
T E C H N O L O G Y I N A C T I O N ™

Beginning Sensor
Networks with
XBee, Raspberry Pi,
and Arduino

Sensing the World with Python
and MicroPython
—
Second Edition
—
Charles Bell

www.allitebooks.com

http://www.allitebooks.org

Beginning Sensor
Networks with XBee,

Raspberry Pi, and
Arduino

Sensing the World with Python
and MicroPython

Second Edition

Charles Bell

www.allitebooks.com

http://www.allitebooks.org

Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino:
Sensing the World with Python and MicroPython

ISBN-13 (pbk): 978-1-4842-5795-1 ISBN-13 (electronic): 978-1-4842-5796-8
https://doi.org/10.1007/978-1-4842-5796-8

Copyright © 2020 by Charles Bell

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole
or part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical
way, and transmission or information storage and retrieval, electronic adaptation,
computer software, or by similar or dissimilar methodology now known or hereafter
developed.

Trademarked names, logos, and images may appear in this book. Rather than use a
trademark symbol with every occurrence of a trademarked name, logo, or image we use the
names, logos, and images only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms,
even if they are not identified as such, is not to be taken as an expression of opinion as to
whether or not they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the
date of publication, neither the authors nor the editors nor the publisher can accept any
legal responsibility for any errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress
Media, LLC is a California LLC and the sole member (owner) is Springer Science + Business
Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.
apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our
Print and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-5795-1. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Charles Bell
Warsaw, VA, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-5796-8
http://www.allitebooks.org

I dedicate this book to the countless healthcare
professionals, first responders, and many unsung heroes of

this difficult time we face in the world during the COVID-19
crisis. It is my hope this book and others like it help the

millions of people pass the time during the crisis learning
more about science and technology.

www.allitebooks.com

http://www.allitebooks.org

v

Table of Contents

Chapter 1: Introduction to Sensor Networks ��1

Anatomy of a Sensor Network ��2

Examples of Sensor Networks ���3

The Topology of a Sensor Network ��12

Communication Media ��14

Wired Networks ���14

Wireless Networks ���15

Hybrid Networks ��15

Types of Sensor Nodes ��16

Basic Sensor Nodes ���16

Data Nodes ��16

Aggregator Nodes ��17

Sensors ���18

How Sensors Measure ���20

Storing Sensor Data���26

Examples of Sensors ���27

Summary���34

About the Author ��xv

About the Technical Reviewer ��xvii

Acknowledgments ���xix

Introduction ���xxi

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 2: Tiny Talking Modules: An Introduction to
XBee Wireless Modules ��35

What Is an XBee? ��36

XBee Primer ��37

Choosing XBee Modules ��38

Interacting with an XBee-ZB Module ���42

Pin Layout ��46

Configuring Modules ���48

Introducing MicroPython ���67

An XBee Wireless Chat Room ��72

Loading the Firmware for the Modules ���72

Capturing Serial Numbers ���77

Configuring the Coordinator ��79

Configuring the Router ��80

Let the Chat Begin ���80

For More Fun ���82

Building an XBee-ZB Mesh Network ���84

Loading the Firmware for the Modules ���85

Configuring the XBee Modules ��85

Forming Test Messages ���86

Testing the Network ��90

For More Fun ���95

Component Shopping List ���95

Troubleshooting Tips and Common Issues ��97

Things to Check ���98

Common Issues ���99

Summary���101

Table of ConTenTsTable of ConTenTs

vii

Chapter 3: Programming in MicroPython ���103

MicroPython Features and Limitations ���105

MicroPython Features��105

MicroPython Limitations ��106

Basic Concepts ���107

Code Blocks ���108

Comments ���110

Arithmetic ��111

Output to Screen ��112

Variables and Data Types ��114

Variables ��114

Types ���116

Basic Data Structures ���118

Lists ���118

Tuples ��120

Dictionaries ���121

Flow Control Statements ���123

Conditional Statements ���123

Loops ���125

Modularization: Modules, Functions, and Classes ��127

Including Modules ���127

Functions ���128

Classes and Objects ��130

Object-Oriented Programming (OOP) Terminology ��������������������������������������134

Summary���141

Table of ConTenTsTable of ConTenTs

viii

Chapter 4: XBee-Based Sensor Nodes ��143

How to Host Sensors with XBee ��144

Building an XBee Environment Sensor ��145

Hardware Setup ���146

XBee Hardware Option ��150

MicroPython Option ���155

Example: Using XBee Modules to Gather Data ��166

Hardware Setup ���168

Configuring the XBee Sensor Node ���171

Programming the Sensor Node ���172

Testing the XBee Sensor Node ��186

Component Shopping List ���188

Summary���191

Chapter 5: Raspberry Pi–Based Sensor Nodes ���������������������������������193

What Is a Raspberry Pi? ��194

Noble Origins ���196

Models ���198

A Tour of the Board ��200

Required Accessories ��202

Recommended Accessories ��203

Raspberry Pi Tutorial ���207

Getting Started ��207

Installing a Boot Image ��208

Booting Up ���213

GPIO Pin Mapping ��217

Required Software ���221

Project: Hardware “Hello, World!” ��223

Table of ConTenTsTable of ConTenTs

ix

Hosting Sensors with Raspberry Pi ���230

Project: Building a Raspberry Temperature Sensor Node ���������������������������������232

Hardware Setup ���232

Testing the Hardware ��234

Software Setup ��236

Testing the Sensor ���242

For More Fun ���243

Project: Building a Raspberry Barometric Pressure Sensor Node ��������������������243

Hardware Setup ���245

Testing the Hardware ��245

Software Setup ��246

Testing the Sensor ���251

For More Fun ���251

Project: Creating a Raspberry Pi Data Collector for XBee Sensor Nodes ����������252

XBee Sensor Node ���252

Hardware ���254

Software ��256

Testing the Final Project ��264

For More Fun ���265

Component Shopping List ���266

Summary���268

Chapter 6: Arduino-Based Sensor Nodes��269

What Is an Arduino? ��269

Arduino Models ��271

Arduino Clones ��279

So, Which Do I Buy? ���286

Where to Buy ���287

Table of ConTenTsTable of ConTenTs

x

Arduino Tutorial ���288

Learning Resources ���289

The Arduino IDE ���290

Project: Hardware “Hello, World!” ��294

Hosting Sensors with Arduino ���300

Project: Building an Arduino Temperature Sensor ���302

Hardware Setup ���302

Software Setup ��304

Writing the Sketch ���306

Test Execution ���310

Project: Using an Arduino As a Data Collector for XBee Sensor Nodes �������������312

XBee Sensor Node ���312

Coordinator Node ���313

Arduino with XBee Shield ��314

Testing the Final Project ��326

For More Fun ���328

Component Shopping List ���328

Summary���331

Chapter 7: Methods for Storing Sensor Data ������������������������������������333

Storage Methods ���334

Local Storage Options for the Arduino ��336

Nonvolatile Memory���336

SD Card ��337

Project: Saving Data in Nonvolatile Memory ���338

Project: Writing Data to an SD Card ���356

Table of ConTenTsTable of ConTenTs

xi

Local Storage Options for the Raspberry Pi ��372

Project: Writing Data to Files ���373

Remote Storage Options ���375

Storing Data in the Cloud ���377

Project: Writing Data to ThingSpeak with an Arduino ����������������������������������386

Project: Writing Data to ThingSpeak with a Raspberry Pi ����������������������������398

Storing Sensor Data in a Database ��409

Component Shopping List ���409

Summary���412

Chapter 8: Turning Your Raspberry Pi into a Database Server ���������413

What Is MySQL? ��414

Getting Started with MySQL ��420

What’s a Relational Database Management System? ���������������������������������420

How and Where MySQL Stores Data ��422

The MySQL Configuration File ���428

How to Start, Stop, and Restart MySQL ���429

Creating Users and Granting Access ���430

Building a Raspberry Pi MySQL Server ���432

Partitioning and Formatting the Drive ���433

Setting Up Automatic Drive Mounting��437

Project: Installing MySQL Server on a Raspberry Pi ������������������������������������441

Advanced Project: Using MySQL Replication to Back Up
Your Sensor Data ���462

Component Shopping List ���472

Summary���472

Table of ConTenTsTable of ConTenTs

xii

Chapter 9: MySQL and Arduino: United at Last! �������������������������������475

Introducing Connector/Arduino ���476

Hardware Requirements ��477

What About Memory? ��480

Installing MySQL Connector/Arduino ���481

Limitations ���482

Building Connector/Arduino-Enabled Sketches ��485

Database Setup ���485

Setting Up the Arduino ���488

Starting a New Sketch ���489

Testing the Sketch ���496

What About the Ethernet Shield 2? ��501

What About the WiFi Shield? ���502

What About the WiFi 101 Shield? ��503

Troubleshooting Connector/Arduino ��504

MySQL Server Configuration ���506

MySQL User Account Problems ���508

Networking Configuration ��511

Connector Installation ��513

Others ��514

None of These Solved My Problem—What Next? ���������������������������������������515

A Tour of the MySQL Connector/ Arduino Code ���516

Library Files ���516

Field Structure ���517

Public Methods ��518

Example Uses ��522

Table of ConTenTsTable of ConTenTs

xiii

Project: Building a MySQL Arduino Client ��527

Hardware Setup ���527

Software Setup ��529

Setting Up the Sensor Database ��531

Writing the Code ��531

Test Execution ���538

For More Fun ���540

Project Example: Inserting Data from Variables ��541

Project Example: How to Perform SELECT Queries ���544

Displaying a Result Set in the Serial Monitor ��545

Writing Your Own Display Method ���546

Example: Getting a Lookup Value from the Database ����������������������������������551

Component Shopping List ���554

Summary���555

Chapter 10: Building Your Network: Arduino Wireless
Aggregator + Wireless Sensor Node + Raspberry Pi Server ������������557

Data-Aggregate Nodes ��558

Local-Storage Data Aggregator ���560

Project: Data-Aggregate Node with Local Storage ��������������������������������������561

Remote-Storage Data Aggregator ���594

Project: Arduino Data-Aggregate Node with Database Storage ������������������595

Project: Raspberry Pi Data-Aggregate Node with Database Storage ����������617

Component Shopping List ���635

Summary���638

Table of ConTenTsTable of ConTenTs

xiv

Chapter 11: Putting It All Together ���639

Sensor Networks Best Practices ���639

Considerations for Data-Aggregate Nodes ��639

Considerations for Sensor Network Databases ���645

Other Considerations ���653

Choosing Sensor Nodes ��659

Wired or Wireless? ���660

Arduino or Raspberry Pi? ���661

Alternative Hosts ���666

Project: Home Temperature-Monitoring Network ���673

Planning Considerations ��674

Planning the Nodes ���675

Cost Considerations ���676

What About Implementation? ��679

Conclusion ���679

For More Fun ���680

Optional Component Shopping List ���680

Summary���681

 Appendix ���683

 Consolidated Shopping Lists ���683

 Alternative Connection Systems ���691

 Grove ���691

Qwiic ���695

 STEMMA QT ��700

 Summary���701

Index ���703

Table of ConTenTsTable of ConTenTs

xv

About the Author

Charles Bell conducts research in emerging

technologies. He is a principal software

developer of the Oracle MySQL Development

team. He lives in a small town in rural Virginia

with his loving wife. He received his Doctor

of Philosophy in Engineering from Virginia

Commonwealth University in 2005.

Dr. Bell is an expert in the database field

and has extensive knowledge and experience in

software development and systems engineering.

His research interests include microcontrollers, three-dimensional printing,

database systems, software engineering, and sensor networks. He spends his

limited free time as a practicing maker focusing on microcontroller projects

and refinement of three-dimensional printers.

xvii

About the Technical Reviewer

Sai Yamanoor is an embedded systems engineer working for an industrial

gases company in Buffalo, NY. His interests, deeply rooted in DIY and

open source hardware, include developing gadgets that aid behavior

modification. He has published two books with his brother, and in his

spare time, he likes to contribute to build things that improve quality of

life. You can find his project portfolio at http://saiyamanoor.com.

https://urldefense.proofpoint.com/v2/url?u=http-3A__saiyamanoor.com_&d=DwMFaQ&c=vh6FgFnduejNhPPD0fl_yRaSfZy8CWbWnIf4XJhSqx8&r=E3AfiyxVwcAufBzWHjWU0E9DTfK7pUxOd3Vq_E0yK-A&m=XnS36DAEF2AJNAgdQVt3Udw3zJxHjAlGZxueTpbVaE4&s=bNX8CY93lJm-jjfZ643KcRLONwzXHQQrMMP4GS_i2ho&e=

xix

Acknowledgments

I would like to thank all of the many talented and energetic professionals

at Apress. I appreciate the understanding and patience of my managing

editor, Natalie Pao; coordinating editor, Jessica Vakili; and development

editor, James Markham. Each was instrumental in the success of this

project. I appreciate their encouragement and guidance as well as patience

in dealing with my many questions. I would also like to thank the small

army of publishing professionals at Apress for making me look so good in

print. Thank you all very much!

I’d like to especially thank the technical reviewer, Sai Yamanoor, for

his patience, insight, and impressive attention to detail. Most importantly,

I want to thank my wife, Annette, for her unending patience and

understanding during the many hours I spent hunched over my laptop or

conducting science experiments on the dining table.

xxi

Introduction

The world of microcontrollers and increasingly capable and popular small

computing platforms is enabling many more people to learn, experience,

and complete projects that would previously have required dedicated (and

expensive) hardware. Rather than purchase a commercial or made-for-

consumers kit, enterprising developers can now build their own solutions

to meet their needs. Sensor networks are just one example of how these

small, powerful, and inexpensive components have made it possible for

anyone with a moderate skill set to build their own sensor network.

This book presents a beginner’s guide to sensor networks. I cover topics

including what types of sensors exist, how they communicate their values

(observations or events), how they can be used in Arduino and Raspberry Pi

projects, and how to build your own home temperature sensor network.

I also include an introduction to the MySQL database server and how

you can connect to, store, and retrieve data. Why, I even show you how to

do it directly from an Arduino!

Better still, this edition has been updated to include updated tools

and software, project examples, as well as the latest use and programming

of the XBee 3 modules. Yes, we’re writing code to control them in

MicroPython. There’s an entire chapter dedicated to MicroPython as well

as extended coverage of the XBee platform.

 Who This Book Is For
I have written this book with a wide variety of readers in mind. It is

intended for anyone who wants to get started building their own sensor

networks or those who want to learn how to use components, devices, and

sensors with an Arduino or Raspberry Pi.

xxii

Whether you have already been working with sensor networks, or

maybe have taken an introductory electronics course, or even have read a

good Apress book on the Arduino or Raspberry Pi, you will get a lot out of

this book. Best of all, if you ever wanted to know how to combine sensors,

Arduinos, XBee, MySQL, and Raspberry Pi to form a cohesive solution, this

book is just what you need!

Most importantly, I wrote this book to meet my own needs. Although

there are some excellent books on Arduino, Raspberry Pi, sensors, and

MySQL, I could not find a single reference that showed how to put all of

these together. The second edition kicks it up yet another notch with more

coverage of these topics with the latest versions of the tools and libraries

available.

 About the Projects
There are 11 chapters, 9 of which include projects that demonstrate and

teach key concepts of building sensor networks. Depending on your skill

level with the chapter topic, you may find some of the projects easier to

complete than others. It is my hope that you find the projects challenging

and enlightening (but, more importantly, informative) so that you can

complete your own sensor network projects.

In this section, I present some guidance on how best to succeed and

get the most out of the projects.

 Strategies
I have tried to construct the projects so that the majority of readers can

accomplish them with little difficulty. If you encounter topics that you are

very familiar with, I recommend working through the projects anyway

instead of simply reading or skipping through the instructions. This is

because some of the later projects build on the earlier projects.

InTroduCTIonInTroduCTIon

xxiii

On the other hand, if you encounter topics that you are unfamiliar

with, I recommend reading through the chapter or section completely at

least once before attempting the project. Take some time to fully absorb

the material, and pay particular attention to the numerous links, tips, and

cautionary portions. Some of those are pure gold for beginners.

Perhaps the most significant advice I can offer when approaching the

projects is to attempt them one at a time. By completing the projects one

at a time, you gain knowledge that you can build on for future projects.

It also helps you establish a pace to work through the book. Although

some accomplished readers can probably complete all the projects in a

weekend, I recommend working through the book at a pace best suited for

your availability (and enjoyment).

With some exceptions, the earlier chapters are independent and can be

tackled in any order. This is especially true for the Raspberry Pi (Chapter 5)

and Arduino (Chapter 6) chapters. Regardless, it is a good idea to read the

book and work on the projects in order.

 Tips for Buying Hardware
The hardware list for this book contains a number of common components

such as temperature sensors, breadboards, jumper wires, and resistors.

Most of these items can be found in electronics stores that stock supplies

for electronics enthusiasts. The list also includes a number of specialized

components such as XBee modules, XBee adapters, XBee shields, Arduino

boards, and Raspberry Pi boards.

Each chapter has a list of the components used at the end of the

chapter. In some cases, you reuse the hardware from previous chapters. I

include a separate list for these items. I have placed the component lists

at the end of each chapter to encourage you to read the chapter before

attempting the projects.

InTroduCTIonInTroduCTIon

xxiv

The lists include the name of each component and at least one link

to an online vendor that stocks the component. In addition, I include the

quantity needed for the chapter and an estimated cost. If you add up all

the components needed and sum the estimated cost, the total may be a

significant investment for some readers.

The following sections are for anyone looking to save a little on the cost

of completing the projects in this book or wanting to build up their own

inventory of sensor network hardware on a budget.

 Buy Only What You Need When You Need It

One way to mitigate a significant initial investment in hardware is to pace

your buying. If you follow previous advice and work on one project at a time,

you can purchase only the hardware needed for that project. This will allow

you to spread the cost over however long you plan to work through the book.

However, if you are buying your hardware from an online retailer,

you may want to balance ordering the hardware for one project at a time

against the potentially higher total shipping cost for multiple orders.

As mentioned, the more common electronics like LEDs, breadboards,

and so on can be found in traditional brick-and-mortar stores, but the cost

may be a little higher. Once again, the cost of shipping to your location may

dictate whether it would be cheaper to buy the higher-priced items from a

local electronics shop vs. an online retailer.

 Online Auctions

One possible way to save money is to buy your components at a discount

on online auction sites. In many cases, the components are the very same

ones listed. In other cases, the components may be from vendors that

specialize in making less expensive alternatives. I have had a lot of success

in buying quality hardware from online auction sites (namely, eBay).

InTroduCTIonInTroduCTIon

xxv

If you are not in a hurry and have time to wait for auctions to close

and the subsequent shipping times, you can sometimes find major

components like Arduinos, shields, power supplies, and the like at a

reduced price by bidding for them. For example, open source hardware

manufacturers sometimes offer their products via auctions or at special

pricing for quantities. I have found a number of Arduino clones and

shields at nearly half the cost of the same boards found on other sites or in

electronics stores.

 Hey, Buddy, Can You Spare an Arduino?

Another possible way to save some money on the hardware is to

borrow it from your friends! If you have friends who are electronics,

Arduino, or Raspberry Pi enthusiasts, chances are they have many of

the components you need. Just be sure you return the components in

working order!1

A NOTE ABOUT NEWER ARDUINO BOARDS

The projects in this book are designed for a current, readily available

version of the arduino as well as the most recently retired boards. The

projects can be completed with the uno or Mega 2560 boards without

modification. although you can use the leonardo (see specific notes in the

chapters about the differences), you should consider the newer boards

carefully before buying.

1 And replace the components you implode, explode, or otherwise turn into silicon
slag. Hey, it happens.

InTroduCTIonInTroduCTIon

xxvi

 Downloading the Code
The code for the examples shown in this book is available on the Apress

website, www.apress.com. A link can be found on the book’s information

page under the Source Code/Downloads tab. This tab is located

underneath the Related Titles section of the page.

 Reporting Errata
Should you find a mistake in this book, please report it through the Errata

tab on the book’s page at www.apress.com. You will find any previously

confirmed errata in the same place.

InTroduCTIonInTroduCTIon

http://www.apress.com
http://www.apress.com

1© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_1

CHAPTER 1

Introduction
to Sensor Networks
Sensor networks are no longer expensive industrial constructs. You can

build a simple sensor network from easily procured, low-cost hardware.

All you need are some simple sensors and a microcontroller or computer

with input/output capabilities. Yes, your Arduino and Raspberry Pi are

ideal platforms for building sensor networks. If you’ve worked with either

platform and have ever wanted to monitor your garden pond, track

movement in your home or office, monitor the temperature in your house,

monitor the environment, or even build a low-cost security system, you’re

halfway there!

As inviting and easy as that sounds, don’t start warming up the

soldering iron just yet. There are a lot of things you need to know about

sensor networks. It’s not quite as simple as plugging things together and

turning them on. If you want to build a reliable and informative sensor

network, you need to know how such networks are constructed.

In addition, you may have heard of something called the Internet of

Things (IoT). This phrase refers to the use of devices that can communicate

over a network (local or Internet). IoT devices are therefore network-aware

devices that can send data to other resources, thereby virtualizing the

effects of the devices on users and their experience. Sensor networks play

a prominent role in the IoT. What you will learn in this book will provide a

firm foundation for building IoT solutions using sensor networks.

https://doi.org/10.1007/978-1-4842-5796-8_1#ESM

2

If you want to know more about IoT in general, several books have

been written on the topic, including the following. If you’re interested in

learning more about the IoT and how sensor networks are used, check out

some of these titles:

• Building Internet of Things with the Arduino by

Charalampos Doukas (CreateSpace Independent

Publishing Platform, 2012)

• Architecting the Internet of Things by Dieter Uckelmann,

Mark Harrison, and Florian Michahelles (Springer,

2011)

• Getting Started with the Internet of Things: Connecting

Sensors and Microcontrollers to the Cloud by Cuno

Pfister (O’Reilly, 2011)

In this chapter, we will explore sensor networks through a brief

description of what they are and how they are constructed. We will also

examine the components that make up a sensor network including an

overview of sensors, the types of sensors available, and the things that they

can sense.

 Anatomy of a Sensor Network
Sensor networks are everywhere. They’re normally thought of as

complicated monitoring systems for manufacturing and medical

applications. However, they aren’t always complicated, and they’re all

around you.

In this section, we will examine the building blocks of a sensor network

and how they’re connected (logically). First, let’s look at some examples of

sensor networks to visualize the components.

Chapter 1 IntroduCtIon to SenSor networkS

3

 Examples of Sensor Networks
Although some of these examples may not be as familiar to you as others,

it’s a good idea as you read through these examples to try and imagine the

components of the application. Visualize the sensors themselves—where

they’re placed and what data they may be reading and sending to another

part of the network for processing and recording.

 Automotive

Almost every modern automobile has a network of sophisticated sensors

that monitor the performance of the engine and its subsystems. Some

cars have additional sensors for monitoring external air temperature, tire

pressure, and even proximity to objects and other vehicles. Newer vehicles

have a host of safety mechanisms including lane departure, obstacle

avoidance, auto braking, and more.1

If you take a late-model car in for service and get a chance to look in

the garage area, you may notice several machines that resemble computer

terminals, tablet computers, or in some cases an iPad. These systems

are diagnostic machines designed to connect to your car and read all the

data the sensors and computer have stored. Some manufacturers use the

industry standard interface called onboard diagnostics (OBD).2 There are

several versions of this interface and its protocols; most dealerships have

equipment that supports all the latest protocols.

1 Interestingly, I have heard a few motorists who despise some of these features
because their driving habits place the vehicle more to one side of the road
or another, which triggers the lane departure warning. Similarly, those that
habitually cross the center line when driving on curving roads tend to turn off
the departure warning. Clearly one of these is an understandable annoyance,
whereas the other is exactly why the feature is needed.

2 http://en.wikipedia.org/wiki/On-board_diagnostics

Chapter 1 IntroduCtIon to SenSor networkS

http://en.wikipedia.org/wiki/On-board_diagnostics

4

However, some manufacturers use their own proprietary diagnostic

systems, but many use the same connector as OBD-II. You may want to

ask about this before purchasing a vehicle. If your new vehicle requires

proprietary electronic tools for maintenance, you may be required to take

it to a qualified mechanic or another dealer to get it serviced. For those

that live in rural areas, finding a dealership or even a trained mechanic

to work on your car may require some travel and therefore advanced

planning.

For example, Porsche uses what it calls Porsche Integrated Workshop

Information System (PIWIS). While PIWIS uses the same connector as

OBD-II, Porsche implemented a proprietary system to read and alter

the data. Only those mechanics who are trained (and who purchase) the

proprietary tools can service the vehicle.

Interestingly, while manufacturers that use proprietary diagnostic

systems require you to service your car at an authorized dealer, some

enterprising technologists have created compatible systems. In the case of

Porsche, Durametric (www.durametric.com/default.aspx) manufactures

a host of products that enable basic maintenance features like fault and

servicereminder reset and even advanced troubleshooting features

for many Porsche models. Figure 1-1 shows one of the screens of the

Durametric software reading the sensor data from a Porsche Cayman.

Chapter 1 IntroduCtIon to SenSor networkS

http://www.durametric.com/default.aspx

5

Notice the level of detail displayed. The image shows three metrics in

the trace, but if you look at the top of the screen, you will see many more

metrics that can be monitored. The data shown in the graph was gathered

in real time and displayed using the sophisticated sensor networks Porsche

employs.

The use of sensors in automobiles has begun to spill over into related

machinery such as motorcycles, boats, and even the venerable farm

tractor. Many modern farm machines such as combines have sophisticated

sensors that enable amazing capabilities such as auto header height, auto

pilot, and more.

For example, modern combines can be purchased with a suite of GPS-

based tools that permit the operator to plot the boundaries of the harvest

field and calculate the best paths for minimal time and maximum harvest.

In the case where the harvest field is very large, the operator can practically

Figure 1-1. Porsche diagnostic data from Durametric

Chapter 1 IntroduCtIon to SenSor networkS

6

take a nap while the combine does the work.3 This is a far cry from older

combines that required manual adjustment of the header.

 Environment

The environment is on many peoples’ minds, and many scientists are

actively monitoring it. Motives for monitoring the environment range

from checking a specific area or room for gases and tracking the area’s

temperature and humidity to monitoring and reporting anomalies

for sensitive equipment, such as running chemical analyses for clean

rooms. Examples of environment sensor networks include those used

to monitor air pollution, detect and track forest fires, detect landslides,

provide earthquake early warnings, and provide industrial and structural

monitoring.

Sensor networks are ideal for all forms of environmental monitoring.

Due to the sensors’ small size, low energy requirements, and low cost, they

can be easily installed at specific locations or on specific machines for

precise reporting. For example, a clean-room environment often requires

very precise temperature and humidity control as well as extremely

low levels of contaminants (loose particles floating in the air). Sensors

can be used to measure these observations at key locations (windows,

doors, air vents, and so on); the data is sent to a computer that records

it and generates threshold alerts. Most sophisticated clean rooms tie the

filtration, heat, and cooling systems into the same computer system (using

their own sensors) to control the environment based on the data collected

from the sensor network.

3 It may be hard to imagine a 46,000-pound plus machine that resembles a
medieval torture device or a serial killer’s weapon being driven by a computer,
but it’s true. Some of the most expensive combines have more sophisticated
technology than your favorite sports sedan including air conditioning, cruise
control, and fully adjustable seats.

Chapter 1 IntroduCtIon to SenSor networkS

7

Environmental sensors aren’t limited to temperature, humidity, dew

point, and air quality. Sensors for monitoring electromagnetic interference

and radio frequencies may be used in hospitals to protect patients who rely

on sensitive electronic medical equipment such as heart pacemakers and

similar lifesaving electronics.4 Sensors for monitoring water purity, oxygen

level, and contaminants may be used in fish farms to maximize crop yield.

Scientists and industrial engineers aren’t the only ones who build

environmental sensor networks. You can build your own using relatively

low-cost sensors. In their book, Environmental Monitoring with Arduino:

Building Simple Devices to Collect Data About the World Around Us (Make,

2012), Emily Gertz and Patrick Di Justo show how to build simple sensor

networks to monitor noise, water purity, and, of course, weather.

If this sounds too good to be true, consider for the moment your

average home heating, ventilation, and cooling system (HVAC). It has a

very simple sensor network, often in the form one or more sensors for

ambient temperature (the thermostats on the wall) that feed data to a

control board that turns on the mechanisms to pump gases through the

system and the fan to move air. Some modern HVACs use additional

sensors to monitor air quality and engage additional active electronic

filters5 or to divert heat and cooling to areas where it’s needed most. If you

have purchased a modern Wi-Fi thermostat, you may be surprised that it is

an IoT device because most allow you to control your HVAC system from

any room or even when you’re not at home.

4 This will become very important to you should a family member need such a
device.

5 Electronic filters are an absolute necessity for those of us with allergies living in
areas with a high concentration of pollutants, both natural and man-made.

Chapter 1 IntroduCtIon to SenSor networkS

8

IS A THERMOSTAT A SENSOR NODE?

If you’ve ever been in a home with a thermostat that used a sliding or rotating

arm to set the desired temperature, it’s likely you’ve encountered a simple

sensor node. older thermostats use a combination of a temperature-sensitive

coil and a tilt switch mounted to it. this coil is in turn mounted to a plate that

can be tilted one way or the other to adjust the desired temperature. as the

room temperature changes, the coil expands or contracts, reorienting the tilt

switch. once the coil expands or contracts so that the tilt switch disengages,

the flow of voltage to the hVaC unit ceases, thereby turning off the unit.

Some manufacturers are creating increasingly sophisticated thermostats.

Some are even capable of recording data and predicting trends. For example,

the nest Learning thermostat (www.nest.com/living-with-nest/)

can detect when someone is at home and can be accessed remotely via the

Internet.

 Atmospheric

Closely related to environmental monitoring is atmospheric monitoring: a

sensor network designed to monitor air quality. Atmospheric monitoring is

a form of environment monitoring, but there is a great deal more emphasis

on studying the atmosphere. The obvious reason is that mammals simply

can’t survive without air (at least, not for long).

As in environment sensor networks, there are specialized sensors

to measure all forms of air quality including free gases, particle

contamination, smoke, humidity, and so on. Other motivations for

building atmospheric sensor networks include measuring pollution from

factories and automobiles (most cars have several atmospheric sensors

incorporated into engine and cabin systems), ensuring clean drinking

water from water treatment plants, and measuring the effects of aerosols.

Chapter 1 IntroduCtIon to SenSor networkS

http://www.nest.com/living-with-nest/

9

Fortunately for the hobbyist and aspiring atmospheric scientist,

gas sensors are plentiful, and many are inexpensive. Better still, many

example projects available on the Internet demonstrate how to construct

atmospheric sensor networks.

ENVIRONMENT VS. ATMOSPHERE: WHAT’S THE DIFFERENCE?

If you’re wondering what the difference is between environment and

atmosphere, you aren’t alone. Simply stated, environment is an aggregate

of things around a subject (a person, an object, or an event) that influences

the subject. thus, it can be all the things around you including the ambient

temperature, moisture content, and so on.

atmosphere (literally, air) refers to the collection of gases that fills the spaces

around objects. atmosphere is one of the elements in an environment.

Scientists have defined many layers of atmosphere surrounding planet earth.

Most atmospheric sensors are designed to measure the unique gases for a

specific level. the lower atmosphere where we live is called the troposphere.

Like the environmental monitoring sensor networks discussed earlier, you

can build your own atmospheric sensor network. In their book, Atmospheric
Monitoring With Arduino: Building Simple Devices to Collect Data About the
Environment (Make, 2012), emily Gertz and patrick di Justo also show how

to build simple sensor networks that measure gases such as butane and

methane, light wavelengths, ozone, and more.

 Security

Some of the most popular and prolific sensor networks are those used for

security and surveillance. You may not think of security systems as sensor

networks, but let’s consider what is involved in a typical home or office

security system.

Chapter 1 IntroduCtIon to SenSor networkS

10

A basic security system is designed to record and alert whenever a

door or window is opened. The sensors in such a network are switches (the

simplest of all sensors) that detect when a door or window is opened or

closed. A central processor or microcontroller can be used to monitor the

sensors and act: for example, generating a signal with a buzzer or bell.

A surveillance system includes more than just a set of switches.

Typically, such a system includes video sensors (cameras—with or without

infrared capabilities to enhance photos at night), boundary sensors

(motion, line-of-sight breaks, etc.), and even audio sensors (microphones).

The system may also include some form of monitor that records the data

and enables users to view that data (see when doors were opened, listen to

audio, and view video).

Most home surveillance systems include a digital video recorder (DVR)

or similar dedicated system and one or more cameras. One popular home

system includes four cameras with audio. The system allows you to record

data from the sensors programmatically as well as view the video in real

time. Figure 1-2 shows a typical and affordable home surveillance system

from Harbor Freight (www.harborfreight.com).

Figure 1-2. Security sensor network: home surveillance system from
Harbor Freight

Chapter 1 IntroduCtIon to SenSor networkS

http://www.harborfreight.com

11

Surveillance systems used in businesses are like home surveillance

systems but typically include additional sensors and data tracking such

as employee badging, equipment monitoring, and integration, along with

offsite support services such as night watchmen and data archiving.

Another example includes the addition of cameras to doorbells,

security lights, and similar outside facing devices. For example, some of

the newest camera doorbells have motion and similar sensors to detect

movement or even enhance video at night. Some, like the ring doorbell,

permit two or more doorbells to link together to form a “neighborhood

watch” system (https://shop.ring.com/pages/neighbors). Best of all,

they provide real-time alerts, which can help you detect crime and alert

authorities sooner. And, yes, this is an IoT device too!

Although they aren’t as inexpensive as temperature, humidity, light,

or gas sensors, microphones and cameras are becoming cheaper. You can

find these sensors at electronics stores such as Adafruit Industries. For

example, Adafruit has a camera (http://adafruit.com/products/397)

that you can connect to your Arduino or Raspberry Pi to record images and

low-frame-rate video (see Figure 1-3).

Figure 1-3. Camera sensor from Adafruit Industries (courtesy of
Adafruit)

Chapter 1 IntroduCtIon to SenSor networkS

https://shop.ring.com/pages/neighbors
http://adafruit.com/products/397

12

Many security sensor networks are available for the consumer. They

range from simple audio/visual monitoring to remote monitored systems

that integrate into your home, tracking everything from movement to

portal breaches, and even temperature and lighting.

 The Topology of a Sensor Network
Now that you’ve seen a few examples, let’s discuss the components

of a sensor network: in this case, a garden pond–monitoring system.

Specifically, the system monitors the health of a fishpond. Thus, the system

is an environmental sensor network.

The motivation is to ensure a safe environment for the fish. This means

the water temperature should be within tolerance for the species of fish,

the water depth should be maintained to avoid over- or under-filling,

and the oxygen level of the water should be monitored to ensure that

there is sufficient oxygen for the fish to survive. Similarly, sensors may be

employed to ensure a healthy level of symbiotic life such as other aquatic

animals or algae.

Most pond owners have learned to build their ponds with the

cycle of life in mind, to be sure the pond can sustain its environment.

However, things can go wrong. The introduction of another species (like

amphibians6 or the dreaded algae infestation) can cause an imbalance

that could threaten your prized Koi. Having the ability to detect when an

imbalance begins can make the solutions much easier to implement.

Figure 1-4 shows a simple drawing depicting the sensors and their

placement. In this system, there are three sensors, a monitoring control or

recording system, and a communication medium—a way for the sensors to

send their data to the monitor. Let’s begin by discussing the sensors.

6 Each pond I’ve built has eventually given seeming spontaneous birth to frogs.
Where do they all come from?

Chapter 1 IntroduCtIon to SenSor networkS

13

If I were to build this system, I would use sensors that operate on low

voltage so that I could use battery or solar to power them. Most sensors

are discrete components that take voltage in and produce either digital or

analog data. They require another component to read the data and send it

to the pond-monitoring control system. If you’re thinking this would be a

good use for an Arduino, you’re right! The Arduino is an excellent platform

for reading data from one or more sensors and sending it to another

system for processing. Some enterprising Arduino enthusiasts have built

monitoring systems using only a single Arduino and multiple sensors.

Let’s assume for this example that the pond-monitoring system is a

computer with an Arduino attached to it so that you can record, view,

or access the data remotely. You now have the sensors connected to

an Arduino (called a sensor node) and the pond-monitoring system

connected to another Arduino (called the aggregator node). What is

missing is how to get the data from the sensor node to the aggregate node.

There are many ways to get two Arduinos to communicate or share

data, but this book limits the discussion to media that permit long-

distance communication—wired or wireless. Wired communication in this

case can be via an Ethernet shield (a special daughter board designed to

sit on top of the Arduino) or a wireless fidelity (Wi-Fi) shield fitted to each

Arduino.

Figure 1-4. Typical fishpond-monitoring system

Chapter 1 IntroduCtIon to SenSor networkS

14

As you can see, many levels of hardware and protocols are involved in

building sensor networks. Now that you have a general idea of what the

major components are, let’s examine the communication media and then

discuss the types of sensor nodes.

 Communication Media
Now that you understand the topology of a sensor network, let’s consider how

sensors communicate their data to the other nodes in the network. They do

so through two basic forms of network communication: wired and wireless.

 Wired Networks
Wired networks can take several forms involving some form of hardware

designed to permit electrical signals to be sent from one device to another

via a wire or cable. Thus, sensor networks that employ wired communication

must also add network hardware to the nodes in the network.

As I mentioned earlier, you can use an Arduino with an Ethernet shield

to connect the sensor node(s) to the aggregate or data-collection nodes. If

your sensors were hosted with Raspberry Pi computers, you would already

have the necessary hardware to connect two Raspberry Pi computers—

they all have RJ-45 LAN ports.

Of course, using wired Ethernet isn’t as simple as plugging a cable in

to two devices. Unless you use a crossover cable, you need some form of

Ethernet switch to connect the devices. A detailed discussion of Ethernet

networks and hardware is beyond the scope of this book, but it’s a viable

communication medium for sensor networks.

While the use of wired networks isn’t as popular today due mostly to

the availability of manyWi-Fi-enabled solutions, the use of wired networks

can help improve transmission speed, reliability, and, in some cases,

improve security.

Chapter 1 IntroduCtIon to SenSor networkS

15

 Wireless Networks
A more popular and more versatile medium is wireless communication. In

this case, you use a wireless device such as a Wi-Fi shield for each Arduino

or Wi-Fi adapters for Raspberry Pi computers. Like wired Ethernet,

wireless Ethernet (Wi-Fi) requires the addition of a wireless router.

However, Wi-Fi has a much shorter maximum distance, so it may not be

suitable for some networks.

But you have another form of wireless at your disposal. You can use

XBee wireless modules instead of Ethernet (Wi-Fi). XBee provides a

specialized, lightweight protocol that is ideal for use in sensor nodes and

small microcontrollers and embedded systems. There is even modules that

support Bluetooth Mesh, but we will focus on the Wi-Fi modules. The rest

of this book uses XBee modules for the communication mechanism of the

example sensor network projects.

One of the features of XBee modules is that they are low power and

can be placed into a periodic sleep mode to conserve power. However, the

best feature is that XBee modules can be connected directly to sensors,

allowing you to build even lighter weight (and cheaper) sensor nodes.

XBee modules are discussed in more detail in Chapter 2.

 Hybrid Networks
Some sophisticated sensor networks require the mixing of both

communication media. For example, an industrial sensor network may

collect data using sensor nodes installed in many different buildings or

rooms. You may want to isolate the sensor networks into subsystems

because each area may require a different form of sensor network. In this

case, it may be better to use wireless for certain segments in which the use

of wired networks is difficult (e.g., a sensor on a moving industrial robot)

and wired Ethernet to link the subsystems to a central data-recording or

data-monitoring system.

Chapter 1 IntroduCtIon to SenSor networkS

16

 Types of Sensor Nodes
Sensor nodes are composed of one or more sensors (although this

book uses only one sensor per node) and a communication device to

transmit the data. As mentioned, the communication device can be a

microcontroller like an Arduino, an embedded system, or even a small-

footprint computer like a Raspberry Pi. Typically, sensor nodes are

designed for unattended operation; they’re sometimes installed on mobile

objects or in locations where wired communication is impractical. In these

situations, sensor nodes can be designed to operate without being tethered

to a power or communication source.

Logically, sensor nodes can be classified into different types based on

how they’re used. The following sections detail type of sensor node used

in this book. It helps to think of the sensor nodes by role so that you can

design and plan the sensor network using logical building blocks.

 Basic Sensor Nodes
At the lowest (or leaf) level of the sensor network is a basic sensor node.

This is the type of node described thus far—it has a single sensor and a

communication mechanism. These nodes don’t store or manipulate the

captured data in any way—they simply pass the data to another node in

the network.

 Data Nodes
The next type of node is a data node. Data nodes are sensor nodes that

store data. These nodes may send the data to another node, but typically

they’re devices that send the data to a storage mechanism such as a data

card, to a database via a computer, or directly to a visual output device like

an LCD screen, panel meter, or LED indicators.

Chapter 1 IntroduCtIon to SenSor networkS

17

Data nodes require a device that can do a bit more than simply pass

the data to another node. They need to be able to record or present the

data. This is an excellent use for a microcontroller, as you’ll see in later

chapters. Digi, the makers of the XBee, has dedicated sensor nodes that

measure temperature, humidity, and light information and transmit the

data on the network. Where is the fun in that? In this book, you build your

own sensor nodes.

Data nodes can be used to form autonomous or unattended sensor

networks that record data for later archiving. Returning to the fishpond

example, many commercial pond-monitoring systems employ self-

contained sensor devices with multiple sensors that send data to a data

node; the user can visit the data node and read the data for use in analysis

on a computer.

 Aggregator Nodes
Another type of node is an aggregate node. These nodes typically employ

a communication device and a recording device (or gateway) and no

sensors. They’re used to collect data from one or more data or sensor

nodes. In the examples discussed thus far, the monitoring system would

have one or more aggregator nodes to read the data from the sensors.

Figure 1-5 shows how each type of nodes would be used in a fictional

sensor network.

Chapter 1 IntroduCtIon to SenSor networkS

18

For the more general case, the diagram should probably show multiple

data nodes (so that the aggregator node is aggregating stuff).

In this example, several sensor nodes at the top send data wirelessly

to a data node in the middle. The data node collects the data and saves it

to a secure digital card, which then sends the data to an aggregator node

that communicates with a database server via a wired computer network

to store the data. Mixing data nodes with aggregator nodes ensures that

you won’t lose any data if your aggregator node fails or the recording and

monitoring system fails or goes offline.

Now that you understand the types of nodes in a sensor network, let’s

examine sensors: how they can measure data and examples of sensors

available for building low-cost sensor networks.

 Sensors
With all this talk of sensors and what sensor networks are and how they

communicate data, you may be wondering what exactly sensors are and

what makes them sense. This section and its subsections answer those

questions and more. Let’s begin with the definition of a sensor.

Figure 1-5. Types of nodes in a sensor network

Chapter 1 IntroduCtIon to SenSor networkS

19

A sensor is a device that measures phenomena of the physical world.

These phenomena can be things you see, like light, gases, water vapor,

and so on. They can also be things you feel, like temperature, electricity,

water, wind, and so on. Humans have senses that act like sensors, allowing

us to experience the world around us. However, there are some things

your sensors can’t see or feel, such as radiation, radio waves, voltage, and

amperage. Upon measuring these phenomena, it’s the sensors’ job to

convey a measurement in the form of either a voltage representation or a

number.

There are many forms of sensors. They’re typically low-cost devices

designed for a single purpose and with a limited capability for processing.

Most simple sensors are discrete components; even those that have more

sophisticated parts can be treated as separate components. Sensors

are either analog or digital and are typically designed to measure only

one thing. But an increasing number of sensor modules are designed to

measure a set of related phenomena, such as the USB Weather Board from

SparkFunElectronics (www.sparkfun.com/products/10586) (see Figure 1-6).

Figure 1-6. USB Weather Board (courtesy of SparkFun and Juan
Pena)

Chapter 1 IntroduCtIon to SenSor networkS

http://www.sparkfun.com/products/10586

20

Notice the blue module with XBee written on it. This is a wireless

module that permits the sensor board to send its data to another node or

multiple nodes. The XBee is discussed in more detail in Chapter 2.

The following sections examine how sensors measure data, how to

store that data, and examples of some common sensors.

 How Sensors Measure
Sensors are electronic devices that generate a voltage based on the unique

properties of their chemical and mechanical construction. They don’t

manipulate the phenomena they’re designed to measure. Rather, sensors

sample some physical variable and turn it into a proportional electric

signal (voltage, current, digital, and so on).

For example, a humidity sensor measures the concentration of water

(moisture) in the air. Humidity sensors react to these phenomena and

generate a voltage that the microcontroller or similar device can then read

and use to calculate a value on a scale. A basic, low-cost humidity sensor is

the DHT-22 available from most electronics stores (see Figure 1-7).

Figure 1-7. DHT-22 humidity sensor (courtesy of Adafruit)

Chapter 1 IntroduCtIon to SenSor networkS

21

The DHT-22 is designed to measure temperature as well as humidity. It

generates a digital signal on the output (data pin). Although simple to use,

it’s a bit slow and should be used to track data at a reasonably slow rate (no

more frequently than about once every 3 or 4 seconds).

When this sensor generates data, that data is transmitted as a series

of high (interpreted as a 1) and low (interpreted as a 0) voltages that

the microcontroller can read and use to form a value. In this case, the

microcontroller reads a value 40 bits in length (40 pulses of high or low

voltage)—that is, 5 bytes—from the sensor and places it in a program

variable. The first two bytes are the value for humidity, the second two

are for temperature, and the fifth byte is the checksum value to ensure an

accurate read. Fortunately, all this hard work is done for you in the form

of a special library designed for the DHT-22 and similar sensors. Let’s see

how this works in practice.

Listing 1-1 shows an excerpt from the DHT library provided by Adafruit

for the Arduino platform. You can find this library at https://github.com/

adafruit/DHT-sensor-library. The listing shows the method used to

read the humidity from the DHT-22 sensor library on the Arduino.

Listing 1-1. Reading Temperature and Humidity with a DHT-22

/*

 Beginning Sensor Networks, 2nd Edition

 This sketch demonstrates a basic sensor node using a DHT22

sensor to read temperature and humidity printing the results

 in the serial monitor.

 Dr. Charles Bell

*/

#include <DHT.h>

#include <DHT_U.h>

Chapter 1 IntroduCtIon to SenSor networkS

https://github.com/adafruit/DHT-sensor-library
https://github.com/adafruit/DHT-sensor-library

22

#define DHTPIN 2 // Digital pin connected to the DHT sensor

#define DHTTYPE DHT22 // DHT 22 (AM2302), AM2321

DHT dht(DHTPIN, DHTTYPE);

void setup() {

}

void loop() {

 float humidity = dht.readHumidity();

 float temperature = dht.readTemperature();

 // Make sure they are numbers or fail.

 if (isnan(temperature) || isnan(humidity)) {

 Serial.println("ERROR: DHT values are not numbers!");

 } else {

 Serial.print("Temperature (C): ");

 Serial.print(temperature);

 Serial.print("Humidity: ");

 Serial.print(humidity);

 }

}

Notice that the DHT library provides methods to make it very easy to

read the temperature (in Celsius) and humidity and display those values.7

Yes, it’s that easy! If you’d like to experiment with the DHT-22, there is an

excellent tutorial on Adafruit’s site (http://learn.adafruit.com/dht).

Recall that the DHT-22 produces a digital value. Not all sensors do this;

some generate a voltage range instead. These are called analog sensors.

Let’s take a moment to understand the differences. This will become

essential information as you plan and build your sensor nodes.

7 Using the serial monitor feature of the Arduino IDE. See Chapter 3 for details on
how to use the serial monitor.

Chapter 1 IntroduCtIon to SenSor networkS

http://learn.adafruit.com/dht

23

 Analog Sensors

Analog sensors are devices that generate a voltage range, typically between

0 and 5 volts.8 An analog-to-digital circuit is needed to convert the voltage to

a number. Most microcontrollers have this feature built in, and the Arduino

is a fine example. The Arduino has a limited set of pins that operate on

analog data and incorporate analog-to-digital (A/D) conversion circuits.

But it isn’t that simple (is it ever?). Analog sensors work like resistors

and, when connected to microcontrollers, often require another resistor to

“pull up” or “pull down” the voltage to avoid spurious changes in voltage

known as floating. This is because voltage flowing through resistors is

continuous in both time and amplitude. Thus, even when the sensor isn’t

generating a value or measurement, there is still a flow of voltage through

the sensor that can cause spurious readings. Your projects require a clear

distinction between OFF (zero voltage) or ON (positive voltage). Pull-up

and pull-down resistors ensure that you have one of these two states. It’s

the responsibility of the A/D converter to take the voltage read from the

sensor and convert it to a value that can be interpreted as data.

WHAT IS A RESISTOR?

a resistor is one of the standard building blocks of electronics. Its job is to

impede current and impose a reduction in voltage (which is converted to heat).

Its effect, known as resistance, is measured in ohms. a resistor can be used

to reduce voltage to other components, limiting frequency response, or protect

sensitive components from over voltage.

8 There are also sensors with a 4–20mA output, but for this book, we will focus on
those with output (signals) in the 0–5V range.

Chapter 1 IntroduCtIon to SenSor networkS

24

when a resistor is used to pull up voltage (by attaching one end to positive

voltage) or pull down voltage (by attaching one end to ground) (resistors

are bidirectional), it eliminates the possibility of the voltage floating in an

indeterminate state. thus, a pull-up resistor ensures that the stable state is

positive voltage, and a pull-down resistor ensures that the stable state is zero

voltage (ground).

an excellent getting-to-know-electronics book is the Encyclopedia of
Electronic Components by Charles platt (o’reilly, 2012).

When sampled (when a value is read from a sensor), the voltage read

must be interpreted as a value in the range specified for the given sensor.

Remember that a value of, say, 2 volts from one analog sensor may not

mean the same thing as 2 volts from another analog sensor. Each sensor’s

datasheet shows you how to interpret these values.

When you use a microcontroller like the Arduino, the A/D converters

conveniently change the voltage into a value that uses 10 bits, resulting in

an integer value between 0 and 1023. For example, a sensor may measure

phenomena in a range consisting of 200 points on a scale. The lowest value

typically represents 0 and the highest 1023. The Arduino in this case can be

programmed to convert the value read from the A/D converter into a value

on the sensor’s scale.

As you can see, working with analog sensors is a lot more complicated

than using the DHT-22 digital sensor from the previous section. With a

little practice, you will find that most analog sensors aren’t difficult to use

once you understand how to attach them to a microcontroller and how

to interpret their voltage on the scale in which the sensor is calibrated to

work.

Chapter 1 IntroduCtIon to SenSor networkS

25

 Digital Sensors

Digital sensors like the DHT-22 are designed to produce a string of bits

using serial transmission (one bit at a time). However, some digital sensors

produce data via parallel transmission (one or more bytes9 at a time).

As described previously, the bits are represented as voltage, where high

voltage (say, 5 volts) or ON is 1 and low voltage (0 or even –5 volts) or OFF

is 0. These sequences of ON and OFF values are called discrete values

because the sensor is producing one or the other in pulses—it’s either ON

or OFF.

Digital sensors can be sampled more frequently than analog signals

because they generate the data more quickly and because no additional

circuitry is needed to read the values (such as A/D converters and logic

or software to convert the values to a scale). Thus, digital sensors are

generally more accurate and reliable than analog sensors. But the accuracy

of a digital sensor is directly proportional to the number of bits it uses for

sampling data.

The most common form of digital sensor is the pushbutton or

switch. What, a button is a sensor? Why, yes, it is a sensor. Consider for a

moment the sensor attached to a window in a home security system. It’s

a simple switch that is closed when the window is closed and open when

the window is open. When the switch is wired into a circuit, the flow of

current is constant and unbroken (measuring positive volts using a pull-

up resistor) when the window is closed and the switch is closed, but the

current is broken (measuring zero volts) when the window and switch is

open. This is the most basic of ON and OFF sensors.

Most digital sensors are small circuits of several components designed

to generate digital data. Unlike analog sensors, reading their data is easy

because the values can be used directly without conversion (except to

9 This depends on the width of the parallel buffer. An 8-bit buffer can communicate
1 byte at a time, a 16-bit buffer can communicate 2 bytes at a time, and so on.

Chapter 1 IntroduCtIon to SenSor networkS

26

other scales or units of measure). Some may suggest this is more difficult

than using analog sensors, but that depends on your point of view. An

electronics enthusiast would see working with analog sensors as easier,

whereas a programmer would think digital sensors are simpler to use.

So, what do you do with the data once it’s measured? The following

section briefly describes some aspects of sensor data and considerations

for storing that data.

 Storing Sensor Data
Storing sensor data depends on how the data is interpreted and ultimately

how it will be used. If you plan to use a computer—or, better, a database—

to store the data, you should store it in a way that makes sense.

For example, storing a sequence of voltages from an analog signal

may be considered preserving the data in its purest form, but without

context or an A/D converter, the data may be meaningless. Storing the

digital conversion of the voltage may not be wise either, because you

must remember the scale and range to derive the values intended to

be represented. Thus, it makes much more sense to store the resulting

conversion to scale. Fortunately, when you’re using digital sensors, the

only thing you need to remember is what unit of measure is being used

(Celsius, Fahrenheit, feet, meters, and so on). Therefore, it’s best to save

the final form of the measurement.

But where do you store this information? Commercial sensor networks

store the data in an embedded database or file-storage device, transmit it

to another system for storage, or store it on removable digital media. Older

sensor networks (like a polygraph or EKG machine) store the data as hard

copy using graphs (making them very obsolete).

There are several simple storage devices and technologies you can

use to build your own sensor networks, ranging from local devices for

the Arduino to modern hard drives on the Raspberry Pi. These storage

Chapter 1 IntroduCtIon to SenSor networkS

27

mechanisms are listed here and discussed in more detail when this book

examines the types of hardware used and application of technologies in

building sensor networks:

• Hard-copy printer

• Secure digital card

• USB hard drive

• Web server

• Database server (MySQL)

Now let’s look at some of the sensors available and the types of

phenomena they measure.

 Examples of Sensors
All sensor networks begin with one sensor and a means to read and

interpret the data. This chapter has presented a lot of information about

sensors. You may be thinking of all manner of useful things you can

measure in your home or office or even in your yard or surroundings. You

may want to measure the temperature changes in your new sun room,

detect when the mail carrier has tossed the latest circular in your mailbox,

or perhaps keep a log of how many times your dog uses his doggy door. I

hope that by now you can see these are just the tip of the iceberg when it

comes to imagining what you can measure. You should be thinking about

what kind of sensor network you want to build; you can use this book to

learn how to build it.

What types of sensors are available? The following list describes

some of the more popular sensors and what they measure. This is just a

sampling of what is available. Perusing the catalogs of online electronics

vendors like Mouser Electronics (www.mouser.com), SparkFun Electronics

Chapter 1 IntroduCtIon to SenSor networkS

http://www.mouser.com

28

(www.sparkfun.com), and Adafruit Industries (http://adafruit.com/) will

reveal many more examples:

• Accelerometers: These sensors measure motion or

movement of the sensor or whatever it’s attached to.

They’re designed to sense motion on several axes

(velocity, inclination, vibration, etc.). Some include

gyroscopic features. Most are digital sensors. A Wii

Nunchuck (or WiiChuck) contains a sophisticated

accelerometer for tracking movement. Aha: now you

know the secret of those funny little thingamabobs that

came with your Wii.

• Audio sensors: Perhaps this is obvious, but

microphones are used to measure sound. Most are

analog, but some of the better security and surveillance

sensors have digital variants for higher compression of

transmitted data.

• Barcode readers: These sensors are designed to read

barcodes. Most often, barcode readers generate

digital data representing the numeric equivalent of

a barcode. Such sensors are often used in inventory-

tracking systems to track equipment through a plant

or during transport. They’re plentiful, and many are

economically priced, enabling you to incorporate them

into your own projects.

• RFID sensors: Radio frequency identification uses

a passive device (sometimes called an RFID tag) to

communicate data using radio frequencies through

electromagnetic induction. For example, an RFID

tag can be a creditcard–sized plastic card, a label, or

something similar that contains a special antenna,

Chapter 1 IntroduCtIon to SenSor networkS

http://www.sparkfun.com
http://adafruit.com/

29

typically in the form of a coil, thin wire, or foil layer

that is tuned to a specific frequency. When the tag is

placed near the reader, the reader emits a radio signal;

the tag can use the electromagnet energy to transmit

a nonvolatile message embedded in the antenna, in

the form of radio signals which is then converted to an

alphanumeric string.10

• Biometric sensors: A sensor that reads fingerprints,

irises, or palm prints contains a special sensor designed

to recognize patterns. Given the uniqueness inherit

in patterns such as fingerprints and palm prints, they

make excellent components for a secure access system.

Most biometric sensors produce a block of digital data

that represents the fingerprint or palm print.

• Capacitive sensors: A special application of capacitive

sensors, pulse sensors are designed to measure your

pulse rate and typically use a fingertip for the sensing

site. Special devices known as pulse oximeters (called

pulseox by some medical professionals) measure pulse

rate with a capacitive sensor and determine the oxygen

content of blood with a light sensor. If you own modern

electronic devices, you may have encountered touch-

sensitive buttons that use special capacitive sensors to

detect touch and pressure. Some newer versions can be

used to measure liquid levels.

• Coin sensors: This is one of the most unusual types

of sensors.11 These devices are like the coin slots on

a typical vending machine. Like their commercial

10 http://en.wikipedia.org/wiki/Radio-frequency_identification
11 www.sparkfun.com/products/11719

Chapter 1 IntroduCtIon to SenSor networkS

http://en.wikipedia.org/wiki/Radio-frequency_identification
http://www.sparkfun.com/products/11719

30

equivalent, they can be calibrated to sense when

a certain size of coin is inserted. Although not as

sophisticated as commercial units that can distinguish

fake coins from real ones, coin sensors can be used to

add a new dimension to your projects. Imagine a coin-

operated Wi-Fi station. Now, that should keep the kids

from spending too much time on the Internet!

• Current sensors: These are designed to measure voltage

and amperage. Some are designed to measure change,

whereas others measure load.

• Flex/force sensors: Resistance sensors measure flexes

in a piece of material or the force or impact of pressure

on the sensor. Flex sensors may be useful for measuring

torsional effects or to measure finger movements (like

in a Nintendo Power Glove). Flex-sensor resistance

increases when the sensor is flexed.

• Gas sensors: There are a great many types of gas

sensors. Some measure potentially harmful gases such

as LPG and methane and other gases such as hydrogen,

oxygen, and so on. Other gas sensors are combined

with light sensors to sense smoke or pollutants in

the air. The next time you hear that telltale and often

annoying low-battery warning beep12 from your smoke

detector, think about what that device contains. Why,

it’s a sensor node!

12 Here’s a good home owner tip. Instead of running around trying to figure out
which detector is intermittently signaling a dead battery (or a false positive),
consider replacing them with the newer versions that have 10-year batteries
(www.lowes.com/pd/First-Alert-Micro-Photoelectric-Smoke-Alarm-with-
10-Year-Battery/1000456457).

Chapter 1 IntroduCtIon to SenSor networkS

http://www.lowes.com/pd/First-Alert-Micro-Photoelectric-Smoke-Alarm-with-10-Year-Battery/1000456457
http://www.lowes.com/pd/First-Alert-Micro-Photoelectric-Smoke-Alarm-with-10-Year-Battery/1000456457

31

• Light sensors: Sensors that measure the intensity or lack

of light are special types of resistors: light-dependent

resistors (LDRs), sometimes called photo resistors or

photocells. Thus, they’re analog by nature. If you own

a Mac laptop, chances are you’ve seen a photo resistor

in action when your illuminated keyboard turns itself

on in low light. Or, your phone can change brightness

using light sensors. Special forms of light sensors can

detect other light spectrums such as infrared (as in

older TV remotes).

• Liquid-flow sensors: These sensors resemble valves

and are placed inline in plumbing systems. They

measure the flow of liquid as it passes through. Basic

flow sensors use a spinning wheel and a magnet to

generate a Hall effect (rapid ON/OFF sequences whose

frequency equates to how much water has passed).

• Liquid-level sensors: A special resistive solid-state

device can be used to measure the relative height of a

body of water. One example generates low resistance

when the water level is high and higher resistance

when the level is low.

• Location sensors: Modern smartphones have GPS

sensors for sensing location, and of course GPS

devices use the GPS technology to help you navigate.

Fortunately, GPS sensors are available in low-cost

forms, enabling you to add location sensing to your

sensor network. GPS sensors generate digital data in

the form of longitude and latitude, but some can also

sense altitude.

Chapter 1 IntroduCtIon to SenSor networkS

32

• Magnetic-stripe readers: These sensors read data from

magnetic stripes (like that on a credit card) and return

the digital form of the alphanumeric data (the actual

strings).

• Magnetometers: These sensors measure orientation via the

strength of magnetic fields. A compass is a sensor for finding

magnetic north. Some magnetometers offer multiple axes

to allow even finer detection of magnetic fields.

• Proximity sensors: Often thought of as distance sensors,

proximity sensors use infrared or sound waves to detect

distance or the range to/from an object. Made popular

by low-cost robotics kits, the Parallax Ultrasonic Sensor

uses sound waves to measure distance by sensing the

amount of time between pulse sent and pulse received

(the echo). For approximate distance measuring,13 it’s

a simple math problem to convert the time to distance.

How cool is that?

• Radiation sensors: Among the more serious sensors

are those that detect radiation. This can also be

electromagnetic radiation (there are sensors for that

too), but a Geiger counter uses radiation sensors to

detect harmful ionizing. In fact, it’s possible to build

your very own Geiger counter using a sensor and an

Arduino (and a few electronic components).

• Speed sensors: Like flow sensors, simple speed sensors

like those found on many bicycles use a magnet and

a reed switch to generate a Hall effect. The frequency

13 Accuracy may depend on environmental variables such as elevation,
temperature, and so on.

Chapter 1 IntroduCtIon to SenSor networkS

33

combined with the circumference of the wheel can

be used to calculate speed and, over time, distance

traveled. Yes, a bicycle computer is yet another

example of a simple sensor network: the speed sensor

on the wheel and fork provides the data for the monitor

on your handlebars.

• Switches and pushbuttons: These are the most basic of

digital sensors used to detect if something is set (ON)

or reset (OFF).

• Tilt switches: These sensors can detect when a device

is tilted one way or another. Although very simple, they

can be useful for low-cost motion-detection sensors.

They are digital and are essentially switches.

• Touch sensors: The touch-sensitive membranes formed

into keypads, keyboards, pointing devices, and the like

are an interesting form of sensor. You can use touch-

sensitive devices like these for sensor networks that

need to collect data from humans.

• Video sensors: As mentioned previously, it’s possible to

obtain very small video sensors that use cameras and

circuitry to capture images and transmit them as digital

data.

• Weather sensors: Sensors for temperature, barometric

pressure, rainfall, humidity, wind speed, and so on are

all classified as weather sensors. Most generate digital

data and can be combined to create comprehensive

environmental sensor networks. Yes, it’s possible to

build your own weather station from about a dozen

inexpensive sensors, an Arduino (or a Raspberry Pi), and

a bit of programming to interpret and combine the data.

Chapter 1 IntroduCtIon to SenSor networkS

34

 Summary
Sensors are everywhere. They’re in your office, your car, your home, and

our personal electronic devices (which, for most people, means we always

have a sensor nearby). Most of the sensors you encounter are discrete, like

a smoke detector or thermostat. Sometimes they’re part of a much larger

collection of sensors designed to realize some feature, such as the sensors

in your car that keep your speed constant when you set the cruise control,

engaging the windshield wipers when it rains, or vibrating your seat if you

veer too close to lane demarcations.

Now that you’ve learned more about the types of sensors and the data

they communicate, you’ve probably started to think of some cool projects

to build. This book will prepare you to realize those projects. This chapter

examined what sensor networks are, how they’re constructed, how they

communicate, and how sensors work. You even saw a bit of code!

The next chapter focuses on the communication medium used in this

book, by diving into a short tutorial of the new XBee 3 wireless modules.

You see how to set up and configure these devices for use in transmitting

sensor data to data and aggregate nodes.

Chapter 1 IntroduCtIon to SenSor networkS

35© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_2

CHAPTER 2

Tiny Talking Modules:
An Introduction
to XBee Wireless
Modules
The application of sensor networks often precludes the use of wired

sensors. Although it’s possible to use wired sensors installed in a

controlled environment that supports a cable plant, you seldom have this

luxury. Sometimes you can connect some parts of a sensor network to a

wired network, but the sensors are located in areas where running wires is

impractical. Thus, most sensor networks require using wireless technology

to transmit data from the sensors to other nodes in the network.

There are many forms of wireless communication. This book uses

one of the easiest: the XBee wireless module from Digi. In this chapter,

you explore the basics of using the XBee modules, from choosing a

module to configuring it for use with a microcontroller and finally to

creating a simple network.

https://doi.org/10.1007/978-1-4842-5796-8_2#ESM

36

 What Is an XBee?
An XBee is a self-contained, modular, cost-effective component that uses

radio frequency (RF) to exchange data between XBee modules. XBee

modules transmit on 2.4 GHz or long-range 900 MHz and have their own

network protocols.

The XBee module itself is very small—about the size of a large postage

stamp—making it easy to incorporate in small projects like sensor nodes.

The modules are also low power and can use a special sleep mode to

further reduce power consumption.

Although the XBee isn’t a microcontroller, it does have a limited

amount of processing power that you can use to control the module. One

of these features, the sleep mode, can help extend battery life for battery-

powered (or solar-powered) sensor nodes. You can also instruct the XBee

module to monitor its data pins and transmit the data read to another

XBee module. Aha! So, you can use XBee modules to link a sensor node to

a data-aggregator node.

While the XBee can be used to read sensor data, its limited processing

power may mean it is not suitable for all sensor nodes. For example,

sensors that require algorithms to interpret or extrapolate meaningful

data may not be suited for using an XBee alone. You may need to use a

microcontroller or computer to perform the additional calculations.

Even better, the newest model of XBee (version 3) can be programmed

on chip using MicroPython. You can even interface with (talk to) the

module and execute your MicroPython code interactively (very much like

you would with Python on a PC). We will see more about this exciting new

feature later in this chapter.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

37

Note to configure an XBee module, you must use the digi
configuration tool, XCtu, which is (now) available on Windows,
macos, and linux. older versions were limited to Windows.

The following sections explore how to get started using XBee

modules, beginning with how to choose an XBee module. I encourage

you to read through the chapter before embarking on the project. I list

the materials needed to complete this chapter’s projects before the

chapter summary.

 XBee Primer
This section describes the types of XBee modules available, how to choose

modules for your project, and how to configure them. I have kept this

section short and terse while providing enough information to explain

what XBee modules you will be using and why.

But there is one thing that confuses most new to the world of XBee:

how to configure the modules. So, let’s clarify that first. The XBee modules

have numerous controls and settings that allow you to configure it for

your project. There are two ways to alter these settings:(1) using the Digi-

supplied XCTU desktop application and(2) using a terminal application

with an XBee USB explorer board to manually change settings. This is done

using a set of commands (called AT commands) in a specific mode (called

amazingly enough AT mode).

You will learn about the different connection methods as well as the

two operating modes. You will also see demonstrations of both methods to

configure XBee modules. With that out of the way, let’s dive into our XBee

tutorial starting with choosing XBee modules.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

38

 Choosing XBee Modules
If you visit the Digi XBee website (www.digi.com/products/embedded-

systems/digi-xbee/rf-modules), you will see a list of the latest modules

to choose. There are modules that support proprietary (Digi) protocols,

WiFi (UART or SPI to 802.11 b/g/n), and ZigBee1 and 802.15.4 protocols. So

how do you know which to choose?

Some of the most popular XBee modules are those that support

the ZigBee protocol. You will be using these modules for the projects in

this book. If you click the link for the ZigBee modules (www.digi.com/

products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-modules/

xbee3-zigbee-3), you will find there are three form factors to choose to

match your hardware requirements and that the modules support a variety

of protocols including the ZigBee feature set, Digi Mesh, Bluetooth low

energy (BLE), and 802.15.42 protocols. This book uses the modules that

support the ZigBee Pro feature set.

There are many XBee modules available in one of three form factors

including through-hole and two surface-mount options. If you click the

Part Numbers & Accessories link, you will see a long list of modules

grouped by the form factor. Figure 2-1 shows two of the formats

available with the through-hole format on the left. Both are available at

most retailers.

1 ZigBee is based on the 802.15.4 protocol that provides power management,
addressing, and error control, as well as networking features.

2 For more information, see http://en.wikipedia.org/wiki/IEEE_802.15.4.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com/products/embedded-systems/digi-xbee/rf-modules
http://www.digi.com/products/embedded-systems/digi-xbee/rf-modules
http://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-modules/xbee3-zigbee-3
http://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-modules/xbee3-zigbee-3
http://www.digi.com/products/embedded-systems/digi-xbee/rf-modules/2-4-ghz-modules/xbee3-zigbee-3
http://en.wikipedia.org/wiki/IEEE_802.15.4

39

OK, WHAT’S A ZIGBEE?

ZigBee is an open standard for network communication based on the ieee

802.15.4 standard. the protocol supports the formation of mesh networks that

can automatically configure (via the coordinator and router roles), heal broken

links, and allow transmission of data over longer ranges using intermediate

nodes (data is passed through the mesh from node to node). despite the

name, ZigBee is not owned by digi, nor is it limited to the similarly named

XBee module.

For this book, we will be using the through-hole format. Digi offers

these options to allow even more freedom of design so that the XBee

modules can be used in almost any application where a low-cost wireless

option is needed.

Furthermore, you will notice there are two versions of each form factor:

a standard model and a pro model. Both models have the same pinout

and you can mix and match them in the same network. The pro models

may be slightly larger (longer), use more power, cost a bit more, but offer

greater range than the standard (also called “regular modules”) modules.

However, you may not be able to tell the XBee 3 pro and regular modules

apart without connecting them to your computer. For example, the PCB

option XBee 3 pro and regular modules appear identical, but there is a

subtle difference printed in black ink on the top of the board. The regular

Figure 2-1. XBee 3 form factors

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

40

modules (of the batch I’m using) are stamped with “109 202,” whereas the

pro module is stamped with “941 201.” If you’re using XBee 3 modules, you

may want to place a small mark on your pro modules to make them easier

to identify.

Although you won’t find them on the Digi website, there are several

iterations (called series or versions) of XBee-ZB modules. Series 1 modules

use an older chipset that supports point-to-point communication.3

Series 2 and 2.5 have a newer chipset that supports several forms of

communication, including mesh networks. Series 3 have the latest chipset

and feature on-chip MicroPython for faster and easier development. You

will use series 2 and series 3 modules for this book.

WHICH SERIES SHOULD I USE?

With so many series of XBee modules available, you may be wondering which

you should choose to use. the answer depends on how you want to use them

and your own experience level. For some, using the series 2 and 2.5 will meet

all of their needs. For others, the added ease of use of the series 3 may be a

better fit.

another aspect may be the cost of the modules. With the release of the series 3

modules, the older series modules may be found cheaper.

so, which should you use? if you already have some modules, it turns out it

doesn’t matter since the series 3 is backward compatible with the series 2

modules. thus, you can use your existing modules and add the new series 3

modules if you need more. if you don’t have any modules, using the series 3

may be the easiest route to get your sensor network operating.

3 Sometimes called cable replacement because it effectively links two devices
together without a cable.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

41

But you’re not done yet. You also have to choose the antenna type

you want to use. There are three antenna options for either regular or pro

modules.4 Figure 2-2 depicts each type available for the XBee-ZB modules.

The following list describes each in more detail:

• U.FL: This option has a very small connector that

requires an adapter cable (called a pigtail) to permit

the connection to an external antenna. These antennas

have the advantage that the XBee module can be

enclosed in a casing (even metal) and the antenna

mounted to the exterior of the case. These modules

tend to cost a few dollars more and require the

purchase of the pigtail as well as the antenna.

• RPSMA: Like the U.FL option, this one provides for an

external antenna; but it uses the much larger RPSMA

connector. You can mount a swivel antenna to the

connector directly, but the risk of stress on the antenna

is too great. Thus, you should use an extension cable

and mount the antenna externally. Like the U.FL

option, these modules cost a bit more and require the

purchase of an antenna.

• PCB: The antenna is printed or embedded as a wire

trace onto the module itself. This type of module

is similar to the chip antenna and may be a bit less

expensive to manufacture. Currently, only the PRO

modules are available with this antenna option.

4 Series 2 modules had five antenna options for the PRO module and four for the
standard modules.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

42

WHERE’S THE WHIP?

if you’ve encountered XBee modules in the past, you may be familiar with

an antenna option where a small wire was mounted on the module called a

“whip” or wire antenna. these were available in the series 2.5 and earlier.

they were a bit cheaper and offered an omni-directional signal, making them

easier to use in certain applications. if you can find these modules, you may be

able to save a few dollars on your project.

however, the wire antenna is not durable and can be easily broken if flexed

too often. Fortunately, you can solder a replacement antenna using a bit of

stranded wire of the same gauge and length. soldering the old antenna back

in place by stripping a bit of the insulation is another option, but that does

change its radiation properties slightly.

Now you know that there are many types of XBee modules and that

this book’s projects are limited to the XBee-ZB series 2 and 3 modules, let

us discuss how to communicate with the modules.

 Interacting with an XBee-ZB Module
When you examine the XBee module, the first thing you notice is that

the pin layout is much smaller than that of a typical discrete component

designed for breadboard use. Furthermore, you cannot connect your

Figure 2-2. XBee module antenna options (courtesy of SparkFun)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

43

computer directly to the XBee. You need a USB adapter to mount the XBee

to allow communication with the module. Fortunately, several variants are

available. You use the USB adapter to configure the module.

You can use a USB dongle like the XBee Explorer dongle from

SparkFun Electronics (www.sparkfun.com/products/11697). This option

allows you to mount the XBee module in the headers (the two rows of

ten- pin connectors) on the PCB and plug the entire unit into your USB

port. Since it is only a bit larger than the XBee module itself and has no

need for a cable, it may be the best choice for using your XBee in remote

locations.

Figure 2-3 shows the XBee Explorer dongle without the XBee module.

It accepts series 1, 2, 2.5, and 3 standard or PRO models.

Notice the white outline of the XBee module on the right side of the

PCB. This indicates the correct orientation of the module on the board.

Be sure to check pin alignment before inserting it into your USB port.

A similar option is the XBee Explorer USB, also from SparkFun

(www.sparkfun.com/products/11812). Instead of being made as a

dongle, it is a separate PCB base unit with a miniUSB connector. It also

supports series 1, 2, 2.5, and 3 standard or PRO modules. It requires a

USB-to-mini USB cable. Figure 2-4 shows the XBee Explorer USB unit.

Figure 2-3. XBee Explorer dongle (courtesy of SparkFun)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.sparkfun.com/products/11697
http://www.sparkfun.com/products/11812

44

Both options from SparkFun include the mounting holes for headers

that can be used with breadboards, giving you access to all the pins of the

XBee module. Although they do not come with the pins soldered in place,

the pins are easy to add if you so desire. You will see in later chapters where

this would be helpful.

SparkFun also carries several other XBee Explorer boards including a

regulated breakout board (www.sparkfun.com/products/11373) and an

Arduino shield (www.sparkfun.com/products/12847). If you plan to use an

Arduino to host the XBee, the SparkFun shield is a must-have. Figure 2-5

shows the SparkFunXBeeshield.

There are also several boards in their “SparkFun Thing” range of

boards that support XBee modules such as the SparkFun Thing Plus

(www.sparkfun.com/products/15454).

Figure 2-4. XBee Explorer USB (courtesy of SparkFun)

Figure 2-5. XBee Arduino shield (courtesy of SparkFun)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/12847
http://www.sparkfun.com/products/15454

45

WHAT IS A SHIELD?

a shield is a pCB designed to mount on top of an arduino by connecting

to the headers on the arduino. shields are used to extend the hardware

features of the arduino. there are shields for controlling lCds, ethernet,

XBees, and much more.

Digi also produces an XBee 3 development kit that contains three XBee

standard surface-mount modules with antenna and three USB interface

boards. It also includes all the cables you need to get started including

a handy storage box. Although the cost is rather intimidating ($110.95

suggested retail), it does provide a one-stop shopping option for those

looking for maximum practicality and no assembly (other than plugging

the modules into the interface boards). Figure 2-6 shows the Digi ZigBee

Development Kit sold by SparkFun (www.sparkfun.com/products/15216).

One nice feature of this kit is the explorer boards support the plug-

and- play Grove interface (also called the Grove system), which makes

wiring the modules to Grove-enabled sensors as simple as plugging them

together. For more information about the Grove interface, see http://

wiki.seeedstudio.com/Grove_System/.

Figure 2-6. Digi ZigBee Development Kit

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.sparkfun.com/products/15216
http://wiki.seeedstudio.com/Grove_System/
http://wiki.seeedstudio.com/Grove_System/

46

While there are other options available from many vendors, including

older serial interface modules, these are among the best and easiest-to-

use options I have found for working with XBee modules. When you get

to the point where we are using XBee modules with Arduino, you’ll see an

example of an XBee shield that enables direct connection of the XBee to

the Arduino pins.

 Pin Layout
If you look at the XBee module, you will see a total of 20 pins. If you view

the module from the top (the side with the antenna), the pins are labeled

1–10 starting on the upper left and 11–20 starting from the lower right.

Thus, pin 1 is in the upper left, and pin 20 is in the upper right. But what do

all these things do?

You will be exploring these pins in more detail in later chapters, but

for now (if you are curious), Table 2-1 depicts the pin layout for a typical

XBee module. In this case, I am presenting the pin layout of an XBee-ZB

series 2 module. Series 3 modules have one difference in the pins; pin 14 is

not supported on the series 3 modules and should not be used with those

modules.

Table 2-1. XBee Pin Layout

Pin Name Description Direction Default

1 VCC power supply n/a n/a

2 dout uart data out out out

3 din/ConFig uart data in in in

4 dio12 digital i/o 12 Both disaBled

5 reset Module reset Both open collector

with pull-up

(continued)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

47

Pin Name Description Direction Default

6 rssi pWM/dio10 rX signal strength,

digital i/o 10

Both out

7 dio11 digital i/o 11 Both in

8 reserved no connection na disaBled

9 dtr/sleep_rQ/

dio08

sleep control, digital

i/o 8

Both in

10 gnd ground n/a n/a

11 dio4 digital i/o 4 Both disaBled

12 Cts/dio7 Clear to send, digital

i/o 7

Both out

13 on/sleep status, digital i/o 9 out out

14 VreF no connection in n/a

15 assoCiate/dio5 associated indicator,

digital i/o 5

Both out

16 rts/dio6 request to send, digital

i/o 6

Both in

17 ad3/dio3 analog i/o 3, digital

i/o 3

Both disaBled

18 ad2/dio2 analog i/o 2, digital

i/o 2

Both disaBled

19 ad1/dio1 analog i/o 1, digital

i/o 1

Both disaBled

20 ado/dio0 analog i/o 0, digital

i/o 0

Both disaBled

Table 2-1. (continued)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

48

To find more information about the XBee 3 module hardware, see the

hardware reference document from Digi at www.digi.com/resources/

documentation/digidocs/pdfs/90001543.pdf.

In the next section, you will see how to get started configuring the

modules for use in your projects.

 Configuring Modules
Configuring XBee modules is not very difficult. Because you are using

ZigBee modules, you need to set the address for each module, choose a

role to perform in the network, and configure your modules to interface

with whatever sensor or microcontroller you are using to process the

sensor data. Let’s begin by discussing ZigBee addressing.

CAN SENSORS BE CONNECTED DIRECTLY TO THE XBEE?

the XBee module can read sensor data via its i/o ports. however, not all

sensors can be connected directly to an XBee module. if the sensor requires

direct i/o using special communication protocols, you need a microcontroller

to read the sensor data and then send it to the XBee for transmission. you will

see this in action when you explore using a dht-22 temperature sensor in the

next chapter.

 Addresses

The XBee modules are branded with a specific serial number or address

located on the bottom of the module. This is a little inconvenient given

that you normally cannot see the back of the module when it is mounted.

However, you can find the address using either the Digi configuration

application or a simple serial terminal application.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com/resources/documentation/digidocs/pdfs/90001543.pdf
http://www.digi.com/resources/documentation/digidocs/pdfs/90001543.pdf

49

Figure 2-7 shows the underside of an XBee 3 module (enlarged for

better viewing). Notice the numbers printed under the model number. You

use these together to form a 64-bit address unique to each XBee module.

This is referred to by many publications as the radio address and is split

into two parts: a high and low address (or value). For example, the address

shown in the figure,0013A200, is the “high” address and 4192DA30 is the

“low” address. We will need these in an upcoming example.

Tip it is common to see the XBee referred to as either a module
or a radio. these terms are often interchanged. i refer to the XBee
in general terms with module and with radio when referring to the
transmit and receive capabilities of the radio itself.

The radio’s address is used to target messages for delivery. In many

ways, it is similar to an IP address, but in this case, it is a specific radio

address.

Along with the specific 64-bit radio address, ZigBee networks use a

16- bit address within each network that is assigned to each radio. In

addition, you can assign a short text string to identify each radio. Along

with that, there is a personal area network (PAN) address that can be

used to logically group the radios in a network. Finally, all radios must be

Figure 2-7. XBee address printed on the back of the module

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

50

transmitting and receiving on the same channel (frequency). To recap,

when an XBee radio wants to send a message to another radio, it must use

the same channel and set the destination PAN and a specific 16-bit radio

address. You see these options in action in the following sections.

 ZigBee Networks

Like Ethernet networks, ZigBee networks are based on a predefined

network stack where each layer in the stack is responsible for a specific

transformation of the data messages. Also like other networks, ZigBee

networks support message routing, ad hoc network creation, and self-

healing mesh topologies. Thus, the radio address and the PAN address are

needed to support these features.

Support for mesh topologies is made possible with the addition of

different roles that each node (radio) can perform in the network. The

following list describes each role in more detail, starting from the most

complex:

• Coordinator: A single coordinator is needed for each

network. This node is responsible for administering

addresses and forming and managing the network. All

other nodes search for the coordinator and exchange

handshake information at startup.

• Router: A node that is configured as a router is designed

to pass on (route) information to other radios. Routers

enable the healing of mesh networks by joining

networks and exchanging messages from other nodes.

Routers are typically powered with reliable sources

because they must be dependable. Thus, a data-

aggregation node would be a good choice for the router

radio mode.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

51

• End device: An end device is a node that sends or

receives information to the router nodes and the

coordinator. It has an advantage in that less processing

is going on, so power consumption is lower. End

devices support a sleep mode to reduce power

requirements still further. Most of your sensor nodes

will be configured as end devices.

You can configure your XBee modules in any way you want, provided

you have at least one coordinator in the network. To form a mesh, simply

employ several routers, where one or more end devices exchange messages

and the routers exchange messages with a coordinator. Figure 2-8 shows a

typical mesh network.

Configuring XBee modules can sometimes go wrong. When this

happens, the issue can be very frustrating to diagnose and correct. I

include a troubleshooting section at the end of this chapter that will help

you solve many of the common things that can go wonky and drive you

batty. If you get stuck, check out the troubleshooting section.

Figure 2-8. ZigBee mesh network

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

52

 Updating Firmware

The first thing you should do when starting to configure XBee modules

is to load the latest version of the firmware and set the role. Firmware in

this case refers to the program for the XBee’s embedded microcontroller.

You should only need to change the firmware if any of your series 2 or

2.5 modules are using an older version or if you want to experiment with

different configurations. Similarly, if you want to use a series 3 module

with older modules, you will have to load a different firmware on the

series 3 modules. For example, if you want to use a series 2 and a series

3 together using the 802.15.14 protocol, you should install the same

firmware on each module.

Digi makes this easy by providing a nice configuration application

named XCTU. Loading firmware can only be done with the XCTU

application. Figure 2-9 shows XCTU running without any modules

attached.

Figure 2-9. XCTU main window

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

53

As you can see, the XCTU software will give you friendly reminders and

tips on how to do things. In the following paragraphs, we will see how to

contact and configure modules. You can download the latest version of the

XCTU software from the following URL:

www.digi.com/products/embedded-systems/digi-xbee/digi-xbee-

tools/xctu#productsupport-utilities

You will find installers for most platforms including macOS, Windows,

and Linux as well as links to the release notes and license documents.

Simply download the installer for your platform and install it using the

methods common to the platform. For example, on Windows, you would

run and execute the installer, and on macOS, you must first extract the

installer from a compressed file and then execute the installer.

Once the software is installed and you launch the XCTU software, you

need to connect to your XBee modules. To connect to the XBee, simply

insert the XBee module into the adapter and connect it to your computer.

For example, if you are using the SparkFun Explorer USB dongle, you need

only insert the XBee module into the dongle first. Once you insert the

dongle into a USB slot, you should see the power LED glow.

Once the explorer is connected to your computer, you can add the

module using either of the buttons in the top left portion of the window as

shown in Figure 2-10. The one on the left allows you to add a module by

specifying its serial connection parameters, and the one on the right scans

all serial connections for modules. Let’s use the add module button.

Figure 2-10. Add and scan modulebuttons

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

54

When ready, click the add radio button. You should see a dialog open

that permits you to choose the serial connection and set the connection

parameters. The default serial connection parameters are 9600 baud, no

flow control, 8 bits, no parity, and 1 stop bit (also written as 96008N1). If

you find your XBee won’t communicate, chances are it is operating at a

different baud rate. If you change the baud rate, you should change it for

all modules. Figure 2-11 shows the add module dialog. If you elected to use

the discover option, you can select multiple serial configurations to search.

Simply select the serial connection, verify the connection parameters,

and click Finish. It takes a few seconds for XCTU to make the connection,

and once it does, you will see the module appear in the left column of the

main window as shown in Figure 2-12. Newer series 3 modules will appear

with a black background, and older series modules will appear with a blue

background. This permits you to look at the list and quickly identify your

older modules.

Figure 2-11. Add module dialog

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

55

The list of radios also shows the role the module is assigned. For

example, a router will appear with an “R” and the coordinator will appear

with a “C” icon over the module image. You will also see the protocol icon

change depending on what firmware is loaded. Icons to the right of each

module allow you to close the radio connection, run a discovery operation

to find other modules on the same network, and hide the module details.

Figure 2-13 shows an example of a series 3 module.

Notice in the center there is additional data including the name of

the module (you can change the name), function (the firmware loaded),

serial connection, and media access control (MAC) address.5 Recall, each

module has a unique MAC address and is printed on the bottom of the

module. Notice also there is a diamond with an “R” in it. This indicates the

Figure 2-12. Radio module added

Figure 2-13. Radio entry—overview

5 https://en.wikipedia.org/wiki/MAC_address

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

https://en.wikipedia.org/wiki/MAC_address

56

role the module is currently programmed to perform. In this case, it is a

router. The coordinator would be shown with a “C” and end devices with

an “E”. This is just one of the very nice touches the XCTU application has to

make working with XBee modules easy.

Next, we can click the module in the left-hand column and see the

details for the module. Figure 2-14 shows the radio module details for the

series 3 module shown earlier.

The radio module settings include a long list of things you can change.

While most are things you would not normally change, some are those you

will need to change when you configure your modules. For example, you

may need to set the role and other parameters for using in a ZigBee mesh.

Fortunately, the settings are grouped into categories that you can collapse

Figure 2-14. XCTU radio module settings

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

57

or expand to make it easier to find the settings you want. Just click the

triangle for each category to collapse or open it. There is also a search box

that lets you search for a setting. That’s a nice touch.

Let’s see how to make a small change. Notice the series 3 module

shown in the figures does not have a name. Whenever you make a change

to any setting, you first find the setting, make the change, and then

write the changes to the module. In this case, we want the name whose

parameter is node identifier or NI. To find it in the settings, simply type NI

in the search box. You can then change the name as shown in Figure 2-15.

Notice I changed the node identifier. To write the changes to the

module, I click the pencil icon next to the setting. You can also make

changes to other parameters applying each in turn or wait and update all

changes by clicking the Write button to write all changes to the module.

Figure 2-16 shows the radio with changes applied.

Figure 2-15. Change the name identifier for a module

Figure 2-16. Radio module name changed

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

58

Naming your modules can also help identify them in the list of radio

modules. In fact, XCTU allows you to sort the modules in a variety of ways

including by name. Setting other parameters are just as easy. For example, you

may want to set the PAN address, destination address, and node identifier.

There is one more aspect you should understand about XBee

modules—managing the firmware. If you have older modules, you may be

prompted if you want to download the legacy firmware. A dialog box like

that shown in Figure 2-17 may be shown. You have three download options:

• Look for and install new firmware: Download updates

for XCTU and “known” modules only.

• Install legacy firmware: Download all of the older

firmware—choose this if you want to use any older

series modules.

• Install firmware from file: Load firmware from a

file—use this if you have downloaded a custom

firmware (used rarely).

The first time you use XCTU or the first time you use an older series

module, you should choose the second option and install the legacy

firmware packages. Otherwise, the first option is the default and, in fact,

XCTU checks for updates automatically (but you can turn that off in the

preferences).

Figure 2-17. Downloading firmware

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

59

Depending on the speed of your Internet connection, it may take a

while to download the older firmware, but you should do so in order to

keep your modules up to date. Having the older firmware also permits you

to load the correct firmware on newer series 3 modules so that they match

in protocol and features.

There are two modes for XBee modules to communicate: AT or API. AT

means the module accepts AT commands via its local serial connection

and displays information in a human-readable format using a derivative

of the Hayes modem command set. API means the module is configured

to send and receive data via its protocol stack. Thus, when you want to

communicate with a module to configure it using a console connection,

you use the AT method. The API method is used throughout the rest of

this book. All modules must use the same communication firmware (AT or

API) and version for their roles.

In this chapter, we will use the AT mode. To ensure you have the

correct firmware loaded, you should insert your module into an explorer,

plug the explorer into your computer, and then add the radio module in

XCTU. Then, click the Update button as shown in Figure 2-18.

You will be presented with a dialog that allows you to choose the

firmware you want to download onto (update) the module. Figure 2-19

shows an example of choosing the ZigBee protocol firmware in AT mode

and the latest version for the series 2.5 and older modules. Firmware for

the XBee series 3 modules are listed differently.

Figure 2-18. Choosing to update firmware

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

60

Figure 2-20 shows the firmware choices for the XBee series 3 modules.

When you have selected the firmware you want, click the Update

button. You may have to respond to one or more “are you sure?” queries.

This is because updating the firmware erases any settings you’ve made

including any programming. Clearly, only say “OK” if you are sure you

don’t need to save anything first. Once the firmware is updated, you will

get an “OK” dialog. When that is closed, XCTU will reload the radio into

your list of radios.

Figure 2-19. Choose the firmware (series 2.5 and older)

Figure 2-20. Choose the firmware (series 3)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

61

Now that you have seen how to manage the XBee module’s firmware

and settings, let’s look at an easier way to set the user-defined values.

 Changing Settings with a Terminal Application

Most of the settings for an XBee module can be changed using a terminal

application (AT mode). In the past, we had to use a console application,

but XCTU now provides a console mode that works very well. The console

has all of the features you need to work with the XBee modules. You can

connect, disconnect, and even record your session. You can also send

commands or form packets and send them to the module. For this section,

we will be sending commands. The interface also allows us to see the

commands in hexadecimal, which can help in diagnosing connections or

deciphering data.

The XBee module has two modes: command and transparent.

Command mode is initiated with a special command, +++, where the

module sends a response back via the serial connection. Transparent

mode is the default mode: the module sends data to the radio destination

specified. In other words, use command mode when you want to talk to

the module and transparent mode when you want to talk via or through

the module to another. For example, sending data via the XBee to another

XBee uses transparent mode.

Thus, to configure your XBee modules after loading the correct

firmware, you open a terminal application and issue the appropriate

command. Table 2-2 shows some of the more common AT commands you

use to configure XBee modules.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

62

Table 2-2. Common XBee AT Commands

Command Description Use Response

+++ enter command

mode

put the module in command

mode

ok

ATCN exit command

mode

return to transparent mode ok

AT attention Check to see if the module is

available

ok

ATWR save Write settings to firmware ok

ATID pan id display the pan id pan id

ATID nnnn pan id Change the pan id ok

ATSH 64-bit serial high display the high part of the

64-bit serial number

address

ATSL 64-bit serial low display the low part of the

64-bit serial number

address

ATDH 64-bit destination

high

display the high part of the

64-bit destination address

address

ATDH nnnn 64-bit destination

high

set the high part of the 64-bit

destination address

ok

ATDL 64-bit destination

low

display the low part of the

64-bit destination address

address

ATDL nnnn 64-bit destination

low

set the low part of the 64-bit

destination address

ok

ATMY 16-bit address display the 16-bit address

assigned by the coordinator

address

(continued)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

63

Tip For more information about at commands, see the XBee
3 manual at www.digi.com/resources/documentation/
digidocs/pdfs/90001539.pdf.

Some commands require a value for setting variables. Omitting the

variable results in displaying the current value. All commands except

+++ require you to press Enter to execute. If you press the +++ command

and nothing happens, try it again, waiting a second or two between each

attempt. You can also try typing a little faster (or a little slower) until the

command-mode switch takes effect.

Tip all numeric values are entered as hexadecimal values.

To demonstrate how these commands work, let’s use XCTU’s console

dialog to connect to a module that has been loaded with the ZigBee

ROUTER AT firmware. First, select your radio in the left-hand list and then

click the console tab as shown in Figure 2-21.

Command Description Use Response

ATNI node id display the text string node

identifier

id

ATNI text node id set the text string node

identifier

ok

ATRE reset reset the XBee to factory

defaults

ok

Table 2-2. (continued)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com/resources/documentation/digidocs/pdfs/90001539.pdf
http://www.digi.com/resources/documentation/digidocs/pdfs/90001539.pdf

64

The console pane allows you to do three things with the three icons

to the left. You can open a connection (connect to a module), record the

session (only selectable once connected), and detach, which allows you

to detach the console into its own window. If you are following along, go

ahead and disconnect the console now and then click the Open button.

Figure 2-22 shows a typical configuration session starting with connecting

to the module and displaying its values and then exiting command mode.

Note the first time you run the atdh, atdl, or atMy command
without a parameter, you may see a result of 0. this indicates the
value has not been set.

Figure 2-21. Selecting console mode

Figure 2-22. Getting information about a module (AT mode) in a
console

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

65

Tip When in command mode, you have only 10 seconds to enter
a command before the module returns to transparent mode. if this
happens, you see no response when entering commands. simply
issue the +++ command again and reissue the command.

Next, Figure 2-23 shows a session where you set the destination

address (the XBee to which you want to connect) and its PAN ID using the

XCTU console.

While the XCTU application has a very nice serial terminal that works

very well (and I prefer to use it when working with XBee modules in AT

mode), you can use any terminal application you want such as CoolTerm.

You need only setup the serial connection to match your XBee (baud

rate, etc.) and connect to the serial port where your XBee is connected.

Figure 2-24 shows an example of using CoolTerm on macOS.

Figure 2-23. Configuring a module (AT mode) in a console

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

66

Now that you know the types of modules you need to form wireless

networks using the ZigBee protocol and how to configure them, you can

start building wireless networks. The next section explains how to create

the most basic of XBee project: the “Hello, World!” XBee equivalent.

 For More Information

If you would like to learn more about the XBee modules and how they

communicate, an excellent resource is the Digi website (www.digi.com).

You can also search on Google for “XBee” and “ZigBee” to find a number

of blogs, how-to pages, and more that will help by presenting different

projects and solutions solved using the XBee-ZB modules.

If you are using older series modules, there are also a couple of

excellent books that you can refer to for additional information, project

ideas, and more. I list two of the better titles here:

• Building Wireless Sensor Networks: With ZigBee, XBee,

Arduino, and Processing, by Robert Faludi (O’Reilly,

2010), ISBN 978-0596807733

• The Hands-on XBEE Lab Manual: Experiments that

Teach You XBEE Wireless Communications, by Jonathan

Titus (Newnes, 2012), ISBN 978-0123914040

Figure 2-24. Configuring a module (AT mode) using CoolTerm

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com

67

However, there are some excellent resources from Digi that you

should consider exploring including the XCTU documentation, XBee

module hardware manuals, and ZigBee manuals. You can find all of these

documents at the following site:

www.digi.com/support/productdetail?pid=5637&type=documentation

Before we embark on our first sample application using XBee modules,

let’s discuss one of the most powerful options for the series 3 modules:

MicroPython.

 Introducing MicroPython
The use of the Python language for controlling hardware has been around

for some time. Users of the Raspberry Pi, pcDuino, and other low-cost

computers and similar boards have had the advantage of using Python for

controlling hardware. In this case, they used full versions of the Python

programming language on the native Linux-based operating system.

However, this required special libraries built to communicate with

the hardware. These libraries were designed to interface with the general-

purpose input output (GPIO) pins. The GPIO pins normally appear on the

board in one or more rows of male pins on the board. Some boards used

female header pins.

While these boards made it possible for those who wanted to

develop electronics projects, it required users to buy the board as well as

peripherals like a keyboard, mouse, and monitor. Not only that, but users

also had to learn the operating system. For those not used to Linux, this

can be a challenge in and of itself.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

68

The vision for MicroPython was to combine the simplicity of learning

Python with the low cost and ease of use of microcontroller boards, which

would permit a lot more people to work with electronics for art and science

projects. Beginners would not have to learn a new operating system or

learn one of the more complex programming languages. MicroPython was

the answer.

MicroPython6 was created and is maintained by Damien P. George,

Paul Sokolovsky, and other contributors. It was designed to be a lean,

efficient version of the Python 3 language and installed on a small

microcontroller. Since Python is an interpreted language and thus slower

(in general) than compiled languages, MicroPython was designed to be as

efficient as possible so that it can run on microcontrollers that normally

are slower and have much less memory than a typical personal computer.

Another aspect is microcontroller boards like the Arduino require a

compilation step that you must perform on your computer and load the

binary executable onto the board first. In contrast, since MicroPython

has its interpreter running directly on the hardware, we do not need the

intermediate step to prepare the code; we can run the interpreted language

directly on the hardware!

This permits hardware manufacturers to build small, inexpensive

boards that include MicroPython on the same chip as the microprocessor

(typically). This gives you the ability to connect to the board, write the

code, and execute it without any extra work.

You may be thinking that to reduce Python 3 to a size that fits on a

small chip with limited memory that the language is stripped down and

lacking features. That can’t be further than the truth. In fact, MicroPython

is a complete implementation of the core features of Python 3 including a

compact runtime and interactive interpreter. There is support for reading

6 Copyright 2014-2017, Damien P. George, Paul Sokolovsky, and contributors. Last
updated on March05, 2017.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

69

and writing files, loading modules, interacting with hardware such as

GPIO pins, error handling, and much more. Best of all, the optimization of

Python 3 code allows it to be compiled into a binary requiring about 256K

of memory to store the binary and runs with as little as 16K of RAM.

MicroPython therefore allowed Digi to put a functional programming

language and interpreter on the XBee series 3 module itself! Yes, this

means we can connect to our XBee series 3 boards, write code, and

execute it. This opens a whole new world for working with XBee modules

and sensor networks.

Note Micropython only works with series 3 modules.

XCTU has a MicroPython console that you can use to connect to a series

3 module. To use MicroPython, we must make a few changes to the modules.

Recall, we set the changes using the update icon (pencil) to the right after

changing the setting. These include changing the baud rate (faster), enabling

API + MicroPython mode. Figure 2-25 shows the settings in XCTU.

Once these settings are written to the module, simply connect your

XBee series 3 module to a USB XBee Explorer, plug it into your computer,

and add the radio to XCTU. Once there, you can click thetools icon and

select MicroPython Terminal. Figure 2-26 shows the selections.

Figure 2-25. Setup module for MicroPython

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

70

This opens the MicroPython console where you can issue Python

commands. Figure 2-27 shows a simple example in the form of the

ubiquitous “hello, world!” program.

Figure 2-26. Opening a MicroPython console

Figure 2-27. Example MicroPythonsession

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

71

This example was shown using a ZigBee series 3 module. MicroPython

features may be slightly different depending on which module you use.

Table 2-3 shows the major features and their availability on certain series 3

modules.

We will see more about MicroPython in the next chapter. But first, let’s

see the XBee modules in action with a short demonstration project where

we use AT mode for setup and configuration via a terminal connection.

Table 2-3. XBee Series 3 MicroPython Features by Model

Feature XBee 3
Cellular

XBee 3 ZigBee,
DigiMesh, and 802.15.4

digital i/o yes yes

i2C yes yes

power management yes yes

digi remote Manager yes1 no

secondary uart yes no

real-time clock yes no

File system yes yes

File system—concurrent file writes yes no

File system—rename yes no

File system—edit files after creation yes no

File system—delete yes no2

File system—secure files yes no

File system preserved across updates yes no

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

72

 An XBee Wireless Chat Room
For this example, you need two XBee modules, two USB adapters and

required cables, and either one or two computers. You can use one

computer with each module connected to a different USB serial port.

This example uses one series 2 and one series 3 XBee module to

demonstrate how to work with each series. If you have only one series,

you can skip the sections that demonstrate the other series. The biggest

difference is in how you load the firmware. Programming the modules in

AT mode is the same.

This project is a sort of “Hello, World!” test for the XBee at the hardware

level. Rather than writing a simple program to print the messages, you will

use two XBee modules configured as a simple point-to-point network with

one coordinator and one router. In the example, I included one series 2 and

one series 3 module, but you can use two of the same series (either) if you

want. Just follow the series-specific instructions in the following sections.

You’ll set both modules to use AT firmware so you can demonstrate the

transparent mode and see the messages you are passing in clear text. This

is what will make the chat work. What is typed on or message entered on

one module will appear on another. Cool, eh?

 Loading the Firmware for the Modules
The first thing you need to do is to load the firmware for each module.

Recall that you use the XCTU application to load the firmware. We will

review the specifics for loading firmware for series 2.5 and earlier as well as

series 3 modules.

 Series 2.5 and Earlier

The older series 2.5 and earlier modules have firmware that is

preconfigured for one of the three roles. This is indicated by the version

number. For the XBee modules I used in writing this chapter, the version

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

73

number for a coordinator is 20A7. The first two digits are the role, and

the last two digits are the version. It is not critical if your modules have a

version other than A7, as long as they both have the same. The following

are some of the major roles and their values:

• 20xx, coordinator, AT/transparent operation

• 21xx, coordinator, API operation

• 22xx, router, AT/transparent operation

• 23xx, router, API operation

• 28xx, end device, AT/transparent operation

• 29xx, end device, API operation

 Series 3

Series 3 modules are configured a little differently. These modules have

only three choices for the ZigBee firmware as follows. To use series 3

modules together with older ZigBee modules, be sure to load the ZigBee

firmware:

• Digi XBee3 802.15.4 TH: Use this firmware when

working with other modules that use the older 802.15.4

protocol.

• Digi XBee3 DigiMesh 2.4 TH: Use this firmware when

working with other modules that use the Digi Mesh

protocol.

• Digi XBee3 ZigBee 3.0 TH: Use this firmware when

working with other modules that use the ZigBee

protocol.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

74

Since we use the ZigBee protocol in this book, if you are using any

series 3 modules, you will want to load the ZigBee firmware. Currently, the

latest version is 1008. Again, it is not critical to have the latest, but it never

hurts to keep up to date.

You may be wondering how the series 3 modules can be configured

for one of the three roles. This is done by selecting a combination of two

settings. First, we choose the device role (CE) and set it to either form

network (1) or join network (0). Second, we choose the sleep mode (SM)

and set it to either 0 for a router or > 0 for use as an end device. Table 2-4

shows a matrix to help you choose the correct settings.

For example, to set a series 3 module as the coordinator using the AT

mode, we issue the ATCE and ATSM commands. Or, better, we can use the

XCTU application and set the parameters there.

But there is one other setting specific to series 3 modules. Notice there

is no choice for AT or API firmware. This is controlled using the API Enable

(AP) setting. Set it to 0 for AT mode or 1 for API mode. You can do this with

the ATAP command or by using the application.

Tip remember to click the Write button next to a setting when
changing it or if you’ve changed two or more settings, click the Write
button on the toolbar.

Table 2-4. Setting the Series 3 Role

AT Command
ZigBee Role Device Role (CE) Sleep Mode (SM

Coordinator 1 0

router 0 0

end device 0 > 0

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

75

 Loading the Firmware for the Coordinator

Use the XCTU application to configure the first XBee module as the

coordinator AT function set. In this case, we will use a series 3 module.

Connect the module and click the Add or Discover button (in the

upper-left hand corner of the XCTU window). Follow the dialogs, and once

the module is added and its configuration is read, you’re ready to update

the firmware.

Click the Update icon and select the ZigBee firmware in the dialog.

Figure 2-28 shows the correct selection to load the ZigBee 3.0 firmware.

