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I N T R O D U C T I O N

In the pages of this book you will read about the myth of artificial in-
telligence. The myth is not that true AI is possible. As to that, the 
future of AI is a scientific unknown. The myth of artificial intelligence 
is that its arrival is inevitable, and only a matter of time—that we 
have already embarked on the path that will lead to human-level AI, 
and then superintelligence. We have not. The path exists only in our 
imaginations. Yet the inevitability of AI is so ingrained in popular 
discussion—promoted by media pundits, thought leaders like Elon 
Musk, and even many AI scientists (though certainly not all)—that 
arguing against it is often taken as a form of Luddism, or at the very 
least a shortsighted view of the future of technology and a dangerous 
failure to prepare for a world of intelligent machines.

As I will show, the science of AI has uncovered a very large mystery 
at the heart of intelligence, which no one currently has a clue how to 
solve. Proponents of AI have huge incentives to minimize its known 
limitations. After all, AI is big business, and it’s increasingly domi-
nant in culture. Yet the possibilities for future AI systems are limited 
by what we currently know about the nature of intelligence, whether 
we like it or not. And here we should say it directly: all evidence sug-
gests that human and machine intelligence are radically different. 
The myth of AI insists that the differences are only temporary, and 
that more powerful systems will eventually erase them. Futurists like 
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Ray Kurzweil and philosopher Nick Bostrom, prominent purveyors 
of the myth, talk not only as if human-level AI were inevitable, but 
as if, soon after its arrival, superintelligent machines would leave us 
far behind.

This book explains two important aspects of the AI myth, one sci-
entific and one cultural. The scientific part of the myth assumes that 
we need only keep “chipping away” at the challenge of general intelli-
gence by making progress on narrow feats of intelligence, like playing 
games or recognizing images. This is a profound mistake: success on 
narrow applications gets us not one step closer to general intelligence. 
The inferences that systems require for general intelligence—to read 
a newspaper, or hold a basic conversation, or become a helpmeet like 
Rosie the Robot in The Jetsons—cannot be programmed, learned, or 
engineered with our current knowledge of AI. As we successfully 
apply simpler, narrow versions of intelligence that benefit from faster 
computers and lots of data, we are not making incremental progress, 
but rather picking low-hanging fruit. The jump to general “common 
sense” is completely different, and there’s no known path from the 
one to the other. No algorithm exists for general intelligence. And we 
have good reason to be skeptical that such an algorithm will emerge 
through further efforts on deep learning systems or any other ap-
proach popular today. Much more likely, it will require a major scien-
tific breakthrough, and no one currently has the slightest idea what 
such a breakthrough would even look like, let alone the details of get-
ting to it.

Mythology about AI is bad, then, because it covers up a scientific 
mystery in endless talk of ongoing progress. The myth props up belief 
in inevitable success, but genuine respect for science should bring us 
back to the drawing board. This brings us to the second subject of 
these pages: the cultural consequences of the myth. Pursuing the 
myth is not a good way to follow “the smart money,” or even a neutral 
stance. It is bad for science, and it is bad for us. Why? One reason is 
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that we are unlikely to get innovation if we choose to ignore a core 
mystery rather than face up to it. A healthy culture for innovation em-
phasizes exploring unknowns, not hyping extensions of existing 
methods—especially when these methods have been shown to be in-
adequate to take us much further. Mythology about inevitable suc-
cess in AI tends to extinguish the very culture of invention necessary 
for real progress—with or without human-level AI. The myth also 
encourages resignation to the creep of a machine-land, where genuine 
invention is sidelined in favor of futuristic talk advocating current 
approaches, often from entrenched interests.

Who should read this book? Certainly, anyone should who is ex-
cited about AI but wonders why it is always ten or twenty years away. 
There is a scientific reason for this, which I explain. You should also 
read this book if you think AI’s advance toward superintelligence is 
inevitable and worry about what to do when it arrives. While I cannot 
prove that AI overlords will not one day appear, I can give you reason 
to seriously discount the prospects of that scenario. Most generally, 
you should read this book if you are simply curious yet confused about 
the widespread hype surrounding AI in our society. I will explain the 
origins of the myth of AI, what we know and don’t know about the pros-
pects of actually achieving human-level AI, and why we need to better 
appreciate the only true intelligence we know—our own.

I N  T H I S  B O O K

In Part One, The Simplified World, I explain how our AI culture has 
simplified ideas about people, while expanding ideas about tech-
nology. This began with AI’s founder, Alan Turing, and involved under-
standable but unfortunate simplifications I call “intelligence errors.” 
Initial errors were magnified into an ideology by Turing’s friend and 
statistician, I. J. Good, who introduced the idea of “ultraintelligence” 
as the predictable result once human-level AI had been achieved. 
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Between Turing and Good, we see the modern myth of AI take shape. 
Its development has landed us in an era of what I call technological 
kitsch—cheap imitations of deeper ideas that cut off intelligent en-
gagement and weaken our culture. Kitsch tells us how to think and 
how to feel. The purveyors of kitsch benefit, while the consumers of 
kitsch experience a loss. They—we—end up in a shallow world.

In Part Two, The Problem of Inference, I argue that the only type 
of inference—thinking, in other words—that will work for human-
level AI (or anything even close to it) is the one we don’t have a clue 
how to program or engineer. The problem of inference goes to the 
heart of the AI debate because it deals directly with intelligence, in 
people or machines. Our knowledge of the various types of inference 
dates back to Aristotle and other ancient Greeks, and has been devel-
oped in the fields of logic and mathematics. Inference is already de-
scribed using formal, symbolic systems like computer programs, so 
a very clear view of the project of engineering intelligence can be 
gained by exploring inference. There are three types. Classic AI ex-
plored one (deduction), modern AI explores another (induction). The 
third type (abduction) makes for general intelligence, and, surprise, 
no one is working on it—at all.1 Finally, since each type of inference is 
distinct—meaning, one type cannot be reduced to another—we know 
that failure to build AI systems using the type of inference undergirding 
general intelligence will result in failure to make progress toward arti-
ficial general intelligence, or AGI.

In Part Three, The Future of the Myth, I argue that the myth has 
very bad consequences if taken seriously, because it subverts sci-
ence. In particular, it erodes a culture of human intelligence and in-
vention, which is necessary for the very breakthroughs we will need 
to understand our own future. Data science (the application of AI to 
“big data”) is at best a prosthetic for human ingenuity, which if used 
correctly can help us deal with our modern “data deluge.” If used as a 
replacement for individual intelligence, it tends to chew up invest-
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ment without delivering results. I explain, in particular, how the myth 
has negatively affected research in neuroscience, among other recent 
scientific pursuits. The price we are paying for the myth is too high. 
Since we have no good scientific reason to believe the myth is true, 
and every reason to reject it for the purpose of our own future flour-
ishing, we need to radically rethink the discussion about AI.





Par t I

T H E  S I M P L I F I E D  W O R L D





Chapter 1

• • •

T H E  I N T E L L I G E N C E  E R R O R

The story of artificial intelligence starts with the ideas of someone 
who had immense human intelligence: the computer pioneer Alan 
Turing.

In 1950 Turing published a provocative paper, “Computing Ma-
chinery and Intelligence,” about the possibility of intelligent machines.1 
The paper was bold, coming at a time when computers were new and 
unimpressive by today’s standards. Slow, heavy pieces of hardware sped 
up scientific calculations like code breaking. After much preparation, 
they could be fed physical equations and initial conditions and crank 
out the radius of a nuclear blast. IBM quickly grasped their potential for 
replacing humans doing calculations for businesses, like updating 
spreadsheets. But viewing computers as “thinking” took imagination.

Turing’s proposal was based on a popular entertainment called 
the “imitation game.” In the original game, a man and a woman are 
hidden from view. A third person, the interrogator, relays questions to 
one of them at a time and, by reading the answers, attempts to deter-
mine which is the man and which the woman. The twist is that the 
man has to try to deceive the interrogator while the woman tries to 
assist him—making replies from either side suspect. Turing replaced 
the man and woman with a computer and a human. Thus began what 
we now call the Turing test: a computer and a human receive typed 
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questions from a human judge, and if the judge can’t accurately iden-
tify which is the computer, the computer wins. Turing argued that 
with such an outcome, we have no good reason to define the machine 
as unintelligent, regardless of whether it is human or not. Thus, the 
question of whether a machine has intelligence replaces the question 
of whether it can truly think.

The Turing test is actually very difficult—no computer has ever 
passed it. Turing, of course, didn’t know this long-term result in 1950; 
however, by replacing pesky philosophical questions about “conscious-
ness” and “thinking” with a test of observable output, he encouraged the 
view of AI as a legitimate science with a well-defined aim. As AI took 
shape in the 1950s, many of its pioneers and supporters agreed with 
Turing: any computer holding a sustained and convincing conversa-
tion with a person would be, most of us would grant, doing something 
that requires thinking (whatever that is).

T U R I N G ’ S  I N T U I T I O N  /   

I N G E N U I T Y  D I S T I N C T I O N

Turing had made his reputation as a mathematician long before he 
began writing about AI. In 1936, he published a short mathematical 
paper on the precise meaning of “computer,” which at the time re-
ferred to a person working through a sequence of steps to get a defi-
nite result (like performing a calculation).2 In this paper, he replaced 
the human computer with the idea of a machine doing the same work. 
The paper ventured into difficult mathematics. But in its treatment of 
machines it made no reference to human thinking or the mind. Ma-
chines can run automatically, Turing said, and the problems they 
solve do not require any “external” help, or intelligence. This external 
intelligence—the human factor—is what mathematicians sometimes 
call “intuition.”
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Turing’s 1936 work on computing machines helped launch com-
puter science as a discipline and was an important contribution to 
mathematical logic. Still, Turing apparently thought that his early defi-
nition missed something essential. In fact, the same idea of the mind or 
human faculties assisting problem-solving appeared two years later in 
his PhD thesis, a clever but ultimately unsuccessful attempt to bypass a 
result from the Austrian-born mathematical logician Kurt Gödel (more 
on this later). Turing’s thesis contains this curious passage about in-
tuition, which he compares with another mental capability he calls 
ingenuity:

Mathematical reasoning may be regarded rather schematically 
as the exercise of a combination of two faculties, which we may 
call intuition and ingenuity. The activity of the intuition con-
sists in making spontaneous judgments which are not the result 
of conscious trains of reasoning. These judgments are often but 
by no means invariably correct (leaving aside the question as to 
what is meant by “correct”). Often it is possible to find some 
other way of verifying the correctness of an intuitive judgment. 
One may for instance judge that all positive integers are uniquely 
factorable into primes; a detailed mathematical argument leads to 
the same result. It will also involve intuitive judgments, but they 
will be ones less open to criticism than the original judgment 
about factorization. I shall not attempt to explain this idea of 
“intuition” any more explicitly.

Turing then moves on to explain ingenuity: “The exercise of inge-
nuity in mathematics consists in aiding the intuition through suitable 
arrangements of propositions, and perhaps geometrical figures or draw-
ings. It is intended that when these are really well arranged the validity of 
the intuitive steps which are required cannot seriously be doubted.”3
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Though his language is framed for specialists, Turing is pointing 
out the obvious: mathematicians typically select problems or “see” an 
interesting problem to work on using some capacity that at least seems 
indivisible into steps—and therefore not obviously amenable to com-
puter programming.

G Ö D E L’ S  I N S I G H T

Gödel, too, was thinking about mechanical intelligence. Like Turing, 
he was obsessed with the distinction between ingenuity (mechanics) 
and intuition (mind). His distinction was essentially the same as 
Turing’s, in different language: proof versus truth (or “proof-theory” 
versus “model-theory” in mathematics lingo). Are the concepts of 
proof and truth, Gödel wondered, in the end the same? If so, mathe
matics and even science itself might be understood purely mechani-
cally. Human thinking in this view would be mechanical, too. The 
concept of AI, though the term remained to be coined, hovered above 
the question. Is the mind’s intuition, its ability to grasp truth and 
meaning, reducible to a machine, to computation?

This was Gödel’s question. In answering it, he ran into a snag that 
would soon make him world-famous. In 1931, Gödel published two 
theorems of mathematical logic known as his incompleteness theo-
rems. In them, he demonstrated the inherent limitations of all formal 
mathematical systems. It was a brilliant stroke. Gödel showed unmis-
takably that mathematics—all of mathematics, with certain straight-
forward assumptions—is, strictly speaking, not mechanical or “for-
malizable.” More specifically, Gödel proved that there must exist 
some statements in any formal (mathematical or computational) 
system that are True, with capital-T standing, yet not provable in the 
system itself using any of its rules. The True statement can be recog-
nized by a human mind, but is (provably) not provable by the system 
it’s formulated in.
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How did Gödel reach this conclusion? The details are complicated 
and technical, but Gödel’s basic idea is that we can treat a mathematical 
system complicated enough to do addition as a system of meaning, 
almost like a natural language such as English or German—and the 
same applies to all more complicated systems. By treating it this way, 
we enable the system to talk about itself. It can say about itself, for 
instance, that it has certain limitations. This was Gödel’s insight.

Formal systems like those in mathematics allow for the precise ex-
pression of truth and falsehood. Typically, we establish truth by using 
the tools of proof—we use rules to prove something, so we know it’s 
definitely true. But are there true statements that can’t be proven? 
Can the mind know things the system cannot? In the simple case of 
arithmetic, we express truths by writing equations like “2 + 2 = 4.” 
Ordinary equations are true statements in the system of arithmetic, 
and they are provable using the rules of arithmetic. Here, provable 
equals true. Mathematicians before Gödel thought all of mathematics 
had this property. This implied that machines could crank out all 
truths in different mathematical systems by simply applying the rules 
correctly. It’s a beautiful idea. It’s just not true.

Gödel hit upon the rare but powerful property of self-reference. 
Mathematical versions of self-referring expressions, such as “This 
statement is not provable in this system,” can be constructed without 
breaking the rules of mathematical systems. But the so-called self-
referring “Gödel statements” introduce contradictions into mathe
matics: if they are true, then they are unprovable. If they are false, 
then because they say they are unprovable, they are actually true. 
True means false, and false means true—a contradiction.

Going back to the concept of intuition, we humans can see that the 
Gödel statement is in fact true, but because of Gödel’s result, we also 
know that the system’s rules can’t prove it—the system is in effect 
blind to something not covered by its rules.4 Truth and provability 
pull apart. Perhaps mind and machine do, as well. The purely formal 
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system has limits, at any rate. It cannot prove in its own language 
something that is true. In other words, we can see something that the 
computer cannot.5

Gödel’s result dealt a massive blow to a popular idea at the time, 
that all of mathematics could be converted into rule-based opera-
tions, cranking out mathematical truths one by one. The zeitgeist was 
formalism—not talk of minds, spirits, souls, and the like. The formalist 
movement in mathematics signaled a broader turn by intellectuals 
toward scientific materialism, and in particular, logical positivism—a 
movement dedicated to eradicating traditional metaphysics like Pla-
tonism, with its abstract Forms that couldn’t be observed with the 
senses, and traditional notions in religion like the existence of God. 
The world was turning to the idea of precision machines, in effect. 
And no one took up the formalist cause as vigorously as the German 
mathematician David Hilbert.

H I L B E R T ’ S  C H A L L E N G E

At the outset of the twentieth century (before Gödel), David Hilbert 
had issued a challenge to the mathematical world: show that all of 
mathematics rested on a secure foundation. Hilbert’s worry was un-
derstandable. If the purely formal rules of mathematics can’t prove 
any and all truths, it’s at least theoretically possible for mathematics 
to disguise contradictions and nonsense. A contradiction buried some-
where in mathematics ruins everything, because from a contradic-
tion anything can be proven. Formalism then becomes useless.

Hilbert expressed the dream of all formalists, to prove finally that 
mathematics is a closed system governed only by rules. Truth is just 
“proof.” We acquire knowledge by simply tracing the “code” of a proof 
and confirming no rules were violated. The larger dream, thinly dis-
guised, was really a worldview, a picture of the universe as itself a 
mechanism. AI began taking shape as an idea, a philosophical posi-
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tion that might also be proven. Formalism treated intelligence as a 
rule-based process. A machine.

Hilbert issued his challenge at the Second International Congress 
of Mathematicians in Paris in 1900. The intellectual world was lis-
tening. His challenge had three main parts: to prove that mathe
matics was complete; to prove that mathematics was consistent; and 
to prove that mathematics was decidable.

Gödel dealt the first and second parts of Hilbert’s challenge a 
death blow with the publication of his incompleteness theorems in 
1931. The question of decidability was left unanswered. A system is de-
cidable if there is a definite procedure (a proof, or sequence of deter-
ministic, obvious steps) to establish whether any statement con-
structed using the rules of the system is true or false. The statement 
2 + 2=4 must be True, and 2 + 2=5 must be False. And so for all state-
ments that one can validly make using the symbols and rules of the 
system. Since arithmetic was thought to be the foundation of mathe
matics, proving mathematics was decidable amounted to proving the 
result for arithmetic and its extensions. This would amount to saying 
that mathematicians, playing a “game” with rules and symbols (the 
formalist idea), were in fact playing a valid game that never led to con-
tradiction or absurdity.

Turing was fascinated with Gödel’s result, which demonstrated 
not the power of formal systems but rather their limitations. He took 
up work on the remaining part of Hilbert’s challenge, and began 
thinking in earnest about whether a decision procedure for formal 
systems might exist. By 1936, in his paper “Computable Numbers,” he 
proved that it must not. Turing realized that Gödel’s use of self-
reference also applied to questions about decision procedures or, in 
effect, computer programs. In particular, he realized that there must 
exist (real) numbers that no definite method could “calculate,” by 
writing out their decimal expansion, digit by digit. He imported a re-
sult from the nineteenth-century mathematician Georg Cantor, who 
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proved that real numbers (those with a decimal expansion) were more 
numerous than the integers, even though real numbers and integers 
are both infinite. Turing stood on the shoulders of giants, perhaps. 
But in the end, his work in “Computable Numbers” proved again a 
negative. It was a limiting result: no universal decision procedure was 
possible. In other words, rules—even in mathematics—aren’t enough. 
Hilbert was wrong.6

I M P L I C A T I O N S  F O R  A I

What is important to AI here is this: Turing disproved that mathe
matics was decidable by inventing a machine, a deterministic ma-
chine, requiring no insight or intelligence to solve problems. Today, 
we refer to his abstract formulation of a machine as a Turing machine. 
I am typing on one right now. Turing machines are computers. It is 
one of the great ironies of intellectual history that the theoretical 
framework for computation was put in place as a side-thought, a 
means to another end. While working to disprove that mathematics 
itself was decidable, Turing first invented something precise and me-
chanical, the computer.

In his 1938 PhD thesis, Turing hoped that formal systems might be 
extended by including additional rules (then sets of rules, and sets of 
sets of rules) that could handle the “Gödel problem.” He discovered, 
rather, that the new, more powerful system would have a new, more 
complicated Gödel problem. There was no way around Gödel’s incom-
pleteness. Buried in the complexities of Turing’s discussion of formal 
systems, however, is an odd suggestion, relevant to the possibility of 
AI. Perhaps the faculty of intuition cannot be reduced to an algo-
rithm, to the rules of a system?

Turing wanted to find a way out of Gödel’s limiting result in his 
1938 thesis, but he discovered that this was impossible. Instead, he 
switched gears, exploring how, as he put it, to “greatly reduce” the re-
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quirement of human intuition when doing calculations. His thesis 
considered the powers of ingenuity, by creating ever more complicated 
systems of rules. (Ingenuity, it turned out, could become universal—
there are machines that can take as input other machines, and thus 
run all the machines that can be built. This insight, technically a uni-
versal Turing machine and not a simple Turing machine, was to be-
come the digital computer.) But in his formal work on computing, 
Turing had (perhaps inadvertently) let the cat out of the bag. By al-
lowing for intuition as distinct from and outside of the operations of a 
purely formal system like a computer, Turing in effect suggested that 
there may be differences between computer programs that do math 
and mathematicians.

It was a curious turn, therefore, that Turing made from his early 
work in the 1930s to the more wide-ranging speculation about the 
possibility of intelligent computers in “Computing Machinery and 
Intelligence,” published a little over a decade later. By 1950, discussion 
of intuition disappeared from Turing’s writings about the implica-
tions of Gödel. His interests turned, in effect, to the possibility that 
computers might become “intuition-machines” themselves. In essence, 
he decided that Gödel’s result didn’t apply to the question of AI: if we 
humans are highly advanced computers, Gödel’s result means only 
that there are some statements that we cannot understand or see to be 
true, just as with less complicated computers. The statements might 
be fantastically complicated and interesting. Or, possibly, they might 
be banal yet overwhelmingly complex. Gödel’s result left open the 
question of whether minds were just very complicated machines, 
with very complicated limitations.

Intuition, in other words, had become part of Turing’s ideas about 
machines and their powers. Gödel’s result couldn’t say (to Turing, 
anyway) whether minds were machines or not. On the one hand, in-
completeness says that some statements can be seen to be true using 
intuition, but cannot be proved by a computer using ingenuity. On 
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the other hand, a more powerful computer can use more axioms (or 
more bits of relevant code) and prove the result—thus showing that 
intuition is not beyond computation for that problem. This becomes 
an arms race: more and more powerful ingenuity substituting for in-
tuition on more and more complicated problems. No one can say who 
wins the race, so no one can make a case—using the incompleteness 
result—about the inherent differences between intuition (mind) and 
ingenuity (machine). But as Turing no doubt knew, if this were true, 
then so too was at least the possibility of artificial intelligence.

Thus, between 1938 and 1950, Turing had a change of heart about 
ingenuity and intuition. In 1938, intuition was the mysterious “power 
of selection” that helped mathematicians decide which systems to 
work with and what problems to solve. Intuition was not something 
in the computer. It was something that decided things about the com-
puter. In 1938, Turing thought intuition wasn’t part of any system, 
which suggested not only that minds and machines were fundamen-
tally different but that AI-as-human-thinking was well-nigh impossible.

Yet by 1950 he had reversed his position. With the Turing test, he 
offered a challenge for skeptics and a sort of defense of intuition in 
machines, asking in effect: Why not? This was a radical about-face. A 
new view of intelligence, it seemed, was taking shape.

Why the shift? Something outside the world of strict mathematics 
and logic and formal systems had happened to Turing between 1938 
and 1950. It had happened, in fact, to all of Great Britain, and indeed 
to most of the world. What happened was the Second World War.



Chapter 2

• • •

T U R I N G  A T  B L E T C H L E Y

The game of chess fascinated Turing—as it did his wartime colleague, 
mathematician I.  J. “Jack” Good. The two would play against each 
other (Good usually won) and work out decision procedures and 
rules of thumb for winning moves. Playing chess involves following 
the rules of the game (ingenuity), and it also seems to require insight 
(intuition) into which rules to choose given different positions on the 
game board. To win at chess, it is not enough to apply the rules; you 
have to know which rules to select in the first place.

Turing saw chess as a handy (and no doubt entertaining) way to 
think about machines and the possibility of giving them intuition. 
Across the Atlantic, the founder of modern information theory, 
Turing’s colleague and friend Claude Shannon at Bell Labs, was also 
thinking about chess. He later built one of the first chess-playing com-
puters, an extension of work he had done earlier on a proto-computer 
called the “differential analyzer,” which could convert certain prob
lems in calculus into mechanical procedures.1

T H E  S I M P L I F I C A T I O N  O F  

I N T E L L I G E N C E  B E G I N S

Chess fascinated Turing and his colleagues in part because it seemed 
that a computer could be programmed to play it, without the human 
programmer needing to know everything in advance. Because 
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computing devices implemented logical operators like if-then, or, 
and and, a program (set of instructions) could be run, and it could 
produce different results depending on the scenarios it encountered 
while running through the instructions. This ability to change course 
depending on what it “saw” seemed to Turing and his colleagues to 
simulate a core aspect of human thinking.2

The chess players—Turing, Good, Shannon, and others—were also 
thinking about another mathematical problem whose stakes were 
much higher. They were working for their governments, helping to 
crack secret codes used by Germany to coordinate attacks on com-
mercial and military ships crossing the English Channel and the At-
lantic. Turing found himself engaged in a desperate effort to help 
defeat Nazi Germany in the Second World War, and it was his ideas 
about computation that helped turn the tide of war.

B L E T C H L E Y  PA R K

Bletchley Park, situated unobtrusively in a small town out of the path 
of bombs falling in London and metropolitan Britain, was a research 
facility set up to help uncover the locations of German U-boats—
submarines—which were laying waste to shipping routes in the En
glish Channel. U-boats were a major problem for the Allied forces, 
sinking thousands of ships and destroying huge quantities of supplies 
and equipment. To maintain the war effort, Britain required imports 
amounting to thirty million tons a year. The U-boats were at one 
point depleting this by 200,000 tons a month, a significant, potentially 
catastrophic, and for a time largely unanswered German strategy in 
the war. In response, the British government assembled a group of tal-
ented cryptanalysts, chess players, and mathematicians to investigate 
how to crack U-boat communications, known as ciphers. (A cipher 
is a disguised message. To decipher a message is to convert it back to 
readable text).3
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The codes were generated by a typewriter-looking device known 
as the Enigma, a kind of machine that had been in commercial use 
since the 1920s but that the Germans had strengthened significantly 
for use in the war. Modified Enigmas were used for all strategic com-
munications in the Nazi war effort. The Luftwaffe, for instance, used 
the Enigma machine in its conduct of the air war, as did the Kriegs-
marine in its naval operations. Messages encrypted with the modified 
Enigma were widely thought to be undecipherable.

Turing’s role in Bletchley and his subsequent rise to national hero 
after the war is a story that has been told many times. (In 2014, the 
major motion picture The Imitation Game dramatized his work at 
Bletchley, as well as his subsequent role in developing computers.) 
Turing’s major breakthrough was, by pure mathematical standards, 
relatively uninteresting because it exploited an old idea from deduc-
tive logic. The method that he and others half-jokingly referred to as 
“Turingismus” involved eliminating large numbers of possible solu-
tions to Enigma codes by finding combinations with contradictions. 
Contradictory combinations are impossible; we cannot have both “A” 
and “not-A” in some logical system, just as we cannot be both “at the 
store” and “at home” at the same time. Turingismus was a winning idea, 
and became a huge success at Bletchley. It did what was required of the 
“boy geniuses” sequestered in the think tank by speeding up the task of 
decrypting Enigma messages. Other scientists devised different strate-
gies for cracking the codes at Bletchley.4 Ideas were tested on a machine 
called a Bombe—its tongue-in-cheek name borrowed from a prede
cessor machine in Poland, the Bomba, and possibly inspired by the 
small noise made when a calculation was finished. Think of the Bombe 
as a proto-computer, capable of running different programs.

The advantage in war swung from the Axis to Allied powers by 
1943 or thereabouts, in no small part because of the sustained effort 
of the Bletchley code-crackers. The team was a celebrated success, 
and its members became war heroes. Careers were made. Bletchley, 
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meanwhile, also proved a haven for thinking about computation: 
Bombes were machines, and they ran programs to solve problems that 
humans, by themselves, could not.

I N T U I T I V E  M A C H I N E S ?  N O .

For Turing, Bletchley played a major role in crystallizing his ideas 
about the possibility of intelligent machines. Like his colleagues Jack 
Good and Claude Shannon, Turing saw the power and utility of their 
“brain games” as cryptanalysts during the war: they could decipher 
messages that were otherwise completely opaque to the military. The 
new methods of computation were not just interesting for consid-
ering automated chess-playing. Computation could, quite literally, 
sink warships.

Turing was thinking about an abstraction (yet again): minds and 
machines, or the general idea of intelligence. But there was something 
odd about his view of what it meant. In the 1940s, intelligence was a 
trait not typically attributed to formal systems like the purely mechan-
ical code-breaking Bombes of Bletchley. Gödel had demonstrated that, 
in general, truth cannot be reduced to formality, as in playing a formal 
game with a set sequence of rules—but recall that his proof left open 
the question of whether specific machines might actually incorporate 
the intuition that minds use to make choices about rules to follow, 
even if no supreme system could exist that could prove everything 
(which Gödel had shown so definitely in 1931).

After Bletchley, Turing turned increasingly to the question of 
whether powerful machines could be built that used intuition and in-
genuity. The vast number of possible combinations to check to deci-
pher German codes swamped human intuition. But systems with the 
right programs could accomplish the task by simplifying such vast 
mathematical possibilities. To Turing, this suggested that intuition 
could be embodied in machines. In other words, the success at Bletchley 
implied that perhaps an artificial intelligence could be built.
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To make sense of his line of thought, however, some particular idea 
about “intelligence” had to be settled on. Intelligence as displayed by 
humans needed to be reducible—analyzable—in terms of the powers 
of a machine. In essence, intelligence had to be reducible to problem-
solving. That is what playing chess is, after all, and that is what breaking 
a code is, as well.

And here we have it: Turing’s great genius, and his great error, 
was in thinking that human intelligence reduces to problem-solving. 
Whether or not the ideas about intelligent machines in his 1950 “Com-
puting Machinery and Intelligence” became explicit in the war years, 
it is clear that his experience at Bletchley crystallized his later view of 
AI, and it is clear that AI in turn followed closely and without neces-
sary self-analysis precisely in his path.

But a closer look at the Bletchley code-cracking success immedi-
ately reveals a dangerous simplification in the philosophical ideas 
about man and machine. Bletchley was an intelligent system—a co-
ordination of military efforts (including spying and espionage, as well 
as capture of enemy vessels), social intelligence between the military 
and the various scientists and engineers at Bletchley, and (as with all 
of life) sometimes sheer dumb luck. In truth, as a practical reality, the 
German-modified Enigma was unbreakable by purely mechanical 
means. The Germans knew this based on mathematical arguments 
about the difficulty of mechanical deciphering. Part of Bletchley’s 
success was, ironically, the stubborn confidence of Nazi commanders 
in the impregnability of the Enigma ciphers—thus they fail at crucial 
times to modify or strengthen the machines after discovering certain 
ciphers had been cracked, blaming covert spying operations rather 
than scientific defeat. But the fog of war mixes together not just new 
technologies but new forms of human and social intelligence. War is 
not chess.

Early in the war, for instance, Polish forces had recovered impor
tant fragments of Enigma communications that later provided in-
valuable clues to Bletchley efforts. The Poles had used these fragments 
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(along with others from Russian sources) to develop their own, sim-
pler Bomba as early as 1938. Turing’s much improved version in the 
early months of 1940—the Bombe using his “Turingismus”—relied 
on the early work the Poles made possible by events on the battlefield. 
Turing, too, would see his own design improved in response to im-
provements in the Enigma by his colleague Gordon Welchman, by 
which a “diagonal board” was added to further simplify the search 
for contradictions.5 Here were two human minds, using intuition, 
working together socially.

More events in the theater of war proved vitally important. Off the 
shores of Norway, a British aircraft carrier was sunk on June 8, 1940. 
The attack provided the location of German U-boats, albeit at the 
heavy cost of many sailors left at the bottom of the sea. Just weeks be-
fore, in late April 1940, the German patrol boat VP2623, a particularly 
devastating member of the fleet, was captured with a trove of Enigma 
evidence inside. The necessary pieces of the Enigma puzzle were get-
ting into Allied hands, and finding their way to the Bletchley group.

These bits and pieces by themselves were grossly inadequate for 
quick deciphering of future German communications, amounting to 
what one Turing biographer called “guesswork” for Bletchley crypt-
analysts. But they facilitated an all-important first step in figuring out 
how to program the Bombes. Turing and colleagues called it the 
“weight of evidence,” borrowing a term coined by the American sci-
entist and logician C. S. Peirce (who is prominently featured in Part 
Two of this book).6

Weight of evidence can be understood by mathematicians in dif
ferent ways, but for Bletchley’s success (and for larger issues regarding 
AI) it amounts to the application of informed guesses, or intuition, to 
give direction to ingenuity, or machines. A scrap of deciphered text 
recovered from a captured U-boat could mean anything, just as a 
white ball found near a bag of white balls could mean anything, but in 
each case, we can make intelligent guesses to understand what hap-
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pened. We think the ball is very likely from the bag, even though we 
didn’t see it taken out. Still, it’s a guess. Guesses of this sort can’t be 
proven true, but the better human intuition does at setting initial con-
ditions for devising mechanical procedures, the better chance those 
procedures have of terminating on desired outcomes, rather than, 
say, running on aimlessly in false or misleading directions. Weight of 
evidence—guessing—made Bombes work.

Bletchley scientists were not merely feeding information into 
Bombes, leaving them to do the tireless and important work of elimi-
nating millions of incorrect codes or ciphers. To be sure, the Bombes 
were necessary—this is what Turing saw so clearly, and what no 
doubt suffused his imagination with the possibility that his “mechan-
ical procedures” could reproduce or supersede human intelligence. 
But the fact is that the Bletchley group was first and foremost engaged 
in guesswork. They were forming hypotheses by recognizing the clues 
hidden in the patchwork of scraps of instructions, ciphers, and mes-
sages coming in from the battlefield. Guessing is known in science as 
forming hypotheses (a term Charles Sanders Peirce also used), and it 
is absolutely fundamental to the advancement of human knowledge. 
Small wonder then that the Bletchley effort amounted to a system of 
guessing well. Its sine qua non was not mechanical but rather what we 
might call initial intelligent observation. The Bombes had to be pointed 
at something, and then set on their course.

In line with a theme we will explore in Part Two, Peirce had recog-
nized early on, by the late nineteenth century, that every observation 
that shapes the complex ideas and judgments of intelligence begins 
with a guess, or what he called an abduction:

Looking out of my window this lovely spring morning I see an 
azalea in full bloom. No, no! I do not see that; though that is the 
only way I can describe what I see. That is a proposition, a sen-
tence, a fact; but what I perceive is not proposition, sentence, 
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fact, but only an image which I make intelligible in part by 
means of a statement of fact. This statement is abstract; but 
what I see is concrete. I perform an abduction when I [do so 
much] as express in a sentence anything I see. The truth is that 
the whole fabric of our knowledge is one matted felt of pure hy-
pothesis confirmed and refined by induction. Not the smallest 
advance can be made in knowledge beyond the stage of vacant 
staring, without making an abduction at every step.7

Turing and his colleagues at Bletchley were winning a war that 
had turned from command and control to intelligence by making, 
in effect, intelligent abductions at every step. At some level, Turing no 
doubt understood this (recall the discussion of intuition in his 1938 
thesis on ordinal numbers), but it seems not to have had an appre-
ciable effect on his later ideas about the nature of intelligence and the 
possibility of intelligent machines. However brilliantly, he was for-
mulating a simplification of real intelligence. He was getting rid of the 
concept that had so transfixed him earlier, of intuition. Of guessing.

O N  S O C I A L  I N T E L L I G E N C E  

( A N  I M P O R T A N T  A S I D E)

Social intelligence is also conspicuously left out of Turing’s puzzle-
solving view of intelligence. This is of utmost importance for under-
standing the future development of AI. Turing, for instance, disliked 
viewing thinking or intelligence as something social or situational.8 
Yet the Bletchley success was in fact part of a vast system that ex-
tended far outside its cloistered walls. A massive effort was underway. 
It would soon pull in the United States and the work of scientists like 
Shannon at Bell Labs, as well as scientists at Princeton’s celebrated 
Institute for Advanced Studies—where Einstein, Gödel, and John 
Von Neumann all had appointments. The expanded, human-machine 
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system is actually much more realistic as a model of how actual real-
world problems get solved—of which, world war must certainly count 
among the most complex and important.

AI’s tone-deafness on social or situational intelligence has been 
noted before, more recently by machine learning scientist François 
Chollet, who summarizes his critique of Turing’s (and, more 
broadly, the AI field's) view of intelligence nicely. First, intelligence is 
situational—there is no such thing as general intelligence. Your brain 
is one piece in a broader system which includes your body, your environ-
ment, other humans, and culture as a whole. Second, it is contextual—​
far from existing in a vacuum, any individual intelligence will always 
be both defined and limited by its environment. (And currently, the 
environment, not the brain, is acting as the bottleneck to intelli-
gence.) Third, human intelligence is largely externalized, contained 
not in your brain but in your civilization. Think of individuals as 
tools, whose brains are modules in a cognitive system much larger 
than themselves—a system that is self-improving and has been for a 
long time.9

In Turing’s language, intuition might be programmable into a ma-
chine, but Chollet and similar critics claim that it cannot reach the 
level of human intelligence. In fact, the idea of programming intu-
ition ignores a fundamental fact about our own smarts. Humans have 
social intelligence. We have emotional intelligence. We use our minds 
other than to solve problems and puzzles, however complex (or rather, 
especially when the problems are complex).

Turing, the evidence suggests, decisively rejected this view of a 
person, instead coming to believe that all of human thought could be 
understood, in effect, as the “breaking” of “codes”—the solving of 
puzzles—and the playing of a game like chess. The important point is 
this: sometime in the 1940s, after his work at Bletchley but certainly 
by the time of his 1950 paper prefiguring AI, Turing had settled his 
thoughts on a simplified view of intelligence. This was an egregious 
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error and, further, one that has been passed down through genera-
tions of AI scientists, right up to the present day.

T U R I N G ’ S  I N T E L L I G E N C E  E R R O R  

A N D  N A R R O W  A I

The problem-solving view of intelligence helps explain the produc-
tion of invariably narrow applications of AI throughout its history. 
Game playing, for instance, has been a source of constant inspiration 
for the development of advanced AI techniques, but games are simpli-
fications of life that reward simplified views of intelligence. A chess pro-
gram plays chess, but does rather poorly driving a car. IBM’s Watson 
system plays Jeopardy!, but not chess or Go, and massive programming 
or “porting” efforts are required to use the Watson platform to perform 
other data mining and natural language processing functions, as with 
recent (and largely unsuccessful) forays into health care.

Treating intelligence as problem-solving thus gives us narrow ap-
plications. Turing no doubt knew this, and speculated in his 1950 
paper that perhaps machines could be made to learn, thus overcoming 
the constraints that are a natural consequence of designing a com-
puter system narrowly to solve a problem. If machines could learn to 
become general, we would witness a smooth transition from specific 
applications to general thinking beings. We would have AI.

What we now know, however, argues strongly against the learning 
approach suggested early on by Turing. To accomplish their goals, 
what are now called machine learning systems must each learn some-
thing specific. Researchers call this giving the machine a “bias.” (This 
doesn’t carry the negative connotation it does in the broader social 
world; it doesn’t mean that the machine is pigheaded or difficult to 
argue with, or has an agenda in the usual sense of the word.) A bias in 
machine learning means that the system is designed and tuned to 
learn something. But this is, of course, just the problem of producing 
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narrow problem-solving applications. (This is why, for example, the 
deep learning systems used by Facebook to recognize human faces 
haven’t also learned to calculate your taxes.)

Even worse, researchers have realized that giving a machine learning 
system a bias to learn a particular application or task means it will do 
more poorly on other tasks. There is an inverse correlation between a 
machine’s success in learning some one thing, and its success in 
learning some other thing. Even seemingly similar tasks are inversely 
related in terms of performance. A computer system that learns to 
play championship-level Go won’t also learn to play championship-
level chess. The Go system has been specifically designed, with a par
ticular bias toward learning the rules of Go. Its learning curve, as they 
call it, thus follows the known scoring of that particular game. Its 
learning curve regarding some other game, say Jeopardy! or chess, is 
useless—in fact, nonexistent.

Machine learning bias is typically understood as a source of learning 
error, a technical problem. (It has also taken on the secondary meaning, 
hewing to ordinary language usage, of producing results that are unin-
tentionally and unacceptably weighted by, say, race or gender.) Machine 
learning bias can introduce error simply because the system doesn’t 
“look” for certain solutions in the first place. But bias is actually neces-
sary in machine learning—it’s part of learning itself.

A well-known theorem called the “no free lunch” theorem proves 
exactly what we anecdotally witness when designing and building 
learning systems. The theorem states that any bias-free learning system 
will perform no better than chance when applied to arbitrary prob
lems. This is a fancy way of stating that designers of systems must give 
the system a bias deliberately, so it learns what’s intended. As the 
theorem states, a truly bias-free system is useless. There are compli-
cated techniques, like “pre-training” on data using unsupervised 
methods that expose the features of the data to be learned. All of 
this is part and parcel of successful machine learning. What’s left out 
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of the discussion, however, is that tuning a system to learn what’s in-
tended by imparting to it a desired bias generally means causing it to 
become narrow, in the sense that it won’t then generalize to other 
domains. Part of what it means to build and deploy a successful ma-
chine learning system is that the system is not bias-free and general 
but focused on a particular learning problem. Viewed this way, nar-
rowness is to some extent baked in to such approaches. Success and 
narrowness are two sides of the same coin.

This fact alone casts serious doubt on any expectation of a smooth 
progression from today’s AI to tomorrow’s human-level AI. People 
who assume that extensions of modern machine learning methods 
like deep learning will somehow “train up,” or learn to be intelligent 
like humans, do not understand the fundamental limitations that 
are already known. Admitting the necessity of supplying a bias to 
learning systems is tantamount to Turing’s observing that insights 
about mathematics must be supplied by human minds from outside 
formal methods, since machine learning bias is determined, prior to 
learning, by human designers.10

T U R I N G ’ S  L E G A C Y

To sum up the argument, the problem-solving view of intelligence 
necessarily produces narrow applications, and is therefore inadequate 
for the broader goals of AI. We inherited this view of intelligence 
from Alan Turing. (Why, for instance, do we even use the term arti-
ficial intelligence, rather than, perhaps, speaking of “human-task-
simulation”?)11 Turing’s great genius was to clear away theoretical 
obstacles and objections to the possibility of engineering an autono-
mous machine, but in so doing he narrowed the scope and definition of 
intelligence itself. It is no wonder, then, that AI began producing narrow 
problem-solving applications, and it is still doing so to this day.



	 T uring      at   B letchley        	 31

Turing, again, disliked viewing thinking or intelligence as some-
thing social or situational. Yet despite his proclivities to see human 
intelligence as an individual mechanical process—ushering in untold 
media references to the “mechanical brain” as early computers ap-
peared in the 1940s—it is obvious that talk of intelligence always in-
volves, as it must necessarily involve, situating it in a broader context. 
General (non-narrow) intelligence of the sort we all display daily is 
not an algorithm running in our heads, but calls on the entire cul-
tural, historical, and social context within which we think and act in 
the world. AI would hardly have moved forward if developers had em-
braced such a large and complicated understanding of intelligence—
that is true enough. At the same time, as a result of Turing’s simplifi-
cation, we’ve ended up with narrow applications, and we have no 
reason to expect general ones without a radical reconceptualization 
of what we mean by AI.

Turing anticipated some of these difficulties in his 1950 paper by 
suggesting that machines might be made to learn. What we now 
know, however (contra recent excitement about machine learning), is 
that learning itself is a kind of problem-solving, made possible only by 
introducing a bias into the learner that simultaneously makes possible 
the learning of a particular application, while reducing performance on 
other applications. Learning systems are actually just narrow problem-
solving systems, too. Given that there is no known theoretical bridge 
from such narrow systems to general intelligence of the sort displayed by 
humans, AI has fallen into a trap. Early errors in understanding intelli-
gence have led, by degrees and inexorably, to a theoretical impasse at the 
heart of AI.

Consider again Turing’s original distinction between intuition 
and ingenuity. The question of AI for him was whether intuition—
that which is supplied by the designer of a system—could in fact be 
“pulled into” the formal part of the system (the ingenuity machine), 
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thus making a system capable of escaping the curse of narrowness by 
using intuition to choose its own problems—to grow smarter and to 
learn. So far, no one has done this with any computer. No one even 
has the slightest clue how this would work. We do know that designers 
use intuition outside AI systems to tell such systems what specific 
problems to solve (or to learn to solve). The question of systems using 
intuition autonomously goes straight to the core of what I will call the 
Problem of Inference, to which we will turn in Part Two.

There will also be much more to say about the “narrowness trap” of 
AI in Part Two. First, however, there is more ground to cover in this 
part. We will turn next to superintelligence, another intelligence error, 
and a natural extension of the first.



Chapter 3

• • •

T H E  S U P E R I N T E L L I G E N C E  E R R O R

Jack Good, Turing’s fellow code-breaker, also became fascinated with 
the idea of smart machines. Turing no doubt primed his colleague’s 
imagination at Bletchley and afterward, and Good added a sci-fi-like 
twist to Turing’s ideas about the possibility of human-level intelli-
gence in computers. Good’s idea was simple: if a machine can reach 
human-level intelligence, it can also surpass mere human thinking.

Good thought it obvious that a feedback loop of sorts would enable 
smart machines to examine and improve themselves, creating even-
smarter machines, resulting in a runaway “intelligence explosion.” 
The explosion of intelligence follows because each machine makes a 
copy of itself that is still smarter—the result is an exponential curve 
of intelligence in machines that quickly surpass even human geniuses. 
Good called it ultraintelligence: “Let an ultraintelligent machine be 
defined as a machine that can far surpass all the intellectual activities 
of any man however clever. Since the design of machines is one of 
these intellectual activities, an ultraintelligent machine could design 
even better machines; there would then unquestionably be an ‘intel-
ligence explosion,’ and the intelligence of man would be left far behind. 
Thus the first ultraintelligent machine is the last invention that man 
need ever make, provided that the machine is docile enough to tell us 
how to keep it under control.”1
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Oxford philosopher Nick Bostrom would return to Good’s theme 
decades later, with his 2014 best seller Superintelligence: Paths, Dangers, 
Strategies, making the same case that the achievement of AI would as a 
consequence usher in greater-than-human intelligence in an escalating 
process of self-modification. In ominous language, Bostrom echoes 
Good’s futurism about the arrival of superintelligent machines:

Before the prospect of an intelligence explosion, we humans are 
like small children playing with a bomb. Such is the mismatch 
between the power of our plaything and the immaturity of our 
conduct. Superintelligence is a challenge for which we are not 
ready now and will not be ready for a long time. We have little 
idea when the detonation will occur, though if we hold the de-
vice to our ear we can hear a faint ticking sound. For a child 
with an undetonated bomb in its hands, a sensible thing to do 
would be to put it down gently, quickly back out of the room, 
and contact the nearest adult. Yet what we have here is not one 
child but many, each with access to an independent trigger mech-
anism. The chances that we will all find the sense to put down the 
dangerous stuff seem almost negligible. Some little idiot is bound 
to press the ignite button just to see what happens.2

To Bostrom, superintelligence is not speculative or murky at all, 
but rather like the arrival of nuclear weapons—a fait accompli, and 
one which has profound and perhaps dire consequences for mankind. 
The message here is clear: don’t dispute whether superintelligence is 
coming. Get ready for it.

What are we to say about this? The Good-Bostrom argument—the 
possibility of a superintelligent machine—seems plausible on its 
face. But unsurprisingly, the mechanism by which “super” intelligence 
results from a baseline intelligence is never specified. Good and Bostrom 
seem to take the possibility of superintelligence as obviously plau-
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sible and therefore not requiring further explanation. But it does; we 
do need to understand the “how.”

If we suppose a simple enhancement like superior hardware, the 
proposal is too trivial and silly to entertain further. Even a stalwart 
believer in inexorable progress like Ray Kurzweil isn’t likely to reduce 
intelligence that far—we don’t think adding RAM to a MacBook 
makes it (really and truly) more intelligent. The device is now faster, 
and can load bigger applications, and so on. But if intelligence means 
anything interesting, it must be more complicated than loading ap-
plications faster. This harder part of intelligence is left unsaid.

Or suppose we borrow language from the biological world (as AI 
so often does), and then confidently declare that computational capa-
bility doesn’t devolve, it evolves. Looking deeper, we see that this ar-
gument is plagued once again by an inadequate and naive view of 
intelligence. The problem—a glaring omission—is that we have no 
evidence in the biological world of anything intelligent ever designing 
a more intelligent version of itself. Humans are intelligent, but in the 
span of human history we have never constructed more intelligent 
versions of ourselves.

A precondition for building a smarter brain is to first understand 
how the ones we have are cognitive, in the sense that we can imagine 
scenarios, entertain thoughts and their connections, find solutions, 
and discover new problems. Things occur to us; we reason through 
our observations and what we already know; answers pop into our 
heads. All of this buzz of biological magic remains opaque, its “pro
cessing” still vastly uncharted. And yet, we have been contemplating 
and investigating our thinking processes and brain functions for 
millennia.

Why should a generally intelligent machine suddenly have insight 
into its own global cognitive capacities, when we clearly do not? And 
even if it did, how could the machine use this knowledge to make it-
self smarter?
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This is not a matter of self-improvement. We can, for instance, 
make ourselves more intelligent by reading books or going to school; 
educating ourselves makes possible further intellectual development, 
and so on. All of this is uncontroversial. And none of it is the point. 
One major problem with assumptions about increases in intelligence 
in AI circles is the problem of circularity: it takes (seemingly general) 
intelligence to increase general intelligence. A closer look reveals no 
linear progression, but only mystery.

V O N  N E U M A N N  A N D  

S E L F - R E P R O D U C I N G  M A C H I N E S

Good introduced the idea of self-improving AIs leading to ultraintel-
ligence in the mid-1960s, but nearly two decades earlier John Von 
Neumann had considered the idea and rejected it. In a 1948 talk at the 
Institute for Advanced Studies at Princeton, Von Neumann explained 
that, while human reproduction often improves on prior “designs,” it’s 
clear that machines tasked with designing new and better machines face 
a fundamental stumbling block, since any design for a new machine 
must be specified in the parent machine. The parent machine would 
then necessarily be more complex, not less, than its creation: “An organ
ization which synthesizes something is necessarily more complicated, of 
a higher order, than the organization it synthesizes,” he said.3

In other words, Von Neumann pointed to a fundamental differ-
ence between organic life as we know it, and the machines we build. Jack 
Good’s prediction of ultraintelligence was a bit of science fiction.

Von Neumann theorized that a self-reproducing machine would 
need, at minimum, eight parts, including a “stimulus organ,” a “fusing 
organ” to connect parts together, a “cutting organ” to sever connec-
tions, and a “muscle” for motion. He then sketched plausible mecha-
nisms for cognitive improvements including a randomizing element, 
akin to biological mutation, to allow for the necessary modifications. 
But Von Neumann thought that, rather than advance the machine’s 
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thinking, such random mutations were more likely to “devolve” de-
sired functions and capacities. The most probable outcome was non-
function, the equivalent of a lethal change: “So, while this system is 
exceedingly primitive, it has the trait of an inheritable mutation, even 
to the point that a mutation made at random is probably lethal, but 
may be non-lethal and inheritable.”

For the machines to get something better, essentially smarter, 
from their designs they would need a creative element added to their 
stimulus and fusing organs. Unlike biological evolution, the idea wasn’t 
to wait around millions of years, but to require of parent systems the 
necessary Promethean spark in themselves, leading more or less di-
rectly to better designs. This was fiction, thought Von Neumann. As 
he explained to his colleagues at Princeton, no science or engineering 
theories could make sense of it. Von Neumann, no Luddite, was ex-
ploding the “intelligence explosion.”

One obvious flaw in predictions of an intelligence explosion leading 
to superintelligence is that we already have human-level intelligence—
we are human. By Good’s logic, we should then be capable of de-
signing something better than human. This is just a restatement of the 
goals of the field of AI, so we are getting trapped in a circle. The 
humans who are AI researchers already know it’s a mystery how to 
design smarter artifacts, just as Von Neumann explained. Transferring 
this mystery from our own intelligence to an envisioned machine’s 
doesn’t help. To unpack this more, consider a genius AI researcher 
we’ll call Alice.

I N T E L L I G E N C E  E X P L O S I O N S ,  

T H E  V E R Y  I D E A

Let’s suppose Alice is an AI scientist who has a dull neighbor, Bob. 
Bob has common sense, can read the newspaper, and can carry on a 
conversation (although perhaps it’s boring), so he’s worlds ahead of 
the best AI systems coming out of Google’s DeepMind.
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Alice works for an amazing new startup (soon to be acquired by 
Google), and wants to build an AI that is as smart as Bob. She’s 
sketched out two systems, in the spirit of Daniel Kahneman’s well-
known System 1 and System 2.4 They are intuition pumps or meta
phors that give a rough blueprint for the types of problems needing to 
be solved to get to artificial general intelligence. In Alice’s context, 
we’ll call these System X, for competence on well-defined tasks like 
game play (as in chess or Go) and System Y, for general intelligence. 
The latter system includes Bob’s competence at reading and conversa-
tion, but also the murkier area of novel ideas and insights.

Bob is terrible at chess, and in fact his X system is pathetic com-
pared not only to a system like AlphaGo but also to many other 
humans. His short-term memory is worse than most people’s; he 
scores poorly on IQ tests; and he struggles with crossword puzzles. As 
for his Y system, his general intelligence shows a conspicuous lack of 
interest in or ability at novel or insightful thinking. Bob is not the 
kind of neighbor that gets many invitations to dinner parties.

Alice’s strategy is first to design a Bob-Machine that matches Bob’s 
intelligence. She reasons that if she succeeds in creating a Bob-Machine, 
that machine can design a smarter version of itself, leading eventually 
to an intelligence explosion. Now, again, keep in mind that designing 
a Bob-Machine is no easy task, because Bob has a System Y—which 
means he has solved the problem of commonsense reasoning and has 
general cognitive abilities. He can pass a Turing test, for one. And he 
can read children’s stories and the sports section and summarize 
them. Bob therefore blows away Google’s best natural language un-
derstanding systems, like Ray Kurzweil’s Talk to Books semantic 
search tool. This is why Alice is excited about her Bob-Machine project; 
it would be a huge advance in AI.

The question is: how to get there? Alice’s first approach is to maxi-
mize the Bob-Machine’s System X capabilities. She gives it a computer 
memory and access to the web via Google. Unfortunately, this ver-



	 T he   S uperintelligence                 E rror    	 39

sion of the Bob-Machine quickly proves Stuart Russell’s point that 
supercomputers without real intelligence just get to wrong answers 
more quickly.5 The Bob-Machine remembers the wrong things and 
fails to ask the right questions. All the improvements on the System X 
side just make the machine more competent at recalling and coughing 
up crackpot theories and making pronouncements about the world 
with more facts, all misused and poorly understood from a System Y 
perspective. Sure, the Bob-Machine plays flawless chess, but its chess 
competence makes it less interesting to Alice, who realizes that the 
machine she has created has no hope of designing a “more intelligent” 
version of itself.

In an aha! moment, though, Alice realizes that Bob himself couldn’t 
design a smarter version of himself. So how could the Bob-Machine? 
The problem, she thinks, is that System X optimization does not 
supply resources to System Y of the necessary kind. The Bob-Machine 
(like Bob himself) has to see its own intelligence as something of a 
certain quantity, assess how it is limited and to what extent, and then 
actively redesign itself so as to become smarter in the important and 
relevant ways. But this is precisely the way in which the Bob-Machine 
(like Bob) is unintelligent! The Bob-Machine can’t do this, because it 
lacks these System Y capabilities for insight, discovery, and innova-
tion. Alice must go back to the drawing board.

