the

book. This can be improved with a simple read-only mode rather

than update.

•	 Older protocols: There is no X DevAPI integration.

Now, let’s look at the next version of the application.

Chapter 9 Library Application: Database Implementations

434

�Version 2: Relational Database + JSON Fields (Hybrid)
This version implements a relational database augmented with JSON fields. We model

the data based on the views or data items but use a JSON field to eliminate one of the

issues of traditional relational database solutions: many-to-many joins. For the purposes

of demonstration, we will implement the database code in a code module that we can

import into the application code. Although we will use MySQL Connector/Python as

in version 1, we will be using the X DevAPI using SQL statements to work with the data.

The goal is to demonstrate how to migrate to using the X DevAPI but preserving the SQL

interface. Thus, this version presents a hybrid solution.

The many-to-many relationship in the version 1 database was so that we could

make a link from a book to one or more authors and that we may have more than one

book with the same authors. However, like most applications, the database design has

revealed a case where we have more sophistication than what is needed. In particular,

we have a table for authors but find that we only store (or care about) the first and last

name. Further, use of the application has shown we have no use cases for querying

author data other than to list them with the book.

Therefore, we can eliminate the many-to-many relationship storing the list of author

names in a JSON field instead. This has led to other minor changes such as the stored

routines and other additions.

Let’s start with a brief overview of the database design after the changes. Because the

database is the same as version 1 with minor changes, we will present a brief overview

concentrating only on the differences.

�Database Design
The database for this version is named library_v2. Because the goal is to remove the

many-to-many relationship, we removed the books_authors join table replacing it with a

JSON field in the books table and removed the authors table. Thus, we have reduced the

database from five tables to three. Figure 9-4 shows the ERD for the library_v2 database

complete with indexes and foreign keys.

Chapter 9 Library Application: Database Implementations

435

By eliminating the many-to-many relationship, we can remove the select multiple

field for the authors on the book view. We can replace it with a simple comma-separated

list, which is easy to convert to JSON. Thus, we need a way to retrieve the names from

the JSON field returning the comma-separated list. We can do this with a stored routine

(function).

Listing 9-11 shows the CREATE statements for all the objects. If you want to follow

along building this version of the application while you read, you should create a file

named library_v2.sql so that you can recreate the database later.

Listing 9-11.  Library Version 2 Database Create Script (library_v2.sql)

CREATE DATABASE `library_v2`;

CREATE TABLE `library_v2`.`publishers` (

 `PublisherId` int(11) NOT NULL AUTO_INCREMENT,

 `Name` varchar(128) NOT NULL,

 `City` varchar(32) DEFAULT NULL,

 `URL` text,

 PRIMARY KEY (`PublisherId`)

) ENGINE=InnoDB;

Figure 9-4.  ERD diagram—library database (version 2)

Chapter 9 Library Application: Database Implementations

436

CREATE TABLE `library_v2`.`books` (

 `ISBN` char(32) NOT NULL,

 `Title` text NOT NULL,

 `Year` int(11) NOT NULL DEFAULT '2017',

 `Edition` int(11) DEFAULT '1',

 `PublisherId` int(11) DEFAULT NULL,

 `Language` char(24) NOT NULL DEFAULT 'English',

 `Authors` JSON NOT NULL,

 PRIMARY KEY (`ISBN`),

 KEY `Pub_id` (`PublisherId`),

 CONSTRAINT `books_fk_1` FOREIGN KEY (`PublisherId`)

 REFERENCES `library_v2`.`publishers` (`publisherid`)

) ENGINE=InnoDB;

CREATE TABLE `library_v2`.`notes` (

 `NoteId` int(11) NOT NULL AUTO_INCREMENT,

 `ISBN` char(32) NOT NULL,

 `Note` text,

 PRIMARY KEY (`NoteId`,`ISBN`),

 KEY `ISBN` (`ISBN`),

 CONSTRAINT `notes_fk_1` FOREIGN KEY (`ISBN`)

 REFERENCES `library_v2`.`books` (`isbn`)

) ENGINE=InnoDB;

DELIMITER //

CREATE FUNCTION `library_v2`.`get_author_names`(isbn_lookup char(32))

 RETURNS text DETERMINISTIC

BEGIN

 DECLARE j_array varchar(255);

 DECLARE num_items int;

 DECLARE i int;

 DECLARE last char(20);

 DECLARE first char(20);

 DECLARE csv varchar(255);

 SET j_array = (SELECT JSON_EXTRACT(Authors,'$.authors')

 FROM library_v2.books WHERE ISBN = isbn_lookup);

Chapter 9 Library Application: Database Implementations

437

 SET num_items = JSON_LENGTH(j_array);

 SET csv = "";

 SET i = 0;

 author_loop: LOOP

 IF i < num_items THEN

 SET last = CONCAT('$[',i,'].LastName');

 SET first = CONCAT('$[',i,'].FirstName');

 IF i > 0 THEN

 SET csv = CONCAT(csv,", ",JSON_UNQUOTE(JSON_EXTRACT(j_array,last)),' ',

 JSON_UNQUOTE(JSON_EXTRACT(j_array,first)));

 ELSE

 SET csv = CONCAT(JSON_UNQUOTE(JSON_EXTRACT(j_array,last)),' ',

 JSON_UNQUOTE(JSON_EXTRACT(j_array,first)));

 END IF;

 SET i = i + 1;

 ELSE

 LEAVE author_loop;

 END IF;

 END LOOP;

 RETURN csv;

END//

DELIMITER ;

Note the new function named get_author_names(). The function retrieves the JSON

document from the row matching the ISBN and creates a comma-separated list of authors.

This is used in the presentation of the author data to make it easier for users to view.

Now that we’ve got the database created, let’s see the code for the database class.

�Database Code
The code for working with the database is placed in a file named library_v2.py in the

database folder under the version2 folder as described in Chapter 8 under the section,

“Preparing the Directory Structure.” The code is based on version 1 converted to use the

X DevAPI, and there is no longer a need for a class for the authors table. That said the

code implements three classes: one for each of the data views—publisher and book—

and another class for interfacing with the server. These classes are named Publisher,

Book, and Library, respectfully.

Chapter 9 Library Application: Database Implementations

438

However, because the code is based on version 1, I discuss the changes rather than

another lengthy discussion on the classes and how they work. The following summarizes

the changes.

•	 The ALL_BOOKS query is considerably shorter and easier to maintain.

•	 A new GET_PUBLISHER_NAME query is added to populate the book list.

•	 The INSERT_BOOK query needs an additional column for the authors

JSON document.

•	 All the queries for the authors table are removed.

•	 We change GET_AUTHOR_IDS to GET_AUTHOR_NAMES since we're only

working with names in the JSON document.

•	 The database name changes from library_v1 to library_v2.

To create the file, you can simply copy the file from version1/database/library_

v1.py to version2/database/library_v2.py.

�Code Deleted

Begin by deleting the Authors class and the SQL statements for the author table. They

will not be needed.

�SQL Strings

Because this version also uses SQL statements, place these in the preamble of the

code module as strings that can be referenced later in the code. Listing 9-12 shows the

preamble for the library_v2.py code module, which replaces what was used for the

first version. Note that it begins with importing the MySQL Connector/Python X DevAPI

library. The changes listed earlier (aside from the version 1 to 2 rename) are shown in

bold in the listing.

Listing 9-12.  Initialization and SQL Statements (library_v2.py)

import mysqlx

ALL_BOOKS = """

 SELECT DISTINCT book.ISBN, book.ISBN, Title, PublisherId, Year,

 library_v2.get_author_names(book.ISBN) as Authors

Chapter 9 Library Application: Database Implementations

439

 FROM library_v2.books As book

 ORDER BY book.ISBN DESC

"""

GET_PUBLISHER_NAME = """

 SELECT Name

 FROM library_v2.publishers

 WHERE PublisherId = {0}

"""

GET_LASTID = "SELECT @@last_insert_id"

INSERT_PUBLISHER = """

 �INSERT INTO library_v2.publishers (Name, City, URL) VALUES ('{0}','{1}','{2}')

"""

GET_PUBLISHERS = "SELECT * FROM library_v2.publishers {0}"

UPDATE_PUBLISHER = "UPDATE library_v2.publishers SET Name = '{0}'"

DELETE_PUBLISHER = "DELETE FROM library_v2.publishers WHERE PublisherId = {0}"

INSERT_BOOK = """

 INSERT INTO library_v2.books (ISBN, Title, Year, PublisherId, Edition,

 Language, Authors) VALUES ('{0}','{1}','{2}','{3}',{4},'{5}','{6}')

"""

INSERT_NOTE = "INSERT INTO library_v2.notes (ISBN, Note) VALUES ('{0}','{1}')"

GET_BOOKS = "SELECT * FROM library_v2.books {0}"

GET_NOTES = "SELECT * FROM library_v2.notes WHERE ISBN = '{0}'"

GET_AUTHOR_NAMES = "SELECT library_v2.get_author_names('{0}')"

UPDATE_BOOK = "UPDATE library_v2.books SET ISBN = '{0}'"

DELETE_NOTES = "DELETE FROM library_v2.notes WHERE ISBN = '{0}'"

DELETE_BOOK = "DELETE FROM library_v2.books WHERE ISBN = '{0}'"

If you recall the length of this same code from version 1, note that we’ve reduced the

number of strings quite a lot. This is largely due to removing the authors table and the

many-to-many relationship. So, adding a single JSON field has had a huge impact!

Before we discuss the changes to the Publisher and Book classes, let’s discuss the

changes to the Library class.

Chapter 9 Library Application: Database Implementations

440

�Library Class

The library class is based on version 1, but because we’re using the X DevAPI, things

will work quite differently. In particular, we will open a session to make a connection

to the MySQL server on port 33060 (the default for the X Protocol), and we will use a

SQLStatement object for executing SQL statements. The following summarizes the

changes to the Library class.

The following lists a summary of the changes for the Library class.

•	 We use a session object instead of a connection object.

•	 The connect() function is changed to retrieve a session from the

mysql_x library.

•	 The sql() function is vastly simplified to only return the result from

session.sql()—a SQLStatment object.

•	 We add a make_rows() function to convert the row results from the

SQLStatement object into an array.

•	 The get_books() function calls the make_rows() function chaining

the SQLStatement execute() function (passed as a parameter).

Note T he changes to the Library class are designed to demonstrate how to
migrate from the old protocol to using the X DevAPI. As you will see, it is possible
to minimize changes to existing database libraries as well as dependent code by
using the same methods but with different database access methods.

Listing 9-13 shows the modified Library class. The changes from version 1 are

shown in bold. Note that we have the same methods as the first version but instead of a

connection object, we use a session object and the renamed functions to get and check

the session. These are always good functions to include as you may need them as you

develop more advanced features.

Chapter 9 Library Application: Database Implementations

441

Listing 9-13.  Library Class (library_v2.py)

class Library(object):

 """Library master class

 Use this class to interface with the library database. It includes

 utility functions for connections to the server and returning a

 SQLStatement object.

 """

 def __init__(self):

 self.session = None

 #

 # Connect to a MySQL server at host, port

 #

 # Attempts to connect to the server as specified by the connection

 # parameters.

 #

 def connect(self, username, passwd, host, port):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 }

 try:

 self.session = mysqlx.get_session(**config)

 except Exception as err:

 print("CONNECTION ERROR:", err)

 self.session = None

 raise

 #

 # Return the session for use in other classes

 #

 def get_session(self):

 return self.session

Chapter 9 Library Application: Database Implementations

442

 #

 # Check to see if connected to the server

 #

 def is_connected(self):

 return (self.session and (self.session.is_open()))

 #

 # Disconnect from the server

 #

 def disconnect(self):

 try:

 self.session.close()

 except:

 pass

 #

 # Get an SQLStatement object

 #

 def sql(self, query_str):

 return self.session.sql(query_str)

 #

 # Build row array

 #

 # Here, we cheat a bit and give an option to substitute the publisher name

 # for publisher Id column.

 #

 def make_rows(self, sql_res, get_publisher=False):

 cols = []

 for col in sql_res.columns:

 cols.append(col.get_column_name())

 rows = []

 for row in sql_res.fetch_all():

 row_item = []

 for col in cols:

 if get_publisher and (col == 'PublisherId'):

 query_str = GET_PUBLISHER_NAME.format(row.get_string(col))

Chapter 9 Library Application: Database Implementations

443

 name = self.session.sql(query_str).execute().fetch_one()[0]

 row_item.append("{0}".format(name))

 else:

 row_item.append("{0}".format(row.get_string(col)))

 rows.append(row_item)

 return rows

 #

 # Get list of books

 #

 def get_books(self):

 try:

 sql_stmt = self.sql(ALL_BOOKS)

 results = self.make_rows(sql_stmt.execute(), True)

 except Exception as err:

 print("ERROR: {0}".format(err))

 raise

 return results

Note how much shorter the sql() function is compared to version 1. Recall, the

sql() function from version 1 was 30 lines in length. Using the SQLStatement object

instance has saved us a lot of coding! We will see this theme continue in version 3. In

fact, we see the get_books() function is also a bit shorter. Nice.

There is a new function as previously mentioned. The function, make_rows() takes

the result object, fetches all of the rows, and converts it to a list. There may be more

effective ways to do this, but this demonstrates some of what you may need to do to

transition your existing code to use the X DevAPI.

Next, let’s look at the Publisher class.

�Publisher Class

The Publisher class is nearly the same as the version 1 code except we adapt it for use

with the X DevAPI. In particular, because we are getting a SQLStatement object returned

from the sql() function in the Library class, we can chain that with the execute()

function of the SQLStatement instance and get the result. We also utilize the make_rows()

function of the Library class to make an array for the rows in a result. Listing 9-14 shows

the complete code for the Publisher class with the changes shown in bold for clarity.

Chapter 9 Library Application: Database Implementations

444

Listing 9-14.  Publisher Class (library_v2.py)

class Publisher(object):

 """Publisher class

 This class encapsulates the publishers table permitting CRUD operations

 on the data.

 """

 def __init__(self, library):

 self.library = library

 def create(self, Name, City=None, URL=None):

 assert Name, "You must supply a Name for a new publisher."

 query_str = INSERT_PUBLISHER

 last_id = None

 try:

 self.library.sql(query_str.format(Name, City, URL)).execute()

 last_id = self.library.make_rows(

 self.library.sql(GET_LASTID).execute())[0][0]

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot add publisher: {0}".format(err))

 return last_id

 def read(self, PublisherId=None):

 query_str = GET_PUBLISHERS

 if not PublisherId:

 # return all authors

 query_str = query_str.format("")

 else:

 # return specific author

 query_str = query_str.format(

 "WHERE PublisherId = '{0}'".format(PublisherId))

 sql_stmt = self.library.sql(query_str)

 return self.library.make_rows(sql_stmt.execute())

Chapter 9 Library Application: Database Implementations

445

 def update(self, PublisherId, Name, City=None, URL=None):

 assert PublisherId, "You must supply a publisher to update the author."

 query_str = UPDATE_PUBLISHER.format(Name)

 if City:

 query_str = query_str + ", City = '{0}'".format(City)

 if URL:

 query_str = query_str + ", URL = '{0}'".format(URL)

 query_str = query_str + " WHERE PublisherId = {0}".format(PublisherId)

 try:

 self.library.sql(query_str).execute()

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot update publisher: {0}".format(err))

 def delete(self, PublisherId):

 assert PublisherId, "You must supply a publisher to delete the publisher."

 query_str = DELETE_PUBLISHER.format(PublisherId)

 try:

 self.library.sql(query_str).execute()

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot delete publisher: {0}".format(err))

As you can see, the changes are minimal and once again demonstrate how easy it is

to migrate code to the new X DevAPI.

Now let’s look at the Book class, which has a similar short list of changes.

�Book Class

The Book class, like the Publisher class, has few changes from the version 1 code. We

have the same changes for using the X DevAPI but we also need to handle converting the

comma-separated list of authors to a JSON document. We will use a helper function for

this. We also reduce the complexity of the code by removing the join table. The following

summarizes the changes to this version of the Book class.

•	 We use the sql() function of the Library class chaining the

execute() function to execute the SQL statement.

Chapter 9 Library Application: Database Implementations

446

•	 We prepare the SQLStatement object instance before we call the

make_rows() function of the Library class.

•	 We add a function make_authors_json() to convert a comma-

separated list of author names to a JSON document.

•	 We remove the code for working with the books_authors table.

Listing 9-15 shows the complete code for the Book class for clarity with the changes

shown in bold. As you will see, despite adding more lines for working with JSON

documents, the code is a bit shorter than the previous version.

Listing 9-15.  Book Class (library_v2.py)

class Book(object):

 """Book class

 This class encapsulates the books table permitting CRUD operations

 on the data.

 """

 def __init__(self, library):

 self.library = library

 def make_authors_json(self, author_list=None):

 from json import JSONEncoder

 if not author_list:

 return None

 author_dict = {"authors":[]}

 authors = author_list.split(",")

 for author in authors:

 try:

 last, first = author.strip(' ').split(' ')

 except Exception as err:

 last = author.strip(' ')

 first = ''

 author_dict["authors"].append({"LastName":last,"FirstName":first})

 author_json = JSONEncoder().encode(author_dict)

 return author_json

Chapter 9 Library Application: Database Implementations

447

 def create(self, ISBN, Title, Year, PublisherId, Authors=[], Edition=1,

 Language='English'):

 assert ISBN, "You must supply an ISBN for a new book."

 assert Title, "You must supply Title for a new book."

 assert Year, "You must supply a Year for a new book."

 assert PublisherId, "You must supply a publisher for a new book."

 assert Authors, "You must supply at least one Author for a new book."

 query_str = INSERT_BOOK

 last_id = ISBN

 try:

 author_json = self.make_authors_json(Authors)

 self.library.sql(query_str.format(ISBN, Title, Year, PublisherId,

 Edition, Language,

 author_json)).execute()

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot add book: {0}".format(err))

 self.library.sql("ROLLBACK").execute()

 return last_id

 def read(self, ISBN=None):

 query_str = GET_BOOKS

 if not ISBN:

 # return all authors

 query_str = query_str.format("")

 else:

 # return specific author

 query_str = query_str.format("WHERE ISBN = '{0}'".format(ISBN))

 sql_stmt = self.library.sql(query_str)

 return self.library.make_rows(sql_stmt.execute())

 #

 # Get the notes for this book

 #

 def read_notes(self, ISBN):

 assert ISBN, "You must supply an ISBN to get the notes."