Once you have that selected, click the Update button in the dialog.

When the write process is done, you must set the Device Role and Sleep

Mode as shown in Table 2-4. You also need to ensure the API Mode is set to

0. The following code shows how to do this using the terminal connection.

Recall, we can click the Terminal icon in the upper-right corner of

Figure 2-28. Loading firmware for the coordinator (series 3)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

76

the XCTU interface and then click the Open button to start a session.

Remember to type the +++ command (in the left-hand side of the console

log) and wait a few seconds for a response before entering the commands.

+++

ATCE 1

ATSM 0

ATAP 0

ATWR

ATCN

If you want to set the parameters using the XCTU application,

remember to click the Configuration icon to switch to the configuration

mode (or use the menu).

 Loading the Firmware for the Router

Now, let’s configure the second XBee module as the ROUTER AT function

set. In this case, we will use a series 2 module.

Connect the module and click the Add or Discover button (in the

upper-left hand corner of the XCTU window). Follow the dialogs, and once

the module is added and its configuration is read, you’re ready to update

the firmware.

Click the Update icon and select the ZigBee Router AT firmware in the

dialog. Figure 2-29 shows the correct selection to load the ZigBee Router

AT firmware. Once you have that selected, click the Update button in the

dialog.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

77

Next, we need to set the destination addresses for each module to

point to each other. Hence, the point-to-point nomenclature.

 Capturing Serial Numbers
Recall that XBee radios require the 64-bit address (serial number—also

named the MAC address) of the destination radio to send data. You need

to record these before you begin the project. Take a moment to record the

64-bit serial numbers for each of your XBee modules.

If you have inserted your XBee modules into their adapters, you can

see the addresses easily using the XCTU application. Figure 2-30 shows a

series 3 and series 2 module attached. Notice the addresses indicated. We

will set each module’s destination to the address of the other module.

Figure 2-29. Loading firmware for the router (series 2.5 and earlier)

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

78

You can also use a terminal application to query the modules for the

address using the ATSH and ATSL commands if you prefer or require that

operation mode.

Once you identify the addresses, write the information in Table 2-5.7

There are spaces for additional information that you will be using, so refer

to this table as you proceed with the project.

Now, let’s configure the AT mode parameters starting with the

coordinator.

Figure 2-30. Identifying the 64-bit address using XCTU

7 If you prefer not to write in your book, take a piece of paper and make a chart like
Table 2-5 to store the information. If the paper is thin, you can fold it and use it as
a bookmark.

Table 2-5. XBee Configuration Data

Role Serial High Serial Low PAN ID Node ID

Coordinator at

router at

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

79

 Configuring the Coordinator
To configure the coordinator, you want to set the destination address of

this radio to the serial number of the other radio (the router). Thus, you set

the destination address on the coordinator to the address of the router. We

also need to set the PAN ID for the network.

We’ll use the XCTU application to change the settings, but you can use

a terminal if you prefer and issue the ATDH, ATDL, and ATID commands.

You must also choose a PAN ID to use on the network. Let’s use the

iconic 8088.8 In this case, it does not matter what you use as long as all

modules on the network have the same PAN ID and the value is in the

range 0000–FFFF (hexadecimal). Also set the Node ID to COORDINATOR

to make it easier to identify. Figure 2-31 shows the configuration session

for the coordinator.

8 Does that number mean anything to you? Hint: IBM PC.

Figure 2-31. Configuring the coordinator

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

80

 Configuring the Router
To configure the router, you want to set the destination address of this

radio (router) to the serial number of the other radio (coordinator). Like

the coordinator, you set the PAN ID to 8088. Also set the Node ID to

ROUTER to make it easier to identify. Figure 2-32 shows the configuration

session for the router.

 Let the Chat Begin
That’s it: you are ready to start the chat session. If you’ve been using

a terminal to make the changes, all you need to do now is return the

modules to transparent mode by either using the ATCN command or simply

waiting 10 seconds.

Figure 2-32. Configuring the router

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

81

Once you’ve setup the destination addresses for the modules, they will

“find” each other and start the chat. To see the chat in action, simply click

one of the modules and open a terminal connection. You should click the

Detach button so that you can click the other module and open a terminal

for that module.

Next, click the Open button in each terminal. You may not see anything

happen at this point since the modules are waiting for data from the other.

We can do that ourselves by clicking in the left side of the console output.

Go ahead and type something in there.

If your configurations worked, you should see text from one terminal

appear in the other and vice versa. If you do, congratulations—you have

just set up your first XBee network (albeit a very simple point-to-point

network). Figure 2-33 shows the results of the test I ran from my PC using

XCTU. This terminal feature is nice, in that it color-codes the messages. If

you run it yourself, you should see red text is text received, and the blue is

text sent.

For bonus points, unplug your USB adapters and switch them from

one computer to the other; then restart your terminal programs. Notice

anything special? That’s a trick question, because you should see the chat

Figure 2-33. Successful chat

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

82

example working as before. It matters not which is the coordinator in this

case; and because you wrote the values to the XBee nonvolatile memory,

the modules “remember” their settings even if unplugged. Very nice, eh?

IS POINT-TO-POINT GOOD ENOUGH?

you may be wondering if you can use point-to-point networking in sensor

networks. the short answer is that in some cases you can. For example, if you

have a small number of nodes that are unlikely to be taken offline, you may be

able to form a network with point-to-point networks. in this case, you would

be forming a star topology network.

however, there are limitations, such as the fact that if a node in the middle

goes down, it orphans all the nodes on one side of the node from the other. you

also cannot form multiple-point connections, and broadcasting may require

extra programming to accomplish. For these reasons and more, sophisticated

sensor networks can benefit from using a mesh topology.

 For More Fun
If you’d like experiment more with point-to-point networks and the

AT firmware using the chat example, try adding a third XBee to the

network. Connect it to your router node and type some data. Where does

it appear: the coordinator or the router? Try it again, connecting the

new module to the coordinator. Does the text appear where you expect

it? Hint: Make the new module a router as well and set its destination

address to the first router.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

83

GOT HUB?

if you want to test your XBee networks but your pC doesn’t have enough usB

ports, the ports are too close together,9 or you don’t want to use a second (or

third) pC, the usB XBee explorers will work using a powered hub and even

some of the better unpowered hubs as shown here.

however, i’ve discovered some hubs don’t work. i have a very nice (and very

expensive) usB 3 hub that works great for everything except my XBee

explorer boards. so, your mileage may vary here. oddly enough, my older

powered usB 2.0 hub works great and has plenty of room for the XBee

explorer boards.

9 Or, they’re on the floor and you don’t want to stand on your head to plug them in.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

84

 Building an XBee-ZB Mesh Network
Now that you know what an XBee module is, how to select models for use

in your projects, and how to configure them for sending and receiving data

in a point-to-point network, let’s look at something a bit more complicated

and more inline with sensor networks.

In this project, you configure three XBee modules: one as a

coordinator, another as a router, and the last as an end device. I will use a

series 3 module for the coordinator, but as before it is not required, and the

project will work with earlier modules.

However, instead of the AT firmware, you use the API firmware that

is required for forming mesh networks. The goal isn’t to explore the API

firmware in depth; rather, it is to see how the XBee modules can be used to

transmit the data through the network.

Recall that the API firmware is designed to implement the full ZigBee

protocol, meaning the data messages are encapsulated inside a packet

layered with headers. In other words, messages are transmitted as binary

data rather than text as you saw with the AT firmware.

There is a lot to the API firmware and the ZigBee protocol. Fortunately,

you do not have to get too far into the specifics in order to use it. However,

it does help to know how the packets are formed so that you can diagnose

and debug your data messages. I shall present some of the frequently

encountered packets as you progress through the book.

If you would like to know more about the ZigBee protocol and its many

packet formats (called frame types), see one of the following resources:

• Building Wireless Sensor Networks: With ZigBee, XBee,

Arduino, and Processing, by Robert Faludi (O’Reilly,

2010), ISBN 978-059680773310

10 Does not cover series 3 modules.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

85

• “ZigBee RF Modules,” Digi International, 2018,

www.digi.com/resources/documentation/digidocs/

pdfs/90000976.pdf

 Loading the Firmware for the Modules
The first thing you need to do is to load the firmware for each module

using the XCTU application. In this example, we will use a series 3 module

for the coordinator and two series 2 modules for the router and end device.

Since we are using a series 3 module, recall we need only set the API

Mode (AP) to 1 to turn on the API mode. For earlier modules, we will

have to load the correct firmware. More specifically, we load the END

DEVICE API function set on one module, the ROUTER API function set on

another, and if we do not have the series 3 module, we will need to load the

COORDINATOR API function set on a third module.

 Configuring the XBee Modules
It is recommended when starting a new project to reset your XBee modules

with the factory defaults. You can do this with the XCTU application on the

configuration page. Click the Default button to set the factory defaults, and

then click Yes to confirm. That is all you need to do! You can also use the

ATRE command from a terminal in AT command mode.

But what about all those addresses and PAN IDs and stuff? Simply

put, you don’t need them. The modules will automatically connect to

the coordinator (or router), and the coordinator will assign the 16-bit

addresses to each module. Clearly, this is a lot easier to configure than the

AT point-to-point mode.

Although that is true, it is also harder to experiment using the API

firmware. Recall that the API firmware transmits and receives data

messages in binary form. In order to see this network in action, you need

to form special packets called transmission request packets.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com/resources/documentation/digidocs/pdfs/90000976.pdf
http://www.digi.com/resources/documentation/digidocs/pdfs/90000976.pdf

86

 Forming Test Messages
The test message is a simple numeric value embedded in a packet called a

transmit request packet. (It’s called a transmit request frame in some of the

documentation.) The packet requires a very specific format.

If you have ever worked with low-level data packets like those

encountered in Ethernet networks (TCP packets) or other communication

protocols like the MySQL client protocol, you are already familiar with the

basic concepts. However, if you haven’t, the layout of the data may seem

strange. Table 2-6 shows the layout of an example transmission request

packet. It’s described in more detail later.

Table 2-6. Transmission Request Packet

Field Offset Example Description

delimiter 0 7E start of packet delimiter

length 1 00 10 Bytes between length and

checksum

Frame type 3 10 request transmission

Frame id 4 01 uart data frame

destination address

64-bit

5 00 00 00 00 00

00 00 00 FF FF

64-bit address of

coordinator

destination address

16-bit

13 00 00 16-bit destination address

Broadcast radius 15 00 Maximum number of hops

options 16 00 options

rF data 17 99 99 data payload

Checksum 19 BC 0xff minus sum of bytes in

packet

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

87

The important parts of this packet are the length, addresses, and data

payload. These are the parts you would most likely want to change. In

this case, the 64-bit address is the default address for the coordinator. The

coordinator gets this address using the default settings. The same is true

for the 16-bit address. The example makes a payload of hexadecimal 99 99

(39321 in decimal). Because you use only 2 bytes for this, the length (the

length in bytes of all parts of the packet following the length part, up to but

not including the checksum part) is 16 (1+1+8+2+1+1+2). The checksum is

calculated as 0xff minus the 8-bit sum of the bytes between the length and

the checksum.

Sound complicated? It can be. Fortunately, you do not need to do this

manually very often. In fact, the programming libraries you use when

communicating with the XBee itself will build these packets for you when

you use it to send data. The libraries you use to talk to the XBee from the

Arduino and Raspberry Pi will also make life much easier for you.

So, what do you do for this project? Do you create the packets yourself?

If you are concerned about counting bytes and figuring out the checksum,

fear not. Digi has built the XCTU application with a nifty packet creation

dialog called the frames generator tool. You can use this too to create any

ZigBee packet you want easily.

You can use this when you have opened a terminal and connected to

the module from which you want to send the packet. Simply click the Add

New Frame button in the Send frames section of the interface. Figure 2-34

shows an example of a terminal session.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

88

Once you click the Add Frame button, you will see a dialog that

permits you to either edit an existing packet or add a new one with the

frames generator tool. To add a new packet, click the Create frame using

‘Frames Generator’ tool button as shown in Figure 2-35.

Figure 2-34. Adding a new frame packet

Figure 2-35. Open the Frames Generator tool

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

89

Next, you will get a dialog that permits you to populate the packet, but

first you must select the packet type. For this project, we want to choose

the transmit request packet (0x10). The dialog will automatically refresh

with the correct fields for that packet type. Figure 2-36 shows the dialog

for the transmit request packet. Recall, this packet is used to send data to

another module.

Notice here I have set the destination address with 00 00 00 00 00 00

FF FF. This is the broadcast address, which causes the packet to be sent

to all modules. If you wanted to send the packet to a specific module, you

Figure 2-36. Creating the transmit request packet

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

90

would fill in the 64-bit MAC address for that module. Since we are using

the broadcast, we would see this packet received by all of the modules in

the network.

Notice also I added a message in the RF Data box. I simply entered the

word, Hello. Thus, this is a Hello, World! Type exercise.

Take a moment to open a terminal and create this frame yourself. One

very nice thing about the new XCTU interface is it will save the packet

frames you’ve created so you can create and test several at a time. Now,

let’s look at how to setup the network.

 Testing the Network
Now it is time to power up your XBee modules. Start with the coordinator,

then the first router, and finally the end device. You can then connect

terminal applications to all modules.

WAIT, WHAT ABOUT THE BAUD RATE?

if you’ve been reading along and are wondering why i have not demonstrated

how to the serial options (such as baud rate) of your modules and whether you

need to set them at all, the answer lies in how the XCtu application works.

it allows you to use modules at whatever parameters you want. on the other

hand, if you want to use a different terminal application, you may need to

change the parameters. Fortunately, this is easy to do in the XCtu application.

simply go into the configuration for each module and look for the serial

parameters as shown here.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

91

Change the settings you want and then write the changes to the module. But

again, you don’t need to do that, and you do not need to have all the modules

using the same connection parameters with the XCtu application. Cool, eh?

For this example, I used a single computer with XCTU connected to all

three modules using the terminal mode. Once you have all the modules

connected to a terminal application, you should give the modules five to

ten minutes to self-configure before proceeding.

So, how do you know everything is working? Well, it’s actually quite

easy. XCTU has a network mode that you can use. This will show you the

layout of the network by reading all the modules are creating a map for

the network. The network button is in the upper-right corner of the XCTU

window. Next, click the Scan button. Once you click that button, it may

take a moment to discover the network, but it should show you a layout

similar to Figure 2-37.

Notice the map shows the 64-bit address (MAC address) for each

module as well as the communication pathways displayed as a solid

line. Nice.

Figure 2-37. Network mode in XCTU

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

92

OK, so you’ve waited, and everything should be working. Let’s find

out. On any module connection, click the Add Frame button, and create a

transmit request packet with a broadcast address as shown in Figure 2-36

including the payload of “Hello”. Be sure to click the Add Frame button to

save the packet.

To send the packet, select it in the left side and click the Send selected

frame button. If you are watching the terminals in the other modules, you

may see a number of packets go by. This is because the default is to show

all packets, but you can use the filter to reduce the clutter. I leave that as an

exercise—just click the filter button and select the packet types you want to

see (or not see). Once the packet is received by all of the modules, you can

click the packet and see the data. Figure 2-38 shows the results of entering

the command.

Figure 2-38. Broadcast packet received by all modules

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

93

Notice the box around the packets on each of the modules. Here, we

see the packet was sent from the coordinator and received on the other

modules. But, where’s the data payload? It’s there, just embedded in the

message. In this case, it’s in hexadecimal form and Hello in Hexadecimal is

48 65 6C 6C 6F. See if you can spot that in the image.

A broadcast message might be handy for sending power-down or

sleep-mode commands to all of your sensor nodes or perhaps a command

to send to all of your data-aggregate nodes to save their data to the media

they are using.

Next, let’s create a new transmit request message and specify the 64-bit

address for one of the other modules. Add whatever you want for the data

and send the frame. For example, I set the destination address to the router

in my sample network (0013A200408CCD0F). I also typed in a random

number in the RF Data field (9012511). Figure 2-39 shows the frame I

created and then added.

Figure 2-39. Transmit request frame with destination

11 Some classic rock fans may claim that random number has a bigger story. Here’s
a hint: yes, it does.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

94

When I sent the packet, it showed up on the router but not on the other

modules. This is because this was a message sent to a particular module;

the others ignored the message. Figure 2-40 shows the results with the

“sending” module on top and “receiving” below.

Notice the small arrows in the left side of the frames log. An arrow

pointing to the right is a sent event, and the arrow pointing to the left is a

receive event. Nice, eh?

Figure 2-40. Frame sent and received

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

95

Tip you’ve seen only a very small portion of the capabilities of the
XCtu application. you should spend some time reading the manual to
learn more about its capabilities. For example, savvy users may want
to check out the over-the-air capabilities of XBee modules.

At this point, you have seen how messages can be sent from one

module to the coordinator directly and how broadcast messages can

be sent to all modules. If you were able to duplicate or perform similar

operations on your own XBee modules, congratulations! You now have a

very simple wireless mesh network.

Although this project did not contain any sensor nodes, if you consider

the end device as the sensor node and the keyboard as the sensor sending

data, you can see how a typical sensor network will perform. In this case,

the end device sends its data packet to the coordinator by default and can

broadcast data if needed. Sending all data to the coordinator is also a clue

as to how a data-aggregate node may be configured with an XBee module.

You build on this premise in upcoming chapters.

 For More Fun
If you’d like some more practice creating test packets, try sending a

network node-detection command from the router and see what you get.

Hint: You want an ATND command.

 Component Shopping List
You need a number of components to complete the projects in this

chapter. Table 2-7 lists them.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

96

Be sure to get the correct cables. Also remember that you need three

matching XBee-ZB modules. The adapter boards need not be the same,

but you should have three of them.

Table 2-7. Components Needed

Item Vendors Est. Cost USD Qty
Needed

XBee-ZB (ZB) series 2,

2.5, or 3

www.sparkfun.com $25.00–48.00 3

www.adafruit.com

www.makershed.com

XBee explorer dongle www.sparkfun.com/

products/11697

$24.95 1∗∗

XBee explorer usB www.sparkfun.com/

products/11812

$29.95 1∗∗

usB-to-mini usB cable for

use with the XBee explorer

usB

www.sparkfun.com/

products/11301

$3.95 1∗∗∗

usB XBeeadapter www.adafruit.com/

product/247

$29.95 1∗∗

∗∗You need only three of any of the USB adapters.
∗∗∗One needed for each XBee USB Adapter—not needed for the dongle.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.sparkfun.com
http://www.adafruit.com
http://www.makershed.com
http://www.sparkfun.com/products/11697
http://www.sparkfun.com/products/11697
http://www.sparkfun.com/products/11812
http://www.sparkfun.com/products/11812
http://www.sparkfun.com/products/11301
http://www.sparkfun.com/products/11301
http://www.adafruit.com/product/247
http://www.adafruit.com/product/247

97

CABLE TROUBLE SOLUTION

if you are like me and have many usB projects, one of the first frustrations

you may encounter is the seeming randomness of choice of usB connectors.

it seems like every time i buy a new component it takes a different usB cable!

rather than carry a set of cables in my kit, i’ve found a solution from sparkFun

that has made my life much easier. the usB Cerberus cable (www.sparkfun.

com/products/12016) includes a standard usB a-type male connector on

one end and a set of three common connectors on the other (B, mini-B, and

micro-B). i recommend buying one for each of your electronics kits.

another frustration concern is powering devices with usB hubs and the like.

once again, i used to carry around a bunch of power cables to power all of my

components. in this case, sparkFun comes to the rescue again with its hydra

power cable (sparkfun.com/products/11579). this cable has a standard

usB a-type connector on one end and a set of three connectors on the other

(barrel plug for arduino, Jst, and alligator clips). Very cool.

 Troubleshooting Tips and Common Issues
If you encounter problems getting either of the chapter projects working,

don’t feel bad, and don’t give up! Despite their diminutive size and

powerful feature sets, these little pests can cause you a lot of grief if they

are not configured correctly. This section explores some best practices for

solving some of the more common problems.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.sparkfun.com/products/12016
http://www.sparkfun.com/products/12016
http://sparkfun.com/products/11579

98

 Things to Check
The following is a list of tips for helping you determine what is wrong and

how to fix it:

• Cabling: It may sound silly, but check to ensure that

all of your modules are powered correctly—either by

the host microcontroller or USB adapter (or USB hub!).

You’d be surprised how easy it is to tell your OS to eject

a USB dongle. If this happens, it is likely your adapter

may have all its power LEDs lit but the terminal cannot

connect. Try removing the cable and reinserting it. Also

check the serial port, because some operating systems

may reassign the serial port if moved from one port to

another.

• Is it plugged in? You should also check that the module

is plugged into its socket in the proper orientation and

no pins are skipped (misaligned).

• Serial settings: If you are using a different terminal

than what is available in XCTU, check your baud

rate. If you’ve changed it on the XBee, your terminal

application may not have saved the setting. If you

want to change the setting, be sure to set it the same

for all of your XBee modules as well as your terminal

applications.

• AT address: If you are building point-to-point systems

with the AT firmware, be sure to check your addresses!

Remember that the destination address needs to point

to the address of the module where you wish to send

data (ATDH/ATDL). Be sure to use the ATWR command to

save the values.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

99

• Version: It is best to make sure the version you use for

the firmware is the same on all modules. Some versions

are incompatible with others. It is best to always use the

same version.

• Is the XBee dead? If your XBee module cannot be read

by your terminal application or it stops responding to

XCTU, you may have encountered what some refer to

as bricking, which makes the module worthless except

as a doorstop or brick. If this happens, try resetting the

module. If your adapter does not have a reset button

(only a few do), you can connect the adapter and then

gently (very gently) remove the module and reinsert

it. When the module starts responding, reload the

firmware. For extreme cases, see www.instructables.

com/id/Restoring-your-broken-XBee/.

• Old values keep coming back: If you change your

settings in the AT firmware but the old values keep

coming back even after you use ATWR, use the reset

command (ATRE) to return all values to their factory

defaults.

 Common Issues
The following are some of the more common scenarios you may encounter

and what to do about them:

• AT commands don’t work: If the +++ command won’t

wake up the module, make sure the module has the AT

firmware loaded. I fussed for nearly 15 minutes with

what I thought was a dead module, only to discover it

was loaded with the API firmware. Don’t fall prey to

that self-induced prank!

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.instructables.com/id/Restoring-your-broken-XBee/
http://www.instructables.com/id/Restoring-your-broken-XBee/

100

• Strange errors in AT mode: Make sure your modules are

configured with the same version of the AT firmware.

You can use the ATVR command to check each module.

• Settings go missing or revert: One of the most common

errors is making all of your settings and failing to write

the values with ATWR. You need to use this command to

save the values. The XBee modules may not work until

you have done this and returned to transparent mode.

• Inability to use Backspace: It can be very frustrating

to try to enter commands with values using the AT

firmware because the Backspace key doesn’t work in

most terminal applications. When you make a mistake,

press Enter and try the command again. Always check

the setting with the command’s display option (the

command with no value).

• API firmware doesn’t work: If you are sure you have

all of your modules configured for the same version of

the API firmware, try unplugging all the modules and

plugging the coordinator in first followed by the routers

and then your end devices. It may take as long as ten

minutes for the coordinator to join all the nodes to the

network.

You can also visit Robert Faludi’s web page for common XBee mistakes

(www.faludi.com/projects/common-xbee-mistakes/). He lists a lot of

things that go wrong when you are unfamiliar with XBees and how to

configure them. As he states, they aren’t as unreliable or quirky as they

seem to be. Most quirks are a result of user error. Sadly, it isn’t always

obvious that that is the case.

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.faludi.com/projects/common-xbee-mistakes/

101

Finally, use the Digi website and its knowledgebase (www.digi.com/

support/kbase/). There is a wealth of information out there. Chances

are someone has had a similar problem, and a simple search of the

knowledgebase and forums may reveal the solution.

 Summary
Wow, we covered a lot of ground in this chapter. You were introduced to

the XBee-ZB module and the ZigBee protocol, and you experimented with

the AT and API firmware. You also learned a great deal about the XBee,

and its many features include a little about the MicroPython features of the

series 3 modules. Although it seems like I discussed a lot, the truth is that

you have only just begun learning about the XBee and how to use it in your

sensor networks.

I will be returning to the XBee topic throughout the rest of this book.

Chapter 4 explores how to host sensors with XBee modules, Chapter 5

examines how to host sensors with a Raspberry Pi, and Chapter 6 explores

how to host sensors with an Arduino microcontroller. If you enjoyed the

projects in this chapter, the projects in the next chapter are likely to be

even more enjoyable because you get to see a real sensor in action.

But first, let’s learn more about programming MicroPython. The next

chapter introduces MicroPython along with a brief tutorial. Let’s get

coding!

Chapter 2 tiny talking Modules: an introduCtion to XBee Wireless Modules

http://www.digi.com/support/kbase/
http://www.digi.com/support/kbase/

103© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_3

CHAPTER 3

Programming
in MicroPython
Now that we have a basic understanding of the XBee modules, we can

learn more about programming in MicroPython—a very robust and

powerful language that you can use to write very powerful applications.

Mastering MicroPython is very easy, and some may suggest it doesn’t

require any formal training to use. This is largely true, and thus you should

be able to write MicroPython scripts with only a little bit of knowledge

about the language.

Given that MicroPython is Python, we can learn the basics of the

Python language first through examples on our PC. Thus, this chapter

presents a crash course on the basics of Python programming including an

explanation about some of the most commonly used language features. As

such, this chapter will provide you with the skills you need to understand

the Python IoT project examples available on the Internet. The chapter

also demonstrates how to program in Python through examples that you

can run on your PC. So, let’s get started!

Note I use the term Python to describe programming concepts in
this chapter that apply to both MicroPython and Python. Concepts
unique to MicroPython use the term MicroPython.

https://doi.org/10.1007/978-1-4842-5796-8_3#ESM

104

Now let’s learn some of the basic concepts of Python programming.

We will begin with the building blocks of the language such as variables,

modules, and basic statements and then move into the more complex

concepts of flow control and data structures. While the material may seem

to come at you in a rush, this tutorial on Python covers only the most

fundamental knowledge of the language and how to use it on your PC and

XBee modules. It is intended to get you started writing MicroPython code

for the XBee.

If you know the basics of Python programming, feel free to skim

through this chapter. However, I recommend working through the example

projects at the end of the chapter, especially if you’ve not written many

Python applications.

The following sections present many of the basic features of Python

programming that you will need to know to understand the example

projects in this book.

Note MicroPython on the XBee (and similar) modules and boards
do not support the full library of functions available on the PC version
of Python. However, all facilities that you need to use on the XBee
module are available in MicroPython. Regardless, learning Python on
the PC is an excellent way to gain the skills you need to program your
XBee modules.

Before we jump into Python programming, let’s discuss what features

and libraries are available for MicroPython as well as the common

limitations.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

105

 MicroPython Features and Limitations
While MicroPython will look and feel exactly like Python, there are a

few things that MicroPython doesn’t implement from the Python 3

language. The following sections give you an idea of what you can do with

MicroPython and what you cannot do with MicroPython.

 MicroPython Features
The biggest feature of MicroPython is, of course, it runs Python. This

permits you to create simple, efficiently specified, and easy-to-understand

programs. That alone, I think, is its best advantage over other boards like

the Arduino. The following list is a few of the features that MicroPython

supports. We will see these features in greater detail throughout this book:

• Interactive interpreter: MicroPython boards have built

in a special interactive console that you can access

by connecting to the board with a USB cable (or in

some cases, over Wi-Fi). This console is called a read-

evaluate- print loop that allows you to type in your

code and execute it one line at a time. It is a great way

to prototype your code or just run a project as you

develop it.

• Python standard libraries: MicroPython also supports

many of the standard Python libraries. In general,

you can expect to find MicroPython supports more

than 80% of the most commonly used libraries. These

include parsing JavaScript Object Notation (JSON),1

socket programming, string manipulation, file input/

output, and even regular expression support.

1 www.json.org/

CHaPteR 3 PRogRaMMIng In MICRoPytHon

http://www.json.org/

106

• Hardware-level libraries: MicroPython has libraries built

in that allow you to access hardware directly either to

turn on or off analog pins, read analog data, read digital

data, and even control hardware with pulse- width

modulation (PWM)—a way to limit power to a device by

rapidly modulating the power to the device, for example,

making a fan spin slower than if it had full power.

• Extensible: MicroPython is also extensible. This

is a great feature for advanced users who need to

implement some complex library at a low level (in C or

C++) and include the new library in MicroPython. Yes,

this means you can build in your own unique code and

make it part of the MicroPython feature set.

To answer your question “But, what can I do with MicroPython?”, the

answer is quite a lot! You can control hardware connected to the XBee

module, send data to other nodes, and much more. The hardware you

can connect to include turning LEDs on and off, controlling servos, and

reading sensors. You can create just about any form of sensor node just like

you can with a Raspberry Pi or Arduino (or another MicroPython board).

But if you don’t yet possess any MicroPython boards, you can check

out the online MicroPython interpreter at https://micropython.org/

unicorn/.

However, there are a few limitations to running MicroPython on the chip.

 MicroPython Limitations
The biggest limitation of MicroPython is its ease of use. The ease of using

Python means the code is interpreted on the fly. And while MicroPython is

highly optimized, there is still a penalty for the interpreter. This means that

projects that require a high degree of precision such as sampling data at a

high rate or communicating over a connection (USB, hardware interface, etc.)

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://micropython.org/unicorn/
https://micropython.org/unicorn/

107

may not run at PC speeds. For these areas, we can overcome the problem

by extending the MicroPython language with optimized libraries for

handling the low-level communication.

MicroPython also uses a bit more memory than other microcontroller

platforms such as the Arduino. Normally, this isn’t a problem but

something you should consider if your program starts to get large. Larger

programs that use a lot of libraries could consume more memory than

you may expect. Once again, this is related to the ease of use of Python—

another price to pay.

Finally, as mentioned previously, MicroPython doesn’t implement all

the features of all the Python 3 libraries. However, you should find it has

everything you need to build IoT projects (and more).

Now, let’s learn to program in Python!

 Basic Concepts
Python is a high-level, interpreted, object-oriented scripting language.

One of the biggest goals of Python is to have a clear, easy-to-understand

syntax that reads as close to English as possible. That is, you should be able

to read a Python script and understand it even if you haven’t learned the

language. Python also has less punctuation (special symbols) and fewer

syntactical machinations than other languages. The following lists a few of

the key features of Python:

• An interpreter processes Python at runtime. No

external (separate) compiler is used. You just “run”

your code via the Python interpreter.

• Python supports object-oriented programming

constructs by way of a class.

• Python is a great language for the beginner-level

programmers and supports the development of a wide

range of applications.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

108

• Python is a scripting language but can be used for a

wide range of applications.

• Python is very popular and used throughout the world

giving it a huge support base.

• Python has few keywords, simple structure, and a

clearly defined syntax. This allows the student to pick

up the language quickly.

• Python code is more clearly defined and visible to the

eyes.

Python is available for download (python.org/downloads) for just about

every platform that you may encounter or use—even Windows! Python is

a very easy language to learn with very few constructs that are even mildly

difficult to learn. Rather than toss out a sample application, let’s approach

learning the basics of Python in a Python-like way: one step at a time.

Tip If you have not installed Python on your PC, you should do so
now so that you can run the examples in this chapter.

 Code Blocks
The first thing you should learn is that Python does not use a code block

demarcated with symbols like other languages. More specifically, code

that is local to a construct such as a function or conditional or loop is

designated using indentation. Thus, the lines in Listing 3-1 are indented

(by spaces or, gag, tabs) so that the starting characters align for the code

body of the construct. Listing 3-1 shows this concept in action.

Caution Python interpreters will complain and could produce
strange results if the indentation is not uniform.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

109

Listing 3-1. Using Code Blocks

if (expr1):

 print("inside expr1")

 print("still inside expr1")

else:

 print("inside else")

 print("still inside else")

print("in outer level")

Here we see a conditional or if statement. Notice the function call

print() is indented. This signals the interpreter that the lines belong to

the construct above it. For example, the two print statements that mention

expr1 form the code block for the if condition (and executes when the

expression evaluates to true). Similarly, the next two print statements form

the code block for the else condition. Finally, the non-indented lines are

not part of the conditional and thus are executed after either the if or else

depending on the expression evaluation.

As you can see, indentation is a key concept to learn when writing Python.

Even though it is very simple, making mistakes in indentation can result in

code executing that you did not expect or worse errors from the interpreter.

Tip I use “program” and “application” interchangeably with “script”
when discussing Python. While technically Python code is a script, we
often use it in contexts where “program” or “application” are more
appropriate.

There is one special symbol that you will encounter frequently. Notice

the use of the colon (:) in the preceding code. This symbol is used to

terminate a construct and signals the interpreter that the declaration

is complete and the body of the code block follows. We use this for

conditionals, loops, classes, and functions.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

110

 Comments
One of the most fundamental concepts in any programming language is

the ability to annotate your source code with non-executable text that not

only allows you to make notes among the lines of code but also forms a

way to document your source code.

To add comments to your source code, use the pound sign (#). Place at

least one at the start of the line to create a comment for that line repeating

the # symbols for each subsequent line. This creates what is known as a

block comment as shown. Notice in Listing 3-2 I used a comment without

any text to create whitespace. This helps with readability and is a common

practice for block comments.

Listing 3-2. Adding Comments to Source Code

#

Beginning Sensor Networks, 2nd Edition

#

Example Python application.

#

Created by Dr. Charles Bell

#

You can also place comments on the same line as the source code. The

compiler will ignore anything from the pound sign to the end of the line.

For example, the following code shows a common style of documenting

variables:

zip = 35012# Zip or postal code

address1= "123 Main St." # Store the street address

CHaPteR 3 PRogRaMMIng In MICRoPytHon

111

 Arithmetic
You can perform many mathematical operations in Python including the

usual primitives but also logical operations and operations used to compare

values. Rather than discuss these in detail, I provide a quick reference in

Table 3-1 that shows the operation and example of how to use the operation.

Table 3-1. Arithmetic, Logical, and Comparison Operators in Python

Type Operator Description Example

arithmetic + addition int_var + 1

– Subtraction int_var – 1

* Multiplication int_var * 2

/ Division int_var / 3

% Modulus int_var % 4

– Unary subtraction –int_var

+ Unary addition +int_var

Logical & Bitwise and var1&var2

| Bitwise or var1|var2

^ Bitwise exclusive or var1^var2

~ Bitwise complement ~var1

and Logical and var1 and var2

or Logical or var1 or var2

Comparison == equal expr1==expr2

!= not equal expr1!=expr2

< Less than expr1<expr2

> greater than expr1>expr2

<= Less than or equal expr1<=expr2

>= greater than or equal expr1>=expr2

CHaPteR 3 PRogRaMMIng In MICRoPytHon

112

Bitwise operations produce a result on the values performed on each

bit. Logical operators (and, or) produce a value that is either true or false

and are often used with expressions or conditions.

Tip true and false are represented as True and False in Python
(initial cap).

 Output to Screen
We’ve already seen a few examples of how to print messages to the

screen but without any explanation about the statements shown. While

it is unlikely that you would print output from your XBee module for

projects that you deploy, learning Python is much easier when you display

messages to the screen.

Some of the things you may want to print—as we have seen in

Listing 3-1—is to communicate what is going on inside your program.

This can include simple messages (strings), but can also include the values

of variables, expressions, and more.

As we have seen, the built-in print() function is the most common

way to display output text contained within single or double quotes. We

have also seen some interesting examples using another function named

format(). The format() function generates a string for each argument

passed. These arguments can be other strings, expressions, variables, and

so on. The function is used with a special string that contains replacement

keys delimited by curly braces { } (called string interpolation2). Each

replacement key contains either an index (starting at 0) or a named

keyword. The special string is called a format string. Let’s see a few

examples to illustrate the concept. You can run these yourself on your PC.

I include the output so you can see what each statement does.

2 https://en.wikipedia.org/wiki/String_interpolation

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://en.wikipedia.org/wiki/String_interpolation

113

Notice the >>> symbol in Listing 3-3. This indicates I am executing the

code using the Python interpreter. You can start the Python interpreter

from any command window (terminal) by typing the command python or

python3 for running the 3.X version of Python.

Listing 3-3. Python Interpreter Example

>>> a = 42

>>> b = 1.5

>>> c = "seventy"

>>> print("{0} {1} {2} {3}".format(a,b,c,(2+3)))

42 1.5 seventy 5

>>> print("{a_var} {b_var} {c_var} {0}".format((3*3),c_var=c,

b_var=b,a_var=a))

42 1.5 seventy 9

Note For those who have learned to program in another language
like C or C++, Python allows you to terminate a statement with the
semicolon (;); however, it is not needed and considered bad form to
include it.

Notice I created three variables (we will talk about variables in the next

section) assigning them different values with the equal symbol (=). I then

printed a message using a format string with four replacement keys labeled

using an index. Notice the output of that print statement. Notice I included

an expression at the end to show how the format() function evaluates

expressions.

The last line is more interesting. Here, I use three named parameters

(a_var, b_var, c_var) and used a special argument option in the format()

function where I assign the parameter a value. Notice I listed them in a

different order. This is the greatest advantage of using named parameters;

CHaPteR 3 PRogRaMMIng In MICRoPytHon

114

they can appear in any order but are placed in the format string in the

position indicated.

As you can see, it’s just a case of replacing the { } keys with those from

the format() function, which converts the arguments to strings. We use

this technique anywhere we need a string that contains data gathered from

more than one area. We can see this in the preceding examples.

Tip For more information about format strings and the options
available, see https://docs.python.org/3/library/string.
html#formatstrings.

Now let’s look at how we can use variables in our programs (scripts).

 Variables and Data Types
Now that we’ve seen the basic construction of simple Python code, let’s

explore the fundamental concepts you will need to master first: variables

and data types. In this section, we discover how to create variables to store

data including how they are typed (what kind of data they can store) and

simple statements for working with variables. We will learn more about

complex data types in the next section.

 Variables
Python is a dynamically typed language, which means the type of the

variable (the type of data it can store) is determined by context as it is

encountered or used. This contrasts with other language such as C and

C++ where you must declare the type before you use the variable.

Variables in Python are simply named memory locations that you can

use to store values during execution. We store values by using the equal

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://docs.python.org/3/library/string.html#formatstrings
https://docs.python.org/3/library/string.html#formatstrings

115

sign to assign the value. Python variable names can be anything you want,

but there are rules and conventions most Python developers follow. The

rules are listed in the Python coding standard.3

However, the general, overriding rule requires variable names that

are descriptive, have meaning in context, and can be easily read. That is,

you should avoid names with random characters, forced abbreviations,

acronyms, and similar obscure names. By convention, your variable names

should be longer than a single character (with some acceptable exceptions

for loop counting variables) and short enough to avoid overly long code

lines.

WHAT IS A LONG CODE LINE?

Most will say a code line should not exceed 80 characters, but this harkens

from the darker days of programming when we used punched cards that

permitted a maximum of 80 characters per card (or less) and later display

devices with the same limitation. With modern, widescreen displays, this is

not as big a deal, but I still recommend keeping lines short to ensure better

readability. no one likes to scroll down to read! or, worse, require turning on

word wrap or use a 34” widescreen monitor to read your code.

thus, there is a lot of flexibility in what you can name your variables. there

are additional rules and guidelines in the PeP8 standard, and should you wish

to bring your project source code up to date with the standards, you should

review the PeP8 naming standards for functions, classes, and more. See the

PeP8 coding guidelines for Python coding at www.python.org/dev/peps/

pep-0008 for a complete list of the rules and standards.

Listing 3-4 shows some examples of simple variables and their

dynamically determined types.

3 www.python.org/dev/peps/pep-0008

CHaPteR 3 PRogRaMMIng In MICRoPytHon

http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008
http://www.python.org/dev/peps/pep-0008

116

Listing 3-4. Simple Variable Examples

floating point number

length = 10.0

integer

width = 4

string

box_label = "Tools"

list

car_makers = ['Ford', 'Chevrolet', 'Dodge']

tuple

porsche_cars = ('911', 'Cayman', 'Boxster')

dictionary

address = {"name": "Joe Smith", "Street": "123 Main", "City":

"Anytown", "State": "New Happyville"}

So, how did we know the variable width is an integer? Simply because

the number 4 is an integer. Likewise, Python will interpret “Tools” as a

string. We’ll see more about the last three types and other types supported

by Python in the next section.

Tip For more information about naming conventions governed by
the Python coding standard (PeP8), see www.python.org/dev/
peps/pep-0008/#naming-conventions.

 Types
As mentioned, Python does not have a formal type specification

mechanism like other languages. However, you can still define variables

to store anything you want. In fact, Python permits you to create and use

variables based on context and you can use initialization to “set” the data

type for the variable. Listing 3-5 shows several examples.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

http://www.python.org/dev/peps/pep-0008/#naming-conventions
http://www.python.org/dev/peps/pep-0008/#naming-conventions

117

Listing 3-5. Setting the Variable Data Type

Numbers

float_value = 9.75

integer_value = 5

Strings

my_string = "He says, he's already got one."

print("Floating number: {0}".format(float_value))

print("Integer number: {0}".format(integer_value))

print(my_string)

For situations where you need to convert types or want to be sure

values are typed a certain way, there are many functions for converting

data. Table 3-2 shows a few of the more commonly used type conversion

functions. I discuss some of the data structures in a later section.

Table 3-2. Type Conversion in Python

Function Description

int(x [,base]) Converts x to an integer. Base is optional (e.g., 16 for hex)

long(x [,base]) Converts x to a long integer

float(x) Converts x to a floating point

str(x) Converts object x to a string

tuple(t) Converts t to a tuple

list(l) Converts l to a list

set(s) Converts s to a set

dict(d) Creates a dictionary

chr(x) Converts an integer to a character

hex(x) Converts an integer to a hexadecimal string

oct(x) Converts an integer to an octal string

CHaPteR 3 PRogRaMMIng In MICRoPytHon

118

However, you should use these conversion functions with care to avoid

data loss or rounding. For example, converting a float to an integer can

result in truncation. Likewise, printing floating-point numbers can result

in rounding.

Now let’s look at some commonly used data structures including this

strange thing called a dictionary.

 Basic Data Structures
What you have learned so far about Python is enough to write the most

basic programs and indeed more than enough to tackle the example

project later in this chapter. However, when you start needing to operate

on data—either from the user or from sensors and similar sources—you

will need a way to organize and store data as well as perform operations on

the data in memory. The following sections introduce three data structures

in order of complexity: lists, tuples, or dictionary.

While it is less likely you would use these constructs with your XBee

MicroPython scripts, any tutorial on Python would be remiss to not

include these. That doesn’t mean you cannot use these constructs in

MicroPython—you can—but the MicroPython scripts for most small

projects may not use all data structures in the same script. Again, if you

need to use them, then do so!

 Lists
Lists are a way to organize data in Python. It is a free-form way to build

a collection. That is, the items (or elements) need not be the same data

type. Lists also allow you to do some interesting operations such as adding

things at the end, beginning, or at a special index. Listing 3-6 demonstrates

how to create a list.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

119

Listing 3-6. Creating a List

List

my_list = ["abacab", 575, "rex, the wonder dog", 24, 5, 6]

my_list.append("end")

my_list.insert(0,"begin")

for item in my_list:

 print("{0}".format(item))

Here, we see I created the list using square brackets ([]). The items in

the list definition are separated by commas. Note that you can create an

empty list simply by setting a variable equal to []. Since lists, like other

data structures, are objects, there are several operations available for lists

such as these:

• append(x): Add x to the end of the list.

• extend(l): Add all items to the end of the list.

• insert(pos,item): Insert item at a position pos.

• remove(value): Remove the first item that matches (==)

the value.

• pop([i]): Remove and return the item at position i or

end of list.

• index(value): Return index of first item that matches.

• count(value): Count occurrences of value.

• sort(): Sort the list (ascending).

• reverse(): Reverse sort the list.

Lists are like arrays in other languages and very useful for building

dynamic collections of data.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

120

 Tuples
Tuples, on the other hand, are a more restrictive type of collection. That is,

they are built from a specific set of data and do not allow manipulation like

a list. In fact, you cannot change the elements in the tuple. Thus, we can

use tuples for data that should not change. Listing 3-7 shows an example of

a tuple and how to use it.

Listing 3-7. Using Tuples

Tuple

my_tuple = (0,1,2,3,4,5,6,7,8,"nine")

for item in my_tuple:

 print("{0}".format(item))

if 7 in my_tuple:

 print("7 is in the list")

Here, we see I created the tuple using parenthesis (). The items in the

tuple definition are separated by commas. Note that you can create an

empty tuple simply by setting a variable equal to (). Since tuples, like other

data structures, are objects, there are several operations available such

as the following including operations for sequences such as inclusion,

location, and so on:

• x in t: Determine if t contains x.

• x not in t: Determine if t does not contain x.

• s + t: Concatenate tuples.

• s[i]: Get element i.

• len(t): Length of t (number of elements).

• min(t): Minimal (smallest value).

• max(t): Maximal (largest value).

CHaPteR 3 PRogRaMMIng In MICRoPytHon

121

If you want even more structure with storing data in memory, you can

use a special construct (object) called a dictionary.

 Dictionaries
A dictionary is a data structure that allows you to store key, value pairs

where the data is assessed via the keys. Dictionaries are a very structured

way of working with data and the most logical form we will want to

use when collecting complex data. Listing 3-8 shows an example of a

dictionary.

Listing 3-8. Using Dictionaries

Dictionary

my_dictionary = {

 'first_name': "Chuck",

 'last_name': "Bell",

 'age': 36,

 'my_ip': (192,168,1,225),

 42: “What is the meaning of life?”,

}

Access the keys:

print(my_dictionary.keys())

Access the items (key, value) pairs

print(my_dictionary.items())

Access the values

print(my_dictionary.values())

Create a list of dictionaries

my_addresses = [my_dictionary]

There is a lot going on here! We see a basic dictionary declaration that

uses curly braces to create a dictionary. Inside that, we can create as many

key, value pairs we want separated by commas. Keys are defined using

CHaPteR 3 PRogRaMMIng In MICRoPytHon

122

strings (I use single quotes by convention but double quotes will work) or

integers, and values can be any data type we want. For the my_ip attribute,

we are also storing a tuple

Following the dictionary, we see several operations performed on the

dictionary from printing the keys, printing all the values, and printing only

the values. Listing 3-9 shows the output of executing this code snippet

from the Python interpreter.

Listing 3-9. Performing Operations on Dictionaries

[42, 'first_name', 'last_name', 'age', 'my_ip']

[(42, 'what is the meaning of life?'), ('first_name', 'Chuck'),

('last_name', 'Bell'), ('age', 36), ('my_ip', (192, 168, 1, 225))]

['what is the meaning of life?', 'Chuck', 'Bell', 36,

(192, 168, 1, 225)]

'42': what is the meaning of life?

'first_name': Chuck

'last_name': Bell

'age': 36

'my_ip': (192, 168, 1, 225)

As we have seen in the example in Listing 3-9, there are several

operations (functions or methods) available for dictionaries including

the following. Together this list of operations makes dictionaries a very

powerful programming tool:

• len(d): Number of items in d.

• d[k]: Item of d with key k.

• d[k] = x: Assign key k with value x.

• del d[k]: Delete item with key k.

• k in d: Determine if d has an item with key k.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

123

• d.items(): Return a list (view) of the (key, value)

pairs in d.

• d.keys(): Return a list (view) of the keys in d.

• d.values(): Return a list (view) of the values in d.

Best of all, objects can be placed inside other objects. For example, you

can create a list of dictionaries like I did earlier, a dictionary that contains

lists and tuples, and any combination you need. Thus, lists, tuples, and

dictionaries are a powerful way to manage data for your program.

In the next section, we learn how we can control the flow of our programs.

 Flow Control Statements
Now that we know more about the basics of Python, we can discover some

of the more complex code concepts you will need to complete your project

such as conditional statements and loops.

 Conditional Statements
We have also seen some simple conditional statements: statements

designed to alter the flow of execution depending on the evaluation of one

or more expressions. Conditional statements allow us to direct execution of

our programs to sections (blocks) of code based on the evaluation of one or

more expressions. The conditional statement in Python is the if statement.

We have seen the if statement in action in our example code. Notice

in the example, we can have one or more (optional) else phrases that we

execute once the expression for the if conditions evaluates to false. We can

chain if/else statements to encompass multiple conditions where the

code executed depends on the evaluation of several conditions. Listing 3- 10

shows the general structure of the if statement. Notice in the comments how

I explain how execution reaches the body of each condition.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

124

Listing 3-10. Conditional Statements

if (expr1):

 # execute only if expr1 is true

elif ((expr2) or (expr3)):

 # execute only if expr1 is false *and* either expr2 or

expr3 is true

else:

 # execute if both sets of if conditions evaluate to false

While you can chain the statement as much as you want, use some care

here because the more elif sections you have, the harder it will become to

understand, maintain, and avoid logic errors in your expressions.

There is another form of conditional statement called a ternary

operator. Ternary operators are more commonly known as conditional

expressions in Python. These operators evaluate something based on a

condition being true or not. They became a part of Python in version 2.4.

Conditional expressions are a short-hand notation for an if-then-else

construct used (typically) in an assignment statement as shown here:

variable = value_if_true if condition else value_if_false

Here, we see if the condition is evaluated to true, the value preceding

the if is used, but if the condition evaluates to false, the value following the

else is used. Listing 3-11 shows a short example.

Listing 3-11. Evaluation of Conditional Statements

>>> numbers = [1,2,3,4]

>>> for n in numbers:

... x = 'odd' if n % 2 else 'even'

... print("{0} is {1}.".format(n, x))

...

CHaPteR 3 PRogRaMMIng In MICRoPytHon

125

1 is odd.

2 is even.

3 is odd.

4 is even.

>>>

Conditional expressions allow you to quickly test a condition instead of

using a multi-line conditional statement, which can help make your code a

bit easier to read (and shorter).

 Loops
Loops are used to control the repetitive execution of a block of code. There

are three forms of loops that have slightly different behavior. All loops use

conditional statements to determine whether to repeat execution or not.

That is, they repeat if the condition is true. The two types of loops are while

and for. I explain each with an example.

The while loop has its condition at the “top” or start of the block of

code. Thus, while loops only execute the body if and only if the condition

evaluates to true on the first pass. The following code illustrates the syntax

for a while loop. This form of loop is best used when you need to execute

code only if some expression(s) evaluate to true, for example, iterating

through a collection of things whose number of elements is unknown

(loop until we run out of things in the collection):

while (expression):

 # do something here

For loops are sometimes called counting loops because of their unique

form. For loops allow you to define a counting variable and a range or list

to iterate over. The following code illustrates the structure of the for loop.

This form of loop is best used for performing an operation in a collection.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

126

In this case, Python will automatically place each item in the collection in

the variable for each pass of the loop until no more items are available.

for variable_name in list:

 # do something here

You can also do range loops or counting loops. This uses a special

function called range() that takes up to three parameters, range([start],

stop[, step]), where start is the starting number (an integer), stop is the

last number in the series, and step is the increment. So, you can count by

1, 2, 3, and so on through a range of numbers. The following code shows a

simple example:

for i in range(2,9):

 # do something here

There are other uses for range() that you may encounter. For more

information, see the documentation on this function and other built-in

functions at https://docs.python.org/3/library/functions.html.

Python also provides a mechanism for controlling the flow of the loop

(e.g., duration or termination) using a few special keywords as follows:

• break: Exit the loop body immediately.

• continue: Skip to next iteration of the loop.

• else: Execute code when loop ends (not executed if the

loop was stopped with a break statement).

There are some uses for these keywords, particularly break, but it is

not the preferred method of terminating and controlling loops. That is,

professionals believe the conditional expression or error handling code

should behave well enough to not need these options.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://docs.python.org/3/library/functions.html

127

 Modularization: Modules, Functions,
and Classes
The last group of topics are the most advanced and include modularization

(code organization). As we will see, we can use functions to group code,

eliminate duplication, and encapsulate functionality into objects. Once

again, you may not use these constructs in your MicroPython code for

XBee, but you should be aware of these techniques as you are likely to

encounter them at some point.

 Including Modules
Python applications can be built from reusable libraries that are provided

by the Python environment. They can also be built from custom modules

or libraries that you create yourself or download from a third party. These

are often distributed as a set of Python code files (e.g., files that have a file

extension of .py). When we want to use a library (function, class, etc.) that

is included in a module, we use the import keyword and list the name of

the module. The following code shows some examples:

import os

import sys

The first two lines demonstrate how to import a base or common

module provided by Python. In this case, we are using or importing

modules for the os and sys modules (operating system and Python system

functions).

Tip It is customary (but not required) to list your imports in
alphabetical order with built-in modules first, then third-party
modules listed next, and finally your own modules.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

128

 Functions
Python allows you to use modularization in your code. While it supports

object-oriented programming by way of classes (e.g., a more advanced

feature that you are unlikely to encounter for most Python GPIO examples

on the Raspberry Pi), on a more fundamental level, you can break your

code into smaller chunks using functions.

Functions use a special keyword construct (rare in Python) to define

a function. We simply use def, followed by a name for the function and a

comma-separated list of parameters in parenthesis. The colon is used to

terminate the declaration. Listing 3-12 shows an example.

Listing 3-12. Defining Functions

def print_dictionary(the_dictionary):

 for key, value in the_dictionary.items():

 print("'{0}': {1}".format(key, value))

define some data

my_dictionary = {

 'name': "Chuck",

 ‘age’: 37,

}

You may be wondering what this strange code does. Notice the loop

is assigning two values from the result of the items() function. This is

a special function available from the dictionary object.4 The items()

function returns the key, value pairs, hence the names of the variables.

The next line prints out the values. The use of formatting strings where

the curly braces define the parameter number starting at 0 is common

for Python 3 applications. See the Python documentation for more

4 Yes, dictionaries are objects! So are tuples and lists and many other data structure.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

129

information about formatting strings (https://docs.python.org/3/

library/string.html#format-string-syntax).

The body of the function is indented. All statements indented under

this function declaration belong to the function and are executed when the

function is called. We can call functions by name providing any parameters

as follows. Notice how I referenced the values in the dictionary by using

the key names.

print_dictionary(my_dictionary)

print(my_dictionary['age'])

print(my_dictionary['name'])

This example together with the preceding code, when executed,

generates the output shown in Listing 3-13.

Listing 3-13. Output of Function Example

$ python3

Python 3.6.0 (v3.6.0:41df79263a11, Dec 22 2016, 17:23:13)

[GCC 4.2.1 (Apple Inc. build 5666) (dot 3)] on darwin

Type "help", "copyright", "credits" or "license" for more

information.

>>> def print_dictionary(the_dictionary):

... for key, value in the_dictionary.items():

... print("'{0}': {1}".format(key, value))

...

>>> # define some data

... my_dictionary = {

... 'name': "Chuck",

... 'age': 41,

... }

>>> print_dictionary(my_dictionary)

'name': Chuck

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://docs.python.org/3/library/string.html#format-string-syntax
https://docs.python.org/3/library/string.html#format-string-syntax

130

'age': 41

>>> print(my_dictionary['age'])

41

>>> print(my_dictionary['name'])

Chuck

Now let’s look at the most complex concept in Python—object-

oriented programming. Once again, you may not want to use these

concepts in your MicroPython—but you can—you should still understand

the basics to ensure your Python knowledge is complete.

 Classes and Objects
You may have heard that Python is an object-oriented programming

language. But what does that mean? Simply, Python is a programming

language that provides facilities for describing objects (things) and what

you can do with the object (operations). Objects are an advanced form

of data abstraction where the data is hidden from the caller and only

manipulated by the operations (methods) the object provides.

The syntax we use in Python is the class statement, which you can

use to help make your projects modular. By modular, we mean the source

code is arranged to make it easier to develop and maintain. Typically, we

place classes in separate modules (code files), which helps organize the

code better. While it is not required, I recommend using this technique

of placing a class in its own source file. This makes modifying the class or

fixing problems (bugs) easier.

So, what are Python classes? Let’s begin by considering the construct

as an organization technique. We can use the class to group data and

methods together. The name of the class immediately follows the keyword

class, followed by a colon. You declare other class methods like any other

method, except the first argument must be self, which ties the method to

the class instance when executed.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

131

FUNCTION OR METHOD: WHICH IS CORRECT?

I prefer to use terms that have been adopted by the language designers or

community of developers. For example, some use “function,” but others may

use “method.” Still others may use subroutine, routine, procedure, and so

on. It doesn’t matter which term you use, but you should strive to use terms

consistently. one example, which can be confusing to some, is I use the

term method when discussing object-oriented examples. that is, a class has

methods, not function. However, you can use function in place of method and

you’d still be correct (mostly).

Accessing the data is done using one or more methods by using

the class (creating an instance) and using dot notation to reference the

data member or function. Let’s look at an example. Listing 3-14 shows a

complete class that describes (models) the most basic characteristics of

a vehicle used for transportation. I created a file named vehicle.py to

contain this code.

Listing 3-14. Vehicle Class

#

Beginning Sensor Networks 2nd Edition

#

Class Example: A generic vehicle

#

Dr. Charles Bell

#

CHaPteR 3 PRogRaMMIng In MICRoPytHon

132

class Vehicle:

 """Base class for defining vehicles"""

 axles = 0

 doors = 0

 occupants = 0

 def __init__(self, num_axles, num_doors):

 self.axles = num_axles

 self.doors = num_doors

 def get_axles(self):

 return self.axles

 def get_doors(self):

 return self.doors

 def add_occupant(self):

 self.occupants += 1

 def num_occupants(self):

 return self.occupants

Notice a couple of things here. First, there is a method with the name

__init__(). This is the constructor and is called when the class instance is

created. You place all your initialization code like setting variables in this

method. We also have methods for returning the number of axles, doors,

and occupants. We have one method in this class: to add occupants.

Also, notice we address each of the class attributes (data) using

self.<name>. This is how we can ensure we always access the data that is

associated with the instance created.

Let’s see how this class can be used to define a family sedan. Listing 3-15

shows code that uses this class. We can place this code in a file named

sedan.py.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

133

Listing 3-15. Using the Vehicle Class

#

Beginning Sensor Networks 2nd Edition

#

Class Example: Using the generic Vehicle class

#

Dr. Charles Bell

#

from vehicle import Vehicle

sedan = Vehicle(2, 4)

sedan.add_occupant()

sedan.add_occupant()

sedan.add_occupant()

print("The car has {0} occupants.".format(sedan.num_

occupants()))

Notice the first line imports the Vehicle class from the vehicle module.

Notice I capitalized the class name but not the file name. This is a very

common naming scheme. Next in the code, we create an instance of the class.

Notice I passed in 2, 4 to the class name. This will cause the __init__()

method to be called when the class is instantiated. The variable, sedan,

becomes the class instance variable (object) that we can manipulate, and

I do so by adding three occupants and then printing out the number of

occupants using the method in the Vehicle class.

We can run the code on our PC using the following command. As we

can see, it tells us there are three occupants in the vehicle when the code is

run. Nice.

$ python ./sedan.py

The car has 3 occupants.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

134

 Object-Oriented Programming (OOP) Terminology
Like any technology or concept, there comes a certain number of terms

that you must learn to be able to understand and communicate with others

about the technology. The following list briefly describes some of the terms

you will need to know to learn more about object-oriented programming:

• Attribute: A data element in a class.

• Class: A code construct used to define an object in the

form of attributes (data) and methods (functions) that

operate on the data. Methods and attributes in Python

can be accessed using dot notation.

• Class instance variable: A variable that is used to store

an instance of an object. They are used like any other

variable and, combined with dot notation, allow us to

manipulate objects.

• Instance: An executable form of a class created by

assigning a class to a variable initializing the code as an

object.

• Inheritance: The inclusion of attributes and methods

from one class in another.

• Instantiation: The creation of an instance of a class.

• Method overloading: The creation of two or more

methods with the same name but with a different set of

parameters. This allows us to create methods that have

the same name but may operate differently depending

on the parameters passed.

• Polymorphism: Inheriting attributes and methods from

a base class adding additional methods or overriding

(changing) methods.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

135

There are many more OOP terms, but these are the ones you will

encounter most often.

Now, let’s see how we can use the vehicle class to demonstrate

inheritance. In this case, we will create a new class named PickupTruck

that uses the vehicle class but adds specialization to the resulting class.

Listing 3-16 shows the new class. I placed this code in a file named pickup_

truck.py. As you will see, a pickup truck is a type of vehicle.

Listing 3-16. Pickup Truck Class

#

Beginning Sensor Networks 2nd Edition

#

Class Example: Inheriting the Vehicle class to form a

model of a pickup truck with maximum occupants and maximum

payload.

#

Dr. Charles Bell

#

from vehicle import Vehicle

class PickupTruck(Vehicle):

 """This is a pickup truck that has:

 axles = 2,

 doors = 2,

 __max occupants = 3

 The maximum payload is set on instantiation.

 """

 occupants = 0

 payload = 0

 max_payload = 0

 def __init__(self, max_weight):

CHaPteR 3 PRogRaMMIng In MICRoPytHon

136

 super().__init__(2,2)

 self.max_payload = max_weight

 self.__max_occupants = 3

 def add_occupant(self):

 if (self.occupants < self.__max_occupants):

 super().add_occupant()

 else:

 print("Sorry, only 3 occupants are permitted in the

truck.")

 def add_payload(self, num_pounds):

 if ((self.payload + num_pounds) < self.max_payload):

 self.payload += num_pounds

 else:

 print("Overloaded!")

 def remove_payload(self, num_pounds):

 if ((self.payload - num_pounds) >= 0):

 self.payload -= num_pounds

 else:

 print("Nothing in the truck.")

 def get_payload(self):

 return self.payload

Notice a few things here. First, notice the class statement: class

PickupTruck(Vehicle). When we want to inherit from another class, we

add the parenthesis with the name of the base class. This ensures Python

will use the base class allowing the derived class to use all its accessible

data and memory. If you want to inherit from more than one class, you

can (called multiple inheritance); just list the base (parent) classes with a

comma-separated list.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

137

Next, notice the __max_occupants variable. Using two underscores in a

class for an attribute or a method makes that, through convention, the item

private to the class.5 That is, it should only be accessed from within the

class. No caller of the class (via a class variable/instance) can access the

private items nor can any class derived from the class. It is always a good

practice to hide the attributes (data).

You may be wondering what happened to the occupant methods.

Why aren’t they in the new class? They aren’t there because our new class

inherited all that behavior from the base class. Not only that, but the code

has been modified to limit occupants to exactly three occupants.

I also want to point out the documentation I added to the class. We use

documentation strings (use a set of three double quotes before and after)

to document the class. You can put documentation here to explain the

class and its methods. We’ll see a good use of this a bit later.

Finally, notice the code in the constructor. This demonstrates how

to call the base class method, which I do to set the number of axles and

doors. We can do the same in other methods if we wanted to call the base

class method’s version.

Now, let’s write some code to use this class. Listing 3-17 shows the

code we used to test this class. Here, we create a file named pickup.py that

creates an instance of the pickup truck, adds occupants and payload, and

then prints out the contents of the truck.

5 Technically, it is called name mangling, which simulates making something
private, but can still be accessed if you provide the correct number of
underscores. For more information, see https://en.wikipedia.org/wiki/
Name_mangling.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://en.wikipedia.org/wiki/Name_mangling
https://en.wikipedia.org/wiki/Name_mangling

138

Listing 3-17. Using the PickupTruck Class

#

Beginning Sensor Networks 2nd Edition

#

Class Example: Exercising the PickupTruck class.

#

Dr. Charles Bell

#

from pickup_truck import PickupTruck

pickup = PickupTruck(500)

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_occupant()

pickup.add_payload(100)

pickup.add_payload(300)

print("Number of occupants in truck = {0}.".format(pickup.num_

occupants()))

print("Weight in truck = {0}.".format(pickup.get_payload()))

pickup.add_payload(200)

pickup.remove_payload(400)

pickup.remove_payload(10)

Notice I add a couple of calls to the add_occupant() method, which

the new class inherits and overrides. I also add calls so that we can test the

code in the methods that check for excessive occupants and maximum

payload capacity. When we run this code, we will see the results as shown

here:

$ python ./pickup.py

Sorry, only 3 occupants are permitted in the truck.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

139

Number of occupants in truck = 3.

Weight in truck = 400.

Overloaded!

Nothing in the truck.

There is one more thing we should learn about classes: built-in

attributes. Recall the __init__() method. Python automatically provides

several built-in attributes each starting with __ that you can use to learn

more about objects. The following lists a few of the operators available for

classes:

• __dict__: Dictionary containing the class namespace

• __doc__: Class documentation string

• __name__: Class name

• __module__: Module name where the class is defined

• __bases__: The base class(es) in order of inheritance

The following code shows what each of these attributes returns for the

preceding PickupTruck class. I added this code to the pickup.py file.

print("PickupTruck.__doc__:", PickupTruck.__doc__)

print("PickupTruck.__name__:", PickupTruck.__name__)

print("PickupTruck.__module__:", PickupTruck.__module__)

print("PickupTruck.__bases__:", PickupTruck.__bases__)

print("PickupTruck.__dict__:", PickupTruck.__dict__)

When this code is run, we see the following output:

PickupTruck.__doc__: This is a pickup truck that has:

 axles = 2,

 doors = 2,

 max occupants = 3

CHaPteR 3 PRogRaMMIng In MICRoPytHon

140

 The maximum payload is set on instantiation.

PickupTruck.__name__: PickupTruck

PickupTruck.__module__: pickup_truck

PickupTruck.__bases__: (<class 'vehicle.Vehicle'>,)

PickupTruck.__dict__: {'__module__': 'pickup_truck', '__doc__':

'This is a pickup truck that has:\n axles = 2,\n doors

= 2,\n max occupants = 3\n The maximum payload is set

on instantiation.\n ', 'occupants': 0, 'payload': 0, 'max_

payload': 0, ' _PickupTruck__max_occupants': 3, '__init__':

<function PickupTruck.__init__ at 0x1018a1488>, 'add_occupant':

<function PickupTruck.add_occupant at 0x1018a17b8>, 'add_

payload': <function PickupTruck.add_payload at 0x1018a1840>,

'remove_payload': <function PickupTruck.remove_payload at

0x1018a18c8>, 'get_payload': <function PickupTruck.get_payload

at 0x1018a1950>}

You can use the built-in attributes whenever you need more

information about a class. Notice the _PickupTruck__max_occupants entry

in the dictionary. Recall that we made a pseudo-private variable, __max_

occupants. Here, we see how Python refers to the variable by prepending

the class name to the variable. Remember, variables that start with two

underscores (not one) indicate they should be considered private to the

class and only usable from within the class.

Tip For more information about classes in Python, see https://
docs.python.org/3/tutorial/classes.html.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

https://docs.python.org/3/tutorial/classes.html
https://docs.python.org/3/tutorial/classes.html

141

FOR MORE INFORMATION

Should you require more in-depth knowledge of Python, there are several

excellent books on the topic. I list a few of my favorites here:

• Pro Python, Second edition (apress 2014), J. Burton Browning,

Marty alchin

• Learning Python, Fifth edition (o’Reilly Media 2013), Mark Lutz

• Automate the Boring Stuff with Python: Practical Programming
for Total Beginners (no Starch Press 2015), al Sweigart

a great resource is the documentation on the Python site: python.org/doc/.

 Summary
Wow! That was a wild ride, wasn’t it? I hope that this short crash course in

Python has explained enough about the sample programs shown so far

that you now know how they work. This crash course also forms the basis

for understanding the other Python and MicroPython examples in this

book.

If you are learning how to work with sensor network projects and don’t

know how to program with Python, learning Python can be fun given its

easy-to-understand syntax. While there are many examples on the Internet

you can use, very few are documented in such a way as to provide enough

information for someone new to Python to understand or much less get

started and deploy the sample! But at least the code is easy to read.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

142

This chapter has provided a crash course in Python that covers the

basics of the things you will encounter when examining most of the

smaller example projects. We discovered the basic syntax and constructs

of a Python application including all the fundamental statements and

data structures you will likely encounter writing Python and MicroPython

scripts.

In the next chapter, we’ll dive deeper into MicroPython programming

and start writing MicroPython for our XBee modules.

CHaPteR 3 PRogRaMMIng In MICRoPytHon

143© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_4

CHAPTER 4

XBee-Based Sensor
Nodes
Thus far into our journey of sensor networks, we have discovered how

sensor networks can be formed, the type of nodes, and their roles that

comprise a sensor network, and we’ve spent some time learning about

XBee modules and how to program them with MicroPython.

Now it is time to see how we can use XBee modules to read sensor

data. As you will see, this can be accomplished in one of two ways:

using the extensive native capabilities of the XBee to read sensors

and broadcast the data to several or even a single node and using

MicroPython written to read and manage sensor data passing it on to

other nodes. We will concentrate on the first method, but we will see a

short example of both methods.

Let’s begin with a brief overview of what we can do with the XBee

modules.

https://doi.org/10.1007/978-1-4842-5796-8_4#ESM

144

 How to Host Sensors with XBee
There are two basic methods1 of hosting sensors with an XBee module.

You can configure the XBee module to sample a sensor and send its

data on a time schedule (XBee hardware option), or you can write a

MicroPython script (MicroPython option) to do the same. There is one

major difference. Using the MicroPython option means you can do some

additional processing on the sensor data prior to transmitting it. This can

include basic error handling, data transformation, and more. If you need

to do any work on the sensor data prior to transmitting it or if you want

to control other devices connected to the XBee module, MicroPython is a

clear advantage.

For example, you could connect an LED to the XBee that you turn on

whenever data is read from a sensor. This might be helpful in solutions

such as a radio frequency identification (RFID) reader where swiping a

card over the sensor unlocks a door. In this case, you can use MicroPython

to trigger a light-emitting diode (LED) to let the user know when the lock is

disengaged (or engaged).

Conversely, the hardware option permits you to configure the XBee

to capture the sensor data in its raw form and there is no provision to

modify it (easily). Thus, the data sent is the raw data the sensor generated.

While this is one of the best practices—storing the data in its raw form—

sometimes you may want to manipulate the data prior to transmission. We

will see how to do that with the MicroPython option.

1 These are the basic methods. Other methods including using XBee modules to
control other devices are possible but are more advanced and beyond the scope
of this work.

Chapter 4 XBee-Based sensor nodes

145

In both cases, sensors are connected directly to the XBee via the

input/output pins. More specifically, you connect your sensor(s) to the

XBee, read the data, and send it to one or more XBee modules on your

network. You can send the data to a specific module by address or you can

broadcast the data sending it to all modules on the network.

In the next section, we will see examples of both methods using the

same hardware setup for a simple environmental sensor.

 Building an XBee Environment Sensor
The XBee environmental sensor node in this example is a single XBee

module with a simple analog temperature sensor (TMP36) connected to one

of the analog input pins, which uses an analog-to-digital converter (ADC)

to convert voltage to a number in range 0–1024. For this project, you tell

the XBee to send data using short time periods; but for a real project,

you would want to consider using a slower sampling rate or perhaps

using sleep mode, in which the XBee sleeps for some time, then sends

data, and repeats. We set the sampling rate when we configure the XBee

module later in this chapter. For now, let’s let the XBee send samples more

frequently so you can see something happening.

The XBee also has a really nifty feature for monitoring battery power.

You can tell the XBee to send the current supply power as part of the data

packet. In this case, it sends whatever voltage is being supplied to the

XBee. This is helpful because it allows you to build into your solution a

trigger to remind you to change the batteries in your sensor node(s).

If you have a home or apartment with smoke detectors, you may have

already experienced a similar circuit in the form of a tone or alarm that

sounds when the battery voltage drops. For those of us with homes that

have multiple smoke detectors, it can be somewhat of a “Where’s Waldo?”

game to find the detector that is chirping! This is why whenever the first

detector starts chirping, I change the batteries in all of them.

Chapter 4 XBee-Based sensor nodes

146

 Hardware Setup
To keep the project easy to build, you will use a breadboard for the

sensor node. Using a breadboard makes it easier to experiment with the

components, and once you perfect the circuit, you can move them to

printed circuit board (PCB) breadboards for semi-permanent installation

or perhaps design and build your own custom PCB for your sensor nodes.

The hardware for the XBee sensor node consists of a breadboard, a

breadboard power supply, a TMP36 temperature sensor, and a 0.10mF

capacitor. You also need an XBee Explorer board and a set of male headers

(0.1" spacing for breadboards) like those available from Adafruit or

SparkFun. Figure 4-1 shows the SparkFun regulated explorer board. The

regulated board is a bit more expensive, but it has power regulation built

in, so if you accidentally connect 5V, it won’t fry your XBee. As an owner

of a now completely useless XBee (it’s not even big enough to use as a

coaster), I can tell you that it is worth the extra cost.

Note Most breakout boards do not come with the breadboard
headers installed. You have to solder them yourself, get someone to
do it for you.

Once you have the components assembled, plug them in to your

breadboard as shown in Figure 4-2. Notice the figure is shown without the

XBee module installed so you can see the connections clearly. Be sure to

set the breadboard power supply to 3.3V.

Figure 4-1. SparkFun regulated XBee Explorer (courtesy of SparkFun)

Chapter 4 XBee-Based sensor nodes

147

Caution Be sure to double-check your wiring before powering on
the sensor node.

There is no need to install the XBee module just yet since you need to

configure its settings before you can use it with the circuit. You do that in

the next section.

It is important to note that the drawing shows positive power going

to pin 1 of the XBee. Be sure to check the pins on your breakout board to

be certain you are connecting to the right pin. For example, the SparkFun

regulated explorer input voltage is not on pin 1.

Note the breadboard power supply can be any 6V to 12V power supply.
the 9V wall wart that most use to power their arduino will do nicely.

Figure 4-2. XBee temperature sensor node

Chapter 4 XBee-Based sensor nodes

148

Notice that you also connect your data line from the TMP36 to pin 17

(analog 3 on the XBee or DIO3 on the explorer board), and you connect

ground to the ground pin on the breakout board (or explorer). Be sure to

orient the TMP36 with the flat side as shown in the drawing. That is, with

the flat side facing you, pin 1 is on the left and is to be connected to input

power, the middle pin is data, and pin 3 is to be connected to ground. You

can place the capacitor in either orientation, but be sure it is connected to

pins 1 and 3 of the TMP36.

Caution ensure your breakout board power supply is set to 3.3V.

ALTERNATIVE TO A BREADBOARD POWER SUPPLY

If you plan to make a few XBee sensor nodes for semi-permanent installation,

you may not want to use a breadboard. rather, you may want to use a pCB

breadboard and solder your XBee breakout board, sensor, and supporting

electronics in place. In this case, a breadboard power supply might not be

convenient. similarly, if you want to keep costs down, you can build a basic

power supply from a few parts that can accept up to 12V and still regulate the

power to your XBee at 3.3V.

all you need are a 7833-voltage regulator, a 1mF capacitor, a 10mF,

and a two-terminal terminal block (or similar power connector). In total,

you should be able to buy these components for a few dollars even at

an electronics retail store—and less from an electronics online store.

arranging the circuit is easy. the following picture shows the components

wired to a breadboard.

Chapter 4 XBee-Based sensor nodes

149

You need only a little imagination and some wire to transfer the circuit to a

pCB breadboard. notice the orientation of the capacitors—keep the white strip

on the negative side!

Now that we have the hardware portion set up, let’s see how to enable

the sensor on the XBee with each method described earlier.

For each option, we will test the sensor node using the XCTU

application to observe the data. This will allow us to test reading the sensor

without setting up a complete sensor network. In fact, it is recommended

that you test each sensor node in a similar manner. Once all of the nodes

are working with a single connection, you can start connecting them

together in a larger network. This will save you untold time and frustration

later.2

We will start with the XBee hardware option.

2 This is a common novice mistake: building the entire sensor network including
data collection without testing the individual components. The best method is
to build your network in stages after testing each node separately (or in as small
a configuration as possible). Debugging a network with many nodes is much
harder than building the network with networks that have been assembled in
stages.

Chapter 4 XBee-Based sensor nodes

150

 XBee Hardware Option
In this section, we will use the hardware configuration options of the XBee

module to read temperature data from the TMP36 sensor and pass it on

to another XBee module on the network. We will use a ZigBee network to

keep things simple. More specifically, we will not be using the destination

address (DH and DL codes) to set a target node. This will permit the XBee

acting as a sensor node to broadcast the data using a data sample packet.

We will need one XBee module to read the sensor and another to

receive the data. To keep the example simple and easy to set up, we

will use XBee series 2 modules for this example. You can use one of the

modules you used in Chapter 2 for the sensor node, provided you don’t

use the coordinator and you clear the destination address (DH and DL).

You will use the XBee module configured as the coordinator to test the

XBee sensor node. The following section details all of the settings you

will need to make.

 Configuring the XBee Sensor Node

The XBee module you use as the XBee sensor node is either an end device

or a router with API firmware. You use the XCTU application to connect

to the XBee with a USB adapter. Recall, we must connect the XBee using

the USB dongle, then open XCTU, and add the module (or search for all

modules). Once the module is found, open the configuration mode tab.

From there, we will set several settings to enable the XBee to read the

sensor. If you have not uploaded the router or end device firmware, you

should do that first.

In this case, you want the XBee module to send data every 15 seconds

(15,000 milliseconds), read data on analog line 3 (digital I/O 3 or DIO3),

and include the reference voltage. Thus, in the XCTU application, you want

to change the corresponding settings. Table 4-1 shows the settings you

need to change. Use the code shown in the search box to find each setting

Chapter 4 XBee-Based sensor nodes

151

quickly. Recall that all values are entered in hexadecimal and that you

can change the value in XCTU by searching for the code and then either

choosing a value or typing it into the text box for that setting. Change the

settings as shown, and then click Write to save the settings to the XBee

module.

 Setting Up the Coordinator

Next, remove the XBee sensor node and plug it into the explorer on the

breadboard. Make sure you have loaded the coordinator firmware and use

the settings in Table 4-2.

Now we are ready to test our sensor node.

Table 4-1. XBee Sensor Node Options and Values

Code Setting Name Description Value

d3 ad3/dIo3 trigger analog or digital data

recording

2—adC

Id pan Id Id for the network 8088

Ir I/o sampling rate time to wait to send data 3a98—15,000ms

nI node Identifier name for the node sensor node

V+ supply Voltage

threshold

supply voltage FFFF (always send)

Table 4-2. XBee Coordinator Options and Values

Code Setting Name Description Value

Id pan Id Id for the network 8088

nI node Identifier name for the node Coordinator

Chapter 4 XBee-Based sensor nodes

152

 Testing the XBee Sensor Node

To test the XBee sensor node, you use your XBee coordinator with API

firmware installed on the USB adapter connected to your PC. Do this

first so the coordinator can be up and running when you start the XBee

sensor node. Plug it into your computer, and open the XCTU application.

Use XCTU to discover the XBee module and then open a terminal. See

Chapter 2 for instructions on how to do this.

Next, connect your power supply to your XBee sensor node. It will take

a few moments for the XBee to connect to the coordinator and join the

network. Once it does, you start to see the coordinator receiving data, as

shown in Figure 4-3.

Tip It can take some time for the network to form. If you do not
see data samples on the coordinator, power off the sensor node and
power it on again. If you still do not see any data, double-check your
settings to ensure both nodes are on the same network pan Id.

Figure 4-3. Serial monitor output

Chapter 4 XBee-Based sensor nodes

153

You should see one or more IO Data Sample receive RX Indicator

packets. Notice in the image that the first row begins with 7E (hex). This is

the start-of-packet delimiter. You should see to the right data that looks like

the following. This is a series of hexadecimal values.

7E 00 14 92 00 13 A2 00 40 A0 D4 5C FC F1 01 01 00 00 88 02 41

0A BC 28

All ZigBee packets have a specific format or layout. Table 4-3 shows the

layout for the IO Data Sample RX Indicator packet.

Table 4-3. IO Data Sample Rx Indicator Packet

Value Field Name Notes

7E start delimiter

00 14 packet length 20 bytes to checksum

92 Frame type I/o data sample rx Indicator

00 13 A2 00

40 A0 D4 5C

64-bit address address of XBee sensor node

FC F1 16-bit address

01 options

01 number of samples 1 data sample

00 00 digital mask digital pins that have data

88 analog mask analog pins that have data

02 41 sample temperature from sensor

0A BC supply voltage

28 Checksum

Chapter 4 XBee-Based sensor nodes

154

This data packet represents the data sent from the XBee sensor node.

In this case, you set the XBee to send any value from the analog pin 3

(digital IO 3) every 15 seconds. You also set the option to send the value

of the supply voltage. Notice the value for the analog mask: the value

88 in hexadecimal is converted to 1000 1000 in binary. The first part of

the byte is an indicator that the supply voltage is also included in the data

packet. The second part of the byte indicates that AD3/DIO3 (pin 3) was

the source of the sample. If you were sampling multiple sensors, the mask

would have the bits for the data pin set or 0001 for pin 0, 0010 for pin 1, and

0100 for pin 2.

From the table, you see there is indeed one data sample with a value

of 02 41 (hex, 577 decimal). The value is 577 because this is the voltage in

millivolts read from the sensor. To calculate the temperature, you must use

the following formula:

temp = ((sample * 1200/1024) - 500)/10

Thus, you have ((577 * 1200/1024)-500)/10 = 17.61 degrees

Celsius. The supply voltage is a similar formula:

voltage = (sample * 1200/1024)/1000

Here, you convert the data read to volts rather than millivolts. Thus, the

data packet contained 0A BC (hex, 2748), and the voltage read is 3.22 volts.

If you are powering an XBee sensor from a battery, you can use this value

to determine when you need to change or charge the battery.

Take a few moments to study the other samples in the example and

check the data samples for the temperature read. If you are really careful,

you can place your finger on the TMP36 and observe the temperature

change (it should start increasing after one or two more samples). Once

you are convinced your XBee sensor node is sending similar data, you can

conclude that the sensor node is working correctly.

Next, let’s look at the MicroPython option.

Chapter 4 XBee-Based sensor nodes

155

 MicroPython Option
In this section, we will use a MicroPython script on the XBee module to

read temperature data from the TMP36 sensor and pass it on to another

XBee module on the network. We will use a ZigBee network to keep things

simple. More specifically, we will supply the destination address (DH and

DL codes) to send the data to a specific node.

We will need one XBee module to read the sensor and another to

receive the data. We must use an XBee series 3 module for the sensor node

in this example, but we can use the same coordinator from the previous

example. You can use one of the modules you used in Chapter 2 for the

sensor node, provided you don’t use the coordinator and you clear the

destination address (DH and DL). You will use the XBee module configured

as the coordinator to test the XBee sensor node. The following section

details all of the settings you will need to make.

 Configuring the XBee Sensor Node

The XBee module you use as the XBee sensor node is either an end

device or a router with API firmware configured to run MicroPython.

Once again, you use the XCTU application to connect to the XBee with a

USB adapter.

Recall, we will be placing the XBee module into MicroPython mode.

While will we still be using the ZigBee network, we will set up the module

to connect to (join) the network. Thus, we will require one coordinator.

Fortunately, we can use the same coordinator as the last section.

Table 4-4 shows the settings you need to change. Recall that all values

are entered in hexadecimal and that you can change the value in XCTU by

searching for the code and then either choosing a value or typing it into the

text box for that setting. Change the settings as shown, and then click Write

to save the settings to the XBee module.

Chapter 4 XBee-Based sensor nodes

156

 Programming the Sensor Node

Go ahead and make the configuration changes for the sensor node and

then write (save) them to the module. Recall from Chapter 2, we can either

write our MicroPython script interactively and then save it to a file or write

it to a file and upload it to the module. In this example, we will see the

interactive mode.

Next, we will open the MicroPython Terminal by selecting it from the

menu as shown in Figure 4-4.

Table 4-4. XBee Sensor Node Options and Values

Code Setting Name Description Value

ap apI enabled set apI mode 4—Micropython

Bd Uart Baud rate speed of serial connection 115200

Ce device role role in ZigBee network 0—Join network

d3 ad3/dIo3 trigger analog or digital

data recording

2—adC

Id pan Id Id for the network 8088

nI node Identifier name for the node python tMp36

ps Micropython auto start auto start repL 1—enabled

Chapter 4 XBee-Based sensor nodes

157

Once the MicroPython Terminal is opened, press Enter a few times to

get a response. You should see the prompt >>>. If you are reusing an XBee

module from a previous project that was loaded with a MicroPython script

where the main.py script was overwritten either by copying a file or using

the interactive mode of the REPL console, you may need to press Ctrl+C to

stop the main.py script.

Next, we are going to type in the code shown in Listing 4-1. You can

download the source code for this book and open the example file named

listing4-1.py and copy and paste the code once in interactive file mode.

You can omit the comment lines if you’d like. Also recall you must press

Ctrl+C to interrupt a MicroPython script that you've loaded previously. You

can then place the terminal in file mode with Ctrl+F.

Figure 4-4. Open MicroPython Terminal

Chapter 4 XBee-Based sensor nodes

158

Listing 4-1. Reading a TMP36 Sensor

#

Beginning Sensor Networks 2nd Edition

#

XBee Sensor Node Example: Reading a TMP36 temperature sensor.

#

Dr. Charles Bell

#

from machine import ADC

from time import sleep

import xbee

Target address to send data

TARGET_64BIT_ADDR = b'\x00\x13\xA2\x00\x40\x8C\xCD\x0F'

wait_time = 15 # seconds between measurements

cycles = 10 # number of repeats

for x in range(cycles):

 # Read temperature value & print to debug

 temp_pin = ADC("D3")

 temp_raw = temp_pin.read()

 print("Raw pin reading: %d" % temp_raw)

 # Convert temperature to proper units

 temp_c = ((float(temp_raw) * (1200.0/4096.0)) - 500.0) / 10.0

 print("Temperature: %.2f Celsius" % temp_c)

 temp_f = (temp_c * 9.0 / 5.0) + 32.0

 print("Temperature: %.2f Fahrenheit" % temp_f)

 # Send data to coordinator

 message = "raw: %d, C: %.2f, F: %.2f" % (temp_raw, temp_c,

temp_f)

 print("Sending: %s" % message)

Chapter 4 XBee-Based sensor nodes

159

 try:

 xbee.transmit(TARGET_64BIT_ADDR, message)

 print("Data sent successfully")

 except Exception as e:

 print("Transmit failure: %s" % str(e))

 # Wait between cycles

 sleep(wait_time)

Listing 4-2 shows the interactive session to copy and paste the

preceding code (without comments). Notice at the end, we used Ctrl+D to

save the file to main.py, pressing Y to confirm.

Tip If you encounter problems when you copy and paste the entire
file, try copy and paste one line at a time. this can happen if you omit
the blank lines, which trigger the repL console to close code blocks
and execute code.

Listing 4-2. Interactive File Mode for TMP36 Sensor Example

flash compile mode; Ctrl-C to cancel, Ctrl-D to finish
 1^^^ from machine import ADC
 2^^^ from time import sleep
 3^^^ import xbee
 4^^^
 5^^^ # Target address to send data
 6^^^ TARGET_64BIT_ADDR = b'\x00\x13\xA2\x00\x40\x8C\xCD\x0F'
 7^^^ wait_time = 15 # seconds between measurements
 8^^^ cycles = 10 # number of repeats
 9^^^
 10^^^ for x in range(cycles):
 11^^^ # Read temperature value & print to debug

 12^^^ temp_pin = ADC("D3")

Chapter 4 XBee-Based sensor nodes

160

 13^^^ temp_raw = temp_pin.read()

 14^^^ print("Raw pin reading: %d" % temp_raw)

 15^^^

 16^^^ # Convert temperature to proper units

 17^^^ temp_c = ((float(temp_raw) * (1200.0/4096.0)) -

500.0) / 10.0

 18^^^ print("Temperature: %.2f Celsius" % temp_c)

 19^^^ temp_f = (temp_c * 9.0 / 5.0) + 32.0

 20^^^ print("Temperature: %.2f Fahrenheit" % temp_f)

 21^^^

 22^^^ # Send data to coordinator

 23^^^ message = "raw: %d, C: %.2f, F: %.2f" % (temp_raw,

temp_c, temp_f)

 24^^^ print("Sending: %s" % message)

 25^^^ try:

 26^^^ xbee.transmit(TARGET_64BIT_ADDR, message)

 27^^^ print("Data sent successfully")

 28^^^ except Exception as e:

 29^^^ print("Transmit failure: %s" % str(e))

 30^^^

 31^^^ # Wait between cycles

 32^^^ sleep(wait_time)

 33^^^

Erasing /flash/main.mpy...

Compiling 1008 bytes of code...

Saved compiled code to /flash/main.mpy (619 bytes).

Automatically run this code at startup [Y/n]? Y

Stored code will run at startup.

Once you save the file, we can run the file by pressing Ctrl+R as

shown in Listing 4-3. However, remember that we are using the REPL

console, which will execute the code interactively. Since we have not

Chapter 4 XBee-Based sensor nodes

161

connected the TMP36 sensor yet, you may see spurious values when

the code executes. Let it run for a few iterations and then press Ctrl+C

to stop execution.

Listing 4-3. Interactive Execution of TMP36 Example

MicroPython v1.11-1290-g9da1b0c on 2019-11-14; XBee3 Zigbee

with EFR32MG

Type "help()" for more information.

Press CTRL-R in the REPL to run the code at any time.

Try running it with CTRL+R. Interrupt with CTRL+C.

Loading /flash/main.mpy...

Running bytecode...

Raw pin reading: 4095

Temperature: 69.97 Celsius

Temperature: 157.95 Fahrenheit

Sending: raw: 4095, C: 69.97, F: 157.95

Data sent successfully

Raw pin reading: 4095

Temperature: 69.97 Celsius

Temperature: 157.95 Fahrenheit

Sending: raw: 4095, C: 69.97, F: 157.95

Data sent successfully

Raw pin reading: 4095

Temperature: 69.97 Celsius

Temperature: 157.95 Fahrenheit

Sending: raw: 4095, C: 69.97, F: 157.95

Data sent successfully

Traceback (most recent call last):

 File "<stdin>", line 32, in <module>

KeyboardInterrupt:

>>>

Chapter 4 XBee-Based sensor nodes

162

Now, let’s return to the code paying attention to the formulas for

calculating the Celsius value from the raw input shown as follows for

clarity. You may notice that the formula uses a different value for the

maximum value read (4096 instead of 1024). This is because MicroPython

returns a range of 0–4095 from the ADC so we must take that into

consideration in the formula.

 temp_raw = temp_pin.read()

 print("Raw pin reading: %d" % temp_raw)

 # Convert temperature to proper units

 temp_c = ((float(temp_raw) * (1200.0/4096.0)) - 500.0) / 10.0

Once you are convinced this formula is correct, you can shut down the

MicroPython Terminal, disconnect your XBee from XCTU, and remove the USB

explorer. Next, move the XBee module to the breadboard set up from before.

You do not need to power on the circuit, but if you have already

configured the coordinator or are using from the previous example, you

can power on the circuit skipping the following section.

 Setting Up the Coordinator

Next, remove the XBee sensor node and plug it into the explorer on the

breadboard. If you are reusing the coordinator from the last section, you do

not need to make the changes. If you are using a new XBee module or one

from another project, make sure you have loaded the coordinator firmware

and use the settings in Table 4-5.

Table 4-5. XBee Coordinator Options and Values

Code Setting Name Description Value

Id pan Id Id for the network 8088

nI node Identifier name for the node Coordinator

Chapter 4 XBee-Based sensor nodes

163

Once the settings are written and the sensor node is powered on, take a

look at the network to ensure your module is connecting. Figure 4-5 shows

an example of what you should see. Recall, you can select the coordinator,

open the network view from the main window, and then click Scan.

Tip It is always a good idea to check your ZigBee network to ensure
the modules have connected correctly. If you do not see the modules
you expect, double-check all settings and rescan the network.

Now we are ready to test our sensor node.

 Testing the XBee Sensor Node

To test the XBee sensor node, you use your XBee coordinator with API

firmware installed on the USB adapter connected to your PC. Do this

first so the coordinator can be up and running when you start the XBee

sensor node. Plug it into your computer, and open the XCTU application.

Use XCTU to discover the XBee module and then open a terminal. See

Chapter 2 for instructions on how to do this.

Figure 4-5. Checking the network

Chapter 4 XBee-Based sensor nodes

164

Next, connect your power supply to your XBee sensor node. It will take

a few moments for the XBee to connect to the coordinator and join the

network. Once it does, you start to see the coordinator receiving data, as

shown in Figure 4-6.

You should see one or more Explicit RX Indicator packets. We get this

packet instead of the broadcast because we’re transmitting the packet

directly to the coordinator by address. Notice in the image that the first row

begins with 7E (hex). This is the start-of-packet delimiter. You should see to

the right data that looks like the following. This is a series of hexadecimal

values.

7E 00 2F 91 00 13 A2 00 41 92 DB A4 94 CC E8 E8 00 11 C1 05 01

72 61 77 3A 20 32 32 37 30 2C 20 43 3A 20 31 36 2E 35 30 2C 20

46 3A 20 36 31 2E 37 31 24

You may be wondering where the message is we transmitted. It is

there, but hard to see in the hexadecimal output. It appears at the end of

the message. The following shows the message from the example.

72 61 77 3A 20 32 32 37 30 2C 20 43 3A 20 31 36 2E 35 30 2C 20

46 3A 20 36 31 2E 37 31

Figure 4-6. Serial monitor output

Chapter 4 XBee-Based sensor nodes

165

If you convert the hex values to American Standard Code for

Information Interchange (ASCII),3 you will see the message. A somewhat

tedious lookup using an ASCII chart will reveal the following 29

hexadecimal values are represented in ASCII as follows. Nifty, yes?

raw: 2270, C: 16.50, F: 61.71

Now, let’s take a closer look at the packet. All ZigBee packets have a

specific format or layout. Table 4-6 shows the layout for the Explicit RX

Indicator packet.

3 https://en.wikipedia.org/wiki/ASCII

Table 4-6. Explicit Rx Indicator Packet

Value Field Name Notes

7E start delimiter

00 2F packet length 47 bytes to checksum

91 Frame type explicit rx Indicator

00 13 A2 00 41 92 DB A4 64-bit address address of XBee sensor node

94 CC 16-bit address

E8 source endpoint

E8 destination endpoint

00 11 Cluster Id

C1 05 profile Id

01 receive options 0x01—packet acknowledged

0A BC supply voltage

N bytes received data example: 29

N+1 byte Checksum example: 0x24

Chapter 4 XBee-Based sensor nodes

https://en.wikipedia.org/wiki/ASCII

166

This data packet represents the data sent from the XBee sensor node.

In this case, you set the XBee to send any value from the analog pin 3

(digital IO 3) every 15 seconds for ten cycles.4

Take a few moments to study the other samples in the example and

check the data samples for the temperature read. If you are really careful,

you can place your finger on the TMP36 and observe the temperature

change (it should start increasing after one or two more samples). Once

you are convinced your XBee sensor node is sending similar data, you can

conclude that the sensor node is working correctly.

Next, we will look at an example of this project done a bit easier using a

different form of sensor.

 Example: Using XBee Modules to
Gather Data
In this example, we will kick up the configuration a bit by switching to an

easier (but slightly more expensive) option to connect sensors to XBee

modules. We will also see a different form of sensor that communicates

with a different interface.

We will use the XBee Grove Development Board to host our XBee

module as shown in Figure 4-7. The XBee Grove Development Board

has several connectors along with six grove connectors, user controllable

button and LED, and much more. For complete details about the

board, see the guide at www.digi.com/resources/documentation/

Digidocs/90001457-13/.

4 We leave it as an exercise to module the script to send readings without stopping
(e.g., continuously).

Chapter 4 XBee-Based sensor nodes

http://www.digi.com/resources/documentation/Digidocs/90001457-13/
http://www.digi.com/resources/documentation/Digidocs/90001457-13/

167

Grove is a hardware prototyping standard made by Seeed Studio

(seeedstudio.com) designed to simplify connecting devices together

using a simple, four-wire connection. You can find all manner of sensors

and output components for creating your projects quickly. See the

Seeed Studio wiki about the Grove system to learn more (http://wiki.

seeedstudio.com/Grove_System/).

The sensor we will use is the BMP280 temperature/humidity

sensor. You can find this sensor at Adafruit (adafruit.com) or SparkFun

(sparkfun.com). Figure 4-8 shows the BMP280 module from Adafruit.

You can get one here at www.adafruit.com/product/2651. There is a

Grove module for the BMP280 (http://wiki.seeedstudio.com/Grove-

Barometer_Sensor- BMP280/), but it is harder to find because it is an

older module.

Figure 4-7. XBee Grove Development Board

Chapter 4 XBee-Based sensor nodes

http://wiki.seeedstudio.com/Grove_System/
http://wiki.seeedstudio.com/Grove_System/
http://www.adafruit.com/product/2651
http://wiki.seeedstudio.com/Grove-Barometer_Sensor-BMP280/
http://wiki.seeedstudio.com/Grove-Barometer_Sensor-BMP280/

168

This sensor uses the Inter-Integrated Circuit (I2C) interface5 with 7-bit

addressing. This requires four connections: power, ground, clock (SCL), and

data (SDA). Since you can connect multiple sensors to the same I2C bus,

each sensor has its own address so that you can “talk” to the sensor you want.

Unfortunately, each I2C sensor (device) has its own communication protocol,

so communicating with the module to get data requires a special library

(called a driver) to use the sensor. Fortunately, there is a MicroPython I2C

driver for the BMP280. We will download it and copy it to our XBee module.

However, since it is written to a MicroPython version that is a bit different than

the XBee MicroPython, we need to make some minor alterations.

While this example is terse and shows the bare minimal needed to get it

working, we will learn more about I2C interfaces in the next two chapters.

Let’s begin by configuring the hardware for the XBee sensor node.

 Hardware Setup
Setting up the hardware for this project is easier than the previous

examples. All you need is a Grove to Female Jumper cable or (4) female- to-

female jumper wires, the XBee Grove Development Board, and the BMP280

module. If your BMP280 module doesn’t have the header soldered, you

may need to solder it yourself or find someone to solder it for you.

5 https://en.wikipedia.org/wiki/I%C2%B2C

Figure 4-8. BMP280 breakout board

Chapter 4 XBee-Based sensor nodes

https://en.wikipedia.org/wiki/I%C2%B2C

169

To connect the sensor to the board, we will be using only four of the

connections on the BMP280. The module from Adafruit supports I2C and

x (SPI) interfaces, so we only need those for I2C. These are marked on

the board as follows: 3V0 (3V power), GND (ground), SDK (SCL on the

development board), and SDI (SDA on the development board). We can

use the Grove PWM connector for power and ground, but must use the

Grove D10 connector for the I2C interface. Several options for making the

connections are shown as follows. Go ahead and make the connections

now. Do not insert the XBee module or connect the board to your PC at

this time.

 BMP280 with Jumper Wires

If you want to use individual jumper wires, you should use two of the

Grove connectors: the first for the SCL and SDA connections and another

for power. This is because the jumper wires are slightly larger than the pins

in the Grove connectors.

Figure 4-9. Connecting the BMP280 breakout board using jumper
wires

Chapter 4 XBee-Based sensor nodes

170

 BMP280 with Grove Breakout Cable

The Grove breakout cable from Seeed Studio is an excellent alternative

to jumper wires. These have a Grove connector on one end and female

connectors for each wire on the other end, making them ideal for

connecting to breakout boards like the BMP280 in this example. See

www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-

Conversion-Cable-5-PCs-per-Pack.html for more details. Like the Grove

BMP280 module, these cables are harder to find. They also make a Grove

to male cable. See www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-

Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html.

Figure 4-10 shows how to make the connections using the Grove to

jumper wire cable.

Figure 4-10. Connecting the BMP280 breakout board using Grove to
jumper wire cable

Chapter 4 XBee-Based sensor nodes

http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html
http://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html
http://www.seeedstudio.com/Grove-4-pin-Male-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-Pack.html

171

 Grove BMP280 Module Connections

If you purchased the BMP280 Grove module, all you need to do is connect

the module to the board using a Grove cable as shown in Figure 4-11.

Next, let’s configure the XBee sensor node.

 Configuring the XBee Sensor Node
The XBee module you use as the XBee sensor node is either an end device

or a router with API firmware configured to run MicroPython. Once again,

you use the XCTU application to connect to the XBee. In this case, we will

use the XBee Grove Development Board.

Simply connect your XBee module to the board and then connect the

board to your PC using the provided micro-USB cable. This will act like the

USB explorer that we’ve been using in the other projects. If you are reusing

the XBee module we used as the sensor node from the previous, many of

the settings will remain the same except for the digital IO pin setting (D1).

Figure 4-11. Connecting the BMP280 Grove module

Chapter 4 XBee-Based sensor nodes

172

Table 4-7 shows the settings you need to change. Recall that all values

are entered in hexadecimal and that you can change the value in XCTU by

searching for the code and then either choosing a value or typing it into the

text box for that setting. Change the settings as shown, and then click Write

to save the settings to the XBee module.

 Programming the Sensor Node
Go ahead and make the configuration changes for the sensor node and

then write (save) them to the module. Recall from Chapter 2, we can either

write our MicroPython script interactively and then save it to a file or write

it to a file and upload it to the module. In this example, we will see the file

copy mode.

In this case, we will need to copy the BMP280 I2C library to the lib

folder on the XBee module and copy our MicroPython script to the XBee

module renaming it as main.py. Rather than jumping into the project

by blindly copying the files, let’s learn how to use custom MicroPython

libraries using the BMP280 library.

Table 4-7. XBee Sensor Node Options and Values

Code Setting Name Description Value

ap apI enabled set apI mode 4—Micropython

Bd Uart Baud rate speed of serial connection 115200

Ce device role role in ZigBee network 0—Join network

d1 dIo1 digital data read/write 6—I2C sCL

Id pan Id Id for the network 8088

nI node Identifier name for the node python BMp280

ps Micropython auto start auto start repL 1—enabled

Chapter 4 XBee-Based sensor nodes

173

When you want to use an I2C sensor or device, you will need to have

a MicroPython driver library for it. Recall, this is because each device has

its own protocol requiring writing certain values to a specific byte or bytes

to trigger or set some option and then read the data using yet another

address. Sound complicated? It can be. Fortunately, someone has done all

the work for us.

Use your browser and navigate to https://github.com/dafvid/

micropython-bmp280/. This library was written by David Wahlund and is

an excellent example of how to write an I2C driver in MicroPython. If you

want to write your own driver for another I2C device, this code is a very

good template to follow.

To download the driver, click the Clone or download button and save

the Zip file to your PC. Once it has downloaded, open the Zip library and

extract the files. You will need to find the bmp280.py file. We will be copying

this file to our XBee module after we modify it.

Tip a modified version of the module is available on the source
code download for the book from the apress website.

In short, we must add a new import and comment out a few lines in the

constructor. These modifications will permit the code to work on the XBee

modules. We also need to remove some of the methods in the module

because the code size is a bit too large for the XBee.

Caution If you find other modules you want to use with your XBee
and encounter memory errors, you may need to reduce the size of the
module. You can do so by removing unneeded methods, constants,
and similar features. Be careful to only remove things you don’t need
(and are not needed by the remaining methods).

Chapter 4 XBee-Based sensor nodes

https://github.com/dafvid/micropython-bmp280/
https://github.com/dafvid/micropython-bmp280/

174

Open the downloaded file and add this line at the top of the file:

from micropython import const

Next, locate the following lines and either comment them (placing a

at the start of the line). You will find both in the constructor. You may

encounter errors such as an invalid I2C operation or memory error if you

forget to remove these lines:

self._bmp_i2c.start()

self.use_case(BMP280_CASE_HANDHELD_DYN)

Finally, to reduce the size of the module, remove all methods after the

pressure() method and then save the file. Listing 4-4 shows the resulting

code. Your edits should be very similar (allowing for minor improvements

by the author of the module).

Tip also included in the source code for the book is a difference
file (bmp280.diff) that you can use to apply to the code if you are
familiar with diff and patch.