Alice then decides that the Bob-Machine is just too stupid to be 
part of a bootstrapping process to superintelligence. (In a moment of 
sheer panic, it occurs to her that this logic jeopardizes the entire en-
terprise of getting to superintelligence, but she manages to suppress 
this concern quickly.) Alice decides, in deference to AI’s founder and 
to the eager-beaver marketing department of her company, Ultra++, 
that she’ll instead focus on designing a machine as intelligent as Alan 
Turing, called the Turing-Machine.

Now, assuming that Turing was smarter than Alice (though who is 
to say?), she can’t just design a Turing-Machine directly, and anyway 
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she already ran into a brick wall puzzling out how to design a Bob-
Machine. She decides to begin with a machine that’s as smart as Hugh 
Alexander—Turing’s colleague at Bletchley Park and a one-time chess 
champion of Cambridge. Hugh Alexander was smart—really smart. 
He played championship-level chess, and although he did not summon 
the kinds of insights about breaking the Enigma code that Turing did, 
he did make valuable contributions and earn the respect of the other 
Bletchley code breakers—no small feat. The Hugh-Machine should be 
smart enough to figure out how to wire a Turing-Machine, and a ma-
chine at Turing’s level must certainly be smart enough to make itself 
even smarter!

Alice easily succeeds at improving Hugh-Machine’s chess compe-
tence (despite his being a champion player already), by simply down-
loading some StockFish chess code off her smartphone. Similarly, she 
gives the Hugh-Machine perfect arithmetical abilities with a calculator, 
and supercomputer memory, as well as access to all the information 
retrievable by Google. System X is optimal, and the Hugh-Machine 
can do something that Hugh Alexander, for all his seeming intelli-
gence, could not: it can play superhuman chess, and superhumanly 
add numbers, and excel at many other System X things. The problem 
is, so too could Bob-Machine. In fact, Alice realizes that Bob-Machine 
and Hugh-Machine are provably equivalent. In fact, she is forced to 
admit (over several glasses of red wine) that abandoning Bob-
Machine was pointless and self-defeating.

Another glass of wine and a cigarette later, Alice turns off her 
phone to silence annoying text messages from Ultra++ colleagues 
about her impending breakthrough. The truth is, she muses, that it’s 
not just Bob that can’t design a smarter version of himself, it’s Alice, 
too. In a moment of clarity, she grasps that the further we move from 
System X toward System Y, toward insight and innovation, the more 
opaque the design will become. Turing, for instance, could judge his 
intelligence at chess—losing to both Hugh Alexander and Jack Good. 
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But Turing could not assess his own System Y capabilities. In a very 
real sense, his intellect was a black box, and he could not at any rate 
evaluate his own competence at original thinking (whatever that 
means), not only because it is not a blueprint, as it were, but because it 
sits in time, in a lifetime, and might still produce new as yet unpre-
dictable ideas. Turing’s System Y intelligence is not just unpredict-
able, in other words, it’s inexplicable—perhaps not to some being 
smarter than Turing (again: whatever that means) but certainly to 
Turing himself. Same for dullard Bob. How then would Alice ever ig-
nite an intelligence explosion?

In fact, the very idea of an intelligence explosion has built into it a 
false premise, easily exposed once someone ambitious and insightful 
like Alice first takes it seriously. By hypothesis, a Bob-Machine is as 
intelligent as Bob. Well, here’s an idea. Go ask Bob to design a slightly 
smarter version of himself. You will find this is not something Bob 
can do. The essential quality of mind that makes AI exciting also fore-
closes the linear assumption of an intelligence explosion. “Once we 
get to human-levels of intelligence, the system can design a smarter-
than-human version of itself,” so the hope goes. But, we already have 
“human-level” intelligence—we’re human. Can we do this? What are 
the intelligence explosion promoters really talking about?

This is another way of saying that the powers of the human mind 
outstrip our ability to mechanize it in the sense necessary for “scaling 
up,” from AlphaGo to a Bob-Machine to a Turing-Machine, and be-
yond. The intelligence explosion idea itself is not a particularly good 
System Y candidate for progress on AI toward general intelligence.

T H E  E V O L U T I O N A R Y  T E C H N O L O G I S T S

Many AI enthusiasts who hold to an inevitability thesis (superintelligent 
machines are coming, no matter what we do) hold to this because it plays 
on evolutionary themes, and thus conveniently absolves individual 
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scientists from the responsibility of needing to make scientific break-
throughs or develop revolutionary ideas. Artificial intelligence just 
evolves, like we did. We can call the futurists and AI believers in this 
camp evolutionary technologists, or ETs.

The ET view is popular among new age technologists like Wired 
cofounder Kevin Kelly, who argues in his 2010 book What Technology 
Wants that AI won’t come about as the work of a “mad scientist,” but 
simply as an evolutionary process on the planet, much like natural 
evolution.6 According to this view, the world is becoming “intelli-
genized” (Kelly’s word), and more and more complex and intelligent 
forms of technology are emerging without explicit human design.7 
Such thinkers also might envision the World Wide Web as a giant, 
growing brain. Humans, in this view, become a link in a cosmic his-
torical chain that reaches into the future to true AI, where we get left 
behind or assimilated.

Organic life evolves extremely slowly, but ETs view technolog-
ical progress as accelerating. As Kurzweil famously argues, tech-
nology is getting more complicated on an accelerating curve, according 
to a law he thinks is discernible in history, the Law of Accelerating 
Returns. Thus, human-level intelligence and then superintelligence 
will emerge on the planet in drastically short timeframes, as com-
pared to organic evolution. In decades or even years, we will be con-
fronted with them.

This is a simple, tidy story of humanity. We are transitioning to 
something else, which will be smarter and better.

Notice that the story is not testable; we just have to wait around 
and see. If the predicted year of true AI’s coming is false, too, another 
one can be forecast, a few decades into the future. AI in this sense is 
unfalsifiable and thus—according to the accepted rules of the scien-
tific method—unscientific.

Note that I’m not saying that true AI is impossible. As Stuart Rus-
sell and other AI researchers like to point out, twentieth-century 



	 T he   S uperintelligence                 E rror    	 43

scientists such as Ernest Rutherford thought that building an atomic 
bomb was impossible, but Leo Szilard figured out how nuclear chain 
reactions work—a mere twenty-four hours after Rutherford pro-
nounced the idea dead.8 It’s a good reminder not to bet against sci-
ence. But note that nuclear chain reactions grew from scientific theo-
ries that were testable. Theories about mind power evolving out of 
technology aren’t testable.

The claims of Good and Bostrom, presented as scientific inevita-
bility, are more like imagination pumps: just think if this could be! 
And there’s no doubt, it would be amazing. Perhaps dangerous. But 
imagining a what-if scenario stops far short of serious discussion 
about what’s up ahead.

For starters, a general superintelligence capability must be con-
nected to the broader world in such a way that it can observe and 
“guess” more productively than we do. And if intelligence is also so-
cial and situational, as it seems it must be, then an immense amount 
of contextual knowledge is required to engineer something more in-
telligent. Good’s problem is not narrow and mechanical, but rather 
pulls into its orbit the whole of culture and society. Where is the 
barest, even remotely plausible blueprint for this?

Good’s proposal, in other words, is based once again on an inade-
quate and simplified view of intelligence. It presupposes the original 
intelligence error, and adds to it yet another reductive sleight of hand: 
that an individual mechanical intelligence can design and construct a 
greater one. That a machine would be situated at such an Archime-
dean point of creation seems implausible, to put it mildly. The idea of 
superintelligence is in reality a multiplication of errors, and it repre-
sents in barest form the extension of the fantasy about the rise of AI.

To dig deeper into all of this, we should push further into this fan-
tasy. It’s called the Singularity, and we turn to it next.



Chapter 4

• • •

T H E  S I N G U L A R I T Y,  

T H E N  A N D  N O W

In the 1950s, the mathematician Stanislaw Ulam recalled an old con-
versation with John Von Neumann, in which Von Neumann dis-
cussed the possibility of a technological turning point for humanity: 
“the ever accelerating progress of technology . . . ​gives the appearance 
of approaching some essential singularity in the history of the race 
beyond which human affairs, as we know them, could not continue.”1

Von Neumann likely made this comment as digital computers 
were arriving on the technological scene. But digital computers were 
the latest innovation in a long and seemingly unbroken sequence of 
technologies.2 By the 1940s, it had become clear that the scientific and 
industrial revolutions of the past three hundred years had set in mo-
tion forces of immense, symbiotic power: the fruits of new science 
seeded the development of new technology, which in turn made pos
sible more scientific discovery. For example, science gave us the tele-
scope, which in turn improved astronomy.

Inextricably tied to changes in science and technology was social 
change—rapid, chaotic at times, and seemingly irreversible. City 
populations exploded (with considerable doses of squalor and injus-
tice), and entirely new forms of social and economic organization 
emerged, seemingly overnight. Steam engines revolutionized trans-
portation, as did, later, internal combustion engines. Trains, trolleys, 
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and steamboats opened up trade, and migration into cities created 
entirely new workforces. With Thomas Edison’s invention of the elec-
tric lightbulb, people could work at night; insomniacs in rural areas 
could now read Das Kapital or On the Origin of the Species after the sun 
had abandoned them. Productivity soared. Wealth and health in-
creased. So did blood and violence. A sequence of geopolitical events 
led to “the Great War,” World War I, which introduced chemical war-
fare on a mass scale. And a couple of decades later, in Von Neumann’s 
world, the ultimate existential threat—the nuclear bomb—had be-
come a reality.

The bomb was an inflection point in history, making clear the dys-
topian possibilities inherent in unbridled technological innovation. 
Shannon and Turing were using computers to play chess; scientists 
like Von Neumann were using computers to develop weapons to va-
porize Japanese cities. Electronic computers were big and slow, but 
were still orders of magnitude faster than human computers at tasks 
like calculating numeric progressions, which Von Neumann and others 
used to determine likely nuclear blast radii given different quantities 
of fissile material.

It was in this miasma of possibilities and fears that Von Neumann 
posed the question of a “singularity.” Famously polymathic and bril-
liant, Von Neumann was almost universally respected by his scien-
tific colleagues, including Alan Turing, and it is unsurprising that his 
suggestion affected Ulam, who remembered it decades later.

Ulam the mathematician no doubt understood Von Neumann’s 
metaphor. A singularity is a mathematical term, indicating a point 
which becomes undefined—a value which, say, explodes to infinity. 
Von Neumann asked Ulam whether the trajectory of technological 
progress would in effect approach “infinity,” where no methods or 
thoughts, strategies or actions could be applied. Prediction would 
become impossible. Progress would no longer be a known variable 
(if it ever was).



46	 T he   S implified          W orld  

Von Neumann, in other words, suggested to Ulam an eschatology, 
a possible end of times. A couple decades later, Good thought he’d 
found the mechanism: the digital computer.

UCLA computer scientist and Hugo award-winner Vernor Vinge 
introduced “Singularity” into computation, and specifically into arti-
ficial intelligence, in 1986, in his science-fiction book Marooned in 
Realtime.3 In a later technical paper for NASA, Vinge channeled 
Good: “Within thirty years, we will have the technological means to 
create superhuman intelligence. Shortly after, the human era will be 
ended. . . . I think it’s fair to call this event a singularity. It is a point 
where our models must be discarded and a new reality rules. As we 
move closer and closer to this point, it will loom vaster and vaster over 
human affairs till the notion becomes a commonplace. Yet when it fi
nally happens it may still be a great surprise and a greater unknown.” 4

Vinge, the computer scientist, had professional company. By the 
late 1980s MIT computer scientist, futurist, and entrepreneur Ray-
mond Kurzweil had become AI’s “bulldog,” spreading the Singularity 
idea into pop culture science in a series of publications, beginning 
with The Age of Intelligent Machines in 1990, then in 1998 his follow-up 
The Age of Spiritual Machines. His 2005 best seller was even more con-
fident: The Singularity is Near.

Kurzweil argued that technological innovations, when plotted on 
a historical graph, are exponential. Innovation accelerates, viewed 
historically, as a function of time. In other words, the time between 
major technological innovations keeps shrinking. For example, paper 
appeared in the second century, and the printing press took another 
twelve hundred years—Gutenberg’s press appeared in Europe in 
1440. But computation appeared in the 1940s (the 1930s if one 
counts its mathematical treatment), and the internet—quite a major 
innovation—showed up less than thirty years later. And AI? By Kurz-
weil’s logic, human-level intelligence in the computer is mere decades 
away—maybe less. Exponential growth curves surprise us.
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Kurzweil branded this “The Law of Accelerated Returns” (LOAR), 
and used it as a premise in an argument whose conclusion was that 
fully-human AI would arrive by 2029, and then through a process of 
bootstrapping more intelligent machines, superintelligence by 2045.5

Superintelligence signaled the point of no return, where the path 
of progress disappears into the unknown, the Singularity. This is the 
crossover point, where machines and not people take over as the most 
intelligent beings on the planet.

Kurzweil famously views this process as entirely “scientific,” citing 
LOAR (though LOAR is not a law at all) and in no small measure his 
own verve and credentials as a computer expert and inventor (Kurz-
weil helped develop text-to-speech technologies, leading to modern 
systems like Siri).

Turing. Good. Vinge. The ideas about radical change made pos
sible by advances in computation were already in the air. Kurzweil 
ostensibly provided the roadmap. Like so many others obsessed 
with the question of AI, his prose brimmed with all the zeal of the 
converted:

We are entering a new era. I call it “the Singularity.” It’s a merger 
between human intelligence and machine intelligence that is 
going to create something bigger than itself. It’s the cutting 
edge of evolution on our planet. One can make a strong case 
that it’s actually the cutting edge of the evolution of intelligence 
in general, because there’s no indication that it’s occurred any-
where else. To me that is what human civilization is all about. It 
is part of our destiny and part of the destiny of evolution to con-
tinue to progress ever faster, and to grow the power of intel-
ligence exponentially. To contemplate stopping that—to 
think human beings are fine the way they are—is a misplaced 
fond remembrance of what human beings used to be. What 
human beings are is a species that has undergone a cultural and 
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technological evolution, and it’s the nature of evolution that it 
accelerates, and that its powers grow exponentially, and that’s 
what we’re talking about. The next stage of this will be to amplify 
our own intellectual powers with the results of our technology.6

In truth, however, by the time Kurzweil so enthusiastically jumped 
on board—indeed, decades before the 1980s—work on scientific AI 
itself had extinguished hopes of any inexorable march to superintel-
ligence. Research and development on actual AI had proved, in a 
word, difficult.

By the 1970s, AI gadfly and MIT philosopher Hubert Dreyfus had 
published an influential dismissal of the field as an egregious example 
of what Hungarian philosopher Imre Lakatos referred to as a “degen-
erating research program.”7 Dreyfus was bombastic, but he had a point, 
as actual computer scientists knew all too well. The field was suffering 
one setback after another, with well-funded efforts and grandiose 
claims about intelligent machines consistently (and often quite 
dramatically) falling short of expectations. Research labs at MIT, Stan-
ford, and elsewhere were encountering seemingly endless quanda-
ries, difficulties, confusions, and outright failures. The problem, for 
example, of Fully Automated High-Quality Machine Translation was 
thought in the 1950s to be solvable, given sufficient research effort and 
dollars. By the 1960s, government investment in translation dried 
up, on the heels of one failure after another. Hopes of building robots 
with common sense (say, abilities to understand and speak English) 
also evaporated—or at least were drastically dimmed by a stream of 
early disappointments. Conversational systems that were intended to 
take realistic Turing tests succeeded in fooling human questioners 
only with tricks and bluffing—not real understanding of language—a 
problem that still bedevils natural language efforts in AI today. AI 
seemed inevitable in press releases and talk of the future, but not 
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when the focus was on actual work in research labs. Programming a 
truly intelligent machine turned out to be hard. Really hard.

As the idea of the Singularity gained traction in pop culture, AI 
scientists kept wandering into seemingly endless engineering prob
lems. And so the sky was not falling. The Singularity was not near. 
Vinge’s popular fiction remained just that.

A close inspection of AI reveals an embarrassing gap between 
actual progress by computer scientists working on AI and the futur-
istic visions they and others liked to describe. Turing, in 1950, had 
proposed a question to be tested: Can machines be smart like people? 
Good, Vinge, Kurzweil, and others have answered the question with 
a resounding yes without taking seriously the actual nature of the 
problems encountered by real work in the field.

This gap is instructive.
In particular, the failure of AI to make substantive process on dif-

ficult aspects of natural language understanding suggests that the 
differences between minds and machines are more subtle and com-
plicated than Turing imagined. Our use of language is central to our 
intelligence. And if the history of AI is any guide, it represents a pro-
found difficulty for AI.

We turn to it next.



Chapter 5

• • •

N A T U R A L  L A N G U A G E  

U N D E R S T A N D I N G

Artificial intelligence as an official discipline began, auspiciously, in 1956 
at the now-famous Dartmouth Conference. Luminaries in attendance 
included Shannon of Bell Labs (information theory), Marvin Minsky 
of Harvard (mathematics), noted Carnegie Mellon economist Her-
bert Simon, John McCarthy, Harvard psychologist George Miller 
(known for his work on human memory), and John Nash (the Nobel 
laureate mathematician famously portrayed in the 2001 movie A 
Beautiful Mind).

McCarthy, then at Dartmouth but soon to take a position in the 
new field of computer science at Stanford, coined the term artificial 
intelligence at the conference, giving a name, officially, to the modern 
project of engineering intelligent life. Back in 1816, a precocious young 
Mary Shelley had begun work on her masterpiece Frankenstein. A 
hundred and forty years later, the scientists assembled at Dartmouth 
were contemplating the assembly of a new “modern Prometheus,” 
which would soon burst out into the public view.

The field was hyped from the get-go. The conference proceedings 
themselves said it all:

We propose that a 2 month, 10 man study of artificial intelli-
gence be carried out during the summer of 1956 at Dartmouth 
College in Hanover, New Hampshire. The study is to proceed 
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on the basis of the conjecture that every aspect of learning or 
any other feature of intelligence can in principle be so precisely 
described that a machine can be made to simulate it. An at-
tempt will be made to find how to make machines use language, 
form abstractions and concepts, solve kinds of problems now 
reserved for humans, and improve themselves. We think that a 
significant advance can be made in one or more of these prob
lems if a carefully selected group of scientists work on it to-
gether for a summer.1

The agenda at Dartmouth was simple: investigate the nature of 
cognitive (thinking) capabilities, design programs to reproduce those 
capabilities, and implement and test their performance on the new 
electronic computers. As the Dartmouth participants made clear, in 
the summer of 1956, with ten researchers armed with knowledge in 
their respective scientific fields, they expected a “significant advance” 
toward engineering human intelligence on a machine.

Working at RAND, Herbert Simon and Allan Newell designed AI 
programs in the late 1950s that seemed to make good on the bullish 
Dartmouth Conference promises. The AI program Logic Theorist, 
and later the General Problem Solver, used a simple heuristic search 
to prove theorems of traditional logic and to solve logic-based puzzles 
in clear, computational steps. The programs worked, and AI seemed 
destined to unlock the secrets of human intelligence quickly, just as 
the Dartmouth organizers had declared.

Initial successes by Simon and Newell quickly emboldened re-
searchers to set more ambitious goals. Turing had already set the end-
game agenda a decade earlier with his version of the Imitation Game, 
the Turing test. Dartmouth scientists, too, thought that programming 
a machine to understand English or any other natural language would 
constitute a declaration of victory for AI. Researchers had long thought 
that natural language understanding was “AI-Complete,” lingo bor-
rowed from mathematics to mean that at the point computers tamed 
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natural language they would have achieved general intelligence, and 
thus be capable of thinking and acting like humans. By the 1960s, there-
fore, the target of AI was the task of machine translation—the fully 
automatic rendering of texts from one language, such as Russian, into 
another, such as English. AI was “all in.”

N A T U R A L  L A N G U A G E  U N D E R S T A N D I N G

As AI turned to natural language understanding, its practitioners ra-
diated a confidence in imminent success that continued the tradition 
begun at Dartmouth. Herbert Simon, who would go on to win the 
prestigious A. M. Turing Award and then the Nobel Memorial Prize 
in Economics, announced in 1957 that “there are now in the world ma-
chines that think, that learn and that create.” In 1965, he prognosti-
cated that, by 1985, “machines will be capable of doing any work Man 
can do.” Marvin Minsky, too, declared in 1967 that “within a genera-
tion, the problem of creating ‘artificial intelligence’ will be substan-
tially solved.”2

But machine translation was a different ballgame, as researchers 
soon discovered. Having begun with a simplistic assumption, that 
language could be understood by analyzing words in large texts 
(called corpora) using statistical techniques, they were quickly proven 
wrong. Computers made automatic translation possible, but the re-
sults were far from high quality. Even programs working in specific 
domains such as biomedical literature were not fail-proof, and the 
failures were often embarrassingly incorrect and mindless.

Machine translation researchers, in response, expanded their ap-
proach by exploring methods for “parsing” sentences, or finding syn-
tactic structure in them, using new and powerful “transformational” 
grammars developed by a young MIT linguist who was soon to be 
world-famous—Noam Chomsky. But extracting correct parses from 
natural language texts itself proved vastly more difficult and complex 
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than anyone had imagined. Problems surfaced that, in retrospect, 
should have been obvious. These included word-sense ambiguity (by 
which a word like bank carries different possible meanings); non-local 
contextual dependence (by which a word’s meaning depends on 
other words in a discourse or text that are not in its immediate vi-
cinity); and other issues involving reference (anaphor), metaphor, 
and semantics (meaning). As philosopher and cognitive scientist 
Jerry Fodor put it, AI had walked into a game of three-dimensional 
chess thinking it was tic-tac-toe.3 The National Resource Council 
(NRC) was pouring millions into machine-translation work at a 
number of American universities by the mid-1960s, but as for actual 
successes in engineering systems to understand, or even to simulate 
understanding of, natural language texts, they were, to put it mildly, 
in short supply.

MIT researcher Yehoshua Bar-Hillel, once a fiercely enthusiastic 
supporter of fully automated translation, was first to sound an alarm 
bell. He did more than that, in fact, in a series of official reports for 
the NRC and in now-famous footnotes spelling out the depth of 
problems the field faced.4 The effects of his reports on the research 
community were seismic. He had pinpointed the exact obstacle ma-
chine translation was foundering on, and it was irritatingly “philosoph-
ical”: the dearth of so-called common sense or “world knowledge”—
knowledge about the actual world. Consider a simple sentence: The 
box is in the pen. Bar-Hillel explained that it confounded automated 
systems, no matter how sophisticated, because they lacked a simple, 
actual knowledge of the world. Knowledge about the relative sizes of 
pens and boxes enables humans to disambiguate such sentences al-
most instantly. We quickly recognize that the pen in question is not 
likely a writing instrument, but rather an enclosure for young children 
or animals. And it becomes all the more obvious with some additional 
context, as in Bar-Hillel’s example: Little John was looking for his toy 
box. Finally he found it. The box was in the pen. John was very happy. But 
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automated systems lacking such knowledge face a mysterious, seem-
ingly impossible task.

World knowledge, as Bar-Hillel pointed out, couldn’t really be sup-
plied to computers—at least not in any straightforward, engineering 
manner—because the “number of facts we human beings know is, in 
a certain very pregnant sense, infinite.”5 He had discovered, unwit-
tingly, that humans know much more than anyone had imagined—the 
opposite of a quick and simple solution for AI. And it was the appar-
ently mundane, commonsense, quotidian facts about the everyday 
world that tripped up the most sophisticated automated systems. Any 
seemingly ordinary fact could become relevant in the course of a trans-
lation, yet making the requisite, open-ended quantities of “knowledge” 
accessible to computational systems in real-time or near real-time, and 
imbuing them with cognitive abilities to select relevant facts against 
this open-ended (possibly infinite) background, seemed hopeless. As 
Bar-Hillel concluded in his notorious 1966 report to the NRC, the 
notion that computers could be programmed with the world knowl-
edge of humans was “utterly chimerical, and hardly deserves any fur-
ther discussion.” 6

Machine translation was stuck, in other words, with results that 
were a far cry from fully automatic, high-quality translations (and 
that remain so today, although the quality has improved). Thus the 
pattern continued. AI had oversold itself, and in the wake of the 
failure of the translation research to live up to promises, the NRC 
pulled its funding after investing over twenty million dollars into re-
search and development, an enormous sum at the time. In the wake of 
the debacle, AI researchers lost their jobs, careers were destroyed, 
and AI as a discipline found itself back at the drawing board.7

Attempts to tame or solve the “commonsense knowledge problem” 
dominated efforts in AI research in the 1970s and 1980s. By the early 
1990s, however, AI still had no fresh approaches or answers to its core 
scientific—and philosophical—problem. Japan had invested millions 



	 N atural       L anguage        U nderstanding             	 55

in its high-profile Fifth Generation project aimed at achieving success 
in robotics, and Japan too had failed, rather spectacularly. By the mid-
1990s, AI found itself again in a “winter”—no confidence in the prom-
ises of AI researchers, no results to prove naysayers wrong, and no 
funding. Then came the web.

T H E  W O R L D  W I D E  W E B

The emergence of the World Wide Web spurred resurgence in AI for a 
simple reason: data. Suddenly, the availability of massive datasets, 
and in particular of text corpora (web pages) from the combined ef-
forts of millions of new web users, breathed life into old, “shallow” 
statistical and pattern-recognition approaches. Suddenly, what used 
to be shallow became adequate and worked. Supervised learning al-
gorithms such as artificial neural networks (neural nets, for short), 
decision trees, and Bayesian classifiers had existed in university labs 
for decades. But without large datasets, they hadn’t yet shown much 
promise on interesting problems like face recognition, or text classifi-
cation, or spam or fraud detection. Such methods now seemed filled 
with endless promise—and for real-world, moneymaking applications 
that would bring a fresh wave of attention and funding to AI.

And so Big Data was born (the term came a bit later). By the turn of 
the century, the so-called shallow, ground up, empirical, or data-driven 
approaches typified by learning algorithms such as neural nets and 
graphical models had opened up vast opportunities in both AI re-
search and AI business applications. New methods were developed—
incorporating hidden Markov models, maximum entropy models, 
conditional random fields, and large-margin classifiers such as sup-
port vector machines—and rapidly came to dominate pure and applied 
research in AI. Seemingly overnight, a whole science of statistical and 
numerical analysis appeared, based on optimizing learning methods 
operating on Big Data. Universities launched projects in natural 
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language understanding and natural language processing. They found 
ways to, for example, extract names and other patterns from web 
pages (a capability called entity recognition); to disambiguate polyse-
mous (multi-sense) words such as bank; to perform web-specific tasks 
like ranking and retrieving web pages (the famous example being 
Google’s PageRank, which Larry Page and Sergey Brin developed as 
Stanford graduate students in the 1990s); to classify news stories and 
other web pages by topic; to filter spam for email; and to serve up 
spontaneous product recommendations on commerce sites like 
Amazon. The list goes on and on.

The shift away from linguistics and rule-based approaches to data-
driven or “empirical” methods seemed to liberate AI from those early, 
cloudy days of work on machine translation, when seemingly endless 
problems with capturing meaning and context plagued engineering 
efforts. In fact, machine translation itself was later cracked by a group 
of IBM researchers using a statistical (that is, not grammar-based) ap-
proach that was essentially an ingenious application of Claude Shan-
non’s early work on information theory. Called the “noisy channel” 
approach, it viewed sentences from a source language (say, French) and 
a target language (say, English) as an information exchange in which 
bad translations constituted a form of noise—making it the system’s 
task to reduce the noise in the translation channel between source 
and target sentences. The idea worked, and machines began producing 
usable translations using the vastly simpler—though data intensive—
statistical approach pioneered by IBM Research Labs.

S U C C E S S   .   .   .  ​ O R  N O T

The success of contemporary systems like Google Translate on the 
once puzzling problem of machine translation is often touted as evi-
dence that AI will succeed, given enough time and the right ideas. 
The truth is more sobering.
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While it turns out that some problems in natural language un-
derstanding can be addressed with statistical or machine learning 
approaches, the original concerns of Bar-Hillel and others regarding 
semantics (meaning) and pragmatics (context) have proven to be 
well-founded. Machine translation, which had seemed like a difficult 
natural language problem, could be adequately accomplished with 
simple statistical analysis, given large corpora (datasets) in different 
languages. (And note that machine translation is still not very high 
quality—it is more like “good enough to be useful.”) This is not evi-
dence of impressive growth in machines’ natural language under-
standing intelligence, but only evidence that machine translation is a 
much simpler problem than it was initially perceived to be.

Again, deep problems with understanding language using com-
puters have persisted. A simple way to see the point here is to turn 
back to the Turing test, and reconsider it in light of the history of AI 
and the many, mostly fruitless attempts to solve the problems it pre
sents or even to make substantive progress. Futurists like Nick 
Bostrom, as well as the larger scientific AI community, likely wish 
that the public would just forget about the test.

It’s not—as is sometimes heard—that the test is flawed or unhelpful. 
Quite simply, it’s too hard.

T H E  T U R I N G  T E S T

Given a view from thirty thousand feet, it did seem that computers 
were getting smarter as AI progressed from its genesis in Turing’s 
early work and the kickoff conference at Dartmouth. Certainly com-
puters were gaining more powerful processors and storage capabili-
ties, and these led inevitably to progress on well-defined problems. 
Computer chess-play did not yet exceed skilled humans, but kept im-
proving. Programs like DENDRAL, which analyzed the structure of 
chemicals, and MYCIN, which provided sometimes quite good 
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medical diagnoses, made clear that AI methods were relevant to a va-
riety of problems normally requiring high human intelligence. Ma-
chine translation, as we’ve seen, was an initial failure, but yielded to 
different approaches made possible by the availability of large data-
sets (a precursor to many Big Data and data science successes in the 
2000s). All sorts of natural language processing tasks, like generating 
parses of natural language sentences, and tagging parts of speech or 
entities (persons, organizations, places, and the like), were chipped 
away at by AI systems with increasing power and sophistication.8

Yet Turing’s original goal for AI, passing the Turing test, remained 
elusive. Understanding conversation was not a well-defined task for 
AI—it was an entire capability. While there was some hope of success 
with early systems like Terry Winograd’s SHRDLU system, which 
stacked and manipulated blocks with a robotic arm by parsing English-​
language commands like Place Block A on top of B, and put them both 
on top of C, researchers drew blanks on open-ended conversational 
systems. Progress amounted to trickery, to clever ploys by designers 
of systems to fool human interlocutors by feigning ignorance or 
adopting evasive responses and strategies when questions put the 
programs out of their depth. Perhaps the most famous trick system, 
Joseph Weizenbaum’s ELIZA program, could create the illusion of 
human dialogue by mimicking a Rogerian psychotherapist’s prompts 
to patients. Here is a sample, with ELIZA’s responses in italics:

Men are all alike.

In what way

They’re always bugging us about something or other.

Can you think of a specific example

Well, my boyfriend made me come here.
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Your boyfriend made you come here

He says I’m depressed much of the time.

I am sorry to hear you are depressed

It’s true. I am unhappy.

Do you think coming here will help you not to be unhappy

I need some help, that much seems certain.9

But such programs were obvious frauds, judged by the standards of 
true AI.

So was the program that on multiple occasions briefly fooled some 
judges at the Loebner Prize contest, an annual staging of the Turing 
test. Media reports eagerly declared that the test had finally been passed, 
and there was brief but intense fanfare about the progress of AI on its 
most famous challenge. The chatbot—named Eugene Goostman—was 
presented as a thirteen-year-old Ukrainian boy, a persona designed to 
make judges expect (and excuse) grammatical errors and holes in 
general knowledge. The bot also responded to some questions not 
with straightforward answers, but with misdirection and deflection 
in the form of random comments and humorous asides. Did the bot 
trick some judges some of the time? Yes. Did it actually pass the 
Turing test in any meaningful way? No.10

Though machine translation has in recent years been tamed (some-
what) by large volumes of texts translated into different languages on 
the web, the Turing test remains a perpetual frustration for AI. The 
ghost of Bar-Hillel still haunts us.



Chapter 6

• • •

A I  A S  T E C H N O L O G I C A L  K I T S C H

In 1980, the Czech-born writer Milan Kundera wrote his masterpiece, 
The Unbearable Lightness of Being. The novel is a love story, set against 
the backdrop of the Soviet invasion of then Czechoslovakia by the So-
viet Union in 1968. Kundera wrote about the writers and artists who 
committed suicide after relentless, mendacious harassment by the 
Soviet secret police who had inserted themselves into the social, in-
tellectual, and cultural fabric of Prague. Dead and discredited, the 
Prague intellectuals then received further (though posthumous) dis-
grace: disgusting encomiums at their funerals, where Soviet party 
members and officials would attest to the deceased’s lifelong devotion 
to the State. Soviet propaganda drove them to death; the same propa-
ganda then portrayed their lives as nobly sacrificed to advance ideas 
that they had in fact spoken out against publicly and privately. What 
they hated, they were described as loving.

The Soviet propaganda was ruthless, but it was not wrathful and 
stupid. It had a particular purpose. That purpose was to purge the 
country of deeper and more profound (and contrary) expressions of 
the meaning of a country, a people, and a life. The Soviets were purging 
Prague, and all of Czechoslovakia, of its shared history, its traditions, 
and its sense of what was valuable and worth fighting for. Once the 
free-thinkers were silenced, the Soviets would then, like painting a 
wall after first sandblasting it, be free to impose their worldview 
without serious or organized opposition. Kundera’s story is a trenchant 
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and often tragic account of the value of human life, and how partic
ular beliefs and ideologies can attempt—but never quite manage—to 
obfuscate and gloss over all that is meaningful to an individual and to a 
society. Kundera called the Soviet culture foisted upon the defeated 
Czech people kitsch.

T E C H N O L O G I C A L  K I T S C H

Kitsch is a German word that, while it usually refers today to cheesy or 
tacky artwork and decor, originally meant exaggerated sentimentality 
and melodrama in any realm. The intelligence errors at the heart of the 
AI worldview—the beliefs, that is, not the science—have given rise to a 
modern and particularly pernicious form of kitsch. Dreams of superin-
telligent computers are not Soviet propaganda, and no one is coercing 
us to believe in the rise of the machines. But they share the basic idea of 
replacing complex and difficult discussions about individuals and socie
ties with technological stories that, like Soviet culture, rewrite older 
ideas with dangerously one-dimensional abstractions.

Kitsch is a word whose meaning and use have changed over time. 
The original German definition in some ways differs from the meaning 
I intend to explore here, but two essential ingredients of the original 
meaning should make my claim clear enough. First, kitsch involves a 
simplification of complicated ideas. There must be a simple story to 
tell. Second, it offers easy solutions that sweep away, with emotion, 
the questions and confusions people have about the problems of life 
rather than addressing those questions with serious, probing discus-
sion. Thus, a perfect example of kitsch is the dreamy idea that one day 
an awe-inspiring android with superintelligence will remake human 
society and its older traditions and ideas, and we’ll enter a new era, 
thankfully free of old arguments about God, mind, freedom, the good 
life, and the like. Beautiful machines (or machines with beautiful 
intelligence) like “Ava” in the 2015 sci-fi film Ex Machina, portrayed by 
Alicia Vikander, will remove the hard facts of human existence. This 
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is kitsch, technological-style. Like Soviet propaganda, it might hor-
rify or mollify, but it gives us a new story that writes over and makes 
unnecessary what was true before, and the old reality disappears.

Alan Turing, for all his contributions to science and engineering, 
made possible the genesis and viral growth of technological kitsch by 
first equating intelligence with problem-solving. Jack Good later com-
pounded Turing’s intelligence error with his much-discussed notion 
of ultraintelligence, proposing that the arrival of intelligent machines 
necessarily implied the arrival of superintelligent machines. Once the 
popular imagination accepted the idea of superintelligent machines, 
the rewriting of human purpose, meaning, and history could be told 
within the parameters of computation and technology.

But ultraintelligent machines are fanciful, and pretending other
wise encourages the unwanted creep of technological kitsch, usually in 
one of two ways that are equally superficial. At one extreme we hear a 
tale of apocalyptic or fearsome AI, a sort of campfire horror story. At 
the other extreme we encounter utopian or dreamy AI, which is equally 
superficial and unmerited. If we take either form of AI’s kitsch seri-
ously, we end up in a world defined only by technology.

This is a theme I will be returning to, because it exposes the core 
problem with futuristic AI. As Nathan, the genius computer scientist 
in Ex Machina puts it, “One day the AIs are going to look back on us 
the same way we look at fossil skeletons on the plains of Africa. An 
upright ape living in dust with crude language and tools, all set for 
extinction.” In truth, it’s unclear that any computer will ever look 
back at all. The popular sentiment requires a deep dive into the meaning 
of existence, life, consciousness, and intelligence, and the differences 
between ourselves and computation and its many technologies. Kitsch 
prevents us from grappling with human nature and other serious phil-
osophical endeavors. This simply shouldn’t be the case, as Kundera 
knew all too well.

Kitsch has its roots, typically, in a larger system of thought. For the 
communists, it was Marxism. With the inevitability myth, it’s techno-
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science. We inherited the technoscientific worldview most directly 
from the work of August Comte.

O U R  T E C H N O S C I E N T I F I C  C O N D I T I O N

Probably the first thinker to fully develop and explain technoscience 
as a worldview was Auguste Comte.1 Comte, the nineteenth-century 
philosopher widely credited with founding sociology as a scientific 
field of study, developed and expounded the theory of positivism. 
This is the view that only observable, scientific phenomena exist—
religion and philosophy are imaginary. Comte made explicit, first, his 
idea that the human mind progresses toward truth, as does society as 
a whole, through stages that begin with religious and philosophical 
thinking and then advance to scientific thinking. And, second, he ex-
plained that technoscience would eventually create a heaven on earth 
by enabling the nature of all things (science) to be understood, and 
then using this knowledge to develop technologies that make our 
lives vastly longer, better, and more meaningful.

Comte’s account of the transformative power of technoscience ex-
tended, eventually, into his belief that religion and in particular the 
Church could be replaced by a “religion of humanity” which would 
be thoroughly secular, believing in no God and grounded firmly in 
the sciences and in material reality. At the time of Comte’s writing in 
the nineteenth century, there was sufficient evidence of the power of 
human thinking both to discover scientific laws and to innovate 
powerful and useful technologies that technoscience took root at the 
center of the modern mind.

From the beginning, however, there were misgivings about Comte’s 
theory. Nietzsche, for instance, lamented that the idea of a person be-
came constricted and limited with such a view. Technoscience might 
help us live longer, but it could not make us wiser. The idea of a hero 
or a person of extraordinary and earned gifts and virtues didn’t fit 
Comte’s vision, which had essentially replaced traditional discussion 
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of personhood with discussion of the progress of science, and espe-
cially technology.2

Comte’s materialism, too, suggested to other thinkers a diminution 
rather than expansion of human possibility. To the east, in Russia, 
the writer Dostoevsky protested contemptuously about the growing 
“scourge” of total belief in materialism and scientism—the view that 
scientific knowledge is the only real knowledge—in prose that reflected 
other thinkers’ skepticism and even fear of the rapid dominance of 
technoscientific thinking. As he put it in his Notes from Underground, 
“One’s own free and unfettered volition, one’s own caprice, however 
wild, one’s own fancy, inflamed sometimes to the point of madness—
that is the one best and greatest good, which is never taken into consid-
eration because it cannot fit into any classification, and the omission of 
which sends all systems and theories to the devil.”3

Dostoevsky, Nietzsche, and others were pointing to the ideal of a 
full person, but Comte was talking about the ideal of something ex-
ternal to us—about technoscience and its advance. The problem was 
that, as Comte well knew, the vision of a technoscientific future was 
also a deep and significant statement about the nature of personhood. 
In effect, Comte argued that traditional conceptions of personhood—
as unique because created by God, or as a seeker of wisdom (not only 
technological knowledge) as the Greek philosophers held—were by 
virtue of scientific and technological success now irrelevant. His 
technoscience philosophy was commentary on the essence and pos-
sibilities of human nature. This was radical, and iconoclastic thinkers 
not taken in by the juggernaut of technoscience were right to chal-
lenge the notions that Comte (and others) propounded.4

T H E  T R I U M P H  O F  H O M O  F A B E R

Technoscience triumphed in the twentieth century but skeptical re-
sponses to it continued, as well. Hannah Arendt, the philosopher 
made famous by her phrase “the banality of evil,” in reference to the 
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Nazi Nuremberg trials, argued that Comte’s technoscience—which, 
by the middle of the twentieth century, certainly had not lost any 
steam as a philosophical idea—amounted to no less than a redefini-
tion of human nature itself.5 Arendt pointed to the classical under-
standing of humans as Homo sapiens—literally, wise man—and to 
the historical focus on wisdom and knowledge rather than technical 
skill, and argued that to embrace technoscience as a worldview was to 
redefine ourselves as Homo faber—man the builder.

Homo faber, in Greek terms, is a person who believes that techne—
knowledge of craft or making things, the root of technology—defines 
who we are. The faberian understanding of human nature fits per-
fectly not only with Comte’s nineteenth-century idea of a utopian tech-
noscience but with the twentieth-century obsession with building more 
and more powerful technologies, culminating in the grand project of, 
in effect, building ourselves—artificial intelligence. This project would 
not make sense if the traditional notions of the meaning of humanity 
had remained intact.

Arendt argued that the seismic change from wisdom and knowl-
edge to technology and building represented a limiting and poten-
tially dangerous understanding of ourselves, which would guarantee 
not only that technological development would continue unbridled, 
but that increasingly we would view technological successes as mean-
ingful statements about ourselves. We were, in other words, reducing 
our own worth in order to increase, beyond wise or reasonable 
measure, our estimation of the marvels that could be built with the 
tools of technoscience.

Von Neumann’s initially cryptic comments about approaching a 
“singularity” as technological advances accelerate become more clear 
in light of his contemporary Arendt’s position. Though Von Neu-
mann, a scientist and mathematician, did not (as far as we know) fur-
ther explain his remarks, they perfectly reflect Arendt’s insistence on 
the deep significance of technoscience for ourselves and our future—for 
what philosophers of technology call “the human condition.” It would 
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perhaps seem perverse to Comte that technology could accelerate past 
our control, but nowhere in his writing can one discover an inkling of 
the point that Arendt (and others) would make, that in championing 
technoscience as a human answer to human problems, we are also en-
gaged in the project of redefining our understanding of ourselves. The 
turn toward techne rather than, say, episteme (knowledge of natural 
phenomena) or sapientiae (wisdom relating to human values and so-
ciety) makes it difficult to carve out a meaningful idea of human unique-
ness. (Even bees, after all, are builders, in their case of hives).

Putting techne at the center also makes it possible to view a person 
as something that can be built, since it implies there is nothing more 
to a person than a superior capacity to construct ever more advanced 
technologies. Once embarked on this route, it is a short journey to arti-
ficial intelligence. And here is the obvious tie-in with the intelligence 
errors first made by Turing and then extended by Jack Good and others 
up to the present day: the ultimate triumph of Homo faber as a species is 
to build itself. This is, of course, precisely the professed goal of AI. Ex-
ploring whether the project can succeed or not will necessarily pull us 
into the deep waters of understanding the nature of ourselves.

F I L L I N G  I N  T H E  P U Z Z L E

Technoscience began with the Scientific Revolution, and by a few 
hundred years later much of modern scientific theory was in place. 
With rare exceptions—an obvious one being the development of 
quantum theory and relativity in the twentieth century—scientific 
knowledge advanced as major physical theories were put in place. Sci-
entific knowledge was like a puzzle, with pieces of theory forming a 
picture of the world and the universe. Newton’s physics, Maxwell’s 
electrodynamics, theories of work and thermodynamics from Carnot 
and others—all of this scientific knowledge fit together to form a uni-
fied picture of the world. More theories and details were filled in by 
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Darwin’s theory of evolution in the 1850s and by geographical and 
archeological discoveries. (Of course, as theories were debated and 
tested, some proved wrong or were revised). The range of possibility 
for scientific theory, then, was strangely shrinking—as when one is 
working a jigsaw puzzle, and with each piece fitted into place the re-
maining choices are further limited.

By contrast, technological innovation exploded. As Ray Kurzweil 
has noted, technological innovation accelerates. One invention does 
not limit what can follow, but rather makes possible more and more 
inventions. Technology seems, in other words, to evolve. We do not 
put it in place like theory. Instead, we accrete technological develop-
ments one on top of the other, seemingly endlessly. The acceleration 
of the evolution of technology means simply that the time between 
major technological innovations keeps shrinking, historically, so that 
the gap between, say, the invention of the printing press and the ar-
rival of the computer is very large compared to, say, the gap between 
the computer and the internet. The merger of science and technology 
is thus complicated, and the very word technoscience suggests that, as 
things progress, science will settle and technology will continue to 
evolve—and to evolve, as Kurzweil puts it, exponentially.

And so the term technoscience itself demonstrates the complexity 
and unpredictability of our world. Not all areas of human endeavor 
follow the same pattern of growth; one area can’t be laid along an-
other, as with a template. Whether human intelligence and machine 
intelligence are more alike than not—or more unalike—remains to 
be seen. The question of AI should be an invitation not to ignore philo-
sophical conundrums but to struggle with them. And technoscience, 
taken as a statement about ourselves, is in the end a terrible simplifi-
cation. It represents (among other things) the introduction of kitsch 
into the stream of complicated and difficult issues in life.



Chapter 7

• • •

S I M P L I F I C A T I O N S  A N D  M Y S T E R I E S

Shortly before Turing published his 1950 “Computing Machinery and 
Intelligence,” the behavioral psychologist B.  F. Skinner published a 
science fiction novel, Walden Two.1 In it, Skinner has his characters 
argue that free will is an illusion, and that a person’s behavior is con-
trolled from the outside, by his or her environment. If someone (a sci-
entist, say) changes the environment, then the behavior of the person 
in that environment will change.

In a trivial sense, this is true. If a despot denies food, security, and 
opportunities for employment from people, the people will grow un-
happy. We can predict such changes. Skinner meant, however, that a 
person is entirely determined by inputs—in his terms, by stimuli.

In fact, Skinner’s idea of a person as a “black box” is the basic idea 
Turing had in mind, too. With a black box, we treat the output of the 
system as some function of its input—the how of the internals in the 
system itself is left undescribed. Skinner argued in Walden Two that a 
perfect world—a utopia—could be constructed by treating people 
like black boxes, by feeding them certain physical input (stimuli) to 
achieve a certain output (response). Meanwhile, Turing speculated 
that the human being was operationally equivalent to some compli-
cated machine, and to prove this, he suggested building a machine, 
feeding it input, and examining its output.
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Much of importance was left out of this way of thinking, unfortu-
nately, and it seems obvious today that we have inherited its mistakes. 
While Skinner’s theory of operant conditioning, or “behaviorism,” as it 
came to be called, was widely disputed later in the twentieth century, 
the interdisciplinary “cognitive revolution” that replaced it treated in-
telligence as merely internal computations. This idea, underpinned by a 
philosophy called the “computational theory of mind,” which claims 
that the human mind is an information processing system, still under-
writes theoretical confidence in the eventual triumph of AI.

Here, it’s best to be clear: equating a mind with a computer is not 
scientific, it’s philosophical.

T H E  F O L L Y  O F  P R E D I C T I O N

As Stuart Russell points out, in the quest for artificial intelligence, we 
shouldn’t bet against “human ingenuity.”2 But in a similar vein we 
shouldn’t make hopeful (or dire) predictions without a sound scien-
tific basis.

Experts and even (or especially) scientists love to make predic-
tions, but most of them are wrong. Dan Gardner’s excellent book 
Future Babble documents the success rate of predictions in realms 
from history and geopolitics to the sciences.3 He found that theorists—
experts with big visions of the future based on a particular theory 
they endorse—tend to make worse predictions than pragmatic people, 
who see the world as complicated and lacking a clear fit with any 
single theory.

Gardner referred to the expert class and the pragmatic thinkers as 
hedgehogs and foxes (borrowing from Philip Tetlock, the psycholo-
gist, who himself borrowed the terminology from Isaiah Berlin). Just 
as a hedgehog burrows into the ground, hedgehog experts burrow 
into an idea. Inevitably they come to believe that the idea captures the 
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essence of everything, and that belief fuels their inevitable prosely-
tizing. Marx was a tireless hedgehog.

Foxes see complexity and incalculability in the affairs of the world, 
and either avoid bold predictions or make the safer (and perhaps 
smarter) prediction that things won’t change the way we think. For 
the fox, the business of predicting is almost foolhardy, because we 
really can’t know what will emerge from the complicated dynamics of 
geopolitics, domestic politics (say: who will win an election?), science, 
and technology. As the nineteenth-century novelist Leo Tolstoy 
warned, wars unfold for reasons that we can’t fit into battle plans.

Some AI scientists are notoriously foxy about AI predictions. Take 
Yoshua Bengio, a professor of computer science at the University of 
Montreal, Canada, and one of the pioneers of deep learning: “You 
won’t be getting that from me,” he says, in response to the question of 
when we can expect human-level AI: “there’s no point. It’s useless to 
guess a date because we have no clue. All I can say is that it’s not going 
to happen in the next few years.” 4

Ray Kurzweil gives a more hedgehog answer: human-level AI will 
arrive in 2029. He invokes his “law” of accelerating returns to make 
his prediction seem scientific, and he sees continuing evidence that 
he’s right in all the supposed progress to date.5

Philosophers sometimes have the virtue of thinking clearly about 
problems precisely because they are unencumbered by any particular 
zeal that might attach itself to practitioners in a field (who wish still to 
philosophize). Alasdair MacIntyre, for example, in his now classic 
After Virtue, pointed to four sources of fundamental unpredictability 
in the world. In particular, his discussion of “radical conceptual in-
novation” is directly germane to questions about when human-level 
AI will arrive. He recalls the argument against the possibility of pre-
dicting invention made by twentieth-century philosopher of science 
Karl Popper:
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Some time in the Old Stone Age you and I are discussing the 
future and I predict that within the next ten years someone will 
invent the wheel. “Wheel?” you ask. “What is that?” I then de-
scribe the wheel to you, finding words, doubtless with difficulty, 
for the very first time to say what a rim, spokes, a hub and per-
haps an axle will be. Then I pause, aghast. “But no one can be 
going to invent the wheel, for I have just invented it.” In other 
words, the invention of the wheel cannot be predicted. For a 
necessary part of predicting an invention is to say what a wheel 
is; and to say what a wheel is just is to invent it. It is easy to see 
how this example can be generalized. Any invention, any dis-
covery, which consists essentially in the elaboration of a radi-
cally new concept cannot be predicted, for a necessary part of 
the prediction is the present elaboration of the very concept 
whose discovery or invention was to take place only in the future. 
The notion of the prediction of radical conceptual innovation is 
itself conceptually incoherent.6

In other words, to suggest that we are on a “path” to artificial gen-
eral intelligence whose arrival can be predicted presupposes that 
there is no conceptual innovation standing in the way—a view that 
even AI scientists convinced of the coming of artificial general intel-
ligence and who are willing to offer predictions, like Ray Kurzweil, 
would not assent to. We all know, at least, that for any putative artifi-
cial general intelligence system to arrive at an as yet unknown facility 
for understanding natural language, there must be an invention or 
discovery of a commonsense, generalizing component. This certainly 
counts as an example of a “radical conceptual innovation,” because 
we have no idea what this is yet, or what it would even look like.

The idea that we can predict the arrival of AI typically sneaks in a 
premise, to varying degrees acknowledged, that successes on narrow 
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AI systems like playing games will scale up to general intelligence, 
and so the predictive line from artificial intelligence to artificial gen-
eral intelligence can be drawn with some confidence. This is a bad as-
sumption, both for encouraging progress in the field toward artificial 
general intelligence, and for the logic of the argument for prediction.

Predictions about scientific discoveries are perhaps best under-
stood as indulgences of mythology; indeed, only in the realm of the 
mythical can certainty about the arrival of artificial general intelli-
gence abide, untrammeled by Popper’s or MacIntyre’s or anyone 
else’s doubts.

Mythology about AI is not all bad. It keeps alive archetypal long-
ings for creating life and intelligence, and can open windows into un-
derstanding ourselves. But when myth masquerades as science and 
certainty, it confuses the public, and frustrates non-mythological re-
searchers who know that major theoretical obstacles remain un-
solved. “No one has a clue,” as Bengio puts it. This is impossibly and 
depressingly pessimistic for mythologists, even if supported by all the 
evidence, and true.

Obstacles are not always insurmountable, however, and even when 
they are—when we are forced to recognize certain boundaries—we 
are then freed to find a different way to reach our goal, or given the 
impetus to formulate new goals altogether. The history of science is 
chock-full of examples of the discovery of impasses leading to further 
progress. Werner Heisenberg discovered his uncertainty principle by 
working out the consequences of the new physics of quanta. The 
principle states that it is impossible to isolate the position and the mo-
mentum of a subatomic particle simultaneously. This places funda-
mental limits on our ability to predict the individual movements of 
particles at the subatomic realm (because “seeing” the position of a 
particle requires impinging it with a photon, which also has the ef-
fect of knocking it off course). The uncertainty principle is nothing if 
not a limitation, yet it has proven fruitful and valuable in under-
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standing quantum mechanics. We could not, for instance, ever hope 
to build a quantum computer if we first didn’t understand the nature 
of uncertainty.

There are many other examples. Perpetual motion was an obses-
sion of the nineteenth and eighteenth centuries, pulling into its 
orbit many of the best and brightest minds. Advances in theories of 
work and thermodynamics retired the dream—but in the process al-
lowed for huge progress in understanding energy and motion. Admit-
ting complexity—and complications—gets us further than does easy 
oversimplification.

A  S T R A N G E  (B U T  R E L E VA N T)  A R G U M E N T  

F R O M  M I C H A E L  P O L A N Y I

One possibility in the AI debate is that we have general intelligence, 
but we can’t actually write down what it is—program it, that is—
because in important respects it’s a black box to ourselves. This brings 
us to Michael Polanyi.

Once influential but now little-known, chemist and philosopher 
Michael Polanyi argued in the mid-twentieth century that intelli-
gence is only partly captured by the symbols we write down—the 
uses of language that he called “articulations.” Polanyi was anticipating 
many of the headaches AI systems have caused for AI designers; in 
fact, in his later works he explicitly denied that machines could cap-
ture all of human intelligence, for reasons stemming from the incom-
pleteness of articulations.

Polanyi argued that articulations necessarily leave out “tacit” com-
ponents of intelligence—aspects of thinking that can’t be precisely 
described by writing down symbols.7 (A neural network that we con-
struct is a symbol system, too.) This explains why, for instance, cer-
tain skills and crafts, like cooking, can’t be mastered by simply reading 
recipes. We make things, but this doesn’t mean we can program 
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everything we make (think of writing a program for writing a novel 
on the order of, say, James Joyce’s Ulysses. The program would be 
meaningless. Instead we would write the novel directly—if we were 
James Joyce).