Chapter 9 Library Application: Database Implementations

448

 query_str = GET_NOTES.format(ISBN)

 sql_stmt = self.library.sql(query_str)

 return self.library.make_rows(sql_stmt.execute())

 #

 # Get the authors for this book

 #

 def read_authors(self, ISBN):

 assert ISBN, "You must supply an ISBN to get the list of author ids."

 query_str = GET_AUTHOR_NAMES.format(ISBN)

 sql_stmt = self.library.sql(query_str)

 return self.library.make_rows(sql_stmt.execute())

 def update(self, old_isbn, ISBN, Title=None, Year=None, PublisherId=None,

 Authors=None, Edition=None, Language=None, Note=None):

 assert ISBN, "You must supply an ISBN to update the book."

 last_id = None

 #

 # Build the book update query

 #

 book_query_str = UPDATE_BOOK.format(ISBN)

 if Title:

 book_query_str += ", Title = '{0}'".format(Title)

 if Year:

 book_query_str += ", Year = {0}".format(Year)

 if PublisherId:

 book_query_str += ", PublisherId = {0}".format(PublisherId)

 if Edition:

 book_query_str += ", Edition = {0}".format(Edition)

 if Authors:

 author_json = self.make_authors_json(Authors)

 book_query_str += ", Authors = '{0}'".format(author_json)

 book_query_str += " WHERE ISBN = '{0}'".format(old_isbn)

 #

 # We must do this as a transaction to ensure all tables are updated.

 #

Chapter 9 Library Application: Database Implementations

449

 try:

 self.library.sql("START TRANSACTION").execute()

 self.library.sql(book_query_str).execute()

 if Note:

 self.add_note(ISBN, Note)

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot update book: {0}".format(err))

 self.library.sql("ROLLBACK").execute()

 return last_id

 def delete(self, ISBN):

 assert ISBN, "You must supply a ISBN to delete the book."

 #

 # Here, we must cascade delete the notes when we delete a book.

 # We must do this as a transaction to ensure all tables are updated.

 #

 try:

 self.library.sql("START TRANSACTION").execute()

 query_str = DELETE_NOTES.format(ISBN)

 self.library.sql(query_str).execute()

 query_str = DELETE_BOOK.format(ISBN)

 self.library.sql(query_str).execute()

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot delete book: {0}".format(err))

 self.library.sql("ROLLBACK").execute()

 #

 # Add a note for this book

 #

 def add_note(self, ISBN, Note):

 assert ISBN, "You must supply a ISBN to add a note for the book."

 assert Note, "You must supply text (Note) to add a note for the book."

 query_str = INSERT_NOTE.format(ISBN, Note)

 try:

Chapter 9 Library Application: Database Implementations

450

 self.library.sql(query_str).execute()

 self.library.sql("COMMIT").execute()

 except Exception as err:

 print("ERROR: Cannot add note: {0}".format(err))

Note the new function, make_author_json(), which demonstrates how to build

a JSON document. In this case, it is a simple JSON array built using the Python JSON

encoder. We also see in the update() function how to incorporate the JSON document

into our UPDATE SQL statement. Sweet!

That wasn’t too bad, was it? Now, let’s look at the changes to the application code.

�Application Code
There are some minor changes in the application code from the version 1 code we saw

earlier. This includes adapting the user interface to remove the authors view and add the

authors list to the book view form. Fortunately, most of the code from version 1 can be

used without modification.

To build this version of the application, you should copy the version1/mylibrary_

v1.py file to version2/mylibrary_v2.py and either enter the code below or retrieve it

from the Apress book web site. The following lists the changes for the application code.

Although this looks like a long list, most are trivial changes. The following sections

describe the changes in more detail.

•	 Remove the Author class from the import statement.

•	 Change the port from 3306 to 33060.

•	 Remove the NewSelectMultipleField class as it is no longer needed

(it was used in the book view form to show a list of authors to

choose).

•	 Remove the author view function and template.

•	 Replace the multiple select field on the book detail page to a text

field.

•	 Remove the author list from the list view function.

•	 Change the code to read a list of author names rather than ids.

•	 Add the author list to create and update calls to the Book class.

Chapter 9 Library Application: Database Implementations

451

•	 Pass the list of author names from the new text field to the

render_template() function in the book view function.

•	 No changes are needed for the publisher view function, form class,

or template.

•	 No changes are needed for the list form class or template.

•	 The base template was changed to indicate version 2 of the

application.

We look at the changes starting with the changes to setup and initialization.

�Setup and Initialization

Changes to the setup and initialization are trivial. We need only remove the Author class

from the imports, change library_v1 to library_v2, and change the default port in the

connect() function as shown in the following.

from database.library_v2 import Library, Publisher, Book

...

library.connect(<user>, <password>, 'localhost', 33060)

�Form Classes

First, we can remove the AuthorForm and NewSelectMultipleField classes because we

don't need them. It is fortunate that there are no changes needed for the PublisherForm

class. Even the BookForm class has only a minor change to switch the multiple select field

to a text field. Listing 9-16 shows the modified BookForm class code with the changes in

bold. As you will see, it is only one line of code to change.

Listing 9-16.  Book Form Class (Version 2)

class BookForm(FlaskForm):

 isbn = TextField('ISBN ', validators=[

 Required(message=REQUIRED.format("ISBN")),

 Length(min=1, max=32, message=RANGE.format("ISBN", 1, 32))

])

 title = TextField('Title ',

 validators=[Required(message=REQUIRED.format("Title"))])

Chapter 9 Library Application: Database Implementations

452

 year = IntegerField('Year ',

 validators=[Required(message=REQUIRED.format("Year"))])

 edition = IntegerField('Edition ')

 language = TextField('Language ', validators=[

 Required(message=REQUIRED.format("Language")),

 Length(min=1, max=24, message=RANGE.format("Language", 1, 24))

])

 publisher = NewSelectField('Publisher ',

 validators=[Required(message=REQUIRED.format("Publisher"))])

 authors = TextField('Authors (comma separated by LastName FirstName)',

 validators=[Required(message=REQUIRED.format("Author"))])

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

 new_note = TextAreaField('Add Note')

�View Functions

First, we can remove the author() view function as it is no longer needed. It is fortunate

that there are no changes needed for the publisher view function.

However, we need to modify the simple_list() view function to remove the author

list option. Listing 9-17 shows the modified template with the area where code was

removed as shown in bold.

Listing 9-17.  List View Function (Version 2)

def simple_list(kind=None):

 rows = []

 columns = []

 form = ListForm()

 if kind == 'book' or not kind:

 if request.method == 'POST':

 return redirect('book')

 columns = (

 '<td style="width:200px">ISBN</td>',

 '<td style="width:400px">Title</td>',

 '<td style="width:200px">Publisher</td>',

 '<td style="width:80px">Year</td>',

Chapter 9 Library Application: Database Implementations

453

 '<td style="width:300px">Authors</td>',

)

 kind = 'book'

 # Here, we get all books in the database

 rows = library.get_books()

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 elif kind == 'publisher':

 if request.method == 'POST':

 return redirect('publisher')

 columns = (

 '<td style="width:300px">Name</td>',

 '<td style="width:100px">City</td>',

 '<td style="width:300px">URL/Website</td>',

)

 kind = 'publisher'

 # Here, we get all publishers in the database

 publisher = Publisher(library)

 rows = publisher.read()

 return render_template("list.html", form=form, rows=rows,

 columns=columns, kind=kind)

 else:

 flash("Something is wrong!")

 return

We also need to modify the book view function. There are more changes needed

in this section because the authors for a book are now a JSON document and we use a

comma-separated list to specify them in the book detail form. The following lists the

changes needed for this code.

•	 We change the authorids list of ids to author_list to contain the

comma-separated list.

•	 We remove the Author() class code.

•	 We change fetching a list of author ids to a list retrieving the comma-

separated list.

•	 We do not need the author list for the template file.

Chapter 9 Library Application: Database Implementations

454

Listing 9-18 shows the changes to the book view function with the changes shown

in bold.

Listing 9-18.  Book View Function (Version 2)

def book(isbn_selected=None):

 notes = None

 book = Book(library)

 form = BookForm()

 # Get data from the form if present

 isbn = form.isbn.data

 title = form.title.data

 year = form.year.data

 author_list = form.authors.data

 publisherid = form.publisher.data

 edition = form.edition.data

 language = form.language.data

 #

 # Here, we get the choices for the select lists

 #

 publisher = Publisher(library)

 publishers = publisher.read()

 publisher_list = []

 for pub in publishers:

 publisher_list.append((pub[0], '{0}'.format(pub[1])))

 form.publisher.choices = publisher_list

 new_note = form.new_note.data

 # If the route with the variable is called, change the create button to update

 # then populate the form with the data from the row in the table. Otherwise,

 # remove the delete button because this will be a new data item.

 if isbn_selected:

 # Here, we get the data and populate the form

 data = book.read(isbn_selected)

 if data == []:

 flash("Book not found!")

Chapter 9 Library Application: Database Implementations

455

 #

 # Here, we populate the data

 #

 form.isbn.data = data[0][0]

 form.title.data = data[0][1]

 form.year.data = data[0][2]

 form.edition.data = data[0][3]

 form.publisher.process_data(data[0][4])

 form.language.data = data[0][5]

 form.authors.data = book.read_authors(isbn_selected)[0][0]

 # We also must retrieve the notes for the book.

 all_notes = book.read_notes(isbn_selected)

 notes = []

 for note in all_notes:

 notes.append(note[2])

 form.create_button.label.text = "Update"

 else:

 del form.del_button

 if request.method == 'POST':

 # First, determine if we must create, update, or delete when form posts.

 operation = "Create"

 if form.create_button.data:

 if form.create_button.label.text == "Update":

 operation = "Update"

 if form.del_button and form.del_button.data:

 operation = "Delete"

 if form.validate_on_submit():

 # Get the data from the form here

 if operation == "Create":

 try:

 book.create(ISBN=isbn, Title=title, Year=year,

 PublisherId=publisherid, Authors=author_list,

 Edition=edition, Language=language)

 flash("Added.")

 return redirect('/list/book')

Chapter 9 Library Application: Database Implementations

456

 except Exception as err:

 flash(err)

 elif operation == "Update":

 try:

 book.update(isbn_selected, isbn, Title=title, Year=year,

 PublisherId=publisherid, Authors=author_list,

 Edition=edition, Language=language,

 Note=new_note)

 flash("Updated.")

 return redirect('/list/book')

 except Exception as err:

 flash(err)

 else:

 try:

 book.delete(isbn)

 flash("Deleted.")

 return redirect('/list/book')

 except Exception as err:

 flash(err)

 else:

 flash_errors(form)

 return render_template("book.html", form=form, notes=notes,

 authors=author_list)

No additional changes are needed for the application code. Once again, that wasn’t

so bad. We’re not done just yet. There are some minor changes needed for the templates.

�Templates
The changes to the template files are minor. If you haven’t already done so, copy the

templates from version 1 to version 2. For example, copy all the files from version1/

templates/* to version2/templates. Once copied, you can remove the author.html

template as we no longer need it.

We also need to make two small changes to the base.html file to change the version

number and remove the author list from the navigation bar. Listing 9-19 shows an

excerpt from the base.html file with the changes shown in bold.

Chapter 9 Library Application: Database Implementations

457

Listing 9-19.  Base Template (Version 2)

<div class="navbar navbar-inverse" role="navigation">

 <div class="container">

 <div class="navbar-header">

 �<button type="button" class="navbar-toggle" data-

toggle="collapse" data-target=".navbar-collapse">

 Toggle navigation

 </button>

 MyLibrary v2

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 Books

 <ul class="nav navbar-nav">

 Publishers

 </div>

 </div>

</div>

We must also make two small changes to the book.html template to show a text field

for the comma-separated list of authors. Listing 9-20 shows an excerpt of the modified

template with the changes in bold.

Listing 9-20.  Book Template (Version 2)

{% extends "base.html" %}

{% block title %}MyLibrary Search{% endblock %}

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Book - Detail</legend>

 {{ form.hidden_tag() }}

Chapter 9 Library Application: Database Implementations

458

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;>

 {{ form.isbn.label }}

 {{ form.isbn(size=32) }}

 {{ form.title.label }}

 {{ form.title(size=100) }}

 {{ form.year.label }}

 {{ form.year(size=10) }}

 {{ form.edition.label }}

 {{ form.edition(size=10) }}

 {{ form.language.label }}

 {{ form.language(size=34) }}

 {{ form.publisher.label }}

 {{ form.publisher(style="width: 300px;") }}

 {{ form.authors.label }}

 {{ form.authors(size=100) }}

 {# Show the new note text field if this is an update. #}

 {% if form.create_button.label.text == "Update" %}

{{ form.new_note.label }}

 {{ form.new_note(rows='2',cols='100') }}

 {% endif %}

...

Ok, that’s it for the changes now let’s see the code in action.

�Executing the Code
Now that we’ve got the code written, let’s give it a test drive. To execute the application,

you can launch it with the Python interpreter specifying the runserver command. The

following shows an example of executing the application. Note that we used the port

option to specify the port. You should enter this command from the version2 folder.

$ cd version2

$ python ./mylibrary_v2.py runserver -p 5002

 * Running on http://127.0.0.1:5002/ (Press CTRL+C to quit)

Chapter 9 Library Application: Database Implementations

459

The application will launch and run but there isn’t any data in the database yet.

You should start by grabbing a couple of your favorite books and enter the authors

and publishers first then enter the book data. Don’t worry about the notes just yet.

Once you’ve added a few books, you should see them in the default view (by clicking

on MyLibrary v2 or Books in the navigation bar. Figure 9-5 shows an example of what

you should see. The other views are similar and are left as an exercise for the reader to

explore.

Figure 9-5.  Library application book list (version 2)

Note that we removed the author entry in the navigation bar because we no

longer have a detailed view. Rather, the author list is stored in a JSON document with

the book. Figure 9-6 shows the new form.

Chapter 9 Library Application: Database Implementations

460

Note that the authors entry is now a text field instead of a multiple select list. Some

may see this as more intuitive while others may feel the multiple select list is better.

The comma-separated list was chosen for demonstration purposes, but feel free to

experiment with your own ideas for how to collect and display information about the

authors for a book.

The publisher view is unchanged from version 1.

Before we move on to version 3, let’s take a moment to discuss some observations

about this version of the application.

Figure 9-6.  Book detailed view (version 2)

Chapter 9 Library Application: Database Implementations

461

�Observations
The following are some observations about this version of the application. Some are

consequences of the database design, others are from the code, and others are things we

may want to change to make the application a bit better. The observations are presented

in the form of an unordered list. If you want to experiment with this version of the

application, you can consider some of them challenges for improving the application.

Otherwise, consider this list something to think about for the next version.

•	 Further simplify database with JSON: The notes table also can be

converted to a JSON field in the books table because there is no need

to query the notes table without viewing it in context with a book

and one row in the notes table matches one and only one row in the

books table.

•	 The database code is shorter: We need less code in the database code

module to implement the application.

•	 The application code is shorter: We need less code in the application.

•	 Some conversion code is needed for JSON: Although Python provides

a library for working with JSON and it is possible to use JSON

documents directly in Python as data structures, we need to add code

to convert JSON to a more human readable form. In this case, it was

working with a list of author names.

•	 Author list may need to be improved: Although designed for

demonstration purposes, the comma-separated list may not be the

best choice for novice users.

Now, let’s look at the last version of the application.

�Version 3: Document Store
This version implements a pure document store version of the data. For the purposes

of demonstration, we will implement the database code in a code module that we can

import into the application code. We will be using the X DevAPI managing a collection

to store and retrieve the data. The goal is to demonstrate how to migrate to using JSON

documents instead of the SQL interface.

Chapter 9 Library Application: Database Implementations

462

To do this, we will flatten the database from multiple tables to a single collection of

documents—more specifically, a collection of books. Let’s start with a brief overview of

the design of the database.

�Database Design
Calling this a database design is a little archaic as we aren’t working with a database

logically but a schema in the X DevAPI terminology. Implementation wise it is still a

database in MySQL and will show as such in the SHOW DATABASES command as shown

in the following (library_v3) in the output from the MySQL Shell.

$ mysqlsh root@localhost:33060 -mx --sql

Creating an X protocol session to 'root@localhost:33060'

...

 MySQL localhost:33060+ ssl SQL > SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| animals |

| information_schema |

| library_v1 |

| library_v2 |

| library_v3 |

| mysql |

| performance_schema |

| sys |

+--------------------+

8 rows in set (0.00 sec)

The database (schema) contains only one table, which was created as a collection.

You can do this using the commands shown here in the MySQL Shell.

$ mysqlsh root@localhost:33060 -mx --py

Creating an X protocol session to 'root@localhost:33060'

...

Chapter 9 Library Application: Database Implementations

463

 MySQL localhost:33060+ ssl Py > import mysqlx

 MySQL localhost:33060+ ssl Py > �session = mysqlx.get_

session('root:password@localhost:33060')

 MySQL localhost:33060+ ssl Py > schema = session.create_schema('library_v3')

 MySQL localhost:33060+ ssl Py > collection = schema.create_collection('books')

Note that we get a session then create the schema and finally create the collection.