Listing 4-4. Modified bmp280.py Module

from micropython import const

from ustruct import unpack as unp

Author David Stenwall Wahlund (david at dafnet.se)

Power Modes

BMP280_POWER_FORCED = const(1)

BMP280_POWER_NORMAL = const(3)

Chapter 4 XBee-Based sensor nodes

175

BMP280_SPI3W_ON = const(1)

BMP280_SPI3W_OFF = const(0)

BMP280_TEMP_OS_SKIP = const(0)

BMP280_TEMP_OS_1 = const(1)

BMP280_TEMP_OS_2 = const(2)

BMP280_TEMP_OS_4 = const(3)

BMP280_TEMP_OS_8 = const(4)

BMP280_TEMP_OS_16 = const(5)

BMP280_PRES_OS_SKIP = const(0)

BMP280_PRES_OS_1 = const(1)

BMP280_PRES_OS_2 = const(2)

BMP280_PRES_OS_4 = const(3)

BMP280_PRES_OS_8 = const(4)

BMP280_PRES_OS_16 = const(5)

Standby settings in ms

BMP280_STANDBY_0_5 = const(0)

BMP280_STANDBY_62_5 = const(1)

BMP280_STANDBY_125 = const(2)

BMP280_STANDBY_250 = const(3)

BMP280_STANDBY_500 = const(4)

BMP280_STANDBY_1000 = const(5)

BMP280_STANDBY_2000 = const(6)

BMP280_STANDBY_4000 = const(7)

IIR Filter setting

BMP280_IIR_FILTER_OFF = const(0)

BMP280_IIR_FILTER_2 = const(1)

BMP280_IIR_FILTER_4 = const(2)

BMP280_IIR_FILTER_8 = const(3)

BMP280_IIR_FILTER_16 = const(4)

Chapter 4 XBee-Based sensor nodes

176

Oversampling setting

BMP280_OS_ULTRALOW = const(0)

BMP280_OS_LOW = const(1)

BMP280_OS_STANDARD = const(2)

BMP280_OS_HIGH = const(3)

BMP280_OS_ULTRAHIGH = const(4)

Oversampling matrix

(PRESS_OS, TEMP_OS, sample time in ms)

_BMP280_OS_MATRIX = [

 [BMP280_PRES_OS_1, BMP280_TEMP_OS_1, 7],

 [BMP280_PRES_OS_2, BMP280_TEMP_OS_1, 9],

 [BMP280_PRES_OS_4, BMP280_TEMP_OS_1, 14],

 [BMP280_PRES_OS_8, BMP280_TEMP_OS_1, 23],

 [BMP280_PRES_OS_16, BMP280_TEMP_OS_2, 44]

]

Use cases

BMP280_CASE_HANDHELD_LOW = const(0)

BMP280_CASE_HANDHELD_DYN = const(1)

BMP280_CASE_WEATHER = const(2)

BMP280_CASE_FLOOR = const(3)

BMP280_CASE_DROP = const(4)

BMP280_CASE_INDOOR = const(5)

_BMP280_CASE_MATRIX = [

 [BMP280_POWER_NORMAL, BMP280_OS_ULTRAHIGH, BMP280_IIR_

FILTER_4, BMP280_STANDBY_62_5],

 [BMP280_POWER_NORMAL, BMP280_OS_STANDARD, BMP280_IIR_

FILTER_16, BMP280_STANDBY_0_5],

 [BMP280_POWER_FORCED, BMP280_OS_ULTRALOW, BMP280_IIR_

FILTER_OFF, BMP280_STANDBY_0_5],

Chapter 4 XBee-Based sensor nodes

177

 [BMP280_POWER_NORMAL, BMP280_OS_STANDARD, BMP280_IIR_

FILTER_4, BMP280_STANDBY_125],

 [BMP280_POWER_NORMAL, BMP280_OS_LOW, BMP280_IIR_FILTER_OFF,

BMP280_STANDBY_0_5],

 [BMP280_POWER_NORMAL, BMP280_OS_ULTRAHIGH, BMP280_IIR_

FILTER_16, BMP280_STANDBY_0_5]

]

_BMP280_REGISTER_ID = const(0xD0)

_BMP280_REGISTER_RESET = const(0xE0)

_BMP280_REGISTER_STATUS = const(0xF3)

_BMP280_REGISTER_CONTROL = const(0xF4)

_BMP280_REGISTER_CONFIG = const(0xF5) # IIR filter config

_BMP280_REGISTER_DATA = const(0xF7)

class BMP280:

 def __init__(self, i2c_bus, addr=0x76):

 self._bmp_i2c = i2c_bus

 self._i2c_addr = addr

 self.chip_id = self._read(_BMP280_REGISTER_ID, 2)

 # read calibration data

 # < little-endian

 # H unsigned short

 # h signed short

 self._T1 = unp('<H', self._read(0x88, 2))[0]

 self._T2 = unp('<h', self._read(0x8A, 2))[0]

 self._T3 = unp('<h', self._read(0x8C, 2))[0]

 self._P1 = unp('<H', self._read(0x8E, 2))[0]

 self._P2 = unp('<h', self._read(0x90, 2))[0]

 self._P3 = unp('<h', self._read(0x92, 2))[0]

 self._P4 = unp('<h', self._read(0x94, 2))[0]

Chapter 4 XBee-Based sensor nodes

178

 self._P5 = unp('<h', self._read(0x96, 2))[0]

 self._P6 = unp('<h', self._read(0x98, 2))[0]

 self._P7 = unp('<h', self._read(0x9A, 2))[0]

 self._P8 = unp('<h', self._read(0x9C, 2))[0]

 self._P9 = unp('<h', self._read(0x9E, 2))[0]

 # output raw

 self._t_raw = 0

 self._t_fine = 0

 self._t = 0

 self._p_raw = 0

 self._p = 0

 self.read_wait_ms = 0 # interval between forced

measure and readout

 self._new_read_ms = 200 # interval between

 self._last_read_ts = 0

 def _read(self, addr, size=1):

 return self._bmp_i2c.readfrom_mem(self._i2c_addr,

addr, size)

 def _write(self, addr, b_arr):

 if not type(b_arr) is bytearray:

 b_arr = bytearray([b_arr])

 return self._bmp_i2c.writeto_mem(self._i2c_addr,

addr, b_arr)

 def _gauge(self):

 # TODO limit new reads

 # read all data at once (as by spec)

 d = self._read(_BMP280_REGISTER_DATA, 6)

Chapter 4 XBee-Based sensor nodes

179

 self._p_raw = (d[0] << 12) + (d[1] << 4) + (d[2] >> 4)

 self._t_raw = (d[3] << 12) + (d[4] << 4) + (d[5] >> 4)

 self._t_fine = 0

 self._t = 0

 self._p = 0

 def reset(self):

 self._write(_BMP280_REGISTER_RESET, 0xB6)

 def load_test_calibration(self):

 self._T1 = 27504

 self._T2 = 26435

 self._T3 = -1000

 self._P1 = 36477

 self._P2 = -10685

 self._P3 = 3024

 self._P4 = 2855

 self._P5 = 140

 self._P6 = -7

 self._P7 = 15500

 self._P8 = -14600

 self._P9 = 6000

 def load_test_data(self):

 self._t_raw = 519888

 self._p_raw = 415148

 def print_calibration(self):

 print("T1: {} {}".format(self._T1, type(self._T1)))

 print("T2: {} {}".format(self._T2, type(self._T2)))

 print("T3: {} {}".format(self._T3, type(self._T3)))

 print("P1: {} {}".format(self._P1, type(self._P1)))

 print("P2: {} {}".format(self._P2, type(self._P2)))

Chapter 4 XBee-Based sensor nodes

180

 print("P3: {} {}".format(self._P3, type(self._P3)))

 print("P4: {} {}".format(self._P4, type(self._P4)))

 print("P5: {} {}".format(self._P5, type(self._P5)))

 print("P6: {} {}".format(self._P6, type(self._P6)))

 print("P7: {} {}".format(self._P7, type(self._P7)))

 print("P8: {} {}".format(self._P8, type(self._P8)))

 print("P9: {} {}".format(self._P9, type(self._P9)))

 def _calc_t_fine(self):

 # From datasheet page 22

 self._gauge()

 if self._t_fine == 0:

 var1 = (((self._t_raw >> 3) - (self._T1 << 1)) *

self._T2) >> 11

 var2 = (((((self._t_raw >> 4) - self._T1)

 * ((self._t_raw >> 4)

 - self._T1)) >> 12)

 * self._T3) >> 14

 self._t_fine = var1 + var2

 @property

 def temperature(self):

 self._calc_t_fine()

 if self._t == 0:

 self._t = ((self._t_fine * 5 + 128) >> 8) / 100.

 return self._t

 @property

 def pressure(self):

 # From datasheet page 22

 self._calc_t_fine()

 if self._p == 0:

 var1 = self._t_fine - 128000

Chapter 4 XBee-Based sensor nodes

181

 var2 = var1 * var1 * self._P6

 var2 = var2 + ((var1 * self._P5) << 17)

 var2 = var2 + (self._P4 << 35)

 var1 = ((var1 * var1 * self._P3) >> 8) +

((var1 * self._P2) << 12)

 var1 = (((1 << 47) + var1) * self._P1) >> 33

 if var1 == 0:

 return 0

 p = 1048576 - self._p_raw

 p = int((((p << 31) - var2) * 3125) / var1)

 var1 = (self._P9 * (p >> 13) * (p >> 13)) >> 25

 var2 = (self._P8 * p) >> 19

 p = ((p + var1 + var2) >> 8) + (self._P7 << 4)

 self._p = p / 256.0

 return self._p

To copy the modified file to our XBee module, connect your XBee

to your PC using the Grove Development Board and then open the File

System Manager using the Tools menu as shown in Figure 4-12.

Figure 4-12. Open the File System Manager

Chapter 4 XBee-Based sensor nodes

182

Once the File System Manager is open, you will need to connect to

the XBee. If you select the XBee module in XCTU before opening the File

System Manager, you can click the Open button and the manager will

connect to your module. Otherwise, you can use the Settings button to

choose the UART (serial) parameters for the XBee and then connect to it.

Use the manager to locate the bmp280.py file using the left side of the

interface and navigate to the lib folder on the XBee using the right side

of the interface. Then, click bmp280.py and drag it to the right and drop it.

This will copy the file to your XBee module. The result should resemble

Figure 4-13.

Now, let’s test the library using a bare minimal script. We’ll use the

MicroPython Terminal in interactive mode to do that. But first, click the

Close button in the upper left and then the Close button in the lower right

to close the manager.

Figure 4-13. Copying the BMP driver using the File System
Manager

Chapter 4 XBee-Based sensor nodes

183

Next, open the MicroPython Terminal from the Tools menu and then

connect to your XBee module. Recall, you may need to press ENTER or

Ctrl+C to get the >>> prompt. Once there, enter the following lines of code:

from machine import I2C

from bmp280 import BMP280

bmp280 = BMP280(I2C(1, freq=100000), 0x77)

print(bmp280.temperature)

print(bmp280.pressure)

This code shows how to use the I2C BMP280 driver by telling the driver

the sensor is on DIO 1 and use a sample frequency of 100,000 and the I2C

address of 0x77 (hexadecimal). We then read the temperature, print it, and

repeat for the barometric pressure. The following code shows the results

you should see (values may differ):

>>> from machine import I2C

>>> from bmp280 import BMP280

>>> bmp280 = BMP280(I2C(1, freq=100000), 0x77)

>>> print(bmp280.temperature)

21.71

>>> print(bmp280.pressure)

102357.4

>>>

If you get errors such as address or NOENV errors, double-check your

wiring connections. Sometimes the jumper wires can be a little loose.

Crimp them on the development board side and the connection should

improve.

Now that we have the BMP driver copied and tested, we can write

the script for reading the sensor. Listing 4-5 shows the complete code. It

should look very familiar as it follows the same template as the previous

examples. Take a moment to examine the code to see how it works.

Chapter 4 XBee-Based sensor nodes

184

Listing 4-5. Reading a BMP280 Sensor

#

Beginning Sensor Networks 2nd Edition

#

XBee Sensor Node Example: Reading a BMP280 sensor.

This demonstrates how to use an I2C driver.

#

Dr. Charles Bell

#

from machine import I2C

from bmp280 import BMP280

import xbee

BMP280 address

BMP_ADDR = 0x77

Target address to send data

TARGET_64BIT_ADDR = b'\x00\x13\xA2\x00\x40\x8C\xCD\x0F'

wait_time = 15 # seconds between measurements

cycles = 10 # number of repeats

bmp280 = BMP280(I2C(1, freq=100000), BMP_ADDR)

for x in range(cycles):

 # Read temperature & barometric pressure

 temp_c = bmp280.temperature

 pressure = bmp280.pressure

 # Convert temperature to proper units

 print("Temperature: %.2f Celsius" % temp_c)

 temp_f = (temp_c * 9.0 / 5.0) + 32.0

 print("Temperature: %.2f Fahrenheit" % temp_f)

 print("Barometric Pressure: %.4f" % pressure)

Chapter 4 XBee-Based sensor nodes

185

 # Send data to coordinator

 message = "C: %.2f, F: %.2f, B: %.4f" % (temp_c, temp_f,

pressure)

 print("Sending: %s" % message)

 try:

 xbee.transmit(TARGET_64BIT_ADDR, message)

 print("Data sent successfully")

 except Exception as e:

 print("Transmit failure: %s" % str(e))

 # Wait between cycles

 sleep(wait_time)

If you have downloaded the sample code from the Apress book

website, you can extract this file and copy it to your PC. Rename it as main.

py and then copy it to your XBee using the File System Manager like we

did earlier. Be sure to copy it to the root folder on the XBee as shown in

Figure 4-14.

Now we are ready to test our sensor node.

Figure 4-14. Copying the main.py using the File System Manager

Chapter 4 XBee-Based sensor nodes

186

 Testing the XBee Sensor Node
To test the XBee sensor node, you use your XBee coordinator with API

firmware installed on the USB adapter connected to your PC. Do this

first so the coordinator can be up and running when you start the XBee

sensor node. Plug it into your computer, and open the XCTU application.

Use XCTU to discover the XBee module and then open a terminal. See

Chapter 2 for instructions on how to do this.

Next, connect your power supply to your XBee sensor node. It will take

a few moments for the XBee to connect to the coordinator and join the

network. Once it does, you start to see the coordinator receiving data, as

shown in Figure 4-15.

Figure 4-15. Serial monitor output

Chapter 4 XBee-Based sensor nodes

187

You should see one or more Receive Packet packets. We get this packet

instead of the broadcast because we’re transmitting the packet directly to

the coordinator by address. Notice in the image that the first row begins

with 7E (hex). This is the start-of-packet delimiter. You should see to the

right data that looks like the following. This is a series of hexadecimal

values.

7E 00 2E 90 00 13 A2 00 41 92 DB A4 94 CC 01 43 3A 20 31 39 2E

36 39 2C 20 46 3A 20 36 37 2E 34 34 2C 20 42 3A 20 31 30 32 33

37 38 2E 32 34 39 32 58

You may be wondering where the message is we transmitted. It is

there, but hard to see in the hexadecimal output. It appears at the end of

the message. The following shows the message from the example:

43 3A 20 31 39 2E 36 39 2C 20 46 3A 20 36 37 2E 34 34 2C 20 42

3A 20 31 30 32 33 37 38 2E 32 34 39 32

If you convert the hex values to ASCII, you will see the message

revealed as follows:

C: 19.69, F: 61.44, B: 102378.2492

Now, let’s take a closer look at the packet. All ZigBee packets have a

specific format or layout. Table 4-8 shows the layout for the Receive Packet

packet.

Chapter 4 XBee-Based sensor nodes

188

Take a few moments to study the other samples in the example and

check the data samples for the temperature read. If you are really careful,

you can place your finger on the BMP280 and observe the temperature

change (it should start increasing after one or two more samples). Once

you are convinced your XBee sensor node is sending similar data, you can

conclude that the sensor node is working correctly.

 Component Shopping List
You need a number of components to complete the projects in this

chapter. Table 4-9 lists them. Note that the Grove components can be

considered option if you do not intend to implement the last example.

Table 4-8. Receive Packet Packet

Value Field Name Notes

7E start delimiter

00 2E packet length 47 bytes to checksum

90 Frame type receive packet Indicator

00 13 A2 00

41 92 DB A4

64-bit address address of XBee sensor node

94 CC reserved

01 options 0x01 = packet was a broadcast packet

N bytes received data example: 34

N+1 byte Checksum example: 0x58

Chapter 4 XBee-Based sensor nodes

189

Ta
bl

e
4-

9.
 C

om
po

n
en

ts
 N

ee
de

d

Ite
m

Ve
nd

or
s

Es
t.

Co
st

US

D
Qt

y
Ne

ed
ed

XB
ee

-Z
B

(Z
B)

 s
er

ie
s

2,
 2

.5
,

or
 3

ww
w.
sp
ar
kf
un
.c
om

$2
5.

00
–

48
.0

0

2

ww
w.
ad
af
ru
it
.c
om

BM
p2

80
 b

re
ak

ou
t b

oa
rd

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
/2
65
1

$9
.9

5–

14
.9

5

1

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
15
44
0

BM
p2

80
 G

ro
ve

 s
en

so
r

(o
pt

io
na

l)

ww
w.
se
ee
ds
tu
di
o.
co
m/
ca
ta
lo
gs
ea
rc
h/
re
su
lt
/?
q=
bm
p2
80

$8
.9

5
1

Gr
ov

e
to

 F
em

al
e

Ju
m

pe
r

(o
pt

io
na

l)

ww
w.
se
ee
ds
tu
di
o.
co
m/
Gr
ov
e-
4-
pi
n-
Fe
ma
le
-J
um
pe
r-
to
-

Gr
ov
e-
4-
pi
n-
Co
nv
er
si
on
-C
ab
le
-5
-P
Cs
-p
er
-P
Ac
k.
ht
ml

$3
.9

0
1

XB
ee

 G
ro

ve
 d

ev
el

op
m

en
t

Bo
ar

d
(o

pt
io

na
l)

ww
w.
di
gi
ke
y.
co
m/
pr
od
uc
ts
/e
n?
mp
ar
t=
76
00
09
56
&v
=6
02

$2
5.

00
1

Br
ea

db
oa

rd
 (n

ot
 m

in
i)

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
95
67

$4
.9

5
1

Br
ea

db
oa

rd
 ju

m
pe

r w
ire

s
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
84
31

$3
.9

5
1

(c
on

ti
n

u
ed

)

Chapter 4 XBee-Based sensor nodes

http://www.sparkfun.com
http://www.adafruit.com
http://www.adafruit.com/product/2651
http://www.sparkfun.com/products/15440
http://www.seeedstudio.com/catalogsearch/result/?q=bmp280
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.digikey.com/products/en?mpart=76000956&v=602
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/8431

190

Ta
bl

e
4-

9.
 (

co
n

ti
n

u
ed

)

Ite
m

Ve
nd

or
s

Es
t.

Co
st

US

D
Qt

y
Ne

ed
ed

XB
ee

 e
xp

lo
re

r r
eg

ul
at

ed

w
ith

 h
ea

de
rs

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
11
37
3

$1
0.

95
1

tM
p3

6
se

ns
or

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
10
98
8

$1
.5

0
1

ww
w.
ad
af
ru
it
.c
om
/p
ro
du
ct
s/
16
5

0.
10

uF
 c

ap
ac

ito
r

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
83
75

$0
.2

5
1

Chapter 4 XBee-Based sensor nodes

http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/10988
http://www.adafruit.com/products/165
http://www.sparkfun.com/products/8375

191

 Summary
The XBee modules are a fantastic inexpensive way to transmit data

wirelessly from one device to another. They can also be used to collect data

in the form of hosting (connecting) one or more sensors.

We can either configure the XBee to collect the raw data from the

sensor and transmit (broadcast) it to other nodes in the network—without

programming. Or, we can use the robust MicroPython programming

language to write a script to read the data and format it or perform

calculations before sending it to another node.

In this chapter, we saw examples of both forms of hosting sensors.

We learned how to connect sensors to the XBee module using an analog

temperature sensor (TMP36) as well as an I2C digital sensor (BMP280).

We also saw a short glimpse at the Grove prototyping platform offered

by Seeed Studio. Grove makes connecting sensors easier by removing

the need to build circuits on a breadboard. We will see more about Grove

sensors in later chapters.

In the next chapter, we will explore the Raspberry Pi including a short

tutorial on how to use the Raspberry Pi as well as example projects on how

to host sensors.

Chapter 4 XBee-Based sensor nodes

193© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_5

CHAPTER 5

Raspberry Pi–Based
Sensor Nodes
Using XBee modules and microcontrollers to host sensors is an

economical way to build a sensor network. But what do you do when you

need more computational power than a microcontroller can provide?

What if you need to convert the data to a different format, incorporate the

data in an application, or print a hard copy of the sensor data? In these

situations, you likely need a computer that has more processing power,

can allow the use of common applications, permits the use of scripting

languages, and affords access to peripherals.

Although personal computers are relatively inexpensive, there are a

few distinct disadvantages to using personal computers in your sensor

networks—especially as sensor nodes. If the sensors are located in

areas where mains power is unreliable or unavailable, or where there

is a risk of overheating, or where there is simply no room to install a

personal computer, you must either transmit the data to another node for

processing or store it locally and process it later.

However, there is another limitation to using a personal computer as

a sensor node: a personal computer has no general input/output (I/O)

ports. You can purchase expansion cards for collecting data, but these are

often built for use in server or desktop computers. If you consider the cost

of the computer and the data-collection card, the cost of the sensor node

becomes uneconomical.

https://doi.org/10.1007/978-1-4842-5796-8_5#ESM

194

So, what do you do in these cases? If only there were a low-cost

computer with sufficient processing power and memory that used

standard peripherals, supported programmable I/O ports,1 and had a

small form factor. That’s exactly what the Raspberry Pi can do.

This chapter explores getting started with the Raspberry Pi, including

how to use the system and how to read sensors using the I/O ports. You

also explore a few types of sensors and examine the differences in how you

read data from them.

Note We will cover both the Raspberry Pi 3B and the newest
Raspberry Pi 4B. You can use either for the projects in this book, but
most figures depict the Raspberry Pi 3B and 3B+. Fortunately, all
GPIO connections are the same on 3B, 3B+, and 4B boards.

 What Is a Raspberry Pi?
The Raspberry Pi is a small, inexpensive personal computer. Although

it lacks the capacity for RAM (random access memory) expansion and it

doesn’t have onboard devices such as CD, DVD, and hard drives,2 it has

everything a simple personal computer requires. That is, it has four USB

ports (the Raspberry Pi 3 has 2.0 ports, the Raspberry Pi 4B has two USB

2.0 and two USB 3 ports), an Ethernet port, HDMI video, and even an

audio connector for sound.

1 In this case, you require I/O ports that can be used as components in an
electronic circuit and can be accessed (read from and written to) by programming
libraries.

2 Most USB hard drives and DVD drives work.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

195

The Raspberry Pi has an SD drive3 that you can use to boot the

computer into any of several Linux operating systems. All you need is an

HDMI cable and monitor (or DVI cable and monitor with an HDMI to DVI

adapter), a USB keyboard and mouse, and a 5V power supply, and you’re

off and running.

Note as of this writing, it is not possible to boot from a UsB drive
on the Raspberry Pi 4B. Blogs suggest this feature will be available
soon. When it becomes available, you can easily create a faster boot
system by moving the operating system to a UsB drive.

You can also power your Raspberry Pi using a USB port on your

computer. In this case, you need a USB type A male to micro-USB type B

male cable (Raspberry Pi 3B) or a USB type A male to USB-C male cable.

Plug the type A side into a USB port on your computer and the micro-USB

type B/USB-C side into the Raspberry Pi power port.

The board is available in several versions and comes as a bare

board costing as little as $35.00. The newer Raspberry Pi 4B comes in

1GB, 2GB, 4GB, or 8GB variants (only the memory differs) ranging in

price from $35.00 to $65.00. It can be purchased online from electronics

vendors such as SparkFun and Adafruit. Some Best Buy retailers have

started carrying the Raspberry Pi 4B 2GB boards as well as the basic

accessories (e.g., case, power supply). Most online vendors have a

host of accessories that have been tested and verified to work with the

Raspberry Pi. These include small monitors, miniature keyboards, and

even cases for mounting the board.

3 Secure Digital (SD): a small removable memory drive the size of a postage stamp.
See http://en.wikipedia.org/wiki/Secure_Digital.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://en.wikipedia.org/wiki/Secure_Digital

196

In this section, you explore the origins of the Raspberry Pi, take a tour

of the hardware connections, and discover what accessories are needed to

get started using the Raspberry Pi.

 Noble Origins
The Raspberry Pi was designed to be a platform to explore topics in

computer science. The designers saw the need to provide inexpensive,

accessible computers that could be programmed to interact with hardware

such as servo motors, display devices, and sensors. They also wanted

to break the mold of having to spend hundreds of dollars on a personal

computer and thus make computers available to a much wider audience.

The designers observed a decline in the experience of students

entering computer science curriculums. Instead of having some

experience in programming or hardware, students are entering their

academic years having little or no experience with working with computer

systems, hardware, or programming. Rather, students are well versed

in Internet technologies and applications. One of the contributing

factors cited is the higher cost and greater sophistication of the personal

computer, which means parents are reluctant to let their children

experiment on the family PC.

This poses a challenge to academic institutions, which have to adjust

their curriculums to make computer science palatable to students. They

have had to abandon lower-level hardware and software topics due to

students’ lack of interest or ability. Students no longer wish to study the

fundamentals of computer science such as assembly language, operating

systems, theory of computation, and concurrent programming. Rather,

they want to learn higher-level languages to develop applications and web

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

197

services. Thus, some academic institutions are no longer offering courses

in fundamental computer science.4 This could lead to a loss of knowledge

and skill sets in future generations of computer professionals.

To combat this trend, the designers of the Raspberry Pi felt that,

equipped with the right platform, youth could return to experimenting

with personal computers as in the days when PCs required a much greater

commitment to learning the system and programming it in order to meet

your needs. For example, the venerable Commodore 64, Amiga, and early

Apple and IBM PC computers had very limited software offerings. Having

owned a number of these machines, I was exposed to the wonder and

discovery of programming at an early age.5

WHY IS IT CALLED RASPBERRY PI?

the name was partly derived from design committee contributions and partly

chosen to continue a tradition of naming new computing platforms after fruit

(think about it). the Pi portion comes from Python, because the designers

intended Python to be the language of choice for programming the computer.

however, other programming language choices are available.

The Raspberry Pi is an attempt to provide an inexpensive platform that

encourages experimentation. The following sections explore more about

the Raspberry Pi, including the models available, required accessories, and

where to buy the boards.

4 My alma mater has made this very sad transition. I mourn for the loss of
knowledge.

5 My first real computer was an IBM PCjr. I followed it by building my own IBM PC
AT computer, complete with a 10MB hard drive. Ah, those were the glory days of
personal computers!

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

198

 Models
There are currently two model classifications of Raspberry Pi boards:

Model A and Model B. The early Model A boards were the first mass-

produced boards with 256MB of RAM, one USB port, and no Ethernet port.

This was followed closely by the first Model B board, which had 512MB of

RAM, two USB ports, and an Ethernet port. Figure 5-1 shows the version 3

variant of the Model A board designated as Raspberry Pi 3A+.

WHAT DOES THE “+” MEAN?

the “+” symbol in the model designation indicates it is a newer release of the

same version only with some improvements. For example, the 3B+ included a

slightly faster processor and a host of minor refinements. typically, the boards

are effectively the same and you may not notice a difference, but if you want

the “latest” or “better” board, you’ll want the one with the “+” designation.

Figure 5-2 shows the version 3 Model B board designated as Raspberry

Pi 3B+. Notice the board is a bit larger and has more connections.

Figure 5-1. Raspberry Pi 3A+ (courtesy of the Raspberry Pi
Foundation)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

199

Figure 5-3 shows the latest Model B board designated as the Raspberry

Pi 4B. The figure depicts some of the improvements from the 3B+ model

including more RAM, USB-C power, two HDMI ports, and USB 3 support.

Plus, it is the fastest Raspberry Pi computer to date!

Figure 5-2. Raspberry Pi 3B+ (courtesy of the Raspberry Pi
Foundation)

Figure 5-3. Raspberry Pi 4B (courtesy of the Raspberry Pi
Foundation)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

200

You can often find the Raspberry Pi 3A+ at online retailers and

auction sites for a bit less than the Raspberry Pi 3B+ board. The newest

Raspberry Pi 4B are still in high demand so you may pay more for

those boards but shop around to find retailers that offer the board

at suggested retail prices of $35 (1GB), $45 (2GB), $55 (4GB), or $91

(8GB). If you plan to use the Raspberry Pi for experimentation and do

not need the extra memory to run memory- intensive applications, you

can use the Raspberry Pi 3A+.

Tip It is recommended to use the Raspberry Pi 3B+ or the newest,
the Raspberry 4B, for the projects in this book. the examples in this
chapter and the remaining chapters use the Model B variant—either
the Raspberry Pi 3B+ or 4B.

 A Tour of the Board
Not much larger than a deck of playing cards, the Raspberry Pi board

contains a number of ports for connecting devices. This section presents

a tour of the board. If you want to follow along with your board, hold it

with the Raspberry Pi logo faceup. I will work around the board clockwise.

Figure 5-4 depicts a drawing of the board with all the major connectors

labeled.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

201

In the center of the near side, you see an HDMI connector. To the left

of the HDMI connector is the micro-USB power connector and to the

right is the camera connector and audio connector. The power connector

is known to be a bit fragile on some boards, so take care plugging and

unplugging it. Be sure to avoid putting extra strain on this cable while

using your Raspberry Pi.

On the left side of the board, we see the location of the WiFi chip.

On the underside of the board is where the microSD card connector

is located. Interestingly, most cases are not designed to protect the

microSD card. When installed, the microSD card protrudes a few

centimeters out of the board.

On the far side of the board is the general-purpose input/output

(GPIO) header (a double row of 20 pins), which can be used to attach

to sensors and other devices. You will work with this connector later in

this chapter.

Figure 5-4. Raspberry Pi 3B+ (courtesy of the Raspberry Pi Foundation)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

202

On the right side of the board are four USB connectors and the

Ethernet connector. An external powered USB hub connected to the USB

ports on the Raspberry Pi can power some boards, but it is recommended

that you use a dedicated power supply connected to the micro-USB

connector.

Caution Because the board is small, it is tempting to use it in
precarious places like in a moving vehicle or on a messy desk. ensure
that your Raspberry Pi is in a secure location. the micro-UsB power
and microsd card slots seem to the most vulnerable to damage.6

Take a moment to examine the top and bottom faces of the board. As

you can see, components are mounted on both sides. This is a departure

from most boards that have components on only one side. The primary

reason the Raspberry Pi has components on both sides is that it uses

multiple layers for trace runs. This permits the board to be much smaller

and enables the use of both surfaces for mounting its components. This is

probably the most compelling reason to consider using a case—to protect

the components on the bottom of the board and thus avoid shorts and

board failure.

 Required Accessories
The Raspberry Pi is sold as a bare system board with no case, power

supply, or peripherals. Depending on how you plan to use the Raspberry

Pi, you need a few commonly available accessories. If you have been

accumulating spares like me, a quick rummage through your stores may

locate most of what you need.

6 Guess how I know this. Yep, I’ve had to repair both connectors on various boards
at least once.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

203

If you want to use the Raspberry Pi in console mode (no graphical user

interface), you need a USB power supply (USB-C for the Raspberry Pi 4B),

a keyboard, and an HDMI cable and monitor. The power supply should

have a minimal rating of 2500mA or greater for the Raspberry Pi 3B, 3B+

boards, and 3000mA USB-C (15 Watt) or greater for the Raspberry Pi 4B. If

you want to use the Raspberry Pi with a graphical user interface, you also

need a mouse.

If you have to purchase these items, stick to the commonly available

brands and models without extra features. For example, avoid the latest

multifunction keyboard and mouse. Chances are they require drivers

that are not available for the various operating system choices for the

Raspberry Pi.

You also must have a microSD card. I recommend a 16GB or higher

version. Recall that the microSD is the only onboard storage medium

available. You will need to put the operating system on the card, and any

files you create will be stored on the card.

If you want to use sound in your applications, you also need a set of

powered speakers that accept a standard 3.5mm audio jack. Finally, if you

want to connect your Raspberry Pi to the Internet, you need access to a

WiFi access port or an Ethernet hub.

 Recommended Accessories
I highly recommend at least adding small rubber or silicone self-adhesive

bumpers to keep the board off your desk. On the bottom of the board are

many sharp prongs that can come into contact with conductive materials,

which can lead to shorts or, worse, a blown Raspberry Pi. These bumpers

are available at most home-improvement and hardware stores.

If you plan to move the board from room to room or you want to

ensure that your Raspberry Pi is well protected against accidental damage,

you should consider purchasing a case to house the board. Many cases

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

204

are available, ranging from simple snap-together models to models made

from laser-cut acrylic or even milled aluminum. The following list includes

several excellent choices, complete with vendor links.

 Pi Tin

The Pi Tin from SparkFun is a basic, clear, two-piece case that snaps

together. It uses light pipes to make reading the status LEDs easier and has

cutouts for the GPIO header. It is inexpensive and an excellent choice for

the budget minded. It is made for the Raspberry Pi 3B+. Figure 5-5 shows

the Pi Tin from SparkFun (www.sparkfun.com/products/13103).

Aluminum Heatsink Case for Raspberry Pi 4B

The Aluminum Heatsink Case for Raspberry Pi 4B from SparkFun is

an example of a good metal case with heat sink made for the Raspberry Pi

4B. It is made with two pieces of metal that have built-in heat sink pads that

bolt together. It is a minimalist design that doesn’t make the board much

larger (but is heavier). It is a bit more expensive than the basic plastic cases

and provides better cooling and protection, and, to me, it also looks better

than others. Figure 5-6 shows the Aluminum Heatsink Case from SparkFun

(www.sparkfun.com/products/15773). I have also seen versions of this

design that have one or two fans on top if you need extra cooling.

Figure 5-5. Pi Tin (courtesy of SparkFun)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.sparkfun.com/products/13103
http://www.sparkfun.com/products/15773

205

 Pibow Coupé

The Pibow Coupé (www.adafruit.com/products/2083) is available from

Adafruit and other vendors and comes in various colors for both the

Raspberry Pi 3B+ and 4B (there are also available for other Raspberry Pi

boards). It is made from pieces of acrylic, but they’re arranged in a novel

slice pattern. To assemble the Pibow, you place the Raspberry Pi on the

bottom plate and stack the layers, finishing with the top plate. Key layers

provide cutouts for all ports including the GPIO header. Four nylon fasteners

secure the case as a unit. Once assembled, the case looks great and is very

solid. Figure 5-7 shows the Pibow Coupé for Raspberry Pi 3B+ from Adafruit.

Figure 5-6. Aluminum Heatsink Case for Raspberry Pi 4B (courtesy
of SparkFun)

Figure 5-7. Pibow Coupé (courtesy of Adafruit)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/2083

206

Tip If none of these cases meet your needs or aesthetic choices,
you can find a host of options from adafruit at www.adafruit.com/
category/395. You’re sure to find what you want there!

Aside from a case, you should also consider purchasing (or pulling

from your spares) a powered USB hub. The USB hub power module should

be 2500mA or more (some suggest you need only a 1500mA, but more

is better especially if you want to connect USB devices to your board).

A powered hub is required if you plan to use USB devices that draw a lot

of power, such as a USB hard drive or a USB soft missile launcher.

 Where to Buy

The Raspberry Pi has been available in Europe for some time. It is getting

easier to find, but very few brick-and-mortar stores stock the Raspberry

Pi. Fortunately, a number of online retailers stock it, as well as a host of

accessories that are known to work with the Raspberry Pi. The following

are some of the more popular online retailers with links to their Raspberry

Pi catalog entry:

• SparkFun (www.sparkfun.com/categories/233)

• Adafruit (www.adafruit.com/category/105)

• PiShop.us (www.pishop.us)

• The PiHut (ships internationally) (www.thepihut.com)

The next section presents a short tutorial on getting started using the

Raspberry Pi. If you have already learned how to use the Raspberry Pi, you

can skip to the following section to begin learning how to connect sensors

to your board.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/category/395
http://www.adafruit.com/category/395
http://www.sparkfun.com/categories/233
http://www.adafruit.com/category/105
http://www.pishop.us
http://www.thepihut.com

207

 Raspberry Pi Tutorial
The Raspberry Pi is a personal computer with a surprising amount

of power and versatility. You may be tempted to consider it a toy or a

severely limited platform, but that is far from the truth. With the addition

of onboard peripherals like USB, WiFi, Ethernet, and HDMI video, the

Raspberry Pi has everything you need for a lightweight desktop computer.

This is especially true for the Raspberry Pi 4B with 2GB or 4GB or 8GB of

RAM—those make nice desktop computers!

Furthermore, if you consider the addition of the GPIO header,

the Raspberry Pi becomes more than a simple desktop computer and

fulfills its role as a computing system designed to promote hardware

experimentation.

The following sections present a short tutorial on getting started with

your new Raspberry Pi, from a bare board to a fully operational platform.

A number of excellent works cover this topic in much greater detail. If

you find yourself stuck or wanting to know more about beginning to use

the Raspberry Pi and more about the Raspbian operating system, see

Computing with the Raspberry Pi by B. Schell (Apress, 2019). If you want to

know more about using the Raspberry Pi in hardware projects, an excellent

in-depth resource is Advanced Raspberry Pi by W. Gay (Apress, 2018).

 Getting Started
As mentioned in the “Required Accessories” section, you need a microSD

card (16GB is recommended), a USB power supply rated at 2500mA or

better with a male micro-USB connector (or USB-C for Raspberry Pi 4B),

a keyboard, a mouse (optional), and an HDMI cable and monitor or a DVI

monitor with an HDMI adapter. However, before you can plug these things

in to your Raspberry Pi and bask in its brilliance, you need to create a boot

image for your microSD card.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

208

 Installing a Boot Image
The process of installing a boot image involves choosing an image,

downloading it, and then copying it to your microSD (hence simply SD)

card. The following sections detail the steps involved.

 Choosing the Image

The first thing you need to do is decide which operating system variant you

want to use. There are several excellent choices, including the standard

Raspbian “buster” variant. Each is available as a compressed file called

an image or card image. You can find a list of recommended images along

with links to download each on the Raspberry Pi foundation download

page: www.raspberrypi.org/downloads. The following images are a few of

the images available at the site:

• Raspbian Buster: The basic or default image. It is based

on Debian and contains a graphical user interface,

development tools, and rudimentary multimedia

features.

• Ubuntu MATE: Provides a complete, familiar (if you

know Ubuntu), desktop environment for basic desktop

computing.

• Ubuntu Core: A hardened Ubuntu core operating

system for uses where security is of great importance.

• Ubuntu Server: A scaled down version of the Ubuntu

server for running server applications.

If you are just starting with the Raspberry Pi, you should use the

Raspbian image. This image is also recommended for the examples in

this book.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.raspberrypi.org/downloads

209

There are two ways to go about making an image for your Raspberry

Pi. The easiest way is to use a special boot loaded called New Out Of the

Box Software (NOOBS), which is used to help streamline the setup of your

board. The other is to download a specific image and format the SD card

with the image. I will show you both methods in the following sections.

 Installing Using NOOBS

This is by far the easiest method to build your SD card. All you need to do

is download and unzip NOOBS from www.raspberrypi.org/downloads/

noobs/, format an SD card, and then copy the files. Once you boot

from NOOBS, you will be guided to install the default operating system

(Raspbian) or another of your choice (requires additional downloads).

There are some excellent resources for learning how to install

Raspbian with NOOBS. There is a nice video at www.raspberrypi.org/

help/videos/#noobs-setup.

There is also a complete setup guide that steps you through the

process. See projects.raspberrypi.org/en/projects/raspberry-pi-

setting-up. For those completely new to working with the Raspberry Pi or

have never done any formatting or SD card setup, those links are the way to

go. However, I will summarize the steps here to those who feel comfortable

working with their PC:

 1. Download the NOOBS binary from www.

raspberrypi.org/downloads/noobs/. There are

two options: a smaller one that will use the Internet

to download during the install and a larger one that

has the Raspbian image. If you have a slow Internet

connection or cannot connect your Raspberry Pi to

the Internet during install, you should choose the

version with Raspbian (not the Lite one). This is a

Zip file that you can download and unzip.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.raspberrypi.org/downloads/noobs/
http://www.raspberrypi.org/downloads/noobs/
http://www.raspberrypi.org/help/videos/#noobs-setup
http://www.raspberrypi.org/help/videos/#noobs-setup
http://www.raspberrypi.org/downloads/noobs/
http://www.raspberrypi.org/downloads/noobs/

210

 2. You must format the SD card. For best results, use

a 16GB or 32GB card. You can use any application

you want, but the best I’ve found is to download

SD Formatter from www.sdcard.org/downloads/

formatter/index.html, which is available for most

platforms.

 3. Next, locate the files from the NOOBS archive that

you unzipped earlier and copy all of them to the

SD card.

 4. Insert the SD card into your Raspberry Pi; connect

your mouse, keyboard, and monitor; and power

it on.

 5. Follow the onscreen instructions to install Raspbian.

That’s it! Once again, the online tutorial and videos are much more

detailed, but now that you have a sense of the process, following the online

tutorial will be very easy.

 Installing Raspbian

If you want to install Raspbian to the SD card or don’t want to use NOOBS,

you can download Raspbian from www.raspberrypi.org/downloads/

raspbian/. For this book, you should choose the one named “Raspbian

Buster with desktop and recommended software”. Unlike the NOOBS

option, this file is a bootable image file that requires a special process to

build a new bootable image on your SD card.

Tip see www.raspberrypi.org/documentation/
installation/installing-images/README.md for a tutorial
on installing images for the Raspberry Pi.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.sdcard.org/downloads/formatter/index.html
http://www.sdcard.org/downloads/formatter/index.html
http://www.raspberrypi.org/downloads/raspbian/
http://www.raspberrypi.org/downloads/raspbian/
http://www.raspberrypi.org/documentation/installation/installing-images/README.md
http://www.raspberrypi.org/documentation/installation/installing-images/README.md

211

Once you have downloaded the image, you first unzip the file and then

transfer (sometimes called “write”) the image to your SD card. There are a

variety of ways to do this. The following sections describe some simplified

methods for a variety of platforms. You must have an SD card reader/writer

connected to your computer. Some systems have SD card drives built in

(Lenovo laptops, Apple laptops and desktops, and so on).

Windows

To create the SD card image on Windows, you can use the Win32 Disk

Imager software from Launchpad (https://launchpad.net/win32-image-

writer). Download this file, and install it on your system. Unzip the image

if you haven’t already, and then insert your SD card into your SD card

reader/writer. Launch the Win32 Disk Imager application, select the image

in the top box, and then click WRITE to copy the image to the SD.

Caution the copy process overwrites anything already on the sd
card, so be sure to copy those photos to your hard drive first!

Mac OS X

To create the SD card image on the Mac, download the image and unzip

it. Insert your SD card into your SD card reader/writer. Be sure the card is

formatted with FAT32. Next, open the System report. (Hint: Use the Apple

menu ➤ About This Mac.)

Click the card reader if you have a built-in card reader, or navigate

through the USB menu and find the SD card. Take note of the disk number.

For example, it could be disk4.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

https://launchpad.net/win32-image-writer
https://launchpad.net/win32-image-writer

212

Next, open the Disk Utility and unmount the SD card. You need to

do this to allow the Disk Utility to mount and connect to the card. Now

things get a bit messy. Open a terminal, and run the following command,

substituting the disk number for n and the path and name of the image file

for <image_file>:

sudo dd if=<image_file> of=/dev/diskn bs=1m

At this point, you should see the disk-drive indicator flash (if there is

one), and you need to be patient. This step can run for some time with no

user feedback. You will know it is complete when the command prompt is

displayed again.

Linux

To create the SD card image using Linux, you need to know the device

name for the SD card reader. Execute the following command to see the

devices currently mounted:

df -h

Next, insert the SD card or connect a card reader, and wait for the

system to recognize it. Run the command again:

df -h

Take a moment to examine the list and compare it to the first

execution. The “extra” device is your SD card reader. Take note of the

device name, for example, /dev/sdc1. The number is the partition number.

So, /dev/sdc1 is partition 1, and the device is /dev/sdc. Next, unmount the

device (I will use the previous example):

umount /dev/sdc1

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

213

Use the following command to write the image, substituting the device

name for <device> and path and name of the image file for <image_file>

(e.g., /dev/sdc and my_image.img):

sudo dd bs=4M if=<image_file> of=<device>

At this point, you should see the disk-drive indicator flash (if there is

one), and you may need to be patient. This step can run for some time with

no user feedback. You will know it is complete when the command prompt

is displayed again.

 Booting Up
To boot your Raspberry Pi, insert the SD card with the new image and

plug in your peripherals. Wait to plug in the USB power last. Because

the Raspberry Pi has no On/Off switch, it will start as soon as power is

supplied. The following describes the process you will see and follow to

boot Raspbian for the first time. The setup steps are executed only once

(but you can change the settings later if you want).

When you power on the Raspberry Pi, the system bootstraps and then

starts loading the OS. You see a long list of statements that communicate

the status of each subsystem as it is loaded, followed by a welcome banner.

You don’t have to try to read or even understand all the rows presented,7

but you should pay attention to any errors or warnings.

You may also see a message about resizing the boot device and your

Raspberry Pi may reboot. This is automatic and nothing to be concerned

about. In fact, it is ensuring the boot volume is expanded to the maximum

size your microSD supports. When the boot sequence is complete, you will

see the Raspbian desktop as shown in Figure 5-8.

7 They go by so fast; it is unlikely you can read them anyway. Basically, they’re
noise unless there is an error, and those usually appear in the last few lines
displayed.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

214

Notice there is a dialog open in the center of the desktop. Once again,

these steps will execute only once on first boot. The steps include the

following:

• Welcome to Raspberry Pi: Click Next to start the setup.

You can cancel and run the setup later.

• Set Country: Choose your country, language, and

timezone. Click Next to continue.

• Set Password: Choose the password for the default user.

Click Next to continue.

• Set Up Screen: If your screen shows a black rectangle

around the edge, you can tick the checkbox to have the

video adapter synchronize properly on the next boot.

Click Next to continue.

• Select WiFi Network: Choose your WiFi access point to

connect to the Internet. You can click Skip to skip the

step or click Next to continue.

Figure 5-8. Raspbian desktop

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

215

• Update Software: If you have connected to the Internet,

you can optionally download and install updates for

Raspbian. This is highly recommended, and when you

choose this option, you will go through several more

informational dialogs that show you the progress of the

updates. You can click Skip to skip the step. Click Next

to continue when done.

• Setup Complete: The setup is done. Click Next to

continue, and if you selected any options that require a

reboot, the system will reboot now.

Figure 5-9 shows each step starting from the upper left working left

to right.

Figure 5-9. First boot setup sequence

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

216

When the system next boots, you will see the Raspbian desktop

with your settings configured. If you set up a WiFi connection, it will

automatically reconnect. Nice.

 Care and Feeding of the SD Card

Imagine this scenario. You’re working away on creating files, downloading

documents, and so on. Your productivity is high, and you’re enjoying your

new low-cost, super-cool Raspberry Pi. Now imagine the power cable

accidentally gets kicked out of the wall, and your Raspberry Pi loses power.

No big deal, yes? Well, most of the time.

The SD card is not as robust as your hard drive. You may already know

that it is unwise to power off a Linux system abruptly, because doing

so can cause file corruption. Well, on the Raspberry Pi, it can cause a

complete loss of your disk image. Symptoms range from minor read errors

to inability to boot or load the image on bootstrap. This can happen—and

there have been reports from others that it has happened more than once.

That is not to say all SD cards are bad or that the Raspberry Pi has

issues. The corruption on accidental power-off is a side effect of the type

of media. Some have reported that certain SD cards are more prone to

this than others. The best thing you can do to protect yourself is to use an

SD card that is known to work with Raspberry Pi and be sure to power the

system down with the sudo shutdown -h now command—and never, ever

power off the system in any other manner.

You can also make a backup of your SD card. See http://elinux.org/

RPi_Beginners#Backup_your_SD_card for more details.

Tip If you need any help at all when using your Raspberry Pi,
there are very helpful articles at www.raspberrypi.org/help/,
and the official documentation is at www.raspberrypi.org/
documentation/.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://elinux.org/RPi_Beginners#Backup_your_SD_card
http://elinux.org/RPi_Beginners#Backup_your_SD_card
http://www.raspberrypi.org/help/
http://www.raspberrypi.org/documentation/
http://www.raspberrypi.org/documentation/

217

 GPIO Pin Mapping
The Raspberry Pi has a special hardware feature called the general-

purpose I/O (GPIO) header. It is located in the upper-left portion of the

board and resembles a floppy drive header.8 The header consists of two

rows of 20 male pins.

All GPIO pins can be configured as either input (reading) or output

(writing). The voltage read can be used for digital I/O. Specifically, when

the voltage is less than 1.7V, the value is 0; greater than 1.7V is a value of 1.

For output pins, you can set the voltage from 0 to 3.3V.

Figure 5-10 shows the layout of the GPIO header of the Raspberry Pi

3B+ (and 4B).

Figure 5-10. GPIO pin assignments (courtesy of raspberrypi.org)

8 What? Never heard of floppy drives? The original ones were indeed floppy. For
bonus points, what was the storage capacity of the 8” dual-sided, double-density
floppy medium?

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

218

Notice that the pins are not named in order. For example, there are

GPIO 1 and GPIO 2, but they aren’t next to each other on the header (GPIO

1 is on the right at position or pin 28 and GPIO 2 is on the left at header

position or pin 3). This naming may be a source of confusion because it

doesn’t follow what you would expect, nor does it mirror the neat layout

of microcontrollers like the Arduino. Thus, when working with the GPIO

header, you should check your pin choices carefully.

Caution do not mistake pin number for GPIO number. always
double-check the name of the connection you want to use with the
position or pin number it uses on the header. For example, GPIO 16 is
not at pin 16, it is at pin 36.

Also notice that some pins have two names. For example, GPIO 14 and

GPIO 15 are also named TXD (transmit) and RXD (receive), respectively.

These pins can be used for serial communication. GPIO 18 and GPIO 21

are labeled PWM (pulse wave modulation), which is used for powering

LEDs, motors, and similar devices. GPIO 0 and GPIO 1 are also named

SDA and SCL, respectively, and are used for I2C communication. I2C is a

fast digital protocol that uses two wires (plus power and ground) to read

data from circuits (or devices). Finally, GPIO 9, GPIO 10, and GPIO 11 are

also named MISO, MOSI, and SCKL, respectively, and are used for SPI

communication.

Caution all pins are limited to 3.3V. attempting to send more than
3.3V will likely damage your Raspberry Pi. always test your circuit for
maximum voltage before connecting to your Raspberry Pi. You should
also limit current to no more than 5ma.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

219

Adafruit has a nifty accessory that makes working with the GPIO a

lot easier. It is a small PCB with the layout of the GPIO imprinted on it.

It’s called the GPIO reference card and can be found at https://www.

adafruit.com/product/2263. Figure 5-11 shows what the card looks like

(rotated for brevity and enlarged for detail). I recommend buying one the

next time you order from Adafruit.

If you want to ensure that you are protecting your Raspberry Pi from

higher voltage and current, most expansion boards have additional

circuitry for power protection. A number of expansion boards are

available, including the Gertboard (www.element14.com/community/

docs/DOC-51726?ICID=raspberrypi-gert-banner). This book does not

cover the use of expansion boards, but you may want to consider using

expansion boards if your sensors involve complex circuitry that requires

more ports or additional features like motor controllers or relays.

Rather than expansion boards, here you use a simple prototyping

board instead. The one I’ve chosen is called the Pi T-Cobbler Plus breakout

board and is available from Adafruit (www.adafruit.com/products/2028).

It features a ribbon cable and a breadboard-compatible connector with the

pins arranged in the same order as those on the Raspberry Pi. Figure 5-12

shows the Pi T-Cobbler Plus. The board does not provide any additional

functionality other than making it easier to work with GPIO by connecting

the Raspberry Pi to a breadboard.

Figure 5-11. GPIO reference card (courtesy of Adafruit)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

https://www.adafruit.com/product/2263
https://www.adafruit.com/product/2263
http://www.element14.com/community/docs/DOC-51726?ICID=raspberrypi-gert-banner
http://www.element14.com/community/docs/DOC-51726?ICID=raspberrypi-gert-banner
http://www.adafruit.com/products/2028

220

Caution Whenever you want to connect sensors or circuits to the
GPIO header—either directly (not recommended) or via a breakout
board (recommended)—you should first shut down your Raspberry
Pi. this may sound inconvenient and even like a pain when you’re
working through a project, but it is the best method for ensuring
that you do not accidentally short some pins or make the wrong
connections.

I’ve found it best to make the connections with the Raspberry Pi

powered off and to take a couple of passes verifying the connections

are connected to the right pins. It is very easy to connect to the

wrong pin—there are so many, and they are in close proximity. The

odd arrangement of the pin numbers doesn’t help either. Properly

admonished, let’s jump into working with your Raspberry Pi GPIO and

hook up some sensors!

A smaller alternative of the Pi T-Cobbler places the ribbon connector

in the center and takes up less room on a breadboard. This version is called

the Pi Cobbler Plus and is available at www.adafruit.com/products/2029.

Figure 5-13 shows the Pi Cobbler Plus.

Figure 5-12. Pi T-Cobbler Plus breakout board (courtesy of Adafruit)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/2029

221

Note the Pi t-Cobbler Plus and Cobbler Plus may come partially
assembled. You may need to solder (or have someone solder) the
breadboard headers to the breakout board.

You can also find several variants on the Pi T-Cobbler Plus and Cobbler

Plus on popular online auction and electronics discount sites. One fine

example is the SparkFun Pi Wedge from SparkFun (www.sparkfun.com/

products/13717). This board has a similar layout to the Pi T-Cobbler Plus

but arranges the GPIO pins in a slightly different order (but is printed on

the PCB for easy reference).

Whichever breakout board you choose, it will permit you to connect

your Raspberry Pi to a breadboard, making experimentation with electronics

(and sensors) much easier. It won’t protect you against accidental power

overload, so be mindful of that. The following projects use a breadboard; so,

if you have a Pi Cobbler, connect your Raspberry Pi to your breadboard.

Now that you know how to connect hardware to the GPIO pins, you

need to know what software is required to allow you to write programs to

read from and write to those pins.

 Required Software
You need to install a number of software packages to work with the

GPIO header. This section examines the required software for using the

Python programming language. You can use C and Scratch language

Figure 5-13. Pi Cobbler Plus breakout board (courtesy of Adafruit)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.sparkfun.com/products/13717
http://www.sparkfun.com/products/13717

222

extensions, but Python is the best to learn because it is syntactically

easy to read and easy to master. Also, the designers of the Raspberry Pi

chose Python initially as its only language, so you are likely to find more

examples on the Internet to which to refer for ideas and help. We have

already seen a tutorial on MicroPython, and the Python we will be using

on the Raspberry Pi is nearly identical at least in terms of how we write

the code.

By default, the Raspbian includes Python and a host of supporting

libraries. But it does not include everything you need. To fully access all the

GPIO features, you also need the Raspberry Pi Python GPIO module (RPi.

GPIO) for communicating with the GPIO pins, pySerial for connecting

to serial devices, and python-smbus for accessing the I2C bus. If you use

an expansion board, the manufacturer may also have special modules

you need to install. No special modules are needed for the Pi T-Cobbler

breakout board. If you are interested in writing games, you may also want

to install the python-game package.

But first, you need some prerequisites. You must install additional

Python modules using the following commands. Your Raspberry Pi needs

to be connected to the Internet to execute these commands, because they

download the modules from the Internet:

sudo apt-get update

sudo apt-get install python-dev

To install the RPi.GPIO module, pySerial, and python-smbus modules,

issue the following commands:

sudo apt-get install python-rpi.gpio

sudo apt-get install python-serial

sudo apt-get install python-smbus

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

223

Now that you have the software loaded, it’s time to experiment! If you

haven’t plugged in your breakout board, shut down your Raspberry Pi

(using sudo shutdown –h now from a terminal or the shutdown from the

Raspbian menu) and connect the breakout board, and then restart your

Raspberry Pi.

 Project: Hardware “Hello, World!”
In this project, you will build a “Hello, World!” project for the Raspberry

Pi. This project uses an LED that the Raspberry Pi turns on and off through

calls to a Python library function. That’s a fine project for getting started,

but it does not relate to how sensors could be used.

Thus, in this section, you will use a modified LED project where we

simply trigger an LED by adding a sensor. In this case, you still keep things

simple by using what is arguably the most basic of sensors: a pushbutton.

The goal is to illuminate the LED whenever the button is pushed.

 Hardware Connections

Let’s begin by assembling a Raspberry Pi, Pi T-Cobbler from Adafruit

(optional), breadboard, one LED, and one pushbutton. You start with the

Raspberry Pi powered down.

Plug the breakout board into the breadboard. Wire the 3.3V pin, not

the 5V pin, to the breadboard power rail, the ground pin to the ground

rail, and a loop around to the other side of the board. This connection

provides power to the breakout board. Thus, you do not need a

breadboard power supply.

Place the LED and pushbutton to one side of the breadboard, as

shown in Figure 5-14. Remember, the longest leg on the LED is the positive

side. Notice that I show the Raspberry Pi and the Pi Cobbler breakout

board but not the cable to the Raspberry Pi, for brevity. The Raspberry Pi

is connected via a ribbon cable to the Pi Cobbler Plus (you can use the

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

224

T-Cobbler Plus in the same manner). Be sure to align the cable so the

colored stripe (indicating pin 1) is aligned with pin 1 on the connector. Do

this for both the Raspberry Pi and the breakout board.

Caution Connecting the 5V pin to any other pin on the GPIO header
can damage your Raspberry Pi. If you use a sensor that requires 5V
input, be sure to double-check that its maximum output is 3.3V or
less.

You’re almost there. Now wire a jumper from the power rail to one side

of the pushbutton, and wire the other side of the pushbutton to pin GPIO

17 on the breakout board (pin 6 on the left side). Wire the LED to ground

on the breadboard and a 150 Ohm resistor (colors: brown, green, brown,

gold). The other side of the LED should be wired to pin GPIO 7 on the

breakout board (see Figure 5-13).

You also need a resistor to pull the button low when the button is not

pressed. Place a 10K Ohm resistor (colors: brown, black, orange, gold)

on the side of the button with the wire to pin GPIO 17 and ground. The

shortest side of the LED is the ground side. This side should be the one

Figure 5-14. Diagram of an LED with a pushbutton

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

225

connected to the resistor. It does not matter which direction you connect

the resistor. It is used to limit the current to the LED. Check the drawing

again to ensure that you have a similar setup.

A COOL GADGET

One of the coolest gadgets for working with the Raspberry Pi is the Raspberry

Pi dish mounting plate from adafruit (www.adafruit.com/products/942).

this small acrylic plate has space for a full-sized breadboard and a Raspberry

Pi. It even has mounting holes for bolting the Raspberry Pi to the plate and

small rubber feet to keep the plate off the work surface. the following figure

shows the mounting plate in action. note that this image shows an older

Raspberry Pi board, but all of the latest Raspberry Pi boards fit.

although you can make your own Raspberry Pi mounting plate from Lexan

or Plexiglas, the adafruit product is a notch better than what you can make

yourself. For about $23.00, you can keep your Raspberry Pi and breadboard

together and avoid scratches to your table and shorts caused by components

on the bottom of the Raspberry Pi coming into contact with conductive

material.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/942

226

 Writing the Script

The script you need for this project requires two pins: one output and

one input. The output pin will illuminate the LED, and the input pin will

detect the pushbutton engagement. You connect positive voltage to one

side of the pushbutton and the other side to the input pin. When you

detect voltage on the input pin, you tell the Raspberry Pi processor to send

positive voltage to the output pin. In this case, the positive side of the LED

is connected to the output pin.

Now, open a text editor with the following command to create a new

Python module (or use the editor of your choice such as the Thonny

Python IDE from the Programming menu):

nano hello_raspi.py

When the editor opens, type the following code to set up the GPIO

module and establish the pin assignments:

import RPi.GPIO as GPIO # GPIO library

LED_PIN = 7

BUTTON_PIN = 17

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED_PIN, GPIO.OUT)

GPIO.setup(BUTTON_PIN, GPIO.IN)

As you can see in the drawing in Figure 5-13, the input pin is pin GPIO

17 and the output pin is pin GPIO 7. Let’s use a variable to store these

numbers so you do not have to worry about repeating the hard-coded

numbers (and risk getting them wrong). Use the GPIO.setup() method to

set the mode of each pin (GPIO.IN, GPIO.OUT).

You also need to place the code to turn on the LED when the input

pin state is HIGH (==1). In this case, you use the GPIO.output() method

to set the output pin to HIGH when the input pin state is HIGH (1) and

similarly set the output pin to LOW when the input pin state is LOW (0).

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

227

We encapsulate the code in a try…except…finally block to capture the

keyboard interrupt and clean up the GPIO assignments at the end (turns

off output pins). The following code shows the statements needed:

GPIO.output(LED_PIN, GPIO.LOW)

while 1:

 if GPIO.input(BUTTON_PIN) == 1:

 GPIO.output(LED_PIN, GPIO.HIGH)

 else:

 GPIO.output(LED_PIN, GPIO.LOW)

Tip Recall, indentation is important in Python. Indented statements
form a code block. For example, to execute multiple statements for
an if statement, indent all the lines that you want to execute when the
conditions are evaluated as true.

Now let’s see the entire script in Listing 5-1, complete with proper

documentation.

Listing 5-1. Simple Sensor Script

#

RasPi Simple Sensor - Beginning Sensor Networks 2nd Edition

#

For this script, we explore a simple sensor (a pushbutton)

and a simple response to sensor input (a LED). When the

 sensor is activated (the button is pushed), the LED

 is illuminated.

import RPi.GPIO as GPIO

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

228

Pin assignments

LED_PIN = 7

BUTTON_PIN = 17

Setup GPIO module and pins

GPIO.setmode(GPIO.BCM)

GPIO.setup(LED_PIN, GPIO.OUT)

GPIO.setup(BUTTON_PIN, GPIO.IN)

Set LED pin to OFF (no voltage)

GPIO.output(LED_PIN, GPIO.LOW)

try:

 # Loop forever

 while 1:

 # Detect voltage on button pin

 if GPIO.input(BUTTON_PIN) == 1:

 # Turn on the LED

 GPIO.output(LED_PIN, GPIO.HIGH)

 else:

 # Turn off the LED

 GPIO.output(LED_PIN, GPIO.LOW)

except KeyboardInterrupt:

 print("Done!")

finally:

 GPIO.cleanup()

Tip to save yourself a lot of typing, you can download the code
for this chapter or any of the examples in the book from the apress
website.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

229

Once you’ve entered the script as written or downloaded it onto your

Raspberry Pi, you are ready to run it. To run the Python script, launch it

as follows:

python3 hello_raspi.py

Note I use python3 and later pip3, which execute for Python
version 3. Use this on the latest version of Raspbian. Older releases
or other distributions may not support Python3, in which case you can
omit the “3” from the command.

 Testing the Sensor

Once the script is started, what do you see on your Raspberry Pi? If you’ve

done everything right, the answer is “Nothing.” It’s just staring back at you

with that one dark LED—almost mockingly. Now, press the pushbutton.

Did the LED illuminate? If so, congratulations: you’re a Raspberry Pi

Python GPIO programmer!

If the LED did not illuminate, hold the button down for a second or

two. If that does not work, check all of your connections to make sure you

are plugged in to the correct runs on the breadboard and that your LED

is properly seated with the longer leg connected to the resistor and to pin

GPIO 7.

On the other hand, if the LED stays illuminated, try reorienting your

pushbutton 90 degrees. You may have set the pushbutton in the wrong

orientation.

Try the project a few times until the elation passes. If you’re an old

hand at Raspberry Pi, that may be a very short period. If this is all new to

you, go ahead and push that button and bask in the glory of having built

your first sensor node!

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

230

Now, how do you stop it? Because you coded an endless loop

(intentionally), you need to use Ctrl+C to cancel the script. This will not

harm your Raspberry Pi or the GPIO or the circuitry.

The next section examines a more complicated sensor node using a

temperature and humidity sensor.

 For More Fun

To make the script a bit more user-friendly, you can change the code to exit

more gracefully. The following are some interesting suggestions:

• Loop for no more than 10,000 iterations. Hint: Use a

variable and increment it.

• Use a second LED, and set up the code to toggle

both LEDs so that when the button is pressed, one

illuminates and the other turns off.

• Use a second button so that when the second button is

pressed, the loop terminates. Hint: Use sys.exit() or

break.

 Hosting Sensors with Raspberry Pi
The GPIO pins of the Raspberry Pi make it an ideal platform for hosting

sensors. Because most sensors need very little in the way of supporting

components, you can often host multiple sensors on one Raspberry Pi.

For example, it is possible to host a temperature sensor or even multiple

temperature, barometric, humidity, and other sensors for sampling

weather conditions from a given site.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

231

ANALOG ONLY?

the Raspberry Pi GPIO pins do not support digital signals—they are all analog

pins. this is one of the many small cost considerations that help keep the

price down. to access digital signals, you need an analog-to-digital controller.

If you encounter a situation in which you want to use a digital sensor, you can

look at the 12-bit adC—4 Channel with Programmable Gain amplifier from

adafruit (www.adafruit.com/products/1083).

As I discussed in Chapter 1, a host of sensors are available. SparkFun

and Adafruit each have excellent websites that provide a great deal of

information about the products they sell. You can also google for examples

of using analog sensors with the Raspberry Pi.

Although this chapter demonstrates how to host sensors with the

Raspberry Pi using a breakout board connected to a breadboard, the

restriction of using analog only and 3.3V maximum voltage makes the

Raspberry Pi less versatile than the Arduino. Add to that the fact that you

must run Python scripts using root, and hosting sensors on a Raspberry Pi

becomes a bit harder to do (but not overly so) and more cumbersome than

doing so with an Arduino.

You can still connect sensors directly to the Raspberry Pi, as you see in

the next section. However, you may want to consider using the Raspberry

Pi as an aggregate node using an XBee connected to XBee-hosted sensors

or even Arduino-hosted sensors. But first, let’s see how to connect a sensor

to the Raspberry Pi and read some data.

To make things easier, you use a project similar to the one you used

in Chapter 3. More specifically, you build a sensor node with a Raspberry

Pi and a single temperature sensor. Before you begin, let’s discuss some

safety factors related to working with the Raspberry Pi GPIO header.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/1083

232

 Project: Building a Raspberry Temperature
Sensor Node
The next project you explore is another temperature sensor example. This

time, you use a temperature sensor that utilizes a special digital protocol to

send. As mentioned previously, the Raspberry Pi does not have an analog-

to- digital converter.

Although this may be yet another temperature sensor node, the project

also gives you experience in reading digital sensors that use the one-wire

protocol—which is built into the Raspberry Pi GPIO. Specifically, you use

the DS18B20 digital temperature sensor available from SparkFun and

Adafruit.

In some respects, the hardware portion of this project is easier than

the previous project because there are fewer parts; but the code is more

complex. Let’s begin with the hardware setup.

 Hardware Setup
The hardware needed for this project is a breadboard, a breakout board

for the Raspberry Pi (such as Pi Cobbler+), a DS18B20 digital temperature

sensor, a 0.10mF capacitor, and some jumper wires. Insert your breakout

board into the breadboard, aligning pin 1 (3.3V) to position 1 on the

breadboard. This will help you orient the pins more easily by using the

numbers on the breadboard to quickly find the pins without counting

(and miscounting) them. Figure 5-15 shows the correct orientation of the

breakout board. I omit the ribbon cable for brevity.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

233

Next, install the temperature sensor to the right of the breakout board

with pin 1 to the left. If you hold the sensor such that the flat side is facing

you, pin 1 is on the left of the flat side of the sensor. Connect the 0.10mF

capacitor between pin 3 (right) and pin 2 (center) or use jumpers as shown

in Figure 5-15.

Connect power from the breakout board to the power rail of the

breadboard and ground from the breakout board to the ground rail of the

breadboard, as shown in Figure 5-14. Next, connect power to pin 3 of the

sensor and ground to pin 1. Finally, connect pin 2 of the sensor to GPIO 4.

Why GPIO 4? Because the sensor is a digital sensor, and you can use the

one-wire facility (because it uses only a single data wire) to read the data.

Cool, eh?

WHAT ABOUT THE WATERPROOF VERSION?

If you have the waterproof version of the ds18B20 digital temperature sensor,

the sensor has four wires. typically, the wires are colored red, black, white or

yellow or orange, and copper or silver. the copper or silver wire is not used; it

is part of the shielding. the red wire is connected to power, the black wire is

connected to ground, and white or yellow or orange is the data wire.

Figure 5-15. Connecting a temperature sensor to a Raspberry Pi

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

234

 Testing the Hardware
Once you have double-checked your connections, go ahead and boot up

your Raspberry Pi. Because the sensor uses the one-wire protocol to read

data, you can use features built into the Raspberry Pi to read data from

the sensor. This isn’t nearly as elegant as writing a Python script, but it will

permit you to see that all is working correctly before you start programming.

You will use a special utility called modprobe. This utility loads (or

unloads) modules into the Linux kernel. In the vernacular of other

operating systems, it loads device drivers. The modprobe utility can do far

more than just load modules (drivers); to learn more about it, see http://

linux.die.net/man/8/modprobe.

The modules you want to load are named w1-gpio and w1-therm.

The w1-gpio module registers and loads the new sensor connected to

pin GPIO 4. The w1-therm module registers and loads a module that has

support for temperature sensors.

To use the modules, we must enable them by editing the need to add

the following line to /boot/config.txt, before rebooting your Pi. Use

the command sudo nano /boot/config.txt and add the following line

anywhere in the file (near the end is best with the other examples). Note

that this enables PIN4 as the default. You can specify the pin you want to

use by adding the option gpiopin=N to the line. Edit the file and then shut

down your Raspberry Pi prior to wiring the sensor. For more information

about editing the file including adding multiple sensors, see https://

pinout.xyz/pinout/1_wire#.

dtoverlay=w1-gpio

When you use modprobe to load each of these modules (w1-gpio first),

the Raspberry Pi enables data collection on pin GPIO 4 and reads data

from the sensor and stores it in a file. The file is named starting with 28 and

followed by a unique file name. If you had other sensors, there would be a

file for each one.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://linux.die.net/man/8/modprobe
http://linux.die.net/man/8/modprobe
https://pinout.xyz/pinout/1_wire
https://pinout.xyz/pinout/1_wire

235

Note the file is created whether there is a sensor created or not,
but to see meaningful data, you should shut down, wire the sensor,
and then reboot before checking the file.

The file contains the raw data read from the sensor. You can open

this file and inspect its contents to see the raw data. You will likely see

data that makes little sense, but we will decipher the data in the code.

Listing 5-2 shows the commands you use to load the modules and then

inspect the file along with the output that shows the name of the file

created.

Listing 5-2. Testing the Temperature Sensor Hardware

pi@raspberrypi:~ $ sudo modprobe w1-gpio

pi@raspberrypi:~ $ sudo modprobe w1-therm

pi@raspberrypi:~ $ cd /sys/bus/w1/devices/28-1a1970a65dff

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ ls

driver hwmon id name power subsystem uevent w1_slave

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ cat w1_slave

3e 01 55 00 7f ff 0c 10 8d : crc=8d YES

3e 01 55 00 7f ff 0c 10 8d t=19875

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ cat w1_slave

3f 01 55 00 7f ff 0c 10 ce : crc=ce YES

3f 01 55 00 7f ff 0c 10 ce t=19937

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ cat w1_slave

3f 01 55 00 7f ff 0c 10 ce : crc=ce YES

3f 01 55 00 7f ff 0c 10 ce t=19937

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ cat w1_slave

3e 01 55 00 7f ff 0c 10 8d : crc=8d YES

3e 01 55 00 7f ff 0c 10 8d t=19875

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

236

pi@raspberrypi:/sys/bus/w1/devices/28-1a1970a65dff $ cat w1_slave

5e 01 55 00 7f ff 0c 10 6c : crc=6c YES

5e 01 55 00 7f ff 0c 10 6c t=21875

Notice that in the example I ran the cat9 (concatenate and print)

utility to print out the data in the file several times. I placed my hand over

the sensor while running the utility in order to simulate an increase in

temperature. Can you see how the values changed?

 Software Setup
The software required for this project is already installed. You will write

a short Python script to read the data from the sensor and display it to

standard out (the terminal window). Begin by importing the required

modules as shown here:

import glob

import os

import time

Next, you use the Python module named os to make a system call to

run the two modprobe commands from previous example. In this case, you

use the os.system() method:

os.system('modprobe w1-gpio')

os.system('modprobe w1-therm')

9 In case you were curious, there is no dog command.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

237

Before you jump into the code to read the file, let’s make it easier by

declaring a few variables to contain the directory and the file name. In this

case, you don’t know the file name, but you do know the directory. You can

use the glob module to search for files matching a wildcard in a specific

directory. You do so with the following code:

base_dir = '/sys/bus/w1/devices/'

datadir = glob.glob(base_dir + '28*')[0]

datafile = datadir + '/w1_slave'

Notice that you know the parent directory and the starting portion

of the directory. The glob module does all the work for you. If there were

multiple directories matching the wildcard, the call would return a list. In

this case, you have only one sensor, so you can expect only one directory.

Now you are ready to read the data from the file. You can design your

own code however you like, but I’ve elected to write two methods (defined

with the def directive). I will use one method to open the file and read

all the lines (data) in the file and another method to use the data read to

calculate the temperature in Celsius and Fahrenheit. Let’s look at the first

method. I’ve named it read_data():

def read_data():

 f = open(datafile, 'r')

 lines = f.readlines()

 f.close()

 return lines

As you can see, it is very straightforward and reads like the steps you

would imagine. Specifically, you open the file, read all the lines in the file,

close the file, and return what you read.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

238

Now let’s look at the second method. I’ve named it get_temp():

def get_temp():

 temp_c = None

 temp_f = None

 lines = read_data()

 while not lines[0].strip().endswith('YES'):

 time.sleep(0.25)

 lines = read_data()

 pos = lines[1].find('t=')

 if pos != -1:

 temp_string = lines[1][pos+2:]

 temp_c = float(temp_string) / 1000.00

 temp_f = temp_c * 9.00 / 5.00 + 32.00

 return temp_c, temp_f

This method has two parts. The first part reads the data from the file

using the previous method and checks the first line (arrays and lists start

with index 0 in Python) to see if the status is YES. If it isn’t, you read the line

from the file again and repeat until you find a file that has the correct, valid

status.

The next part looks in the file for the data read. In this case, you look

for a substring that starts with t= and then read the data after that and

convert it to Celsius and Fahrenheit. You return those values for use in

printing the data.

Let’s put it all together. Listing 5-3 shows the completed script,

including documentation. Open an editor, create a file named pi_temp.py,

and enter the source code shown. Feel free to modify it to suit your mood

or particular brand of humor.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

239

Take some time to explore this completed code until you understand

how it all works. There are several Pythonisms10 in this file, so do not be

intimidated if some of the code isn’t clear right away. For example, look at

the print statement in the next-to-last line. This statement could be written

differently, but what is shown is the accepted standard most Python

programmers adopt.

Listing 5-3. The pi_temp.py Script

RasPi Temperature Sensor - Beginning Sensor Networks Second

Edition

#

For this script, we explore connecting a digital temperature

 sensor to the Raspberry Pi and reading the data. We display

 the temperature in Celsius and Fahrenheit.

Import Python modules (always list in alphabetical order)

import glob

import os

import time

Issue the modprobe statements to initialize the GPIO and

temperature sensor modules

os.system('modprobe w1-gpio')

os.system('modprobe w1-therm')

10 Meaning it is the preferred way. Sometimes code can be described as “pythonic,”
which also means it was written in the preferred Python style or with specific
syntax. Learning to program Python with Pythonisms comes second to everyone
who learns Python, but it is the mark of a true Pythonista to be able to know the
difference.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

240

Use glob to search the file system for files that match the

prefix.

base_dir = '/sys/bus/w1/devices/'

Save the directory to the file.

datadir = glob.glob(base_dir + '28*')[0]

Create the full path to the file

datafile = datadir + '/w1_slave'

Procedure for reading the raw data from the file.

Open the file and read all of the lines then close it.

def read_data():

 f = open(datafile, 'r')

 lines = f.readlines()

 f.close()

 return lines

Read the temperature and return the values found.

def get_temp():

 # Initialize the variables.

 temp_c = None

 temp_f = None

 lines = read_data()

 # If the end of the first line ends with something other

than 'YES'

 # Try reading the file again until 'YES' is found.

 while not lines[0].strip().endswith('YES'):

 time.sleep(0.25)

 lines = read_data()

 # Search the second line for the data prefixed with 't='

 pos = lines[1].find('t=')

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

241

 # A return code of -1 means it wasn't found.

 if pos != -1:

 # Get the raw data located after the 't=' until the end

of the line.

 temp_string = lines[1][pos+2:]

 # Convert the scale for printing

 temp_c = float(temp_string) / 1000.00

 # Convert to Fahrenheit

 temp_f = temp_c * 9.00 / 5.00 + 32.00

 # Return the values read

 return temp_c, temp_f

Main loop. Read data then sleep 1 second until cancelled with

CTRL+C.

while True:

 temp_c, temp_f = get_temp()

 print("Temperature is {0} degrees Celsius, "

 "{1} degrees Fahrenheit.".format(temp_c, temp_f))

 time.sleep(1)

Take a few minutes to double-check your file to make sure you

have typed all the statements correctly. If you have an editor on your

desktop or laptop, you might want to use it to create and edit the file

using the syntax- checking feature to catch any errors. The script won’t

run correctly on your desktop or laptop, but checking the syntax can be

a big help.

Now that the software is written, let’s see what it does.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

242

 Testing the Sensor
As in the previous project, you need to run the script as root using sudo

python ./pi_temp.py. When you do so, you may not see any output right

away, but within a second or two, you should start seeing output like that

shown here:

$ python ./pi_temp.py

Temperature is 20.062 degrees Celsius, 68.11160000000001

degrees Fahrenheit.

Temperature is 20.187 degrees Celsius, 68.3366 degrees

Fahrenheit.

Temperature is 21.25 degrees Celsius, 70.25 degrees Fahrenheit.

Temperature is 21.437 degrees Celsius, 70.5866 degrees

Fahrenheit.

Temperature is 21.875 degrees Celsius, 71.375 degrees

Fahrenheit.

Temperature is 21.687 degrees Celsius, 71.0366 degrees

Fahrenheit.

Temperature is 21.5 degrees Celsius, 70.7 degrees Fahrenheit.

Temperature is 21.187 degrees Celsius, 70.1366 degrees

Fahrenheit.

Temperature is 21.0 degrees Celsius, 69.8 degrees Fahrenheit.

If you get syntax errors, go back and check that you have entered every

line exactly as shown in Listing 5-3. Python is really good at providing

enough information to fix most syntax errors. If you encounter any, you

see not only what the error is but also the line number of the file where the

error occurs. Once you have fixed the error, try the script again until you

see the correct output.

The next section explores a more complex project in which the

Raspberry Pi communicates with a digital sensor that uses the I2C

protocol.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

243

 For More Fun
To make this project a bit more fun, try connecting a second sensor (of

the same type), and print out the data including the sensor from which

the data was read. Hints: You can use the serial number embedded in

the file to identify the sensor, and you should connect them in parallel.

That is, each sensor connects to the same ground (pin 1) and power

connections (pin 3). The data output (pin 2) of each sensor is wired to

the same GPIO pin.

For extra-special fun, modify the code to detect when the sensor read

has failed and print an appropriate error message. Can you spot where this

is possible?11 I’ll give you a hint: what happens in the get_temp() method

if t= is not found?

 Project: Building a Raspberry Barometric
Pressure Sensor Node
This project demonstrates how to use a different type of sensor—one

that uses the I2C bus. For this, you need four wires to connect and

facilities to communicate to the sensor. Fortunately, the Raspberry Pi

has such a facility, but it takes a bit of work to make it available. You

will use the BMP280 sensor module from Adafruit (www.adafruit.com/

products/2651). Figure 5-16 shows the module from Adafruit.

11 Hardcore code junkies and hackers alike love this stuff.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/2651
http://www.adafruit.com/products/2651

244

The I2C feature is disabled by default on the Raspberry Pi. Before you

look at the hardware setup for this project, let’s enable the I2C feature. You

can do this easily by opening the Raspberry Pi configuration tool under

the Preferences menu. Click the Interfaces tab and tick the I2C checkbox as

shown in Figure 5-17.

Next, we need to install the I2C tools and utilities. You can do so by

opening a terminal and entering the following command:

$ sudo apt-get install i2ctools

Figure 5-16. BMP280 I2C sensor (courtesy of Adafruit)

Figure 5-17. Enable the I2C interface

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

245

That’s it! You are now ready to begin connecting the hardware. The

hardware portion of this project is easier than that in the previous project

because there are fewer parts, but the code is more complex. Let’s begin

with the hardware setup.

 Hardware Setup
The hardware needed for this project is a breadboard, a breakout board

for the Raspberry Pi (such as Pi Cobbler+), a BMP280 sensor module,

and some jumper wires. Insert your breakout board into the breadboard,

aligning pin 1 (3.3V) to position 1 on the breadboard.

Connect the 5V pin on the Raspberry Pi Cobbler+ board to power on

the sensor module. Connect the ground wire to the ground wire on the

sensor. The I2C pins on the Raspberry Pi are pins GPIO 0 (SDA) and GPIO

1 (SCL). Connect wires from these pins to corresponding pins on the

sensor module (SDA goes to SCK on the BMP280, SCL goes to SDI on the

BMP280). Figure 5-18 shows the physical connections.

 Testing the Hardware
Once you have double-checked your connections, go ahead and boot up

your Raspberry Pi. When you have logged in, run the following command:

sudo i2cdetect -y 1

Figure 5-18. Connecting the BMP280 sensor to a Raspberry Pi

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

246

This command uses a utility to detect any sensors on the I2C bus. I say

sensors because you can use the I2C protocol to connect multiple sensors.

Each sensor has its own address. The following code shows the output of

running the command:

$ sudo i2cdetect -y 1

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00: -- -- -- -- -- -- -- -- -- -- -- -- --

10: 10 -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

20: -- -- -- -- -- -- -- -- -- -- 2a -- -- -- -- --

40: -- -- -- 43 -- -- -- -- -- -- -- -- -- -- -- --

50: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

60: -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- --

70: -- -- -- -- -- -- -- 77

Notice in the example that the graph shows data in column 7 for

row 70 and a value of 77. This means the sensor is at address 0x77 (in

hexadecimal). If other sensors were installed, they would appear in the

graph as well. Remember this address, because you need it for the code.

Note If you do not see any devices in the output from this
command, try it with –y 0 and see if this produces any output. For
example, use sudo i2cdetect -y 0.

 Software Setup
The software required for this project requires the Python libraries you

installed earlier as well as a special library designed to communicate

with the BMP280. You need a special module because the I2C protocol is

bidirectional, and most I2C components are designed to respond to one or

more commands to evoke data generation. In this case, you need a Python

module that supports the BMP280 sensor module.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

247

The library has been created by the nice people at Adafruit and is

available for download from the Python package repository (PyPi12).

You can find comprehensive documentation for the library at https://

readthedocs.org/projects/adafruit-circuitpython-bmp280/

downloads/pdf/latest/.

To download the module and install it, issue the sudo pip3 install

adafruit-circuitpython-bmp280 command in a terminal. This command

will download and install the library and all of its dependent libraries

for you. How cool is that? Note that sudo may not be needed for some

Raspbian distributions. The following shows an excerpt of the installation.

$ sudo pip3 install adafruit-circuitpython-bmp280

Looking in indexes: https://pypi.org/simple, https://www.

piwheels.org/simple

Collecting adafruit-circuitpython-bmp280

 Downloading https://www.piwheels.org/simple/adafruit-

circuitpython- bmp280/adafruit_circuitpython_bmp280-3.1.2-py3-

none-any.whl

...

Successfully installed Adafruit-Blinka-3.9.0 Adafruit-

PlatformDetect- 2.2.0 Adafruit-PureIO-1.0.4 adafruit-

circuitpython- bmp280-3.1.2 adafruit-circuitpython-

busdevice-4.1.4

12 See https://pypi.org/.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

https://readthedocs.org/projects/adafruit-circuitpython-bmp280/downloads/pdf/latest/
https://readthedocs.org/projects/adafruit-circuitpython-bmp280/downloads/pdf/latest/
https://readthedocs.org/projects/adafruit-circuitpython-bmp280/downloads/pdf/latest/
https://pypi.org/

248

I2C SENSOR LIBRARIES

a number of I2C sensor modules are available. however, corresponding Python

(or other language) libraries have not been built for all of them. You should

research the availability of a library to support the sensor prior to deciding

to use it in your network. If you are a programmer, you may be able to adapt

existing code (libraries) to add support for the new sensor by examining the

datasheet and writing appropriate commands to interact with the sensor.

You will use the Adafruit_BMP280 code module to read data from the

I2C bus. The Python module has support for a number of I2C modules,

including the BMP280, and is based on the Adafruit_I2C module, which is

also in this directory. To use the Adafruit_BMP280 library, you import the

class for the BMP280 module and its dependencies as follows:

import board

import busio

import time

import adafruit_bmp280

Next, you need to initialize the class. In this case, you use the helper

class named I2C from the busio module to configure use for the I2C

interface. Next, we use that instance to initialize the BMP280 class as

follows. You assign the instance to a variable so you can use it to make

calls to the library later. The default address is 0x77. If you saw a different

address from the i2cdetect utility, pass the address in hexadecimal

with the parameter address=<hexadecimal> to the constructor for the

BMP280 class.

i2c = busio.I2C(board.SCL, board.SDA)

bmp280 = adafruit_bmp280.Adafruit_BMP280_I2C(i2c)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

249

There is one more option we may want to do: calibrate the module for

use at our location. We do this by passing in the hPa value for our location.

In this case, we use the standard for much of the United States (but may

differ in some areas).

bmp280.sea_level_pressure = 1013.25

Once that is done, you only need to read the values using the attributes

provided by the library and then print out the information. The major

attributes you use are shown here:

bmp280.temperature

bmp280.pressure

bmp280.altitude

Now let’s put it all together. Listing 5-4 shows the complete listing of

the script. Open an editor, create a file named pi_bmp280.py, and enter the

source code shown.

As you can see, with the help of the new library, your Python script

becomes very short and very easy to write. This is a great example of how

members of the Python community freely (well, most anyway) exchange

ideas and share code for common and not-so-common tasks.

Listing 5-4. The pi_bmp280.py Script

#

RasPi I2C Sensor - Beginning Sensor Networks 2nd Edition

#

For this script, we connect to and read data from an

I2C sensor. We use the BMP280 sensor module from Adafruit

or Sparkfun to read barometric pressure and altitude

using the Adafruit I2C Python code.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

250

import board

import busio

import time

import adafruit_bmp280

First, we configure the BMP280 class instance for our use.

i2c = busio.I2C(board.SCL, board.SDA)

bmp280 = adafruit_bmp280.Adafruit_BMP280_I2C(i2c)

Calibrate the pressure (hPa) at sea level for our location

in this case the East coast US

bmp280.sea_level_pressure = 1013.25

Read data until cancelled

while True:

 try:

 # Read the data

 pressure = float(bmp280.pressure)

 altitude = bmp280.altitude

 # Display the data

 print("The barometric pressure at altitude {0:.2f} "

 "is {1:.2f} hPa.".format(pressure, altitude))

 # Wait for a bit to allow sensor to stabilize

 time.sleep(3)

 # Catch keyboard interrupt (CTRL-C) keypress

 except KeyboardInterrupt:

 break

Now that the software is written, let’s see what it does.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

251

 Testing the Sensor
As in the previous project, you need to run the script as root using python3

./pi_bmp280.py. When you do so, you may not see any output right away;

but within a second or two, you should start seeing output like that shown

here:

$ python3 ./pi_bmp280.py

The barometric pressure at altitude 1007.25 is 50.37 hPa.

The barometric pressure at altitude 1007.28 is 50.24 hPa.

The barometric pressure at altitude 1007.24 is 50.40 hPa.

The barometric pressure at altitude 1007.24 is 50.74 hPa.

The barometric pressure at altitude 1007.22 is 50.45 hPa.

The barometric pressure at altitude 1007.25 is 50.27 hPa.

The barometric pressure at altitude 1007.25 is 49.83 hPa.

The barometric pressure at altitude 1007.26 is 50.19 hPa.

The barometric pressure at altitude 1007.27 is 50.16 hPa.

The next section explores a more complex project in which the

Raspberry Pi is a data collector (an aggregate node) hosting sensor data via

an XBee wireless connection to a sensor node. You will reuse the sensor

node created in Chapter 4. If you have not read through and succeeded in

building the projects in Chapter 4, you may want to go back and complete

the last project before proceeding.

 For More Fun
The BMP280 sensor reads the barometric pressure, as you have seen, but it

also reads temperature. Change the previous code to read the temperature

data as well as the barometric pressure.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

252

 Project: Creating a Raspberry Pi Data
Collector for XBee Sensor Nodes
This project combines what you have learned about the Raspberry Pi in

this chapter and the XBee in Chapter 2 and the XBee sensor node from

Chapter 4. More specifically, you use a Raspberry Pi and a remote sensor

connecting the sensor with the Raspberry Pi using XBee modules. You

know the basics from Chapter 4, so let’s dive right in.

 XBee Sensor Node
Follow the text from Chapter 4 to create the XBee sensor node. As a

reminder, this node is constructed as shown in Figure 5-19.

If you have not configured the sensor node from Chapter 4 or if you

need to reset the module, you should begin by ensuring the latest firmware

is loaded and use the settings shown in Table 5-1. Note that you do not

need the IR setting from Chapter 4, but it’s OK if you want to reuse the

module you used in that chapter.

Figure 5-19. XBee sensor node

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

253

Tip Be sure to use “TMP36” for the node id (NI). Your project
will not return results unless the node id matches the value in the
following code.

The coordinator node should be configured similarly with the latest

firmware loaded and the settings shown in Table 5-2.

Table 5-1. XBee Sensor Node Options and Values

Code Setting Name Description Value

d3 ad3/dIO3 trigger analog or digital

data recording

2—adC

Id Pan Id Id for the network 8088

nI node Identifier name for the node tMP36

V+ supply Voltage

threshold

supply voltage FFFF (always send)

Table 5-2. XBee Coordinator Options and Values

Code Setting Name Description Value

Id Pan Id Id for the network 8088

nI node Identifier name for the node Coordinator

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

254

 Hardware
The hardware setup for this project is very easy. All you need to do is

use the serial interface that is part of the GPIO header to connect to the

XBee’s serial interface. It’s that easy! Do not power on your Raspberry Pi or

sensor node until after all hardware connections are complete and verified

correct. I will tell you when to power up later in this section.

You need a breadboard and an XBee breadboard adapter like the one

you used in Chapter 4; plug it into the breadboard. Then plug in your

Raspberry Pi breadboard adapter. Now wire the 3.3V and ground to the

pins on your XBee adapter. If you are using the XBee Explorer Regulated

from SparkFun (www.sparkfun.com/products/11373), you can connect to

the 5V power because the XBee Explorer can regulate the power (hence

the name). The SparkFun board as shown has the serial interface pins

arranged in a header on one side of the board. It also has onboard voltage

regulation to protect the XBee in the event you accidentally connect the 5V

pin instead of the 3.3V pin to the explorer.

Note If you have soldered breadboard headers to the XBee adapter
but have not soldered headers for the serial I/O header, take a
moment to do that. You can connect the XBee via the other header,
but the consolidated header makes it a bit easier.

Next, wire the TXD (output) pin GPIO 14 on the Raspberry Pi Cobber+

to the DIN pin on the XBee Explorer. Then wire the RXD (input) pin GPIO

15 on the Raspberry Pi Cobble+ to the DOUT pin on the XBee Explorer.

Figure 5-20 shows the completed connections.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.sparkfun.com/products/11373

255

If you are not using the SparkFun adapter, be sure to check the

documentation on your adapter to make sure you are connecting the right

pins. Take your coordinator XBee module and insert it into the XBee.

There is one more thing you need to do. The designers of the Raspberry

Pi included the facility to connect a serial terminal to the Raspberry Pi at

boot time. There is a setting in the preferences that allows you to enable

this interface. It is disabled by default.

To turn on the serial interface, open a terminal and enter the

command sudo raspi-config. This opens the Raspberry Pi configuration

tool. To enable the serial interface, select the Interfacing Options in

raspi- config. The easiest way is to use the arrow keys and highlight the

selection and press ENTER.

On the next screen, choose the Serial option, then follow the next three

screens to disable login shell over serial (choose No), enable the hardware

serial port (choose Yes), and then press ENTER on the confirmation page.

When control returns to the main screen, use the Tab key to select

Finish and then Yes to allow the Raspberry Pi to reboot. Figure 5-21 shows

the sequence of screens and the options you should choose.

Figure 5-20. Connecting an XBee to a Raspberry Pi

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

256

After your machine reboots, we can install the software we need for the

project.

 Software
Before you can write your script, you need to download and install a

special library. The software needed for this project is a special Python

module provided by Digi and developed specifically to encapsulate (make

it easy to use) the XBee protocols and frame-handling mechanisms. To

install the module, issue the following command:

$ sudo pip3 install digi-xbee

Looking in indexes: https://pypi.org/simple, https://www.

piwheels.org/simple

Collecting digi-xbee

Figure 5-21. Enabling the serial interface (raspi-config)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

257

 Downloading https://www.piwheels.org/simple/digi-xbee/digi_

xbee- 1.3.0-py3-none-any.whl (224kB)

 100% |████████████████| 225kB 10kB/s

Collecting srp (from digi-xbee)

 Downloading https://www.piwheels.org/simple/srp/srp-1.0.15-

py3- none-any.whl

Requirement already satisfied: pyserial>=3 in /usr/lib/python3/

dist-packages (from digi-xbee) (3.4)

Requirement already satisfied: six in /usr/lib/python3/dist-

packages (from srp->digi-xbee) (1.12.0)

Installing collected packages: srp, digi-xbee

Successfully installed digi-xbee-1.3.0 srp-1.0.15

This library has a host of classes used to work with XBee modules

and has numerous examples you can use for your own projects. We

are going to see just one of the ways you can use the library. For more

details about other features in the library, you can download the Digi-

Python Programmers Guide using the following URL: https://xbplib.

readthedocs.io/en/latest/getting_started_with_xbee_python_

library.html

If you want to see the code for the library itself, you can see it on

GitHub at https://github.com/digidotcom/xbee-python.

Once the library is installed, you can start using it. For this example, we

will use the basic XBeeDevice library along with the helper libraries IOLine

and IOMode as follows:

from digi.xbee.devices import XBeeDevice

from digi.xbee.io import IOLine, IOMode

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html
https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html
https://xbplib.readthedocs.io/en/latest/getting_started_with_xbee_python_library.html
https://github.com/digidotcom/xbee-python

258

Before you instantiate those classes, let’s make some definitions to

make maintenance easier and improve readability of the source code. In

this case, you create a reference to the serial port, baud rate, the name of

the remote node (NI from sensor node setup), the analog line where the

sensor is connected on the remote node, and the sampling rate:

SERIAL_PORT = "/dev/ttyS0"

BAUD_RATE = 9600

Analog pin we want to monitor/request data

ANALOG_LINE = IOLine.DIO3_AD3

SAMPLING_RATE = 15

Note If you have changed the baud rate of your XBee module, you
must use that baud rate here.

Now you can instantiate the XBeeDevice class as follows. Pass in the

serial port and baud rate we defined previously.

device = XBeeDevice(SERIAL_PORT, BAUD_RATE)

Now we’re ready to get to the core of the program. We will use two

techniques that you may not have seen before using methods. First, we will

create a method to connect to the ZigBee network and retrieve an instance

of the remote XBee module class that we can use to read data. Second, we

will create a second method to be used to read data at the sampling rate.

This is called a callback method since it is used by the libraries to “call

back” to your program whenever the sampling rate dictates reading data.

The following code shows the method we use to set up the remote

device named get_remote_device(). Here, we connect to the network

and then ask the network to search for our remote node by node id (NI),

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

259

and if found, we capture its address, request the analog line, and finally set

the sampling rate. This should look familiar if you followed the samples in

Chapter 4.

def get_remote_device():

 """Get the remote node from the network

 Returns:

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

 remote_device = xbee_network.discover_device(REMOTE_NODE_ID)

 if remote_device is None:

 print("ERROR: Remove node id {0} not found.".

format(REMOVE_NODE_ID))

 exit(1)

 remote_device.set_dest_address(device.get_64bit_addr())

 remote_device.set_io_configuration(ANALOG_LINE, IOMode.ADC)

 remote_device.set_io_sampling_rate(SAMPLING_RATE)

The following shows the callback method named io_sample_

callback(). In this method, we get the sample passed in a special format

(see the following code) in the parameter named sample. We also get the

instance of the remote node as remote and the time of the sample as time.

So, you can not only see where the sample originated but also the date and

time of the sample. Cool!

def io_sample_callback(sample, remote, time):

 print("Reading from {0} at {1}:".format(REMOTE_NODE_ID,

 remote.get_64bit_

addr()))

 # Get the temperature in Celsius

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

260

 temp_c = ((sample.get_analog_value(ANALOG_LINE) * 1200.0 /

1024.0) – 500.0) / 10.0

 # Calculate temperature in Fahrenheit

 temp_f = ((temp_c * 9.0) / 5.0) + 32.0

 print("\tTemperature is {0}C. {1}F".format(temp_c, temp_f))

 # Calculate supply voltage

 volts = (sample.power_supply_value * (1200.0 / 1024.0)) / 1000.0

 print("\tSupply voltage = {0}v".format(volts))

Notice we also placed the code to decipher the data in this method.

Specifically, we calculate the temperature in Celsius, convert it to

Fahrenheit, and calculate the voltage at the node. I leave the details of the

code as an exercise, but we’ve used the formulas in previous examples.

OK, now all that is left is putting everything together. We follow the

pattern put forth in the Digi-Python examples by wrapping the code in a

try...except block to capture errors. Inside the block, we simply open

the device class instance (start the instance), get the remote device, and

register the callback method. We use an infinite loop configuration and

trap on the keyboard Ctrl+C command to exit the script.

try:

 print("Welcome to example of reading a remote TMP36 sensor!")

 device.open() # Open the device class

 # Setup the remote device

 get_remote_device()

 # Register a listener to handle the samples received by the

local device.

 device.add_io_sample_received_callback(io_sample_callback)

 while True:

 pass

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

261

except KeyboardInterrupt:

 if device is not None and device.is_open():

 device.close()

Before we look at the code as a single unit, let’s discuss the format

of the data returned in the parameter sample. Here, since we requested

analog line DIO3_AD3, we see the sample is a tuple with two dictionaries:

first the data sample and second the power supply voltage. If you simply

print the value of the sample parameter, you will see how this is formed.

The following code shows an example of some of the data returned in a

test run:

> {[IOLine.DIO3_AD3: 563], [Power supply voltage: 3277]}

> {[IOLine.DIO3_AD3: 565], [Power supply voltage: 3269]}

> {[IOLine.DIO3_AD3: 565], [Power supply voltage: 3273]}

> {[IOLine.DIO3_AD3: 564], [Power supply voltage: 3272]}

> {[IOLine.DIO3_AD3: 563], [Power supply voltage: 3273]}

> {[IOLine.DIO3_AD3: 569], [Power supply voltage: 3269]}

> {[IOLine.DIO3_AD3: 566], [Power supply voltage: 3269]}

> {[IOLine.DIO3_AD3: 564], [Power supply voltage: 3268]}

Now let’s put all that together and see what the completed code looks

like. Open an editor, create the file pi_xbee.py, and enter the code from

Listing 5-5.

Listing 5-5. Reading Data from an XBee Module

#

Raspberry Pi Data Aggregator - Beginning Sensor Networks

Second Edition

#

For this script. we read data from an XBee remote data mode

from a ZigBee Coordinator connected to a Raspberry Pi via a

serial interface.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

262

#

The data read includes an analog value from DIO3/AD3 and the

current voltage value.

#

from digi.xbee.devices import XBeeDevice

from digi.xbee.io import IOLine, IOMode

Serial port on Raspberry Pi

SERIAL_PORT = "/dev/ttyS0"

BAUD rate for the XBee module connected to the Raspberry Pi

BAUD_RATE = 9600

The name of the remote node (NI)

REMOTE_NODE_ID = "TMP36"

Analog pin we want to monitor/request data

ANALOG_LINE = IOLine.DIO3_AD3

Sampling rate

SAMPLING_RATE = 15

Get an instance of the XBee device class

device = XBeeDevice(SERIAL_PORT, BAUD_RATE)

Method to connect to the network and get the remote node by id

def get_remote_device():

 """Get the remote node from the network

 Returns:

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

 remote_device = xbee_network.discover_device(REMOTE_NODE_ID)

 if remote_device is None:

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

263

 print("ERROR: Remove node id {0} not

found.".format(REMOVE_NODE_ID))

 exit(1)

 remote_device.set_dest_address(device.get_64bit_addr())

 remote_device.set_io_configuration(ANALOG_LINE, IOMode.ADC)

 remote_device.set_io_sampling_rate(SAMPLING_RATE)

def io_sample_callback(sample, remote, time):

 print("Reading from {0} at {1}:".format(REMOTE_NODE_ID,

 remote.get_64bit_

addr()))

 # Get the temperature in Celsius

 temp_c = ((sample.get_analog_value(ANALOG_LINE) * 1200.0 /

1024.0) – 500.0) / 10.0

 # Calculate temperature in Fahrenheit

 temp_f = ((temp_c * 9.0) / 5.0) + 32.0

 print("\tTemperature is {0}C. {1}F".format(temp_c, temp_f))

 # Calculate supply voltage

 volts = (sample.power_supply_value * (1200.0 / 1024.0)) / 1000.0

 print("\tSupply voltage = {0}v".format(volts))

try:

 print("Welcome to example of reading a remote TMP36 sensor!")

 device.open() # Open the device class

 # Setup the remote device

 get_remote_device()

 # Register a listener to handle the samples received by the

local device.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

264

 device.add_io_sample_received_callback(io_sample_callback)

 while True:

 pass

except KeyboardInterrupt:

 if device is not None and device.is_open():

 device.close()

 Testing the Final Project
Now you can run your script and observe the output. Start the script with

python3 ./pi_xbee.py. Listing 5-6 shows sample output from the script.

To see the data change, I simply touched the sensor (careful not to short

the pins), allowing my body heat to increase the values read.

Listing 5-6. Output of the XBee Aggregate Node Script (pi_xbee.py)

$ python3 ./pi_xbee.py

Welcome to example of reading a remote TMP36 sensor!

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 15.9765625C. 60.7578125F

 Supply voltage = 3.840234375v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.2109375C. 61.1796875F

 Supply voltage = 3.830859375v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.2109375C. 61.1796875F

 Supply voltage = 3.835546875v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.09375C. 60.96875F

 Supply voltage = 3.834375v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 15.9765625C. 60.7578125F

 Supply voltage = 3.835546875v

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

265

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.6796875C. 62.0234375F

 Supply voltage = 3.830859375v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.328125C. 61.390625F

 Supply voltage = 3.830859375v

Reading from TMP36 at 0013A2004192DB79:

 Temperature is 16.09375C. 60.96875F

 Supply voltage = 3.8296875v

Did you see something similar? If so, you’re doing great work and now

have the knowledge needed to build sensor nodes and Raspberry Pi–based

sensor data aggregators.

If you do not see any data at all, go back to Chapter 4 and follow the

troubleshooting tips from the last project in the chapter. You can always plug the

coordinator module into a USB explorer and use a terminal program on your

personal computer to see if data is being received from the XBee sensor node.

Tip If you don’t see any data, power off your sensor node and
Raspberry Pi. Remove the coordinator module from the Raspberry
Pi, plug it into a UsB XBee explorer, plug that into your personal
computer and connect a serial program to the port, and then power
up your sensor node. after a few moments, you should see data being
received on the coordinator node.

 For More Fun
If you would like to expand the project, you can add a second XBee sensor

node and modify the code to specify which node the data came from. For

example, the script should record (write to standard output) the source of

the data along with the sensor data from the XBee.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

266

 Component Shopping List
A number of components are needed to complete the projects in this chapter;

they are listed in Table 5-3. Some of them, like the XBee modules and

supporting hardware, are also included in the shopping list from Chapter 4.

Table 5-3. Components Needed

Item Vendors Est. Cost
USD

Qty
Needed

Raspberry Pi Model B Most online stores such as

adafruit, sparkFun, and Mouser

$35.00 and

up13

1

5V Power supply

(3a, 3B, 3B+)

www.pishop.us/product/

wall-adapter-power- supply-

micro-usb-2-4a-5- 25v/

$9.95 1

5V Power supply (4B) www.raspberrypi.org/

products/type-c-power-

supply/

$8.00 1

hdMI or hdMI to dVI

cable

Most online and retail stores Varies 1

hdMI or dVI monitor Most online and retail stores Varies 1

UsB keyboard Most online and retail stores Varies 1

(continued)

13 I recommend shopping around to find the best deal. At the time of writing,
demand for the Raspberry Pi 4B is still greater than the supply, so the cost is a bit
higher.

