
Implementing
Machine Learning
for Finance

A Systematic Approach to Predictive
Risk and Performance Analysis for
Investment Portfolios
—
Tshepo Chris Nokeri

Implementing
Machine Learning for

Finance
A Systematic Approach

to Predictive Risk
and Performance Analysis
for Investment Portfolios

Tshepo Chris Nokeri

Implementing Machine Learning for Finance: A Systematic Approach
to Predictive Risk and Performance Analysis for Investment Portfolios

ISBN-13 (pbk): 978-1-4842-7109-4 ISBN-13 (electronic): 978-1-4842-7110-0
https://doi.org/10.1007/978-1-4842-7110-0

Copyright © 2021 by Tshepo Chris Nokeri

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 New York Plaza, Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201)
348-4505, e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media,
LLC is a California LLC and the sole member (owner) is Springer Science + Business Media
Finance Inc (SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978- 1- 4842- 7109- 4.
For more detailed information, please visit www.apress.com/source- code.

Printed on acid-free paper

Tshepo Chris Nokeri
Pretoria, South Africa

https://doi.org/10.1007/978-1-4842-7110-0

I dedicate this book to my family and everyone who merrily
played influential roles in my life.

v

Table of Contents

Chapter 1: Introduction to Financial Markets and
Algorithmic Trading ���1

FX Market ��1

Exchange Rate ���2

Exchange Rate Movement ���2

Bids and Offers ��3

The Interbank Market ��5

The Retail Market ��5

Understanding Leverage and Margin ��9

The Contract for Difference Trading ���9

The Share Market��10

Raising Capital ���10

Stocks Index ��12

Speculative Nature of the Market ���13

Techniques for Speculating Market Movement ���13

About the Author ���xi

About the Technical Reviewer ���xiii

Acknowledgments ��xv

Introduction ��xvii

vi

Investment Strategy Management Process ��14

Strategy Formulation ���15

Modeling ��15

Backtesting ��19

Strategy Implementation ���19

Strategy Evaluation��19

Algorithmic Trading ���20

Chapter 2: Forecasting Using ARIMA, SARIMA, and the
Additive Model ��21

Time Series in Action ��22

Split Data into Training and Test Data ���24

Test for White Noise ��25

Test for Stationary ���27

Autocorrelation Function ���28

Partial Autocorrelation Function ��29

The Moving Average Smoothing Technique ��31

The Exponential Smoothing Technique ���32

Rate of Return ���33

The ARIMA Model ��35

ARIMA Hyperparameter Optimization ��36

Develop the ARIMA Model ���37

Forecast Using the ARIMA Model ��38

The SARIMA Model ��40

SARIMA Hyperparameter Optimization ��40

Develop a SARIMA Model ��41

Forecast Using the ARIMA Model ��43

Table of ConTenTs

vii

The Additive Model ��44

Forecast ���47

Seasonal Decomposition ���48

Conclusion ��50

Chapter 3: Univariate Time Series Using Recurrent Neural Nets ��������51

What Is Deep Learning? ��51

Activation Function ���52

Loss Function ��52

Optimize an Artificial Neural Network ���52

The Sequential Data Problem��53

The RNN Model ���53

The Recurrent Neural Network Problem ���54

The LSTM Model ���54

Gates ���55

Unfolded LSTM Network ���56

Stacked LSTM Network ���56

Develop an LSTM Model Using Keras ���57

Forecasting Using the LTSM ��65

Model Evaluation ���67

Conclusion ��70

Table of ConTenTs

viii

Chapter 4: Discover Market Regimes ���73

HMM ��73

HMM Application in Finance ��74

Develop a GaussianHMM ��74

Gaussian Hidden Markov ��81

Mean and Variance ���83

Expected Returns and Volumes ���86

Conclusions ���90

Chapter 5: Stock Clustering ��91

Investment Portfolio Diversification ��91

Stock Market Volatility ��92

K-Means Clustering ��92

K-Means in Practice ��93

Conclusions ���100

Chapter 6: Future Price Prediction Using Linear Regression ������������101

Linear Regression in Practice ���102

Correlation Methods ��103

The Pearson Correlation Method ���104

The Covariance Method ��105

Pairwise Scatter Plots ���106

Eigen Matrix ��110

Further Descriptive Statistics ��112

Develop the Least Squares Model ���116

Model Evaluation ���120

Conclusion ��123

Table of ConTenTs

ix

Chapter 7: Stock Market Simulation ��125

Understanding Value at Risk ���126

Estimate VAR by Applying the Variance- Covariance Method �����������������������126

Understanding Monte Carlo ��136

Application of Monte Carlo Simulation in Finance ���������������������������������������136

Run Monte Carlo Simulation ���138

Plot Simulations ��138

Conclusions ���141

Chapter 8: Market Trend Classification Using ML and DL �����������������143

Classification in Practice ���144

Data Preprocessing ���150

Logistic Regression ���150

Develop the Logistic Classifier ��151

Learning Curve ��157

Multilayer Layer Perceptron ��158

Architecture ��160

Finalize the Model ���161

Conclusions ���165

Chapter 9: Investment Portfolio and Risk Analysis ��������������������������167

Investment Risk Analysis ��168

Pyfolio in Action ��168

Performance Statistics ��169

Drawback ��172

Rate of Returns ��173

Rolling Returns ��174

Conclusions ���177

Index ���179

Table of ConTenTs

xi

About the Author

Tshepo Chris Nokeri harnesses big data,

advanced analytics, and artificial intelligence

to foster innovation and optimize business

performance. In his functional work, he has

delivered complex solutions to companies in

the mining, petroleum, and manufacturing

industries. He initially completed a bachelor’s

degree in information management.

Afterward, he graduated with an honor’s degree in business science from

the University of the Witwatersrand on a TATA Prestigious Scholarship and

a Wits Postgraduate Merit Award. The university unanimously awarded

him the Oxford University Press Prize. He has authored the book Data

Science Revealed: With Feature Engineering, Data Visualization, Pipeline

Development, and Hyperparameter Tuning (Apress, 2021).

xiii

About the Technical Reviewer

Anubhav Kesari is a data scientist and AI

researcher by profession and a storyteller

by heart. Currently living in Delhi, Anubhav

was born and raised in Prayagraj, India,

and graduated from the Indian Institute of

Information Technology Guwahati with a

major in computer science and engineering.

His research interests are in machine learning,

computer vision, and geospatial data science.

He enjoys engaging with the data science

community and often giving talks at local

meetups as well as for larger audiences. In late 2019, he spoke at PyCon

India about hyperparameter optimization in machine learning. He also

spoke at PyData Delhi 2019 in a session on machine learning. In his free

time, he enjoys exploring nature and listening to classic 90s songs.

xv

Acknowledgments

Writing a single-authored book is demanding, but I received firm

support and active encouragement from my family and dear friends.

Many heartfelt thanks to the Apress publishing team for all their backing

throughout the writing and editing process. Last, humble thanks to all of

you reading this; I earnestly hope you find it helpful.

xvii

Introduction

Kindly welcome to Implementing Machine Learning for Finance. This book

is your guide to mastering machine and deep learning applied to practical,

real-world investment strategy problems using Python programming. In

this book, you will learn how to properly build and evaluate supervised

and unsupervised machine learning and deep learning models adequate

for partial algorithmic trading and investment portfolio and risk analysis.

To begin with, it prudently introduces pattern recognition and

future price forecasting exerting time-series analysis models, like the

autoregressive integrated moving average (ARIMA) model, seasonal

ARIMA (SARIMA) model, and additive model, and then it carefully

covers the least squares model and the long-short term memory (LSTM)

model. Also, it covers hidden pattern recognition and market regime

prediction applying the Gaussian hidden Markov model. Third, it presents

the practical application of the k-means model in stock clustering.

Fourth, it establishes the practical application of the prevalent variance-

covariance method and empirical simulation method (using Monte

Carlo simulation) for value-at-risk estimation. Fifth, it encloses market

direction classification using both the logistic classifier and the multilayer

perceptron classifier. Lastly, it promptly presents performance and risk

analysis for investment portfolios.

I used Anaconda (an open source distribution of Python

programming) to prepare the examples. The libraries covered in this book

include, but are not limited to, the following:

• Auto ARIMA for time-series analysis

• Prophet for time-series analysis

xviii

• HMM Learn for hidden Markov models

• Yahoo Finance for web data scraping

• Pyfolio for investment portfolio and risk analysis

• Pandas for data structures and tools

• Statsmodels for basic statistical computation and

modeling

• SciKit-Learn for building and validating key machine

learning algorithms

• Keras for high-level frameworks for deep learning

• Pandas MonteCarlo for Monte Carlo simulation

• NumPy for arrays and matrices

• SciPy for integrals, solving differential equations, and

optimization

• Matplotlib and Seaborn for popular plots and graphs

This book targets data scientists, machine learning engineers, and

business and finance professionals, including retail investors who want

to develop systematic approaches to investment portfolio management,

risk analysis, and performance analysis, as well as predictive analytics

using data science procedures and tools. Prior to exploring the contents of

this book, ensure that you understand the basics of statistics, investment

strategy, Python programming, and probability theories. Also, install the

packages mentioned in the previous list in your environment.

InTroduCTIon

1© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_1

CHAPTER 1

Introduction to
Financial Markets and
Algorithmic Trading
This is the initial chapter of a book that presents algorithmic trading.

This chapter carefully covers the foreign exchange (FX) market and

the stock market. It explores how we pair, quote, and exchange official

currencies. Subsequently, it covers the stock exchange. In addition, it

presents key market participants, principal brokers, liquidity providers,

modern technologies, and software platforms that facilitate the exchange

of currencies and shares. Furthermore, it looks at the speculative nature

of the FX market and stock exchange market and specific aspects of

investment risk management. Last, it covers several machine learning

methods that we can apply to combat problems in finance.

 FX Market
The FX market represents an international market in which investors

exchange currency for another. It does not have a principal visible location

in which transactions occur, each investor holds their own transaction

https://doi.org/10.1007/978-1-4842-7110-0_1#DOI

2

records, and each transaction happens electronically. Key market

participants self-regulate using guidelines prescribed by a regulatory body

within their geographic boundaries.

 Exchange Rate
Each official country generally has its own currency. The currency is a class

of payments administered and distributed by the central government and

dispersed around their geographic boundaries. In relation to foreign trade,

an individual or corporation that purchases foreign goods or services

and sells them to their local market typically has to exchange currencies.

We universally recognize an exchange rate as the ratio of the price of a

local currency to a foreign currency. The major currencies include the

US dollar ($), euro (€), Great Britain pound (£), Japanese yen (¥), etc. The

cross rate is the price of a currency against another, where the US dollar is

uninvolved. For instance, euro/GBP is a cross rate between the euro and

the sterling.

 Exchange Rates Quotation

An exchange rate represents the price of a currency relative to an

alternative. We quote currencies directly or indirectly. Using the direct

method, the exchange shows how much we have to exchange the local

currency for one unit of a foreign currency. For instance, EUR/USD = 1.19.

The indirect method shows how much foreign currency trades for one unit

of the local currency. For instance, USD/EUR = 0.84.

 Exchange Rate Movement
The exchange rate is inconstant; it varies over time. There are several

prime factors that influence changes in the exchange rate. For instance,

economic and growth factors such as gross domestic product growth

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

3

(GDP), inflation rates (consumer price index or GDP deflator), and stocks

traded, external debt stocks, current account balance, total reserves, etc.

In other instances, rates may react to geopolitical news, natural disasters,

labor union activities, social-unrest, corporate scandals, among others.

When changes befall, we say that one currency is stronger or weaker than

another currency. For instance, with the EUR/USD currency pair, if the

euro strengthens, the USD progressively weakens. Let’s say EUR/USD

opened at 1.2100 and closed at 1.2190; we say that the EUR strengthened

since 1 EUR bought more USD at the close than at open.

• Assuming an investor buys 1 million euros at 1.2100 at

the open, assuming it will strengthen on that day, but

the euro closes at 1.2190, the investor has experienced

$7 383. 10(€9000) loss.

$1 000 0000 $1 000 000 €1 219 000 €1 210 000

0 €9 000
Euro Loss

+ = − = − +
=

− −

 Bids and Offers
A market maker represents an organization that exchanges currencies

on its own account at prices reflected on their systems. Common market

makers include banks and brokers. They quote two rates as follows:

• Bid: The rate at which market makers buy the currency

• Offer: The rate at which market makers sell the base

currency

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

4

 The Left Bid and Right Offer Rule

As tricky as it may be when market makers trade, they are buying and

selling at the same time. They buy the base currency on the left side of the

quote and sell the currency on the right side of the quote. For instance, if a

market maker quotes the EUR/USD at 1.2100/15, they will buy the dollars

at €1.2100 and sell them at €1.2115.

EUR/USD

Bid Ask

1.2100 1.2115

The difference between the bid and offer is called the spread. It

informs us about liquidity. The more liquid the market, the more narrow

the spread. To understand how this works, let’s look at the minor currency

pairs and major currencies. Currency pairs in emerging markets such as

South African rand to rupees (ZAR/INR), Bangladeshi taka to Omani rial

(BDT/OMR), among others, have low trading activities and are traded in

small quantities. This results in higher spreads when compared to major

currencies such as the GBP to the US dollar (USD), Australian dollar to the

US dollar, etc. Equation 1-1 shows how we find the spread.

 Spread Bid Ask� � (Equation 1-1)

Consider the scenario where the EUR/USD is quoted at 1.2100/15; the

spread equals 0.015.

The margin represents the difference between the bid and ask divided

by the ask. It can be written mathematically as in Equation 1-2.

 Margin Bid Ask Ask� �� � �/ %100 (Equation 1-2)

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

5

Margin equals 1.2381 percent.

• Assume you are a US tourist who is visiting Europe

and wants euros; you must buy the euros using the US

dollars you arrived with. The market makers will sell

them to you at €1.2115. In contrast, if you are on the

seller’s side, the market maker buys the currency at

€1.2100.

 The Interbank Market
The interbank market encompasses a substantial segment of the FX

market. It is an international network of large financial companies,

especially multinational banks that use their cash balances to trade

currencies. We equally recognize the interbank market as the wholesale

market. Key participants in this market influence the direction of price

movements and interest rate risk through their purchasing activities

and sales operations. They set the bid and ask price for a currency pair

based on future price predictions. The central bank frequently examines

the activities of key market participants to determine the effects of

their transactions on economic stability. In addition, they use complex

instruments such as fiscal policies and monetary policies to drive price

movements.

 The Retail Market
The retail market is a narrow segment of the FX market. It encompasses

investors who are not directly part of the interbank market. In the

retail market, investors carry out transactions over the internet using

sophisticated technologies, systems, and software that brokerage

companies provide.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

6

Figure 1-1 shows that Electronic Broker Services (EBS) receives prices

from banks, brokerage companies, and other financial institutions, and

then provides them to retail investors. It provides an electronic platform

that enables retail investors to trade with money markers. Key financial

institutions in the market include insurance firms, investment firms,

hedge funds, etc. EBS compromises leading banks (an alternative to EBS is

Thomson Reuters Matching). Established banks include Goldman Sachs,

JP Morgans, and HSBC among others. Some of the most popular brokerage

firms include Saxo Bank, IG Group, Pepperstone, among others.

 Brokerage

A brokerage involves providing a stable platform that facilitates

transactions. Brokerage companies typically issue retail investors’ trading

accounts and the infrastructure for exchanging financial instruments.

Figure 1-2 exhibits the various types of brokers.

Retail
Investors Online FX

Electronic
Brokerage
Services

Banks Brokerage

Financial
Institutions

Figure 1-1. Simple example of the FX market

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

7

Brokerage companies differ subtly in their modus operandi. These

companies must be registered and follow compliance standards set

by regulatory organizations within their geographic boundaries. Key

regulators include the US Commodities and Futures Trading Commission,

Australian Securities and Investments Commission (ASIC), and UK

Financial Conduct Authority (FCA). Underneath, we consider primary

brokerage companies.

Desk Dealing Brokers

Desk dealing (DD) brokers present fixed spreads and liquidity to investors.

They establish a market for investors and take the opposing side of

investors’ orders, meaning that they trade against their customers. They

Types of
Brokerage

Dealing Desk

No Dealing
Desk

Money Marker

ECN

STP

STP+ECN

Figure 1-2. Types of brokers

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

8

uniformly determine the bid and ask prices based on their own future

price predictions. Their rates do not come from the interbank market.

No Desk Dealing Brokers

No desk dealing (NDD) brokers do not pass on investors’ orders through

desk dealing. They also do not take the other side of the trade executed by

investors. To generate revenue, they charge a small commission and/or

slightly influence the spread. There are two principal NDD brokers, namely:

1) electronic communications network brokers and 2) straight-through

processing brokers.