This new collection will appear in the library_v3 database as a table named books,

but its CREATE statement looks very different. The following shows the CREATE statement

for the table. You should never need to use this statement and should always use the

MySQL Shell and X DevAPI to create schemas, collections, or any object in the X DevAPI

pantheon.

MySQL localhost:33060+ ssl SQL > SHOW CREATE TABLE library_v3.books \G

*************************** 1. row ***************************

 Table: books

Create Table: CREATE TABLE `books` (

 `doc` json DEFAULT NULL,

 �_id` varchar(32) GENERATED ALWAYS AS (json_unquote(json_extract(`doc`,

_utf8mb4'$._id'))) STORED NOT NULL,

 PRIMARY KEY (`_id`)

) ENGINE=InnoDB DEFAULT CHARSET=utf8mb4

1 row in set (0.00 sec)

Don’t worry that the CREATE statement looks strange. It’s supposed to look this way.

After all, it is a collection implemented as a table of rows containing a document id

and a JSON field. Note that there is a primary key defined so that will make lookups by

id fast. Cool.

Now that we’ve got the schema (database) and collection (table) created, let’s see the

code for the database class.

�Database Code
The changes to the database code for this version of the application are a bit longer than

the last version. Although we switched to using the X DevAPI in version 2, we were still

using an SQL interface. This version uses a pure X DevAPI interface.

Chapter 9 Library Application: Database Implementations

464

The code for working with the database is placed in a file named library_v3.py in the

database folder under the version3 folder as described in Chapter 8 under the section,

“Preparing the Directory Structure.” The code is based on version 2 converted to use

the X DevAPI, and we no longer need a class for the publishers table. However, because

the code is based on version 2, we will discuss the changes rather than another lengthy

discussion on the classes and how they work. The following summarizes the changes.

•	 Add the JSONEncoder import statement.

•	 Remove all the SQL statements (yes!).

•	 Remove the Publisher class.

•	 Rename the Book class to Books.

•	 Change the Books class to use session, schema, and collection object

instances.

•	 Remove the make_authors_json() function.

•	 Remove the Library class moving the utility functions to the Books

class.

•	 The database name changes from library_v2 to library_v3.

To create the file, you can simply copy the file from version2/database/library_v2.py

to version3/database/library_v3.py.

�Code Deleted

Begin by deleting the Publishers class and all the SQL statements. We won’t need those.

You also will need to delete the Library class, but we will still use some of the methods

in that class. See the section on the Books class for more details.

�Setup and Initialization

Once you’ve deleted the SQL statements, we need to add an import statement to import

the Python JSON encoder class. The following code should be placed at the end of the

imports section.

from json import JSONEncoder as encoder

Chapter 9 Library Application: Database Implementations

465

�Books Class

This class is where the rest of the code changes appear. The following sections briefly

describe each of the changes followed by a complete listing of the modified class. Note

that the first thing we do is change the class name from Book to Books because we are

modeling a collection of books rather than a single book.

Tip T his is one of the fundamental “think” changes one must make when
working with collections. Although you can model a single document, most will
gravitate naturally to modeling a collection of document (things).

Class Declaration

The following shows the modified class declaration. Note that we renamed the class and

comments to reflect the changes to the class model. Note we also declare two more class

variables in the constructor; book_schema and book_col. The class variable book_schema

is used to store an instance of the schema object and the book_col variable is used to store an

instance of the collection object. These will be initialized in the connect() function.

#

Books collection simple abstraction (document store)

#

class Books(object):

 """Books class

 This class encapsulates the books collection permitting CRUD operations

 on the data.

 """

 def __init__(self):

 self.session = None

 self.book_schema = None

 self.book_col = None

Chapter 9 Library Application: Database Implementations

466

Create Function

Next, we change the create() function to work better with a collection. In this case,

we change the parameter list to include the three pieces of data for the publisher;

name, city, and URL. We also use a function we will write to make the JSON complex

document. The new function is named make_book_json() and will be described later.

You also can remove the make_authors_json() function. Finally, we change the code to

use the book_col class variable to add the book to the collection followed by a lookup

for the document id of the new book. Recall, the document id is assigned by the server

so retrieving it this way allows us to use it to quickly locate the document. Listing 9-21

shows the modified create() statement with the changed areas in bold.

Note T he indentation for the functions in the library class should be indented 4
spaces. Spaces are omitted in the listings for readability.

Listing 9-21.  Create Function (Version 3)

def create(self, ISBN, Title, Pub_Year, Pub_Name, Pub_City, Pub_URL,

 Authors=[], Notes=[], Edition=1, Language='English'):

 assert ISBN, "You must supply an ISBN for a new book."

 assert Title, "You must supply Title for a new book."

 assert Pub_Year, "You must supply a Year for a new book."

 assert Pub_Name, "You must supply a Publisher Name for a new book."

 assert Authors, "You must supply at least one Author Name for a new book."

 last_id = None

 try:

 book_json = self.make_book_json(ISBN, Title, Pub_Year, Pub_Name,

 Pub_City, Pub_URL, Authors, Notes,

 Edition, Language)

 self.book_col.add(book_json).execute()

 last_id = self.book_col.find(

 "ISBN = '{0}'".format(ISBN)).execute().fetch_all()[0]["_id"]

 except Exception as err:

 print("ERROR: Cannot add book: {0}".format(err))

 return last_id

Chapter 9 Library Application: Database Implementations

467

Read Function

The read() function is greatly simplified now that we are using the collection object.

Indeed, all we need to do is call the find() function passing in the document id and then

fetch the document—all in one line of code! Auxiliary read functions from version 2 are

removed, see the “Utility Functions” section later for more details.

def read(self, bookid=None):

 �return self.book_col.find("_id = '{0}'".format(bookid)).execute().

fetch_one()

Update Function

The update function is where a lot of code is changed. This is due to how we form

the chain of modify() clauses for updating a collection. More specific, the code has

been changed to detect when a data element is changed and if it has changed, call

the modify().set().execute() chain to modify the data. Because we are doing more

than one set of these changes potentially, we use the session class variable to start a

transaction then if all statements succeed, commit it to the collection. If not, we rollback

the changes.

The other changes have to do with how we handle the notes and author arrays.

The publisher data is easy because we will place text boxes on the web page to hold the

data. Listing 9-22 shows the modified create() function. Most of this code differs from

version 2.

Listing 9-22.  Update Function (Version 3)

def update(self, book_id, book_data, ISBN, Title, Pub_Year, Pub_Name, Pub_City,

 Pub_URL, Authors=[], New_Note=None, Edition=1, Language='English'):

 assert book_id, "You must supply an book id to update the book."

 try:

 bkid = "_id = '{0}'".format(book_id)

 self.session.start_transaction()

 if ISBN != book_data["ISBN"]:

 self.book_col.modify(bkid).set("ISBN", ISBN).execute()

 if Title != book_data["Title"]:

 self.book_col.modify(bkid).set("Title", Title).execute()

Chapter 9 Library Application: Database Implementations

468

 if Pub_Year != book_data["Pub_Year"]:

 self.book_col.modify(bkid).set("Pub_Year", Pub_Year).execute()

 if Pub_Name != book_data["Publisher"]["Name"]:

 �self.book_col.modify(bkid).set("$.Publisher.Name", Pub_Name).

execute()

 if Pub_City != book_data["Publisher"]["City"]:

 �self.book_col.modify(bkid).set("$.Publisher.City", Pub_City).

execute()

 if Pub_URL != book_data["Publisher"]["URL"]:

 �self.book_col.modify(bkid).set("$.Publisher.URL", Pub_URL).

execute()

 if Edition != book_data["Edition"]:

 self.book_col.modify(bkid).set("Edition", Edition).execute()

 if Language != book_data["Language"]:

 self.book_col.modify(bkid).set("Language", Language).execute()

 if New_Note:

 #

 # If this is the first note, we create the array otherwise,

 # we append to it.

 #

 if not "Notes" in book_data.keys():

 mod_book = self.book_col.modify(bkid)

 mod_book.set("Notes", [{"Text":New_Note}]).execute()

 else:

 mod_book = self.book_col.modify(bkid)

 mod_book.array_append("Notes", {"Text":New_Note}).execute()

 if Authors and (Authors != self.make_authors_str(book_data['Authors'])):

 authors_json = self.make_authors_dict_list(Authors)

 self.book_col.modify(bkid).set("Authors", authors_json).execute()

 self.session.commit()

 except Exception as err:

 print("ERROR: Cannot update book: {0}".format(err))

 self.session.rollback()

Chapter 9 Library Application: Database Implementations

469

Take some time to read through this code to ensure you see how we’ve gone from

simply updating the entire data row to checking to see what items need to change

and to set those. The nature of the X DevAPI is such that it enables (and encourages)

such behavior as we only want to change what has changed and nothing else to save

processing time (and more).

Delete Function

The delete() function also undergoes some change, but much less than the create()

function. As with the read() function, the X DevAPI makes it much easier for us to

perform a delete operation. Instead of having to execute a series of deletes as we did

in version 1 and 2, we only need to use the remove_one() convenience function of the

collection to find the book by document id and delete it. Nice! The following shows the

modified delete() function.

def delete(self, book_id):

 assert book_id, "You must supply a book id to delete the book."

 try:

 self.book_col.remove_one(book_id).execute()

 except Exception as err:

 print("ERROR: Cannot delete book: {0}".format(err))

 self.session.rollback()

Utility Functions

There are also a number of changes to the utility functions. The following summarizes

the changes needed and later paragraphs provide more details on the change.

•	 Remove functions no longer needed.

•	 Move the connect() and get_books() functions from the old

Library class to the Books.

•	 Add new functions for working with JSON documents.

There are a lot of extra functions that are not needed for a pure document store

code module. We deleted the make_authors_json(), read_notes(), add_note(), read_

authors(), get_session(), is_connected(), disconnect(), make_rows(), and sql()

functions from the library class as we do not need them anymore. Because the author

and publisher data is part of the document, we treat the collection as an object rather

than a gateway to a database server.

Chapter 9 Library Application: Database Implementations

470

The connect() function requires some minor changes to allow us to work with the

session object. Listing 9-23 shows the modified connect() function with the changes in

bold. This function is moved to the Books class. Here, we attempt to get a session using

the connection parameters passed (note there is no database parameter), then get the

schema object for the library_v3 schema and finally get the collection object for the

books collection.

Listing 9-23.  Connect( ) Function (Version 3)

def connect(self, username, passwd, host, port):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 }

 try:

 self.session = mysqlx.get_session(**config)

 if self.session.is_open():

 self.book_schema = self.session.get_schema("library_v3")

 self.book_col = self.book_schema.get_collection("books")

 except Exception as err:

 print("CONNECTION ERROR:", err)

 self.session = None

 raise

The get_books( ) function is simplified over version 2 because instead of issuing an SQL

statement read a book, we use the collection object to find all of the books. We also use a

rewrite of an older function to return an array of documents that we can use in Python.

This new function is named make_row_array() and will be explained in the next sections.

def get_books(self):

 rows = []

 try:

 book_docs = self.book_col.find().sort("ISBN").execute().fetch_all();

 rows = self.make_row_array(book_docs)

 except Exception as err:

Chapter 9 Library Application: Database Implementations

471

 print("ERROR: {0}".format(err))

 raise

 return rows

Finally, there are a number of new functions we need to add to make working with

the JSON documents a bit easier. The following lists and summarizes the new functions.

We leave the code for these to the next section where we list the complete code for the

Books class. As you will see, there are no surprises in how these functions were coded.

•	 make_authors_str(<array>): Given an array of authors, return a

comma-separated list of first name last name.

•	 make_authors_dict_list(<string>): Given a comma-separated

list of author names, return a list (array) of dictionaries containing

author first and last names.

•	 make_book_json(<params>): Given a parameter list of the data from

the fields on the web page, return a JSON document populated with

the data.

•	 make_row_array(<array or JSON documents>): Given an array of

JSON documents, return an array of dictionaries containing a subset

of the JSON document elements. Note that this is used to show the

list of books in the collection.

Completed Code

Because there are a lot of changes necessary to this version of the database code and

the Books class in particular, it is a good idea to see the completed code in its entirety.

Listing 9-24 shows the complete code for the Books class. You can study this code to

see how the many changes above were implemented.

Listing 9-24.  Books Class (Version 3)

class Books(object):

 """Books class

 This class encapsulates the books collection permitting CRUD operations

 on the data.

 """

Chapter 9 Library Application: Database Implementations

472

 def __init__(self):

 self.session = None

 self.book_schema = None

 self.book_col = None

 def create(self, ISBN, Title, Pub_Year, Pub_Name, Pub_City, Pub_URL,

 Authors=[], Notes=[], Edition=1, Language='English'):

 assert ISBN, "You must supply an ISBN for a new book."

 assert Title, "You must supply Title for a new book."

 assert Pub_Year, "You must supply a Year for a new book."

 assert Pub_Name, "You must supply a Publisher Name for a new book."

 assert Authors, "You must supply at least one Author Name for a new book."

 last_id = None

 try:

 book_json = self.make_book_json(ISBN, Title, Pub_Year, Pub_Name,

 Pub_City, Pub_URL, Authors, Notes,

 Edition, Language)

 self.book_col.add(book_json).execute()

 last_id = self.book_col.find(

 "ISBN = '{0}'".format(ISBN)).execute().fetch_all()[0]["_id"]

 except Exception as err:

 print("ERROR: Cannot add book: {0}".format(err))

 return last_id

 def read(self, bookid=None):

 �return self.book_col.find("_id = '{0}'".format(bookid)).execute().

fetch_one()

 def update(self, book_id, book_data, ISBN, Title, Pub_Year, Pub_Name, Pub_City,

 Pub_URL, Authors=[], New_Note=None, Edition=1, Language='English'):

 assert book_id, "You must supply an book id to update the book."

 try:

 bkid = "_id = '{0}'".format(book_id)

 self.session.start_transaction()

 if ISBN != book_data["ISBN"]:

 self.book_col.modify(bkid).set("ISBN", ISBN).execute()

 if Title != book_data["Title"]:

Chapter 9 Library Application: Database Implementations

473

 self.book_col.modify(bkid).set("Title", Title).execute()

 if Pub_Year != book_data["Pub_Year"]:

 self.book_col.modify(bkid).set("Pub_Year", Pub_Year).execute()

 if Pub_Name != book_data["Publisher"]["Name"]:

 �self.book_col.modify(bkid).set("$.Publisher.Name",

Pub_Name).execute()

 if Pub_City != book_data["Publisher"]["City"]:

 �self.book_col.modify(bkid).set("$.Publisher.City",

Pub_City).execute()

 if Pub_URL != book_data["Publisher"]["URL"]:

 �self.book_col.modify(bkid).set("$.Publisher.URL", Pub_URL).

execute()

 if Edition != book_data["Edition"]:

 self.book_col.modify(bkid).set("Edition", Edition).execute()

 if Language != book_data["Language"]:

 self.book_col.modify(bkid).set("Language", Language).execute()

 if New_Note:

 #

 # If this is the first note, we create the array otherwise,

 # we append to it.

 #

 if not "Notes" in book_data.keys():

 mod_book = self.book_col.modify(bkid)

 mod_book.set("Notes", [{"Text":New_Note}]).execute()

 else:

 mod_book = self.book_col.modify(bkid)

 mod_book.array_append("Notes", {"Text":New_Note}).execute()

 �if Authors and (Authors != self.make_authors_str(book_

data['Authors'])):

 authors_json = self.make_authors_dict_list(Authors)

 self.book_col.modify(bkid).set("Authors", authors_json).execute()

 self.session.commit()

 except Exception as err:

 print("ERROR: Cannot update book: {0}".format(err))

 self.session.rollback()

Chapter 9 Library Application: Database Implementations

474

 def delete(self, book_id):

 assert book_id, "You must supply a book id to delete the book."

 try:

 self.book_col.remove_one(book_id).execute()

 except Exception as err:

 print("ERROR: Cannot delete book: {0}".format(err))

 self.session.rollback()

 #

 # Connect to a MySQL server at host, port

 #

 # Attempts to connect to the server as specified by the connection

 # parameters.

 #

 def connect(self, username, passwd, host, port):

 config = {

 'user': username,

 'password': passwd,

 'host': host,

 'port': port,

 }

 try:

 self.session = mysqlx.get_session(**config)

 if self.session.is_open():

 self.book_schema = self.session.get_schema("library_v3")

 self.book_col = self.book_schema.get_collection("books")

 except Exception as err:

 print("CONNECTION ERROR:", err)

 self.session = None

 raise

 def make_authors_str(self, authors):

 author_str = ""

 num = len(authors)

 i = 0

 while (i < num):

Chapter 9 Library Application: Database Implementations

475

 author_str += "{0} {1}".format(authors[i]["LastName"],

 authors[i]["FirstName"])

 i += 1

 if (i < num):

 author_str += ", "

 return author_str

 def make_authors_dict_list(self, author_list=None):

 if not author_list:

 return None

 author_dict_list = []

 authors = author_list.split(",")

 for author in authors:

 try:

 last, first = author.strip(' ').split(' ')

 except Exception as err:

 last = author.strip(' ')

 first = ''

 author_dict_list.append({"LastName":last,"FirstName":first})

 return author_dict_list

 def make_book_json(self, ISBN, Title, Pub_Year, Pub_Name, Pub_City, Pub_URL,

 Authors=[], Notes=[], Edition=1, Language='English'):

 notes_list = []

 for note in Notes:

 notes_list.append({"Text":"{0}".format(note)})

 book_dict = {

 "ISBN": ISBN,

 "Title": Title,

 "Pub_Year": Pub_Year,

 "Edition": Edition,

 "Language": Language,

 "Authors": self.make_authors_dict_list(Authors),

 "Publisher": {

 "Name": Pub_Name,

 "City": Pub_City,

Chapter 9 Library Application: Database Implementations

476

 "URL": Pub_URL,

 },

 "Notes": notes_list,

 }

 return encoder().encode(book_dict)

 #

 # Build row array

 #

 def make_row_array(self, book_doc_list):

 rows = []

 for book in book_doc_list:

 book_dict = book

 # Now, we build the row for the book list

 row_item = (

 book_dict["_id"],

 book_dict["ISBN"],

 book_dict["Title"],

 book_dict["Publisher"]["Name"],

 book_dict["Pub_Year"],

 self.make_authors_str(book_dict["Authors"]),

)

 rows.append(row_item)

 return rows

 #

 # Get list of books

 #

 def get_books(self):

 rows = []

 try:

 book_docs = self.book_col.find().sort("ISBN").execute().fetch_all();

 rows = self.make_row_array(book_docs)

 except Exception as err:

 print("ERROR: {0}".format(err))

 raise

 return rows

Chapter 9 Library Application: Database Implementations

477

Wow, that was a lot of changes! This version shows how much different the code for

working with collections is from even a hybrid solution. Now, let’s look at the changes to

the application code.