Polanyi wrote at an unfortunate time to suggest contrary views 
about AI, as the field had kicked off in the 1950s with much fanfare. 
His defense of tacit knowledge was picked up later in the previously 
discussed attack on AI by Hubert Dreyfus; perhaps because of his 
sometimes too tendentious tone, Dreyfus’s remarks became a light-
ning rod for counterarguments, and at least initially, did not win over 
mainstream AI thinkers. (Unfortunately, he also declared that an AI 
system could never beat a grand champion at chess.)8

But the possibility that not all of what we know can be written 
down is an enduring problem for AI, because it implies that AI pro-
grammers are attempting to square a circle. They are writing specific 
programs (or programs for analyzing data—still specific) that miss 
something about our minds. Polanyi’s ideas suggest that minds and 
machines have fundamental differences, and also that equating 
minds with machines leads to a simplification of our ideas about the 
mind. If the mind—or at least general intelligence—must be treated 
as something that can be coded or written down, then we must sim-
plify “mind” itself to make sense of so much discussion today.

A  R E T U R N  O F  T H E  F O X E S

In the early 2000s, everyone in AI was a fox. The field was experi-
encing one of its perennial winters, and most all the mythologists 
were in hiding. Ray Kurzweil still promoted his confident vision, and 
classical AI theorists like Doug Lenat kept pursuing their favorite theo-
ries, chasing the Rosetta stone of AI. But seemingly endless boom-
and-bust cycles had worn down much of the field, to the point where 
many felt uncomfortable even using the label of AI for our research. It 
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became a bad marketing term. (That seems strange today, but it was 
true.) Talk turned quickly to the arcana of specific algorithms, like 
“support vector machines” and “maximum entropy,” both approaches 
to machine learning. Classical AI scientists dismissed these as “shallow” 
or “empirical,” because statistical approaches using data didn’t use 
knowledge and couldn’t handle reasoning or planning very well (if at 
all). But with the web providing the much-needed data, the approaches 
started showing promise.

The deep learning “revolution” began around 2006, with early work 
by Geoff Hinton, Yann LeCun, and Yoshua Bengio. By 2010, Google, 
Microsoft, and other Big Tech companies were using neural networks 
for major consumer applications such as voice recognition, and by 2012, 
Android smartphones featured neural network technology. From 
about this time up through 2020 (as I write this), deep learning has 
been the hammer causing all the problems of AI to look like a nail—
problems that can be approached “from the ground up,” like playing 
games and recognizing voice and image data, now account for most of 
the research and commercial dollars in AI.

As deep learning took off, AI (and talk of AI) did too. Hedgehogs 
returned, and predictably, the media fanned the flames of fresh fu-
turism. But something strange is happening in AI lately. I noticed it in 
more skeptical talk in 2018, and in 2019 it’s unmistakable. The foxes 
are returning.

Many mythologists (with a few notable exceptions) are also non-
experts, like Elon Musk, or the late astrophysicist Stephen Hawking, 
or even Bill Gates. Still, they helped create much of the media bal-
lyhoo about AI—mostly, deep learning ballyhoo—which peaked a 
few years ago (circa 2015, give or take a year). Now, though, it’s in-
creasingly common to hear talk of limitations again—for instance, 
from Gary Marcus, a cognitive scientist and founder of robotics com
pany Robust.AI, who coauthored with computer scientist Ernest 
Davis the 2019 Rebooting AI: Building Artificial Intelligence We Can 
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Trust.9 Marcus and Davis make a compelling argument that the field 
is yet again overhyped, and that deep learning has its limits; some 
fundamental advance will be required to achieve generally intelligent 
AI. In 2017, AI scientist Hector Levesque (a colleague of Davis, about 
whom more will be said later) penned a helpful polemic about modern 
AI which he titled Common Sense, the Turing Test, and the Quest for 
Real AI.10 Back when I published “Questioning the Hype about Arti-
ficial Intelligence” in The Atlantic in 2015, reactions were largely dis-
missive.11 Today there are more critics, and among them are many 
recognized leaders in AI who are questioning the hype.

It’s still rare to hear thoughtful arguments that true AI is impos-
sible, for the same reason people shy away from offering predictions 
about it—because the future of AI is an unknown. But culturally and 
psychologically, the field seems to have entered a phase of dialing 
down, cautioning newbies and the expectant public that general intel-
ligence is a long road. This trend is of utmost importance, because the 
myth is an emotional lighthouse by which we navigate the AI topic. 
It’s expansionary, inviting all comers: concepts like consciousness, 
emotions like aggression or love, instincts like sex, and other ingredi-
ents of minds and living beings. But the new “science” talk is, more or 
less, a narrative about possible extensions of narrow AI to more and 
more generality, where big-picture ideas like consciousness are out of 
scope. Too clever by half, perhaps—the myth is why everyone cares. 
Otherwise, it’s just more powerful forms of technology everywhere, a 
trend we can already see is double-sided.

S I M P L I F Y I N G  S U P E R I N T E L L I G E N C E

The intelligence errors that helped forge our simplified computational 
world are now back in a modern guise, as well. Stuart Russell, who 
coauthored the definitive textbook introduction to AI with Google’s 
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Peter Norvig, argues in his 2019 Human Compatible: Artificial Intelli-
gence and the Problem of Control that intelligence means nothing more 
than achieving objectives—providing a definition that includes not 
only humans and dolphins but also ants, E. coli bacteria, and com-
puters.12 Also, he wants the Turing test to be retired because it’s now 
irrelevant. (Apparently, having an ordinary conversation is not a worthy 
objective.) “The Turing test is not useful for AI,” he writes, “because it’s 
an informal and highly contingent definition: it depends on the enor-
mously complicated and largely unknown characteristic of the human 
mind, which derives from both biology and culture. There is no way to 
‘unpack’ the definition and work back from it to create machines that 
will provably pass the test. Instead, AI has focused on rational behavior 
[and thus] a machine is intelligent to the extent that what it does is 
likely to achieve what it wants, given what it has perceived.”13

It’s hard to argue with Russell’s definition of intelligence, which 
covers everything from Einstein “achieving” his “objective” when he 
reimagined physics as relativity, to a daisy turning its face toward the 
sun. But Russell’s dismissal of the Turing test seems overly legalistic 
and narrow, because the spirit of the test is simply that machines that 
understand and use natural languages must be intelligent. Practically 
speaking, we shouldn’t expect much from Siri or other voice-activated 
personal assistants if they never figure out what we’re saying, so dis-
missal of the test seems unwise. (If some next-generation Siri ever ad-
vances to the point where it engages in unrestricted and ordinary 
conversation with its human owner, then the Turing test will return 
as the great “dream of AI,” finally realized. Alas.)

Russell, a recognized AI expert and professor of computer science 
at the University of California, Berkeley, also rids himself of the problem 
of consciousness: “In the area of consciousness, we really do know 
nothing, so I’m going to say nothing.” He then assures us that “No one in 
AI is working on making machines conscious, nor would anyone know 



78	 T he   S implified          W orld  

where to start, and no behavior has consciousness as a prerequisite.” 
But he says something—quite a lot—about consciousness anyway:

Suppose I give you a program and ask, “Does this present a 
threat to humanity?” You analyze the code and indeed, when 
run, the code will form and carry out a plan whose result will be 
the destruction of the human race, just as a chess program will 
form and carry out a plan whose result will be the defeat of any 
human who faces it. Now suppose I tell you that the code, when 
run, also creates a form of machine consciousness. Will that 
change your prediction? Not at all. It makes absolutely no dif-
ference. Your prediction about its behavior is exactly the same, 
because the prediction is based on the code. All those Holly-
wood plots about machines mysteriously becoming conscious 
and hating humans are really missing the point: it’s compe-
tence, not consciousness, that matters.14

But maybe it’s Russell who is missing the point, because mythology 
about machines “coming alive” is really the lifeblood of dreams about 
future AI. If we were to inform folks arriving at the theater for a 
screening of Ex Machina that the real dream of AI was to make mind-
less, “no lights on inside” supercomputers to help us (and our ene-
mies) achieve objectives, they might feel a bit underwhelmed. Russell 
seems to suggest that an algorithmic system, suitably juiced up with 
as yet unknown modules for general intelligence, will spell ultimate 
success for AI. True hedgehogs understand what cautionary foxes do 
not, that AI straddles science and myth, and its enduring fascina-
tion in the popular mind means it’s a psychological and cultural 
touchstone.

Ray Kurzweil has argued all along that, whatever consciousness is, 
machines will have it in spades—richer and “better” than our own. 
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His 1999 paean to the myth was appropriately titled The Age of Spiri-
tual Machines (and he really means “spiritual,” as in superintelligent 
computers having conscious, spiritual experiences). Kurzweil wisely 
insists that Turing’s test is a proper benchmark for AI: “In order to 
pass the test, you have to be intelligent.” He even dislikes the term 
“AGI,” increasingly used to specify artificial general intelligence, 
because as he puts it (correctly), “the goal of AI has always been to 
achieve greater and greater intelligence and ultimately to reach human 
levels of intelligence.15

Sexual desire might even be a proper subject for AI as a litmus test 
for intelligence—especially if it’s a basic element in striving and 
yearning, and achieving various objectives, as it seems to be in life. Ex 
Machina is practically Shakespearean, combining sexual tension, 
consciousness, exploitation, and liberation—and all in a Turing test 
(of sorts). Novelist-turned-director Alex Garland tackles the Singu-
larity, giving us the story of a superintelligent android masterminding 
her escape from enslavement by a mad scientist (another pregnant 
theme)—her reclusive inventor, Nathan (played by Oscar Isaac). Os-
tensibly, Ava’s objective is to pass a Turing test by interacting with 
Nathan’s invited guest, Caleb Smith (Domhnall Gleeson), as a thor-
oughly convincing “human”—even though he has been informed 
and can see that Ava is an android. It’s the ultimate test, says Nathan.

But Ava has her own ideas (achieving our objectives be damned), 
and plots an escape into the wild world, outside the confines of Na-
than’s research facility. When Ava finally escapes, two humans are (or 
will be) dead. As she steps out, she sees color, glorious color—proof 
to the viewer that she’s really “alive” and conscious.16 We have seen 
her understand and use the English language so effectively that she 
has reduced the two men to hopeless confusion and defeat. Here, 
then, is a full-throated depiction of the myth, presenting its core fu-
turistic idea of a coming crossover point when machines overtake 
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humans full-stop. Ava is smarter, more cunning, and more spiritual 
and alive than her human counterparts.

Garland’s vision is pure mythology—and also a great human story, 
capturing archetypal themes (liberation, good and evil, and sexu-
ality) through the lens of future technology. There is an irony here, 
because Ex Machina succeeds by tapping into deep human emotions, 
as do other masterpieces like 2001: A Space Odyssey.

Also ironic is the choice some have made recently to distance the 
field of AI from its joyful (or fearful) myth in favor of more “scientific” 
discussion—in other words, to dismiss emotionally fraught concepts 
like the Singularity, consciousness, and intelligence while still bene-
fiting from their remaining in the public eye. Russell, for instance, 
clearly wants to separate serious work on artificial general intelligence 
from pop cultural portrayals of it in movies like Ex Machina. He 
regards consciousness as a silly philosophical worry (no one knows 
anyway), Turing tests as antiquated ideas too vulnerable to tricks, 
and any worries about machines getting aggressive (or plucky, or 
otherwise emotional) as fundamentally misguided. Superintelligent 
computers will simply pursue their objectives. The problem is—and 
it amounts to an existential risk, even sans Terminator imagery—that 
their objectives might not be our own.

Russell admits that this is our problem with AI already. Specifically, 
he calls out those content-selection algorithms on the web whose ob-
jective is to maximize ad revenue by bombarding everyone with 
sticky and relevant ads. Superintelligent AI may be too good at pur-
suing our objectives. The apt metaphor is the story of King Midas, 
who gained the power to turn anything to gold, but found it too easy 
to turn everything to gold, including his own daughter (not the ob-
jective); similarly, the superintelligence we charge with an objective 
might find a way of achieving it that ends up eliminating us, perhaps 
even by using the carbon atoms in human beings themselves as fur-
ther resources, as means to its end.
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The idea is a perennial worry among superintelligence worriers. 
Nick Bostrom considers a scenario where superintelligence is as-
signed the seemingly mundane task of maximizing the production 
of paper clips (its human-given objective), and by degrees converts 
everything in the universe into a paper clip factory, including all the 
usable elements in our own bodies. Eliezer Yudkowsky, former head 
of Berkeley’s Machine Intelligence Research Institute, once quipped, 
“The AI does not hate you, nor does it love you, but you are made out 
of atoms which it can use for something else.”17

The idea that the coming superintelligence will somehow be laser-
focused and uber-competent at achieving an objective yet have zero 
common sense seems to cut against the grain of superintelligence 
itself—which is, after all, supposed to be human intelligence plus 
more. AI scientists like Gary Marcus, who understand intelligence as 
(minimally) having common sense (and perhaps have some them-
selves) point out that a superintelligent computer optimizing manu-
facture of a human product for sale, like paper clips, might also hit 
upon the idea that it shouldn’t destroy the humans that buy them. 
Again, there’s a curious simplification of superintelligence implicit in 
Russell’s and others’ worries about it acting as a superpowered au-
tomaton with blind computational adherence to an objective given to 
it by its programmers. It’s an odd position to stake out. Russell him-
self admits that common sense and language is a major and unachieved 
milestone for AI. Why is it absent in his picture of superintelligence? 
Future computers possessing common sense would obviate such 
worries—unless they were aggressive and diabolic after all, which 
Russell is at pains to dismiss as silly myth.

At any rate, paper clip apocalypse scenarios do bother scientifically-
minded researchers like Russell, who suggest we forestall such possi-
bilities by building into future superintelligent computers certain 
principles—first, to ensure that they “attach no intrinsic value” to 
their own well-being, having the sole objective of maximizing our 
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preferences. The problem, as Russell reminds us, is that we are often 
clueless about our own preferences. At the very least, we are apt to 
misstate what we want, in the King Midas sense.

Thus, as another principle in addition to altruism toward humanity, 
AI must also be imbued with humility, to thwart any errors it might 
make in pursuing altruism toward us (like converting the paper clip 
factory CEO into a paper clip, thinking it’s really, really squeezing 
every ounce of productivity, using all possible means). Altruistically 
humble machines help guard against the danger that cigar-smoking 
tech executives (who probably don’t smoke cigars anymore) could 
give them venal motives, and also against the possibility of machines 
being too smart in the wrong way, doing the equivalent of turning 
everything into gold. Confusingly, “altruistically humble” machines 
also sound a lot like the Ex Machina take on AI—as “alive” after all, 
with real (not just paper clip maximizing) intelligence and ethical 
sensibilities. One might be forgiven for drawing the conclusion that 
talk of AI is doomed perpetually to straddle science and myth.

Russell has a third principle he thinks necessary to thwart existen-
tial crisis with the coming superintelligence: AI should be developed 
in such a way that it learns to predict human preferences. Machines 
should watch us, in effect, to learn more about what we want, which 
helps them disregard possible actions that might send everything to 
the devil, so to speak. Learning about human preferences enables 
computers to avoid hurting us when attempting to achieve their ob-
jectives. (Russell does not explain how a superintelligence still dumb 
enough to wipe us out of existence under the impression it’s helping 
us should be trusted in the role of benevolent “panopticon,” ever 
watching and learning about our preferences.)

Russell’s retelling of the existential risk story about futuristic AI 
brings to mind the Czech playwright Karel Capek’s universal robots, 
who were engineered for optimal work efficiency, deliberately absent 
other mind traits, like appreciating beauty, having a moral sense, and 
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experiencing feelings and consciousness. The supposedly mindless 
automatons in his play R.U.R. got disgruntled somehow anyway, and 
sparked a robot revolution that wiped out virtually the entire human 
race. Capek’s ending is no doubt why we remember his 1920s play. No 
one gets excited about the prospect of a souped-up Roomba superin-
telligently (yet mindlessly—ignore the contradiction) learning all 
about how best to vacuum, or clean the kitchen, or fix the car. Sure, it 
would be incredibly helpful, but it’s not what we mean by superintel-
ligence. We’re excited about Ava. A superintelligence that isn’t con-
scious or feeling or capable of diabolic aggression isn’t really intelli-
gent at all. Lacking common sense, too, it seems a poor candidate for 
our mythological imaginations. It’s a calculator.

By tying human and machine intelligence together as, in essence, a 
game-theoretic quest to optimize objectives, Russell makes room for 
a seemingly “scientific” view of a computer mind, but only by severely 
restricting the possibilities of our own minds. This is an intelligence 
error once again. Human intelligence is various, still profoundly mys-
terious, and for all we know, effectively unbounded. By pulling down 
human intelligence, tying it to a definition more amenable to compu-
tation, current thinking about AI jettisons a richer understanding of 
mind. We are left with a simplified world.

Perhaps this world makes talk of a coming artificial general intelli-
gence seem more reasonable (because “AGI” doesn’t amount to so 
much), but it does so by jeopardizing interest in the project itself. We 
might as well retire the whole notion of superintelligence and begin 
a frankly more honest discussion about the very real possibility of 
globally destructive computer viruses, say, released by coders with 
manifestly ill-intent, mindlessly bringing down financial markets or 
hacking into and destroying data critical to the privacy of individuals 
or the security of countries. This is computation made effective by the 
discovery of vulnerability. It’s the real world, not myth.
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I N  S U M M A R Y

We can summarize these positions about AI and people as follows. 
Kurzweilians (mythologists about AI, full-stop) wax mystical about 
machines after the Singularity having consciousness, emotions, mo-
tives, and vast intelligence. Ironically, they keep alive philosophical 
exploration by transferring Shakespearean themes to computation. 
(Computers will have rich spiritual experiences, and be great lovers, 
and so on.) We might call this the Ex Machina effect.

Russellians want to keep Ex Machina in movies, downsizing talk 
about superintelligence to more mathematically respectable ideas 
about general computation achieving “objectives.” Unfortunately, 
Russellians tend to lump human beings into restricted definitions of 
intelligence, too. This reduces the perceived gap between human and 
machine, but only by reducing human possibility along with it. Rus-
sellians are thought leaders in a cultural trend, which I have called 
“the simplified world.” As Jaron Lanier puts it, “A new generation has 
come of age with a reduced expectation of what a person can be, and 
of who each person might become.”18

Kurzweilians and Russellians alike promulgate a technocentric 
view of the world that both simplifies views of people—in particular, 
with deflationary views of intelligence as computation—and expands 
views of technology, by promoting futurism about AI as science and 
not myth.

Focusing on bat suits instead of Bruce Wayne has gotten us into a 
lot of trouble. We see unlimited possibilities for machines, but a re-
stricted horizon for ourselves. In fact, the future intelligence of ma-
chines is a scientific question, not a mythological one. If AI keeps 
following the same pattern of overperforming in the fake world of 
games or ad placement, we might end up, at the limit, with fantasti-
cally intrusive and dangerous idiots savants.
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We will turn now to the science of AI, and it is here—in scientific 
enquiry itself—that the simplified world grows complex again, and 
mysterious. For, when we remove the constraint of our intelligence 
errors, the scales lift from our eyes, and a very formidable problem 
indeed presents itself.





Par t I I

T H E  P R O B L E M  O F  I N F E R E N C E





Chapter 8

• • •

D O N ’ T  C A L C U L A T E ,  A N A L Y Z E

AI is the quest for intelligence. Across the several chapters making up 
this part of the book, I hope to convince you that this quest faces 
significant obstacles, obstacles which we do not know how to surmount. 
To do so, we need to investigate the nature of intelligence itself. And 
there is no better place to begin our investigation than with a “strange 
and interesting young fellow,” the amateur detective August Dupin, 
to whom we are introduced by the unnamed narrator in perhaps the 
world’s first detective story, “The Murders in the Rue Morgue.”1

O N  S O LV I N G  C R I M E S

The narrator—who shares many traits with Edgar Allan Poe, the 
author—tells us early on that he’s obsessed with the methods of 
thinking. He is curious about how human minds connect seem-
ingly unrelated pieces of information with careful observation and 
reasoning—with inferences. What serendipity then, that the narrator 
finds himself lodging in an old house together with Dupin, spending 
all day around the brilliant detective.

Dupin, we soon learn, is not a normal guy. He’s the sort of odd per-
sonality who possesses true originality. And indeed, he is odd. Dupin 
comes from an illustrious family but has been reduced to a state of 
near poverty, which he scarcely minds as he’s constantly thinking, 
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lost in ideas. When he does talk, he ruminates out loud. This could, of 
course, grow annoying. But the narrator treasures Dupin’s “peculiar 
analytic ability.” He says: “We passed the days reading, writing, or 
conversing, until warned by the clock of the advent of the true Dark-
ness. Then we sallied forth into the streets arm in arm, continuing the 
topics of the day, or roaming far and wide until a late hour, seeking, 
amid the wild lights and shadows of the populous city, that infinity of 
mental excitement which quiet observation can afford.”

Dupin is a prototype, an exemplar, like Sherlock Holmes. Like 
Holmes, he notices what the police, applying their “simple diligence 
and activity,” somehow manage to miss.

One night, alone in the old house with Dupin, the narrator picks 
up the evening edition of the “Gazette des Tribunaux” and learns of 
murders in the Rue Morgue:

“Extraordinary Murders.—This morning, about three o’clock, 
the inhabitants of the Quartier St.  Roch were aroused from 
sleep by a succession of terrific shrieks, issuing, apparently, 
from the fourth story of a house in the Rue Morgue, known to 
be in the sole occupancy of one Madame L’Espanaye, and her 
daughter, Mademoiselle Camille L’Espanaye. After some delay, 
occasioned by a fruitless attempt to procure admission in the 
usual manner, the gateway was broken in with a crowbar, and 
eight or ten of the neighbors entered, accompanied by two 
gendarmes. By this time the cries had ceased; but, as the party 
rushed up the first flight of stairs, two or more rough voices, in 
angry contention, were distinguished, and seemed to proceed 
from the upper part of the house. As the second landing was 
reached, these sounds, also, had ceased, and everything re-
mained perfectly quiet. The party spread themselves, and hur-
ried from room to room. Upon arriving at a large back chamber 
in the fourth story, (the door of which, being found locked, with 
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the key inside, was forced open,) a spectacle presented itself 
which struck every one present not less with horror than with 
astonishment.

“The apartment was in the wildest disorder—the furniture 
broken and thrown about in all directions. There was only one 
bedstead; and from this the bed had been removed, and thrown 
into the middle of the floor. On a chair lay a razor, besmeared 
with blood. On the hearth were two or three long and thick 
tresses of grey human hair, also dabbled in blood, and seeming 
to have been pulled out by the roots. Upon the floor were found 
four Napoleons, an ear-ring of topaz, three large silver spoons, 
three smaller of metal d’Alger, and two bags, containing nearly 
four thousand francs in gold. The drawers of a bureau, which 
stood in one corner, were open, and had been, apparently, ri-
fled, although many articles still remained in them. A small iron 
safe was discovered under the bed (not under the bedstead). It 
was open, with the key still in the door. It had no contents be-
yond a few old letters, and other papers of little consequence.

“Of Madame L’Espanaye no traces were here seen; but an 
unusual quantity of soot being observed in the fire-place, a 
search was made in the chimney, and (horrible to relate!) the 
corpse of the daughter, head downward, was dragged therefrom; 
it having been thus forced up the narrow aperture for a consid-
erable distance. The body was quite warm. Upon examining it, 
many excoriations were perceived, no doubt occasioned by the 
violence with which it had been thrust up and disengaged. 
Upon the face were many severe scratches, and, upon the throat, 
dark bruises, and deep indentations of finger nails, as if the de-
ceased had been throttled to death. . . .

“After a thorough investigation of every portion of the house, 
without farther discovery, the party made its way into a small 
paved yard in the rear of the building, where lay the corpse of 



92	 T he   P roblem       of   I nference      

the old lady, with her throat so entirely cut that, upon an at-
tempt to raise her, the head fell off. The body, as well as the head, 
was fearfully mutilated—the former so much so as scarcely to 
retain any semblance of humanity.

“To this horrible mystery there is not as yet, we believe, the 
slightest clew.”2

The next day the Gazette publishes more details about the case. 
From the accounts of those giving evidence we can assemble the rel-
evant information. The mother and daughter were well-to-do. Three 
days before the murders the mother had withdrawn a large quantity 
of money from the bank, in gold, which was found in open sight, un-
touched, on the floor after the murders. Also curious: a policeman 
among those first on the scene reported hearing two voices—one 
was obviously from a French-speaking man, and the other he could 
not recognize at all, calling it “hard, high, and very strange.” He 
thought it from a foreigner, and possibly Spanish. Other witnesses 
would later describe the unintelligible voice as possibly Italian, Rus
sian, or English.

Puzzling. Money—perhaps the most likely motive for murder—is 
left untouched in the house. The doors are locked from the inside. The 
body of the daughter is found up the chimney, lodged in with such 
force that it takes more than one person to pull her out. And, too, the 
voices. From the murderers, apparently, but although the police 
clearly heard two voices as they climbed the stairs to the home, only 
one is recognizable, the other reportedly a strange mixture of seeming 
gibberish. None of the witnesses are able to say exactly what is being 
said (if anything), in any language.

The police are flummoxed. Witness testimony only adds to the 
confusion. This is to say, all the clues, taken together, really point no-
where. The murders are a mystery, and that is precisely why our odd-
ball amateur detective Dupin takes such a keen interest.
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The narrator suggests that Dupin solves the case early on, by 
reading the account released by the police in the newspaper. The two, 
however, gain permission to visit the old house at the Rue Morgue 
while the crime scene is still intact. On the way back, Dupin stops in 
the office of another newspaper and places an ad in the lost and found 
section. Has someone in Paris, presumably a sailor, belonging to a 
Maltese vessel, lost their orangutan? The owner may call to claim it.

And here is the inference that cracks the case of the murders at the 
Rue Morgue: no human murdered the old woman and her daughter 
that night. The killer was not a human but a wild animal brought back 
from a jungle by a sailor, and kept in some nearby dwelling. In a frenzy 
after escaping his master, the orangutan leaped through the old 
house’s window by swinging on the outside shutter, and then into the 
house, screaming and screeching and brandishing a straight-edge 
razor. Here’s the murder weapon: the razor that beheads the old woman, 
and the sheer animal strength of the animal that crams the daughter 
feet first up the chimney.

The human voice heard by witnesses? The orangutan’s owner. And 
the muffled and incomprehensible noises? The grunts of the animal.

T H E  G U E S S W O R K  M E T H O D

But who would infer this from the facts of the case? Surely it is all 
right in front of everyone. In truth, Dupin just guessed. The police 
followed known methods until they led nowhere. Then, they started 
guessing too. The only difference was that Dupin’s guess was the 
right one.

Poe begins “The Murders at the Rue Morgue” by ruminating about 
the nature of thinking. The fictional story of the crime begins first 
with nonfiction. He searches for the right words. Dupin’s reasoning, 
he decides, is a triumph of analysis, in contrast to formulaic calcula-
tion. Calculation is connecting known dots; applying the rules of 
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algebra, say. Analysis is making sense of the dots, making a leap or 
guess that explains them—and then, given some insight, using calcu-
lation to test it. Calculation has its limits: “But it is in matters beyond 
the limits of mere rule that the skill of the analyst is evinced.” Rule-
following isn’t enough, but it is unclear what exactly else is involved. 
That Poe appreciates this mystery is evident in the declaration he 
makes at the outset of his story: “The mental features discoursed of as 
the analytical, are, in themselves, but little susceptible to analysis.”3

The American scientist and philosopher Charles Sanders Peirce 
would read Poe’s stories with fascination a few decades later. Peirce 
was also wondering how we think, how we reason about things. He 
managed even to capture Dupin’s mental gymnastics in logical sym-
bols. He didn’t know how to automate the detective’s insightful style 
of guessing, but he thought it was a central aspect of human thinking 
generally.

To Peirce, thinking isn’t a calculation but a leap, a guess. Nothing 
is certain. We piece things together. We explain and revise. Peirce, 
living as he did in the nineteenth century, didn’t know about digital 
computers. But he anticipated what would make AI a hard problem 
for everyone. It comes down, really, to this: Given that our own 
thinking is a puzzling series of guesswork, how can we hope to pro-
gram it?

Eventually Peirce developed an entire explanatory framework for 
human reasoning. It was based on formal logic and its types, like de-
duction and induction.

And there was a third element, Peirce reasoned, that captured our 
guessing games. He called it “abduction.” It is to this that we turn next.



Chapter 9

• • •

T H E  P U Z Z L E  O F  P E I R C E  

( A N D  P E I R C E ’ S  P U Z Z L E)

For those familiar with his work, Charles Sanders Peirce is in a select 
group of truly original and important thinkers. The historian Joseph 
Brent, in his biography C.  S. Peirce: A Life, called him “perhaps the 
most important mind the United States has ever produced.” The phi
losopher Paul Weiss, writing in The Dictionary of American Biography 
in 1934, described Peirce as “the most original and versatile of American 
philosophers and America’s greatest logician.” The cultural historian 
and critic Lewis Mumford placed him in the company of iconoclastic 
geniuses like Roger Bacon and Leonardo Da Vinci. And when Noam 
Chomsky, the pioneering linguistics scientist at MIT, was asked in a 
1976 interview about his influences, he said, “In relation to the ques-
tions we have been discussing [concerning the philosophy of lan-
guage], the philosopher to whom I feel closest and whom I’m almost 
paraphrasing is Charles Sanders Peirce.”1

B R I L L I A N T  B U T  A L O N E

Like Albert Einstein, Peirce was left-handed and thought in pictures. 
He sketched out logical inferences in diagrams. In his later years, he 
wrote alone in his home, complaining that he was hungry and cold, 
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too poor to afford fuel for the stove. His few friends worried about 
him and managed to get him a series of lectures at Harvard on the 
foundations of logic, in which he explained the types of logical in-
ference with a framework that he thought undergirded the scientific 
method—a program for thinking clearly. Among the attendees was 
William James, the famous philosopher and early psychologist at 
Harvard, who later confessed he didn’t understand the lectures 
completely—that the mathematics attached to Peirce’s pictures and 
diagrams were beyond his ken. Apparently James wasn’t alone in this; 
the lectures went largely unnoticed and appeared in book form only 
decades later.

Born into Victorian scientific culture in Cambridge, Massachu
setts, in 1839, Peirce came from a well-to-do and overachieving family. 
His father was an eminent professor of mathematics at Harvard. A 
younger cousin would become a powerful senator, Henry Cabot Lodge. 
Peirce was classically educated, graduating in 1863 summa cum laude 
from Harvard University’s Lawrence Scientific School. He spent thirty 
years as a research scientist with the US Coast and Geodetic Survey 
on topological studies of the earth’s surface using precise measure
ments of gravity intensity. He was an amateur chemist, a prestigious 
lecturer on logic at Johns Hopkins University, and the first American 
delegate to any international scientific association. He was a scientist, 
a logician, a philosopher, a writer, a prolific book reviewer for the Na-
tion, and more. Peirce scholar Max H. Fisch, who spent decades re-
searching Peirce’s life and work, offers this suitably grand judgment of 
his many achievements:

Who is the most original and the most versatile intellect that 
the Americas have so far produced? The answer “Charles  S. 
Peirce” is uncontested, because any second would be so far 
behind as not to be worth nominating. Mathematician, astron-
omer, chemist, geodesist, surveyor, cartographer, metrologist, 
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spectroscopist, engineer, inventor; psychologist, philologist, 
lexicographer, historian of science, mathematical economist, 
lifelong student of medicine; book reviewer, dramatist, actor, 
short story writer; phenomenologist, semiotician, logician, 
rhetorician, metaphysician. . . . ​He is the only system-building 
philosopher in the Americas who has been both competent and 
productive in logic, in mathematics, and in a wide range of the 
sciences. If he has had any equals in that respect in the entire 
history of philosophy, they do not number more than two.2

Yet Peirce died an outcast, largely forgotten. Forgotten geniuses 
are common enough in history that we occasionally rediscover them, 
as with Tesla. But arguably more than Tesla—who, after all, achieved 
a kind of posthumous fame as Elon Musk’s choice of inspiration to 
name an electric car company after—Peirce stands as an important 
thinker who has been mostly written out of the history books. His 
work is most appreciated in philosophy, where he is known as the 
founder of the philosophical school known as pragmatism.

His early work on computing has been all but forgotten. Scholars 
still plumb his voluminous writings on the nature of logic, but the 
subject is arcane, too difficult to join up with mainstream discussion. 
Thus, even as some who have understood the significance and scope 
of his thoughts on the nature of logic have compared him to Aristotle, 
a discussion of Peirce’s ideas today requires in most circles a bio-
graphical sketch—and an explanation, even an apology.

P H Y S I C S ,  P H I L O S O P H Y,  A N D  P E R S O N A L I T Y

Why was Peirce forgotten? His personal life gives us a clue: he irri-
tated nearly everyone. William James remained a close and lifelong 
friend. But even James came away from his first encounter with Peirce, 
when both were students at Harvard, with a mixed impression, as he 
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wrote to his family: “there is a son of Prof. Peirce, whom I suspect to 
be a very smart ‘fellow’ with a great deal of character, pretty indepen
dent and violent though.”3 Sympathetically, James later referred to 
Peirce as “that strange and unruly being.” 4

Peirce’s prickly personality and unconcern with contemporary 
mores attracted endless trouble for him personally and professionally. 
He often offended Victorian socialites in New England (including his 
family), who justifiably shunned him; Harvard refused to offer him a 
professorship because of a known infidelity in his marriage; the Coast 
Survey of the United States government, where he worked for decades, 
ultimately fired him for failing to deliver reports on time and for losing 
expensive equipment while touring Europe. So, too, was he dismissed 
by Johns Hopkins, after unspecified reports of unbecoming conduct. 
Today, we would say that he didn’t fit in—a perfect stereotype of the 
misunderstood genius. He was constitutionally incapable of playing 
by the rules.5

Peirce’s personal scandals and idiosyncrasies help explain why, 
for instance, records of his personal life—volumes of documents—
remained sealed in Harvard’s Houghton Library until 1956, forty-two 
years after his death. His scientific and philosophical papers—including 
many of immense interest to computer science and especially AI—lay 
relatively untouched, and unpublished, in Harvard’s archives for 
want of a “few thousand dollars” to “guarantee the initial expense of 
publication,” as Lewis Mumford later put it.6 Not understanding his 
ideas and their significance, and unwilling to invite scandal, many of 
those who knew Peirce never saw his reputation restored or much of his 
life’s work published. Peirce himself died in obscurity, survived by his 
equally enigmatic second wife, Juliette, a French woman with her own 
somewhat checkered history. Fittingly, Peirce’s family sometimes de-
scribed Juliette as an outcast, or a “gypsy.”

Only much, much later—and to some extent not even still today—​
have we come to understand the enormity of Peirce’s contribution 
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to mathematics and especially logic. Of utmost significance is his 
thinking about logical inference, and in particular, to move to the 
centerpiece of his life’s work, his exploration of the depth and mystery 
of what he called abductive inference, a kind of explanatory guess that, 
he realized, undergirds most of our thinking.

Peirce noted that abductive reasoning had been left out of accounts 
of logical reasoning going back to Aristotle. It also didn’t fit into the 
usual logical framework assumed in mathematics or logic courses. He 
saw abduction as a missing logical piece, which raised fundamental 
questions about automation and intelligence. Had he known about 
AI, he likely would have seen what is today too often missed: that the 
problem of abductive inference confronts AI with its central, still en-
tirely unsolved, challenge.

T H E  P U Z Z L E  O F  I N F E R E N C E

Edgar Allan Poe’s narrator groped for words to describe what Peirce 
would later write volumes about—abductive inference. But abductive 
inference is a kind of inference. What is inference? A noun, for one. 
The verb form is “infer,” which speaks to actions. Etymologically, to 
infer means to “bring about,” from Latin “in,” into, and “ferre,” bring. 
The Oxford English Dictionary tells us it’s something we do cogni-
tively, with our minds: “to reach an opinion or decide that something 
is true on the basis of information that is available.”

Unfortunately, the OED also tells us that “deduce” is a synonym of 
infer, which is unhelpful (deducing is only one way of inferring).

The OED also offers a few usage examples that highlight the gener-
ality of the word “infer” in common parlance:

To infer something (from something): Much of the meaning must 
be inferred from the context. Readers are left to infer the killer’s 
motives.
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To infer that: It is reasonable to infer that the government knew 
about these deals.

Inference is to bring about a new thought, which in logic amounts 
to drawing a conclusion, and more generally involves using what we 
already know, and what we see or observe, to update prior beliefs. We 
might infer the killer’s motives (to borrow from the OED) using what 
we already know and what we’ve read in the papers (like Dupin).

Inference is also a leap of sorts, deemed reasonable, as when we infer 
that “the government knew about these deals”—again, on the basis of 
whatever prior knowledge we have (like public or shared knowledge) as 
well as reading (observing) some breaking story or stories.

Inference is a basic cognitive act for intelligent minds. If a cogni-
tive agent (a person, an AI system) is not intelligent, it will infer badly. 
But any system that infers at all must have some basic intelligence, 
because the very act of using what is known and what is observed to 
update beliefs is inescapably tied up with what we mean by intelli-
gence. If an AI system is not inferring at all, it doesn’t really deserve to 
be called AI. (Although we might say that even a system that tags pic-
tures of cats is inferring that what it “sees” is a cat—so the bar can be 
quite low.)

It’s impossible to get a joke, discover a new vaccine, solve a murder 
like Dupin does, or merely keep up with sundry happenings and com-
munications in the world without some inference capability or other. 
We know a lot of things, sure, but only inference gets us to new knowl-
edge (or belief). We know that the sun will rise tomorrow, so we don’t 
need to infer it. Likewise we don’t bother inferring that our hand is 
still attached to our arm. This is knowledge we already have, a set of 
beliefs we’ve already formed. But our knowledge is always changing 
and getting updated. If it’s mysteriously dark outside too early, we 
might infer a solar eclipse, or maybe that a large dust storm is blotting 
out the sun to the west, or maybe that there’s a nuclear holocaust. It 
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depends—what do we currently know? What makes most sense of 
what we see?

In a general sense, we’re always inferring—it’s like a condition of 
being awake. I might walk into the kitchen, discover a half-empty can of 
Pepsi, and infer that my sister left it there, as she drinks Pepsi and is vis-
iting. On the other hand, there are workers here redoing the counter-
tops, and I also noticed that one of them was drinking a Pepsi earlier. 
For that matter, I was drinking a Pepsi earlier and left it unfinished 
on the porch, so perhaps my spouse brought it in. We end up guessing 
an explanation that makes sense, given what we know and the con-
text we’re in. This is “real-time” inference, since we’re drawing con-
clusions as we walk into the room. Real-world circumstances are 
always changing, so real-time inference is common. After all, we think 
in time. A computer program that can solve a problem after ten bil-
lion years is not intelligent at all, and neither is one that, in real time, 
walks into a wall.

The provisional nature of many inferences means that initial ones 
can be wrong, especially if arrived at too hastily. If I come in to the 
office late, the boss might infer that I’m not taking things seriously, 
when in fact the traffic was backed up due to an accident. In other 
words, the boss draws a conclusion based on some preformed impres-
sion or prejudice about me. People in day-to-day conversation use the 
word inference in this sense, referring to a too-hasty jump to an un-
warranted conclusion: “Oh, that’s Suzy, she’s inferring all sorts of 
crazy things about you after what you said last night.” And it is true 
that, technically, Suzy is making inferences, but the sense here is that 
they are biased ones, with Suzy too ready to make unfair assumptions 
(perhaps because she’s in a bad mood or doesn’t like you).

In a more particular sense, inference entered the mathematics 
lexicon long ago, and has featured more recently in discussions 
about computation and AI. In this setting, “real-time inference” might 
refer to a robot navigating a dynamic environment, like a busy street. 
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“Probabilistic inference” draws conclusions from statistical data, with 
obvious application to data-centric approaches to AI.

Once upon a time, AI scientists struggled mightily with a precon-
dition of inference, the intelligent use of what we already know—the 
question of “knowledge.” Systems that don’t know anything can’t 
infer much, either. So early researchers tried to code knowledge into 
AI systems, to help them make sense of their sensor or text input. It 
was discovered (the hard way, by repeated failure) that AI systems 
with large knowledge repositories of facts and rules still had to use the 
knowledge in context, to draw relevant conclusions. This “using” of 
knowledge is what makes inference so hard. Which bit of knowledge 
is relevant in the haystack of my memory, applied to the dynamically 
changing world around me?

The ability to determine which bits of knowledge are relevant is 
not a computational skill. Poe insists that in the realm of the “ana-
lytic,” human insights are not arrived at by formula; they are “matters 
beyond the limits of mere rule” or calculation. Indeed, Dupin seems 
to arrive at his explanation for the killings—the orangutan—by a 
kind of serendipitous guess, which he later verifies by meeting the 
owner of the missing animal. So: was he just guessing? In an impor
tant sense, he was. But this doesn’t cancel it as an inference. It makes 
it an important kind.

M O R E  O N  T U R I N G

In his seminal 1950 paper “Computing Machinery and Intelligence” 
Turing dismissed questions about machines actually thinking, poking 
fun at his own title, claiming that “thinking” is hopelessly unscientific 
and subjective. Talking about computers thinking is like talking 
about submarines swimming. To refer to “swimming” is already to 
anthropomorphize. Dolphins swim, but submarines don’t. Turing 
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thought the use of the word thinking was like this, too. If a computer 
played chess, who could say whether it was thinking or just calculating?

Turing was interested in a fully programmable mind. He therefore 
disposed of his original distinction between insight and ingenuity by 
pulling insight—whatever it is—into the sphere of computation. By 
so doing, he made the question of AI fully testable. The thesis was 
radical even by his own earlier standards, but we will not begrudge 
him for that because it laid the groundwork for AI researchers later in 
the decade to begin work without philosophical worries holding up 
progress.

Unfortunately, exactly how computational inference could be—or 
would become—like human inference was never adequately ad-
dressed. The field didn’t start with a theory of inference, which would 
have provided a blueprint for later development (or an impossibility 
proof). For AI researchers to lack a theory of inference is like nuclear 
engineers beginning work on the nuclear bomb without first working 
out the details of fission reactions. Knowledge of Einstein’s equation 
is not enough, clearly. And knowledge of computational theory by AI 
enthusiasts isn’t, either—because the very question confronting sci-
entists working on AI is how computation can be converted into the 
proper range and types of inference exhibited by minds. The question 
had to be asked directly. By ignoring or skirting it, the field made false 
hopes, dead-end paths, and wasted time inevitable.

For there is much to consider. Take, for instance, the many infer-
ences found in the history of science. Scientists frame hypotheses, 
then test them. But the hypotheses aren’t arrived at mechanically; no-
toriously, they sometimes pop into scientists’ heads (typically after 
mastery of the field). Like Turing once did, students of scientific dis-
covery tend to push such intellectual leaps outside the formalities of 
scientific practice, and so the central act of intelligence “rides along 
for free,” unanalyzed itself. But such hypotheses are genuine acts of 
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mind, central to all science, and often not explainable by pointing to 
data or evidence or anything obvious or programmable.7

When Copernicus posited that the earth revolved around the sun 
and not vice versa, he ignored mountains of evidence and data accu-
mulated over the centuries by astronomers working with the older, 
Ptolemaic model. He redrew everything with the sun at the center, 
and worked out a usable heliocentric model. Importantly, the initial 
Copernican model was actually less predictive despite its being cor-
rect. It was initially only a framework that, if completed, could offer 
elegant explanations to replace the increasingly convoluted ones, 
such as planetary retrograde motion, plaguing the Ptolemaic model. 
Only by first ignoring all the data or reconceptualizing it could Co-
pernicus reject the geocentric model and infer a radical new structure 
to the solar system. (And note that this raises a question: How would 
“big data” have helped? The data was all fit to the wrong model.)

The Copernican leap that launched the Scientific Revolution could 
better be described as an inspired guess. The same could be said of 
Kepler’s choice of an ellipse to describe planetary motion, because a 
vast number of (technically, infinite) geometric shapes can be fit to 
planetary orbits (perhaps excluding transcendental ones, like sine 
waves). The ellipse wasn’t simpler than all the others—this wasn’t an 
Occam’s razor explanation. What Kepler literally conjectured was an 
explanation that to him “felt right.”

The fact that conjectures lead to discoveries doesn’t fit with me-
chanical accounts of science; to the contrary, it contradicts them. But 
detective work, scientific discovery, innovation, and common sense 
are all workings of the mind; they are all inferences that AI scientists in 
search of generally intelligent machines must somehow account for.

As you can see, cognitive modeling—building a computer to think, 
to infer—is puzzling. AI researchers (at least for now) should be most 
concerned with inference in its everyday context. Why? Because the 
vast majority of inferences we make are seemingly mundane, like all 
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the multifarious leaps and guesses made in the course of ordinary 
conversation. Unfortunately for researchers in AI, even mundane in-
ferences are not simple to program. The Turing test, for instance, is 
hard essentially because understanding natural language requires lots 
of commonsense inferences, which are neither logically certain nor 
(often) highly probable. It requires, in other words, lots of abductions.

We typically don’t even notice such inferences, which is good: if 
we did notice them, we’d tend to get stuck in solipsistic loops, chasing 
around our thoughts. This brings us back to Peirce, and more specifi-
cally, it brings us to the tripartite inference framework undergirding 
intelligence: deduction, induction, and abduction.



Chapter 10

• • •

P R O B L E M S  W I T H  D E D U C T I O N  

A N D  I N D U C T I O N

Throughout most of intellectual history, inference has been syn-
onymous with deduction. Aristotle studied a simple form of deduc-
tion known as the syllogism—two statements known or believed 
already true, leading to a third, the conclusion. Aristotle developed 
an early form of logic using syllogisms to analyze arguments made 
by himself and others, and to lay a foundation for correct rea-
soning. In his tradition, intelligence must conform to known de-
ductive rules.

This makes sense. We should not be swayed, for instance, by someone 
arguing that Ray Charles is God because God is love, and Love is blind 
(and so is Ray Charles). The argument is fallacious—it breaks rules of 
deductive reasoning. Writing all this down precisely has been the tra-
dition of deductive logic. Aristotle also explored how deductive rules 
relate to so-called practical reasoning—for instance, when an intelli-
gent agent formulates a plan to achieve a goal whose steps can be ana-
lyzed logically. (The plan might be provably “correct” yet fail in the 
execution—still, it’s a start).

Logical (correct) reasoning and planning are important subfields 
in AI and, almost since its inception, classic AI has explored ap-
proaches to reasoning and planning using symbolic logic such as 
deduction. An AI system can implement a syllogism, for instance, 
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and also a planning algorithm (rules of the form: {A, B, C, . . .}→G, 
where A, B, and C are actions to be taken and G is the desired goal). 
There have been no major breakthroughs toward artificial general 
intelligence using such methods, but even modern AI scientists like 
Stuart Russell continue to insist that symbolic logic will be an 
important component of any eventual artificial general intelligence 
system—for intelligence is, among other things, about reasoning 
and planning.

Aristotle thus kicked off formal studies of inference thousands of 
years ago. A few decades ago, he also helped kick off work on AI. Sym-
bolic reasoning using rules from deduction ties intelligence specifi-
cally to knowledge, a prerequisite for common sense, which is still 
missing almost entirely from AI systems. Early AI pioneer John Mc-
Carthy (a founder of the field, at the Dartmouth Conference in 1956) 
realized this early on, launching a sustained effort at the develop-
ment of knowledge-based systems—systems that rely on computer-
representable statements about the world to reason and act. All the 
old knowledge-based systems ran into defeating, if instructive, prob
lems. Some of these problems, perhaps, may be revisited with hope of 
progress. Others, however, seem fundamental. In particular, they are 
limitations inherent in rule-based reasoning itself. Deductive logic is 
precise because it gives us certainty. As we might expect, certainty is 
a high bar for the real world, where artificial general intelligence sys-
tems (and people) must prove their intelligence.

D E D U C T I O N :  H O W  N E V E R  T O  B E  W R O N G

Logicians (and computer scientists) analyze deductive inference in 
systems of statements that can be true or false. By convention, all 
statements written before the last in a series are called premises. The 
last statement follows from the premises; it’s called the conclusion. The 
statements and the conclusion together are known as an argument. 
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A good deductive argument is a “sure bet,” because its conclusion is 
necessarily true. Here’s one:

If it’s raining, the streets are wet.

It is, in fact, raining.

Therefore, the streets are wet.

The conclusion is the inference we should draw from the two 
premises. (In essence, it answers the question: Knowing nothing else, 
what follows from the premises?) The rule used to infer the conclu-
sion is called valid if the conclusion must be true whenever the prem-
ises are true. Validity is a “trustworthy” stamp for the rule used; the 
rule will always preserve truth, whenever our premises (or prior be-
liefs) are true. Thus, the above example is valid. It uses one of the 
oldest deductive rules discovered, still referred to in Latin: modus po-
nens. In quasi-symbolic form:

If P, then Q

P

Therefore Q

And in fully analyzable (computable) format, we have its logical 
form:

P → Q

P

———

Q

Here, the connector “→” has a specific meaning, or semantics, 
which determines the truth values for P and Q. In deductive logic the 
rule is called a material conditional, and guarantees that Q follows 
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from the truth of P and the rule P → Q. (The range of true or false pos-
sibilities is given by a truth table, shown later.)

Now consider some modifications to our argument about rain 
and streets. In particular, what if it’s not raining? In that case, the rule 
doesn’t “fire.” Nothing follows. But the argument form is still valid. 
It’s still true that if it’s raining, then the streets are wet. If in fact it 
is raining, then the argument becomes “sound” (and not just valid). 
Soundness is truth—real truth, as opposed to the conditional truth of 
validity. Soundness tells us that the premises really are “true.” Sound-
ness guarantees that intelligent agents using deductive inference will 
infer truths from prior truths. Validity, on the other hand, guarantees 
only that whatever the intelligent agent believes, its inferences will be 
formally correct (even if reasoning about lies or falsehoods). In fact, 
deductive arguments that are valid but not sound can introduce all 
sorts of silliness into deductive reasoning. For instance:

If it’s raining, then pigs will fly.

It’s raining.

Therefore, pigs will fly.

A silly argument, but perfectly valid, because it again uses modus po-
nens, the mode of reasoning from a hypothetical proposition. The first 
premise is of course false. The second premise might be false, too, if it is 
not actually raining. Even if it is raining, however, we can’t rely on the 
first premise, because there’s no connection between rain and the flight 
of pigs—and anyway, pigs don’t fly, regardless of the weather or any-
thing else. The argument is valid, but not sound—and perfectly useless.

Here’s a sound deduction:

All men are mortal.

Socrates is a man.

Therefore Socrates is mortal.
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How can it be wrong? It can’t. The conclusion always follows with 
one hundred percent certainty. Deduction supplies a template for 
“perfect” and precise thinking for humans and machines, and pri-
marily for this reason it has been investigated extensively in mathe
matics and the sciences, and used successfully in several important 
applications in the field of AI. Early on, for instance, deduction-
based AI systems were able to automatically prove real (not “toy”) 
theorems in mathematics. A computer program called Logic Theo-
rist, the brainchild of AI pioneers Alan Newell, Herb Simon, and 
Cliff Shaw, proved interesting logical theorems as early as 1956, 
using the foundational twentieth-century work on logic, Bertrand 
Russell and Alfred North Whitehead’s Principia Mathematica. Au-
tomated reasoning systems using deduction have also been applied 
to circuit design for computer motherboards, and to the task of soft-
ware and hardware verification, ensuring software doesn’t contain 
bugs or contradictions.1 In such cases, the deductive approach is 
easier and more effective than modern AI methods using statistics 
and learning. As early researchers in AI knew, too, our knowledge is 
often expressed symbolically (as in the rain example above), so de-
duction makes sense; it’s an obvious choice. Unfortunately, there 
are well-known problems in extending deductive inference to gen-
eral intelligence.

K N O W L E D G E  P R O B L E M S

Over the years, many problems with deduction have been discovered. 
Perhaps the most damning: deduction never adds knowledge. If I 
know that people are mortal (they die) and that such-and-such is a 
person, I already know that such-and-such will die. The deduction 
simply confirms what a rational person should conclude from the 
premises given, which in a simple syllogism is easy to see because the 
“knowledge” is already contained in the statements. The conclusion 
just makes it explicit.
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Deduction is extraordinary useful as a defense against someone 
inferring wild or incorrect conclusions from a set of statements—say, 
by insisting that based on the premises of human mortality and 
Socrates’s being a human, we should conclude that Alpha Centauri 
is made of cheese. Deduction gives rational agents a template for 
“staying on track,” which is clearly a good first step for any AI system 
we hope will make intelligent inferences. But we don’t get very far 
using only deduction. For example, in response to Copernicus’s theory 
that the earth revolves around the sun and not vice versa, old-school 
Ptolemaic astronomers might employ a deductive counterattack:

If the heavens were created by God, Earth would be at the center 
of the heavens.

The heavens were created by God.

Therefore, Earth is at the center of the heavens.

The argument is valid, but again, this tells us only that if the prem-
ises are in fact true, then the conclusion necessarily follows. All the 
heavy lifting is in empirical questions about the veracity of the prem-
ises. We got this “for free,” so to speak, with our inquiry into Socrates’s 
mortality, since generally we all agree that people die (even if they go 
to heaven later). But the generalization that any heavens created by a 
divinity would feature our own planet at the center seems as debat-
able as any other aesthetic or scriptural assertion. We might insist on 
a variant interpretation of scripture (Galileo famously remarked that 
God tells us how to go to heaven, not how the heavens go). Or we 
might, especially if we were atheists or scientific materialists, reject 
the truth of the second premise out of hand.

Deduction is therefore useless in the pursuit of new knowledge, 
and it only clears up disputed beliefs if bona fide errors in reasoning 
are made. Famously, conspiracy theorists might never make deduc-
tive reasoning mistakes—it’s just that they adopt premises as true 
that others find dubious or just crazy.
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In other words, any intelligent system will require other types of 
inference to zero in on true (and useful) beliefs in the first place. A 
deductive certainty in inferred conclusions isn’t enough.

R E L E VA N C E  P R O B L E M S

Deduction has other limitations that make it unsuitable as a strategy 
for engineering general intelligence. One particularly damning one in-
volves considerations of relevance. The premise If it’s raining, then pigs 
will fly is untrue, because pigs don’t fly, but it’s also a fantastically bad ex-
ample of saying something relevant. Rain has nothing to do with pigs 
flying. On the other hand, planes do fly, but the premise If it’s raining, 
planes fly is irrelevant, too. It might be true (at least some of the time), but 
from the fact that it’s raining we shouldn’t hold beliefs about planes in 
the air. The statement again ignores considerations of relevance.