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.raspberrypi.org/products/type-c-power-supply/
http://www.raspberrypi.org/products/type-c-power-supply/
http://www.raspberrypi.org/products/type-c-power-supply/

267

Item Vendors Est. Cost
USD

Qty
Needed

UsB type a to

micro-UsB male

Most online and retail stores Varies 1

sd card, 2GB or more Most online and retail stores Varies 1

Raspberry Pi Cobbler+

(you can also use the

t-Cobbler+)

www.adafruit.com/

products/2028

$7.95 1

www.adafruit.com/

products/2029

150 Ohm Resistor Most online and retail stores Varies 1

0.10mF capacitor Most online and retail stores Varies 1

10K Ohm Resistor Most online and retail stores Varies 1

Led Most online and retail stores Varies 1

ds18B20 digital

temperature sensor

www.adafruit.com/

product/374

$3.95 1

Pushbutton Most online and retail stores Varies 1

BMP280 sensor www.adafruit.com/

products/2651

$9.95 1

Breadboard (not mini) www.sparkfun.com/

products/9567

$5.95 2

www.adafruit.com/

product/64

XBee explorer

Regulated

www.sparkfun.com/

products/11373

$9.95 2

Table 5-3 . (continued)

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

http://www.adafruit.com/products/2028
http://www.adafruit.com/products/2028
http://www.adafruit.com/products/2029
http://www.adafruit.com/products/2029
http://www.adafruit.com/product/374
http://www.adafruit.com/product/374
http://www.adafruit.com/products/2651
http://www.adafruit.com/products/2651
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567
http://www.adafruit.com/product/64
http://www.adafruit.com/product/64
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/11373

268

 Summary
In this chapter, you explored the origins of the Raspberry Pi, including

a tour of the hardware and a list of the available operating systems. You

discovered how to create an SD boot image and learned how to start using

the Raspberry Pi.

You also discovered how to use the GPIO header to illuminate an LED,

read data from sensors, and read data via an XBee from an XBee sensor

node. By executing these projects, you have learned far more about the

Raspberry Pi than most.

By now, you should start to see the parts of building a sensor

network coming together. You’ve explored XBee modules for wireless

communication, host sensors with XBee and Raspberry Pi, and even how

to build aggregate sensor nodes with both platforms.

We complete our tour of sensor nodes by examining the Arduino

platform. In the next chapter, we will learn what the Arduino is and how to

host sensors with it. Cool!

ChaPteR 5 RasPBeRRY PI–Based sensOR nOdes

269© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_6

CHAPTER 6

Arduino-Based
Sensor Nodes
One of the greatest advances in physical computing has been the

proliferation of microcontrollers. A microcontroller consists of a processor

with a small instruction set, memory, and programmable input/output

circuitry contained on a single chip. Microcontrollers are usually packaged

with supporting circuitry and connections on a small printed circuit board.

Microcontrollers are used in embedded systems where small software

programs can be tailored to control and monitor hardware devices, making

them ideal for use in sensor networks. One of the most successful and

most popular microcontrollers is the Arduino platform.

In this chapter, you explore the Arduino platform with the goal of

using the Arduino to manage sensor nodes. You see a short tutorial on

the Arduino and several projects to help get you started working with the

Arduino.

 What Is an Arduino?
The Arduino is an open source hardware prototyping platform supported

by an open source software environment. It was first introduced in 2005

and was designed with the goal of making the hardware and software easy

to use and available to the widest audience possible. Thus, you do not have

to be an electronics expert to use the Arduino.

https://doi.org/10.1007/978-1-4842-5796-8_6#ESM

270

The original target audience included artists and hobbyists who

needed a microcontroller to make their designs and creations more

interesting. However, given its ease of use and versatility, the Arduino has

quickly become the choice for a wider audience and a wider variety of

projects.

This means you can use the Arduino for all manner of projects from

reacting to environmental conditions to controlling complex robotic

functions. The Arduino has also made learning electronics easier through

practical applications.

Another aspect that has helped the rapid adoption of the Arduino

platform is the growing community of contributors to a wealth of

information made available through the official Arduino website (http://

arduino.cc/en/). When you visit the website, you find an excellent

“getting started” tutorial as well as a list of helpful project ideas and a full

reference guide to the C-like language for writing the code to control the

Arduino (called a sketch).

Arduino also provides an integrated development environment called

the Arduino IDE. The IDE runs on your computer (called the host), where

you can write and compile sketches and then upload them to the Arduino

via USB connections. The IDE is available for Linux, Mac, and Windows. It

is designed around a text editor especially designed for writing code and

a set of limited functions designed to support compilation and loading of

sketches.

Sketches are written in a special format consisting of only two required

methods—one that executes when the Arduino is reset or powered on

and another that executes continuously. Thus, your initialization code

goes in setup() and your code to control the Arduino goes in loop(). The

language is C-like, and you may define your own variables and functions.

For a complete guide to writing sketches, see http://arduino.cc/en/

Tutorial/Sketch.

Chapter 6 arduino-Based sensor nodes

http://arduino.cc/en/
http://arduino.cc/en/
http://arduino.cc/en/Tutorial/Sketch
http://arduino.cc/en/Tutorial/Sketch

271

You can expand the functionality of sketches and provide for reuse by

writing libraries that encapsulate certain features such as networking, using

memory cards, connecting to databases, doing mathematics, and the like.

The Arduino supports a number of analog and digital pins that you can

use to connect to various devices and components and interact with them.

The mainstream boards have specific pin layouts, or headers, that allow

the use of expansion boards called shields. Shields let you add additional

hardware capabilities such as Ethernet, Bluetooth, and XBee support to

your Arduino. The physical layout of the Arduino and the shield allow you

to stack shields. Thus, you can have an Ethernet shield as well as an XBee

shield, because each uses different I/O pins. You learn the use of the pins

and shields as you explore the application of Arduino to sensor networks.

The next sections examine the various Arduino boards and briefly

describe their capabilities. I list the boards by when they became available,

starting with the most recent models. Many more boards and variants are

available, and a few new ones are likely to be out by the time this book is

printed, but these are the ones that are typically used in a sensor network

project.

 Arduino Models
A growing number of Arduino boards are available. Some are configured

for special applications, whereas others are designed with different

processors and memory configurations. Some boards are considered

official Arduino boards because they are branded and endorsed by

Arduino.cc. Since the Arduino is licensed using a Creative Commons

Attribution Share-Alike license, anyone can build Arduino-compatible

boards if they adhere to the license. This section examines some of the

more popular Arduino-branded boards.

The basic layout of an Arduino board consists of a USB connection,

a power connector, a reset switch, LEDs for power and serial

communication, and a standard spaced set of headers for attaching

Chapter 6 arduino-Based sensor nodes

272

shields. The official boards sport a distinctive blue-colored PCB with white

lettering. With the exception of one model, all the official boards can be

mounted in a chassis (they have holes in the PCB for mounting screws).

The exception is an Arduino designed for mounting on a breadboard.

 Uno

The Uno board is the standard Arduino board that most new to the

Arduino will choose. It features an ATmega328P processor; 14 digital I/O

pins, of which 6 can be used as pulse-width modulation (PWM)1 output;

and 6 analog input pins. The Uno board has 32KB of flash memory and

2KB of SRAM.

The Uno is available either as a surface-mount device (SMD) or

a standard IC socket. The IC socket version allows you to exchange

processors should you desire to use an external IC programmer to build

custom solutions. Details and a full datasheet are available at https://

store.arduino.cc/usa/arduino-uno-rev3. It has a standard USB type

B connector and supports all shields. Figure 6-1 shows the Arduino Uno

board.

1 https://en.wikipedia.org/wiki/Pulse-width_modulation

Figure 6-1. Arduino Uno Rev3 (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/arduino-uno-rev3
https://store.arduino.cc/usa/arduino-uno-rev3
https://en.wikipedia.org/wiki/Pulse-width_modulation

273

There is also a version of this board that has a built-in Wi-Fi chip,

making it possible for use in sensor networks or situations where using a

Wi-Fi shield is problematic (lack of space, conflicts with other shields, etc.).

While it is named the same, it differs from the standard Uno in several

ways. Aside from the Wi-Fi chip, it has a different processor and one less

PWM pin. You can read more about the Uno Wi-Fi board at https://

store.arduino.cc/usa/arduino-uno-WiFi-rev2. Figure 6-2 shows the

Arduino Uno Wi-Fi board.

 Leonardo

The Leonardo board represents another of the standard boards in the

pantheon of Arduino platform. It is a little different in that, while it

supports the standard header layout, it also has a USB controller that

allows the board to appear as a USB device (e.g., mouse or keyboard) to

the host computer. The board uses a newer ATmega32u4 processor with 20

digital I/O pins, of which 12 can be used as analog pins and 7 can be used

as a pulse-width modulation (PWM) output. It has 32KB of flash memory

and 2.5KB of SRAM.

Figure 6-2. Arduino Uno Wi-Fi Rev2 (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/arduino-uno-WiFi-rev2
https://store.arduino.cc/usa/arduino-uno-WiFi-rev2

274

The Leonardo has more digital pins than the Uno, but continues to

support most shields. The USB connection uses a smaller USB connector.

The board is also available with and without headers. Figure 6-3 depicts

an official Leonardo board. Details and a full datasheet can be found at

https://store.arduino.cc/usa/leonardo.

 Due

The Arduino Due is a new, larger, and faster board based on the Atmel

SAM3X8E ARM Cortex-M3 processor. The processor is a 32-bit processor,

and the board supports a massive 54 digital I/O ports, of which 14 can be

used for PWM output; 12 analog inputs; and 4 UART chips (serial ports) as

well as 2 digital-to-analog (DAC) and 2 two-wire interface (TWI) pins. The

new processor offers several advantages:

• 32-bit registers

• DMA controller (allows CPU-independent memory

tasks)

• 512KB flash memory

• 96KB SRAM

• 84MHz clock

Figure 6-3. Arduino Leonardo (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/leonardo

275

The Due has the larger form factor (called the mega footprint) but still

supports the use of standard shields as well as mega format shields. The

new board has one distinct limitation: unlike other boards that can accept

up to 5V on the I/O pins, the Due is limited to 3.3V on the I/O pins. Details

and a full datasheet can be found at https://store.arduino.cc/usa/due.

The Arduino Due is intended to be used for projects that require

more processing power, more memory, and more I/O pins. Despite the

significant capabilities of the new board, it remains open source and

comparable in price to its predecessors. Look to the Due for your projects

that require the maximum hardware performance. Figure 6-4 shows an

Arduino Due board.

 Mega 2560

The Arduino Mega 2560 is an older form of the Due. It is based on the

ATmega2560 processor (hence the name). Like the Due, the board

supports a massive 54 digital I/O ports, of which 14 can be used as PWM

output, 16 analog inputs, and 4 UARTs (hardware serial ports). It uses a

16MHz clock and has 256KB of flash memory. Details and a full datasheet

can be found at https://store.arduino.cc/usa/mega-2560-r3.

Figure 6-4. Arduino Due (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/due
https://store.arduino.cc/usa/mega-2560-r3

276

The Mega 2560 is essentially a larger form of the standard Arduino

Uno and Leonardo but supports the standard shields (as well as “mega”

shields). Figure 6-5 shows the Arduino Mega 2560 board.

Interestingly, the Arduino Mega 256 is the board of choice for Prusa

Mendel and similar 3D printers that require the use of a controller board

named RepRap Arduino Mega Pololu Shield (RAMPS).

Tip notice how much larger the due is than the uno. if you choose
to incorporate a due, Mega, or similar board, you may have to set
aside more room to mount the board.

 Micro

The Arduino Micro is a special form of the Leonardo board and uses the

same processor with 20 digital I/O pins, of which 12 can be used as analog

pins and 7 can be used as PWM output. It has 32KB of flash memory and

2.5KB of SRAM. Details and a full datasheet can be found at https://

store.arduino.cc/usa/arduino-micro.

Figure 6-5. Arduino Mega (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/arduino-micro
https://store.arduino.cc/usa/arduino-micro

277

The Micro was made for use on breadboards in the same way as the

Mini but in a newer, updated form. But unlike the Mini, the Micro is a full-

featured board complete with USB connector. And like the Leonardo, it has

built-in USB communication, allowing the board to connect to a computer

as a mouse or keyboard. Figure 6-6 shows the Arduino Micro board.

Although branded as an official Arduino board, the Arduino Micro is

produced in cooperation with Adafruit.

 Nano

The Arduino Nano is an older form of the Arduino Micro. In this case, it is

based on the functionality of the Duemilanove4 and has the ATmega328

processor (older models use the ATmega168) and 14 digital I/O pins, of

which 6 can be used as PWM output and 8 analog inputs. The mini has

32KB of flash memory and uses a 16MHz clock. Details and a full datasheet

can be found at https://store.arduino.cc/usa/arduino-nano.

Like the Micro, it has all the features needed for connecting to and

programming via a USB connection. Figure 6-7 shows an Arduino Nano

board.

Figure 6-6. Arduino Micro (courtesy of Arduino.cc)

Figure 6-7. Arduino Nano (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/arduino-nano

278

 MKR-Series Boards

There is another form of Arduino called the MKR (for “maker”) series. The

MKR series includes a variety of boards based on the (now retired Zero)

board that have various communication capabilities such as Wi-Fi, LoRa,

LoRaWAN, and GSM.

They are based on the Atmel ATSAMW25 SoC (System on Chip) and

designed for IoT projects and devices. It also supports cryptographic

authentication. For those working on projects that require battery port, the

MKR series of boards include a LiPo charging circuit for charging a LiPo

battery while running on external power. Details and a full datasheet can

be found at https://store.arduino.cc/usa/arduino-mkr1000.

The boards do not use the same pin layout as the Uno-compatible

shield-based boards (but you can get an adapter). Rather, they are

designed like the Nano and Mini (but a bit larger) to minimize the size

of the board to make it easier to incorporate into your projects. In fact,

they are one of the boards of choice for Internet of Things (IoT) projects

and make an excellent choice for sensor network projects. Since they are

relatively new and some have specialized communication options, most

new to Arduino would be better served starting with the Arduino boards

that support Uno-compatible shields.

Caution the MKr boards run on 3.3V power and have a maximum
input on the Gpio pins of 3.3V.

Figure 6-8. MKR1000 (courtesy of Arduino.cc)

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa/arduino-mkr1000

279

 Arduino Clones
A growing number of Arduino boards are available from a large number

of sources. Because the Arduino is open hardware, it is not unusual or the

least bit illicit to find Arduino boards made by vendors all over the world.

Although some would insist the only real Arduinos are those branded

as such, the truth of the matter is that as long as the build quality is sound

and the components are of high quality, the choice of using a branded

vs. a copy, hence clone, is one of personal preference. I have sampled

Arduino boards from a number of sources, and with few exceptions, they

all perform their intended functions superbly.

Except for the Arduino Mini, the Arduino clone boards have a greater

variety of hardware configurations. Some Arduinos are designed for use

in embedded systems or on breadboards, and some are designed for

prototyping. I examine a number of the more popular clone boards in the

following sections.

 Arduino Pro Mini

The Arduino Pro Mini is another board from SparkFun. It is based on

the ATmega168 processor (older models use the ATmega168) and has

14 digital I/O pins, of which 6 can be used as PWM output, and 8 analog

inputs. The Pro Mini has 16KB of flash memory and 1KB of SRAM, and

it uses a 16MHz clock. Details and a full datasheet can be found at

 www.sparkfun.com/products/11113.

The Arduino Pro Mini is modeled on the Arduino Mini and is also

intended for use on breadboards but does not come with headers.

This makes the Arduino Pro Mini ideal for use in semi-permanent

installations where the pins can be soldered to the components or

circuitry and space is a premium. Figure 6-9 shows an Arduino Pro Mini

board. It really is that tiny.

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com/products/11113

280

Also, the Pro Mini does not include a USB connector and therefore

must be connected to and programmed with a FTDI cable or similar

breakout board. It comes as either a 3.3V model with an 8MHz clock or a

5V model with a 16MHz clock.

 Fio

The Arduino Fio is yet another board made by SparkFun. It was designed

for use in wireless projects. It is based on the ATmega32U4 processor with

14 digital I/O pins, of which 6 can be used as PWM outputs, and 8 analog

pins. Details and a full datasheet can be found at www.sparkfun.com/

products/11520.

The Fio requires a 3.3V power supply, which allows for use with

a lithium polymer (LiPo) battery which can be recharged via the USB

connector on the board.

Its wireless pedigree can be seen in the XBee socket on the bottom of

the board. Although the USB connection lets you recharge the battery, you

must use an FTDI cable or breakout adapter to connect to and program the

Fio. Similar to the Pro models, the Fio does not come with headers, allowing

the board to be used in semi-permanent installations where connections are

soldered in place. Figure 6-10 shows an Arduino Fio board.

Figure 6-9. Arduino Pro Mini (courtesy of SparkFun)

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com/products/11520
http://www.sparkfun.com/products/11520

281

 Seeeduino

The Seeeduino is an Arduino clone made by Seeed Studio

(www.seeedstudio.com). It is based on the ATmega328P processor and has

14 digital I/O pins, of which 6 can be used as PWM outputs, and 8 analog pins.

It has 32KB of flash memory and 2KB of SRAM. Details and a full datasheet

can be found at www.seeedstudio.com/Seeeduino-V4-2-p-2517.html.

The board has a footprint similar to the Arduino Uno and supports

all standard headers. It supports a number of enhancements such as I2C

and serial Grove connectors and a mini USB connector, and it uses SMD

components. It is also a striking red color with yellow headers. Figure 6-11

shows a Seeeduino board.

Seeed Studio also makes a “mini” version of this board ().

Figure 6-10. Arduino Fio (courtesy of SparkFun)

Figure 6-11. Seeeduino (courtesy of Seeed Studio)

Chapter 6 arduino-Based sensor nodes

http://www.seeedstudio.com
http://www.seeedstudio.com/Seeeduino-V4-2-p-2517.html

282

 Sippino

The Sippino from SpikenzieLabs (www.spikenzielabs.com) is designed

to be used on a solder-less breadboard. It costs less because it has fewer

components and a much smaller footprint. It comes unassembled and,

if you are learning to solder, can make for a very enjoyable afternoon

project.

It is based on the ATmega328 processor and has 14 digital I/O pins, of

which 6 can be used as PWM output, and 6 analog input pins. The Sippino

board has 32KB of flash memory and 2KB of SRAM. Details and a full

datasheet can be found at www.spikenzielabs.com/Catalog/arduino/

sippino-prototino-8482/sippino-kit?cPath=1&.

The Sippino does not have a USB connection, so you have to use an

FTDI cable to program it. The good news is you need only one cable no

matter how many Sippinos you have in your project. I have a number of

Sippinos and use them in many of my Arduino projects where space is at a

premium. Figure 6-12 shows a Sippino mounted on a breadboard.

SpikenzieLabs also makes a version with a USB connector (www.

spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/

sippino8482-usb-kit?cPath=1&).

Figure 6-12. Sippino (courtesy of SpikenzieLabs)

Chapter 6 arduino-Based sensor nodes

http://www.spikenzielabs.com
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/sippino-kit?cPath=1&
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/sippino-kit?cPath=1&
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/sippino8482-usb-kit?cPath=1&
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/sippino8482-usb-kit?cPath=1&
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/sippino8482-usb-kit?cPath=1&

283

While you cannot use normal shields with the Sippino, SpikenzieLabs

also provides a special adapter called a shield dock that allows you to use

a Sippino with standard Arduino shields. The shield dock is an amazing

add-on that lets you use the Sippino as if it were a standard Uno or

Duemilanove. Figure 6-13 shows a Sippino mounted on a shield dock.

Details and a full datasheet can be found at www.spikenzielabs.com/

Catalog/spikenzielabs/the-shield-dock.

 Prototino

The Prototino is another product of SpikenzieLabs. It has the same

components as the Sippino, but instead of a breadboard-friendly layout,

it is mounted on a PCB that includes a full prototyping area. Like the

Sippino, it is based on the ATmega328 processor and has 14 digital I/O

pins, of which 6 can be used as PWM output, and 6 analog input pins. The

Prototino board has 32KB of flash memory and 2KB of SRAM. Details and a

full datasheet can be found at www.spikenzielabs.com/Catalog/arduino/

sippino-prototino-8482/prototino?cPath=1&.

The Prototino is ideal for building solutions that have supporting

components and circuitry. In some ways, it is similar to the Nano, Mini,

and similar boards, in that you can use it for permanent installations. But

unlike those boards (and even the Arduino Pro), the Prototino provides

Figure 6-13. Sippino on a shield dock (courtesy of SpikenzieLabs)

Chapter 6 arduino-Based sensor nodes

http://www.spikenzielabs.com/Catalog/spikenzielabs/the-shield-dock
http://www.spikenzielabs.com/Catalog/spikenzielabs/the-shield-dock
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/prototino?cPath=1&
http://www.spikenzielabs.com/Catalog/arduino/sippino-prototino-8482/prototino?cPath=1&

284

a space for you to add your components directly to the board. I have

used a number of Prototino boards for projects where I have added the

components to the Prototino and install it in the chassis. This allowed me

to create a solution using a single board and even build several copies

quickly and easily.

Like the Sippino, the Prototino does not have a USB connection,

so you have to use an FTDI cable to program it. Figure 6-14 shows a

Prototino board.

 Metro from Adafruit

The Metro from Adafruit is a set of Arduino-compatible boards

supporting a number of formats including several that support Arduino

shields. The version I like as a balance of compatibility and cost is the

Metro 328 (www.adafruit.com/product/2488). Figure 6-15 shows the

Metro 328 board from Adafruit. The board uses the ATmega328P at

16MHz and host of minor improvements to make the Metro an excellent

alternative to an Arduino Uno. Check out the product page for more

details.

Figure 6-14. Prototino (courtesy of SpikenzieLabs)

Chapter 6 arduino-Based sensor nodes

http://www.adafruit.com/product/2488

285

Note adafruit also has several Circuitpython models. some are
smaller and thus may be an option if you need to minimize the
footprint of your node. For more details, see www.adafruit.com/
category/966.

THERE IS EVEN ONE MADE OF PAPER

every now and then, you encounter something mundane that’s made truly

interesting by a change in medium. such is the case of the paperduino

created by Guilherme Martins. the paperduino is a minimal arduino that

uses a paper template in place of the pCB. all you need to do is download

and print out the templates, purchase a small list of commonly available

discrete components, and follow the connection diagram printed on the

template to solder the components to short lengths of wire. You can find out

more by visiting the following website: http://lab.guilhermemartins.

net/2009/05/06/paperduino-prints/.

Figure 6-15. Metro 328 (courtesy of Adafruit)

Chapter 6 arduino-Based sensor nodes

http://www.adafruit.com/category/966
http://www.adafruit.com/category/966
http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/
http://lab.guilhermemartins.net/2009/05/06/paperduino-prints/

286

 So, Which Do I Buy?
If you’re wondering which Arduino to buy, the answer depends on what

you want to do. For most of the projects in this book, any Arduino Uno or

similar clone that supports the standard shield headers is fine. You need

not buy the larger Due or its predecessors, since the added memory and

I/O pins aren’t needed.

I use the Arduino Uno, Uno Wi-Fi, or Leonardo for all the projects

in this book. Although you can use an older board without issues, there

are some issues with using the Leonardo board. I point these out as

you encounter them. Most issues have to do with the relocated pins on

the Leonardo board. For example, the SPI header pins (at upper left in

Figure 6-3) have been moved on the Leonardo.

For future projects, there are some things you should consider before

choosing the Arduino. For example, if your project is largely based on

a breadboard or you want to keep the physical size of the project to a

minimum, and you aren’t going to use any shields, the Arduino Mini may

be the better choice. Conversely, if you plan to do a lot of programming

to implement complex algorithms for manipulating or analyzing data,

you may want to consider the Due for its added processing power and

memory.

The bottom line is that most of the time your choice will be based on

physical characteristics (size, shield support, and so on) and seldom on

processing power or memory. SparkFun has an excellent buyer’s guide in

which you can see the pros and cons of each choice. See www.sparkfun.

com/pages/arduino_guide for more details.

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com/pages/arduino_guide
http://www.sparkfun.com/pages/arduino_guide

287

 Where to Buy
Due to the popularity of the Arduino platform, many vendors sell Arduino

and Arduino clone boards, shields, and accessories. The Arduino.cc

website (https://store.arduino.cc/usa) also has a page devoted to

approved distributors. If none of the resources listed here are available to

you, you may want to check this page for a retailer near you.

 Online Retailers

There are a growing number of online retailers where you can buy

Arduino boards and accessories. The following lists a few of the more

popular sites:

• SparkFun: From discrete components to the company’s

own branded Arduino clones and shields, SparkFun

has just about anything you could possibly want for the

Arduino platform (www.sparkfun.com/).

• Adafruit: Carries a growing array of components,

gadgets, and more. It has a growing number of products

for the electronics hobbyist, including a full line of

Arduino products. Adafruit also has an outstanding

documentation library and wiki to support all the

products it sells (www.adafruit.com/).

You can also visit the manufacturers of some of the clone boards.

The following are the leading clone manufacturers and links to their

storefronts:

• SpikenzieLabs: www.spikenzielabs.com/

• Seeed Studio: www.seeedstudio.com/

Chapter 6 arduino-Based sensor nodes

https://store.arduino.cc/usa
http://www.sparkfun.com/
http://www.adafruit.com/
http://www.spikenzielabs.com/
http://www.seeedstudio.com/

288

 Retail Stores (United States)

There are also brick-and-mortar stores that carry Arduino products.

Although there aren’t as many as there are online retailers and their

inventories are typically limited, if you need a new Arduino board quickly,

you can find them at the following retailers. You may find additional

retailers in your area. Look for popular hobby electronics stores:

• Fry’s: An electronics superstore with a huge warehouse

of electronics, components, microcontrollers,

computer parts, and more available for order.

Fry’s carries Arduino-branded boards, shields,

and accessories as well as products from Parallax,

SparkFun, and many more (http://frys.com/).

• Micro Center: Micro Center is similar to Fry’s, offering

a huge inventory of products. However, most Micro

Center stores have a smaller inventory of electronic

components than Fry’s (www.microcenter.com/).

Now that you have a better understanding of the hardware details

and the variety of Arduino boards available, let’s dive into how to use and

program the Arduino. The next section provides a tutorial for installing

the Arduino programming environment and programming the Arduino.

Later sections present projects to build your skills for developing sensor

networks.

 Arduino Tutorial
This section is a short tutorial on getting started using an Arduino. It covers

obtaining and installing the IDE and writing a sample sketch. Rather than

duplicate the excellent works that precede this book, I cover the highlights

and refer readers who are less familiar with the Arduino to online

Chapter 6 arduino-Based sensor nodes

http://frys.com/
http://www.microcenter.com/

289

resources and other books that offer a much deeper introduction. Also,

the Arduino IDE has many sample sketches that you can use to explore the

Arduino on your own. Most have corresponding tutorials on the Arduino.cc

site.

 Learning Resources
A lot of information is available about the Arduino platform. If you are just

getting started with the Arduino, Apress offers an impressive array of books

covering all manner of topics concerning the Arduino, ranging from getting

started using the microcontroller to learning the details of its design and

implementation. The following is a list of the more popular books. Some

are a little older than you may expect but still quite useful.

• Beginning Arduino by Michael McRoberts

(Apress, 2010)

• Practical Arduino: Cool Projects for Open Source

Hardware (Technology in Action) by Jonathan Oxer and

Hugh Blemings (Apress, 2009)

• Arduino Internals by Dale Wheat (Apress, 2011)

There are also some excellent online resources for learning more about

the Arduino, the Arduino libraries, and sample projects. The following are

some of the best:

• Arduino.cc: http://arduino.cc/en/

• Adafruit: http://learn.adafruit.com/

• SparkFun: https://learn.sparkfun.com/

Chapter 6 arduino-Based sensor nodes

http://arduino.cc/en/
http://learn.adafruit.com/
https://learn.sparkfun.com/

290

 The Arduino IDE
The Arduino IDE is available for download for the Mac, Linux (32- and

64-bit versions), and Windows platforms. You can download the IDE from

http://arduino.cc/en/Main/Software. There are links for each platform

as well as a link to the source code if you need to compile the IDE for a

different platform.

Tip interestingly, there is a web version of the ide that you can use
without installing it on your computer. this may be helpful if you want
to use it on a pC where you don’t want (or cannot) install the ide.

Installing the IDE is straightforward. I omit the actual steps of installing

the IDE for brevity, but if you require a walk-through of installing the IDE,

you can see the Getting Started link on the download page or read more in

Beginning Arduino by Michael McRoberts (Apress, 2010).

Once the IDE launches, you see a simple interface with a text editor

area (a white background by default), a message area beneath the editor

(a black background by default), and a simple button bar at the top. The

buttons are (from left to right) Compile, Compile and Upload, New, Open,

and Save. There is also a button to the right that opens the serial monitor.

You use the serial monitor to view messages from the Arduino sent (or

printed) via the Serial library. You see this in action in your first project.

Figure 6-16 shows the Arduino IDE.

Chapter 6 arduino-Based sensor nodes

http://arduino.cc/en/Main/Software

291

Notice that in Figure 6-16 you see a sample sketch (called blink)

and the result of a successful compile operation. I loaded this sketch by

clicking File ➤ Examples ➤ Basic ➤ Blink. Notice also at the bottom that

it tells you that you are programming an Arduino Leonardo board on a

specific serial port.

Due to the differences in processor and supporting architecture, there

are some differences in how the compiler builds the program (and how the

IDE uploads it). Thus, one of the first things you should do when you start

the IDE is choose your board from the Tools ➤ Board menu. Figure 6-17

shows a sample of selecting the board on the Mac.

Figure 6-16. The Arduino IDE

Chapter 6 arduino-Based sensor nodes

292

Notice the number of boards available. Be sure to choose the one

that matches your board. If you are using a clone board, check the

manufacturer’s site for the recommended setting to use. If you choose

the wrong board, you typically get an error during upload, but it may not

be obvious that you’ve chosen the wrong board. Because I have so many

different boards, I’ve made it a habit to choose the board each time I

launch the IDE.

The next thing you need to do is choose the serial port to which the

Arduino board is connected. To connect to the board, use the Tools ➤

Port menu option. Figure 6-18 shows an example on the Mac. In this case,

no serial ports are listed. This can happen if you haven’t plugged your

Arduino in to the computer’s USB ports (or hub), you had it plugged in but

Figure 6-17. Choosing the Arduino board

Chapter 6 arduino-Based sensor nodes

293

disconnected it at some point, or you have not loaded the drivers for the

Arduino (Windows). Typically, this can be remedied by simply unplugging

the Arduino and plugging it back in and waiting until the computer

recognizes the port.

Note if you use a Mac, it doesn’t matter which port you choose: either
the one that starts with tty or the one that starts with cu will work.

Tip see www.arduino.cc/en/Guide/HomePage?from=Guide.
Howto if you need help installing the drivers on Windows.

OK, now that you have your Arduino IDE installed, you can connect

your Arduino and set the board and serial port. You see the LEDs on the

Arduino illuminate. This is because the Arduino is getting power from the

USB. Thus, you do not need to provide an external power supply when

the Arduino is connected to your computer. Next, you dive into a simple

project to demonstrate the Arduino IDE and learn how basic sketches are

built, compiled, and uploaded.

Figure 6-18. Choosing the serial port

Chapter 6 arduino-Based sensor nodes

http://www.arduino.cc/en/Guide/HomePage?from=Guide.Howto
http://www.arduino.cc/en/Guide/HomePage?from=Guide.Howto

294

 Project: Hardware “Hello, World!”
The ubiquitous “Hello, World!” project for the Arduino is the blinking light.

The project uses an LED, a breadboard, and some jumper wires. The Arduino

turns on and off through the course of the loop() iteration. That’s a fine

project for getting started, but it does not relate to how sensors could be used.

Thus, in this section, you expand on the blinking light project by

adding a sensor. In this case, you still keep things simple by using what is

arguably the most basic of sensors: a pushbutton. The goal is to illuminate

the LED whenever the button is pushed.

 Hardware Connections

Let’s begin by assembling an Arduino. Be sure to disconnect (power down)

the Arduino first. You can use any Arduino variant that has I/O pins. Place

one LED and one pushbutton in the breadboard. Wire the 5V pin to the

breadboard power rail and the ground pin to the ground rail, and place the

pushbutton in the center of the breadboard. Place the LED to one side of

the breadboard, as shown in Figure 6-19.

Figure 6-19. Diagram of an LED with a pushbutton

Chapter 6 arduino-Based sensor nodes

295

You’re almost there. Now wire a jumper from the power rail to

one side of the pushbutton, and wire the other side of the pushbutton

to (DIGITAL) pin 2 on the Arduino (located on the side with the USB

connector). Next, wire the LED to ground on the breadboard and a 150

Ohm resistor (colors: brown, green, brown, gold). The other side of

the resistor should be wired to pin 13 on the Arduino. You also need a

resistor to pull the button low when the button is not pressed. Place a

10K Ohm resistor (colors: brown, black, orange, gold) on the side of the

button with the wire to pin 2 and ground.

The longest side of the LED is the positive side. The positive side

should be the one connected to the resistor. It doesn’t matter which

direction you connect the resistor; it is used to limit the current to the

LED. Check the drawing again to ensure that you have a similar setup.

Note Most arduino boards have an Led connected to pin 13. You
reuse the pin to demonstrate how to use analog output. thus, you
may see a small Led near pin 13 illuminate at the same time as the
Led on the breadboard.

COOL GADGET

one of the coolest gadgets for working with the arduino is the arduino

mounting plate from adafruit (www.adafruit.com/products/275).

this small acrylic plate has space for a half-sized breadboard and an arduino.

it even has mounting holes for bolting the arduino to the plate and small

rubber feet to keep the plate off the work surface. the following illustration

(courtesy of adafruit) shows the mounting plate in action.

Chapter 6 arduino-Based sensor nodes

http://www.adafruit.com/products/275

296

although you can make your own arduino mounting plate from Lexan or

plexiglas (i have), the adafruit product is just a notch better than what you can

make yourself. For about us$5.00, you can keep your arduino and breadboard

together and avoid scratches on your table (from the sharp prongs on the

bottom of the arduino)—and, better still, avoid the nasty side effects of

accidentally placing a powered arduino on a conductive surface (never a good

idea).

 Writing the Sketch

The sketch you need for this project uses two I/O pins on the Arduino: one

output and one input. The output pin will be used to illuminate the LED,

and the input pin will detect the pushbutton engagement. You connect

positive voltage to one side of the pushbutton and the other side to the

input pin. When you detect voltage on the input pin, you tell the Arduino

processor to send positive voltage to the output pin. In this case, the

positive side of the LED is connected to the output pin.

As you can see in the drawing in Figure 6-18, the input pin is pin 2 and

the output pin is pin 13. Let’s use a variable to store these numbers so you

do not have to worry about repeating the hard-coded numbers (and risk

Chapter 6 arduino-Based sensor nodes

297

getting them wrong). Use the pinMode() method to set the mode of each

pin (INPUT, OUTPUT). You place the variable statements before the setup()

method and set the pinMode() calls in the setup() method, as follows:

int led = 13; // LED on pin 13

int button = 2; // button on pin 2

void setup() {

 pinMode(led, OUTPUT);

 pinMode(button, INPUT);

}

In the loop() method, you place code to detect the button press. Use

the digitalRead() method to read the status of the pin (LOW or HIGH),

where LOW means there is no voltage on the pin and HIGH means positive

voltage is detected on the pin.

You also place in the loop() method the code to turn on the LED

when the input pin state is HIGH. In this case, you use the digitalWrite()

method to set the output pin to HIGH when the input pin state is HIGH and

similarly set the output pin to LOW when the input pin state is LOW. The

following code shows the statements needed:

void loop() {

 int state = digitalRead(button);

 if (state == HIGH) {

 digitalWrite(led, HIGH);

 }

 else {

 digitalWrite(led, LOW);

 }

}

Now let’s see the entire sketch, complete with proper documentation.

Listing 6-1 shows the completed sketch.

Chapter 6 arduino-Based sensor nodes

298

Listing 6-1. Simple Sensor Sketch

/*
 Simple Sensor - Beginning Sensor Networks Second Edition

 For this sketch, we explore a simple sensor (a pushbutton) and

a simple response to sensor input (a LED). When the sensor

 is activated (the button is pushed), the LED is illuminated.

*/

int led = 13; // LED on pin 13

int button = 2; // button on pin 2

// the setup routine runs once when you press reset:

void setup() {

 // initialize pin 13 as an output.

 pinMode(led, OUTPUT);

 pinMode(button, INPUT);

}

// the loop routine runs over and over again forever:

void loop() {

 // read the state of the sensor

 int state = digitalRead(button);

 // if sensor engaged (button is pressed), turn on LED

 if (state == HIGH) {

 digitalWrite(led, HIGH);

 }

 // else turn off LED

 else {

 digitalWrite(led, LOW);

 }

}

Chapter 6 arduino-Based sensor nodes

299

When you’ve entered the sketch as written, you are ready to compile

and run it. Name the sketch basic_sensor.ino.

Tip Want to avoid typing all this by hand? You can find the source
code on the apress site for this book.

 Compiling and Uploading

Once you have the sketch written, test the compilation using the Compile

button in the upper-left corner of the IDE. Fix any compilation errors that

appear in the message window. Typical errors include misspellings or case

changes (the compiler is case sensitive) for variables or methods.

After you have fixed any compilation errors, click the Upload button.

The IDE compiles the sketch and uploads the compiled sketch to the

Arduino board. You can track the progress via the progress bar at lower

right, above the message window. When the compiled sketch is uploaded,

the progress bar disappears.

 Testing the Sensor

Once the upload is complete, what do you see on your Arduino? If you’ve

done everything right, the answer is nothing. It’s just staring back at you

with that one dark LED—almost mockingly. Now, press the pushbutton.

Did the LED illuminate? If so, congratulations: you’re an Arduino

programmer!

If the LED did not illuminate, hold the button down for a second or

two. If that does not work, check all of your connections to make sure you

are plugged in to the correct runs on the breadboard and that your LED

is properly seated with the longer leg connected to the resistor, which is

connected to pin 13.

Chapter 6 arduino-Based sensor nodes

300

On the other hand, if the LED stays illuminated, try reorienting your

pushbutton 90 degrees. You may have set the pushbutton in the wrong

orientation.

Try out the project a few times until the elation passes. If you’re an old

hand at Arduino, that may be a very short period. If this is all new to you,

go ahead and push that button and bask in the glory of having built your

first sensor node!

The next section examines a more complicated sensor node, using a

temperature and humidity sensor that sends digital data. As you will see,

there is a lot more to do.

 Hosting Sensors with Arduino
The digital and analog pins of the Arduino make it an ideal platform

for hosting sensors. Since most sensors need very little in the way of

supporting components, you can often host multiple sensors on one

Arduino. For example, it is possible to host a temperature sensor or even

multiple temperature sensors, barometric, humidity, and so on, for

sampling weather conditions from a given site.

SparkFun and Adafruit have excellent websites that provide a great

deal of information about the products they sell. Often the sensor product

page includes links to examples and more information about using the

sensor. If you are new to electronics, you should stick to sensors that provide

examples of their use. It may sound like cheating, but unless you have a good

knowledge of electronics, using a sensor incorrectly can get expensive as you

burn your way through a few destroyed components before you get it right.

However, when there is another sensor you want to use, you should

examine its datasheet. Most manufacturers and vendors supply the

datasheet via a link on the product page. The datasheet provides all the

information you need to use the sensor but may not have an actual example

of its use. If you are familiar with electronics, this is all you are likely to need.

Chapter 6 arduino-Based sensor nodes

301

If you are more of a hobbyist or novice at electronics, check the wikis

and forums on Arduino.cc, SparkFun, and Adafruit. These sites have a

wealth of information and a great many examples, complete with sample

code. If you cannot find any examples, you can try googling for one.

Use terms like “Arduino <sensor name> example”. If you cannot find any

examples and are not an experienced electronics technician, you might

want to reconsider using the sensor.

Another thing to consider is how you connect the sensor to the Arduino.

Recall that there are a number of different physical layouts, depending on

the Arduino you choose. Thus, you should be familiar with the pin layout

of your Arduino when planning your Arduino-hosted sensor nodes. If you

are hosting a single sensor with your Arduino, this may not be an issue. By

way of example, Figure 6-20 shows an Arduino Leonardo board with the

I/O pins highlighted. If you look carefully at your Arduino board, you see

abbreviated text next to each pin to indicate its purpose. Some smaller-

form-factor Arduino boards may not have room for the labels. In this case,

consult the vendor’s product page and print it out for future reference.

Now let’s put the knowledge you’ve gained from learning about the

Arduino to use in building a sensor node with an Arduino and a sensor.

Figure 6-20. Identifying the I/O pins on an Arduino board

Chapter 6 arduino-Based sensor nodes

302

 Project: Building an Arduino Temperature
Sensor
In this project, you build a more sophisticated Arduino-hosted sensor

node. This project not only demonstrates how to host sensors with an

Arduino but also provides an example of why you need a microcontroller

to host certain types of sensors. In this case, the DHT22 sensor is a digital

sensor that has its own protocol, which requires a bit of logic to interpret

correctly, thereby making it more complicated to use with an XBee.2 Later,

you see an example of a simple analog sensor that you can connect directly

to an XBee module.

This project uses a DHT22 temperature and humidity sensor

connected to the Arduino via a breadboard. The DHT22 is a simple digital

sensor that produces digital signals. It requires a single resistor to pull up

from the data pin to voltage. Pull-up in this case makes sure the data value

is “pulled up” to the voltage level to ensure a valid logic level on the wire.

Let’s jump right in and connect the hardware.

Note this example was adapted from an example on the adafruit
website (http://learn.adafruit.com/dht).

 Hardware Setup
The hardware required for this project includes an Arduino, a DHT22

humidity and temperature sensor, a breadboard, a 4.7K Ohm resistor

(colors: yellow, purple, red, gold), and breadboard jumper wires.

2 At least, I have not found anyone who has done this successfully.

Chapter 6 arduino-Based sensor nodes

http://learn.adafruit.com/dht

303

Tip if you get stuck or want more information, there is an excellent
tutorial on adafruit’s website.

Begin by placing your Arduino next to a breadboard. Plug the DHT22

sensor in to one side of the breadboard, as shown in Figure 6-21. Please

refer to this figure often and double-check your connections before

powering on your Arduino (or connecting it to your laptop). You want to

avoid accidental experiments in electrical chaos theory.

Next, connect the power from the Arduino to the breadboard. Use

one jumper wire to connect the 5V pin on the Arduino to the breadboard

power rail and another for the ground (GND) pin on the Arduino to the

ground rail on the breadboard. With these wires in place, you are ready to

wire the sensor. You use three of the four pins, as shown in Table 6-1.

Figure 6-21. Wiring the DHT22

Chapter 6 arduino-Based sensor nodes

304

Next, connect the ground and power of the sensor to the breadboard

power and ground rails. Then connect one wire from the data pin on the

sensor to pin 7 of the Arduino. There is one last connection: you use a pull-

up resistor of 4.7K Ohm connected to the data wire and the power rail of

the breadboard.

 Software Setup
To use the DHT22 with an Arduino, you need to have the latest DHT22

library. You can install the library right from the Arduino IDE by searching

the library manager. Open the Arduino IDE and then open a new sketch

and choose Sketch ➤ Include Library ➤ Manage Libraries… from the

menu. Figure 6-22 shows the library manager.

Table 6-1. DHT22 Connections

Pin Connected To

1 +5V, 4.7K resistor between the power

supply and the data pin (strong pull-up)

2 pin 7 on arduino, 4.7K resistor

3 no connection

4 Ground

Chapter 6 arduino-Based sensor nodes

305

It may take a moment for the library manager to connect to the server

and download the latest catalog. When it is complete, you can type DHT22

into the text box in the upper right and press ENTER. This will search the

library catalog for all of the libraries that match.

Choose the DHT sensor library from Adafruit and click Install. If

you are prompted to install the supporting libraries, click Install all to

ensure all prerequisites are installed as shown in Figure 6-23.

Now that you have the hardware configured and the DHT22 library set

up, let’s write some code!

Figure 6-22. Library manager

Figure 6-23. Install all libraries

Chapter 6 arduino-Based sensor nodes

306

 Writing the Sketch
Like any sketch, we need to include some libraries, define some constant,

and instantiate the DHT object in the preamble. Here you include the DHT

library header, define the data pin for the sensor as pin 7 on the Arduino,

add a delay constant of 5 seconds, and instantiate an instance of the DHT

class. Since the library supports more than one type of DHT sensor, we also

must use the special type declared in the library. For example, to tell the

library to use the DHT22 sensor, we set the type to DHT22 accordingly. The

following is the preamble for the sketch:

#include "DHT.h"

#define DHTPIN 7 // DHT2 data is on pin 7

#define read_delay 5000 // 5 seconds

#define DHTTYPE DHT22 // DHT 22 (AM2302)

Next, we need to instantiate the DHT class. We do this by passing in the

pin we want to use along with the DHT type.

DHT dht(DHTPIN, DHTTYPE);

The DHT22 has its own protocol for communicating data. Fortunately,

the libraries from Adafruit make reading from the sensor easy. To read the

data, you simply call the appropriate method as shown in Table 6-2 that

returns the value so you can save it in a variable.

Chapter 6 arduino-Based sensor nodes

307

Knowing that, all we need to do to read the data is call these methods

saving the data to variables and then print them out. To make the sketch

easy and tidy, we can place this logic in a method named read_data().

Listing 6-2 shows the completed read_data() method.

Listing 6-2. The read_data() Method

void read_data() {

 // Read humidity

 float humidity = dht.readHumidity();

 // Read temperature as Celsius

 float temp_c = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float temp_f = dht.readTemperature(true);

 // Check for errors and return if any variable has no value

 if (isnan(temp_c) || isnan(temp_f) || isnan(humidity)) {

 Serial.println("ERROR: Cannot read all data from DHT-22.");

 return;

 }

Table 6-2. Data Methods from DHT Library

Method Description

dht.readHumidity() read the humidity

dht.readTemperature() read temperature in Celsius

dht.readTemperature(true) read temperature in Fahrenheit

dht.computeHeatIndex(temp_c,

humidity, false)

Get heat index in Celsius

dht.computeHeatIndex(temp_c,

humidity, true)

Get heat index in Fahrenheit

Chapter 6 arduino-Based sensor nodes

308

 // Calculate heat index for Celsius

 float hi_c = dht.computeHeatIndex(temp_c, humidity, false);

 // Calculate heat index for temperature in Fahrenheit

 float hi_f = dht.computeHeatIndex(temp_f, humidity, true);

 Serial.print("Humidity: ");

 Serial.print(humidity);

 Serial.print("%, ");

 Serial.print(temp_c);

 Serial.print("C, ");

 Serial.print(temp_f);

 Serial.println("F ");

 Serial.print(" Heat Index: ");

 Serial.print(hi_c);

 Serial.print("C, ");

 Serial.print(hi_f);

 Serial.println("F ");

}

Notice the code is pretty simple. We just read the values and then use

the Serial.print() and Serial.println() methods to write the data to

the serial monitor.

The only thing left is the setup() and loop() methods. The setup()

method simply initializes the Serial and dht classes. The loop() method

uses a delay and calls the read_data() method. Listing 6-3 shows the

completed sketch.

Listing 6-3. Completed Sketch: Reading a DHT-22 Sensor

/*
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Arduino Hosted Sensor Node

 This sensor node uses a DHT22 sensor to read temperature and

humidity printing the results in the serial monitor.

Chapter 6 arduino-Based sensor nodes

309

*/

#include "DHT.h"

#define DHTPIN 7 // DHT2 data is on pin 7

#define read_delay 5000 // 5 seconds

#define DHTTYPE DHT22 // DHT 22 (AM2302)

DHT dht(DHTPIN, DHTTYPE);

void read_data() {

 // Read humidity

 float humidity = dht.readHumidity();

 // Read temperature as Celsius

 float temp_c = dht.readTemperature();

 // Read temperature as Fahrenheit (isFahrenheit = true)

 float temp_f = dht.readTemperature(true);

 // Check for errors and return if any variable has no value

 if (isnan(temp_c) || isnan(temp_f) || isnan(humidity)) {

 Serial.println("ERROR: Cannot read all data from DHT-22.");

 return;

 }

 // Calculate heat index for Celsius

 float hi_c = dht.computeHeatIndex(temp_c, humidity, false);

 // Calculate heat index for temperature in Fahrenheit

 float hi_f = dht.computeHeatIndex(temp_f, humidity, true);

 Serial.print("Humidity: ");

 Serial.print(humidity);

 Serial.print("%, ");

 Serial.print(temp_c);

 Serial.print("C, ");

 Serial.print(temp_f);

 Serial.println("F ");

Chapter 6 arduino-Based sensor nodes

310

 Serial.print(" Heat Index: ");

 Serial.print(hi_c);

 Serial.print("C, ");

 Serial.print(hi_f);

 Serial.println("F ");

}

void setup() {

 Serial.begin(115200); // Set the serial port speed

 dht.begin();

 delay(1000);

 Serial.println("Welcome to the DHT-22 Arduino example!\n");

}

void loop() {

 delay(read_delay);

 read_data();

}

If you have not done so already, open a new Arduino sketch by clicking

the New menu button or by choosing File ➤ New. Now you can compile,

upload, and test the project. You can name it whatever you like such as

dht22_example.ino.

 Test Execution
Executing the sketch means uploading it to your Arduino and watching it

run. If you haven’t connected your Arduino, you can do that now.

I like to begin by compiling the sketch. Click the check mark on the left

side of the Arduino application, and observe the output in the message

screen at the bottom. If you see errors, fix them and retry the compile.

Common errors include missing the DHT22 library (which may require

restarting the Arduino application), typing errors, syntax errors, and the

Chapter 6 arduino-Based sensor nodes

311

like. Once everything compiles correctly, you are ready to upload your

sketch by clicking the Upload button on the toolbar.

Right after the upload completes, open the serial monitor by

clicking the button at right on the toolbar. Observe the Arduino

messages. Listing 6-4 shows the typical output you should see.

Listing 6-4. Output of the DHT22 Sensor Sketch

Welcome to the DHT-22 Arduino example!

Humidity: 48.00%, 18.20C, 64.76F

 Heat Index: 17.33C, 63.19F

Humidity: 50.00%, 18.30C, 64.94F

 Heat Index: 17.49C, 63.48F

Humidity: 51.80%, 19.10C, 66.38F

 Heat Index: 18.42C, 65.15F

Humidity: 53.60%, 20.20C, 68.36F

 Heat Index: 19.67C, 67.42F

Humidity: 53.20%, 21.40C, 70.52F

 Heat Index: 20.98C, 69.77F

Humidity: 51.50%, 22.10C, 71.78F

 Heat Index: 21.71C, 71.08F

Humidity: 50.00%, 22.50C, 72.50F

 Heat Index: 22.11C, 71.80F

Humidity: 48.50%, 22.60C, 72.68F

 Heat Index: 22.18C, 71.93F

If you see similar output, congratulations! You have just built your first

Arduino-hosted sensor node. This is an important step in building your

sensor network, as you now have the tools needed to start building more

sophisticated, wireless sensor nodes and aggregate nodes for recording

sensor data.

Chapter 6 arduino-Based sensor nodes

312

Let’s take the Arduino sensor experience one step further and add

XBee modules to enable the sensor to be placed away from the Arduino.

This effectively demonstrates how an Arduino can remotely host a

number of sensor nodes and thus become an aggregate node in a sensor

network.

 Project: Using an Arduino As a Data
Collector for XBee Sensor Nodes
This project combines what you have learned about the Arduino in this

chapter and the XBee in Chapters 2 and 4. More specifically, you use an

Arduino and a remote sensor that connects the sensor with the Arduino

using XBee modules. We will reuse the XBee sensor node from Chapter 4

and use the Arduino to read the data.

 XBee Sensor Node
Follow the text from Chapter 4 to create the XBee sensor node. As a

reminder, this node is constructed as shown in Figure 6-24.

Figure 6-24. XBee sensor node

Chapter 6 arduino-Based sensor nodes

313

If you have not configured the sensor node from Chapter 4 or if you

need to reset the module, you should begin by ensuring the latest firmware

is loaded and use the settings shown in Table 6-3. Note that you do not

need the IR setting from Chapter 4, but it’s OK if you want to reuse the

module you used in that chapter.

Notice unlike the project from Chapter 5, we must set up the I/O

sampling rate. This is because the library we will be using does not have

the same ability to search the ZigBee network for our remote node. Rather,

in this project, the Arduino will poll until an IO sample is delivered to the

coordinator node. Thus, we have seen two different ways to get data from

a ZigBee network—requesting data directly from a node (Chapter 5) and

polling for data sent from nodes (this chapter).

 Coordinator Node
The coordinator node should be configured similarly with the latest

firmware loaded and the settings shown in Table 6-4.

Table 6-3. XBee Sensor Node Options and Values

Code Setting Name Description Value

d3 ad3/dio3 trigger analog or digital

data recording

2—adC

id pan id id for the network 8088

ir i/o sampling rate time to wait to send data 3a98—15,000ms

ni node identifier name for the node tMp36

V+ supply Voltage

threshold

supply voltage FFFF (always send)

Chapter 6 arduino-Based sensor nodes

314

There is no need to install the XBee module just yet. You need to

configure its settings. You do that in the next section.

Now, let’s set up the Arduino and XBee.

 Arduino with XBee Shield
You can use an Arduino to read the data from the XBee sensor node. This

gives you an example of using an Arduino as a data aggregator (collector)

of sensor data from XBee sensor nodes. Let’s set up an Arduino with an

XBee. This project demonstrates using an Arduino to receive data via

XBee, but you can also send data via XBee.

 Hardware Setup

The sample setup in this section uses a typical Arduino (Uno, Leonardo,

etc.) that supports standard shields. Although it is not expressly necessary

to use a shield designed to accept an XBee module, most XBee shields

are designed to make the use of the XBee easier. In other words, you don’t

have to worry about how to wire the XBee to the Arduino. Figure 6-25

shows an Arduino with an XBee shield from SparkFun.

Table 6-4. XBee Coordinator Options and Values

Code Setting Name Description Value

id pan id id for the network 8088

ni node identifier name for the node Coordinator

Chapter 6 arduino-Based sensor nodes

315

I use this shield to demonstrate how to communicate with an XBee

module. If you decide to use another shield, be sure to check that shield’s

documentation for examples of how to use it and compare it with the code

in this project. Make the appropriate modifications (hardware connections

and changes to the sketch) so that your project will work correctly with

your shield.

The shield lets you choose to communicate with the Arduino with the

onboard serial circuitry (UART3) for the Arduino via digital pins 0 and 1.

But these are also the pins used when communicating with the Arduino

via USB from the Arduino IDE. Fortunately, the SparkFun XBee shield

has a small switch that allows you to choose to use pins 2 and 3 instead.

You use this option so that you can write a script to read data from the

shield via the XBee and still connect to the Arduino IDE and use the serial

monitor. But there is a catch: only one UART is available. You must use the

3 http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/
transmitter

Figure 6-25. Arduino XBee shield (courtesy of SparkFun)

Chapter 6 arduino-Based sensor nodes

http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter
http://en.wikipedia.org/wiki/Universal_asynchronous_receiver/transmitter

316

software serial library to simulate a second serial connection. The software

serial library is included in the Arduino IDE. You see how to do this in the

“Software Setup” section.

Tip if you are using a different XBee shield, you should consult the
documentation on the shield and use the pins as instructed. some
shields are hard wired.

If you do not want to use a shield, you can wire your XBee to an

Arduino as you did earlier. In this case, you use an XBee breakout board

from SparkFun to mate to a breadboard. Figure 6-26 shows the wiring

diagram for wiring the XBee Explorer Regulated breakout board to an

Arduino. Notice that you use the 5V pin from the Arduino. If you are using

a nonregulated breakout board, you should use the 3.3V pin instead.

Always double-check the maximum voltage of any component you use

before powering on the project.

Note either of these methods will work for this project.

Figure 6-26. Connecting an XBee to an Arduino via a SparkFun
XBee breakout board

Chapter 6 arduino-Based sensor nodes

317

Whichever method you choose, take the XBee coordinator module off

your USB adapter and insert it into the XBee shield or the XBee Explorer

Regulated breakout board. Now that the hardware is ready, let’s set up your

Arduino environment and write a sketch to read the data from the XBee

sensor node.

 Software Setup

Like most sensors, we need a library to connect to and read the data.

Fortunately, there is a nice XBee serial library for Arduino. We install it

like we did the DHT22 library by opening a new sketch and choose Sketch

➤ Include Library ➤ Manage Libraries… from the menu, then search for

XBee, and install the library from Andrew Rapp. Figure 6-27 shows the

library manager with the correct library chosen. Install it by clicking Install.

Once the library is installed and you have restarted your Arduino IDE,

you can write the script to read the data from the XBee. The library has

classes for each of the popular XBee data packets to send and receive data

to or from an XBee. This project uses the IO sample class because you

know that is the only packet we are interested in using in this project.

Figure 6-27. Loading the XBee Arduino library

Chapter 6 arduino-Based sensor nodes

318

You need to create several parts of the sketch. Using the XBee library

is easier than writing your own communication methods, but the library

has certain setup steps and methods you need to use to read the data

packet.

To begin, let’s include the library headers for the XBee and software

serial libraries. Recall that the software serial library is part of the

Arduino IDE:

#include <XBee.h>

#include <SoftwareSerial.h>

Now you must define the pins you use to communicate to the XBee

module. You use the serial monitor as an output device, so you need to

use alternative pins. In this case, you use pins 2 and 3 for the receive and

transmit connections. You need to define these and initialize the software

serial library and use that to communicate to the XBee. The following

shows the definitions needed:

uint8_t recv = 8;

uint8_t trans = 9;

SoftwareSerial soft_serial(recv, trans);

Next, you must instantiate the XBee library and helper classes. In this

case, you need the helper class for the I/O data sample packet:

XBee xbee = XBee();

ZBRxIoSampleResponse ioSample = ZBRxIoSampleResponse();

Now we are ready to write the startup code. For this project, you must

initiate the software serial library and pass that to the XBee library for use

in communicating with the XBee module. You also need to initialize the

default serial class so that you can use print() statements to display the

data read in a later portion of the code. The following shows the complete

setup() method:

Chapter 6 arduino-Based sensor nodes

319

void setup() {

 Serial.begin(9600);

 while (!Serial); // Leonardo boards need to wait for Serial

to start

 soft_serial.begin(9600);

 xbee.setSerial(soft_serial);

}

Notice the line with the while loop. You need to add this for use on

Leonardo boards. If you omit this and run the sketch on a Leonardo board,

the XBee may fail to work. Add this loop to allow the Leonardo time to start

the Serial instance.

Now let’s code the methods you use to read the data from the packet.

You learn how to read the packet from the XBee a bit later. First, let’s

examine how to get the source address for the data packet. The following

shows the code for doing so:

void get_address(ZBRxIoSampleResponse *ioSample) {

 Serial.print("Received data from address: ");

 Serial.print(ioSample->getRemoteAddress64().getMsb(), HEX);

 Serial.print(ioSample->getRemoteAddress64().getLsb(), HEX);

 Serial.println("");

}

Notice that you simply use the ioSample class instance and call the

method getRemoteAddress64().getMsb(). Actually, this is a call to a

subclass (RemoteAddress64) and its method getMsb(). This returns the

most significant byte (high 16 bits) of the 64-bit address. You do the same

for the least significant bit with the getRemoteAddress64().getLsb()

call. You then print these values, specifying that you want to print them in

hexadecimal. If you were reading data from multiple XBee nodes, it would

be handy to apply a name to each address, such as “bedroom” or “living

room”. I leave that to you as an exercise.

Chapter 6 arduino-Based sensor nodes

320

Next, you want to read the data payload. In this case, you want to

read the temperature data sent to the XBee coordinator from the XBee

sensor node. The following shows the code needed to do this. You use the

formulas discussed previously to convert the millivolt value read by the

sensor to temperature in Celsius and then convert that to Fahrenheit.

void get_temperature(ZBRxIoSampleResponse *ioSample) {

 float adc_data = ioSample->getAnalog(3);

 Serial.print("Temperature is ");

 float temperatureC = ((adc_data * 1200.0 / 1024.0) - 500.0) / 10.0;

 Serial.print(temperatureC);

 Serial.print("c, ");

 float temperatureF = ((temperatureC * 9.0)/5.0) + 32.0;

 Serial.print(temperatureF);

 Serial.println("f");

}

Finally, you need to read the supply voltage from the data packet. In

this case, the supply voltage appears after the data samples. Because you

know there is only one data sample (via the analog sample mask), you

know that the analog voltage appears right before the checksum. Sadly,

there is no method currently to fetch that information from the I/O sample

packet in the XBee library. However, all is not lost, because the author of

the library stores the data in an array and has supplied a subclass for you to

use to fetch the raw data. In this case, you want bytes 17 (most significant

byte) and 18 (least significant byte) from the data. You know these are the

indexes needed by counting from the byte following the frame type starting

from zero. See Table 6-5 for details.

Chapter 6 arduino-Based sensor nodes

321

Like the temperature data, you must convert the value read to volts

using the formula discussed previously. The following shows the code

needed to read, convert, and display the supply voltage for the XBee sensor

node. Notice that you shift the most significant byte 8 bits so that you can

preserve the 16-byte floating-point value.

void get_supply_voltage() {

 Serial.print("Supply voltage is ");

 int ref = xbee.getResponse().getFrameData()[17] << 8;

 ref += xbee.getResponse().getFrameData()[18];

 float volts = (float(ref) * float(1200.0 / 1024.0))/1000.0;

 Serial.print(" = ");

 Serial.print(volts);

 Serial.println(" volts.");

}

Take some time to examine the calculations. In this example, you

convert the voltage read and sent by the XBee sensor node to Celsius and

then again to Fahrenheit. You also convert the supply voltage to volts for

easier reading. All these values are sent to the serial monitor for feedback

during testing.

Once you have those methods implemented, you place the code to

read the data from the XBee in the loop() method, calling these methods

to decipher the data and print it to the serial monitor.

Because this loop() method is called repeatedly, you use the XBee

class method to read the packet and then determine if the packet is the

I/O data sample packet. If it is, you read the data from the packet. If it is

not, you add some simple error handling so that the Arduino can continue

to read data rather than stop. The following shows the completed loop()

method:

Chapter 6 arduino-Based sensor nodes

322

void loop() {

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {

 if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE)

{

 xbee.getResponse().getZBRxIoSampleResponse(ioSample);

 // Read and display data

 get_address(&ioSample);

 get_temperature(&ioSample);

 get_supply_voltage();

 }

 else {

 Serial.print("Expected I/O Sample, but got ");

 Serial.print(xbee.getResponse().getApiId(), HEX);

 }

 } else if (xbee.getResponse().isError()) {

 Serial.print("Error reading packet. Error code: ");

 Serial.println(xbee.getResponse().getErrorCode());

 }

}

Notice that in the code you check to see whether the packet is

available; if it is, you read it. If the packet read is the right frame type,

in this case ZB_IO_SAMPLE_RESPONSE, you read the data from the

packet and display it. If it isn’t the right packet, you print out to the

serial monitor the frame type of the packet received. If there is an error

reading the packet, you capture that in the last else and display the

error to the serial monitor.

Notice the contents of the block of code for the ZB_IO_SAMPLE_

RESPONSE condition. You begin by initializing the I/O data sample class

with the data read, then read the address of the XBee that sent the packet,

and then perform the calculations for temperature and reference voltage.

Chapter 6 arduino-Based sensor nodes

323

Once you understand the code so far, start a new file and type

the information into your new sketch window. Listing 6-5 shows the

completed sketch for the Arduino XBee receiver project. This code is also

available on the Apress site at the source code link for this book.

Listing 6-5. Arduino XBee Receiver

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Arduino Receiver Node

 This project demonstrates how to receive sensor data from

 an XBee sensor node. It uses an Arduino with an XBee shield

 with an XBee coordinator installed.

 Note: This sketch was adapted from the examples in the XBee

 library created by Andrew Rapp.

*/

#include <XBee.h>

#include <SoftwareSerial.h>

// Setup pin definitions for XBee shield

uint8_t recv = 2;

uint8_t trans = 3;

SoftwareSerial soft_serial(recv, trans);

// Instantiate an instance of the XBee library

XBee xbee = XBee();

// Instantiate an instance of the IO sample class

ZBRxIoSampleResponse ioSample = ZBRxIoSampleResponse();

Chapter 6 arduino-Based sensor nodes

324

void setup() {

 Serial.begin(9600);

 while (!Serial); // Leonardo boards need to wait for Serial

to start

 soft_serial.begin(9600);

 xbee.setSerial(soft_serial);

 Serial.println("Hello. Welcome to the Arduino XBee Data

Aggregator.");

}

// Get address and print it

void get_address(ZBRxIoSampleResponse *ioSample) {

 Serial.print("Received data from address: ");

 Serial.print(ioSample->getRemoteAddress64().getMsb(), HEX);

 Serial.print(ioSample->getRemoteAddress64().getLsb(), HEX);

 Serial.println("");

}

// Get temperature and print it

void get_temperature(ZBRxIoSampleResponse *ioSample) {

 float adc_data = ioSample->getAnalog(3);

 Serial.print("Temperature is ");

 float temperatureC = ((adc_data * 1200.0 / 1024.0) - 500.0) / 10.0;

 Serial.print(temperatureC);

 Serial.print("c, ");

 float temperatureF = ((temperatureC * 9.0)/5.0) + 32.0;

 Serial.print(temperatureF);

 Serial.println("f");

}

Chapter 6 arduino-Based sensor nodes

325

// Get supply voltage and print it

void get_supply_voltage() {

 Serial.print("Supply voltage is ");

 int ref = xbee.getResponse().getFrameData()[17] << 8;

 ref += xbee.getResponse().getFrameData()[18];

 float volts = (float(ref) * float(1200.0 / 1024.0))/1000.0;

 Serial.print(" = ");

 Serial.print(volts);

 Serial.println(" volts.");

}

void loop() {

 //attempt to read a packet

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {

 // got something

 if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE)

{

 // Get the packet

 xbee.getResponse().getZBRxIoSampleResponse(ioSample);

 // Read and display data

 get_address(&ioSample);

 get_temperature(&ioSample);

 get_supply_voltage();

 }

 else {

 Serial.print("Expected I/O Sample, but got ");

 Serial.print(xbee.getResponse().getApiId(), HEX);

 }

Chapter 6 arduino-Based sensor nodes

326

 } else if (xbee.getResponse().isError()) {

 Serial.print("Error reading packet. Error code: ");

 Serial.println(xbee.getResponse().getErrorCode());

 }

}

Take some time to ensure that the sketch compiles before you upload it

to your Arduino. Remember, once the sketch is uploaded, it begins to run.

Save it as xbee_sensor.ino.

 Testing the Final Project
To test the project, ensure that you start your Arduino first and then the

XBee sensor node. Start the Arduino, upload the sketch, and then turn

on the serial monitor. You should observe the link lights on the XBee

regulated breakout board flicker as the XBee node is accepted by the

coordinator on the Arduino and added to the network. Within about 5

seconds, the XBee sensor node begins sending data. When this occurs,

the Arduino sketch should start printing statements to your serial monitor.

Listing 6-6 shows an example of the output you should see in the serial

monitor.

Listing 6-6. Sample Output of the XBee Arduino Sketch

Hello. Welcome to the Arduino XBee Data Aggregator.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.83 volts.

Received data from address: 13A2004192DB79

Temperature is 11.76c, 53.16f

Supply voltage is = 3.83 volts.

Received data from address: 13A2004192DB79

Chapter 6 arduino-Based sensor nodes

327

Temperature is 12.46c, 54.43f

Supply voltage is = 3.82 volts.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.83 volts.

Received data from address: 13A2004192DB79

Temperature is 12.34c, 54.22f

Supply voltage is = 3.83 volts.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.82 volts.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.82 volts.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.82 volts.

Received data from address: 13A2004192DB79

Temperature is 12.46c, 54.43f

Supply voltage is = 3.82 volts.

Did you see something similar? If so, you’re doing great work and now

have the rudimentary components to build sensor nodes and Arduino-

based sensor data aggregators.

If you do not see any output in the serial monitor, do not panic.

Instead, double-check that the XBee on your Arduino is plugged in

correctly and that you are using the correct pins in the sketch that

correspond to how the XBee shield you are using connects to the Arduino

(not all shields use pins 2 and 3 like the SparkFun shield). Hint: Check the

documentation for your shield.

Chapter 6 arduino-Based sensor nodes

328

If all that is correct, make sure you are using the coordinator API

firmware on the XBee connected to the Arduino and the router API

firmware on the XBee sensor node. If you are still having issues, step back

to the previous project to ensure that the sensor node is still working.

You can also try turning off both the Arduino and the XBee sensor

node; then turn on the Arduino, wait about 10 seconds, and turn the XBee

sensor node back on. Sometimes the handshake process and network join

can stall, and nothing happens for a while. Turning an XBee off and back

on in this order ensures that it will reattempt to configure.

On the other hand, maybe you are getting data, but it is not correct—

the temperature read is far too low for the actual environment. I had this

happen once when the wire I was using to connect to the data pin on the

TMP36 was accidentally removed. The bottom line is always check and

recheck your wiring.

 For More Fun
If you would like to expand the project, you can add a second XBee sensor

node and modify the Arduino sketch to supply a location for each node.

For example, you could label one node “office” and the other “kitchen”. The

sketch should record (write to the serial monitor) the location of the sensor

along with the sensor data from the XBee.

 Component Shopping List
A number of components are needed to complete the projects in this

chapter. They are listed in Table 6-5.

Chapter 6 arduino-Based sensor nodes

329

Table 6-5. Components Needed

Item Vendors Est. Cost
USD

Qty
Needed

Led (any color) www.sparkfun.com/

products/9592

$0.35 1

pushbutton (breadboard

mount)

www.sparkfun.com/

products/97

$0.35 1

Breadboard (not mini) www.sparkfun.com/

products/9567

$5.95 1

Breadboard jumper wires www.sparkfun.com/

products/8431

$3.95 1

www.adafruit.com/

product/758

dht22 www.sparkfun.com/

products/10167

$9.95 1

www.adafruit.com/

products/385

150 ohm resistor Most online and retail stores Varies 1

4.7K ohm resistor Most online and retail stores Varies 1

10K ohm resistor Most online and retail stores Varies 1

arduino XBee shield www.sparkfun.com/

products/10854

$24.95 1

(continued)

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/9592
http://www.sparkfun.com/products/97
http://www.sparkfun.com/products/97
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/8431
http://www.adafruit.com/product/758
http://www.adafruit.com/product/758
http://www.sparkfun.com/products/10167
http://www.sparkfun.com/products/10167
http://www.adafruit.com/products/385
http://www.adafruit.com/products/385
http://www.sparkfun.com/products/10854
http://www.sparkfun.com/products/10854

330

Table 6-5. (continued)

Item Vendors Est. Cost
USD

Qty
Needed

XBee-ZB (ZB) series 2,

2.5, or 3

www.sparkfun.com $25.00+ 2

www.adafruit.com

www.makershed.com

tMp36 sensor www.sparkfun.com/

products/10988

$1.50 1

www.adafruit.com/

products/165

Breadboard power supply www.sparkfun.com/

products/10804

$14.95 1

Wall power supply

(6V–12V)

www.sparkfun.com/

products/15314

$5.95 1

0.10mF capacitor www.sparkfun.com/

products/8375

$0.25 1

XBee explorer regulated

with headers

www.sparkfun.com/

products/11373

$9.95 1

Breakaway male headers

(optional)

www.adafruit.com/

products/392

$4.95 1

arduino uno (any that

supports shields)

Various $25.00

and up

1

(continued)

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com
http://www.adafruit.com
http://www.makershed.com
http://www.sparkfun.com/products/10988
http://www.sparkfun.com/products/10988
http://www.adafruit.com/products/165
http://www.adafruit.com/products/165
http://www.sparkfun.com/products/10804
http://www.sparkfun.com/products/10804
http://www.sparkfun.com/products/15314
http://www.sparkfun.com/products/15314
http://www.sparkfun.com/products/8375
http://www.sparkfun.com/products/8375
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/11373
http://www.adafruit.com/products/392
http://www.adafruit.com/products/392

331

 Summary
This chapter covered a lot of ground. You explored the Arduino platform,

including the many forms available and how to write sketches (programs)

to control the Arduino. I also showed you how to host sensors with the

Arduino by using a temperature and humidity sensor.

You applied the information you learned about the XBee in Chapters 2

and 4 to create an XBee sensor node to read temperature data. You then set

up an Arduino with an XBee coordinator to receive the sensor data from

the XBee sensor node and display it in the serial monitor.

In the next chapter, you will discover various mechanisms for storing

sensor data either onboard or in the cloud.

Table 6-5. (continued)

Item Vendors Est. Cost
USD

Qty
Needed

sparkFun XBee shield www.sparkfun.com/

products/10854

$24.95 1

soldering iron and solder

(optional)

Most online and retail stores Varies 1

Chapter 6 arduino-Based sensor nodes

http://www.sparkfun.com/products/10854
http://www.sparkfun.com/products/10854

333© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_7

CHAPTER 7

Methods for Storing
Sensor Data
If you have had success with the projects thus far in the book, you have

at your disposal several forms of sensor and data-aggregate nodes. In

essence, you have the basic building blocks for constructing a sensor

network to monitor and record temperature data. It would not take much

more work to add nodes for other environmental sensors such as humidity

or barometric pressure. Indeed, the basic sensor node you have built can

host a variety of sensors.

If you have run the example projects and experimented with the

challenges, no doubt you have noticed that a lot of data is being generated.

What do you do with that data? Is it meaningful only at the instant it is

generated, or do you think it is more likely that you would want to store

the data and examine it later? For example, if you want to know the

temperature range for your workshop on a monthly basis throughout the

year, logically you need data from an entire year1 to tabulate and average.

Arduino boards don’t have built-in storage devices in general (but some

specialized variants do). Raspberry Pi boards come with a secure digital

(SD) drive and can accept USB-based storage devices where you can store

data, but what do you do with the data from your Arduino-based nodes?

1 Or at least the data from the time period in question.

https://doi.org/10.1007/978-1-4842-5796-8_7#ESM

334

This chapter examines the available storage methods and gives

examples of how to store data using those methods. Sample projects are

provided to illustrate the mechanisms and code, but I omit the sensor-

specific code for brevity.

 Storage Methods
Sensor data can come in several forms. Sensors can produce numeric data

consisting of floating-point numbers or sometimes integers. Some sensors

produce more complex information that is grouped together and may

contain several forms of data. Knowing how to interpret the values read is

often the hardest part of using a sensor. In fact, you saw this in a number

of the sensor node examples. For example, the temperature sensors

produced values that had to be converted to scale to be meaningful.

Although it is possible to store all the data as text, if you want to use

the data in another application or consume it for use in a spreadsheet or

statistical application, you may need to consider storing it either in binary

form or in a text form that can be easily converted. For example, most

spreadsheet applications can easily convert a text string like “123.45” to a

float, but they may not be able to convert “12E236” to a float. On the other

hand, if you plan to write additional code for your Arduino sketches or

Raspberry Pi Python scripts to process the data, you may want to store the

data in binary form to avoid having to write costly (and potentially slow)

conversion routines.

But that is only part of the problem. Where you store the data is a

greater concern. You want to store the data in the form you need but also

in a location (on a device) that you can retrieve it from and that won’t

be erased when the host is rebooted. For example, storing data in main

memory on an Arduino is not a good idea. Not only does it consume

valuable program space, but it is volatile and will be lost when the Arduino

is powered off.

Chapter 7 Methods for storing sensor data

335

The Raspberry Pi offers better options. You can easily create a file and

store the data on the root partition or in your home directory on the SD

card. This is nonvolatile and does not affect the operation of the Raspberry

Pi operating system. The only drawback is that it has the potential to result

in too little disk space if the data grows significantly. But the data would

have to grow to nearly two gigabytes (for a 2GB SD card) before it would

threaten the stability of the operating system (although that can happen).

So, what are your options for storing data with Arduino? Are there any

other possibilities with the Raspberry Pi? There are two types of storage to

consider: local and remote. Local storage includes any method that results

in the data being stored with the node, for example, storing data on the

SD card on the Raspberry Pi. Remote storage includes any method where

the data is stored on a device or medium that is not directly connected to

the node, for example, storing data on a different node or even on a server

connected to the Internet.

STORING DATE AND TIME WITH SAMPLES

neither the arduino nor the raspberry pi has a real-time clock (rtC) on board.

if you want to store your sensor data locally, you have to either store the data

with an approximate date and timestamp or use an rtC module to read an

accurate date/time value.

fortunately, there are rtC modules for use with an arduino or the raspberry

pi. if your raspberry pi is connected to the internet and you have enabled

the network time synchronization feature, you do not need the rtC module.

however, if your raspberry pi is not connected to the internet, and you want to

store accurate time data, you should consider using the rtC module.

The following sections examine the various local and remote storage

options available for the Arduino and Raspberry Pi.

Chapter 7 Methods for storing sensor data

336

 Local Storage Options for the Arduino
Although it is true that the Arduino has no onboard storage devices, there

are two ways you can store data locally for the Arduino. You can store data

in a special form of nonvolatile memory or on an SD card hosted via either

a special SD card shield or an Ethernet shield (most Ethernet shields have

a built-in SD card drive).

If you are truly inventive (or perhaps unable to resist a challenge),

you can use some of the communication protocols to send data to other

devices. For example, you could use the serial interface to write data to a

serial device.

The following sections discuss each option in greater detail. Later

sections present small projects you can use to learn how to use these

devices for storing data.

 Nonvolatile Memory
The most common form of nonvolatile memory available to the Arduino

is electrically erasable programmable read-only memory (EEPROM—

pronounced “e-e-prom” or “double-e prom”). EEPROMs are packaged

as chips (integrated circuits). As the name suggests, data can be written

to the chip and is readable even after a power cycle but can be erased or

overwritten.

Most Arduino boards have a small EEPROM where the sketch is stored

and read during power-up. If you have ever wondered how the Arduino

does that, now you know. You can write to the unused portion of this

memory if you desire, but the amount of memory available is small (512KB

for some boards). You can also use an EEPROM and wire it directly to the

Arduino via the I2C protocol to overcome this limitation.

Chapter 7 Methods for storing sensor data

337

Writing to and reading from an EEPROM is supported via a special

library that is included in the Arduino IDE. Due to the limited amount of

memory available, storing data in the EEPROM memory is not ideal for

most sensor nodes. You are likely to exceed the memory available if the

data you are storing is large or there are many data items per sample.

You also have the issue of getting the data from the EEPROM for use in

other applications. In this case, you would have to build not only a way to

write the data but also a way to read the data and export it to some other

medium (local or remote).

That is not to say that you should never use EEPROM to store data.

Several possible reasons justify storing data in EEPROM. For example, if

your sensor node is likely to be isolated, or connectivity to other nodes is

limited, you may want to use an EEPROM to temporarily store data while

the node is offline. In fact, you could build your sketch to detect when the

node goes offline and switch to the EEPROM at that time. This way, your

Arduino-based sensor node can continue to record sensor data. Once the

node is back online, you can write your sketch to dump the contents of the

EEPROM to another node (remote storage).

 SD Card
You can also store (and retrieve) data on an SD card. The Arduino IDE has

a library for interacting with an SD drive. In this case, you would use the

library to access the SD drive via an SD shield or an Ethernet shield.

Storing data on an SD card is done via files. You open a file and write

the data to it in whatever format is best for the next phase in your data

analysis. Examples in the Arduino IDE and elsewhere demonstrate how to

create a web server interface for your Arduino that displays the list of files

available on the SD card.

Compared to EEPROMs, SD cards store many times more data. You

can purchase high-density SD cards that exceed 128GB of storage space.

That’s a lot of sensor data!

Chapter 7 Methods for storing sensor data

338

You may choose to store data to an SD card in situations where your

sensor node is designed as a remote sensor with no connectivity to other

nodes, or you can use it as a backup-logging device in case your sensor

node is disconnected or your data-aggregator node goes down. Because

the card is removable and readable in other devices, you can read it on

another device when you want to use the data.

Using an SD card means you can move the data from the sensor

node to a computer simply by unplugging the card from the Arduino and

plugging it in to the SD card reader in your computer.

 Project: Saving Data in Nonvolatile Memory
Recall that you can use the local EEPROM on an Arduino to store data.

There are some excellent examples in the Arduino IDE that I encourage

you to experiment with at your leisure. They are located under the

Examples menu under the EEPROM submenu. You need only an Arduino

and your laptop to experiment with writing to and from the EEPROM on

the Arduino.

Rather than rehash the example sketch for using the built-in EEPROM,

this section outlines a project to use an external EEPROM to store data.

Unlike the local EEPROM, which uses a dedicated library to interact with,

an external EEPROM uses the I2C communication protocol.

 Hardware Setup

The hardware for this project consists of a 24LC256 or 24LC512 EEPROM

chip like those from SparkFun (www.sparkfun.com/products/525), a

pushbutton, jumper wires, and an Arduino. Figure 7-1 shows a typical

24LC256 pin-mount EEPROM chip.

Chapter 7 Methods for storing sensor data

http://www.sparkfun.com/products/525

339

The pushbutton will allow you to reset the memory on the chip. Doing

so erases the data values stored, resetting the memory configuration for

reuse. You will find this feature particularly handy when using the sketch

for the first time, debugging problems, and reusing the chip once memory

has been read and stored on another medium.

The chip communicates via an I2C bus. You can set the address for

the chip by connecting ground or power to pins A0–A2, as shown in

Figure 7- 2. You can think of this as a binary number, where connecting

ground to all three pins is the lowest address available (0x50) and power

to all three pins is the highest address available (0x57). Table 7-1 shows

the possible addresses and connections required. You use the lowest

address (0x50) by connecting ground to all three pins.

Figure 7-1. I2C EEPROM chip (courtesy of SparkFun)

Figure 7-2. Pinout of the I2C EEPROM

Chapter 7 Methods for storing sensor data

340

Now that you understand how to address the chip, let’s connect it to

your Arduino. Begin by placing the chip in a breadboard with the half

circle pointing to the left. This establishes pin 1 as the upper-right pin.

Connect a ground wire to all four pins on the top side of the chip. These are

pins 1–4, as shown in Figure 7-2.

Next, connect pin 5 (SDA) to pin 4 on the Arduino and pin 6 (SCL)

to pin 5 on the Arduino. Connect a ground wire to pin 7. Then connect

positive voltage (+5V) to pin 8. We also use 4.7K Ohm resistors on the I2C

lines to reduce noise. Finally, connect the pushbutton to pin 2 on one

side and power on the other. Use a 10K Ohm resistor to pull the button

HIGH (connect it to positive voltage) as you did in a previous project. See

Figure 7-3 for a detailed wiring diagram. Be sure to double-check your

connections.

Table 7-1. Setting the Address of the I2C EEPROM

Address A0 A1 A2

0x50 ground ground ground

0x51 ground ground +5V

0x52 ground +5V ground

0x53 ground +5V +5V

0x54 +5V ground ground

0x55 +5V ground +5V

0x56 +5V +5V ground

0x57 +5V +5V +5V

Chapter 7 Methods for storing sensor data

341

Tip if you are using the Leonardo board, you need to use the sdC
and sCL pins located near the UsB port. for the Uno board, they are
located at a4 and a5 and on the Mega 2560, they are on pins 20 and
21. Check the hardware pinout for your board to ensure you use the
correct i2C interface connections.

 Software Setup

With the wiring in place, you are ready to start writing a sketch to read and

write data. Rather than write a script to simply store data, in this example,

you write a sketch to let you write data to and read it from the chip. You

also include a reset operation to allow you to overwrite any memory.

Figure 7-3. Wiring the EEPROM to the Arduino

Chapter 7 Methods for storing sensor data

342

You add the read methods so that you can create additional sketches

to read data, should you wish to review the data, move the chip (data) to

another Arduino, or use another sketch to process the data.

Let’s get started. You use the I2C library (called Wire) to interact with

the EEPROM. Open a new sketch, and enter the following:

#include <Wire.h>

#define FIRST_SAMPLE 0x02 // First position of first sample

#define MEM_ADDR 0x50 // EEPROM address

#define BUTTON_PIN 0x02 // Button pin

#define EEPROM_SIZE 32768 // Size of 24LC256

#define SAMPLE_BYTES 2 // Size of sample in bytes

int next_index = 0; // Address of first sample

These statements include the Wire library and define a number of

constants you use in the sketch. Notice that you have an address for the

first sample (the position in memory on the chip), the address for the chip,

a pin for the pushbutton, the maximum size (for the 256 chip), and the

number of bytes per sample.

You need a number of methods. You need the ability to write a single

byte to memory, store a sample, read a byte, and read a sample. Let’s look

at the simplest forms of these methods—the read byte method. In the

following code, address refers to the address of the EEPROM chip, and

index is the location in memory that you want to access:

byte read_byte(int address, unsigned int index) {

 byte data = 0xFF;

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.endTransmission();

 Wire.requestFrom(address,1);

Chapter 7 Methods for storing sensor data

343

 if (Wire.available()) {

 data = Wire.read();

 }

 return data;

}

Notice the process for communicating with the chip. First, you start a

transmission with the chip, send the address that you intend to read, and then

end the transmission. The address is a two-byte value, and the statements

show you how to manipulate the bytes to form a word (two bytes). The next

method, requestFrom(), tells the chip you want to read a single byte. If the

chip is ready, you read the data. Finally, you return the value to the caller.

You use the same format for every operation you wish to use with the

chip. Let’s look at the write method to write a single byte to the chip:

void write_byte(int address, unsigned int index, byte data) {

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.write(data);

 Wire.endTransmission();

 delay(5);

}

Notice that you have the same setup—you begin the transmission and

set the value at the index specified. What differs is that you send the data

(write it) before you end the transmission.

But how do you know what is written to which address (or index)?

Rather than just write data willy-nilly or in some illogical order, let’s use the

first byte at index 0 to store the number of data samples (or rows) and the

second byte to store how many bytes each sample consumes (or columns).

In this way, you make the data easier to read because it is uniform and

easier to manage on a reboot.

Chapter 7 Methods for storing sensor data

344

In fact, let’s add a new method named sample_data() to write some

data and display the contents of the data in the EEPROM on startup. Recall

for the Arduino that if you want to execute a method once at startup, you

place it in the setup() method. The following shows how you can use

the existing read method to read data from the EEPROM and display the

information in the serial monitor:

void sample_data(void) {

 int bytes_per_sample = SAMPLE_BYTES;

 byte buffer[SAMPLE_BYTES];

 next_index = read_byte(MEM_ADDR, 0);

 bytes_per_sample = read_byte(MEM_ADDR, 1);

 Serial.print("Byte pointer: ");

 Serial.println(next_index, DEC);

 Serial.print("Bytes per sample: ");

 Serial.println(bytes_per_sample, DEC);

 Serial.print("Number of samples:");

 Serial.println((next_index/bytes_per_sample)-1, DEC);

 // Add some sample data

 record_sample(MEM_ADDR, 6011);

 record_sample(MEM_ADDR, 8088);

 // Example of how to read sample data - read last 2 values

 read_sample(MEM_ADDR, next_index-(SAMPLE_BYTES * 2), buffer);

 Serial.print("First value: ");

 Serial.println((int)(buffer[0] << 8) + (int)buffer[1]);

 read_sample(MEM_ADDR, next_index-SAMPLE_BYTES, buffer);

 Serial.print("Second value: ");

 Serial.println((int)(buffer[0] << 8) + (int)buffer[1]);

}

Chapter 7 Methods for storing sensor data

345

This technique makes it easy to verify that the code is working by

running the dump method on startup as shown as follows. In essence, you

create a crude self-diagnostic mechanism that you can use to check the

state of the data. If you see anything other than valid data at startup, you

know something has gone wrong:

void setup(void) {

 Serial.begin(115200);

 while (!Serial);

 Wire.begin();

 Serial.println("Welcome to the Arduino external EEPROM

project.");

 initialize(MEM_ADDR);

 sample_data();

}

But wait! What does this code do if you encounter an uninitialized

EEPROM? In that case, you can create a special method to initialize the

EEPROM. The following code shows the initialize() method:

void initialize(int address) {

 // Clear memory

 // NOTE: replace '10' with EEPROM_SIZE to erase all data

 for (int i = 0; i < 10; i++) {

 write_byte(address, i, 0xFF);

 }

 write_byte(address, 0, FIRST_SAMPLE);

 write_byte(address, 1, SAMPLE_BYTES);

 Serial.print("EEPROM at address 0x");

 Serial.print(address, HEX);

 Serial.println(" has been initialized.");

}

Chapter 7 Methods for storing sensor data

346

You use the write_byte() method to write 0 for the number of bytes

and the constant defined earlier for the number of bytes per sample. The

method begins by writing 0xff to the first 10 bytes to ensure that you have

no data stored; then the number of bytes is written to index 0 and the

number of bytes per sample to index 1. You add some print statements for

feedback.

But how does this method get called? One way would be to put it in

your setup() method as the first call after the call to initialize the Wire

library, but that would mean you would have to comment out the other

methods, load the sketch, execute it, remove the method, and reload.

That seems like a lot of extra work. A better way is to trigger this method

with a pushbutton. Code to do this is placed in the loop() method, as

shown here:

if (digitalRead(BUTTON_PIN) == LOW) {

 initialize(MEM_ADDR);

 delay(500); // debounce

}

Now that you can read and write a byte and initialize the chip, you

also need to be able to read a sample in case you want to use the chip in

another sketch to process the data. The following code shows a method to

read a sample:

void read_sample(int address, unsigned int index, byte *buffer) {

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.endTransmission();

 Wire.requestFrom(address, SAMPLE_BYTES);

Chapter 7 Methods for storing sensor data

347

 for (int i = 0; i < SAMPLE_BYTES; i++) {

 if (Wire.available()) {

 buffer[i] = Wire.read();

 }

 }

}

Notice that you form a sequence of events similar to read_byte(). But

rather than read a single byte, you use a loop to read the number of bytes

for a sample. You also need a method to store (write) a sample to the chip:

void write_sample(int address, unsigned int index, byte *data)

{

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Serial.print("START: ");

 Serial.println(index);

 for (int i = 0; i < SAMPLE_BYTES; i++) {

 Wire.write(data[i]);

 }

 Wire.endTransmission();

 delay(5); // wait for chip to write data

}

Once again, the method is similar to the write_byte() method, but

you use a loop to write the bytes for a sample. Notice that you include a

debug statement to show the starting index used. You do this so that you

can see the value increase if you run the sketch multiple times.

Chapter 7 Methods for storing sensor data

348

Note You may have noticed that i duplicated the code among the

*_byte() and *_sample() methods. i did so for clarity of the code,
but it isn’t strictly necessary. for example, you could consolidate the
code if you changed the *_sample() methods to use an additional
parameter indicating how many bytes to read/write. i leave this
optimization to you as an exercise.

There is one more method to consider. Recall that you use a counter

stored in index 0 to record the number of samples written. The write_

sample() method simply writes a sample at a specific index. What you

need is a method that manages the sample counter and stores the sample.

Thus, you create a record_sample() method to handle the higher-level

operation:

void record_sample(int address, int data) {

 byte sample[SAMPLE_BYTES];

 sample[0] = data >> 8;

 sample[1] = (byte)data;

 write_sample(address, next_index, sample);

 next_index += SAMPLE_BYTES;

 write_byte(address, 0, next_index);

}

Notice how you keep track of the number of samples and the next

index for the next sample. You use the variable you created earlier and

increment it by the number of bytes in the sample. This way, you always

know what the next address is without reading the number of samples

first and calculating the index. The last method updates the number of

samples value.

Now that you have all the building blocks, Listing 7-1 shows the

completed code for this sketch. Save the sketch as external_eeprom.ino.

Notice that in the sketch you do not include any code to read from sensors.

Chapter 7 Methods for storing sensor data

349

I left this out for brevity and included some debug statements (shown in

bold) in the setup() method instead to show how you record samples. Be

sure to remove these statements when you modify the sketch for use with a

sensor.

Listing 7-1. Storing and Retrieving Data on an External EEPROM

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Arduino External EEPROM data store

 This project demonstrates how to save and retrieve sensor data

 to/from an external EEPROM chip.

*/

#include <Wire.h>

#define FIRST_SAMPLE 0x02 // First position of fist sample

#define MEM_ADDR 0x50 // EEPROM address

#define BUTTON_PIN 0x02 // Button pin

#define EEPROM_SIZE 32768 // Size of 24LC256

#define SAMPLE_BYTES 2 // Size of sample in bytes

int next_index = 0; // Address of first sample

/* Initialize the chip erasing data */

void initialize(int address) {

 // Clear memory

 // NOTE: replace '100' with EEPROM_SIZE to erase all data

 for (int i = 0; i < 100; i++) {

 write_byte(address, i, 0x00);

 }

 write_byte(address, 0, FIRST_SAMPLE);

Chapter 7 Methods for storing sensor data

350

 write_byte(address, 1, SAMPLE_BYTES);

 Serial.print("EEPROM at address 0x");

 Serial.print(address, HEX);

 Serial.println(" has been initialized.");

}

/* Write a sample to the chip. */

void write_sample(int address, unsigned int index, byte *data)

{

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Serial.print("START: ");

 Serial.println(index);

 for (int i = 0; i < SAMPLE_BYTES; i++) {

 Wire.write(data[i]);

 }

 Wire.endTransmission();

 delay(5); // wait for chip to write data

}

/* Write a byte to the chip at specific index (offset). */

void write_byte(int address, unsigned int index, byte data) {

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.write(data);

 Wire.endTransmission();

 delay(5);

}

/* Read a sample from an index (offset). */

Chapter 7 Methods for storing sensor data

351

void read_sample(int address, unsigned int index, byte *buffer)

{

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.endTransmission();

 Wire.requestFrom(address, SAMPLE_BYTES);

 for (int i = 0; i < SAMPLE_BYTES; i++) {

 if (Wire.available()) {

 buffer[i] = Wire.read();

 }

 }

}

/* Read a byte from an index (offset). */

byte read_byte(int address, unsigned int index) {

 byte data = 0xFF;

 Wire.beginTransmission(address);

 Wire.write((int)(index >> 8)); // MSB

 Wire.write((int)(index & 0xFF)); // LSB

 Wire.endTransmission();

 Wire.requestFrom(address,1);

 if (Wire.available()) {

 data = Wire.read();

 }

 return data;

}

/* Save a sample to the data chip and increment next address

counter. */

Chapter 7 Methods for storing sensor data

352

void record_sample(int address, int data) {

 byte sample[SAMPLE_BYTES];

 sample[0] = data >> 8;

 sample[1] = (byte)data;

 write_sample(address, next_index, sample);

 next_index += SAMPLE_BYTES;

 write_byte(address, 0, next_index);

}

/* Example write data sample */

void sample_data(void) {

 int bytes_per_sample = SAMPLE_BYTES;

 byte buffer[SAMPLE_BYTES];

 next_index = read_byte(MEM_ADDR, 0);

 bytes_per_sample = read_byte(MEM_ADDR, 1);

 Serial.print("Byte pointer: ");

 Serial.println(next_index, DEC);

 Serial.print("Bytes per sample: ");

 Serial.println(bytes_per_sample, DEC);

 Serial.print("Number of samples:");

 Serial.println((next_index/bytes_per_sample)-1, DEC);

 // Add some sample data

 record_sample(MEM_ADDR, 6011);

 record_sample(MEM_ADDR, 8088);

 // Example of how to read sample data - read last 2 values

 read_sample(MEM_ADDR, next_index-(SAMPLE_BYTES * 2), buffer);

 Serial.print("First value: ");

 Serial.println((int)(buffer[0] << 8) + (int)buffer[1]);

 read_sample(MEM_ADDR, next_index-SAMPLE_BYTES, buffer);

 Serial.print("Second value: ");

Chapter 7 Methods for storing sensor data

353

 Serial.println((int)(buffer[0] << 8) + (int)buffer[1]);

}

void setup(void) {

 Serial.begin(115200);

 while (!Serial);

 Wire.begin();

 Serial.println("Welcome to the Arduino external EEPROM

project.");

 initialize(MEM_ADDR);

 sample_data();

}

void loop() {

 delay(2000);

 if (digitalRead(BUTTON_PIN) == LOW) {

 initialize(MEM_ADDR);

 delay(500); // debounce

 }

 //

 // Read sensor data and record sample here

 //

 sample_data();

}

Notice that you include some additional statements for

communicating the progress of the sketch via the serial monitor. Take

some time to examine these so that you are familiar with what to expect

when the sketch runs.

Tip if you want to write-protect the chip, disconnect the Wp pin.
doing so makes the chip read-only.

Chapter 7 Methods for storing sensor data

354

 Testing the Sketch

To test the sketch, be sure the code compiles and you have your hardware

set up correctly. When you have a sketch that compiles, upload it to your

Arduino and launch a serial monitor.

When the sketch is loaded for the first time, you need to press the

button to initialize the EEPROM. This is because the values on the chip are

uninitialized for a new chip. You only have to do this the first time you run

the sketch. Once you’ve done that, you should see output similar to that in

Listing 7-2.

Listing 7-2. Serial Monitor Output for EEPROM Example

Welcome to the Arduino external EEPROM project.

EEPROM at address 0x50 has been initialized.

Byte pointer: 2

Bytes per sample: 2

Number of samples: 0

START: 2

START: 4

First value: 6011

Second value: 8088

Byte pointer: 6

Bytes per sample: 2

Number of samples: 2

START: 6

START: 8

First value: 6011

Second value: 8088

Byte pointer: 10

Bytes per sample: 2

Number of samples: 4

START: 10

Chapter 7 Methods for storing sensor data

355

START: 12

First value: 6011

Second value: 8088

EEPROM at address 0x50 has been initialized.

Byte pointer: 2

Bytes per sample: 2

Number of samples: 0

START: 2

START: 4

First value: 6011

Second value: 8088

Byte pointer: 6

Bytes per sample: 2

Number of samples: 2

START: 6

START: 8

First value: 6011

Second value: 8088

Did you see something similar? If you run the sketch again (e.g., by

pressing the Reset button), you should see the value for the start index

(from the write_sample() method) increase. Go ahead and give it a try.

Once you’ve done it a few times Saving Data in Nonvolatile Memory,

press the pushbutton and notice what happens. As you can see in

Listing 7- 2, the start index is reset, and the next samples are stored at the

beginning of memory.

 For More Fun

The sketch for this project has a lot of promise. No doubt you can think of

a number of things you could do with this code. The following are some

Chapter 7 Methods for storing sensor data

356

suggestions for improving the code and experimenting with using an

external EEPROM:

• Add some visual aids for use in embedded projects

(cases with no serial monitor capability). You can add

an LED that illuminates when there is data on the

chip. You can also add a set of seven-segment LEDs to

display the number of data samples stored.

• Improve the code for reuse. Begin by removing the

redundancy described earlier in the read and write

methods, and then move the code to a class to make it

easier to use the EEPROM in other sketches.

• Add a second EEPROM chip to expand the amount of

storage available. Hint: You need to set each chip to a

different address, but the methods used are the same.

• Perhaps a bit easier and more inline with the hardware-

hacking element of Arduino is moving the EEPROM to

another Arduino and reading all the values stored. This

demonstrates the nonvolatile nature of EEPROM chips.

Caution Use appropriate grounding to avoid electrostatic discharge
(esd) damage to the chip.

 Project: Writing Data to an SD Card
Aside from an EEPROM chip, you can also store data locally on an Arduino

by writing the data to an SD drive. The SD drive is a good choice for storing

data because the data is stored in files, which other devices can read (and

write to).

Chapter 7 Methods for storing sensor data

357

For example, although writing data to an EEPROM chip is not difficult,

reading that chip on a personal computer requires writing a sketch for the

Arduino to transfer the data. However, the SD card can be removed from

the Arduino (once files are closed) and inserted in an SD drive connected

to a personal computer, allowing you to read the files directly. Thus, the SD

card makes a better choice for sensor networks where your sensor nodes

are not connected via a network or other wireless connections.

There are several choices for adding an SD card reader to an Arduino.

Two of the most popular are the Arduino Ethernet shield and the microSD

shield from SparkFun (www.sparkfun.com/categories/240). If you use the

Arduino Ethernet shield, you can use the networking capabilities and the

SD card together. A number of similar devices are available from a variety

of vendors.

Adafruit also has a Data Logging shield for Arduino with an onboard

SD drive (www.adafruit.com/product/1141). The Data Logging shield also

includes an RTC, making it possible to store date and time along with the

sample. I discuss using an RTC in the next project.

Tip Both the microsd shield and the data Logging shield offer a
prototyping area that you can use to mount your sensor components
or even an XBee module.

An SD drive allows you to create a hybrid node where you store

data locally as well as transmit it to another node in the network. This

redundancy is one of the ways you can build durability in to your sensor

network. For example, if a node loses its connection to another node via

the network, it can still record its data locally. Although it is a manual

process to recover the data (you must go get the SD card), the fact that the

data is recoverable at all means the network can survive network failures

without losing data.

Chapter 7 Methods for storing sensor data

http://www.sparkfun.com/categories/240
http://www.adafruit.com/product/1141

358

It is possible to use an EEPROM as a local storage backup option, but

an EEPROM is harder to use, is not as durable as an SD card, does not have

the same storage capacity, and is not as easy to use in other devices.

There is one other very important thing to consider concerning

building a durable sensor node. Having a local backup of the data may

not be helpful if you do not know when the data was stored. The Arduino

does not have any time-keeping capability beyond a limited accuracy cycle

time. Thus, if you store data locally without a timestamp of any kind that

you can relate to other data, the samples taken may not be meaningful

beyond the sequence itself (the order of the values).

To mitigate this, you can add an RTC module to the Arduino. The RTC

allows you to store the date and time a sample was taken. This information

may be critical if you are trying to plot values over time or want to know

when a spurious or otherwise interesting event took place.

 Hardware Setup

The hardware for this project uses the Arduino Ethernet shield, the

microSD shield from SparkFun (with an SD card installed), or the Data

Logging shield from Adafruit. For simplicity, I used the Arduino Ethernet

shield and show the code changes necessary to use the microSD shield or

the Data Logging shield (via #define statements).

You also need the RTC module. There is an excellent product from

Adafruit that performs very well and includes an onboard battery that

powers the clock even when the Arduino is powered down. Adafruit’s

DS1307 Real-Time Clock breakout board kit (www.adafruit.com/

product/3296) is an outstanding module to add to your project. Figure 7-4

shows the Adafruit RTC module.

Chapter 7 Methods for storing sensor data

http://www.adafruit.com/product/3296
http://www.adafruit.com/product/3296

359

SparkFun also has a product named Real-Time Clock module

(www.sparkfun.com/products/99) that uses the same DS1307 chip and

interface as the Adafruit offering. You can use either in this project.

Note the adafruit rtC module requires assembly. the rtC module
from sparkfun does not.

The RTC module uses an I2C interface that is easy to connect to the

Arduino. Simply connect 5V power to the 5V pin, ground to the GND

pin, the SDA pin to pin 4 on the Arduino, and the SCL pin to pin 5 on the

Arduino. Figure 7-5 shows the wiring diagram for connecting the RTC

module.

Figure 7-4. DS1307 Real-Time Clock breakout board (courtesy of
Adafruit)

Chapter 7 Methods for storing sensor data

http://www.sparkfun.com/products/99

360

Notice that the Ethernet shield is installed on the Arduino. Wiring

connections would be the same if you were using the SparkFun microSD

shield.

For this project, we will use the Adafruit Data Logging shield with an

Arduino Uno Wi-Fi to keep the wiring to a minimum. In fact, all you need

to do is plug the shield into your Uno and off you go! Figure 7-6 shows what

the Data Logging shield looks like.

Figure 7-5. Arduino with an Ethernet shield and RTC module

Chapter 7 Methods for storing sensor data

361

Figure 7-6. Adafruit Data Logging shield (courtesy of Adafruit)

Note if you do not have a data Logging shield, you can use the rtC
module as described earlier.

 Software Setup

With the Data Logging shield in place, you are ready to start writing a

sketch to write data to the SD card. Be sure to insert a formatted SD card

before you power on the board. But first, you must download and install

the RTC library from Adafruit (https://github.com/adafruit/RTClib).

Recall, to install a library, we open the Sketch ➤ Include Library ➤

Library Manager and, once it has loaded all of the headers, type in RTCLib

and select the library from Adafruit and click Install to install it. Figure 7-7

shows the library used for this project.

Chapter 7 Methods for storing sensor data

https://github.com/adafruit/RTClib

362

Once the library is downloaded and installed (and you’ve restarted the

Arduino IDE), you can begin a new sketch named sd_file_example.ino.

Enter the following code to specify the modules you need to use in the

sketch. You need the Wire, RTC, SD, and String libraries:

#include <Wire.h>

#include "RTClib.h"

#include <SD.h>

#include <String.h>

Next, you need to define the pin to use to communicate with the

SD drive. The following are the definitions for all three SD drive options

described earlier. I use the Ethernet shield in this example; but if you

are not using the Ethernet shield, you can comment out that line and

uncomment out the line that corresponds with the shield you are using.