�Application Code
The changes to the application code for this version are not as long as the database code

module changes. In essence, we remove the publisher list and detail view and convert

the book view function to work the JSON document. There are a number of other small

changes as well. The following summarizes the changes. Later sections describe the

changes in more detail.

•	 Import the Books class from the library_v3 module.

•	 Switch the Library class to the Books class and call the connect()

function.

•	 Remove the NewSelectField() class.

•	 Remove the PublisherForm() class.

•	 Change the BookForm class to list the publisher data as fields.

•	 Change the BookForm class to add hidden fields for the document id

and JSON string.

•	 Remove the publisher option from the ListForm template.

•	 Remove the publisher view function.

•	 Modify the book view function to work with the JSON document.

The following sections show the details of the three major areas for changes:

setup and initialization, form class, and view functions. To create the file, you can

simply copy the file from version1/database/library_v2.py to version2/database/

library_v3.py.

Chapter 9 Library Application: Database Implementations

478

�Setup and Initialization

The changes to the setup and initialization sections are minor. We must import the Books

class from the library_v3 code module and change the code to use the Books() object

instead of the Library() object in version 2. The following shows the changes in bold.

from wtforms import (HiddenField, TextField, TextAreaField,

 IntegerField, SubmitField)

from wtforms.validators import Required, Length

from database.library_v3 import Books

...

#

Setup the books document store class

#

books = Books()

Provide your user credentials here

books.connect(<user>, <password>, 'localhost', 33060)

�Form Classes

The form classes changes are also minor. First, we delete the NewSelectField() and

PublisherForm() classes as we don’t need them anymore. Second, we must modify the

BookForm() form class to use text fields for the publisher data. Recall, this is name, city,

and URL. We also want to add two hidden fields: one for the document id, and another

for the JSON document.

The document id will be critical in making it easy to retrieve or update the JSON

document and the JSON document stored in the form will allow us to detect when data

has changed. Recall from the discussion of the Books class in the database code module

we do exactly that in the update() function. Using hidden fields to contain data like this

is common, but you should use the technique sparingly because data in hidden fields

are like any other field—you must ensure you update the data in your code otherwise

you could be working with stale data.

Listing 9-25 shows the updated BookForm for class with changes shown in bold.

Chapter 9 Library Application: Database Implementations

479

Listing 9-25.  Book Form Class (Version 3)

class BookForm(FlaskForm):

 isbn = TextField('ISBN ', validators=[

 Required(message=REQUIRED.format("ISBN")),

 Length(min=1, max=32, message=RANGE.format("ISBN", 1, 32))

])

 title = TextField('Title ',

 validators=[Required(message=REQUIRED.format("Title"))])

 year = IntegerField('Year ',

 �validators=[Required(message=REQUIRED.

format("Year"))])

 edition = IntegerField('Edition ')

 language = TextField('Language ', validators=[

 Required(message=REQUIRED.format("Language")),

 Length(min=1, max=24, message=RANGE.format("Language", 1, 24))

])

 pub_name = TextField('Publisher Name', validators=[

 Required(message=REQUIRED.format("Name")),

 Length(min=1, max=128, message=RANGE.format("Name", 1, 128))

])

 pub_city = TextField('Publisher City', validators=[

 Required(message=REQUIRED.format("City")),

 Length(min=1, max=32, message=RANGE.format("City", 1, 32))

])

 pub_url = TextField('Publisher URL/Website')

 authors = TextField('Authors (comma separated by LastName FirstName)',

 �validators=[Required(message=REQUIRED.

format("Author"))])

 create_button = SubmitField('Add')

 del_button = SubmitField('Delete')

 new_note = TextAreaField('Add Note')

 # Here, we book id for faster updates

 book_id = HiddenField("BookId")

 # Here, we store the book data structure (document)

 book_dict = HiddenField("BookData")

Chapter 9 Library Application: Database Implementations

480

�Book View Function

The view functions area is where most of the changes to the application take place. This

is because we must modify the function to use JSON documents (data). It is fortunate

that JSON objects translate to code nicely allowing us to use path expressions in the form

of array and dictionary key lookups. Cool! The following lists the changes needed to the

book view function. Later paragraphs explain the changes in more detail.

•	 Change publisher list to fields.

•	 Remove populating the publisher select field.

•	 Change the variable for the route from the ISBN to document id.

•	 Use the books() instance instead of book().

•	 When retrieving data from the collection, use the JSON document

directly in Python accessing data items by array index and

dictionary keys.

•	 Detect when data elements are missing for optional fields.

•	 Call the CRUD functions with the modified parameter lists adding the

publisher fields.

As mentioned, the book view function requires modification to include publisher

data that is now represented as fields, so we no longer have to populate a select field

thereby simplifying the code a bit.

Because the data is now in JSON, we can use the document id as the key thereby

eliminating the concern over users changing the primary key (e.g. the ISBN). In fact,

using JSON documents allows users to change any field (or add new ones) without

creating problems with keys and indexes. Neat!

When retrieving information from the books collection, we have a JSON document

that we can access the data in Python as if it were a big dictionary. For example, we can

access data items by name like data["ISBN"] where ISBN is the key in the dictionary,

data. Nice! We see these changes in the section after the if id_selected: conditional.

For those fields that are optional, we can check the dictionary (JSON object) to see if the

key exists and if it does, retrieve the data.

Chapter 9 Library Application: Database Implementations

481

We also see where we’ve added assignments to save the document id and the

original JSON document to the hidden fields. Finally, we must also make a small change

to how we call the CRUD functions as we have the extra parameters for the publisher

data. Listing 9-26 shows the complete, modified code for the book view function with

the modified sections in bold.

Listing 9-26.  Book View Function (Version 3)

def book(id_selected=None):

 notes = []

 form = BookForm()

 # Get data from the form if present

 bookid = form.book_id.data

 isbn = form.isbn.data

 title = form.title.data

 year = form.year.data

 author_list = form.authors.data

 pub_name = form.pub_name.data

 pub_city = form.pub_city.data

 pub_url = form.pub_url.data

 edition = form.edition.data

 language = form.language.data

 new_note = form.new_note.data

 # If the route with the variable is called, change the create button to update

 # then populate the form with the data from the row in the table. Otherwise,

 # remove the delete button because this will be a new data item.

 if id_selected:

 # Here, we get the data and populate the form

 data = books.read(id_selected)

 if data == []:

 flash("Book not found!")

 #

 # Here, we populate the data

 #

 form.book_dict.data = data

 form.book_id.data = data["_id"]

Chapter 9 Library Application: Database Implementations

482

 form.isbn.data = data["ISBN"]

 form.title.data = data["Title"]

 form.year.data = data["Pub_Year"]

 #

 # Since edition is optional, we must check for it first.

 #

 if "Edition" in data.keys():

 form.edition.data = data["Edition"]

 else:

 form.edition.data = '1'

 form.pub_name.data = data["Publisher"]["Name"]

 #

 # Since publisher city is optional, we must check for it first.

 #

 if "City" in data["Publisher"].keys():

 form.pub_city.data = data["Publisher"]["City"]

 else:

 form.pub_city = ""

 #

 # Since publisher URL is optional, we must check for it first.

 #

 if "URL" in data["Publisher"].keys():

 form.pub_url.data = data["Publisher"]["URL"]

 else:

 form.pub_url.data = ""

 #

 # Since language is optional, we must check for it first.

 #

 if "Language" in data.keys():

 form.language.data = data["Language"]

 else:

 form.language.data = "English"

 form.authors.data = books.make_authors_str(data["Authors"])

Chapter 9 Library Application: Database Implementations

483

 # We also must retrieve the notes for the book.

 if "Notes" in data.keys():

 all_notes = data["Notes"]

 else:

 all_notes = []

 notes = []

 for note in all_notes:

 notes.append(note["Text"])

 form.create_button.label.text = "Update"

 else:

 del form.del_button

 if request.method == 'POST':

 # First, determine if we must create, update, or delete when form posts.

 operation = "Create"

 if form.create_button.data:

 if form.create_button.label.text == "Update":

 operation = "Update"

 if form.del_button and form.del_button.data:

 operation = "Delete"

 if form.validate_on_submit():

 # Get the data from the form here

 if operation == "Create":

 try:

 books.create(ISBN=isbn, Title=title, Pub_Year=year,

 Pub_Name=pub_name, Pub_City=pub_city,

 Pub_URL=pub_url, Authors=author_list,

 Notes=notes, Edition=edition,

 Language=language)

 flash("Added.")

 return redirect('/list/book')

 except Exception as err:

 flash(err)

 elif operation == "Update":

Chapter 9 Library Application: Database Implementations

484

 try:

 books.update(id_selected, form.book_dict.data, ISBN=isbn,

 Title=title, Pub_Year=year, Pub_Name=pub_name,

 Pub_City=pub_city, Pub_URL=pub_url,

 Authors=author_list, Edition=edition,

 Language=language, New_Note=new_note)

 flash("Updated.")

 return redirect('/list/book')

 except Exception as err:

 flash(err)

 else:

 try:

 books.delete(form.book_id.data)

 flash("Deleted.")

 return redirect('/list/book')

 except Exception as err:

 flash(err)

 else:

 flash_errors(form)

 return render_template("book.html", form=form, notes=notes,

 authors=author_list)

Finally, we can remove the publisher() view function and the publisher section in

the simple_list() view as we don’t need those either.

�Templates
The changes to the template files are minor. If you haven’t already done so, copy the

templates from version 2 to version 3. For example, copy all the files from version2/

templates/* to version3/templates. Once copied, you can remove the publisher.html

template as it is no longer needed.

We also need to make two small changes to the base.html file to change the version

number and remove the publisher list from the navigation bar. Listing 9-27 shows an

excerpt from the base.html file with the changes shown in bold.

Chapter 9 Library Application: Database Implementations

485

Listing 9-27.  Base Template (Version 3)

<div class="navbar navbar-inverse" role="navigation">

 <div class="container">

 <div class="navbar-header">

 �<button type="button" class="navbar-toggle" data-toggle="collapse"

data-target=".navbar-collapse">

 Toggle navigation

 </button>

 MyLibrary v3

 </div>

 <div class="navbar-collapse collapse">

 <ul class="nav navbar-nav">

 Books

 </div>

 </div>

</div>

We also must make small changes to the book.html template to show a text field

for the comma-separated list of authors. Listing 9-28 shows an excerpt of the modified

template with the changes in bold.

Listing 9-28.  Book Template (Version 3)

...

{% block page_content %}

 <form method=post> {{ form.csrf_token }}

 <fieldset>

 <legend>Book - Detail</legend>

 {{ form.hidden_tag() }}

 <div style=font-size:20pz; font-weight:bold; margin-left:150px;>

 {{ form.isbn.label }}

 {{ form.isbn(size=32) }}

Chapter 9 Library Application: Database Implementations

486

 {{ form.title.label }}

 {{ form.title(size=100) }}

 {{ form.year.label }}

 {{ form.year(size=10) }}

 {{ form.edition.label }}

 {{ form.edition(size=10) }}

 {{ form.language.label }}

 {{ form.language(size=34) }}

 {{ form.pub_name.label }}

 {{ form.pub_name(style="width: 300px;") }}

 {{ form.pub_city.label }}

 {{ form.pub_city(style="width: 300px;") }}

 {{ form.pub_url.label }}

 {{ form.pub_url(style="width: 300px;") }}

 {{ form.authors.label }}

 {{ form.authors(size=100) }}

...

Ok, that’s it for the changes; now let’s see the code in action.

�Executing the Code
Now that we’ve got the code written, let’s give it a test drive. To execute the application,

you can launch it with the Python interpreter specifying the runserver command. The

following shows an example of executing the application. Note that we used the port

option to specify the port. You should enter this command from the version3 folder.

$ cd version3

$ python ./mylibrary_v3.py runserver -p 5003

 * Running on http://127.0.0.1:5003/ (Press CTRL+C to quit)

The application will launch and run but there isn’t any data in the database yet. You

should start by grabbing a couple of your favorite books and enter the book data. Don’t

worry about the notes just yet. Once you’ve added a few books, you should see them in

the default view (by clicking on MyLibrary v3 or Books in the navigation bar. Figure 9-7

shows an example of what you should see.

Chapter 9 Library Application: Database Implementations

487

If this is starting to look a little familiar, you’re right, it is. This version implements

the same interface except without the publisher and author views. As in the other

versions, you can click on the Modify link for any book and see the book details.

Figure 9-8 shows the updated book detail view. Note that the publisher entry is now a

set of three text fields instead of a dropdown list. The author list is unchanged

from version 2.

Figure 9-7.  Library application book list (version 3)

Chapter 9 Library Application: Database Implementations

488

Now, let’s take a moment to discuss some observations about this version of the

application.

Figure 9-8.  Book detailed view (version 3)

Chapter 9 Library Application: Database Implementations

489

�Observations
The following are some observations about this version of the application. Some are

consequences of the database design, others are from the code, and others are things we

made a bit better. The observations are presented in the form of an unordered list. This

list is shorter than the previous versions because we have achieved a better application!

So, this is a list of successes rather than improvements.

•	 Database code much shorter: We need less code for working with

collections and documents using the X DevAPI.

•	 Database code easier to understand: Working with JSON documents

are a natural extension of Python (and other languages).

•	 Application code significantly shorter: We need less code for the

application because we simplified the user interface. In fact, the code

is almost 50% of the size of version 1.

There is one other observation that bears discussing. The changes to the user

experience using the three versions of the application are minor. In fact, one of the goals

was to keep the user interface changes to a minimum to demonstrate that migrating

from a traditional relational database model to a hybrid and ultimately a pure document

store model does not mean one must redesign the entire user interface!

Although there may be some changes necessary to facilitate changes in how the

data is stored and retrieved—like what we saw with the authors and books_authors join

tables, the changes often help solve problems with the database design or in this case

help eliminate a false premise that the specific author and publisher data is meaningful

outside the context of a book. In this example application, it was not. So, designing

separate tables (or documents) for storing the information wasn’t necessary and added

complexity we didn’t need. Such are the challenges and rewards of a designing your data

around JSON documents and the MySQL document store engine.

�Challenges
The application in either version is very basic in functionality. If you find the application

is a good fit for further experimentation or even to base another effort, there are a few

areas where you may want to consider improving the design and code. The following

includes a brief list of things that can be improved.

Chapter 9 Library Application: Database Implementations

490

•	 ISBN lookup service: Add the ability to retrieve information

about books using an ISBN lookup service such as isbntools

(http://isbntools.readthedocs.io/en/latest/) or SearchUPC

(http://www.searchupc.com). Some services require creating

accounts while others may be fee-based services.

•	 Separate library modules: Break the library file into separate code

modules (book, author, publisher, library) for version 1 and 2.

•	 Separate code modules: Larger Flask applications typically break

out the views (form classes) in the main code file into separate code

modules.

•	 Remove hardcoded values: Make the user, password, host, and port

data for the MySQL parameters rather than hard coded values

(hint: use argparse).

•	 Expand the data: Modify the database or document store to store

additional media such as magazines, articles, and online references.

�Summary
There is no doubt that the new MySQL 8 release is set to be the biggest, most significant

release in MySQL history. The addition of the JSON data type and the X DevAPI is simply

groundbreaking for MySQL applications.

In this chapter, we explored the differences between a relational database solution

and a relational database solution augmented with JSON fields, and finally a pure

document store solution. As we discovered, the new X DevAPI makes developing MySQL

solutions easier, faster, and with less code than a relational database solution. This gives

us many reasons to start adopting the document store going forward.

In Chapter 10, I conclude my exploration of the MySQL 8 Document Store with a

look at how you can prepare your existing and future application plans to incorporate

the document store. This includes notes about upgrading to MySQL 8 and tips for how to

migrate to document store solutions.

Chapter 9 Library Application: Database Implementations

http://isbntools.readthedocs.io/en/latest/
http://www.searchupc.com/

491
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1_10

CHAPTER 10

Planning for MySQL 8
and the Document Store
This book has covered a lot of material including a brief overview of some of the

newest features of MySQL 8. I focused on the MySQL Document Store including all its

components: the X Protocol, X DevAPI, MySQL Shell, and changes to the server with

the MySQL X Plugin. Not only that, but I also gave a walkthrough on how to develop

applications using the X DevAPI—from SQL-based to hybrid to NoSQL solution.

These technologies are fantastic additions to the server features and promise far more

return on your development resources than traditional relational database application

development. It is clear that there is a lot to MySQL 8 than just a new, jaunty jump in

version numbering.

Recall, we received a glimpse of some new high availability features such as Group

Replication and InnoDB Cluster. But it doesn’t end there, does it? We also have new

authentication mechanisms, the new data dictionary, and many small but significant

updates. So, where does one start considering the implications of migrating and

upgrading to MySQL 8? In this chapter, I look at some strategies for migrating to

MySQL 8 including considerations and best practices for migrating applications to use

the document store with another example of migrating existing database applications.