Electronic Communications Network Brokers

Electronic communications network (ECN) brokers ensure investors’

orders interact with the orders of other investors in the network.

Traditionally, investors include commercial banks, institutional investors,

hedge funds, etc. They trade against each other by offering bid prices and

asking prices. To generate revenue, they call for a small commission and

attract an enormous pool of investors through robust marketing initiatives.

Straight-Through Processing Brokers

Straight-through processing (STP) brokers direct investors’ orders to

liquidity providers with access to the interbank market. At most, these

brokers favorably get many bid prices and ask prices from many liquidity

providers such as Citibank, Barclays Bank, Morgan Stanley, among others,

who carefully sort them and then offer investors a price with a markup. To

generate revenue, they call for a hefty commission. Unlike the two types of

brokerage firms mentioned earlier, these brokers are not concerned with

influencing trading activities.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

9

 Understanding Leverage and Margin
The FX market offers more excessive leverage compared to the stock

market. Leverage represents the amount that brokers loan investors to

transact. It exposes an investor to a position that they would not have

with their cash balance. Brokers offer trading accounts that use leverage

through margin trading. The margin represents the difference between

the total value of the positions held and the total value of the loan.

Margin quantity increases as a result of a decrease in leverage or vice

versa. Leverage enables investors to execute numerous trades they would

ordinarily trade using the current account; you can basically look at it

as credit without the requirement of collateral. It is often depicted in a

ratio. Standard trading accounts have leverage types that range from 1:10

to 1:100. However, some brokerages do offer accounts with leverage up

to 1:1000. The lower the ratio, the higher the capital needed to execute

a trade. Investors exert leverage to generate more returns with slight

price changes. For instance, an account with 1:1000 enables investors to

execute numerous trades compared to 1:10. Also, the higher leveraged

accounts amplify profits and magnify losses. To some extent, an account’s

leverage type gives a slight idea of an investors’ risk profile. For instance,

an investor expecting to rapidly generate profits in the market will have a

high leveraged account, and a more conservative investor will have a low

leveraged account.

 The Contract for Difference Trading
The contract for difference (CFD)1 represents a financial derivative

with a value that comes from a financial asset. It enables investors to

generate profits from price differences rather than safeguarding an asset.

1 https://web.archive.org/web/20160423094214/https://www.nsfx.com/
about-nsfx/risk-disclosure/

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

https://web.archive.org/web/20160423094214/https://www.nsfx.com/about-nsfx/risk-disclosure/
https://web.archive.org/web/20160423094214/https://www.nsfx.com/about-nsfx/risk-disclosure/

10

Consequently, investors can speculate on price movements. Besides CFDs,

there is a more complex financial derivative known as futures. Unlike

CFDs, which are privately traded through brokers, futures are traded

through a large exchange. With futures, an investor on the buyer’s side is

obliged to execute the trade when the contract expires, and an investor

on the seller’s side ought to deliver the asset at a certain period. Futures

have an expiry date, and there is a cap on the number of trades that an

investor can execute at a certain period. Given that, the future has stricter

regulatory mechanisms than CFDs.

 The Share Market
We equally recognize the share market as the equity market or the stock

market. It is also one of the most liquid markets in the world. It is an

international market mostly made up of large financial companies that

trade listed stocks. A share represents the ownership of equity. A company

sells equity to raise capital.

 Raising Capital
At most, companies seek to expand their business operations, but

funds are constrained by capital. They may privately or publicly seek

debt financing or equity financing. Debt financing involves borrowing

funds using collateral. The most conventional source of debt financing

is big commercial banks. Most startups cannot source financial capital

from these banks because they are at high risk (most startups fail).

They use alternative debt financing sources like micro-lenders, angel

investors, and seed investors depending on the phase they are at in their

entrepreneurship journey. More established companies may raise capital

by selling their shares to the public.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

11

 Public Listing

If an established company wants to gain a large financial capital, then it

can list on a public stock exchange.2 Before they exchange company stocks,

they must first comply with the accreditation process of a commission in a

specific jurisdiction and make an initial public offering.

 Stock Exchange

The stock market exchange facilitates the exchange of shares between

companies and investors. The most popular stock exchanges include the

London Stock Exchange, New York Stock Exchange, and NASDAQ among

others. Figure 1-3 shows a simple example of the stock exchange market.

Figure 1-3 shows that the brokers interact with the stock exchanges

and pass prices to investors. Also, the stock exchange releases a stock

market index. There are two markets on the stock exchange. First, there

is the primary market, where a company shows intent of enlisting in

the stock exchange by delivering an official press release, partaking

2 https://www.investopedia.com/terms/i/ipo.asp

Stock
Exchange Broker Investors

Index

Figure 1-3. A simple example of the stock exchange market

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

https://www.investopedia.com/terms/i/ipo.asp

12

in roadshows to make their intentions known to the public, filing for

enlistment, and making an initial public offer (IPO), which involves issuing

shares prior to enlistment. Post enlistment on the exchange, a company

enters the secondary market by making a follow-on offer and opening

trading activities to the public. This occurs upon satisfying the compliance

requirements of the exchange.

 Share Trading

The stock market exchange facilitates the exchange of securities like

shares, bonds, and stocks. Key markets in the stock exchange include the

following: the primary market, where a company may issue shares before

they are listed on an exchange, which is known as an initial public offer

(IPO), and the secondary market, where the actual trading happens.

 Stocks Index
A stock index represents an estimate of the stock market or part of its

segment. The index constitutes a set of stocks that investors may buy as a

coherent whole or in an EFT or mutual fund that typically resembles the

index. Table 1-1 shows key stock indexes.

Table 1-1. Key Stock Indices

Name Description

standard & poor (s&p) 500 Measures the stock performance of 500 large

companies in the united states

dow Jones Industrial average

(dJI 30)

Measures the stock performance of 30 large

companies in the united states

nasdaQ Composite Index Measures the stock performance of almost all the

nasdaQ stock market

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

13

The stock major index (S&P 500, DJI 30, and NASDAQ 100, etc.) applies

a divisor (often discrete) to divide total market capitalization and get the

index value. They compromise stocks across diverse industries. They do

not differ from other asset classes by the way we exchange them.

 Speculative Nature of the Market
In the exchange market, investors speculate on future prices of an asset

and execute trades, so they yield reasonable returns as the price moves

toward their speculation. If the price moves in the opposite direction,

then investors incur losses. As a result of leverage, investors are exposed

to high risk since investors are given room to trade asset classes they

cannot afford, meaning they may lose an enormous amount of their capital

with slight changes in the market (see https://www.capitalindex.com/

bs/eng/pages/trading- guides/margin- and- leverage- explained).

Most retail investors trading CFDs lose their capital. An investor must

understand the risks associated with trading prior to investing their capital.

 Techniques for Speculating Market Movement
Investors use either the subjective method or the objective method to

speculate the market or a combination of both. When using subjective

means, an investor uses their rationalized belief, experience, opinions

of others, and emotions to decide on whether to buy or sell at a specific

price. When using objectivity, an investor applies mathematical models

to identify patterns in the data and forecast future prices and then decides

on whether to buy or sell a currency pair at a specific price. This book only

covers machine learning and deep learning models.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

https://www.capitalindex.com/bs/eng/pages/trading-guides/margin-and-leverage-explained
https://www.capitalindex.com/bs/eng/pages/trading-guides/margin-and-leverage-explained

14

 Investment Strategy Management Process
Figure 1-4 shows a simple investment strategy management process.

Reliable?
No

Strategy
Formulation

Modeling

Backtesting

Strategy
Execution

Strategy
Evaluation

Reliable?

Yes

No

Yes

Figure 1-4. A simple investment strategy management process

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

15

 Strategy Formulation
Strategy formulation is the first step in investment management. It involves

the following tasks:

• Identifying risk and opportunity

• Setting short-term and long-term objectives

• Identifying resources and ways of organizing,

managing, and directing those resources (human,

financial, and technical)

• Establishing a structure and policies

Systematic investors model data to draw meaningful insights that

influence strategy.

 Modeling
After deciding on ways to manage an investment portfolio, the subsequent

step involves modeling. It involves the use of quantitative methods. This

book focuses exclusively on machine learning and deep learning models

from a finance perspective. The subsequent section discusses learning

methods applicable to finance, especially investment management.

 Supervised Learning

In supervised learning, a model predicts future values of a dependent

variable using a function that operates on a set of independent variables

based on labels we provide them in the training process. Supervised

learning requires us to split data into training and test data (at times

validation data too). We present a model with a set of correct answers

and allow it to predict unseen answers. There are three primary types

of supervised learning methods, namely, the parametric method, the

nonparametric method, and the ensemble method. See Figure 1-5.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

16

The Parametric Method

The parametric method is also called the linear method. It makes strong

assumptions about the structure of the data. We assume the underlying

structure of the data is linear and normal. It handles dependent variables

as a continuous dependent variable (a dependent variable that is limited

to a specific range). This covers time-series analysis in Chapter 2 and the

ordinary least squares model in Chapter 6.

The Nonparametric Method

Unlike the parametric method, the nonparametric method does not

have substantial assumptions of linearity and normality. It handles a

categorical dependent variable (a dependent variable that is limited to a

specific range). There are two primary nonparametric methods: binary

classification and multiclass classification.

Supervised
Learning

Parametric

Non-
Parametric

Ensemble

Regression
Time Series

Regression /
Classification

Classification

Figure 1-5. Supervised machine learning

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

17

Binary Classification

In binary classification, the independent variable produces two classes

such as no and yes or fail and pass. We code the classes as 0 and 1 and train

binary classifiers to predict subsequent classes.

Multiclass Classification

We use multiclass classification when the dependent variable is over

two classes such as negative, neutral, or positive. We code the classes

as 0, 1, 2...n. The coded values should not exceed 10. The most popular

multiclass classification models include random forest and linear

discriminant analysis, among others. This book does not cover multiclass

classification models.

The Ensemble Method

The ensemble method encompasses both the parametric method and

the nonparametric method. We use it when the dependent variable is a

continuous variable or categorical variable. It addresses linear regression

and classification problems. The most popular ensemble methods include

support vector machine and random forest tree, among others. This book

does not cover ensemble models.

 Unsupervised Learning

Unsupervised learning does not call for data to split the data into training

data, test data, and validation data. We do not hand out correct answers

to a model; we allow it to form intelligent guesstimates on its own. Cluster

analysis is the most prevalent unsupervised learning method. See Figure 1- 6.

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

18

Dimension Reduction

Dimension reduction is a technique to summarize data by reducing

it to small dimensions. We mainly use this technique for variable

selection. Popular dimension reduction techniques include the principal

components analysis (PCA), which identifies components that account for

most of the variation in the data, and factor analysis, which identifies latent

factors that account for most of the variation in the data. This book covers

dimension reduction in Chapter 5.

Cluster Analysis

Cluster analysis involves grouping data based on similar similarities. It is

useful when we have no assumptions about the structure of the data. In

cluster analysis, there is no actual dependent variable. The most common

cluster model is the K-Means; it partitions the data into k (clusters) with

the nearest mean (centroids); it then finds the distance between subgroups

to produce a cluster. This book covers K-Means in Chapter 5.

Unsupervised
Learning

Dimension
Reduction

Cluster

PCA/FA/LDA

K-
Means/DBSC

AN

Figure 1-6. Unsupervised learning

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

19

 Backtesting
After we develop a model, we must determine how reliable the model is.

Backtesting3 sits between strategy formulation and execution. It involves

determining the extent to which a model performs. At most, systematic

investors’ backtest simulated markets. The easiest way to understand

market patterns involves visualizing historical trade executions and price

movements. Key Python frameworks that support backtesting include

PyAlgoTrade and Zipline.

 Strategy Implementation
After finding a reliable investment strategy, we may deploy a model to buy

and sell asset classes, thus risking the capital of the investment portfolio.

A system may trade manually or be automated, using reliable systematic

applications. Key Python frameworks that support paper and live trading

include QuantConnect, Quantopia, Zipline, etc. This book does not cover

backtesting and live trading frameworks.

 Strategy Evaluation
Strategy evaluation involves assessing how well a strategy performs. It

enables investors to devise action plans for performance improvements.

When analyzing the performance of a strategy, investors mainly focus on

the value at risk, the annual rate of return, the cumulative rate of the return

value, and drawdown. Investors use these statistics to revise their strategy.

This book covers investment risk analysis and performance using Pyfolio.

3 Backtesting Systematic Trading Strategies in Python: Considerations and Open
Source Frameworks: https://www.quantstart.com/articles/backtesting-
systematic- trading-strategies-in-python-considerations-and-open-
source-frameworks/

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

https://www.quantstart.com/articles/backtesting-systematic-trading-strategies-in-python-considerations-and-open-source-frameworks/
https://www.quantstart.com/articles/backtesting-systematic-trading-strategies-in-python-considerations-and-open-source-frameworks/
https://www.quantstart.com/articles/backtesting-systematic-trading-strategies-in-python-considerations-and-open-source-frameworks/

20

 Algorithmic Trading
Instead of vigorously observing action prices and physically executing

orders, an investor may automate or partially automate tasks using

sophisticated applications operating a set of predetermined rules

(algorithms). This trading technique helps meaningfully reduce redundant

tasks, consequently allowing investors to focus on more important duties.

Using automated programs eliminates subjectivity. Meaning, investors do

not execute orders ostensibly based on some opinion, feeling, or emotion.

Instead, they deploy scalable machine learning and deep learning models.

This book conceals the art and science of developing and testing scalable

machine learning models and deep learning models. High-frequency

trading4 goes hand in hand with algorithmic trading; however, we do not

cover the topic in this book. You can apply the models discussed in this

book to solve complex problems outside the realm of finance.

this book does not provide any financial advice. It is a technical book
that introduces data scientists, machine learning engineers, business,
and finance professionals to algorithmic trading by exploring several
supervised learning models and unsupervised learning models.

4 High-Frequency Trading: An Innovative Solution to Address Key Issues
(harvard.edu): https://corpgov.law.harvard.edu/2014/09/17/
high-frequency-trading-an-innovative-solution-to-address-key-issues/

Chapter 1 IntroduCtIon to FInanCIal Markets and algorIthMIC tradIng

https://corpgov.law.harvard.edu/2014/09/17/high-frequency-trading-an-innovative-solution-to-address-key-issues/
https://corpgov.law.harvard.edu/2014/09/17/high-frequency-trading-an-innovative-solution-to-address-key-issues/

21© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_2

CHAPTER 2

Forecasting Using
ARIMA, SARIMA, and
the Additive Model
Time-series analysis is a method for explaining sequential problems. It

is convenient when a continuous variable is time-dependent. In finance,

we frequently use it to discover consistent patterns in the market data and

forecast future prices. This chapter offers a comprehensive introduction

to time-series analysis. It first covers ways of finding stationary in series

data using the augmented Dickey-Fuller (ADF) test and testing for white

noise and autocorrelation. Second, it reveals techniques of succinctly

summarizing the patterns in time-series data using smoothening, such

as the moving average technique and exponential technique. Third, it

properly covers the estimation of rates of return on investment. Last,

it covers hyperparameters optimization and model development and

evaluation. This chapter enables you to design, develop, and test time-series

analysis models like the autoregressive integrated moving average

(ARIMA) model, seasonal ARIMA (SARIMA) model, and additive model,

to identify patterns in currency pairs and forecast future prices. In this

chapter, we use pandas_datareader to scrape financial data from Yahoo

Finance, and we use conda install -c anaconda pandas-datareader.

https://doi.org/10.1007/978-1-4842-7110-0_2#DOI

22

For time-series modeling, we use the statsmodels library, which is

pre-installed in the Python environment. We also use pmdarima, which

is an extension of statsmodels. To install it in the Python environment,

we use pip install pmdarima; in the conda environment, we use conda

install -c saravji pmdarima. Lastly, we use FB Prophet for high-quality

time-series analysis. To install it in the Python environment, we use pip

install fbprophet; in the conda environment, we use conda install -c

conda-forge fbprophet. Before you install fbprophet, ensure that you

first install pystan. To install pystan, we use conda install -c conda-

forge pystan.

Anaconda is the most popular open source Python distribution and

enables one to manage, install, update, and manage packages (download

the platform from https://www.anaconda.com/products/individual).

You can install the platform on Windows, macOS, and Linux operating

systems. Find out more about system requirements and hardware

requirements at https://docs.anaconda.com/anaconda-enterprise/

system-requirements/.

 Time Series in Action
Time-series analysis is suitable for estimating a continuous variable that

is time-dependent. In this chapter, we use it to identify the structure

of sequential data. It is a seamless method for identifying patterns and

forecasting future prices of currency pairs. Market data is often sequential

and has some stochastic elements, meaning there is an underlying random

process. We analyze the historical data of one of the most traded currency

pairs in the world, the US dollar ($) and Japanese yen (¥), or the (USD/

JPY) pair. We are interested in uncovering patterns in the adjusted closing

price of the currency pair across time and then making reliable predictions

of price movements. To create a time-series model, first launch Jupyter

Notebook and create a new notebook.