Part of the problem here is causation: rain doesn’t cause planes to 
fly (though it might in some circumstances keep them on the ground). 
Here it depends on how we want to use the knowledge. If the ther-
mometer is in the red, it’s hot outside is true. But if we want to infer a 
likely explanation for a heat wave, the thermometer isn’t any help. The 
statement is true but irrelevant. If the rooster crows, the sun is coming up 
is also true, but if we were to ask an artificial general intelligence 
system why the sun rose and it offered up the rooster, we’d be reluc-
tant to attribute much intelligence to it.

Consider this example, taken from the philosopher of science Wesley 
Salmon:

All males who take birth control pills regularly do not get 
pregnant.

A man takes his wife’s birth control pills regularly.

Therefore, the man does not get pregnant.2
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In fact, this is a perfectly sound deductive argument: it uses modus 
ponens with true premises. But the man’s avoiding pregnancy has 
nothing to do with the reasons given. They’re irrelevant, because men 
don’t get pregnant anyway. The argument explains nothing. We can 
imagine a robot armed with a vast database of facts and rules rea-
soning in this way, using deduction. Nothing is really wrong, per se, 
but the robot doesn’t understand anything—it doesn’t know what’s 
relevant and what’s silly.

Consider a subtler example:

Anyone who eats an ounce of arsenic dies within twenty-four 
hours.

Jones ate an ounce of arsenic at time t.

Jones died within twenty-four hours of t.

This is a perfectly fine deductive argument, but it would not ex-
plain Jones’s death if, for instance, Jones ate the arsenic at time t and 
died from a traffic accident (perhaps racing to the hospital) before he 
expired from the poisoning. Here again, the argument is good deduc-
tion, but irrelevant. It tells us nothing. It’s even misleading. Relevance, 
in other words, often presupposes knowledge of causation, where some 
event actually brings about a result, or makes something happen.

Another reason deduction falls endlessly victim to relevance prob
lems is that there are, invariably, many possible causes for the occur-
rence of something in our day-to-day experience (and in science). 
Accidents like aircraft crashes, for instance, can typically be ana-
lyzed by pointing to proximate (close by) and distal (farther away) 
causes, together explaining the disaster. Take the recent Boeing 
tragedies. After two crashes of Boeing 737 Max planes occurred in 
the span of six months in 2018, investigators discovered a software 
glitch in an anti-stall system, the Maneuvering Characteristics Aug-
mentation System (MCAT). A redesign of the older Boeing 737–800 
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had enabled larger engines to be fitted, but only by placing them for-
ward of and slightly above the wings. This resulted in steeper climb 
rates on takeoff, which could induce, under certain conditions, a stall. 
Stalling is bad—potentially catastrophic—so the MCAT was fitted 
to the new Max to push the nose down when necessary to avert a stall. 
Unfortunately, the nose-down correction of the Max could send the 
plane hurtling toward the ground. The MCAT did just this, taking con-
trol away from the pilots in two tragedies resulting in the death of 157 
people in Indonesia and 189 in Ethiopia.

Subsequent investigation revealed flaws in the software control-
ling the MCAT, so a proximal cause was identified. But the ensuing 
investigation also highlighted Boeing’s zeal in pushing the Max into 
service to compete with fuel-saving aircraft offered by rival Airbus—
pointing to a background or perhaps distal cause. It was also discov-
ered that pilots of the new Max received inadequate training. This 
was surely not helped by Boeing’s marketing pitch for its redesigned 
aircraft, claiming that the Max would not require expensive retraining 
of pilots already trained on the 737–800. Thus, the tragic crashes can 
be attributed to multiple causes. Inferring why Boeing’s 737 Max 
crashed involves considering a number of possible causes, and per-
haps no single cause by itself fully accounts for the catastrophes.

Deduction can’t speak to these real-world scenarios. By requiring 
that inferences must certainly be true, deduction invariably misses what 
might be true, in contexts where relevance is determined by a mix of 
factors that aren’t necessary but still are operative in certain situations. 
In Plato’s universe of unchanging forms, triangles must have three sides, 
and some things are True with a capital T. In messy experience, few 
things we witness or analyze are like triangles. They’re like the Boeing 
737 Max—or an ordinary conversation (as we’ll see). Intelligence—
whatever it is—is more than deductions. We are cognitive systems our-
selves, and it’s clear that we’re not only deductive systems. Successful 
human-level AI, this suggests, can’t be wholly deductive either.
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After the failure of what critics dubbed “good old-fashioned artifi-
cial intelligence,” which dominated AI before the modern era (up 
through the 1990s), AI scientists abandoned deductive approaches to 
inference en masse. Indeed, many younger readers might find it strange 
that something like “rules” and deductive approaches to AI were ever 
taken seriously by practitioners in the field. They were. But the devas-
tating limitations to deductive inference eventually spelled doom for 
the approach. And, as the web exploded, the volumes of data available 
for so-called shallow or statistical methods made deductive or rule-
based systems seem less useful, and clunky. A new paradigm—a dif
ferent type of inference—came to prominence in serious work on AI. 
It’s called induction, and we turn to it next.

T H E  P O W E R  A N D  L I M I T S  O F  I N D U C T I O N

Induction means acquiring knowledge from experience. Experience 
is typically construed as observations—seeing things—although it 
can also come from any of our five senses. (Touching a hot stove is 
an example of tactile induction.) The general form of induction, 
unlike deduction, is from particular observations to general hypoth-
eses. The induced hypothesis covers—that is, explains—an obser-
vation. The primary mechanism of induction is enumeration: it is 
hard to induce the features of a population of, say, birds (to use a 
famous example) without first observing many examples of birds. 
The centrality of enumeration plays a central role in all versions of 
induction, and will be important to understanding its nature and 
limitations.

Induction is powerful not just because it helps organize the world 
of things into categories via hypotheses (all these objects of X have 
property Y); it also confers predictive power on agents who use it.3 If 
every time a major league baseball game ends the streets downtown 
are packed with people, I might infer that the next time a game wraps 
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up they will be again—this is a prediction. Induction captures the 
everyday idea that we gain the ability to explain and predict by ob-
serving happenings in the world. Many of our expectations are 
induction-based. If someone were to move the doorknob on your 
front door ten centimeters to the left, you’d likely miss it when 
reaching for it. You have an implicit theory—that is, a hypothesis—
of where the doorknob is, based on many prior examples of seeing it 
and grabbing it.

Induction has other virtues. It’s synthetic, for one, to borrow Kant’s 
phrase; it adds knowledge. I might look online for when traffic is at its 
peak at the corner of Third and Main, but if I work at Third and Main 
I can look out the window. The latter is firsthand observation that fa-
cilitates my inductive inferences, forming expectations and plans for 
when I should leave. Unfortunately, the powerful flexibility of induc-
tion (tied to our senses) means also that it can’t be provable, or guar-
anteed true, like deduction. Knowledge gleaned from observations is 
always provisional. Why? Because the world changes. The future 
could falsify my inductive hypotheses. My car might have started 
without a hitch a thousand times. Tomorrow morning (when I’m late 
setting out to a meeting—Murphy’s Law), it might not. This is induc-
tion. Change comes (or it doesn’t, alas), and prior observation alone 
won’t tell us how or when.

The strength of induction, though, lies in the fact that intelligence 
is importantly tied to looking at the world around us. Modern science 
would be impossible without allegiance to induction as a means to 
knowledge through experience.

Consider again enumeration. In its simplest form, induction re-
quires only the enumeration of prior observations to arrive at a gen-
eral conclusion or rule (or law). Here’s an argument:

N swans observed have been white [where N is some large 
number].

Therefore, all swans are white.
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Or:

All life we’ve ever seen has been carbon-based.

Therefore, all life is carbon-based.

As these examples suggests, simple enumeration (that is, counting) 
of the features or properties of something often forms the basis for 
our claims to knowledge about the thing as a type. Thus, swans are 
just those birds that are white; life is just that phenomenon arising 
from carbon. In science (and in life) we also find it helpful to tell a 
story about why swans might be white, or life might be carbon-based, 
but strictly speaking, explanations answering such why questions are 
outside the scope of induction, enumerative or otherwise.

It’s the simplicity of induction, though, that gives it such utility as a 
type of inference. The more I observe some property in some object, the 
more confidence I have that the property is part and parcel of the object. 
If I keep sampling balls from a bag, and they are always white, at some 
point I’ll become confident in a generalization like All the balls in this bag 
are white. But, again, if I haven’t sampled every single ball, it’s always pos
sible that my inductive inference will be wrong. Induction is useful but 
not certain knowledge.

Here’s another type of inductive generalization:

The proportion Q of a sample of the population has property P.

Therefore, the proportion Q of the population has property P.

Induction from sample to population is quite common in scientific 
investigations, and sophisticated statistical techniques have been de-
veloped over the years to help make these generalizations as strong 
and error-free as possible given available observational evidence. In-
tuitively, too, inductive generalizations make sense: if I observe 75 
white balls and 25 black balls in some sample, then, absent other evi-
dence, I should expect 750 white balls in the population of 1,000. The 
inference seems right; it’s just not certain.
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Random sampling is also based on a generalization from observa-
tions. Try it yourself: flip a coin repeatedly and count the heads and 
tails that come up. This is a random sampling (since you can’t skew 
the coin flip if it’s a fair coin). You might flip two or three heads in a 
row. Very improbably, you might even flip five of all heads or all tails. 
But given a large enough sample, you can generalize that the odds of a 
coin landing either heads or tails are fifty-fifty. Hence, the inductive 
generalization is The coin will land heads five hundred out of a thousand 
times, which gets you close enough. (The law of large numbers tells us 
that given a large enough sample, the probability will approach the 
actual probability: across a million coin flips, the fifty-fifty split will 
be quite close). Here’s another popular example of statistical general-
ization using induction:

Seventy-three percent of randomly sampled voters are for 
Candidate X.

Therefore, Candidate X will get about seventy-three percent of 
the votes.

Candidate X might become embroiled in a scandal before the elec-
tion, invalidating the inductive inference. But again, absent more 
knowledge, we can reason this way and draw conclusions about what 
we expect to happen.

Modern AI is based on statistical analysis and so relies on an in-
ductive framework, which is useful for many commercial applica-
tions. For example, AI can offer recommendations—a type of predic-
tion based on past observation. Here’s another example familiar to 
anyone with a content feed:

Seventy-five percent of the news User X reads is conservative 
political commentary on website C.

Therefore, User X will want this next piece of news on C.
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User X might also like to read the occasional article from the New 
Republic. Unfortunately, the system inferring X’s preferences using 
induction is likely to filter it out. This is one obvious drawback to re-
lying on inductive generalizations from observation—they are a sur-
rogate for deeper knowledge (and even worse, they tend to expect the 
future to look like the past).

The eighteenth-century philosopher David Hume, who first pointed 
out the limits of induction, gave philosophers and scientists what is 
now known as the problem of induction. As Hume put it, relying on 
induction requires us to believe that “instances of which we have had 
no experience resemble those of which we have had experience.” In 
other words, the general inductive rule we apply requires extension to 
unseen examples, and there is no guarantee that it will hold. Unlike 
deduction, there is nothing in the structure of induction that provides 
us logical certainty. It just works out that the world has certain char-
acteristics, and we can examine the world and tease out the knowl-
edge that (we think) we have about it.4

The problem of induction may seem like an armchair worry that 
philosophers like to indulge, but in fact the limits of inductive infer-
ence raise constant problems for scientists in their quest for true theo-
ries. Examples are everywhere. We used to eat egg whites because 
nutrition science warned us of the evils of saturated fats, found in the 
yolks. Fast forward a few decades, and discover that nutrition scien-
tists now encourage us to eat the eggs, yolk and all. They help burn fat 
and raise your mood; they even protect against heart conditions (the 
very worry about them a few decades ago). In a very real sense, we can 
blame induction for these embarrassing about-faces. They happen 
because our observations and tests are never complete. Correlations 
might suggest an underlying cause we can rely on (a bit of real knowl-
edge), but we might have missed something when testing and ob-
serving what affects what. The correlation might be spurious, or acci-
dental. We might have been looking for the wrong thing. The sample 
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size might be too small or unrepresentative for reasons that only be-
come apparent later. It’s a common problem, and at root it’s just the 
specter of induction and its limits—the philosophers weren’t wasting 
our time, after all.

At root, all induction is based on enumeration. This might (or 
should) seem suspiciously simple: Is it possible that to come up with 
theories about the world, we can just count examples? In an impor
tant sense, yes. A single experience doesn’t license an inductive infer-
ence. If I see an orangutan and know what one looks like, I can clas-
sify it. But not knowing yet what the animal is, I’ll need to observe 
many of them before I know whether the animal I saw is a freakish 
chimpanzee or the baby of an adult Big Foot. As Hume put it, we need 
to see “constant correlations” to infer causes, and we need to see enu-
merated examples to infer categories or types. (This is exactly how 
machine learning works, as we’ll see.)

Of course, inductive reasoning gets more complicated: statistical 
inferences in fields like economics or the social sciences are also in-
ductive, but one has to know a lot about probability theory (and eco-
nomics and social science) to understand them. And new inductive 
inferences in the sciences inevitably build on older ones scientists 
now believe to be solid and true. (So we have to know about all those 
other theories, too.) But at root, induction simply generalizes from 
looking at examples. When the generalizations can be explained with 
some story, some cause or set of causes that make it so, then we’re 
confident new knowledge has been acquired, even if it’s not neces-
sarily true, like deduction. It is supported by observation and testing.

Hume’s critique of induction was primarily a critique of causation. 
Induction doesn’t require knowledge about causes (in that case it 
wouldn’t be enumerative). If we know, for instance, that the color of 
bird feathers is determined in part by characteristics of habitat, then 
even if all the swans in England are white we might expect black 
feathers on swans in different habitats. But, in the absence of theory, 
induction can tell us this only if we fly around the world and keep ob-
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serving swans where they live. Hypotheses that cite specific causes 
are the goal of observation, but unfortunately the logical resources of 
induction are inadequate to supply them. Additional inferences are 
required (and here, deduction can help, but only partially).

The point is: induction properly understood in a logical framework 
of inference is, while necessary and common, quite limited. It is often 
misunderstood, too, which contributes to a general overconfidence 
that induction ensures “scientific” and solidly empirical knowledge, 
ridding us of fanciful speculation. Our detective hero Sherlock 
Holmes sometimes explains his method as painstaking inductions, 
simple and clear observations uncluttered by opinions and ideas and 
beliefs getting in his way. He assures a puzzled and amazed Watson 
that he just “observes things carefully.” Holmes knows the value of 
simple observation—the simpler the better—because what we think 
we know can prevent us from seeing anything new. But this is only 
part of the intelligence story. We have to understand the significance 
of what we observe. Holmes, like Dupin, solved crimes by piecing to-
gether observations in a novel way. All the devil’s details are in the 
novelty, which isn’t induction at all.

Inductive inference presents us with another unavoidable danger, 
made memorable by Hume’s critical eye: newly discovered facts can 
surprise us. In dynamic environments like everyday life, observation 
is open-ended. Future observations can reveal what was previously 
hidden and unknown to us—surprise! And our very confidence in 
inductive inference can make it harder to watch out for its inevitable 
shortcomings and failures. This brings us to holiday celebrations, or 
at least to Bertrand Russell’s “inductivist turkey.”

R U S S E L L’ S  T U R K E Y

Bertrand Russell is one of the most famous philosophers and public 
intellectuals of the twentieth century. A logician, mathematician, and 
social activist, he once spent six months in prison for protesting 
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Britain’s entry into World War  I. Later, in the 1950s, he protested 
nuclear weapons proliferation. His intellectual interests were pro-
testations, too: he worried that language could be used to dream 
up problems and solutions in philosophy, and he thought the anti-
dote to dreamy philosophizing lay in tying it to the methods of 
science.

But science, as Russell himself pointed out, often proceeds without 
clear inferential rules. To model inference on science, then, we must 
expose errors in our thinking about scientific investigation and truth-
seeking generally. Thus the problem of induction came under his scru-
tiny; he called it one of the core “problems of philosophy” (in his book 
of that title), and argued, like Sir Karl Popper, that science does not 
accrue knowledge by collecting or enumerating facts. In other words, 
we don’t gain scientific knowledge solely by induction. In fact, induc-
tion by itself is hopelessly flawed.

Russell offered an obvious and accessible example: observing the 
sun rise every morning gives us no proof that it will do so again. Our 
confidence that the sun is coming up tomorrow is no more than a 
“habit of association,” as Hume put it. Induction isn’t just incomplete, 
it positively cannot confirm scientific theories or beliefs by enumer-
ating observations. Our belief that it does gives rise to all manner of 
distortion. The “gambler’s fallacy,” for instance, is the wrongheaded 
belief among gamblers that past frequency of outcome communicates 
something true about future outcomes. The fallacy can support an ex-
pectation of more of the same, or the opposite: time for something 
new. Streaks when rolling dice create the illusion that the next roll of 
the dice will be influenced somehow: the good-luck streak is bound to 
stay good (I’m on a roll), or the bad-luck streak is bound to end (I’m 
due). Either scenario can happen, of course, but the important take-
away is that the next roll of dice is independent of all prior rolls. The 
streak continues if the dice randomly fall one way. It ends when they 
fall another. This is an example of our craving to apply the inductive 
fallacy even to random events.
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Most of the real world is not random, however, which makes rooting 
out the tendency to see incorrect inductive patterns even harder—the 
patterns really are “out there,” but we don’t always know the true ones by 
observations alone. We see regularities and patterns everywhere. Aside 
from gambling, this peculiar mental twist helps explain our willingness 
to generalize from observation. Swans are white. The sun will rise again. 
The elevator is always waiting for me on the ground floor at 3:30 am. Of 
course there are reliable generalizations—we see them everywhere, and 
it’s not delusional to do so—but the problem of induction, as Russell 
pointed out, is that we have no grounds for inferring knowledge based 
only on such generalizations. Science must rely on deeper and more 
powerful inferential strategies. Induction itself is paper-thin.

As an example of the limits of induction, Russell offers us a farm-
er’s well-fed fowl, which is a fabulous inductive thinker. Here is a ver-
sion of his sad tale:

This turkey found that, on his first morning at the turkey farm, 
he was fed at 9 am. However, being a good inductivist, he did 
not jump to conclusions. He waited until he had collected a 
large number of observations of the fact that he was fed at 9 am., 
and he made these observations under a wide variety of circum-
stances, on Wednesdays and Thursdays, on warm days and cold 
days, on rainy days and dry days. Each day, he added another 
observation statement to his list. Finally, his inductivist con-
science was satisfied and he carried out an inductive inference 
to conclude, “I am always fed at 9:00 am.” Alas, this conclusion 
was shown to be false in no uncertain manner when, on Christmas 
Eve, instead of being fed, he had his throat cut. An inductive infer-
ence with true premises has led to a false conclusion.5

Russell’s turkey exposes the folly of forming “habits of association” 
without a deeper knowledge of the regularities we observe. But knowl-
edge is often disguised belief—what we think we know can be wrong.
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A second and equally damning problem with relying on inductive 
inference involves lack of knowledge. Much of the world is hidden in 
mystery—swamped in randomness or chaos, or just too complicated 
for us to use induction alone with any confidence. Financial markets 
come to mind. We can try to predict the performance of a stock with all 
sorts of sophisticated techniques, but as any trader knows, past perfor
mance is not indicative of future results. And, if we’re honest, much of 
the world we experience has this frustrating quality. The elevator, we 
know, settles on the ground floor when no one is using it, and by induc-
tion we might expect that it’ll be there waiting for us if we’re home from 
work early, because it’s off-hours for everyone else. But someone might 
be moving in, or so-and-so has family visiting from Minnesota, and so 
on. Rules are made to be broken, and expectations, too.

Our predictions are constantly frustrated because the knowledge 
we need to augment induction is often lacking or unavailable. I might 
see a thousand white swans in England and conclude All swans are 
white. That same year, on a trip to Australia, I see a black swan—
induction be damned. Much of what we think we know is actually 
tentative, awaiting further review, and it’s overreliance on induction 
that makes changes seem surprising. In large cities in the western 
United States like Seattle, drivers typically slow or stop at a yellow light, 
instead of gunning it to get through. They defer to pedestrians, too, 
instead of driving around them. I might then be surprised at driving 
behavior in New York City, or Mumbai. Even when the posted rules 
are the same, the behavior isn’t. If I rely on data and induction from 
past experience, I might get rear-ended or honked at.

So, why should I rely solely on past events, with all this new in-
formation? And what is reasonable and intelligent for me? How 
should I treat the new information? And what if I see a strip of nails 
across the road, which I’ve never experienced, or a line of ducks 
crossing, or unfamiliar signs? Alas, the answer here isn’t more in-
duction, it’s less.
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I N D U C T I O N  W O R K S  O N  G A M E S ,  N O T  L I F E

The real world is a dynamic environment, which means it’s constantly 
changing in both predictable and unpredictable ways, and we can’t 
enclose it in a system of rules. Board games, though, are enclosed in a 
system of rules, which helps explain why inductive approaches that 
learn from experience of gameplay work so well. AlphaGo (or its suc-
cessor AlphaZero) uses a kind of machine learning known as deep 
learning to play the difficult game of Go. It plays against itself, using 
something called deep reinforcement learning, and induces hypoth-
eses about the best moves to make on the board given its position and 
the opponent’s. The approach is fabulously successful on “discreet, 
observable, two-player games with known rules,” as AI scientist 
Stuart Russell points out.6 Russell might not have been thinking 
about Russell’s turkey, but he should have been: the real problem with 
games propping up AI is that they permit hypotheses (generaliza-
tions from experience) to be formed according to known rules. Ironi-
cally, like classic AI before, the rules don’t apply to the real world, 
which is the entire point of the quest to achieve general intelligence.

Computer scientists relying on inductive methods often dismiss 
Hume’s (or Russell’s) problem of induction as irrelevant. As the logic 
goes, of course there are no guarantees of correctness using induc-
tion, but we can get “close enough.”

This response misses the point. A method known as “probably ap-
proximately correct” governs hypothesis formation for statistical 
AI, like machine learning, and is known to be effective for weeding 
out bad or false hypotheses over time. But this method is really an 
extension of Hume’s original argument that induction can supply no 
guarantees of correctness, as applied to scenarios like games, which 
have rules to box in statistical inferences. A probably approximately 
correct solution leaves unchanged the problem of induction in dy-
namic environments outside a game world or research laboratory.
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AI researchers are aware of the problem of induction (either 
explicitly or implicitly), but it rarely enters into critiques of machine 
learning (or deep learning) because they are essentially standing the 
problem on its head. Since induction is bad in dynamic environments, 
they concede, we apply it in controllable ones. This is like looking for 
your keys under a lamppost because the light is better there. It’s true 
that human beings have “solved” the problem of induction well enough 
to use experience effectively in the real world (where else?). But 
humans solve the problem of inference not with inductive inference 
in some stronger form, but by combining it somehow with more 
powerful types of inference that contribute to understanding. Machine 
learning is only induction (as will be discussed in Chapter 11), and so 
researchers in the field should be more skeptical than they typically are 
about its prospects for artificial general intelligence.

R E G U L A R I T Y  A N D  B R I T T L E N E S S

Induction casts intelligence as the detection of regularity. Statistical 
AI excels at capturing regularities by analyzing data, which is why vi-
sual object recognition tasks like identifying photos of human faces 
or pets count among its successes. Pixels of faces are distributed and 
regular in such a way that they can be learned and classified. How-
ever, because such systems learn from observations of specific pat-
terns of input, they suffer from problems of brittleness. As Gary Marcus, 
Ernest Davis, and other researchers have pointed out, even seemingly 
benign changes, like switching background color from white to blue 
on object recognition tasks, can degrade performance. Cluttering up 
photos with other images also results in severe degradation.7 A few 
irrelevant letters added to the red area of a stop sign are easily ignored 
by humans, but when an image altered in this way was presented to 
one deep learning system, it classified it as a speed limit sign. And 
there are similar real-world examples, including autonomous naviga-
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tion systems on self-driving cars that have misclassified a school bus 
as a snowplow, and a turning truck as an overpass.

Machine learning is inductive because it acquires knowledge from 
observation of data. The technique known as deep learning is a type 
of machine learning—a neural network—that has shown much promise 
in recognizing objects in photos, boosting performance on autono-
mous vehicles, and playing seemingly difficult games. For example, 
Google’s DeepMind system learned to play a number of classic Atari 
video games to much fanfare. It was heralded as general intelligence, 
because the same system was able to master different games using 
the so-called deep reinforcement learning approach that powered 
AlphaGo and AlphaZero. But the AI startup Vicarious, for one, soon 
pointed out that seemingly innocuous changes to the games degraded 
the ostensibly fabulous performance of the system. In Breakout, for 
instance, a player moves a paddle back and forth on a base line, bat-
ting a ball upward into a many-layered brick wall. Each hit destroys 
one brick (and gets the player closer to “breaking out”) but as the ball 
ricochets back the player must take care not to miss it. Moving the 
paddle a few pixels closer to the bricks results in severe performance 
degradation. “DeepMind’s entire system falls apart,” observe Marcus 
and Davis in their critique of modern AI. They quote AI pioneer 
Yoshua Bengio’s observation that deep neural networks “tend to 
learn statistical regularities in the dataset rather than higher-level 
abstract concepts.”8

What is often ignored or misunderstood is that these failures are 
fundamental and can’t be patched up with more powerful learning ap-
proaches that rely on inductive (data- or observation-based) inference. 
It is the type of inference here that is the problem, not the specifics of 
an algorithm. Because many examples are required to boost learning 
(in the case of Go, the example games run into the millions), the sys-
tems are glorified enumerative induction engines, guided by the for-
mation of hypotheses within the constraints of the game features and 



128	 T he   P roblem       of   I nference      

rules of play. The worlds are closed by rules and they are regular—it’s 
a kind of bell-curve world where the best moves are the most frequent 
ones leading to wins. This isn’t the real world that artificial general 
intelligence must master, which sits outside human-engineered games 
and research facilities. The difference means everything.

Thinking in the real world depends on the sensitive detection of 
abnormality, or exceptions. A busy city street, for example, is full of 
exceptions. This is one reason we don’t have robots strolling around 
Manhattan (or, for another reason related to exceptions, conversing 
with human beings). A Manhattan robot would quickly fall over, cause 
a traffic jam by inadvisably venturing onto the street, bump into people, 
or worse. Manhattan isn’t Atari or Go—and it’s not a scaled-up version 
of it, either. A deep learning “brain” would be (and is) a severe liability 
in the real world, as is any inductive system standing in for genuine in-
telligence. If we could instruct Russell’s turkey that it was playing the 
“game” of avoiding becoming dinner, it might learn how to make itself 
scarce on Christmas Eve. But then it wouldn’t be a good inductivist 
turkey; it would have prior knowledge, supplied by humans.

Statistical AI ends up with a long-tail problem, where common 
patterns (in the fat head of a distribution curve) are easy, but rare ones 
(in the long tail) are hard. Unfortunately, some inferences made by 
humanly-intelligent AI systems will be in the long tail, not in the sweet 
spot of induction from discoverable regularities in closed-world sys-
tems. In fact, by focusing on “easy” successes exploiting regularities, 
AI research is in danger of collectively moving away from progress 
toward general intelligence. It’s not even that we’re making incremental 
progress, because working on easy problems, in practice, means ne-
glecting the real ones (the keys not near lampposts). Inductive strate-
gies by themselves give false hope.

Getting a misclassified photo on Facebook or a boring movie rec-
ommendation on Netflix may not get us into much trouble with reli-
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ance on data-driven induction, but driverless cars and other critical 
technologies certainly can. A growing number of AI scientists under-
stand the issue. Oren Etzioni, head of the Allen Institute for Artificial 
Intelligence, calls machine learning and big data “high-capacity sta-
tistical models.”9 That’s impressive computer science, but it’s not gen-
eral intelligence. Intelligent minds bring understanding to data, and 
can connect dots that lead to an appreciation of failure points and ab-
normalities. Data and data analysis aren’t enough.

T H E  P R O B L E M  O F  I N F E R E N C E  A S  T R U S T

In an illuminating critique of induction as used for financial fore-
casting, former stock trader Nassim Nicholas Taleb divides statistical 
prediction problems into four quadrants, with the variables being, 
first, whether the decision to be made is simple (binary) or complex, 
and second, whether the randomness involved is “mediocre” or extreme. 
Problems in the first quadrant call for simple decisions regarding a 
thin-tailed probability distribution. Outcomes are relatively easy to 
predict statistically, and anomalous events have small impact when 
they happen. Second-quadrant problems are easy to predict but when 
the unexpected happens it has large consequences. Third-quadrant 
problems involve complex decisions, but manageable consequences. 
Then there are the “turkey” problems, in the fourth quadrant. They 
involve complex decisions coupled with fat-tailed probability distribu-
tions, and high-impact consequences. Think stock market crashes. 
Taleb fingers overconfidence in induction as a key factor in exacer-
bating the impact of these events. It’s not just that our inductive 
methods don’t work, it’s that when we rely on them we fail to make 
use of better approaches, with potentially catastrophic consequences. 
In effect, we get locked into machine thinking, when analyzing the 
past is of no help. This is one reason that inductive superintelligence 
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will generate stupid outcomes. As Taleb quips, it is important to know 
how “not to become a turkey.”10

There are, of course, other limits to prediction that cannot be 
neatly summed up by exposing the blind spots in induction. Black 
swans are rare, after all, as are stock market crashes and major wars 
(and innovations). We can be forgiven for using induction to help il-
luminate what are opaque and largely unpredictable possibilities 
anyway, but not for attempts to replace our understanding with data 
and statistics alone. In some cases, like chaotic natural systems (say, 
systems with turbulence) we now know that there are inherent limita-
tions to predictability, using any known type of inferential methods. 
Induction may suggest that the past will resemble the future, but chaos 
theory tells us that it won’t—or at least that we can’t determine how. In 
some cases, statistical analysis, while incomplete, is all we have.

P R O B A B L E  C A U S E

Turing Prize winner Judea Pearl, a noted computer scientist whose 
life’s work has been to develop effective computational methods for 
causal reasoning, argues in his 2018 The Book of Why that machine 
learning can never supply real understanding because the analysis of 
data does not bridge to knowledge of the causal structure of the real 
world, essential for intelligence. The “ladder of causation,” as he calls 
it, steps up from associating data points (seeing and observing) to inter-
vening in the world (doing), which requires knowledge of causes. Then it 
moves to counterfactual thinking like imagining, understanding, and 
asking: What if I had done something different?

AI systems using machine learning methods—and many animals—​
are at the bottom rung of association. At the first level, association, 
we are looking for regularities in observations. This is what an owl 
does when observing how a rat moves and figuring out where the 
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rodent is likely to be a moment later, and it is what a computer Go 
program does when it studies a database of millions of Go games so 
that it can figure out which moves are associated with higher percent-
ages of wins.11

Pearl here does us a favor by connecting observations and data.12 
He also points out that movement up this ladder involves different 
types of thinking (more specifically, inference). Associating doesn’t 
“scale” to causal thinking or imaginings. We can recast the problem of 
scaling from artificial intelligence to artificial general intelligence as 
precisely the problem of discovering new theories to enable climbing 
this ladder (or, in the present framework, of moving from induction to 
other more powerful types of inference).13

A  C O M M O N  S E N S E  P R I M E R

Your parents, or your partner or a friend, may have accused you of 
lacking common sense, but take heart: you have much more than any 
AI system, by far. As Turing well knew, common sense is what en-
ables two people to engage in ordinary conversation. The problem of 
common sense and in particular language understanding, which re-
quires it, has been a signal concern among AI researchers since the 
field’s inception. And it’s finally becoming apparent that hype about 
machine learning isn’t getting us any closer. Researchers are showing 
more recognition of this, and it couldn’t come too soon. Marcus and 
Davis wonder, if computers are so smart, why they can’t read, and 
they point to “Common Sense, and the Path to Deep Understanding” 
(a chapter in their book).14 Stuart Russell begins his list of “Concep-
tual Breakthroughs to Come” with the as-yet mysterious “language 
and common sense.”15 Pearl, too, acknowledges language understanding 
as unsolved (and offers his own “mini-Turing test,” which requires 
understanding of causation).16
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So, to make progress in AI, we must look past induction. (If you’re 
on the association rung of a metaphorical ladder, look up.) Let’s do 
this next—or at least make a start. On our way to the necessity of ab-
ductive inference, we should first get into specifics; in particular, ma-
chine learning and its input source, big data.



Chapter 1 1

• • •

M A C H I N E  L E A R N I N G  

A N D  B I G  D A T A

Learning is “improving performance based on experience.”1 Machine 
learning is getting computers to improve their performance based on 
experience.

This definition of the subfield of AI known as machine learning is 
widely accepted and not particularly controversial. It has remained 
essentially unchanged since early work on learning algorithms in AI 
at the dawn of the field. Carnegie Mellon computer scientist Tom 
Mitchell, a long-time researcher in machine learning, gave a slightly 
more detailed definition in his Machine Learning in 1997: “A computer 
program is said to learn from experience E with respect to some class 
of tasks T and performance measure P, if its performance at tasks in T, 
as measured by P, improves with experience E.”2 Machine learning, in 
other words, is computational treatment of induction—acquiring 
knowledge from experience. Machine learning is just automated in-
duction, so we shouldn’t be surprised that troubles with inductive 
inference spell troubles for machine learning. Fleshing out these 
unavoidable troubles is the point of this chapter.

There are two main types of learning. When humans first label input 
to indicate the desired output, it’s called supervised learning. Other
wise, the system analyzes patterns in the data as is, and this is called un-
supervised learning. There is also a middle ground. Semi-supervised 
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learning starts with an initial seed, or small part of the data, that has 
been prepared by humans, and then extends the seed to more and 
more data without supervision.

AI scientists in recent years have largely focused on the specific 
type of machine learning known as deep learning, which has shown 
impressive results as a supervised learning approach. In what fol-
lows, I will discuss supervised learning in some detail, along with deep 
learning and its applications. As you might expect, supervised learning 
is a big tent; I’ll explore different types of supervised learning to give 
an overall flavor of what’s at issue for AI.

Classification is a common type of supervised learning. It has been 
extensively investigated in research labs and in commercial applica-
tions. Learned classifiers filter spam, for example. The output is a bi-
nary yes or no: either an email is spam or it is not. Typically, the spam 
classification system is supervised by the user of the email account as 
he or she marks incoming emails as spam, sending them to the spam 
or junk folder. In the background, the machine learning system tags 
the emails that are positive examples of spam. After enough examples 
of spam are gathered, the system trains itself using them and other 
incoming emails, creating a feedback loop that converges on the dif-
ference between acceptable emails and spam.

The spam filter is one of the earliest examples of machine learn-
ing’s usefulness on the web. Naïve Bayes algorithms and other simple 
probabilistic classifiers assign numerical scores to the words in emails 
indicating spam or not, and the categories of spam and not-spam are 
supplied by the user. Eventually, the classifier has a hypothesis or 
model of spam based purely on analyzing words in messages. Future 
messages get filtered automatically, and the spam goes into its folder. 
Spam classifiers today use lots of human-supplied knowledge—hints 
as to what constitutes spam like certain words in the subject line, 
known “spammy” terms and phrases, and so on. The systems aren’t 
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perfect, largely because of the constant cat-and-mouse game between 
service providers and spammers endlessly trying new and different 
approaches to fool trained filters.3

Spam detection is not a particularly sexy example of supervised 
learning. Modern deep learning systems also perform classification 
for tasks like image recognition and visual object recognition. The 
well-known ImageNet competitions present contestants with a large-
scale task in supervised learning, drawing on the millions of images 
that ImageNet has downloaded from websites like Flickr for use in 
training and testing the accuracy of deep learning systems. All these 
images have been labeled by humans (providing their services to the 
project through Amazon’s Mechanical Turk interface) and the terms 
they apply make up a structured database of English words known as 
WordNet. A selected subset of words in WordNet represents a cate-
gory to be learned, using common nouns (like dog, pumpkin, piano, 
house) and a selection of more obscure items (like Scottish terrier, 
hussar monkey, flamingo). The contest is to see which of the com-
peting deep learning classifiers is able to label the most images cor-
rectly, as they were labeled by the humans. With over a thousand cat-
egories being used in ImageNet competitions, the task far exceeds the 
yes-or-no problem presented to spam detectors (or any other binary 
classification task, such as simply labeling whether an image is of a 
human face or not). Competing in this competition means per-
forming a massive classification task using pixel data as input.4

Sequence classification is often used in natural language processing 
applications. Words are treated as having a definite order, a sequence. 
Document or text classification might use a simple, order-free 
approach—like a BOW, or bag of words, model—but additional in-
formation about the words viewed as an ordered text typically boosts 
performance in text classification. For instance, words featured in a 
title and first paragraph often provide strong clues to the meaning or 
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topic of the article. Text classification can exploit these features when 
auto-tagging articles with topic labels like science, business, poli-
tics, and sports. Text classification is another example of super-
vised learning, because it begins with humans first tagging articles 
accurately with topics, providing initial input to the learning system. 
Like ImageNet’s collection of correctly labeled pictures, there are 
also large corpora, or datasets, that have been created by humans an-
notating collections of texts, providing metadata about their topics 
and other features helpful for training supervised learning systems on 
language-processing tasks.

Supervised machine learning is behind much of the modern web. 
For example, it enables personalization of news and other content feeds. 
If a user clicks mostly on political news, then a supervised learning 
algorithm running in the background (on, say Facebook’s servers) 
will present more and more news stories about politics. More sophis-
ticated approaches classify political news by point of view, offering 
more conservative or liberal-leaning news stories to a user whose ten-
dency has been identified by the system, and even by sentiment—as 
when a system classifies opinion text like movie reviews as positive 
or negative.

In addition to classification, supervised learning approaches are 
also used for the automatic tagging of individual items in a sequence, 
rather than of the entire sequence as is the case with image or text 
classification. This is known as sequential learning. A simple (but 
maybe boring) example is part-of-speech tagging, where a sequence 
of words like “the brown cow” is tagged for parts of speech: The / dt 
brown / adj cow / nn, with those tags standing for determiner, adjec-
tive, and common noun. Sequential learning does not use linguistic 
rules to supply programs with knowledge about parts of speech; in-
stead, humans simply tag words in sentences with the correct parts 
of speech, and provide the human-prepared data as input to the 
learning algorithm. The part-of-speech tagging problem was solved 
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by machines long ago; supplying tens of thousands of marked-up 
sentences yields human-level performance on unseen data—that is, 
any sentences that were not used for training. Another well-explored 
problem in language processing is named entity recognition, where 
the supervised learning system predicts typed entities, like men-
tions of people, places, times, companies, and products in texts. For 
the sentence “Mr. Smith reported that XYZ Co. sold more than ten 
thousand widgets in Q1” might be tagged “Mr. Smith / person reported 
that XYZ Co. / company sold more than ten thousand / number 
widgets / product in Q1 / date.”

Sequential classification can also be used for time-series predic-
tion, where the next item is predicted from previous items. Voice rec-
ognition systems like Siri are a kind of time-series prediction, as are 
popular speech-to-text systems. Time-series prediction has impor
tant applications in complex tasks like medical diagnosis, factory 
planning, and stock prediction, among others.

Supervised learning accounts for nearly all the major successes in 
machine learning to date, including image or voice recognition, au-
tonomous navigation with self-driving cars, and text classification 
and personalization strategies online. Unsupervised learning has the 
virtue of requiring significantly less data preparation, since labels 
aren’t added to training data by humans. But as a direct consequence 
of this loss of a human “signal,” unsupervised systems lag far behind 
their supervised cousins on real-world tasks. Unsupervised learning is 
helpful for open-ended tasks like enabling humans to visualize large 
amounts of data in clusters, which are created by unsupervised learning 
algorithms. But as most of the ballyhoo about machine learning, and in 
particular about deep learning, involves supervised learning, I’ll focus 
this discussion mostly on it. Keep in mind, however, that all inductively 
based limitations of supervised learning approaches apply even more so 
to unsupervised learning. By focusing on supervised learning, we’re 
looking at a best and most powerful case.



138	 T he   P roblem       of   I nference      

M A C H I N E  L E A R N I N G  A S  S I M U L A T I O N

Machine learning, viewed conceptually and mathematically, is in-
trinsically a simulation. The designers of a machine learning system 
examine a data-intensive problem, and if there’s some possible ma-
chine learning treatment of it they deem it to be “well-defined.” They 
assume that some function can simulate a behavior in the real world 
or actual system. The actual system is assumed to have a hidden pat-
tern that gives rise to the output observable in the data. The task is not to 
glean the actual hidden pattern directly—which would require under-
standing more than the data—but rather to simulate the hidden pattern 
by analyzing its “footprints” in data. This distinction is important.

Take another language processing task, known as semantic role la-
beling. Here the designers of a learning algorithm unpack the meaning 
of sentences in terms of common questions like who, whom, what, 
and when. The task of the learning algorithm is to take example sen-
tences as input and create the output of a set of labels to answer such 
questions by identifying the semantic roles expressed in the sentence. 
For example, the sentence might feature an agent performing an action, 
an action, a theme (the object involved in the action) and a recipient of 
the action, and be labeled thus: “John / agent threw / action ‘the 
ball’ / theme ‘to Lizzy’ / recipient.” In all such cases, a machine 
learning approach involves assuming some actual but unknown be
havior, and using a learning approach to simulate it as closely as pos
sible, by learning a function f. The result of training the system is the 
generation of f as a model or theory of the behavior in the data. This 
may model the semantic roles, or entities, or parts of speech, or im-
ages of goldfish—it all depends on the learning task. Machine learning 
is inherently the simulation of a process that is too complicated or un-
knowable, in the sense that ready-made programming rules aren’t 
available, or that would take too much human effort to get right. 
Patterns sometimes emerge from data after unsupervised learning 
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reveals them. But the humans identify the pattern after analysis; the 
algorithm doesn’t know to look for it. If it did, that would be super-
vised learning.

Most of us know about functions from math class, and the classic 
example is arithmetic: 2 + 2 = 4 is an equation whose operator, the 
plus sign for addition, is technically a function. Functions return 
unique answers given their input: thus the addition function returns 
4 for 2 + 2 (and not ever 5—except in Orwell novels). Early AI scien-
tists assumed many problems in the real world could be solved by 
supplying rules amounting to functions with known outputs. as with 
addition. It turned out, however, that most problems that count as in
teresting to AI researchers have unknown functions (if there are 
indeed functions involved at all). Hence, we now have machine 
learning, which seeks to approximate or simulate these unknowns. 
This “fakeness” of machine learning goes unnoticed when system 
performance is notably close to a human’s, or better. But the simula-
tive nature of machine learning gets exposed quickly when the real 
world departs from the learned simulation.

This fact is of enormous importance, and gets obscured too often 
in discussions of machine learning. Here’s another fact: the limits of a 
machine learning system’s world are precisely established by the da-
taset given to it in training. The real world generates datasets all day 
long, twenty-four hours a day, seven days a week, perpetually. Thus 
any given dataset is only a very small time slice representing, at best, 
partial evidence of the behavior of real-world systems. This is one 
reason why the long tail of unlikely events is so problematic—the 
system does not have an actual understanding of the real (versus sim-
ulated) system. This is enormously important for discussions of deep 
learning and artificial general intelligence, and it raises a number of 
troubling considerations about how, when, and to what extent we should 
trust systems that technically don’t understand the phenomenon they 
analyze (except as expressed in their datasets used in training). We 



140	 T he   P roblem       of   I nference      

will revisit these themes in later chapters, as they are central to under-
standing the landscape of the myth.

There are at least two problems with machine learning as a poten-
tial path to general intelligence. One, already touched on, is that 
learning can succeed, at least for a while, without any understanding. 
A trained system can predict outcomes, seemingly understanding a 
problem, until an unexpected change or event renders the simulation 
worthless. In fact, simulations that fail, as they so often do, can be even 
worse than worthless: think of using machine learning in driving, 
and having the reliance on automated predictions instill false confi-
dence. This happens everywhere; the messy real world is always 
changing course. Conversation switches topics. Stocks follow an 
upward trend, then some exogenous event like a corporate restruc-
turing, an earthquake, or a geopolitical instability sends them down-
ward. Joe may love conservative bloggers until the day his friend 
Lewis suggests a left-leaning zine, which his personalized news feed 
has all but screened out and hidden from him. Mary may love horses 
until Sally, her own horse, dies and move on to pursue a passion for 
Zen. And so on. Machine learning is really a misnomer, since systems 
are not learning in the sense that we do, by gaining an increasingly 
deep and robust appreciation of meaning in the world. They are rather 
learning bell curves—purely data-driven simulations of whatever we 
experience directly in the real world.

Common sense goes a long way toward understanding the limita-
tions of machine learning: it tells us life is unpredictable. Thus the 
truly damning critique of machine learning is that it’s backward-
looking. Relying on observations from datasets—prior observations, 
that is—it can uncover patterns and trends we find helpful. But all 
machine learning is a time-slice of the past; when the future is open-
ended and changes are desired, systems must be retrained. Machine 
learning can only trail behind our flux of experience, simulating (we 
hope) helpful regularities. It’s mind—not machine—that leads the way.
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M A C H I N E  L E A R N I N G  A S  N A R R O W  A I

The simulative nature of machine learning also helps explain why it’s 
perpetually stuck on narrowly defined applications, showing little or 
no progress toward artificial general intelligence. Well-defined prob
lems in natural language processing such as text classification, part-
of-speech tagging, syntactic parsing, and spam recognition, among 
many others, must be individually analyzed. Systems must be largely 
redesigned and ported to solve other problems, even when similar. 
Calling such systems learners is ironic, because the meaning of the 
word learn for humans essentially involves escaping narrow perfor
mances to gain more general understanding of things in the world. 
But chess-playing systems don’t play the more complex game of Go. 
Go systems don’t even play chess. Even the much-touted Atari system 
by Google’s DeepMind generalizes only across different Atari games, 
and the system still couldn’t learn to play all of them. The only games 
it played well were those with strict parameters. The most powerful 
learning systems are much more narrow and brittle than we might 
suppose. This makes sense, though, because the systems are just sim-
ulations. What else should we expect?

The problems with induction noted above stem not from experi-
ence per se, but from the attempt to ground knowledge and inference 
in experience exclusively, which is precisely what machine learning 
approaches to AI do. We should not be surprised, then, that all the 
problems of induction bedevil machine learning and data-centric ap-
proaches to AI. Data are just observed facts, stored in computers for 
accessibility. And observed facts, no matter how much we analyze 
them, don’t get us to general understanding or intelligence.

One modern twist on this accepted truth about scientific investi-
gation (and philosophical investigation) is the relatively recent avail-
ability of massive amounts of data, which at least initially were thought 
to empower AI systems with previously unavailable “smarts” and 
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insight. In a sense, this is true, but not in the sense necessary to escape 
problems of induction. We turn to big data next.

T H E  E N D  O F  B I G  D A T A

Big data is a notoriously amorphous idea that refers generally to the 
power of very large datasets to enable analyses and insights essential 
for businesses and governments (and AI researchers). The actual term 
first appeared in print in 1997 in a scientific context—in a NASA paper 
describing challenges to visualizing data using existing computer 
graphics technology. It didn’t catch on, however, until it became 
popular in the next decade as a catchall term for business and com-
puting. The modern concept of big data appears to have surfaced first 
in business intelligence discussions, notably in a 2001 Gartner Group 
report on business intelligence challenges. The report highlighted 
“three Vs”—volume, velocity, and variety—to describe features of 
large datasets that would become increasingly important as computa-
tional resources continued to get more powerful and cheaper. Yet the 
report did not actually use the term big data.5 Nevertheless, the term 
started appearing everywhere by the end of the 2000s, and by 2014 
Forbes captured the hype and confusion with an article titled “12 Big 
Data Definitions: What’s Yours?” 6

It may be hard to precisely define, but big data—orders of magni-
tude larger data collections—sits at the vanguard of the computa-
tional revolution in science and industry. In 2012, the Obama Admin-
istration announced a Big Data Research and Development Initiative, 
intended to “solve some of the Nation’s most pressing challenges.”7 
And at least one company, the business-analytics firm SAS, quickly 
invented a new executive title: Vice President of Big Data. Hype, sure. 
But the excitement about big data was also recognition that more data 
often spelled more advantage in analyzing problems on increasingly 
powerful computers.
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Yet from the beginning, there was a conceptual confusion about 
exactly how big data “empowered” insights and intelligence. At first it 
was thought that big data itself was responsible for better results, but 
as machine learning approaches took off, researchers started cred-
iting the algorithms. Deep learning and other machine learning and 
statistical techniques resulted in obvious improvements. But the al-
gorithms’ performance was tied to the larger datasets. Regardless, AI 
was demonstrating performance improvements, and some problems 
that couldn’t be solved at all were suddenly solvable with more data. It 
was this expansion of insight—in business and in science—that re-
searchers and pundits wanted to capture. As computer scientists Jon-
athan Stuart Ward and Adam Barker of the University of St. Andrews 
put it, “big data is intrinsically related to data analytics and the dis-
covery of meaning from data.”8 AI had been struggling to discover 
meaning from data for decades; suddenly, just by adding more data, 
such meaning seemed to be revealing itself everywhere.

By 2013, Viktor Mayer-Schönberger and Kenneth Cukier were ad-
mitting in their best-selling Big Data: A Revolution That Will Trans-
form How We Live, Work, and Think that “there is no rigorous defini-
tion of big data,” but suggesting anyway that big data is the “ability of 
society to harness information in novel ways to produce useful in-
sights or goods and services of significant value,” and that the arrival 
of big data means there are now “things one can do at a large scale that 
cannot be done at a smaller one, to extract new insights or create new 
forms of value.”9 They point out success stories in the private and 
public sectors made possible only by increases in dataset size. Take, 
for example, the startup business Farecast, founded in 2004 by entre-
preneur and University of Washington computer science professor 
Oren Etzioni, which sold to Microsoft in 2008 for over $110 million. 
Etzioni, who is now head of the Allen Institute for Artificial Intelligence 
in Seattle, used big data in the form of nearly 200 billion flight-price rec
ords to ferret out trends in airfare peaks and valleys as a function of 
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days prior to departure. The performance of Farecast underscored the 
feeling that big data meant new insights and capabilities emerging 
from large numbers; progressing from Etzioni’s baseline system, which 
used only twelve thousand price points, the system continually im-
proved its predictions. When it hit billions of flight-price data points, 
it offered significant customer value in the form of accurate predic-
tions about when to purchase airline tickets.

Big data, once a buzzword, is now the new normal in AI-powered 
businesses everywhere. Walmart created Walmart Labs to apply big 
data and data mining techniques to its logistics challenges—buying, 
stocking, and shipping merchandise efficiently in response to con-
sumer demand. Amazon was using big data before it was a buzzword, 
tracking and cataloging online purchases, which now are used as data 
to feed machine learning algorithms offering product recommenda-
tions, enhanced search, and other customer features. Big data is an 
inevitable consequence of Moore’s law: as computers become more 
powerful, statistical techniques like machine learning become better, 
and new business models emerge—all from data and its analysis. 
What we now refer to as data science (or, increasingly, AI) is really an 
old field, given new wings by Moore’s law and massive volumes of 
data, mostly made available by the growth of the web.

Governments and nonprofit organizations quickly joined in, using 
big data to predict everything from traffic flows to recidivism among 
parole-eligible prisoners. Mayer-Schönberger and Cukier recount 
how big data experts from the University of Columbia were hired to 
construct a predictive model of likely manhole explosions in New 
York City. (There are over fifty thousand manholes in Manhattan 
alone). That project was a success, and was offered up as an example of 
how new insights and capabilities are made possible by increasing the 
scale of data. Human workers, after all, cannot check tens of thou-
sands of individual manholes each day. Other realms, too, from med-
ical record processing and government actuarial efforts to voting and 
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law enforcement offer examples apparently supporting the claim that 
new insights and capabilities are made possible by the size and quality 
of data—big data.

The success of big data in industry and other sectors quickly led to 
overblown claims about the inferential power of data alone. By 2008, 
Wired editor Chris Anderson’s provocation that big data spelled the 
end of theory in science was a high-water mark for hype.10 Scientists 
and other members of the intelligentsia quickly pointed out that 
theory is necessary, if only because a dataset can’t think and interpret 
itself, but the article stood as a kind of cultural expression for the diz-
zying success of a data deluge. In truth it was because there was, ini-
tially, a hodgepodge of older statistical techniques in use for data 
science and machine learning in AI that the sought-after insights 
emerging from big data were mistakenly pinned to the data volume 
itself. This was a ridiculous proposition from the start; data points are 
facts and, again, can’t become insightful themselves. Although this 
has become apparent only in the rearview mirror, the early deep 
learning successes on visual object recognition, in the ImageNet 
competitions, signaled the beginning of a transfer of zeal from big 
data to the machine learning methods that benefit from it—in other 
words, to the newly explosive field of AI.

Thus big data has peaked, and now seems to be receding from 
popular discussion almost as quickly as it appeared. The focus on deep 
learning makes sense, because after all, the algorithms rather than 
just the data are responsible for trouncing human champions at Go, 
mastering Atari games, driving cars, and the rest. And, anyway, big 
data has found a new home in modern AI, as data-driven approaches 
like machine learning all benefit from huge volumes of data for 
training models and testing them. As one observer put it recently, big 
data has become “Big Data AI.”11

So much for big data. But we are left still with the question of infer-
ence, and in particular with the question of how data-driven methods 
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like machine learning can overcome the gap between shallow, data-
driven simulation and actual knowledge acquired by inferential powers 
more powerful than induction. The immediate problem is that ma-
chine learning is inherently data-driven. I’ve made this point above; 
in what follows, I will make it more precisely.

T H E  E M P I R I C A L  C O N S T R A I N T

Data-driven methods generally suffer from what we might call an em-
pirical constraint. To understand this constraint we should put in 
place one more technical detail of machine learning, known as fea-
ture extraction. AI scientists tackling a particular problem typically 
start by identifying syntactic features, or evidence, in datasets that 
help learning algorithms home in on the desired output. Feature en-
gineering is essentially a skill, and big money is paid to engineers and 
specialists with a knack for identifying useful features (and also the 
talent to tune parameters in the algorithm, another step in successful 
training). Once identified, features are extracted during training, 
test, and production phases, purely computationally. The purely com-
putational constraint is the crux. Deep learning systems would per-
form much better on difficult image recognition tasks if we could 
simply draw an arrow to the desired object to be identified in a photo 
cluttered with different objects and backgrounds—using, say, Photo-
shop software. Alas, the human-supplied feature cannot be added to 
other photos not prepared this way, so the feature is not syntactically 
extractable, and is therefore useless. This is the germ of the problem. 
It means that features useful for machine learning must always be in 
the data, and no clues can be provided by humans that can’t also be 
exploited by the machine “in the wild” when testing the system or 
after it is released for use.