I explore some tips and tricks for working with MySQL 8.

Let’s begin by briefly discussing some strategies for considering upgrading to

MySQL 8 from MySQL 5.7 and earlier.

492

�Upgrading from MySQL 5.7 and Earlier
Although this book is not a tutorial on how to upgrade to MySQL 8, there are some things

you should consider before adopting the MySQL Document Store, which will likely result

in upgrading your existing MySQL servers.

There are several ways you can go about learning how to do an upgrade. The most

obvious and recommended route is to read the online MySQL reference manual, which

contains a section on upgrading MySQL (providing critical information you must know).

However, there are some higher-level or general practices that apply to any form of

upgrade or migration. This section presents upgrade practices that will help you avoid

some of the trouble with upgrading a major system like MySQL.

In this section, we look at the types of upgrades you will encounter with MySQL then

discuss some general practices for planning and executing the upgrade. We conclude the

section with a brief discussion about reasons for performing the upgrade. We discuss the

reasons for doing an upgrade last so that you will have a better understanding of what is

involved including implied risks.

Let’s begin by looking at the types of upgrades you are likely to encounter.

�Types of Upgrades
The online MySQL reference manual and similar publications describe two basic

upgrade methods, which are strategies and procedures for how to do the upgrade. The

following is a summary of the methods.

•	 In-Place: MySQL server instances are upgraded with binaries using

the existing data dictionary. This method employs various utilities

and tools to ensure a smooth transition to the new version.

•	 Logical: The data is backed up before installing the new version over

the old installation and data is restored after the upgrade.

Although these describe two general strategies for upgrading MySQL, they don’t

cover all possible options. In fact, we will see another method in a later section. After all,

your installation is likely to be slightly different—especially if you’ve been using MySQL

for a long time or have a lot of MySQL servers configured for high availability or are using

third-party applications and components with your own applications. These factors can

make following a given, generic procedure problematic.

Chapter 10 Planning for MySQL 8 and the Document Store

493

Rather than try to expand on the upgrade methods, let’s look at it from the point of

view of a system administrator. In particular, what do we do if we have version x.y.z and

want to upgrade to a.b.c? The following sections describe upgrades based on versions.

Caution O racle only recommends upgrades of GA versions. Upgrading other
releases is not recommended and may require accepting additional time to migrate
and accepting potential incompatibilities. Upgrade non-GA releases at your own risk.

MYSQL VERSION NUMBER TERMINOLOGY

MySQL uses a 3-digit version number in the form of major, minor, and revision (odd that it

is also called the version in the documentation). This is often expressed with dot notation.

For example, version 5.7.20 defines the major version as 5, the minor version as 7, and

the revision as 20. Often, the version number is followed by text (called the suffix in the

documentation) indicating additional version history, stability, or alignment such as general

availability (GA), release candidate (RC), and so forth. For a complete explanation of the

version number in MySQL, see https://dev.mysql.com/doc/refman/8.0/en/which-

version.html.

�Revision Upgrade

The simplest form of upgrade is when upgrading when only the revision number is

changed. This is commonly referred to the Z in the X.Y.Z version number or simply

“the version of the major.minor release.” For example, version 5.7.20 is revision 20 or

version 20 of 5.7.

Upgrading at this version level is generally safe and, although not guaranteed to work

flawlessly, is low risk. However, you still should take the precaution of reading the release

notes before executing the upgrade. This is especially true if you are working with nongeneral

availability (GA) releases. If the release is not a GA release, you must pay attention to the

release notes and upgrade section in the online MySQL reference manual. Although it is rare,

sometimes there are special considerations you must plan for and overcome to achieve the

upgrade. Fortunately, Oracle does an excellent job of communicating any necessary steps

and procedures—you just need to read the documentation!

Chapter 10 Planning for MySQL 8 and the Document Store

https://dev.mysql.com/doc/refman/8.0/en/which-version.html
https://dev.mysql.com/doc/refman/8.0/en/which-version.html

494

�Minor Upgrade

The next form of upgrade is upgrading when the minor number is changed. This is

commonly referred to the Y in the X.Y.Z version number—for example, upgrading

from 5.6 to 5.7.

Upgrades are generally acceptable and documented for single digit increment of the

minor version. For example, the upgrade from 5.6 to 5.7 is supported, but an upgrade

from 5.0 to 5.7 is not directly supported. This is because there are too many differences

between the versions to make an upgrade viable (but not impossible).

Nevertheless, you can upgrade minor version changes with manageable risk if you

plan accordingly. More about managing the risk in later sections.

�Major Upgrade

The next form of upgrade is when upgrading when the major number is changed. This

category—aside from the incompatible versions—is the one with the most risk and

potentially the most likely to require more work.

Upgrades of versions at the major version are rare and only occur when Oracle has

released a new, major set of changes (hence the name) to the server. MySQL 8 server

contains many improvements over MySQL 5—most have been tremendous increases in

performance, advanced features, and stability. However, there have been a few changes

that have rendered some features in older versions incompatible.

For example, once MySQL 8.0 is released as GA, upgrading from MySQL 5.7 to MySQL 8.0

is supported but you may have to migrate certain features to complete the upgrade.

It is fortunate that Oracle has documented all the problem areas in detail with

suggestions on how to migrate to the new features. We’ve even seen this extend beyond

major versions—the MySQL Document Store is a very good example.

�Incompatible Upgrades

As you may have surmised, there are some upgrades that are not recommended either

due to lack of features to support the upgrade or major incompatibilities. For example,

you should not consider upgrading from MySQL 5.0 to MySQL 8.0. This is simply

because there is no support for some of the older 5.0 features in 8.0. Because these types

of upgrades are not common, we summarize some of the incompatible upgrades in the

following list. The subject of the incompatibility isn’t the new version to which you want

to upgrade, it is the old version that you want to upgrade.

Chapter 10 Planning for MySQL 8 and the Document Store

495

•	 Skipping major versions: Upgrading major versions may introduce

incompatible changes.

•	 Skipping minor versions: Some upgrades of minor versions may

introduce incompatible changes.

•	 Upgrading incompatible hardware: Upgrading hardware of one

endianness may not be compatible with another. For example, big-

endian to little-endian may not be compatible.

•	 Versions that change the InnoDB format: There have been some

changes where the InnoDB storage engine internals have changed.

Most have been planned for compatible minor.revision upgrades (e.g.

5.7.3 to 5.7.12), but some have required a few extra steps to prepare

the data.

•	 New features: Less frequently, there are new features introduced that

may introduce incompatibilities. For example, the data dictionary

was added rendering the .FRM metadata obsolete.

•	 Platform changes: Some upgrades that include changing platforms

may require additional work or introduce potential incompatibilities.

For example, moving from a platform without case sensitivity support

in the file system to one that does support case sensitivity.

•	 Upgrading non-GA releases: Upgrades from a non-GA to a GA, GA to

non-GA, and among non-GA releases is not recommended.

Without a doubt, the incompatibilities are dependent on certain features, hardware,

or internal storage mechanisms. In most cases, the online documentation outlines what

you can do to ensure success. Sometimes this requires following a specific upgrade path

such as first upgrading to one version before upgrading to your target version.

Chapter 10 Planning for MySQL 8 and the Document Store

496

WHAT IF I MUST UPGRADE AN INCOMPATIBLE VERSION?

If you find your upgrade strategy falls into this section listing incompatible upgrades, do not

despair. You may still be able to perform the upgrade, but it may be costlier and require more

work. For example, you could perform a logical upgrade by backing up your data using SQL

statements with mysqldump or mysqlpump, installing the new version, then working with

the SQL files to adjust them to remove any incompatibilities. Although this does introduce

considerable risk that you can still import all your data cleanly, it is still possible. If you find

yourself in this situation, be sure to spend more time on addressing risks using such strategies

as parallel installation and extended periods of testing.

Now that we have a good idea of what types of upgrades are possible, let’s look at

some best practices for performing the upgrade.

�Upgrade Practices
When upgrading any system, there are some general practices you should adhere to

or you should at least use as a guide. This section describes some of the fundamental

practices you should consider for upgrading your MySQL servers. Again, some of these

may be familiar and some may not be the one you would consider to use with upgrading

MySQL. Further, some of these are not outlined in the online MySQL reference manual.

As you will see, these practices are not necessarily sequential or even a prerequisite

for the next. For example, planning also should include time for testing. Therefore,

the practices discussed here are in a general order of importance but should not be

considered or implemented in this order.

�Check Prerequisites

The first thing you should do when upgrading MySQL is to check the documentation

for any prerequisites. Sometimes this is simply safely backing up your data, but also can

include things such as which utilities and tools you need to use to migrate certain features

(or data). Be sure you have all the prerequisites met before you being the upgrade.

Chapter 10 Planning for MySQL 8 and the Document Store

497

The upgrade documentation also will include incompatibility issues. Most often, this

occurs when upgrading major versions but sometimes this happens for minor versions. It

is fortunate that these are outlined in the online MySQL reference manual. Checking the

prerequisites also can help you by providing details you can use to plan the upgrade.

Caution T he online MySQL reference manual section on upgrading should be your
first stop, not your last when things go wrong. “Fore read” means being forewarned.

Once you’ve read through the documentation, one of the things you will want to do

as a prerequisite is to use the mysqlcheck utility to check your MySQL installation for

compatibilities. For example, one of the prerequisites for upgrading to MySQL 8 is that,

per the section entitled, “MySQL Upgrade Strategies” in the online MySQL reference

manual, “there must be no tables that use obsolete data types, obsolete functions, orphan

.frm files, InnoDB tables that use nonnative partitioning, or triggers that have a missing

or empty definer or an invalid creation context.” We can use the mysqlcheck utility to

identify any of these conditions as shown in Listing 10-1.

Listing 10-1.  Using mysqlcheck to Identify Upgrade Issues

$ mysqlcheck -u root -p --all-databases --check-upgrade

Enter password:

library_v1.authors OK

library_v1.books OK

library_v1.books_authors OK

library_v1.notes OK

library_v1.publishers OK

library_v2.books OK

library_v2.notes OK

library_v2.publishers OK

library_v3.books OK

...

mysql.user OK

sys.sys_config OK

For best results, you should use the mysqlcheck utility from the version you are

upgrading. This will ensure the utility is the most up to date and should identify more

upgrade issues.

Chapter 10 Planning for MySQL 8 and the Document Store

498

�Plan the Upgrade

Once you have all the prerequisites mapped out and have identified any features that

require special handling to solve incompatibilities, it is time to plan for upgrading your

server. This may be an obvious thing to do if you have thousands of servers, but less

obvious to those with only a few (or even one) server to upgrade.

You should resist the temptation to simply run the upgrade without planning what

you are going to do. Recall, we want to ensure the upgrade goes smoothly by reducing

(or eliminating) risk. This is much more critical for production environments, but any

potential loss of availability, performance, or data can result in loss of productivity.

You can get most of what you need to plan from the documentation, but the

documentation won’t be specific to your installation, servers, platform, and so forth.

Therefore, you must fill in those blanks and adapt the procedures suggested in the

documentation to your own installation. However, you can learn quite a lot by reading

the section, “What’s New in MySQL 8.0,” paying attention to any subsections labeled

“Ramifications for Upgrades” in the online MySQL reference manual. There you will find tips

that may help you avoid some complicated decisions, or better to avoid complex repairs.

This also includes making sure you have the right personnel on hand to do the

upgrade or to be ready to jump in case something goes wrong.1 For example, don’t forget

your developers, web administrators, and other critical roles.

The form of the plan is up to you; however, I suggest that you write what you plan to

do and share it with others. This way, everyone in the chain of ownership of the upgrade

will know what is to be done. You will be surprised how much a little communication

can do to reduce risk of things going wrong.

Caution I f you are using or plan to use a platform that supports automatic
updates and those facilities include repositories that monitor MySQL, you may
want to consider excluding MySQL from automatic updates. This is especially true
for production environments. You should never automatically update MySQL in a
production environment for any mission critical data.

1�It is always shocking for a database or web administrator to get a call (often in the middle of
the night) to fix something that has gone wrong in an upgrade—especially when they have no
knowledge that such an upgrade was planned! Yes, it does happen—far too often.

Chapter 10 Planning for MySQL 8 and the Document Store

499

�Consider Parallel Deployment

One practice that can help the most when upgrading systems that require more than a

trivial amount of work is installing the new version parallel to the existing version. This is

a practice known to software engineering and is designed to ensure the existing data and

applications remain unchanged while the new system is being installed and configured.

The new version (installation) would be considered a development platform and often

goes into production once sufficient testing of the migration is complete.

Although this isn’t an upgrade per se (it’s a new installation), having a new parallel

version of MySQL running gives considerable freedom in how to attack the migration of

your existing data and applications. After all, if something goes wrong, your data is still

operational on the old system.

This practice also provides you another benefit: you can change platforms or other

major hardware without having to risk your existing data. Therefore, if your existing

servers have hardware that is to be updated at the same time, you can use a parallel

installation to install MySQL on the new hardware thus isolating the risks with the new

hardware.

Finally, employing a parallel installation may help with scheduling and planning

your migration by ensuring the existing systems are fully capable. And, better, you can

always go back to the old system if during the migration something goes wrong.

Parallel deployment often includes keeping both systems running for some period.

The length of time may depend on the amount of risk you’re willing to take or it may be

based on how long it takes to fully switchover all your applications.

It is unfortunate that some may not have the resources available to consider parallel

deployments. As having two installations of MySQL running at the same time may place

a greater burden on developers, administrators, and support personnel. Given the

benefits of parallel development, it may be worth adding extra resources or accepting

less productivity of some personnel for a short period.

However, even this safety net is tenuous if you don’t perform enough testing.

�Test, Test, Test!

This practice, along with planning, is often overlooked or given far less importance.

Sometimes this is due to external forces such as not having the right personnel available

or failures in planning that results in no time for extensive testing. Regardless of the

excuse, failing to adequately test your upgrade increases risk beyond what most would

be willing to endure.

Chapter 10 Planning for MySQL 8 and the Document Store

500

Testing should include that you ensure all the data has been migrated, all

applications work completely, and all access (user accounts, permissions, etc.) are

functional. However, don’t stop there. You should also ensure all your operational

practices have been modified for the new version. More specific, your maintenance

scripts, procedures, and tools all work correctly with the new version.

Furthermore, your testing should result in a go/no go decision to accept the upgrade.

If things are not working or there are too many issues, you may need to decide to keep or

reject the upgrade. The parallel installation practice can help in this manner because you

don’t destroy the existing data or installation until you are certain everything is working.

Make sure that you write those criteria into your plan and to ensure success.

Tip  Be sure to test all existing operational procedures as part of your acceptance
criteria.

�Production Deployment Strategies

If you have a production and development (or test) environment, you also should

consider how to move the development or test deployments to production. If you are

using parallel installations, it may be simply switching application routers and similar

appliances and applications. If you are using in place installations, it may be more

involved. For example, you may need to plan for a period of downtime to complete the

migration.

For parallel installations, planning the downtime may be more precise and involve a

shorter period because you have more time to test things. However, for in place upgrades,

you may need to set aside a period to complete the migration. As expected, you will want

to minimize the downtime by doing as much of the migration as you can. But in the base

of MySQL, this may be nothing more than forming a plan and gathering resources. The

bottom line is, don’t forsake including production deployment in your plan.

Now that we’ve discussed upgrade practices, let’s take a moment to discuss some

reasons we may want to consider performing the upgrade, which clearly can be a very

involved process with a certain amount of risk.

Chapter 10 Planning for MySQL 8 and the Document Store

501

�Reasons for Upgrading
If you’re like most avid users of platforms or systems, you will want to upgrade to the

latest and greatest versions whenever a new one is released. Savvy administrators and

planners know there is little room in a production database environment for such

behavior. Thus, reasons for upgrading will require some genuine bang for the buck. That

is, it must be worth your while. The main driving reasons for upgrading MySQL include

the following.

•	 Features: A new feature is released that can improve your applications

or data, examples include the Document Store, Group Replication,

and InnoDB Cluster

•	 Performance: The newer version improves performance making

your applications better. For example, the latest 5.7 release is many

times faster than previous versions and MySQL 8 promises to

improve on that.

•	 Maintenance: There are new features that help you maintain the

system better. Examples include the new data dictionary, Group

Replication, and ancillary tools such as MySQL Enterprise Backup.

•	 Bug fixes: There may be defects in older versions that required

workarounds or limitations. Newer versions may contain fixes for

critical bugs so you can remove the workarounds and limitations

caused by the defect.

•	 Compliance: Your platform, standard operating procedures, or

external entities require the upgrade for compliance. For example,

you may be required to run a specific version of MySQL for

contractual agreements.

The bottom line is you must answer the question, “Why should I upgrade?” and

that answer must result in some benefit for you, your data, clients, workforce, and the

company’s future. It makes little sense to spend resources on an upgrade that has little

or no benefit, which is another reason companies often skip version upgrades. Alas,

skipping too many upgrades can make later upgrades more problematic. However, given

how much improvement MySQL 8.0 is over MySQL 5.7 and earlier, many will want to

plan to upgrade to MySQL 8.

Chapter 10 Planning for MySQL 8 and the Document Store

502

Tip F or more details about migrating to MySQL 8 including platform-specific
steps, see http://dev.mysql.com/doc/refman/8.0/en/upgrading-
from-previous-series.html.

SO, SHOULD I UPGRADE TO MYSQL 8 OR NOT?

The discussion in this section may cast some doubt on whether you should upgrade to MySQL 8.

That is not the case. In fact, this book should convince you to upgrade to MySQL 8 as soon as

you can do so in a safe, risk-free manner. Thus, in this section I suggest that you need to plan

your upgrade and execute it carefully to ensure success.