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

https://www.anaconda.com/products/individual
https://docs.anaconda.com/anaconda-enterprise/system-requirements/
https://docs.anaconda.com/anaconda-enterprise/system-requirements/

23

Listing 2-1 collects the price data of the USD/JPY pair from November

1, 2010, to November 2, 2020 (see Table 2-1).

Listing 2-1. Scrap Data

import pandas as pd

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'usdjpy=x'

df = data.get_data_yahoo(ticker, start_date, end_date)

df.head()

As mentioned, we are interested in the adjusted closing price (Adj

Close). Listing 2-2 deletes columns that we will not make use of.

Table 2-1. Dataset

Date High Low Open Close Volume Adj Close

2010-11-01 81.111000 80.320000 80.572998 80.405998 0.0 80.405998

2010-11-02 80.936996 80.480003 80.510002 80.558998 0.0 80.558998

2010-11-03 81.467003 80.589996 80.655998 80.667999 0.0 80.667999

2010-11-04 81.199997 80.587997 81.057999 81.050003 0.0 81.050003

2010-11-05 81.430000 80.619003 80.769997 80.776001 0.0 80.776001

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

24

Listing 2-2. Delete Columns and Drop Missing Values

del df["Open"]

del df["High"]

del df["Low"]

del df["Close"]

del df["Volume"]

df = df.dropna()

df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2606 entries, 2010-11-01 to 2020-11-02

Data columns (total 1 columns):

 # Column Non-Null Count Dtype

--- ------ -------------- -----

 0 Adj Close 2606 non-null float64

dtypes: float64(1)

memory usage: 40.7 KB

In this listing, we deleted most columns and dropped missing values.

The remaining column is the adjusted closing price column; the format is

Adj Close.

 Split Data into Training and Test Data
There are 2,606 data points in the time-series data. Listing 2-3 splits the

data using the 80/20 split rule (the first 2,085 data points are for training

the model, and the remaining are for testing the model).

Listing 2-3. Split Data into Training and Test Data

train = df[:2085]

test = df[2085:]

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

25

 Test for White Noise
If time-series data is stationary, then it contains white noise. The most

straightforward way to investigate white noise involves generating random

data and finding out whether there is white noise in the arbitrary data.

Listing 2-4 returns random numbers and plots the autocorrelation across

different lags (see Figure 2-1).

Listing 2-4. White Noise Test

from pandas.plotting import autocorrelation_plot

import matplotlib.pyplot as plt

import numpy as np

randval = np.random.randn(1000)

autocorrelation_plot(randval)

plt.show()

Figure 2-1. Random white noise test

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

26

Figure 2-1 shows that there is no white noise in the series because

there are significant spikes above 95 percent and 99 percent confidence

intervals. Listing 2-5 plots training data autocorrelation to show white

noise (see Figure 2-2).

Listing 2-5. Training Data White Noise Test

autocorrelation_plot(train["Adj Close"])

plt.show()

Figure 2-2 indicates for lag 1 there is a sharp decline, and after

the 500th lag the line goes lower and approaches zero. Since all

autocorrelations are not equal to zero, we can confirm that there is no

white noise.

Figure 2-2. Training data white noise test

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

27

 Test for Stationary
The presence of the stochastic (or random) process in ordered data may

affect the conclusions. Listing 2-6 checks whether the series is stationary

using a unit root test called the augmented Dickey-Fuller test (see

Table 2-2). A series is stationary when the mean value of the series data

is zero, which means the observations do not vary across time. With the

augmented Dickey-Fuller (ADF) test when the p-value is greater than 0.05,

we do not reject the hypothesis.

The hypothesis of an ADF test is written as follows:

Null hypothesis: There is no unit root.

Alternative hypothesis: There is a unit root.

A series is nonstationary when the ADF F% statistics is below zero and

the p-value is less than 0.05.

Listing 2-6. Augmented Dickey-Fuller Test

from statsmodels.tsa.stattools import adfuller

adfullerreport = adfuller(train["Adj Close"])

adfullerreportdata = pd.DataFrame(adfullerreport[0:4],

 columns = ["Values"],

 index=["ADF F% statistics",

 "P-value",

 "No. of lags used",

 "No. of observations"])

adfullerreportdata

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

28

Table 2-2 highlights that the F statistics result is negative and the

p-value is greater than 0.05. We do not reject the null hypothesis; the series

is nonstationary. This entails that the series requires differencing.

 Autocorrelation Function
Listing 2-7 determines the serial correlation between y and yt (yt

entails that the observation y is measured in time period t). We use the

autocorrelation function to measure the degree to which present values

of a series are related to preceding values when we consider the trend,

seasonality, cyclic, and residual components.

Figure 2-3 shows that most spikes are not statistically significant. In

addition, we use the partial autocorrelation function (PACF) to further

examine the partial serial correlation between lags.

Listing 2-7. Autocorrelation

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(train["Adj Close"])

plt.xlabel("Lag")

plt.ylabel("ACF")

plt.show()

Table 2-2. F Statistics

Values

ADF F% statistics -1.267857

P-value 0.643747

No. of lags used 6.000000

No. of observations 2078.000000

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

29

 Partial Autocorrelation Function
The PACF plot expresses the partial correlation coefficients not described

at low-level lags. Listing 2-8 constructs the PACF plot (see Figure 2-4).

Listing 2-8. Partial Autocorrelation

from statsmodels.graphics.tsaplots import plot_pacf

plot_pacf(train["Adj Close"])

plt.xlabel("Lag")

plt.ylabel("ACF")

plt.show()

Figure 2-3. Autocorrelation

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

30

We use a correlogram to discover lags that explain the effect outside

the 95 percent confidence boundary. For instance, Figure 2-3 shows that

there is a significant spike in lag 1 and lag 2. This means the lags can

explain all higher-order autocorrelation (at most the second lag is the

highest-order lag). It shows spikes that are not statistically significant.

(There is a strong positive correlation until lag 2; after lag 2, the p-value is

less than 0.05.) The autocorrelation is close to zero, which is around the

statistical control (see the blue boundary in Figure 2-3). There is a strong

dependency on the time-series data.

Figure 2-4. Partial autocorrelation

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

31

 The Moving Average Smoothing Technique
The most familiar smoothing technique is the moving average (MA)

technique; it returns the means of weight average of preceding and new data

points, where weighting depends on the cohesion of the time-series data.

In this example, we use Pandas to perform rolling window calculations. After

that, we discovered the rolling mean with two fixed-size moving windows.

A moving window represents the number of data points for calculating the

statistics. Listing 2-9 smooths the time-series data using a 10-day rolling

window and a 50-day rolling window (see Figure 2-5).

Listing 2-9. Time Series (10-Day and 50-Day Moving Average)

MA10 = train["Adj Close"].rolling(window=10).mean()

MA50 = train["Adj Close"].rolling(window=50).mean()

df.plot(kind="line",color="navy")

MA10.plot(kind="line",color="green",label="10D MA")

MA50.plot(kind="line",color="orange",label="50D MA")

plt.xlabel("Date")

plt.xticks(rotation=45)

plt.ylabel("Adj Close")

plt.legend()

plt.show()

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

32

 The Exponential Smoothing Technique
The exponential smoothing method weighs values outside the window to

zero, where enormous weighted values rapidly die out and minor weighted

values gradually vanish. Listing 2-10 smooths the time-series data using

the exponential smoothing technique and sets the half-life to 3. Half-life

is a parameter that specifies the lag at which exponential weights decay by

half. In Listing 2-10, we specified the parameter as 3 since there is a strong

positive correlation until lag 2; after lag 2, the p-value is less than 0.05 (refer

to Figure 2-3).

Listing 2-10. Develop Smooth Series (Exponential)

Exp = train["Adj Close"].ewm(halflife=30).mean()

df.plot(kind="line", color="navy")

Exp.plot(kind="line", color="red", label="Half Life")

Figure 2-5. Time series (10-day and 50-day moving average)

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

33

plt.xlabel("Time")

plt.ylabel("Adj Close")

plt.xticks(rotation=45)

plt.legend()

plt.show()

Figure 2-6 shows the core structure of the time-series data using the

moving average technique and exponential technique.

 Rate of Return
Listing 2-11 estimates and plots the rate at which an asset yield returns

annually (see Figure 2-7).

Figure 2-6. Time series (exponential)

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

34

Listing 2-11. Rate of Return

pr = df.pct_change()

pr_plus_one = pr.add(1)

cumulative_return = pr_plus_one.cumprod().sub(1)

fig, ax = plt.subplots()

cummulative_return = cumulative_return.mul(100)

cummulative_return_max = cummulative_return.max()

cummulative_return_min = cummulative_return.min()

cummulative_return.plot(ax=ax, color="purple")

plt.axhline(y=cummulative_return_max.item(), color="green",

 label="Max returns: " + str(round(cummulative_

return_max.item(),2)) + " %")

plt.axhline(y=cummulative_return_min.item(), color="red",

 label="Min returns: " + str(round(cummulative_

return_min.item(),2)) + " %")

plt.xlabel("Date")

plt.ylabel("Return (%)")

plt.legend(loc="best")

plt.xticks(rotation=45)

plt.show()

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

35

Figure 2-7 shows a reasonable rate of returns over a period of ten years

(from 2010 to 2020). The minimum rate is -5.8 percent, and the maximum

rate is 56.24 percent.

 The ARIMA Model
In the next section, we use ARIMA to model the series and forecast its

future instances. ARIMA is by far the most widespread univariate time-

series analysis model. Let’s break it down:

• Autoregressive (AR): Linear combination of previous

errors. AR considers observation terms of previous

observations, including random white noise and

preceding random white noise.

Figure 2-7. Rate of return

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

36

• Integrated (I): Transformation to make the series

stationary through differencing (estimating the change

in rows over a certain period).

• Moving average (MA): Linear combination of

previously weighted means (refer to the moving

average smoothing techniques covered previously).

Similar to the least-squares model, ARIMA makes strong assumptions

about the structure of the data. The model assumes the structure of the

series data is linear and normal. We can view the ARIMA model as a

complex regression method since we are applying the regressing regress

lag1, lag2 to lag = k. The model assumes that the series is stationary. In a

case where the series is not stationary, the series must show a trend over

time. Also, one can perform data transformation to improve the predictive

power of the model.

 ARIMA Hyperparameter Optimization
Listing 2-11 finds the best hyperparameters (values whose configuration

alters the behavior of the model). Traditionally, we use autocorrelation

function (ACF) and PACF to find the optimal hyperparameters, which

is subjective. Listing 2-12 uses the itertools package to find the best

hyperparameters using Akaike information criterion, which measures

out-of-sample predictions errors. itertools is pre-installed in the Python

environment.

Listing 2-12. ARIMA Hyperparameters Optimization

from statsmodels.tsa.arima_model import ARIMA

import itertools

p = d = q = range(0, 2)

pdq = list(itertools.product(p, d, q))

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

37

for param in pdq:

 mod = ARIMA(train, order=param)

 results = mod.fit()

 print('ARIMA{} AIC:{}'.format(param, results.aic))

ARIMA(0, 0, 0) AIC:17153.28608377512

ARIMA(0, 0, 1) AIC:14407.085213632363

ARIMA(0, 1, 0) AIC:3812.4806641861296

ARIMA(0, 1, 1) AIC:3812.306176824848

ARIMA(1, 0, 0) AIC:3823.4611095477635

ARIMA(1, 0, 1) AIC:3823.432441560404

ARIMA(1, 1, 0) AIC:3812.267920836725

ARIMA(1, 1, 1) AIC:3808.9980010413774

 Develop the ARIMA Model
Listing 2-13 completes the ARIMA (1, 1, 1) model and constructs profile

tables for model performance evaluation (see Table 2-3). We choose only

ARIMA (1,1,1) since it has the lowest AIC score. AIC is a statistical test that

determines the goodness of fit and model simplicity. Simply, it indicates

the extent to which a model loses information. So, order = (1,1,1) by

default has a more predictive power than the other orders with the range

in Listing 2-12.

Listing 2-13. Finalize the ARIMA Model

arima_model = ARIMA(train, order=(1, 1, 1))

arima_fitted = arima_model.fit()

arima_fitted.summary()

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

38

 Forecast Using the ARIMA Model
After completing the ARIMA (1, 1, 1) model, the subsequent step normally

requires recognizing the underlying pattern of the adjusted close price and

forecasting future prices (see Figure 2-8). See Listing 2-14.

Listing 2-14. Forecast ARIMA Model

fc, se, conf = arima_fitted.forecast(501, alpha=0.05)

fc_series = pd.Series(fc, index=test.index)

lower_series = pd.Series(conf[:, 0], index=test.index)

Table 2-3. ARIMA Model Results

Dep. Variable: d.adj Close No. Observations: 2084

Model: ariMa(1, 1, 1) Log Likelihood -1900.499

Method: css-mle S.D. of innovations 0.602

Date: thu, 01 apr 2021 AIC 3808.998

Time: 02:54:35 BIC 3831.566

Sample: 1 HQIC 3817.267

coef std err Z P>|z| [0.025 0.975]

const 0.0156 0.013 1.199 0.231 -0.010 0.041

ar.L1.D.Adj Close -0.8638 0.094 -9.188 0.000 -1.048 -0.680

ma.L1.D.Adj Close 0.8336 0.103 8.095 0.000 0.632 1.035

Real Imaginary Modulus Frequency

AR.1 -1.1576 +0.0000j 1.1576 0.5000

MA.1 -1.1996 +0.0000j 1.1996 0.5000

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

39

upper_series = pd.Series(conf[:, 1], index=test.index)

plt.plot(train, label="Training",color="navy")

plt.plot(test, label="Actual",color="orange")

plt.plot(fc_series, label="Forecast",color="red")

plt.fill_between(lower_series.index,

 lower_series,

 upper_series,

 color='gray')

plt.legend(loc='upper left')

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 2-8. ARIMA (1, 1, 1) forecast

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

40

Figure 2-8 shows that the model makes errors when forecasting. The

gray area (fill between) represents the confidence interval.

 The SARIMA Model
Although the ARIMA model is a powerful model for analyzing patterns

in univariate time-series data, it commits errors when handling seasonal

data. Adding seasonal order to the model enhances its performance.

SARIMA extends the ARIMA model. It considers the seasonal component

when modeling time-series data.

 SARIMA Hyperparameter Optimization
Listing 2-15 uses the itertools package to find the best hyperparameters

using AIC (refer to Listing 2-12). The SciPy package comes pre-install in a

Python environment.

Listing 2-15. SARIMA Hyperparameter Optimization

import scipy.stats as stats

p = d = q = range(0,2)

pdq = list(itertools.product(p,d,q))

seasonal_pdq = [(x[0],x[1],x[2],12) for x in list(itertools.

product(p,d,q))]

for param in pdq:

 for param_seasonal in seasonal_pdq:

 try:

 model = sm.tsa.statespace.SARIMAX(train,

 order=param,

 seasonal_order=param_seasonal,

 enforce_stationarity=False,

 enforce_intervibility=False)

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

41

 results = model.fit()

 print("SARIMAX {} x {} 12 - AIC: {}".

format(param,param_seasonal,results.aic))

 except:

 continue

SARIMAX (1, 1, 1) x (0, 1, 1, 12) 12 - AIC: 3822.8419684760634

SARIMAX (1, 1, 1) x (1, 0, 0, 12) 12 - AIC: 3795.147211266854

SARIMAX (1, 1, 1) x (1, 0, 1, 12) 12 - AIC: 3795.0731989219726

SARIMAX (1, 1, 1) x (1, 1, 0, 12) 12 - AIC: 4580.905706671067

SARIMAX (1, 1, 1) x (1, 1, 1, 12) 12 - AIC: 3824.843959188799

Note that we showed only the last five outputs. The previous code

estimates the AIC from SARIMAX (0, 0, 0) × (0, 0, 0, 12) 12 up until

SARIMAX (1, 1, 1) × (1, 1, 1, 12) 12. We found that the SARIMAX (1, 1, 1) ×

(1, 1, 1, 12) 12 has the lowest AIC score. Listing 2-16 finalizes the SARIMA

model with order = (1,1,1).

 Develop a SARIMA Model
Listing 2-16 completes the SARIMA model without enforcing stationary

and invertibility and constructs a table with information about the model’s

performance (see Table 2-4).