Feature extraction is performed in the first, training phase, and 
then again after a model has been trained, in what’s called the produc-
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tion phase. During the training phase, labeled data is provided to the 
learning algorithm as input. For example, if the objective is to recog-
nize pictures of horses, the input is a photo with a horse in it, and the 
output is a label: horse. The machine learning system (“learner”) 
thus receives labeled or tagged pictures of horses as input-output 
pairs, and the learning task is to simulate the tagging of images so that 
only horse images receive the horse label. Training is continued until 
the learning produces a model—which is a statistical bit of code rep-
resenting the probability of a horse given the input—that meets an 
accuracy requirement (or doesn’t).

At this point, the model produced by the learner is used to auto-
matically label new, previously unseen images. This is the production 
phase. A feedback loop is often part of production, where mislabeled 
horse images can be corrected by a human and sent back to the learner 
to retrain. This can go on indefinitely, although the accuracy improve-
ments will taper off at some point. User interaction on Facebook is 
an example of a feedback loop: when you click on a piece of con-
tent, or tag a photo as a friend, you send data back to Facebook’s 
deep learning–based training system, which perpetually analyzes and 
modifies your click stream to keep modifying or personalizing future 
content.

The empirical constraint is a problem for machine learning because 
all the additional information you might want to supply to the learner 
can’t be used. Unlike image recognition tasks, which rely on pixel 
data as features, many problems in language understanding incorpo-
rate additional mark-up—that is, human-identified features to be ex-
tracted by systems when training and using models.

Consider a simple problem in natural language processing, named 
entity recognition, where some set of semantic tags or labels like 
person, organization, product, location, and date are in-
tended labels or outputs, and the input is free-form text, perhaps from 
Facebook posts. A company or individual might want to know about 
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all posts that mention a certain company—say, Blue Box, Inc. A key-
word search of “Blue Box, Inc.” that matches only the words might ig-
nore more informal references in posts like “Blue Box” or “blue box” or 
even “the box,” depending on context. The point of named entity recog-
nition is to use machine learning on large quantities of labeled posts so 
that these informal phrasings are also, correctly, identified as references 
to the company. Thus, there is a need for feature extraction: a human 
labeling all mentions of Blue Box, Inc. in a collection of posts used for 
training data, and sending it to the system, which generates a model for 
tagging “Blue Box, Inc.” mentions in the production phase.

The Blue Box system relies on words in the posts but also on 
features—evidence in the posts of mentions of companies. Again, 
features are necessarily syntactic, because they must be extracted 
completely automatically in the production phase. This is the key em-
pirical constraint. Features might be orthographic, like checking for 
capitalization, or lexical, like checking for the occurrence of the words 
“blue” and “box” in order, and they might include information like 
“ending with Inc. or Incorporated.” A part-of-speech tagger may be 
run on the training data to tag it with parts of speech like nouns or 
proper nouns—more syntactically detected features. Other features 
are no doubt possible. The key again is that all features, while initially 
identified by humans, are then purely computationally extracted—
otherwise the system would not perform automatically during the 
autonomous production phase.

Here is the problem. Some evidence for mentions of the company 
Blue Box, Inc. will themselves require inference—say, when pronouns 
or other references appear in data. This immediately complicates the 
learning task. If I read a Facebook post and notice that someone is 
talking about Blue Box and then later refers to it when commenting, 
say, on “the company’s profits,” the description “the company’s” is not 
an allowable feature for the named entity recognition system. A co-
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reference resolution subsystem must handle it, which introduces an 
error rate—note that co-reference is a much more difficult problem 
than named entity recognition. Worse, maybe we just happen to 
know that Bob is talking about Blue Box, Inc. in his discussion of 
stock performance, but since we can’t find this in the data to be ana-
lyzed at all, there is no feature to be detected by the system. A person 
might tell some anecdote about how the founder of some other com
pany, XYZ, Inc. “loved the color blue, and wanted something simple 
and memorable, and so decided to name the operating system ‘Blue 
Box.’ ” By context, “Blue Box” is used as the product, not the company, 
but the named entity recognition system cannot use this contextual 
information during training. Why? Because it then can’t extract it 
purely by syntax alone, from its input during production.

The empirical constraint is part and parcel of machine learning. It 
means that only purely syntactical features discoverable in data by 
automatic methods can be used in training. The truly intelligent 
system needs features or evidence in a larger sense, not simply from 
processed data.

Though named entity recognition is a relatively simple task in natural 
language processing, even here we see the inherent limitations of 
purely data-driven approaches. A mention of Blue Box in a post about 
the product easily becomes a false positive, and gets labeled as about 
the company. These examples might be out on the long tail of unlikely 
occurrences, but they’re common enough in ordinary language, and 
cannot be addressed by machine learning limited by the empirical 
constraint. All of this is to say that data alone, big data or not, and in-
ductive methods like machine learning have inherent limitations 
that constitute roadblocks to progress in AI. The problem of induc-
tion, it turns out, really is a problem for modern AI. Their window 
into meaning is tied directly to data, which is a limiting constraint on 
learning.



150	 T he   P roblem       of   I nference      

T H E  F R E Q U E N C Y  A S S U M P T I O N

In addition to the empirical constraint, machine learning approaches 
rely on an unfortunate frequency assumption. Like the empirical con-
straint, this is again a straightforward consequence of—really, a restate-
ment of—the enumerative basis of inductive inference. Ironically, the 
value of big data for machine learning is actually an exposition of the 
assumption: more is better. Machine learning systems are sophisti-
cated counting machines. To continue the Blue Box example, we might 
encode a list of features by checking, say, if the current word or two-
word sequence in some Facebook post is in a dictionary of words that 
includes company names, like IBM, Microsoft, Blue Box, and so on, 
or checking whether it’s followed by Inc. or LLC, or it’s an acronym, 
or the first letter is capitalized, or it’s a proper noun.12

The frequency assumption comes into play because, in general, the 
greater the frequency of hits on this feature, the more useful it is for 
training. In data science, this is necessary; if the features in data are 
just random, nothing can be learned (recall the earlier discussion of 
this). But if a pattern does exist, then first, by the empirical constraint, 
it must be in the data; and second, as a consequence, the only way to 
determine the strength of association between input and output is by 
frequency. What else could it be? If every time “Inc.” follows a pair of 
words, the label in the training data is company, the learner attaches 
a high probability to “Inc.” as a feature of the desired output, com
pany. Patterns that might be undetectable in thousands of examples 
crystallize in millions. This is the frequency assumption.

Frequency assumptions can be stood on their head, as with so-
called anomaly detection, where fraudulent bank transactions or im-
proper logins are detected. These systems, too, rely on the frequency 
assumption, exploiting what we might call a normality assumption. 
Normal events make abnormal events more conspicuous. If thou-
sands or millions of examples of proper logins by employees can be 



	 M achine       L earning        and    B ig   D ata    	 151

grouped or clustered, the odd ones sitting outside the cluster attract 
attention. They might be illegal or improper attempts, then. Again, 
machine learning figures out what’s normal—and thus what is ab-
normal—by analyzing frequencies.

The frequency assumption explains “filter bubbles” in personal-
ized content online, as well. Someone who despises right-leaning 
politics eventually receives only left-leaning opinions and other news 
content. The deep learning–based system controlling this outcome is 
actually just training a model that, over time, recognizes the patterns 
of the news you like. It counts up your clicks and starts giving you 
more of the same. The same observations apply to recommendations 
from Netflix, Spotify, Amazon, and other websites offering personal-
ized search and recommendation experiences. This connection be-
tween frequency of example (or features in examples) and machine 
learning is intrinsic, in essentially the same sense that inferring that 
All swans are white gets easier, because you gain more confidence as 
more and more white swans are observed.

The frequency assumption also explains the difficulty of the long 
tail problem of abnormal or unexpected examples. Sarcasm, for in-
stance, is particularly opaque to machine learning, in part because it’s 
less frequent than literal meaning. Counting turns out to work well 
for certain obvious tasks online, but works against more subtle ones. 
If there are millions of examples of angry citizens tweeting “Trump is 
an idiot!” then anyone sarcastically tweeting “Trump is an idiot” as a 
comeback to all the “haters” when he outmaneuvers an opponent will 
be lumped in as yet another instance of the “Trump-idiot” pattern. 
The learning algorithm isn’t in the knowledge business to start with, 
so the example is just another sequence of words. Sarcasm isn’t a word-
based feature, and neither is it as frequent as literal meaning. Machine 
learning is notoriously obtuse about such language phenomena—much 
to the chagrin of companies like Google. It would love to detect sarcasm 
when targeting ads. For example, if “Get me some sunscreen!” is a 
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sarcastic comment by someone posting about a blizzard, a context-
sensitive ad placement system should try serving up ads for battery-
heated socks, instead.

The frequency assumption gets even more pronounced when input 
is entire news articles, say, with the text classification task mentioned 
above. The “funny” and “weird” news prevalent on the web as light 
reading is a nightmare for machine learning, because the meaning of 
words is not literal. For instance, a machine learning system might 
classify stories describing “silly” events that, technically, have crim-
inal or lawbreaking references in them as bona fide examples of crime 
stories. Why wouldn’t it? Odd news is less frequent than its straight-
forward, information-providing counterpart, so it will be less fre-
quent in training sets—and anyway, detecting why it’s odd is another 
problem with empirical constraints. News is recognized as silly or 
sarcastic when someone understands what the author means, or in-
tends to communicate. The actual words in the story may, by frequen-
cies in training data, point to well-defined categories like politics, 
sports, crime, and so on. The story cannot be classified, or understood 
correctly, unless the constituent bits of syntax—the words—are in-
terpreted in a much broader window of meaning. Absent this non-
inductive capability, a machine learning system defaults to frequen-
cies, and misses the point. Here, for example, is an Associated Press 
story once published by Yahoo! News:

Your Tacos Or Your Life!

Fontana, Calif. A hunger for carnitas nearly led to some carnage 
after a Fontana man was robbed of a bag of tacos at gunpoint.

Police Sergeant Jeff Decker said the 35-year-old victim had just 
bought about $20  in tacos from a street-corner stand Sunday 
night and was bicycling home when the suspect confronted him 
and said “Give me your tacos.”
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Decker said the suspect grabbed the bag of food, punched the 
victim in the face and began to flee.

When the victim demanded his tacos back, the suspect pointed 
what appeared to be a handgun at the man and threatened to 
kill him before running away.

A text classification system would easily identify this as a crime 
story: suspect, victim, flee, handgun. To most human readers, though, it 
comes across as a comic story—at least we don’t see it as a typical 
example of a crime story. Criminal acts get reported because they 
are seriously concerning, but an opening phrase like “A hunger for 
carnitas . . .” signals that AP’s intent is to report the story as humorous. 
Even grade-schoolers will pick up on that intent, but AI systems will 
happily classify the article as another crime story from Fontana, Cali-
fornia. Frequency kills humor. Count up the stories that feature vic-
tims, handguns, threats, and fleeing suspects in the news. They’re 
crime. The problem with the frequency assumption for such examples 
is simply that no known fixes using machine learning are available. 
The meaning of the stories is lost given the approach, which analyzes 
words as syntax and counts frequencies of words as evidence for cat-
egories. The path is a dead end toward artificial general intelligence, 
even on relatively simple examples like this one.

Here’s another AP story picked up by many newspapers:

Boy, 11, Bites Pit Bull To Fend Off Attack

Sao Paulo, Brazil - An 11-year old boy is in Brazil’s media spotlight 
after sinking his teeth into the neck of a dog that attacked him.

Local newspapers reported on Thursday that Gabriel Almeida 
was playing in his uncle’s backyard in the city of Belo Horizonte 
when a pit bull named Tita lunged at him and bit him in the left 
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arm. Almeida grabbed the dog by the neck and bit back—biting 
so hard that he lost a canine tooth.

Almeida tells the O Globo newspaper: “It is better to lose a 
tooth than one’s life.”

Stonemasons working nearby chased the dog away before it 
could attack again.

To be sure, the story has a serious side, but it is certainly not only a 
story about a pit bull attack. It’s not a story about a biting match be-
tween a Brazilian boy and a dog, either. Since the boy was not seri-
ously hurt, although he lost one of his own teeth biting the dog, it’s 
clear that the reason for publishing the story was not to report on a 
Brazilian dog attack but rather to highlight the oddness or silliness of 
the surprise counterattack. The unlikely content—boy bites dog—is 
what makes the story news. In a case like this, AI and machine learning 
don’t help at all. They hurt. They miss the point entirely. Ostensible 
artificial general intelligence systems that used only machine learning 
would be annoying idiots savants, at best.

Fundamentally, the underlying theory of inference is at the heart 
of the problem. Induction requires intelligence to arise from data 
analysis, but intelligence is brought to the analysis of data as a prior 
and necessary step. We can always hope that advances in feature en-
gineering or algorithm design will lead to a more complete theory 
of computational inference in the future. But we should be pro-
foundly skeptical. It is precisely the empirical constraint and the 
frequency assumption that limit the scope and effectiveness of de-
tectable features—which are, after all, in the data to be syntacti-
cally analyzed. This is another way of saying what philosophers and 
scientists of every stripe have learned long ago: Induction is not 
enough.
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M O D E L  S A T U R A T I O N

Machine learning and big data suffer from another problem, known 
as saturation, which bedevils hopes of achieving artificial general intel-
ligence. Saturation occurs when adding more data—more examples—
to a learning algorithm (or a statistical technique) adds nothing to the 
performance of the systems. Training can’t go on forever returning 
higher and higher accuracy on some problem. Eventually, adding 
more data ceases to boost performance. Successful systems reach an 
acceptable accuracy prior to saturation; if they don’t, then the problem 
can’t be solved using machine learning. A saturated model is final, 
and won’t improve any more by adding more data. It might even get 
worse in some cases, although the reasons are too technical to be 
explained here.

Model saturation is rarely discussed, particularly since many re-
cent problems continue to benefit from increases in prepared data. 
But researchers know that saturation is inevitable, and eventually 
bounds the performance of machine learning systems. Peter Norvig, 
Director of Research at Google, let slip in The Atlantic back in 2013 his 
worries about saturation: “We could draw this curve: as we gain more 
data, how much better does our system get?” he asked. “And the an-
swer is, it’s still improving—but we are getting to the point where we 
get less benefit than we did in the past.”13

As of this writing, Norvig’s cautionary comments are seven years 
old. The ImageNet competitions probably can’t use more data—the 
best systems are now 98 percent accurate (using the standard test 
measure of getting a target label in a system’s top five predictions). But 
self-driving cars, once thought to be around the corner, are still in a 
heavy research phase, and no doubt part of the problem is the training 
data from labeled video feeds, which is not insufficient in volume but 
is inadequate to handle long tail problems with atypical driving sce-
narios that nonetheless must be factored in for safety. The models are 
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saturating, as Norvig predicted. New approaches will no doubt be re-
quired. Such considerations are one reason why so-called scaling 
from initial successes to full-blown ones is naive and simplistic. Sys-
tems don’t scale indefinitely. Machine learning—deep learning—
isn’t a silver bullet.

Turing, writing in 1950, hoped that computer systems could be 
made to learn what they didn’t know. Machine learning wasn’t then 
an AI term, though simple neural networks were already known to be 
possible. But Turing had in mind an expanded notion of learning, 
more like the human one. Machines couldn’t be programmed with all 
the knowledge they needed; some learning had to occur. He thought 
it might happen with induction. Some propositions, he mused, “may 
be ‘given by authority,’ but others may be produced by the machine 
itself, e.g., by scientific induction.” At his midcentury mark, he had 
abandoned worries about necessary insights lying outside of formal 
systems. Or, rather, he hoped they could find a home in the new com-
puting machinery.

Yet scientists themselves don’t use “scientific induction” in the 
sense Turing must have meant. They make guesses, then test them, 
then make more guesses. Turing never mentioned Peirce’s work on 
logical inference. He had, apparently, no substantive knowledge of 
abductive inference in Peirce’s sense.

We are still in search of his learning machines.



Chapter 1 2

• • •

A B D U C T I V E  I N F E R E N C E

The Origin of Inference as Guessing

Charles Sanders Peirce was working for the US Coast Survey on a sci-
entific problem of some importance. Peirce swung pendulums. Deli-
cate pendulums. The Coast Survey used them to measure variations 
in Earth’s gravity, part of the science of gravimetrics. A field within 
geodesy, which in the nineteenth century was still a developing disci-
pline, gravimetrics helps in the study of our planet’s shape and size. 
Precise measurements of Earth’s topography were needed for every
thing from breaking ground on new office buildings to waging war. 
This was Peirce’s job.

Gravimetrics also requires precise measurements of time. As it 
happened, in the summer of 1879, Peirce found himself on a coastal 
steamer leaving Boston for New York, in possession of an expensive 
watch for use in his pendulum work. He had picked it out himself and it 
cost 350 dollars, a huge sum at the time. The Survey had footed the bill. 
In the morning, it was gone, along with the rest of his possessions.

Peirce was notorious for losing and misplacing expensive equip-
ment all over the world, wherever the Survey sent him to take gravita-
tional measurements. The theft of the watch fit a pattern that had, by 
degrees, caused friction between him and the US government. The 
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theft of the watch and Peirce’s detective work to recover it were thus 
of great and personal importance to him. Not surprisingly, he later 
thought it was all a lesson in inference.

Here is how it went, as he recounted the tale. Peirce recalled that 
after the ship made its morning arrival in New York’s harbor, he left in 
a cab to attend a conference in the city. Arriving there, he realized he 
had left behind the watch with its fine gold chain as well as his good 
overcoat, and rushed back to collect them. Both were gone when he 
returned to the cabin he had occupied, and they were not being held 
for him by the captain. It was theft, clearly, and had to have been by 
one of the ship’s stewards.

With the captain’s help, Peirce was able to assemble all the stew-
ards on the ship’s deck, where they stood in a line as he engaged them 
with banter and looked into their faces one by one. His hope to detect 
some clear indication of guilt was disappointed: “Not the least scin-
tilla of light have I got to go on,” he admitted to himself. Yet as he 
started to walk away he thought, “But you simply must put your finger 
on the man. No matter if you have no reason, you must say whom you 
will think to be the thief.”

Peirce looped back to look over the group again—and suddenly 
“all shadow of doubt had vanished.”1 What had happened? He had been 
working out the details of his “guesswork” inferences—abduction. 
Here was a guess. A real-life example—if indeed he was right. Peirce 
turned to the man he’d fingered as the culprit and, after summoning 
him out of the line to the stateroom, he offered him a settlement: fifty 
dollars to return the missing items.

“Now,” he said, “that bill is yours, if you will earn it. I do not want 
to find out who stole my watch, if I can help it; because if I did I should 
be obliged to send him to Sing Sing [the New York prison], which 
would cost me more than the fifty dollars; and besides I should be 
heartily sorry for the poor fool who thought himself so much sharper 
than honest men.”2
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The accused didn’t know much about abductive inference, it turns 
out, or maybe he thought he was calling Peirce’s bluff. “Why,” said he, 
“I would like to earn the fifty dollars mighty well; but you see I really 
do not know anything about your things. So I can’t.”3

Unable to force a confession, Peirce rushed off to the detective 
agency Pinkerton’s (a “formidable” place). He met the head of the 
New York office, George Bangs, and said he would like to have the 
man followed, because he was sure to take the watch to a pawnbroker, 
who would give about fifty dollars for it. Bangs dismissed Peirce’s 
guesswork, preferring to use the usual rules and known methods for 
homing in on suspects. He sent a detective to check out the stewards 
and it was discovered that another one of them had a criminal record 
including pickpocketing and other petty crimes; this was the more 
likely thief. Yet the detective’s surveillance of that man turned up 
nothing. Peirce, still convinced that his original suspect would 
have gone to a pawnbroker, now took Bangs’s advice to offer a sizable 
reward, 150 dollars, for information leading to the recovery of his 
possessions.

Within a day, the ad he placed had its effect; a pawnbroker came 
forward with the watch. And once Peirce heard that broker’s recollec-
tion of the man who had sold it, he had his confirmation—it was a 
perfect description of the steward he’d accused.

Peirce then got an address (Bangs must have been amused), and 
showed up unannounced at the man’s apartment; two women greeted 
him at the door and immediately threatened to call for the police. 
Peirce paid no attention but advanced toward a large wooden trunk 
he’d spotted. At the bottom of the trunk he found his gold watch 
chain, complete with his binnacle and compass attached.

Meanwhile, one of the women had disappeared to a neighboring 
apartment; as Peirce tells it, when two young girls opened that door 
to his knock, he spied a neatly wrapped bundle on top of a piano and 
“gently pushed beyond them” to recover his overcoat.



160	 T he   P roblem       of   I nference      

Peirce channeled Dupin, maybe; he swore he guessed. Mr. Bangs 
shrugged.

Peirce concludes the article in which he relates the tale, “Guessing,” 
with a remark that, at first blush, might seem dubious: “I suppose al-
most everybody has had similar experiences.” 4

We do guess. Our guesses—inferences—are never certain. But 
the mystery is: why aren’t our hunches, our guesses, no more than 
random stabs at truth?

At the beginning of “Guessing,” Peirce asks how “Galileo and the 
other masters of science” reached the true theories they did after so 
few wrong guesses. Scientists, and the rest of us, infer explanations 
from what we know and observe. We want to subsume these infer-
ences into our stream of observations, into the facts. But so much of 
what we infer is outside the frame of pure observation. Contextual 
knowledge pervades almost every inference we make. Peirce’s use of 
Galileo to buttress his story is thus apt: scientific discovery is often 
attributed to meticulously following known methods, but that’s not 
really true. We hide mystery behind method. Galileo guessed, too, 
just like Peirce on the steamer. In both cases, subsequent investiga-
tion proved that the guess was somehow on track.

Peirce likened guessing to an instinct, a selection out of “at least 
a billion” possible hypotheses of the one that seems right. Holmes 
meets Watson and asks him if he’s just returned from the war because 
he sees a tan and a limp. A military doctor fresh from the war in Af
ghanistan, he figures. Just a guess? No—an inference.

When we seek to understand particular facts—like the theft of a 
watch—rather than regularities, we are inevitably forced into a kind 
of conjuring, the selection or invention of a hypothesis that might ex-
plain the fact. Induction moves from facts to generalizations that give 
us (never certain) knowledge of regularity. But abduction moves 
from the observation of a particular fact to a rule or hypothesis that 
explains it. Abduction is tied closely to reasoning from events to their 
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causes—in Peirce’s example, from the event of the theft to its cause, 
the thief. Sherlock Holmes called this type of reasoning “nothing more 
than common sense,” and to a large degree he’s right. But common 
sense is itself mysterious, precisely because it doesn’t fit into logical 
frameworks like deduction or induction. Abduction captures the in-
sight that much of our everyday reasoning is a kind of detective work, 
where we see facts (data) as clues to help us make sense of things. We 
are extraordinarily good at hypothesizing, which is, to Peirce’s mind, 
not explainable by mechanics but rather by an operation of mind 
which he calls, for lack of another explanation, instinct. We guess, out 
of a background of effectively infinite possibilities, which hypotheses 
seem likely or plausible.

We must account for this in building an intelligence, because it 
is the starting point for any intelligent thinking at all. Without a 
prior abductive step, inductions are blind, and deductions are equally 
useless.

Induction requires abduction as a first step, because we need to 
bring into observation some framework for making sense of what phi
losophers call sense-datum—raw experience, uninterpreted. Even in 
simple induction, where we induce a general statement that All swans 
are white from observations of swans, a minimal conceptual frame-
work or theory guides the acquisition of knowledge. We could induce 
that all swans have beaks by the same inductive strategy, but the in-
duction would be less powerful, because all birds have beaks, and 
swans are a small subset of birds. Prior knowledge is used to form hy-
potheses. Intuition provides mathematicians with interesting problems.

When the developers of DeepMind claimed, in a much-read article 
in the prestigious journal Nature, that it had mastered Go “without 
human knowledge,” they misunderstood the nature of inference, 
mechanical or otherwise. The article clearly “overstated the case,” as 
Marcus and Davis put it.5 In fact, DeepMind’s scientists engineered 
into AlphaGo a rich model of the game of Go, and went to the trouble 
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of finding the best algorithms to solve various aspects of the game—all 
before the system ever played in a real competition. As Marcus and 
Davis explain, “the system relied heavily on things that human re-
searchers had discovered over the last few decades about how to 
get machines to play games like Go, most notably Monte Carlo Tree 
Search . . . ​random sampling from a tree of different game possibili-
ties, which has nothing intrinsic to do with deep learning. DeepMind 
also (unlike [the Atari system]) built in rules and some other detailed 
knowledge about the game. The claim that human knowledge wasn’t 
involved simply wasn’t factually accurate.” 6 A more succinct way of 
putting this is that the DeepMind team used human inferences—
namely, abductive ones—to design the system to successfully accom-
plish its task. These inferences were supplied from outside the induc-
tive framework.

S U R P R I S E !

Peirce understood the origins of abduction as a reaction to surprise:

The surprising fact, C, is observed.

But if A were true, C would be a matter of course.

Hence, there is reason to suspect that A is true.7

Surprises are out on the long tail of trouble for induction. And ab-
ductive inferences seek explanations of particular facts (A), not gen-
eralizations or laws, like induction. C, too, is a particular—a sur-
prising fact. So abduction isn’t a generalization at all.

Inferences from particular observations to particular explanations 
are part of normal intelligence. If Kate, a barista, usually works at the 
Starbucks on Thursday but not Friday, a computer with knowledge 
gleaned from prior experience might not expect her on Friday, but 
would be confronted with a long tail problem if she’s working on 
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Friday, after all. It might be she is working extra hours, or was called 
in to cover someone who is sick that day. And she might not work on 
Thursday, because she’s sick, or has been transferred to another store, 
or quit. These are all particular (surprising) facts that might explain 
her appearance or otherwise. They are commonsense inferences that 
don’t rely on generalizations or expectations. (Criminal investiga-
tions, by the way, always begin with surprising facts. Induction might 
tell us that young males commit most crimes, but the investigator still 
needs to know who in particular is responsible for this one—and 
the culprit need not be young or male, or even human, as we saw in 
the Rue Morgue.)

Peirce understood abduction as a weak form of inference, in the 
sense that it was conjectural—an abduction at time t might be proven 
wrong at time t + 1. Much inference in the real world is defeasible, that 
is, proven wrong or incomplete by subsequent observation or learning 
(say, by reading a book).

Conjectural inference is a feature, not a bug, of intelligent systems. 
Rosie the Robot might believe that Kate has quit Starbucks because a 
coworker has provided this information, but when Kate shows up for 
work ten minutes later, and the coworker is smiling, Rosie the Robot 
should retract its inference. We scarcely notice how quickly we con-
jecture plausible reasons for what we see (or read about), and also how 
quickly we drop or update such conjectures. The everyday world is a 
constant stream of seemingly surprising facts against a backdrop of 
expectations. Much of the world, like a traffic light, isn’t a constant 
surprise—but then, traffic lights do break, too.

The meaning of an observation itself undergoes a conceptual 
change with abduction, as well. Whereas induction treats observation 
as facts (data) that can be analyzed, abduction views an observed 
fact as a sign that points to a feature of the world. Signs can be thought 
of as clues, because they are understood from the beginning as em-
bedded in a web of possibility that may help point to or shed light on a 



164	 T he   P roblem       of   I nference      

particular problem or question important to the observer. In rich cul-
tural contexts like crime-solving, clues are necessary because there are 
too many facts to analyze, and only a few are relevant. Indeed, the basic 
problem with using known methods in detective work is that difficult or 
seemingly insoluble crimes don’t fit regularities, and the accumulation 
of facts doesn’t point anywhere. Smart detectives look for clues.

So do hunters. Not only are hunters astute observers—they ob-
serve certain kinds of things. Hoof marks, droppings, tufts of hair, 
broken branches, and scents are all clues to the location of prey. Like 
detectives at a crime scene, hunters are engaged in a deliberate search 
for evidence of recent action; they observe results from the past.

Perhaps counterintuitively, clues are not considered unique. A 
hunter who comes across an unknown scent will assume that it points 
to something perhaps interesting, but not entirely unique, because if 
it were utterly unique the scent could not function as a clue. A hunter 
who reasons that an unknown scent might be from a previously un-
discovered species or an extraterrestrial will not advance his or her 
interests in finding prey.

Thus, the hunter is interested in a conjecture that fits his or her spe-
cific purposes. Perhaps the smell is unique because it was produced 
by an animal during mating season. Hence the scent is a surprising 
fact that might be accounted for by conjecturing its source from 
changes in the animal because it’s mating season. A familiar animal in 
mating season exudes different smells. Keep in mind that the hunter 
has no prior experience of this phenomenon (hence the abductive in-
ference), but reasons within a framework that excludes logical possi-
bilities that don’t advance the objective. Such conjectures are, sur-
prisingly, likely to be true—which is why Peirce puzzled over the 
“guessing instinct” at the core of so much intelligent thought.

Just as hunting is a prime example, so is seeing. Even judging that a 
particular object is an azalea, as Peirce points out, involves physical 
perception in a deep network of prior knowledge and expectation. 



	 A bductive         I nference        	 165

Recall his words: “Looking out of my window this lovely spring morning 
I see an azalea in full bloom. No, no! I do not see that; though that is 
the only way I can describe what I see. That is a proposition, a sen-
tence, a fact; but what I perceive is not proposition, sentence, fact, but 
only an image which I make intelligible in part by means of a state-
ment of fact. This statement is abstract; but what I see is concrete.”8

Peirce’s insistence that abductive inference undergirds even seem-
ingly trivial visual perceptual abilities might seem to be contradicted 
by recent successes using convolutional neural networks (deep 
learning) on visual object recognition tasks, as with the runaway suc-
cesses on ImageNet competitions. Yet such seeming successes actu-
ally prove Peirce’s point, as the research community has (to its credit) 
quickly pointed out the brittleness of these systems in a growing litera
ture that touches on not only central questions of inference but also 
concerns about trust and reliability, as well as potential for misuse. As 
computer scientist Melanie Mitchell points out, even the winning 
deep learning systems are ridiculously easy to fool.9

AlexNet, for instance, the system that blew away the field in the 
2012 competition, can be tricked into concluding, with high confi-
dence, that images of a school bus, a praying mantis, a temple, and a 
shih tzu are ostriches.10 Researchers call these adversarial examples, 
and they are accomplished by strategically changing a few pixels in 
the images—so few that the changes are not at all noticeable to the 
human eye. The images still look exactly like the originals to humans.

So-called adversarial attacks are not unique to AlexNet, either. 
Deep learning systems showing impressive performance on image 
recognition in fact do not understand what they are perceiving. It is 
therefore easy to expose the brittleness of the approach. Other experi-
ments have drastically degraded performance by simply including 
background objects, easily ignored by humans, but problematic for 
deep learning systems. In other experiments, images that look like 
salt-and-pepper static on TVs—random assemblages of black and 
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white pixels—fool deep learning systems, which might classify them 
as pictures of armadillos, cheetahs, or centipedes. As modern AI 
progresses, these obvious shortcomings actually prove the depth of 
knowledge and context that enables even visual perception. Peirce 
was right, in other words, about seeing an azalea on a fine spring 
morning, or about seeing anything else: “I perform an abduction 
when I [do so much] as express in a sentence anything I see. The truth 
is that the whole fabric of our knowledge is one matted felt of pure 
hypothesis confirmed and refined by induction. Not the smallest ad-
vance can be made in knowledge beyond the stage of vacant staring, 
without making an abduction at every step.”11

The origin of intelligence, then, is conjectural or abductive, and of 
paramount importance is having a powerful conceptual framework 
within which to view facts or data. Once an intelligent agent (person 
or machine) generates a conjecture, Peirce explains, downstream in-
ference like deduction and induction make clear the implications of 
the conjecture (deduction) and provide a means of testing it against 
experience (induction). The different logics fit together: “Deduction 
proves that something must be; Induction shows that something ac-
tually is operative; Abduction merely suggests that something may 
be.”12 Yet it’s the may be—the abduction—that sparks thinking in 
real-world environments.

The defeasible nature of abduction helps explain its centrally impor
tant role in natural language understanding, not just in hunting or 
detective work. Our understanding of what’s being said in ordinary 
language is constantly subject to update and revision. Consider this 
snippet of English: Raymond saw a puppy in the window. He wanted it. 
The pronoun it probably refers to puppy (linguists call this an example 
of pronominal anaphora—or reaching back). The two sentences are 
in an “out of the blue” context, and we don’t have any more information 
about Raymond, but common sense reminds us that people typically 
desire puppies rather than windows, and that we often look through 
windows to objects that might hold some interest for us. But the infer-
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ence that it refers to puppy is not certain. Change the example by adding 
context, and that inference is incorrect: Raymond broke his window. He 
went out shopping for a new one. He told himself he would know when he 
found the right one. A beautiful storm window was on sale. Raymond saw a 
puppy in the window. He wanted it. It was the right window for him.

The example may be contrived, but there is nothing wrong about it. 
Raymond might be the sort of fellow who puzzles over seemingly 
mundane purchases. He might be disposed to take the appearance of 
a puppy as a sign he should get a particular window, maybe out of 
some superstition. The point is that if we view the pronoun it as a sign, 
it can point or refer back to different nouns as the context changes. All 
existing strategies in AI to date have failed to adequately account for 
such examples.

Researchers call deduction “monotonic inference” because con-
clusions are permanent—once an AI system deduces a conclusion, 
the conclusion is automatically added to the system’s store of knowl-
edge. Yet language understanding is non-monotonic (requiring de-
feasible inference). New information from successive sentences can 
force changes in initial interpretations: It was at that very moment that 
Raymond knew this was the window for him. To get the gist of a narra-
tive we have to understand how each new sentence affects interpreta-
tion of prior ones. This is built into abduction, which is, after all, con-
jectural and subject to revision from the get-go.

In classical AI (AI before the web), researchers tried different ways 
of extending inference to make it defeasible. By far the most common 
approach involved extending deduction. Work on so-called non-
monotonic reasoning peaked in the 1980s and 1990s, but has since 
been largely abandoned, in large part because the extensions of de-
duction to make it more flexible for language understanding work 
only on “toy” examples that aren’t useful in the real world. A classic 
example is reasoning thus: “If x is a bird, then x can fly. X is, in fact, a 
bird. So it can fly. Wait! It is a penguin. Penguins can’t fly. Therefore, x 
can’t fly (after all).” There are defeasible reasoning systems that permit 
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reasoning like this, but they are notoriously intractable in the general 
case (that is, computationally infeasible), and they have never scaled 
to handle complicated inferences required for interpreting the ordi-
nary language found in news articles. Non-monotonic inference sys-
tems work only on contrived scenarios in the laboratory.

Even if such systems could be scaled, though, the core problem 
with deduction is its truth-preserving constraint—everything must 
be certain. We might modify or reject inferences later, but we are 
wasting time using deduction in the first place.

Many of the same researchers who worked on extending deduc-
tion in AI to make it defeasible also worked out deductive-based ap-
proaches to abduction in the 1980s and 1990s, notably with abductive 
logic programing (ALP). Without delving into the technical details, 
an ALP inference is an entailment (a truth-preserving deductive in-
ference) from a logical theory T (the knowledge base) to the truth of a 
conditional E → Q , where E is an explanation of Q , the observation. 
This is a fancy way of eliminating the conjectural nature of abduc-
tions, in effect. No inferential power is gained, which explains why 
work on ALP, like non-monotonic reasoning strategies, has languished 
and largely been abandoned. (The problem with ALP aptly demon-
strates the core problem with commonsense inference generally, and 
we’ll return to this in an upcoming section.)

If we try to preserve Peirce’s conception of abduction as a conjec-
ture to a plausible hypothesis, we end up in inferential “trouble.” In 
particular, we end up with a reasoning mistake. In studies of logic, it’s 
called a fallacy, and we turn to it next.

F A L L A C I E S  A N D  H Y P O T H E S E S

Peirce symbolized abduction as “broken” deduction. It’s easiest to see 
this by considering again the rule modus ponens for straightforward 
deduction:
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A → B (Knowledge)

A	 (Observation)

———

B	 (Conclusion)

And the truth table:

A → B	 Conclusion

T	 T	 T

T	 F	 F

F	 T	 T

F	 F	 F

The second row is the issue: A is true but B is false, which makes 
the inference from A → B false. For instance, if A represents It is 
raining, and B represents The streets are wet, then the conditional ex-
pression says that it’s always true that if it’s raining, then the streets 
are wet. But if A represents It is raining, and B represents The streets are 
dry, then the material conditional A → B (if A, then B) is false. The 
second row of the truth table tells us this.

Notice the third row: if it’s not raining, but the streets are in fact 
wet, well, the streets are still wet, so the rule is still truth-preserving. 
But at any time that it’s raining and the streets are not wet, the rule is 
wrong, so the outcome of applying it will be false. This is standard 
logic, called “propositional” because the variables stand for full state-
ments, or propositions.

Propositional logic was developed a very long time ago, and it 
has been proven not to have bugs. It’s complete, meaning that any-
thing true in the logic can be proven (using its rules), and anything 
provable is also true. It’s also consistent, because you can’t prove a 
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contradiction. If A is true, “not-A” must be false, and the system can’t 
prove the latter if it proves the former. Nothing can really go wrong in 
the simplified world of propositional logic. You can derive the truth of 
any propositions that have been expressed in it, and you can never 
derive nonsense—believing, say, that it’s both raining and not-raining. 
The system is consistent.

Now consider the following fallacy, not allowed in propositional 
logic or deduction generally:

Affirming the Consequent

A → B

B

———

A

Logicians call this argument form an example of “affirming the 
consequent,” because B is the consequent of the rule (A is called the 
antecedent), and B is given as the second premise, the case or fact ob-
served. Clearly, though, when we use the consequent as the case, we 
err. We make a mistake in reasoning. This follows because A might be 
false, so we can’t conclude that it’s true in all situations, as required by 
deduction. Since deduction is truth-preserving, the inference is in-
valid. It’s a fallacy.

It’s easier to see this by assigning actual English-language sen-
tences (propositions) to A and B:

If it’s raining, the streets are wet.

The streets are wet.

Therefore, it’s raining.
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The argument is invalid because, even accepting the truth of the 
premises, its conclusion is not necessarily true: the street might be 
wet for other reasons (for example, a fire hydrant might have burst). 
Affirming the consequent is bad deduction because it’s a guess. 
Viewing the logical form of abduction as a variant of bad deduction 
helps explain why it has been ignored, historically, in studies of rea-
soning, and also why it has resisted mechanical methods like those 
found in AI. How do we incorporate bad rules?

Indeed, Peirce’s own formulation of the types of inference makes it 
clear that we cannot translate abduction into a kind of deduction, for 
exactly the reason just given. He used syllogisms, expressed in English 
language statements:

De duc t ion

All the beans from this bag are white.

These beans are from this bag.

Therefore, these beans are white.

I n duc t ion

These beans are from this bag.

These beans are white.

Therefore, all the beans from this bag are white.

A bduc t ion

All the beans from this bag are white.

These beans are white.

Therefore, these beans are from this bag.
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Converting this into propositional logic, we have:

Deduction

A → B

A

———

B

Induction

A

B

———

A → B

Abduction

A → B

B

———

A

In other words, abduction by its very nature cannot be an extended 
form of deduction, because its logical form (essence) is an egregious 
deductive fallacy. It breaks the truth-preserving nature of deductive 
inference, which makes sense given that, as Peirce argued, it begins 
with a conjecture or guess, which by definition might be wrong.

In fact, all three inference types in this framework are distinct: one 
type cannot be converted into another, which implies that if intelligent 
inference requires abduction, we cannot get there through deduc-
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tion or induction. This observation is of paramount importance to 
work on AI. If deduction is inadequate, and induction is inadequate, 
then we must have a theory of abduction. Since we don’t (yet), we 
can already conclude that we are not on a path to artificial general 
intelligence.13

I pointed out previously that the conjunction of the frequency as-
sumption and the empirical constraint eliminate induction as a com-
plete strategy for artificial general intelligence. Reliance on frequen-
cies in data gives us Russell’s turkey, whose confidence that the farmer 
cares about it actually increases as observations of care stack up—the 
day before the Christmas feast is, inductively, the highest probability 
that its beliefs are correct (since it has the most inductive support). 
And the empirical constraint is a hard boundary on the knowledge or 
theory we can give to the turkey. If we tell it to “watch how the farmer 
treats you,” it will get happier and happier until it’s dead. But since the 
observation “I’m on the chopping block” isn’t in the data in all prior 
times until (t = Christmas Day), it can’t be supplied to the turkey’s 
theory or model by pure induction.

In machine learning, this means that the only knowledge we can 
supply to a system is what can be recovered in the data purely syntac-
tically. This has been seen as a virtue, as in the case of DeepMind’s 
Atari system, but it implies the same type of blind spot that plagues 
Russell’s turkey—what it can’t observe in the data, it doesn’t know. 
This results in failed predictions, like image-recognition foibles, and 
it also accounts for the peculiar brittleness of modern systems, where 
seemingly trivial changes to pixels degrade performance on games 
and other tasks.

We can patch up purely data-driven, inductive systems by including 
more data—to some extent. But exceptions, atypical observations, 
and all sorts of surprises are part and parcel of the real world. The 
strategy of exposing supervised learning systems to foreseeable excep-
tions, as is done with ongoing work on driverless cars, is a Sisyphean 
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undertaking, because exceptions by their very nature cannot be com-
pletely foreseen. A new, essentially abductive, approach is required. 
In the meantime, we’re stuck with only the observable regularities, 
the “fat head” of what is automatable.

Judea Pearl has made this point nicely with his metaphor of the 
“ladder of causation.” He calls machine learning and statistics an ex-
ercise in “fitting data to a curve” (and technically, it is), which fits into 
his first rung, of association. We can ask questions about correlation 
in the first rung, like “What does a survey tell me about the election 
results?” And we can use correlations between moves in a game and 
winning outcomes to design modern game-playing systems like 
AlphaGo. But we cannot extract causal information about the world 
from associations in data, so explanations involving why or how ques-
tions can’t even be formulated, let alone answered. Causal knowledge 
forms part of our commonsense understanding of the world, and 
explains why, for instance, we can see data as effects or clues to prior 
causes that contribute to our understanding.

Importantly, at the top rung of Pearl’s ladder are counterfactuals, 
where we ask what if questions whose answers don’t exist at all in any 
dataset (by definition, because we are asking about what hasn’t hap-
pened). We imagine worlds. In such counterfactuals, part and parcel 
of human intelligence, data is useless to help us determine whether, 
say, Kennedy would still be alive if Oswald had never lived, or whether 
the turkey would be safe if the farmer had received a gift turkey, or if 
the streets would still be wet if the fire hydrant hadn’t been dislodged 
by a swerving bus. Imagination involves inferences that don’t exist in 
a dataset. And imagining requires conjecture, if anything does. Ab-
duction is inference that sits at the center of all intelligence.

Though researchers of late seem to have forgotten, for most of AI’s 
checkered history the problem of acquiring and using commonsense 
knowledge about the world has been its core challenge. Common 
sense requires a rich understanding of the real world, which decom-
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poses broadly into two parts: first, AI systems must somehow acquire 
everyday knowledge (and lots of it); and second, they must possess 
some inferential capability to make use of it.

Hector Levesque, an AI scientist at the University of Toronto, 
makes a good case in his 2018 Common Sense, the Turing Test, and the 
Quest for Real AI that, absent a rich theory of knowledge, our attempts 
at achieving artificial general intelligence (“real” AI) are doomed.14 
His analysis of the necessity of commonsense knowledge is spot on, 
but he apparently falls into the traditional trap of understanding in-
ference as an (as yet unknown) extension of deductive reasoning.

Levesque in large part is attempting to resuscitate a once-prominent 
field in AI known as knowledge representation and reasoning (KR&R), 
which addressed head-on problems of knowledge and inference in in-
telligent systems. The reasoning part of KR&R involves consider-
ations of inference, and the problems we’ve just reviewed have been 
more or less discovered in the field of KR&R, but unfortunately left 
without solutions. In an earlier paper called “On Our Best Behavior,” 
in 2013, Levesque pointed out that extensions (and fixes) to deduction 
falter because they are intractable, a computer science term meaning 
that solutions can’t be computed in real time (if at all): “Even the most 
basic child-level knowledge seems to call upon a wide range of logical 
constructs. Cause and effect and non-effect, counterfactuals, general-
ized quantifiers, uncertainty, other agents’ beliefs, desires and inten-
tions, etc. And yet, symbolic reasoning over these constructs seems 
to be much too demanding computationally.”15

Intractability is one clue that the approach itself is wrong. A deeper 
clue is simply that deduction cannot be fitted into the logic of abduc-
tion. This irreducibility implies that the problem is fundamental, re-
gardless of issues of computational expense.

Both aspects of KR&R—that is, both representation and rea-
soning—are necessary today. In particular, representing common-
sense knowledge in a machine has proven difficult, to put it mildly. 
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Even after decades of work, no one has come even close to getting 
enough basic knowledge into a machine to empower it in real-world 
scenarios, like understanding ordinary language, or navigating around 
the house or on a busy street.16 Knowledge and reasoning are obvi-
ously interlinked, because we can’t infer what we don’t know, and we 
can’t make use of knowledge that we have without a suitable inference 
capability. I call these problems the “bottomless bucket of knowl-
edge” and the “magical inference engine.”

Ironically, old efforts on Abductive Logical Programming aptly 
demonstrate the key stumbling blocks. Suppose (again) that T is 
some knowledge base for an AI system S, which makes a (surprising) 
observation Q such that an explanation (or cause) E is in T, and T en-
tails E → Q , where entails is a strong truth-preserving inference 
(technically, entailment is stronger than material implication “→” 
since every statement in T must also make E → Q true, and vice 
versa). T is thus S’s “theory of everything.” Question 1: How do we get 
all necessary knowledge into T? Question 2: Since E → Q is just the 
material conditional we saw above, how does the truth of E → Q con-
stitute an abductive inference to a plausible (testable) conjecture, of, 
in this case, E for observation Q? In other words: How do we get a 
theory T, and, how do we use it abductively? All that’s required to 
explain these problems is wet pavement.

The US Department of Defense, through its high-tech research 
arm, the Defense Advanced Research Projects Agency, once invested 
huge sums of money into the construction of large commonsense 
knowledge bases. Experts trained in logic and computation (full 
disclosure—I was one of these experts) spoon-fed computational 
systems with ordinary statements like Living humans have heads, and 
Sprinklers shoot out water, and Water makes things wet, and so on. Os-
tensibly, AI systems armed with gobs of these commonsense facts 
could draw on them to infer things about the world. Such systems 
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wouldn’t need abductive inference, it was hoped, because the systems 
crammed with knowledge could use simpler and better understood 
approaches to inference. Since When the sprinklers are on, the area around 
them gets wet is as true as similar statements about rain, the systems’ in-
ference engines could stick with well-known deduction, after all. Sen-
sors (or text input) could inform AI systems about an approaching tidal 
wave, and deduction could infer that the streets got wet.

A number of major challenges to this approach soon surfaced. The 
first problem was obvious, or should have been: most of what we 
know is implicit. We bring our knowledge into consciousness, making 
it explicit, only when circumstances require it, like when we are sur-
prised or have to think through something deliberately.

This brings us to the second problem, the “tip of the iceberg.” All 
our implicit knowledge might be necessary for some inference or 
other, but the total amount is vast. The knowledge base of an ordinary 
person is unbelievably large, and inputting and representing it in a 
computer is a gargantuan task.

Spoon-feeding a computer with common sense turned out to be a 
lifelong philosophical project, ferreting out commonsense knowl-
edge like pouring a liquid into a glass container with no cracks and only 
one opening will fill it up. Or that living humans have heads, or that a 
road is a pathway with a hard surface intended for vehicle travel. Researchers 
were assuming computers would “get it” eventually, but eventually, the 
project seemed unending.

Think of an AI system built just to answer intelligently about the 
admittedly simple and boring topic of wetness. It would itself require 
a massive knowledge base. Any realistic, say, conversation-ready ma-
chine for only this topic would need concepts for firefighting airplanes 
carrying water (and not fuel, though that would make the streets wet, 
too), Super Soakers, kids playing, and on and on. Consider a simple 
question put to the system akin to a Turing test query: “It was a hot 
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day without a cloud in the sky. The fire department was called to shut 
off a malfunctioning fire hydrant. Main Street was wet, and the gut-
ters had become clogged with debris from rushing water. Why were 
the streets wet?” If the AI system’s knowledge base lacks fire depart-
ments and hydrants, it has no hope of answering the question. And 
consider tacking on this additional sentence to the question: “But 
that wasn’t what made the streets wet. The hydrant was spraying onto 
the front windows of the deli. A massive thunderstorm hit the area 
right before the fire department showed up. Everything was wet!” 
How do all those concepts in the knowledge base help? How does 
deduction?

C O M P U T A T I O N A L  K N O W L E D G E  A S  

A  B O T T O M L E S S  B U C K E T

This is the “bottomless bucket” problem: filling up a computational 
knowledge base with statements expressed as propositions (in a logic) 
is an endless task. We can’t solve even simple commonsense prob
lems, like reasoning about happenings on a city block or a neighbor-
hood, without effectively codifying huge volumes of seemingly irrel-
evant knowledge.

There’s also a representation problem. Knowledge bases, like rela-
tional databases, must be organized and structured, so that the bits of 
knowledge relevant for talking about wet streets, or Kate’s absence 
from the coffee shop, or half-eaten cans of tuna, or what have you, are 
available for inference. It won’t do for an AI system to start computing 
the position of Mars in the night sky, when asked if a spoon was used to 
eat tuna. This is the problem of relevance, and it has to be cunningly 
thwarted with strategies for representing knowledge to make it acces-
sible and available. Researchers typically try to “pre-solve” relevance is-
sues by grouping related knowledge together so that the rules (like 
modus ponens, and many others) cover what’s necessary.
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Typically, a knowledge base is organized into hierarchies using 
“is-a” links, indicating that something is an instance of something 
else, like saying a laptop is a PC, which is a type of computer, which is 
a digital technology, and so on. In large knowledge bases, hierarchies 
form the backbone of encyclopedic clusters of topics about the things 
we frequently encounter in the world. In addition to all the “is-a” links, 
other predicates (that is, links between concepts) expressing other 
important relationships can be introduced, like part-whole (mero-
nymic) relations between concepts.17 Knowledge representation lan-
guages have evolved since the early years of AI to facilitate knowledge 
base development, using simplified vocabularies tailored for expressing 
hierarchical relationships.

In the 1990s, for instance, working groups on the web developed the 
resource description framework (RDF) for writing “triples” (subject-
predicate-object phrases) in which the predicate can be “is-a,” “part-of,” 
or anything else deemed useful for building the knowledge base. RDF 
helped knowledge bases become, in essence, computational encyclope-
dias (as the late AI researcher John Haugeland once put it) with larger 
projects’ knowledge bases having thousands of triples. AI researchers 
hoped that the ease of use would encourage even non-experts to make 
triples—a dream articulated by Tim Berners-Lee, the creator of HTML. 
Berners-Lee called it the Semantic Web, because with web pages 
converted into machine-readable RDF statements, computers would 
know what everything meant. The web would be intelligently readable 
by computers. AI researchers touted knowledge bases as the end of 
brittle systems using only statistics—because, after all, statistics aren’t 
sufficient for understanding. The Semantic Web and other knowledge 
base–centered projects in AI could finally “know” about the world, 
and do more than just number-crunch. An enormous amount of money 
and effort was wasted on this dream, which never really worked. The 
bottomless bucket problem is still with us, because the task is still 
bottomless.
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But since knowledge is, typically, organized by subject matter so it 
can be accessed quickly by an AI system (which can’t, after all, take 
all day pondering why the streets might be wet when posed a ques-
tion), engineers found themselves packing more and more “odd” infor-
mation into a given subject area to cover everything that might come up. 
To use our example again, firefighters, hydrants, Super Soakers, fire-
fighting planes, rain, snow, floods, and so on all had to, somehow, be con-
nected together for the system to have a prayer of answering basic ques-
tions about wet streets. But this strategy quickly stops making sense; it 
frustrates the original intention to organize the knowledge naturally, by 
topic. While fire hydrants might be part of a description of, say, a typical 
city block along with its streets, large firefighting planes, or descriptions 
of children’s toys that shoot water, probably won’t. In other words, the 
very attempt to organize knowledge so it’s computationally accessible 
for real-time reasoning inevitably leaves out items that will be required 
given some scenario or other. There doesn’t appear to be any recipe for 
constructing a knowledge base for intelligence—at least, not one we 
know about, thought out in advance, to be filled in with logical languages 
like RDF or anything else.

The ultimate proof of the insolubility of the bottomless bucket 
problem reared its head only gradually, after the projects were hope-
lessly underway. Researchers had committed to massive knowledge 
base development projects, and thousands of person-hours had been 
spent filling out actionable encyclopedias to tame the commonsense 
problem of AI. As more “knowledge” was added, though, systems had 
more and more chances to get everything wrong. A system that knows 
only about rain and wetness might get a simple question right, but 
introducing dozens of different possible scenarios meant that, in gen-
eral, the system would inherit more and more ways to get it all wrong. 
The fire department was called out, because the downpour had flooded 
several parks, is actually about rain, which caused the flood. But the 
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reference to the fire department might flummox a system that “knew” 
about fire hydrants breaking and potentially wetting streets. Thus, 
unlike human thinking where in general the more we know, the more 
power we have to make useful inferences, large knowledge-base proj
ects are always in danger of generating nonsense inferences with all 
their additional “knowledge.” Clearly, not only the statements, facts, 
and rules constituting common sense are needed; how commonsense 
inference itself works is also important.

Looking in the rearview mirror, early efforts to give AI systems 
“commonsense knowledge” were actually two projects, disguised as 
one. Knowledge is an obvious requirement, but inference is, too. 
What we know is one piece of it; how we use what we know to update 
our beliefs is quite another. But strategies for computational infer-
ence are limited. As Peirce pointed out, we have three, and to date 
only two have been reduced to computation. Relevance problems 
with pure deduction surfaced, and so researchers tried out different 
ad hoc schemes.

In the 1970s, for instance, Roger Schank at Yale developed a “scripts” 
approach to common sense.18 Schank argued that ordinary thoughts 
and actions follow an implicit script—we follow a story line. A para-
digm case here is ordering food at a restaurant. We walk in, get seated 
(or seat ourselves), look at the menu, and order when waitstaff ap-
pears, after an initial greeting. All of this occurs in sequence and can 
be to some extent anticipated and planned. Schank assumed that 
some activities in the real world could be scripted in this way, and he 
developed some systems that used programmed scripts to interact 
with people on tasks like ordering food. In the real world, though, we 
keep veering off of scripts. We need common sense to order food, or 
to make a reservation whenever something unexpected happens, like 
waiting too long for service. Perhaps there’s a sign at the front en-
trance, instructing customers to use the side door.
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Schank’s work on scripts was abandoned as a serious attempt to 
solve AI’s commonsense knowledge problem, but it is still instructive 
because it shows clearly how knowledge and inference are separate. 
We might suppose that all knowledge relevant to ordering food can 
be given to an AI system—all the concepts and predicates describing 
a restaurant and ordering food are in the Restaurant Knowledge Base. 
But disruptions, unexpected events, or just plain conversation with 
the waiter will quickly confuse a scripts-based system. Invariably, it 
will need to know a lot more about the world than what’s in the Res-
taurant Knowledge Base.