�Considerations for Upgrading to MySQL 8
There are several compatibility issues identified in the online MySQL reference manual

MySQL 8.0. The following are a few that you should be aware of when planning your

MySQL 8.0 upgrade.

•	 Data dictionary: The new metadata, transactional storage

mechanism is a major change in the architecture. If you have DevOps

that work with .frm files and other metadata, you may need to make

changes to migrate to using the data dictionary.

•	 Authentication plugin: The default authentication plugin has

changed. This may result in connection issues for those that use older

authentication mechanisms.

•	 Error codes: Some error codes have changed. If you to have

applications that use error codes, you will want to explore these

changes to avoid application errors after upgrading.

Chapter 10 Planning for MySQL 8 and the Document Store

http://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html
http://dev.mysql.com/doc/refman/8.0/en/upgrading-from-previous-series.html

503

•	 Partitioning: The default partitioning storage engine support has

been removed. If you are using a custom storage engine (or an old

one), you will need to ensure there exists an upgraded version for use

with MySQL 8.

•	 INFORMATION_SCHEMA: Minor changes to the views. If your

applications or devops use these views, be sure to check to see if any

of the views you are using have been removed or changed.

•	 SQL commands: There are some new and obsolete SQL commands.

Be sure to check your SQL statements to see if you are using some of

the older, removed commands.

•	 Default charset: The default character set (charset) has been changed

to utf8mb4. If you have character set support in your applications,

you may need to test with the new default to ensure compatibility.

Once again, be sure to read the online MySQL reference manual section, “Verifying

Upgrade Prerequisites for Your MySQL 5.7 Installation” and the section, “Changes

Affecting Upgrades to MySQL 8.0” for the most up-to-date information about these and

other prerequisites and migration tasks needed to upgrade to MySQL 8.0.

Another excellent resource is the engineering blogs at https://mysqlserverteam.

com/. These blogs often discuss new features before they are released as GA and are a

fount of knowledge about how the feature works as well as any upgrade issues that the

engineering team has identified or are working to overcome. Watching the blogs will give

an excellent early warning of changes.

Tip  See the engineering blogs at https://mysqlserverteam.com/ for early
announcements about new features and how to work with them.

Now that we’ve discussed upgrading MySQL in general and some specifics about

upgrading to MySQL 8.0, let’s discuss a very important development concept you should

spend some time to understand before adopting the MySQL Document Store fully.

Chapter 10 Planning for MySQL 8 and the Document Store

https://mysqlserverteam.com/
https://mysqlserverteam.com/
https://mysqlserverteam.com/

504

�Migrating to Schemaless Documents
What does schemaless mean? It simply means that we don’t restrict our data storage to

rigid formats with specific fields with a give type. The key factor to remember in adopting

a schemaless mindset is play to the strengths of JSON documents: the ability to store

only the data needed including the ability to add document elements where needed and

keep all meaningful data together. This is also known as flexibility and is the cornerstone

of designed schemaless documents.

For example, if a developer finds a new field must be added, it can. Or, if the

developer discovers embedding information results in faster, easier code, the decision

is one of weighing benefits of the application and the user experience rather than strict

data storage rules.

Flexibility has another angle. Relational databases are typically designed using the

same set of rules and tools. So much so that what applies to one database will show up

in another. In schemaless designs, having data in separate collections or embedded are

largely made based on how the data will be used and thus can vary from one application

to another.

However, you should not conclude from this that developers have a free ride and can

run amuck whenever they choose. Rather, you should consider flexibility a tool that you

can use if warranted after due process to evaluate the change.

Another benefit of the schemaless mindset is the ability to scale the data without

retrofitting. For example, if our applications gain more features resulting in more data

in the documents, there is no need to go back and force older documents into a new

structure. We simply scale the document as the application features mature. If we do

need to go back and add data to the old documents, it’s a simple coding affair.

Although reducing unnecessary complexity and ambiguities should be goals in any

data store design, a schemaless mindset should be more willing to accept responsibility

of the tradeoffs and to work to minimize their impact rather than adhering to a set of

fixed rules.

Thus, the schemaless mindset should be one of flexibility and scalability where we

emphasize these qualities over data structure and conformity. Remember, we’re striving

to keep the data together to reduce the number of times it must be retrieved.

The following sections identify some of the areas you may need to consider thinking

about when adopting a schemaless mindset

Chapter 10 Planning for MySQL 8 and the Document Store

505

�Normalization vs. Denormalization
One of the most fundamental mindset challenges is recognizing the difference between

normalization and denormalization. In basic terms, normalization is a goal that

relational database designers strive to reduce the amount of data stored without the

possibility of duplication or ambiguity. Denormalization is a goal for document store

designers to strive to make the data as local as possible by describing an entity in its

fullest with duplication a much lower concern.

In a schemaless world, we use denormalization to remove the need for joins thereby

possibly increasing performance. However, it doesn’t end there. The goal is to make

the data models store data that is used as a unit. In other words, the document should

contain all the data pertinent.

In some cases, this may result in embedding data in the document that would

normally be stored in a separate collection (or table). Denormalizing the data therefore

may introduce some duplication. For example, we saw this in the last chapter where

we stored the author name in the book document. In this case, the author names were

indeed duplicated among books that had the same authors. However, the way the data is

used—to view bibliography information—meant there was no practical need to search or

perform queries on the author data. By simply listing authors was all that was need. Thus,

the cost of retrieving the normalized author data was an artificial application of fixed rules.

When approaching the question of normalization or denormalization, take some

time to analyze your data not only from the standpoint of how it is organized but also

in how it is used. Sometimes you may find your reasons for isolating data may not be

important. For example, if there is no need to have a child table and some duplication is

acceptable, you can embed the information in one or more JSON fields thereby applying

enough denormalization to get the benefits of having the data in one place (retrieved

with one pass).

�Formal Rules vs. Heuristics
Another area to consider working on is how data storage is designed or, more

appropriately, what mechanisms are used to drive the development. In the relational

database world, we have a set of rules we use (e.g., unyielding and sometimes

Chapter 10 Planning for MySQL 8 and the Document Store

506

unforgiving2 rules called normal forms) that guide designers to achieve the least

redundant, most accurate retrieval solution possible. In the schemaless world, we use

heuristics or rules of thumb when designing the data storage to achieve the storage that

best optimizes describing the things we’re modeling and to make the data accessible.

The difference is not in how the data is designed so much as how the data is

revealed. In the relational database world, the data store is designed largely by how to

store it whereas in the schemaless world, the documents are designed based on how it

will be used and how the users will view the data.

Therefore, we can predict reasonably well how a relational database will be accessed

and how to form the queries (often in advance of the application) and with the right

tools even how the queries will perform. However, in a schemaless solution, we cannot

tell by examining the document how it will perform. We must test it with the application

to learn how to access it more effectively. Sometimes, this can result in making minor

changes, which can be in the code or in the document itself. It is fortunate that the

process in which to make the modifications is much easier than in a relational database.

Thus, in the schemaless world we must adapt a more change friendly attitude.

This is one of the things that sets the two apart. For example, in a relational

database, when we need to change a table (or set of tables), we often must plan well in

advance as changing the strict schema often forces application developers to change

their applications. On the other hand, changing a document doesn’t require a lengthy

retooling effort. In fact, developers can simply add the new data item in code never

stressing the database administrator. Let’s look at an example.

Consider a solution where we are storing addresses. We all know what they look

like—street1, street2, city, state, and zip code. But what if you had to make your database

available for international data? Now, we’re looking at the possibility of adding a country

name at the very least if not additional fields for country-specific addresses. Without

a doubt, this would require modifying the table (as well as the code). Now, consider a

document that stores addresses. If we need new fields, we just add them in code and

write the code to detect the new fields.

2�Watch out for the normal form zealots! Their whole world revolves around reaching a Zen-like
state of fifth normal form. It is sad that they will likely miss the point of denormalization.

Chapter 10 Planning for MySQL 8 and the Document Store

507

�View Data as Code

One of the hardest concepts about schemaless designs for those who have worked

with relational databases is that the data (document) should (can) be viewed as code.

Consider the JSON structure—it’s code! Thus, thinking about your data as part of your

code will help you design better documents.

For example, if you know your document contains elements that are lists, and you

need to iterate over the items in those lists, code to do this is typically some form of loop

or iterator mechanism such as a for each or for X in Y construct. Thus, you can view

the document has having data that is used in those looping constructs. Yes, this is akin

to thinking in result sets (arrays of rows), but in this case, we’re much closer to the real

code. In fact, due to the uniqueness of how JSON works, we can write code to reference

the elements of the document rather than an abstraction layer as we see in result set

processing. That is, we access the field by name rather than asking a library to give us

the “nth” field. This results in code that is easier to read and is described by the data

(and vice-versa).

�Take Storage for Granted
This may sound a little odd, but the storage mechanism—placing a document in the

document store—can largely be ignored by schemaless designers and code developers.

For instance, we aren’t concerned about table rows, fields, and so forth. The schema is

flexible, and the focus is on collecting documents.

The APIs for document stores in general and the X DevAPI make these operations

ubiquitous thereby freeing the designers and developers to focus on how the document

is used rather than how it is stored.

As expected, there are cases where we want to ensure we’re not over denormalizing

and in those cases, we will need to think logically about how to organize the data in

collections, but this too is a higher level and not directly liked to storage mechanisms.

�Embed or Separate?
Knowing when to embed data is one of the skills you will learn as you design more

schemaless documents. However, there are some general rules to follow to help answer

the question “to embed or not?” The following lists a few conditions under which you

may need to decide to embed or separate the data.

Chapter 10 Planning for MySQL 8 and the Document Store

508

•	 Integrity: The embedded data applies only to this document. It is

not used elsewhere and is seldom changed (or viewed) without

the document. If it can be used in other documents and changes

must apply to all references or it is a separate entity, it should not be

embedded.

•	 Limited growth: The embedded data is not likely to grow in length.

For example, if the embedded data is an array, the size of the array

(number of items) will remain small (or few). If there is a chance

to grow beyond a reasonable size, it should be made a separate

collection.

•	 Containership: If a relationship exists where one document contains

another document and the documents are only accessed as a set, you

may want to embed. However, if the documents can be accessed or

changed separately (and it makes sense to do so), you may want to

consider not to embed the document.

•	 Frequency of edits: If there is data in a document that is seldom

changed, you can embed it. However, if the data can change

frequently either from another access point (view) or mechanism in

the application that does not use the original document; you may

want to consider moving the data to its own collection.

•	 Links: If the data you want to embed is only ever referenced

infrequently from one document, you can consider embedding it.

However, if it is referenced by more than one document and the data

must be the same for all references, you should place the linked data

in its own collection.

�Strategies for Migrating to a Document Store
Now that we have a better understanding of a schemaless mindset, let us review some

strategies you can employ for migrating existing relational database to a document store.

This section reinforces the lessons learned thus far in the book using another example of

migrating to a document store.

As we saw in Chapter 9, we do not have to migrate all our database and data in one

go—although you can do that if you have the resources, time, and sufficient needs.

Chapter 10 Planning for MySQL 8 and the Document Store

509

However, most will want to migrate slowly to a document store. In may also be the case

that a pure document store may not meet your needs or may be too costly making a

migration a longer-term goal.

Let’s use a commonly known database solution for a contact list. Here, we are storing

names, addresses, and phone numbers. A typical relational database solution for a

contact list would group all the data in a single database with one-to-many relationships

for addresses, phone numbers, email addresses, and so forth. This because we know

each contact will have one or more of these data items. Figure 10-1 shows an entity

relationship diagram (ERD) for such a relational database design.

First, note this database design is not completely normalized. For example, it is

possible that a contact list could include two or more people who have the same work

or home address as well as the same phone number. Without a doubt, we could make

many-to-many relationships but that is taking normalization too far. More specific, we

do not store addresses and phone numbers separately from the contact data—it doesn’t

make any sense to use the data in that way.

Figure 10-1.  Contact list (relational database)

Chapter 10 Planning for MySQL 8 and the Document Store

510

Second, note that the database does support storing multiple email, address, and

phone numbers for each contact. That is, there exists a one-to-many relationship

among the contacts table and email_addresses, addresses, and phones tables. We will

use the database name contact_list1 so that we can migrate this to other forms for

comparison.

In this example, there are foreign key constraints as well as primary keys on all the

tables. Listing 10-2 shows the SQL statements for the tables in the database.

Listing 10-2.  Contact List Relational Database

CREATE DATABASE IF NOT EXISTS `contact_list1`;

CREATE TABLE `contact_list1`.`contacts` (

 `contact_id` int(11) NOT NULL AUTO_INCREMENT,

 `first` char(30) DEFAULT NULL,

 `last` char(30) DEFAULT NULL,

 PRIMARY KEY (`contact_id`),

 KEY `contact_id` (`contact_id`),

 �CONSTRAINT `email_addresses_ibfk_1` FOREIGN KEY (`contact_id`)

REFERENCES `contacts` (`contact_id`)

) ENGINE=InnoDB;

CREATE TABLE `contact_list1`.`addresses` (

 `addr_id` int(11) NOT NULL AUTO_INCREMENT,

 `contact_id` int(11) NOT NULL,

 `address_type` ENUM('work', 'home', 'other') DEFAULT 'home',

 `street1` char(100) DEFAULT NULL,

 `street2` char(100) DEFAULT NULL,

 `city` char(30) DEFAULT NULL,

 `state` char(30) DEFAULT NULL,

 `zip` char(10) DEFAULT NULL,

 PRIMARY KEY (`addr_id`,`contact_id`),

 KEY `contact_id` (`contact_id`),

 �CONSTRAINT `addresses_ibfk_1` FOREIGN KEY (`contact_id`) REFERENCES

`contacts` (`contact_id`)

) ENGINE=InnoDB;

Chapter 10 Planning for MySQL 8 and the Document Store

511

CREATE TABLE `contact_list1`.`email_addresses` (

 `email_id` int(11) NOT NULL AUTO_INCREMENT,

 `contact_id` int(11) NOT NULL,

 `email_address` char(64) DEFAULT NULL,

 PRIMARY KEY (`email_id`,`contact_id`)

) ENGINE=InnoDB;

CREATE TABLE `contact_list1`.`phones` (

 `phone_id` int(11) NOT NULL AUTO_INCREMENT,

 `contact_id` int(11) NOT NULL,

 `phone` char(30) DEFAULT NULL,

 PRIMARY KEY (`phone_id`,`contact_id`),

 KEY `contact_id` (`contact_id`),

 CONSTRAINT `phones_ibfk_1` FOREIGN KEY (`contact_id`) REFERENCES

`contacts` (`contact_id`)

) ENGINE=InnoDB;

Note  Savvy database designers will note the phone number field is denormalized
too far. Can you spot the issue?3

Now that we have seen the database design, let’s consider some things that a

document store designer would notice and want to change. That is, let’s look at

this design a bit more critically. Note that for any contact we want to view, we have

potentially up to three additional queries to retrieve all the data. This is because we have

broken out the phone, email, and address into separate tables. We could issue a single

join query to get all the data, but that will result in extra data (unless you use an outer

join or similar tricks).

To keep things simple, let’s stick with the one query per dependent table. Even so,

that gives us a total of four queries to execute to retrieve all the data for a given contact.

Listing 10-3 shows the queries we would need to execute to get the data for a contact

named ‘Bill Smith’.

3�Hint: What if you need to find all contacts that live in a certain area code? How would you write
the query?

Chapter 10 Planning for MySQL 8 and the Document Store

512

Listing 10-3.  Queries to Retrieve a Contact (Relational Database)

MySQL localhost:33060+ SQL > SELECT * FROM contact_list1.contacts WHERE

first = 'Bill' AND last = 'Smith';

+------------+-------+-------+

| contact_id | first | last |

+------------+-------+-------+

| 1 | Bill | Smith |

+------------+-------+-------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ SQL > SELECT * FROM contact_list1.addresses WHERE

contact_id = 1;

+---------+------------+--------------+-----------------+---------+

----------+-------+-------+

| addr_id | contact_id | address_type | street1 | street2 |

city | state | zip |

+---------+------------+--------------+-----------------+---------+

----------+-------+-------+

| 1 | 1 | home | 123 Main Street | NULL |

Anywhere | VT | 12388 |

+---------+------------+--------------+-----------------+---------+

----------+-------+-------+

1 row in set (0.00 sec)

 MySQL localhost:33060+ SQL > SELECT * FROM contact_list1.email_addresses

WHERE contact_id = 1;

+----------+------------+----------------------------+

| email_id | contact_id | email_address |

+----------+------------+----------------------------+

| 1 | 1 | bill@smithmanufacturing.co |

| 2 | 1 | bill.smith@gomail.com |

+----------+------------+----------------------------+

2 rows in set (0.00 sec)

Chapter 10 Planning for MySQL 8 and the Document Store

513

 MySQL localhost:33060+ SQL > SELECT * FROM contact_list1.phones WHERE

contact_id = 1;

+----------+------------+----------------+

| phone_id | contact_id | phone |

+----------+------------+----------------+

| 1 | 1 | (301) 555-1212 |

+----------+------------+----------------+

1 row in set (0.00 sec)

As you can see, this involves several trips to the database server to get the data. If

your application is designed to use tabs or some other user interface mechanism to hide

the phone, address, and emails until the user clicks to reveal the information, having four

queries might be okay and might save you some effort. However, almost every contact

list solution includes name, address, and phone number. So, we’re not saving much in

the general terms of round trips to the database.

Note also it requires us to keep track of the contact_id passing to each of the three

dependent queries. A good relational database designer would say, “so what?” at these

observations. However, the schemaless mindset tells us to try to minimize joins and to

keep all the data together. Let’s see how we can apply a schemaless mindset to migrate

the database to a hybrid solution keeping the base table but incorporating JSON fields.

Note I don’t go into how to create, update, and delete operations because these
are very familiar in relational database systems.