Listing 2-16. Finalize the SARIMA Model

import pmdarima as pm

sarimax_model = pm.auto_arima(train, start_p=1, start_q=1,

start_P=1, start_Q=1,

 max_p=5, max_q=5, max_P=5, max_Q=5,

seasonal=True,

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

42

 stepwise=True, suppress_warnings=True,

D=10, max_D=10,

 error_action='ignore')

sarimax_model.summary()

Table 2-4 shows that p-values of ar.L1, ma.L1, and sigma greater than

0.05. We can confirm that the series is stationary.

Table 2-4. SARIMA Profile

Dep. Variable: Y No. Observations: 2085

Model: sariMaX(1, 1, 1) Log Likelihood -1901.217

Date: sat, 14 nov 2020 AIC 3808.435

Time: 02:01:47 BIC 3825.361

Sample: 0 HQIC 3814.637

- 2085

Covariance Type: opg

coef std err z P>|z| [0.025 0.975]

ar.L1 -0.8645 0.083 -10.411 0.000 -1.027 -0.702

ma.L1 0.8344 0.090 9.258 0.000 0.658 1.011

sigma2 0.3630 0.007 52.339 0.000 0.349 0.377

Ljung-Box (Q): 58.77 Jarque-Bera (JB): 955.16

Prob(Q): 0.03 Prob(JB): 0.00

Heteroskedasticity (H): 1.35 Skew: 0.04

Prob(H) (two-sided): 0.00 Kurtosis: 6.32

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

43

 Forecast Using the ARIMA Model
Listing 2-17 constructs a plot that shows previously adjusted close prices of

the USD/JPY pair and those predicted by the SARIMA (1, 1, 12) model (see

Figure 2-9).

Listing 2-17. SARIMA Model Forecast

n_periods = 24

fitted, confint = sarimax_model.predict(n_periods=n_periods,

return_conf_int=True)

index_of_fc = pd.date_range(train.index[-1], periods =

n_periods, freq='MS')

fitted_series = pd.Series(fitted, index=index_of_fc)

lower_series = pd.Series(confint[:, 0], index=index_of_fc)

upper_series = pd.Series(confint[:, 1], index=index_of_fc)

plt.plot(train, label="Training",color="navy")

plt.plot(test, label="Actual",color="orange")

plt.plot(fitted_series, label="Forecast",color="red")

plt.fill_between(lower_series.index,

 lower_series,

 upper_series,

 color='gray')

plt.legend(loc='upper left')

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

44

Figure 2-9 shows a forecast with a narrow range. Both models do not

best explain the time-series data; they commit marginal errors when

forecasting future prices. In the next section, we will overcome this

problem by using the additive model present on the Prophet package.

 The Additive Model
Besides trends and seasonality, there are other factors that influence price

changes. For instance, during public holidays, trading activities differ

from normal trading days. Both the ARIMA and SARIMA models do not

take into consideration the effects of public holidays. The additive model

addressed this challenge. It considers daily, weekly, and yearly seasonality

and nonlinear trends. It assumes that trends and cycles are one term and

Figure 2-9. SARIMA (1, 1, 1, 12) forecast

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

45

seamlessly adds the effects of official public holidays and an error. The

formula is written mathematically as in Equation 2-1.

 y g t s t h t i� � �� � �� � ��� (Equation 2-1)

Here, g(t) represents the linear or logistic growth curve for modeling

changes that are not periodic, s(t) represents the periodic changes (daily,

weekly, yearly seasonality), h(t) represents the effects of holidays, and + 𝜀𝑖
represents the error term that considers unusual changes.

Listing 2-18 repurposes the data (see Table 2-5). Please note that in

Listing 2-2 we deleted columns of the low price, high price, open price, and

close price. We are interested in forecasting the adjusted close price.

Listing 2-18. Data Preprocessing

df = df.reset_index()

df["ds"] = df["Date"]

df["y"] = df["Adj Close"]

df.set_index("Date")

Table 2-5. Dataset

Date Adj Close ds y

2010-11-01 80.405998 2010-11-01 80.405998

2010-11-02 80.558998 2010-11-02 80.558998

2010-11-03 80.667999 2010-11-03 80.667999

2010-11-04 81.050003 2010-11-04 81.050003

2010-11-05 80.776001 2010-11-05 80.776001

...

(continued)

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

46

Listing 2-19 specifies the official public holidays whose effects will be

added in the model (see Listing 2-20).

Listing 2-19. Specify Holidays

holidays = pd.DataFrame({

 'holiday': 'playoff',

 'ds': pd.to_datetime(["2020-12-25", "2020-12-24", "2020-12-23",

"2019-12-25", "2021-01-01", "2021-01-20"]),

 "lower_window": 0,

 "upper_window": 1,

})

Listing 2-20 completes the additive model with a confidence interval

of 95 percent; it considers yearly seasonality, weekly seasonality, daily

seasonality, and official public holidays.

Listing 2-20. Develop Prophet Model

from fbprophet import Prophet

m = Prophet(holidays=holidays,

 interval_width=0.95,

 yearly_seasonality=True,

Date Adj Close ds y

2020-10-27 104.832001 2020-10-27 104.832001

2020-10-28 104.544998 2020-10-28 104.544998

2020-10-29 104.315002 2020-10-29 104.315002

2020-10-30 104.554001 2020-10-30 104.554001

2020-11-02 104.580002 2020-11-02 104.580002

Table 2-5. (continued)

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

47

 weekly_seasonality=True,

 daily_seasonality=True,

 changepoint_prior_scale=0.095)

m.add_country_holidays(country_name='US')

m.fit(df)

 Forecast
Listing 2-21 forecasts the future adjusted close price and shows patterns in

the time-series data and in the prices that the additive model forecast (see

Figure 2-10).

Listing 2-21. Forecast

future = m.make_future_dataframe(periods=365)

forecast = m.predict(future)

m.plot(forecast)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.xticks(rotation=45)

plt.show()

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

48

Figure 2-10 disagrees with both the ARIMA model and SARIMA (both

models predicted an upward trend). However, the additive model actually

agrees with the data.

 Seasonal Decomposition
Listing 2-22 applies the plot_decompose() method to decompose the

series into seasonality, trend, and irregular components (see Figure 2-11).

Decomposition involves breaking down a time series into components

to understand the repeating patterns in the series. It helps determine

parameters of univariate time-series analysis; we can identify whether

there is a trend and seasonality in the series.

Listing 2-22. Seasonal Components

m.plot_components(forecast)

plt.show()

Figure 2-10. Forecast

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

49

Figure 2-11. Seasonal components

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

50

Figure 2-11 shows clear daily, weekly, and yearly seasonality. In the

first months of the year, the adjusted close price decreases and peaks in the

last two quarters of the year.

 Conclusion
This chapter carefully introduced the time-series analysis method. We

developed and justly compared the performance of the ARIMA and

SARIMA models. In addition, we looked at the additive model from the

Prophet package. After carefully reviewing the performance of all three

models, we noticed the additive model commits slight errors and has a

stronger forecast for the future price of the USD/JPY pair. To improve the

performance of the models, we can use techniques such as changing the

data split ratio, outlier removal, data transformation, and including the

effects of holidays.

Chapter 2 ForeCasting Using ariMa, sariMa, and the additive Model

51© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_3

CHAPTER 3

Univariate Time Series
Using Recurrent
Neural Nets
This chapter covers the basics of deep learning. First, it introduces the

activation function, the loss function, and artificial neural network

optimizers. Second, it discusses the sequence data problem and how a

recurrent neural network (RNN) solves it. Third, the chapter presents a

way of designing, developing, and testing the most popular RNN, which is

the long short-term memory (LSTM) model. We use the Keras framework

for rapid prototyping and building neural networks. To install keras in

the conda environment, use conda install -c conda-forge keras.

Ensure that you also install tensorflow. To install tensorflow in the conda

environment, use conda install -c conda-forge tensorflow.

 What Is Deep Learning?
Deep learning is a subset of machine learning that operates neural

networks. A neural network is a network of interconnected groups of nodes

that receive, transform, and transmit input values layer by layer until they

reach the output layer. The activation function enables this process by

operating a set of variables in each hidden layer.

https://doi.org/10.1007/978-1-4842-7110-0_3#DOI

52

 Activation Function
The activation function adds nonlinearity to an artificial neural network

and enables back propagation (a completed pass in reverse). There are

three main activation functions.

The sigmoid activation function: Fits an S-shaped curve

to the data and triggers output values between 0 and 1.

The tangent hyperbolic (tanh) activation function:

Fits a tanh curve to the data and triggers outputs

between -1 and 1.

The rectified linear unit (ReLu) activation function:

Retrieves values that are unconstrained by a specific

range and addresses the vanishing gradient problem

(a condition in which the gradient increases as we

add more training data into the model, which results

in slow training).

 Loss Function
A loss function assesses the difference between the actual values and

those predicted by an artificial neural network. Key loss functions include

the mean squared error (MSE), mean absolute error, and mean squared

logarithmic error. In this chapter, we use the MSE (the variability explained

by the model about the data after considering a regression relationship).

 Optimize an Artificial Neural Network
There are several methods for model optimization. The most common

optimizer is the adaptive movement estimation (Adam), and it works

better in minimizing the cost function during training.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

53

 The Sequential Data Problem
Sequential data encompasses order data points with some dependency.

The time series is an excellent example of sequential data. In time-series

data, each data point represents an observation at a certain period.

Traditional neural networks like the feed-forward network encounter

challenges when modeling sequential data because they cannot remember

the preceding output values. This means that feed-forward networks

merely produce output values without considering any dependencies in

the data (a recurrent net combats this problem).

 The RNN Model
A recurrent neural network model is applicable in sequential modeling.

We call it recurrent because the model performs repetitive tasks for each

data point in a series, whereby the output value depends on the preceding

values. The decision outcomes of the recurrent network at time step t-1

influence the decision outcomes at the last time step t. It maintains a state

to reference historical analysis at a given point. The state manages the

information stored in preceding estimates and recurs back into a network

with unique input values. Figure 3-1 depicts a recurrent with a single

hidden layer.

Recurrent Net

hnew

W W

x y

W Wh

hprev

Figure 3-1. RNN model

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

54

The formula is expressed as shown in Equation 3-1.

h W h W xnew h prv x� � � �� �tanh (Equation 3-1)

Here, Wx represents the weight matrix between the input and the

hidden unit, Wy represents …, Wh represents weights multiplied by

preceding states, x represents input data that the hidden layer receives,

hprv represents the preceding state the hidden layer receives, and hnew

represents the new state that the hidden layer estimates. We apply the RNN

model to speech recognition, image captioning, and sentiment analysis.

Although the model combats problems that most models find difficult, it

has its own drawbacks.

 The Recurrent Neural Network Problem
The full RNN model must reasonably maintain a cell state. When dealing

with big data, the network becomes computationally expensive; it is

sensitive to alterations in parameters. Furthermore, it is prone to the

vanishing gradient problem and the exploding gradient problem. This

problem commonly occurs with traditional models, whereby at the initial

phase of the training process, the model has a small gradient, but as we

increase the training data, the gradient increases, resulting in a slower

training process (this phenomenon is recognized as the vanishing gradient

problem). The LSTM model combats the vanishing gradient problem.

 The LSTM Model
The LSTM model can model long sequential data. It holds a strong

gradient across several timestamps. There are two keys to the LSTM,

namely, the cell state that moves information along without changes, and

gates that control the information that flows alongside. See Figure 3-2.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

55

 Gates
The LSTM model encompasses three gates, namely, the input gate, the

forget gate, and the output gate. The input gate determines additional

information to be written in a memory cell. An input gate encompasses

two layers. We recognize the first layer as the sigmoid layer. It determines

the values that must be updated. The second layer is considered the

tanh layer; it develops a vector of new values to include in a state. The

forget gate determines the extent to which the model must forget and

delete historical information no longer useful. Last, the output controls

reading access from the memory cells. This is done by using estimates

of the compressed function that is represented as (0,1), where 0 shows

that the read access is denied and 1 indicates we grant read access. The

previous gates are the operations of the LSTM that perform a function on a

linear combination of inputs of the network, previously hidden state, and

preceding output. The LSTM model uses gates to determine which data it

should remember or forget.

Yprev

Wy

x y

hprev

Figure 3-2. LSTM

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

56

 Unfolded LSTM Network
In the first timestamp, the input gate receives and passes the first data

point to the network. Thereafter, the LSTM uses random initialized hidden

states to produce a new hidden state and transmits its output value to the

subsequent timestamp. This continues until the last timestamp. The unit

contains the previously hidden state and timestamp outputs across time.

 Stacked LSTM Network
We recognize an LSTM network with more than one hidden layer as a

stacked LSTM network. In a stacked LSTM network, it uses the output of a

preceding hidden layer as the input of the subsequent layer. This process

continues until the last layer. This allows for greater model complexity. For

instance, subsequent layers are a more complex future representation of

output compared to the preceding layers. Consequently, stacking an LSTM

network may cause optimal model performance. In training, an LSTM

does the following:

• Determines which data to add as inputs, including

weights

• Estimates the new state based on the present and

preceding internal state

• Learns corresponding weights and biases

• Determines how the state must be transmitted as

output

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

57

 Develop an LSTM Model Using Keras
Listing 3-1 applies the get_data_yahoo() method to extract Amazon stock

prices1 (see Table 3-1).

Listing 3-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'AMZN'

df = data.get_data_yahoo(ticker, start_date, end_date)

df.head()

1 https://finance.yahoo.com/quote/AMZN

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

https://finance.yahoo.com/quote/AMZN

58

Ta
bl

e
3-

1.
 D

at
as

et

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se

20
10

-1
1-

01
16

4.
58

00
02

16
1.

52
00

04
16

4.
44

99
97

16
2.

58
00

02
52

39
90

0
16

2.
58

00
02

20
10

-1
1-

02
16

5.
94

00
02

16
3.

36
00

01
16

3.
75

00
00

16
4.

61
00

01
42

60
00

0
16

4.
61

00
01

20
10

-1
1-

03
16

8.
61

00
01

16
2.

28
99

93
16

5.
39

99
94

16
8.

47
00

01
61

12
10

0
16

8.
47

00
01

20
10

-1
1-

04
17

2.
52

99
99

16
8.

39
99

94
16

9.
86

00
01

16
8.

92
99

93
73

95
90

0
16

8.
92

99
93

20
10

-1
1-

05
17

1.
64

99
94

16
8.

58
99

96
16

9.
35

00
06

17
0.

77
00

04
52

12
20

0
17

0.
77

00
04

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

59

We are interested in studying the adjusted close price. Listing 3-2

creates a new dataframe that comprises only the adjusted closing price.

Listing 3-2. Create New Dataframe

df_close = pd.DataFrame(df["Adj Close"])

Listing 3-3 returns descriptive statistics of the adjusted closing price

(see Table 3-2).

Listing 3-3. Descriptive Statistics

df_close.describe()

Table 3-2 highlights that the mean value of the adjusted close is 881.18,

and the standard deviation is 744.447. Listing 3-4 defines a functional

argument to create attributes and find a list of instances, representing time

without delays. First, we define the start date and end date. Thereafter,

we set datetime as the index and create a copy of the dataframe so that

Table 3-2. Descriptive Statistics

Adj Close

count 2518.000000

mean 881.182176

std 774.472276

min 157.779999

25% 269.540001

50% 551.135010

75% 1544.927551

max 3531.449951

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

60

we can create a list of previous instances from the specified start date and

end date. Lastly, we create new columns with the frequent attributes and

previous instances and merge the columns.

Listing 3-4. Create Regressor Attribute Function

def create_regressor_attributes(df, attribute, list_of_prev_t_

instants):

 list_of_prev_t_instants.sort()

 start = list_of_prev_t_instants[-1]

 end = len(df)

 df['datetime'] = df.index

 df.reset_index(drop=True)

 df_copy = df[start:end]

 df_copy.reset_index(inplace=True, drop=True)

 for attribute in attribute :

 foobar = pd.DataFrame()

 for prev_t in list_of_prev_t_instants :

 new_col = pd.DataFrame(df[attribute].

iloc[(start - prev_t) : (end - prev_t)])

 new_col.reset_index(drop=True, inplace=True)

 new_col.rename(columns={attribute :

'{}_(t-{})'.format(attribute, prev_t)},

inplace=True)

 foobar = pd.concat([foobar, new_col],

sort=False, axis=1)

 df_copy = pd.concat([df_copy, foobar], sort=False,

axis=1)

 df_copy.set_index(['datetime'], drop=True, inplace=True)

 return df_copy

Listing 3-5 compiles a list of previous time instances.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

61

Listing 3-5. List All Attributes

list_of_attributes = ['Adj Close']

list_of_prev_t_instants = []

for i in range(1,16):

 list_of_prev_t_instants.append(i)

list_of_prev_t_instants

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

The output shows a list of 15 instances. Listing 3-6 passes the list

of attributes and list of previous t instances into a Pandas dataframe.

Thereafter, it merges them with the adjusted closing price.