It’s tempting to try to supply all the extra-restaurant stuff in a 
“meta” knowledge base full of knowledge about all sorts of common-
sense things: the weather, the sports game on TV, and so on. But as 
there won’t be direct links to all of this (because of the problem men-
tioned earlier, that we can’t “pre-solve” all the knowledge that might 
become relevant), the system must somehow jump outside its script 
of subject-related knowledge and plans. But to do that, it must have 
some inference mechanism that knows what’s going on—where to 
look, and for what. And to do that, we must solve a problem other 
than knowledge per se. We need a non-deductive (and non-inductive) 
flexible, commonsense inference mechanism. This brings us back to 
inference.

M A G I C A L  I N F E R E N C E  E N G I N E S :  

T H E  S E L E C T I O N  P R O B L E M  F O R  A I

If we have a rule, say A → B, and we observe a (surprising) fact B, we 
might hypothesize that A is true, because it would explain B (since A 
→ B is known). Thus if If it’s raining, the streets are wet is a known true 
statement, and we see that the streets are wet, knowing nothing else 
we might suppose it’s been raining. Indeed, in an out-of-the-blue con-
text, it’s probably most likely.
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But a system which also observes C, say “It’s a cloudless sky,” 
should ignore the rule A → B. Why? Well, because it’s not relevant 
anymore. In fact, recalling that A is a variable, it can stand for lots of 
different statements: It’s raining, or The kids are using the Super Soakers, 
and so on. In fact, we can extend A to include a set of statements, like 
this: A = {Rain, FireHydrant, Sprinklers, SuperSoakers, Tsunami, . . .}. 
Now the task is to select from among the members of the set A, in the 
antecedent of the rule A → B, the true statement that is also most rel-
evant to the observation B. Understanding relevance is unavoidable; 
knowing B tells us nothing about which member of the set in A should 
be used in A → B. We must pick what we think is the most relevant 
member of the set.

Thus the deductive inference from observation A to conclusion B 
is certain but too easy. We want to observe the effect, and infer the 
cause: the wet streets, and why, or how. This is all part of normal intel-
ligence, what Marcus and Davis call having a meaningful picture of 
the world, in which knowledge about what causes what is critical. Ac-
quiring and using this knowledge is complicated, because most real-
world events admit of many possible causes. The selection problem is 
finding the operative or best or plausible cause, given all the possibili-
ties real or imagined. So the core problem of automating abductive 
inference can be recast as this problem of selection, which helps ex-
pose the difficulty inherent in the required inference, but in the end 
it’s really the same problem. To abduce we must solve the selection 
problem among competing causes or factors, and to solve this problem, 
we must somehow grasp what is relevant in some situation or other. 
The problem is that no one has a clue how to do this. Our actual in-
ferences are often guesses, considered relevant or plausible—not de-
ductions or inductions. That’s why, from the standpoint of AI, they 
seem magical.

Peirce offered what he called a “vague explanation” of the unreason-
able accuracy of our guessing: “There can, I think, be no reasonable 
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doubt that man’s mind, having been developed under the influence of 
the laws of nature, for that reason naturally thinks somewhat after na-
ture’s pattern.”19 He estimated, perhaps conservatively, that “a billion 
(i.e., a million million) hypotheses that a fantastic being might guess 
would account for any given phenomenon.”20 He also had a linked 
knowledge base in mind, of some sort anyway: “For this phenomena 
would certainly be more or less connected in the mind of such a being 
with a million other phenomena (for he would not be restricted to 
contemporaneous events).” He concluded, in a kind of dismissal, by 
“not carry[ing] this idea out further,” because any such being lacking 
“nature’s pattern” would be faced with an impractical possibility of 
guessing correctly by chance.21 Unfortunately, AI can’t dismiss the 
problem; it is the precise problem that must be solved.

T H I N K I N G ,  F A S T  A N D  S L O W

The idea that part of our thinking is driven by hardwired instincts 
has a long pedigree, and it appears in a modern guise with the work 
of, for instance, Nobel laureate Daniel Kahneman. In his 2011 best 
seller, Thinking, Fast and Slow, Kahneman hypothesized that our 
thinking minds consist of two primary systems, which he labeled 
Type 1 and Type 2. Type 1 thinking is fast and reflexive, while Type 
2 thinking involves more time-consuming and deliberate computa-
tions.22 The perception of a threat, like a man approaching with a knife 
on a shadowy street, is a case of Type 1 thinking. Reflexive, instinc-
tual thinking takes over in such situations because (presumably) 
our Type 2 faculties for careful and deliberate reasoning are too 
slow to save us. We can’t start doing math problems—we need a snap 
judgment to keep us alive. Type 2 thinking involves tasks like adding 
numbers, or deciding on a wine to pair with dinner for guests. In 
cases of potential threat, such Type 2 thinking isn’t quickly avail-
able, or helpful.
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Kahneman argued in Thinking, Fast and Slow that many of our 
mistakes in thinking stem from allowing Type 1 inferences to infect 
situations where we should be more mindful, cautious, and questioning 
thinkers. Type 1 has a way of crowding out Type 2, which often leads 
us into fallacies and biases.

This is all good and true, as far as it goes. But the distinction be-
tween Type 1 and Type 2 systems perpetuates an error made by re-
searchers in AI, that conscious intelligent thinking is a kind of delib-
erate calculation.

In fact, considerations of relevance, the selection problem, and the 
entire apparatus of knowledge-based inference are implicit in Type 1 
and Type 2 thinking. Kahneman’s distinction is artificial. If I spot a 
man walking toward me on a shadowy street in Chicago, I might 
quickly infer a threat. But the inference (ostensibly a Type 2 concern) 
happens so quickly that in language, we typically say we perceive a 
threat, or make a snap judgment of a threat. We saw the threat, we 
say. And indeed, it will kick off a fight-or-flight response, as Kahn-
eman noted. But it’s not literally true that we perceive a threat without 
thinking. Perceived threats are quick inferences, to be sure, but they’re 
still inferences. They’re not just reflexes. (Recall Peirce’s azalea.)

Abduction again plays a central role in fast thinking: it’s Hal-
loween, say, and we understand that the man who approaches wears a 
costume and brandishes a fake knife. Or it’s Frank, the electrician, 
walking up the street with his tools (which include a knife), in the 
shadows because of the power outage. These are abductions, but they 
happen so quickly that we don’t notice that background knowledge 
comes into play. Our expectations will shape what we believe to be 
threat or harmless, even when we’re thinking fast. We’re guessing ex-
planations, in other words, which guides Type 2 thinking, as well. 
Our brains—our minds, that is—are inference generators.

In other words, all inference (fast or slow) is noetic, or knowledge-
based. Our inferential capabilities are enmeshed somehow in relevant 
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facts and bits of knowledge. The question is: How is all this programmed 
in a machine? As Levesque points out, some field, like classic AI’s 
knowledge representation and reasoning, seems necessary to make 
progress toward artificial general intelligence. Currently, we know 
only this: we need a way to perform abductive inference, which re-
quires vast repositories of commonsense knowledge. We don’t yet 
know how to imbue machines with such knowledge, and even if we 
figure this out someday, we won’t know how to implement an abduc-
tive inference engine to make use of all the knowledge in real time, 
in the real world—not, that is, without a major conceptual break-
through in AI.

T H E  S E L E C T I O N  P R O B L E M  A S  U N D E R C O D E D 

A B D U C T I O N  ( A N D  M O R E)

The late novelist, semiotician, and philosopher Umberto Eco, writing 
in a little-known compilation about abduction and inference, classi-
fied types of abductive inference in terms of their inherent novelty 
(and thus computational difficulty).23 His classification is instructive 
for our current concern with AI. Hypotheses or overcoded abduc-
tions are, paradigmatically, translation cases, where, for instance, man 
in English means “human adult male.” Eco points out that even these 
seemingly trivial inferences are only partially automatic, because 
background knowledge and context can alter our beliefs. In a foreign 
culture with polyglot languages spoken, hearing man might not li-
cense the dictionary meaning in English. Overcoded abductions still 
disguise the contribution of a belief or hypothesis. Background belief 
informs expectations of what phonemes (word sounds) mean.

Undercoded abductions require selection of relevant rules and 
facts that are already known, but that are applicable to inferences 
only in context. Understanding natural language is a paradigm case 
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of undercoded abductive inference. Margaret saw a magpie on the tree. 
She loathed it is typically interpreted to mean Margaret loathed the 
magpie, resolving the pronoun it to its preferred antecedent magpie. 
But Margaret saw a songbird land on her favorite tree. She loved it 
even more switches the preferred interpretation to the tree—and 
nixing the even more requires further background about Margaret, 
the songbird, and the tree. It’s undercoded, in other words, re-
quiring an appreciation of the narrative meaning in which the two 
sentences appear. A system like Siri or Alexa must perform—at 
minimum—undercoded abductive inferences to generate more con-
textual and meaningful responses. The two-sentence examples given 
are but a drop in the bucket with problems getting such systems to 
work using existing methods.

Abduction gets harder and harder. It soon departs from all known 
conceptions of automatic inference or computations. Take scientific 
discovery, or innovation. Human beings invent languages, concepts, 
and laws to explain the world. This is creative abduction. Creative ab-
ductions “leap” to novel conceptual frameworks themselves. Sir Isaac 
Newton comes to mind. Not only did he extend mathematics to de-
scribe instantaneous rates of change on curves (or acceleration), he 
gave words in English new meanings, to explain physics. Gravity 
used to mean depth and seriousness—as in gravitas—and the force 
of attraction we now call gravity was understood as tendency or 
purpose. When Newton hypothesized that objects like apples 
falling to the Earth are governed by gravity, a mathematically de-
scribable but invisible force, he also realized it was, or could be, the 
same force pulling the moon along its orbit—falling around the Earth, 
in effect—and pulling the oceans up in high tide. The concepts were 
invented, essentially.

Turing used the mechanical typewriter as a model to explain uni-
versal machines, or computers. Typewriters were common knowledge, 
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but they improbably entered into one of the greatest scientific and 
technological inventions in human history. The question of automating 
creative abductions like this is obscure, to put it mildly. Yet humans 
have made them, and still do make them. Watson and Crick’s dis-
covery of the structure of DNA is another famous example, as is 
Einstein’s theorizing about relativity. Innumerable lesser-known cre-
ative abductions have moved science and innovation along a progres-
sive path since the dawn of human society.

Creative abductions would be less immediately troublesome to AI 
if they were confined to flashes of brilliance by Newton, Turing, and 
others. But interesting and important moments in our personal 
lives are often creative abductions, too. When we reconceptualize 
our world, for instance, seeing new meaning in everyday happenings, 
realizing that relationships are more important than money, or have a 
religious conversion (or traditions or faith lose their hold), we see 
things through an entirely new lens. We don’t just select from among 
the web of background possibilities, as in solving a puzzle, except in a 
far more profound sense. Instead, we come to see the world and its 
happenings and events in an entirely different way.

This creative leap happens daily and for many people. The leaps 
can be large and serious (as with questions of faith and doubt) or they 
can be small and mundane. They’re often fun. We engage in inter
esting inference whenever we read the newspaper, or have a conversa-
tion, or navigate busy streets to pick up groceries. And creative abduc-
tions sit behind our fascination and enjoyment of music, art, film, and 
stories. Detectives—from the days of Dupin and Sherlock Holmes—​
entertain because we recognize the creative potential of the human 
mind in their cogitations. We marvel at how they can extend intelli-
gent inference into feats of reasoning.

In sum, mysterious and wonderful abductive inferences pervade 
human culture; they are largely what make us human. Dreams of AI 
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might someday capture these leaps automatically, but in the mean-
time we should admit that we really don’t know how to mechanize 
our experience.

All roads lead here: AI lacks a fundamental theory—a theory of 
abductive inference. The problem of language understanding exposes 
this problem unmistakably, and is a central concern of the next section. 
Let’s conclude this section with a few takeaway summary remarks.

First, deductive inference gives us certain knowledge. If the 
premises in a deductive argument are true, and if the rule used to 
infer the conclusion is valid (known to be truth-preserving), then 
deduction guarantees that we move from one true inference to the 
next. The problem is that little of the everyday world is captured by 
timeless truths, and even when we have certainty, deductive infer-
ence ignores considerations of relevance. Thus, deduction-powered 
AI can be quite silly and stupid: it might conclude, for example, that 
a husband won’t get pregnant because he took his wife’s birth con-
trol pills.

Second, inductive inference gives us provisional knowledge, because 
the future might not resemble the past. (It often doesn’t.) Logical ex-
perts call induction synthetic because it adds knowledge, but notori-
ously it can provide no guarantee of truth. It suffers also from in-
ability to capture knowledge-based inferences necessary for 
intelligence, because it is tied inextricably to data and frequencies 
of phenomena in data. This gives it a long-tail problem, and raises the 
very real specter of unlikelihood and exceptions. Inductive systems 
are also brittle, lacking robustness, and do not acquire genuine un-
derstanding from data alone. Induction is not a path to general 
intelligence.

And third, intelligent thought involves knowledge that outstrips 
what we can bluntly observe, but it’s a mystery how we come to acquire 
this knowledge, and even further, how we apply the right knowledge to 
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a problem at the right time. Neither deduction nor induction illumi-
nates this core mystery of human intelligence. The abductive infer-
ence that Peirce proposed long ago does, but we don’t know how to 
program it.

We are thus not on a path to artificial general intelligence—at 
least, not yet—in spite of recent proclamations to the contrary. We 
are still in search of a fundamental theory.



Chapter 13

• • •

I N F E R E N C E  A N D  L A N G U A G E  I

To talk to Eugene Goostman, you have to chat with him on text. He’s 
not available for a phone call, and you can’t have lunch with him. Text 
him, and he’ll tell you he’s a thirteen-year-old kid from Odessa, 
Ukraine. Like a lot of teenagers, his texts are flippant, evasive, over-
confident, and prone to misdirection and dissembling. He’s rude, 
then playful. He quips. What he won’t tell you is that he’s actually a 
computer program, a chatbot designed by Russian researchers to con-
vince humans he’s flesh and blood.

Goostman made history, purportedly, on June 7, 2014, by passing 
the Turing test, sixty years after Turing’s death. In the much-ballyhooed 
event hosted by the University of Reading in England and conducted 
at the Royal Society in London, Goostman the chatbot convinced 
thirty-three percent of selected judges in a five-minute text exchange 
that he was human.

The event made major news—blogs and news organizations around 
the world covered it—even though it wasn’t a real Turing test. Fully 
two-thirds of the judges didn’t fall for Goostman’s tricks, after the test 
was cut off at five minutes. Still, press coverage of the event, billed as 
the “at long last” moment, the passing of Turing’s challenge to usher 
in AI, was predictably euphoric. The Independent hailed Goostman as 
a “breakthrough,” adding that the program was a “supercomputer.”1 
Time proclaimed that “The Age of Robots is Here.” The BBC called it 
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a “world first”—technically accurate—while the popular tech blog 
Gizmodo informed its readers, “This is big.” The press reaction was a 
testament to the continuing fascination with Alan Turing, no doubt. 
It was also recognition of the momentousness of really passing his 
test. Imagine, if you can, really chatting with your computer. The 
Goostman success dangled this perennial sci-fi dream in front of us.2

E U G E N E  G O O S T M A N  I S  A  F R A U D

There was only one problem. Goostman was a fraud. Not long after 
the London spectacle, which won the Russian team the $100,000 
Loebner Prize for passing the Turing test, computer scientists and 
commentators began complaining. For one, Goostman didn’t really 
answer questions. He usually changed the topic or blurted out sar-
casm. Gary Marcus, then at New York University, wrote in the New 
Yorker that the Goostman performance was little more than a “parlor 
trick.” He echoed Hector Levesque, who also dismissed Goostman-
like performances as “cheap tricks.” As Marcus explained, the Goostman 
misdirection tactic creates the illusion of intelligence without re-
quiring any:

Marcus: Do you read the New Yorker?

Goostman: I read a lot of books . . . ​so many—I don’t even 
know which ones.3

These exchanges are like the ones people had with the 1960s chat 
program ELIZA, which mimicked a Rogerian psychotherapist:

Patient: Well, I’ve been having problems with my husband.

ELIZA: Tell me more about your husband

While admittedly fun, they fail to make any headway on the very 
real natural language challenges facing AI. In fact, Goostman (and 
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ELIZA) succeed by avoiding language understanding, and for that 
reason they’re irrelevant to a serious conversational test.

Perhaps understandably, pundits and commentators in the wake of 
the Goostman flap have resorted to decrying the Turing test itself as 
an illegitimate milestone. Gizmodo quickly ran a piece claiming 
Turing’s test was “b*llshit.” Wired questioned whether the goal of 
having a fireside chat with a computer should really be the benchmark 
for full-fledged AI.4

The critics have a point, considering the Goostman debacle. 
Cheating by spitting back sarcastic answers without real under-
standing hardly measures language ability in the way Turing in-
tended. Cheating at the Turing test by resorting to ploys and cheap 
tricks exposes a vulnerability we have to lowering the bar for our de-
tection of intelligence when expectations about conversational dia-
logue are themselves lowered.5 We might play along with thirteen-
year-old Ukrainian boys, thinking they know (and could care) less 
about adult dialogue. Likewise we might assume in a therapy session 
with ELIZA that typical therapeutic interaction involves a deliberate 
attempt to get us to talk—thereby excusing the therapist from doing 
our thinking for us. Our expectations in these types of situations fit a 
social context that precludes assessment of intelligence by the respon-
dents in the first place. So it’s no wonder that AI researchers have 
mostly abandoned the Turing test challenge. Stuart Russell’s dis-
missing remark that “mainstream AI researchers have expended al-
most no effort to pass the Turing test” reflects this frustration with 
media frenzy about parlor trick performances.6 It’s a weakness in the 
field to accept them.

But the dismissal is entirely unnecessary. For one, an honest Turing 
test really is a high-water mark for language understanding. As Ray 
Kurzweil has pointed out, an alien intelligence might not understand 
English conversation, but any intelligence that did pass a legitimate 
Turing test must be intelligent. “The key statement is the converse,” 
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he says: “In order to pass the test, you must be intelligent.”7 Kurzweil 
suggests that future competitions simply allow for a longer test, en-
suring that cheap tricks get filtered out in continuing dialogue.

This is just one suggestion. To go further, we might simply exclude 
the contribution of cheap tricks by adding a rule of play: Contestants 
could be required to answer questions directly, as if in front of a judge 
and sworn to “tell the whole truth and nothing but the truth.” Expec-
tations in a courtroom certainly preclude ELIZA-like performances. 
Imagine responding to a prosecutor’s or judge’s question with “Tell 
me more about that night yourself. How did that make you feel?” Or 
we could instruct all contestants to play as if interviewing for the job 
of understanding conversational English—not a bad test for future 
voice-activated personal assistants! In such cases, tricks would be 
immediate violations of conversational rules baked into the test. 
Goostman would be sunk.

Computational linguists and AI researchers have known all along 
that engaging in open-ended dialogue is formally more difficult than 
interpreting monologue, as in understanding a newspaper article. 
Yet another way to preserve Turing’s intuition that natural language 
ability is a suitable test of human-level intelligence is to consider a 
simplification of his original test, requiring only monologue. We can do 
this in the context of a question-answering session, as with the orig-
inal test. Consider a test simplification: we’ll call it the Turing Test 
Monologue. In a Turing Test Monologue, the judge simply pastes in a 
news article or other text, then asks questions requiring an under-
standing of what it says. The respondent must answer those questions 
accurately. (Goodbye to tricks.) For instance, a judge might paste in 
the AP article “Your Tacos or Your Life!” and ask the respondent 
whether the story is funny or not, and why? Passing this test would 
be, strictly speaking, a logical subset of a completely open-ended 
Turing test, so it would be entirely fair to use it—in fact, it would give 
advantage to the machine, which might not completely understand 
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how to handle “pragmatic phenomena” in back-and-forth dialogue—
more on this later.

Unfortunately, with the Turing Test Monologue, we already have 
evidence that AI systems are hopelessly lost. Gary Marcus and Ernest 
Davis point out that the state of the art for reading comprehension by 
machines is pitiful. Microsoft and Alibaba were much celebrated by 
the media for increasing a baseline score on a reading test known as the 
Stanford Question Answering Dataset (SQuAD), but only when the 
complete answers were in the text. This was therefore a simplified 
task of “underlining” answers as explicitly provided, cued by ques-
tions that clearly pointed to them.8 Marcus and Davis go on to high-
light embarrassing performances on seemingly simple questions, 
such as one asking only for the name of the quarterback mentioned in 
a snippet of Super Bowl coverage. The failure of understanding in 
such cases is obvious. So even when we eliminate trickery, AI lan-
guage understanding is in trouble. The Turing test remains a legiti-
mate assessment, whose bar is, if anything, set too high.

The more we take a serious look at the requirements of language un-
derstanding, the more daunting passing even the simplified Turing Test 
Monologue becomes. Hector Levesque devised a vastly simplified ver-
sion of the test and called his quizzes Winograd schemas (after AI pio-
neer Terry Winograd, who worked on natural language understanding). 
Winograd schemas require answers to multiple-choice questions about 
the meaning of single sentences in English. That’s a far cry from the 
Turing test. And yet, AI researchers are a far cry from mastering them.

T H E  C U R I O U S  C A S E  O F  W I N O G R A D  S C H E M A S

Hector Levesque is one of the few AI scientists today still focused on 
knowledge representation and reasoning. Admirably, Levesque wants 
to imbue AI programs today with more than statistical techniques for 
analyzing big data: he wants to give them common sense.
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Levesque proposed a simplified version of the Turing test which is 
much easier than the original open-ended and unrestricted test, but 
that, importantly, still frustrates all known automated approaches to 
language understanding. In 2013, Levesque presented a paper, “On 
Our Best Behavior,” to the Internet Joint Center for Artificial Intelli-
gence, which was quickly recognized as a call to arms for genuine 
AI.9 Inspired by the full Turing test, Levesque suggested we pose 
questions to machines that require some deeper understanding of 
what’s being said. The test questions are single sentences, not entire 
conversations. For example: Can a crocodile run a steeplechase? Levesque 
deliberately chooses examples like this because non-expert humans, 
having ordinary common sense, can figure them out (crocodiles cannot 
run a steeplechase), but popular tricks like using a search engine to 
look up the answer won’t work. Since there won’t (one assumes) be 
any web pages discussing crocodiles running steeplechases, there 
will be no way to bypass the need for understanding. AI systems run 
aground on such examples; an answer occurs to humans almost 
immediately.

A Winograd schema is a multiple-choice exercise, which removes 
the possibility that the machine can resort to misdirection, sarcasm, 
jokes, or the appearance of a bad mood to bluff human judges in any 
situation where a direct answer would reveal its lack of understanding. 
The schemas are based on a common feature of natural language, as 
Winograd’s original question inspiring them makes clear:

The town councilors refused to give the angry demonstrators a permit 
because they feared violence. Who feared violence?
a) The town councilors
b) The angry demonstrators

Note the pronoun they. It’s a plural pronoun; it might refer to the 
councilors or the demonstrators. It’s ambiguous, in other words, because 
either answer is possible without breaking the rules of grammar. Yet 



	 I nference         and    L anguage        I 	 197

only one really makes sense. Humans get the right answer to ques-
tions like this effortlessly and with near hundred-percent accuracy. 
AI systems do not. Their performance on Winograd schemas is not 
much better than random guessing.10

Working with other AI researchers, Levesque exhumed Wino-
grad’s challenge in 2012, when big data and machine learning clearly 
dominated approaches to AI (as they still do). He gathered a test set 
of multiple-choice questions, all exploiting the common and ubiqui-
tous feature of ambiguity in natural language. He called the ambi-
guity challenge the pronoun disambiguation problem. It captured the 
inspiration behind the Turing test, but in a simplified form: ordinary 
natural language understanding, like English or French (or what have 
you), requires general intelligence. In particular, Levesque believed 
that AI systems would require knowledge about what the words in 
language actually mean to do well on the test. Here’s another example 
of a Winograd schema:

Joan made sure to thank Susan for all the help she had given. Who 
had given the help?
a) Joan
b) Susan

To insulate the test from the problem of cheap tricks used to fool 
judges on the Turing test, Levesque added a twist: two words desig-
nated as special that “flip” the answer, while leaving the rest of the 
question unchanged. In this example, the special words are given and 
received. Exchanging these designated special words generates another 
question:

Joan made sure to thank Susan for all the help she had received. Who 
had received the help?
a) Joan
b) Susan
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Here’s another schema, employing the special words golfers and 
dogs:

Sam tried to paint a picture of shepherds with sheep, but they ended 
up looking more like golfers. Who looked like golfers?
a) The shepherds
b) The sheep

Winograd schemas are vastly simplified compared to the orig-
inal, conversational Turing test, but by posing multiple-choice 
questions that require resolving pronoun reference (pronoun disam-
biguation), they capture what earlier researchers called “common 
sense holism”—the idea that natural language cannot be understood 
by dissecting sentences, but requires a general understanding. Thus 
Winograd schemas are simple but typically unusual questions that 
make perfect sense to readers that have ordinary knowledge about 
the world. To take Marcus’s example, with basic knowledge of alliga-
tors and high hedges, it’s clear that the short legs of an alligator dis-
qualify it from competing by clearing hurdles. Why is this a difficult 
problem for AI?

In part, schemas are difficult because the two referents—the 
choice of nouns and noun phrases like alligator and hurdles—rarely 
(if ever) occur together in web pages and other text. Since data ap-
proaches to AI rely on lots of examples to analyze statistically, odd 
questions like those found in Winograd schemas represent a signifi-
cant challenge—all in one sentence. In fact, Winograd schemas are 
quite bulletproof to tricks like counting web pages. They’re “Google-
proof,” as Levesque puts it. But the requirement of ordinary knowl-
edge for their interpretation is a still deeper reason computers don’t 
perform well on them. Changing Marcus’s subject from alligators to 
gazelles would change the answer (gazelles can leap hurdles, no 
problem), but again the question is odd and thus quite rare on the 
web. Machine learning and big data don’t help. AI systems can’t look 
up the answer.
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As we might expect, AI researchers have devised new tricks to 
tackle Winograd schemas. Because so much content is available for 
analysis on the web today, frequency patterns can still be exploited in 
some cases. For instance, to answer questions about whether x is 
taller than y, researchers can mimic real knowledge by performing 
web searches with the pattern “x is taller than y.” If the people, build-
ings, or whatever things standing in for x and y happen to be in reposi-
tories like Wikipedia, data can be found, and math employed to answer 
the question—all by processing info-fields and other data sources on 
the web. But, again, Levesque anticipated this technique and suggested 
examples that use common nouns (gazelles, alligators, pens, paper, 
bowling balls, sheep, and so forth) that don’t appear in curated databases 
or online encyclopedias. This stymies the search-the-web trick, while 
also highlighting the commonsense, ordinary quality of knowledge 
required—preserving Turing’s original intent to use basic conversation 
that everyone engages in day to day.

Winograd schemas also guard against search-engine tricks in an-
other important way. The relation between x and y can be modified 
too, just like the things discussed (alligators versus gazelles). This is 
another roadblock to using data tricks, all the while preserving the 
simplicity of the questions. Consider first a schema requiring knowl-
edge of the relative sizes of common objects:

The trophy would not fit in the brown suitcase because it was so 
small. What was so small?
a) The trophy
b) The brown suitcase

There is a trick—a technique—for this schema, actually. As Levesque 
puts it, in quasi “computer-ese” language, we can dissect the question 
into a relation (call it R), and a single property (call it P):

R = does not fit in
P = is so small
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Then we use “big data,” he says, and “search all the text on the web 
to determine which is the more common pattern: ‘x does not fit in y’ + 
‘x is so small’ vs. ‘x does not fit in y’ + ‘y is so small.’ ”11 For the scores of 
example sentences returned by search, a pattern might emerge where, 
for instance, the second item mentioned is more frequently smaller 
than the first. Imagine a social media post in which someone is com-
plaining about packing and keeps mentioning that such-and-such 
won’t fit because their backpack is too small. Simply counting search 
results for the two patterns can yield a statistical answer, and if it’s 
correct, a system can answer Winograd schema questions without 
knowledge.

Unfortunately, the approach is quite shallow. It is powerless against 
even small modifications that change the meaning of the question, and 
hence switch the preferred answer. Our original “relation R” trick fails, 
for instance, on this question:

The trophy would not fit in the brown suitcase despite the fact that it 
was so small. What was so small?

a) The trophy
b) The brown suitcase

It’s the trophy that’s so small now, not the suitcase. Thus the speci-
fication of R and P will generate an incorrect response. The modified 
question is probably less frequent than its original version, so big data 
is a hindrance, not a help. This is the rub. Even with simple, one-
sentence questions, the meanings of words—alligators, hurdles—and 
the meanings of the relations between things—smaller than—frustrate 
techniques relying on data and frequency without understanding. 
Winograd schemas are a window into the much greater difficulty of 
the Turing test.

Machine learning and big data have made significant progress on 
some problems in the last decade. As a rule, though, workarounds 
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that sidestep actual knowledge and understanding account for the 
successes. There is an ongoing confusion here, particularly with auto-
mated language translation systems which seem to require some sort 
of language understanding; take Google Translate, which is often 
touted as a runaway success story proving how AI is quickly taming 
natural language. But the relatively recent availability of large vol-
umes of translated texts on the web facilitates data-intensive approaches, 
which deliver “good enough” results by exploiting mappings between 
words and sentences in texts translated into different languages. The 
mappings are mostly all in the data, so inductive strategies work. 
Understanding is not required.

For instance, official Canadian parliamentary documents are 
translated word for word from English into French; in a case like this, 
approaches like deep learning suffice to “learn” the mappings be-
tween the languages. No actual understanding of English or French 
is required. For example, if you type John met Mary at the café into 
Google Translate, and ask for a translation to French, you’ll get 
John a rencontré Mary au café. This is a perfectly acceptable transla-
tion. Other examples fail, however. The failures typically involve 
ambiguity somewhere, as with referential phenomena like pro-
nouns, or polysemous (many-meanings) words embedded in context. 
(If you want to experiment with Google Translate on sentences 
containing ambiguity, try The box is in the pen or I loved the river. I walked 
to the bank.)

Confusingly, work in the 1960s on so-called fully-automated 
high-quality machine translation began with statistical approaches, 
albeit simpler ones. They didn’t work very well, and soon apostates 
like Yehoshua Bar-Hillel concluded that automatic translation was 
hopeless, because knowledge and an appreciation of context seemed 
necessary—reasons that later inspired Winograd and then Levesque 
to formulate knowledge-based schemas. But Bar-Hillel didn’t antici-
pate the contribution that big data would make a few decades later. 
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Statistical approaches started showing promise in the 1980s, with work 
by IBM researchers, and web giants like Google used similar tech-
niques (and now deep learning) to provide decent statistically-driven 
translation services. Fully-automated high-quality machine translation 
came full circle.

But Bar-Hillel’s original skepticism is still germane; translations 
requiring knowledge and context are still a black box to modern ap-
proaches, big data and all. For instance (and ironically), Google 
Translate as of October  2020 still gets Bar-Hillel’s 1960s example 
wrong. Bar-Hillel asked how to program a machine to translate The 
box is in the pen correctly. Here, pen is ambiguous. It might mean a 
writing instrument, or it might mean a small enclosure for animals. 
Using Google Translate, The box is in the pen translates to La boîte est 
dans le stylo, in French, where stylo means writing instrument, which 
isn’t the preferred interpretation (because boxes are typically larger 
than writing pens). In other words, “good enough” translation de-
pends on one’s requirements. Google Translate might get less contex-
tualized sentences most of the time, but there will be errors—and the 
errors might matter, depending on the person using the service. Ser
vices like Google Translate actually underscore the long-tail problem 
of statistical, or inductive, approaches that get worse on less likely ex-
amples or interpretations. This is yet another way of saying that likeli-
hood is not the same as genuine understanding. It’s not even in the 
same conceptual space. Here again, the frequency assumption repre-
sents real limitations to getting to artificial general intelligence.

“Good enough” results from modern AI are themselves a kind of 
trick, an illusion that masks the need for understanding when reading 
or conversing. On image-recognition tasks, systems might be for-
given for incorrectly classifying certain images (but not if the system 
is a self-driving car). But on language tests like schemas, a 20 percent 
error rate (thus 80 percent accuracy) means that fully two out of ten 
examples are opaque to the system. And accuracy rates on Winograd 
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schema tests are much worse—barely better than random. As schema 
questions make clear, errors are less excusable when they are simple 
sentences, with no inherent difficulty for humans.

The point is that accuracy is itself contextual, and on tests that ex-
pose the absence of any understanding, getting six out of ten answers 
correct (as with state-of-the-art systems) isn’t progress at all. It’s evi-
dence of disguised idiocy. Like the mythical androids in the sci-fi 
thriller Blade Runner, a test looking for mind (or real emotion) will 
eventually unmask machines as programmed impostors. Only, the 
Winograd schemas are short and quite simple. All it takes is one ques-
tion, requiring some basic knowledge of what’s being said.

Levesque’s “pronoun disambiguation problem” is a vastly simpli-
fied step in a very large minefield that automated systems will have to 
navigate to have a prayer of managing ordinary conversations. Re-
solving pronoun references is just one knowledge-based problem 
among a plethora of others that must be solved for genuine language 
understanding. And Winograd schemas hugely simplify in other ways, 
as well. In addition to the one-sentence limit for each schema, the test 
also simplifies by ignoring most of the pragmatic phenomena in con-
versational dialogue. Pragmatics is hell for automation. To see why, 
we’ll next tour through the field of natural language processing, or 
understanding.



Chapter 14

• • •

I N F E R E N C E  A N D  

L A N G U A G E  I I

Natural language is a complicated beast. Its ingredients are symbols, 
letters, and punctuation, forming words: w-o-r-d-s. Words are chunks 
of meaning. They refer to all sorts of things: objects like the razor, 
feelings like pleasant, moral judgments like bad, situations or events 
like party or elections, and abstract collections like the economy or the 
farm. Words, having meaning, can also be ambiguous: the farm might 
mean the physical location of a farm, or it might mean the business of 
the farm, or the place of living for a family. The exact meaning of even 
a simple word like farm will depend on what the speaker really in-
tends, which is contextual.

Understanding context expands the scope of language interpreta-
tion to surrounding words, sentences, paragraphs, and even entire 
texts. Ambiguities must be resolved in phenomena like pronouns and 
indexicals—where and when (“at the appointed time,” when context 
makes clear that midnight is meant). Finally, we have what linguists call 
pragmatics: the context that includes the person making the statements, 
his or her purposes, interests, and the like. Sarcasm, irony, and other as-
pects of communication come into play. Language starts with letters and 
words, and ends up with questions about meaning and mind.
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A  T O U R  O F  L A N G U A G E  U N D E R S T A N D I N G

Language understanding (say, understanding a tweet, a blog, or War 
and Peace) is a kind of inverted pyramid, like the old food pyramid il-
lustrations used to depict a healthy diet, but stood on its head. As you 
go up the (inverted) pyramid, more meaning is encountered, and 
computational treatments of language run into increasing difficulties. 
At the bottom, the tip, we have orthography, the letters and punctua-
tion that combine into words and sentences. Then lexical and mor-
phological features like words, their prefixes, suffixes, parts of speech, 
and so on. To form sentences we need words combined into phrases, 
like the noun phrase the ferocious lion, which contains a subject and 
some identifying and qualifying information; then we must add some 
action, like The ferocious lion devours; then we must add an object if 
that action (and verb) is transitive, like The ferocious lion devours meat. 
Sentences form paragraphs, which express a topic and flesh it out, and 
multiple paragraphs joined together form a story or narrative. The 
story (of one or more paragraphs) is called a discourse, or just a text. 
An example of a large text is a book, which has a genre, like fiction 
or nonfiction, and so on. A transcript of a conversation is also a text. 
Thus the Turing test sits at the top of an inverted pyramid of lan-
guage, where it’s wider and expanded into a full dialogue, a conver-
sational text.

In some sense, the inverted pyramid of language can be viewed 
purely syntactically, as the construction of a text using rules that 
specify how to combine characters into words, words into sentences, 
and sentences into paragraphs. Syntax can be processed and analyzed 
by a computer. But the language pyramid leads a double life—it’s also 
about meaning. Natural languages use symbols and rules to convey 
meaning, which can’t be ignored if we want to say anything useful 
using language at all. Language is a journey into meaning. A children’s 
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book takes this same journey as a Russian novel. It’s all the expression 
of meaning.

In linguistics and other cognate fields, semantics is the study of 
what things mean. Semantics means “meaning,” and semantic analysis 
is roughly what’s involved in taking multiple-choice Winograd 
schema tests. Knowledge and belief is required, not only syntax and 
information about symbols. Inference is required to apply knowledge 
in context. If I believe, for instance, that an alligator can run the 
hundred-meter hurdles, I have to explain how its little legs can manage 
the required jumps over the hurdles, and to do this I have to know 
something about the anatomy of an alligator. (Not much explanation 
is required for humans, actually: a picture will do, as any five-year-old 
has probably seen.) The answer to the question is not in the syntax. 
It’s in its semantics.

Winograd schemas replace the syntactic pyramid of language with 
a semantic one, where words have meanings, referring as they do to 
objects in the world. But words in sentences sometimes make sense 
only in the context of an entire text. Text interpretation invariably in-
volves pragmatic considerations, which add to word meanings infer-
ences about purpose and intent. A conversation between two people 
is an example of pragmatics in language understanding. If I ask 
“Can you pass the salt?” and you reply “Yes” but do nothing, then the 
context—my intention—escapes you (or you jest—which is more 
pragmatics). In pragmatics, what is said is tightly dependent on how it 
is said and why it is said.1 What people mean is almost never a literal 
function of what they word-for-word say. This feature of ordinary 
talk, studied in linguistics as pragmatics, is what makes language in-
terpretation hard for AI, but meaningful and interesting—and gener-
ally easy and natural—for people.

Syntax remains essential. If we switch languages from English to, 
say, Chinese, then we also switch from Latin characters to picto-
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grams. If someone doesn’t speak or read Chinese, then attempts at 
communication are futile. But, as logicians might say, knowledge of 
syntax is necessary but not sufficient. World knowledge is essential. If 
I tell you that someone was hit with a Styrofoam bat, it matters what 
you know about Styrofoam, because that piece of knowledge deter-
mines what you’ll think about my comment, and how you’ll react: 
“Tragic,” you might say, sarcastically. But an AI system that assumes 
Styrofoam must be a good, hard substance for swinging a bat might 
be rather alarmed: “Is she okay?” Even the simplest exchange typi-
cally requires real knowledge and context-dependent inferences, in-
volving semantics (and pragmatics).

Turing understood this in his original exposition of the prospects 
for AI. In his example, he imagines a human questioner (the interro-
gator) and a computer (the witness). The interrogator has asked the 
witness to write a sonnet, who reproduces Shakespeare’s Sonnet 18:

Interrogator: In the first line of your sonnet which reads “Shall I 
compare thee to a summer’s day,” would not “a spring day” do as 
well or better?

Witness: It wouldn’t scan.

Interrogator: How about “a winter’s day,” that would scan all 
right.

Witness: Yes, but nobody wants to be compared to a winter’s day.

Interrogator: Would you say Mr. Pickwick reminded you of 
Christmas?

Witness: In a way.

Interrogator: Yet Christmas is a winter’s day, and I do not think 
that Mr. Pickwick would mind the comparison.
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Witness: I don’t think you’re serious. By a winter’s day one 
means a typical winter’s day, rather than a special one like 
Christmas.2

The interrogator’s first question tests the computer’s knowledge of 
sonnet writing, specialized knowledge that we might forgive many 
perfectly knowledgeable people for lacking. Iambic pentameter ex-
cludes “spring” day, and the computer curtly replies that the interro-
gator’s suggestion won’t “scan.”

“Winter’s day” does, though, so why not that? Here the focus shifts 
to the metaphor of comparing one’s love to a winter’s day. The witness 
brushes off the interrogator’s suggestion of a “winter’s day.” We can 
assume winter days are short and cold, and someone deep in romantic 
love would not choose such imagery. But the shift from summer to 
winter is not so obvious, actually. Winter days can be beautiful and 
snowy, with brilliant sun illuminating the soft silence of forests. The 
idea is rather that, in love, if we are to pick a season to describe our 
beloved, the warm, long, beautiful days of summer make more sense.

The interrogator then suggests a “special” winter’s day, Christmas. 
This tests the computer’s knowledge of the intent or purpose of the 
sonnet, which is not to compare someone to a celebration, but to 
something lovely and “constant,” something like the experience of a 
lovely day in summer. To compare one’s love to Christmas, or to the 
Fourth of July, is to mix together ideas and emotions that entirely 
blunt and ruin the point of the sonnet. The witness, apparently aware 
of the foolish misdirection, shoots back that it doesn’t think the inter-
rogator “is serious.”

Understanding the point of the sonnet, in other words, is to under-
stand the deep emotion of someone in love comparing his beloved to 
a summer’s day, something beautiful and long and lovely, though the 
poet believes that his love is the more so, made immortal by his deep 
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passion and by the timelessness of the sonnet he’s written. The ex-
change between the interrogator and the witness requires knowledge, 
to be sure, but most of the relevant knowledge is in fact about 
people—people in love and how we express that in words and feel-
ings. To understand the sonnet we have to know what it’s like to talk 
about a beloved. The interrogation is about mental states and emo-
tions. This is pragmatics, in its broad and intended sense.

Poetry, we might say, is intrinsically pragmatic. But less effusive 
prose still showcases the ubiquity of pragmatic phenomena in lan-
guage, in nearly every “ordinary” sentence. It’s inescapable. Deixis, for 
instance, refers to words like pronouns that cannot be understood or 
disambiguated without knowledge of context, like me or he or here. 
Deixis means “pointing,” and language often points: She saw a sparrow 
here last night points to whoever saw the sparrow (person deixis), un-
derstood by the listener in context. Same, too, for here, referring to 
some location in context (spatial deixis), and last night, which must 
refer to the night before the comment (temporal deixis). A system en-
gaged in a conversation, not resorting to canned tricks, must keep 
track of all this.

At minimum, deixis is just one problem among many. Language is 
full of contextual subtleties that require a deeper understanding of 
intent. If I mention that I was playing Mozart last night, the comment 
is naturally adjusted to make sense: I was playing music written by 
Mozart last night. (I wasn’t “playing” the man Mozart, in some urban-
dictionary sense of talking him out of his wallet, say.) We usually 
don’t bother with such adjustments because pragmatic phenomena in 
language are part and parcel of normal communication. We infer 
intended meaning, not by seeing lots of examples but by thinking 
through what is meant.

Linguists (and the rest of us) know that people often mean much 
more than they say. This reveals itself in language in different ways. 
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Conversation is full of ellipses, for instance, where nouns, verbs, and 
other parts of speech and phrases are entirely left out: I went to the 
mall yesterday, and Shana went today. We possess prior knowledge of 
specific people, places, and things, and use this knowledge to shorten 
and make more natural our communication with each other. Can you 
lend me your book? assumes you have a book, and also that you know 
which one I mean. If you inform me that Charles stopped studying 
mathematics when he won the poetry contest, I’m presupposing that you 
know Charles, and that Charles was studying math, and so on. Lan-
guage, we might say, is partially occluded: we leave out details and as-
sumptions; we count on other minds to infer and assume what we mean.

Anaphora, mentioned earlier, means “referring back,” as in The ship 
left the harbor in May. Roger was on it. Here, the pronoun it refers back 
to the ship.3 Anaphora (and its cousin, cataphora, or “referring for-
ward”), as we’ve seen, is introduced into language with placeholders, 
typically pronouns like he, she, they, them, it, and so on. Pronouns 
aren’t particularly rare, and anaphors in general are ubiquitous. They 
are one example of language pointing to itself, and outside itself into 
the world.

Anaphors also interact with other pragmatic inferences to convey 
meaning, as in We loved the quartet last night. It was all so lovely, which 
subtly shifts the otherwise anaphoric It (referring to the quartet) to 
the evening itself. Anaphora itself is a special—though common—
case of reference in language, of which a popular type in computa-
tional treatments of language is known as co-reference, where two 
mentions (words or phrases mentioning something) in a discourse or 
text refer to the same object or situation in the world. In the example 
above, The ship and it co-refer to the ship that left the harbor in May. 
(If Roger was in it instead of on it, we can imagine scenarios where 
he was in the harbor: The ship almost drowned him as it passed by.) 
Winograd schemas in effect simplify the general, computational co-
reference problem into a single sentence (rather than an entire text, 
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say) that always contains two possible antecedents: nouns or noun 
phrases in the sentence, where one and only one co-refers with the 
pronoun:

The sack of potatoes had been placed below the bag of flour, so it had 
to be moved first. What had to be moved first?
a) The sack of potatoes
b) The bag of flour

The schema is a co-reference problem; it refers to the same thing in 
the world as the noun phrase the bag of flour (they both refer to a bag 
of flour, the one above the sack of potatoes described in the sentence). 
But schemas do simplify, quite a lot. For one thing, they eliminate 
open-ended reference: Later that year, imports fell precipitously. By year 
end, the entire economy was in trouble. Here, The entire economy refers 
(to the entire economy) but without an attachment in the text itself, 
as with schemas. (In this example, there is an implicit meronymic, or 
part-whole relationship between imports and the whole economy.) 
By contrast, Winograd schemas always offer the interpreter two choices, 
which are clearly specified.

Conversations, op-eds in the newspaper, and a letter to a friend 
present much more complicated interpretation tasks. Part of the 
schema simplification is structural: because we know, taking the test, 
that there are only two possible answers, a strategy of randomly 
guessing won’t be so bad, around 50 percent accuracy. Not bad—and 
with zero intelligence! But humans score 95  percent or better at 
Winograd schemas, and the best systems to date don’t perform much 
better than a simple heuristic that picks the first answer, or randomly 
guesses.4 The anaphors are an explicit knowledge and inference con-
dition on interpretation—not a test of frequencies in data. The con-
clusion is particularly devastating because there’s nothing “tricky” 
about the test otherwise. The questions are fully articulated, and 
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the choices are clear. For the most part, people find them easy (if a 
bit odd).

Consider a more complicated language test, the Turing Test Mono-
logue described above, where the AI system must read a snippet of 
monologue, like a story or a news article, and answer questions about 
it posed by a human judge. Here’s an example test story:

A man moved to a new town after he quit his job, hoping to start 
a new life. He drove to the store to see if his employee discount 
still worked. At the self-checkout, he discovered that it didn’t. 
Muttering to himself, he said “I’m never coming here again.” A 
woman overheard him and gave him a funny look. As he was 
leaving, he bumped into his wife, and told her what happened. 
He said again “I’m never coming here again!” She replied, smiling, 
“Then I will. It’s close to our house, and cheap.” He nodded, 
smiling, and said “Fair enough.” Later they went to the park, 
and he compared her to a summer’s day.

The story is contrived (I made it up), but it’s not particularly diffi-
cult for English readers to understand, and it’s not unique in requiring 
commonsense knowledge and pragmatic understanding to interpret 
it correctly. Let’s say a new AI system, DeepRead, using the best ma-
chine learning and big data available, has just been released for demo 
by the hot new startup (sure to be acquired by Google), Ultra++. The 
human judge asks DeepRead some simple questions:

	 (1)	Did the man walk to the new town?
	 (2)	Why was the man hoping to start a new life?
	 (3)	Did the man die?
	(4)	Do you think the man drove a car, or a golf cart? A bus?
	 (5)	Did the man used to work in that store? Another store 

owned by the same company?
	 (6)	Did the man’s employee discount still work?
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	 (7)	Did the man mutter that he would never come to the store 
again? The town? Only the space in front of the 
self-checkout?

	 (8)	Was the woman who overheard him muttering his wife?
	(9)	What did he mean to communicate to his wife when he 

bumped into her?
	(10) What did she mean by “I will”?
	(11)	Was the store next door to them?
	(12)	Did the man love his wife?
	(13)	Do you think he started a new life, after all?

To have a prayer of answering these questions, DeepRead will have 
to solve a number of difficult problems on the language pyramid in-
volving semantics and pragmatics, none of which are strictly in the 
data, in the sense required for data-centric AI.

Start with some commonsense knowledge that moving to a new 
town typically involves packing up and driving or flying to the town. 
Question (2) is strictly speaking not answerable, but given the con-
text, most human readers would assume his new life is connected to 
his recent unemployment (although “I have no idea” might be reason-
able for less adventurous readers). Question (3) also requires under-
standing that the idiomatic phrase starting a new life means you don’t 
first physically die. Question (4) is an example of implicature, or what 
is implied by a sentence or phrase but not directly stated. We assume 
the man drove a car—although it’s logically possible he got there by 
golf cart. In the remaining questions, DeepRead must use back-
ground knowledge to realize that the man’s employee discount once 
did work, and so the man presumably worked for the company that 
owns the store he is in (but in a different location—presumably in the 
town he left); resolve the pronoun it to the man’s employee discount 
(anaphora resolution); understand the location deixis here to mean 
the store (not the town or the spot in front of the self-checkout); un-
derstand that a woman cannot mean his wife (another implicature); 
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understand that the man informed his wife not only of his intention 
not to come to the store again, but also that he was frustrated by the 
company—and the list of difficult language problems grows.

His wife uttering “Then I will” is incomplete, involving ellipsis, 
where a statement is shortened because of assumed knowledge be-
tween speaker and hearer. DeepRead should understand that his wife 
will come to the store again, which is not said. More anaphora: It ut-
tered by his wife means the store, and her comments about it being 
close and cheap are reasons why she will shop there. DeepRead should 
also get that the store is not next to their new house, since the man 
drove. And finally, that the man’s smile meant he was letting go of his 
frustration, indicated even more by his going to the park later with his 
wife and comparing her to a summer’s day. DeepRead should con-
clude that the man loves his wife and respects her opinion (he was 
likely glad to have bumped into her), and that comparing her to a 
summer’s day was an expression of happiness and appreciation.

Alas, I’ve left out all sorts of required knowledge and inference. 
DeepRead should understand that the man went into the store, and 
didn’t just drive to it, though this is implied rather than stated. And 
so on. No existing or foreseeable AI system can answer these ques-
tions—and we are only talking about the Turing Test Monologue, 
using this one simple story. DeepRead doesn’t exist. The mind enters 
into language and pieces together a picture of what is happening, and 
why. Our inverted pyramid broadens into problems that require a 
deep and meaningful picture of the world, and entering into the mind 
of the speaker (or writer) is part of the challenge. This brings us back 
to pragmatics, and our friend Goostman.

G R I C E ’ S  M A X I M S  F O R  G O O D  C O N V E R S A T I O N S

Eugene Goostman’s designers, you might say, used pragmatics as a 
tool, a weapon. The chatbot’s code exploits an area of pragmatics 
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that turns language understanding on its head, with overuse of sar-
casm, full-time dissembling, and copious misdirection. It exploits, in 
other words, an assumed understanding among judges that thirteen-
year-old Ukrainian boys sometimes avoid questions not just because 
they don’t know answers, but because they do not care to try.

Linguists will recognize that Goostman cheerfully violates what 
are called “Grice’s Maxims.”5 In the early part of the twentieth century, 
the philosopher of language Paul Grice offered four maxims for suc-
cessful conversation:

1.	 The maxim of quantity. Try to be as informative as you possibly 
can, and give as much information as is needed, but no more.

2.	The maxim of quality. Try to be truthful, and don’t give 
information that is false or that is not supported by evidence.

3.	The maxim of relation. Try to be relevant, and say things that 
are pertinent to the discussion.

4.	The maxim of manner. Try to be as clear, as brief, and as orderly 
as you can, and avoid obscurity and ambiguity.

Eugene Goostman is a repeat offender. It violates all Grice’s maxims, 
throwing off hapless human judges presumably attempting to ascer-
tain ordinary understanding and a baseline skill and ability in conver-
sation. Well-minded people typically adjust to deficits stemming 
from English as a second language or from youthful cheekiness, as 
long as there’s some noticeable effort to be informative, sincere, rele-
vant, and reasonably clear. Not so Goostman, who violates the maxims 
by design.

But violating Grice’s maxims in everyday conversation tells ordi-
nary interlocutors that something is “off.” If someone approaches 
you in a coffee shop and says, “I am Brian Johnson, could you tell 
me what time it is,” the request, while understandable, will seem 
strange. Grice’s maxims explain why: the request violates the maxims 
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of quantity and relation, and prompts confusion over information not 
necessary for getting the time. (We wonder, “Why would he say his 
name? Does he think he needs to show credentials for asking for 
the time?”)

Back to Goostman: In a structured, time-limited test, with the 
world watching, it’s simply ridiculous to violate Grice’s maxims, sys-
tematically, when the entire point of the test is to determine intelli-
gence by ordinary conversation. Yet that worked, in the competition 
anyway. It shouldn’t have. And the backlash to rid ourselves of Turing 
tests was unnecessary and silly, too. To get rid of Goostman, take 
your pick: use simplified multiple-choice tests like Winograd schemas, 
or apply fixes to conversational (or monologue-based) tests to place a 
heavy penalty (like disqualification) on avoidance techniques. Tricks 
are easy to banish, in other words. The hard problem is getting to 
understanding.

W H E N  G O O D  E N O U G H  I S N ’ T  G O O D  E N O U G H

Poor performances on Winograd schema tests highlight another 
major weakness of data-driven, modern approaches to AI. In a sec-
tion of his paper titled “The Lure of Statistics,” Levesque said the 
“data simulation” approach was like trying to do something “vaguely 
X-ish” as opposed to actually doing X, where X is “one of the many 
instances of intelligent behavior.” This, he insists, is “the overarching 
question for the science of AI.” 6 But Levesque could have pushed his 
critique even further. Doing something vaguely “X-ish,” in other words 
simulating intelligence for some task X, invariably pushes difficult 
problems requiring real understanding into the realm of the unsolved, 
the few percentage points still not conquered (or, in other words, up 
the language pyramid of meaning). This becomes a hiding place for 
problems requiring real understanding. It creates general confu-
sion, too.
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The public, witnessing apparently impressive performances, un-
derstandably conclude that the remaining performance gaps between 
machines and humans will melt away as more powerful computing 
and analysis techniques (and more data) help future systems scale 
to better performance. But blind confidence that unsolved problems 
will someday be solved ignores the real distribution of problems and 
their solutions, with easy ones occurring frequently in data-driven 
simulations, and other, rarer and more difficult ones falling outside the 
scope of frequency-based analysis. This means the harder problems—​
the missed answers—might require an entirely different approach, 
and not more data. The requisite new approach, as I’ve argued, pre-
supposes a non-deductive or inductive underlying inference frame-
work. In fact, if DeepRead could perform reliable commonsense ab-
ductive inference, it would conjecture correctly about the missing 
and assumed knowledge and events in the story above. It can’t deduce 
them (they are not logic problems), and as they are not inferred from 
the syntax (or data) of the story, it can’t induce them, either. Deep-
Read awaits progress on inference; unfortunately, the required infer-
ences are not at present programmable. There is nothing to scale up 
to—the inference required is distinct, and represents a future con-
ceptual discovery.