�Migrating to a Hybrid Solution

Removing joins is a good strategy for improving performance in retrieving data. It also

plays to one of the standards of schemaless design; keep the data together. Both are

strategies that fall under denormalizing the data. The example contact list database in

the last section was normalized to include four tables: one for the contact name, and one

each to contain all the addresses, phone numbers, and email addresses.

The goal wasn't to make the separate tables searchable or even accessible and

presented on their own. After all, what use would anyone have to see a list of phone

numbers without any connection to the owner? Rather, the normalization was meant to

keep like data together and remove duplication.

Chapter 10 Planning for MySQL 8 and the Document Store

514

For example, it is possible if you know several people who work at the same place

that their work address and phone numbers will be the same. Likewise, members of

the same family may have the same address and phone numbers.4 Normalization then

results in a main table with three dependent tables in a one-to-many relationship.

However, if you consider that we will seldom need to query the phone number, email

address, or address table separately and that the data in those tables is associated with

a contact and that it only makes sense to view the data as a set, we can denormalize the

data by embedding it in the contact data.

We can do this easily by simply adding three fields to the contacts table using JSON

fields to embed the data and still maintain the structure. Recall, we can use a JSON

document in code and thus all the field names from the original tables can be used. When

you do it this way, migrating the code is easier because you will be referring to the same

data names. The following shows a redesign of the database to use a hybrid solution.

CREATE DATABASE IF NOT EXISTS `contact_list2`;

CREATE TABLE `contact_list2`.`contacts` (

 `contact_id` int(11) NOT NULL AUTO_INCREMENT,

 `first` char(30) DEFAULT NULL,

 `last` char(30) DEFAULT NULL,

 `addresses` json DEFAULT NULL,

 `email_addresses` json DEFAULT NULL,

 `phones` json DEFAULT NULL,

 PRIMARY KEY (`contact_id`)

) ENGINE=InnoDB;

Here, we eliminated the three tables by adding the relations as JSON arrays. But

wait, how do we format those JSON documents? Isn’t that going to be a problem? No,

not really. To migrate to a hybrid solution you would carry over the field names from the

embedded data using them as keys in the JSON document.

4�It is not unusual to encounter two or more generations (or members there of) living in the same
home. With the rising costs of medical and long-term care, this can only become more prevalent.

Chapter 10 Planning for MySQL 8 and the Document Store

515

We can also improve the data for the phone numbers by adding keys to reference

the area code, exchange, and phone number. Better, if we later find that we need to add

a country code value, we can do so for those contacts that require them. Remember, the

beauty of JSON documents is that they are mutable and you can add or leave out fields

as needed. The only catch is your code must be written to expect the omissions and new

fields. Thus, there is no reason to retool your data to add a country code to new contacts.

The following shows how this is done for the create operation using the same contact

shown in the last section.

INSERT INTO contact_list2.contacts VALUES(

 NULL, 'Bill', 'Smith',

 �'{"addresses":[{“address_type”:”home”, "street1":"123 Main Street",

"street2":"","city":"Anywhere","state":"VT","zip":12388}]}',

 �'{"email_addresses":["bill@smithmanufacturing.co","bill.smith@gomail.

com"]}',

 '{"phones":[{"area_code":301,"exchange":555,"number":1212}]}'

);

This results in an interesting row returned from a SELECT query. We see the result in

the following.

MySQL localhost:33060+ SQL > SELECT * FROM contact_list2.contacts WHERE

first = 'Bill' AND last = 'Smith' \G

*************************** 1. row ***************************

 contact_id: 1

 first: Bill

 last: Smith

 �addresses: {"addresses": [{"zip": 12388, "city": "Anywhere", "state":

"VT", "street1": "123 Main Street", "street2": "", "address_type":

"home"}]}

email_addresses: {"email_addresses": ["bill@smithmanufacturing.co", "bill.

smith@gomail.com"]}

 �phones: {"phones": [{"number": 1212, "exchange": 555, "area_code":

301}]}

1 row in set (0.00 sec)

Here, see that we’ve used the same names as the fields in the original tables.

Accessing the data is made easier as we can migrate our code from looking for columns

Chapter 10 Planning for MySQL 8 and the Document Store

516

in row objects to using the field names directly in code. For example, to display the

embedded lists of addresses, phones, and emails, we can use loops. Listing 10-4 shows

an example script to do this.

Listing 10-4.  Sample Read Operation for Contact List (Hybrid)

import mysqlx

from json import JSONDecoder

GET_BILL = """

SELECT * FROM contact_list2.contacts

WHERE last = 'Smith' AND first = 'Bill'

"""

Connect to database

session = mysqlx.get_session("root:password@localhost:33060")

Read the row

row = session.sql(GET_BILL).execute().fetch_one()

Convert JSON strings to Python dictionaries

addresses = JSONDecoder().decode(row["addresses"])["addresses"]

phones = JSONDecoder().decode(row["phones"])["phones"]

email_addresses = JSONDecoder().decode(row["email_addresses"])

["email_addresses"]

Display the data

print("Contact List (Hybrid)")

print("---------------------")

print("Name: {0} {1}".format(row["first"],row["last"]))

print("\nAddresses:")

for address in addresses:

 print("\t({0})".format(address["address_type"].upper()))

 print("\t{0}".format(address["street1"]))

 if address["street2"]:

 print("\t{0}".format(address["street2"]))

 print("\t{0}, {1} {2}".format(address["city"],

 address["state"],

 address["zip"]))

Chapter 10 Planning for MySQL 8 and the Document Store

517

print("\nPhones:")

for phone in phones:

 print("\t({0}) {1}-{2}".format(phone["area_code"],

 phone["exchange"],

 phone["number"]))

print("\neMail Addresses:")

for email in email_addresses:

 print("\t{0}".format(email))

print("")

Note that the code reads well and we can see exactly which data we’re accessing

in the loops. However, there is some duplication when converting the JSON strings to

Python dictionaries. This is because we have a field in the table and a key in the JSON

string with the same name. For example, there is an addresses field and the key in the

JSON document is addresses. This might look a little odd, but it is precisely how you

would access the JSON document in the fields. Some may want to rename the field or

JSON key to make it a bit less ambiguous.

The following shows this code executing. Note the output does resemble how you

would expect to see the data by reading the code. The use of tabs (\t) is helpful for

printing strings to a console.

$ python ./hybrid_read.py

Contact List (Hybrid)

Name: Bill Smith

Addresses:

 (HOME)

 123 Main Street

 Anywhere, VT 12388

Phones:

 (301) 555-1212

eMail Addresses:

 bill@smithmanufacturing.co

 bill.smith@gomail.com

Chapter 10 Planning for MySQL 8 and the Document Store

518

This solution is better and does solve the issue of removing joins and keeping the

data together, but what if we need to store a surname, suffix, title, or if there are contacts

with more than two names? Likewise, what if you found you needed to find all contacts

that live or work in a certain area code? The data is there, but because the phone number

is a single string, it’s harder to search for the data (but not impossible).

We can solve this problem (and similar issues) by simply altering the table to break

out the data into separate fields. That will work and that is what most developers will

do. However, what do you do with any existing data? Do you go back and reformat using

special tools you create yourself? You don’t have any choice and if there is a lot of data,

the conversion can be painful and time consuming.

Sadly, hybrid solutions with relational parts (table, fields) are still fixed and thus

hybrid solutions are not immune to changes. What we need is to achieve mutability—to

be able to change the structure whenever we need to do so without having to retool. If

you’re thinking, “there’s got to be a better way,” you are correct—there is. Let’s see how to

overcome these issues by converting the database to a pure document store.

�Converting to a Document Store

Perhaps the best attribute of document store solutions is mutability. That, along with

the “data as code” concept makes working with document stores so much easier than

relational databases. Although we saw some improvements in a hybrid solution for the

contacts database, we are not quite to the point where mutability is possible.

To be specific, we still have fixed fields in the hybrid solution. If these fields were the

complete set (for all time), we might be satisfied with a hybrid solution. But if you work

in an international setting, you will find that storing first and last names are far too casual

and, in some cases, insufficient.

For example, Geraldo Jose Miguel Gomez. What do you do with such a name? Split

the name arbitrarily placing the parts in the two fields? What if the individual uses

Miguel as his first name? Now, your database will list his name as “Miguel”, “Geraldo Jose

Gomez”, which is not correct. Furthermore, if you do split the name in such a manner,

any queries on first name or last name for that matter are subject to incorrect results or at

least additional parsing after the query to sort out these anomalies.

If we used a document store, we can add whatever fields we need. We just need to

keep our code and data synchronized. That is, when we add new fields, we must also

add code in our CRUD operations to compensate. For example, adding a nickname field

Chapter 10 Planning for MySQL 8 and the Document Store

519

to the document is easy, but the code that reads the data and displays it must allow for

working with the nickname. Best of all, we can add the change and don’t have to rework

any existing data.

This, then, is the goal: to make your data schemaless and integrated tightly with the

code. Once you adopt this mindset, you will find the stigma of normalization easy to cast

off. Although that doesn’t mean all schemaless solutions will outperform their relational

counterparts (unlikely in fact), it does mean you can make the data work for you instead

of against you. Developers especially will appreciate the freedom.

As we learned in Chapter 9 and earlier in the book, we can create a collection easily

in code. Recall, this includes connecting to the server, getting a schema object instance,

and creating the collection. We can then create, read, update, or delete documents in the

collection. Figure 10-2 shows a snapshot of using the MySQL Shell to create the schema

and collection for the contact list. We also add the row we’ve been using as an example.

Figure 10-2.  Creating a document store

Chapter 10 Planning for MySQL 8 and the Document Store

520

Here, we see we have migrated our rigid relational database model to a mutable

JSON document with embedded data that keeps all the data together for each contact.

Now, let’s look at the code to perform a read operation on the document store.

Listing 10-5 shows the code to read the document from the collection and print it to the

console.

Listing 10-5.  Sample Read Operation for Contact List (Document Store)

import mysqlx

Connect to server

session = mysqlx.get_session("root:password@localhost:33060")

Get the schema

schema = session.get_schema("contact_list3")

Get the collection

contacts = schema.get_collection("contacts")

Read the row

row = contacts.find("first = '{0}' and last = '{1}'".format('Bill',

 'Smith')).execute()

contact = row.fetch_one()

addresses = contact["addresses"]

phones = contact["phones"]

email_addresses = contact["email_addresses"]

Display the data

print("Contact List (DocStore)")

print("-----------------------")

suffix = ""

if "suffix" in contact.keys():

 suffix = ", {0}".format(contact["suffix"])

print("Name: {0} {1}{2}".format(contact["first"],contact["last"],suffix))

if "title" in contact.keys():

 print("Title: {0}".format(contact["title"]))

print("\nAddresses:")

for address in addresses:

Chapter 10 Planning for MySQL 8 and the Document Store

521

 print("\t({0})".format(address["address_type"].upper()))

 print("\t{0}".format(address["street1"]))

 if "street2" in address.keys():

 print("\t{0}".format(address["street2"]))

 print("\t{0}, {1} {2}".format(address["city"],

 address["state"],

 address["zip"]))

print("\nPhones:")

for phone in phones:

 print("\t({0}) {1}-{2}".format(phone["area_code"],

 phone["exchange"],

 phone["number"]))

print("\neMail Addresses:")

for email in email_addresses:

 print("\t{0}".format(email))

print("")

Note that the code is very similar to the hybrid solution. In fact, the print sections

are the same. The difference is seen early on when retrieving the data. In this case, we

can retrieve the document and then store the addresses, phones, and email addresses as

dictionaries, which makes the code even easier to read. Very nice!

The following shows the code executing. As you can see, the output is the same as

the hybrid solution.

$ python ./docstore_read.py

Contact List (DocStore)

Name: Bill Smith, Jr

Title: Salesman

Addresses:

 (HOME)

 123 Main Street

 Anywhere, VT 12388

Phones:

 (301) 555-1212

Chapter 10 Planning for MySQL 8 and the Document Store

522

eMail Addresses:

 bill@smithmanufacturing.co

 bill.smith@gomail.com

Now that we’ve discussed what a schemaless mindset is, let’s review some tips and

tricks for working with the MySQL Document Store.

�Document Store Tips and Tricks
The following contain several best practices for planning, developing, and managing

applications using MySQL Document Store. Some may seem intuitive whereas others

may simply remind you to do those things we all know we should do but sometimes short

cut for brevity. They are presented in a bulleted list and are intended to be a resource you

can use to refer to periodically at the start of a migration or development effort.

•	 Minimize joins: Joins can be expensive. Reducing how many places

you need to join data can help speed up your queries. Removing joins

may result in some level of denormalization but can result in faster

access to the data.

•	 Plan for mutability: Schemaless designs are focused on mutability.

Build your applications with the ability to modify the document as

needed (and within reason).

•	 Remove many-to-many relationships: Use embedded arrays and

lists to store relationships among documents. This can be as simple

as embedding the data in the document or embedding an array of

document ids in the document. In the first case, the data is available

as soon as you read the document and in the second, it takes only

one additional step to retrieve the data. In cases of seldom read

(used) relationships, having the data linked with an array of ids can

be more efficient (less data to read on the first pass).

•	 Avoid over denormalizing: It is possible to take denormalization

too far. If you denormalize your data by embedding things in your

document at the expense of duplication, you may at some point

discover you need to change the duplicated data. If this happens,

you’ve crossed the line and now your data update nightmares

Chapter 10 Planning for MySQL 8 and the Document Store

523

commence. Thus, whenever you denormalize always consider how

(or if) the data will be updated. If it can be updated in isolation (say

only for one or more documents) and those changes do not need

to exist in other documents, your denormalization should be fine.

However, if you think even for a moment that you will need to update

all occurrences of the embedded data, you must consider moving

the data to another collection and using embedded lists to link the

documents by id.

•	 Know your data: This may sound obvious, but you must understand

the data you are using in your design. Not just what it can (or must)

contain, but also how it will be used. Often, relational database

designers are only concerned about the ability to retrieve any part

of data at the expense of how the data is used. Thus, in the relational

database world we often find ourselves optimizing queries after

the application and data are designed. In the schemaless world, we

must focus on how the data will be used from the start so that we

can store the pertinent data together in a single or sometimes linked

document. Knowing how your data will be used in the application

can make a difference to how you form your document. It also can

help you determine how to write the code to retrieve the data before

you start to write the code.

•	 Avoid large documents: Storing all the data in a single document is

indeed one of the goals of schemaless design, but this too must be

used with some judgment behind it. If your document ends up being

very large, you could encounter performance problems trying to

retrieve more than a single document (say for a list or to perform an

operation over a set of documents). Thus, you should consider what

parts of the document are used and when. You may find that you

can split your document into several smaller documents (each in

their own collection). This way, you can optimize retrieval for most

of operations retrieving the less frequently used data only when you

need it.

Chapter 10 Planning for MySQL 8 and the Document Store

524

•	 Use JSON columns for embedding data in tables: If you want to

improve your existing relational database by reducing the number of

joins, you can use a JSON field to embed the data. For example, use a

JSON field to collapse many-to-many join tables by storing an array

of pointers (keys) to the dependent table. One obvious candidate is

the text of BLOB fields that have encoded data.

�Summary
The MySQL Document Store and the latest incarnation of the server, MySQL 8, represent

a huge leap forward in functionality, reliability, and availability. Best of all, MySQL 8

doesn’t force you into a new paradigm. The NoSQL option via the X DevAPI perfectly

complements the advanced clustering and availability of NDB Cluster. But unlike NDB

Cluster, you can use your existing MySQL servers.5

What this means is you don’t have to learn and completely retool your infrastructure

and applications to use the newest features. What we saw in this book and in practice

in Chapter 9 is that you can choose to use MySQL 8 as a traditional relational database

store, migrate your applications to a hybrid of relational data with one or more JSON

fields, or completely rethink your data by migrating to a pure Document Store solution.

In fact, MySQL makes it easy to migrate your applications because the X DevAPI

supports both an SQL and NoSQL interface. Thus, the first step is to migrate to the

X DevAPI for all your SQL interface-based applications then you have the option of

migrating those to a hybrid or pure document store solution.

This is an exciting time for MySQL users. Oracle continues to keep it's promise to

not only continue developing MySQL but also pouring resources into improving and

expanding the feature set. Keep a close watch on more excellent features and further

refinement and updates. MySQL 8 is here and now is the time to jump on board. Look for

more titles from Apress on MySQL 8!

5�NDB Cluster requires several servers with the NDB Cluster server installed. See the NDB Cluster
section in the online MySQL reference manual for more details.