Listing 3-6. Create New Dataframe

df_new = create_regressor_attributes(df_close, list_of_

attributes, list_of_prev_t_instants)

Listing 3-7 imports key dependencies.

Listing 3-7. Import Important Libraries

from tensorflow.keras.layers import Input, Dense, Dropout

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.models import Model

from tensorflow.keras.models import load_model

from tensorflow.keras.callbacks import ModelCheckpointfunction

Listing 3-8 creates the architecture of the neural network. We train the

model with 15 variables using the linear activation in two dense layers and

one output layer.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

62

Listing 3-8. Design the Architecture

input_layer = Input(shape=(15), dtype='float32')

dense1 = Dense(60, activation='linear')(input_layer)

dense2 = Dense(60, activation='linear')(dense1)

dropout_layer = Dropout(0.2)(dense2)

output_layer = Dense(1, activation='linear')(dropout_layer)

Listing 3-9 trains and summarizes the model. To determine the extent

to which the model makes correct predictions in the training process,

we use the mean squared error, representing variability explained in the

model after we consider a linear relationship. To improve the performance

of the model, we use the Adam optimizer, which is an optimizer that

considers the force that keeps the gradient moving and lowers the rate at

which the model learns the data.

Listing 3-9. Network Structure

model = Model(inputs=input_layer, outputs=output_layer)

model.compile(loss='mean_squared_error', optimizer='adam')

model.summary()

Model: "model"

Layer (type) Output Shape Param #

===

input_1 (InputLayer) [(None, 15)] 0

dense (Dense) (None, 60) 960

dense_1 (Dense) (None, 60) 3660

dropout (Dropout) (None, 60) 0

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

63

dense_2 (Dense) (None, 1) 61

===

Total params: 4,681

Trainable params: 4,681

Non-trainable params: 0

The neural networks encompass two hidden layers and a dropout layer

(applying the probability of setting each input of the layer to 0). Listing 3- 10

splits the data into training, test data, and validation data.

Listing 3-10. Split Data into Training, Test, and Validation Data

test_set_size = 0.05

valid_set_size= 0.05

df_copy = df_new.reset_index(drop=True)

df_test = df_copy.iloc[int(np.floor(len(df_copy)*(1- test_set_

size))) :]

df_train_plus_valid = df_copy.iloc[: int(np.floor(len(df_

copy)*(1-test_set_size)))]

df_train = df_train_plus_valid.iloc[: int(np.floor(len(df_

train_plus_valid)*(1-valid_set_size)))]

df_valid = df_train_plus_valid.iloc[int(np.floor(len(df_train_

plus_valid)*(1-valid_set_size))) :]

X_train, y_train = df_train.iloc[:, 1:], df_train.iloc[:, 0]

X_valid, y_valid = df_valid.iloc[:, 1:], df_valid.iloc[:, 0]

X_test, y_test = df_test.iloc[:, 1:], df_test.iloc[:, 0]

print('Shape of training inputs, training target:', X_train.

shape, y_train.shape)

print('Shape of validation inputs, validation target:',

X_valid.shape, y_valid.shape)

print('Shape of test inputs, test target:', X_test.shape,

y_test.shape)

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

64

Here, we have this information:

• Shape of training inputs, training target: (2258, 15)

(2258,)

• Shape of validation inputs, validation target: (119, 15)

(119,)

• Shape of test inputs, test target: (126, 15) (126,)

Listing 3-11 applies the MinMaxScaler() method to scale numeric

values between 0 and 1.

Listing 3-11. Normalize Data

from sklearn.preprocessing import MinMaxScaler

Target_scaler = MinMaxScaler(feature_range=(0.01, 0.99))

Feature_scaler = MinMaxScaler(feature_range=(0.01, 0.99))

X_train_scaled = Feature_scaler.fit_transform(np.array(X_

train))

X_valid_scaled = Feature_scaler.fit_transform(np.array(X_

valid))

X_test_scaled = Feature_scaler.fit_transform(np.array(X_test))

y_train_scaled = Target_scaler.fit_transform(np.array(y_train).

reshape(-1,1))

y_valid_scaled = Target_scaler.fit_transform(np.array(y_valid).

reshape(-1,1))

y_test_scaled = Target_scaler.fit_transform(np.array(y_test).

reshape(-1,1))Develop the LTSM Model

Listing 3-12 trains the LTSM model across 30 epochs (complete

forward and backward passes) in 5 batches (sets of sample trains at one

time). A pass represents the complete training iteration, from receiving a

set of input values to firing them with different weights and biases across

the network until an output value is produced.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

65

Listing 3-12. Train the Recurrent Network

history = model.fit(x=X_train_scaled, y=y_train_scaled, batch_

size=5, epochs=30, verbose=1, validation_data=(X_valid_scaled,

y_valid_scaled), shuffle=True)

 Forecasting Using the LTSM
Listing 3-13 applies the predict() method to forecast future instances of

the series and perform an inverse transformation (produces exponential

random variables). See Table 3-3.

Listing 3-13. LTSM Forecast

y_pred = model.predict(X_test_scaled)

y_test_rescaled = Target_scaler.inverse_transform(y_test_

scaled)

y_pred_rescaled = Target_scaler.inverse_transform(y_pred)

y_actual = pd.DataFrame(y_test_rescaled, columns=['Actual Close

Price'])

y_hat = pd.DataFrame(y_pred_rescaled, columns=['Predicted Close

Price'])

pd.DataFrame(y_pred_rescaled, columns = ["Forecast"]).head()

Table 3-3. Forecast

Forecast

0 2370.852783

1 2355.488281

2 2338.975586

3 2380.348633

4 2397.861084

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

66

Listing 3-14 shows the actual value of the adjusted close prices= and

the values that the LSTM model forecasts (see Figure 3-3).

Listing 3-14. Forecast

plt.plot(y_actual,color='red')

plt.plot(y_hat, linestyle='dashed', color='navy')

plt.legend(['Actual','Predicted'], loc='best')

plt.ylabel('Adj Close')

plt.xlabel('Test Set Day no.')

plt.xticks(rotation=45)

plt.yticks()

plt.show()

Figure 3-3. Forecast

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

67

Figure 3-3 shows there is a difference between the actual values of

the adjusted closing price and the values that the LSTM model forecasts.

Moreover, the difference is not significant enough to impact conclusions.

 Model Evaluation
Table 3-4 highlights key metrics we used to evaluate a classifier.

Listing 3-15 returns a table with key regression evaluation metrics (see

Table 3-5).

Listing 3-15. Develop a Model Evaluation Matrix

from sklearn import metrics

MAE = metrics.mean_absolute_error(y_test_rescaled,y_pred_

rescaled)

MSE = metrics.mean_squared_error(y_test_rescaled,y_pred_

rescaled)

Table 3-4. Key Evaluation Metrics

Metric Description

mean absolute error (mae) the average degree of error in estimates without

considering the direction

mean squared error the variability explained by the model about the data

after considering a regression relationship

root mean squared error the variability explained without considering a

regression relationship

r-squared the variability explained by the model about the data

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

68

RMSE = np.sqrt(MSE)

R2 = metrics.r2_score(y_test_rescaled,y_pred_rescaled)

EV = metrics.explained_variance_score(y_test_rescaled,y_pred_

rescaled)

MGD = metrics.mean_gamma_deviance(y_test_rescaled,y_pred_

rescaled)

MPD = metrics.mean_poisson_deviance(y_test_rescaled,y_pred_

rescaled)

lmmodelevaluation = [[MAE,MSE,RMSE,R2,EV,MGD,MPD]]

lmmodelevaluationdata = pd.DataFrame(lmmodelevaluation,

 index = ["Values"],

 columns = ["MAE",

 "MSE",

 "RMSE",

 "R2",

 "Explained

variance

score",

 "Mean gamma

deviance",

 "Mean Poisson

deviance"]).

transpose()

lmmodelevaluationdata

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

69

Table 3-5 highlights that the LSTM model explains 94.44 percent of

the variability in the data. The average magnitude of the error without

considering the direction of the relation is 60.67. Another way of evaluating

the performance of an LSTM model involves assessing changes in the loss

across different epochs. Loss measures the difference between the actual

values and the values that the models predict. Figure 3-4 depicts how the

LSTM model learns how to differentiate between the actual values and the

predicted values. See Listing 3-16.

Listing 3-16. Training and Validation Loss Across Epochs

plt.plot(history.history["loss"],color="red",label="Training

Loss")

plt.plot(history.history["val_loss"],color="navy",label="Cross-

Validation Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.legend(loc="best")

plt.show()

Table 3-5. Model Performance

Values

mae 60.672022

mSe 6199.559394

rmSe 78.737281

r2 0.944119

explained variance score 0.944151

mean gamma deviance 0.000657

mean poisson deviance 2.010341

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

70

Figure 3-4 shows that at the first epoch the training loss drops sharply.

Cross-validation loss is stable across time; it is also above training loss

across different epochs. The LSTM model shows the characteristics of a

well-behaved model.

 Conclusion
This chapter introduced deep learning. It covered an artificial neural

network model that we used for time-series data recognized as the LSTM

model. It also showed a way to create variables for modeling and showed

the structure of the neural network. Thereafter, it covered techniques for

modeling and testing the network.

Figure 3-4. Training and validation loss across epochs

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

71

After reviewing the network, we found that the model best explains the

variability in the data. We can use this model to forecast future instances

of the adjusted closing price. We can improve the performance of the

network by reducing layers, introducing a penalty term, etc. The next

chapter covers ways of identifying hidden patterns in sequential data using

hidden Markov models.

Chapter 3 Univariate time SerieS USing reCUrrent neUral netS

73© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_4

CHAPTER 4

Discover Market
Regimes
This chapter presents a widespread generative probabilistic model called

the hidden Markov model (HMM). It covers effective techniques for

identifying hidden patterns in time-series data using HMM and generating

a sequence of observations. After reading this chapter, you will be able to

design and develop a hidden Markov model with a Gaussian process to

discover market regimes. To install hmmlearn in the Python environment,

use pip install hmmlearn, and in the conda environment, use conda

install -c conda-forge hmmlearn.

 HMM
In the preceding chapter, we used the augmented Dickey-Fuller test (a

unit root test) to inspect and determine whether a series was stationary.

A series is stationary when the mean value does not vary across time. In

that chapter, we found the series to be not stationary. In this chapter, we

use the hidden Markov model. We can use this model for a stationary

or nonstationary series. It is a generative, unsupervised learning model;

it does not require labels, and we resort to it for unstructured data. We

https://doi.org/10.1007/978-1-4842-7110-0_4#DOI

74

call it generative because it generates data after uncovering patterns in

sequential data. You will learn more about HMM as you progress through

this chapter.

 HMM Application in Finance
We frequently use HMM for speech analysis, weather forecasting, etc. In

this chapter, we will apply HMM to uncover hidden patterns in the stock

prices of the S&P 500 index. We will exploit this model to detect market

regimes (periods in which there is low or high volatility in the market) and

future regimes.

 Develop a GaussianHMM
There are two principal reasons we will apply the Gaussian mixture

model in this chapter. To begin with, we are interested in the likelihood

of a series given a class representing two conditions: a condition in which

the market is rising and expected to reasonably rise (called a bullish

trend) and a condition in which the market is declining and is expected

to decline (called a bear trend). Second, we assume that the observations

are Gaussian with known variance and mean. This is referred to as a

Gaussian mixture because of the shared distributions that are constrained

to Gaussian. More generally, we will unanimously predict future classes

of the trend based on observed classes. In the training process, the model

learns a single Gaussian state output distribution. Thereafter, a distribution

with the highest variance is fragmented, and the process iterates until a

junction. Listing 4-1 shows the price data of the Standard & Poor (S&P)

Chapter 4 DisCover Market regiMes

75

500 index,1 which is a stock market index that serves as a benchmark for

500 global companies listed on the US stock exchange. Table 4-1 shows the

price data from November 1, 2010, to November 2, 2020.

Listing 4-1. Scraped Data

from pandas_datareader import data

from datetime import datetime

ticker = "^GSPC"

start_date = datetime.date(2010, 11, 1)

end_date = datetime.date(2020, 11, 1)

df = data.DataReader(ticker, 'yahoo', start_date, end_date)

df.head()

1 https://finance.yahoo.com/quote/%5EGSPC/

Chapter 4 DisCover Market regiMes

https://finance.yahoo.com/quote/%5EGSPC/

76

Ta
bl

e
4-

1.
 D

at
as

et

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se

20
10

-1
1-

01
11

95
.8

10
05

9
11

77
.6

50
02

4
11

85
.7

09
96

1
11

84
.3

80
00

5
41

29
18

00
00

11
84

.3
80

00
5

20
10

-1
1-

02
11

95
.8

80
00

5
11

87
.8

59
98

5
11

87
.8

59
98

5
11

93
.5

69
94

6
38

66
20

00
00

11
93

.5
69

94
6

20
10

-1
1-

03
11

98
.3

00
04

9
11

83
.5

60
05

9
11

93
.7

90
03

9
11

97
.9

59
96

1
46

65
48

00
00

11
97

.9
59

96
1

20
10

-1
1-

04
12

21
.2

50
00

0
11

98
.3

39
96

6
11

98
.3

39
96

6
12

21
.0

60
05

9
56

95
47

00
00

12
21

.0
60

05
9

20
10

-1
1-

05
12

27
.0

79
95

6
12

20
.2

90
03

9
12

21
.1

99
95

1
12

25
.8

49
97

6
56

37
46

00
00

12
25

.8
49

97
6

Chapter 4 DisCover Market regiMes

77

Listing 4-2 applies the describe() function to get basic statistical

results about the S&P 500 index (see Table 4-2).

Listing 4-2. Descriptive Statistics

df.describe()

Chapter 4 DisCover Market regiMes

78

Ta
bl

e
4-

2.
 D

es
cr

ip
ti

ve
 S

ta
ti

st
ic

s

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se

co
un

t
25

18
.0

00
00

0
25

18
.0

00
00

0
25

18
.0

00
00

0
25

18
.0

00
00

0
2.

51
80

00
e+

03
25

18
.0

00
00

0

m
ea

n
21

40
.9

62
83

9
21

18
.5

90
95

0
21

30
.2

85
82

9
21

30
.6

52
75

9
3.

73
78

23
e+

09
21

30
.6

52
75

9

st
d

62
0.

95
14

90
61

4.
92

53
44

61
8.

28
48

93
61

7.
99

15
82

8.
78

07
46

e+
08

61
7.

99
15

82

m
in

11
25

.1
19

99
5

10
74

.7
70

02
0

10
97

.4
20

04
4

10
99

.2
29

98
0

1.
02

50
00

e+
09

10
99

.2
29

98
0

25
%

15
97

.8
27

45
4

15
83

.1
57

50
1

15
92

.5
27

52
7

15
93

.4
29

99
3

3.
24

28
05

e+
09

15
93

.4
29

99
3

50
%

20
85

.1
85

05
9

20
66

.5
75

07
3

20
77

.2
65

01
5

20
78

.1
75

04
9

3.
59

34
70

e+
09

20
78

.1
75

04
9

75
%

26
89

.7
44

93
4

26
56

.9
70

03
2

26
77

.8
15

06
3

26
73

.5
70

06
8

4.
05

60
60

e+
09

26
73

.5
70

06
8

m
ax

35
88

.1
10

10
7

35
35

.2
29

98
0

35
64

.7
39

99
0

35
80

.8
40

08
8

9.
04

46
90

e+
09

35
80

.8
40

08
8

Chapter 4 DisCover Market regiMes

79

Table 4-2 gives us an idea of the central tendency and dispersion of the

price and volume. It highlights that the mean value of the adjusted closing

price is 2130.652759, and the standard deviation is 617.991582. In relation

to the volume, the maximum volume is 9.044690e+09, and the minimum

volume is 1.025000e+09. The average low price is 2118.590950, and the

average high price is 2140.962839. After performing a descriptive analysis,

we start the data preprocessing process. Listing 4-3 drops the irrelevant

variables.

Listing 4-3. Initial Data Preprocessing

df.reset_index(inplace=True,drop=False)

df.drop(['Open','High','Low','Adj Close'],axis=1,inplace=True)

df['Date'] = df['Date'].apply(datetime.datetime.toordinal)

df = list(df.itertuples(index=False, name=None))

Listing 4-4 assigns arrays.

Listing 4-4. Final Data Preprocessing

dates = np.array([q[0] for q in df], dtype=int)

end_val = np.array([q[1] for q in df])

volume = np.array([q[2] for q in df])[1:]

Listing 4-5 shows “differenced” time-series data (a series without

temporal dependence).