Figure 7-7. Installing the Adafruit RTCLib in Library Manager

Chapter 7 Methods for storing sensor data

363

You also include a definition for the name of the file you use to store

samples. Note that we must use the 8.3 file name format when using the

microSD formatted as FAT.2

// Pin assignment for Arduino Ethernet shield

// #define SD_PIN 4

// Pin assignment for SparkFun microSD shield

//#define SD_PIN 8

// Pin assignment for Adafruit Data Logging shield

#define SD_PIN 10

// Sensor data file - require 8.3 file name

#define SENSOR_DATA "sensdata.txt"

Now you declare some variables. You need one for the RTC module

and one for the file you use on the SD drive. Notice I used the RTC_

PCF8523 module since the Data Logging shield has that RTC module. Be

sure to use the RTC module that matches your RTC chip.

RTC_PCF8523 rtc;

File sensor_data;

With the preliminaries complete, you need a method to save a sensor

sample to the SD card. The method must read the date and time from the

RTC module, accept the sample as a parameter, and store the data. In this

example, you place the date and time first, followed by the sample value.

Name this method record_sample().

Reading from the RTC module is easy with the RTC library. You simply

use the library to get the current date and time with the now() method.

From there, you can call methods to get the month, day, year, hour, and so

2 This refers to the old FAT file system requirements for file naming, where you can
have a maximum of eight characters for the file name and three for the extension
(http://en.wikipedia.org/wiki/8.3_filename). Do you remember those days?

Chapter 7 Methods for storing sensor data

http://en.wikipedia.org/wiki/8.3_filename

364

on. Forming the string to write to the file can be done in a variety of ways.

I used the string class to construct the string. Feel free to use any other

method you favor instead:

// Capture the date and time

DateTime now = rtc.now();

Writing to the file is very easy. You simply open the file in write mode

(FILE_WRITE) that automatically permits any writes to be written to the end

of the file (append). This is nice because you don’t have to worry about

seeking or finding out where a file pointer is in the file. Opening the file

returns a file object instance, which you can use to write data. Writing to

the file (once it is opened) requires only a single method call. The following

code shows a simplified set of calls to open a file using the SD library and

write data. I leave the details of the record_sample() method for you to

explore in Listing 7-2:

// Open the file

sensor_data = SD.open(SENSOR_DATA, FILE_WRITE);

// Save the data

sensor_data.write(1234);

sensor_data.write("\n");

// Close the file

sensor_data.close();

Of course, you need a few things to properly set up the components

and libraries. The setup() method should contain, at a minimum,

initialization for the Serial, Wire, and RTC libraries (by calling their

begin() methods) and a call to the SD library to start communication with

the SD drive. The following is an excerpt of the code needed for these steps.

Chapter 7 Methods for storing sensor data

365

Notice that you also initialize the date and time for the RTC based on the

last compiled date and time of the sketch (effectively, the date and time it

was uploaded):

void setup () {

 Serial.begin(115200);

 while(!Serial);

 Wire.begin();

 rtc.begin();

 if (!rtc.initialized()) {

 Serial.println("RTC is NOT running!");

 // Set time to date and time of compilation

 rtc.adjust(DateTime(__DATE__, __TIME__));

 }

 // disable w5100 SPI (if needed)

 // pinMode(10,OUTPUT);

 // digitalWrite(10,HIGH);

 // Initialize the SD card.

 Serial.print("Initializing SD card...");

 if (!SD.begin(SD_PIN)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

...

}

Notice that also you have code to turn off the Ethernet W5100 SPI

interface. This is only necessary for the Ethernet shield and then only if you

do not plan to use the networking capabilities.

Chapter 7 Methods for storing sensor data

366

There is one other thing you might want to add. You may want to check

to see if you can read the file on the SD card. It is not enough to simply

initialize the SD library. It is possible the SD drive will communicate

properly, but you cannot open or create files on the card itself. Add the

following code to the setup() method as an extra check. In this case, you

check to see whether the file exists and, if it does not, attempt to create the

file. You print a message if you get an error on the open call:

// Check for file. Create if not present

if (!SD.exists(SENSOR_DATA)) {

 Serial.print("Sensor data file does not exit. Creating

file...");

 sensor_data = SD.open(SENSOR_DATA, FILE_WRITE);

 if (!sensor_data) {

 Serial.println("ERROR: Cannot create file.");

 }

 else {

 sensor_data.close();

 Serial.println("done.");

 }

}

The loop() method is where you place calls to the record_sample()

method. In this case, leave the loop() method empty for brevity. Feel free

to add your own code to read sensors here and call the record_sample()

method for each.

Listing 7-3 shows the complete code for this project. Although the

explanation thus far has been about the key parts of the sketch, notice that

the listing adds additional error-handing code to make sure the SD drive is

initialized properly and the file exists and can be written.

Chapter 7 Methods for storing sensor data

367

Listing 7-3. Storing Data on an SD Card

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Arduino SD card data store

 This project demonstrates how to save sensor data to a

 microSD card.

*/

#include <Wire.h>

#include "RTClib.h"

#include <SD.h>

#include <String.h>

// Pin assignment for Arduino Ethernet shield

//#define SD_PIN 4

// Pin assignment for SparkFun microSD shield

//#define SD_PIN 8

// Pin assignment for Adafruit Data Logging shield

#define SD_PIN 10

// Sensor data file - require 8.3 file name

#define SENSOR_DATA "sensdata.txt"

RTC_PCF8523 rtc;

File sensor_data;

void record_sample(int data) {

 // Open the file

 sensor_data = SD.open(SENSOR_DATA, FILE_WRITE);

 if (!sensor_data) {

 Serial.println("ERROR: Cannot open file. Data not saved!");

 return;

 }

Chapter 7 Methods for storing sensor data

368

 // Capture the date and time

 DateTime now = rtc.now();

 String timestamp(now.month(), DEC);

 timestamp += ("/");

 timestamp += now.day();

 timestamp += ("/");

 timestamp += now.year();

 timestamp += (" ");

 timestamp += now.hour();

 timestamp += (":");

 timestamp += now.minute();

 timestamp += (":");

 timestamp += now.second();

 timestamp += (" ");

 // Save the sensor data

 sensor_data.write(×tamp[0]);

 String sample(data, DEC);

 sensor_data.write(&sample[0]);

 sensor_data.write("\n");

 // Echo the data

 Serial.print("Sample: ");

 Serial.print(timestamp);

 Serial.print(data, DEC);

 Serial.println();

 // Close the file

 sensor_data.close();

}

void setup () {

 Serial.begin(115200);

 while(!Serial);

Chapter 7 Methods for storing sensor data

369

 Wire.begin();

 rtc.begin();

 if (!rtc.initialized()) {

 Serial.println("RTC is NOT running!");

 // Set time to date and time of compilation

 rtc.adjust(DateTime(__DATE__, __TIME__));

 }

 // disable w5100 SPI

 // pinMode(10,OUTPUT);

 // digitalWrite(10,HIGH);

 // Initialize the SD card.

 Serial.print("Initializing SD card...");

 if (!SD.begin(SD_PIN)) {

 Serial.println("initialization failed!");

 return;

 }

 Serial.println("initialization done.");

 // Check for file. Create if not present

 if (!SD.exists(SENSOR_DATA)) {

 Serial.print("Sensor data file does not exit. Creating

file...");

 sensor_data = SD.open(SENSOR_DATA, FILE_WRITE);

 if (!sensor_data) {

 Serial.println("ERROR: Cannot create file.");

 }

 else {

 sensor_data.close();

 Serial.println("done.");

 }

 }

Chapter 7 Methods for storing sensor data

370

 // Record some test samples.

 record_sample(1);

 record_sample(2);

 record_sample(3);

}

void loop () {

 // Read sensor data here and record with record_sample()

}

I added debug statements to the setup() method for illustration

purposes and to make sure the sketch works. Placing these calls in the

setup() method permits you to load the sketch (or reboot the Arduino) and

check the contents of the SD card to see if the code worked. If you place the

statements in the loop() method, then depending on when you turn off your

Arduino (unplug it), you may not know how many lines were added or even

if the file were closed properly. Placing the record_sample() statements in

the setup() method means you have expected output to check.

Tip if you get sd drive initialization errors, check the pin
assignment used in the definition section to make sure you are using
the correct pin for your sd drive/shield.

If you encounter file write or open errors, make sure the SD card is

formatted as a FAT partition, the SD card is not write protected, and you

can create and read files on the drive using your personal computer.

 Testing the Sketch

To test the sketch, be sure the code compiles and you have your hardware

set up correctly. Once you have a sketch that compiles, upload it to your

Arduino and launch a serial monitor. The following code shows the

expected output in the serial monitor:

Chapter 7 Methods for storing sensor data

371

Initializing SD card...initialization done.

Sample: 2/29/2020 16:34:27 1

Sample: 2/29/2020 16:34:27 2

Sample: 2/29/2020 16:34:28 3

Note the first time you run the sketch, you may see a message
about initializing the sd card and creating the file. this is normal.
subsequent runs (restarts of the arduino) may not show the
messages.

If you run the sketch a number of times as it is written, it will insert

three rows at the end of the file each time the sketch is initialized. This

is because you placed sample calls to record_sample() in the setup()

method for debugging purposes. These calls would naturally be placed

in the loop() method after you read your sensors. The following code

shows an example of the file contents after running the sketch (starting the

Arduino) four times:

2/29/2020 16:31:8 1

2/29/2020 16:31:8 2

2/29/2020 16:31:8 3

2/29/2020 16:34:27 1

2/29/2020 16:34:27 2

2/29/2020 16:34:28 3

If you examine the file and find more sets of entries than you expect,

try deleting the data from the file, starting your Arduino, and then

pressing the Reset button twice. When you look at the contents, you

should see exactly three sets of entries (one for the initial start because

the sketch was in memory to begin with and one for each time you

restarted the Arduino).

Chapter 7 Methods for storing sensor data

372

If you see only partial sets (fewer than three rows for each set), check

to ensure that you are allowing the Arduino to start before powering it off.

It is best to use the serial monitor and wait until all three statements are

echoed to the monitor before shutting down the Arduino.

Should the case arise that your sketch compiles and no errors are

shown in the serial monitor but the data file is empty, check to make sure

the card is usable and not corrupt. Try reformatting the card with the FAT

file format.

HANDLE WITH CARE

Microsd cards are very fragile. they can be damaged easily if handled

improperly or subjected to esd or magnetic fields. if your card does not work

properly and you cannot reformat it, it is possible that it is damaged beyond

use. You can try using a formatting program from sdcard.org, but if it fails,

your card is no longer viable. so far, this has happened to me only once.

Now that you have examined two primary methods for storing data

locally on an Arduino, let’s look at the options available for the Raspberry Pi.

 Local Storage Options for the Raspberry Pi
Because the Raspberry Pi is a personal computer, it has the capability to

create, read, and write files. Although it may be possible to use an EEPROM

connected via the GPIO header, why would you do that? Given the ease of

programming and the convenience of using files, there is very little need

for another form of storage.

Chapter 7 Methods for storing sensor data

http://sdcard.org

373

You also know the Raspberry Pi can be programmed in a number of

ways and with one of the most popular languages, Python.3 Working with

files in Python is very easy and is native to the default libraries. This means

there is nothing that you need to add to use files.

The following project demonstrates the ease of working with files in

Python. The online Python documentation explains reading and writing

files in detail (https://docs.python.org/2/tutorial/inputoutput.

html#reading-and-writing-files).

One thing you will notice is that it doesn’t matter where the file is

located—on the SD card or an attached USB drive. You only need to know

the path to the location (folder) where you want to store data and pass that

to the open() method.

Savvy Python programmers4 know that the Python library contains

additional libraries and classes for manipulating folders, navigating

paths, and much more. For more information, examine the Python

documentation for the OS and Sys libraries. For example, look for

normpath() and the Path5 class.

 Project: Writing Data to Files
This project demonstrates how easy it is to use files on the Raspberry Pi

with Python. Because no additional hardware or software libraries are

needed, I can skip those sections and jump directly into the code.

Start your Raspberry Pi, and log in. Open a new file with the following

command (or similar):

nano file_io_example.py

3 Ni! (With apologies to Monty Python.)
4 Called Pythonistas.
5 A path! A path! (More apologies to Monty Python.)

Chapter 7 Methods for storing sensor data

https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files
https://docs.python.org/2/tutorial/inputoutput.html#reading-and-writing-files

374

You name the file with a .py extension to indicate that it is a Python

script. Enter the following code in the file:

import datetime

with open("/home/pi/sample_data.txt", "a+") as my_file:

 my_file.write("{0} {1}\n".format(datetime.datetime.now(), 101))

In this example, you first import the datetime library. You use the

datetime to capture the current date and time. Next, you open the file

(notice that you are using the Pi users’ home directory) using the newer

with clause and write a row to the file (you do not need to close the

file—that is done for you when execute leaves the scope of the with

clause). If you feel better using the explicit open and close, feel free to

do so.

Notice the open() method. It takes two parameters—the file path

and name and a mode to open the file. You use "a+" to append to the file

(a) and create the file if it does not exist (+). Other values include r for

reading and w for writing. Some of these can be combined: for example,

"rw+" creates the file if it does not exist and allows for both reading and

writing data.

Note Using write mode truncates the file. for most cases in which
you want to store sensor samples, you use append mode.

For each execution, you should see one row with a slightly different

time value corresponding to when the script was run. To execute the file,

use the following command:

python ./file_io_example.py

Go ahead and try to run the script. If you get errors, check the code

and correct any syntax errors. If you encounter problems opening the file

(you see I/O errors when you run the script), try checking the permissions

Chapter 7 Methods for storing sensor data

375

for the folder you are using. Try running the script a number of times,

and then display the contents of the file. The following code shows the

complete sequence of commands for this project:

$ nano file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ python ./file_io_example.py

$ more sample_data.txt

2020-02-29 16:50:34.076657 101

2020-02-29 16:53:23.252384 101

2020-02-29 16:53:24.078429 101

2020-02-29 16:53:24.680599 101

2020-02-29 16:53:25.676225 101

2020-02-29 16:53:26.324482 101

Did you get similar results? If not, correct any errors and try again until

you do. As you can see from this simple example, it is very easy to write

data to files using Python on the Raspberry Pi.

 Remote Storage Options
Remote storage means the data is sent to another node or system for

recording. This normally requires some form of communication or

network connectivity to the remote system. Sensor networks by nature are

connected and thus can take advantage of remote storage.

Chapter 7 Methods for storing sensor data

376

To give you an idea of what I am discussing, consider an Arduino

sensor node with an XBee module connected to a Raspberry Pi–based

node. Suppose also that you want to write your sample data to files.

Rather than using an SD card on the Arduino node to store data, you

could send that data to the Raspberry Pi–based node and store the data

in a file there. The main motivation is that it is much easier to use files

via Python on the Raspberry Pi. If you also factor in the possibility of

having multiple Arduino sensor nodes with XBee modules, you can use

the Raspberry Pi–based node as a data aggregate, storing all the data in a

single file.

SINGLE FILE OR MULTIPLE FILES?

i sometimes get this question when discussing storing aggregate data. if your

data is similar (e.g., temperature), you can consider storing data from like

sensors to the same file. however, if the data differs (such as temperature

from one node and humidity from another), you should consider using different

files. this makes reading the files easier because you don’t have to write code

(or use tools) to separate the data.

But are you really talking about only storing data in files? The answer is

no. There are a number of mechanisms for storing data remotely. Although

storing data in files is the easiest form, you can also store data in the cloud

or even on a remote database server.

If you are experienced with using databases for storing and retrieving

data, this method will appeal to you—especially if you plan to use other

tools to process the data later. For example, you may want to perform

statistical analyses or create charts that track the samples over time.

Because working with databases is a complex topic, I examine this form of

remote storage in the next couple of chapters.

Chapter 7 Methods for storing sensor data

377

You have already seen how easy it is to use files, but what about storing

data in the cloud? What is that about? Simply stated, storing data in the

cloud involves using a cloud-based data storage service to receive your

data and host it in some way. The most popular form presents the data for

others on the Internet to view or consume for their own use.

The following section discusses storing sample data in the cloud

using a popular, easy to use, cloud-based IoT data-hosting service from

MathWorks called ThingSpeak (www.thingspeak.com). You will see

example projects for using ThingSpeak on both the Arduino and the

Raspberry Pi.

 Storing Data in the Cloud
Unless you live in a very isolated location, you have likely been bombarded

with talk about the cloud and IoT. Perhaps you’ve seen advertisements in

magazines and on television, or read about it in other books, or attended

a seminar or conference. Unless you’ve spent time learning what cloud

means, you are probably wondering what all the fuss is about.

Simply stated,6 the cloud is a name tagged to services available via

the Internet. These can be servers you can access (running as a virtual

machine on a larger server), systems that provide access to a specific

software or environment, or resources such as disks or IP addresses that

you can attach to other resources. The technologies behind the cloud

include grid computing (distributed processing), virtualization, and

networking. The correct scientific term is cloud computing. Although

a deep dive into cloud computing is beyond the scope of this book, it is

enough to understand that you can use cloud computing services to store

your sensor data.

6 Experienced cloud researchers will tell you there is a lot more to learn about the
cloud.

Chapter 7 Methods for storing sensor data

http://www.thingspeak.com

378

There are a number of IoT cloud vendors that offer all manner of

products, capacities, and features to match just about anything you can

conjure for an IoT project. With so many vendors offering IoT solutions,

it can be difficult to choose one. The following is a short list of the more

popular IoT offerings from the top vendors in the cloud industry:

• Oracle IoT: www.oracle.com/internet-of-things/

• Microsoft Azure IoT Hub: https://azure.microsoft.

com/en-us/product-categories/iot/

• Google IoT Core: https://cloud.google.com/

iot- core

• IBM IoT: www.ibm.com/internet-of-things

• Arduino IoT Cloud: www.arduino.cc/en/IoT/HomePage

• MathWorks ThingSpeak: https://thingspeak.com/

Most of the vendors offer commercial products, but a few like Google,

Azure, Arduino, and ThingSpeak offer limited free accounts. As you may

surmise, some of the offerings are complex solutions with steep learning

curve, but the Arduino and ThingSpeak offerings are simple and easy to

use. Since we want a solution that supports Arduino and Raspberry Pi (and

other platforms), we will use ThingSpeak in this chapter as an example of

what is possible when storing data in the cloud.

Tip if you want or need to use one of the other vendors, be sure to
read all of the tutorials thoroughly before jumping into your code.

ThingSpeak offers a free account for non-commercial projects that

generate fewer than 3 million messages (or data elements) per year or

around 8000 messages per day. Free accounts are also limited to seven

channels (a channel is equivalent to a project and can save up to eight

Chapter 7 Methods for storing sensor data

http://www.oracle.com/internet-of-things/
https://azure.microsoft.com/en-us/product-categories/iot/
https://azure.microsoft.com/en-us/product-categories/iot/
https://cloud.google.com/iot-core
https://cloud.google.com/iot-core
http://www.ibm.com/internet-of-things
http://www.arduino.cc/en/IoT/HomePage
https://thingspeak.com/

379

data items). If you need to store or process more data than that, you can

purchase a commercial license in one of four categories, each with specific

products, features, and limitations: Standard, Academic, Student, and

Home. See https://thingspeak.com/prices and click each of the license

options to learn more about the features and pricing.

Note Unless you use a work or school account, you may need to
pay to use some of the products such as MatLab.

ThingSpeak works by receiving messages from devices that contain

the data you want to save or plot. There are libraries available that you

can use for certain platforms or programming languages such as Arduino

or Python. That is by far the easiest way to connect to ThingSpeak and

transmit data.

However, you can also use a machine-to-machine (M2M) connectivity

protocol (called MQTT7) or representational state transfer (REST8) API

designed as a request-response model that communicates over HTTP to

send data to or read data from ThingSpeak. Yes, you can even read your

data from other devices.

Tip see www.mathworks.com/help/thingspeak/channels-
and- charts-api.html for more details about the thingspeak
MQtt and rest api.

When you want to read or write a ThingSpeak channel, you can either

publish MQTT messages, send requests via HTTP to the REST API, or use

one of the platform-specific libraries that encapsulate these mechanisms

7 http://mqtt.org/
8 https://en.wikipedia.org/wiki/Representational_state_transfer

Chapter 7 Methods for storing sensor data

https://thingspeak.com/prices
http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://www.mathworks.com/help/thingspeak/channels-and-charts-api.html
http://mqtt.org/
https://en.wikipedia.org/wiki/Representational_state_transfer

380

for you. A channel can have up to eight data fields represented as a string

or numeric data. You can also process the numeric data using several

sophisticated procedures such as summing, average, rounding, and

more.

We won’t get too far into the details of these protocols; rather, we will

see how to use ThingSpeak as a quick-start guide. MathWorks provides

a complete set of tutorials, documentation, and examples. So, if you

need more information about how ThingSpeak works, check out the

documentation at www.mathworks.com/help/thingspeak/.

THE CLOUD: ISN’T THAT JUST MARKETING HYPE?

don’t believe all the hype or sales talk about any product that includes “cloud”

in its name. Cloud computing services and resources should be accessible

via the internet from anywhere, available to you via subscription (fee or for

free), and permit you to consume or produce and share the data involved. also,

consider the fact that you must have access to the cloud to get to your data.

thus, you have no alternative if the service is unreachable (or down).

 Getting Started with ThingSpeak

To use ThingSpeak, you must first sign up for an account. Fortunately,

they provide the option for a free account. In fact, you get a free account

to start with and add (purchase) a license later. To create a free account,

visit https://thingspeak.com/users/sign_up and fill in your email

address, location (general geographic), and first and last name and then

click Continue. You will then be sent a validation email. Open that and

follow instructions to verify your email and complete your free account by

choosing a password and completing a short questionnaire.

Chapter 7 Methods for storing sensor data

http://www.mathworks.com/help/thingspeak/
https://thingspeak.com/users/sign_up

381

 Creating a Channel

Once you log in to ThingSpeak, you can create a channel to hold your data.

Recall, each channel can have up to eight data items (fields). From your

login home page, click New Channel as shown in Figure 7-8.

You will be presented with a really long form that has a lot of fields that

you can fill out. Figure 7-9 shows an example of the form.

Figure 7-8. Creating a channel in ThingSpeak

Chapter 7 Methods for storing sensor data

382

Figure 7-9. New Channel form

Chapter 7 Methods for storing sensor data

383

At a minimum, you need only name the channel, enter a description

(not strictly required but recommended), and then select (tick) one or

more fields naming each. That’s it. Click Save Channel to complete the

process.

So, what are all those channel settings? The following gives a brief

overview of each. As you work with ThingSpeak, you may want to start

using some of these fields:

• Percentage complete: A calculated field based on the

completion of the name, description, location, URL,

video, and tags in your channel.

• Channel Name: Unique name for the channel.

• Description: Description of the channel.

• Field#: Tick each box to enable the field.

• Metadata: Additional data for the channel in JSON,

XML, or CSV format.

• Tags: A comma-separated list of keywords for

searching.

• Link to External Site: If you have a website about your

project, you can provide the URL here to publish on the

channel.

• Show Channel Location: Tick this box to include the

following fields:

• Latitude: Latitude of the sensor(s) for the project or

source of the data

• Longitude: Longitude of the sensor(s) for the

project or source of the data

• Elevation: Elevation in meters for use with projects

affected by elevation

Chapter 7 Methods for storing sensor data

384

• Video URL: If you have a video associated with your

project, you can provide the URL here to be published

on the channel.

• Link to GitHub: If your project is hosted in GitHub, you

can provide the URL to be published on the channel.

Wow, that’s a lot of stuff for free! As you will see, this isn’t a simple toy

or severely limited product. You can accomplish quite a lot with these

settings. Notice there are places to put links to video, website, and GitHub.

This is because channels can be either private (only your login or API KEY

as we will see can access) or public. Making a channel public allows you

to share the data with anyone and thus those URL fields may be handy to

document your project. Cool.

Once you create your channel, it is time to write some data. There are

two pieces of information you will need for most projects: the API Key

for the channel and for some libraries the channel number (the integer

value shown on the channel page). There are libraries available for many

platforms, and on some platforms, there may be several ways (libraries or

techniques) to write data to a ThingSpeak channel.

You can find the API Key on the channel page by clicking the API Keys

tab. When you create a new channel, you will have one write and one read

API Key. You can add more keys if you need them so that you can use one

key per device, location, customer, and so on. Figure 7-10 shows the API

Keys tab for the channel created previously in Figure 7-9.

Chapter 7 Methods for storing sensor data

385

Notice I masked out the keys. If you make your channel public, do not

share the write key with anyone you don’t want to allow to write to your

channel. You can create new keys by clicking the Generate New Write API

Key or Add New Read API Key buttons. You can delete read keys by clicking

the Delete API Key button.

We use the key in our code to allow the device to connect to and write

data to the channel. So, we typically copy this string from the channel

page and paste it into our code as a string. Recall, we may use a library

that encapsulates the HTTP or MQTT mechanism or, in the case of the

Raspberry Pi Python library, we use a Python library and the HTTP

protocol. We will see both in the upcoming sample projects for Arduino

and Raspberry Pi.

Figure 7-10. API Keys for a ThingSpeak channel

Chapter 7 Methods for storing sensor data

386

Now that you understand the basics of writing data to ThingSpeak, let’s

take a look at how to do it in more detail for the Arduino. This is followed

by an example for the Raspberry Pi.

 Project: Writing Data to ThingSpeak
with an Arduino
This project demonstrates how to write sensor data to a ThingSpeak

channel. Unlike the previous projects in this chapter, you use a sensor

and generate some sample data. In this case, you monitor temperature

on an Arduino MKR1000 and save the Celsius and Fahrenheit values to

your ThingSpeak. If you have not yet created a ThingSpeak channel for the

Arduino, do that now and record the channel ID and API key generated.

Use the following data for the channel and name it MKR1000_TMP36 as

shown in Figure 7-11.

Click the Save Channel button to create the channel. Then, on the API

Key tab, copy the write key and paste it a new file for later use.

Now that we have a channel created, let’s set up the hardware.

Figure 7-11. Set up a channel for the MKR1000 and TMP36 sensor

Chapter 7 Methods for storing sensor data

387

 Hardware Setup

The hardware for this project is an Arduino MKR1000, a breadboard,

breadboard wires, a TMP36 temperature sensor, and a 0.10uF capacitor.

Wire the sensor and the capacitor as shown in Figure 7-12. Attach pin

1 of the sensor to the 5V pin on the Arduino, pin 2 of the sensor to the

A1 pin on the MKR1000, and pin 3 to ground on the MKR1000. The

capacitor is also attached to pins 1 and 3 of the sensor (orientation does

not matter).

Tip You can use the newer MKr models, provided they are of the
Wi-fi variety.

To use connect to the Internet, you will also need a Wi-Fi access

point or router to connect. You will need the SSID and password for the

connection.

Now, let’s see how we set up the software and the sketch for the project.

Figure 7-12. Wiring setup for the ThingSpeak temperature feed for
the Arduino

Chapter 7 Methods for storing sensor data

388

 Configuring the Arduino IDE

We will need to set up several things in our Arduino IDE in order to create

the sketch. We will need to ensure the MKR boards are supported and the

ThingSpeak and the Wi-Fi 101 libraries are installed. Let’s begin with the

MKR board support.

In the Arduino IDE, open a new sketch and click Tools ➤ Board XXXX

➤ Boards Manager… (the XXXX represents the board you used last). When

the form loads, type Arduino&MKR1000 into the search box and install the

Arduino SAMD support as shown in Figure 7-13.

Click the Install button to install the board support module. On some

PC platforms, the Arduino IDE may prompt you to install the board

support when you start the IDE for the first time with the board connected

to your PC.

Figure 7-13. Installing the SAMD Boards support

Chapter 7 Methods for storing sensor data

389

Now, let’s install the two libraries we need. You can do them in either

order. In the Arduino IDE, choose Sketch ➤ Include Library… ➤ Manage

Libraries. Enter ThingSpeak in the search box and then click the Install

button as shown in Figure 7-14. Once again, click Install to install the

library.

We also need the Wi-Fi 101 library to permit use to communicate with

the Internet. In the Arduino IDE, choose Sketch ➤ Include Library… ➤

Manage Libraries. Enter Wi-Fi 101 in the search box and then click the

Install button as shown in Figure 7-15. Once again, click Install to install

the library.

Figure 7-14. Installing the ThingSpeak library

Chapter 7 Methods for storing sensor data

390

 Write the Sketch

Now that you have the necessary libraries and board module installed,

open a new Arduino project and name it arduino_thingspeak.ino. Recall,

we will use a TMP36 and read the values from pin A1 on the MKR1000.

We have seen code to read the TMP36 in Chapter 6, so we will skip the

explanation and dive into how to interact with ThingSpeak.

In this example, we will see how to store our API Key and other critical

data in a separate header (.h) file, which will be part of the sketch and saved

in the same folder. To add a header file, click the small down arrow button

to the right of the sketch and select New Tab as shown in Figure 7- 16. In the

prompt, enter secrets.h and press Enter. This will open a new tab. Click

that tab to open the file.

Figure 7-15. Installing the WiFi 101 library

Chapter 7 Methods for storing sensor data

391

We will place the Wi-Fi and our ThingSpeak channel data in this file.

Use the #define directive to create new strings that we will use in the main

sketch. The following code shows the lines and data you need for the file.

Type these in and save the file.

#define SECRET_SSID "YOUR_SSID" // SSID

#define SECRET_PASS "SSID_PASS" // WiFi

Password

#define SECRET_CH_ID 0000000000 // Channel

number

#define SECRET_WRITE_APIKEY "ABCDEFGHIJKLMNOP" // Write API

Key

Now, return to the main sketch tab. Begin the sketch with the following

includes. You need the ThingSpeak.h, WiFi101.h, and the secrets.h file

we just created.

#include "ThingSpeak.h"

#include <WiFi101.h>

#include "secrets.h"

Figure 7-16. Add New Tab

Chapter 7 Methods for storing sensor data

392

Next, we need to declare several variables as well as instantiate the

Wi-Fi client as shown in the following code. We also add a variable to store

the pin number for the sensor. Notice we use those #defines we stored in

the secrets.h file.

char ssid[] = SECRET_SSID; // your network SSID (name)

char pass[] = SECRET_PASS; // your network password

WiFiClient client;

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

int SENSOR_PIN = 1;

To use the Ethernet shield, you must also declare a MAC address. The

IP address for the Ethernet shield is requested via DHCP. You define the

MAC address as an array. This can be a random set of values, provided

they are in the range 0x00–0xff. You can use what is shown here:

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

Next, you define your ThingSpeak API key and feed ID. You also define

the pin number for your TMP36 sensor. This example uses pin 0. You can

choose whatever pin you want to use—just change this define, and the rest

of the code will point to the correct pin:

char ThingSpeakKey[] = "<YOUR_KEY_HERE>";

#define FEED_NUMBER <YOUR_FEED_HERE>

#define SENSOR_PIN 0

Now we are ready to write the setup() method. You must initialize

the serial class (so you can use the serial monitor) and initialize the

Wi-Fi and ThingSpeak client. You use the begin() method for each of

these operations. For the Wi-Fi class, you pass in the SSID and password

defined earlier. The complete setup() method is as follows:

Chapter 7 Methods for storing sensor data

393

void setup() {

 Serial.begin(115200); // Initialize serial

 while (!Serial);

 // Connect to WiFi

 Serial.println("Welcome to the MKR1000 + TMP36 ThingSpeak

Example!");

 while(WiFi.status() != WL_CONNECTED){

 WiFi.begin(ssid, pass);

 delay(5000);

 }

 Serial.println(" Connected.");

 ThingSpeak.begin(client); // Initialize ThingSpeak

}

Finally, the loop() method contains the code to read the sensor,

calculate the temperature in Celsius and Fahrenheit, and send those

data to our ThingSpeak channel. To do so, we first call the setField()

method for the ThingSpeak library to set each field we want to update

(field numbers start at 1). We then use the writeFields() method to send

the data to ThingSpeak. We can check the result of that call to ensure the

code returned is 200, which means success (OK). A simplified version of the

loop() method is shown here:

void loop() {

 // Read TMP36 here

 // Set the fields with the values

 ThingSpeak.setField(1, temperatureC);

 ThingSpeak.setField(2, temperatureF);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

Chapter 7 Methods for storing sensor data

394

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 Serial.println("sleeping...");

 delay(20000); // Wait 20 seconds to update the channel again

}

Notice we display the actual result if it does not return a code of 200.

Notice also we add a sleep (delay()) at the end to sleep for 20 seconds. We

do this because the ThingSpeak free account is limited to updates once

every 15 seconds.

Now that you understand the flow and contents of the sketch, you

can complete the missing pieces and start testing. Listing 7-4 shows the

complete sketch for this project.

Listing 7-4. Arduino-Based ThingSpeak Channel Write

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Arduino ThingSpeak Write Example

 This project demonstrates how to write data to a ThingSpeak

channel.

*/

#include "ThingSpeak.h"

#include <WiFi101.h>

#include "secrets.h"

char ssid[] = SECRET_SSID; // your network SSID (name)

char pass[] = SECRET_PASS; // your network password

WiFiClient client;

Chapter 7 Methods for storing sensor data

395

unsigned long myChannelNumber = SECRET_CH_ID;

const char * myWriteAPIKey = SECRET_WRITE_APIKEY;

int SENSOR_PIN = 1;

void setup() {

 Serial.begin(115200); // Initialize serial

 while (!Serial);

 // Connect to WiFi

 Serial.println("Welcome to the MKR1000 + TMP36 ThingSpeak

Example!");

 Serial.print("Attempting to connect to SSID: ");

 Serial.print(SECRET_SSID);

 Serial.print(" ");

 while(WiFi.status() != WL_CONNECTED){

 WiFi.begin(ssid, pass);

 Serial.print(".");

 delay(5000);

 }

 Serial.println(" Connected.");

 ThingSpeak.begin(client); // Initialize ThingSpeak

}

void loop() {

 // Read TMP36

 float adc_data = analogRead(A1);

 float voltage = adc_data * (3.3 / 1024.0);

 Serial.print("Temperature is ");

 float temperatureC = (voltage - 0.525) / 0.01;

 Serial.print(temperatureC);

 Serial.print("C, ");

 float temperatureF = ((temperatureC * 9.0)/5.0) + 32.0;

Chapter 7 Methods for storing sensor data

396

 Serial.print(temperatureF);

 Serial.println("F");

 // Set the fields with the values

 ThingSpeak.setField(1, temperatureC);

 ThingSpeak.setField(2, temperatureF);

 // Write to the ThingSpeak channel

 int res = ThingSpeak.writeFields(myChannelNumber, myWriteAPIKey);

 if (res == 200) {

 Serial.println("Channel update successful.");

 } else {

 Serial.print("Problem updating channel. HTTP error code ");

 Serial.println(res);

 }

 Serial.println("sleeping...");

 delay(20000); // Wait 20 seconds to update the channel again

}

Note Be sure to substitute your api key and channel number in the
secrets.h file. failure to do so will result in compilation errors.

Take some time to make sure you have all the code entered correctly

and that the sketch compiles without errors. Once you reach this stage, you

can upload the sketch and try it out.

 Testing the Sketch

To test the sketch, be sure the code compiles and you have your hardware

set up correctly. Once you have a sketch that compiles, upload it to your

Arduino MKR1000 and launch a serial monitor. The following code shows

an example of the output you should see:

Chapter 7 Methods for storing sensor data

397

Attempting to connect to SSID: ATT-WiFi-0059 . Connected.

Temperature is 15.50C, 59.90F

Channel update successful.

sleeping...

Temperature is 16.14C, 61.06F

Channel update successful.

sleeping...

Temperature is 15.82C, 60.48F

Channel update successful.

sleeping...

Temperature is 16.14C, 61.06F

Channel update successful.

sleeping...

Temperature is 16.46C, 61.64F

Channel update successful.

sleeping...

Did you see similar output? If you did not, check the return code as

displayed in the serial monitor. You should be seeing a return code of 200

(meaning success). If the return code was a single digit (1, 2, 3, and so

on), you are likely encountering issues connecting to ThingSpeak. If this

occurs, connect your laptop to the same network cable, and try to access

ThingSpeak.

If the connection is very slow, you could encounter a situation in which

you get an error code other than 200 every other or every N attempts. If this

is the case, you can increase the timeout in the loop() method to delay

processing further. This may help for some very slow connections, but it is

not a cure for a bad or intermittent connection.

Let the sketch run for about 3 minutes before you visit ThingSpeak.

Once the sketch has run for some time, navigate to ThingSpeak, log in, and

click your channel page. You should see results similar to those shown in

Figure 7-17.

Chapter 7 Methods for storing sensor data

398

Notice the peaks near the beginning and end of the graph. I simulated

a spike in the data by pressing a warm object device on the TMP36 (my

finger). If you try this, be careful not to touch any of the wires!

 For More Fun

You can have a lot of fun with this script. Try connecting other sensors

and creating other channels in ThingSpeak. You can also experiment with

reading the data you saved in ThingSpeak.

Now that you know how to save data to ThingSpeak on the Arduino,

let’s explore how to do the same on the Raspberry Pi.

 Project: Writing Data to ThingSpeak
with a Raspberry Pi
This project demonstrates the ease of using the ThingSpeak REST API via

HTTP on the Raspberry Pi to write sensor data to a ThingSpeak channel.

Recall, to read the analog temperature sensor (TMP36), you use an I2C

module that provides 12-bit precision for reading values.

Figure 7-17. Example channel data (MKR1000_TMP36)

Chapter 7 Methods for storing sensor data

399

Tip this example demonstrates how to use the http interface
to write data to thingspeak. however, this is also a thingspeak
python library you can use if you want. You can install it with the
pip3 install thingspeak command. documentation for the
thingspeak python library can be found at https://thingspeak.
readthedocs.io/en/latest/.

If you have not yet created a ThingSpeak channel for the Raspberry

Pi, do that now and record the channel ID and API key generated. Use

the following data for the channel and name it RASPI_TMP36 as shown in

Figure 7-18.

Click the Save Channel button to create the channel. Then, on the API

Key tab, copy the write key and paste it a new file for later use.

Now that we have a channel created, let’s set up the hardware.

Figure 7-18. Set up a channel for the Raspberry Pi and TMP36 sensor

Chapter 7 Methods for storing sensor data

https://thingspeak.readthedocs.io/en/latest/
https://thingspeak.readthedocs.io/en/latest/

400

 Hardware Setup

The hardware for this project consists of a Raspberry Pi, a Raspberry Pi

Cobbler+ (optional), a breadboard, the TMP36 sensor, jumper wires, and

an ADC module.

I mentioned the Raspberry Pi does not include any ADCs, so you

cannot use an analog sensor. In this project, you explore how to use a

multichannel ADC with the Raspberry Pi to enable the use of the TMP36

analog temperature sensor. Figure 7-19 shows the 12-bit ADC from

Adafruit (www.adafruit.com/products/1083). This module supports up

to four sensors (channels). In the figure, you can see pins A0–A3; these are

the pins used for each of the channels supported.

Tip You are exploring the use of the adC module with a raspberry
pi, because it supports the i2C protocol, but you can use the module
with the arduino too. see http://learn.adafruit.com/
adafruit-4-channel-adc-breakouts for more details.

You also require connectivity to the Internet via a network connection

on the Raspberry Pi. The Internet connection can be via a wired

Ethernet connection or via a wireless connection. There are no specific

requirements for connectivity as there are with an Arduino.

Figure 7-19. 12-bit ADC module (courtesy of Adafruit)

Chapter 7 Methods for storing sensor data

http://www.adafruit.com/products/1083
http://learn.adafruit.com/adafruit-4-channel-adc-breakouts
http://learn.adafruit.com/adafruit-4-channel-adc-breakouts

401

Figure 7-20 shows the connections you need to make. Most of these

should be familiar to you if you have completed the projects in previous

chapters. For the TMP36, connect pin 1 to the same 5V connection as the

ADC module and pin 3 to the GND connection on the ADC module. Pin 2

on the sensor connects to the A0 pin on the ADC module.

Connect the TMP36 sensor as follows (again, see Figure 7-20).

Caution Be sure to double-check your connections and compare
them to figure 7-20. failure to connect things properly on the
raspberry pi can lead to a damaged board.

Figure 7-20. Wiring the TMP36 and ADC to the Raspberry Pi

Chapter 7 Methods for storing sensor data

402

Once you have made these connections, power on your Raspberry Pi

and issue the following command:

$ sudo i2cdetect –y 1

You should see the ADC module appear as address 0x48 in the output,

as shown in Figure 7-21.

 Write the Code

Now that you have the libraries you need, it is time to write a script to read

samples from a TMP36 sensor (via the ADC module) and save the data

to your ThingSpeak channel. Since we have already written code to read

the TMP36 sensor, we will concentrate on the code for writing data to

ThingSpeak.

Begin by opening a new file on your Raspberry Pi named raspi_

tmp36.py. You can use the Thonny IDE or a text editor or nano in a

terminal to create the file.

Let’s begin with the imports. We need to import the http.client, time,

urllib, board, busio, and the Adafruit libraries for the ADC module as

shown here:

import http.client

import time

import urllib

Figure 7-21. Verifying the ADC module

Chapter 7 Methods for storing sensor data

403

import the Raspberry Pi libraries

import board

import busio

Import the ADC Adafruit libraries

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

Next, we need to declare a variable for our API Key and instantiate the

I2C interface as shown here:

API KEY

THINGSPEAK_APIKEY = 'YOUR_API_KEY'

Instantiate (start/configure the I2C protocol)

i2c = busio.I2C(board.SCL, board.SDA)

Instantiate the ADS1115 ADC board

ads = ADS.ADS1115(i2c)

Setup the channel from Pin 0 on the ADS1115

channel0 = AnalogIn(ads, ADS.P0)

Next is the core code for the script. We will use a try…except block to

capture the keyboard interrupt (Ctrl+C). Inside that, we prepare a special

URL to encode the field data for our channel and then open the URL.

More specifically, we encode the data in the form of a dictionary

containing the field data using the urllib.parse class urlencode()

method. This ensures the strings created are valid for use in a URL. Next,

we create a header dictionary and pass that to the http.client class

HttpConnection() method to open a connection to ThingSpeak. Finally,

we send the data to ThingSpeak in the form of a POST command to the

update REST API endpoint. Wow! The following code shows the steps. Take

a moment to read through them. They should be easy to comprehend.

Remember, you can.

Chapter 7 Methods for storing sensor data

404

params = urllib.parse.urlencode(

 {

 'field1': temp_c,

 'field2': temp_f,

 'key': THINGSPEAK_APIKEY,

 }

)

Create the header

headers = {

 "Content-type": "application/x-www-form-urlencoded",

 'Accept': "text/plain"

}

Create a connection over HTTP

conn = http.client.HTTPConnection("api.thingspeak.com:80")

Execute the post (or update) request to upload the data

conn.request("POST", "/update", params, headers)

Listing 7-5 shows the complete code for the script for this project.

You will notice we skipped the print() statements and error handling

code, but it is all things we have seen in previous projects. Be sure to read

through the code before you run it so you can see how it all works. Also,

rather than type all of this code in, you can download it from the book

website.

Listing 7-5. Complete Code for the raspi_thingspeak.py Script

#

Beginning Sensor Networks Second Edition

#

IoT Example - Publish temperature data from a Raspberry Pi

with TMP36 and ADC.

#

Dr. Charles A. Bell

Chapter 7 Methods for storing sensor data

405

March 2020

#

from __future__ import print_function

Python imports

import http.client

import time

import urllib

import the Raspberry Pi libraries

import board

import busio

Import the ADC Adafruit libraries

import adafruit_ads1x15.ads1115 as ADS

from adafruit_ads1x15.analog_in import AnalogIn

API KEY

THINGSPEAK_APIKEY = 'YOUR_API_KEY'

Instantiate (start/configure the I2C protocol)

i2c = busio.I2C(board.SCL, board.SDA)

Instantiate the ADS1115 ADC board

ads = ADS.ADS1115(i2c)

Setup the channel from Pin 0 on the ADS1115

channel0 = AnalogIn(ads, ADS.P0)

Run the program to upload temperature data to ThingSpeak

print("Welcome to the ThingSpeak Raspberry Pi temperature

sensor! Press CTRL+C to stop.")

try:

 while 1:

 # Get temperature in Celsius

 temp_c = ((channel0.voltage * 3.30) - 0.5) * 10

Chapter 7 Methods for storing sensor data

406

 # Calculate temperature in Fahrenheit

 temp_f = (temp_c * 9.0 / 5.0) + 32.0

 # Display the results for diagnostics

 print("Uploading {0:.2f} C, {1:.2f} F"

 "".format(temp_c, temp_f), end=' ... ')

 # Setup the data to send in a JSON (dictionary)

 params = urllib.parse.urlencode(

 {

 'field1': temp_c,

 'field2': temp_f,

 'key': THINGSPEAK_APIKEY,

 }

)

 # Create the header

 headers = {

 "Content-type": "application/x-www-form- urlencoded",

 'Accept': "text/plain"

 }

 # Create a connection over HTTP

 conn = http.client.HTTPConnection("api.thingspeak.com:80")

 try:

 # Execute the post (or update) request to upload

the data

 conn.request("POST", "/update", params, headers)

 # Check response from server (200 is success)

 response = conn.getresponse()

 # Display response (should be 200)

 print("Response: {0} {1}".format(response.status,

 response.reason))

 # Read the data for diagnostics

 data = response.read()

 conn.close()

Chapter 7 Methods for storing sensor data

407

 except Exception as err:

 print("WARNING: ThingSpeak connection failed: {0}, "

 "data: {1}".format(err, data))

 # Sleep for 20 seconds

 time.sleep(20)

except KeyboardInterrupt:

 print("Thanks, bye!")

exit(0)

Note Be sure to substitute your api key in the location marked.
failure to do so will result in runtime errors.

Now that you have all the code entered, let’s test the script and see

if it works.

 Testing the Script

Python scripts are interpreted programs. Although there is a fair amount of

syntax checking at the start of a script, logic errors are not discovered until

the statement is executed. Thus, you may encounter errors or exceptions

if the script was not entered correctly (e.g., if you misspelled a method

or variable name). This may also happen if you failed to replace the

placeholder for the API key and feed number.

To run the script, enter the following command. Let the script run for

several iterations before using Ctrl+C to break the main loop.

$ python3 ./raspi_thingspeak.py

Chapter 7 Methods for storing sensor data

408

The following code shows an example of the output you should see:

Welcome to the ThingSpeak Raspberry Pi temperature sensor!

Press CTRL+C to stop.

Uploading 18.46 C, 65.23 F ... Response: 200 OK

Uploading 18.49 C, 65.28 F ... Response: 200 OK

Uploading 19.20 C, 66.56 F ... Response: 200 OK

Uploading 18.41 C, 65.13 F ... Response: 200 OK

Uploading 18.24 C, 64.83 F ... Response: 200 OK

Uploading 18.25 C, 64.85 F ... Response: 200 OK

Uploading 18.31 C, 64.96 F ... Response: 200 OK

Uploading 18.32 C, 64.97 F ... Response: 200 OK

Uploading 18.29 C, 64.93 F ... Response: 200 OK

Uploading 18.35 C, 65.03 F ... Response: 200 OK

Uploading 18.24 C, 64.83 F ... Response: 200 OK

Uploading 18.39 C, 65.09 F ... Response: 200 OK

Uploading 18.25 C, 64.84 F ... Response: 200 OK

Thanks, bye!

Let the script run for 3 minutes or so, and then navigate to your

Raspberry Pi channel on ThingSpeak. You should see your sensor data

displayed, similar to that shown in Figure 7-22.

Figure 7-22. Sample ThingSpeak feed for the Raspberry Pi

Chapter 7 Methods for storing sensor data

409

If you do not see similar data, go back and check the return codes as

discussed in the last project. You should see return codes of 200 (success).

Check and correct any errors in network connectivity or syntax or logic

errors in your script until it runs successfully for several iterations (all

samples stored return code 200).

If you see similar data, congratulations! You now know how to generate

data and save it to the cloud using two different platforms.

 For More Fun

You can have a lot of fun with this script. Try connecting other sensors and

creating other channels for them in ThingSpeak. You can also experiment

with reading the data you saved in ThingSpeak.

 Storing Sensor Data in a Database
As you may have surmised, it is possible to store sensor data to a database

on a Raspberry Pi. You can use MySQL as your database server and the

Connector/Python library to write Python scripts that read sensor data

and store the data in tables for later processing. Because there is a lot more

involved than a few dozen lines of code (like setting up MySQL on the

Raspberry Pi), you explore this topic in greater detail in Chapters 8 and 9.

 Component Shopping List
A number of components are needed to complete the projects in this

chapter, as listed in Table 7-2. Some of them, like the XBee modules and

supporting hardware, are also included in the shopping list from other

chapters. These are shown in Table 7-3.

Chapter 7 Methods for storing sensor data

410

Table 7-2. Components Needed

Item Vendors Est. Cost
USD

Qty
Needed

i2C eeproM www.sparkfun.com/

products/525

$1.95 1

arduino ethernet shield www.sparkfun.com/

products/9026

$24.95 1*

microsd shield www.sparkfun.com/

products/9802

$14.95 *

data Logging shield for

arduino

www.adafruit.com/

products/1141

$19.95 *

ds1307 real-time Clock

breakout board

www.adafruit.com/

product/3296

$7.50 1**

real-time Clock module www.sparkfun.com/

products/99

$14.95 **

12-bit adC module www.adafruit.com/

products/1083

$9.95 1

*You need only one of these options.
**Either of these will work.

Table 7-3. Components Reused from Previous Chapters

Item Vendors Est. Cost
USD

Qty
Needed

pushbutton www.sparkfun.com/

products/97

$0.35 1

Breadboard (not mini) www.sparkfun.com/

products/9567

$4.95 1

(continued)

Chapter 7 Methods for storing sensor data

http://www.sparkfun.com/products/525
http://www.sparkfun.com/products/525
http://www.sparkfun.com/products/9026
http://www.sparkfun.com/products/9026
http://www.sparkfun.com/products/9802
http://www.sparkfun.com/products/9802
http://www.adafruit.com/products/1141
http://www.adafruit.com/products/1141
http://www.adafruit.com/product/3296
http://www.adafruit.com/product/3296
http://www.sparkfun.com/products/99
http://www.sparkfun.com/products/99
http://www.adafruit.com/products/1083
http://www.adafruit.com/products/1083
http://www.sparkfun.com/products/97
http://www.sparkfun.com/products/97
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567

411

Table 7-3. (continued)

Item Vendors Est. Cost
USD

Qty
Needed

Breadboard jumper wires www.sparkfun.com/

products/8431

$3.95 1

tMp36 sensor www.sparkfun.com/

products/10988

$1.50 1

www.adafruit.com/

products/165

0.10uf capacitor www.sparkfun.com/

products/8375

$0.25 1

raspberry pi 3B, 3B+, or 4B Most online and retail stores $35 and

up

1

hdMi or hdMi to dVi cable Most online and retail stores Varies 1

hdMi or dVi monitor Most online and retail stores Varies 1

UsB keyboard Most online and retail stores Varies 1

UsB power supply Most online and retail stores Varies 1

UsB type a to UsB micro

male

Most online and retail stores Varies 1

sd card, 2gB or more Most online and retail stores Varies 1

Cobbler+ www.adafruit.com/

products/914

$7.95 1

10K ohm resistor Most online and retail stores Varies 1

4.7K ohm resistor Most online and retail stores Varies 2

Chapter 7 Methods for storing sensor data

http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/10988
http://www.sparkfun.com/products/10988
http://www.adafruit.com/products/165
http://www.adafruit.com/products/165
http://www.sparkfun.com/products/8375
http://www.sparkfun.com/products/8375
http://www.adafruit.com/products/914
http://www.adafruit.com/products/914

412

 Summary
This chapter explored the local storage options for the Arduino and

Raspberry Pi. You completed a number of small projects demonstrating

each of the possible storage options. I also discussed storing sensor data

in the cloud using the ThingSpeak IoT site from MathWorks. There, we

learned how to create channels and send data to the channel.

In the next two chapters, I take a break from this exploration of sensor

projects and begin discussing another form of remote storage: a database

server. Chapter 8 focuses on setting up a MySQL server, and Chapter 9

focuses on using the MySQL server with the Arduino via a special database

connector (library) written for the Arduino.

Chapter 7 Methods for storing sensor data

413© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_8

CHAPTER 8

Turning Your
Raspberry Pi into
a Database Server
Now that you know what sensor networks are and even how to build

sensor nodes using an Arduino and a Raspberry Pi, it’s time to do

something really cool with your Raspberry Pi. The last chapter discussed

the various ways you can store data from your sensors. One of the most

reliable and the most versatile is storing your sensor data in a database.

This chapter explores using a Raspberry Pi as a database server.

While this has always been an option with the Raspberry Pi starting

from the older version 2B boards, it is even more an option now that the

Raspberry Pi 4B boards are out. They have more than enough processing

power and (now, thankfully) more memory for heavier database work. Cool!

You begin with a short introduction to MySQL and then jump into

getting MySQL up and running on a Raspberry Pi.1 If you have experience

with installing and using MySQL, you may want to skip ahead to the

“Building a Raspberry Pi MySQL Server” section.

1 Note that the Raspberry Pi (which uses the ARM architecture rather than x86 or
SPARC) is not a supported platform for MySQL at the time of writing—but you
can make it work!

https://doi.org/10.1007/978-1-4842-5796-8_8#ESM

414

 What Is MySQL?
MySQL is the world’s most popular open source database system for

many excellent reasons. First and foremost, it is open source, which

means anyone can use it for a wide variety of tasks for free.2 Best of all,

MySQL is included in many platform repositories, making it easy to get

and install. If your platform doesn’t include MySQL in the repository

(such as aptitude), you can download it from the MySQL website

(http://dev.mysql.com).

Oracle Corporation owns MySQL. Oracle obtained MySQL through an

acquisition of Sun Microsystems, which acquired MySQL from its original

owners, MySQL AB. Despite fears to the contrary, Oracle has shown

excellent stewardship of MySQL by continuing to invest in the evolution

and development of new features as well as faithfully maintaining its

open source heritage. Although Oracle also offers commercial licenses

of MySQL—just as its prior owners did in the past—MySQL is still open

source and available to everyone.

WHAT IS OPEN SOURCE? IS IT REALLY FREE?

Open source software grew from a conscious resistance to the corporate-

property mindset. While working for MIT, Richard Stallman, the father of

the free software movement, resisted the trend of making software private

(closed) and left MIT to start the GNU (GNU’s Not Unix) project and the Free

Software Foundation (FSF).

2 According to GNU (www.gnu.org/philosophy/free-sw.html), “free software is a
matter of liberty, not price. To understand the concept, you should think of ‘free’
as in ‘free speech,’ not as in ‘free beer’.”

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

http://dev.mysql.com
http://www.gnu.org/philosophy/free-sw.html

415

Stallman’s goal was to reestablish a cooperating community of developers.

he had the foresight, however, to realize that the system needed a copyright

license that guaranteed certain freedoms. (Some have called Stallman’s take

on copyright “copyleft,” because it guarantees freedom rather than restricts it.)

To solve this, Stallman created the GNU public License (GpL). The GpL, a clever

work of legal permissions that permits the code to be copied and modified

without restriction, states that derivative works (the modified copies) must

be distributed under the same license as the original version without any

additional restrictions.

There was one problem with the free software movement. The term free

was intended to guarantee freedom to use, modify, and distribute; it was

not intended to mean “no cost” or “free to a good home.” To counter this

misconception, the Open Source Initiative (OSI) formed and later adopted and

promoted the phrase open source to describe the freedoms guaranteed by

the GpL license. For more information about open source software, visit

www.opensource.org.

MySQL runs as a background process (or as a foreground process if

you launch it from the command line3) on your system. Like most database

systems, MySQL supports Structured Query Language (SQL). You can

use SQL to create databases and objects (using data definition language

[DDL]), write or change data (using data manipulation language [DML]),

and execute various commands for managing the server.

To issue these commands, you must first connect to the database

server. MySQL provides a client application that enables you to connect to

and run commands on the server. The application is named MySQL Shell

(mysqlsh) and has many improvements over the older client including a

better interface as well as SQL, Python, and JavaScript modes. If you have

3 And use the --console command-line option on Windows systems.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

http://www.opensource.org

416

used MySQL in the past, you may be familiar with the older MySQL client

(mysql), which you can also use, but MySQL Shell is much easier to use.

Please see the online reference manual for MySQL Shell (https://dev.

mysql.com/doc/mysql-shell/8.0/en/) to learn more about how to use

it, but those who’ve used the older client or who are following along in the

tutorial will take to it quickly.

Tip It is best to use the older mysql client when working on the
Raspberry pi because it requires one less compilation and installation
step, but you can build and install the MySQL Shell on Raspberry pi.

If you don’t already have the MySQL Shell installed, visit https://dev.

mysql.com/downloads/shell/ and download it and then install it on your

system. For macOS and Linux, follow the platform-specific installation

procedures that you use for any other software. For Windows, you can

download a separate MySQL Shell installation (.msi) or you can download

the Windows Installer, which contains all MySQL applications, tools, and

drivers. In that case, you simply select the components you want at the

start of the installation.

Of course, you will also need to have access to a MySQL server running

some place. The good news is you can install it on your PC! Just download

the correct installer from the website (community edition) https://dev.

mysql.com/downloads/mysql/, and install it on your system. It is very easy

to install, but if you want a step-by-step instruction, see the online reference

manual for help (https://dev.mysql.com/doc/refman/8.0/en/).

Once MySQL Shell is installed on your system, you can launch it as

shown in Listing 8-1, which shows examples of each type of command

discussed earlier in action. Note that these commands will work the same

way in the older client.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/doc/mysql-shell/8.0/en/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/shell/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/downloads/mysql/
https://dev.mysql.com/doc/refman/8.0/en/

417

Listing 8-1. Commands Using the MySQL Shell

$ mysqlsh --uri root@localhost:33060

Please provide the password for 'root@localhost:33060':

Save password for 'root@localhost:33060'? [Y]es/[N]o/Ne[v]er

(default No): y

MySQL Shell 8.0.18

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All

rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or

its affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:33060'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 8 (X protocol)

Server version: 8.0.18 MySQL Community Server – GPL

> CREATE DATABASE testme;

Query OK, 1 row affected (0.0012 sec)

> CREATE TABLE testme.table1 (sensor_node char(30), sensor_

value int, sensor_event timestamp);

Query OK, 0 rows affected (0.0059 sec)

> INSERT INTO testme.table1 VALUES ('living room', 23, NULL);

Query OK, 1 row affected (0.0051 sec)

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

418

> SELECT ∗ FROM testme.table1;
+-------------+--------------+--------------+

| sensor_node | sensor_value | sensor_event |

+-------------+--------------+--------------+

| living room | 23 | NULL |

+-------------+--------------+--------------+

1 row in set (0.0003 sec)

> SET @@global.server_id = 111;

Query OK, 0 rows affected (0.0002 sec)

> \q

Bye!

If you’ve not used the MySQL Shell yet, take a look at how I started the

shell. Notice I typed in the user credentials in a different format, which is

quite intuitive and a bit easier than separate options. Notice also the shell

permits me to save the password for faster subsequent logins. Nice!

In this example, you see DML in the form of the CREATE DATABASE

and CREATE TABLE statements, DDL in the form of the INSERT and SELECT

statements, and a simple administrative command to set a global server

variable. Next, you see the creation of a database and a table to store the

data, the addition of a row in the table, and finally retrieval of the data in

the table.

A great many commands are available in MySQL. Fortunately, you

need master only a few of the more common ones. The following are the

commands you will use most often. The portions enclosed in <> indicate

user-supplied components of the command, and [...] indicates that

additional options are needed:

Tip You must terminate each command with a semicolon (;) or \G.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

419

• CREATE DATABASE <database_name>: Creates a

database

• USE <database>: Sets the default database

• CREATE TABLE <table_name> [...]: Creates a table or

structure to store data

• INSERT INTO <table_name> [...]: Adds data to a

table

• UPDATE [...]: Changes one or more values for a

specific row

• DELETE FROM <table_name> [...]: Removes data from

a table

• SELECT [...]: Retrieves data (rows) from the table

Although this list is only a short introduction and nothing like a

complete syntax guide, there is an excellent online reference manual that

explains each and every command (and much more) in great detail. You

should refer to the online reference manual whenever you have a question

about anything in MySQL. You can find it at https://dev.mysql.com/doc/

refman/8.0/en/.

If you are thinking that there is a lot more to MySQL than a few simple

commands, you are absolutely correct. Despite its ease of use and fast

startup time, MySQL is a full-fledged relational database management

system (RDBMS). There is much more to it than you’ve seen here. For

more information about MySQL, including all the advanced features, see

the reference manual.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/
https://dev.mysql.com/doc/refman/8.0/en/

420

MYSQL—WHAT DOES IT MEAN?

The name MySQL is a combination of a proper name and an acronym. SQL is

Structured Query Language. The My part isn’t the possessive form—it is a name.

In this case, My is the name of one of the founder’s daughter. as for pronunciation,

MySQL experts pronounce it “My-S-Q-L” and not “my sequel.” Indeed, the mark

of a savvy MySQL user is in their correct pronunciation of the product.

 Getting Started with MySQL
Now that you know what MySQL is and how it is used, you need to know a

bit more about RDBMSs and MySQL in particular before you start building

your first database server. This section discusses how MySQL stores data

(and where it is stored), how it communicates with other systems, and

some basic administration tasks required in order to manage your new

MySQL server.

Note I present this information as a tutorial or primer on MySQL.
You install MySQL on the Raspberry pi in a later section.

But first, let’s review what a relational database system is and why

it matters.

 What’s a Relational Database Management
System?
An RDBMS is a data storage-and-retrieval service based on the relational

model of data as proposed by E. F. Codd in 1970. These systems are the

standard storage mechanism for structured data. A great deal of research

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

421

is devoted to refining the essential model proposed by Codd, as discussed

by C. J. Date in The Database Relational Model: A Retrospective Review and

Analysis.4 This evolution of theory and practice is best documented in The

Third Manifesto.5

The relational model is an intuitive concept of a storage repository

(database) that can be easily queried by using a mechanism called a query

language to retrieve, update, and insert data. The relational model has

been implemented by many vendors because it has a sound systematic

theory, a firm mathematical foundation, and a simple structure. The

most commonly used query mechanism is SQL, which resembles natural

language. Although SQL is not included in the relational model, it provides

an integral part of the practical application of the relational model in

RDBMSs.

The data are represented as related pieces of information (attributes or

columns) about a certain event or entity. The set of values for the attributes

is formed as a tuple (sometimes called a record or row). Tuples are stored

in tables that have the same set of attributes. Tables can then be related to

other tables through constraints on keys, attributes, and tuples.

Tables can have special mappings of columns called indexes that

permit you to read the data in a specific order. Indexes are also very useful

for fast retrieval of rows that match the value(s) of the indexed columns.

Now that we know a bit about the theory, let’s see how MySQL works to

store our data.

4 C. J. Date, The Database Relational Model: A Retrospective Review and Analysis
(Reading, MA: Addison-Wesley, 2001).

5 C. J. Date and H. Darwen, Foundation for Future Database Systems: The Third
Manifesto (Reading, MA: Addison-Wesley, 2000).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

422

 How and Where MySQL Stores Data
The MySQL database system stores data via an interesting mechanism

of programmatic isolation called a storage engine that is governed

by the handler interface. The handler interface permits the use of

interchangeable storage components in the MySQL server so that the

parser, the optimizer, and all manner of components can interact in storing

data on disk using a common mechanism. This is also referred to as a

pluggable storage engine.6 While MySQL supports several storage engines,

the default storage engine is called the InnoDB, which is a transactional

storage engine.

What does this mean to you? It means you have the choice of different

mechanisms for storing data, but for most application, you won’t need to

change the storage engine. If you do want to change the storage engine,

you can specify the storage engine in the CREATE TABLE statement shown

in the following code sample. Notice the last line in the command: this is

how a storage engine is specified. Leaving off this clause results in MySQL

using the default storage engine (InnoDB).

CREATE TABLE `books` (

 `ISBN` varchar(15) DEFAULT NULL,

 `Title` varchar(125) DEFAULT NULL,

 `Authors` varchar(100) DEFAULT NULL,

 `Quantity` int(11) DEFAULT NULL,

 `Slot` int(11) DEFAULT NULL,

 `Thumbnail` varchar(100) DEFAULT NULL,

 `Description` text

) ENGINE=MyISAM;

6 If you would like to know more about storage engines and what makes them tick,
see my book, Expert MySQL Second Edition (Apress).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

423

Great! Now, what storage engines exist on MySQL? You can discover

which storage engines are supported by issuing the following command.

As you see, there are a lot to choose from. I cover a few that may be

pertinent to planning sensor networks.

> SELECT engine, support, transactions FROM information_schema.

engines;

+--------------------+---------+--------------+

| engine | support | transactions |

+--------------------+---------+--------------+

| ARCHIVE | YES | NO |

| BLACKHOLE | YES | NO |

| MRG_MYISAM | YES | NO |

| FEDERATED | NO | NULL |

| MyISAM | YES | NO |

| PERFORMANCE_SCHEMA | YES | NO |

| InnoDB | DEFAULT | YES |

| MEMORY | YES | NO |

| CSV | YES | NO |

+--------------------+---------+--------------+

9 rows in set (0.0005 sec)

 Common Storage Engines

As of version 5.6, MySQL uses the InnoDB storage engine by default.

Previous versions used MyISAM as the default. InnoDB is a fully

transactional, ACID7 storage engine. A transaction is a batch of statements

that must all succeed before any changes are written to disk. The classic

example is a bank transfer. If you consider a system that requires deducting

7 http://en.wikipedia.org/wiki/ACID

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

http://en.wikipedia.org/wiki/ACID

424

an amount from one account and then crediting that amount to another

account to complete the act of moving funds, you would not want the first

to succeed and the second to fail or vice versa!

Wrapping the statements in a transaction ensures that no data is

written to disk until and unless all statements are completed without

errors. Transactions in this case are designated with a BEGIN statement

and concluded with either a COMMIT to save the changes or a ROLLBACK

to undo the changes. InnoDB stores its data in a single file (with some

additional files for managing indexes and transactions).

The MyISAM storage engine is optimized for reads. MyISAM has been

the default for some time and was one of the first storage engines available.

In fact, a large portion of the server is dedicated to supporting MyISAM. It

differs from InnoDB in that it does not support transactions and stores

its data in an indexed sequential access method format. This means it

 supports fast indexing. You would choose MyISAM over InnoDB if you

did not need transactions and you wanted to be able to move or back up

individual tables.

Another storage engine that you may want to consider, especially for

sensor networks, is Archive. This engine does not support deletes (but

you can drop entire tables) and is optimized for minimal storage on disk.

Clearly, if you are running MySQL on a small system like a Raspberry Pi,

minimizing disk usage may be a goal. The inability to delete data may limit

more advanced applications, but most sensor networks merely store data

and rarely delete it. In this case, you can consider using the Archive storage

engine.

There is also the CSV storage engine (where CSV stands for comma-

separated values). This storage engine creates text files to store the

data in plain text that can be read by other applications such as a

spreadsheet application. If you use your sensor data for statistical

analysis, the CSV storage engine may make the process of ingesting the

data easier.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

425

 Where Is My Data Stored?

So where is all this data? If you query the MySQL server and issue the

command SHOW VARIABLES LIKE 'datadir';, you see the path to the

location on disk that all storage engines use to store data. In the case of

InnoDB, this is a single file on disk located in the data directory. InnoDB

also creates a few administrative files, but the data is stored in the single

file. For most other storage engines except NDB and MEMORY, the data

for the tables is stored in a folder with the name of the database under the

data directory. Listing 8-2 shows an example. The database folders are

shown in bold. Some files omitted for brevity.

Tip When you use sudo for the first time, you are required to enter
the password for the root user.

Listing 8-2. Finding Where Your Data Is Located

> SHOW VARIABLES LIKE 'datadir';

+---------------+------------------------+

| Variable_name | Value |

+---------------+------------------------+

| datadir | /usr/local/mysql/data/ |

+---------------+------------------------+

1 row in set (0.0037 sec)

> \q

Bye!

$ sudo ls -lsa /usr/local/mysql/data

total 336248

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

426

 0 drwxr-x--- 12 _mysql _mysql 384 Nov

4 16:28 #innodb_temp

 0 drwxr-x--- 30 _mysql _mysql 960 Nov

4 17:05 .

 0 drwxr-xr-x 17 root wheel 544 Nov

4 16:28 ..

 8 -rw-r----- 1 _mysql _mysql 56 Nov

4 16:28 auto.cnf

 8 -rw-r----- 1 _mysql _mysql 665 Nov

4 16:28 binlog.000001

 264 -rw-r----- 1 _mysql _mysql 84608 Nov

4 17:05 binlog.000002

 8 -rw-r----- 1 _mysql _mysql 32 Nov

4 16:28 binlog.index

 0 drwxr-x--- 8 _mysql _mysql 256 Nov

4 17:05 bvm

 8 -rw-r----- 1 _mysql _mysql 3513 Nov

4 16:28 ib_buffer_pool

98304 -rw-r----- 1 _mysql _mysql 50331648 Nov

4 17:05 ib_logfile0

98304 -rw-r----- 1 _mysql _mysql 50331648 Nov

4 16:28 ib_logfile1

24576 -rw-r----- 1 _mysql _mysql 12582912 Nov

4 17:05 ibdata1

24576 -rw-r----- 1 _mysql _mysql 12582912 Nov

4 16:28 ibtmp1

 0 drwxr-x--- 8 _mysql _mysql 256 Nov

4 16:28 mysql

49152 -rw-r----- 1 _mysql _mysql 25165824 Nov

4 17:05 mysql.ibd

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

427

 8 -rw-r----- 1 _mysql _mysql 739 Nov

4 16:28 mysqld.local.err

 8 -rw-r----- 1 _mysql _mysql 5 Nov

4 16:28 mysqld.local.pid

 0 drwxr-x--- 105 _mysql _mysql 3360 Nov

4 16:28 performance_schema

 0 drwxr-x--- 3 _mysql _mysql 96 Nov

4 16:28 sys

 0 drwxr-x--- 3 _mysql _mysql 96 Nov

4 16:36 testme

20480 -rw-r----- 1 _mysql _mysql 10485760 Nov

4 17:05 undo_001

20480 -rw-r----- 1 _mysql _mysql 10485760 Nov

4 17:05 undo_002

$ sudo ls -lsa /usr/local/mysql/data/bvm

total 64

 0 drwxr-x--- 8 _mysql _mysql 256 Nov 4 17:05 .

 0 drwxr-x--- 30 _mysql _mysql 960 Nov 4 17:05 ..

16 -rw-r----- 1 _mysql _mysql 5324 Nov 4 17:05 books.MYD

 8 -rw-r----- 1 _mysql _mysql 1024 Nov 4 17:05 books.MYI

16 -rw-r----- 1 _mysql _mysql 8012 Nov 4 17:05 books_354.sdi

 8 -rw-r----- 1 _mysql _mysql 281 Nov 4 17:05 settings.MYD

 8 -rw-r----- 1 _mysql _mysql 1024 Nov 4 17:05 settings.MYI

 8 -rw-r----- 1 _mysql _mysql 2250 Nov 4 17:05 settings_355.sdi

This example first queries the database server for the location of the

data directory (it is in a protected folder on this machine). If you issue a

listing command, you can see the InnoDB files identified by the ib and

ibd prefixes. You also see a number of directories, all of which are the

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

428

databases on this server. Below that is a listing of one of the database

folders. Notice the files with the extension .MY?: these are MyISAM files

(data and index).

For more information about storage engines and the choices and

features of each, please see the online MySQL reference manual section

“Storage Engines” (https://dev.mysql.com/doc/refman/8.0/en/

storage- engines.html).

 The MySQL Configuration File
The MySQL server can be configured using a configuration file, similar to

the way you configure the Raspberry Pi. On the Raspberry Pi, the MySQL

configuration file is located in the /etc/mysql folder and is named my.

cnf. This file contains several sections, one of which is labeled [mysqld].

The items in this list are key-value pairs: the name on the left of the equal

sign is the option and its value on the right. The following is a typical

configuration file (with many lines suppressed for brevity):

[mysqld]

port = 3306

basedir = /usr/local/mysql

datadir = /usr/local/mysql/data

server_id = 5

general_log

As you can see, this is a simple way to configure a system. This example

sets the TCP port, base directory (the root of the MySQL installation

including the data as well as binary and auxiliary files), data directory,

and server ID (used for replication, as discussed shortly) and turns on

the general log (when the Boolean switch is included, it turns on the log).

There are many such variables you can set for MySQL. See the online

MySQL reference manual for details concerning using the configuration

file. You will change this file when you set up MySQL on the Raspberry Pi.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html
https://dev.mysql.com/doc/refman/8.0/en/storage-engines.html

429

 How to Start, Stop, and Restart MySQL
While working with your databases and configuring MySQL on your

Raspberry Pi, you may need to control the startup and shutdown of the

MySQL server. The default mode for installing MySQL is to automatically

start on boot and stop on shutdown, but you may want to change that, or

you may need to stop and start the server after changing a parameter. In

addition, when you change the configuration file, you need to restart the

server to see the effect of your changes.

You can start, stop, and restart the MySQL server with the script

located in /etc/init.d/mysql. Here is a list of its options:

$ /etc/init.d/mysql --help

Usage: mysql.server {start|stop|restart|reload|force-

reload|status} [MySQL server options]

The script can start, stop, and restart the server as well as get its

status. You can also pass configuration (such as startup) options to the

server. This can be useful for turning on a feature for temporary use as an

 alternative to modifying the configuration file. For example, if you want to

turn on the general log for a period of time, you can use these commands:

/etc/init.d/mysql restart --general-log

/etc/init.d/mysql restart

The first restart restarts the server with the general logon, and the

second restarts the server without the log enabled (assuming it isn’t in the

configuration file). It’s probably a good idea to make sure no one is using

the server when you restart it.

However, the better way to start and stop MySQL on the latest release

of Raspbian is with the systemctl command as follows. You can use either

method.

• Start: sudo systemctl start mysqld

• Stop: sudo systemctl stop mysqld

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

430

• Restart: sudo systemctl restart mysqld

• Status: sudo systemctl status mysqld

SHUTTING DOWN CORRECTLY

You may be tempted to just power down your Raspberry pi database server

like you do your arduino sensor nodes, but you should avoid that temptation.

The Raspberry pi is a real computer with active file systems that require a

synchronized shutdown. You should always execute a controlled shutdown

before powering down.

To shut down the Raspberry pi, recall that you issue the sudo shutdown

–h now command. To reboot, you can use the sudo shutdown –r now

command.

 Creating Users and Granting Access
You need to know about two additional administrative operations before

working with MySQL: creating user accounts and granting access to

databases. MySQL can perform both of these with the CREATE USER

and one or more GRANT statements. For example, the following shows

the creation of a user named sensor1 and grants the user access to the

database room_temp:

CREATE USER 'sensor1'@'%' IDENTIFIED BY 'secret';

GRANT SELECT, INSERT, UPDATE ON room_temp.∗ TO 'sensor1'@'%';

The first command creates the user named sensor1, but the name also

has an @ followed by another string. This second string is the hostname of

the machine with which the user is associated. That is, each user in MySQL

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

431

has both a user and a hostname, in the form user@host, to uniquely

identify them. That means the user and host sensor1@10.0.1.16 and

the user and host sensor1@10.0.1.17 are not the same. However, the %

symbol can be used as a wildcard to associate the user with any host. The

IDENTIFIED BY clause sets the password for the user.

A NOTE ABOUT SECURITY

It is always a good idea to create a user for your application that does not

have full access to the MySQL system. This is so you can minimize any

accidental changes and also to prevent exploitation. For sensor networks, it

is recommended that you create a user with access only to those databases

where you store (or retrieve) data. You can change MySQL user passwords

with the following command:

ALTER USER sensor1@"%" IDENTIFIED BY 'super_secret';

also be careful about using the wildcard % for the host. although it makes it

easier to create a single user and let the user access the database server from

any host, it also makes it much easier for someone bent on malice to access

your server (once they discover the password).

another consideration is connectivity. as with the Raspberry pi, if you connect

a database to your network and the network is in turn connected to the

Internet, it may be possible for other users on your network or the Internet to

gain access to the database. Don’t make it easy for them—change your root

user password, and create users for your applications.

The second command allows access to databases. There are many

privileges that you can give a user. The example shows the most likely

set that you would want to give a user of a sensor network database: read

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

432

(SELECT),8 add data (INSERT), and change data (UPDATE). See the online

reference manual for more information about security and account access

privileges.

The command also specifies a database and objects to which to grant

the privilege. Thus, it is possible to give a user read (SELECT) privileges

to some tables and write (INSERT, UPDATE) privileges to other tables. This

example gives the user access to all objects (tables, views, and so on) in the

room_temp database.

Now that you’ve had a short (and perhaps a bit terse) introduction to

MySQL, let’s get started on your MySQL Raspberry Pi database server.

 Building a Raspberry Pi MySQL Server
It is time to get your hands dirty and work some magic on your

unsuspecting Raspberry Pi! Let’s begin by adding a USB drive to it. A flash

drive with fast read/write speeds can work especially well considering

it does not need as much power as a traditional external hard drive.

Depending on the size of your data, you may want to seriously consider

doing this.

If your data will be small (never more than a few megabytes), you may

be fine using MySQL from your boot image SD card. However, if you want

to ensure that you do not run out of space and keep your data separate

from your boot image, you should mount a USB drive that automatically

connects on boot. This section explains how to do this in detail.

If you plan to use an external hard drive, be sure you use a good-

quality powered USB hub to host your external drive. This is especially

important if you are using a traditional spindle drive, because it consumes

8 Although most sensor nodes only write data, it is possible that some sensor data
might need to be combined with other known data (via a lookup table) to be
relevant.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

433

a lot more power. Connecting your external drive directly to the Raspberry

Pi may rob it of power and cause untold frustration. Symptoms include

random reboot (always a pleasant surprise), failed commands, data loss,

and so on. Always be sure you have plenty of power for your peripherals as

well as your Raspberry Pi.

The choice of what disk to use is up to you. You can use a USB flash

drive, which should work fine if it has plenty of space and is of sufficient

speed (most newer models are fast). You can also use a solid-state drive

(SSD) if you have an extra one or want to keep power usage and heat to

a minimum. On the other hand, you may have an extra hard drive lying

around that can be pressed into service. This section’s example uses a

surplus 250GB laptop hard drive mounted in a typical USB hard drive

enclosure.

Tip Using an external hard drive—either an SSD or traditional
spindle drive—is much faster than accessing data on a flash drive. It
is also typically cheaper per unit (gigabyte) or, as I mentioned, can be
easily obtained from surplus.

 Partitioning and Formatting the Drive
Before you can use a new or an existing drive with a file system

incompatible with the Raspberry Pi, you must partition and format the

drive. Because the surplus drive in this example had an old Windows

partition on it, I had to follow these steps. Your Raspberry OS may be able

to read the format of your old drive, but you should use the ext4 file system

for optimal performance. This section shows you how to partition and

format your drive.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

434

Begin by connecting the drive to the Raspberry Pi. Then determine

what drives are attached by using the fdisk command as shown:

$ sudo fdisk -l

...

Disk /dev/sda: 59.2 GiB, 63518539776 bytes, 124059648 sectors

Disk model: Cruzer Fit

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xde217a25

Device Boot Start End Sectors Size Id Type

/dev/sda1 ∗ 64 6691199 6691136 3.2G 17 Hidden HPFS/NTFS
/dev/sda2 6691200 6692671 1472 736K 1 FAT12

What you see here are all the devices attached to the Raspberry Pi.

If you are new to Linux or partitioning drives, this may look like a lot of

nonsense. I’ve highlighted the interesting rows in bold. Notice that the

output identifies a 64GB drive located on a device designated as /dev/sda.

All the interesting data about the drive is shown as well.

As I mentioned, there is already a partition on this drive, indicated

by the row with the name of the device plus the number of the partition.

Thus, /dev/sda1 is the one and only partition on this drive. Let’s delete

that partition and create a new one. You execute both operations using the

fdisk application as shown in Listing 8-3.

Caution If you have a partition on your drive that has data you
want to keep, abort now and copy the data to another drive first. The
following steps erase all data on the drive!

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

435

Listing 8-3. Partitioning the USB Drive

$ sudo fdisk /dev/sda

Welcome to fdisk (util-linux 2.33.1).

Changes will remain in memory only, until you decide to write

them.

Be careful before using the write command.

Command (m for help): p

Disk /dev/sda: 59.2 GiB, 63518539776 bytes, 124059648 sectors

Disk model: Cruzer Fit

Units: sectors of 1 ∗ 512 = 512 bytes
Sector size (logical/physical): 512 bytes / 512 bytes

I/O size (minimum/optimal): 512 bytes / 512 bytes

Disklabel type: dos

Disk identifier: 0xde217a25

Device Boot Start End Sectors Size Id Type

/dev/sda1 ∗ 64 6691199 6691136 3.2G 17 Hidden HPFS/NTFS
/dev/sda2 6691200 6692671 1472 736K 1 FAT12

Command (m for help): d

Partition number (1,2, default 2):

Partition 2 has been deleted.

Command (m for help): d

Selected partition 1

Partition 1 has been deleted.

Command (m for help): n

Partition type

 p primary (0 primary, 0 extended, 4 free)

 e extended (container for logical partitions)

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

436

Select (default p): p

Partition number (1-4, default 1):

First sector (2048-124059647, default 2048):

Last sector, +/-sectors or +/-size{K,M,G,T,P} (2048-124059647,

default 124059647):

Created a new partition 1 of type 'Linux' and of size 59.2 GiB.

Command (m for help): w

The partition table has been altered.

Calling ioctl() to re-read partition table.

Syncing disks.

The first command, d, deletes a partition. In this case, there was

only one partition, so you select it by entering 1. You then create a new

partition using the command n and accept the defaults to use all the

free space. To check your work, you can use the p command to print the

device partition table and metadata. It shows (and confirms) the new

partition.

If you are worried that you may have made a mistake, do not panic!

The great thing about fdisk is that it doesn’t write or change the disk until

you tell it to with the w or write command. In the example, you issue the

w command to write the partition table. To see a full list of the commands

available, you can use the h command or run man fdisk.

Tip For all Linux commands, you can view the manual file by using
the command man <application>.

The next step is to format the drive with the ext4 file system. This is easy

and requires only one command: mkfs (make file system). You pass it the

device name. If you recall, this is /dev/sda1. Even though you created a new

partition, it is still the first partition because there is only one on the drive.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

437

If you are attempting to use a different partition, be sure to use the correct

number! The command may take a few minutes to run, depending on the

size of your drive. Listing 8-4 shows the command in action.

Listing 8-4. Formatting the Drive

$ sudo mkfs.ext4 /dev/sda

mke2fs 1.44.5 (15-Dec-2018)

/dev/sda contains an iso9660 file system labelled 'Backup'

Proceed anyway? (y,N) y

Creating filesystem with 15507456 4k blocks and 3883008 inodes

Filesystem UUID: d370c755-18be-4c7f-bf66-4dd666ade676

Superblock backups stored on blocks:

 32768, 98304, 163840, 229376, 294912, 819200, 884736,

1605632, 2654208, 4096000, 7962624, 11239424

Allocating group tables: done

Writing inode tables: done

Creating journal (65536 blocks): done

Writing superblocks and filesystem accounting information: done

Now you have a new partition, and it has been properly formatted. The

next step is associating the drive with a mount point on the boot image and

then connecting that drive on boot, so you don’t have to do anything to use

the drive each time you start your Raspberry Pi.

 Setting Up Automatic Drive Mounting
External drives in Linux are connected (mounted) with mount and

disconnected (unmounted) with umount. Unlike with some operating

systems, it is generally a bad idea to unplug your USB drive without

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

438

unmounting it first. Likewise, you must mount the drive before you can use

it. This section shows the steps needed to mount the drive and to make the

drive mount automatically on each boot.

I begin with a discussion of the preliminary steps to get the drive

mounted and ready for automatic mounting. These include creating a

folder under the /media folder to mount the drive (called a mount point),

changing permissions to the folder to allow access, and executing some

optional steps to tune the drive:

$ sudo mkdir /media/mysql

$ sudo chmod 755 /media/mysql

$ sudo tune2fs -m 0 /dev/sda

tune2fs 1.44.5 (15-Dec-2018)

Setting reserved blocks percentage to 0% (0 blocks)

$ sudo tune2fs -L MySQL /dev/sda

tune2fs 1.44.5 (15-Dec-2018)

$ sudo mount /dev/sda /media/mysql

$ sudo ls -lsa /media/mysql

total 24

 4 drwxr-xr-x 3 root root 4096 Nov 27 13:44 .

 4 drwxr-xr-x 4 root root 4096 Nov 27 13:55 ..

16 drwx------ 2 root root 16384 Nov 27 13:44 lost+found

These commands are easy to discern and are basic file and folder

commands. However, the tuning steps using tune2fs (tune file system) are

used to first reset the number of blocks used for privileged access (which

saves a bit of space) and then label the drive as MYSQL. Again, these are

optional, and you may skip them if you like.

Tip You can unmount the drive with sudo umount /dev/sda1.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

439

At this point, the drive is accessible and ready to be used. You can

change to the /media/HDD folder and create files or do whatever you’d like.

Now let’s complete the task of setting up the drive for automatic mounting.

The best way to do this is to refer to the drive by its universally unique

identifier (UUID). This is assigned to this drive and only this drive. You

can tell the operating system to mount the drive with a specific UUID to a

specific mount point (/media/HDD).

Remember the /dev/sda device name from earlier? If you plugged

your drive into another hub port—or, better still, if there are other drives

connected to your device and you unmount and then mount them—the

device name may not be the same the next time you boot! The UUID helps

you determine which drive is your data drive, frees you from having to

keep the drive plugged in to a specific port, and allows you to use other

drives without fear of breaking your MySQL installation if the drive is given

a different device name.

To get the UUID, use the blkid (block ID) application:

$ sudo blkid

...

/dev/sda: LABEL="MySQL" UUID="d370c755-18be-4c7f-bf66-

4dd666ade676" TYPE="ext4"

...

Notice the line in bold. Wow! That’s a big string. A UUID is a 128-byte

(character) string. Copy it for the next step.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

440

To set up automatic drive mapping, you use a feature called static

information about the file system (fstab). This consists of a file located in

the /etc folder on your system. You can edit the file however you like. If

you are from the old school of Linux or Unix, you may choose to use vi.9

The resulting file is as follows:

$ sudo nano /etc/fstab

proc /proc proc defaults 0 0

/dev/mmcblk0p1 /boot vfat defaults 0 0

/dev/mmcblk0p2 / ext4 defaults,noatime 0 0

UUID= d370c755-18be-4c7f-bf66-4dd666ade676 /media/

mysql ext4 defaults,noatime 0 0

The line you add is shown in bold. Here you simply add the UUID,

mount point, file system, and options. That’s it! You can reboot your

Raspberry Pi using the following command and watch the screen as the

messages scroll. Eventually, you see that the drive is mounted. If there is

ever an error, you can see it in the boot-up sequence:

$ sudo shutdown –r now

Now you are ready to build a MySQL database server! The following

section details the steps needed to do this using your Raspberry Pi.

9 What does vi mean? If you’ve ever had the pleasure of trying to learn it for the first
time, you may think it means “virtually impossible,” because the commands are
terse (by design) and difficult to remember. But seriously, vi is short for vim or
Vi Improved text editor. The name suggests that the original editor may very well
have been completely impossible to use!

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

441

 Project: Installing MySQL Server on a
Raspberry Pi
Turning a Raspberry Pi into a MySQL database server is easy. Well, almost.

The latest version of MySQL (8.0) is not available for the Raspberry Pi.10

However, since MySQL is open source, we can build (compile and link)

MySQL from source on our Raspberry Pi. How cool is that? This section

shows you how to acquire the source code for MySQL, build, and install it.

We then learn how to move its default data directory from your boot image

to the new external drive you connected in the previous section.

WHAT ABOUT OTHER MYSQL VARIANTS?

Savvy readers may already be aware of variants of MySQL that are available

from other vendors. While most claim to be 100% compatible with Oracle’s

MySQL (owners of the source code), there are some differences that can make

development more difficult. For example, the MySQL database connector

for arduino (called Connector/arduino) is known to have issues with some

versions of some variants. Thus, it is this author’s opinion you should always

use Oracle’s release of MySQL rather than variants.

In this section, we will use Raspberry Pi computers rather than more

expensive mainstream server hardware. If you would like to follow along

and use more traditional server hardware, you can do, but remember

that some of the commands used on the Raspberry Pi are very similar to

those you would use on typical Linux-based platforms. You may need to

substitute platform-specific versions to use the following on your PC.

10 Older versions of MySQL are available for the Raspberry Pi, but beware! Some
of these releases are not distributed or maintained by Oracle. It is highly
recommended to use Oracle’s current release of MySQL even though it does
require a bit more work to run in on the Raspberry Pi.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

442

Recall, since MySQL is open source, we can download the source code,

compile, and install it ourselves. In fact, we will do just that in this walk-

through. The following lists the steps necessary to prepare a Raspberry Pi

computer for use with MySQL:

• Build MySQL.

• Install MySQL manually.

• Configure MySQL.

This list is like the process you would use to set up MySQL on

commodity hardware, but the build and configuration steps are required

to make MySQL work on Raspbian (because there are no installation

packages). It is important to note that these extra steps are not unique to

Raspbian.

In fact, building, installing, and configuring MySQL from source is a

viable alternative to using installation packages. You can find instructions

on building MySQL for various platforms in the section entitled “Installing

MySQL from Source” in the online reference manual (https://dev.

mysql.com/doc/refman/8.0/en/source-installation.html).

The process is straightforward involving a few minor system

configuration items to prepare our system and two commands: cmake

and make. This section will walk you through all those steps with ample

examples and every step documented.

The task of building MySQL from source code may seem daunting

to those who have never programmed or for those who haven’t written

a program in a while, but do not despair. The hardest part of compiling

MySQL on the Raspberry Pi is waiting for the process to complete. That

is, it may take an hour or so to compile everything. But that is a small

price to pay for being able to use Raspberry Pi computers to experiment

with MySQL!

Let’s dive into compiling MySQL on Raspbian starting with the

 prerequisites.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/source-installation.html
https://dev.mysql.com/doc/refman/8.0/en/source-installation.html

443

 Prerequisites

There are several things you need to install to prepare your Raspberry Pi to

compile MySQL including hardware and software prerequisites MySQL.

The hardware requirement is that the latest version of MySQL (8.0.18

at the time of this writing) requires using a Raspberry Pi 4B with 2GB or

4GB (4GB is faster) board. Thus, you should consider whether you want

to build MySQL on the same Raspberry Pi 4B where you want to install it.

Why is this important? It is important because you may want to run MySQL

on older Raspberry Pi boards. More specifically, while it is best to compile

MySQL on the 4B, you can install and run it on the 3B+ without any issues.

We will see how to do this later. The reason we need to use the 4B is largely

due to memory. MySQL simply requires more than the 1GB of RAM found

on the 3B boards.11

Beyond requiring a Raspberry Pi 4B, the software prerequisites include

the following software:

• You need to install Curses 5 (libncurses5-dev).

• You need to install Bison.

• You need to install OpenSSL (libssl-dev).

• You need to install CMake.

To install all these libraries at one time, use the following command

in a terminal window. This will download the necessary files and install

them. Notice we must use elevated privileges to install the library.

$ sudo apt-get install libncurses5-dev bison libssl-dev cmake

11 While you may be able to create a larger swap file to compensate, compilation
with a large swap file could take more than 12 hours to complete due to the slow
performance of swapping with disk.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

444

The only other prerequisite is we must download the MySQL Server

source code. Go to https://dev.mysql.com/downloads/mysql/, select

Source Code in the Select Operating System drop-down box, Generic Linux

from the Select OS Version drop-down box, and then click the Generic Linux

(Architecture Independent), Compressed TAR Archive Includes Boost

Headers download link at the bottom of the list as shown in Figure 8- 1.

This file contains another library that we need (boost) as well as the server

source code. It is the easiest of the downloads to start from to build. Once

you’ve downloaded the file, copy it to your Raspberry Pi.

OK, now we’re ready to build the MySQL server.

Figure 8-1. Download MySQL server source code

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/downloads/mysql/

445

 Building MySQL Server

There are just three steps to building MySQL on Raspberry Pi. We first run

the preprocessor called CMake, then build the code with make, and finally

build an installation package with the make package command. We can

use this package to install MySQL on another Raspberry Pi. Let’s see the

details of each of these steps beginning with CMake.

CMake (cmake.org) is another open source product used to build, test,

and package software. Recall, we installed CMake in the previous section.

There are many variations of options you can use to build software and

many that apply to MySQL. In fact, you can spend a lot of time customizing

the CMake command options to build for almost any platform. Since we

downloaded the MySQL source code for generic Linux with the Boost

libraries, we’ve got everything we need.

Thus, the command options we need to use with CMake are minimal

and include the following. Each of these will be explained in a bit more

detail here:

• You should set -DWITH_UNIT_TESTS=OFF to save

compile time (not needed).

• You should set the PREFIX to set the installation path to

make it easy to install.

• We need to turn off the “gold” linker.

• We must build with the release code (debug requires

too much memory for the Raspberry Pi).

• We must add additional compiling and build flags to

ensure the code builds properly on ARM32.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

446

Running CMake (Preparing to Compile)

The first thing we’re going to do is extract the TAR file that we downloaded.

You can do so with the following commands. This will create a folder

named mysql-8.0.18. It is recommended that you unpack this file in a

folder in the root user’s home folder, for example, /home/pi/source. The

unpack process will take a few minutes as it contains a lot of code.

$ cd /home/pi

$ mkdir source

$ cd source

$ cp ~/Downloads/mysql-boost-8.0.18.tar.gz .

$ tar -xvf mysql-boost-8.0.18.tar.gz

Next, we will make a directory to store all the compiled code using the

following commands. This helps prevent accidents when compiling and

preserves the source code.

$ cd mysql-8.0.18

$ mkdir build

$ cd build

Now we can run the CMake command. Listing 8-5 shows the complete

command you need to use from within the build folder. Notice the

command has many options specified including (in order of appearance)

using Unix makefiles, setting the build to release code (rather than debug),

ignoring AIO checking, setting the boost folder (included in the TAR file we

downloaded), turning off the unit tests, and setting some arcane settings

for compiling on ARM32.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

447

Listing 8-5. Running the CMake Command (ARM32)

$ cmake -G "Unix Makefiles" -DCMAKE_BUILD_TYPE=release -DBUILD_

CONFIG=mysql_release -DDEBUG_EXTNAME=OFF -DIGNORE_AIO_CHECK=1

-DWITH_UNIT_TESTS=OFF -DCMAKE_C_LINK_FLAGS="-Wl,--no-keep-

memory,-latomic" -DCMAKE_CXX_LINK_FLAGS="-Wl,--no-keep-memory,-

latomic" -DCMAKE_C_FLAGS_RELEASE="-fPIC" -DCMAKE_CXX_FLAGS_

RELEASE="-fPIC" -DCMAKE_INSTALL_PREFIX="/usr/local/mysql"

-DUSE_LD_GOLD=OFF -DWITH_BOOST="../boost" ..

-- Running cmake version 3.13.4

-- Found Git: /usr/bin/git (found version "2.20.1")

-- MySQL 8.0.18

-- Source directory /media/pi/source/mysql-8.0.18

-- Binary directory /media/pi/source/mysql-8.0.18/build

-- CMAKE_GENERATOR: Unix Makefiles

...

-- CMAKE_C_FLAGS: -fno-omit-frame-pointer -Wall -Wextra

-Wformat-security -Wvla -Wundef -Wwrite-strings -Wjump-misses-

init

-- CMAKE_CXX_FLAGS: -std=c++14 -fno-omit-frame-pointer -Wall

-Wextra -Wformat-security -Wvla -Wundef -Woverloaded-virtual

-Wcast-qual -Wimplicit-fallthrough=2 -Wlogical-op

-- CMAKE_CXX_FLAGS_DEBUG: -DSAFE_MUTEX -DENABLED_DEBUG_SYNC -g

-- CMAKE_CXX_FLAGS_RELWITHDEBINFO: -DDBUG_OFF -ffunction-

sections -fdata-sections -O2 -g -DNDEBUG

-- CMAKE_CXX_FLAGS_RELEASE: -DDBUG_OFF -ffunction-sections

-fdata-sections -fPIC

-- CMAKE_CXX_FLAGS_MINSIZEREL: -DDBUG_OFF -ffunction-sections

-fdata-sections -Os -DNDEBUG

-- CMAKE_C_LINK_FLAGS: -Wl,--no-keep-memory,-latomic

-- CMAKE_CXX_LINK_FLAGS: -Wl,--no-keep-memory,-latomic

-- CMAKE_EXE_LINKER_FLAGS

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

448

-- CMAKE_MODULE_LINKER_FLAGS

-- CMAKE_SHARED_LINKER_FLAGS

-- Configuring done

-- Generating done

Don’t worry if this command looks strange, and it is not necessary to

understand all the special settings we’ve used for the compile and link

phases. However, if you do want to learn more about these options, you

can see the documentation on the GNU compiler (http://gcc.gnu.org/

onlinedocs/gcc/Option-Summary.html) and linker (https://gcc.gnu.

org/onlinedocs/gcc/Link-Options.html) options.

The command could take a few minutes to run. Be sure there are no

errors and that the last lines indicate the build files have been written to

the build folder. Pay special attention to the LINK_FLAGS messages at the

end. The options in the CMake command do not include spaces. If you

accidentally added spaces, the comma-separated list would show them

in the CMake output. Be sure there are no spaces. If there are spaces, you

may get an error stating --icf=safe (or other) options are invalid. If that

happens, run the command again without the spaces.

If you’ve gotten this far without errors, you can almost relax. The

next step, compiling the code is easy, but it can take a while to run on a

Raspberry Pi 4B (at least 1–2 hours).

Running Make (Compiling)

The next step is to compile the code. This is done simply with the make

command. This command allows us to specify how many parallel threads

we want to use. For the Raspberry Pi 4B and a total of four CPU cores,

it is safe to use three cores for compiling. If you have a watcher for CPU

usage running, you will see those three and possibly at times all four cores

running at 100%. If your Raspberry Pi is mounted in a case, make sure you

have adequate ventilation or a fan blowing over the board.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
http://gcc.gnu.org/onlinedocs/gcc/Option-Summary.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html
https://gcc.gnu.org/onlinedocs/gcc/Link-Options.html

449

Listing 8-6 shows the compilation step of the MySQL server code using

the command make -j3. The listing is an excerpt of the messages you will

likely see (there will be thousands of lines), but the important ones to note

are the last several. These ensure the code has compiled without errors.

Tip You may see minor warnings flow past when the code is
compiling, which you can ignore. however, you should not see
any compilation errors. If you do, go back and check your CMake
command and rerun it if necessary. If all else fails, delete the build
directory and start over.

Listing 8-6. Compiling MySQL Server

$ make -j3

[0%] Built target INFO_SRC

[0%] Built target INFO_BIN

[0%] Building C object extra/zlib/CMakeFiles/zlib_objlib.dir/

gzread.o

[0%] Building C object extra/zstd/CMakeFiles/zstd_objlib.dir/

lib/common/threading.c.o

[0%] Building C object extra/zstd/CMakeFiles/zstd_objlib.dir/

lib/common/xxhash.c.o

[0%] Building C object extra/zlib/CMakeFiles/zlib_objlib.dir/

gzwrite.o

...

[100%] Building CXX object storage/innobase/CMakeFiles/

innobase.dir/os/os0thread.cc.o

[100%] Building CXX object storage/innobase/CMakeFiles/

innobase.dir/page/zipdecompress.cc.o

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

450

[100%] Building CXX object storage/innobase/CMakeFiles/

innobase.dir/rem/rec.cc.o

[100%] Building CXX object storage/innobase/CMakeFiles/

innobase.dir/ut/crc32.cc.o

[100%] Building CXX object storage/innobase/CMakeFiles/

innobase.dir/ut/ut.cc.o

[100%] Linking CXX static library libinnobase.a

[100%] Built target innobase

Scanning dependencies of target mysqld

[100%] Building CXX object sql/CMakeFiles/mysqld.dir/main.cc.o

[100%] Linking CXX executable ../runtime_output_directory/

mysqld

[100%] Built target mysqld

Once the compilation is complete, the next step is to build a package

(TAR file) we can use to install MySQL on our server.

Making the Package

The last thing we need to do is build the installation package. In this case,

we will build a compress TAR file that we will be able to copy to our initial

server and install. We do this with the make package command as shown

in Listing 8-7.

Listing 8-7. Building the TAR Package

$ make package

[0%] Built target abi_check

[0%] Built target INFO_SRC

[0%] Built target INFO_BIN

[1%] Built target zlib_objlib

[1%] Built target zlib

[2%] Built target zstd_objlib

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

451

[2%] Built target zstd

[3%] Built target edit

[4%] Built target event_core

...

[100%] Built target routing

[100%] Built target rest_routing

[100%] Built target mysqlrouter

[100%] Built target mysqlrouter_keyring

Run CPack packaging tool...

CPack: Create package using TGZ

CPack: Install projects

CPack: - Run preinstall target for: MySQL

CPack: - Install project: MySQL

CPack: Create package

CPack: - package: /home/pi/source/mysql-8.0.18/build/mysql-

8.0.18-linux-armv7l.tar.gz generated.

That’s it! We’ve built MySQL on the Raspberry Pi! That wasn’t so bad,

was it? Now, let’s see how to install and test MySQL on our server.

 Installing MySQL Server

If we built MySQL on a different Raspberry Pi, we need to copy the TAR file

to a removable drive to copy the file to the target Raspberry Pi.

Once the server is booted, log in and change to the /usr/local

directory and create a new folder named mysql. Then, change to the new

folder and copy the TAR file to that folder. Finally, unpack the file using the

following commands. There are a lot of files, so it could take a few minutes

to unpack.

$ cd /usr/local/

$ mkdir mysql

$ cd mysql

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

452

$ sudo cp ~/source/mysql-8.0.11/build/mysql-8.0.18-linux-

armv7l.tar.gz .

$ sudo tar -xvf mysql-8.0.11-linux-armv7l.tar.gz --strip-

components=1

Notice the last command uses an option to strip one component

(the first folder—mysql-8.0.18-linux-armv71) from the extracted file

directories. This ensures the MySQL files get copied to /usr/local/mysql.

However, there is one more command we need to run. Since we are

space conscience, we do not need the MySQL test files, so we can delete

them with the following command. Once we’re done with the TAR file, we

can delete that too as shown here:

$ sudo rm -rf mysql-test

$ sudo rm mysql-8.0.18-linux-armv71.tar.gz

Installing from the TAR file requires more steps than installing from

a typical platform-specific package. This is because installation packages

typically take care of several required configuration steps, all of which are

detailed in the online reference manual section entitled “Installing MySQL

on Unix/Linux Using Generic Binaries” (https://dev.mysql.com/doc/

refman/8.0/en/binary-installation.html).

 Configuring MySQL Server

Now that we have the files copied, we can finish the setup. The process is

not tedious but does involve several commands run from a terminal, so

some patience is needed to ensure all the commands are entered correctly.

We begin by creating a new group named mysql, then add a user

named mysql, then create a folder for MySQL to use, and grant access to

the folder to the mysql user. The following code shows the commands

needed. Run these from a terminal (there will be no output from any of the

commands).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html
https://dev.mysql.com/doc/refman/8.0/en/binary-installation.html

453

$ sudo groupadd mysql

$ sudo useradd -r -g mysql -s /bin/false mysql

$ cd /usr/local/mysql

$ sudo mkdir mysql-files

$ sudo chown mysql:mysql mysql-files

$ sudo chmod 750 mysql-files

We can initialize the data directory easily with the --initialize

option as shown in the following code. Notice we run the command with

elevated privileges and specify the user to use (mysql). The following code

shows an example of the output with the successful messages highlighted.

If you see errors, consult the online reference manual to resolve the errors.

Notice the output contains the initial root user password. You will need

that for the next step. Note that this step can take a few moments to run.

$ sudo ./bin/mysqld --initialize --user=mysql

2019-11-17T02:02:41.118355Z 0 [System] [MY-013169] [Server]

/usr/local/mysql/bin/mysqld (mysqld 8.0.18) initializing of

server in progress as process 7704

2019-11-17T02:05:04.757386Z 5 [Note] [MY-010454] [Server] A

temporary password is generated for root@localhost: VPw&eFjU- 0z#

Next, we create a configuration file using our favorite editor as

shown here:

$ sudo vi /etc/my /etc/my.cnf

Add the following lines to the configuration file and save it (press Esc

then :, then w, and then q). We will use this configuration file to start the

server in the next step.