Chapter 10 Planning for MySQL 8 and the Document Store

525
© Charles Bell 2018
C. Bell, Introducing the MySQL 8 Document Store, https://doi.org/10.1007/978-1-4842-2725-1

Index

A
Application programming interface

(API), 76
Author template, 388
Author view function, 384
Auto increment, 56

B
Book template, 390–391
Bootstrap navigation bar, 358

C
Cascading style sheets (CSS), 348
Create, read, update, and delete (CRUD)

model
collection class

add() method, 197
Document Store Data, 199–204
find() method, 197
FindStatement class, 206–207
FindStatement object, 196
methods, 195
Python script, 196
searching documents, 205–206
utility methods, 195

document store and relational
data, 191, 219, 220

operations, 332

schema class methods, 192–194
table class

ClassicSession class, 218
CREATE TABLE statement, 209, 211
creation, 209
insert() method, 211
methods, 208
relational data, 211–217
SQL INSERT statement, 211

Cross-site request forgery (CSRF)
protection, 353

D
Database administrators (DBAs), 18
Data definition language (DDL), 38
Data manipulation language (DML), 38
Development milestone release (DMR), 42
Document store implementations

application code
book view function, 480
form classes, 478–479
setup and initialization, 478

books class
class declaration, 465
coding, 471
create() function, 466
delete() function, 469
read() function, 467
update function, 467–469
utility functions, 469–470

https://doi.org/10.1007/978-1-4842-2725-1

526

code execution, 486–488
database design, 462–463
observations, 489
templates, 484–486
tips and tricks, 522–524

E
Error handlers, 368–369
Extensible Markup Language (XML), 75

F
Flask-Bootstrap, 348
Flask-Script, 345–347
Flask web application

cookies, 371
decorator, 343
error handlers

application (500) errors, 369
not found (404) errors, 369

extensible library, 342
Flask-Bootstrap, 348
Flask-Script, 345–347
HTML files, templates

publisher form class, 366
publisher HTML file, 367–368
publisher view function, 366

Jinja2 templates, 355
message flashing, 353–354
redirect() function, 370–371
render_template() function, 354
and request context, 371
sample application template, 372–374
template language constructs

blocks, 362
comments, 360
conditionals, 363–364

extend (inherit), 362
import, 361
include, 360
loops, 362–363
macros, 361
variables and variable

filters, 364–365
terminology, 343–345
WTF extension

CSRF protection, 353
form classes, 349–351

WTForms, 349
Form classes

author form, 380
book form, 381–384
list form, 384
publisher form, 381

G, H
get_books() function, 470
GNU Public License (GPL), 38

I
InnoDB Cluster

addInstance() method, 28
createCluster() method, 28
deploySandboxInstance() method, 26
fault tolerance demonstration, 32–33
Group Replication, 25, 30
JavaScript/Python, 26
Local Server Instances, 26–27
MySQL Router, 25
MySQL Shell and Admin API, 25
recovering, lost server, 33
sandbox, 27
setting up, MySQL Router, 31
status() method, 29, 30

Document store implementations (cont.)

Index

527

J, K
JavaScript Object Notation (JSON)

documents
ALTER TABLE statements, 128
API, 76
character field, 127
CREATE TABLE statement, 83, 128
creation

JSON_ARRAYAGG() function, 97
JSON_ARRAY_APPEND

function, 98, 102
JSON_ARRAY_INSERT()

function, 99, 101
JSON_MERGE_PATCH

function, 101
JSON_MERGE_PRESERVE

function, 101
data search

JSON_CONTAINS()
function, 106–107

JSON_CONTAINS_PATH()
function, 108–110, 113–115

JSON_EXTRACT()
function, 111–113

JSON_SEARCH() function, 113
data type, 79
document store, 78
format rules, 79–80
generated columns, 126
INSERT and UPDATE statements, 81
JSON_ARRAY() function, 84
JSON_EXTRACT() function, 128
JSON_OBJECT() function, 84
JSON_TYPE() function, 85
JSON_UNQUOTE()

function, 131, 132
JSON_VALID() function, 81
key, value mechanisms, 74–75

modification
JSON_REMOVE()

function, 102–103
JSON_REPLACE() function, 104
JSON_SET() function, 104, 105

MySQL client, 76
NoSQL document store

mechanism, 73
NoSQL interface, 77
path expressions

arrays, 88
array subscript, 87
element, 87
inline path expression, 89
inline path operator, 90
JSON_EXTRACT()

function, 86, 89, 93
MySQL, 94–95
recorded_data values, 90
selectors, 88
X DevAPI classes, 86

SELECT statement, 132
SQL statements, 82–83
strings, 81–82, 131–132
TEXT/BLOB field, 79
virtual columns, 126, 129–130
WHERE clause, 86

Jinja2 templates, 355
JSON data type, 4–7

L
Library application

installation
Flask, 335
Flask-Bootstrap, 337–338
Flask-Script, 336
Flask-WTF, 338
WTForms, 338

Index

528

user interface design
application code, 393–396
book detail view, 377
directory structure, 375
form classes (see Form classes)
MyLibrary application book list, 376
publisher detail view, 379
templates (see Templates)
view functions, 384–387

List template, 392
List view function, 386–387

M
Migrating to schema-less documents

embed\separate data, 507–508
formal rules vs. heuristics, 505–507
normalization vs. denormalization, 505
storage mechanism, 507
strategies, document store

contact list (relational
database), 509–510

creation, 519
hybrid solution, 513, 521
queries, retrieve contact, 512
read operation, contact list,

520–521
MySQL

client, 39
commands, mysql client, 40, 41
configuration files, 48, 50
CREATE DATABASE and CREATE

TABLE statements, 41
databases and tables, 54–56
data creation, 61–62
data deletion, 63
data search, 57

GROUP BY clause, 59–60
ORDER BY clause, 61
SELECT statement, 57–58

data updation, 62–63
DMRs, 42
document store, 52–53
InnoDB Cluster, 39
installation type panel, 46
license acceptance dialog box, 45
licensing agreements, 38, 44–45
Linux and Unix systems, 41
macOS platforms, 43
macOS Sierra machine, 44
Microsoft Windows, 43
MySQL 8.0.4, 39
MySQL Community Server, 43
mysql_native_password plugin, 39
network connection, 40
NoSQL interface, 37
Oracle, 38, 43
root password notice dialog, 47
server information, 39
SHA1 algorithm, 39
SHOW DATABASES, 42
SHOW TABLES, 42
simple join, 67–69
stored routines, 69–70
triggers, 65–66
users and granting access, 51
user-supplied variables, 54
using indexes, 64
views, 65
Windows Installer, 43–44
X DevAPI, 39

MySQL 8
account management, 18–19
data dictionary, 17
features, 2–3

Library application (cont.)

Index

529

Group Replication, 21–25
InnoDB Cluster, 2
InnoDB Improvements, 14–16
JSON data type, 4–7
MySQL Shell, 8–11
plugins, 3
X Plugin, X Protocol and X

DevAPI, 12–14
MySQL Shell

built-in X DevAPI objects, 158
commands, 139–140
connections

individual options, 148–149
in scripts, 149–150
SSL connections, 150
URI, 147

features, 137–139
installation

destination folder panel, 153
license panel, 152–153
MySQL Windows

Installer, 151
welcome panel, 151

JavaScript, 169–171
modes, 146
MySQL Workbench and MySQL

Utilities, 135
options, 141–142
Python, 136, 172–173
session objects, 144–145
SQL

Databases—SQL Mode, 162–163
DELETE SQL command, 168
INSERT statement, 164
JSON_CONTAINS_PATH()

function, 166–167
JSON_EXTRACT() function, 167
SELECT SQL statement, 165

world_x Database, 159, 161
X DevAPI, 135
X Plugin

Document Store, 155
INSTALL PLUGIN SQL

command, 156, 157
UNINSTALL PLUGIN SQL

command, 157

N
National Institute of Standards and

Technology (NIST), 39

O
Open Source Initiative (OSI), 38

P, Q
Parameter binding, 234
Protocol buffers, 290–291
Publisher template, 389
Python virtual environments, 339

R
Relational database implementations

application code
author view function, 420
book view function, 426
list view function, 418, 420
publisher view function, 424
setup and initialization, 417–418

code execution, 431–432
database code

Author class, 406
Book class, 410
Library class, 414

Index

530

Publisher class, 408
SQL strings, 404

database design, 400–404
observations, 433
templates, 431

Relational database management system
(RDBMS), 42

Relational database with JSON fields
(hybrid)

application code
form classes, 451–452
setup and initialization, 451
view functions, 452

code execution, 458–460
database code

Book class, 445
Library class, 440
Publisher class, 443–445
SQL strings, 438–439

database design, 434–437
observations, 461
templates, 456–458

Resource Description Framework
(RDF), 76

S
Secure socket layer (SSL)

connections, 257–259
Stored routines, 69–70

T
Templates

author, 388
book, 390–391

list, 392
publisher, 389

U
Uniform resource identifier

(URI), 180–181
Upgrade

incompatible, 494
major, 494
methods, strategies and

procedures, 492
minor, 494
planning, MySQL 8.0, 502–503
practices

check prerequisites, 496–497
parallel deployment, 499
plan, 498
production deployment

strategies, 500
testing, 499–500

reasons, upgrading MySQL, 501
revision, 493

Utility functions, JSON
JSON_DEPTH() function, 115–116
JSON_KEYS() function, 117
JSON_LENGTH() function, 118–120
JSON_PRETTY() function, 122
JSON_QUOTE() function, 120–121
JSON_STORAGE_FREE()

function, 123
JSON_STORAGE_SIZE() function, 123
JSON_TABLE() function, 124–125
JSON_UNQUOTE() function, 121–122

V
Variable filters, 365

Relational database
implementations (cont.)

Index

531

W
Web Ontology Language (OWL), 76
Web Server Gateway Interface (WSGI), 342
WTForms, 349, 352

X, Y, Z
X Developer API (X DevAPI), 73
X Developer Application Programming

Interface (X DevAPI)
accessing data, 228
accessing metadata, 230–231
asynchronous execution, 251–252
auto increment field, 228
characteristics, 176
classes and methods, 181–184
clients, 177–178
column metadata, 232
CRUD prepared statements, 249–251
data sets, 220–226
document identifiers, 226–228
errors

handling errors, 241–243
not handling errors, 239
try/exception block, 239

expressions
Boolean expression strings, 235–236
strings, 234

features, 176–177
getSomething() method, 178
InnoDB Cluster, 180
iteration, 179
method chaining, 248–249
MySQL 8 Document Store, 175
MySQL X Module, 179
NoSQL interface, 175
parameter binding, 244–247
Python, 175

server warnings, 236–238
session class

connection methods, 189
create schema method, 179–180
Is_open() method, 190
schema methods, 185–186
sql(str sql) method, 190
transaction methods, 187–188

URI, 180–181
X Plugin

communication category, 273–274
connections category, 274–275
CRUD operations category, 275–276
default port, 259
errors and warning category, 276–277
MySQL client/server protocol, 256
MySQL 8 source code, 260
Oracle, 255
session category, 277–278
SSL category, 278–279
SSL connections, 257–259
startup options, 269
statements category, 280–281
status variables, 271–273
system variables, 261–262, 269
variables

set values, 266–268
view values, 263–266

worker threads, 281
X Protocol

authentication process
CapabilitiesGet/Set Methods, 312
Connection Methods, 309–311
send_insert() Method, 314
SQL INSERT class, 313

client/server MySQL protocol, 286
communication protocol, 285
Connector/Python, 329

Index

532

database connectors, 315, 318
design constraints, 288
document store, 287

abstraction methods, 319
add() method, 322
Contacts Collection, 323–324
create_collection() method, 319
create_schema() method, 319
drop_schema() method, 322
execute() method, 322
get_schema() method, 319
get_session() method, 319
mysqlx library, 319
SELECT statement, 324–325
X Client Source Code (JSON),

320–322
extensibility, 289
fetch_all() method, 328
future, 287
get_session() method, 326
Google Protocol Buffers Python

library, 317

language-specific runtime libraries, 317
performance security, 290
protobuf compiler

authentication, 304–306
binary file, 296
contact list, 297–298
contacts, 293–295
database connectors, 309
implementation, 299–304
INSERT statements, 306
ParseFromString() method, 297
programming language, 294
protobuf libraries, 292
SerializeToString() method, 296
Sql.StmtExecute Message, 307–308

and protocol buffers, 290–291
Python programming language, 316
security, 289
SHOW VARIABLES statement, 326
SQL statement, 325
X Client Source Code (SQL), 326–327
X Plugin and database

connectors, 285

X Protocol (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introducing MySQL 8—A New Beginning
	Old Features New Again
	JSON Data Type
	MySQL Shell
	X Plugin, X Protocol, and X DevAPI
	InnoDB Improvements

	New Features
	Data Dictionary
	Account Management

	Removed Options, Variables, and Features
	Paradigm Shifting Features
	Group Replication
	InnoDB Cluster

	Summary

	Chapter 2: Getting Started with MySQL
	Getting to Know MySQL
	How Do I Connect to MySQL?
	How to Get and Install MySQL
	Configuring and Managing Access to MySQL
	Configuration Files
	Creating Users and Granting Access
	Configuring the Document Store

	A MySQL Primer
	Creating Databases and Tables
	Searching for Data
	Creating Data
	Updating Data
	Deleting Data
	Using Indexes
	Views
	Triggers
	Simple Joins
	Stored Routines

	Summary

	Chapter 3: JSON Documents
	Concepts and Technologies: Jargon Explained
	Origins: Key, Value Mechanisms
	JSON
	Application Programming Interface
	NoSQL Interface
	Document Store

	Introducing JSON Documents
	JSON Format Rules
	Using JSON in MySQL
	Path Expressions
	JSON Functions
	Creating JSON Data
	Modifying JSON Data
	Searching JSON Data
	Utility Functions

	Combining SQL and JSON - Indexing JSON Data
	Summary

	Chapter 4: The MySQL Shell
	Getting Started
	Features
	Shell Commands
	Options
	Sessions and Modes
	Session Objects
	Modes Supported

	Connections
	Using a URI
	Using Individual Options
	Using Connections in Scripts
	Using SSL Connections

	Set Up and Install
	Install the MySQL Shell
	Setup the X Plugin
	Enable the X Plugin Using the MySQL Shell
	Enable the X Plugin Using the MySQL Client

	Tutorial: MySQL Shell by Example
	Installing the Sample Database
	SQL
	JavaScript
	Python

	Summary

	Chapter 5: X Developer API
	Overview
	Clients
	Target Language Conformity
	MySQL X Module

	Classes and Methods
	Session Class
	Schema Methods
	Transaction Methods
	Connection Methods
	Miscellaneous Methods

	CRUD Operations
	Schema Class
	Collection Class
	Table Class

	Example Data Used in this Chapter
	Working with Data Sets
	Document Identifiers
	Auto Increment
	Accessing Data in Data Sets
	Accessing Metadata in Results
	Column Metadata

	Expressions
	Expression Strings
	Boolean Expression Strings

	Warnings and Errors
	Warnings from the Server
	Errors from the X DevAPI

	Additional Features
	Parameter Binding
	Method Chaining
	CRUD Prepared Statements
	Asynchronous Execution

	For More Information
	Summary

	Chapter 6: X Plugin
	Overview
	Features
	Secure Socket Layer (SSL) Connections
	Changing the Default Port

	Going Deeper—Journey into the Source Code

	Options and Variables
	How to View Values of Variables
	How to Set Values of Variables
	System Variables and Startup Options
	Status Variables

	Monitoring the X Plugin
	Communication
	Connections
	CRUD Operations
	Errors and Warnings
	Sessions
	SSL
	Statements
	Worker Threads

	Summary

	Chapter 7: X Protocol
	Overview
	Goals for the X Protocol
	Extensibility
	Security
	Performance

	X Protocol and Protocol Buffers
	Installing the Protobuf Compiler
	Protobuf Example

	X Protocol: Under the Hood
	Protobuf Implementation
	X Protocol Examples
	Example 1: Authentication
	Example 2: Simple Inserts

	X Protocol Walkthrough
	Example 1: Authentication
	Example 2: Simple Inserts

	Creating X Clients
	Setup for the Examples
	Document Store Example
	Relational Data Example

	Summary

	Chapter 8: Library Application: User Interface
	Getting Started
	Library Application
	Setup Your Environment
	Installing Flask
	Installing Flask-Script
	Installing Flask-Bootstrap
	Installing Flask-WTF
	Installing WTForms

	Flask Primer
	Terminology
	Initialization and the Application Instance
	Flask-Script
	Flask-Bootstrap
	WTForms
	Flask-WTF
	Form Classes
	CSRF Protection

	Message Flashing

	HTML Files and Templates
	Jinja2 Templates Overview
	Template Language Constructs
	Comments
	Include
	Macros
	Import
	Extend (Inherit)
	Blocks
	Loops
	Conditionals
	Variables and Variable Filters

	HTML Files Using Templates

	Error Handlers
	Not Found (404) Errors
	Application (500) Errors

	Redirects
	Additional Features
	Flask Review: Sample Application

	Library Application User Interface Design
	Preparing the Directory Structure
	User Interface Features
	Form Classes
	Author Form Class
	Publisher Form Class
	Book Form Class
	List Form Class

	View Functions
	Templates
	Author Template
	Publisher Template
	Book Template
	List Template
	Other Templates

	Application Code

	Summary

	Chapter 9: Library Application: Database Implementations
	Version 1: Relational Database
	Database Design
	Database Code
	SQL Strings
	Author Class
	Publisher Class
	Book Class
	Library Class

	Application Code
	Setup and Initialization
	List View Function
	Author View Function
	Publisher View Function
	Book View Function

	Templates
	Executing the Code
	Observations

	Version 2: Relational Database + JSON Fields (Hybrid)
	Database Design
	Database Code
	Code Deleted
	SQL Strings
	Library Class
	Publisher Class
	Book Class

	Application Code
	Setup and Initialization
	Form Classes
	View Functions

	Templates
	Executing the Code
	Observations

	Version 3: Document Store
	Database Design
	Database Code
	Code Deleted
	Setup and Initialization
	Books Class
	Class Declaration
	Create Function
	Read Function
	Update Function
	Delete Function
	Utility Functions
	Completed Code

	Application Code
	Setup and Initialization
	Form Classes
	Book View Function

	Templates
	Executing the Code
	Observations

	Challenges
	Summary

	Chapter 10: Planning for MySQL 8 and the Document Store
	Upgrading from MySQL 5.7 and Earlier
	Types of Upgrades
	Revision Upgrade
	Minor Upgrade
	Major Upgrade
	Incompatible Upgrades

	Upgrade Practices
	Check Prerequisites
	Plan the Upgrade
	Consider Parallel Deployment
	Test, Test, Test!
	Production Deployment Strategies

	Reasons for Upgrading
	Considerations for Upgrading to MySQL 8

	Migrating to Schemaless Documents
	Normalization vs. Denormalization
	Formal Rules vs. Heuristics
	View Data as Code

	Take Storage for Granted
	Embed or Separate?
	Strategies for Migrating to a Document Store
	Migrating to a Hybrid Solution
	Converting to a Document Store

	Document Store Tips and Tricks
	Summary

	Index