I’ve focused on Winograd schemas because they so clearly require 
non-inductive inferences while posing what seems to human minds a 
simple, one-sentence test of understanding. It’s hard to debate the un-
fairness of a test which is only a simple question in English. Winograd 
schema problems are deliberately about common objects, which means 
that any one noun or noun phrase will typically occur in texts, like 
web pages (for instance, alligator or trophy). No technical knowledge 
is required. But any two nouns or phrases occurring in a single ques-
tion drops the expected frequency significantly, in some cases to zero, 
as in the case of alligators and hundred-meter hurdles. Thus, all the 
examples are relatively rare in big data, though straightforward. And 
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in cases where the two nouns or noun phrases (as with the trophy and 
suitcase question) might occur together in a sentence on the web, 
simply changing the relation between the two nouns returns us to 
infrequency—and defeats modern data-centric tactics, as we’ve seen. 
Hence, for all practical purposes, Winograd schema questions can’t 
be simulated, which explains the poor performance of systems at-
tempting to automate the test.7

It follows from the inference framework I’ve described above that 
deductive and inductive systems are inadequate for artificial general 
intelligence. I’ve also explained that any given type of inference can’t 
be reduced to another (recall the syllogism examples), so that we 
can’t, for instance, call abduction a species of induction with suitable 
expansions, which would convert it into a completely different sym-
bolic form (or “logical form”). A question remains whether some 
combination of induction and deduction might scale up to abductive 
inference. It can’t, for the same reason that we can’t subsume one type 
into another—they are distinct and involve fundamentally different 
abilities. (As a comparison, consider: if I know German and Spanish, 
might I somehow put these together and understand Russian?) But 
types of inferences are sometimes combined in work on AI, with in
teresting results.

Teams of researchers tackling difficult problems like language pro
cessing often build large hybrid systems, using specially designed ar-
chitectures, databases, and algorithms for prediction or inference. 
Such systems invariably include machine learning as a component 
or subsystem. They also make use of knowledge bases and inference 
techniques that hark back to the premodern era of classical AI. Hy-
brid systems can achieve impressive results. Not playing favorites, 
they make use of all available techniques, methods, and algorithms to 
solve difficult problems. One of these systems in particular galva-
nized the media and public, just as AI itself was emerging as the hot 
topic in a rapidly changing world. For, at first blush anyway, the 
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system seemed to understand—really understand—how to answer 
questions posed in English.

W A T S O N ,  M Y  D E A R  W A T S O N

IBM has a knack for engineering AI systems that play games and gen-
erate marketing buzz for the legendary behemoth tech company. In 
1997, IBM made headlines with Deep Blue, the chess-playing super-
computer that vanquished then-champion Garry Kasparov in a tele-
vised and widely anticipated event. Deep Blue was a sensation, in large 
part because the crossover point, where machines outplayed humans 
in chess, was supposed to be years away. Pundits speculated that true 
intelligence had arrived in supercomputers. Talk of the Turing test 
resumed. Media commentators worried about how long it would be 
before machines overtook us everywhere else.

In retrospect, the Deep Blue spectacle had little to say about ma-
chine intelligence, though it anticipated the spate of data-driven sys-
tems that would outplay humans at other games in the coming de
cades. In the end, chess is a game played according to deterministic 
rules. Garry Kasparov is a genius, sure, but Deep Blue outplayed him 
with essentially sheer computational power: evaluating more moves, 
seeing deeper into the branching game tree. AI enthusiasts over the 
decades have bemoaned the public’s tendency to quickly dismiss new 
successes as “not really intelligence” after an initial buzz, and Deep 
Blue was no exception. By the turn of the century it was largely for-
gotten, another milestone in AI that failed to awe a public who per-
haps sensed deep down that chess-playing wasn’t a proxy for general 
intelligence after all. Deep Blue was a showcase for IBM’s well-funded 
engineers and fast computers.

After the internet bubble burst in 2001, excitement about AI tempo-
rarily faded. Billions of dollars of investment had evaporated in schemes 
and visions that failed to see basic realities. AI seemed futuristic and 
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financially insecure, which is precisely what wasn’t wanted by inves-
tors and entrepreneurs still licking their wounds. The winter was 
short-lived. By 2004, Google had come into its own, and social net-
works were on the way. (A few early attempts, like Friendster, failed 
but the exciting concept was in the air.) Web 2.0 was coming. In 2004, 
too, IBM’s leadership had started looking for another public relations 
boon. Chess was yesterday’s news, but the web was taking shape and 
reinvigorating everyone for exciting possibilities. Games still at-
tracted attention, and they had the additional benefit for tech compa-
nies that AI could often succeed in the artificial constraints of a game, 
even as it foundered on simple common sense. As luck would have it, 
one popular game in particular was already in the news: Jeopardy!

The television quiz show Jeopardy! is a kind of gamified version of a 
simplified Turing test (or so it seems). It’s a broad test of knowledge of 
facts, with the “conversation” reversed so that an answer is given to 
contestants, who then must conjure the correct question. For ex-
ample, to the prompt “Developed by IBM, it beat Kasparov at chess,” 
the correct response would be “What is Deep Blue?” In 2004, Jeop-
ardy! ratings were soaring because of a human, Ken Jennings, the re-
turning world champion who had won a record-breaking seventy-
four Jeopardy! contests in a row. IBM challenged its research group to 
develop a system that could beat Jennings, or any other champion. It 
was the stuff of dreams for the researchers, who received in effect 
carte blanche to push the boundaries of AI.

IBM leadership saw an opportunity for financial gain, of course, 
and a public relations windfall (or tragedy). But management also 
seemed to have been bitten by the sci-fi bug, the futuristic idea of an 
“IBM-inside” language understanding system that beat humans to 
buzzers and rattled off all the right answers to questions, stumping 
most of the viewership at home. It was Deep Blue and chess again, but 
at the same time it wasn’t. Jeopardy! is language-based. It’s a question-
answering (QA) system, technically, with the simplification that the 
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question is put in a single sentence, and the answer always begins 
with “What is,” and ends with the answer in a single phrase. This 
seems much more closely tied to human intelligence—it reminds us 
of the Turing test. Jeopardy! appeared to be an opportunity to leap-
frog ahead in the AI arms race. (A fly on the wall might have gotten 
excited, overhearing management on that day in 2004 at IBM Re-
search: “We’re gonna make history. Money isn’t an object. Find a way 
to build a system that plays Jeopardy!”)

IBM assembled a team of top talent, and spent the next three years 
doing due diligence on the requirements for a question-answering 
system capable of playing world-class Jeopardy! This meant that it was 
open-domain QA, because the game covers diverse topics. (This is 
part of its appeal.) The system couldn’t be hacked or hardcoded for 
specific topics, it seemed. They dubbed the future system Watson 
(after the founder and first CEO of IBM, not the fictional sidekick to 
Sherlock Holmes).

An older system called PIQUANT gave them a head start. It was 
built in 1999 by IBM to compete in the Text REtrieval Conferences 
sponsored by the National Institute of Standards and Technology. 
PIQUANT was a consistent top performer in the Text REtrieval Con-
ferences competitions, but they were simplified question-answering 
games, and Jeopardy! was by contrast a broader and vastly more diffi-
cult challenge. For instance, PIQUANT answered questions with a 
predetermined set of labels, such as person, place, date, or number. 
Given a text supplied to the system as a question, PIQUANT would 
output the label representing the relevant topic. Jeopardy! play ranges 
over a vast number of topics.

PIQUANT could not be extended for this challenge, and there 
were other problems. In Jeopardy! a contestant should not “buzz in” 
with an answer unless he or she is very confident it is correct. Mistakes 
are penalized. Thus the type of QA required by computer Jeopardy! 
was importantly different. This meant, among other things, that the 
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system would require a comprehensive redesign. The new system had 
to “grow” into the game of Jeopardy! by repeated trial and error, while 
PIQUANT was a one-size-fits-all QA system.

Dave Ferrucci, head of the Watson project at IBM, undertook the 
comprehensive redesign. Early on he acknowledged that playing 
Jeopardy!—still a game, keep in mind, and not open-ended reading—
required a system not plagued too much by context in natural lan-
guage: “Consider the expression ‘That play was bad!’ What sort of 
thing does ‘play’ refer to? A play on Broadway? A football play? Does 
‘bad’ mean ‘good’ in this sentence? Clearly, more context is needed to 
interpret the intended meaning accurately.”8

Ferrucci knew also about AI pioneer Marvin Minsky’s ideas that 
complex intelligent problems are solved in polyglot fashion, by minds 
(or computers) with many submodules that break difficult problems 
down into manageable chunks. The task is then to combine the an-
swers from the many modules into a “global” answer or solution. Minsky 
called this the “Society of Minds” approach to AI, and Ferrucci 
adopted it as the design inspiration behind Watson.9

The Watson team developed DeepQA, a QA system that generated 
many possible answers to questions and returned the best one based 
on multifarious analysis. DeepQA essentially implemented a soft-
ware version of the society-of-minds idea for the Jeopardy! game. The 
system minimized too-quick answers to questions by pushing ques-
tions through a pipeline and holding off on scoring answers until all 
available evidence was collected. A piece of the puzzle for answering a 
question might be downstream in the DeepQA pipeline, for instance. 
This architecture of Watson was part of its eventual “intelligence.” It 
is one reason that Watson, after years of development, became a sig-
nificant hybrid solution to a complex, language-based problem.

There are other reasons. For one, an enormous amount of human 
analysis went into the design, development, and testing of Watson. 
This human contribution to successful system design is often over-
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looked, particularly when the application is supposed to be a show-
case of AI. In fact it’s clear that Watson was as much a product of 
careful and insightful game analysis by the engineering team as it was 
of improvements over PIQUANT or QA systems generally. Thou-
sands of Jeopardy! games were analyzed. A baseline performance was 
established by first modifying PIQUANT to play Jeopardy! (It was, 
predictably, very bad. The PIQUANT system scored a depressing 
16  percent correct on attempted answers to 70  percent of the ques-
tions posed to it, known as 16@70 by the IBM team.) The DeepQA 
module was then redesigned, targeting Jeopardy! questions to find 
specific clues indicating possible answers. The trial-and-error pro
cess of tailoring the DeepQA pipeline specifically to Jeopardy! was 
critical to eventual success. The IBM engineers even gave it a name, 
AdaptWatson.

AdaptWatson was not Watson—it was the human process of 
making Watson better, by zeroing in on Jeopardy!-specific tricks to in-
clude in DeepQA. In all, over one hundred special-purpose language 
processing modules were designed, deployed, and refined using 
AdaptWatson as a protocol. It was a massive workflow process that at 
its peak involved twenty-five researchers, including student help from 
local universities. From an engineering standpoint, AdaptWatson 
was brilliant: PIQUANT was retired, and an entire “Jeopardy!-optimal” 
pipeline took shape around game performance. DeepQA became an 
effective feedback loop involving dozens of expert humans gradually 
fine-tuning the Watson system to play world-class Jeopardy! (Perhaps 
less appreciated, the resulting system became narrow—a consequence 
itself of this engineering strategy aimed at game-play specifics.)

Inspired by the “society of minds” idea, DeepQA did include in-
novations in natural language processing (NLP). Older QA systems 
like PIQUANT relied on processing pipelines that were similar to 
IBM Watson: first analyze the question, then search and retrieve pos
sible answers, then score the retrieved answers, returning the best. 
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Yet PIQUANT and other earlier-generation systems share a common 
flaw; they can get locked into incorrect answers by mistakes made in 
early parts of analysis. The Watson team modified an old architecture 
developed by IBM between 2001 and 2006 known as the Unstruc-
tured Information Management Architecture. UIMA is plug-and-
play: software modules can be dropped into the pipeline, taken out 
and modified, then dropped back in. Likewise, entire algorithms can 
be swapped, so the pipeline speeds and facilitates trial-and-error runs 
and extensive testing necessary for large and complicated projects. 
Using UIMA, the Watson team built a more sophisticated pipeline 
for playing Jeopardy!, continually tuned by AdaptWatson. The hybrid 
system worked: Watson began playing world-class Jeopardy!

Yet, like its narrow predecessor Deep Blue, Watson was designed 
from the start to be good at one thing. The details of the Watson system 
are understandably complex, but even a brief pass through the devel-
opment of the system and its key components dispels pretensions of 
real understanding. For instance, DeepQA relies on a grab bag of rela-
tively well-understood techniques in NLP research, like parsing sen-
tences, performing some types of co-reference resolution (resolving 
pronouns to antecedents, as we saw earlier), identifying named enti-
ties as person or place, and classifying questions themselves by types, 
such as the “factoid” type. The Watson team used these techniques 
but applied them specifically to Jeopardy! play. They also wrote a 
“QSections” module, which looks for obvious and game-specific con-
straints on answers in the questions themselves. For example, the 
phrase This four-letter word means . . . ​in a question signals that its an-
swer will be a four-letter word. This is, again, design and development 
for optimizing game-play, rather than for general natural language un-
derstanding by a machine.

The magical-seeming quality of the Watson system is perhaps 
most quickly dispelled by looking more closely at the results of its 
search for answers. Lookup and retrieval of possible answers suc-
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ceeds largely because of an exploitable shortcut in Jeopardy! discov-
ered by engineers using AdaptWatson to identify problems and pos
sible improvements: fully 95 percent of all answers to Jeopardy! questions 
are just Wikipedia titles. This serendipitous discovery made the en-
tire effort possible; simply matching questions to Wikipedia titles 
would by itself result in superhuman-level gameplay. As usual, the 
devil is in the details.

The Watson system is impressive, but as with IBM’s prior success 
with the chess-playing Deep Blue, it’s unclear whether to assign praise 
to the supercomputing resources (Watson used over 200 eight-core 
computer servers) or to the insight and diligence of its human engi-
neers—who are, after all, well-funded and able to work specifically on 
such a marketing windfall for IBM. To the team’s credit, Watson was 
designed to perform more open-ended search on unstructured 
sources like blogs, digital bibles, and other sources. And Wikipedia 
itself is still mostly unstructured, although a database called “DB-
Pedia” exists, which Watson included. But the search was, again, spe-
cific to computer representations of questions, and returned passages 
to be analyzed using techniques going back decades in research on 
language processing: filling in open slots in the question with words 
and phrases deemed a good fit by the results of the search. This is not 
nothing, of course, but it’s diminished in significance, once again, by 
the realization that the most open-ended text analysis by Watson was 
also the most unreliable—another major demystifying observation. 
Lacking Wikipedia title matches, the capabilities of the Watson 
system were much less impressive (but then, these were only 5 percent 
of all answers). Jeopardy! itself has a trick, it turns out, because it’s a 
factoid game, and factoids can be retrieved. This feature of the game, 
discovered using the human protocol AdaptWatson, accounts more 
than anything for its eventual superhuman performance—and also 
explains why IBM’s foray into healthcare has been decidedly less 
triumphant.
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Predictably, the success of Watson prompted discussion about the 
coming age of AI that truly understands natural language. But an os-
tensibly simpler task than playing Jeopardy!, like reading the news-
paper (certainly, simpler for humans), had early on been ruled out by 
Ferrucci and his team. He said so explicitly, pointing out that even the 
contents of Wikipedia pages (not just the titles) posed problems for 
AI so difficult that general-purpose conversion of open-ended text 
into computer readable-form was intractable—a goal that was con-
sidered briefly, then abandoned.10 The Watson team instead identified 
a set of high-value targets in information sources—excerpts and pas-
sages containing likely answers—that fit into the processing pipeline 
of Watson and raised the probability of correct answers. In taking this 
approach, the team effectively retired the game of Jeopardy!, like chess 
earlier. But it also proved once again that increasingly evident maxim, 
that all successful AI is narrow. (And it proved the corollary maxim, 
too: success at games generates public excitement, without advancing 
us toward artificial general intelligence.) Watson is not a step toward 
general intelligence, but rather further evidence that the quest for 
generality remains mired in mystery and confusion. While the IBM 
team did score an impressive victory using a powerful hybrid system, 
it did not discover a key to language understanding. All the problems 
of programming abductive inferences for general intelligence remain.

T H E  N A R R O W N E S S  T R A P  A N D  L A N G U A G E

I’ve focused on language understanding at some length (rather than, 
say, problems in robotics) because it so obviously reveals AI’s narrow-
ness trap, in which all known systems get caught. In what follows, I 
will review some recent applications that tout language understanding 
capabilities they don’t have. They are, rather, examples of narrow AI, 
too often masquerading as more.
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Take Google Duplex. Released in 2018, Duplex makes phone calls 
on behalf of its owner to accomplish routine tasks, like making reser-
vations and appointments. Duplex has a human-sounding voice 
(which later prompted Google to identify the system as automated to 
callers, after public pressure mounted). Duplex seems like the coming 
of HAL from the movie 2001: A Space Odyssey, until we learn that the 
system, developed with all the vast computational and data resources 
of Google, promised only to make restaurant reservations, book hair 
salon appointments, and find the opening hours of a few selected 
businesses. This sounds pretty narrow. It gets worse. After the demo, 
Duplex was released on Android phones without the option for open-
ended reservations or inquiries about business hours. It only made 
reservations at restaurants. As Marcus and Davis put it, “It doesn’t get 
narrower than that.”11

Duplex is joined by a host of other recent offerings using big data 
and machine learning that promise HAL-like abilities but are caught 
in AI’s narrowness trap, as well. Speech-driven virtual assistance like 
Siri, Cortana, Google Assistant, and Alexa answer questions posed 
by people, and can even engage in tidbits of banter, like giving hu-
morous responses to playful (or insulting) questions. But their under-
standing of natural language is a facade, as anyone interacting with 
the systems knows. Like Watson, all are best at factoids that can be 
culled from databases and info-boxes (as with Wikipedia) on the web. 
Who won the Super Bowl in 1975? is a good question. But Can a shark 
play checkers? is not (recall Winograd schemas).12 In general, ques-
tions that probe, however lightly, under the layer of facts pulled from 
the web, so that some real knowledge and understanding would be 
required, consistently flummox such systems. Their abilities begin 
and end in the paper-thin layer of collected facts and canned jokes on 
offer. Like Goostman, they have no real understanding, and so can’t 
really connect with us—or, too often, help us.
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Narrowness is endemic to systems like Watson that tackle natural 
language. As we saw in prior sections, this is because acts like reading 
and conversing are actually deep, open-ended feats of inference, re-
quiring understanding of the world. Google Talk to Books, show-
cased predictably with much fanfare by Ray Kurzweil in a TED talk 
in 2018, promised an unparalleled question-answering capability 
by, as Quartz put it, “reading thousands of books.”13 In fact, it in-
dexed about one hundred thousand books, encoding sentences nu-
merically in vectors (data structures), and using deep learning (what 
else?) to compute their similarity to other vectors. This is a fancy 
version of the frequency assumption and the empirical constraint, 
all over again.

After the flashy TED demo, Talk to Books’s many limitations 
quickly surfaced. Details and factoids about novels in its database 
were retrievable, but rarely questions requiring real inference, like ab-
duction. If The Great Gatsby got indexed, for instance, it might return 
an answer for a query about the author (F. Scott Fitzgerald), or even 
about Gatsby’s first name (Jay). But easy questions about plot and 
characters requiring knowledge-based inference quickly outstrip the 
capability of the system. Having read the novel, it’s easy to answer 
the question “In what city did Gatsby first meet the protagonist of the 
novel?” For Talk to Books, answering such questions would demand 
inferential powers beyond its reach. Marcus and Davis asked Talk to 
Books Where did Harry Potter meet Hermione Granger? and received 
answers that weren’t even in Harry Potter and the Sorcerer’s Stone, and 
(even worse) omitted the central topic of the question—a location, 
specifying where the meeting occurred.14

Narrow performance is a problem for all systems tackling natural 
language understanding, not just Google Talk to Books. Language is 
about the world “out there,” which involves necessary knowledge and 
a grasp of what things mean. As we’ve seen, too, the narrowness trap 
is a consequence of the data-driven approach itself, from its incep-
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tion. To paraphrase the comic movie character Ace Ventura, “Nar-
rowness is AI. AI is Narrowness.”

Other examples are by now famous, or infamous. In 2016 Micro-
soft released its much-hyped chatbot, Tay. The software giant touted 
Tay as a quantum leap ahead of older, rule-based systems like the no-
toriously human-seeming ELIZA of 1960s yore, by actually learning 
from user interaction and data online. But the lessons of induction 
and its limits had not been learned, apparently, as Tay happily in-
gested racist and sexist clickstreams trolling it, along with other hate 
speech found on the web. Tay was quite the big-data student, blasting 
off tweets including “I fucking hate the feminists” and “Hitler was 
right: I hate the Jews,” much to the dismay of Microsoft, who can-
celled the hating Tay in less than a day.15 But the outcome should have 
been foreseen, given the essential “garbage in, garbage out” nature of 
its chosen design. Tay was a case of corporate myopia about its own 
technical approach—and yet another example of narrow AI. In this 
case, genuine understanding would have bestowed upon Tay a min-
imal ability to filter out offensive tweets. But because it had no real 
understanding of language or “tweets” in the first place, it spit out 
what it took in. Tay is a memorable (but alas, forgettable) example of 
the idiot savant nature of data-centric AI.

Natural language understanding may be hard, but it’s apparently 
irresistible, too. Facebook got in line for coming disappointment with 
the announcement of a system that could read “a synopsis of Lord of 
the Rings and answer questions about it,” as Technology Review put it. 
But the synopsis was four lines of simple sentences like “Bilbo trav-
eled to the cave. Gollum dropped the ring there. Bilbo took the ring.” 
And the system could only answer questions directly answered in the 
sentences, like Where is the ring? and so on. Questions requiring an 
understanding of the text weren’t possible. In general, questions probing 
answers to why questions weren’t possible—say, Why did Bilbo travel 
to the cave? The system reduces Lord of the Rings to a few lines of text, 
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a synopsis, and answers only the most mundane and stupid questions, 
lacking any understanding all the while. Narrowness is baked in.

The inference framework helps make sense of the narrowness trap. 
Watson, a system we looked at in some detail, turns out to achieve 
an impressive performance on a complicated game involving some 
clever treatment of unstructured information—notably web pages 
and especially Wikipedia pages (and, here, especially titles). A deeper 
dive into the system reveals its hybrid design, from hard-coded rules 
to statistical methods for scoring answers, to Monte Carlo methods 
for betting in “Daily Doubles” and Final Jeopardy (betting was left 
out of the discussion above). Inferentially, question analysis in 
Watson relied mostly on traditional techniques for tagging sentences 
with parse, entity, and other information—rules, in other words, or 
deductively-inspired techniques. QSections, like This four-letter word 
means . . . ​, which are typical of Jeopardy! questions, are easy to handle 
without statistics. Similar remarks apply to other aspects of question 
analysis that can be reliably identified by inspection of questions. 
Why not use machine learning? Because many problems that are 
quite simple for rule-based or deductive-logical approaches pose in-
tractable problems for machine learning. Thus Watson was a clever 
hybrid. And yet, demonstrably, it is caught in the narrowness trap 
anyway. The overarching explanation of the trap is simply that gen-
eral inference, not available, can’t be made up for using combinations 
of rule- or learning-based approaches. To put it another way, lacking 
abductive inference, system performance must be narrow—general 
intelligence is not available. Narrowness is inevitable.

For what it’s worth, Watson employed an impressive set of 
machine-learning techniques. Some 25,000 Jeopardy! questions were 
analyzed, converted into 5.7 million training examples for the system. 
The system produced question-answer pairs, accumulating evidence 
in the processing pipeline, and scored the list of pairs using statistical 
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techniques—all possible because of data about past games, where the 
outcome is known.

It’s notable that Watson didn’t use deep learning—at least not the 
version of Watson that outplayed human champions in the televised 
event in 2011. Deep learning would not have helped—and here again, 
this is a nod to the ingenuity of the IBM team. A relatively simple 
machine-learning technique known as regularized logistic regression 
was used, even though more powerful learning algorithms were 
available. (Deep learning in 2011 was still relatively unknown.) More 
powerful learning systems would simply incur more computational 
training and testing expense—AI is a toolkit, in the end. The Watson 
system had no real innovation in any particular technique, but in com-
bining them in the “society of minds”-inspired framework of a decom-
posable pipeline (using UIMA), it achieved world-class results. Infer-
entially, Watson is perhaps the best example to date of the power of 
using all available deductive and inductive approaches in AI, combined 
in a smart architecture. But, take out the trick of Wikipedia titles, and it 
would not have succeeded. It’s still narrow—very narrow—in the end, 
like all other known systems, hybrid or otherwise.

We might coin another term to explain all this: call it the inference 
trap. Since the three known types of inference are not reducible to 
each other but are distinct, and abductive inference is required for 
general intelligence, purely inductively inspired techniques like ma-
chine learning remain inadequate, no matter how fast computers get, 
and hybrid systems like Watson fall short of general understanding as 
well. In open-ended scenarios requiring knowledge about the world 
like language understanding, abduction is central and irreplaceable. 
Because of this, attempts at combining deductive and inductive strat-
egies are always doomed to fail—it might just take longer to figure 
out why, as in the case of Watson. The field requires a fundamental 
theory of abduction. In the meantime, we are stuck in traps.
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L O G I C A L  P I A N O S  A N D  V O Y A G E S

Charles Sanders Peirce knew about the possibility of using machines 
to explore logical inference. Computers didn’t yet exist, but ideas 
about them did, and some physical devices had been built. The British 
logician and philosopher John Venn (the creator of the eponymous 
Venn diagrams) had speculated about building a purely automatic 
logic machine. And one of Peirce’s students at Johns Hopkins Univer-
sity, Alan Marquand, had in fact begun working on a logical machine 
in 1881. Marquand had begun extending, in effect, a proto-computer, 
known as Jevons Logical Piano, after its inventor, the Englishman 
William Jevons. Marquand’s machine was intended to solve problems 
in deductive logic, an area that Peirce had spent much of his life 
studying. Peirce himself took an active interest in the development 
of the logic machine, sketching out designs for the electromagnetic 
operation of Marquand’s contraption.

Writing about the experience in 1887 in an oddly prescient paper 
titled “Logical Machines,” in the American Journal of Psychology, 
Peirce begins characteristically with cautionary comment. “In the 
‘Voyage to Laputa’ there is a description of a machine for evolving sci-
ence automatically,” he writes. “The intention is to ridicule the Organon 
of Aristotle and the Organon of Bacon by showing the absurdity of 
supposing any ‘instrument’ can do the work of the mind.” Peirce, the 
skeptic, no doubt appreciated the wisdom of Swift’s imagination. But 
he was sufficiently taken with the Promethean spirit to highlight 
the important work he and Marquand undertook. He credited his 
pupil, and his pupil’s predecessor: “Yet the logical machines of 
Jevon and Marquand are mills into which the premises are fed and 
which turn out the conclusions by the revolution of a crank.” The 
American inventor Charles Henry Webb, too, had designed a ma-
chine for performing arithmetic, and the English genius Charles 
Babbage developed a proof of concept (along with his protégé Ada 
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Lovelace) for a more visionary machine, performing general compu-
tations. They were machines that could “perform reasoning of no 
simple kind.”16

“Logical Machines” then departs into detailed discussion of auto-
mating deductive syllogisms. At the end of the paper, tying up loose 
ends, Peirce comments on the possibility of what we now call Artifi-
cial Intelligence. “Every reasoning machine, that is to say, every ma-
chine, has two inherent impotencies. In the first place, it is destitute 
of all originality, of all initiative. It cannot find its own problems; it 
cannot feed itself. It cannot direct itself between different possible 
procedures.”17 Peirce then cites a complicated logical problem whose 
solution requires the selection of premises through dozens of steps. 
Perhaps the example can be solved somehow, some way (it probably 
can be today). Peirce allows for this possibility, but it doesn’t matter. 
It misses the point. “And even if we did succeed in doing so, it would 
still remain true that the machine would be utterly devoid of original 
initiative, and would only do the special kind of thing it had been 
calculated to do.”18 Like much of his thinking, Peirce here joined a 
discussion that began in earnest decades after his death.

He adds, too, a simple idea that seems still mired in confusion, col-
oring science with mythology. “This, however, is no defect in a ma-
chine; we do not want it to do its own business, but ours.” The trap of 
narrowness, too, was to Peirce an obvious feature of machines: “the 
capacity of a machine has absolute limitations; it has been contrived 
to do a certain thing, and it can do nothing else.”19 The scientist who 
spent his life’s work exploring the mystery of human intelligence 
knew all too well that machines were, by design, poor and unsuited 
replacements. Swift’s fantasies held wisdom.

In the next century, Turing proposed that we take up the challenge 
of infusing machines with “original initiative,” by first programming 
them to talk to us. Turing was aware of Peirce’s objection, which he 
attributed to Lady Lovelace in his 1950 paper. He also had played with 
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simple learning algorithms, and in the decade of the 1950s single-layer 
neural networks appeared (called a perceptron). Understandably, 
Turing thought perhaps we could escape Peirce’s and Lovelace’s ob-
jections by creating learning machines modeled on the human 
brain. Reading “Computing Machinery and Intelligence,” one gets 
the impression that learning represented the only real escape from 
the inherent limitations of machines, and the only real hope for 
passing the Turing test.

It didn’t—it hasn’t happened. Believing that it will, that it must, 
has consequences for society that now have become all too apparent. 
In this book’s final part, we look at some of the consequences of the 
inevitability myth—particularly its deleterious effect on science itself.
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Chapter 15

• • •

M Y T H S  A N D  H E R O E S

Ideas have consequences. In the following chapters, I hope to con-
vince you that the consequences of the myth of artificial intelli-
gence pose a significant and even grave threat to the future of scientific 
discovery and innovation—and, ironically, to progress in the field of 
AI itself. This final section is about our future, but we must begin in the 
past, for the problem of creating life, of designing artificial intelligence—
literally, a mind in a machine—has always been infused with a sense of 
mythology, of humans reaching beyond themselves and attaining 
godlike power. The myth of AI is Promethean.

T H E  P R O M E T H E A N  M Y T H

Prometheus stole fire, which represents life, from Zeus and used it to 
cook meat for everyone on Earth. No surprise, Zeus was angered and 
came down to Earth to demand his fair share of every animal that 
mankind cooked. Prometheus then tricked Zeus into choosing as his 
portion only the entrails and guts.

Zeus did what gods always do when someone attempts to usurp 
their power and authority—he punished Prometheus, binding him to 
a rocky cliff and sending an eagle (the emblem of Zeus) to eat his liver. 
Every night, Prometheus’s liver grew back; every day, the eagle re-
turned to eat it again.



238	 T he   F uture      of   the    M yth 

The story is about the expansion of human powers. It’s a testament 
to the inherent and seemingly inexhaustible creative spirit in human 
beings. It’s also a story about hubris. Prometheus might have kept his 
fire and spared his liver by offering Zeus up the best cuts. Our deep long-
ings for true AI draw inspiration from the Promethean myth. We want 
to steal fire from the gods, despite potentially horrific consequences—
eternal punishment, no less.

Prometheus was a punished hero, which is why Mary Shelley titled 
her enduring novel Frankenstein: Or, a Modern Prometheus. Franken-
stein has been Hollywoodized over the decades and transformed into 
a farcical tale of a green monster. But it’s really a story about the Pro-
methean spirit in human beings and its consequences. A young and 
recently married Mary Shelley conceived of Frankenstein in a night-
mare in a hotel in Switzerland, after late-night discussions with her 
husband, poet Percy Shelley, and Lord Byron, another poet. Her 
dream images never provided a blueprint for creating the monster, so 
from the beginning her creation asked the human question at the 
heart of the modern myth: What if such a being were possible?

Dr.  Frankenstein, through an unspecified congeries of occult 
methods such as galvanizing dead tissue, performs the Promethean 
miracle: he creates intelligent life from dead matter. The story is a 
progenitor of later and specifically mechanistic portrayals of the 
creation of intelligence using science and technology, and it’s 
also—and importantly—a deeply human story about spiritual isola-
tion. Dr.  Frankenstein is a mad scientist who possesses hidden and 
forbidden knowledge, which lets him play God. His creature comes 
alive, with consciousness and a longing for a romantic partner. Inevi-
tably, Dr. Frankenstein’s world falls apart, just as Prometheus’s does. 
Mary Shelley, writing at age nineteen, captured the ancient myth and 
brought it alive into the modern world, as did Percy Shelley when he 
later wrote his famous Prometheus Unbound, a story of liberation. The 
Romantic writers give effective voice to the endless struggles and 
pains of the human condition, which is why we still talk about their 
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creations and see, in our science and our scientists, both their dreams 
and their warnings.

Turing was not a “mad scientist” in Shelley’s sense. Bletchley was a 
collaboration, and Turing’s later efforts at building the world’s first 
universal electronic computer were also team-based. He witnessed in 
Von Neumann, in America, a talent that would ultimately beat him to 
the punch, armed as Von Neumann was with rare genius and the deep 
pool of scientific and financial resources at his disposal. Turing—and 
Von Neumann—were scientific adventurers, but they worked within 
an environment that supplanted and suffused their genius with other 
talents.

Still, Turing probably had something like the Promethean idea 
swirling about as he thought about AI, which (recall) he believed 
might engage in genuine conversations by the year 2000. He knew 
enough Promethean geniuses in his own day, men who reached be-
yond mankind’s ordinary grasp: Einstein, the brilliant logician Kurt 
Gödel, and of course Von Neumann. Once the computer formalism—
Turing’s eponymous Machine—was “out there” for science, then 
some scientist, perhaps working in a Bletchley environment, might 
crack the secrets of the human mind and write them up in code. For 
scientists don’t believe in vagaries like the “evolution of science” ex-
cept as frosting, as backdrop. They really believe in scientific genius. 
They really are all possessed by Prometheus, by what innovators can 
dream and achieve.

As work on AI keeps hitting hurdle after hurdle, however, the Pro-
methean myth of astonishing innovation by individuals is disap-
pearing from cultural archetypes in research and the broader culture. 
In its place, we have a passive-evolution mythology about AI that 
grows as belief in human potential shrinks.

Thoughtful critics like Jaron Lanier give voice to the central problem, 
“We should seek instead to inspire the phenomenon of human intel-
ligence.”1 But, already, there are no more heroes. Instead, we have 
“hives.”
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O F  H I V E S  A N D  M A C H I N E S

Shifting the locus of intelligence from humans to machines is a 
gambit—a chess term, meaning the sacrifice of material for better 
position—which unavoidably has consequences for human culture. 
We would be forced to accept this gambit if the scientific and empir-
ical evidence for it was unavoidable—suppose superintelligent aliens 
arrived, and quickly outsmarted everyone and took over. Absent such 
evidence, it’s a ploy that leads to a diminished culture of innovation 
and progress. Why sacrifice our belief in human innovation, if we 
don’t have to?

The ploy is, ironically, conservative; when smartphones are seen as 
evolving into superintelligence, then radical invention becomes un-
necessary. We keep in place designs and ideas that benefit the status 
quo, all the while talking of unbridled “progress.” Human intelligence 
becomes collective, like a hive of bees, or worse, the hive mind of Star 
Trek’s Borg Collective, always organized by some invisible someone 
behind the scenes. Basically, in this mythology the human mind be-
comes an outdated version of coming machines.

But as we’ve seen, we have no scientific reason to believe any of this, 
so we shouldn’t play mythological games with real life. We should 
build technology to push ahead a frontier of our own choosing.

In the first decade of the new century, we thought that’s what we 
were doing.

T H E  R I S E  O F  M A C H I N E S  ( W A S :  T H E  

R I S E  O F  P E O P L E)

When “Web 2.0” burst on the scene with a host of new technologies 
for “user generated content” like wikis and blogs, many culture and 
technology critics assumed we were in the midst of an explosion of 
human potential, a new era of possibility. In 2005, AI was still nursing 
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wounds from the last “Dot Com” bubble of 2000, and machine learning 
and big data weren’t yet ready for hype-mode. Citizen Bloggers were. 
An entire school of thought emerged, circa 2005, viewing the web and 
specifically Web 2.0 technologies as the new printing press, destined 
to liberate the intelligence and creativity of humans. The web prom-
ised not only to make us smarter and more informed, but enable us to 
collaborate more effectively, building modern-day digital pyramids 
and transforming science and culture. As I write this in 2020, how-
ever, the original Web 2.0 ideas have already disappeared. In fact, 
they seem downright surreal.

Clay Shirky, a writer and consultant who is now a professor at New 
York University’s Interactive Telecommunications Program, once 
penned Web 2.0 era best sellers like Here Comes Everyone and Cogni-
tive Surplus: Creativity and Generosity in a Connected Age, portending 
the rise of an uber-informed, socially conscious citizen, a new per-
sona.2 A little jingoistic, his message was still clarion: web denizens 
were poised to rewrite the rule books, ridding the world of stodgy 
“gatekeepers” like mainstream press and media, who unfairly con-
trolled the production and flow of news and knowledge. “Power to the 
people” was the trope of the mid-2000s, a meme that copied and 
spread itself endlessly in blogs, commentary, and on bookshelves 
(and in e-books).

Yochai Benkler, Harvard University professor of Entrepreneurial 
Legal Studies, proclaimed in his widely read The Wealth of Networks: 
How Social Production Transforms Markets and Freedom in 2006 that a 
new era was upon us, a kind of revolution where large numbers of net-
worked people would take on collaborative projects online, all for the 
public good, without requirements like paychecks.3 Wikipedia 
seemed to buttress his point, a case of collaborative production without 
expectation of financial recompense. Wired editor Kevin Kelly (and 
others) later called Benkler’s paean to online collaboration a hive 
mind, a nod to the social intelligence of bees, without a whisper of 
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irony or derision. Benkler himself prefaced his academically serious 
rallying cry to the Web 2.0 world with a quote from John Stuart Mill: 
“Human nature is not a machine to be built after a model, and set to 
do exactly the work prescribed for it, but a tree, which requires to 
grow and develop itself on all sides, according to the tendency of the 
inward forces which make it a living thing.” 4

It’s an excellent quote. But Mill’s words have an outlandish pie-in-
the-sky feel to them today, in large part because his center of gravity is 
the human person rather than a machine.

Shirky’s ideas, too, have a whimsical and naive feel to them now. 
Cognitive surplus captures the insight that, when everyone goes on-
line, they might quit or cut back on mind-numbing activities like 
watching sitcoms. There’s a surplus of cognitive—thinking—power 
in the age of the internet, which we can turn to good use, like bringing 
about social revolution in an Arab Spring, or inventing cures for 
cancer. Shirky’s precursor book, Here Comes Everybody, bustled with 
anecdotes about ordinary people helping the police capture crooks by 
using mobile technology.5

We can, of course, still pitch in like this with smart phones, but the 
Venn diagram of everyday usage no longer points to a future of real-
ized human potential. In fact, it’s clear that the intellectual revolu-
tion prophesied in the mid-2000s never happened. (The “hive mind” 
didn’t even give us Wikipedia—most of the real writing is done by 
singular experts, with others performing more mundane editing 
tasks.) Shirky’s and others’ optimism about human growth trans-
mogrified rather quickly into a worldview that sees humans as cogs in 
a giant machine. Eventually, the machine itself—the network, the 
system—becomes the focus. Predictably, hive minds ended up pro-
moting a new skepticism about human intelligence. The idea now 
feeds popular mythology about the ascendancy of machines. Super-
computers have become “giant brains.”
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If we had to pick a year that “human potential” died, as a serious 
online meme anyway, 2008 would be the frontrunner. “Big data” itself 
entered the lexicon. Chris Anderson of Wired published his provoca-
tion that big data would replace theory in science—a not-so-subtle 
suggestion that human innovation could simply be outsourced to 
computation.

And AI by 2008 had been repackaged in its modern guise as data 
science. The trajectory here in retrospect seems obvious: from citizen 
bloggers—individuals—forging a new human future; to hive minds 
buzzing about, making encyclopedias; to big data and AI replacing 
human thinking, even ridding us of pesky theory in science. “Human 
nature is not a machine,” said Benkler quoting Mill just two years 
earlier. Stunningly, Benkler’s hope for humanity online got sub-
sumed into mythology about AI—a machine revolution—that now 
displaces and ignores human creativity. Like much discussion about 
AI these days, the transformation seems foolishly motivated and 
conceived.

Scientists and other members of the intelligentsia eventually 
pointed out that science without theory doesn’t make sense, since 
theoretical “models” or frameworks precede big data analysis and 
give machine learning something specific to do, to analyze. But the 
zeitgeist of mid-2000’s Web 2.0 had turned abruptly away from “power 
to the people” by 2010.

Two years later, in 2012, Deep Learning systems blew away com-
petitors on the well-known ImageNet competitions using Flickr 
photo datasets, and quickly showed fantastic promise on other con-
sumer problems like voice recognition and content personalization—
problems that companies like Facebook (which that year went public 
to the tune of over sixteen billion) and Google needed to solve to sell 
ads and recommend content for their legion of users. Facebook, Am-
azon, Google and the other tech giants quickly embraced big data AI, 



244	 T he   F uture      of   the    M yth 

and soon everyone forgot about citizen bloggers. The intelligentsia 
began extolling a coming AI that would blog and write news for us. 
Next, they would replace us. In retrospect, Lanier’s worry in his 2010 
You Are Not a Gadget was prescient, but all too late: “A new generation 
has come of age with a reduced expectation of what a person can be, 
and of who each person might become.” 6

Perhaps the hive mind idea itself seems a little quaint today, if only 
for the equally depressing reason that major ideas about human po-
tential have receded. In 2005 Google was still a marvel, a wonderful 
example of human innovation. Today, our ubiquitous search engine 
giant is like the keychain in our pocket. We have ceased to even notice 
it. Less than a decade after James Surowiecki’s 2005 hit The Wisdom of 
Crowds, the idea that people on Twitter or other social networks dis-
play collective wisdom—or wisdom at all—seemed laughable.7

It is telling that mythology about AI has not also been ridiculed, 
and seems ever more on the rise.



Chapter 16

• • •

A I  M Y T H O L O G Y  I N VA D E S  

N E U R O S C I E N C E

“Hive mind” remains in the lexicon, even if it isn’t invoked with such 
seriousness anymore. But its offshoot has appeared in the most un-
likely of places, in science itself. Hives for minds, then “swarms” for 
scientific discovery.

Take Sean Hill, formerly the director of the International Neuro-
informatics Coordinating Facility, part of a major collaborative effort 
known as the Human Brain Project. Writing for the 2015 anthology 
The Future of the Brain, Hill sees large-scale collaborative efforts as the 
future of science, and individual scientists as best understood as part 
of swarms: “One goal of the Human Brain Project is to trigger and 
facilitate a new wave of global collaboration in neuroscience. . . . ​If 
successful in engaging the community, the aim is to have swarms of 
scientists attacking the major challenges of understanding the brain 
and its disorders together—in an environment where every indi-
vidual will receive credit for his or her contribution.”1

This is a hodgepodge of ideas, from “global collaboration,” which 
sounds promising, to “swarms of scientists,” which evokes an absurdly 
deflationary metaphor for individual scientists’ contributions (effec-
tively disallowing individual discovery itself), to a tack-on bromide 
about “every individual . . . ​receiving credit.”

Perhaps it was an off day for Hill, a major player in the now infa-
mous Human Brain Project underway in Europe. But Henry Markram, 
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once director of that project, is also a proponent of Hill’s vision of 
science, arguing that geniuses like Albert Einstein are now unnec-
essary: “We are hampered by the general belief that we need an Ein-
stein to explain how the brain works. What we actually need is to set 
aside our egos and create a new kind of collective neuroscience.”2 
But his touting of collective neuroscience was, we now know, his 
own mythological vision of creating a superintelligent computer 
brain, using other scientists as resources to pursue a definite but ill-
advised path.

H U M A N S  N E E D  N O T  A P P L Y

Rhetoric about swarm science, like talk of hive minds, inevitably 
leads to a computer-centric view of the world, where human potential 
is downplayed in favor of the ascendance of machines. Science is fol-
lowing online culture, from human ideas to mega technology, which 
has led to the consolidation of power in major tech companies and a 
general stagnation in the pace of innovation.

Web 2.0 futurists know this all too well. Platforms for “user-generated 
content” sparked, first, new visions of human possibility. Then, as the 
technology matured, came visions of connecting people in huge col-
laborative efforts, and finally the AI inevitability mythology, which 
relegates people to the sidelines in its narratives about the future of 
machines.

The same trend appears now in basic research. Science, once a tri-
umph of human intelligence, now seems headed into a morass of rhe
toric about the power of big data and new computational methods, 
where the scientists’ role is now as a technician, essentially testing 
existing theories on IBM Blue Gene supercomputers.

But computers don’t have insights. People do. And collaborative 
efforts are only effective when individuals are valued. Someone has to 
have an idea. Turing at Bletchley knew—or learned—this, but the 
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lessons have been lost in the decades since. Technology, or rather AI 
technology, is now pulling “us” into “it.” Stupefyingly, we now dis-
parage Einstein to make room for talking-up machinery.

Large-scale neuroscience projects are an unfortunate case in 
point.

T H E  H U M A N  B R A I N  P R O J E C T

The Human Brain Project launched officially in October 2013 with a 
ten-year, $1.3 billion award from the European Union, a massive sum 
for exploratory neuroscience research. The project initially involved 
more than 150 institutions around the world, led by Dr.  Henry 
Markram, a neuroscientist at the Swiss Federal Institute of Tech-
nology in Lausanne. Markram is known for his Blue Brain project, 
an ambitious attempt to model an entire neocortical column in a 
rat’s brain in silica, in a computer simulation on an IBM Blue Gene 
supercomputer.

The Human Brain Project’s goals expand Blue Brain’s scope to in-
clude no less than a complete computer simulation of the entire 
human brain, a goal that Markram announced in a 2009 TED talk 
would be met by the end of the decade—though many other neuro-
scientists disagreed. Like futuristic claims made about AI, Markram’s 
prognostications were wrong—very wrong—and fortunately for sci-
ence, the failure of his predictions was not altogether ignored. Writing 
in The Atlantic in 2019, Ed Yong remarked succinctly on what other 
neuroscientists had been predicting all along: “It’s been ten years. He 
did not succeed.”3

Confronted with mismanagement allegations, Dr. Markram stepped 
down as head of the project two years after it launched. A few years 
later, the project rebranded itself, shamelessly, as simply a software 
project, providing tools and methods for human scientists conducting 
ongoing and potentially important research.
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The swarm science idea for doing fundamental scientific research 
is a blatant error, and the now familiar move—conscious or uncon-
scious—to diminish human involvement and refocus efforts on su-
percomputers and big data, extrapolating from existing technology, 
should be exposed, just as similar hype about AI should be confronted.

Troubling, too, is that Markram and Hill’s ideas about the future 
of neuroscience are public examples of a worldwide trend of scientists 
attempting to push science forward with computation rather than 
with ideas. Markram and the Human Brain Project are perhaps the 
most egregious examples of a mythology about intelligence “emerging” 
from Big Science, whose centerpieces are supercomputers; but other 
projects, less publicly, make the same mistakes.

For instance, on the heels of the Human Brain Project award, the 
Obama administration announced an equally ambitious Big Science 
effort, the Brain Research through Advancing Innovative Neurotech-
nologies (BRAIN) initiative, investing an initial $100 million for the 
2014 fiscal year with expected expenses of fully $300 million over ten 
years. The BRAIN initiative focuses on developing technologies that 
can model neuron circuits and other functional areas of the brain 
comprising multiple individual neurons. And smaller, yet significant, 
brain simulation projects like the Allen Brain Atlas from the Allen 
Institute for Brain Science in Seattle are also underway.

Such projects offer the promise of a complete understanding of the 
brain. Markram, for one, has said publicly for years that he plans to 
embody his supercomputer simulation in robotics and thus create the 
world’s first non-biological intelligence. Along the way, the Big Brain 
projects please government agencies by promising more practical 
benefits, like insight into the causes of Alzheimer’s and other brain-
related diseases. President George H. W. Bush once declared 1990–
2000 the “decade of the brain.” It appears, rather, that our current de
cade has become just that. The question is whether any substantive, 
fundamental progress has occurred.



	 A I  M ythology         I nvades       N euroscience            	 249

While the Human Brain Project and BRAIN initiatives are clearly 
Big Science projects—high-profile objectives, top-down management, 
well-funded, and with an engineering rather than theory focus—they 
are billed as AI projects, as well. In particular, large neuroscience ef-
forts today are almost universally promoted as big data projects. The 
data requirements for these projects certainly merits the term. The 
Kavli Foundation notes that the BRAIN Initiative must survive a 
“data deluge”: “Measuring just a fraction of the neurons in the brain 
of a single mouse could generate nearly as much data as the 17 mile-
long Large Hadron Collider or the most advanced astronomical ob-
servatories.” 4 Kavli highlights a theme that runs prominently in the 
literature of both Big Brain projects: the marriage of data-driven AI 
to neuroscience is both an information technology challenge and a 
huge opportunity, as the ability to manipulate more data about the 
brain is thought to translate to successful research.

Indeed, big data is a centerpiece of discussion about the Big Brain 
projects now underway. Markram himself, for instance, insists that 
the Human Brain Project is about data integration. (Not neurosci-
ence?) And Amye Kenall writes in BioMed Central, discussing the 
Human Brain Project’s sought after “new supercomputer,” that “the 
neurosciences will easily far exceed genomics as a data-intensive 
science.” As Kenall notes, current supercomputers run on at “peta-
scale,” yet the Human Brain Project is expected to require “exa-
scale” computing resources, so the project, along with neuroscience 
research, is also funding the development of the first exa-scale 
supercomputer.5

This blurring of the line between computing and information 
technology and neuroscience research is typical of both projects. 
Given the stated goals of the Big Brain initiatives, the focus on arti-
ficial intelligence concepts and techniques is, of course, necessary. 
Both projects confront what is known as the brain-mapping problem, 
a problem that is inherently computationally complex. Rebecca 
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Golden, writing for the Genetic Literacy Project, explained the map-
ping problem this way:

The human brain is estimated to have approximately 86 billion 
neurons (8.6 x 1010), each neuron with possibly tens of thou-
sands of synaptic connections; these little conversation sites are 
where neurons exchange information. In total, there are likely 
to be more than a hundred trillion neuronal synapses—so a 
computer recording a simple binary piece of information about 
synapses, such as whether it fired in a time window or not, 
would require 100 terabytes. The amount of storage needed to 
store even this very simple information every second over the 
course of one day for one person would more than 100,000 tera-
bytes, or 100 petabytes. Supercomputers these days hold about 
10 petabytes. And this quick calculation doesn’t account for the 
changes in connectivity and positioning of these synapses oc-
curring over time. Counting how these connections change 
just after a good night’s sleep or a class in mathematics amounts 
to a whopping figure (and many more bytes than the estimated 
1080 atoms in the universe). The wiring problem seems intrac-
table in its magnitude.6

Markram and other researchers are, of course, aware of the 
seeming intractability of the mapping problem in neuroscience, and 
herein lies his and others’ continuing allegiance to Big Data AI as a 
prime mover. If new insights are to emerge from “data integration,” as 
he puts it, then principles linking neurons together into circuits and 
larger functional units (mesa circuits) will constrain the mapping 
problem and simplify the computational complexity researchers 
now face.

In other words, big data and AI will supply the missing pieces of 
theory in neuroscience itself. Under this view, information tech-
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nology, thought to be a distraction by critics of Big Brain projects, is 
actually part of the argument for why such projects will (eventually) 
succeed: the technology, AI itself, will fill in missing pieces, where 
humans have so far failed.

B I G  D A T A ,  A G A I N

The Data Brain projects, and in particular the Human Brain Project, 
were bold attempts at advancing a big-picture vision of science, tack-
ling major questions about the nature of human thought. Indeed 
Markram, undeterred by the project’s failure, unabashedly promul-
gates Data Brain projects as a route to AI. He believes that AI and 
neuroscience will crack the mystery of human intelligence, and per-
haps our consciousness, too. In a host of public interviews over the 
years, Markram has stated that he plans to model neurons using data 
about the brain contributed from projects all over the world, to dis-
cover the “statistical principles” undergirding neuronal activity (at 
the level of ion exchanges), and to link larger and larger functional 
units of neurons in the human brain together until a complete map 
emerges.

This map, he thinks, will then be capable of exhibiting human-like 
behaviors. Futurists such as Ray Kurzweil and a bevy of other AI 
mythmakers persist in this belief, as well. We will, in other words, un-
derstand the principles of intelligent thought to the point where they 
can be reduced to engineering, programmed into robotics and AI sys-
tems. A new era of AI will launch on the heels of major advances in 
neuroscience. And, again, we will succeed where previous genera-
tions have failed because of AI: our access to volumes of data and data 
integration and analysis platforms that enable us to discover princi
ples and theories, where before we were awash in disparate research.

AI, in other words, is what makes the Big Brain initiatives seem 
new and different from what came before—not breakthroughs in 
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neuroscience theory, but computational capacity and data. But this is 
pure folly, as the failure of the Human Brain Project clearly demon-
strates. Like induction compared to abduction, technology is down-
stream of theory, and information technology especially is filling 
in as a replacement for innovation, while researchers tout its break-
through potential, implementing large tech frameworks using ex-
isting ideas.

It is probably true—or at least it’s reasonable to assume—that in-
adequate neuroscience knowledge is one of the key reasons we don’t 
yet have better theories about the nature of our minds. In particular, a 
better understanding of the principles of human cognition could in-
form AI, dedicated to unlocking the mystery of intelligence—a stated 
goal of Markram. Yet large-scale brain simulations (Data Brain ap-
proaches) would seem to get things exactly backward in our quest for 
such knowledge. Lacking a theory about how the brain behaves—how 
we think and feel and perceive—existing knowledge, about neurons 
and functional units like circuits expressed in computer simulations, 
pins hopes that the missing ingredients of cognition will somehow 
emerge from the volumes of collected data at these lower levels.

This is, of course, a core conceit in mythology about AI itself: that 
insights, theories, and hypotheses unknown and even unknowable at 
smaller scales will somehow pop into existence once we collect and 
analyze enough data, using machine learning and other inductive 
approaches.