Listing 4-5. Time Series

from matplotlib.dates import YearLocators

diff = np.diff(end_val)

dates = dates[1:]

end_val = end_val[1:]

X = np.column_stack([diff, volume])

fig, ax = plt.subplots()

Chapter 4 DisCover Market regiMes

80

plt.gca().xaxis.set_major_locator(YearLocator())

plt.plot_date(dates,end_val,"-",color="navy")

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 4-1 shows that after the acute crisis, the longest bullish market

in history started emerging, which was inevitably followed by a minor

correction at the beginning of 2020. Afterward, the price increased in

massive increments. The market hit 3,400 in October and rallied upward.

Figure 4-1. Time series

Chapter 4 DisCover Market regiMes

81

 Gaussian Hidden Markov
The Gaussian hidden Markov model (GaussianHMM) assumes that the

underlying structure of the probabilistic distributions is normal. We use

GaussianHMM when dealing with a continuous variable that comes from

a normal distribution. In the preceding chapter, we found that the time-

series data has a serial correlation across different lags. GaussianHMM is

more suitable for the problem at hand. HMM represents an unsupervised

learning model for unraveling sequential problems. In unsupervised

learning, we do not hide any data away from the model; we expose the

model to all the data. It does not require us to split the data into training

and test data. Now that we recognize the pattern of the time-series data,

we can proceed and complete the model. Listing 4-6 applies the fit()

method to complete a Gaussian hidden Markov model (with a spectral

mixture kernel that produces Gaussian emissions). It specifies the number

of components as 5, the number of iterations as 10, and the total as 0.0001.

Listing 4-6. Finalize the GaussianHMM

model = GaussianHMM(n_components=5, covariance_type="diag",

n_iter=1000)

model.fit(X)

Listing 4-7 predicts the sequence of internal hidden states. Thereafter,

it tabulates the sequence and shows the first five predicted hidden states

(see Table 4-3).

Listing 4-7. Hidden States

hidden_states = model.predict(X)

pd.DataFrame(hidden_states,columns=["hidden_state"])

Chapter 4 DisCover Market regiMes

82

Table 4-3 highlights the parameters of the most appropriate sequence

of hidden states. It does not provide sufficient information to conclude

how GaussianHMM models the time-series data. Listing 4-8 plots the

sequence of internal hidden states of S&P 500 time-series data that the

GaussianHMM model produced (see Figure 4-2).

Listing 4-8. HMM Results

num_sample = 3000

sample, _ = model.sample(num_sample)

plt.plot(np.arange(num_sample), sample[:,0],color="navy")

plt.xlabel("Samples")

plt.ylabel("States")

plt.xticks(rotation=45)

plt.show()

Table 4-3. Hidden States

hidden_state

0 1

1 1

2 1

3 1

4 1

... ...

2512 1

2513 1

2514 3

2515 1

2516 1

Chapter 4 DisCover Market regiMes

83

Figure 4-2 shows the sample data. At most, there is stability in the

states. After the 500th observation, there was a slight spike. The most

significant spike after the sample was 1,200.

 Mean and Variance
The mean value gives us a lot of information about the central tendency

of data points, and the variance shows the dispersion of data points away

from the mean value. We use both the mean value and the variance

to summarize the optimal sequence of the hidden states that the

GaussianHMM model produced. Listing 4-9 estimates the mean value and

variance of each internal hidden state.

Figure 4-2. HMM results

Chapter 4 DisCover Market regiMes

84

Listing 4-9. Hidden States

for i in range(model.n_components):

 print("{0} order hidden state".format(i))

 print("mean = ", model.means_[i])

 print("var = ", np.diag(model.covars_[i]))

 print()

0 order hidden state

mean = [-8.29728342e-01 4.41641901e+09]

var = [8.50560173e+02 4.47992619e+17]

1 order hidden state

mean = [2.22719353e+00 3.22150428e+09]

var = [1.33720438e+02 6.16375025e+16]

2 order hidden state

mean = [2.04319405e+00 3.73786775e+09]

var = [1.79332780e+02 9.03360887e+16]

3 order hidden state

mean = [9.56404042e-01 2.50937758e+09]

var = [8.46343104e+01 3.11987532e+17]

4 order hidden state

mean = [-1.12364778e+01 6.07623360e+09]

var = [8.06282637e+03 1.77082805e+18]

Listing 4-10 plots the sequence of each internal hidden state (see

Figure 4-3).

Listing 4-10. Individual Sequence of Hidden States

fig, axs = plt.subplots(model.n_components, sharex=True,

sharey=True, figsize=(15,15))

colours = cm.rainbow(np.linspace(0, 1, model.n_components))

for i, (ax, colour) in enumerate(zip(axs, colours)):

Chapter 4 DisCover Market regiMes

85

 mask = hidden_states == i

 ax.plot_date(dates[mask], end_val[mask], ".", c=colour)

 ax.set_title("{0}th hidden state".format(i))

 ax.set_xlabel("Date")

 ax.set_ylabel("Adj Close")

 ax.xaxis.set_major_locator(YearLocator())

 ax.xaxis.set_minor_locator(MonthLocator())

 ax.grid(True)

plt.show()

Figure 4-3. Individual sequence of hidden states

Chapter 4 DisCover Market regiMes

86

Figure 4-3 shows the volatility in the upward trend. Most of 2020

happened in the third hidden state.

 Expected Returns and Volumes
Listing 4-11 tabulates the expected returns and volumes estimated by the

GaussianHMM (see Table 4-4).

Listing 4-11. Expected Returns and Volumes

expected_returns_and_volumes = np.dot(model.transmat_, model.

means_)

returns_and_volume_columnwise = list(zip(*expected_returns_and_

volumes))

expected_returns = returns_and_volume_columnwise[0]

expected_volumes = returns_and_volume_columnwise[1]

params = pd.concat([pd.Series(expected_returns),

pd.Series(expected_volumes)], axis=1)

params.columns= ['Returns', 'Volume']

pd.DataFrame(params)

Table 4-4. Expected Returns and Volume

Returns Volume

0 1.789235 3.752679e+09

1 -0.433996 4.258633e+09

2 2.013629 3.288045e+09

3 -9.934745 5.868430e+09

4 1.139917 2.752306e+09

Chapter 4 DisCover Market regiMes

87

Listing 4-12 creates a dataframe for future returns and volumes, and it

plots the actual values of the adjusted close price and those predicted by

the GaussianHMM (see Figure 4-4).

Listing 4-12. Actual Price and Predicted Price

lastN = 7

start_date = datetime.date.today() - datetime.

timedelta(days=lastN*2)

dates = np.array([q[0] for q in df], dtype=int)

predicted_prices = []

predicted_dates = []

predicted_volumes = []

actual_volumes = []

for idx in range(lastN):

 state = hidden_states[-lastN+idx]

 current_price = df[-lastN+idx][1]

 volume = df[-lastN+idx][2]

 actual_volumes.append(volume)

 current_date = datetime.date.fromordinal(dates[-lastN+idx])

 predicted_date = current_date + datetime.timedelta(days=1)

 predicted_dates.append(predicted_date)

 predicted_prices.append(current_price + expected_

returns[state])

 predicted_volumes.append(np.round(expected_volumes[state]))

fig, ax = plt.subplots()

plt.plot(predicted_dates,end_val[-lastN:],color="navy",label="A

ctual Price")

plt.plot(predicted_dates,predicted_prices,color="red",label="Pr

edicted Price")

plt.legend(loc="best")

plt.xticks(rotation=45)

Chapter 4 DisCover Market regiMes

88

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 4-4 displays the notable characteristics of a well-behaved

GaussianHMM model. The differences between the actual values of the

adjusted closing price and predicted values are small. Listing 4-13 plots the

actual volume and the predicted volume (see Figure 4-5).

Figure 4-4. Actual price and predicted price

Chapter 4 DisCover Market regiMes

89

Listing 4-13. Actual Volume and Predicted Volume

fig, ax = plt.subplots()

plt.plot(predicted_dates,actual_volumes,color="navy",label="Act

ual Volume")

plt.plot(predicted_dates,predicted_volumes,color="red",label="P

redicted Volume")

plt.legend(loc="best")

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Volume")

plt.show()

Figure 4-5. Actual volume and predicted volume

Chapter 4 DisCover Market regiMes

90

GaussianHMM does well in modeling the time-series data; however,

there are minimal differences between the actual values of the volume and

those predicted by the model.

 Conclusions
This chapter presented the hidden Markov model. It artfully covered

practical ways of designing and developing an HMM with a spectral

kernel that produces Gaussian emissions to combat complex sequential

problems. We rigorously applied the model to the time-series data of the

S&P 500 index to estimate the best sequence of internal hidden states.

After carefully reviewing the performance of the model, we noticed that

the model is skillful in identifying hidden patterns in the price and volume

of the S&P 500 index.

Chapter 4 DisCover Market regiMes

91© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_5

CHAPTER 5

Stock Clustering
A combination of stocks that an investor selects influences the investment

portfolio’s performance. Some assets are highly risky to invest in, but

others are not. High-risk assets are those whose prices change drastically

in short periods. To secure capital, investors may select groups of stocks,

rather than investing in a single stock or class of stocks. Given that there

are many stocks to choose from, investors ordinarily find it arduous to

single out a group of stocks with optimal performance. To find a group

of stocks with similarities, we use an unsupervised learning technique

called cluster analysis. It involves grouping data points based on similar

characteristics. The most popular cluster analysis model is the k-means

model.

 Investment Portfolio Diversification
Investors ought to be careful and not put all their eggs in one basket by

directing all their investment funds to one area of interest. They may use

portfolio diversification to secure capital. It involves allocating funds to

assets across various industries, sectors, geographic locations, etc., and a

conservative investor diversifies their portfolio by investing in less risky

and more profitable stocks. They ensure that their strategy matches their

risk appetite and invest in the best-performing stocks with minimum

volatility.

https://doi.org/10.1007/978-1-4842-7110-0_5#DOI

92

 Stock Market Volatility
We mentioned in the preceding chapters that prices in the foreign

exchange market and the stock market are not constant. There is an

element of randomness because they fluctuate across time. In terms of

liquidity, the foreign exchange market is the most liquid market, followed

by the stock market, and so on. Market makers drive price movements by

the volume of large transactions and sales activities.

Investing in contracts for difference (CFD) and exchange-traded funds

(EFTs) involves risk. The price of an asset may go in the opposite direction,

resulting in capital loss. Investors ought to have robust risk management

strategies. Ideally, they must select the best stocks based on certain

criteria. The most common criterion is volatility, which is an estimate

of the degree of drastic changes in prices in a short period. We basically

assume that if liquidity increases in a market, then volatility increases,

and vice versa. We measure volatility by estimating the standard deviation

of logarithmic returns and beta coefficients. Besides large transactions

and sales activities of multinational financial institutions, there are other

factors that influence volatility such as social events, economic events,

holidays, pandemics, labor unrest, natural disasters, war, etc.

 K-Means Clustering
The k-means model partitions the data into k (clusters) with the nearest

mean (centroids); it then finds the distance between subgroups to produce

a cluster. It simultaneously shrinks the intracluster distances and improves

the intercluster. We express the formula as shown in Equation 5-1.

Dis x x x y

i

n

i i1 2
0

1 2

2
,� � � �� �

�
�

(Equation 5-1)

Chapter 5 StoCk CluStering

93

Dis(x1,x2) reflects the distance between the data points. Based on the

formula in Equation 5-1, we are interested in discovering the square root of

the sum squares of the deviation of independent data points (represented

as coordinates (x1, y1) and (x2, y2)) away from the mean value (the center).

It finds the initial k (the number of clusters) and estimates the distance

between clusters, and then it distributes data points to the adjoining

centroid. It splits the data points into k groups of similarities. The most

popular method of estimating similarities in space is Euclidean distance

(which connects angles and distances). This cluster model requires the

numbers to specify on the set. Data partitioning relies on a number of

clusters. This algorithm randomly initializes centroids.

 K-Means in Practice
Listing 5-1 extracts the data from Yahoo Finance and applies the web

scraping get_data_yahoo() method. Thereafter, it performs the data

processing tasks required to have quality data.

Listing 5-1. Scraped Data

rom pandas_datareader import data

tickers = ['AMZN','AAPL','WBA',

 'NOC','BA','LMT',

 'MCD','INTC','NAV',

 'IBM','TXN','MA',

 'MSFT','GE','AXP',

 'PEP','KO','JNJ',

 'TM','HMC','MSBHY',

 'SNE','XOM','CVX',

 'VLO','F','BAC']

Chapter 5 StoCk CluStering

94

start_date = '2010-01-01'

end_date = '2020-11-01'

df = data.get_data_yahoo(tickers, start_date, end_date)[['Adj

Close']]

Listing 5-1 extracts stocks from companies such as Amazon, Apple,

and Walgreens Boots Alliance, among other stocks. There are 27 stocks.

Remember that you may include as many stocks as you want. Listing 5-2

estimates the return and volatility.

Listing 5-2. Estimate Returns and Volatility

returns = df.pct_change().mean() * (10*12)

std = df.pct_change().std() * np.sqrt((10*12))

ret_var = pd.concat([returns, std], axis = 1).dropna()

ret_var.columns = ["Returns","Standard Deviation"]

Listing 5-3 is an elbow curve (see Figure 5-1). We use it to determine

the number of clusters to specify when we develop the k-means model.

Listing 5-3. Elbow Curve

X = ret_var.values

sse = []

for k in range(1,15):

 kmeans = KMeans(n_clusters = k)

 kmeans.fit(X)

 sse.append(kmeans.inertia_)

plt.plot(range(1,15), sse)

plt.xlabel("Value of k")

plt.ylabel("Distortion")

plt.show()

Chapter 5 StoCk CluStering

95

The y-axis shows the compressed variance of the correlation matrix

(eigenvalues), and the x-axis shows the number of factors. We use

the figure to determine the required number of clusters for a cluster

model by finding a point in a curve where a sharp decline begins. To

clearly understand how this works, consider the y-axis as the severity

of the correlation. We are interested in the borderline between severe

correlation and nonsevere correlation. Figure 5-1 displays a smooth

bend from 1 to 5. However, from 5, the curve bends abruptly. We use 5 as

the cutoff point. Listing 5-4 sorts the standard deviation by descending

order, removes all missing values, and creates a NumPy array of the

Pandas dataframe.

Figure 5-1. Elbow curve

Chapter 5 StoCk CluStering

96

Listing 5-4. Data Preprocessing

stdOrder = ret_var.sort_values('Standard

Deviation',ascending=False)

first_symbol = stdOrder.index[0]

ret_var.drop(first_symbol,inplace=True)

X = ret_var.values

Listing 5-5 completes the k-means model with five clusters. Thereafter,

it depicts the data points in their respective clusters (see Figure 5-2).

Listing 5-5. Finalize the K-Means Model

kmeans =KMeans(n_clusters = 5).fit(X)

centroids = kmeans.cluster_centers_

plt.scatter(X[:,0],X[:,1], c = kmeans.labels_, cmap ="viridis")

plt.xlabel("y")

plt.scatter(centroids[:,0], centroids[:,1],color="red",mark

er="*")

plt.show()

Chapter 5 StoCk CluStering

97

The k-means model made intelligent guesstimates until it allocated

data points to the most adjacent centroid and discovered the mean value

of the centroids. Figure 5-2 shows that there are five apparent clusters in

the data. Listing 5-6 tabulates each stock, with the cluster it belongs to,

together with its returns and volatility (see Table 5-1).

Listing 5-6. Returns and Volatility per Cluster

stocks = pd.DataFrame(ret_var.index)

cluster_labels = pd.DataFrame(kmeans.labels_)

stockClusters = pd.concat([stocks, cluster_labels],axis = 1)

stockClusters.columns = ['Symbol','Cluster']

x_df = pd.DataFrame(X, columns = ["Returns", "Volatitity"])

Figure 5-2. K-means model

Chapter 5 StoCk CluStering

98

closerv = pd.concat([stockClusters,x_df],axis=1)

closerv = closerv.set_index("Symbol")

closerv

Table 5-1. Returns and Volatility per Cluster

Symbol Cluster Returns Volatility

(Adj Close, AMZN) 4 0.161408 0.219298

(Adj Close, AAPL) 4 0.142889 0.195379

(Adj Close, WBA) 2 0.025647 0.190772

(Adj Close, NOC) 1 0.099201 0.156376

(Adj Close, BA) 3 0.082153 0.241547

(Adj Close, LMT) 1 0.093110 0.144674

(Adj Close, MCD) 0 0.076895 0.132607

(Adj Close, INTC) 3 0.066716 0.195823

(Adj Close, IBM) 2 0.019773 0.154294

(Adj Close, TXN) 1 0.105104 0.185222

(Adj Close, MA) 4 0.128066 0.194152

(Adj Close, MSFT) 1 0.108985 0.175395

(Adj Close, GE) 2 0.006920 0.217385

(Adj Close, AXP) 3 0.061691 0.195526

(Adj Close, PEP) 0 0.055847 0.120965

(Adj Close, KO) 0 0.048256 0.120660

(Adj Close, JNJ) 0 0.054099 0.117171

(Adj Close, TM) 0 0.042555 0.147653

(continued)

Chapter 5 StoCk CluStering

99

To understand the k-means performance, we resort to the silhouette

method, which examines the mean intracluster and the mean near-cluster

distance for each sample. The value obtained is considered the silhouette

score; it measures the separation. A silhouette score ranges from -1 to 1.