[mysqld]

basedir=/usr/local/mysql/

datadir=/usr/local/mysql/data

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

454

OK, we are now ready to start MySQL for the first time. Use the mysqld

command to start MySQL from the command line. We use this command

instead of the /etc/init.d/mysql start command so we can check the

output for errors. If there are no errors, you should see output like those

shown here:

$ sudo bin/mysqld --defaults-file=/etc/my.cnf --user=mysql &

[1] 8745

$ 2019-11-17T02:09:41.429418Z 0 [Warning] [MY-011037]

[Server] The CYCLE timer is not available. WAIT events in the

performance_schema will not be timed.

2019-11-17T02:09:42.191155Z 0 [System] [MY-010116] [Server]

/usr/local/mysql/bin/mysqld (mysqld 8.0.18) starting as process 8750

2019-11-17T02:09:58.600980Z 0 [Warning] [MY-010068] [Server] CA

certificate ca.pem is self signed.

2019-11-17T02:09:59.167758Z 0 [System] [MY-010931] [Server]

/usr/local/mysql/bin/mysqld: ready for connections. Version:

'8.0.18' socket: '/tmp/mysql.sock' port: 3306 Source

distribution.

2019-11-17T02:09:59.378833Z 0 [System] [MY-011323] [Server] X

Plugin ready for connections. Socket: '/tmp/mysqlx.sock' bind-

address: '::' port: 33060

Now we can test our MySQL server with the mysql client using the

following command. Be sure to use the password displayed when you

initialized the data directory. Listing 8-8 shows an example of using the

mysql client to connect to the server for the first time. We will first display

the version and then change the root user password. Notice we also shut

down the server with the shutdown SQL command.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

455

Listing 8-8. Connecting to MySQL for the First Time

$ bin/mysql -uroot -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 8

Server version: 8.0.18

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All

rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

mysql> SELECT @@version;

+-----------+

| @@version |

+-----------+

| 8.0.18 |

+-----------+

1 row in set (0.00 sec)

mysql> ALTER USER 'root'@'localhost' IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.11 sec)

mysql> shutdown;

Query OK, 0 rows affected (0.00 sec)

mysql> \q

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

456

Next, we must add the path to the MySQL binaries. We can do

this easily by editing our Bash resource file using the command nano

~/.bashrc. When the file opens, add the following line to the bottom of

the file. The next time you open a terminal, you can execute the MySQL

applications and tools without specifying the path.

export PATH=${PATH}:/usr/local/mysql/bin

There is one final step needed—we must copy the startup and

shutdown script (service) to allow us to automatically start MySQL at

boot. To do so, copy the mysql.server file from the support-files folder

from the build to the /etc/init.d/mysql file as shown in Listing 8-9. We

will also test the server connection again and then shut it down with the

sudo systemctl daemon-reload command to refresh the list of daemons

and the sudo systemctl start or sudo systemctl stop commands to

start or stop MySQL. You can also use sudo systemctl status command

to see the status of MySQL. This can be helpful if you encounter errors or

want to check to see if MySQL is running. Note that you may be prompted

for a password when using the command. Also, you want to copy the

mysql.server file from the build directory, not the root of the source code

directory.

Listing 8-9. Starting MySQL Automatically or Manually with

systemctl

$ sudo cp ./support-files/mysql.server /etc/init.d/mysql

$ sudo chmod 0755 /etc/init.d/mysql

$ sudo systemctl daemon-reload

$ sudo systemctl start mysql

$ sudo systemctl status mysql

● mysql.service - LSB: start and stop MySQL

 Loaded: loaded (/etc/init.d/mysql; generated)

 Active: active (running) since Sat 2019-11-16 21:22:44 EST;

6s ago

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

457

 Docs: man:systemd-sysv-generator(8)

 Process: 11023 ExecStart=/etc/init.d/mysql start

(code=exited, status=0/SUCCESS)

 Tasks: 40 (limit: 2200)

 Memory: 350.5M

 CGroup: /system.slice/mysql.service

 ├─11037 /bin/sh /usr/local/mysql//bin/mysqld_safe
--datadir=/usr/local/mysql/data --

 └─11148 /usr/local/mysql/bin/mysqld --basedir=/usr/
local/mysql/ --datadir=/usr/local

...

Nov 16 21:22:44 raspberrypi systemd[1]: Started LSB: start and

stop MySQL.

$ mysql -uroot -p -e "select @@version"

Enter password:

+-----------+

| @@version |

+-----------+

| 8.0.18 |

+-----------+

$ sudo systemctl stop mysql

$ sudo systemctl status mysql

...

Nov 16 21:23:02 raspberrypi systemd[1]: Stopped LSB: start and

stop MySQL.

That’s it! We’ve installed MySQL server and tested that is works. It

would also be a good idea to install the MySQL Shell on each server. In the

next section, you tell MySQL to use the external drive instead for storing

your databases and data.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

458

 Moving the Data Directory to the External Drive

Recall that you want to use MySQL to store your sensor data. As such, the

sensor data may grow in volume and over time may consume a lot of space.

Rather than risk filling up your boot image SD, which is normally only a few

gigabytes, you can use an external drive to save the data. This section shows

you how to tell MySQL to change its default location for saving data.

The steps involved require stopping the MySQL server, changing its

configuration, and then restarting the server. Finally, you test the change

to ensure that all new data is being saved in the new location. Begin by

stopping the MySQL server:

$ sudo systemctl stop mysql

You must create a folder for the new data directory:

$ sudo mkdir /media/mysql/mysql_data

Now you copy the existing data directory and its contents to the new

folder. Notice that you copy only the data and not the entire MySQL

installation, which is unnecessary:

$ sudo cp -R /usr/local/mysql/data /media/mysql/mysql_data

$ chown -R mysql mysql /media/mysql/mysql_data

Note If you get permission errors, try changing the owner of the
/media/mysql folder to mysql:mysql.

Next, you edit the configuration file for MySQL. In this case, you

change the datadir line to read datadir = /media/mysql. It is also a good

idea to comment out the bind-address line to permit access to MySQL

from other systems on the network:

$ sudo vi /etc/mysql/my.cnf

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

459

There is one last step. You must change the owner and group to the

MySQL user that was created on installation. Here is the correct command:

$ sudo chown -R mysql:mysql /media/mysql/mysql_data

Now you restart MySQL:

$ sudo systemctl start mysql

You can determine whether the changes worked by connecting to

MySQL, creating a new database, and then checking to see if the new

folder was created on the external drive, as shown in Listing 8-10.

Listing 8-10. Testing the New Data Directory

$./bin/mysql -uroot -p

Enter password:

Welcome to the MySQL monitor. Commands end with ; or \g.

Your MySQL connection id is 9

Server version: 8.0.18 Source distribution

Copyright (c) 2000, 2019, Oracle and/or its affiliates. All

rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or its

affiliates. Other names may be trademarks of their respective

owners.

Type 'help;' or '\h' for help. Type '\c' to clear the current

input statement.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

460

mysql> SHOW VARIABLES LIKE 'datadir';

+---------------+----------------------------------+

| Variable_name | Value |

+---------------+----------------------------------+

| datadir | /media/pi/mysql/mysql_data/data/ |

+---------------+----------------------------------+

1 row in set (0.08 sec)

mysql> CREATE DATABASE testme;

Query OK, 1 row affected (0.08 sec)

mysql> SHOW DATABASES;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| sys |

| testme |

+--------------------+

5 rows in set (0.06 sec)

mysql> \q

Bye

pi@raspberrypi:/usr/local/mysql $ sudo ls -lsa /media/pi/mysql/

mysql_data/data

total 168024

 4 drwxr-x--- 7 mysql mysql 4096 Nov 27 15:09 .

 4 drwxr-xr-x 3 mysql mysql 4096 Nov 27 15:03 ..

 4 -rw-r----- 1 mysql mysql 56 Nov 27 15:03 auto.cnf

 4 -rw-r----- 1 mysql mysql 499 Nov 27 15:03 binlog.

000001

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

461

 4 -rw-r----- 1 mysql mysql 178 Nov 27 15:03 binlog.

000002

 4 -rw-r----- 1 mysql mysql 346 Nov 27 15:09 binlog.

000003

 4 -rw-r----- 1 mysql mysql 48 Nov 27 15:06 binlog.

index

...

 4 -rw-r----- 1 mysql mysql 3344 Nov 27 15:03 ib_buffer_

pool

12288 -rw-r----- 1 mysql mysql 12582912 Nov 27 15:09 ibdata1

49152 -rw-r----- 1 mysql mysql 50331648 Nov 27 15:09 ib_

logfile0

49152 -rw-r----- 1 mysql mysql 50331648 Nov 27 15:03 ib_

logfile1

12288 -rw-r----- 1 mysql mysql 12582912 Nov 27 15:06 ibtmp1

...

 4 drwxr-x--- 2 mysql mysql 4096 Nov 27 15:09 testme

In the output, the new database name is represented as the folder

testme.

Well, there you have it—a new MySQL database server running on a

Raspberry Pi!

If you are curious about what more you can do with your new database

server, read on. In the next section, you tackle a very popular feature of

MySQL called replication. It permits two or more servers to have copies

of databases. For your purposes, it may be handy to use the copies as

a backup, so you don’t have to do any manual file copying from your

Raspberry Pi.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

462

 Advanced Project: Using MySQL Replication
to Back Up Your Sensor Data
One of the nicest things about using an external drive to save your MySQL

data is that at any point you can shut down your server, disconnect the

drive, plug it in to another system, and copy the data. That may sound

great if your Raspberry Pi database server is in a location that makes it easy

to get to (physically) and if there are periods when it is OK to shut down

the server.

However, this may not be the case for some sensor networks. One of

the benefits of using a Raspberry Pi for a database server is that the server

can reside in close proximity to the sensor nodes. If the sensor network is

in an isolated area, you can collect and store data by putting the Raspberry

Pi in the same location. But this may mean trudging out to a barn or pond

or walking several football field lengths into the bowels of a factory to get to

the hardware if there is no network to connect to your database server.

But if your Raspberry Pi is connected to a network, you can use an

advanced feature of MySQL called replication to make a live, up-to-the-

minute copy of your data. Not only does this mean you can have a backup,

but it also means you can query the server that maintains the copy and

therefore unburden your Raspberry Pi of complex or long-running queries.

The Raspberry Pi is a very cool small-footprint computer, but a data

warehouse it is not.

 What Is Replication, and How Does It Work?

MySQL replication is an easy-to-use feature and yet a very complex

and major component of the MySQL server. This section presents a

bird’s-eye view of replication for the purpose of explaining how it works

and how to set up a simple replication topology. For more information

about replication and its many features and commands, see the online

MySQL reference manual (http://dev.mysql.com/doc/refman/5.5/en/

replication.html).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

http://dev.mysql.com/doc/refman/5.5/en/replication.html
http://dev.mysql.com/doc/refman/5.5/en/replication.html

463

Replication requires two or more servers. One server must be

designated as the origin or master. The master role means all data changes

(writes) to the data are sent to the master and only the master. All other

servers in the topology maintain a copy of the master data and are by

design and requirement read-only servers. Thus, when your sensors send

data for storage, they send it to the master. Applications you write to use

the sensor data can read it from the slaves.

The copy mechanism works using a technology called the binary log

that stores the changes in a special format, thereby keeping a record of all

the changes. These changes are then shipped to the slaves and re-executed

there. Thus, once the slave re-executes the changes (called events), the

slave has an exact copy of the data.

The master maintains a binary log of the changes, and the slave

maintains a copy of that binary log called the relay log. When a slave

requests data changes from the master, it reads the events from the master

and writes them to its relay log; then another thread in the slave executes

those events from the relay log. As you can imagine, there is a slight delay

from the time a change is made on the master to the time it is made on the

slave. Fortunately, this delay is almost unnoticeable except in topologies

with very high traffic (lots of changes). For your purposes, it is likely when

you read the data from the slave, it is up to date. You can check the slave’s

progress using the command SHOW SLAVE STATUS; among many other

things, it shows you how far behind the master the slave is. You see this

command in action in a later section.

Now that you have a little knowledge of replication and how it

works, let’s see how to set it up. The next section discusses how to set up

replication with the Raspberry Pi as the master and a desktop computer as

the slave.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

464

 How to Set Up Replication

This section demonstrates how to set up replication from a Raspberry Pi

(master) to a desktop computer (slave). The steps include preparing the

master by enabling binary logging and creating a user account for reading

the binary log, preparing the slave by connecting it to the master, and

starting the slave processes. You conclude with a test of the replication

system.

Preparing the Master

Replication requires the master to have binary logging enabled. It is not

turned on by default, so you must edit the configuration file and turn it on.

Edit the configuration file with sudo vi /etc/mysql/my.cnf, and turn on

binary logging by uncommenting and changing the following lines:

server-id = 1

log_bin = /media/mysql/mysql_data/mysql-bin.log

The first line sets the server ID of the master. In basic replication (what

you have for version 5.5), each server must have a unique server ID. In this

case, you assign 1 to the master; the slave will have some other value, such

as 2. Imaginative, yes?

The next line sets the location and name of the binary log file. You save

it to your external drive because, like the data itself, the binary log can grow

over time. Fortunately, MySQL is designed to keep the file to a reasonable

size and has commands that allow you to truncate it and start a new file (a

process called rotating). See the online reference manual (https://dev.

mysql.com/doc/refman/8.0/en/replication.html) for more information

about managing binary log files. Once the edits are saved, you can restart

the MySQL server (or simply stop and then start).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/replication.html
https://dev.mysql.com/doc/refman/8.0/en/replication.html

465

Next, you must create a user to be used by the slave to connect to

the master and read the binary log. There is a special privilege for this

named REPLICATION SLAVE. The following code shows the correct GRANT

statement to create the user and add the privilege. Remember the user and

password you use here—you need it for the slave:

mysql> CREATE USER 'rpl'@'%' IDENTIFIED BY 'secret'

Query OK, 0 rows affected (0.01 sec)

mysql> GRANT REPLICATION SLAVE ON ∗.∗ TO 'rpl'@'%';
Query OK, 0 rows affected (0.01 sec)

But one more piece of information is needed for the slave. The slave

needs to know the name of the binary log to read and what position in the

file to start reading events. You can determine this with the SHOW MASTER

STATUS command:

mysql> SHOW MASTER STATUS;

+--------------+----------+-------------+------------------+...

| File | Position | Binlog_Do_DB | Binlog_Ignore_DB |...

+--------------+----------+-------------+------------------+...

| binlog.000003 | 878 | | |...

+--------------+----------+-------------+------------------+...

1 row in set (0.00 sec)

Now that you have the master’s binary log file name and position as

well as the replication user and password, you can visit your slave and

connect it to the master. You also need to know the hostname or IP address

of the Raspberry Pi as well as the port on which MySQL is running. By

default, the port is 3306; but if you changed that, you should note the new

value. Jot down all the information in Table 8-1.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

466

The MySQL server you want to use as a slave should be the same

version as the server on the Raspberry Pi or at least a server that is

compatible. The online reference manual specifies which MySQL versions

work well together. Fortunately, the list of versions with issues is very

short. In this section, you should have a server installed on your desktop or

server computer and ensure that it is configured correctly.

The steps needed to connect a slave to a master include issuing a

CHANGE MASTER command to connect to the master and a START SLAVE

command to initiate the slave role on the server. Yes, it is that easy!

 Recall that you need the information from the master to complete these

commands. The following commands show a slave being connected to

a master running on a Raspberry Pi. Let’s begin with the CHANGE MASTER

command as shown here:

mysql> CHANGE MASTER TO MASTER_HOST='10.0.1.17', MASTER_

PORT=3306, MASTER_LOG_FILE='mysql-bin.000003', MASTER_LOG_

POS=878, MASTER_USER='rpl', MASTER_PASSWORD='secret';

Query OK, 0 rows affected (0.22 sec)

Table 8-1. Information Needed

from the Master for Replication

Item from Master Value

Ip address or hostname

port

binary log file

binary log file position

Replication user ID

Replication user password

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

467

This example uses the IP address of the Raspberry Pi, the port number

(3306 is the default), the log file and position from the SHOW MASTER STATUS

command, and the user and password for the replication user. If you typed

the command correctly, it should return without errors. If there are errors

or warnings, use the SHOW WARNINGS command to read the warnings and

correct any problems.

The next step is to start the slave processes. This command is simply

START SLAVE. It normally does not report any errors; you must use SHOW

SLAVE STATUS to see them. Here are both of these commands in action as

shown in Listing 8-11.

Tip For wide results, use the \G option to see the columns as rows
(called vertical format).

Listing 8-11. Starting the Slave

mysql> start slave;

Query OK, 0 rows affected (0.00 sec)

mysql> show slave status \G

∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗ 1. row
∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗∗
 Slave_IO_State: Waiting for master to send event

 Master_Host: 10.0.1.17

 Master_User: rpl

 Master_Port: 3306

Connect_Retry: 60

 Master_Log_File: mysql-bin.000003

 Read_Master_Log_Pos: 107

 Relay_Log_File: clone-relay-bin.000003

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

468

Relay_Log_Pos: 4

Relay_Master_Log_File: mysql-bin.000001

 Slave_IO_Running: Yes

 Slave_SQL_Running: Yes

 Replicate_Do_DB:

 Replicate_Ignore_DB:

 Replicate_Do_Table:

 Replicate_Ignore_Table:

 Replicate_Wild_Do_Table:

 Replicate_Wild_Ignore_Table:

 Last_Errno: 0

 Last_Error:

 Skip_Counter: 0

 Exec_Master_Log_Pos: 107

 Relay_Log_Space: 555

 Until_Condition: None

 Until_Log_File:

Until_Log_Pos: 0

 Master_SSL_Allowed: No

 Master_SSL_CA_File:

 Master_SSL_CA_Path:

 Master_SSL_Cert:

 Master_SSL_Cipher:

 Master_SSL_Key:

Seconds_Behind_Master: 0

Master_SSL_Verify_Server_Cert: No

Last_IO_Errno: 0

Last_IO_Error:

 Last_SQL_Errno: 0

 Last_SQL_Error:

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

469

 Replicate_Ignore_Server_Ids:

 Master_Server_Id: 1

1 row in set (0.00 sec)

mysql>

Take a moment to slog through all these rows. There are several key

fields you need to pay attention to. These include anything with error in

the name and the state columns. For example, the first row (Slave_IO_

State) shows the textual message indicating the state of the slave’s I/O

thread. The I/O thread is responsible for reading events from the master’s

binary log. There is also a SQL thread that is responsible for reading events

from the relay log and executing them.

For this example, you just need to ensure that both threads are running

(YES) and there are no errors. For detailed explanations of all the fields

in the SHOW SLAVE STATUS command, see the online MySQL reference

manual (https://dev.mysql.com/doc/refman/8.0/en/replication-

configuration.html).

Now that the slave is connected and running, let’s check for that

testme database on it:

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

+--------------------+

3 rows in set (0.00 sec)

mysql>

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

https://dev.mysql.com/doc/refman/8.0/en/replication-configuration.html
https://dev.mysql.com/doc/refman/8.0/en/replication-configuration.html

470

Wait! Where did it go? Wasn’t this example supposed to replicate

everything? Well, yes and no. It is true that your slave is connected to the

master and will replicate anything that changes on the master from this

point on. Recall that you used the SHOW MASTER STATUS command to

get the binary log file and position. These values are the coordinates for

the location of the next event, not any previous events. Aha: you set up

replication after the testme database was created.

How do you fix this? That depends. If you really wanted the testme

database replicated, you would have to stop replication, fix the master, and

then reconnect the slave. I won’t go into these steps, but I list them here as

an outline for you to experiment on your own:

 1. Stop the slave.

 2. Go to the master and drop the database.

 3. Get the new SHOW MASTER STATUS data.

 4. Reconnect the slave.

 5. Start the slave.

Got that? Good. If not, it is a good exercise to go back and try these

steps on your own.

Once you get the master cleaned and replication restarted, go ahead

and try to create a database on the master and observe the result on the

slave. The following are the commands. I used a different database name

in case you elected to not try the previous challenge as shown here:

mysql> create database testme_again;

Query OK, 1 row affected (0.00 sec)

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

471

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| testme |

| testme_again |

+--------------------+

4 rows in set (0.01 sec)

mysql>

Returning to the slave, check to see what databases are listed there as

shown here:

mysql> show databases;

+--------------------+

| Database |

+--------------------+

| information_schema |

| mysql |

| performance_schema |

| testme_again |

+--------------------+

4 rows in set (0.00 sec)

mysql>

Success! Now your Raspberry Pi database server is being backed up by

your desktop computer.

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

472

 Component Shopping List
The only new component you need for this chapter is a surplus USB hard

drive, which is listed in Table 8-2. Table 8-3 shows a list of the supporting

hardware that is included in the shopping list from other chapters.

 Summary
This chapter introduced MySQL and gave you a crash course on how to use

it. You also compiled and installed MySQL on a Raspberry Pi and saw how

to use more advanced features of MySQL, like replication.

Table 8-2. Components Needed

Item Vendors Est. Cost USD Qty Needed

Surplus hard drive any USb hard drive

(surplus or purchased)

varies 1

Table 8-3. Components Reused from Previous Chapters

Item Vendors Est. Cost
USD

Qty
Needed

Raspberry pi Model 4b

2Gb or 4Gb RaM

sparkfun.com, adafruit.com,

thepithut.com

$50 and up 1

Mini-hDMI cable Most online and retail stores varies 1

hDMI or DvI monitor Most online and retail stores varies 1

USb keyboard Most online and retail stores varies 1

USb-C power supply Most online and retail stores varies 1

SD card, 32Gb or more Most online and retail stores varies 1

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

473

Although it does not have nearly the sophistication of a high-

availability, five-nines uptime (99.999%) database server, the low-cost

Raspberry Pi with an attached USB hard drive makes for a very small-

footprint database server that you can put just about anywhere.

This is great because sensor networks, by nature and often by

necessity, need to be small and low cost. Having to build an expensive

database server is not usually the level of investment desired.

Furthermore, depending on your choice of host for the sensor, saving

data is difficult. If you choose an Arduino as the host, saving the data to

a database requires a connection to the Internet and reliance on another

service to store your data. This is fine for cases where you can actually

connect the sensor nodes to the Internet12 (or the sensor network’s

aggregator node); but if you cannot or do not want to connect to the

Internet, it is difficult to get data into a database server from the Arduino.

That is, it was until recently. As you will see, there is indeed a way

to save sensor data from a sensor node. In the next chapter, you build a

sensor node that saves its data in your new database server—directly from

an Arduino!

12 Having sensor nodes connected to the Internet is one of the building blocks for
the Internet of Things (IoT).

ChapTeR 8 TURNING YOUR RaSpbeRRY pI INTO a DaTabaSe SeRveR

475© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_9

CHAPTER 9

MySQL and Arduino:
United at Last!
In previous chapters, I discussed several methods you can use to store

sensor data. One of those methods is storing the data in a database located

on your network. If you recall, this has several advantages, not the least

of which is that you do not have to connect your sensor network to the

Internet to enable this capability.

This is not difficult to achieve if your sensor nodes are connected to a

Raspberry Pi, but how do you do this if your sensor nodes are connected to

an Arduino? The Arduino could be a sensor node itself, with one or more

sensors connected directly to the Arduino I/O ports; or the Arduino could

be a data aggregator, collecting data from other sensor nodes via a ZigBee

wireless network using XBee modules as you saw in Chapter 6. But how

do you insert data into MySQL without using a third-party application or

cloud-based solution?

This chapter introduces a new database connector library that enables

you to send sensor data from your Arduino to a MySQL database.

https://doi.org/10.1007/978-1-4842-5796-8_9#ESM

476

 Introducing Connector/Arduino
Congratulations! You have just entered a new world of Arduino projects.

With a new database connector made specifically for the Arduino, you can

connect your Arduino project directly to a MySQL server without using an

intermediate computer or a web-based service.

Having direct access to a database server means you can store data

acquired from your project in a database. You can also check values stored

in tables on the server. The connector allows you to keep your sensor

network local to your facility—it can even be disconnected from the

Internet or any other external network.

If you have used some of the other methods of storing data from an

Arduino, such as writing data to flash memory (e.g., a secure digital card)

or an EEPROM device, you can eliminate the manual data copy and

extraction methods altogether. Similarly, if your project is such that you

cannot or do not want to connect to the Internet to save your data, the

ability to write to a local database server solves that problem as well.

Saving your data in a database not only preserves the data for analysis

at a later time but also means your project can feed data to more complex

applications. Better still, if you have projects that use large data volumes

for calculations or lookups, you can store the data on the server and

retrieve only the data you need for the calculation or operation—all

without taking up large blocks of memory on your Arduino. Clearly, this

opens a whole new avenue of Arduino projects!

The database connector is named Connector/Arduino. It implements

the MySQL client communication protocol (called a database connector)

in a library built for the Arduino platform. Henceforth, I refer to

Connector/Arduino when discussing general concepts and features and

refer to the actual source code as the Connector/Arduino library, the

connector, or simply the library.

Chapter 9 MySQL and arduino: united at LaSt!

477

Sketches (programs) written to use the library permit you to encode

SQL statements to insert data and run small queries to return data from

the database (e.g., using a lookup table).

You may be wondering how a microcontroller with limited memory

and processing power can possibly support the code to insert data into a

MySQL server. You can do this because the protocol for communicating

with a MySQL server is not only well known and documented but also

specifically designed to be lightweight. This is one of the small details that

make MySQL attractive to embedded developers.

In order to communicate with MySQL, the Arduino must be connected

to the MySQL server via a network. To do so, the Arduino must use an

Ethernet or WiFi shield and be connected to a network or subnet that can

connect to the database server (you can even connect across the Internet).

The library is compatible with most new Arduino Ethernet, WiFi, and

compatible clone shields that support the standard Ethernet library.

Caution if you are using WiFi or ethernet shields or modules that
are not 100% compatible arduino, you may run into issues using
the connector. Be sure you choose shields and modules that use
the standard ethernet set of classes from arduino. if they come with
their own libraries, chances are they may not be compatible with
Connector/arduino or, worst case, you may need to make changes to
the connector code in order to use it.

 Hardware Requirements
Connector/Arduino requires an Arduino or Arduino clone with at least

32KB of memory. If you are using an older Arduino like the Duemilanove,

be sure you have the version that uses the ATmega328P processor.

Figures 9-1 and 9-2 depict two of the most common Arduino boards.

Chapter 9 MySQL and arduino: united at LaSt!

478

Notice that the headers are different on the Leonardo as compared

to the Uno. You may not see the subtle differences in the boards, but

the Leonardo has built-in USB communication capabilities that enable

the use of a mouse and keyboard, four additional digital pins, six more

Figure 9-1. Arduino Uno (courtesy of arduino.cc)

Figure 9-2. Arduino Leonardo (courtesy of arduino.cc)

Chapter 9 MySQL and arduino: united at LaSt!

479

analog pins, and one more pulse-width modulation (PWM) pin. For more

 information about the differences and new features, see www.arduino.cc/

en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo.

Connector/Arduino also requires the Arduino Ethernet or WiFi shield

or equivalent. This is because the library references the Ethernet library

written for the Ethernet shield. If you have some other form of Ethernet

shield or if the Ethernet shield you are using requires a different library,

you have to make a slight modification to the library to use it. You see this

in a later section. Figure 9-3 shows the Arduino Ethernet Shield 2, and

Figure 9-4 shows the Arduino WiFi shield.

Note While the WiFi shield is listed as retired on the arduino site,
you can still find them on most online retailer sites. there are also a
variety of arduino clone WiFi shields that may be used. Be sure to find
one that is compatible with the ethernet libraries from arduino.

Figure 9-3. Arduino Ethernet Shield 2 (courtesy of arduino.cc)

Chapter 9 MySQL and arduino: united at LaSt!

http://www.arduino.cc/en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo
http://www.arduino.cc/en/Guide/ArduinoLeonardoMicro?from=Guide.ArduinoLeonardo

480

WHAT ABOUT THE DUE?

the connector has been tested and works with the due and similar clone boards.

if you have a due, you can use an arduino ethernet shield1 with the connector.

 What About Memory?
Connector/Arduino is implemented as an Arduino library. Although the

protocol is lightweight, the library does consume some memory. In fact,

the library requires about 28KB of flash memory to load. Thus, it requires

the ATmega328 or similar (or later) processor with 32KB of flash memory.

Figure 9-4. Arduino WiFi 101 shield (courtesy of arduino.cc)

1 I was unable to get the WiFi shield to work with the Due. The WiFi library needs
some work in this area, because it results in compilation errors. Check the WiFi
guide page for the latest concerning using the WiFi shield with the Due.

Chapter 9 MySQL and arduino: united at LaSt!

481

That may seem like there isn’t a lot of space for programming your sensor

node, but as it turns out you really don’t need that much for most sensors.

If you do, you can always step up to a new Arduino with more memory. For

example, the latest Arduino, the Due, has 512KB of memory for program

code. Based on that, a mere 28KB is an insignificant amount of overhead.

 Installing MySQL Connector/Arduino
To start using the library, you simply install it from the Arduino IDE like

we’ve done in other projects. Recall, we need to open a new sketch, then

choose Sketch ➤ Include Library ➤ Manage Libraries…, and, when the

dialog opens, enter MySQL in the search box. Then, install the MySQL

Connector/Arduino by clicking the Install button as shown in Figure 9-5.

The library is open source, licensed as GPLv2, and owned by Oracle

Corporation. Thus, any modifications to the library that you intend

to share must meet the GPLv2 license. Although it is not an officially

supported product of Oracle or MySQL, you can use the library under

the GPLv2.

Figure 9-5. Installing MySQL Connector/Arduino

Chapter 9 MySQL and arduino: united at LaSt!

482

DATABASE CONNECTORS FOR MYSQL

there are many database connectors for MySQL. oracle supplies a number of

database connectors for a variety of languages including the following. you can

find the connectors at http://dev.mysql.com/downloads/connector/.

• Connector/ODBC : Standard odBC compliant

• Connector/Net : Windows .net platforms

• Connector/J : Java applications

• Connector/Python : python applications

• Connector/C++: Standardized C++ applications

• Connector/Node.js : JavaScript applications

• MySQL native driver for PHP (mysqlnd): php connector

as you can see, there is a connector for just about any programming language

you are likely to encounter—and now there is even one for the arduino!

Now that you have the Connector/Arduino library installed, you are

ready to start writing database-enabled sketches! Before you jump into

the library source code, let’s first examine some of the limitations of

using the library.

 Limitations
Given the target platform—a small microcontroller with limited

memory—there are some limitations to using a complex library on the

Arduino platform. The first thing you should know about Connector/

Chapter 9 MySQL and arduino: united at LaSt!

http://dev.mysql.com/downloads/connector/

483

Arduino is that it isn’t a small library: it can consume a lot of memory.

Although the library uses dynamic memory to keep memory use to a

minimum, how much memory is required depends on how you use the

connector.

More specifically, you need to limit how many string constants you create.

If you are issuing simple data-insertion commands (INSERT INTO), an easy

way to calculate this is that the connector uses a bit more than the sum of

the length of all of your strings. If you are querying the server for data, the

connector uses a bit more than the cumulative size of a row of data returned.

If you are using the latest Arduino Due or similar board with a lot of

memory, this may not be an issue. But there are other considerations.

The following are the known limitations of the Connector/Arduino:

• Query strings (the SQL statements) must fit into

memory. This is because the class uses an internal

buffer for building data packets to send to the server.

It is suggested that long strings be stored in program

memory using PROGMEM (see cmd_query_P). See

www.arduino.cc/reference/en/language/variables/

utilities/progmem/ for more information.

• Result sets are read one row at a time and one field

at a time.

• The combined length of a row in a result set must fit

into memory.

• Server error responses are processed immediately. The

connector prints the error code and message to the

serial monitor.

Now that you know how the connector works on a high level, what

hardware is required, and how to download and install the connector,

let’s dive into using the connector to write sketches that insert data into a

MySQL server.

Chapter 9 MySQL and arduino: united at LaSt!

http://www.arduino.cc/reference/en/language/variables/utilities/progmem/
http://www.arduino.cc/reference/en/language/variables/utilities/progmem/

484

There is one other limitation that bears mentioning. The connector

is written to support the current and recent releases of MySQL from

Oracle Corporation. There are other variants maintained by other

vendors, but most of these have some modification that introduces subtle

incompatibilities. For example, there is at least one variant that is known

to cause problems working with the connector.2 Should you encounter

strange errors or issues using the connector with your MySQL server,

ensure you are using the server binaries distributed by Oracle. Switching to

the base or “original” source of MySQL can solve a host of small issues and

 incompatibilities.

Tip if you would like the latest information about the connector
including upcoming releases or if you need help with an issue
with the connector, visit the Github repository for the connector
at https://github.com/ChuckBell/MySQL_Connector_
Arduino/wiki.

WHAT ABOUT THE ESP8266?

due to the popularity of the small and affordable eSp like of microcontrollers

and WiFi modules, you may encounter these as you plan your sensor networks.

it is perfectly fine to use these as they can be programmed using the arduino

ide. however, you should take care and read the documentation for the

connector because it requires some minor changes to your script to enable use

with the eSp modules. there is even a sample sketch you can view for ideas.

2 Yes, I am saying categorically and against what marketing materials may suggest
that not all MySQL variants are 100% compatible. Some have minor changes to
the client protocol, which causes the connector to behave in unexpected ways
and, in some cases, fail.

Chapter 9 MySQL and arduino: united at LaSt!

https://github.com/ChuckBell/MySQL_Connector_Arduino/wiki
https://github.com/ChuckBell/MySQL_Connector_Arduino/wiki

485

 Building Connector/Arduino-Enabled
Sketches
Let’s begin with a simple sketch designed to insert a single row into a

table in MySQL. You are creating a “hello, world!” sketch (but saved in a

database table). All database-enabled sketches share the same common

building blocks. These include setting up a database to use, creating a

sketch with a specific set of include files, connecting to the database server,

and executing queries. This section walks through the basic steps needed

to create and execute a database-enabled sketch.

 Database Setup
The first thing you need is a database server! You can use your desktop

or laptop computer if you’d prefer to limit the unknowns (always a good

practice when experimenting with embedded systems). I used a laptop

running MySQL to keep the example simple. However, if you built a

Raspberry Pi MySQL database server in the previous chapter, feel free to

use your shiny new Raspberry Pi database server instead.

I also keep the example simple by using only the setup() method to

connect to the MySQL server and issue the query. This simplifies things

because the setup() method is called only once. Feel free to move the

INSERT statement to the loop() method if you want to see what happens

when multiple INSERT statements are issued. Be sure to include the

delay() call to allow the library sufficient time to execute and negotiate

the protocol. Attempting to issue too many queries too quickly can be a

source of strange errors or missing rows.

You begin by creating a database and a table to use to store the data.

For this experiment, you create a simple table with two columns: a text

column (char) to store a message and a TIMESTAMP column to record the

date and time the row was saved. I find the TIMESTAMP data type to be an

excellent choice for storing sensor data. It is rare that you would not want

Chapter 9 MySQL and arduino: united at LaSt!

486

to know when the sample was taken! Best of all, MySQL makes it very easy

to use. In fact, you don’t even need to pass a token NULL value to the server

because it generates and stores the current timestamp itself.3

Listing 9-1 shows a MySQL client (named mysql) session that creates

the database and the table and inserts a row into the table manually. The

sketch will execute a similar INSERT statement from your Arduino. By

issuing a SELECT command, you can see each time the table was updated.

Note i am using the MySQL Shell for the examples in this chapter,
but you can use the older mysql client if you prefer.

Listing 9-1. Creating the Test Database

> mysqlsh --sql --uri root@localhost:33060

MySQL Shell 8.0.19

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All

rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or

its affiliates.

Other names may be trademarks of their respective owners.

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:33060'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 18 (X protocol)

Server version: 8.0.19 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

> CREATE DATABASE test_arduino;

3 Older versions of MySQL (prior to 8.0) may require passing NULL as the value for a
TIMESTAMP column.

Chapter 9 MySQL and arduino: united at LaSt!

487

Query OK, 1 row affected (0.0190 sec)

> USE test_arduino;
Default schema set to `test_arduino`.

Fetching table and column names from `test_arduino` for auto-

completion... Press ^C to stop.

> CREATE TABLE hello (source char(20), event_date timestamp
DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP);
Query OK, 0 rows affected (0.0503 sec)

> CREATE USER 'arduino_user'@'%' IDENTIFIED WITH mysql_native_
password BY 'secret';
Query OK, 0 rows affected (0.0126 sec)

> GRANT ALL ON *.* to 'arduino_user'@'%';
Query OK, 0 rows affected (0.0108 sec)

> INSERT INTO hello (source) VALUES ('From Laptop');
Query OK, 1 row affected (0.0080 sec)

> SELECT * FROM hello;
+-------------+---------------------+

| source | event_date |

+-------------+---------------------+

| From Laptop | 2020-03-04 13:24:14 |

+-------------+---------------------+

Notice here I created the database as well as a user for accessing that

database. You may notice a new phrase in the CREATE USER command. The

IDENTIFIED WITH mysql_native_password clause tells MySQL to use the

native password plugin instead of the newer sha256_password plugin. If

you have an older version of the MySQL server (5.7 and prior), you do not

need this clause as it may generate and error.

Tip Be sure to enable the mysql_native_password plugin for your
MySQL server if you have connection issues or use the preceding clause
when creating users you want to use to connect from your arduino.

Chapter 9 MySQL and arduino: united at LaSt!

488

Notice I also created a simple table with a timestamp column for

recording the date and time of the event. This is a very simple example, but

you can use these techniques to help make your database easier to use.

That is, you don’t have to calculate the date and time for a row—just insert

the data and let the database handle it. Cool.

DESIGNING TABLES FOR STORING SENSOR DATA

When designing tables for your sensor networks, be sure to select the correct

data type and length (if applicable) carefully. it would be a tragedy to learn

months later that your painstakingly constructed sensor network has had its

data truncated as a consequence of choosing the wrong data type. Similarly, if

you run into problems with your sensor nodes or aggregate nodes failing when

saving data, check the length of your character and other fields to ensure that

you are not overrunning the allocated size (length).

 Setting Up the Arduino
The hardware you need for this example is one Arduino or shield-

compatible clone and an Arduino Ethernet shield. There are various forms

of the Ethernet shield, but I prefer the Arduino-branded shields because

they tend to be more reliable.

BUYER BEWARE: CHECK COMPATIBILITY

For the most part, arduino clones described as “shield compatible” are safe to use,

but you should always check. i failed to do this once, thinking i had found a great

deal on an ethernet shield that was “100% compatible,” only to discover it had an

annoying flaw that required me to remove the shield in order to upload sketches.

although the shield works and i use it regularly, it is not 100% compatible.

Chapter 9 MySQL and arduino: united at LaSt!

489

I like to mount my Arduino on a platform in order to make it easier to

handle and less likely that I will accidentally set it down on a surface or

object that conducts electricity—or, perhaps worse, that it will accidentally

scratch my desk! Go ahead and mount the Ethernet shield to your Arduino.

Be sure all the pins are seated. Figure 9-6 shows my Arduino and Ethernet

shield mounted on a platform4 with a handy small breadboard nearby.

 Starting a New Sketch
It is time to start writing your sketch. Open your Arduino environment, and

create a new sketch named hello_mysql.ino. The following sections detail

the parts of a typical MySQL database-enabled sketch. You begin with the

required include files.

Figure 9-6. Arduino with Ethernet shield

4 Breadboard and mounting plate by Adafruit (www.adafruit.com/products/275).

Chapter 9 MySQL and arduino: united at LaSt!

http://www.adafruit.com/products/275

490

 Include Files

To use the Connector/Arduino library, recall that it requires an Ethernet

shield and therefore the Ethernet library. We also need to include the

connector headers for making a connection and issuing a query. The

following shows all the library header files you need to include at a bare

minimum for a MySQL database-enabled sketch. Go ahead and enter

these now:

#include <Ethernet.h>

#include <MySQL_Connection.h>

#include <MySQL_Cursor.h>

Note including the Ethernet.h header is not needed for
the examples in this book, but it is oK to include it if you get
compilation errors.

 Preliminary Setup

With the include files set up, you next must take care of some preliminary

declarations. These include declarations for the Ethernet library and

Connector/Arduino.

The Ethernet library requires you to set up a MAC address and the IP

address of the server. The MAC address is a string of hexadecimal digits

and need not be anything special, but it should be unique among the

machines on your network. It uses Dynamic Host Control Protocol (DHCP)

to get an IP address, DNS, and gateway information. The IP address of the

server is defined using the IPAddress class (which stores the value as an

array of four integers, just as you would expect).

Chapter 9 MySQL and arduino: united at LaSt!

491

On the other hand, the Ethernet class also permits you to supply an

IP address for the Arduino. If you assign an IP address for the Arduino, it

must be unique for the network segment to which it is attached. Be sure

to use an IP scanner to make sure your choice of IP address isn’t already

in use.

The following shows what these statements would look like for a node

on a 10.0.1.X network:

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress server_addr(10,0,1,35); // IP of the MySQL *server*

here

Next, you need to set up some variables for Connector/Arduino. You

need to define a reference to the library and some strings to use for the

data you use in the sketch. At a minimum, these include a string for the

user ID, another for the password, and one for the query you use. This last

string is optional because you can just use the literal string directly in the

query call, but it is good practice to make strings for the query statements.

It is also the best way to make queries parameterized for reuse.

The following is an example of the statements needed to complete the

declarations for your sketch:

EthernetClient client;

MySQL_Connection conn((Client *)&client);

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

char INSERT_SQL[] = "INSERT INTO test_arduino.hello (source)

VALUES ('Hello from Arduino!')";

Notice the INSERT statement. You include a string to indicate that you

are running the query from your Arduino.

Chapter 9 MySQL and arduino: united at LaSt!

492

 Connecting to a MySQL Server

That concludes the preliminaries; let’s get some code written! Next, you

change the setup() method. This is where the code for connecting to the

MySQL server should be placed. Recall that this method is called only once

each time the Arduino is booted. Listing 9-2 shows the code needed.

Listing 9-2. Setup() Method

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 Ethernet.begin(mac_addr);

 Serial.println("Connecting...");

 if (conn.connect(server_addr, 3306, user, password)) {

 delay(1000);

 // insert query here //

 }

 else

 Serial.println("Connection failed.");

}

The code begins with a call to the Ethernet library to initialize the

network connection. Recall that when you use the Ethernet.begin()

method, passing only the MAC address as shown in the example, it causes

the Ethernet library to use DHCP to obtain an IP address. If you want

to assign an IP address manually, see the Ethernet.begin() method

documentation at http://arduino.cc/en/Reference/EthernetBegin.

Next is a call to serial monitor. Although not completely necessary,

it is a good idea to include it so you can see the messages written by

Connector/Arduino. If you have problems with connecting or running

queries, be sure to use the serial monitor so you can see the messages sent

by the library.

Chapter 9 MySQL and arduino: united at LaSt!

http://arduino.cc/en/Reference/EthernetBegin

493

Now comes a call to the delay() method. You issue this wait of one

second to ensure that you have time to start the serial monitor and not

miss the debug statements. Feel free to experiment with changing this

value if you need more time to start the serial monitor.

After the delay, you print a statement to the serial monitor to indicate

that you are attempting to connect to the server. Connecting to the server

is a single call to the Connector/Arduino class we created earlier with

the method named connect(). You pass the IP address of the MySQL

database server, the port the server is listening on, and the user name

and password. If this call passes, the code drops to the next delay()

method call.

This delay is needed to slow execution before issuing additional

MySQL commands. Like the previous delay, depending on your hardware

and network latency, you may not need this delay. You should experiment

if you have strong feelings against using delays to avoid latency issues. On

the other hand, should the connection fail, the code falls through to the

print statement to tell you the connection has failed.

Notice the commented line, // insert query here //. This is where

we would place our example query so that the Arduino sends the data

once to MySQL. If we place this in the loop() method, it will send the data

many times, and for this example, that isn’t what we want.

 Running a Query

Now it is time to run the query. Place this code in the branch that is

executed after a successful connection. Listing 9-3 shows the section

of code we will use to run the INSERT query. Take a moment to read

through it. Notice we create a new instance of the MySQL_Cursor class,

execute the query, and then check the result for errors (false means it

failed). At the end, we simply delete the instance as we don’t need it

anymore.

Chapter 9 MySQL and arduino: united at LaSt!

494

Listing 9-3. Connecting and Running a Query

Serial.print("Recording hello message...");

// Initiate the query class instance

MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

// Execute the query

int res = cur_mem->execute(INSERT_SQL);

if (!res) {

 Serial.println("Query failed.");

} else {

 Serial.println("Ok.");

}

// Note: since there are no results, we do not need to read any

data

// Deleting the cursor also frees up memory used

delete cur_mem;

Notice that you simply invoke a method named cur_mem->execute()

and pass it the query you defined earlier. Yes, it is that easy!

Finally, the loop() method is empty for this example as we aren’t

doing anything more than the one query on start.

void loop() {

}

 One More Thing…

At this point, you’ve got everything you need to set up and run a basic

sketch with the connector. However, there are two things you may want to

consider when developing your sketches. First, you should enable debug

mode so that you can see more information when there are errors. Second,

if you plan to execute SELECT queries, enable the select code. Both of these

modes are turned off by default in order to save a few bytes by disabling

parts of the code.

Chapter 9 MySQL and arduino: united at LaSt!

495

For example, the many debug print statements to the serial

monitor consume a bit more space than you may have. Similarly, the

code for processing data from the server for SELECT queries takes up

a bit of space for that code. When working with small devices like the

Arduino, sometimes saving a few bytes may make the sketch stable and

successful.

To turn on debug mode, navigate to the MySQL_Packet.h file in your

Arduino library directory under the MySQL_Connector_Arduino/src folder.

Add the following line of code (shown in bold) immediately after the

version line. This will enable printing of additional diagnostic data when

there are errors.

#define MYSQL_OK_PACKET 0x00

#define MYSQL_EOF_PACKET 0xfe

#define MYSQL_ERROR_PACKET 0xff

#define MYSQL_VERSION_STR "1.2.0"

#define DEBUG

Tip always enable debug mode when starting a new sketch. you
can remove it later once you’ve got it working correctly.

To enable the select mode, add the following line of code (shown

in bold) after the version line. This will enable the sections of code that

support SELECT queries.

#define MYSQL_OK_PACKET 0x00

#define MYSQL_EOF_PACKET 0xfe

#define MYSQL_ERROR_PACKET 0xff

#define MYSQL_VERSION_STR "1.2.0"

#define WITH_SELECT

Chapter 9 MySQL and arduino: united at LaSt!

496

 Testing the Sketch
You now have all the code needed to complete the sketch except for the

loop() method. In this case, you make it an empty method because you are

not doing anything repetitive. Listing 9-4 shows the completed sketch.

Tip if you are having problems getting the connector working, see
the “troubleshooting Connector/arduino” section and then return to
this project.

Listing 9-4. “Hello, MySQL!” Sketch

/**
 * Beginning Sensor Networks Second Edition

 * Example: Hello, MySQL!

 *
 * This code module demonstrates how to create a simple

database-enabled

 * sketch.

 *
 * Dr. Charles Bell 2020

 */

#include <MySQL_Connection.h>

#include <MySQL_Cursor.h>

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress server_addr(10,0,1,35); // IP of the MySQL *server*

here

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

Chapter 9 MySQL and arduino: united at LaSt!

497

// Sample query

char INSERT_SQL[] = "INSERT INTO test_arduino.hello (source)

VALUES ('Hello, Arduino!')";

EthernetClient client;

MySQL_Connection conn((Client *)&client);

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 Ethernet.begin(mac_addr);

 Serial.print("My local IP is: ");

 Serial.println(Ethernet.localIP());

 Serial.println("Connecting...");

 if (conn.connect(server_addr, 3306, user, password)) {

 delay(1000);

 Serial.print("Recording hello message...");

 // Initiate the query class instance

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 int res = cur_mem->execute(INSERT_SQL);

 if (!res) {

 Serial.println("Query failed.");

 } else {

 Serial.println("Ok.");

 }

 // Note: since there are no results, we do not need to read

any data

 // Deleting the cursor also frees up memory used

 delete cur_mem;

 }

Chapter 9 MySQL and arduino: united at LaSt!

498

 else

 Serial.println("Connection failed.");

}

void loop() {

}

Before you press the button to compile and upload the sketch, let’s

discuss a couple of errors that could occur. If you have the wrong IP

address or the wrong user name and password for the MySQL server, you

could see a connection failure in the serial monitor like that shown as

follows. Notice here it tells us what to look for; the user id and password

are incorrect.

My local IP is: 192.168.42.12

Connecting...

...trying...

Error: 84 = Access denied for user 'arduino_user'@'192.168.42.12'

(using password: YES).

Connection failed.

If your Arduino connects to the MySQL server but the query fails, you

see an error in the serial monitor like the one shown as follows. Notice it

tells us what to look for; the table name is wrong (doesn’t exist).

My local IP is: 192.168.42.12

Connecting...

...trying...

Connected to server version: 8.0.18

Recording hello message...Error: 60 = Table 'test_arduino.

hello_arduino' doesn't exist.

Query failed.

Chapter 9 MySQL and arduino: united at LaSt!

499

Be sure to double-check the source code and the IP address of your

MySQL server as well as the username and password chosen. If you

are still encountering problems connecting, see the “Troubleshooting

Connector/Arduino” section for a list of things to test to ensure that your

MySQL server is configured correctly.

Once you have double-checked the server installation and the

information in the sketch, compile and upload the sketch to your Arduino.

Then start the serial monitor and observe the process of connecting to the

MySQL server. The following shows a completed and successful execution

of the code:

My local IP is: 192.168.42.12

Connecting...

...trying...

Connected to server version: 8.0.18

Recording hello message...Ok.

Wow, is that it? Not very interesting, is it? If you see the statements in your

serial monitor as shown earlier, rest assured that the Arduino has connected to

and issued a query to the MySQL server. To check, simply return to the mysql

client or MySQL shell and issue a SELECT on the table. But first, run the sketch

a number of times to issue several inserts in the table.

You can do this in two ways.

First, you can press RESET on your Arduino. If you leave your serial

monitor running, the Arduino presents the messages in order, as shown

as follows. Second, you can upload the sketch again. In this case, the serial

monitor closes, and you have to reopen it. The advantage of this method is

you can change the query statement each time, thereby inserting different

rows into the database. Go ahead and try that now, and check your

database for the changes.

My local IP is: 192.168.42.12

Connecting...

Chapter 9 MySQL and arduino: united at LaSt!

500

...trying...

Connected to server version: 8.0.18

Recording hello message...Ok.

My local IP is: 192.168.42.12

Connecting...

...trying...

Connected to server version: 8.0.18

Recording hello message...Ok.

My local IP is: 192.168.42.12

Connecting...

...trying...

Connected to server version: 8.0.18

Recording hello message...Ok.

Let’s check the results of the test runs. To do so, you connect to the

database server with the mysql client and issue a SELECT query. Listing 9-5

shows the results of the three runs from the example. Notice the different

timestamp for each run. As you can see, I ran it once, then waited a few

minutes and ran it again (I used the RESET button on my Arduino Ethernet

shield), and then ran it again right away. Very cool, isn’t it?

Listing 9-5. Verifying the Connection

$ mysqlsh --uri root@localhost:33060 --sql

MySQL Shell 8.0.18

Copyright (c) 2016, 2019, Oracle and/or its affiliates. All

rights reserved.

Oracle is a registered trademark of Oracle Corporation and/or

its affiliates.

Other names may be trademarks of their respective owners.

Chapter 9 MySQL and arduino: united at LaSt!

501

Type '\help' or '\?' for help; '\quit' to exit.

Creating a session to 'root@localhost:33060'

Fetching schema names for autocompletion... Press ^C to stop.

Your MySQL connection id is 37 (X protocol)

Server version: 8.0.18 MySQL Community Server - GPL

No default schema selected; type \use <schema> to set one.

 MySQL localhost:33060+ ssl SQL > SELECT * FROM test_arduino.

hello;

+-----------------+---------------------+

| source | event_date |

+-----------------+---------------------+

| From Laptop | 2020-03-10 14:21:21 |

| Hello, Arduino! | 2020-03-10 14:48:11 |

| Hello, Arduino! | 2020-03-10 14:54:24 |

| Hello, Arduino! | 2020-03-10 14:54:41 |

| Hello, Arduino! | 2020-03-10 14:54:56 |

+-----------------+---------------------+

5 rows in set (0.0003 sec)

 What About the Ethernet Shield 2?
If you are planning to use the Ethernet Shield 2, you do not need to change

anything. The connector and the example sketch will work without

modification.

Chapter 9 MySQL and arduino: united at LaSt!

502

 What About the WiFi Shield?
If you are planning to use the WiFi shield, you need to make a few minor

changes to enable the WiFi-specific code in the connector.5 Changing the

connector code is very simple. Open the MySQL_Packet.h file and add

the following line of code replacing (or commenting out) the #include

<Ethernet.h> line:

#ifdef ARDUINO_ARCH_ESP32

 #include <Arduino.h>

#elif ARDUINO_ARCH_ESP8266

 #include <ESP8266WiFi.h>

#else

 #include <WiFi.h>

// #include <Ethernet.h>

#endif

You need to use one of the available WiFi connection mechanisms and

comment out the Ethernet.begin() call. An example setup() method

with changes is shown here:

// WiFi card example

char ssid[] = "my_lonely_ssid";

char pass[] = "horse_with_silly_name";

Connector my_conn; // The Connector/Arduino reference

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect.

Leonardo only

5 Assuming you have downloaded and installed the WiFi shield library from
https://github.com/arduino/wifishield.

Chapter 9 MySQL and arduino: united at LaSt!

https://github.com/arduino/wifishield

503

 // WiFi section

 int status = WiFi.begin(ssid, pass);

 // if you're not connected, stop here:

 if (status != WL_CONNECTED) {

 Serial.println("Couldn't get a WiFi connection!");

 while(true);

 }

 // if you are connected, print out info about the connection:

 else {

 Serial.println("Connected to network");

 IPAddress ip = WiFi.localIP();

 Serial.print("My IP address is: ");

 Serial.println(ip);

 }

...

See http://arduino.cc/en/Guide/ArduinoWiFiShield for more

examples of how to use a connection method to connect your WiFi shield

to your access point.

If you plan to use the WiFi shield with an Arduino that is older than an

Arduino Uno Rev3, you need to use a jumper on the IOREF pin, as shown

here (courtesy of arduino.cc) for the WiFi shield to work properly. The WiFi

shield page has this and a host of other very important information for

using the WiFi shield in your project.

 What About the WiFi 101 Shield?
The newer WiFi 101 shield can also be used. You must modify the MySQL_

Packet.h file similar to the WiFi shield as shown here:

#ifdef ARDUINO_ARCH_ESP32

 #include <Arduino.h>

Chapter 9 MySQL and arduino: united at LaSt!

http://arduino.cc/en/Guide/ArduinoWiFiShield

504

#elif ARDUINO_ARCH_ESP8266

 #include <ESP8266WiFi.h>

#else

 #include <WiFi101.h>

// #include <Ethernet.h>

#endif

Tip if your board has WiFi capabilities, be sure to check which WiFi
library it requires and change the connector accordingly.

 Troubleshooting Connector/Arduino
Setting up and using Connector/Arduino as described usually results in

success. However, there are cases when the setup does not go quite right

and the examples in this chapter simply won’t work. Many problems

can be attributed to your choice of Arduino hardware, networking

environment setup, and even MySQL server configuration.

For example, if your Arduino hardware is not an official Arduino

product, if it is newer than the examples used in the book, or if your

Ethernet shield is a clone or something other than a wired network shield,

you may encounter problems getting everything to work.

If this happens to you, don’t give up!6 This section is designed to give

you tips and techniques for figuring out what is wrong with your hardware,

software, network, and operating system that may be preventing the

connector from working.

6 As satisfying as it may be, please refrain from giving your tiny Arduino skeet-
shooting lessons. All is not lost, and most issues can be resolved with a little
patience and the techniques described here.

Chapter 9 MySQL and arduino: united at LaSt!

505

Rather than include an exhaustive description of all the procedures

needed for all cases,7 I present a taxonomy that you can use to diagnose

and solve your issues. There are several categories of problem areas. I

discuss each of these in turn:

• MySQL server configuration

• MySQL user account problems

• Networking configuration

• Connector installation

• Others

The following sections explain the issue and suggest a cause and

solution. It may be that one or more of these issues are causing your sketch

to fail. The best way to use this section is to read through it from start to

finish, checking your system along the way. Each section builds on the

previous section, ensuring that all possible issues are solved in an orderly

manner. I am certain you can get your sketch working using this technique.

Tip the arduino site has a very good troubleshooting section for
general arduino help. you should consult this page in addition to
following the advice in this section. See http://arduino.cc/en/
Guide/troubleshooting.

7 An impossible feat for mere mortals.

Chapter 9 MySQL and arduino: united at LaSt!

http://arduino.cc/en/Guide/troubleshooting
http://arduino.cc/en/Guide/troubleshooting

506

 MySQL Server Configuration
One of the most common issues that can cause your MySQL sketch to fail

or not work properly has to do with how the MySQL server is configured.

In general, you are likely to see errors connecting to the server in the serial

monitor. This section contains a number of causes for this problem.

 Server Is Not Using Networking

The MySQL server can be configured to disable networking with the

--skip-networking option. In this case, you may be able to connect to

your MySQL server on your local machine (on the machine where MySQL

is installed) by using the mysql client, but accessing the machine from

another host fails.

The best way to check this without using a second computer (which

is also a viable test) is to use the mysql client as follows. To test local

connection to the server, run this command (substituting your username

and password):

$ mysql -uroot -psecret

If this works, then your server is alive and accepting connections. If this

does not work, refer to the MySQL online reference manual to check your

configuration and other ways to ensure that MySQL is running properly.

Now, let’s attempt to connect via the network. This is triggered

whenever you use the host option as shown next. Notice that it is almost

the same command, but in this case, you supply the IP address of the

server (your machine) and the port for MySQL:

$ mysql -uroot -psecret -h 10.0.1.23 --port 3306

This simulates how the Arduino connects to the MySQL server. If it

works, it verifies that your MySQL server is alive and accepting network

connections using the IP and port supplied. Be sure to use these settings in

your sketch.

Chapter 9 MySQL and arduino: united at LaSt!

507

If the command fails, locate your mysql.cnf file (mysql.ini for some

Windows installations), and remove the skip-networking option. You can

disable it by placing a # in the first column of the line. Once you have done

this, be sure to restart your MySQL server to make the changes take effect,

and then try the previous test again.

 Cannot Connect, and Correct IP Address Is Used

Another issue that is closely related to the --skip-networking option is

the --bind-address option. This option ensures that MySQL listens and

communicates on a specific IP address. It is used mainly for multi-homed

systems (computers with multiple network adapters). If this option is

enabled and it is not set to the same IP address as the host on which it is

installed, the MySQL server will exhibit behavior similar to the previous

problem.

Testing this problem uses the same test as the previous example.

The resolution is simply to comment out the bind-address option in the

MySQL configuration file. Remember to restart your MySQL server if you

change the configuration file.

 I Can Connect Locally but Not Remotely

If the previous issues do not resolve the problem or if your MySQL server

is configured correctly and you still cannot connect, it is possible that

your computer is running a firewall or similar port-blocking application.

The best way to test this is to use a second computer and the mysql client

application to try to connect to the server. If you get errors related to the

server not responding or similar, the server could be blocking connections.

Again, the command to use from the remote computer is

$ mysql -uroot -psecret –- 10.0.1.23 --port 3306

Chapter 9 MySQL and arduino: united at LaSt!

508

To resolve the issue, you must change your firewall or port-blocking

application. MySQL uses port 3306 by default. Be sure to check your

firewall application to ensure that it permits connections (inbound and

outbound) through port 3306. If it does not, enable this port and try your

sketch again.

Tip For more information about setting up the MySQL server for
network access and platform-specific installation steps, see the
online MySQL reference manual.

 MySQL User Account Problems
Another very common source of issues concerns how the MySQL user is

created. More specifically, it has to do with the choice of hostname in the

CREATE USER or GRANT statement. For example, if you issued the following

commands, you could have problems connecting from your Arduino or a

second computer:

> CREATE USER 'joe'@'10.0.1.23' IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.01 sec)

> GRANT SELECT ON test_arduino.* TO 'joe'@'10.0.1.24';

Query OK, 0 rows affected (0.01 sec)

Do you see the problems (there are three)? First, you created a user

with a specific host (10.0.1.23), but later you granted SELECT privileges to

the test_arduino database to the same user—or did you?

Note the GRANT statement shown in the example may fail for
newer versions of the MySQL server.

Chapter 9 MySQL and arduino: united at LaSt!

509

This is the second problem. In the GRANT statement, you used the host

10.0.1.24, which means when user joe connects from 10.0.1.24, he can see

the test_arduino database.

The third problem arises from the second. Because you did not

reference an existing user and host combination, MySQL does not require

joe to use a password when connecting from host 10.0.1.24. You can see

that this is the case by querying the mysql.user table:

> SELECT user, host, password from mysql.user WHERE user = 'joe';

+------+-----------+---+

| user | host | password |

+------+-----------+---+

| joe | 10.0.1.23 | *14E65567ABDB5135D0CFD9A70B3032C179A49EE7 |

| joe | 10.0.1.24 | |

+------+-----------+---+

2 rows in set (0.00 sec)

Aha, you say. Aha indeed. The lesson here is always make sure your

choice of user and host match the IP (or hostname) of the machine from

which you want to connect.

But you may be thinking, “What about DHCP?” If you use DHCP, as do

most sketches and examples, then you may not know what IP address your

Arduino has been assigned. What do you do then?

One of the ways to reduce hostname and permissions problems is to

use wildcards. Consider this alternative to the previous commands:

> CREATE USER 'joe'@'10.0.1.%' IDENTIFIED BY 'secret';

Query OK, 0 rows affected (0.00 sec)

> GRANT SELECT ON test_arduino.* TO 'joe'@'10.0.1.%';

Query OK, 0 rows affected (0.00 sec)

> SELECT user, host, password from mysql.user WHERE user = 'joe';

Chapter 9 MySQL and arduino: united at LaSt!

510

+------+----------+---+

| user | host | password |

+------+----------+---+

| joe | 10.0.1.% | *14E65567ABDB5135D0CFD9A70B3032C179A49EE7 |

+------+----------+---+

1 row in set (0.00 sec)

Notice that here you use a % for the last portion of the IP address.

This effectively permits the user to connect from any computer on that

subnet. Cool! Notice also that your problem of two user accounts has been

resolved.

Other issues related to user accounts are cases where you’ve

forgotten the password, misspelled it, or used caps (or not caps) when

you assigned the password. All these user account issues can be tested

with the mysql client application. I recommend trying the connection

locally and remotely from a second computer. If it works remotely, you

know the account is set up correctly. Be sure to do a SELECT or two when

you are connected with your Arduino user account, just to make sure the

permissions are set correctly.

There is one other issue that can cause connection issues. Recall we

discussed the mysql_native_password plugin. If you are using a recent

version of MySQL, you will need to either set this for each user when you

create them or set the password plugin default.

To enable the mysql_native_password plugin for each user, add the

clause as shown here:

CREATE USER 'user'@'%' IDENTIFIED WITH mysql_native_password BY

'secret';

If you have already created users, you can use the ALTER USER

command to change the password plugin.

ALTER USER 'user'@'%' IDENTIFIED WITH mysql_native_password;

Chapter 9 MySQL and arduino: united at LaSt!

511

To make the native password plugin the default for all users, add the

following to the configuration file and restart MySQL:

[mysqld]

...

default-authentication-plugin=mysql_native_password

...

 Networking Configuration
When networking problems occur, it isn’t always obvious what is

wrong. Rather than listing a number of common error conditions or

specific examples, I discuss things you need to check to make sure

things are working.

When there are networking issues, you are likely to encounter or

observe an inability to connect to your MySQL server. Yes, you probably

see the same problems as described previously in almost the same ways.

The best way to check whether you are having networking issues is to

connect a second computer to the same network cable that you are using

for your Arduino and try to connect with your friend the mysql client. Be

sure to check that the computer is set up to get its IP address from DHCP

and all other networking settings are the same as your Arduino (no static

DNS, and so on).

This is very important because if your computer is configured with a

static IP and the Arduino sketch is using DHCP (or vice versa), this can

mask the problem! For example, if no DHCP server is available, Arduino

sketches configured to get the IP address dynamically will fail.

If you connect a second computer to your network using the same

cable as the Arduino, and it works but the sketch still does not work,

you should consider the possibility that your Ethernet shield is faulty or

incompatible with your hardware. Check the vendor’s or manufacturer’s

Chapter 9 MySQL and arduino: united at LaSt!

512

website for any limitations or compatibility workarounds. I have seen

this on at least one occasion. Another possibility is that the shield has

malfunctioned (rare, but it does happen).

Now, if your computer fails to connect to your MySQL server, check

the following items to ensure that your networking is configured correctly.

Some of these may seem a little dumb, but I can assure you that I’ve

personally encountered each of these at least once:

• Is the router/switch turned on?8

• Are you using the correct subnet?

• Are you using the correct options in the proper order

for Ethernet.begin()? See the online Arduino library

reference page (http://arduino.cc/en/Reference/

EthernetBegin) for more details.

• If you are trying to use DHCP, is there a DHCP server on

your network?

• Is the network cable plugged in to the switch/router?9

• Check the lights on the switch/router. Does it show

that the cable is connected? If not, you may have a

bad cable.

Once again, check and fix all of these issues, go back to the second

computer, and try the connection. When it is working, your sketch should

connect to the MySQL server.

8 You will be surprised how often this happens—and how humble you feel when
you discover that it works great once it has proper power supplied.

9 Been there, done that. Twice. You know it’s got two ends, right?

Chapter 9 MySQL and arduino: united at LaSt!

http://arduino.cc/en/Reference/EthernetBegin
http://arduino.cc/en/Reference/EthernetBegin

513

Note a complete tutorial or overview of networking is beyond
the scope of this book. however, a few well-typed key phrases in
a Google search will give you a host of good advice for diagnosing
networking problems.

Another thing to try is to load one of the example sketches for the

Ethernet shield. For example, load, compile, and run the WebClient sketch.

What you should see is a mass of data returned from a search request to

google.com. If this works, you can be sure that your Ethernet shield is

working properly and that you still have issues with either your database

server or your sketch.

 Connector Installation
The last major area of potential issues has to do with how the connector

is installed. If you have gotten this far and your sketch compiles and

uploads correctly, you do not have any problems related to the connector

installation. I describe the most common installation problems in the

following sections.

 Compilation Errors Related to “No Module Named”

If you encounter compilation errors complaining that there is no module

named Connector or similar errors, you do not have the libraries installed

in the proper location. Go back to the “Installing MySQL Connector/

Arduino” section earlier in this chapter, and ensure that you have installed

the library.

If you downloaded the library from GitHub, you must ensure you

have the library files placed in the correct location. In fact, it is possible

that your libraries folder is not where you think it is. Be sure to check the

Preferences dialog to find the default location. The libraries folder should

be a subfolder of the sketchbook location.

Chapter 9 MySQL and arduino: united at LaSt!

http://google.com

514

The best indicator that you have the connecter copied correctly is

that you can see the MySQL Connector Arduino submenu in the File ➤

Examples menu.

 Compilation Errors Related to Include File

Errors like this can be caused by the use of quotes vs. brackets in the

#include <MySQL***.h> statements. If you are using quotes and the

files are not copied to your project folder or a subfolder thereof, you may

see compilation errors. The correct method is to use brackets with the

connector files located in the libraries folder.

 Others
There are also some other issues you could encounter that do not fall into

the previous categories.

 Strange Characters Appear in the Serial Monitor

If you see garbage or strange characters in your serial monitor output, it

could be that your setting for the Serial.begin() method does not match

the serial monitor setting. Choose the appropriate speed from the drop-

down list in the serial monitor, and try your sketch again.

 No Output in the Serial Monitor

This one is a lot harder to diagnose. Sometimes the Arduino is hung, or

there is a hardware issue like a shield not being fully seated, insufficient

power, or even a sketch that is too big to fit in memory (see the next

section). When this occurs, check your hardware carefully for proper

seating of all components, and make sure your Arduino IDE settings for the

serial port and board are correct.

Chapter 9 MySQL and arduino: united at LaSt!

515

 My Sketch Is Too Big

Because the connector uses a lot of program memory, it is possible to run

out of space when compiling your sketch. When this occurs, you may get

an error like this:

Binary sketch size: 32510 bytes (of a 32256 byte maximum).

If this happens, try removing all the unnecessary variables, strings,

include files, and code that you can. The troubleshooting section on the

Arduino site has several entries for suggestions on reducing sketch size.

In the extreme case, you can edit the source files for the connector

itself and remove unneeded features. In this case, you want to remove any

methods you are not using by commenting them out.

Note in some versions of the ide, modifying the files may require
reloading your sketch to activate the changes in the ide.

 None of These Solved My Problem—What Next?
If you have tried the suggestions in the previous sections and you are still

having issues, go back to the top and work through the solutions again.

If that does not solve the problem, try a different Arduino (such as an

Uno) and a different Ethernet shield. The tests and diagnoses should

have eliminated all other issues, leaving only the Arduino hardware as the

suspect.

Now that you know the basics of what a MySQL database-enabled

sketch requires, let’s take a short tour of the Connector/Arduino library to

learn what methods are available for your use.

Chapter 9 MySQL and arduino: united at LaSt!

516

 A Tour of the MySQL Connector/
Arduino Code
Before you embark on a project, let’s take a moment to tour the source

code for the library. This section examines the library and its supporting

methods in more detail. If you never intend to extend or otherwise modify

the library, you can skip ahead to the project section.

 Library Files
The MySQL Connector Arduino folder contains a number of files and a

directory. The following list describes each of the files:

• examples: A directory containing example code for

using the library

• extras: A directory containing documentation and

usage notes

• src: A directory containing the source code for the

library

• keywords.txt: The list of keywords reserved for the

library

• library.properties: A file containing the Arduino

properties for the library

• README.md: Introductory documentation

The source code is spread across several source files each with its own

purpose. The following lists the source code module (header .h and source

.cpp file) and its purpose:

• MySQL_Connection: Handles initial handshake and

general client/server connection

Chapter 9 MySQL and arduino: united at LaSt!

517

• MySQL_Cursor: Handles execution of queries and their

result sets

• MySQL_Encrypt_Sha1: Implements the SHA1

encryption for the connection handshake

• MySQL_Packet: Handles low-level packet format,

transmit, and receive for the client/server connection

If you need to change the connector, you can concentrate your

changes in the appropriate module. For example, if you need to adjust

the way the connector makes the connection to the server, look in

MySQL_Connection.h/.cpp.

 Field Structure
The library uses a number of structures when communicating with the

server. There is one structure that you use frequently when returning result

sets. It is called field_struct and is shown in the following. You can find

this in MySQL_Cursor.h.

// Structure for retrieving a field (minimal implementation).

typedef struct {

 char *db;

 char *table;

 char *name;

} field_struct;

The field structure is used to retrieve the metadata for a field. Notice

that you get the database, table, and field name. This permits you to

determine which table a field is derived from in the case of queries

involving joins. The method used to populate this field structure, get_

field(), creates the strings in memory. It is your responsibility to free

this memory—the strings—when you are finished reading or operating

on the data.

Chapter 9 MySQL and arduino: united at LaSt!

518

There are also two structures for working with result sets: column_

names and row_values. I discuss these in more detail in the next section

but include them here for completeness. Use column_names for getting

column information and row_values for getting row values in a result set.

You can also find these in MySQL_Cursor.h.

// Structure for storing result set metadata.

typedef struct {

 int num_fields; // actual number of fields

 field_struct *fields[MAX_FIELDS];

} column_names;

// Structure for storing row data.

typedef struct {

 char *values[MAX_FIELDS];

} row_values;

Now that you understand the structures involved with working with

the library methods, let’s examine the methods available to you for

communicating with a MySQL server.

 Public Methods
Libraries—or, more specifically, classes—typically have one or more public

methods that can be used by any caller (program) via an instantiation of

the class. Classes also have some parts that are private, which are typically

helper methods to do something internal for the class. The methods

can abstract portions of the class or simply hide data and operations

that do not need to be accessed by the caller (think abstract data types).

The public methods and attributes are therefore the things the designer

permits the caller to access.

Chapter 9 MySQL and arduino: united at LaSt!

519

The Connector/Arduino library has a number of public methods

that define the library’s capabilities. There are methods for connecting,

executing queries, and returning results (rows) from the database. Each of

which is declared in the appropriate code module. I demonstrate how to

use most of these methods in later sections.

We will look at the public methods for the three most commonly

used modules. The SHA1 module has no methods applicable to MySQL-

enabled sketches.

 MySQL_Connection

The following shows the method declarations for the public methods for

the MySQL_Connection class in the MySQL_Connection.h file. I discuss the

details of each in the following paragraphs.

boolean connect(IPAddress server, int port, char *user, char

*password,

 char *db=NULL);

int connected() { return client->connected(); }

const char *version() { return MYSQL_VERSION_STR; }

void close();

The connect() method, as you have seen, is the method you must call

to connect to a MySQL database server. This method must be called after

the initialization of the Ethernet class and before any other method from

the library. It requires the IP address of the server, the port for the server,

and the username and password to use to connect. You can also specify

a default database so that you do not have to specify the database in your

SQL commands.

It returns a Boolean, where true indicates success and false means

there was some error in connecting to the server. If you encounter

problems connecting to the server, you should attempt to connect from

Chapter 9 MySQL and arduino: united at LaSt!

520

another machine on your network using the mysql client and the IP, port,

user, and password defined in your sketch, to ensure connectivity and that

there are no user or password issues.

The connected() method returns true if the Arduino is connected to

the server or false if not. You can use this method to test connectivity if or

when there are long periods of inactivity or errors.

The version() method returns the server version to which you

connected. It is only valid once the connection is successful.

The close() method disconnects from the server and closes the

connection. Always call this method if you connect and disconnect

periodically.

 MySQL_Cursor

The following shows the method declarations for the public methods for

the MySQL_Cursor class in the MySQL_Cursor.h file. I discuss the details of

each in the following paragraphs.

boolean execute(const char *query, boolean progmem=false);

void show_results();

void close();

column_names *get_columns();

row_values *get_next_row();

int get_rows_affected() { return rows_affected; }

int get_last_insert_id() { return last_insert_id; }

The execute() method is the method you can use to execute a query

(SQL statement). The method takes a constant string reference that

contains the query you wish to execute. You can also pass the string passed

if it is defined using program space. In this case, you set the progmem

parameter to true. For more information about using program space

Chapter 9 MySQL and arduino: united at LaSt!

521

(called PROGMEM), see the Arduino online reference (www.arduino.cc/

en/Reference/PROGMEM). Basically, if you need more space for data but

can afford to use program space for data, you should use this method to

execute strings from program space.

The show_results() method is both an example of how to retrieve

data from the database for SELECT queries and a method you can use as is

to execute after issuing the execute() call. The method reads one row at a

time and sends it to the serial monitor. It can be handy for testing queries

and for experimenting with new sketches.

On the other hand, if you want to read rows from a database and

process the data, you can write your own method to do this. You

must first execute the query with execute(); then, if there is a result

set, read the column headers (the server always sends the column

headers first) using get_columns() and read the rows with the iterator

get_next_row().

If you want to retrieve the number of rows affected for SQL commands

that return such, you can use the get_rows_affected() method after

executing the query to get that value. Similarly, you can get the last

inserted auto-increment value with get_last_insert_id(), but that is

only valid when using auto increment.

 MySQL_Packet

This module isn’t used that much for most sketches, but there is one

method that bears mentioning. The print_packet() method can be used

in the cursor or connector classes to write the packet data to the serial

monitor. If you are experimenting with modifying the connector for use

with a different board or client/server protocol, you can place this method

in key locations to display the data in the packet. Be sure to turn on debug

mode before using the method.

Chapter 9 MySQL and arduino: united at LaSt!

http://www.arduino.cc/en/Reference/PROGMEM
http://www.arduino.cc/en/Reference/PROGMEM

522

 Example Uses
Besides connecting to a database server, the two uses of the library are

issuing queries that do not return results (like INSERT) and returning rows

from queries that return result sets (like SELECT or SHOW VARIABLES). The

following sections demonstrate each of these options.

 Queries Without Results

You have seen how to issue queries without result sets in the “Hello,

MySQL!” example. Recall that this is simply a call to execute() with the

query passed as a string. The following shows an example of a query that

returns no results:

MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

int res = cur_mem->execute(INSERT_SQL);

if (!res) {

 Serial.println("Query failed.");

} else {

 Serial.println("Ok.");

}

delete cur_mem;

 Queries Returning Results

Returning results (rows) from the server is a bit more complicated but not

overly so. To read a result set from the server, you must first read the result

set header and the field packets and then the data rows. Specifically, you

must anticipate, read, and parse the following packets:

• Result-set header packet: Number of columns

• Field packets: Column descriptors

• EOF packet: Marker: end-of-field packets

Chapter 9 MySQL and arduino: united at LaSt!

523

• Row data packets: Row contents

• EOF packet: marker: End-of-data packets

This means the MySQL server first sends the number of fields and a list

of the fields (columns) that you must read, and then the row data appears

in one or more packets until there are no more rows. The algorithm for

reading a result set is as follows:

 1. Read result set header for number of columns.

 2. Read fields until EOF.

 3. Read rows until EOF.

Let’s take a look at the contents of the show_results() method; see

Listing 9-6.

Listing 9-6. Displaying Result Sets

void MySQL_Cursor::show_results() {

 column_names *cols;

 int rows = 0;

 // Get the columns

 cols = get_columns();

 if (cols == NULL) {

 return;

 }

 for (int f = 0; f < columns.num_fields; f++) {

 Serial.print(columns.fields[f]->name);

 if (f < columns.num_fields-1)

 Serial.print(',');

 }

 Serial.println();

Chapter 9 MySQL and arduino: united at LaSt!

524

 // Read the rows

 while (get_next_row()) {

 rows++;

 for (int f = 0; f < columns.num_fields; f++) {

 Serial.print(row.values[f]);

 if (f < columns.num_fields-1)

 Serial.print(',');

 }

 free_row_buffer();

 Serial.println();

 }

 // Report how many rows were read

 Serial.print(rows);

 conn->show_error(ROWS, true);

 free_columns_buffer();

 // Free any post-query messages in queue for stored procedures

 clear_ok_packet();

}

So what’s going on here? Notice how the code is structured to execute

the query; if there are results (execute() does not return NULL), you read the

column headers. The return from the get_columns() method is a structure

that contains an array of field structures. The structure is shown next:

// Structure for retrieving a field (minimal implementation).

Typedef struct {

 char *db;

 char *table;

 char *name;

} field_struct;

Chapter 9 MySQL and arduino: united at LaSt!

525

// Structure for storing result set metadata.

Typedef struct {

 int num_fields; // actual number of fields

 field_struct *fields[MAX_FIELDS];

} column_names;

Notice that the column_names structure has a fields array. Use that

array to get information about each field in the form of the field_struct

(shown earlier). In that structure, you can get the database name, table

name, and column name. In the code, you simply print out the column

names and a comma after each.

Next, you read the rows using a special iterator named get_next_

row(), which returns a pointer to a row structure that contains an array of

the field values:

// Structure for storing row data.

typedef struct {

 char *values[MAX_FIELDS];

} row_values;

In this case, while get_next_row() returns a valid pointer (not NULL),

you read each field and print out the values.

You may be wondering what MAX_FIELDS is. Well, it is an easy way

to make sure you limit your array of columns (fields). This is defined in

MySQL_Cursor.h and is set to 32 (0x20). If you want to save a few bytes, you

can change that value to something lower, but beware: if you exceed that

value, your code will wander off into wonkyville10 (unreferenced pointer).

So tread lightly.

10 A state of wonkiness where wonky is the norm.

Chapter 9 MySQL and arduino: united at LaSt!

526

Notice also the calls to free_row_buffer() and free_columns_buffer().

These are memory-cleanup methods needed to free any memory allocated

when reading columns and row values (hey—you have to put it somewhere!).

You call the free_row_buffer() after you are finished processing the row and

the free_columns_buffer() at the end of the method. If you fail to add these

to your own query handler method, you will run out of memory quickly.

Why is it manual? Well, like the MAX_FIELDS setting, I wanted to keep it

simple and therefore save as much space as possible. Automatic garbage

collection would have added a significant amount of code.

You can use this method as a template to build your own custom query

handler. For example, instead of printing the data to the serial monitor, you

could display it in an LCD or perhaps use the information in another part

of your sketch.

As an exercise, you can change the library to display the bar and dash

output (called a grid). This isn’t especially difficult but requires more than a

few bytes of code (which is why I left it out of the library). If you’d like a hint

for how to know how many dashes to print for each field, recall that you

read the fields first (which includes the size of each field). The challenge is

to print the bar and dashes so that they line up in the display area.

Now that you are more familiar with the Connector/Arduino library,

let’s reexamine the Arduino sensor node from Chapter 6—but this time,

you add the code to save the sensor data to a MySQL server.

ADJUSTING THE SPEED OF QUERY RESULTS

the library contains a delay in the wait_for_client() method (in mysql.

cpp) that can be adjusted to improve the speed of query results returned. it

is currently set at a modest delay. depending on your network latency and

proximity to the database server (as in, no network hops), you can reduce this

value considerably. it was originally added to help prevent issues with slower

wireless networks.

Chapter 9 MySQL and arduino: united at LaSt!

527

 Project: Building a MySQL Arduino Client
In the previous sections, you learned what Connector/Arduino is and

how to use it to make an Arduino MySQL client update a table in a MySQL

database server. In this section, you revisit the sensor node example from

an earlier chapter and make it save the data to the database instead of the

serial monitor. In this case, we will use a WiFi shield since that is a more

common way to connect Arduino boards to your network.

You proceed at a faster pace because all examples of using the

Connector/Arduino library are the same. Also, rather than use the XBee

modules, you wire the sensor to the Arduino to further simplify the

example. Let’s begin with the hardware setup.

Note i repeat the steps from Chapter 6 to provide a complete
explanation and walk-through. i skip the details of the code for
reading the dht22 because that part is the same.

 Hardware Setup
The hardware required for this project includes an Arduino, a WiFi shield,

a DHT22 humidity and temperature sensor, a breadboard, a 4.7K Ohm

resistor (colors: yellow, purple, red, gold), and breadboard jumper wires.

With the exception of the WiFi shield, this is the same setup as the project

from Chapter 6.

Tip if you get stuck or want more information, there is an
excellent tutorial on adafruit’s website. See http://learn.
adafruit.com/dht.

Chapter 9 MySQL and arduino: united at LaSt!

http://learn.adafruit.com/dht
http://learn.adafruit.com/dht

528

Begin by placing your Arduino next to a breadboard. If you have not

already done so, install the WiFi shield on your Arduino. Be sure that all

pins are seated in their sockets before proceeding.

Plug the DHT22 sensor into one side of the breadboard, as shown in

Figure 9-7. Please refer to this often and double-check your connections

before powering on your Arduino (or connecting it to your laptop). You

want to avoid accidental experiments in electrical chaos theory.

Next, connect the power from the Arduino to the breadboard.

Use one jumper wire to connect the 5V pin on the Arduino to the

breadboard power rail and another to connect the ground (GND) pin

on the Arduino to the ground rail on the breadboard. With these wires

in place, you are ready to wire the sensor. You use three of the four pins,

as shown in Table 9-1.

Figure 9-7. Wiring the DHT22

Chapter 9 MySQL and arduino: united at LaSt!

529

Note We use pin 4 for the dht22 because some WiFi shields use pin 7.

 Software Setup
To use the DHT22 with an Arduino, you need to have the latest DHT22

library. You can install the library right from the Arduino IDE by searching

the library manager. Open the Arduino IDE, then open a new sketch, and

choose Sketch ➤ Include Library ➤ Manage Libraries… from the menu.

Figure 9-8 shows the library manager.

Table 9-1. DHT22 Connections

Pin Connected To

1 +5V

2 pin 4 on arduino, 4.7K ohm resistor between

VCC and the data pin (strong pull-up)

3 no connection

4 Ground

Chapter 9 MySQL and arduino: united at LaSt!

530

It may take a moment for the library manager to connect to the server

and download the latest catalog. When it is complete, you can type DHT22

into the text box in the upper right and press ENTER. This will search the

library catalog for all of the libraries that match.

Choose the DHT sensor library from Adafruit and click Install. If

you are prompted to install the supporting libraries, click Install all to

ensure all prerequisites are installed as shown in Figure 9-9.

Figure 9-8. Library manager

Figure 9-9. Install all libraries

Chapter 9 MySQL and arduino: united at LaSt!

531

 Setting Up the Sensor Database
You also need to create a table on your MySQL server. The following shows

the SQL statements needed to create the test database and the table. Use

the mysql client of the MySQL Shell to execute these commands.

CREATE DATABASE dht22_test;

CREATE TABLE dht22_test.temp_humid (

 `id` int(11) NOT NULL AUTO_INCREMENT,

 `temp_c` float DEFAULT NULL,

 `rel_humid` float DEFAULT NULL,

 PRIMARY KEY (`id`)

);

Now that you have the hardware configured and the database set up,

let’s write some code!

Tip Be sure to add #include <WiFi.h> to the MySQL_
Packet.h file for use with the WiFi shield.

 Writing the Code
The code is very similar to the project from Chapter 6, except that you add

the code needed to connect to the MySQL server and insert the sensor

data. This code module demonstrates a basic data-collection node in the

form of a temperature and humidity sensor node. It uses the common

DHT22 sensor connected to an Arduino with WiFi shield.

Chapter 9 MySQL and arduino: united at LaSt!

532

In this project, we will also see two of the newest features of the

connector: connecting with a default database specified and retrieving

the rows affected and last insert id. We will also see examples of how to

organize the code to make it a bit easier to read.11

More specifically, we will move reading the sensor and writing the

data to MySQL into its own method named read_data(). We also move

the connection code to connect to MySQL to a method named connect_

to_mysql().

Rather than walk through each of nuance of the code, we will present

the code in a single listing focusing on the MySQL portions. Open a new

sketch and name it dht22_mysql.ino. Or, download the sample code from

the book website. Listing 9-7 shows the complete source code.

Listing 9-7. Reading a DHT22 Sensor

/*
 Beginning Sensor Networks Second Edition

 Example: Arduino Hosted Sensor Node

 This sensor node uses a DHT22 sensor to read temperature and

humidity

 printing the results in the serial monitor.

*/

#include "DHT.h"

#include <WiFi.h>

#include <MySQL_Connection.h>

#include <MySQL_Cursor.h>

11 There are many ways one can organize code. This is by no means the only or
perhaps best way.

Chapter 9 MySQL and arduino: united at LaSt!

533

#define DHTPIN 4 // DHT22 data is on pin 4

#define read_delay 5000 // 5 seconds

#define DHTTYPE DHT22 // DHT22 (AM2302)

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress server_addr(192,168,42,8); // IP of the MySQL

server here

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

// Sample query

char INSERT_DATA[] = "INSERT INTO temp_humid (temp_c,

rel_humid) VALUES (%s, %s)";

char DEFAULT_DATABASE = "dht22_test";

char ssid[] = "SSID";

char pass[] = "PASSWORD";

WiFiClient client;

MySQL_Connection conn((Client *)&client);

DHT dht(DHTPIN, DHTTYPE);

/*
 * Read the data from the sensor and save it in the database.

 */

void read_data() {

 char query_buf[128];

 char temp_str[20];

 char humidity_str[20];

 int rows_affected;

 int last_insert_id;

Chapter 9 MySQL and arduino: united at LaSt!

534

 // Read humidity

 float humidity = dht.readHumidity();

 // Read temperature as Celsius

 float temp_c = dht.readTemperature();

 // Check for errors and return if any variable has no value

 if (isnan(temp_c) || isnan(humidity)) {

 Serial.println("ERROR: Cannot read all data from DHT-22.");

 return;

 }

 // Convert values to strings for the string buffer

 dtostrf(temp_c, 7, 2, temp_str);

 dtostrf(humidity, 7, 2, humidity_str);

 sprintf(query_buf, INSERT_DATA, temp_str, humidity_str);

 Serial.print("Humidity: ");

 Serial.print(humidity);

 Serial.print("%, ");

 Serial.print(temp_c);

 Serial.print("C ... ");

 // Initiate the query class instance

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 int res = cur_mem->execute(query_buf);

 if (!res) {

 Serial.println("Query failed.");

 } else {

 Serial.println("Ok.");

 }

 // Get the last insert id and rows affected

 rows_affected = cur_mem->get_rows_affected();

 last_insert_id = cur_mem->get_last_insert_id();

Chapter 9 MySQL and arduino: united at LaSt!

535

 Serial.print(rows_affected);

 Serial.print(" rows affected, last insert id = ");

 Serial.println(last_insert_id);

 delete cur_mem;

}

/*
 * Connect to MySQL

 */

void connect_to_mysql() {

 // Now connect to MySQL

 Serial.println("Connecting...");

 if (conn.connect(server_addr, 3306, user, password, DEFAULT_

DATABASE)) {

 delay(1000);

 } else {

 Serial.println("Connection failed.");

 }

}

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 Serial.println("Welcome to the DHT-22 Arduino MySQL example!");

 // WiFi section

 Serial.println("Starting WiFi.");

 int status = WiFi.begin(ssid, pass);

 // if you're not connected, stop here:

 if (status != WL_CONNECTED) {

 Serial.println("Couldn't get a WiFi connection!");

 while(true);

 }

Chapter 9 MySQL and arduino: united at LaSt!

536

 // if you are connected, print out info about the connection:

 else {

 Serial.println("Connected to network");

 IPAddress ip = WiFi.localIP();

 Serial.print("My IP address is: ");

 Serial.println(ip);

 }

 dht.begin();

 Serial.println("Starting Sensor Data Collection:");

 connect_to_mysql();

}

void loop() {

 delay(read_delay);

 if (conn.connected()) {

 read_data();

 } else {

 conn.close();

 Serial.println("Retrying connection.");

 connect_to_mysql();

 }

}

Notice that the setup() method has the same code as in the previous

example, except that in this case you connect to the WiFi, connect to

MySQL, set up the DHT library, and exit. The code to insert the data into

the MySQL database is in the read_data() method. Let’s look at the code

for forming the query string. I repeat the code as an excerpt here for clarity:

char INSERT_DATA[] = "INSERT INTO temp_humid (temp_c, rel_

humid) VALUES (%s, %s)";

...

char query_buf[128];

Chapter 9 MySQL and arduino: united at LaSt!

537

char temp_str[20];

char humidity_str[20];

...

float humidity = dht.readHumidity();

float temp_c = dht.readTemperature();

...

// Convert values to strings for the string buffer

dtostrf(temp_c, 7, 2, temp_str);

dtostrf(humidity, 7, 2, humidity_str);

sprintf(query_buf, INSERT_DATA, temp_str, humidity_str);

...

There is one peculiarity on the Arduino platform concerning float to

string conversion. You must use the dtostrf() method to convert a float

to a string using a character buffer. You can specify the size and precision

in the process. We then use these strings to build a string from a static

buffer of size 128 using the sprintf()12 method to format and populate the

values for the table.

Caution Watch out for array sizes! if you intend to save character
string data returned by sensor nodes, be sure your query will fit into
memory.

If you have a different network than what is depicted here, you can

change the IPAddress variable accordingly. Likewise, if your user and

password are different, be sure to change those values as well. Finally, if

you want to slow the sample rate, you can adjust read_delay accordingly.

12 See the sprintf() documentation at www.cplusplus.com/reference/cstdio/
sprintf/ for more details.

Chapter 9 MySQL and arduino: united at LaSt!

http://www.cplusplus.com/reference/cstdio/sprintf/
http://www.cplusplus.com/reference/cstdio/sprintf/

538

Once you have all the code entered into your Arduino environment

and your Arduino is ready to go, it is time to try it out. If you have problems,

refer to the earlier sections for common errors.

 Test Execution
Executing the sketch means uploading it to your Arduino and watching

it run. If you haven’t connected your Arduino, you can do that now. I like

to begin by compiling the sketch. Click the check mark on the left side of

the Arduino application, and observe the output in the message screen

at the bottom. If you see errors, fix them and retry the compile. Common

errors include missing the DHT22 library (which may require restarting

the Arduino application), typing errors, syntax errors, and the like. Once

everything compiles correctly, you are ready to upload your sketch by

clicking the Upload button on the toolbar.

As soon as the upload completes, open the serial monitor by clicking

the button at the right on the toolbar. Observe the Arduino connecting to

the MySQL server and the message printed each time the sensor data is

recorded. Let this run a few times to generate some data. Listing 9-8 shows

the typical output you should see.

Listing 9-8. Example Execution of the DHT22 MySQL Example

Welcome to the DHT-22 Arduino MySQL example!

Starting WiFi.

Connected to network

My IP address is: 192.168.42.13

Connecting...

...trying...

Connected to server version 8.0.18

Deleting all rows from table ... Ok.

18 rows affected.

Starting Sensor Data Collection:

Chapter 9 MySQL and arduino: united at LaSt!

539

Humidity: 39.80%, 23.20C ... Ok.

1 rows affected, last insert id = 462

Humidity: 39.70%, 23.20C ... Ok.

1 rows affected, last insert id = 463

Humidity: 39.70%, 23.20C ... Ok.

1 rows affected, last insert id = 464

Humidity: 39.70%, 23.20C ... Ok.

1 rows affected, last insert id = 465

Humidity: 39.70%, 23.20C ... Ok.

1 rows affected, last insert id = 466

Humidity: 39.70%, 23.20C ... Ok.

1 rows affected, last insert id = 467

Tip if you get “aCK timeout” errors, try unplugging the sensor and
plugging it back in, or disconnect and reconnect the power lead while
the sketch is running. Be very careful to avoid eSd!

Once the thrill of watching your Arduino spin is over, stop the Arduino

by disconnecting the USB cable. You can now check the database to ensure

that the sensor data was recorded. Listing 9-9 shows the steps needed. All

you do here is issue a SELECT command on the table. You should see one

row for each time your Arduino recorded its data.

Listing 9-9. Example Data Collected

> select * from dht22_test.temp_humid;

+-----+--------+-----------+

| id | temp_c | rel_humid |

+-----+--------+-----------+

| 535 | 23.5 | 39.6 |

| 536 | 23.5 | 39.6 |

Chapter 9 MySQL and arduino: united at LaSt!

540

| 537 | 23.5 | 39.6 |

| 538 | 23.5 | 39.6 |

| 539 | 23.5 | 39.6 |

| 540 | 23.5 | 39.6 |

| 541 | 23.5 | 39.6 |

| 542 | 23.5 | 39.7 |

| 543 | 23.5 | 39.6 |

| 544 | 23.5 | 39.6 |

| 545 | 23.5 | 39.6 |

| 546 | 23.5 | 39.6 |

| 547 | 23.5 | 39.6 |

| 548 | 23.5 | 39.6 |

+-----+--------+-----------+

14 rows in set (0.0004 sec)

If you see similar output, congratulations! You have just built your first

database-enabled Arduino-based sensor node. This is an important step

in building your sensor network, because you now have the tools needed

to start building more sophisticated wireless sensor nodes and aggregate

nodes for inserting sensor data into the database.

 For More Fun
Once you are comfortable testing and experimenting with the project, if

you have an inquisitive mind like me, you will probably start to see things

that you can do to improve the code and the project. I list a few here for

you to consider on your own. Don’t be afraid to tweak and modify—that’s

one of the greatest joys of working with the Arduino!

• Change the code to store the temperature in

Fahrenheit.

• Change the sampling rate to once every 15 minutes or

once every hour.

Chapter 9 MySQL and arduino: united at LaSt!

541

• Change the table to add a new column, and use a

trigger to automatically convert the temperature to

Fahrenheit. Hint: ALTER TABLE dht22_test.temp_

humid ADD COLUMN temp_f float AFTER temp_c.

• For experts: rather than split the data from the DHT22

and store two values in the database, store the raw

value in the database and use a view to split the values.

Do you see a trend here? The last two bullets suggest moving some

of the logic from the Arduino to the database. This is a very good practice

and one you should hone by learning more about features such as views,

functions, triggers, and events provided by the MySQL server.

Because the Arduino platform is a small device with limited capability,

moving data manipulation to the database server not only saves on

processing power but also saves memory usage. Having the database

server do the heavy work of data conversion may also permit you to take

more frequent sensor readings.

To read more about triggers, views, and events, see the online MySQL

reference manual.

The next two sections present some examples of how to use the

connector in your sketches. These are not complete projects; rather, they

are intended to be used as templates for writing your own sketches using

the connector.

 Project Example: Inserting Data
from Variables
When writing the connector, I discovered a number of posts on my blog

from people unfamiliar with C programming or those new to programming

in general. This is great because it means the Arduino is reaching some of

its target audience!

Chapter 9 MySQL and arduino: united at LaSt!

542

One of the questions that kept arising was how to do an INSERT query

supplying values from sensors or how to construct an INSERT statement

with values stored in variables. We saw this earlier in the DHT22 example

by using strings. But what if you want to insert integers? Well, simply put,

everything you want to add must be converted to a string.

The trick then is knowing which format specifier to use. For example,

we use one for strings, a different one for integers, and so on. The following

lists a few of the more commonly used format specifiers available. See

the sprintf() documentation for more options. One such location is

www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm.

• %c: Character

• %i: Integer

• %s: A string of characters

• %x: Number in hexadecimal (base 16)

Now, let’s see a segment of code to do some of the preceding

formatting. Listing 9-10 shows an example sketch that demonstrates how

to take a value (presumably read from a sensor or such) and create an

INSERT statement. This happens to show an INSERT statement, but the

technique also works for populating the WHERE clause for other statements.

Listing 9-10. SQL String Formatting

/*
 Beginning Sensor Networks Second Edition

 Example: Formatting data for SQL statements.

*/

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 Serial.println("Welcome to the SQL string format example!");

Chapter 9 MySQL and arduino: united at LaSt!

http://www.tutorialspoint.com/c_standard_library/c_function_sprintf.htm

543

 // SQL command formatting string

 const char INSERT_DATA[] = "INSERT INTO test_arduino.temps

VALUES (%s, %i, '0x%x')";

 // Buffers for strings

 char query[128];

 char temp_buff[10];

 // Some variables

 float float_val = 26.9;

 int int_val = 13;

 int hex_val = 251;

 // Convert float to string

 dtostrf(float_val, 1, 1, temp_buff);

 // Format the string

 sprintf(query, INSERT_DATA, temp_buff, int_val, hex_val);

 // Show the result

 Serial.println(query);

}

void loop() {

}

If you want to try this out yourself, you can. Just open a new sketch and

place the code in the setup() method and run it. I named the example in

the sql_format.ino. You should see the following output:

Welcome to the SQL string format example!

INSERT INTO test_arduino.temps VALUES (26.9, 13, '0xfb')

In this example, I also show you how to deal with floating-point values.

Recall, floating-point values are not supported by the Arduino sprintf()

method, so you have to first convert the floating-point value to a string and

then use that string in your sprintf() method. The method you use to

convert the floating-point value is dtostrf().

Chapter 9 MySQL and arduino: united at LaSt!

544

If you read through the code example, you see how this new string is

formed. This resulting string could be sent to the database and the values

inserted into the database.

 Project Example: How to Perform SELECT
Queries
There are times when you need to get information out of your database

server to be used in calculations or for displaying (or transmitting) labels.

For example, suppose you have a sensor that requires calibration or

conversion using a formula that depends on other data. Rather than code

all of those things (there could be dozens or hundreds), consuming a lot of

memory in the process, why not store that information in a database table

and query it when you need to look up the value?

Similarly, suppose you have text strings that you would like to display

in an LCD or perhaps even in the serial monitor, but the strings depend on

the sensor being read. That is, you could have sensors located in different

locations. Rather than code all of those strings and thereby consume a lot

of space, you can save that space by putting those strings in a table and

getting them when needed.

In this section, I demonstrate several examples of how to use the

connector to return data from the database.

Tip the library contains a number of methods useful for querying
a database and consuming the data in your sketch. it also includes
helpful methods for displaying the data, should you wish to see it in
the serial monitor. note that this code does add about 2KB more to
your compiled sketch size. depending on the memory size of your

Chapter 9 MySQL and arduino: united at LaSt!

545

arduino, if you add more than a few queries to your sketch, you could
run out of space. See the troubleshooting section “My Sketch is too
Big” for suggestions on reducing the size of your sketch.

 Displaying a Result Set in the Serial Monitor
If you want to run a query and display the results in the serial monitor,

you can use the built-in method show_results(). This method prints the

column names separated by commas and then iterates over the result set

and prints the values separated by commas.

The code is very simple. You need only call execute(), passing it

the query string, and then call the show_results() method. Of course,

the serial monitor must be open for you to see the results. The following

shows an example of a method named show_data() that demonstrates the

technique:

void show_data() {

 Serial.print("Getting all rows from the table ... ");

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 int res = cur_mem->execute(SELECT_SQL);

 if (!res) {

 Serial.println("Query failed.");

 } else {

 Serial.println("Ok.");

 }

 cur_mem->show_results();

 delete cur_mem;

}

Chapter 9 MySQL and arduino: united at LaSt!

546

Provided you executed the preceding DHT22 project, when you run

this code, you will get results similar to the following. Note that you can

use the DHT22 code as a base stripping the DHT-specific portions or you

can download the sample code for the book and open the sketch named

select_mysql.ino.

Welcome to the MySQL SELECT example!

Starting WiFi.

Connected to network

My IP address is: 192.168.42.13

Connecting...

...trying...

Connected to server version 8.0.18

Getting all rows from the table:Ok.

id,temp_c,rel_humid

540,23.5,39.6

541,23.5,39.6

542,23.5,39.7

543,23.5,39.6

544,23.5,39.6

545,23.5,39.6

546,23.5,39.6

547,23.5,39.6

548,23.5,39.6

14 rows in result.

 Writing Your Own Display Method
There are cases where you may want to build your own iterator to read the

result set from a query. For example, you may want to display the results

in an LCD or send them to another node in your network. Fortunately, you

can do so by writing your own version of show_results() using a number

Chapter 9 MySQL and arduino: united at LaSt!

547

of helper methods. I discussed how to use the show_results() method

in a previous section, but I discuss the methods used in that method for

writing your own method. As you will see, the helper methods are already

there for your use and are named to make it easier to see how the code

works.

These include get_columns() for retrieving the column names;

get_next_row(), which is an iterator to read rows; and memory-cleanup

methods free_columns_buffer() and free_row_buffer(). You call the

free_row_buffer() method after processing the data for the row and the

free_columns_buffer() once all the rows are read.

Listing 9-11 shows a modified version of the previous show_data()

method to show all of the steps to read take the query passed as a

parameter, execute the query, and then read the columns and rows. We

will embellish it a bit to make things a bit more interesting. This code can

be found in the sample code for the book in the custom_results.ino

sketch.

Listing 9-11. Custom Query Results Method

/*
 * Custom show results example

 */

void show_data(char *query) {

 column_names *cols;

 int rows = 0;

 char buffer[24];

 Serial.print("Getting all rows from the table ... ");

 // Execute the query

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 int res = cur_mem->execute(query);

Chapter 9 MySQL and arduino: united at LaSt!

548

 if (!res) {

 Serial.println("Query failed.");

 return;

 } else {

 Serial.println("Ok.\n");

 }

 // Fetch the columns and print them

 cols = cur_mem->get_columns();

 for (int f = 0; f < cols->num_fields; f++) {

 sprintf(buffer, COL_FORMAT, cols->fields[f]->name);

 Serial.print(buffer);

 }

 Serial.println();

 // Print a separator

 for (int f = 0; f < cols->num_fields; f++) {

 Serial.print("---------- ");

 }

 Serial.println();

 // Read the rows and print them

 row_values *row = NULL;

 do {

 row = cur_mem->get_next_row();

 if (row != NULL) {

 for (int f = 0; f < cols->num_fields; f++) {

 sprintf(buffer, COL_FORMAT, row->values[f]);

 Serial.print(buffer);

 }

Chapter 9 MySQL and arduino: united at LaSt!

549

 Serial.println();

 }

 } while (row != NULL);

 delete cur_mem;

}

Notice that you first must read the columns. This is because MySQL

always sends the column names before any rows. Once you have read the

columns, you can then read the rows using the iterator helper method

until there are no rows returned.

The get_columns() method returns a pointer to a special structure

that contains the number of fields and an array of fields that is also a

special structure. Both structures are shown next; you can see how they are

used in Listing 9-11.

// Structure for retrieving a field (minimal implementation).

typedef struct {

 char *db;

 char *table;

 char *name;

} field_struct;

// Structure for storing result set metadata.

typedef struct {

 int num_fields; // actual number of fields

 field_struct *fields[MAX_FIELDS];

} column_names;

The method get_next_row() returns a pointer to a similar structure

that contains an array of strings. This is because all data (rows) returned

from the server are returned as character strings. It is up to you to convert

the values to other data types if you need to do so.

Chapter 9 MySQL and arduino: united at LaSt!

550

Here is the second structure:

// Structure for storing row data.

typedef struct {

 char *values[MAX_FIELDS];

} row_values;

You may be wondering why you have to do the memory-cleanup bits.