The Data Brain efforts of the Human Brain Project and BRAIN 
initiative in the United States both endorse this dubious idea, hoping 
that neuroscience generally will follow the example of the Human 
Genome Project, proving that science can be reduced to engineering 
(and scientists to swarms of helpers).

But it should be noted that the Human Genome Project had well-
defined goals which omitted major theoretical challenges—it was an 
engineering project from the get-go. This is not the case, fortunately, 
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for all Data Brain projects. Researchers in neuroscience—from 
Eric Kandel at Columbia University to Christof Koch, formerly at 
Cal-Tech and now at the Allen Institute for Brain Science, to even 
Markram—all will admit that major pieces of theory are missing 
from our picture of the brain, particularly at higher levels of function-
ality. The response, coming most forcefully from Markram and the 
still-ambitious Human Brain Project, is that big data will fill in 
missing theory and that scientists are wasting their time performing 
research in the traditional manner—in small, well-defined research 
objectives on specific problem areas. In the age of AI, apparently, we 
can’t wait for theory to come from discovery and experiment. We 
have to place our faith in the supremacy of computational over human 
intelligence—astoundingly, even in the face of an ongoing theoret-
ical mystery about how to imbue computers with flexible intelligence 
in the first place.

This thinking is a mistake, and when the dust settles, will likely 
prove a costly one at that.

In spite of the constant rhetoric about progress, in fact, Data Brain 
projects are actually conservative in nature when it comes to neuro-
science research itself. Researchers at the Human Brain Project, for 
instance, seem content to use existing neuroscience research as the 
basis for “data integration” plans, mistakenly believing that the 
data itself will provide answers as the complexity of the simulation 
grows—an original conceit of big data. Hence, the project and other 
like-minded AI-driven projects effectively undermine the process of 
scientific discovery by placing the emphasis on larger and larger sim-
ulations of existing experimental knowledge.

That high-profile Data Brain projects like Europe’s Human Brain 
Project and now the BRAIN Initiative in the United States were able 
to convince funding agencies and, to a large extent, the unknowing 
public that such existing knowledge, simulated on supercomputing 
platforms crunching large volumes of data, constitutes a scientific 
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advance rather than a conservative engineering project speaks to the 
general confusion about the role of AI in science generally.

For instance, a technique originally championed by Markram and 
adopted by the Human Brain Project is now, in various guises, wide-
spread in major neuroscientific efforts generally. Called “predictive 
neuroscience,” it’s an approach by researchers to simulate connections 
between neurons. Unknown synaptic links are determined from 
known links using inductive machine-learning techniques. Both tra-
ditional neural networks and more powerful deep learning networks 
are used. Markram showed initially that machine learning can cor-
rectly predict previously unknown connections in the cortical col-
umns of the rat brain. An analysis using a standard F-measure sta-
tistic yielded an accuracy of nearly 80 percent for the approach.

While representing an advance in applying machine learning to 
biological datasets, the approach has an average error rate of two in 
ten. This has ominous implications for any strategy for reverse-
engineering the human brain. But this concern aside, it is the shallow 
logic behind such approaches that spell deeper trouble for the institu-
tion of science.

H I G G S  B O S O N

In 2012, scientists discovered a long-missing piece of the standard 
model of physics, the Higgs boson. The discovery of Higgs boson is 
often attributed to an impressive piece of technology, the massive 
Large Hadron Collider (LHC) straddling the French-Swiss border. 
The LHC is seventeen miles of tubing constituting the world’s largest 
supercollider.

Scientists used the LHC to design an experiment specifically 
testing for the existence of a particle accounting for mass in the uni-
verse, dubbed the “Higgs boson” after Peter Higgs, the scientist who 
first predicted its existence. The result of the high-energy experiment 



	 A I  M ythology         I nvades       N euroscience            	 255

using the LHC seemed to confirm Higgs’s theory about the existence 
of the particle (it was officially confirmed in 2013).

But the case of the Higgs boson also illustrates the perverse ten-
dency to downplay theory and champion computational methods 
that buttress wishful thinking about big data and AI.

It’s true that supercomputing resources are necessary to make 
sense of the mountain of data generated by the supercollider. In 2012, 
the collider generated about twenty-five petabytes a year; by 2018 
the number had doubled, equivalent to about fifteen million high-
definition movies. There is no doubt that big data analytics and the 
computing resources necessary for processing such volumes of data 
give physicists a set of powerful tools for exploring the subatomic 
world. But the story of the Higgs boson, often touted as an example of 
Big Science success (and it was), is also a triumph of theoretical in-
sight. Higgs’s case is particularly impressive as a case for theory, not 
for big data per se. Peter Higgs actually discovered the particle in 1964; 
the LHC then confirmed its existence. This is a case study in the 
proper use of technology to supplant human insight. The lesson of the 
Higgs particle confirmation is not a call-to-arms for mythology in our 
computer future. Rather, it is a reminder that AI—here, big data—
works only when we have prior theory. A great deal of confusion and 
potential trouble for science lies precisely with this point.

Unfortunately, neuroscience, unlike particle physics, has no uni-
fying theoretical framework. The challenge, then, for neuroscientists 
is to defend the current data-driven model in the absence of theoret-
ical insights making sense of and guiding the “deluge of data,” as the 
Kavli Foundation puts it.

N E E D E D :  T H E O R I S T S

In a revealing interview with Nature a few years ago, prominent neu-
roscientists Eric R. Kandel (Director at the Kavli Institute for Brain 
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Science at Columbia University), Henry Markram (Director of the 
Human Brain Project), Paul M. Mathews (Head of Division of Brain 
Sciences at Imperial College London, UK), Rafael Yuste (Professor of 
Biological and Neurosciences at Columbia University), and Christof 
Koch (Chief Scientific Officer at the Allen Institute for Brain Science 
in Seattle) discussed the role of big data, theory, and collaboration in 
Europe’s Human Brain Project and the BRAIN Initiative in the 
United States.7 It is clear in this discussion that neuroscience faces 
major challenges, and that answers are still in short supply. Mathews, 
for instance, admits that “the BRAIN Initiative and the Human Brain 
Project both face a fundamental challenge: we do not have a strong 
paradigm to guide inquiry. It is striking that both the BRAIN Initia-
tive and Human Brain Project are ‘big data’ collection exercises from 
which meaningful relationships are anticipated to emerge.”8

Yet Markram remains confident that Big Data AI will fill in missing 
pieces of theory as the efforts progress. He is explicit about this, 
claiming that “the more data we have, the more biologically accurate 
the models will become.” He makes clear in the Nature interview his 
vision of the Human Brain Project and of neuroscience generally: 
“Scientifically, we want to open the road to a new form of accelerated 
neuroscience in which we identify basic principles spanning multiple 
levels of brain organization and exploit these principles to fill the 
large gaps in our knowledge. For instance, we can use principles about 
the way neurons connect to predict the connectome [the wiring dia-
gram of the brain]. Hypothetical reconstructions of the brain can 
guide and accelerate experimental mapping of the brain, turning it 
from a dream into a practical reality.”9

It is clear from reading Markram’s voluminous press interviews 
that he believes data integration—relevant research results from 
around the world collected into his supercomputer-based technical 
platform—will facilitate a “theory emergence” at higher and higher 
levels of brain organization. Hence, the initial neuron models using 
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information about ion channels (that is, low-level molecular informa-
tion about individual neuron behavior) will help drive theories of 
how functional units like neuronal circuits operate, which will in turn 
suggest principles or theories enabling researchers to connect micro-
circuits to mesa circuits to whole brain regions like the neocortex.

Markram himself is very clear about how this will work, and he’s 
equally dismissive of suggestions that creative research by smaller re-
search teams might find such theories independent of his Big Data 
approach. His interests are in using scientists and their research as 
inputs into a centralized technology framework, a motivation he 
openly admits, believing it will usher in “a new kind of collective neu-
roscience,” without “Einstein.”10

Yet while it’s hard to argue with vague, positive-sounding ideas 
like “collaboration,” what lies beneath such honorifics are very large 
claims about the role of big data and AI driving the future of neurosci-
ence. Markram believes, apparently, that sheer data (and deep learning) 
will drive theory formation, yet the entire history of science and the 
short but explosive history of the big data fad both demonstrate the 
folly of such an approach.

We’ve already seen that successes in big data promoted in popular 
accounts (like Mayer-Schönberger and Cukier’s Big Data) stem mainly 
from social domains like business, where no robust theories under-
girding behavior are known to exist. In the absence of theory, Big 
Data AI has been a boon to many areas of interest where, without 
data-intensive methods, no real predictive progress could be made. 
Such examples may be encouraging for business leaders and may even 
illuminate interesting areas of popular culture, but they are generally 
inadequate and even disastrous for serious science.

We’ve seen how theory operated in supposed tech triumphs like 
the Higgs boson discovery. In such cases a robust theoretical frame-
work makes possible a set of controlled and focused experiments that 
can help confirm predicted results of theory. Science has always allied 
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itself with experiments in this sense, so the Higgs case is hardly con-
troversial. But neither does it do much to buttress radical claims of the 
powers of Big Data AI along the lines that Markram would require in 
neuroscience.

Again, the lack of a robust theoretical framework in neuroscience 
makes an approach centered on data and machine learning even more 
misguided. The fewer theories researchers have to guide data-driven 
efforts, the fewer well-defined hypotheses can be tested, and the more 
such efforts will fall victim to known weaknesses in data-driven 
approaches.

Michael Jordan, an IEEE Fellow and the Pehong Chen Distin-
guished Professor of Computer Science at the University of Cali-
fornia, Berkeley, has argued against those who see a linear connection 
between big data and scientific thinking (by which the more data we 
have, the better our scientific thinking becomes). As one of the world’s 
most respected authorities on machine learning and big data, Jordan 
is an unlikely critic, but he predicts that “society is about to experi-
ence an epidemic of false positives coming out of big-data projects.” 
As he puts it: “When you have large amounts of data, your appetite for 
hypotheses tends to get even larger. And if it’s growing faster than the 
statistical strength of the data, then many of our inferences are likely 
to be false. They are likely to be white noise.”11

For any particular data, Jordan argues, “I will find some combina-
tion of columns that will predict perfectly any outcome, just by 
chance alone. . . . ​I will find all kinds of spurious combinations of col-
umns, because there are huge numbers of them. So it’s like having bil-
lions of monkeys typing. One of them will write Shakespeare.”12

Jordan here is pointing to the well-known problem in statistics 
known as overfitting (discussed below). Depressingly for Markram 
and other advocates of Data Brain projects like the Human Brain 
Project, overfitting is particularly problematic in the absence of causal 
or theoretical information about a domain—in the absence of general 
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intelligence, that is. “Correlation is not causation” is a familiar cau-
tion, but bold claims made on behalf of Big Data AI projects in recent 
years have made it particularly relevant again. Apparently obvious 
truths about knowledge are seemingly now in need of restatement in 
the wake of major claims made about data and machine learning. As 
Marcus and Davis were forced to point out in the New York Times, “a 
big data analysis might reveal, for instance, that from 2006 to 2011 the 
United States murder rate was well correlated with the market share 
of Internet Explorer: Both went down sharply. But it’s hard to imagine 
there is any causal relationship between the two.”13

This is an obvious point, and it applies with force to hyped claims 
about deep learning. Buzzwords have changed, but the major fad 
pushing Big Data AI as a panacea threatens progress in fundamental 
areas like neuroscience, in spite of bold claims made by enthusiasts 
like Markram and others. The takeaway here is that the myth really 
does have practical consequences for our human futures—in actual 
science.

O V E R F I T T I N G

Statistician Nate Silver has also pointed out the inherent danger of 
overfitting theories (models) to data, where “overfitting” here means 
spuriously matching a set of data points to a description that contains 
no genuine explanatory power, because the description does not gen-
eralize to new, unseen data points in the underlying distribution in 
question. Generalization means abstracting away from irrelevant 
details of data and isolating the genuine relationships in a principle 
representation, or theory.

The simplest case of a “theory” or model of a set of data points is 
the linear interpolation of a scatter plot. Each data point on the coor-
dinate system could be traced with a more complicated line that de-
scribes the existing points, but the description would be useless for 
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new points plotted, as no actual knowledge of the point distribution is 
contained in such a description. A straight line rather shows the average 
or linear interpolation of the scattered data, and as such gives us a useful 
model predicting the behavior of the data. Overfitting, as Silver points 
out, gives false confidence on existing data, but quickly shatters this illu-
sion when new data arrive—and don’t fit the model or theory.14

Overfitting is a known problem in statistical inference or analysis, 
and it is frequently the cause of major failures in large scientific efforts 
as well. Here, again, the availability of theory can help researchers 
steer clear of over-fitted models and spurious correlations. As Silver 
notes, several high-profile attempts to predict earthquake occurrences 
(using historical data about earthquakes as well as detailed geograph
ical information about stresses and other phenomena occurring 
under the Earth’s surface along fault lines) failed miserably, though 
they perfectly fit existing data about earthquakes.

Like the meandering line explaining the existing points on a 
scatter plot, the models turned out to have no predictive or scientific 
value. There are numerous such fiascoes involving earthquake predic-
tion by geologists, as Silver points out, culminating in the now-famous 
failure of Russian mathematical geophysicist Vladimir Keilis-Borok 
to predict an earthquake in the Mojave Desert in 2004 using an “elab-
orate and opaque” statistical model that identified patterns from 
smaller earthquakes in particular regions, generalizing to larger ones.

Keilis-Borok’s student David Bowman, who is now Chair of the 
Department of Geological Sciences at Cal State Fullerton, admitted 
in a rare bit of scientific humility that the Keilis-Borok model was 
simply overfit.

Bowman went on to explain that earthquake prediction is limited 
because a theoretical understanding of what is happening under 
the Earth’s surface along fault lines is lacking. Absent a genuine 
theory to use in guiding statistical or data-driven approaches, models 
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are in constant danger of picking up “noise” rather than “signal,” ex-
plains Silver.

N E U R O S C I E N C E :  R E F U S I N G  T O  L E A R N  

F R O M  O T H E R S ’  M I S T A K E S ?

These lessons seem particularly germane in neuroscience today, as 
Big Data efforts seem destined to repeat mistakes made in other areas 
of science. Tellingly, the focus on Big Data AI is neither particularly 
new when looked at in this way, nor particularly encouraging. Theory 
in science, one might say, can never really be eliminated. One irony of 
the inevitability myth here is that theory is necessary not only for 
genuine science, but also for making good on dreams of general intel-
ligence in AI. Modern confusions and mythology has the tail wag-
ging the dog.

Yet, there are in fact existing theories about the spiking activity of 
neurons and the role of smaller function units like neuronal circuits 
in regions of the brain. There are even high-level theories of cognition 
or intelligence grounded in the workings of the human neocortex. 
What is lacking, as Markram and others point out, is a unifying frame-
work or theory that fits these disparate pieces together.

The current Data Brain efforts are committed to the idea that pro
gress is made possible by machine learning and AI in an essentially 
ground-up fashion. This is difficult to take seriously for at least two 
reasons. One, the high-level neocortex inspired theories of intelli-
gence that animate much of the vision of Data Brain projects repro-
ducing the human mind in silica are hopelessly general and unusable. 
The theories themselves are of very little use (ironically) to computer 
science or Artificial Intelligence engineering efforts, as they don’t tell 
us enough about what the brain is actually doing when it generates 
intelligent behavior. Hence existing high-level theories already 
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suggest that data-driven efforts are providing us with a pale and too-
general set of theoretical postulates to begin.

Charitably, Markram no doubt believes that ground-up progress 
made by simulating larger and larger functional units of the brain will 
somehow improve or complete neocortical models of cognition. A 
better conclusion is that the focus on Big Data AI seems to be an ex-
cuse to put forth a number of vague and hand-waving theories, where 
the actual details and the ultimate success of neuroscience is handed 
over to quasi-mythological claims about the powers of large datasets 
and inductive computation. Where humans fail to illuminate a 
complicated domain with testable theory, machine learning and big 
data supposedly can step in and render traditional concerns about 
finding robust theories otiose. This seems to be the logic of Data Brain 
efforts today.

To see first-hand the overly general and relatively poor state of ex-
isting high-level theories, we turn next to a survey of neocortex-
inspired theories of human intelligence. Far from demonstrating the 
continued place of theory in neuroscience, they show rather an in-
creasing willingness to conform theories coming from neuroscience 
to the computing paradigm popular today.

This suggests that the weaknesses of such theories leave visionary 
neuroscientists like Markram undeterred in large part because of the 
prevalent belief that the march of Big Data AI toward general intelli-
gence and beyond will fill in the details later. Rather than challenge 
the science that is occurring in neuroscience today, Data Brain advo-
cates are increasingly willing to hand off mysteries and weaknesses to 
the supposed magic of data AI.

It’s to these neocortical theories we turn next.



Chapter 17

• • •

N E O C O R T I C A L  T H E O R I E S  O F  

H U M A N  I N T E L L I G E N C E

A popular theory of intelligence has been put forth by computer sci-
entist, entrepreneur, and neuroscience advocate Jeff Hawkins. Fa-
mous for developing the Palm Pilot and as an all-around luminary in 
Silicon Valley, Hawkins dipped his toe into the neuroscience (and 
artificial intelligence) waters in 2004 with the publication of On Intel-
ligence, a bold and original attempt to summarize the volumes of neu-
roscience data about thinking in the neocortex with a hierarchical 
model of intelligence.1 He has since formed a company, Numenta, 
dedicated to unlocking the secrets of intelligence as computation.

The neocortex, Hawkins argues, takes input from our senses and 
“decodes” it in hierarchical layers, with each higher layer making pre-
dictions from the data provided by the lower ones, until the top of the 
hierarchy is reached and some overall predictive theory is synthe-
sized from the output of all the lower layers.

His theory makes sense of some empirical data, such as differences 
in our responses based on different types of input we receive. For 
“easier” predictive problems, the propagation up the neocortex hier-
archy terminates sooner (because the answer becomes available), and 
for tougher problems, the cortex keeps processing and passing the 
neural input up to higher, more powerful, more globally sensitive layers. 
The solution is then made available or passed back to lower layers until 
we have a coherent prediction based on the original input.
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K U R Z W E I L’ S  H I E R A R C H I C A L - PA T T E R N 

R E C O G N I T I O N  T H E O R Y

The hierarchical nature of the neocortex has also been noted by Ray 
Kurzweil, who writes in his 2012 How to Create a Mind that “the neo-
cortex is responsible for dealing with our ability to deal with patterns 
and to do so in a hierarchical fashion. Animals without a neocortex 
(basically non-mammals) are largely incapable of understanding hi-
erarchies.”2 Kurzweil credits his own hierarchical theory, which he 
calls the pattern recognition theory of mind, as working off accepted 
neuroscience findings on the structure and function of the human 
neocortex, and also off progenitors like Hawkins’s own hierarchical 
account.

The hierarchical structure of the neocortex is indeed well-founded 
neuroscience. The columnar organization of the neocortex was first 
discovered by American neuroscientist Vernon Mountcastle in 1957. 
Mountcastle noted that the neocortex—a 2.5-millimeter-thick layer 
of nerve fibers stretching over the brain—was composed of columns 
of neurons, every one apparently identical to the others. There are 
about a half-million such columns in the human neocortex, each con-
taining about sixty thousand neurons.

Kurzweil has hypothesized that each cortical column contains 
what he calls pattern recognizers, consisting of about one hundred 
neurons, totaling about 300 million pattern recognizers in the human 
neocortex. Like Hawkins, Kurzweil views these hypothetical recog-
nizers as arranged into hierarchies that are centrally responsible for 
the unique capabilities of human thinking.

It’s an interesting hypothesis. Both Hawkins and Kurzweil make 
the mistake, however, of believing that human intelligence is simple.

Earlier in these pages I have pointed out the facile nature of such 
theories of human intelligence, and I am not alone in noticing the 
hopeless generality of such attempts at fundamental theory, which 
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seem more suited to propound particular computer system architec-
tures of interest to the authors than to produce real understanding of 
the human brain. As Gary Marcus has pointed out, like Hawkins, 
Kurzweil seems to offer a hand-waving theory of AI based on vague 
insights about the brain. Says Marcus: “We already know that the 
brain is structured, but the real question is what all that structure 
does, in technical terms. How do the neural mechanisms in the brain 
map onto the brain’s cognitive mechanisms?”3

Marcus goes on to point out that such theories are entirely too 
generic to advance the ball in neuroscience and related efforts in AI 
and the cognitive sciences: “Almost anything any creature does could 
at some level be seen as hierarchical-pattern recognition; that’s why 
the idea has been around since the late nineteen-fifties. But simply 
asserting that the mind is a hierarchical-pattern recognizer by itself 
tells us too little: it doesn’t say why human beings are the sort of crea-
tures that use language (rodents presumably have a capacity for 
hierarchical-pattern recognition, too, but don’t talk), and it doesn’t 
explain why many humans struggle constantly with issues of self-
control, nor why we are the sort of creatures who leave tips in restau-
rants in towns to which we will never return.” 4

Such generic theories are, ironically, also inspired by Big Data AI 
in a roundabout but very real way. Kurzweil is known for using hierar-
chical methods in machine learning for speech recognition applica-
tions; he worked on the original Siri application now owned by Apple 
and part of the iPhone. Hierarchical hidden Markov models are part 
of the data-analytic techniques that have merged with big data. And 
more recently, the now ever-present deep learning networks are ar-
ranged in hierarchies of layers. All such methods use large datasets as 
input to learn patterns in data, inducing a binary model that can then 
be decoded on unseen data.

Indeed, hierarchical learning methods today are almost as trendy 
as big data itself was a decade ago—witness deep learning. Theories 
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in neuroscience, in other words, like entire projects such as the Human 
Brain Project and the BRAIN initiative, are becoming indistinguish-
able from methods that have found success in the computer sciences 
and in Big Data AI specifically.

M A R K R A M ’ S  L E G O S  T H E O R Y

Henry Markram is known for another overly general theory of 
learning, colloquially known as his “Legos theory of cognition,” again 
basing the architecture on general research findings about the co-
lumnar and hierarchical nature of the human neocortex.5 Markram 
and his coauthor Rodrigo Perin explain that, in this theory, “acquiring 
memories is very similar to building with Lego. Each assembly is equiv-
alent to a Lego block holding some piece of elementary innate knowl-
edge about how to process, perceive, and respond to the world.” 6

Again, an interesting hypothesis. Again, far too simple, and far too 
mechanistic.

We are now in a position to state explicitly what has become ob-
vious. Not only have Data Brain efforts championed big data as a 
means to complete missing pieces of our understanding about the 
brain—as in, for instance, Markram’s emerging principles of the con-
nectome (synaptic connectivity)—but important theories them-
selves seem tied to computer science paradigms in such a way that 
perhaps the only meaningful direction Data Brain projects can now 
take is toward explicitly computational ideas and theories.

D E A D - E N D  R E S E A R C H

We have seen that Big Data AI is not well-suited for theory emer-
gence. On the contrary, without existing theories, Big Data AI falls 
victim to overfitting, saturation, and blindness from data-inductive 
methods generally. We can add here that data-centric computation 
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has thus far produced quite poor and uninteresting theories that are 
suspiciously tied to popular technology approaches today.

This is not only Big Data AI but, of course, Big Science, as neuro-
scientists are beginning to realize. Paul Mathews, in his previously 
mentioned 2013 Nature interview, perhaps put it best: “I cannot think 
of major new conceptual advances that have come from such big sci-
ence efforts in the past.”7 Markram and others committed to the 
Human Brain Project and Data Brain projects generally have pinned 
their hopes on Big Data AI to advance neuroscience, but what’s really 
needed—just as Mathews suggests—is wide-ranging and disparate 
research agendas to encourage creative hypotheses and spur dis-
covery. Big Data AI is not well-suited to these objectives.

Within a year of launch of the Human Brain Project, Markram and 
his vision drew intense criticism from a growing number of neuro-
scientists. In July 2014, more than five hundred scientists petitioned 
the European Commission to make major changes to the project, 
raising a number of concerns, many related to the project’s faith in 
computation and big data at the expense of needed theory and cre-
ative research.

Ironically, the petition filed to the EU was in part a reaction to 
Markram’s decision to shut down the cognitive architectures division 
of the project—the team specifically dedicated to exploring ques-
tions of cognition and intelligence, in line with Markram’s stated 
broader vision. Neuroscientists also worried that the Human Brain 
Project did not set out to test any specific hypothesis or collection of 
hypotheses about the brain.8

The neuroscientists pointed out in the petition that more de-
tailed simulations of the brain don’t inevitably lead to better under-
standing. Hundreds of them, in other words, pushed back against 
the original Human Brain Project because it was not really neuro-
science research at all, but rather a Big Data AI engineering project. 
Markram soon stepped down, but the project was retooled as software 
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engineering—arguably less infected with AI mythology, but tooth-
less for fundamental research by design.9

As Columbia University neuroscientist Eric Kandel put it, refer-
ring to the United States’ BRAIN Initiative when it first launched, 
“We knew the endpoint [for the Human Genome Project] . . . . ​But 
here, we don’t know what the goal is. What does it mean to under-
stand the human mind? When will we be satisfied? This is much, 
much more ambitious.”10

When the ten-year anniversary of Markram’s now notorious TED 
talk proclaiming that our brains would be mapped into a supercom-
puter—the ultimate statement of mythology about AI—came in 
2019, Scientific American (no enemy of future ideas about science) and 
The Atlantic both published searching accounts of what went wrong.11 
As one scientist put it, “We have brains in skulls. Now we have them 
in computers. What have we learned?”12

The questions were all about the dearth of theory. And no wonder. 
Data Brain enthusiasts like Markram seem to think that big data and 
the machine learning systems that analyze it will somehow provide 
answers to the questions we have about ourselves, about the human 
insight and intelligence that set those systems in motion.

This faith is not novel science but simply bad science, without a 
rich environment for future discovery.



Chapter 18

• • •

T H E  E N D  O F  S C I E N C E ?

Although scientists in growing numbers are discontented with Data 
Brain solutions to ongoing theoretical concerns, the ethos of Big Data 
AI is now firmly entrenched in science and culture generally. Ironi-
cally, as general intelligence is supposed to be emerging from AI 
and its applications to scientific research, it’s noticeably downplayed 
in the roles of scientists. Billionaire tech entrepreneur and investor 
Peter Thiel remarked recently that innovations seem to be drying 
up, not accelerating.1 Tech startups once dreamed of the next big 
idea to woo investors in the Valley, but now have exit strategies that 
almost universally aim for acquisitions by big tech companies like 
Google and Facebook, who have a lock on innovation anyway, since 
Big Data AI always works better for whoever owns the most data. 
The fix is in.

The question is whether, as Thiel puts it, there is now a “derange-
ment of the culture,” or whether the good ideas have already been 
snatched up.2

M E G A B U C K  S C I E N C E

The polymathic MIT computer scientist and founder of cybernetics 
Norbert Wiener warned about what he called “megabuck” science in 
an unpublished manuscript, “Invention: The Care and Feeding of 
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Ideas,” found among his papers after his death in 1964.3 In the early 
1950s, Turing had completed his fundamental (and it turned out, 
final) turn toward the future of invention as human-level AI; Wiener 
during the same period had begun serious contemplation about a 
future bereft of ideas necessary for AI, and other fields. Megabuck sci-
ence emerged quickly in the aftermath of two world wars, with the Man-
hattan Project producing the atomic bomb, and major well-funded 
efforts underway on computer and communications theory and in-
frastructure. There were, for instance, efforts at Bell Labs and IBM as 
well as at large defense contractors like Raytheon. Modern science 
enjoyed an unprecedented history of significant and largely unpre-
dictable invention—yet by mid-century, scientific innovation had be-
come bureaucratized and controlled by large funding sources such as 
the US Department of Defense and major corporate interests. Wiener 
worried that, at the very moment of its triumph (and need), Western 
culture was turning toward downstream projects that ultimately 
threatened a flourishing culture of ideas.

His early 1950s manuscript (since published in 1993) now seems 
prophetic in its lament. “I consider that the leaders of the present 
trend from individualistic research to controlled industrial research 
are dominated, or at least seriously touched, by a distrust of the indi-
vidual which often amounts to a distrust in the human.” 4

Wiener diagnosed megabuck science not only as suboptimal for a 
culture of invention, but as moving directly, and indeed happily, 
toward what he called an “antihuman” trend. This sentiment is echoed 
in our time by AI critics like Jaron Lanier, who worry about the tech-
inspired erosion of personhood. Hive minds and swarm science would 
do little to quell Wiener’s worries about the direction of science. As 
Wiener put it, “The general statistical effect of an anti-intellectual 
policy would be to encourage the existence of fewer intellectuals and 
fewer ideas.”5 Such anti-intellectual policies are so clearly evident in 
modern data-centric treatments of science that the threat is now im-
possible to ignore.
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Wiener pointed out what we all know, or should know, which is 
that ideas emerge from cultures that value individual intellects: “New 
ideas are conceived in the intellects of individual scientists, and they 
are particularly likely to originate where there are many well-trained 
intellects, and above all where intellect is valued.” 6

It would indeed take a derangement in culture not to recognize the 
wisdom of Wiener’s comments, which should be entirely uncontro-
versial. While lip service is given to brilliant innovation today just as 
in the 1950s, the reality is far different. The culture has become, as 
Wiener worried, sanguinely anti-intellectual and even antihuman.

The connection here to the myth is unavoidable, as mythology 
about the coming of superintelligent machines replacing humans 
makes concern over anti-intellectual and anti-human bias irrelevant. 
The very point of the myth is that anti-humanism is the future; it’s 
baked into the march of existing technology.

It’s difficult to imagine a cultural meme that is more directly cor-
rosive to future flourishing and, paradoxically, more directly inimical 
to the very invention or discovery of a workable theory of general in-
telligence. Whether such a theory is forthcoming in future research 
and development is itself an unknown, but what can be recognized is 
the threat of an increasingly anemic culture of ideas that will militate 
against any such discovery. The overall effect of the myth in this con-
text is simply to push AI, and indeed scientific research itself, into a 
techno-centric mode, where genuine invention will be systematically 
discouraged and go unrecognized—if, as is always rare in all ages, 
and even more so today, it actually occurs.

B E T T I N G  O N  I D E A S

Wiener pointed out that the economics of corporate profit make in-
vestment in a genuine culture of ideas difficult, since early bets on 
ideas are all in essence bad, as their full value becomes apparent only 
downstream.
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To put it simply, new ideas can’t be predicted, and so represent an 
economic and intellectual commitment to a flourishing culture without 
guaranteed short-term gain. We should expect, in other words, that 
the consolidation of the web into big tech will also tend to skew work 
on AI toward narrow applications on the profit curve, while inven-
tions (still unknown) get short shrift.

As proof of this claim, consider how little investment is given to 
exploring paths to artificial general intelligence, as opposed to appli-
cations of, for instance, deep learning to gameplay. The latter is clearly 
a dead-end to artificial general intelligence, as even deep learning re-
searchers are now beginning to admit—wary as they no doubt are of 
another notorious AI winter on the heels of a new bubble. The culture 
is squeezing profits out of low-hanging fruit, while continuing to spin 
AI mythology, a strategy guaranteed to lead to disillusionment 
without an inflow of radical conceptual innovation.

Wiener wryly observed that Swift’s farcical Laputa world, where a 
machine evolves science “automatically,” had a certain intellectual 
footing in 1950s megabuck science, with the inevitable result of fur-
ther pushing away a culture of invention. He was particularly worried 
about early versions of what is now part and parcel of AI mythology, 
that the human mind is getting replaced by computer programs: “the 
present desire for the mechanical replacement of the human mind has 
its sharp limits. Where the task done by an individual is narrowly and 
sharply understood, it is not too difficult to find a fairy adequate re-
placement either by a purely mechanical device or by an organization 
in which human minds are put together as if they were cogs in such a 
device.”7

Wiener’s remark is, of course, a perfect restatement of AI my
thology and its deleterious effect on humanity, with hive minds on 
the web and swarm science in scientific research. We might be for-
given for not “waiting around” for invention and discovery while we 
have IBM Blue Gene supercomputers to play with, but what’s unfor-
givable is the deliberate attempt to reduce personhood, as Lanier puts 
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it—disparaging and taking away the importance and value of the human 
mind itself. Such a strategy is fantastically self-defeating and stupid.

Wiener then connected his critique to popular mechanistic fan-
cies, often lampooned by skeptics ever wary of machine dreams. (We 
saw Jonathan Swift’s farce of mechanical science appear earlier, in 
Peirce’s discussion of early developments in automated reasoning.) 
Wiener continued: “However, the use of the human mind for evolving 
really new thoughts is a new phenomenon each time. To expect to ob-
tain new ideas of real significance by the multiplication of low-grade 
human activity and by the fortuitous rearrangement of existing ideas 
without the leadership of a first-rate mind in the selection of these 
ideas is another form of the fallacy of the monkeys and the typewriter, 
which already appears with a slightly simpler statement in Swift’s 
Voyage to Laputa.”8

Henry Markram’s fantasy of turning a billion euros into AI my
thology by building a brain using neural networks and supercom-
puters (and existing neuroscientific theories) is captured perfectly by 
Wiener here. If only these ideas had been exposed and avoided. In 
fact, the modern turn in AI seems to have pulled such fancies even 
more centrally into culture, with predictably narrow but flashy appli-
cation successes touted as the future, which (alas) will be dominated 
by superintelligent machines. The vision of artificial general intelli-
gence here is pure mythology and window dressing. No one is likely 
to understand even the core problems clearly, let alone happen upon 
the ideas necessary for true progress. This comparison might invite a 
smirk, but it’s nonetheless apt: it’s a brave new world. Wiener, much to 
his credit, saw it coming.

N A R R O W E R  A N D  N A R R O W E R

Turning to AI in the inference framework, we are witnessing in effect 
the evolution of a sub-species in inductive AI, which can perform well 
in narrow, data-centric environments but necessarily lacks the ability 
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to learn common sense and acquire genuine understanding. That we 
are pinning the future of the human mind—not so constrained—on 
the further development of AI in this vein is simply stupefying.

Not only is this approach entirely bereft of the general intelligence 
necessary to make any real intellectual advance in modern culture, 
but because induction is provably distinct from abduction, we already 
know that there is no bridge from the one to the other. All of Ray 
Kurzweil’s proclamations of inevitable progress cannot undo this 
truth once it becomes known. We should be honest here, as recogni-
tion of the truth would itself form part of the blueprint for moving 
forward.

To sum up: there is no way for current AI to “evolve” general intel-
ligence in the first place, absent a fundamental discovery. Simply 
saying “we’re getting there” is scientifically and conceptually bank-
rupt, and further fans the flames of antihuman and anti-intellectual 
forces interested in (seemingly) controlling and predicting outcomes 
for, among other reasons, maximizing short-term profit by skewing 
discussion toward inevitability. Smart individuals change the course 
of things; one way to make the future more predictable is simply to 
disparage and eliminate any value placed on individual intelligence.

M O V E  A L O N G —T H E R E ’ S  N O T H I N G  T O  S E E  H E R E

The suggestion that we’ve wandered into a cultural dead end might 
seem fantastic and fictional if in fact many of the purveyors of AI my
thology weren’t happily on record pooh-poohing Wiener’s “care and 
feeding of ideas” concerns, while talking up the inevitability of AI. 
While AI scientists and part-time mythologists like Stuart Russell 
still admonish us not to discount human ingenuity in the pursuit of a 
future theory of artificial general intelligence, very few leaders in the 
current culture are actually pursuing an agenda where human inge-
nuity can thrive.
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Given the expressed aims (or fears) of creating in effect a new 
super-being, this is astounding. Surely we could use an Einstein or 
two these days. (One wonders how Turing would fare today.)

Again, nowhere is this more evident than in the dogma of AI my
thology itself. On any calculation about the future of artificial general 
intelligence, the onus is squarely on AI mythologists portending the 
coming of human-level AI to explain what we’re doing to move 
things along.

Perhaps we could start with a frank acknowledgement that deep 
learning is a dead end, as is data-centric AI in general, no matter how 
many advertising dollars it might help bring in to big tech’s coffers. 
We might also give further voice to a reality that increasing numbers 
of AI scientists themselves are now recognizing, if reluctantly: that, as 
with prior periods of great AI excitement, no one has the slightest clue 
how to build an artificial general intelligence.

The dream remains mythological precisely because, in actual sci-
ence, it has never been even remotely understood. Where else but in 
AI science itself should we get rid of the myth?

J O H N  H O R G A N  A N D  T H E  D I S Q U I E T I N G 

S U G G E S T I O N  O F  T H E  E N D

The specter of a purely technocratic society where science, which 
once supplied us with radical revolutionary discoveries and inven-
tions, now plays the role of lab-coated technician tweaking knobs on 
the “giant brains” of supercomputers, was suggested early on by Scien-
tific American writer John Horgan. In his hugely popular The End of 
Science, Horgan in the mid-1990s wondered whether the seeming pe-
tering out of basic research in science was inevitable, for the simple 
fact that major discoveries are behind us.9

This is one half of Thiel’s question today: is the culture deranged, 
set on a course of choking out new ideas, as Wiener worried, or are we 
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actually out of basic ideas, because we’ve already found them all? This 
latter possibility would represent “The End” in a basic sense—so we 
might pray that culture has merely embraced an all-encompassing 
technological answer to basic questions that is only asphyxiating human 
intelligence as a by-product. There is at least a hypothetical way to fix 
a deranged culture of science; escape from the Tron-world of the end 
of ideas represents a further nightmare.

Thiel’s question is central to the future not just of AI but of hu-
manity, and unfortunately we have evidence for both hypotheses. 
On the one hand, cheerful promotion of the myth, and its cousin in 
swarm science—like cheerleading for hive minds before it—seems to 
suggest that modern society has indeed wandered whistling into a 
kind of derangement of core values, precisely as Wiener portended.

On the other hand, the question of whether we have no choice, as 
Horgan argues, presents a disquieting possibility that now, more than 
three hundred years after the Scientific Revolution, all the low-
hanging fruit of physical and computational theory have been picked. 
In this view, we’ve already discovered more or less what could be dis-
covered about physics, with first Newton’s laws and then Einstein’s 
relativity and the development of twentieth-century quantum me-
chanics. Remaining physics progress will be largely about filling in 
gaps and details in existing theory, and no doubt testing the predic-
tions of such theories with larger and more expensive technologies 
like supercolliders. Welcome to Machineland.

Either negative possibility would support Markram’s suggestion 
that Einstein is now unwanted, and doesn’t have anything left to do 
today (except contribute to data science). The inevitability of a 
coming superintelligence is here turned upside-down, because 
humans, so brilliant in discovering the fundamental building blocks 
of the universe, now must retire and watch as the culture turns from 
discoverers to technicians. Tending supercomputers is the modern 
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version of Voltaire’s tending the garden. The serious work is over. 
Human beings shouldn’t have been so smart.

Horgan also suggests that some dreams, like the dream of a com-
plete scientific account of human consciousness, might be too difficult 
anyway, and impossibly remote. In this case, we have the unhappy re-
sult of witnessing the inexorable creep of computation—computing 
existing theories—into science and everywhere else, while Pro-
methean dreams of a completed neuroscience are quietly put to bed, 
or fictionalized in Ex Machina futures.

It certainly is possible that major scientific advance is behind us, in 
which case we should expect shallow technical treatments of core issues, 
using what existing theories we have, while AI mythology becomes a 
new focal point for future meaning, however nihilistic and untrue. As 
Lanier suggested, too, we can make such a future become true by simply 
chiseling away at human intelligence and uniqueness, until we have 
stooped low enough to adjust to a computation-dominated future.

Horgan was not thrilled with his own disquieting suggestion, but 
it does seem that, since the 1990s, applied computation has lent ever-
increasing credibility to it—if not in reality, then at least in observed 
practice.

In either case, we should take seriously that we are now on the 
wrong path, in large part because we are actively attempting to cover 
up a key deficiency—a lack of flourishing human culture—with rhe
toric about the inevitable rise of machines. Eugene Goostman could 
not have come up with a better path to non-achievement.

O U R  C H O I C E

If Horgan’s “The End” reading of our future is true, the drift into tech-
nical detail is inevitable. Yet a derangement of culture spread in large 
part by the myth (and the rise of ubiquitous computation) keeps alive 
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the possibility that freeing ourselves of modern technology myths might 
spur progress by causing reinvestment in human insight, innovation, 
and ideas.

Clearly, I favor the latter interpretation. And I’m optimistic—
largely because, as we’ve seen, on purely scientific grounds we have 
every reason to reject a linear and inevitable march to artificial gen-
eral intelligence (and beyond).

Untying this Gordian knot starts with ridding ourselves of the 
myth in its current guise, which has infected culture so pervasively 
that long discussions about the need for new theory in neuroscience 
are now required to refocus efforts—a point that should be clear and 
in need of no argument.

T R U S T  A S  R E C O G N I T I O N  O F  L I M I T S  T O 

I N D U C T I V E  S Y S T E M S

Ironically, the limits of modern AI are implicit in current discussions 
about automation and trust. It has become trendy for AI thinkers to 
worry about so-called “beneficial AI,” trusted systems, and other eth-
ical issues like problematic bias. In other words, systems that don’t 
understand but still perform have become a concern.

This cuts the myth at an awkward angle: it is because the systems 
are idiots, but still find their way into business, consumer, and gov-
ernment application, that human-value questions are now infecting 
what were once purely scientific issues.

Self-driving cars are an obvious case in point. It’s all well and good 
to talk up advances in visual object recognition until, somewhere out 
on the long tail of unanticipated consequences and therefore not in-
cluded in the training data, your vehicle happily rams a passenger bus 
as it takes care to miss a pylon. (This happened.) Look, too, at the 
problems with bias and image recognition: Google Photos slapped a 
gorilla label on a photo of two African-Americans. After that neu-
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tron bomb of a PR disaster, Google fixed the issue—by throwing im-
ages of gorillas out of the training set used by the deep learning system.

Thus limits to inductive AI lacking genuine understanding are in-
creasingly pushed into AI discussion because we are rushing ma-
chines into service, in important areas of human life, which have no 
understanding. This, too, is a consequence of AI mythology, which 
shows a continuing penchant for not waiting around for legitimate 
ideas or discoveries, only too eager to keep increasing the dominion 
of AI technologies in every possible area of life.

Ironically, this worrisome trend could help spur more understanding 
of AI’s fundamental—or at the very least, current and unavoidable—
limits. Actual human lives and important human values are now at issue.

In the name of the myth, in other words, much ink is spilled today 
describing what amounts to the stupidity of machines. No one seems 
to notice that the result is a necessary and foreseeable consequence of 
inductive systems masquerading as a path to intelligence.

Russell points to the “alignment” problem, an issue in AI of sud-
denly central importance, concerned with aligning current and future 
AI systems with our own interests and purposes. But the problem 
arises not, as Russell suggests, because AI systems are getting so 
smart so quickly, but rather because we’ve rushed them into positions 
of authority in so many areas of human society, and their inherent 
limitations—which they’ve always had—now matter.

I’m hopeful that the current turn away from the Singularity toward 
practical concerns about ceding real authority to AI—to, let’s face it, 
mindless machines—will eventually result in a renewed appreciation 
for human intelligence and value.

Considering the alignment problem might give rise to consider-
ations of augmentation—how we can best use increasingly powerful 
idiots savants to further our own objectives, including in the pursuit 
of scientific progress.
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I N  C O N C L U S I O N

The inference framework I’ve presented in this book clarifies the 
project of expanding current artificial intelligence into artificial gen-
eral intelligence: it must bridge to a distinct type of inference, cur-
rently not programmable. It also provides a guide to exploring bound
aries between minds and machines that can facilitate more optimal 
and safer human-machine interactions, which are of course here to 
stay. It remains true that technology often acts like a prosthetic to 
human abilities, as with the telescope and microscope. AI has this 
role to play, at least, but a mythology about a coming superintelli-
gence should be placed in the category of scientific unknowns. If we 
wish to pursue a scientific mystery directly, we must at any rate invest 
in a culture that encourages intellectual ideas—we will need them, if 
any path to artificial general intelligence is possible at all.

Just as Frankenstein was really an exploration of spiritual isolation 
(a problem felt deeply by Mary Shelley and her husband, Percy Shelley), 
the deepest questions embodied in the AI myth are not technical or 
even scientific—they involve our own ongoing attempts to find meaning 
and to forge future paths for ourselves in an ever-changing world. 
There is nothing to be gained by indulging in the myth here; it can 
offer no solutions to our human condition except in the manifestly 
negative sense of discounting human potential and limiting future 
human possibility.

The problem of inference, like the problem of consciousness, is en-
trenched at the center of ongoing grand mysteries, and is really pre-
supposed in our understanding of everything else. We should not be 
surprised that the undiscovered mind resists technological answers. 
It’s possible that, as Horgan worried, we’re out of ideas. If so, the myth 
represents our final, unrecoverable turn away from human possi-
bility—a darkly comforting fairy tale, a pretense that out of our ashes 
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something else, something great and alive, must surely and inevitably 
arise.

If we’re not out of ideas, then we must do the hard and deliberate 
work of reinvesting in a culture of invention and human flourishing. 
For we will need our own general intelligence to find paths to the 
future, and a future better than the past.





N O T E S

Introduction
1. I don’t mean to suggest that researchers have not wrestled with abduc-

tion in AI—they have. In the 1980s and 1990s researchers worked on logical 
approaches to abduction, called abductive logic programming. But these 
systems were abduction “in name only,” because they relied on deduction, 
not true abduction. The systems weren’t successful, and were quickly aban-
doned as work in AI progressed in the web era. More recently, circa 2010 up 
to present day, various probabilistic (in particular, Bayesian) approaches 
have been adopted as possible routes to bona fide abductive inference. Those 
systems, however, are not full treatments of abduction either. Instead of dis-
guised deductive approaches like their predecessors, they are disguised in-
ductive or probabilistic approaches. Abduction in name only is not what I 
mean by abduction, and the systems using the name but not solving the 
problem won’t help us make progress in AI. I will explain all this in pages 
to come.

Chapter 1: The Intelligence Error
1. A.  M. Turing, “Computing Machinery and Intelligence,” Mind 59, 

no. 236 (October 1950), 433–460.
2. A. M. Turing, “On Computable Numbers, with an Application to the 

Entscheidungsproblem,” Proceedings of the London Mathematical Society, 
vols. 2–42, issue 1 (January 1937), 230–265.

3. A. M. Turing, Systems of Logic Based on Ordinals (PhD diss., Princeton 
University, 1938), 57.
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4. Gödel also showed that adding rules would patch up incompleteness 
in some systems, but that the new system, with the additional rules, would 
have yet other blind spots, on and on. This was precisely Turing’s focus in 
his later work on formal systems and completeness.

5. For the original incompleteness results see Kurt Gödel, “Über formal 
unentscheidbare Sätze der Principia Mathematica und verwandter Systeme 
I,” Monatshefte für Mathematik Physik 38 (1931): 173–198. An English transla-
tion is in Kurt Gödel, Collected Works, vol. 1: 1929–1936, eds. Kurt Gèodel, 
Kurt Gödel, and Solomon Feferman (Oxford: Oxford University Press, 1986).

6. I am using the terms formal, mathematical, and computational inter-
changeably here. The terminology is not imprecise, although technically 
all mathematical or computational systems are known as formal systems. 
I trust this is not confusing, but in any case, the terms mathematical and 
computational both refer to formal systems, which have a well-defined vo-
cabulary of symbols, and rules for manipulating the symbols. This covers 
arithmetic as well as computer languages, and is completely general to suit 
the purposes of the discussion.

Chapter 2: Turing at Bletchley
1. Turing, Good, and Shannon’s early work on computer chess exploited 

a technique known as minimax, which scored moves based on minimizing 
loss for a player while maximizing potential gain. The technique figured 
prominently in later versions of computer chess, and is still a baseline for 
designing the much more powerful computer chess systems used today.

2. Full programming languages as we know them today, such as C++ and 
Java, all make use of these basic operations that emerged out of early com-
puting, although ideas such as object oriented programming and other 
means of structuring software emerged later in computer science. Still, the 
basic control structures in all computer code appeared early on with the first 
full electronic machines. Insight into how to structure and control ma-
chines with programs is no doubt responsible for the immediate success of 
such systems applied to early problems like chess.

3. Under the direction of Britain’s “General Code and Cipher School” or 
“GC and CS.”

4. Hugh Alexander, for instance, was a national chess champion who 
helped in the Bletchley effort.
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5. The Germans added rotors that generated long sequences of ciphered 
free text, along with a more complicated initial (and also ciphered) instruc-
tions for deciphering communications.

6. See Andrew Hodges’s excellent biography of Turing for in-depth dis-
cussion of the role of Bletchley Park and Turing in World War II. Andrew 
Hodges, Alan Turing: The Enigma (New York: Vintage, 1992).

7. Joseph Brent, Charles Sanders Peirce: A Life (Bloomington, IN: Indiana 
University Press, 1993), 72.

8. Hodges, Enigma, 477.
9. François Chollet, “The Implausibility of Intelligence Explosion,” Me-

dium, November 27, 2017.
10. For a mathematical treatment of the no free lunch theorem, see 

David Wolpert and William  G. Macready, “No Free Lunch Theorems for 
Optimization,” IEEE Transactions on Evolutionary Computation 1, no.  1 
(1997): 67–82.

11. The term artificial intelligence was actually coined in 1955 by Stanford 
computer scientist John McCarthy, one of the pioneers of AI and a member 
of the Dartmouth Conference which, a year later in 1956, officially launched 
the field.

Chapter 3: The Superintelligence Error
1. Irving John Good, “Speculations Concerning the First Ultraintelligent 

Machine,” Advances in Computers 6 (1965) 6: 31–88.
2. Nick Bostrom, Superintelligence: Paths, Dangers, Strategies, repr. ed. 

(Oxford: Oxford University Press, 2017), 259.
3. John Von Neumann, Theory of Self-Reproducing Automata, ed. Ar-

thur W. Banks (Urbana: University of Illinois Press, 1966), fifth lecture, 78.
4. Daniel Kahneman, Thinking, Fast and Slow (New York: Farrar, Straus 

and Giroux, 2013).
5. Stuart Russell, Human Compatible: Artificial Intelligence and the Problem 

of Control (New York: Viking, 2019), 37.
6. Kevin Kelly, What Technology Wants (New York: Penguin, 2010).
7. Strangely, or maybe refreshingly, Kelly has since distanced himself 

from the AI myth. Writing in Wired in 2017, he argues that “intelligeniza-
tion” isn’t leading to superintelligence after all. He points out that intelli-
gence is varied and polymorphous, and that seemingly unintelligent animals 
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like squirrels remember the locations of potentially thousands of buried 
nuts for later consumption, a feat which humans would no doubt fail to rep-
licate. The title of his piece, “The AI Cargo Cult: The Myth of Superhuman 
AI,” is telling. Our inability to fix a workable definition of intelligence (let 
alone superintelligence) might suggest that the endpoint futurists see as in-
evitable in AI is actually confused, and yet another simplification that pro-
vides ample room for mythology and speculation.

8. Russell, Human Compatible, 7–8.

Chapter 4: The Singularity, Then and Now
1. Murray Shanahan, The Technological Singularity (Cambridge, MA: 

MIT Press, 2015), 233.
2. As we’ve seen, the science of Turing’s universal machines was well es-

tablished by the late 1930s. Computers as electronic devices appeared later, 
on the heels of developments of communications technologies such as relay 
switches from telephone systems and other technologies.

3. Technically, Vinge introduced the term singularity three years earlier, 
in a January 1983 article in Omni magazine titled “First Word.” It is common, 
however, to trace the word and Vinge’s use of it back to his sci-fi book Marooned 
in Realtime, where the concept was fully developed in the plot of the story.

4. Vernor Vinge, “The Coming Technological Singularity: How to Sur-
vive in the Post-Human Era,” in Vision-21: Interdisciplinary Science and 
Engineering in the Era of Cyberspace, ed. G.  A. Landis, NASA Publication 
CP-10129, 1993, 11–22.

5. Ray Kurzweil, The Singularity is Near: When Humans Transcend Biology 
(New York: Penguin Group, 2005).

6. Ray Kurzweil, “The Singularity: A Talk with Ray Kurzweil,” interview 
with The Edge, introduction by John Brockman, March 24, 2001, https://www​
.edge​.org​/conversation​/ray​_kurzweil​-the​-singularity.

7. Hubert L Dreyfus, What Computers Still Can’t Do: A Critique of Artifi-
cial Reason (Cambridge, MA: MIT Press, 1992), ix.

Chapter 5: Natural Language Understanding
1. John McCarthy, M. Minsky, N. Rochester, and C. E. Shannon, “A Pro-

posal for the Dartmouth Summer Research Project on Artificial Intelli-
gence,” August 1955.

https://www.edge.org/conversation/ray_kurzweil-the-singularity
https://www.edge.org/conversation/ray_kurzweil-the-singularity
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2. Gary Marcus and Ernest Davis, Rebooting AI: Building Artificial Intel-
ligence We Can Trust (New York: Pantheon Books, 2019), 1.

3. Massimo Negrotti, ed., Understanding the Artificial: On the Future Shape 
of Artificial Intelligence (Berlin Heidelberg: Springer-Verlag, 1991), 37.

4. See John R. Pierce et al., Language and Machines: Computers in Trans-
lation and Linguistics, report of Automatic Language Processing Advisory 
Committee, National Academy of Sciences, National Research Council, 
Publication 1416, 1966.

5. Sergei Nirenburg, H.  L. Somers, and Yorick Wilks, eds., Readings in 
Machine Translation (Cambridge, MA: MIT Press, 2003), 75.

6. For a readable discussion of early problems with machine translation, 
see John Haugeland, Artificial Intelligence, The Very Idea (Cambridge, MA: 
MIT Press, 1989). Yehoshua Bar-Hillel’s comment appears on page 176.

7. See, for instance, Hubert Dreyfus’s account of early automatic transla-
tion failures in Hubert L Dreyfus, What Computers Still Can’t Do: A Critique 
of Artificial Reason (Cambridge, MA: MIT Press, 1992), ix.

8. For more on DENDRAL, see Robert K. Lindsay, Bruce G. Buchanan, 
E. A. Feigenbaum, and Joshua Lederberg, “DENDRAL: A Case Study of the 
First Expert System for Scientific Hypothesis Formation,” Artificial Intelli-
gence 61, no. 2 (1993): 209–261. For more on MYCIN, see B. G. Buchanan 
and E. H. Shortliffe, Rule Based Expert Systems: The MYCIN Experiments of 
the Stanford Heuristic Programming Project (Reading, MA: Addison-Wesley, 
1984).

9. For a good discussion of the ELIZA program in work on Natural Lan-
guage Processing in AI, see James Allen, Natural Language Processing (San 
Francisco: Benjamin / Cummings Publishing Company, 1995). The dia-
logue appears on page 7.

10. I explain the problems with the Goostman performance in much 
greater detail in Part Two.
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