Specifically, -1 shows poor model performance, and 1 shows optimal

model performance. Listing 5-7 finds the score.

Listing 5-7. Find the Silhouette Score

from sklearn import metrics

y_predkmeans = pd.DataFrame(kmeans.predict(X))

y_predkmeans = y_predkmeans.dropna()

metrics.silhouette_score(X,y_predkmeans)

0.4260002825147118

The silhouette score is 0.42. The score suggests that the model does not

sufficiently interpret the data.

Table 5-1. (continued)

Symbol Cluster Returns Volatility

(Adj Close, HMC) 2 0.010742 0.167794

(Adj Close, MSBHY) 2 0.019532 0.171736

(Adj Close, SNE) 3 0.074899 0.225855

(Adj Close, XOM) 2 -0.003797 0.159237

(Adj Close, CVX) 2 0.029708 0.184557

(Adj Close, VLO) 3 0.086470 0.263032

(Adj Close, F) 2 0.028089 0.216344

(Adj Close, BAC) 3 0.053830 0.244936

Chapter 5 StoCk CluStering

100

 Conclusions
This chapter introduced an unsupervised learning model that helps

investors better manage risk and select a group of best-performing assets.

We used the k-means model to assign data points to distinct clusters. We

used the silhouette score to evaluate the performance of the model. After

careful consideration, we found that the model shows the characteristics

of a well-behaved cluster model. The silhouette score is closer to 1

than -1. However, there is room for improvement. There are overlaps

in some clusters, but they are not excessively large enough to affect the

conclusions.

Chapter 5 StoCk CluStering

101© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_6

CHAPTER 6

Future Price
Prediction Using
Linear Regression
This chapter introduces the parametric method, also called the linear

regression method. We use this method to determine the nature of the

relationship between an independent variable (continuous or categorical)

and a dependent variable (always continuous). Whereas independent

variables are continuous variables or categorical variables, a dependent

variable is inevitably a continuous variable. It investigates how a change in

an independent variable influences a change in a dependent variable. The

most conventional model for finding estimates of an intercept and a slope is

the least squared model. We express the formula as shown in Equation 6-1.

 ŷ X i� � �� � �0 1 1 (Equation 6-1)

Here, ŷ represents an expected dependent variable, β0 represents an

intercept, β1 represents a slope, X1 represents an independent variable,

and εi represents the error terms (the residual for the ith of n data points),

expressed as shown in Equation 6-2.

 e y yi i i� � (Equation 6-2)

https://doi.org/10.1007/978-1-4842-7110-0_6#DOI

102

The least squares model ensures that the sum squares of residuals are

small. We find the sum squares of residuals by applying the property in

Equation 6-3.

 e e ei1
2

2
2 2� � (Equation 6-3)

This property assumes that residuals are always equal to zero and

estimates are unbiased.

 Linear Regression in Practice
In this chapter, we predict the closing price of gold based on the highest

and lowest price changes and returns. Listing 6-1 scraps data from Yahoo

Finance.

Listing 6-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'GC=F'

df = data.get_data_yahoo(ticker, start_date, end_date)

df_orig=df

Listing 6-2 calculates the highest and lowest price changes and the

returns of the stock price (see Table 6-1).

Listing 6-2. Calculate the Highest and Lowest Price Change and

Returns

df['HL_PCT']=(df['High']-df['Low'])/df['Adj Close'] *100.0

df['PCT_change']= (df['Adj Close']-df['Open'])/df['Open']

*100.0

Chapter 6 Future priCe prediCtion using Linear regression

https://finance.yahoo.com/quote/GC=F/

103

df = df[['Adj Close','HL_PCT','PCT_change','Volume']]

date = df.index

df.head()

 Correlation Methods
Correlation estimates the apparent strength of a linear relationship

between an independent variable and a dependent variable. Prior

to training a regression model, we must identify the severity of the

association between variables since the degree of severity influences the

performance of a model. There are three principal correlation methods

for determining the correlation among variables: the Pearson correlation

method, which estimates the correlation among continuous variables;

the Kendall correlation method, which estimates the association between

rankings and ordinal variables; and the Spearman correlation method,

which also estimates the association between rankings of a combination of

variables.

Table 6-1. Dataset

Date Adj Close HL_PCT PCT_change Volume

2010-11-01 1350.199951 0.711013 -0.742490 40.0

2010-11-02 1356.400024 0.095846 -0.029483 17.0

2010-11-03 1337.099976 2.370799 -1.058166 135.0

2010-11-04 1382.699951 1.728504 1.030248 109.0

2010-11-05 1397.300049 1.417022 0.474588 109.0

Chapter 6 Future priCe prediCtion using Linear regression

104

 The Pearson Correlation Method
Given that we are dealing with continuous variables, we use the Pearson

correlation method, which produces values that range from -1 to 1. Here,

-1 shows a strong negative correlation relationship, 0 shows no correlation

relationship, and 1 shows a strong positive correlation relationship.

Listing 6-3 produces the Pearson correlation matrix. We use a heatmap

to visually represent the matrix (see Figure 6-1). To install seaborn in the

conda environment, use conda install -c anaconda seaborn.

Listing 6-3. Pearson Correlation Matrix

import seaborn as sns

dfcorr = df.corr(method="pearson")

sns.heatmap(dfcorr, annot=True,annot_kws={"size":12},cmap="cool

warm")

plt.show()

Figure 6-1. Pearson correlation matrix heatmap

Chapter 6 Future priCe prediCtion using Linear regression

105

There is a line of 1s that goes from the top left to the bottom right. This

means that each variable perfectly correlates with itself. The correlation is

0.98 (which is close to 1).

 The Covariance Method
Listing 6-4 estimates joint variability between the two variables. It

estimates how variables vary together (see Figure 6-2).

Listing 6-4. Estimate and Plot a Covariance Matrix

dfcov =df.cov()

sns.heatmap(dfcov, annot=True,annot_kws={"size":12},cmap=

"coolwarm")

plt.show()

Figure 6-2. Covariance matrix heatmap

Chapter 6 Future priCe prediCtion using Linear regression

106

The covariance matrix confirms more positive joint variability. When

we use the Pearson correlation method, we have to first find the covariance

since the coefficients of the method are the covariance between two

variables divided by their deviation away from the mean value.

 Pairwise Scatter Plots
A pairwise scatter plot is typically needed to test for normality. We

consider data as normally distributed when independent observations

are near the mean value. Regression models assume normality: non-

normal data results in negative model performance. In cases where the

data is not normal, we may perform a data transformation, i.e., square

root transformation for positively skewed data (a condition where the data

is saturated to the right side of the distribution) or exponential/power

transformation for negatively skewed data (a condition where the data is

saturated to the left side of the distribution). There are several factors that

may influence non-normality, i.e., missing values and outliers (presence of

extreme values), among others. See Listing 6-5.

Listing 6-5. Highest and Lowest Price Changes and Closing Price

sns.jointplot(x="HL_PCT",y="Adj Close",data=df,kind="reg",color

="navy")

plt.ylabel("Adj Close")

plt.xlabel("HL_PCT")

plt.show()

Figure 6-3 shows a straight line that cuts through the data points.

Moreover, the data points are perfectly undistributed to a straight line.

Chapter 6 Future priCe prediCtion using Linear regression

107

Listing 6-6 constructs a pairwise scatter plot that shows the correlation

between the returns and the closing price (see Figure 6-4). The joint

plot also shows that HL_PCT is negatively skewed and that Adj Close is

positively skewed.

Figure 6-3. Highest and lowest price changes and closing price
scatter plot

Chapter 6 Future priCe prediCtion using Linear regression

108

Listing 6-6. Returns and Closing Price

sns.jointplot(x="Corr",y="Adj Close",data=xy,kind="reg",color="

red")

plt.ylabel("Adj Close")

plt.xlabel("Corr")

plt.show()

Figure 6-4. Returns and closing price scatter plot

Chapter 6 Future priCe prediCtion using Linear regression

109

We can develop a formula for a straight-line relationship. Moreover,

the straight line is not linear. Figure 6-5 illustrates the association between

the volume and the adjusted closing price. The figure also shows that the

PCT_change follows a normal distribution (the distribution is bell- shaped).

See Listing 6-7.

Listing 6-7. Volume and Closing Price

sns.jointplot(x="Corr",y="Adj

 Close",data=xy,kind="reg",color="red")

plt.ylabel("Adj Close")

plt.xlabel("Corr")

plt.show()

Figure 6-5. Volume and closing price scatter plot

Chapter 6 Future priCe prediCtion using Linear regression

110

Figure 6-5 shows a linear straight line, but the data points are not close

to the line.

 Eigen Matrix
In the previous section we discovered the strength of the linear

relationship among variables. Next, we must diagnose the severity of

correlation among the variables using eigenvalues. The eigenvalue

represents a flattened variance of the correlation matrix. A combination of

more than two variables highly correlated may reduce the predicted power

of the model. An eigen matrix is a convenient tool in model selection.

Table 6-2 shows an equivalent number of eigenvalues as the variables.

An eigenvalue less than 0 indicates no multicollinearity; between 10

and 100 shows moderate multicollinearity, and over 100 shows extreme

multicollinearity. Listing 6-8 returns the eigen matrix. Multicollinearity is a

problem in which more than two variables are highly correlated.

Listing 6-8. Eigen Matrix

eigenvalues, eigenvectors = np.linalg.eig(dfcov)

eigenvalues = pd.DataFrame(eigenvalues)

eigenvectors = pd.DataFrame(eigenvectors)

eigen = pd.concat([eigenvalues,eigenvectors],axis=1)

eigen.index = df.columns

eigen.columns = ("Eigen values","Adj Close","HL_PCT","PCT_

change","Volume")

eigen

Chapter 6 Future priCe prediCtion using Linear regression

111

Ta
bl

e
6-

2.
 E

ig
en

 M
at

ri
x

Ei
ge

n
va

lu
es

Ad
j C

lo
se

HL
_P

CT
PC

T_
ch

an
ge

Vo
lu

m
e

Ad
j C

lo
se

1.
92

15
28

e+
10

-1
.4

48
57

0e
-0

4
1.

00
00

00
-5

.7
58

48
1e

- 0
4

-2
.6

88
69

5e
- 0

4

HL
_P

CT
4.

33
42

01
e+

04
3.

71
06

74
e-

07
0.

00
06

24
8.

10
63

54
e-

 01
5.

85
55

10
e-

 01

PC
T_

ch
an

ge
6.

52
88

12
e-

01
-4

.1
66

47
5e

-0
8

0.
00

01
19

5.
85

55
10

e-
 01

-8
.1

06
35

6e
- 0

1

Vo
lu

m
e

8.
54

01
29

e-
01

-1
.0

00
00

0e
+

00
-0

.0
00

14
5

3.
59

81
92

e-
 07

2.
90

00
14

e-
 07

Chapter 6 Future priCe prediCtion using Linear regression

112

Table 6-2 highlights that there is moderate multicollinearity (the

eigenvalue is less than 10).

 Further Descriptive Statistics
There are several ways to summarize the data. Listing 6-9 summarizes the

opening and closing prices across time (see Figure 6-6).

Listing 6-9. Opening and Closing Prices

 df_orig[["Open","Close"]].head(20).plot(kind='bar',cmap="rainbow")

plt.ylabel("Price")

plt.show()

Chapter 6 Future priCe prediCtion using Linear regression

113

Figure 6-6 shows that there are no major deviations of the closing price

away from the opening price. Figure 6-7 depicts the low price and closing

price across time. See Listing 6-10.

Listing 6-10. Low and Closing Prices

df_orig[["Low","Close"]].head(20).plot(kind="bar",cmap="rainbow")

plt.ylabel("Price")

plt.show()

Figure 6-6. Opening and closing prices

Chapter 6 Future priCe prediCtion using Linear regression

114

To further understand the changes in prices, we can graphically

represent the high price and closing price across time (see Figure 6-8). See

Listing 6-11.

Listing 6-11. High and Adjusted Close Prices

df_orig[['High','Close']].head(20).plot(kind='bar',cmap="rainbow")

plt.ylabel("Price")

plt.show()

Figure 6-7. Low and closing prices

Chapter 6 Future priCe prediCtion using Linear regression

115

Listing 6-12 shows the volume of trades over time from November 1,

2020, to November 2, 2020 (see Figure 6-9).

Listing 6-12. Volume

df_orig.Volume.plot(color="green")

plt.ylabel("Volume")

Figure 6-8. Low and adjusted close prices

Chapter 6 Future priCe prediCtion using Linear regression

116

Figure 6-1 shows that there was less active market participation from

2011 to early 2019. In mid-2019, the volume grew exponentially to over

three million. Post-2019, there was a severe decline in trade volume; the

volume was between half a million and two million.

 Develop the Least Squares Model
Listing 6-13 splits the data into training and test data applying the 80/20

split ratio.

Listing 6-13. Split Data into Training and Test Data

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x,y,test_

size=0.2, random_state=0)

Figure 6-9. Volume

Chapter 6 Future priCe prediCtion using Linear regression

117

Listing 6-14 normalizes the training data using the StandardScaler()

method (transforms data in such a way that the mean value is 0 and the

standard deviation is 1).

Listing 6-14. Normalize Data

from sklearn.model_selection import StandardScaler

scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)

x_test = scaler.transform(x_test)

Listing 6-15 fits the least squares model with default hyperparameters.

Listing 6-15. Develop the Least Squares Model

from sklearn.linear_model import LinearRegression

lm = LinearRegression()

lm.fit(x_train,y_train)

Listing 6-16 defines a function to find the mean value and standard

deviation of the cross-validation score by applying the R2 as a criterion for

finding the cross-validation scores.

Listing 6-16. Develop a Function to Obtain Cross-Validation Mean

and Standard Deviation

from sklearn.model_selection import cross_val_score

def get_val_score(model):

 scores = cross_val_score(model, x_train, y_train,

scoring="r2")

 print("CV mean: ", np.mean(scores))

 print("CV std: ", np.std(scores))

 print("\n")

Chapter 6 Future priCe prediCtion using Linear regression

118

Listing 6-17 prints the mean value and standard deviation value of the

cross-validation scores.

Listing 6-17. Cross-Validation Mean and Standard Deviation

get_val_score(lm)

CV mean: 0.9473235769188586

CV std: 0.018455084710127526

Listing 6-18 finds the names and default values of a parameter.

Listing 6-18. Find Default Parameters

lm.get_params()

Listing 6-19 creates a grid model. A hyperparameter represents settings

or values that we must configure for a model prior to training. We perform

hyperparameter optimization to identity values that produce optimal

model performance. The GridSearchCV method considers all parameters

and discovers the most suitable combination. For example, in Listing 6-19

we want to find whether we must fit the intercept, normalize X prior to

fitting the model, and copy X.

Listing 6-19. Develop a Grid Model

from sklearn.model_selection import GridSearchCV

param_grid = {'fit_intercept':[True,False],

 'normalize':[True,False],

 'copy_X':[True, False]}

grid_model = GridSearchCV(estimator=lm,

 param_grid=param_grid,

 n_jobs=-1)

grid_model.fit(x_train,y_train)

Listing 6-20 finds the best score and best hyperparameters.

Chapter 6 Future priCe prediCtion using Linear regression

119

Listing 6-20. Hyperparameter Optimization

print("Best score: ", grid_model.best_score_, "Best parameters:

", grid_model.best_params_)

Here’s the result:

• Best score: 0.9473235769188586

• Best parameters: {'copy_X': True, 'fit_intercept': True,

'normalize': False}

Listing 6-21 completes the least squares model by applying the

hyperparameters returned by the grid model to train the model.

Listing 6-21. Finalize the Least Squares Model

lm = LinearRegression(copy_X= True,

 fit_intercept= True,

 normalize= False)

lm.fit(x_train,y_train)

Listing 6-22 finds the intercept. An intercept is the mean value of an

independent variable, given that we hold a dependent variable constant.

Listing 6-22. Intercept

lm.intercept_

15.725513886138613

Listing 6-23 estimates the coefficients.

Listing 6-23. Coefficients

lm.coef_

array([1.45904887, 0.04329147])

Chapter 6 Future priCe prediCtion using Linear regression

120

 Model Evaluation
Listing 6-24 applies the predict() method to return Table 6-3 (it highlights

the values that the regressor produces).