Simply put, in order to make the connector as lightweight as possible,

some of the convenience routines have been intentionally omitted. A case

in point is clearing (freeing) memory allocated during the reads of the

columns and row data. The previous example shows the proper location

for these calls.

Caution Failure to free the memory as shown will result in a
rapid deterioration of your sketch’s execution and an eventual
freeze or hang.

Once you have created a method like this, you can use it elsewhere in

your sketch to execute and process query results as follows:

const char TEST_SELECT_QUERY[] = "SELECT * FROM world.city

LIMIT 10";

show_data(TEST_SELECT_QUERY);

If you plan to write a method like this to send the data elsewhere, take

care in the amount of code you use and eliminate any unnecessary strings

and conversions (floating-point conversion requires a library named

dtostf() that can add up to 2KB to your compiled sketch size).

Chapter 9 MySQL and arduino: united at LaSt!

551

If you executed this code after the DHT22 example, you’d see

something like the following code for output in the serial monitor:

Welcome to the MySQL Custom SELECT example!

Starting WiFi.

Connected to network

My IP address is: 192.168.42.13

Connecting...

...trying...

Connected to server version 8.0.18

Getting all rows from the table ... Ok.

 id temp_c rel_humid

---------- ---------- ----------

 540 23.5 39.6

 541 23.5 39.6

 542 23.5 39.7

 543 23.5 39.6

 544 23.5 39.6

 545 23.5 39.6

 546 23.5 39.6

 547 23.5 39.6

 548 23.5 39.6

 Example: Getting a Lookup Value
from the Database
Although the previous examples show you how to process result sets of

multiple rows for displaying lots of data, the more common reason to query

a database is to return a specific value or set of values for use in the sketch.

Typically, this is done using a query that is designed to return a single row.

For example, it could return a specific value from a lookup table.

Chapter 9 MySQL and arduino: united at LaSt!

552

As in the previous example, you must process the result set in order

starting with the column data. You don’t need it for this type of query, so

you simply ignore it. You also still need to iterate over the rows, because the

result set terminates with a special packet and the get_next_row() method

reads that packet and returns NULL if it is encountered (signaling no more

rows). Listing 9-12 shows the code you need to read a single value from the

database and use it. This example can be made into a separate method if it

will be called multiple times or from several places in your sketch.

Listing 9-12. Getting a Lookup Value

int get_data() {

 row_values *row = NULL;

 long head_count = 0;

 // Initiate the query class instance

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 cur_mem->execute(SELECT_SQL);

 // Fetch the columns (required) but we don't use them.

 column_names *columns = cur_mem->get_columns();

 // Read the row (we are only expecting the one)

 do {

 row = cur_mem->get_next_row();

 if (row != NULL) {

 head_count = atol(row->values[0]);

 }

 } while (row != NULL);

 // Deleting the cursor also frees up memory used

 delete cur_mem;

 return head_count;

}

Chapter 9 MySQL and arduino: united at LaSt!

553

...

void setup() {

...

 connect_to_mysql();

 int count = get_data();

 // Show the result

 Serial.print("NYC pop = ");

 Serial.println(count);

}

As you can see, the library supports the capability to process queries

that return result sets. These include SELECT, SHOW, and similar commands.

If you execute this example, you should see the following output or

similar:

Welcome to the MySQL lookup table example!

Starting WiFi.

Connected to network

My IP address is: 192.168.42.13

Connecting...

...trying...

Connected to server version 8.0.18

NYC pop = 12886

However, note (again) that the Arduino platform is very limited in the

amount of memory available. Constructing a sketch with several complex

queries that return large result sets is likely to exhaust the memory on

Arduino boards such as the Uno and Leonardo. If your sketch is large, you

may want to consider moving to the Due board.

Chapter 9 MySQL and arduino: united at LaSt!

554

 Component Shopping List
A number of components are needed to complete the projects in this

chapter. All of these components were used in previous chapters. They’re

listed in Table 9-2.

Table 9-2. Components Needed

Item Vendors Est. Cost
USD

Qty
Needed

arduino uno, Leonardo (any

that supports shields)

Various $25.00

and up

1

arduino ethernet Shield 2 www.sparkfun.com/

products/ 11166

$24.95

and up

1

arduino WiFi Shield www.sparkfun.com/

products/13287

$16.95 1

Breadboard www.sparkfun.com/

products/9567

$5.95 1

Breadboard jumper wires www.sparkfun.com/

products/8431

$3.95 1

dht22 www.sparkfun.com/

products/10167

$9.95 1

www.adafruit.com/

products/385

150 ohm resistor Various Varies 1

Chapter 9 MySQL and arduino: united at LaSt!

http://www.sparkfun.com/products/
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/13287
http://www.sparkfun.com/products/13287
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/10167
http://www.sparkfun.com/products/10167
http://www.adafruit.com/products/385
http://www.adafruit.com/products/385

555

 Summary
With the Connector/Arduino library, you can make your sensor nodes

quite a bit more sophisticated. By enabling your sensor nodes to save data

in a MySQL database, you also enhance your monitoring solutions by

making the data much easier to access and stored in a very reliable place

(a database server).

In this chapter, you discovered how to write database-enabled Arduino

sketches and took a detailed tour of the Connector/Arduino library.

Armed with this knowledge, you are ready to move on to creating a real

sensor network. In the next chapter, you put the accumulated knowledge

of the previous chapters to use in creating your first sensor network with a

MySQL database server, an Arduino aggregate node, and wireless sensor

nodes.

Chapter 9 MySQL and arduino: united at LaSt!

557© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_10

CHAPTER 10

Building Your
Network: Arduino
Wireless Aggregator +
Wireless Sensor Node
+ Raspberry Pi Server
With the information you have learned thus far in the book, and especially

in Chapters 8 and 9, it is time to put it all together and build your first

sensor network with a MySQL database server.

In this chapter, you put all the components together and build a

working sensor network that features your Raspberry Pi MySQL server

as the data repository, a data-aggregate node (you see examples of both

Arduino and Raspberry Pi), and a number of sensor nodes connected

via XBee modules. These are the building blocks you built in previous

chapters, now combined to demonstrate how you can build low-cost

sensor networks.

https://doi.org/10.1007/978-1-4842-5796-8_10#ESM

558

 Data-Aggregate Nodes
Recall that a data aggregator is a special node designed to receive

information from multiple sources (sensors) and store the results. The

source data can originate from multiple sensors on the node itself, but

more often the data-aggregate node receives information from multiple

sensor nodes that are not attached directly to the aggregate node (they

connect via XBee modules).

Most often, these sensors are hosted by other nodes and placed in

other locations, and the data-aggregate node is connected to the sensor

nodes via a wired or wireless connection. For example, you may have a

sensor hosted on a low-power Arduino in one location and another sensor

hosted on a Raspberry Pi in another location, both connected to your

data-aggregate node using XBee modules. Except for the limitations of the

network medium chosen, you can have dozens of nodes feeding sensor

data to a data-aggregate node.

The use of data-aggregate nodes has several advantages. If you are

using a wireless technology such as ZigBee with XBee modules, data-

aggregate nodes can permit you to extend the range of the network by

placing the data-aggregate nodes nearest the sensors. The data-aggregate

nodes can then transmit the data to another node such as a database

server via a more reliable medium.

For example, you may want to place a data-aggregate node in an

outbuilding that has power and an Ethernet connection to collect data

from remote sensor nodes located in various other buildings. A case to

consider is monitoring temperature in one or more rooms or even external

storage buildings. These buildings may or may not have power but most

likely are not wired for Ethernet. The data-aggregate node therefore could

be placed in the closest building that has power and an Ethernet port.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

559

Note In this case, I mean the closest point to the sensor nodes
that is still within range of the wireless transmission media (such
as XBee).

Data-aggregate nodes can also permit you to move the logic to process

a set of sensors to a more powerful node. For example, if you use sensors

that require code to process the values (such as the TMP36), you can

use a data-aggregate node to receive the raw data from those sensors,

store it, and calculate the values at a later time. Not only does this ensure

that you have code in only one location, but it also allows you to use less

sophisticated (less powerful) hosts for the remote sensors. That is, you

could use less expensive or older Arduino boards for the sensors and a

more powerful Arduino for the data-aggregate node. This has the added

advantage that if a remote sensor is destroyed, it is not costly to replace.

Recall also that you have to decide where you want to store your sensor

data. Data-aggregate nodes either can store the data locally on removable

media or an onboard storage device (local storage) or can transmit the

data to another node for storage (remote storage). The choice of which to

use is often based on how the data will be consumed or viewed.

For example, if you want to store only the last values read from the

sensors, you may want to consider some form of visual display or remote-

access mechanism. In this case, it may be more cost-effective and less

complicated to use local storage storing only the latest values.

On the other hand, if you require data values recorded over time for

later processing, you should consider storing the data on another node so

that the data can be accessed without affecting the sensor network. That is,

you can store the data on a more robust system (say, a personal computer,

server, or cloud-based service) and further reduce the risk of losing data

should the aggregate node fail.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

560

The following sections explore examples of each form of data

aggregator based on the examples from previous chapters. I keep these

sections brief to provide a frame of reference and to help you build

knowledge for the projects discussed later in this chapter.

 Local-Storage Data Aggregator
A local-storage data aggregator is a node designed to receive sensor data

from one or more sensors or sensor nodes and store the data on a device

that is built in to or attached to the node. Recall that for Arduino-based

nodes this is typically EEPROM (memory) or an SD drive via either the

Arduino Ethernet shield or another SD card shield. Recall that for the

Raspberry Pi this could be the SD boot drive, a USB drive, or an EEPROM

connected via the general-purpose input/output (GPIO) pins.

The nature of the local storage is a limiting factor in what you can do

with a local-storage data-aggregate node. That is, if you want to process

the data at a later time, you would choose a medium that permits you

to retrieve the data and move it to another computer. As mentioned in

Chapter 7, the EEPROM is an unlikely choice due to its volatility and

difficulty in connecting to a personal computer. This leaves the SD card

or a removable drive as the only reasonable alternatives. But if the sensor

data is used primarily for displaying data, you can use the EEPROM to

store the latest values or a short list of values for display on demand.

This does not mean the local-storage data aggregator is a useless

concept. Let’s consider the case where you want to monitor temperature in

several outbuildings. You are not using the data for any analysis but merely

want to be able to read the values when it is convenient (or required).

One possible solution is to design the local-storage data-aggregate

node with a visual display. For example, you can use an LCD to display the

sensor data. Of course, this means the data-aggregate node must be in a

location where you can get to it easily.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

561

But let’s consider the case where your data-aggregate node is also in

a remote location. Perhaps it too is in another outbuilding, but you spend

the majority of your time in a different location. In this case, a remote-

access solution would be best.

Fortunately, you can provide such a mechanism with very little work.

Consider the Ethernet library for the Arduino. There are sample sketches

that show you how to host a lightweight web server on the Arduino. For

the case where you simply want to access the sensor data for viewing from

a remote location, a web server is the perfect solution. You point your

browser to your data-aggregate node and view the data.

The design of such a data-aggregate node would require storing the

latest values locally, say, in memory or EEPROM, and, when a client

connects, displaying the data. This is a simple and elegant solution for a

local- storage data-aggregate node. The following project demonstrates

these techniques.

 Project: Data-Aggregate Node with Local
Storage
If you have not built the components from the previous projects or had

problems getting one or more to work, you may want to go back and revisit

those chapters. I discuss each of the components needed, but not to the

level of detail in the previous chapters. If you find you need a refresher for

some of the components, please refer to those chapters cited.

With that stated, it’s time to build your first sensor network with

a local-storage data-aggregate node. Savvy readers will realize you’ve

already built examples of all the sensor components in the previous

chapters. What is new is the choice of local storage and the mechanism for

displaying the data.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

562

In this project, you build a data-aggregate node that can be accessed

via an Ethernet network and that supports a lightweight web server to

display the last values read from each of several sensors. The sensor nodes

are networked with XBee modules to the data-aggregate node. Except for

the web server portion and the choice of using the onboard EEPROM for

storing data, the code for the data-aggregate node is similar to the code

you have used in previous projects.

 Hardware

The hardware for this project consists of several XBee-based temperature

sensor nodes communicating to an Arduino-based node that will be your

data-aggregate node. I discussed XBee modules in Chapters 2 and 4 and

the XBee temperature sensor node in Chapter 4.

Data-Aggregate Node

Because you want to use a web server, the data-aggregate node requires

an Arduino Ethernet shield as well as an XBee shield (or equivalent). If

you use both shields with your Arduino, you may need to use a stackable

header kit (www.sparkfun.com/products/11417) to ensure that the

Ethernet shield does not prohibit the pins from the XBee shield to seat

properly.

Figure 10-1 shows one form of data-aggregate node I use for my

projects. The Arduino shield is mounted on the Arduino board, and

headers are used to raise the height of the connections so that the XBee

shield can be mounted securely. Although this makes for a rather tall stack

of boards, it is still a compact form.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.sparkfun.com/products/11417

563

If you are using XBee modules that have an on-chip antenna or another

form of antenna that does not protrude from the top of the XBee module,

you may be able to place the XBee shield on the Arduino first and the

Ethernet shield on top. In this case, you would not need the additional risers.

The stackable header kit is a handy accessory to have because it

permits you to raise the height of shields so that you can access or in some

cases view components on the Arduino board (like the LEDs and various

buttons or switches common to some shields). You can find stackable

header kits at SparkFun, Adafruit, and most vendors that stock Arduino

boards and shields.

You also need a way to power your data-aggregate node. If you plan

to execute the project as an experiment and leave the node connected to

your laptop via a USB cable, then you are fine and need nothing more. But

if you plan to deploy the node, you need to power the Arduino via a typical

wall wart power supply. A 9V power supply should be sufficient, or you can

use a 9V battery connected via a barrel connector. Figure 10-2 shows a wall

wart power supply from SparkFun. Figure 10-3 shows a 9V battery carrier

from SparkFun.

Figure 10-1. Arduino-based data-aggregate node

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

564

Be sure to use an XBee module configured with the COORDINATOR

API firmware for the data-aggregate node. Please refer to Chapters 2 and 4

for details on how to configure your XBee modules.

Figure 10-2. Wall wart power supply (courtesy of SparkFun)

Figure 10-3. 9V battery carrier (courtesy of SparkFun)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

565

Sensor Nodes

Recall from Chapter 4 that the hardware for the XBee sensor node

consists of a breadboard, some jumper wires, a breadboard power

supply, a power supply (a typical 5–9V wall wart will do nicely), a TMP36

temperature sensor, and a 0.10uF capacitor. You also need an XBee

breakout board with male headers (0.1" spacing for breadboards) like

those available from Adafruit or SparkFun. Power for the temperature

sensor nodes can be via a 9V battery or, if power is available, a 9V wall

wart power supply.

I repeat the wiring diagram from Chapter 4 in Figure 10-4 for

convenience. You need to build at least two of these temperature sensor

nodes, but three would make for a better test project.

Note It may be possible to use lower voltage power supplies.
Consult the documentation for your breadboard power supply for
more information.

Figure 10-4. Wiring the TMP sensor node

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

566

Be sure to use an XBee module configured with the END DEVICE or

ROUTER API firmware for each sensor node. Please refer to Chapters 2

and 4 for details on how to configure your XBee modules. The settings for

each sensor node are repeated in Table 10-1.

Note You should give each XBee a unique node id such as
TMP36_1, TMP36_2, TMP36_3, and so on. This will be essential for
the Raspberry Pi example later in this chapter.

Recall, the XBee module that connects to the Arduino is the

COORDINATOR role using the following settings shown in Table 10-2.

Table 10-1. XBee Sensor Node Options and Values

Code Setting Name Description Value

D3 AD3/DIO3 Trigger analog or digital data

recording

2—ADC

ID PAN ID Id for the network 8088

IR I/O Sampling Rate Time to wait to send data 3A98—15,000ms

NI Node Identifier Name for the node TMP36_*

V+ Supply Voltage

Threshold

Supply voltage FFFF (always send)

Table 10-2. XBee Coordinator Options and Values

Code Setting Name Description Value

ID PAN ID Id for the network 8088

NI Node identifier Name for the node Coordinator

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

567

Go ahead and build your temperature sensor nodes. Wire them

up, and double-check the power settings for your breadboard power

supply. Be sure it is set to 3.3V. Once you have all of your temperature

sensor nodes wired, don’t power them on yet. You need to wait until

you have finished writing and uploading the sketch to the data-

aggregate node before powering on the sensor nodes. I discuss the

sketch in the next section.

Tip While you are working with this project—and, indeed,
the first few times you power up the network—you should
test everything at the same location. For example, set up the
sensor nodes and the data-aggregate node on the same table
or workbench, and debug the network until everything works
correctly. Only then can you safely deploy the sensor nodes to
their remote locations.1

 Software

The software for this project does not require any additional special

libraries or similar downloads that you haven’t already loaded in

previous chapters. I present an overview of the sketch first and then

discuss the new portions in more detail. I skip some of the code used

in previous projects, for brevity. Please refer to the complete code in

Listing 10-4 for more details, and be sure you understand how the

code works.

1 Within XBee range, of course.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

568

Overview

The sketch you use is a combination of the web server example in the

Arduino IDE as well as the code from previous projects. You rearrange

things a bit because there is less need for writing data to the serial monitor.

In fact, you don’t really need to write anything to the serial monitor. But

you do leave in a few statements for debugging purposes.

If you have not experimented with the web server examples in the

Arduino IDE (see File ➤ Examples ➤ Ethernet or File ➤ Examples ➤ WiFi),

you may want to do so if you find the code for this sketch challenging (or if

you want to just have fun with your Arduino and its Ethernet or WiFi shield).

Tip If the sketch does not work as you expect, consider adding
additional print statements to print debug information to the serial
monitor. This is a very common practice for writing and debugging
large or complex sketches.

The web server portion of this sketch is not complicated nor difficult

to follow. Essentially, you use the EthernetServer library to listen for a

connection; and once a connection is made, you write HTML code back to

the client via an instance of EthernetClient.

Or, if you decide to use the WiFi shield, you use the WiFiServer library

to listen for a connection; and once a connection is made, you write HTML

code back to the client via an instance of WiFiClient. We will explore a

WiFi version of the sketch in this section.

As stated previously, you’re storing the last values from each sensor

node for display in the web server. Storing these values presents a

problem when using the Arduino, as described in Chapter 7. Your choices

are limited to using the SD drive on the Arduino Ethernet shield or the

onboard EEPROM.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

569

Although you experimented with an external EEPROM in Chapter 7,
you use the onboard EEPROM instead for simplicity. The onboard
EEPROM varies in size among the choices of Arduino boards, but in most
cases, it is large enough to store a dozen or so bytes for each sensor node.

To use the onboard EEPROM, simply include the EEPROM.h file in your
sketch. Reading from and writing to the onboard EEPROM is very easy and
is done one byte at a time. You call EEPROM.read(), passing in the address
for the byte you want to read. Writing to EEPROM is similar. You call
EEPROM.write(), passing in the address where you want to store the byte
and the value of the data (byte) you want to store. Examples of using this
library can be found in the Arduino IDE.

Now let’s get into the code! The following sections present the major
components of the sketch—web server, local storage, and reading from the
sensor nodes. I omit the code for manipulating the sensor data because
that is a direct copy of the code from Chapter 4, and I skip some of the
mundane operations for brevity. Open a new sketch in the Arduino IDE,
and name it Arduino_Web_Aggregate.ino.

Lightweight Web Server

The code for the lightweight web server was taken from an example in the
Arduino IDE. You modify the example by moving the code to send the data
to the client into a separate function.

To build a web server, you first must include the correct library and
declare a few variables. The following excerpt shows the code needed
(with code from other components omitted for clarity):

#include <WiFi.h>
...
byte mac[] = {0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED};
IPAddress ip(10, 0, 1, 111);

// Start Ethernet Server class with port 80 (default for HTTP)
WiFiServer server(80);

...

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

570

Notice that you include the WiFi (or Ethernet) and SPI headers. You

also declare two variables: a MAC address and an IP address. In previous

projects, you allowed the Ethernet library to use DHCP to assign the IP

address; but in this case, you need to know the IP address, and therefore

you must use a static IP address. Be sure to choose one that is valid for the

network segment where your data-aggregate node will be attached.

Finally, you initialize an instance of the WiFiServer class, passing

it in port 80 (which is the default for an HTTP service). You can choose

another port number, but it may require adding it to your URL in order

to access the web server. For example, if you choose 3303, you would use

http://10.0.1.111:3303.

Now comes the really fun part. The web server you build is a simplified

service that returns only a small amount of HTTP code to the client. Aside

from the include files and variables, you also need to initialize the Ethernet

classes in the setup() method. The following code shows what is needed.

Essentially, you initialize the Serial library, then the WiFi library (omitted

for brevity), and finally the server instance. Please refer to the WiFi

examples in Chapters 6, 7, and 9 for more details on setting up the WiFi

section.

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 // WiFi section

...

 server.begin();

...

}

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

571

To make the web server respond when a client attaches, you add a new

method named listener() to the sketch. The following code shows where

this method is called—from the loop() method. In this case, you first

check for a response from the sensors; and if no sensor data is available,

you check to see if a client has attached and respond to the call:

void loop() {

 if [...]

 } else {

 // Listen for client and respond.

 listener();

 }

}

As for the listener portion, what you need to do is check to see if a

client has connected via the server.available() method. The return

of this method is an instance of the EthernetClient class. If the variable

is not NULL (a client has connected), you then check to see whether the

client is available via the client.available() method. If so, you send the

data for each response requested until a newline is detected.

You begin by sending HTTP headers via the client.print() and

client.println() methods. You also send a banner welcoming the user. If

sensor data is stored locally, you send the data for each sensor node stored

(via a loop); otherwise, you send a status banner stating there is no data.

The sending of the sensor data is via a new method named send_

sensor_data(). This method uses the client.print() and client.

println() methods2 of the client instance to write the data in text form

2 Since you pass the client variable by reference, you dereference the pointer using
-> instead of a period.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

572

and the ending HTTP tags for each block of data. In this case, you send the

address of the sensor node, the temperature in Celsius, the temperature

again in Fahrenheit, and the reference voltage from the sensor node.

Listing 10-1 shows the code needed to listen for a client and send the

response. I show an excerpt of the client code to send data: the setup()

and loop() code, for brevity. Refer to Listing 10-4 for the complete code

needed.

Listing 10-1. The Web Server Code

...

void send_sensor_data(EthernetClient *client, int num_sample) {

 unsigned int address;

 float temp_c;

 float temp_f;

 float volts;

 // Read sensor data from memory and display it.

 read_sample(num_sample, &address, &temp_c, &temp_f, &volts);

 client->println("
");

 client->print("Node Address: ");

 client->print(address, HEX);

 client->print(".");

...

}

void listener() {

 // listen for incoming clients

 EthernetClient client = server.available();

 if (client) {

 Serial.println("Got a connection!");

 // an http request ends with a blank line

 boolean currentLineIsBlank = true;

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

573

 while (client.connected()) {

 if (client.available()) {

 char c = client.read();

 // if you've gotten to the end of the line (received a

newline

 // character) and the line is blank, the http request

has ended,

 // so you can send a reply

 if (c == '\n' && currentLineIsBlank) {

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println();

 // Print header

 client.println("Welcome to the Arduino Data Aggregate

Node!");

 client.println("
");

 // read sensor data

 byte num_samples = EEPROM.read(0);

 for (int i = 0; i < num_samples; i++) {

 send_sensor_data(&client, i);

 }

 // if no data, say so!

 if (num_samples == 0) {

 client.print("No samples to display.");

 client.println("
");

 }

 break;

 }

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

574

 if (c == '\n') {

 currentLineIsBlank = true;

 }

 else if (c != '\r') {

 currentLineIsBlank = false;

 }

 }

 }

 // give the web browser time to receive the data

 delay(1);

 // close the connection:

 client.stop();

 }

}

...

Now that you understand how the web server component works, let’s

examine the local-storage component.

Local Storage Using the Onboard EEPROM

The local-storage component uses the onboard EEPROM to store and

retrieve the sensor data. In the overview section, I discussed how easy it is

to use the library. In this section, I discuss the specifics of how you store

and retrieve the sensor data.

Because you’re storing only the last values (samples) from each sensor

node and you may have more than one sensor node communicating, you

need a simple mechanism to keep the data organized. You use something

similar to the external EEPROM project from Chapter 7.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

575

You use the first byte of EEPROM memory (address 0) to store the

number of samples present and a block of 10 bytes for each sample. Rather

than store the entire 64-bit address for each sensor node (the XBee 64-

bit network address), you store the last 2 bytes, which will display four

hexadecimal digits when converted to hexadecimal and displayed as text.3

You also store only the raw sensor data, which is a float (4 bytes), and the

reference voltage, which is also a float (4 bytes). Thus, you need 10 bytes to

store a sample.

Because you store only the raw data from the sensor, you must perform

the temperature calculations as you did in Chapter 4 at a later time. I leave

this for you to explore in Listing 10-4.

You also add code to the setup() method to initialize the EEPROM

on the initial start. In this case, writing a 0 to address 0 means there are no

samples stored. This ensures that you can restart from scratch simply by

resetting (or powering off and then on) the data-aggregate node. If you find

you need to make the values persistent, take the following code out of the

setup() method after it has executed at least once:

void setup() {

 ...

 // Initialize the EEPROM

 EEPROM.write(0, 0);

}

To make things a bit easier, you create four new methods for reading and

writing from and to the EEPROM. Listing 10-2 shows the complete methods.

Notice that you have two sets of methods, one for integers (2 bytes) and one

for float variables (4 bytes).

3 Why only four digits (characters)? Won’t there be collisions? No, not necessarily.
Most XBee modules you can purchase do not have 64-bit addresses where the last
four digits are the same. It is possible, but unlikely. If you find this is the case for
your XBee modules, consider using the last eight characters instead.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

576

Listing 10-2. EEPROM Helper Methods

...

// Read an integer from EEPROM

int read_int(byte position) {

 int value = 0;

 byte* p = (byte*)(void*)&value;

 for (int i = 0; i < sizeof(value); i++)

 *p++ = EEPROM.read(position++);

 return value;

}

// Read a float from EEPROM

float read_float(byte position) {

 float value = 0;

 byte* p = (byte*)(void*)&value;

 for (int i = 0; i < sizeof(value); i++)

 *p++ = EEPROM.read(position++);

 return value;

}

// Write an integer to EEPROM

void write_int(byte position, int value) {

 const byte *p = (const byte *)(const void *)&value;

 for (int i = 0; i < sizeof(value); i++)

 EEPROM.write(position++, *p++);

}

// Write a float to EEPROM

void write_float(byte position, float value) {

 const byte *p = (const byte *)(const void *)&value;

 for (int i = 0; i < sizeof(value); i++)

 EEPROM.write(position++, *p++);

}

...

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

577

Notice that in the code you use some pointer trickery to turn the

integer and float into an array of bytes. This is not uncommon for code

written by advanced C and C++ programmers. Although it is possible

to use other methods (such as shifting bytes) to break the values into

bytes, I wanted to include this advanced technique to get you thinking

about how pointers work. Much of what you are likely to encounter in

more complex sketches will involve manipulating pointer in similar

ways.

Tip For those of you who simply cannot leave things alone (you
know who you are), no doubt you can see some room for optimization
here. Notice that the methods are very similar. The only thing that
really changes is the type. So how would you optimize this code
even further? Hint: Consider a template4 (http://playground.
arduino.cc/Code/EEPROMWriteAnything).

Now that you understand how to store and retrieve samples to and

from the EEPROM, let’s examine how this fits into the code for reading

data from the sensor nodes.

4 I did not use templates here because I do not want to make the code too
complex. As it is, unless you are familiar with pointers, you may think this
code is illegible and won’t compile or that it mysteriously “just works.” In that
case, you have to take my word that it does. How much more mysterious can
someone make their code for those new to Arduino programming than by using
templates? I know some very good C++ programmers who find using templates
a challenge.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://playground.arduino.cc/Code/EEPROMWriteAnything
http://playground.arduino.cc/Code/EEPROMWriteAnything

578

Reading Data from Sensor Nodes via XBee

The code for reading data from multiple XBee modules is unchanged

from the project in Chapter 4. Indeed, the code you wrote for that sketch

can and does support connections to multiple sensor nodes. Recall that

this is possible because your data-aggregate node uses an XBee module

configured as the coordinator, and your sensor nodes use XBee modules

configured as routers.

Because the initialization code is unchanged from the project in

Chapter 4, I omit those details here. But the code for storing the sensor

data is different. In this case, you need to store the sample in memory

(EEPROM). Because you want to store only the latest value, you must look

for the sample in memory first by address. If you find a match, you save the

data in the same location. If you do not find a match among the samples

stored, you add it to the end and increment the number of samples stored.

You name this method the same as before—record_sample().

But you do not end there. You also need methods to read and write

the sample data. You break these into separate methods so that you can

make the record_sample() method smaller and easier to read. Thus, you

create read_sample() and write_sample() methods that use the EEPROM

helper methods described previously to store and retrieve the samples.

Listing 10-3 shows the major portions of the new code for storing

sensor data and the completed code for the loop() method. Notice how it

precludes the listener() call.

Listing 10-3. Reading from XBee Sensor Nodes

// Read a sample from EEPROM

void read_sample(byte index, unsigned int *address, float *temp_f,

 float *temp_c, float *volts) {

 float temp;

 byte position = (index * bytes_per_sample) + 1;

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

579

 *address = read_int(position);

 temp = read_float(position + 2);

 *temp_c = ((temp * 1200.0 / 1024.0) - 500.0) / 10.0;

 *temp_f = ((*temp_c * 9.0)/5.0) + 32.0;

 *volts = read_float(position + 6);

}

// Write sample to EEPROM

void write_sample(byte index) {

 byte position = (index * bytes_per_sample) + 1;

 write_int(position, address);

 write_float(position + 2, temperature);

 write_float(position + 6, voltage);

}

void record_sample(ZBRxIoSampleResponse *ioSample) {

 int saved_addr;

 // Get sample data from XBee

 get_sample_data(ioSample);

 // See if already in memory. If not, add it.

 byte num_samples = EEPROM.read(0);

 boolean found = false;

 for (byte i = 0; i < num_samples; i++) {

 byte position = (i * bytes_per_sample) + 1;

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

580

 // get address

 saved_addr = read_int(position);

 if (saved_addr == address) {

 write_sample(i);

 found = true;

 }

 }

 if (!found) {

 // Save sample

 write_sample(num_samples);

 // Update number of sensors

 num_samples++;

 EEPROM.write(0, num_samples);

 }

}

...

void loop() {

 //attempt to read a packet

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {

 // got something

 if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE) {

 // Get the packet

 xbee.getResponse().getZBRxIoSampleResponse(ioSample);

 // Get and store the data locally (in memory)

 record_sample(&ioSample);

 }

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

581

 else {

 Serial.print("Expected I/O Sample, but got ");

 Serial.print(xbee.getResponse().getApiId(), HEX);

 }

 } else if (xbee.getResponse().isError()) {

 Serial.print("Error reading packet. Error code: ");

 Serial.println(xbee.getResponse().getErrorCode());

 } else {

 // Listen for client and respond.

 listener();

 }

}

This completes the discussion of the new components for this

sketch. The following section includes the entire sketch with all of these

components in their proper context. Be sure to take your time reading

through the code. It is by far the largest sketch (code) you have worked

with in this book.

Putting It All Together

Now that you understand the workings of the major components of the

sketch, let’s examine the completed sketch in more detail. Listing 10- 4

shows the completed code for the sketch. Recall, we named the file

Arduino_Web_Aggregate.ino.

Tip If you are using a Leonardo, check the notes on the software
serial page (www.arduino.cc/en/Reference/SoftwareSerial)
code regarding the pins for the XBee shield. Depending on which
shield you are using with your Leonardo, you may need to change
these.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.arduino.cc/en/Reference/SoftwareSerial

582

Listing 10-4. Local-Storage Data-Aggregate Node

/**
 Beginning Sensor Networks Second Edition

 Example Arduino Data Aggregate Node

 This project demonstrates how to receive sensor data from

 multiple XBee sensor nodes, save the samples in the onboard

 EEPROM and present them as a web page. It uses an Arduino

 with an XBee shield with an XBee coordinator installed.

 Note: This sketch was adapted from the examples in the XBee

 library created by Andrew Rapp.

*/

#include <XBee.h>

#include <SoftwareSerial.h>

#include <WiFi.h>

#include <EEPROM.h>

byte bytes_per_sample = 10; // address (2), temp (4), volts (4)

// Setup pin definitions for XBee shield

uint8_t recv = 8;

uint8_t trans = 9;

SoftwareSerial soft_serial(recv, trans);

// assign a MAC address and IP address for the Arduino

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress server_addr(192,168,42,8); // IP of the MySQL

server here

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

char ssid[] = "SSID";

char pass[] = "PASSWORD";

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

583

// Start WiFi Server class with port 80

WiFiServer server(80);

// Instantiate an instance of the XBee library

XBee xbee = XBee();

// Instantiate an instance of the IO sample class

ZBRxIoSampleResponse ioSample = ZBRxIoSampleResponse();

// Sample data values

unsigned int address; // Last 4 digits of XBee address

float temperature; // Raw temperature value

float voltage; // Reference voltage

// Get sample data

void get_sample_data(ZBRxIoSampleResponse *ioSample) {

 Serial.print("Received data from address: ");

 address = (ioSample->getRemoteAddress64().getMsb() << 8) +

 ioSample->getRemoteAddress64().getLsb();

 Serial.print(ioSample->getRemoteAddress64().getMsb(), HEX);

 Serial.println(ioSample->getRemoteAddress64().getLsb(), HEX);

 temperature = ioSample->getAnalog(3);

 int ref = xbee.getResponse().getFrameData()[17] << 8;

 ref += xbee.getResponse().getFrameData()[18];

 voltage = (float(ref) * float(1200.0 / 1024.0))/1000.0;

}

// Read an integer from EEPROM

int read_int(byte position) {

 int value = 0;

 byte* p = (byte*)(void*)&value;

 for (int i = 0; i < sizeof(value); i++)

 *p++ = EEPROM.read(position++);

 return value;

}

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

584

// Read a float from EEPROM

float read_float(byte position) {

 float value = 0;

 byte* p = (byte*)(void*)&value;

 for (int i = 0; i < sizeof(value); i++)

 *p++ = EEPROM.read(position++);

 return value;

}

// Write an integer to EEPROM

void write_int(byte position, int value) {

 const byte *p = (const byte *)(const void *)&value;

 for (int i = 0; i < sizeof(value); i++)

 EEPROM.write(position++, *p++);

}

// Write a float to EEPROM

void write_float(byte position, float value) {

 const byte *p = (const byte *)(const void *)&value;

 for (int i = 0; i < sizeof(value); i++)

 EEPROM.write(position++, *p++);

}

// Read a sample from EEPROM

void read_sample(byte index, unsigned int *address, float *temp_c,

 float *temp_f, float *volts) {

 float temp;

 byte position = (index * bytes_per_sample) + 1;

 *address = read_int(position);

 temp = read_float(position + 2);

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

585

 *temp_c = ((temp * 1200.0 / 1024.0) - 500.0) / 10.0;

 *temp_f = ((*temp_c * 9.0)/5.0) + 32.0;

 *volts = read_float(position + 6);

}

// Write sample to EEPROM

void write_sample(byte index) {

 byte position = (index * bytes_per_sample) + 1;

 write_int(position, address);

 write_float(position + 2, temperature);

 write_float(position + 6, voltage);

}

// Record a sample

void record_sample(ZBRxIoSampleResponse *ioSample) {

 int saved_addr;

 // Get sample data from XBee

 get_sample_data(ioSample);

 // See if already in memory. If not, add it.

 byte num_samples = EEPROM.read(0);

 boolean found = false;

 for (byte i = 0; i < num_samples; i++) {

 byte position = (i * bytes_per_sample) + 1;

 // get address

 saved_addr = read_int(position);

 if (saved_addr == address) {

 write_sample(i);

 found = true;

 }

 }

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

586

 if (!found) {

 // Save sample

 write_sample(num_samples);

 // Update number of sensors

 num_samples++;

 EEPROM.write(0, num_samples);

 }

}

void send_sensor_data(WiFiClient *client, int num_sample) {

 unsigned int address;

 float temp_c;

 float temp_f;

 float volts;

 // Read sensor data from memory and display it.

 read_sample(num_sample, &address, &temp_c, &temp_f, &volts);

 client->print("
\nNode Address: ");

 client->print(address, HEX);

 client->print("
\nTemperature: ");

 client->print(temp_c);

 client->print("C
\nTemperature: ");

 client->print(temp_f);

 client->print("F
\nVoltage: ");

 client->print(volts);

 client->println("V
");

}

void listener() {

 // listen for incoming clients

 WiFiClient client = server.available();

 if (client) {

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

587

 Serial.println("Got a connection!");

 // an http request ends with a blank line

 boolean currentLineIsBlank = true;

 while (client.connected()) {

 if (client.available()) {

 char c = client.read();

 // if you've gotten to the end of the line (received a

newline

 // character) and the line is blank, the http request

has ended,

 // so you can send a reply

 if (c == '\n' && currentLineIsBlank) {

 // send a standard http response header

 client.println("HTTP/1.1 200 OK");

 client.println("Content-Type: text/html");

 client.println();

 // Print header

 client.println("Welcome to the Arduino Data Aggregate

Node!");

 client.println("
");

 // read sensor data

 byte num_samples = EEPROM.read(0);

 for (int i = 0; i < num_samples; i++) {

 send_sensor_data(&client, i);

 }

 // if no data, say so!

 if (num_samples == 0) {

 client.print("No samples to display.");

 client.println("
");

 }

 break;

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

588

 }

 if (c == '\n') {

 currentLineIsBlank = true;

 }

 else if (c != '\r') {

 currentLineIsBlank = false;

 }

 }

 }

 // give the web browser time to receive the data

 delay(100);

 // close the connection:

 client.stop();

 }

}

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 // WiFi section

 Serial.println("Starting WiFi.");

 int status = WiFi.begin(ssid, pass);

 // if you're not connected, stop here:

 if (status != WL_CONNECTED) {

 Serial.println("Couldn't get a WiFi connection!");

 while(true);

 }

 // if you are connected, print out info about the connection:

 else {

 Serial.println("Connected to network");

 IPAddress ip = WiFi.localIP();

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

589

 Serial.print("My IP address is: ");

 Serial.println(ip);

 }

 server.begin();

 soft_serial.begin(9600);

 xbee.setSerial(soft_serial);

 // Initialize the EEPROM

 EEPROM.write(0, 0);

}

void loop() {

 //attempt to read a packet

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {

 // got something

 if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE) {

 // Get the packet

 xbee.getResponse().getZBRxIoSampleResponse(ioSample);

 // Get and store the data locally (in memory or on card?)

 record_sample(&ioSample);

 }

 else {

 Serial.print("Expected I/O Sample, but got ");

 Serial.print(xbee.getResponse().getApiId(), HEX);

 }

 } else if (xbee.getResponse().isError()) {

 Serial.print("Error reading packet. Error code: ");

 Serial.println(xbee.getResponse().getErrorCode());

 } else {

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

590

 // Listen for client and respond.

 listener();

 delay(100);

 }

}

Take some time to go through the sketch until you are completely

satisfied that you understand how everything works together. Once you are

familiar and comfortable with the code, compile it and upload it to your

Arduino.

 Testing the Project

Once the code compiles and uploads successfully to your Arduino data-

aggregate node and before any sensor nodes are powered on, connect to

your Arduino via a web browser. Be sure to use the IP address you put in

your sketch. Figure 10-5 shows the correct response. You can also open the

serial monitor at this time.

If you see this response, you have successfully written a very

lightweight web server running on an Arduino! How cool is that? Now,

power on one of your temperature sensor nodes and wait for 5–10 minutes.

Figure 10-5. Example response from a data-aggregate node with no
sensors attached

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

591

If you haven’t opened the serial monitor, do so now, and then wait for the

sensor node data to arrive. You should see the message “Received data

from address: NNNNN” in the serial monitor. When this happens, refresh

your browser and notice the changes.

If you get some data back in the web browser, go ahead and power on

all of your sensor nodes and wait for a while for several samples to arrive.

The following shows what your serial monitor should be printing if you

have three temperature sensor nodes running. Note that the addresses will

be different and should match your XBee modules.

Starting WiFi.

Connected to network

My IP address is: 192.168.42.12

Got a connection!

Got a connection!

Got a connection!

Wait until you see several iterations of samples arrive, and then refresh

your browser. You should see only one entry containing the latest sample

for each sensor connected. The following shows an example result where

there are three sensor nodes supplying data.

Welcome to the Arduino Data Aggregate Node!

Node Address: DB79

Temperature: 21.60C

Temperature: 70.88F

Voltage: 3.82V

Node Address: D45C

Temperature: 18.20C

Temperature: 64.77F

Voltage: 3.24V

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

592

Node Address: 29DB

Temperature: 11.52C

Temperature: 52.74F

Voltage: 3.15V

Wait for a few minutes, and then refresh your browser. You should see

the sample values change. If they do not (or you just want to have some

fun), carefully affect the values of the sensors by locating them nearer to

heat or cool sources.

Note If you do not see any data from your sensor nodes and there
is nothing in the serial monitor indicating any data was received, use
the troubleshooting section in Chapters 2 and 4 to diagnose possible
issues with your XBee modules. Remember, they all must have the
same version of the API firmware, and the sensor nodes must have
the ROUTER role and the data-aggregate node the COORDINATOR
role. Also, be sure to allow at least 10 minutes for the XBee modules
to connect and form a network.

OK, that was a hoot, wasn’t it? Yes indeed: you now have demonstrated

mastery of the basic building blocks of a sensor network. Although you

used only Arduino nodes to keep this easier to comprehend, the next

project introduces the Raspberry Pi into the mix and further rounds out

your cache of sensor networking tools.

Note It is OK if your output varies from what is shown. In some
cases, you may also notice a small discrepancy between what the
sensor reports and measurements from more accurate devices. As long
as you see values within tolerance for your particular sensor (check the
vendor’s datasheet for this), your sensor node is working properly.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

593

 For More Fun

There are a lot of really cool things you can do with this project. The

most obvious to me is replacing the XBee address with meaningful

labels. More specifically, label the sensor nodes by their location. For

example, XBee node CD0F is located on my porch, whereas node 29DB

is in my office. It would be more meaningful if the labels on the web

page stated Dr. Bell’s Office and Mrs. Bell’s Porch. Hint: Make a lookup

table for this data so that you can substitute the values when displayed

to the client.

Another area of exploration is to use the SD card rather than the

onboard EEPROM to store the data. Rather than store only the last value

for each sensor node, store a running list of values for each sensor in

a separate file. When the client requests the data, display only the last

values written to each file. This will demonstrate the minor changes

needed to make the local-storage data-aggregate node into a node that

permits storage of values over time. Be careful not to exceed the capacity

of the SD card!

There is one thing that this project does not have that would be

considered essential for cases where you want to know when a sample

was taken: the date and time of the sample! The project stores the latest

values for each sensor, but you don’t know when the sample was taken.

For example, what if you receive data from one sensor only once and

something happens to cause the sensor to stop sending data? Without

a date and time reference, you have no way to know this. To resolve this

issue, you can modify the project to use a real-time clock module and store

the date and time of each sample as you saw in Chapter 7. Hint: You need

to extend the methods for storing the sample data by adding the real-time

clock value.

If you are looking for a significant challenge, modify the code to send

the data to the cloud, and use the cloud as your data-storage mechanism.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

594

 Remote-Storage Data Aggregator
A remote-storage data aggregator is a node designed to receive sensor data

from one or more sensors or sensor nodes and store the data on a different

node. Most often, it is the case that the other node is a system with a more

robust storage device. For example, it may be a computer that can store

large files or a database server that permits you to store the data in tables.

Remote-storage data-aggregate nodes can be less sophisticated than

local-storage data-aggregate nodes because there is no need to process the

data for display or storage in a local device. Rather, you merely pass the raw

data to the remote node (system) for storage.

Remote storage is also the first choice for cases where you want to

store the data for later processing. Although it may be the case that the

loss of some values may be acceptable, it is more likely that you want to

collect all the data produced so that your analysis can be more accurate.5

You therefore want the connection from the data-aggregate node to the

remote- storage node to be reliable.

It may also be the case that there are multiple nodes to which you send

the data. Consider a situation in which you are working with different

sensors or sensors that produce data in different formats. In this case, you

may want to send data from some sensors to one remote node and other

data to other node(s). The reasons for doing such are less paramount than

those for using different local-storage data-aggregate nodes, but it is still a

concern. I consider this and similar topics for planning sensor networks in

the next chapter.

5 Which reminds me of my advanced statistics professor, who opened the semester
with the question, “How much data makes for a statistically relevant sample
size?” He did not offer an answer, but he asked the question again at the end
of the semester. To his delight, the answer presented by the students was “It
depends on what you’re doing with the data.” When pressed for a numerical
answer, his response was unwaveringly “42.”

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

595

You see a working example of this form of data-aggregate node for both

the Arduino and Raspberry Pi in the following sections.

 Project: Arduino Data-Aggregate Node with
Database Storage
This project uses the previous project as its basis. You can use similar

hardware (board, shields) and software but with a slightly different sketch.

If you have not built the components from the previous project or had

problems getting it to work, you may want to go back and diagnose and

correct the problem first.

Since we will be using the Connector/Arduino we saw in Chapter 9,

we will need to use an Arduino board with more memory. For this project,

I recommend using an Arduino Uno or, better, the Arduino Mega 2560

board. In fact, I will demonstrate the project using the Mega 2560.

Note If you use a WiFi shield, be sure to refer to the vendor’s
datasheet or set up documentation to use the board correctly with the
Arduino Mega 2560.

You also use the MySQL database server you created in Chapter 8

and the connection mechanism from Chapter 9. If you have not built the

database server or have one installed on your PC, you need to go back to

Chapter 8 and build it.

Note If you have problems getting your Raspberry Pi configured
with MySQL or want to simplify the project, you can use a MySQL
server running on another computer. However, you should get your
Raspberry Pi database server running if you plan to install or use this
project as a basis for your own sensor network.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

596

With that stated, it’s time to build your sensor network storing the

samples in a database. Savvy readers will realize you’ve already built

examples of all the components in the previous chapters.

 Hardware

This project uses the same sensor hardware as the previous project for the

sensor nodes and the data-aggregate node. The difference is that you use

a larger board for the data-aggregate node and we add a new node—the

MySQL database server.

Recall from Chapter 8 that the MySQL database server is a Raspberry

Pi with an external hard drive connected via a USB hub (the Raspberry Pi

cannot power devices like hard drives via the USB bus). Please refer to the

“Building a Raspberry Pi MySQL Server” section in Chapter 8 to build the

MySQL database server if you have not done so already.

Go ahead and power on the database server and make sure it can

accept connections. You can leave the server powered on and connected

while working with the other nodes. It is best to leave the sensor nodes

powered off until you get all the software changes completed for the

data- aggregate node.

 Software

As with the hardware, you use the same software as in the previous

project, albeit with additional libraries for the MySQL connection and a

few modifications to the sketch. Because you are using the same XBee

configuration, all the code for reading data from the XBee modules is the

same as in the previous project.

I omit the code for creating a web server and writing the data values

to EEPROM. This removes a lot of the code, but the basic structure is the

same. The new portions are the calls to the MySQL Connector Arduino

library for connecting to the database server and issuing queries to save

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

597

the data, as you saw in Chapter 9. You work through each of the new

parts of the sketch in the following paragraphs. A later section looks at

configuring the MySQL database.

Adding the MySQL Connector Code to the Sketch

If you haven’t installed the MySQL Connector Arduino library yet, refer to

Chapter 9 to install the library. Once you have the library installed, open

a new sketch and name it Arduino_MySQL_Aggregate.ino. The following

shows the libraries needed for reading data from the XBee module as well

as the connector library:

#include <XBee.h>

#include <SoftwareSerial.h>

#include <WiFi.h>

#include <MySQL_Connection.h>

#include <MySQL_Cursor.h>

You reuse the variables for communicating with the XBee but add an

instance of the MySQL_Connector class from the library, user, password,

SQL INSERT, and default database strings as shown here:

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

// Sample query

char INSERT_SQL[] = "INSERT INTO house.temperature (address,

raw_temp, voltage) VALUES('%s','$s','%s')";

char DEFAULT_DATABASE[] = "house";

...

WiFiClient client;

MySQL_Connection conn((Client *)&client);

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

598

You also need to store the IP address6 of the MySQL database server.

You do this via the following code. Be sure to use the correct IP address

for your MySQL server—failure to use the correct address will result in

 connection errors when the sketch first starts (because you connect to the

server in the setup() method):

IPAddress server_addr(192,168,42,8); // IP of the MySQL

server here

You keep the get_sample_data() method from the previous project

but drop the listener(), send_sensor_data(), and EEPROM read and

write methods. The record_sample() method requires rewriting, however.

In this case, you still call get_sample_data(); but instead of calculating

the temperature from the raw data and displaying it to the serial monitor,

you build an INSERT SQL statement for saving the data in a table (I explain

the database set up in the next section). This requires building the string to

save the last four digits of the hexadecimal address, the raw temperature,

and the voltage in the string. Once the string is built, you simply call the

cmd_query() method of the MySQL Connector class instance (my_conn).

The new method is shown next:

void record_sample(ZBRxIoSampleResponse *ioSample) {

 int saved_addr;

 char temp_buff[20];

 char voltage_buff[20];

 char query[128];

 // Get sample data from XBee

 get_sample_data(ioSample);

6 It must be a valid IP address for the network segment to which your server is
connected.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

599

 // Send data to MySQL

 String addr(address, HEX);

 dtostrf(temperature, 4, 4, temp_buff);

 dtostrf(voltage, 4, 4, voltage_buff);

 sprintf(query, addr.c_str(), temp_buff, voltage_buff);

 Serial.println(&query[0]);

 // Initiate the query class instance

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 int res = cur_mem->execute(query);

 if (!res) {

 Serial.println("Query failed.");

 } else {

 Serial.println("Ok.");

 }

 delete cur_mem;

}

The changes to the setup() method require adding the code to

connect to the database server. You remove the calls to server.begin()

and EEPROM.write(0, 0) because you are neither initiating a web server

nor using the EEPROM to store the samples. Instead, add the following

code to the end of the setup() method:

// Now connect to MySQL

Serial.println("Connecting to MySQL...");

if (conn.connect(server_addr, 3306, user, password, DEFAULT_

DATABASE)) {

 delay(1000);

} else {

 Serial.println("Connection failed.");

}

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

600

Modifying the loop() method is much easier. All the calls are in place

for reading from the XBee modules and calling the record_sample()

method. The only thing left to do is to remove the last else statement that

contains the call to the listener() method.

As you can see, the modifications to the sketch from the last project

are very easy. In fact, if you want to save some time coding, you can copy

the code from the previous project and remove the parts you do not need.

 Listing 10-5 shows the completed sketch, including all the parts reused

from the last project.

Listing 10-5. Arduino Remote-Storage Data Aggregate

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Arduino Data Aggregate Node

 This project demonstrates how to receive sensor data from

 multiple XBee sensor nodes saving the samples in a MySQL

 database.

 It uses an Arduino with an XBee shield with an XBee

 coordinator installed.

*/

#include <XBee.h>

#include <SoftwareSerial.h>

#include <WiFi.h>

#include <MySQL_Connection.h>

#include <MySQL_Cursor.h>

// Setup pin definitions for XBee shield

uint8_t recv = 8;

uint8_t trans = 9;

SoftwareSerial soft_serial(recv, trans);

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

601

// assign a MAC address and IP address for the Arduino

byte mac_addr[] = { 0xDE, 0xAD, 0xBE, 0xEF, 0xFE, 0xED };

IPAddress server_addr(192,168,42,8); // IP of the MySQL

server here

char user[] = "arduino_user"; // MySQL user login username

char password[] = "secret"; // MySQL user login password

char ssid[] = "SSID";

char pass[] = "PASSWORD";

// Sample query

char INSERT_SQL[] = "INSERT INTO house.temperature (address,

raw_temp, voltage) VALUES('%s','$s','%s')";

char DEFAULT_DATABASE[] = "house";

WiFiClient client;

MySQL_Connection conn((Client *)&client);

// Start WiFi Server class with port 80

WiFiServer server(80);

// Instantiate an instance of the XBee library

XBee xbee = XBee();

// Instantiate an instance of the IO sample class

ZBRxIoSampleResponse ioSample = ZBRxIoSampleResponse();

// Sample data values

unsigned int address; // Last 4 digits of XBee address

float temperature; // Raw temperature value

float voltage; // Reference voltage

// Get sample data

void get_sample_data(ZBRxIoSampleResponse *ioSample) {

 Serial.print("Received data from address: ");

 address = (ioSample->getRemoteAddress64().getMsb() << 8) +

 ioSample->getRemoteAddress64().getLsb();

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

602

 Serial.print(ioSample->getRemoteAddress64().getMsb(), HEX);

 Serial.println(ioSample->getRemoteAddress64().getLsb(), HEX);

 temperature = ioSample->getAnalog(3);

 int ref = xbee.getResponse().getFrameData()[17] << 8;

 ref += xbee.getResponse().getFrameData()[18];

 voltage = (float(ref) * float(1200.0 / 1024.0))/1000.0;

}

// Record a sample

void record_sample(ZBRxIoSampleResponse *ioSample) {

 int saved_addr;

 char temp_buff[20];

 char voltage_buff[20];

 char query[128];

 // Get sample data from XBee

 get_sample_data(ioSample);

 // Send data to MySQL

 String addr(address, HEX);

 dtostrf(temperature, 4, 4, temp_buff);

 dtostrf(voltage, 4, 4, voltage_buff);

 sprintf(query, addr.c_str(), temp_buff, voltage_buff);

 Serial.println(&query[0]);

 // Initiate the query class instance

 MySQL_Cursor *cur_mem = new MySQL_Cursor(&conn);

 // Execute the query

 int res = cur_mem->execute(query);

 if (!res) {

 Serial.println("Query failed.");

 } else {

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

603

 Serial.println("Ok.");

 }

 delete cur_mem;

}

void setup() {

 Serial.begin(115200);

 while (!Serial); // wait for serial port to connect

 // WiFi section

 Serial.println("Starting WiFi.");

 int status = WiFi.begin(ssid, pass);

 // if you're not connected, stop here:

 if (status != WL_CONNECTED) {

 Serial.println("Couldn't get a WiFi connection!");

 while(true);

 }

 // if you are connected, print out info about the connection:

 else {

 Serial.println("Connected to network");

 IPAddress ip = WiFi.localIP();

 Serial.print("My IP address is: ");

 Serial.println(ip);

 }

 soft_serial.begin(9600);

 xbee.setSerial(soft_serial);

 // Now connect to MySQL

 Serial.println("Connecting to MySQL...");

 if (conn.connect(server_addr, 3306, user, password,

DEFAULT_DATABASE)) {

 delay(1000);

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

604

 } else {

 Serial.println("Connection failed.");

 }

}

void loop() {

 //attempt to read a packet

 xbee.readPacket();

 if (xbee.getResponse().isAvailable()) {

 // got something

 if (xbee.getResponse().getApiId() == ZB_IO_SAMPLE_RESPONSE) {

 // Get the packet

 xbee.getResponse().getZBRxIoSampleResponse(ioSample);

 // Get and store the data locally (in memory or on card?)

 record_sample(&ioSample);

 }

 else {

 Serial.print("Expected I/O Sample, but got ");

 Serial.print(xbee.getResponse().getApiId(), HEX);

 }

 } else if (xbee.getResponse().isError()) {

 Serial.print("Error reading packet. Error code: ");

 Serial.println(xbee.getResponse().getErrorCode());

 }

}

You may be wondering why you remove the code for calculating the

temperature in Fahrenheit and Celsius. You do this because you can

move this functionality to the database server. Not only does this free

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

605

up some processing power (a big help for smaller microcontrollers),

but for platforms like the Arduino, it also frees up a small amount of

memory. The savings for this project may be minimal, but consider the

case for a very complex sketch or an Arduino that is doing other things.

Any savings in memory could allow for more room to store data or work

with more sensors.

For example, consider the need for building a node that not only serves

as a data aggregate via an XBee network but also hosts a number of sensors

on the Arduino connected via an I2C interface and displays data via some

other hardware-specific interface such as an LCD panel or even a hard-

copy printer.7 All these components require the inclusion of libraries; and

depending on the size of the Arduino, you may run low on memory. I have

built sketches that have forced me to use an Arduino Mega not because

of the size of my sketch but due to the sum of the memory needed for the

libraries I needed to use.

Now that you have the sketch built, let’s turn to the database server and

see what needs to be done to support storing the samples in a table.

Setting Up the MySQL Database

This section discusses the work needed on the MySQL server to make a

database for saving and reporting your sensor data. The first thing you

need to do is create the database you want to use and populate it with the

necessary objects. In this case, you need two tables and a trigger. I show

you all the commands needed but omit most of the interaction with the

server for brevity. Refer to Chapters 6 and 7 for a quick-start tutorial on

MySQL if you have not read those chapters.

7 Yes, these exist! See www.sparkfun.com/products/10438.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.sparkfun.com/products/10438

606

Connect to your MySQL database server. Recall that you can do this

via the mysql -uroot -p<password> command if run on the Raspberry

Pi or you can use the MySQL Shell via the mysqlsh --uri root@

localhost:3306 --sql command if run on your PC. Go ahead and create

the database and name it house, as shown here:

CREATE DATABASE house;

USE house;

The data will be stored in a table. As mentioned previously, you

want to store the address of the XBee sensor node (the last four

hexadecimal digits of the 64-bit address), the raw temperature sample,

and the voltage.

It is at this point you can consider adding some functionality to the

database server that would otherwise require much more work on the

data-aggregate node. For example, consider the fact that you want to

know when the sample was taken. That is, you want to store the date and

time of the sample. If you remember from earlier chapters, you must use

a real- time clock module connected to the Arduino in order to display

the date and time of the sample. Fortunately, you can avoid all that code

and hardware by simply instructing the database server to store this data

automatically by creating a column using the timestamp data type. This

data type stores the current date and time when the row is inserted into the

table. Very cool, eh?

But you may wonder how that works. The trick to making the

server fill in the data for the field is to not pass a value in the INSERT

statement. This is a special sentinel value that the server interprets to

mean you want to calculate the timestamp and save it. Note that you

can provide a specific timestamp for the column should you need to

store a specific value.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

607

You can also move the code to calculate the temperature in

Fahrenheit and Celsius to the database. This requires the use of

a trigger (a special block of code that can be executed at specific

moments when a row is inserted, updated, or deleted). You look at the

trigger in a moment; for now, you can simply add a column for each

temperature value.

Thus, you need a total of six columns: date and time of the

sample, address of the sensor node, raw temperature sample, voltage,

temperature in Fahrenheit, and temperature in Celsius. The CREATE

TABLE statement needed to realize this table is as follows. Name the table

temperature:

CREATE TABLE `temperature` (

 `sample_date` timestamp DEFAULT CURRENT_TIMESTAMP ON UPDATE

CURRENT_TIMESTAMP,

 `address` char(8) DEFAULT NULL,

 `raw_temp` float DEFAULT NULL,

 `voltage` float DEFAULT NULL,

 `fahrenheit` float DEFAULT '0',

 `celsius` float DEFAULT '0'

) ENGINE=InnoDB DEFAULT CHARSET=latin18;

Notice that you do not use a primary key. I leave it to you to consider

the implications, and I discuss considerations for database design in the

next chapter.

8 What is missing here? Can you spot a potential problem with this table? I’ll give
you a hint: can it accept duplicate rows? What about ordering of the rows? Are
these an issue?

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

608

WHAT ABOUT NODES WITHOUT XBEES? WHAT ADDRESS DO I USE?

The table you create here uses a short character string for the address of the

XBee sensor node. What do you use if you add a sensor node that doesn’t use

XBees (it connects directly to the server for storing data) or if there are sensors

connected to the data-aggregate node? In either case, you can simply create

your own unique value for each sensor. You can use the convention of the last

four digits of the XBee 64-bit address and store the hexadecimal value. You

can just as easily number your sensor nodes and sensors with values starting

from 0000 to FFFF. This leaves you plenty of values to work with. But be sure

not to use the same value as one of your XBees.

Recall that one of the challenges from the last project is to use

meaningful names for each of the sensor nodes. You can move this to the

database server as well, in the form of a lookup table. In this case, you need

a column that matches the values stored in the temperature table and

another column for storing a more meaningful name. This allows you to

add more human-friendly data while preserving the original form of the

data. Later, you see how to retrieve this information when querying data on

the server. The following statements create the new table named sensor_

names and populate it with data. You conclude with a sample SELECT

statement to retrieve the data entered:

CREATE TABLE `sensor_names` (

 `address` char(8) DEFAULT NULL,

 `name` char(30) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

INSERT INTO sensor_names VALUES ('DB79', 'New Porch');

INSERT INTO sensor_names VALUES ('D45C', 'Living Room');

INSERT INTO sensor_names VALUES ('29DB', 'Office');

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

609

SELECT * FROM house.sensor_names;

+---------+-------------+

| address | name |

+---------+-------------+

| 29a2 | New Porch |

| 29db | Living Room |

| cd0f | Office |

+---------+-------------+

3 rows in set (0.00 sec)

Tip Use the addresses for your own XBee nodes in the following
INSERT statements when you use them in your project.

Now let’s consider the trigger. This is how you transplant the code

to calculate the temperature in the Fahrenheit and Celsius scales to the

database server. I encourage you to examine the syntax and use of triggers

in the online MySQL reference manual (https://dev.mysql.com/doc/

refman/8.0/en/create-trigger.html). In the meantime, I show you what

statements are needed to add the trigger you need.

You need to detect when a new row is added to the table. When that

happens, you want to perform the calculations and store the results in

the appropriate columns. Thus, you need to create a trigger that operates

before a new row is inserted. When that event occurs, you can perform the

calculations. The following code shows the trigger you need to create. The

calculations should look very familiar, albeit with a different syntax. Notice

the use of the new operator, which lets you reference the values from the

incoming (new) row to either read or write:

DELIMITER //

CREATE TRIGGER calc_temp BEFORE INSERT ON temperature

FOR EACH ROW

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

https://dev.mysql.com/doc/refman/8.0/en/create-trigger.html
https://dev.mysql.com/doc/refman/8.0/en/create-trigger.html

610

BEGIN

 declare c float;

 set c = ((new.raw_temp * 1200.0 / 1024.0) - 500.0) / 10.0;

 set new.celsius = c;

 set new.fahrenheit = ((c * 9.0)/5.0) + 32.0;

END;

//

DELIMITER ;

The first thing you may notice is the use of the DELIMITER command.

This is a special command that can be used to replace the ; character that

determines the end of a statement in the mysql client. In this case, you use

// instead of ;.

The DELIMITER change is needed because the body of your trigger

contains SQL statements that end with a semicolon. If you had not

changed the delimiter, the mysql client would detect an end of statement

and attempt to execute the partially coded trigger. If you run into

syntax errors when creating this trigger, check to make sure you use the

DELIMITER command as shown. Notice that the last thing you do is change

the delimiter back to a semicolon.

Notice also that you set up the trigger to execute before an insert and

you have a loop to process each new row. Although you’re issuing single

INSERT statements, this syntax is required because there may be cases

where more than one new row is added at a time. For example, if there are

transactions involved, the changes may not be committed (permanently

stored) until several rows have been processed. In this case, the trigger will

fire once, and the body will be processed once for each of the new rows.

You also need to grant access to the user if you haven’t already done so

in Chapter 9. You do this with the CREATE USER and GRANT statements:

CREATE USER 'arduino_user'@'%' IDENTIFIED WITH mysql_native_

password BY 'secret';

GRANT ALL ON *.* to 'arduino_user'@'%';

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

611

Now that you have your MySQL database server set up and the

necessary database objects created, let’s put it all together and see how

it runs. It is at this time that you can upload the sketch to your Arduino

data- aggregate node (making sure it is plugged in to your network) and

power on the sensor nodes. Wait 3–5 minutes before powering on the

sensor nodes.

 Testing the Project

Once your sketch is loaded, open the serial monitor and observe the

statements about connecting to the MySQL database server. If all is well,

you should see a success message. If you do not, check the IP address

you used, and be sure to check that your MySQL server is running and is

accepting connections.

When you see the connection success message, you can power on

your sensor nodes. You should start seeing a message printed in the serial

monitor for each sensor node. Recall from Listing 10-5 that you print an

announcement of data read from an XBee (and show the address). You

also display the completed INSERT statement for the sample data.

If you let the sketch run for some time and have several sensor nodes

powered on and communicating, you will start to see the sketch recording

samples from those sensor nodes too. Listing 10-6 shows an example of the

statements printed for samples from several sensor nodes.

Listing 10-6. Output from Arduino_MySQL_Aggregate Sketch

Connected to network

My IP address is: 192.168.42.12

Connecting...

...trying...

Connected to server version 8.0.19

Received data from address: 13A20040A0D45C

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

612

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('d45c',573.0000,3.2062) ... Ok.

Received data from address: 13A200409029DB

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('29db',546.0000,3.1688) ... Ok.

Received data from address: 13A2004192DB79

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('db79',622.0000,3.8109) ... Ok.

Received data from address: 13A20040A0D45C

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('d45c',572.0000,3.2109) ... Ok.

Received data from address: 13A200409029DB

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('29db',547.0000,3.1734) ... Ok.

Received data from address: 13A2004192DB79

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('db79',622.0000,3.8109) ... Ok.

Received data from address: 13A20040A0D45C

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('d45c',572.0000,3.2109) ... Ok.

Received data from address: 13A200409029DB

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('29db',546.0000,3.1688) ... Ok.

Received data from address: 13A2004192DB79

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('db79',623.0000,3.8109) ... Ok.

Received data from address: 13A20040A0D45C

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('d45c',572.0000,3.2109) ... Ok.

Received data from address: 13A200409029DB

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

613

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('29db',546.0000,3.1734) ... Ok.

Received data from address: 13A2004192DB79

Query: INSERT INTO house.temperature (address, raw_temp,

voltage) VALUES ('db79',622.0000,3.8098) ... Ok.

If you see results similar to these examples, you’ve solved the project!

But what about the data in the database? How do you see it? Once the

sketch has run for some time, connect to your MySQL database server,

issue the following command, and observe the results:

> SELECT * FROM house.temperature;

+---------+--------+-------+---------+---------+--------------+

| sample_date | address | raw_temp | voltage | fahrenheit | celsius |

+---------+--------+-------+---------+---------+--------------+

| 2020-03-22 19:30:30 | d45c | 573 | 3.2062 | 62.8672 | 17.1484 |

| 2020-03-22 19:30:45 | 29db | 546 | 3.1688 | 57.1719 | 13.9844 |

| 2020-03-22 19:31:00 | db79 | 622 | 3.8109 | 73.2031 | 22.8906 |

| 2020-03-22 19:31:15 | d45c | 572 | 3.2109 | 62.6562 | 17.0312 |

| 2020-03-22 19:31:30 | 29db | 547 | 3.1734 | 57.3828 | 14.1016 |

| 2020-03-22 19:31:45 | db79 | 622 | 3.8109 | 73.2031 | 22.8906 |

| 2020-03-22 19:32:00 | d45c | 572 | 3.2109 | 62.6562 | 17.0312 |

| 2020-03-22 19:32:15 | 29db | 546 | 3.1688 | 57.1719 | 13.9844 |

| 2020-03-22 19:32:30 | db79 | 623 | 3.8109 | 73.4141 | 23.0078 |

| 2020-03-22 19:32:45 | d45c | 572 | 3.2109 | 62.6562 | 17.0312 |

| 2020-03-22 19:33:00 | 29db | 546 | 3.1734 | 57.1719 | 13.9844 |

| 2020-03-22 19:33:15 | db79 | 622 | 3.8098 | 73.2031 | 22.8906 |

+---------+--------+-------+---------+---------+--------------+

12 rows in set (0.0007 sec)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

614

Notice that I had many rows to see! This is because I set my XBee

modules sleep time to a very low value. In practice, you would set the sleep

time for more than a few seconds. It is fine to leave it sampling frequently

for this project.

Notice also that you have data populated for the sample date,

Fahrenheit, and Celsius columns! This shows that the timestamp data type

worked and your trigger fired on INSERT, creating the calculated values.

Isn’t that slick and easier than making your poor overworked Arduino

crank out the values?

Now let’s consider another feature of the database server. Recall from

the previous project that you could easily see the last known samples for

each sensor node. How can you reproduce this feature if you never store

those values any place? It is unlikely you will need to have this feature, but

let’s explore it in case you need similar features.

The answer is that you do store those values! You store every value in a

sample. The problem is you don’t know which row in the table is the latest

for each sensor. But the answer is still there, isn’t it?

This is where savvy SQL programmers earns their pay. You can indeed

get to this data by using a bit of SQL magic called grouping and the MAX()

function. In this case, you want the name of the sensor (not the address)

and the temperature values in Fahrenheit and Celsius—just like what you

had on the web server.

To get the name, you must join (combine the rows of two tables

matching on a common set of columns) the temperature and sensor_

names tables, matching on address. Recall that the values in each table will

match—that is, one row in the sensor_names table will match a specific

number of rows in the temperature table.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

615

But what about the last values? To get this data, you use the MAX() function

on a subquery (a query executed from within another query) to return the

latest timestamp for each group of addresses. Notice the GROUP BY clause in

the subquery. You can use the results in the subquery to limit the output of

your SELECT to only those rows that match the latest value for each address.

The following code shows the complete SELECT statement and sample results:

SELECT name, fahrenheit, voltage

FROM temperature join sensor_names ON

temperature.address = sensor_names.address

WHERE sample_date IN (

SELECT MAX(sample_date)

FROM temperature

GROUP BY address

);

+-------------+------------+---------+

| name | fahrenheit | voltage |

+-------------+------------+---------+

| Living Room | 62.6562 | 3.2109 |

| Office | 57.1719 | 3.1734 |

| New Porch | 73.2031 | 3.8098 |

+-------------+------------+---------+

3 rows in set (0.0034 sec)

If you are thinking that is a very complex query, don’t feel bad. SQL

can be quite a challenge when you start working with databases. If you find

that you need to use such queries, it would be worth purchasing a book on

learning SQL to become more familiar with the power and functionality

available in SQL commands.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

616

 For More Fun

There are a number of things you can do with this project. In fact, all the

challenges from the previous project apply. The only thing left to do is

substitute a Raspberry Pi for one of the sensor nodes and substitute a

Raspberry Pi for the data-aggregate node. You do the latter in the next

project, but let’s consider how to do the former.

Chapter 7 explores how to create a sensor node hosted by a Raspberry

Pi. Consider taking this challenge one step further and combining it with

what you learned in Chapter 7 regarding using the TMP36 sensor. Add

such a node to your network.

For even more fun, you can add the web server components from

the previous project to the sketch. Leaving these elements in place also

introduces a form of the data-aggregate node discussed in Chapter 1—a

hybrid data-aggregate node. Recall that the advantage here is that if the

node loses connection to the server (or the server goes down), you can at

least get the latest data from the data-aggregate node.

For those that need more power: if you find you need a more industrial-

grade gateway, you can check out the Digi Industrial Gateway; an open

source Python environment for developing complex applications that

supports ZigBee and comes in a rugged case. See www.digi.com/products/

networking/gateways/xbee-industrial-gateway for more details.

Now that you have mastered data-aggregate nodes with the Arduino,

let’s explore building data-aggregate nodes with the Raspberry Pi.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.digi.com/products/networking/gateways/xbee-industrial-gateway
http://www.digi.com/products/networking/gateways/xbee-industrial-gateway

617

 Project: Raspberry Pi Data-Aggregate Node
with Database Storage
This project uses the sensor nodes from the previous project, but rather

than use an Arduino as the host for the data-aggregate node, you use a

Raspberry Pi. You also use the same MySQL database server from the

previous project to store sensor data from the XBee sensor nodes via the

Raspberry Pi data-aggregate node.

The goals of the project are to reproduce the functionality from the

last project. That is, you want the Raspberry Pi to receive sensor samples

from multiple sensor nodes via an XBee module (the coordinator) and

save those results in your MySQL database. However, since we are using

the XBee Python library, we will have to make a few minor changes to how

we calculate the temperature based on the raw data. As you will see, the

changes are subtle but not difficult.

The basis for this project is the Raspberry Pi XBee project from Chapter 5.

It may be good to review that text to familiarize yourself with the task. I

show the wiring diagram from Chapter 5 as a refresher.

 Hardware

This project requires the XBee-hosted sensor nodes from the previous

projects, a Raspberry Pi, a GPIO breakout board and cable, a breadboard,

an XBee adapter, and some breadboard jumpers.

The wiring is the same as in the section “Project: Creating a Raspberry

Pi Data Collector for XBee Sensor Nodes” in Chapter 5. Figure 10-6 shows

the breadboard and wiring from Chapter 5. Wire the XBee adapter as

shown, connect the GPIO cable to your Raspberry Pi, and then power

up! You don’t have to install the XBee yet, but it is a good idea to do so.

Remember, you need your coordinator node.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

618

 Software

The software requirements for this project are the same as the project

from Chapter 5. That is, you’re using the Connector/Python library.

Refer to Chapter 5 for information on how to download and install the

library. However, there is one other library you must install—the MySQL

Connector/Python library.

You can install the MySQL Connector/Python library on your

Raspberry Pi using the command shown in Listing 10-7, which will also

install any prerequisite libraries that may be needed.

Listing 10-7. Installing MySQL Connector/Python

$ pip3 install mysql-connector-python

Looking in indexes: https://pypi.org/simple, https://www.

piwheels.org/simple

Collecting mysql-connector-python

 Downloading https://files.pythonhosted.org/packages/5c/1e/3f

372b31853b868153e453146d99ca787da3eb4bf0b654590b829b262afa/

mysql_connector_python-8.0.19-py2.py3-none-any.whl (355kB)

Figure 10-6. Connecting an XBee to a Raspberry Pi

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

619

 100% |██████████████████████
██████████| 358kB 50kB/s

Collecting protobuf==3.6.1 (from mysql-connector-python)

 Downloading https://files.pythonhosted.org/packages/77/78/

a7f1ce761e2c738e209857175cd4f90a8562d1bde32868a8cd5290d58926/

protobuf-3.6.1-py2.py3-none-any.whl (390kB)

 100% |██████████████████████
██████████| 399kB 103kB/s

Collecting dnspython==1.16.0 (from mysql-connector-python)

 Downloading https://files.pythonhosted.org/packages/ec/d3/3a

a0e7213ef72b8585747aa0e271a9523e713813b9a20177ebe1e939deb0/

dnspython-1.16.0-py2.py3-none-any.whl (188kB)

 100% |██████████████████████
██████████| 194kB 112kB/s

Requirement already satisfied: six>=1.9 in /usr/lib/python3/dist-

packages (from protobuf==3.6.1->mysql-connector-python) (1.12.0)

Requirement already satisfied: setuptools in /usr/lib/python3/

dist-packages (from protobuf==3.6.1->mysql-connector-python)

(40.8.0)

Installing collected packages: protobuf, dnspython, mysql-

connector- python

Successfully installed dnspython-1.16.0 mysql-connector-

python-8.0.19 protobuf-3.6.1

Recall I mentioned we need to change the calculations for Celsius and

Fahrenheit because we are using the XBee Python library to read the data.

If you recall from Chapter 5, we have to use a slightly different formula

for calculating the temperature. So, rather than using the existing trigger,

we will disable the trigger with the following command and place the

calculation in the code. This is fine since the Raspberry Pi has plenty of

power to do the calculation.

DROP TRIGGER house.calc_temp;

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

620

As you will see, we will also change the INSERT SQL command to pass

the values for Celsius and Fahrenheit instead of allowing the trigger to

populate those values.

Now let’s start writing your Python script. If you want to copy the script

from Chapter 5, you can. Simply copy it to a file named pi_xbee_mysql.py.

Or you can open a new file and enter the code from scratch.

The first statements you need to enter are those for including the

libraries you need. Recall from Chapter 5 that these include the serial and

xbee libraries. You also add the mysql.connector library, as shown here:

import serial

from digi.xbee.devices import XBeeDevice

from digi.xbee.io import IOLine, IOMode

import mysql.connector

Next, you define some variables. You use the same variables and

definitions from the project in Chapter 5 but add two new ones for your

MySQL code. In this case, you need to add a variable to store the instance

of a database connector class.

You also need to expand the constants to include those required to

communicate with the MySQL server. You add the username, host (or IP),

port, and password. These are the same values you would use to connect

to the MySQL server via the mysql client. The following code shows all the

constants and variables:

MySQL constants

USER = 'arduino_user' # MySQL user id

PASSWD = 'secret' # MySQL password

HOST_OR_IP = '192.168.42.8' # MySQL server IP address

PORT = 3306 # MySQL port

Query string

INSERT_SQL = ("INSERT INTO house.temperature (address,

raw_temp, voltage, celsius, fahrenheit) "

 "VALUES('{0}', {1}, {2}, {3}, {4})")

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

621

Serial port on Raspberry Pi

SERIAL_PORT = "/dev/ttyS0"

BAUD rate for the XBee module connected to the Raspberry Pi

BAUD_RATE = 9600

Analog pin we want to monitor/request data

ANALOG_LINE = IOLine.DIO3_AD3

Sampling rate

SAMPLING_RATE = 15

Get an instance of the XBee device class

device = XBeeDevice(SERIAL_PORT, BAUD_RATE)

Variables for MySQL Connector/Python code

db_conn = None

Caution Make sure all the constants match your XBee
configuration and specifics for accessing your MySQL database
server. If the script does not run correctly or you cannot connect to
MySQL, double-check these settings.

Rather than search the network for nodes by node id, we will search

the network once and get a list of all the nodes. While this example shows

how to do this at the start, you can use the XBee library to register a

callback to detect when new nodes are added. See the API documentation

at https://xbplib.readthedocs.io/en/latest/user_doc/discovering_

the_xbee_network.html for more details.

The following code shows how to use the XBee library to discover the

nodes on the network:

def discover_nodes():

 """Get a list of the nodes (node ids) on the network

 Returns:

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

https://xbplib.readthedocs.io/en/latest/user_doc/discovering_the_xbee_network.html
https://xbplib.readthedocs.io/en/latest/user_doc/discovering_the_xbee_network.html

622

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

 xbee_network.start_discovery_process()

 print("Discovering network", end='')

 while xbee_network.is_discovery_running():

 print(".", end='')

 time.sleep(0.5)

 print("done.")

 devices = xbee_network.get_devices();

 node_ids= []

 for dev in devices:

 print("Found {0} at {1}.".format(dev.get_node_id(),

dev.get_64bit_addr()))

 node_ids.append(dev.get_node_id())

 if not node_ids:

 print("WARNING: No nodes found.")

 return node_ids

Recall, we now need a method to get the XBee node in the network so

we can capture the data it is reporting.

def get_remote_device():

 """Get the remote node from the network

 Returns:

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

 remote_device = xbee_network.discover_device(REMOTE_NODE_ID)

 if remote_device is None:

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

623

 print("ERROR: Remove node id {0} not found.".format

(REMOVE_NODE_ID))

 exit(1)

 remote_device.set_dest_address(device.get_64bit_addr())

 remote_device.set_io_configuration(ANALOG_LINE, IOMode.ADC)

 remote_device.set_io_sampling_rate(SAMPLING_RATE)

Next, we need a callback method to execute when the data is ready. In

this case, we will form the INSERT query for the data in the same method

and call the save_sample() method to execute it.

def io_sample_callback(sample, remote, time):

 address = str(remote.get_64bit_addr())

 # Get the raw temperature value

 raw_temp = sample.get_analog_value(ANALOG_LINE)

 # Calculate supply voltage

 volts = (sample.power_supply_value * (1200.0 / 1024.0)) /

1000.0

 # Save results in the table

 short_addr = address[-4:]

 print("Reading from {0}: {1}, {2}.".format(short_addr,

raw_temp, volts))

 # Get the temperature in Celsius

 temp_c = (sample.get_analog_value(ANALOG_LINE) / 1023.0 *

1.25 - 0.5) * 100.0

 # Calculate temperature in Fahrenheit

 temp_f = ((temp_c * 9.0) / 5.0) + 32.0

 print("\tTemperature is {0:.2f}C. {1:.2f}F".format

(temp_c, temp_f))

 query = (INSERT_SQL.format(short_addr, raw_temp, volts,

temp_c, temp_f))

 save_sample(db_conn, query)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

624

To use the save_sample() method, we pass it the database connection

instance and a query string. The method creates a cursor, executes the

query, and then checks for a result. If results are available, it returns them

to the caller. The complete method is as follows:

def save_sample(conn, query_str):

 results = None

 cur = conn.cursor(

 cursor_class=mysql.connector.cursor.

MySQLCursorBufferedRaw)

 try:

 res = cur.execute(query_str)

 except mysql.connector.Error as e:

 cur.close()

 raise Exception("Query failed. " + e.__str__())

 try:

 results = cur.fetchall()

 except mysql.connector.errors.InterfaceError as e:

 if e.msg.lower() == "no result set to fetch from.":

 pass # This error means there were no results.

 else: # otherwise, re-raise error

 raise e

 conn.commit()

 cur.close()

 return results

Now you get to the meat of the script using the same form as the

project from Chapter 5 (one while infinity loop9 with a break exception).

But first, you connect to the database server (remember, function

9 It is called an infinity loop because the test condition is always true. In this case,
unless you kill the script or press Ctrl+C, it will continue to run as long as the
hardware remains powered on and working.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

625

declarations are not executed when encountered—only when called). You

create a dictionary of values, setting them to the constants shown earlier.

This is a technique you can use in any Python script to avoid passing a

large set of parameters. The following code attempts to connect to the

MySQL server and, if successful, returns an instance of the database

connector class:

Connect to database server

try:

 parameters = {

 'user': USER,

 'host': HOST_OR_IP,

 'port': PORT,

 'passwd': PASSWD,

 }

 print("Connecting to MySQL...", end='')

 db_conn = mysql.connector.connect(**parameters)

 print("done.")

except mysql.connector.Error as e:

 raise Exception("ERROR: Cannot connect to MySQL Server!")

 exit(1)

If the connection fails, you throw an exception. If this happens, be sure

to check your constants for the correct values, and try connecting to the

MySQL server using the mysql client application using the same parameters.

Once you can connect successfully via the mysql client, try the script again.

The next portion is the while infinity loop, which is also taken from the

example in Chapter 5:

try:

 # Read and save temperature data

 print("Welcome to example of storing data from a set of

remote TMP36 sensors in MySQL!")

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

626

 device.open() # Open the device class

 # Get the nodes on the network

 remote_node_ids = discover_nodes()

 # Setup the remote device

 for remote_id in remote_node_ids:

 get_remote_device(remote_id)

 # Register a listener to handle the samples received by the

local device

 device.add_io_sample_received_callback(io_sample_callback)

 while True:

 pass

except KeyboardInterrupt:

 if device is not None and device.is_open():

 device.close()

Once the while infinity loop is terminated, you must disconnect from

the server. The following code does that. In this case, you ignore any

errors—you are disconnecting, and you don’t care if you fail because the

script will stop:

Disconnect from the server

try:

 db_conn.disconnect()

except:

 pass

If you are thinking this isn’t a lot of code, you are correct. The

Connector/Python library makes working with MySQL in Python very

easy. Listing 10-8 shows the complete code for this project. Take some

time to make sure everything is entered correctly before you attempt to

run the script.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

627

Listing 10-8. Raspberry Pi Remote-Storage Data Aggregator

#

Beginning Sensor Networks Second Edition

RasPi XBee Remote Storage Data Aggregator

#

For this script, we read data from an XBee coordinator

node whenever data is received from an XBee sensor node.

We also need a connection to a database server for saving

the results in a table.

#

The data read is from one sample (temperature from a

XBee sensor node and the supply voltage at the source) for

each device on the network by node id.

#

import serial

import time

from digi.xbee.devices import XBeeDevice

from digi.xbee.io import IOLine, IOMode

import mysql.connector

MySQL constants

USER = 'arduino_user' # MySQL user id

PASSWD = 'secret' # MySQL password

HOST_OR_IP = '192.168.42.8' # MySQL server IP address

PORT = 3306 # MySQL port

Query string

INSERT_SQL = ("INSERT INTO house.temperature (address,

raw_temp, voltage, celsius, fahrenheit) "

 "VALUES('{0}', {1}, {2}, {3}, {4})")

Serial port on Raspberry Pi

SERIAL_PORT = "/dev/ttyS0"

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

628

BAUD rate for the XBee module connected to the Raspberry Pi

BAUD_RATE = 9600

Analog pin we want to monitor/request data

ANALOG_LINE = IOLine.DIO3_AD3

Sampling rate

SAMPLING_RATE = 15

Get an instance of the XBee device class

device = XBeeDevice(SERIAL_PORT, BAUD_RATE)

Variables for MySQL Connector/Python code

db_conn = None

Save the sample in the database

def save_sample(conn, query_str):

 results = None

 cur = conn.cursor(

 cursor_class=mysql.connector.cursor.

MySQLCursorBufferedRaw)

 try:

 res = cur.execute(query_str)

 except mysql.connector.Error as e:

 cur.close()

 raise Exception("Query failed. " + e.__str__())

 try:

 results = cur.fetchall()

 except mysql.connector.errors.InterfaceError as e:

 if e.msg.lower() == "no result set to fetch from.":

 pass # This error means there were no results.

 else: # otherwise, re-raise error

 raise e

 conn.commit()

 cur.close()

 return results

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

629

Method to connect to the network and discover the nodes

def discover_nodes():

 """Get a list of the nodes (node ids) on the network

 Returns:

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

 xbee_network.start_discovery_process()

 print("Discovering network", end='')

 while xbee_network.is_discovery_running():

 print(".", end='')

 time.sleep(0.5)

 print("done.")

 devices = xbee_network.get_devices();

 node_ids= []

 for dev in devices:

 print("Found {0} at {1}.".format(dev.get_node_id(),

dev.get_64bit_addr()))

 node_ids.append(dev.get_node_id())

 if not node_ids:

 print("WARNING: No nodes found.")

 return node_ids

Method to connect to the network and get the remote node by id

def get_remote_device(remote_id):

 """Get the remote node from the network

 Returns:

 """

 # Request the network class and search the network for the

remote node

 xbee_network = device.get_network()

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

630

 remote_device = xbee_network.discover_device(remote_id)

 if remote_device is None:

 print("ERROR: Remote node id {0} not found."

.format(remote_id))

 exit(1)

 remote_device.set_dest_address(device.get_64bit_addr())

 remote_device.set_io_configuration(ANALOG_LINE, IOMode.ADC)

 remote_device.set_io_sampling_rate(SAMPLING_RATE)

Method to get the data when available from the remote node

def io_sample_callback(sample, remote, time):

 address = str(remote.get_64bit_addr())

 # Get the raw temperature value

 raw_temp = sample.get_analog_value(ANALOG_LINE)

 # Calculate supply voltage

 volts = (sample.power_supply_value * (1200.0 / 1024.0)) /

1000.0

 # Save results in the table

 short_addr = address[-4:]

 print("Reading from {0}: {1}, {2}.".format(short_addr,

raw_temp, volts))

 # Get the temperature in Celsius

 temp_c = (sample.get_analog_value(ANALOG_LINE) / 1023.0 *

1.25 - 0.5) * 100.0

 # Calculate temperature in Fahrenheit

 temp_f = ((temp_c * 9.0) / 5.0) + 32.0

 print("\tTemperature is {0:.2f}C. {1:.2f}F".format

(temp_c, temp_f))

 query = (INSERT_SQL.format(short_addr, raw_temp, volts,

temp_c, temp_f))

 save_sample(db_conn, query)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

631

Connect to database server

try:

 parameters = {

 'user': USER,

 'host': HOST_OR_IP,

 'port': PORT,

 'passwd': PASSWD,

 }

 print("Connecting to MySQL...", end='')

 db_conn = mysql.connector.connect(**parameters)

 print("done.")

except mysql.connector.Error as e:

 raise Exception("ERROR: Cannot connect to MySQL Server!")

 exit(1)

try:

 # Read and save temperature data

 print("Welcome to example of storing data from a set of

remote TMP36 sensors in MySQL!")

 device.open() # Open the device class

 # Get the nodes on the network

 remote_node_ids = discover_nodes()

 # Setup the remote device

 for remote_id in remote_node_ids:

 get_remote_device(remote_id)

 # Register a listener to handle the samples received by the

local device

 device.add_io_sample_received_callback(io_sample_callback)

 while True:

 pass

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

632

except KeyboardInterrupt:

 if device is not None and device.is_open():

 device.close()

Disconnect from the server

try:

 db_conn.disconnect()

except:

 pass

 Testing the Project

To test the project, make sure your XBee coordinator node is installed

in the XBee adapter. Wait a few moments before you turn on your XBee

sensor nodes. Once all nodes are powered on, you’re ready to go. Issue the

following command to launch the script:

$ python ./pi_xbee_mysql.py

If you see syntax errors or exceptions, be sure to fix them and rerun the

command. You know it is working (or at least doesn’t have any errors) if

the script starts and nothing happens. Recall that the code is waiting for a

packet (sample) to be received from the XBee sensor nodes. When the nodes

start to send data, you see output similar to what is shown in Listing 10-9.

Remember, you can stop your script at any time by pressing Ctrl+C.

Listing 10-9. Example Output for pi_xbee_mysql.py

Connecting to MySQL...done.

Welcome to example of storing data from a set of remote TMP36

sensors in MySQL!

Discovering network.............done.

Found TMP36_2 at 0013A20040A0D45C.

Found TMP36_1 at 0013A2004192DB79.

Found TMP36_3 at 0013A200409029DB.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

633

Reading from D45C: 543, 3.15.

 Temperature is 16.35C. 61.43F

Reading from DB79: 539, 3.82734375.

 Temperature is 15.86C. 60.55F

Reading from 29DB: 523, 3.0796875.

 Temperature is 13.91C. 57.03F

Reading from D45C: 544, 3.15.

 Temperature is 16.47C. 61.65F

Reading from DB79: 539, 3.82734375.

 Temperature is 15.86C. 60.55F

Reading from 29DB: 523, 3.0796875.

 Temperature is 13.91C. 57.03F

Reading from D45C: 544, 3.15.

 Temperature is 16.47C. 61.65F

Reading from DB79: 540, 3.82734375.

 Temperature is 15.98C. 60.77F

Reading from 29DB: 523, 3.084375.

 Temperature is 13.91C. 57.03F

To check to see if your samples were saved in the database, connect to

the server and execute the following query:

> SELECT * FROM house.temperature;

+------------+-----+--------+--------+-----------+------------+

| sample_date | address | raw_temp | voltage | fahrenheit | celsius |

+------------+------+-------+--------+-----------+------------+

| 2020-03-23 14:41:24 | D45C | 543 | 3.15 | 61.4282 | 16.349 |

| 2020-03-23 14:41:31 | DB79 |539 | 3.82734 | 60.5484 | 15.8602 |

| 2020-03-23 14:41:34 | 29DB | 523 | 3.07969 | 57.0293 | 13.9052 |

| 2020-03-23 14:41:39 | D45C | 544 | 3.15 | 61.6481 | 16.4712 |

| 2020-03-23 14:41:46 | DB79 | 539 | 3.82734 | 60.5484 | 15.8602 |

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

634

| 2020-03-23 14:41:49 | 29DB | 523 | 3.07969 | 57.0293 | 13.9052 |

| 2020-03-23 14:41:54 | D45C | 544 | 3.15 | 61.6481 | 16.4712 |

| 2020-03-23 14:42:02 | DB79 | 540 | 3.82734 | 60.7683 | 15.9824 |

| 2020-03-23 14:42:04 | 29DB | 523 | 3.08437 | 57.0293 | 13.9052 |

| 2020-03-23 14:42:09 | D45C | 544 | 3.15 | 61.6481 | 16.4712 |

| 2020-03-23 14:42:17 | DB79 | 539 | 3.825 | 60.5484 | 15.8602 |

| 2020-03-23 14:42:18 | 29DB | 523 | 3.07969 | 57.0293 | 13.9052 |

+---------------+-------+------+------+-------+------+

You should see a number of rows in the result set and be able to match

the rows to the output from your script. Once you’ve verified it is working,

congratulate yourself: you have now mastered building remote-storage

data-aggregate nodes using both an Arduino and a Raspberry Pi!

Furthermore, you have demonstrated how versatile the XBee modules

are by using the same XBee sensor nodes in each project. Take some time

and experiment with the script and the data that is being stored in the

database.

 For More Fun

That was a lot of fun, wasn’t it? You may be wondering what more you

could do with such a solid bit of Python code. Well, there are some cool

things you can do.

The biggest challenge I can suggest is taking this script and rewriting it

slightly to get the data from a TMP36 sensor via an ADC module. In other

words, change the Raspberry Pi data-aggregate node into a sensor node

that stores its data directly into the database.

Aside from that, you may want to experiment with changing the script

into a daemon so that you can run it in the background and still use your

Raspberry Pi for other things.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

635

 Component Shopping List
There are no required components needed for the projects in this chapter.

Table 10-3 shows a list of the optional components that you may need to

complete the projects. The remaining components, such as XBee modules

and supporting hardware, are included in the shopping lists from other

chapters; these are shown in Table 10-4.

Table 10-3. Components Needed

Item Vendors Est. Cost
USD

Qty
Needed

Stackable header kit www.sparkfun.com/

products/11417

$1.50–1.95 1*

www.adafruit.com/

products/85

*Optional and may not be needed.

Table 10-4. Components Reused from Previous Chapters

Item Vendors Est. Cost USD Qty Needed

Arduino (any that

support shields)

Various $25.00 and up 1 for each node

XBee shield www.sparkfun.com/

products/12847

$24.95 1

TMP36 sensor www.sparkfun.com/

products/10988

$1.50 1 for each

sensor node

www.adafruit.com/

products/165

(continued)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.sparkfun.com/products/11417
http://www.sparkfun.com/products/11417
http://www.adafruit.com/products/85
http://www.adafruit.com/products/85
http://www.sparkfun.com/products/12847
http://www.sparkfun.com/products/12847
http://www.sparkfun.com/products/10988
http://www.sparkfun.com/products/10988
http://www.adafruit.com/products/165
http://www.adafruit.com/products/165

636

Table 10-4. (continued)

Item Vendors Est. Cost USD Qty Needed

0.10uF capacitor www.sparkfun.com/

products/8375

$0.25 1 for each

sensor node

Breadboard (not mini) www.sparkfun.com/

products/9567

$5.95 1 for each

sensor node +

1 for Raspberry

Pi

Breadboard jumper

wires

www.sparkfun.com/

products/8431

$3.95 1

XBee-ZB (ZB) Series 2

or 2.5

www.sparkfun.com $25.00 2–4 (1 for each

node)www.adafruit.com

Raspberry Pi Model

3B+ or 4B 2GB or 4GB

Most online stores $35.00 and up 2

HDMI or HDMI to DVI

cable

Most online and retail

stores

Varies 1

HDMI or DVI monitor Most online and retail

stores

Varies 1

USB keyboard Most online and retail

stores

Varies 1

USB power supply Most online and retail

stores

Varies 1

USB type A to

micro-USB male

Most online and retail

stores

Varies 1

(continued)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.sparkfun.com/products/8375
http://www.sparkfun.com/products/8375
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/8431
http://www.sparkfun.com
http://www.adafruit.com

637

10 You have used some in previous chapters, but you may need a few more
depending on how many sensor nodes you decide to add.

Item Vendors Est. Cost USD Qty Needed

SD Card 2GB or more Most online and retail

stores

Varies 1

Surplus hard drive Any USB hard drive

(surplus or purchased)

Varies 1

Raspberry Pi Cobbler+ www.adafruit.com/

product/2029

$7.95 1

Wall adapter 9V

(optional)

www.sparkfun.com/

products/ 15314

$5.95 1 for each

node**

9V Battery Holder

(optional)

www.sparkfun.com/

products/10512

$2.95–3.95 1 for each

node**

www.adafruit.com/

products/67

XBee Explorer

Regulated with

headers10

www.sparkfun.com/

products/11373

$10.95 1 for each

sensor node

+ 1 for the

Raspberry Pi

**You can mix and match these, provided you have enough to power all nodes.

Table 10-4. (continued)

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

http://www.adafruit.com/product/2029
http://www.adafruit.com/product/2029
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/10512
http://www.sparkfun.com/products/10512
http://www.adafruit.com/products/67
http://www.adafruit.com/products/67
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/11373

638

 Summary
In this chapter, you explored how to build data-aggregate nodes and

connect sensor nodes to them for building wireless sensor networks. You

learned how to use local storage to store and display sensor data from

sensors connected via a ZigBee (XBee) network, and you also discovered

how to use the Raspberry Pi as a database server for storing and retrieving

sensor data. You even explored how to build data-aggregate nodes with

both an Arduino and a Raspberry Pi.

In the next chapter, I present considerations about planning sensor

networks as well as more advanced sensor network topics. I discuss how to

handle sensor data from multiple sensors, and you learn more about how

to use the MySQL database to generate reports and views of the data for

analysis.

CHAPTER 10 BUILDING YOUR NETWORK: ARDUINO WIRELESS AGGREGATOR +
WIRELESS SENSOR NODE + RASPBERRY PI SERVER

639© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8_11

CHAPTER 11

Putting It All Together
Now that you have learned the basic building blocks for constructing

a wireless sensor network with the Arduino and Raspberry Pi, you can

turn your attention to some of the more intricate details of designing and

implementing sensor networks. This chapter explores considerations

for planning sensor networks, discusses some advanced sensor network

topics, and offers tips for designing databases.

 Sensor Networks Best Practices
Let’s begin with a discussion of some best practices1 you can employ to

make your sensor network projects more successful. In this section, I

discuss practices for planning data-aggregate nodes, designing databases,

and a number of tips and techniques for building sensor networks.

 Considerations for Data-Aggregate Nodes
This section examines some important considerations for planning data-

aggregate nodes. I discuss placement of the nodes in the network as well as

design considerations for data storage.

1 A cursory examination of professional and scholarly articles suggests there isn’t a
standard yet. However, I include some of the more commonly repeated practices
as well as a few of my own.

https://doi.org/10.1007/978-1-4842-5796-8_11#ESM

640

 Network Type and Node Placement

An important consideration is the type of network connection available

for the data-aggregate node. This may be dictated by the node’s use or

physical placement.

If you plan to have a data-aggregate node that you want to have access

to via your computer, you must consider placing that node where you can

connect it to your Ethernet network. This may be via a wireless Ethernet

(WiFi) connection or via a cabled connection.

On the other hand, if your data-aggregate node communicates with

sensor nodes via XBee modules, the range of the modules may dictate

where you place your data-aggregate node. For example, if your sensor

nodes are located in outbuildings or in or near ponds that are some

distance from a building with a network connection or even too far away

for WiFi, you may not be able to connect to the node with your computer

and therefore will have to periodically physically visit the node to retrieve

the data.

That doesn’t mean you have to jump on your ATV or golf cart to

run down to the old chicken house to get your data every night! In fact,

there are alternatives you can and should consider. First, you can use

intermediate XBee router nodes placed in series until you reach a location

with a network connection where your data-aggregate node can be placed.

How does this work? It is one of the advantages of the ZigBee

protocols—to create networks on the fly and relay information from

one router to another to extend the maximum range. It comes as a

consequence of using the API mode, but you can also control this easily

with the AT mode and send your data to a specific router, which then sends

the data to another (and another) until you reach your data-aggregate

node.

Another possibility is to use a directional WiFi connection that focuses

the WiFi signal using a line-of-sight, point-to-point connection. You don’t

have to spend a fortune to do it! In fact, if you or someone you know likes

Chapter 11 putting it all together

641

Pringles, you can use a Pringles can to create a directional WiFi antenna

(www.makeuseof.com/tag/how-to-make-a-wifi-antenna-out-of-a-

pringles-can-nb/).

A more extreme solution involves using a cellular modem on the data-

aggregate node to send data to another node via the Internet. Most cellular

carriers frown on setting up web or database servers accessible from

the Internet (some forbid it). Thus, you are limited to sending data from

the data-aggregate node out of your home network to a web or database

server. This option can incur recurring costs for the connection (you need

a SIM card and a data plan from your carrier of choice).

Note although there is no pluggable cellular solution for the
raspberry pi, you can use a cellular module with it. Doing so requires
more work and perhaps building more complex software but should
be possible.

For example, if you choose to use an Arduino for your data-aggregate

node, you can use the LTE CAT M1/NB-IoT Shield—SARA-R4 shield from

SparkFun (www.sparkfun.com/products/14997) along with a SIM card to

connect your node to the Internet.2 Figure 11-1 shows the shield. A sample

sketch is on the SparkFun product page for using the modem. If you dial up

modem AT commands,3 you will recognize many of the commands shown

in the online documentation.

2 There is even an XBee3 cellular modem for that that wants to make a cellular
gateway node. See www.digi.com/products/embedded-systems/digi-xbee/
cellular-modems/xbee3-cellular-lte-m-nb-iot for more details.

3 Ah, those were the days, eh? ATDT… screech, squawk, bleep, boop, brrrr, bleep,
ding, ding, ding!

Chapter 11 putting it all together

http://www.makeuseof.com/tag/how-to-make-a-wifi-antenna-out-of-a-pringles-can-nb/
http://www.makeuseof.com/tag/how-to-make-a-wifi-antenna-out-of-a-pringles-can-nb/
http://www.sparkfun.com/products/14997
https://www.digi.com/products/embedded-systems/digi-xbee/cellular-modems/xbee3-cellular-lte-m-nb-iot
https://www.digi.com/products/embedded-systems/digi-xbee/cellular-modems/xbee3-cellular-lte-m-nb-iot

642

If you find that none of these solutions will work because your sensor

nodes and data-aggregate nodes are just too far away for any practical

(and affordable) networking alternative, you may have to consider leaving

those data-aggregate nodes as local storage nodes and collecting the data

periodically to use in your analysis.

 Storing Data

One major consideration for designing a data-aggregate node is the type of

data it will store: that is, what sensors the node will support. It is typically

better to use a data-aggregate node to store data for the same sensors or

sensor nodes that generate the same type of data.

For example, if you are collecting temperature data from several

locations as well as water levels from several ponds, the data produced by

these two events differs. Temperature is normally a floating-point value;

water level is most often a Boolean value (1 = water level ok, 0 = water level low),

Figure 11-1. LTE CAT M1/NB-IoT Shield (courtesy of SparkFun)

Chapter 11 putting it all together

643

which corresponds to the most common form of measuring water level: a

float and switch.4

Clearly, storing these two sets of sensor data together would require

more work because you would be mixing different data types. This might

require choices such as storing the data in different files or even in different

databases. Furthermore, consuming the data and detecting what the data

represents (the type of sensor) would require more logic, because you would

need some way to detect what sensor node went with what data type.

Although the problem of storing water level and temperature may be

easy to code around, consider storing samples from two sensors that produce

the same data type but are interpreted differently. Recall the examples of

reading barometric pressure. It too is represented as a floating-point number.

For example, how would you know which sensor generated a value of

65.71929—the barometric or temperature sensor? It may be possible to write

code specific to the sensor itself, but what if the sensor data is being relayed to

another node? How then would you know how to interpret the data?

One solution to this problem is to use a different data-aggregate node

for each group of like sensor nodes. In the example of using temperature

and water-level sensor nodes, you would have one data aggregator for the

temperature sensor nodes and another for the water-level sensors.

Another possibility for local storage on data-aggregate nodes is to

store a special field that indicates from what sensor the data was read. You

could include additional information as you saw in some of the example

projects, such as date and time and a text string that represents a name you

have given to the sensor. Listing 11-1 shows an example of a file format that

employs a similar scheme. The first row is provided for documentation

purposes and is not normally included in the file (but savvy programmers

normally do include such things for documentation purposes).

4 There are more sophisticated sensors that can sense water level over a range
and provide a means to calculate water volume. These sensors typically produce
either an integer or a float representing the water level.

Chapter 11 putting it all together

644

Listing 11-1. Storing Additional Data with the Sample

sensor_number, datetime, value, comment

3, 2020-02-09 14:25:21, 1, Water level Ok pond 1

1, 2020-02-09 14:30:01, 65.90013, Water temp pond 1

3, 2020-02-09 14:37:04, 1, Water level Ok pond 2

2, 2020-02-09 14:38:31, 65.81723, Water temp pond 2

1, 2020-02-09 14:45:23, 66.00123, Water temp pond 1

3, 2020-02-09 14:45:36, 0, Water level LOW! pond 2

3, 2020-02-09 14:54:17, 1, Water level Ok pond 1

2, 2020-02-09 14:59:54, 66.00011, Water temp pond 2

3, 2020-02-09 15:08:41, 1, Water level Ok pond 1

1, 2020-02-09 15:10:22, 65.99913, Water temp pond 1

Notice in the listing that the data is formatted as a comma-separated-

value (CSV) file. This is an implementation choice (you could have

chosen to use tabs, semicolons, and so on) that makes reading the file

easier on a computer. If you use Python, you can read the file using only a

few library calls.

If you examine the data, you see that you have to know something

about the sensor number to be able to interpret the data. If the sensor

number is 1 or 2, you know it is temperature; but if it is 3 or 4, it is water

level. Again, this may not be that big of an issue, but if you have a data-

aggregate node receiving samples from dozens of sensors (or worse, from

sensors that have been added to the network after the code was written for

the data-aggregate node), you could end up with unknown values in the

sensor number—that is, values you don’t know how to interpret because

you don’t know what kind of sensor generated them. You can solve this by

having a separate data-aggregate node for each type of sample (sensor).

Notice also how the data is arranged. Do you see anything that suggests

conformity? If you have knowledge and experience with databases, no

doubt you have already realized this, but consider for a moment what a

Chapter 11 putting it all together

645

table in a database is made of: rows and columns, where the columns are

the fields and the rows are data. In this case, you can define two tables,

each with four columns. The water temperature data could be in one

table, because its value is an integer (or Boolean, perhaps), and the water

temperature data is a floating-point number.

Clearly, storing this data in a database makes sense. That’s what

databases are for—storing logically related groups of data for a single

row (in this case, an event or a sample). With that in mind, let’s look at

considerations for using databases to store sensor data.

 Considerations for Sensor Network Databases
In-depth, full coverage of the topic of database design is well beyond the

scope of this book. Indeed, entire tomes and even several sets of volumes

have been written about database design. Rather than go into all the theory

and then relate that to practice, let’s look at the subject from a slightly

different angle: how you can best design your databases for easy storage

and retrieval.

Note i assume no prior knowledge of database design. if you have
database design experience, you may want to skim this section.

As you saw in Chapter 8, you use the MySQL database system as the

database server. Not only is it open source (it is free, as in free beer), but

it is also the most popular choice for developers because it offers large

database system features in a lightweight form that can run on just about

any consumer computer hardware. MySQL is also very easy to use, and its

popularity has given rise to many online and printed resources for learning

and using the system. Despite this, the following examples and suggestions

can be used with any relational database server (but may require slight

changes to syntax for some).

Chapter 11 putting it all together

646

 How Data Is Organized

Let’s begin by discussing how data is grouped in a database server. As you

know, the server permits you to create any number of databases for storing

data. Typically, you want to create a separate database for each of your

sensor networks. This makes working with the data a logical whole so that

data for one sensor network isn’t intermixed with data from another.

The database itself is a container for a number of objects. You have seen

examples of tables and even a trigger in Chapter 8. Here, you focus on the

table. The table is a container that is designed specifically to hold instances

of data described (or categorized) by its layout (the number of columns and

their data types). For example, for the data shown in Listing 11-1, you can

generate a table for the temperature sensors as follows:

CREATE TABLE `pond_monitor`.`pond_water_temp` (

 `sensor_number` int DEFAULT NULL,

 `sample_collected_on` timestamp DEFAULT CURRENT_TIMESTAMP,

 `temperature` float DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Notice the sample_collected_on field. You define this as timestamp,

which MySQL will fill in with the date and time when a row is inserted in

the table. Unless you need absolute accuracy, setting this value shortly

after the sample is collected will suffice to record the date and time at

which the sample was taken.

As mentioned previously, the example in Listing 11-1 has data that is

interleaved. You want to separate that data, and thus you generate a table

to store the other samples as follows:

CREATE TABLE `pond_monitor`.`pond_water_level` (

 `sensor_number` int DEFAULT NULL,

 `sample_collected_on` timestamp DEFAULT CURRENT_TIMESTAMP,

 `water_level` tinyint DEFAULT '1'

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

Chapter 11 putting it all together

647

You may be wondering what happened to the comments. The

comments field (column) is not really needed. Recall the discussion about

storing a human-friendly name in Chapter 8. Here, you create a lookup

table to store that data. For example, the lookup table allows you to equate

a sensor number of 3 to a friendly name of Water Level Pond 1:

CREATE TABLE `pond_monitor`.`sensor_names` (

 `sensor_number` int(11) DEFAULT NULL,

 `sensor_name` char(64) DEFAULT NULL

) ENGINE=InnoDB DEFAULT CHARSET=latin1;

So, what have you done here? First, you designed two tables to store

data from two different types of sensors (as defined by what data types are

collected), and you added a lookup table to help eliminate duplicate data

(storing Water Temp Pond 1 over and over again wastes space).

But what does this mean for the data-aggregate node? If you consider

Listing 11-1 again, you see that the node has to write the sensor number,

calculate and write the timestamp (perhaps from an onboard RTC or RTC

module), write the value from the sensor, and (based on a lookup code)

store a string for the comment (to make it easier for a human to read).

However, if you implement the previous tables, the data-aggregate

node need only send the sensor number and the sample value to the

database server. Sound familiar? That is exactly what you did in the project

in Chapter 10.

 Table Design Notes

Let’s return to designing tables. When you design your tables, you should

keep a few things in mind. First, consider what data types are needed for

storing your samples. You should consider not only how many values each

sample contains but also their format (data type). The basic data types

available include integer, float, double, character, and Boolean. There are

many others, including several for dates and times as well as binary large

Chapter 11 putting it all together

648

objects (blobs) for storing large blocks of data (like images), large texts

(the same as blobs, but not interpreted as binary), and much more. See the

online MySQL reference manual for a complete list and discussion of all

data types (https://dev.mysql.com/doc/refman/8.0/en/data-types.html).

You can also consider adding additional columns such as a timestamp

field, the address of the sensor node, perhaps a reference voltage, and so

on. Write all of these down, and consider the data type for each.

Once you have decided on your table columns, the next thing you

should consider is whether to allow duplicates in the table—that is, two

or more rows that contain the same data. To avoid this, you can define a

primary key (a special index) by specifying one or more columns as the

key. You want to choose a column (or columns) that ensures that no two

rows will have the same data for that column(s).

For example, if you choose sensor_number from the previous example

as a primary key, you most certainly have a problem. Indeed, the database

server will complain the instant you try to save a second value for each

sensor. Why? Because to become the primary key, the sensor_number

column must contain a unique value for every row in the table!

But the layout of the tables does not contain any column that is

guaranteed to be unique. You may be thinking the timestamp field can be

unique, but although that may be true, you typically do not use timestamp

fields for the primary key. So, what do you do in this case?

You can use an automatically generated column as the primary key. It

is called an auto-increment field property in MySQL. You can add this to

any table, as shown here using the ALTER TABLE command:

ALTER TABLE `pond_monitor`.`pond_water_temp`

 ADD COLUMN id INT AUTO_INCREMENT PRIMARY KEY FIRST;

Here you add a new column named id that is an auto-incrementing

field and is the primary key. You add the first modifier because primary

key columns should be the first column in a table (not that order matters

normally, but here it does).

Chapter 11 putting it all together

https://dev.mysql.com/doc/refman/8.0/en/data-types.html

649

You can do the same for both tables. Once this is done, when a new

row is inserted, you specify NULL as you do for the timestamp field, and

MySQL fills in the data for you. Listing 11-2 shows this principle at work.

Listing 11-2. Auto-Increment Fields

> INSERT INTO `pond_monitor`.`pond_water_temp` (sensor_number,

temperature) VALUES (3, 72.56);

Query OK, 1 row affected (0.00 sec)

> SELECT * FROM `pond_monitor`.`pond_water_temp`;

+----+---------------+---------------------+-------------+

| id | sensor_number | sample_collected_on | temperature |

+----+---------------+---------------------+-------------+

| 1 | 3 | 2020-02-10 11:39:51 | 72.56 |

+----+---------------+---------------------+-------------+

1 row in set (0.0004 sec)

> INSERT INTO `pond_monitor`.`pond_water_temp` (sensor_number,

temperature) VALUES (3, 82.01);

Query OK, 1 row affected (0.00 sec)

> SELECT * FROM `pond_monitor`.`pond_water_temp`;

+----+---------------+---------------------+-------------+

| id | sensor_number | sample_collected_on | temperature |

+----+---------------+---------------------+-------------+

| 1 | 3 | 2020-02-10 11:39:51 | 72.56 |

| 2 | 3 | 2020-02-10 11:40:53 | 82.01 |

+----+---------------+---------------------+-------------+

2 rows in set (0.0005 sec)

Chapter 11 putting it all together

650

DOES THAT REALLY DO ANYTHING?

You may be thinking that this new field adds an artificial primary key to the

table and doesn’t really do anything. For the most part, you are correct.

this example is for illustration purposes and therefore teaches the concept of

using a primary key as a practice you should consider whenever you design

a table. the fact that the auto-increment key isn’t used to reference another

table or that it relates to the rows themselves is overlooked for the sake of

practice.

Let’s return to the lookup table. Although this table is unlikely to have

many rows (it depends on the number of sensors), it is also true that one

row in this table matches one and only one sensor. So, you can use the

sensor_number column here as a primary key. I leave the ALTER TABLE

statement for you to consider.

Note Database designers sometimes forego the use of primary keys
on tables with only a few rows, citing the additional overhead needed
to maintain indexes and so on. the truth is it matters little either way
because lookup tables are seldom modified (changed or data added)
and if used frequently can result in the table being cached in its
entirety. that being said, it does no harm to add a primary key.

 Adding Indexes for Query Efficiency

A primary key is a special type of index. It is an index, but when used

with auto-increment fields, it is a nice way of identifying a given row and

allowing duplicate rows (among the other columns). However, there is

another aspect of indexes that can make your data access much easier

(and possibly faster).

Chapter 11 putting it all together

651

Consider for the moment a table with many thousands of rows.5

Suppose you want to see all the sensor samples for sensor number 2. How

does the database server find all of these rows using the tables you defined

earlier? You issue the following query, but what happens inside the server?

SELECT * FROM `pond_monitor`.`pond_water_temp` WHERE

sensor_number = 2;

Because the table has an index (the primary key on the column id that

you added), it uses this to systematically read each and every row in order,

choosing (returning) those rows that match the WHERE clause (in this case,

sensor_number = 2). This is bad because the server does not know if these

rows appear in the first N rows or even if sensor_number = 2 is in the last

row in the table. Thus, it must read each and every row. This is called a

table scan and is best avoided when working with tables with a lot of rows.

How do you do that? By adding another index called a secondary index!

If you have an index on the sensor_number column, the server can use that

index to examine each of the rows in a different order. It will look through

the table starting with sensor_number 1 and then 2 and so on. It knows to stop

after reading the last row whose sensor_number is 2. In fact, MySQL has some

extra trickery included that permits the server (the part called the optimizer)

to further expedite the query and skip to the first row with sensor_number = 2.

Here is how you do it. You use the CREATE INDEX command:

CREATE INDEX s_num ON `pond_monitor`.`pond_water_temp`

(sensor_number);

The CREATE INDEX command allows you to name the index (s_num)

and specify the table (ON pond_water_temp) and the column(s) you want

to index in parentheses, (sensor_number). You can see a complete syntax

explanation for this and all other commands supported by MySQL in the

online MySQL reference manual.

5 It may take several hundreds of thousands of rows for you to see this in action.

Chapter 11 putting it all together

652

Now when you issue the earlier SELECT, the server uses the new index

to read the rows in a different order. Note that the rows are not reordered

on disk; rather, the index creates an alternate map or access method to find

the rows in a specific order.

You may be thinking, “But wait: can’t I do all of these table design steps

in one go?” The answer is yes, you can! Let’s look at the pond_water_temp

table as a single CREATE statement:

CREATE TABLE `pond_monitor`.`pond_water_temp` (

 `id` int NOT NULL AUTO_INCREMENT,

 `sensor_number` int DEFAULT NULL,

 ` sample_collected_on` timestamp NULL DEFAULT CURRENT_

TIMESTAMP,

 `temperature` float DEFAULT NULL,

 PRIMARY KEY (`id`),

 KEY `s_num` (`sensor_number`)

) ENGINE=InnoDB AUTO_INCREMENT=3 DEFAULT CHARSET=latin1;

Notice that the auto-increment column is defined first, then your

sensor number, the timestamp for when the sample was collected, the

value (temperature), and the primary key and secondary index definitions.

This statement replaces the three you just used—CREATE TABLE, ALTER

TABLE, and CREATE INDEX. Cool, eh?

As you can see, creating tables in MySQL is easy once you understand

the syntax (and know what you want to do). You can find all the syntax and

many examples of each in the online MySQL reference manual

(https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html).

Once again, there is far more to consider for designing tables, but these

at least are the things you need to know to make the most of your database

system and to store and retrieve your data effectively.

Chapter 11 putting it all together

https://dev.mysql.com/doc/refman/8.0/en/sql-statements.html

653

 Other Considerations
This section explores some additional best practices that can be helpful in

making your work with sensor networks more enjoyable.

 Stay Within Range of XBee Modules

XBee modules have an impressive range that belies their diminutive size.

The specifications for the XBee series 2 modules you use in this book are

• Indoor/urban: Up to 133 feet

• Outdoor line of sight: Up to 400 feet

However, these maximums are very much influenced by interference

from devices on similar frequencies and the composition of the building

you are in.6 For example, suppose your house is very old and has plaster

walls and a tin roof. Wireless of any kind in your home operates well

below the specified ranges. You need to test your XBee range in your own

location to find your maximum range. If that is impractical, I recommend

that you cut the specification values in half when planning your network to

ensure that you don’t place XBee-based sensor nodes out of range.

You can test the maximum range of your XBee modules before you

develop your sensor network. One way is to create the XBee temperature

sensor node project and use a USB XBee adapter on your laptop computer

connected via the XCTU application. I include an unscientific method

for determining a maximum reliable range next. For this to work, your

sensor node should be set to deliver data every few seconds (say, every 10

seconds) and be running API firmware:

 1. Connect the coordinator node to the laptop.

 2. Connect to the coordinator via XCTU.

6 You should avoid placing your XBee modules near large metal objects or at the
bottom of concrete wells.

Chapter 11 putting it all together

654

 3. Place the sensor node in its intended location.

 4. Hold your laptop near the sensor node (within a few

feet), and power on the sensor node.

 5. Wait until the XBee network is formed and you start

receiving data.

 6. Move slowly away, watching the data as the

coordinator receives it.

 7. When the coordinator starts presenting error

packets or stops receiving data, you’ve gone too far.

This method is hardly scientific, but it can give you a rough gauge as to

whether your sensor nodes are close enough (within range) to your data-

aggregate node.

 Keep an Engineering Logbook

Many developers, engineers, and scientists keep notes about their projects

in paper notebooks or digital notebooks using apps like Evernote

(http://evernote.com/). A voice recorder can also be handy in catching

those impromptu ideas when you don’t have time or it is too dangerous to

use pen and paper.7 Some people are more detailed than others, but most

take notes during meetings and phone conversations, thereby providing a

written record of verbal communications.

The best notetakers write down their ideas when they occur.

Sometimes the mind works best when you are performing menial tasks

and ideas come to you out of the blue. When this occurs, good engineers

know to write down these ideas—even if they later turn to so much dirt—

because the best ideas often start with a simple concept. Failure to write

7 Like while driving. Sadly, I’ve seen drivers do this. Personal grooming seems to
be the most popular form of activity people should never do while driving, after
texting, email, tweeting, and so on.

Chapter 11 putting it all together

http://evernote.com/

655

down these tidbits can often lead to more experimentation and even

wasted time working on alternatives.

If you aren’t in the habit of keeping an engineering logbook, you

should consider doing so. I have found a logbook to be a vital tool in my

work. Yes, it does require more effort to write things down, and the log can

get messy if you try to include all the various drawings and emails you find

important (my notebooks are often bulging with clippings from important

documents taped in place like some sort of engineer’s scrapbook). The

payoff is potentially huge, however.

This is especially true when designing sensor networks and the myriad

of sensors and electronic circuits involved. You may be at a trade show (or

a Maker Faire) and see something that really sparks an idea. Or maybe you

see a circuit in a magazine or find a really cool sensor but need to design a

circuit to host it. Writing down these ideas can enable you to achieve your

goals.

It also helps you to remember concepts and critical information such

as which way a sensor is wired, to avoid rework (or guesswork) that could

lead to failed components and frustration. I am very thankful I keep a

logbook of those times when I double-check my wiring, only to discover

a misplaced jumper or wire routing. It has saved me time and money (not

having to replace fried components).

Naturally, you can use any type of notebook you desire; but if you want

to class up your notes a bit, you can purchase a notebook made especially

for keeping engineering notes. These typically have subdued gridlines and

sometimes text areas for recording key information like the project name

and page number. One of my favorite notebooks is the Maker’s Notebook

from Maker Shed (www.makershed.com/products/makers-notebook-

hard-bound).

This notebook features 150 numbered pages of graph paper, each with

a special header for noting the project name, date, and page reference

pointers. It also includes such nice additions as a space for a table of

contents, a pocket for those small notes you write to yourself but later

Chapter 11 putting it all together

http://www.makershed.com/products/makers-notebook-hard-bound
http://www.makershed.com/products/makers-notebook-hard-bound

656

cannot read due to your own handwriting,8 and stickers with electronic

components for making circuits. This notebook is a bit more expensive

than a run-of-the-mill lined or grid-filled notebook, but it is worth a look if

you desire a good tool to help manage notes for multiple projects.

HOW TO MANAGE PAGES FOR MULTIPLE PROJECTS

one of the challenges of keeping a single notebook for multiple projects

underway is how to manage pages. that is, if you are working on project X

and write down some really cool ideas in the middle of working on project Y,

how do you keep track of what pages belong to each project?

the Maker’s notebook solves this by allowing you room to note which page

number is next at the bottom of each page. this can be really helpful when

your project notes start to interleave (and they will). think of it as a sort of

manual linked list.

another solution is to keep a living index at the front of your notebook that

lists the page numbers for each project. this is not as nice as the Maker Shed

solution, but it works.

 Putting It All Together: Testing and Deploying Your
Sensor Network

The projects in this book are designed to teach you how to build sensor

networks by breaking the tasks into smaller components that you can

combine. With the exception of the projects in Chapter 10 (they are

complete sensor network examples), you can implement each in relative

8 Unless your penmanship is far superior to most, this will happen to you
eventually. Writing down an idea while riding a bucking train can often lead to
illegible text. Sometimes reading such notes in the same environment where they
were written helps.

Chapter 11 putting it all together

657

isolation from the other projects. Some are alternative implementations,

like the examples that show the same project first using an Arduino and

then using a Raspberry Pi.

In some cases, especially in the “For More Fun” sections, I’ve suggested

certain modifications and alternative solutions for you to experiment with.

Experimentation is an excellent way to learn, but you should consider

moving to a more formal evaluation of the solution when preparing your

own sensor network.

In other words, test your network before deploying it. I cannot tell

you how many times a well-planned hardware design has failed due to

some unexpected consequence unrelated to the design. For example, you

may find a physical obstruction that wasn’t there or wasn’t considered

when you planned your network; or the cabling available or power in the

area may be faulty; or you may find that the actual range of your radios

in the target environment is shorter than anticipated. Whatever the case,

usually bench-testing the solution prior to deploying it can help eliminate

problems with the nodes themselves, allowing you to focus on what is

different—the physical environment.

What I mean by bench-testing is to assemble the components in one

location and power everything on as if it were deployed in the field. Not

only does this allow you to ensure that the sensor network is working, but

it also permits you to monitor the nodes themselves for anomalies. For

example, incorrectly wiring a component may destroy it, but sometimes

you can salvage the component by cutting power quickly.

Let’s consider the last project in Chapter 10—a sensor network

comprising a database node, a data-aggregate node, and several sensor

nodes. There are several excellent methods to test a network like this,

but the following approach can help you diagnose problems you may

encounter when you deploy your own sensor networks. In this case,

Chapter 11 putting it all together

658

I assume the software for each node is properly installed and working

(i.e., the XBee nodes are configured correctly, and the sketches and scripts

are working properly):

 1. Starting with the database node, power it on and

test connectivity from your network. Ensure that

you can connect to MySQL as the user account you

plan to use (and from the machines—IP addresses—

that will need to access it) and that the user has

privileges to update the databases you’ve designed.

For more information about granting privileges to

users, see the online MySQL reference manual.

 2. Move to the data-aggregate node, and modify the sketch

to insert dummy data into the database. Go back to the

database, and ensure that the data has been inserted.

 3. Power down your data-aggregate node, and move

the coordinator XBee module to a USB XBee

adapter. Connect it to your laptop, open a terminal

application, and connect to the USB port with the

XBee module.

 4. Power on each of your sensor nodes, one at a time, and

observe the terminal window. Ensure that each of the

sensor nodes sends data and that the data is received

(echoed in the terminal). Power down all XBee nodes,

and remove the coordinator node from your laptop.

 5. Return the data-aggregate node to its operational

state (including running the final sketch or script),

and power it up. Wait about 5 minutes, and then

power on your sensor nodes. Connect to your

database server, and ensure that data is being

inserted into the table.

Chapter 11 putting it all together

659

Once you have your sensor network assembled and running correctly,

you can begin considering deployment. I prefer to deploy the sensor nodes

first and (if possible) move my data-aggregate node and database server

closer to the sensor nodes. I then power everything on, starting with the

database server and then the data-aggregate node; then I wait 5 minutes

and power on the sensor nodes.

Moving the data-aggregate node close to the actual location of the

sensor nodes helps minimize any issues with ranges or obstructions. When

I see that the network is operating correctly, I power everything off and

deploy my data-aggregate node to its proper location and start the process

again. Once that stage works, I deploy the database server and test the

network one more time. When everything is working correctly, I power it

all down again, erase the data (use DELETE SQL statement) the sample data,

and power everything up. At this point, my deployment is complete, and I

can work on the next stage: consuming the accumulated data for analysis.

With these best practices and considerations in mind, let’s look at a

topic that can sometimes lead to impromptu tinkering.9

Note the projects in this chapter are intended for demonstration
purposes and therefore do not include all the steps for building each
project. however, given your knowledge level at this point, you can
easily fill in the missing parts.

 Choosing Sensor Nodes
When you consider how to host a sensor, you have some choices to make.

Sometimes this decision is based on the type of sensor and the data it

9 In other words, an emergency redesign of a failed implementation—fancy words
for a poor design choice.

Chapter 11 putting it all together

660

produces. For example, you can host almost any sensor with an Arduino.

With some additional hardware, you can do so with the Raspberry Pi; and

you can also host certain sensors with XBee modules (see Chapter 2).

But other things can determine the configuration of your sensor nodes

and your data-aggregate nodes. These include the type of networking to

use and whether the sensor node will use Ethernet or XBee (ZigBee) to

communicate. There are also a number of alternative configurations for

your sensor nodes that you have not explored thus far. I discuss each of

these aspects in more detail in this section.

 Wired or Wireless?
I mentioned in Chapter 10 that I consider a wired Ethernet connection a

requirement for a data-aggregate node. But that is just the most typical

case. It may be that you have WiFi Ethernet instead.

The main reason is that the data-aggregate node is typically accessed

much more frequently than the sensor nodes. You may include data-

aggregate nodes that have web servers, as you saw in Chapter 10, or you

may decide to have the data-aggregate nodes send the data to another

node (such as a database) for storage. In these cases, having a fast and

reliable network is a must.

Typically, you use XBee modules and the ZigBee protocols to connect

a data-aggregate node to sensor nodes. However, you can use the API

protocols in ZigBee to communicate with your data-aggregate nodes. The

challenge is to build a set of routines to match how you intend to interact

with the data-aggregate nodes. It is not impossible (and I have seen proof

of people who have designed such networks), but it takes a lot more work

and eliminates a number of possibilities for data access.

The main consideration is to place your data-aggregate nodes on the

most reliable network medium. Wired Ethernet is the most robust, followed

by WiFi and then ZigBee. If the data will be stored locally and retrieved

Chapter 11 putting it all together

661

manually, then the choice of network medium may not matter. However, if

you need to access the data remotely or store it on a remote node (such as a

database server), then wired Ethernet is definitely the right choice.

 Arduino or Raspberry Pi?
Choosing an Arduino or a Raspberry Pi should be based on a number

of factors. These include cost, security, functionality, expandability, and

connectivity. Your choice will likely be based on one or more of these

and may dictate (or limit) your implementation of your sensor or data-

aggregate node.

 Cost

If you are planning a large network or have a limited budget, cost may be a

primary concern. This is likely to be seen in the per-node cost. Sensors are

typically commodities, and the prices normally don’t vary much from one

vendor to another. But the price of the host itself may make a difference.

Let’s look at each board with cost in mind.

The current average cost of the Raspberry Pi 3B (in the United States)

is about $40. This is about $5.00 more than the MSRP should be for these

boards, but given the high demand and somewhat limited supply, it is no

surprise vendors are charging more.

The cost for an Arduino is a bit harder to pin down. Because the

Raspberry Pi is closed source whereas the Arduino is open source, you

can find a lot of different vendors selling a variety of Arduino-compatible

boards. Although you can buy a Raspberry Pi from different vendors,

there are no Raspberry Pi clones. As a consequence, you can find any

number of varieties of Arduino-compatible boards starting from as low as

$15.00. Currently, the average price (on eBay and Amazon) for an Uno or

Leonardo clone is about $20.00.

Chapter 11 putting it all together

662

If you are planning 20 sensor nodes (and none are XBee-based), your

cost savings through choosing an Arduino over a Raspberry Pi could be

significant. For example, if you find Raspberry Pi boards for $40.00 each

and Arduino-compatible boards for $20.00 each, it will cost you $400.00

more to use Raspberry Pi boards than Arduino boards.

However, if you must augment your Arduino boards with shields, the

cost of the shield could bring your total outlay much closer to the cost of

the Raspberry Pi (unless you buy the Uno WiFi version). In some cases, it

could even cost more to buy an Arduino and a shield than a Raspberry Pi.

On the whole, the takeaway is that if cost is an issue, the Arduino is often

the less expensive choice.

 Security

I have not said much about security or securing your sensor and data-

aggregate nodes in this book. Let’s take a moment to briefly consider

this topic.

We generally can agree that a database node should be secure with a

modicum of password security and access restrictions,10 what about the

sensor nodes themselves? Theft may be less of a concern, but you should

at least consider securing your sensor nodes against theft. The average

thief looking for a target of opportunity is not likely to steal your sensor

node.11

However, physical access to the nodes is a concern. Although it is

possible for someone to exploit an Arduino node if they have direct

access, it is much harder to do so with an Arduino than a Raspberry Pi.

The primary reason is that the Arduino is loaded electronically; someone

could reprogram the microcontroller, but there is little they can do without

10 Don’t mount it to the outside of your house and put a huge sticker on that says
“database server.”

11 Let’s hope not, anyway.

Chapter 11 putting it all together

663

knowing how the sketch was written. But all that is needed to exploit a

Raspberry Pi node is an SD card with a fresh OS loaded.12 Thus, you should

consider making it as difficult as possible for someone to get physical

access to your Raspberry Pi nodes—especially if they are connected to

your local network or the Internet.

Sadly, there is another concern—electronic intrusion. Because the

Arduino is a microcontroller, it is not likely that someone will attempt to

connect to it for nefarious activities. There is a much greater likelihood

that someone will attempt to exploit a Raspberry Pi node. This means you

have to be more careful when deploying Raspberry Pi–based nodes. Basic

security practices go a long way, but if you don’t take care and plan against

intrusion, your Raspberry Pi nodes could be vulnerable.

If you are concerned about the security of your nodes, you should

consider reading more about sensor network security. However, the

bottom line here is that Raspberry Pi nodes tend to be easier to exploit

than Arduino nodes.

 Functionality

The functionality provided by the host is another area where you may

want to focus. If you are looking to add functionality, such as a web server,

a local database server, or remote access via SSH, or connectivity to

peripherals such as hard disks, keyboard, display, and so on, there is really

no choice. The Raspberry Pi is a fully functional personal computer (and

mini server).

On the other hand, the Arduino is very easy to program and has a

much wider hardware support base, making it possible to host a much

wider array of sensor options and even electronic circuits. This is because

the Arduino has a more robust hardware interface than the GPIO of the

Raspberry Pi.

12 Most disconcerting, isn’t it?

Chapter 11 putting it all together

664

For example, consider that the Raspberry Pi requires an ADC to

interface with analog sensors. Thus, if you plan to use only analog sensors

but still need the features of the Raspberry Pi, the cost of your sensor will

be a bit higher (for the price of the ADC module).

The decision rests on whether you need computer-like features or

better hardware support options. If you require personal computer or

server features for your node, you should choose a Raspberry Pi. If you

need to support a more diverse set of sensors and related hardware, you

should choose the Arduino.

 Expandability

Expandability (can also be called scalability) is closely related to

functionality. I focus on this as a separate consideration because it has a

bearing on sensor networks. There are two aspects of expandability that

you should consider: the availability of pluggable modules and the ability

to add more features to the node.

The clear winner in the availability of pluggable modules is the

Arduino. There are dozens of shields that support all manner of hardware

features. From simple sensor boards to XBee hosting to advanced motor

control and robotics, there is a shield for just about anything you want to

do for a sensor network.

That doesn’t mean you should count the Raspberry Pi out. If you

need to store a lot of data on a node, you are less likely to choose the

Arduino because it is very easy to add a local hard disk to the Raspberry

Pi. Similarly, if you need complex display capabilities, the Raspberry Pi

requires no additional hardware (just use a monitor).

Chapter 11 putting it all together

665

Note You can indeed use small to medium-sized lCD panels on the
arduino. there are many examples, including example sketches, in
the arduino iDe. however, it is a lot easier to write a python script to
produce screen output than it is to try to cram a lot of information on
a small lCD.

Thus, if you need expandability from an electronics perspective,

you should choose the Arduino. If you need more expandability for

attaching storage devices or displaying a lot of data, you should choose the

Raspberry Pi.

 Connectivity

The last area to consider is connectivity. Once again, this depends on your

perspective. If you want to connect your node to other nodes via XBee

modules, the platforms are equally capable.

If you plan to connect your node to an Ethernet network, you must

consider the fact that the Raspberry Pi 3B, 3B+, and 4B comes Internet-

ready with a LAN port (Ethernet) as well as WiFi, whereas the Arduino

(excluding the Yun and Arduino Uno Ethernet variant) requires an

Ethernet or WiFi shield; therefore, the cost may be much closer. For

example, you can purchase a basic Arduino Ethernet clone shield for about

$30.00. Given that the Arduino costs about $20.00 for an older clone board,

your cost has exceeded that of the Raspberry Pi.

However, the Arduino currently has one advantage over the Raspberry

Pi for when it comes to connectivity: it is much easier to interface

specialized hardware. Recall the discussion earlier on the use of cellular

modems to connect your nodes to the Internet for collecting data.

Because there is no pluggable solution for the Raspberry Pi, the Arduino

is the better choice in this case. This may also apply to other forms of

connectivity provided by the use of specialized shields.

Chapter 11 putting it all together

666

Thus, the consideration of connectivity for Ethernet and Bluetooth

gives the advantage to the Raspberry Pi, whereas specialized

communication such as a cellular modem gives the advantage to the

Arduino.

Tip there may be cases where you want to have the power of a
raspberry pi but the flexibility and expandability of an arduino. i’ll
reveal one such solution in the next section.

Now that you have seen some considerations for choosing what host

to use, let’s look at a couple of alternative solutions that you may want to

consider—starting with a purpose-built sensor node.

 Alternative Hosts
This section considers two alternatives for basing your sensor and data-

aggregate nodes. You see an Arduino-compatible board designed expressly

for sensor networks and outdoor operation as well as a daughter board

designed to create a hybrid node combining a Raspberry Pi with an

Arduino.

 Seeed Studio Wireless Sensor Kit

One of the best Arduino-compatible kits is the Seeed Studio Wireless

Sensor Kit—also called the Stalker Waterproof Solar Kit (http://wiki.

seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/). The

kit consists of a Seeed Studio Stalker board, a solar panel, battery pack,

case (a glass jar!), XBee adapter, hardware, and accessories. Figure 11-2

shows what is included in the kit.

Chapter 11 putting it all together

http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/

667

The Seeed Studio Stalker board is a Seeeduino (Arduino-compatible)

board and is the true gem in this kit. Not only is it fully compatible with

Arduino (because it has the same processor), but it also has an onboard

RTC, XBee headers, microSD card drive, real-time clock (for recording

sample datetime), Grove connectors, and more. The full specifications can

be found at http://wiki.seeedstudio.com/Seeeduino-Stalker_v3/.

Figure 11-3 shows a photo of the Stalker board in more detail.

Figure 11-2. Seeed Studio Stalker wireless sensor node (courtesy of
Seeed Studio)

Chapter 11 putting it all together

http://wiki.seeedstudio.com/Seeeduino-Stalker_v3/

668

The Stalker is marketed as a wireless sensor node based on its onboard

XBee support. You may be wondering why I have left the discussion of this

board to the end of the book. Simply put, the Stalker is a specialized board

that requires building your sensor nodes with very specific hardware and

software. Although it can indeed make building sensor networks easier by

taking away a lot of the harder work of connecting modules and interfacing

with them, this very nature makes it less valuable for learning how sensor

nodes are built.

It is better to learn the basic building blocks of putting together

sensor nodes so that when you begin working with more advanced sensor

networks or incorporating advanced sensors into your sensor nodes, you

have the proper experience and knowledge to use them. Besides, it is a lot

more fun to build something from scratch.13

13 You can learn quite a lot about hardware by this approach. You haven’t truly
pushed yourself to learn until you’ve made a few mistakes. If you take the proper
care and precautions, the end result of minor mistakes is nothing more than a
fried component or two.

Figure 11-3. Seeeduino Stalker Arduino-compatible board (courtesy
of Seeed Studio)

Chapter 11 putting it all together

669

However, if the features of the board are what you need, then you

should consider using as many of these as you require. The cost is a bit

higher, as you can imagine. The cost of the kit is about $59.50, and the

board itself is $39.00. If you consider that the board has an RTC as well

as XBee headers, the $39.00 cost is less than buying an Arduino, separate

XBee shield, and RTC module combined.

All the onboard features can be used in your sketches. For example,

you can read temperature from the onboard RTC (the DS3231 chip

has a temperature sensor) using only a single method call. To get this

functionality, you must download and install the DS3231 library from

https://jeelabs.org/pub/docs/rtclib/.

The DS3231 library and the Stalker make building and deploying a

temperature sensor node very easy. All you need to do is add the XBee

code you’ve explored in previous projects, and you can quickly build a

solar-powered wireless temperature sensor node. Cool.

Tip You can find a lot more information about programming the
Seeed Studio Stalker on the company wiki for this board
 (http://wiki.seeedstudio.com/Seeeduino_Stalker_V3.1/).

Getting back to the solar part of the kit, the Stalker has a lithium

polymer (LiPo) battery-charging circuit designed specifically for attaching

a solar panel and a LiPo battery. The solar panel charges the battery

during the day, providing adequate power for the node to run overnight

(assuming your XBee is utilizing sleep mode and you don’t have a lot of

circuitry drawing power). This means you can build this kit and use it

outdoors to communicate sensor data to your sensor network without

worry of providing power or network connections. If you have a property

with outbuildings without power (or ponds), this kit has the features you

need to install a remote sensor.

Chapter 11 putting it all together

https://jeelabs.org/pub/docs/rtclib/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3.1/

670

The thing I like most about the Seeed Studio Stalker is that it is a fully

compatible Arduino clone. If you do not use the Stalker in its waterproof

case, you can use it in place of one of your Arduino nodes (because it is an

Arduino). With the onboard RTC, XBee headers, and microSD card drive,

you may even be able to use this board for all of your sensor nodes—data

aggregators included.

If you are planning a home temperature-monitoring sensor network,

you should consider using this board for your remote sensors at the least.

However, considering all the goodies you get in the wireless sensor kit, it is

an excellent value.

 Raspberry Pi Alamode

Another variant you may want to consider is the Raspberry Pi Alamode.

This board is a very special piece of hardware designed to bridge the gap

between the Arduino and the Raspberry Pi. While originally developed

for earlier versions of the Raspberry Pi, the Alamode is a daughter board

for the Raspberry Pi that plugs into the GPIO header and features a fully

compatible Arduino clone.

This board is also available from Seeed Studio and has a lot of the

same features. See www.seeedstudio.com/Alamode-Arduino-Compatible-

Raspberry-Pi-Plate-p-1285.html for more details. Figure 11-4 shows a

photo of the board.

Chapter 11 putting it all together

http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html

671

More specifically, the Alamode is an Arduino-compatible board that

you can connect to your Raspberry Pi; and you can write sketches that you

can interact with via another program on the Raspberry Pi. Like the Seeed

Studio Stalker, it also supports Arduino shields so you can write sketches

that take advantage of the shields and pass the functionality on to the

Raspberry Pi via a sketch on the Alamode. You can also run the Arduino

IDE on the Raspberry Pi to load sketches on the Alamode. Some of the best

features of the Alamode include the following:

• Arduino compatible

• Connects to the Raspberry Pi via the GPIO header

• Automatically controls voltage on the GPIO header,

providing 3.3V safe voltage on the GPIO but powering

the Alamode with 5V

• Has a separate micro-USB port for powering the Alamode

Figure 11-4. Raspberry Pi Alamode (courtesy of Seeed Studio)

Chapter 11 putting it all together

672

• Supports headers for controlling servos

• MicroSD drive

• Onboard RTC that can be used by the Raspberry Pi

• Supports additional headers for FTDI, ICSP, and a GPS

module

The Alamode represents a unique hardware solution for sensor nodes.

It permits you to use the best of both platforms on a single node. Let’s say

you need to use a special component or feature that is only available for

the Arduino, but you also need computer resources such as a full-featured

web server and lots of storage for your data-aggregate node. To solve this

problem, you must find a way to connect the Arduino to your Raspberry Pi.

The Alamode is that bridge. You can write sketches for the Alamode (even

directly from the Raspberry Pi!) that provide the data from whatever shield,

sensor, or other hardware you connect to the Alamode Arduino headers.

For example, you can access the RTC on the Alamode from the

Raspberry Pi. To do this, you must have the I2C drivers on the Raspberry

Pi. Fortunately, you achieved this earlier in the book. The setup is not

overly complicated and involves adding a new module to the Raspberry

Pi so that it can get its date and time from the RTC on the Alamode via

the I2C interface. In fact, you access it as you would any I2C RTC module.

A complete walk-through of accessing an RTC via I2C is available from

Adafruit (http://learn.adafruit.com/adding-a-real-time-clock-to-

raspberry-pi).

As a consequence of its uniqueness and implementation, there are

some limitations. First, although it is true that you can use the Arduino

IDE from the Raspberry Pi, doing so requires installing a special patch for

the IDE that changes the IDE slightly to recognize the Alamode. You can

download the patch and apply it using the following commands on the

Raspberry Pi:

Chapter 11 putting it all together

http://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi
http://learn.adafruit.com/adding-a-real-time-clock-to-raspberry-pi

673

$ wget www.wyolum.com/downloads/alamode-setup.tar.gz

$ tar -xvzf alamode-setup.tar.gz

$ cd alamode-setup

$ sudo ./setup

Once you complete these steps and restart the IDE, you see the

Alamode listed under the Board submenu. To set up the Alamode, select it

from this menu and then select the /dev/ttyS0 serial port.

Tip a complete walk-through of getting started with the alamode
can be found at http://wyolum.com/projects/alamode/
alamode-getting-started/.

Communication between the Alamode and the Raspberry Pi can be

accomplished using the Firmata library, which is built into the Arduino

IDE. Fortunately, there are a number of examples you can explore in the

Arduino IDE. There are also walk-throughs on the Alamode wiki (http://

wyolum.com/projects/alamode/).

The Raspberry Pi Alamode is still a very new product and as yet has

not been used (or at least reported or documented) enough to realize

its full potential. However, I believe that if you need a special piece of

hardware that is available for the Arduino, but you need to use it directly

on a Raspberry Pi (like that cellular shield), this product may provide an

excellent solution.

 Project: Home Temperature-Monitoring
Network
This chapter would not seem complete if I didn’t have a project to discuss.

By this point, though, you have all the knowledge you need to build

sensor networks using Arduino boards, Raspberry Pi computers, and

Chapter 11 putting it all together

http://wyolum.com/projects/alamode/alamode-getting-started/
http://wyolum.com/projects/alamode/alamode-getting-started/
http://wyolum.com/projects/alamode/
http://wyolum.com/projects/alamode/

674

even dedicated XBee sensor nodes. Thus, rather than provide yet another

step-by-step example, this section presents a walk-through of the planning

stages of creating a home temperature-monitoring network.

This project will seem a lot like the projects from Chapter 10. That is

intentional. Everything you need to build this network was demonstrated

in that project. What I am discussing here are the considerations for

actually designing and deploying such a sensor network. The intent of the

project is to provide one possible practical example for how to get started

planning and implementing a sensor network.

 Planning Considerations
The first question you need to ask when planning a sensor network

is “Why?” The second question is “What do I expect to get from the

data?” The reasons for creating a home temperature network are many

and varied, but generally you expect to be able to track the ambient

temperature of the home so that you can either plan changes to the

heating and cooling systems or verify that they are working correctly (the

thermostat settings match the actual temperatures measured).

As for why you would create the network, consider cases where the

house is large, has several heating and air conditioning systems (HVAC),

or was expanded over time to include rooms that are isolated or poorly

supported by different HVAC systems. Or perhaps you have more personal

reasons like differing opinions of hot/cold among family members or the

need to protect sensitive medical equipment. Whatever the reasons, they

should be considered a design element.

For this example, suppose the reason is that your home has multiple

HVAC systems and has been expanded over the years in such a way that

some rooms are noticeably warmer or cooler during different seasons of

the year. In this case, you want to be able to predict the effects of outside

climate (temperature) on the inside of the home.

Chapter 11 putting it all together

675

 Planning the Nodes
The next thing you should do is evaluate the resources available for a

sensor network. Let’s assume the home has two floors and only the first

floor and one room on the second floor are wired for Ethernet, but there is

a wireless Ethernet router (wireless access port) that can be accessed from

anywhere in the home. There are four bedrooms, a den, a kitchen, a formal

dining room, three bathrooms, and a sunroom (enclosed porch). The

construction of the home limits radio signals to no more than 30–40 feet.

These criteria mean you must design the sensor network following a

specific model. Namely, you need to collect data over time from multiple

sensors. You could use as many as 12 (11 inside and 1 outside), but let’s

say you identify 5 zones in the home representing key areas where the

temperature can differ from the rest of the home.

If you take sensor samples six times every 24 hours, you will be storing

36 samples per day (6 per sensor), more than 256 per week, and more

than 91,000 per year. If you are measuring temperature, this could result

in as much as a few megabytes of data per year. Although this isn’t too

much data to store on an SD card, if you want to compute averages over

time compared to an outside variable (the outside climate), you must read

the data and calculate the comparisons at some point (perhaps several

times a month). Thus, you would be better suited to use a database server

to store the data. Also, because you want to know when each sample was

taken, you need to design the database table to store a timestamp for each

sample.

If you consider the radio limitations of the home and the fact that it has

multiple floors and a number of rooms, you can expect to require at least

one data-aggregate node that is centrally located in the home. However,

it is possible you could need more, depending on the placement of the

sensors and the effects of the limited range.

Chapter 11 putting it all together

676

For this project, assume that a centrally located data-aggregate node

will suffice. In addition, you decide the data-aggregate nodes will connect

to the database node via Ethernet, but the sensor nodes will communicate

with the data-aggregate node using XBee modules.

You will implement the five internal sensor nodes using XBee modules

(to which you can connect the TMP36 directly), but for the outside node,

you will use the Seeed Studio Wireless Sensor Kit discussed earlier.

As for powering the nodes, you can use common 5V–9V wall wart

power supplies for all sensor nodes. Also assume that the peripherals

for the Raspberry Pi database node are gathered from on-hand surplus

components.

 Cost Considerations
Finally, you want to limit the cost of the network as much as possible. You

also want to keep the samples relative in scale. The best way to do this is

to use the same temperature sensor for each node. The most cost-effective

solution is to use a sensor like the TMP36.

To sum up your node requirements, you need six sensor nodes

(including one that can be installed outside), a database node, and a data-

aggregate node. Taking all this into consideration, one possible hardware

shopping list is shown in Table 11-1.

Chapter 11 putting it all together

677

Table 11-1. Sample Shopping List for the Home Temperature Sensor

Network

Description Qty Cost USD Ext. Cost USD

raspberry pi (database server) 1 $35.00 $35.00

tMp36 sensors with resistor 6 $1.50 $9.00

Seeed Studio Wireless Sensor Kit 1 $59.50 $59.50

XBee-ZB (ZB) Series 2 or 2.5 7 $25.00 $175.00

arduino-compatible boards 1 $21.00 $21.00

power adapters (1 for each node) 8 $6.95 $55.60

ethernet shields 1 $45.00 $45.00

arduino XBee shield 1 $24.95 $24.95

Total $425.10

I leave out some of the finer details for brevity, but the more costly

items are listed. That is, I omit the cost of breadboards, cases, and so on

for the sensor nodes because these are only one way to implement the

circuitry. You could just as easily build a circuit on a preprinted circuit

prototyping board and place each in a small enclosure (bits like this are

called vitamins in the 3D printing world—an appropriate description

I think).

One of the newest prototyping boards are the Perma-Proto Breadboard

PCBs from Adafruit (www.adafruit.com/category/466). They come in a

variety of sizes as well as multi-packs for a bit of savings and can be used

just like a breadboard, but in this case, you solder the components rather

than plug them in. Thus, Perma-Proto Breadboard PCB makes it much

easier to transfer a project from a breadboard onto a permanent circuit

board that you can mount. Figure 11-5 shows a half-sized Perma-Proto

Breadboard PCB from Adafruit (www.adafruit.com/product/1609).

Chapter 11 putting it all together

http://www.adafruit.com/category/466
http://www.adafruit.com/product/1609

678

As for enclosures, there are many examples out there that you can use.

Some are waterproof (most are not), some are made of plastic, and others

are metal. I even found some that are made from laser-cut plywood and

acrylic sheets. If you want a simple enclosure large enough for an Arduino

board and even a small PCB, take a look at the Big Red Box enclosure from

SparkFun (www.sparkfun.com/products/11366) as shown in Figure 11-6.

Figure 11-5. Prototyping circuit board (courtesy of SparkFun)

Figure 11-6. Big Red Box enclosure (courtesy of SparkFun)

Chapter 11 putting it all together

http://www.sparkfun.com/products/11366

679

 What About Implementation?
Recall that at the start of this project, I said you have all the knowledge

you need to implement this project. If you consider the nodes you need,

you can find examples of how to build each one in previous chapters. The

database node is found in Chapter 8, the Arduino data-aggregate node is

also in Chapter 10, the XBee sensor nodes are in Chapters 3 and 4, and an

example of the outdoor sensor node is included in this chapter (the Seeed

Studio Wireless Sensor Kit).

I therefore leave the implementation to you; you can study those

examples and implement them. Fortunately, little or no modification

should be necessary. Other than perhaps substituting prototype circuit

boards for the breadboards and sturdy enclosures for all the nodes, your

implementation should be the same as the examples.

 Conclusion
Once you have purchased all the components and assembled the sensor

nodes in their final form, you can bench-test the entire network and then

deploy the sensor nodes, testing for reliable connections between the sensor

nodes and the data-aggregate node. Once all this checks out, you secure the

sensor nodes in their locations, the data-aggregate node is installed in the

central location, and the database node is installed in a secure area.

Returning to what you expect to get from the network, after it has run

for some time—a week perhaps—without errors or problems, you can start

issuing queries on the database to check for differences observed between

the outside sensor values and the indoor sensor values. Once you have

several months’ worth of data, you can start to consider grouping the data

by season (through a selection on the timestamp column).

I hope this example has reinforced the material in the book as way to

validate your efforts in constructing all the projects and experimenting

with them. I am fully confident that doing so will mean, should you follow

this example to form a similar network, you succeed handily.

Chapter 11 putting it all together

680

 For More Fun
The total cost of these components is approximately $425.00, not including

miscellaneous vitamins and shipping costs. This may sound like a lot, but

consider substituting other components such as using fewer XBee sensor

nodes and more Arduino sensor nodes with WiFi shields or the use of a

Raspberry Pi for the data-aggregate node.

 Optional Component Shopping List
No required components are needed for the examples in this chapter.

Rather, the components and accessories listed in this chapter are

optional—things you may want to consider purchasing if needed. Table 11- 2

shows a list of the components mentioned in this chapter.

Table 11-2. Optional Components

Item Vendors Est. Cost USD

Seeed Studio Stalker

Wireless Sensor Kit

http://wiki.seeedstudio.com/

Seeeduino_Stalker_V3- Waterproof_

Solar_Kit/

$59.50

Seeed Studio Stalker

Board

http://wiki.seeedstudio.com/

Seeeduino_Stalker_V3.1/

$39.00

raspberry pi alamode www.seeedstudio.com/Alamode-

Arduino- Compatible-Raspberry-

Pi-Plate-p-1285.html

$35.00

lte Cat M1/nB-iot

Shield

www.sparkfun.com/products/14997 $79.95

perma-proto Boards www.adafruit.com/category/466 $2.50 and up

enclosure www.sparkfun.com/products/11366 $8.95

Chapter 11 putting it all together

http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3.1/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3.1/
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://www.sparkfun.com/products/14997
http://www.adafruit.com/category/466
http://www.sparkfun.com/products/11366

681

 Summary
This chapter explored some of the nuances of designing and implementing

wireless sensor networks. I discussed some of the more popular best

practices for sensor networks, considerations for planning databases

to store the sensor data, how best to retrieve and use the data from a

database, and how to choose what type of host to use for each sensor node.

You also explored the design of a whole home temperature-monitoring

system with special considerations for selecting hardware for the sensors.

Now that you have a basic (and some more advanced) understanding

of wireless sensor networks, you can put down this book in triumph and

start thinking of some really cool ways you can implement what you have

learned. Perhaps you want to monitor the temperature in your house,

workshop, or garage. Or perhaps you want to design a more complex

network that monitors sound, movement, and ambient temperature

changes (like a home security system).

An even more ambitious project would be to build your own weather

station from discrete components, with a sensor node for each data sample

(wind speed, temperature, gas readings, rain gauge, and so on). All that

and more is possible with what you have learned in this book. Good luck,

and happy sensor networks!

Chapter 11 putting it all together

683© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8

 APPENDIX

This appendix contains the consolidated shopping list for all components

required for building all the projects in this book. We will also cover three

optional component connector systems that you may find helpful in

developing your own sensor networks.

 Consolidated Shopping Lists
The tables in this section cover the projects from Chapters 2 and 4–10

(Table A-1). Also contained is the optional shopping list for the projects in

Chapter 10 (Table A-2). The lists have been sorted by item name for easier

reference.

Table A-1. Consolidated Component Shopping List

Item Vendors Est. Cost USD Qty Needed

0.10mF capacitor Most online and retail stores Varies 3

10K Ohm resistor Most online and retail stores Varies 1

12-bit ADC module www.adafruit.com/

products/1083

$9.95 1

150 Ohm Resistor Most online and retail stores Varies 1

4.7K Ohm resistor Most online and retail stores Varies 2

5V Power Supply

(3A, 3B, 3B+)

www.pishop.us/product/

wall-adapter-power-

supply-micro-usb-2-4a-

5- 25v/

$9.95 1

(continued)

https://doi.org/10.1007/978-1-4842-5796-8#ESM
http://www.adafruit.com/products/1083
http://www.adafruit.com/products/1083
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/
http://www.pishop.us/product/wall-adapter-power-supply-micro-usb-2-4a-5-25v/

684

Table A-1. (continued)

Item Vendors Est. Cost USD Qty Needed

5V Power Supply (4B) www.raspberrypi.org/

products/type-c-power-

supply/

$8.00 1

9V Battery Holder

(optional)

www.adafruit.com/

products/67

$2.95–3.95 1 for each

node

www.sparkfun.com/

products/10512

Arduino Ethernet

Shield

www.sparkfun.com/

products/9026

$24.95 1

Arduino Ethernet

Shield 2

www.sparkfun.com/

products/11166

$24.95 and up 1

Arduino Uno (any that

supports shields)

Various $25.00 and up 1

Arduino Uno or Mega

2560

Various $25.00 and up 1 for each

node

Arduino Uno,

Leonardo (any that

supports shields)

Various $25.00 and up 1

Arduino WiFi Shield www.sparkfun.com/

products/13287

$16.95 1

Arduino XBee shield www.sparkfun.com/

products/10854

$24.95 1

(continued)

APPENDIX

http://www.raspberrypi.org/products/type-c-power-supply/
http://www.raspberrypi.org/products/type-c-power-supply/
http://www.raspberrypi.org/products/type-c-power-supply/
http://www.adafruit.com/products/67
http://www.adafruit.com/products/67
http://www.sparkfun.com/products/10512
http://www.sparkfun.com/products/10512
http://www.sparkfun.com/products/9026
http://www.sparkfun.com/products/9026
http://www.sparkfun.com/products/11166
http://www.sparkfun.com/products/11166
http://www.sparkfun.com/products/13287
http://www.sparkfun.com/products/13287
http://www.sparkfun.com/products/10854
http://www.sparkfun.com/products/10854

685

(continued)

Table A-1. (continued)

Item Vendors Est. Cost USD Qty Needed

BMP280 breakout

board

www.adafruit.com/

product/2651

$9.95–14.95 1

www.sparkfun.com/

products/15440

BMP280 Grove Sensor

(optional)

www.seeedstudio.

com/catalogsearch/

result/?q=bmp280

$8.95 1

BMP280 Sensor www.adafruit.com/

products/2651

$9.95 1

Breadboard (not mini) www.adafruit.com/

product/64

$5.95 1 for each

node

Breadboard (not mini) www.sparkfun.com/

products/9567

Breadboard jumper

wires

www.adafruit.com/

product/758

$3.95 1

www.sparkfun.com/

products/8431

Breadboard power

supply

www.sparkfun.com/

products/10804

$14.95 1

Breakaway male

headers (optional)

www.adafruit.com/

products/392

$4.95 1

Cobbler+ www.adafruit.com/

products/914

$7.95 1

APPENDIX

http://www.adafruit.com/product/2651
http://www.adafruit.com/product/2651
http://www.sparkfun.com/products/15440
http://www.sparkfun.com/products/15440
http://www.seeedstudio.com/catalogsearch/result/?q=bmp280
http://www.seeedstudio.com/catalogsearch/result/?q=bmp280
http://www.seeedstudio.com/catalogsearch/result/?q=bmp280
http://www.adafruit.com/products/2651
http://www.adafruit.com/products/2651
http://www.adafruit.com/product/64
http://www.adafruit.com/product/64
http://www.sparkfun.com/products/9567
http://www.sparkfun.com/products/9567
http://www.adafruit.com/product/758
http://www.adafruit.com/product/758
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/8431
http://www.sparkfun.com/products/10804
http://www.sparkfun.com/products/10804
http://www.adafruit.com/products/392
http://www.adafruit.com/products/392
http://www.adafruit.com/products/914
http://www.adafruit.com/products/914

686

Item Vendors Est. Cost USD Qty Needed

Data Logging shield

for Arduino

www.adafruit.com/

products/1141

$19.95 1

DHT22 www.adafruit.com/

products/385

$9.95 1

www.sparkfun.com/

products/10167

DS1307 Real-Time

Clock breakout board

www.adafruit.com/

product/3296

$7.50 1 for each

node

DS18B20 Digital

Temperature Sensor

www.adafruit.com/

product/374

$3.95 1

Grove to Female

Jumper (optional)

www.seeedstudio.com/

Grove-4-pin-Female-

Jumper- to-Grove-4-pin-

Conversion-Cable-5-

PCs- per- PAck.html

$3.90 1

HDMI or DVI monitor Most online and retail stores Varies 1

HDMI or HDMI to

DVI cable

Most online and retail stores Varies 1

I2C EEPROM www.sparkfun.com/

products/525

$1.95 1

LED Most online and retail stores Varies 1

microSD Shield www.sparkfun.com/

products/9802

$14.95 1

(continued)

Table A-1. (continued)

APPENDIX

http://www.adafruit.com/products/1141
http://www.adafruit.com/products/1141
http://www.adafruit.com/products/385
http://www.adafruit.com/products/385
http://www.sparkfun.com/products/10167
http://www.sparkfun.com/products/10167
http://www.adafruit.com/product/3296
http://www.adafruit.com/product/3296
http://www.adafruit.com/product/374
http://www.adafruit.com/product/374
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.seeedstudio.com/Grove-4-pin-Female-Jumper-to-Grove-4-pin-Conversion-Cable-5-PCs-per-PAck.html
http://www.sparkfun.com/products/525
http://www.sparkfun.com/products/525
http://www.sparkfun.com/products/9802
http://www.sparkfun.com/products/9802

687

(continued)

Table A-1. (continued)

Item Vendors Est. Cost USD Qty Needed

Mini-HDMI cable Most online and retail stores Varies 1

Pushbutton

(breadboard mount)

www.sparkfun.com/

products/97

$0.35 1

Raspberry Pi 3B,

3B+, or 4B

Most online and retail stores $35.00 and up 1

Raspberry Pi Cobbler+

(you can also use the

T-Cobbler+)

www.adafruit.com/

products/2028

$7.95 1

www.adafruit.com/

products/2029

Raspberry Pi Model

3B+ or 4B 2GB or

4GB

Most online stores $35.00 and up 2

Raspberry Pi Model

4B 2GB or 4GB RAM

sparkfun.com,

adafruit.com,

thepithut.com

$50.00 and up 1

Real-Time Clock

module

www.sparkfun.com/

products/99

$14.95 1 for each

node

SD Card, 2GB or more Most online and retail stores Varies 1

SD card, 16GB or

more

Most online and retail stores Varies 1

Soldering iron and

solder (optional)

Most online and retail stores Varies 1

SparkFun XBee shield www.sparkfun.com/

products/10854

$24.95 1

APPENDIX

http://www.sparkfun.com/products/97
http://www.sparkfun.com/products/97
http://www.adafruit.com/products/2028
http://www.adafruit.com/products/2028
http://www.adafruit.com/products/2029
http://www.adafruit.com/products/2029
http://www.sparkfun.com/products/99
http://www.sparkfun.com/products/99
http://www.sparkfun.com/products/10854
http://www.sparkfun.com/products/10854

688

Item Vendors Est. Cost USD Qty Needed

Stackable header kit www.sparkfun.com/

products/11417

$1.50–1.95 1

Surplus hard drive Any USB hard drive

(surplus or purchased)

Varies 1

TMP36 sensor www.adafruit.com/

products/165

$1.50 1 for each

sensor node

www.sparkfun.com/

products/10988

USB keyboard Most online and retail stores Varies 1

USB power supply Most online and retail stores Varies 1

USB power supply Most online and retail stores Varies 1

USB Type A to micro-

USB male

Most online and retail stores Varies 1

USB XBee Adapter www.adafruit.com/

product/247

$29.95 1 for each

node

USB-C power supply Most online and retail stores Varies 1

USB-to-mini USB

cable for use with the

XBee Explorer USB

www.sparkfun.com/

products/11301

$3.95 1

Wall adapter 9V

(optional)

www.sparkfun.com/

products/ 15314

$5.95 1 for each

node∗∗

(continued)

Table A-1. (continued)

APPENDIX

http://www.sparkfun.com/products/11417
http://www.sparkfun.com/products/11417
http://www.adafruit.com/products/165
http://www.adafruit.com/products/165
http://www.sparkfun.com/products/10988
http://www.sparkfun.com/products/10988
http://www.adafruit.com/product/247
http://www.adafruit.com/product/247
http://www.sparkfun.com/products/11301
http://www.sparkfun.com/products/11301
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/

689

Table A-1. (continued)

Item Vendors Est. Cost USD Qty Needed

Wall power supply

(6V–12V)

www.sparkfun.com/

products/15314

$5.95 1

XBee Explorer Dongle www.sparkfun.com/

products/ 11697

$24.95 1 for each

node

XBee Explorer

Regulated

www.sparkfun.com/

products/11373

$9.95 2

XBee Explorer USB www.sparkfun.com/

products/ 11812

$29.95 1 for each

node

XBee Explorer

Regulated with

headers

www.sparkfun.com/

products/11373

$10.95 1 for each

sensor node

+ 1 for the

Raspberry

Pi

XBee shield www.sparkfun.com/

products/12847

$24.95 1

XBee-ZB (ZB) series 2,

2.5, or 3

www.adafruit.com $25.00–48.00 2–4 (1 for

each node)www.sparkfun.com

APPENDIX

http://www.sparkfun.com/products/15314
http://www.sparkfun.com/products/15314
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/11373
http://www.sparkfun.com/products/12847
http://www.sparkfun.com/products/12847
http://www.adafruit.com
http://www.sparkfun.com

690

Ta
bl

e
A

-2
.

O
pt

io
n

al
 C

om
po

n
en

t S
ho

pp
in

g
Li

st

Ite
m

Ve
nd

or
s

Es
t.

Co
st

 U
SD

En
cl

os
ur

e
ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
11
36
6

$8
.9

5

LT
E

CA
T

M
1/

NB
-Io

T
Sh

ie
ld

ww
w.
sp
ar
kf
un
.c
om
/p
ro
du
ct
s/
14
99
7

$7
9.

95

Pe
rm

a-
Pr

ot
o

Bo
ar

ds
ww
w.
ad
af
ru
it
.c
om
/c
at
eg
or
y/
46
6

$2
.5

0
an

d
up

Ra
sp

be
rr

y
Pi

 A
la

m
od

e
ww
w.
se
ee
ds
tu
di
o.
co
m/
Al
am
od
e-
Ar
du
in
o-
Co
mp
at
ib
le
-

Ra
sp
be
rr
y-
Pi
-P
la
te
-p
-1
28
5.
ht
ml

$3
5.

00

Se
ee

d
St

ud
io

 S
ta

lk
er

 B
oa

rd
ht
tp
:/
/w
ik
i.
se
ee
ds
tu
di
o.
co
m/
Se
ee
du
in
o_
St
al
ke
r_
V3
.1
/

$3
9.

00

Se
ee

d
St

ud
io

 S
ta

lk
er

W
ire

le
ss

 S
en

so
r K

it

ht
tp
:/
/w
ik
i.
se
ee
ds
tu
di
o.
co
m/
Se
ee
du
in
o_
St
al
ke
r_
V3
-

Wa
te
rp
ro
of
_S
ol
ar
_K
it
/

$5
9.

50

XB
ee

 G
ro

ve
 D

ev
el

op
m

en
t

Bo
ar

d

ww
w.
di
gi
ke
y.
co
m/
pr
od
uc
ts
/e
n?
mp
ar
t=
76
00
09
56
&v
=6
02

$2
5.

00

APPENDIX

http://www.sparkfun.com/products/11366
http://www.sparkfun.com/products/14997
http://www.adafruit.com/category/466
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://www.seeedstudio.com/Alamode-Arduino-Compatible-Raspberry-Pi-Plate-p-1285.html
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3.1/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://wiki.seeedstudio.com/Seeeduino_Stalker_V3-Waterproof_Solar_Kit/
http://www.digikey.com/products/en?mpart=76000956&v=602

691

 Alternative Connection Systems
If you’ve been working with microcontrollers and discrete components

for some time, chances are you’re an expert at wiring components to

a breadboard and connecting them together. However, if working with

electronics is new to you or you find wiring things together tedious,

you’ve probably wondered if there is a better way. It turns out there are

better ways!

As we saw in Chapter 5, there are connection systems designed to

allow you to connect sensors and other components together using one

set of wiring and connectors that connect to a platform-specific host board

(shield, hat). These systems typically support a specific communication

protocol such as I2C, SPI, and so on. Even so, manufacturers offer the

components as modules that “speak” the same protocol. For example,

you can get sensors and displays that can be connected together. These

connection systems cost a little more, but the cost is easily offset by ease of

use and keyed connectors that prevent cross or simply incorrect hookups.

In the following sections, we will see a short overview of three of the

most popular connection systems you may want to consider using in your

own projects. The examples are presented without detailed explanations

for the reader to explore. That is, they represent a small glimpse into what

is possible.

 Grove
We first introduce the Grove system from Seeed Studio in Chapter 5.

Grove is open source that utilizes a four-wire keyed connector that makes

assembling electronic components easy and fast while also simplifying

the learning process. The Grove system consists of a host board (shield/

hat) with each module having a single, dedicated connector using one

of several protocols. Connections are made in a star pattern where each

APPENDIX

692

component requiring a connection on the host or multiplex boards. Each

Grove module addresses a single function such as a sensor, button, or

display. With over 200 modules available, you are sure to find the modules

you need for your project.

Since we have already discussed a sample Raspberry Pi Grove project

in Chapter 5, Listing A-1 shows another example of a Grove project using

the Arduino. In this case, we use a Grove Arduino base shield, DHT11

sensor, and a 16x2 LCD to display the data. All of the code is taken from the

excellent example sketches.

Listing A-1. Grove Arduino Example Sketch

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Grove Temperature Node

 This project demonstrates how to use a Grove DHT11 sensor and

 LCD display. It shows how easy it is to use the Grove family

 of sensors as an alternative to hard wiring.

*/

#include "DHT.h"

#include "rgb_lcd.h"

const int colorR = 255;

const int colorG = 0;

const int colorB = 0;

#define DHTPIN A2

#define DHTTYPE DHT11

DHT dht(DHTPIN, DHTTYPE);

rgb_lcd lcd;

APPENDIX

693

void setup()

{

 Serial.begin(115200);

 while(!Serial);

 Serial.println("Welcome to the Grove DHT11 example!");

 Wire.begin();

 dht.begin();

 // set up the LCD's number of columns and rows:

 lcd.begin(16, 2);

 lcd.setRGB(colorR, colorG, colorB);

}

void loop()

{

 float temp_hum_val[2] = {0};

 if(!dht.readTempAndHumidity(temp_hum_val)){

 lcd.clear();

 lcd.setCursor(0, 0);

 lcd.print("Humidity: ");

 lcd.print(temp_hum_val[0]);

 lcd.print("%");

 lcd.setCursor(0, 1);

 lcd.print("Temp: ");

 lcd.print(temp_hum_val[1]);

 lcd.print("C");

 }

 else{

 Serial.println("Failed to get temperature and humidity

value.");

 }

 delay(1000);

}

APPENDIX

694

To run this sketch, you must install the following libraries using the

library manager:

• Grove Temperature and Humidity Sensor—DHT11

• Grove LCD RGB Backlight—16x2 LCD

Figure A-1 shows the hardware for the project including an Arduino

Uno, Grove Arduino Base Shield, DHT11 humidity/temperature sensor,

and a 2x16 LCD module.

See www.seeedstudio.com/category/Grove-c-1003.html for more

information about the Grove family of products.

Figure A-1. Grove Arduino example hardware

APPENDIX

http://www.seeedstudio.com/category/Grove-c-1003.html

695

 Qwiic
SparkFun's Qwiic connect system uses a smaller four-pin cable with

JST connectors to quickly interface host and development boards with

sensors, LCDs, and more. In fact, SparkFun has introduced many of its

development boards with Qwiic connectors to make experiments and

projects easier.

With the Qwiic system, there is no soldering and modules just plug

together. No searching for the “right” connector; just plug it in and go. You

can’t cross-connect since the connectors are polarized and keyed to plug

in only on way. Better still, unlike the Grove system, Qwiic modules have

two connectors permitting you to daisy-chain modules together, thereby

saving space on the host board.

Qwiic host boards connect the I2C bus (GND, 3.3V, SDA, and SCL)

on your Arduino, Raspberry Pi, Photon, and so on to a series of SparkFun

Qwiic connectors. Some host boards have circuitry to convert the 5V given

to the 3.3V required by I2C boards in the Qwiic system.

One nice feature of the Arduino host shield also is the ability to

mount Qwiic boards on top using two through holes that line up with the

modules. This permits you to securely stack the modules on top. Nice.

The list of sensors along with supported host platforms and accessories

for the Qwiic system from SparkFun is quite impressive. You are sure

to find all manner of ideas just by browsing the catalog. In fact, if you

own multiple microcontroller boards like I do, you’ll be extra pleased to

know you need only change the host board and you can reuse your Qwiic

modules across your fleet of microcontroller boards.

To show how easy the Qwiic system is to use, Listing A-2 shows an

example of a Qwiic project using the Arduino. In this case, we use a Qwiic

Arduino shield, environmental sensor, and a tiny OLED to display the data.

All of the code is taken from the excellent example sketches.

APPENDIX

696

Listing A-2. Qwiic Arduino Example Sketch

/**
 Beginning Sensor Networks Second Edition

 Sensor Networks Example Qwiic Temperature Node

 This project demonstrates how to use a Qwiic BME280 sensor and

 OLED display. It shows how easy it is to use the Qwiic family

 of sensors as an alternative to hard wiring.

*/

#include <Wire.h>

#include <SFE_MicroOLED.h>

#include "SparkFunBME280.h"

// MicroOLED Definition

#define PIN_RESET 9

#define DC_JUMPER 1

// MicroOLED Object Declaration

MicroOLED oled(PIN_RESET, DC_JUMPER);

// BME280 Sensor

BME280 mySensor;

void setup() {

 Serial.begin(115200);

 while(!Serial);

 Serial.println("Reading basic values from BME280 and display

on OLED.");

 Wire.begin();

 if (mySensor.beginI2C() == false) {

 Serial.println("The sensor did not respond. Please check

wiring.");

 while(1); //Freeze

 }

APPENDIX

697

 oled.begin(); // Initialize the OLED

 oled.clear(ALL); // Clear the display's internal memory

 oled.display(); // Display what's in the buffer

(splashscreen)

 delay(1000); // Delay 1000 ms

 oled.clear(PAGE); // Clear the buffer.

}

void loop() {

 float temp_c = 0.0;

 float temp_f = 0.0;

 delay(1000);

 temp_c = mySensor.readTempC();

 temp_f = mySensor.readTempF();

 oled.clear(PAGE);

 oled.setCursor(0, 0);

 oled.setFontType(1);

 oled.print(temp_c);

 oled.print("C");

 oled.setCursor(0, 16);

 oled.print(temp_f);

 oled.print("F");

 oled.display();

}

To run this sketch, you must install the following libraries using the

library manager:

• SparkFun Micro OLED Breakout—OLED

• SparkFun BME280—BME280

• SparkFun CCS811 Arduino Library—CCS811 (optional)

APPENDIX

698

Figure A-2 shows the hardware for the project including an Arduino

Uno, Qwiic Arduino shield, BME280 environment sensor, and an OLED

module.

There are two things I like about the Qwiic system: (1) the wide variety

of platforms supported and (2) the ability to incorporate I2C devices that

aren’t in the SparkFun catalog. Figure A-3 shows an excerpt of the Qwiic

host boards available including a nifty, tiny Raspberry Pi board.

Figure A-2. Qwiic Arduino example hardware

APPENDIX

699

While you can add devices to the Grove system, SparkFun makes it

easier with the SparkFun Qwiic Adapter, a tiny board that has the I2C

pins broken out in breadboard-friendly pins along with the customary

two connectors. This permits you to create your own Qwiic modules

from older I2C devices. Very cool. Figure A-4 shows the SparkFun Qwiic

Adapter from SparkFun.

Figure A-3. Qwiic host boards (courtesy of SparkFun)

Figure A-4. SparkFun Qwiic Adapter (courtesy of SparkFun)

APPENDIX

700

Finally, SparkFun offers a number of Qwiic starter kits for most

platforms. These kits are often cheaper than buying the components

separately and come ready to use in example projects.

See www.sparkfun.com/qwiic?_ga=2.26742462.2046856991.

1585058029-656283068.1580489631 for more information about the

Qwiic family of products.

 STEMMA QT
The STEMMA/QT system is another modular connection system from

Adafruit. It supports both three- and four-pin JST connectors. Like Grove

and Qwiic, it is Adafruit’s way of making it easy to plug and play various

sensors and devices without a lot of wiring.

While it isn’t an original idea, Adafruit wanted to create something that

could work within an ecosystem of other plug-and-play systems originally

intended to be compatible with Grove, but when Qwiic was introduced,

Adafruit added a smaller connector so it could work with both systems.

However, there are a few exceptions.

STEMMA four-pin cables are cross-compatible with Grove modules,

and Adafruit provides an optional cable for connecting Grove modules.

STEMMA uses the same voltage as Grove—power is 3–5VDC and data is

3–5VDC with level shifting/regulators on devices. However, Qwiic only has

level shifting and voltage regulation on the controller, not on the modules.

Thus, while you can use STEMMA modules with any Qwiic controller, you

can use Qwiic devices on a STEMMA controller only if you set the voltage

jumper from 5V to 3V.

While these differences are subtle, you can acquire any of the STEMMA

devices and modules and mix them with your Grove and Qwiic systems.

Just be careful about how you connect them and how the devices are

powered.

APPENDIX

http://www.sparkfun.com/qwiic?_ga=2.26742462.2046856991.1585058029-656283068.1580489631
http://www.sparkfun.com/qwiic?_ga=2.26742462.2046856991.1585058029-656283068.1580489631

701

For more information about STEMMA and especially compatibility

with other systems, see https://learn.adafruit.com/introducing-

adafruit- stemma-qt/what-is-stemma.

 Summary
There is a great sense of accomplishment when wiring up your projects

and seeing them record sensor data. However, for some the task of wiring

various components together can be tedious and sometimes error prone.

Fortunately, the nice folks at Seeed Studio, SparkFun, and Adafruit feel

your pain and have delivered excellent easy connect solutions.

While either system will work well, choosing one over another may

come down to which system has the modules you need most. For example,

the Qwiic system from SparkFun has an impressive and growing list of

modules to choose from. However, it only supports the I2C protocol. If you

need to use modules requiring other protocols, the Grove system may be

a slightly better choice. Regardless of which you choose, these optional

connector systems will make your projects assemble faster with fewer

errors, and that’s always a good thing.

APPENDIX

https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma
https://learn.adafruit.com/introducing-adafruit-stemma-qt/what-is-stemma

703© Charles Bell 2020
C. Bell, Beginning Sensor Networks with XBee, Raspberry Pi, and Arduino,
https://doi.org/10.1007/978-1-4842-5796-8

Index

A
Accessories

catalog entry, 206
Pibow Coupé, 205, 206
Pi Tin, 204

Adafruit_BMP280 library, 248
Adafruit RTC module, 359
add_occupant() method, 138
Aggregate nodes, 17, 18
Alamode, 670, 671

Arduino-compatible
board, 671

commands, 672
features, 671, 672
Firmata library, 673
limitations, 672
RTC module, 672

ALTER USER command, 510
Analog sensors, 22–24
Analog temperature sensor

(TMP36), 145, 191, 398
Analog-to-digital converter

(ADC), 145, 232
Arduino

analog and digital pins, 271
clone boards, 279
components, 328, 330, 331

data aggregate node
(see Remote-storage
data aggregator)

Due, 274, 275
Fio, 280, 281
hosting sensors, 300, 301
IDE, 270, 290, 291, 293
learning resources, 289
Leonardo board, 273, 274
Mega 2560, 275, 276
Micro, 276
MKR series, 278
MySQL client (see Client)
Nano, 277
online retailers, 287
open source software

environment, 269
Pro Mini, 279
retail stores, 288
serial port, 293
sketch, 270
storage (see Local storage)
Uno board, 272, 273

Arduino Leonardo, 274, 478
Arduino/Raspberry Pi

connectivity, 665, 666
cost, 661, 662

https://doi.org/10.1007/978-1-4842-5796-8#ESM

704

expandability, 664, 665
functionality, 663, 664
security, 662, 663

Arduino Uno, 478
Arithmetic operators, 111, 112
AT address, 98
Atmospheric monitoring vs.

environment, 8, 9
Audio sensors, 10, 28
Automatic drive

mounting, 437–440

B
Barcode readers, 28
Barometric pressure sensor node

hardware, 245
I2C bus, 243, 244
software setup, 246, 247,

249, 250
testing hardware, 246
testing sensor, 251

Basic sensor node, 16
Baud rate, 90, 91
Biometric sensors, 29
Bluetooth low energy (BLE), 38
BMP280 sensor module, 184, 243,

251, 267
Boot image installation

choosing image, 208, 209
install Raspbian, 210
NOOBS, 209, 210
SD card

Linux, 212, 213
Mac OS X, 211, 212
Windows, 211

busio module, 248

C
Cabling, 98
callback method, 258–260, 623
Capacitive sensors, 29
CHANGE MASTER command, 466
Classes/objects, 130, 132, 133
Class instance variable, 134
Client, 527

hardware, 527
library manager, 530
sensor database, 531
software, 529
test execution, 538–540
writing code, 531, 537

client.available() method, 571
client.println() method, 571
client.print() method, 571
Cloud server

categories, 379
creating channel, 381, 383–385
non-commercial projects, 378
protocol, 380
specific software or

environment, 377
ThingSpeak, 380
top vendors, 378

cmd_query() method, 598
Code blocks, 108, 109

Arduino/Raspberry Pi (cont.)

INDEX

705

Coin sensors, 29, 30
Comma-separated-value

(CSV) file, 644
Communication media

hybrid networks, 15
WiFi, 15
wired networks, 14

Comparison operators, 111
Conditional statements, 123, 124
Configuring XBee modules

additional information, 66, 67
addresses, 48, 49
firmware (see Firmware)
terminal application, 61

AT commands, 62
command mode, 61
console mode selection,

64, 65
CoolTerm, 66
getting information, 64
transparent mode, 61

ZigBee networks, 50, 51
connected() method, 520
Connection systems

Grove, 692
hardware, 694
libraries, 694
sketches, 692, 693

Qwiic
connectors, 695
hardware, 698
host boards, 698, 699
libraries, 697
sketches, 695–697

SparkFun Qwiic Adapter, 699
starter kits, 700

STEMMA/QT, 700
Connector/Arduino

Arduino set up, 488, 489
components, 554
connector installation,

 513–515
database setup, 485, 486, 488
Ethernet shield, 489
field structure, 517, 518
hardware, 477
library files, 516, 517
limitations, 482–484
memory, 480
mysql client, 500
MySQL server configuration,

492, 493, 504, 506
account problems, 508–510
IP address, 507
networking, 506, 507
remote, 507

networking issues, 511, 513
preliminary declarations,

490, 491
public methods, 518
queries returning results, 522,

523, 525, 526
SELECT queries, 495
testing sketch, 496, 499
WiFi shield, 479

Cool gadget, 295, 296
Ctrl+C command, 260
Current sensors, 30

INDEX

706

D
Data-aggregate nodes

advantages, 558
components, 635
data sorting (see Sorting data)
local-storage, 560, 561, 582

EEPROM, 574–577
Ethernet network, 562
hardware, 562, 563
lightweight

web server, 569–572
no sensors, 590
sensor nodes, 565, 566, 591
software, 567–569
XBee modules, 578, 581

network type/node
placement, 640–642

onboard storage device, 559
sensors, 559

Database connectors, MySQL, 482
Database storage, 617, 627

calculation, 619
database connector, 625
hardware, 617
mysql client, 625
MySQL server, 620
software, 618
XBee, 618, 621, 632

Data definition language
(DDL), 415

Data Logging shield, 357
Data manipulation language

(DML), 415

Data structures
dictionaries, 121, 123
lists, 118, 119
tuples, 120

Data types, 116, 117
delay() method, 493
DHT22 connections, 529
DHT-22 humidity sensor, 20–22
digitalRead() method, 297
Digital sensors, 25, 26
Digital-to-analog (DAC), 274
Digital video recorder (DVR), 10
digitalWrite() method, 297
Digi ZigBee Development Kit, 45
DS18B20 digital temperature

sensor, 232
dtostrf() method, 537
Dynamic Host Control Protocol

(DHCP), 490

E
Electrically erasable programmable

read-only memory
(EEPROM), 336

Engineering logbook, 654, 655
Environmental sensor

ADC, 145
hardware (see Hardware setup)
smoke detectors, 145

ESP modules, 484
Ethernet.begin() method, 492
EthernetServer library, 568
execute() method, 520

INDEX

707

F
Firmware

add/scan modulebuttons, 53
AT commands, 59
coordinator, 75
download options, 58
module dialog, 54
name identifier, 57
radio entry, 55
radio module, 55, 56
router, loading, 76
series 2/2.5 modules, 52
series 2.5 and earlier, 72, 73
series 3 modules, 73, 74
SparkFun Explorer USB

dongle, 53
update button, 59
XCTU main window, 52
ZigBee protocol, 60

Fishpond-monitoring system, 12
Flex sensors, 30
format() function, 112
Functions, 128–130

G
Gas sensors, 30
General-purpose input output

(GPIO), 67
get_columns() method,

524, 549
get_next_row() method, 549
get_rows_affected() method, 521

get_sample_data() method, 598
get_temp() method, 243
GNU Public License (GPL), 415
GPIO pin mapping

assignments, 217
digital I/O, 217
header, 217
Pi T-Cobbler Plus, 220, 221
reference card, 219
TXD/RXD, 218

Grove development board
BMP280 breakout board, 168
Grove breakout cable,

BMP280, 170
jumper wires, BMP280, 169
module connection,

BMP280, 171
Seeed Studio wiki, 167

Grove systems, 45
hardware, 694
libraries, 694
sketches, 692, 693

H
Hardware, SD card

data logging shield, 361
DS1307 Real Time Clock

breakout board, 359
Ethernet shield, 360

Hardware setup
configuration, 150
options/values, 151

INDEX

708

PCB, 146
setting up, coordinator, 151
SparkFun, 146
temperature sensor

node, 147
testing, 152–154
TMP36, 148

Hardware-level libraries, 106
Heating and air conditioning

systems (HVAC), 674
Hello world project

hardware connections, 294
loop() iteration, 294, 295
sketch, 296–298
testing sensor, 299

Home heating, ventilation, and
cooling system (HVAC), 7

Home temperature-monitoring
network

cost, 676
implementation, 679
Perma-Proto Breadboard PCB,

677, 678
planning considerations, 674
planning nodes, 675, 676
shopping list, 676, 677

Hosting sensors, 230, 231,
268, 331

HttpConnection() method, 403
Hubs, 83
Humidity/barometric pressure, 333
Humidity sensors, 20
Hybrid networks, 15

I, J, K
i2cdetectutility, 248
I2C digital sensor (BMP280), 191
__init__() method, 132
INSERT query, 542
Installing MySQL, Raspberry Pi

building, 445
CMake, 446, 448
configuration, 452, 453, 455, 456
data dictionary, 458, 459, 461
installation, 451
prerequisites, 443
running make(compiling),

448, 449
source code, 441
source node, 444
systemctl, 456, 457
TAR package, 450

Instance, 134
Instantiation, 134
Interactive interpreter, 105
Inter-Integrated Circuit (I2C), 168
Internet of Things (IoT), 1
IO data sample Rx indicator

packet, 153
IOLine and IOMode libraries, 257
io_sample_callback() method, 259
items() function, 128

L
Leonardo board, 273, 274
Light-dependent resistors (LDRs), 31
Light-emitting diode (LED), 144

Hardware setup (cont.)

INDEX

709

Liquid-flow sensors, 31
Liquid-level sensors, 31
listener() method, 600
Lithium polymer (LiPo), 280, 669
Local storage

nonvolatile memory, 336, 337
nonvolatile SD card, 337, 338
saving data, nonvolatile

memory (see Nonvolatile
memory)

writing data, 356
Location sensors, 31
Logical operators, 111
Long code line, 115
Lookup value, 551, 553
loop() method, 321, 366,

393, 494, 600
Loops statements, 125, 126

M
Machine-to-machine (M2M), 379
Magnetic-stripe readers, 32
Magnetometers, 32
MASTER STATUS command, 470
MAX() function, 614
Media access control (MAC), 55
Mega footprint, 275
Mesh network

configuration, 85
loading firmware, 85
node-detection command, 95
packet formats, 84
sensor networks, 84

testing (see Testing network)
test message (see Transmit

request packet)
Method overloading, 134
Metro, Adafruit, 284, 285
Microcontrollers, 269
MicroPython, 101

Arduino, 68
core features, 68
definition, 103
features, 105, 106
libraries, 67
limitations, 106, 107
microcontrollers, 68
selection, 70
series 3 modules, 71
session, 70
setup module, 69
users, 67
vision, 68

MicroPython option
programming (see

Programming, sensor node)
setting up, coordinator, 162, 163
testing, XBee sensor node, 163
XBee sensor node,

configuration, 155, 156
MicroSD cards, 372
modprobe, 234
Multiple projects, 656
MySQL

administration tasks, 420
commands, 417, 418
components, 472

INDEX

710

configuration file, 428
CREATE TABLE statement, 422
creating user/granting

access, 430
data directory, 425
InnoDB storage engine, 423, 424
installation, 416
location, 425, 427
network database, 431, 432
online reference manual, 419
open source database system, 414
process, 415
replication, sensor data (see

Replication)
start, stop, and restart, 429
storage engine, 422
variants, 441

MySQL_Connection.h file, 519
MySQL_Cursor.h file, 520

N
New Out Of the Box Software

(NOOBS), 209
Nonvolatile memory, 336

code/experimenting, 356
I2C EEPROM

address, 340
chip, 339
pinout, 339

serial monitor output, 354
software setup, 341–353

now() method, 363

O
Object-oriented programming

(OOP)
code, 139
documentation, 137
instantiation, 140
__max_occupants variable, 137
operators, 139
output, 139
pickup.py, 137, 138
pickup truck class, 135, 136
results, 138
terms, 134

Onboard diagnostics (OBD), 3
Open Source Initiative (OSI), 415

P
Personal area network (PAN)

address, 49
Photo resistors/photocells, 31
Pibow Coupé, 205
PickupTruck(Vehicle) class, 136
Pi Tin, 204, 205
Point-to-point networking, 82
Polymorphism, 134
Porsche Integrated Workshop

Information System
(PIWIS), 4

Printed circuit board (PCB), 146
print_packet() method, 521
print() statements, 318, 404
Prototino, 283, 284
Proximity sensors, 32

MySQL (cont.)

INDEX

711

Pulse-width modulation (PWM),
106, 272, 479

Python
definition, 107
key features, 107
output to screen, 112–114
standard libraries, 105
type conversion, 117

Q
Qwiic system

connectors, 695
hardware, 698
host boards, 698, 699
libraries, 697
sketches, 695–697
SparkFun Qwiic Adapter, 699
starter kits, 700

R
Radiation sensors, 32
Radio frequency identification

(RFID), 28, 144
Radio frequency (RF), 36
Raspberry Pi

accessory, 202, 207
Alamode (see Alamode)
board, 200–202
boot image, installation, 208
booting up

Raspbian desktop, 213–215
SD card, 216

setup sequence, 215
system bootstraps, 213

data-aggregate node
(see Database storage)

definition, 194
hardware

connections, 223, 224
testing sensor, 229
writing script, 226, 227, 229

local storage, 373–375
models, 198
noble origins, 196, 197
software packages, 221, 222
temperature sensor (see

Temperature sensor node)
Raspberry Pi 3B, 195
Raspberry Pi 4B, 195, 200
Raspberry Pi, MySQL

boot image SD card, 432
fdisk command, 434
formatting drive, 435–437
partitioning USB drive, 435
USB flash, 433

Raspberry Pi, writing data
Adafruit libraries, 402
hardware, 400–402
I2C interface, 403
POST command, 403
print() statements, 404, 405, 407
Python script, 407–409
TMP36 sensor, 399

Raspbian Buster, 208
read_data() method, 532, 536
read_sample() method, 578

INDEX

712

Real-time clock (RTC), 335
record_sample() method, 364,

578, 600
Relational database management

system (RDBMS), 420, 421
Replication, 462

master, 464, 465
relay log, 463
returning slave, 471
servers, 463
setup, 464
slave processes, 467
starting slave, 467
testme database, 469

Remote storage
database, 409
network connectivity, 375
storing/retrieving data, 376
ThingSpeak, 386, 398

Remote-storage data aggregator,
594, 595, 600, 605

calculate the temperature, 607
DELIMITER command, 610
hardware, 596
memory, 605
MySQL Connector, 597–599
MySQL database, 605,

606, 611
output, 611
software, 596
SQL commands, 615
XBee modules, 614
XBee sensor node, 608
multiple nodes, 594

RepRap Arduino Mega Pololu
Shield (RAMPS), 276

Representational state transfer
(REST), 379

Resistor, 23
RFID sensors, 28
Raspberry Pi Python GPIO module

(RPi.GPIO), 222

S
save_sample() method, 623, 624
SD card

data logging shield, 357
hardware (see Hardware,

SD card)
hybrid node, 357
RTC module, 358
software

debug statements, 370
library manager, 362
loop() method, 366
microSD, 363
record_sample() method, 364
setup() method, 365
storing data, 367, 368, 370

testing, sketch, 370, 371
Secure digital (SD), 333
Security

camera sensor, 11
central processor/

microcontroller, 10
DVR, 10
home surveillance system, 10

INDEX

713

Seeed Studio Wireless
Sensor Kit, 666, 667

DS3231 library, 669
features, 669
Seeed Studio Stalker board,

667, 668
solar part, 669

Seeeduino, 281
send_sensor_data() method, 571
Sensor network databases

organization, 646, 647
query efficiency, index

CREATE INDEX
command, 651

CREATE statement, 652
sensor_number, 651
table scan, 651

table design notes
ALTER TABLE

command, 648
auto-increment fields,

648, 649
sensor_number, 648
timestamp, 648

Sensor networks, 431, 488
accelerometers, 28
anatomy, 2
atmospheric, 8
automotive, 3–6
barcode readers, 28
environment, 6, 7
IoT, 1, 2
read/interpret data, 27
topology, 12–14

Sensor nodes
aggregate, 17
basic, 16
communication device, 16
data, 16
form, 19
phenomena, 19
programming

interactive execution, 161, 162
interactive file mode,

159, 160
MicroPython terminal, 157
TMP36, 158

USB Weather Board, 19
SHOW SLAVE STATUS

command, 469
Serial.begin() method, 514
server.available() method, 571
setField() method, 393
setup() method, 318, 364, 492
Shopping list, 680

consolidated, 683–689
optional, 690

show_results() method, 521, 523,
545, 547

Sippino, 282, 283
Sketches, 270, 271
Solid-state drive (SSD) if, 433
Sorting data

databases, 644
sensor number, 644
storing, 643, 644
temperature, 642, 643
water levels, 642, 643

INDEX

714

SparkFun adapter, 255
Speed sensors, 32, 33
sprintf() method, 543
STEMMA/QT system, 700, 701
Storage methods

components, 410, 411
Raspberry Pi (see Raspberry Pi,

local storage)
sensors, 334
types, 335

Storing sensor data, 26, 27
Structured Query Language

(SQL), 415
sudo raspi-config command, 255
Surface-mount device

(SMD), 272
Switches/pushbuttons, 33

T
Temperature sensor, Arduino

data methods, 307
DHT22, 302, 304
hardware, 302, 303
read_data() method, 307
software setup, 304–306
test execution, 310, 312
read_data() method, 308, 310

Temperature sensor node
hardware setup, 232, 233
one-wire protocol, 232
software setup, 236–239, 241
testing hardware, 234, 235
testing sensors, 242

Testing/deployment
bench-testing, 657
data-aggregate nodes, 658, 659
database nodes, 658
sensor nodes, 658

Testing network
broadcast packet, 92
frame sent/received, 94
selected/frame button, 92
terminal mode, 91
transmit request frame,

destination, 93
XCTU, 91

Testing, XBee sensor node
explicit Rx indicator packet, 165
receive packet, 188
serial monitor output, 164, 186
XCTU application, 163, 186

Thermostat, 8
ThinkSpeak

channel write, 394–396
configuration, 388, 389
hardware setup, 387
MKR1000/TMP36 sensor, 386
testing sketch, 396, 398
writing sketch, 390–394

Tilt switches, 33
Touch sensors, 33
Transmit request packet

creation, 89
data payload, 87
Ethernet networks, 86
frame packet, 88
frames generator tool, 88

INDEX

715

layout, 86
XCTU application, 87

Tuples, 120
Two-wire interface (TWI), 274

U
Universally unique identifier

(UUID), 439
Uno board, 272, 273
urlencode() method, 403
USB Cerberus cable, 97
USB XBee explorer, 265

V
Variables, 114, 115
Video sensors, 33

W
wait_for_client() method, 526
Weather sensors, 33
Whip/wire antenna, 42
WiFi shield, 502
Wired networks, 14
Wired/wireless nodes, 660
Wireless chat room, XBee

capturing serial
numbers, 77, 78

coordinator configuration, 79
router, configuration, 80
session, 80
successful chat, 81

Wireless fidelity (WiFi), 13
Wireless networks, 15
write_byte() method, 346
writeFields() method, 393
write_sample() method, 578
Writing data

SD drive (see SD card)
ThinkSpeak (see ThinkSpeak)

w1-therm module, 234

X, Y
XBee

module, 36
grove (see Grove development

board)
read sensor data, 36

XBeeDevice library, 257
XBee modules, 563, 653

antenna options, 42
AT commands, 37
chat room (see Wireless chat

room, XBee)
common scenarios, 99–101
components, 96
configuration (see Configuring

XBee modules)
controls/settings, 37
environmental sensor node (see

Environmental sensor)
form factors, 38, 39
host sensors, 144
I/O ports, 48
list, 41

INDEX

716

pin Layout, 46–48
pro models, 39
series/iterations, 40
standard/regular models, 39
troubleshooting tips, 98, 99

XBee sensor node
components, 189, 190,

266, 267
configuration, 171, 172, 252
coordinator node, 253, 313
file system manager,

181, 182, 185
hardware setup, 254, 255
modified bmp280.py module,

174–180
options and values, 253
options/values, 313
programming, 172–174
reading, BMP280 sensor, 184
software, 256–258, 260–263
testing project, 264, 265

XBee shield, Arduino
hardware setup, 314–316
receiver, 323, 324, 326
sketch, 326, 327
software setup, 317–322

XBee-ZB module
Arduino shield, 44
dongle, 43
grove system, 45
mesh network (see

Mesh network)
pin layout, 42
USB dongle, 43, 44

Z
ZigBee, 101

coordinator, 50
end device, 51
mesh network, 51
predefined network, 50
router, 50

XBee modules (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Sensor Networks
	Anatomy of a Sensor Network
	Examples of Sensor Networks
	Automotive
	Environment
	Atmospheric
	Security

	The Topology of a Sensor Network

	Communication Media
	Wired Networks
	Wireless Networks
	Hybrid Networks

	Types of Sensor Nodes
	Basic Sensor Nodes
	Data Nodes
	Aggregator Nodes

	Sensors
	How Sensors Measure
	Analog Sensors
	Digital Sensors

	Storing Sensor Data
	Examples of Sensors

	Summary

	Chapter 2: Tiny Talking Modules: An Introduction to XBee Wireless Modules
	What Is an XBee?
	XBee Primer
	Choosing XBee Modules
	Interacting with an XBee-ZB Module
	Pin Layout
	Configuring Modules
	Addresses
	ZigBee Networks
	Updating Firmware
	Changing Settings with a Terminal Application
	For More Information

	Introducing MicroPython
	An XBee Wireless Chat Room
	Loading the Firmware for the Modules
	Series 2.5 and Earlier
	Series 3
	Loading the Firmware for the Coordinator
	Loading the Firmware for the Router

	Capturing Serial Numbers
	Configuring the Coordinator
	Configuring the Router
	Let the Chat Begin
	For More Fun

	Building an XBee-ZB Mesh Network
	Loading the Firmware for the Modules
	Configuring the XBee Modules
	Forming Test Messages
	Testing the Network
	For More Fun

	Component Shopping List
	Troubleshooting Tips and Common Issues
	Things to Check
	Common Issues

	Summary

	Chapter 3: Programming in MicroPython
	MicroPython Features and Limitations
	MicroPython Features
	MicroPython Limitations

	Basic Concepts
	Code Blocks
	Comments
	Arithmetic
	Output to Screen

	Variables and Data Types
	Variables
	Types

	Basic Data Structures
	Lists
	Tuples
	Dictionaries

	Flow Control Statements
	Conditional Statements
	Loops

	Modularization: Modules, Functions, and Classes
	Including Modules
	Functions
	Classes and Objects
	Object-Oriented Programming (OOP) Terminology

	Summary

	Chapter 4: XBee-Based Sensor Nodes
	How to Host Sensors with XBee
	Building an XBee Environment Sensor
	Hardware Setup
	XBee Hardware Option
	Configuring the XBee Sensor Node
	Setting Up the Coordinator
	Testing the XBee Sensor Node

	MicroPython Option
	Configuring the XBee Sensor Node
	Programming the Sensor Node
	Setting Up the Coordinator
	Testing the XBee Sensor Node

	Example: Using XBee Modules to Gather Data
	Hardware Setup
	BMP280 with Jumper Wires
	BMP280 with Grove Breakout Cable
	Grove BMP280 Module Connections

	Configuring the XBee Sensor Node
	Programming the Sensor Node
	Testing the XBee Sensor Node

	Component Shopping List
	Summary

	Chapter 5: Raspberry Pi–Based Sensor Nodes
	What Is a Raspberry Pi?
	Noble Origins
	Models
	A Tour of the Board
	Required Accessories
	Recommended Accessories
	Pi Tin
	Pibow Coupé
	Where to Buy

	Raspberry Pi Tutorial
	Getting Started
	Installing a Boot Image
	Choosing the Image
	Installing Using NOOBS
	Installing Raspbian
	Windows
	Mac OS X
	Linux

	Booting Up
	Care and Feeding of the SD Card

	GPIO Pin Mapping
	Required Software
	Project: Hardware “Hello, World!”
	Hardware Connections
	Writing the Script
	Testing the Sensor
	For More Fun

	Hosting Sensors with Raspberry Pi
	Project: Building a Raspberry Temperature Sensor Node
	Hardware Setup
	Testing the Hardware
	Software Setup
	Testing the Sensor
	For More Fun

	Project: Building a Raspberry Barometric Pressure Sensor Node
	Hardware Setup
	Testing the Hardware
	Software Setup
	Testing the Sensor
	For More Fun

	Project: Creating a Raspberry Pi Data Collector for XBee Sensor Nodes
	XBee Sensor Node
	Hardware
	Software
	Testing the Final Project
	For More Fun

	Component Shopping List
	Summary

	Chapter 6: Arduino-Based Sensor Nodes
	What Is an Arduino?
	Arduino Models
	Uno
	Leonardo
	Due
	Mega 2560
	Micro
	Nano
	MKR-Series Boards

	Arduino Clones
	Arduino Pro Mini
	Fio
	Seeeduino
	Sippino
	Prototino
	Metro from Adafruit

	So, Which Do I Buy?
	Where to Buy
	Online Retailers
	Retail Stores (United States)

	Arduino Tutorial
	Learning Resources
	The Arduino IDE
	Project: Hardware “Hello, World!”
	Hardware Connections
	Writing the Sketch
	Compiling and Uploading
	Testing the Sensor

	Hosting Sensors with Arduino
	Project: Building an Arduino Temperature Sensor
	Hardware Setup
	Software Setup
	Writing the Sketch
	Test Execution

	Project: Using an Arduino As a Data Collector for XBee Sensor Nodes
	XBee Sensor Node
	Coordinator Node
	Arduino with XBee Shield
	Hardware Setup
	Software Setup

	Testing the Final Project
	For More Fun

	Component Shopping List
	Summary

	Chapter 7: Methods for Storing Sensor Data
	Storage Methods
	Local Storage Options for the Arduino
	Nonvolatile Memory
	SD Card
	Project: Saving Data in Nonvolatile Memory
	Hardware Setup
	Software Setup
	Testing the Sketch
	For More Fun

	Project: Writing Data to an SD Card
	Hardware Setup
	Software Setup
	Testing the Sketch

	Local Storage Options for the Raspberry Pi
	Project: Writing Data to Files

	Remote Storage Options
	Storing Data in the Cloud
	Getting Started with ThingSpeak
	Creating a Channel

	Project: Writing Data to ThingSpeak with an Arduino
	Hardware Setup
	Configuring the Arduino IDE
	Write the Sketch
	Testing the Sketch
	For More Fun

	Project: Writing Data to ThingSpeak with a Raspberry Pi
	Hardware Setup
	Write the Code
	Testing the Script
	For More Fun

	Storing Sensor Data in a Database

	Component Shopping List
	Summary

	Chapter 8: Turning Your Raspberry Pi into a Database Server
	What Is MySQL?
	Getting Started with MySQL
	What’s a Relational Database Management System?
	How and Where MySQL Stores Data
	Common Storage Engines
	Where Is My Data Stored?

	The MySQL Configuration File
	How to Start, Stop, and Restart MySQL
	Creating Users and Granting Access

	Building a Raspberry Pi MySQL Server
	Partitioning and Formatting the Drive
	Setting Up Automatic Drive Mounting
	Project: Installing MySQL Server on a Raspberry Pi
	Prerequisites
	Building MySQL Server
	Running CMake (Preparing to Compile)
	Running Make (Compiling)
	Making the Package

	Installing MySQL Server
	Configuring MySQL Server
	Moving the Data Directory to the External Drive

	Advanced Project: Using MySQL Replication to Back Up Your Sensor Data
	What Is Replication, and How Does It Work?
	How to Set Up Replication
	Preparing the Master

	Component Shopping List
	Summary

	Chapter 9: MySQL and Arduino: United at Last!
	Introducing Connector/Arduino
	Hardware Requirements
	What About Memory?
	Installing MySQL Connector/Arduino
	Limitations

	Building Connector/Arduino-Enabled Sketches
	Database Setup
	Setting Up the Arduino
	Starting a New Sketch
	Include Files
	Preliminary Setup
	Connecting to a MySQL Server
	Running a Query
	One More Thing…

	Testing the Sketch
	What About the Ethernet Shield 2?
	What About the WiFi Shield?
	What About the WiFi 101 Shield?

	Troubleshooting Connector/Arduino
	MySQL Server Configuration
	Server Is Not Using Networking
	Cannot Connect, and Correct IP Address Is Used
	I Can Connect Locally but Not Remotely

	MySQL User Account Problems
	Networking Configuration
	Connector Installation
	Compilation Errors Related to “No Module Named”
	Compilation Errors Related to Include File

	Others
	Strange Characters Appear in the Serial Monitor
	No Output in the Serial Monitor
	My Sketch Is Too Big

	None of These Solved My Problem—What Next?

	A Tour of the MySQL Connector/ Arduino Code
	Library Files
	Field Structure
	Public Methods
	MySQL_Connection
	MySQL_Cursor
	MySQL_Packet

	Example Uses
	Queries Without Results
	Queries Returning Results

	Project: Building a MySQL Arduino Client
	Hardware Setup
	Software Setup
	Setting Up the Sensor Database
	Writing the Code
	Test Execution
	For More Fun

	Project Example: Inserting Data from Variables
	Project Example: How to Perform SELECT Queries
	Displaying a Result Set in the Serial Monitor
	Writing Your Own Display Method
	Example: Getting a Lookup Value from the Database

	Component Shopping List
	Summary

	Chapter 10: Building Your Network: Arduino Wireless Aggregator + Wireless Sensor Node + Raspberry Pi Server
	Data-Aggregate Nodes
	Local-Storage Data Aggregator
	Project: Data-Aggregate Node with Local Storage
	Hardware
	Data-Aggregate Node
	Sensor Nodes

	Software
	Overview
	Lightweight Web Server
	Local Storage Using the Onboard EEPROM
	Reading Data from Sensor Nodes via XBee
	Putting It All Together

	Testing the Project
	For More Fun

	Remote-Storage Data Aggregator
	Project: Arduino Data-Aggregate Node with Database Storage
	Hardware
	Software
	Adding the MySQL Connector Code to the Sketch
	Setting Up the MySQL Database

	Testing the Project
	For More Fun

	Project: Raspberry Pi Data-Aggregate Node with Database Storage
	Hardware
	Software
	Testing the Project
	For More Fun

	Component Shopping List
	Summary

	Chapter 11: Putting It All Together
	Sensor Networks Best Practices
	Considerations for Data-Aggregate Nodes
	Network Type and Node Placement
	Storing Data

	Considerations for Sensor Network Databases
	How Data Is Organized
	Table Design Notes
	Adding Indexes for Query Efficiency

	Other Considerations
	Stay Within Range of XBee Modules
	Keep an Engineering Logbook
	Putting It All Together: Testing and Deploying Your Sensor Network

	Choosing Sensor Nodes
	Wired or Wireless?
	Arduino or Raspberry Pi?
	Cost
	Security
	Functionality
	Expandability
	Connectivity

	Alternative Hosts
	Seeed Studio Wireless Sensor Kit
	Raspberry Pi Alamode

	Project: Home Temperature-Monitoring Network
	Planning Considerations
	Planning the Nodes
	Cost Considerations
	What About Implementation?
	Conclusion
	For More Fun

	Optional Component Shopping List
	Summary

	Appendix
	Consolidated Shopping Lists
	Alternative Connection Systems
	Grove
	Qwiic
	STEMMA QT

	Summary

	Index