Listing 6-24. Forecast Values

y_pred = lm.predict(x_test)

pd.DataFrame(y_pred,columns=["Forecast"])

Listing 6-25 plots future instances of the adjusted close price (see

Figure 6-10).

Table 6-3. Forecast

Forecast

0 1469.400024

1 1466.699951

2 1475.599976

3 1478.400024

4 1475.000000

... ...

253 1902.699951

254 1908.800049

255 1876.199951

256 1865.599976

257 1877.400024

Chapter 6 Future priCe prediCtion using Linear regression

121

Listing 6-25. Forecast

num_samples = df.shape[0]

df['Forecast'] = np.nan

df['Forecast'][int(0.9*num_samples):num_samples]=y_pred

df['Adj Close'].plot(color="navy")

df['Forecast'].plot(color="red")

plt.legend(loc="best")

plt.xlabel('Date')

plt.ylabel('Price')

plt.show()

Figure 6-10. Forecast

Chapter 6 Future priCe prediCtion using Linear regression

122

Listing 6-26 returns a table that contains information about the

performance of the regressor (see Table 6-4). It shows key regression

evaluation metrics, such as the mean absolute error (the magnitude

of errors without considering the direction), mean squared error (the

variability explained after considering a linear relationship, and R2 score

(the variability explained by the model about the data).

Listing 6-26. Model Performance

from sklearn import metrics

MAE = metrics.mean_absolute_error(y_test,y_pred)

MSE = metrics.mean_squared_error(y_test,y_pred)

RMSE = np.sqrt(MSE)

R2 = metrics.r2_score(y_test,y_pred)

EV = metrics.explained_variance_score(y_test,y_pred)

MGD = metrics.mean_gamma_deviance(y_test,y_pred)

MPD = metrics.mean_poisson_deviance(y_test,y_pred)

lmmodelevaluation = [[MAE,MSE,RMSE,R2,EV,MGD,MPD]]

lmmodelevaluationdata = pd.DataFrame(lmmodelevaluation,

 index = ["Values"],

 columns = ["MAE",

 "MSE",

 "RMSE",

 "R2",

 "Explained

variance

score",

 "Mean gamma

deviance",

 "Mean Poisson

deviance"]).

transpose()

lmmodelevaluationdata

Chapter 6 Future priCe prediCtion using Linear regression

123

Table 6-4 highlights that the model explains 100 percent of the

variability in the data. There is a significant correlation in the time-

series data. On average, the magnitude of errors without considering the

direction is 2.82, and the mean sum of errors is 1.15.

 Conclusion
In this chapter, we briefly covered the least squared model and its

application. To begin with, we covered covariance and correlation. Next,

we showed you how to design, build, and test a regressor. After carefully

reviewing the regressor’s performance, we found that the model best

explains the data. We may use it for reliable future price predictions. In the

subsequent chapter, we cover market simulation.

Table 6-4. Model Performance

Values

MAE 2.820139e-13

MSE 1.150198e-25

RMSE 3.391457e-13

R2 1.000000e+00

Explained variance score 1.000000e+00

Mean gamma deviance -2.581914e-18

Mean Poisson deviance 0.000000e+00

Chapter 6 Future priCe prediCtion using Linear regression

125© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_7

CHAPTER 7

Stock Market
Simulation
The stock exchange market typically responds to socio-economic

conditions. The active participation of key market players undoubtedly

creates liquidity in the market. There are other factors that influence

variations in the market besides the large transactions that key market

makers make. For instance, markets react to news of social events,

economic events, natural disasters, pandemics, etc. In certain conditions,

the effects of those events drive price movement drastically. Systematic

investors (investors who base their trade execution on a system that

depends on quantitative models) need to prepare for future occurrences

to preserve capital by learning from near-real-life conditions. If you

inspect industries that involve considerable risk, for example, aerospace

and defense, you will notice that the subjects learn through simulation.

Simulation is a method that involves generating conditions that mimic

the actual world so that subjects know how to act and react in a condition

similar to preceding ones. In finance, we deal with large funds. They

habitually take risk into account when experimenting and testing models.

In this chapter, we implement a Monte Carlo simulation to simulate

considerable changes in the market without exposing ourselves to risk.

Simulating the market helps identify patterns in preceding occurrences and

forecasts future prices with reasonable certainty. If we can reconstruct the

actual world, then we can understand the preceding market behavior and

https://doi.org/10.1007/978-1-4842-7110-0_7#DOI

126

predict future market behavior. In the preceding chapters, we sufficiently

covered models for sequential pattern identification and forecasting. We

use the panda_montecarlo framework to perform the simulation. To install

it in the Python environment, use pip install pandas-montecarlo.

When an investor trades a stock, they expect their speculation to

yield returns over a certain period. Unexpected events occur, and they

can influence the direction of prices. To build sustained profitability over

the long run, investors can develop models to recognize the underlying

pattern of preceding occurrences and to forecast future occurrences.

Let’s assume you are a prospective conservative investor with an

initial investment capital of $5 million US dollars. After conducting a

comprehensive study, you have singled out a set of stocks to invest in.

You can use Monte Carlo simulation to further understand the risks of

investing in those assets.

 Understanding Value at Risk
The most convenient way to estimate risk is by applying the value at risk

(VAR). It reveals the degree of financial risk we are exposing an investment

portfolio to. It shows the minimum capital required to compensate for

losses at a specified probability level. There are two primary ways of

estimating VAR; we can either use the variance-covariance method or

simulate it by applying Monte Carlo.

 Estimate VAR by Applying the Variance-
Covariance Method
The variance-covariance method makes strong assumptions about the

structure of the data. The method assumes the underlying structure

of the data is linear and normal. It is also sensitive to missing data,

nonlinearity, and outliers. To estimate the standard VAR, we first find

Chapter 7 StoCk Market SiMulation

127

the returns, and then we create the covariance matrix and find the mean

value and standard deviation of the investment portfolio. Thereafter, we

estimate the inverse of the normal cumulative distribution and compute

the VAR. Figure 7-1 shows the VAR of a portfolio alongside the simulated

distributions.

Here we show you how to calculate the VAR by applying the variance/

covariance calculation.

Assume:

Investment capital is $5,000,000.

Standard deviation from an annual trading calendar

(252 days) is 9 percent.

Portfolio

Simulated

Distribution

Returns

VAR

Pr
ob

ab
ili
ty

Figure 7-1. VAR

Chapter 7 StoCk Market SiMulation

128

Using the z-score (1.65) at 95 percent confidence

interval, the value at risk is as follows:

$5,000,0000*1.645*.09 = $740 250

Listing 7-1 scrapes the stock prices for Amazon, Apple, Walgreens

Boots Alliance, Northrop Grumman Corporation, Boeing Company, and

Lockheed Martin Corporation (see Table 7-1).

Listing 7-1. Scraped Data

from pandas_datareader import data

tickers = ['AMZN','AAPL','WBA',

 'NOC','BA','LMT']

start_date = '2010-01-01'

end_date = '2020-11-01'

df = data.get_data_yahoo(tickers, start_date, end_date)[['Adj

Close']]

df.head()

Chapter 7 StoCk Market SiMulation

129

Ta
bl

e
7-

1.
 D

at
as

et

At
tr

ib
ut

es
Ad

j C
lo

se
Sy

m
bo

ls
AM

ZN
AA

PL
W

BA
NO

C
BA

LM
T

Da
te

20
10

-0
1-

04
13

3.
89

99
94

6.
53

98
82

28
.7

98
63

9
40

.2
06

83
3

43
.4

41
97

5
53

.6
33

92
6

20
10

-0
1-

05
13

4.
69

00
02

6.
55

11
87

28
.5

67
01

7
40

.2
77

54
6

44
.8

64
77

3
54

.1
92

23
0

20
10

-0
1-

06
13

2.
25

00
00

6.
44

69
83

28
.3

50
83

4
40

.4
33

14
4

46
.2

25
72

7
53

.3
96

63
3

20
10

-0
1-

07
13

0.
00

00
00

6.
43

50
65

28
.5

20
68

9
40

.8
50

41
8

48
.0

97
03

1
51

.9
31

02
3

20
10

-0
1-

08
13

3.
52

00
04

6.
47

78
47

28
.5

59
30

5
40

.6
24

10
0

47
.6

33
06

4
52

.7
68

50
9

Chapter 7 StoCk Market SiMulation

130

Listing 7-2 specifies the investment weights of the portfolio.

Listing 7-2. Specify Investment Weights

weights = np.array([.25, .3, .15, .10, .24, .7])

From then on we specify the initial investment capital in the portfolio.

See Listing 7-3.

Listing 7-3. Specify Initial Investment

initial_investment = 5000000

Listing 7-4 estimates the daily returns (see Table 7-2).

Listing 7-4. Estimate Daily Returns

returns = df.pct_change()

returns.tail()

Chapter 7 StoCk Market SiMulation

131

Ta
bl

e
7-

2.
 D

ai
ly

 R
et

u
rn

s

At
tr

ib
ut

es
Ad

j C
lo

se
Sy

m
bo

ls
AM

ZN
AA

PL
W

BA
NO

C
BA

LM
T

Da
te

20
20

-1
0-

26
0.

00
08

24
0.

00
00

87
-0

.0
21

81
9

0.
00

45
72

-0
.0

39
01

8
-0

.0
15

44
1

20
20

-1
0-

27
0.

02
47

24
0.

01
34

72
-0

.0
32

51
8

-0
.0

24
91

6
-0

.0
34

75
7

-0
.0

16
60

6

20
20

-1
0-

28
-0

.0
37

59
5

-0
.0

46
31

2
-0

.0
39

16
7

-0
.0

28
00

2
-0

.0
45

73
6

-0
.0

31
92

3

20
20

-1
0-

29
0.

01
52

49
0.

03
70

50
-0

.0
30

93
4

-0
.0

04
32

5
0.

00
10

13
0.

00
45

03

20
20

-1
0-

30
-0

.0
54

45
6

-0
.0

56
01

8
0.

01
55

13
-0

.0
08

79
0

-0
.0

26
30

0
-0

.0
06

55
4

Chapter 7 StoCk Market SiMulation

132

Table 7-2 highlights the first five rows of each stock’s daily return.

Listing 7-5 estimates the joint variability between the stocks in the

portfolio (see Table 7-3).

Listing 7-5. Covariance Matrix

cov_matrix = returns.cov()

cov_matrix

Chapter 7 StoCk Market SiMulation

133

Ta
bl

e
7-

3.
 C

ov
ar

ia
n

ce
 M

at
ri

x

At
tr

ib
ut

es
Ad

j C
lo

se
Sy

m
bo

ls
AM

ZN
AA

PL
W

BA
NO

C
BA

LM
T

Ad
j C

lo
se

AM
ZN

0.
00

04
01

0.
00

01
59

0.
00

00
96

0.
00

00
92

0.
00

01
35

0.
00

00
81

AA
PL

0.
00

01
59

0.
00

03
18

0.
00

00
98

0.
00

00
98

0.
00

01
61

0.
00

00
93

W
BA

0.
00

00
96

0.
00

00
98

0.
00

03
03

0.
00

00
97

0.
00

01
31

0.
00

00
88

NO
C

0.
00

00
92

0.
00

00
98

0.
00

00
97

0.
00

02
04

0.
00

01
65

0.
00

01
50

BA
0.

00
01

35
0.

00
01

61
0.

00
01

31
0.

00
01

65
0.

00
04

86
0.

00
01

62

LM
T

0.
00

00
81

0.
00

00
93

0.
00

00
88

0.
00

01
50

0.
00

01
62

0.
00

01
74

Chapter 7 StoCk Market SiMulation

134

Listing 7-6 estimates the VAR. First, we specify the average daily

returns, then we specify the confidence interval and cutoff value, and

finally we obtain the mean and standard deviations. Subsequently, we find

the inverse of the distribution.

Listing 7-6. Estimate Value at Risk

conf_level1 = 0.05

avg_rets = returns.mean()

port_mean = avg_rets.dot(weights)

port_stdev = np.sqrt(weights.T.dot(cov_matrix).dot(weights))

mean_investment = (1+port_mean) * initial_investment

stdev_investment = initial_investment * port_stdev

cutoff1 = norm.ppf(conf_level1, mean_investment, stdev_

investment)

var_1d1 = initial_investment - cutoff1

var_1d1

166330.5512926411

At a 95 percent confidence interval, the investment portfolio of

$5,000,000 will not exceed losses greater than 166,330.55 a day. Listing 7-7

prints the 10-day VAR.

Listing 7-7. Print 10-Day VAR

var_arry = []

num_days = int(10)

for x in range(1, num_days+1):

 var_array.append(np.round(var_1d1 * np.sqrt(x),2))

 print(str(x) + " day VaR @ 95% confidence: " + str

(np.round(var_1d1 * np.sqrt(x),2)))

1 day VaR @ 95% confidence: 166330.55

2 day VaR @ 95% confidence: 235226.92

3 day VaR @ 95% confidence: 288092.97

Chapter 7 StoCk Market SiMulation

135

4 day VaR @ 95% confidence: 332661.1

5 day VaR @ 95% confidence: 371926.42

6 day VaR @ 95% confidence: 407424.98

7 day VaR @ 95% confidence: 440069.27

8 day VaR @ 95% confidence: 470453.84

9 day VaR @ 95% confidence: 498991.65

10 day VaR @ 95% confidence: 525983.39

Listing 7-8 graphically represents the VAR over a 10-day period (see

Figure 7-2).

Listing 7-8. 10-Day VAR

plt.plot(var_array, color="navy")

plt.xlabel("No. of Days")

plt.ylabel("MaX Portfolio Loss (USD)")

plt.show()

Figure 7-2. Max portfolio loss (VAR) over a 15-day period

Chapter 7 StoCk Market SiMulation

136

Figure 7-2 shows that as we increase the number of days, the maximum

investment portfolio increases too. In the next section, we explored Monte

Carlo simulation.

 Understanding Monte Carlo
Monte Carlo simulation uses resampling techniques to combat sequential

problems. It reconstructs real-life conditions to identify and understand

the results of the preceding occurrences and predict future occurrences.

It also enables us to experiment with different investment strategies. Not

only that, but it performs repetitive measurements on random variables

that come from a normal distribution to determine the probability of each

output, and then it assigns a confidence interval output.

 Application of Monte Carlo Simulation in Finance
We use Monte Carlo simulation to evaluate a strategy’s rigorousness.

It helps us determine whether the strategy is optimistic. An optimistic

strategy stops yielding optimal returns when parameters of the

environment are adjusted. It enables us to simulate the market and

identify the risk we expose ourselves to. For this example, we focus on only

one stock, the Northrop Grumman Corporation stock. See Listing 7-9 and

Table 7-4.

Listing 7-9. Scraped Data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'NOC'

df = data.get_data_yahoo(ticker, start_date, end_date)

df['return'] = df['Adj Close'].pct_change().fillna(0)

df.head()

Chapter 7 StoCk Market SiMulation

137

Ta
bl

e
7-

4.
 D

at
as

et

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se
re

tu
rn

20
10

-1
1-

01
58

.2
57

67
9

56
.9

74
70

9
57

.2
45

76
2

57
.3

81
28

7
17

36
40

0.
0

46
.0

94
52

1
0.

00
00

00

20
10

-1
1-

02
58

.4
38

38
1

57
.8

33
03

5
57

.8
33

03
5

58
.3

57
06

3
17

24
00

0.
0

46
.8

78
36

1
0.

01
70

05

20
10

-1
1-

03
58

.5
01

62
5

57
.3

54
17

9
58

.2
21

53
9

58
.0

76
98

1
15

98
40

0.
0

46
.6

53
36

2
-0

.0
04

80
0

20
10

-1
1-

04
59

.1
43

10
8

58
.1

40
22

4
58

.4
83

55
5

58
.9

71
44

3
22

13
60

0.
0

47
.3

71
89

1
0.

01
54

01

20
10

-1
1-

05
59

.2
60

56
7

58
.8

26
88

5
58

.9
26

27
0

59
.0

34
69

1
10

43
90

0.
0

47
.4

22
69

5
0.

00
10

72

Chapter 7 StoCk Market SiMulation

138

 Run Monte Carlo Simulation
Listing 7-10 applies the panda_montecarlo() method to run the Monte

Carlo simulation with five simulations. Also, we set the bust/max

drawdown to -10.0 percent and the goal threshold to +100.0 percent.

Listing 7-10. Run the Monte Carlo Simulation

mc = df['return'].montecarlo(sims=10, bust=-0.1, goal=1)

 Plot Simulations
Listing 7-11 plots the 10 simulations that the Monte Carlo simulation ran

(see Figure 7-3).

Listing 7-11. Simulations

mc.plot(title="")

Chapter 7 StoCk Market SiMulation

139

Figure 7-3 shows the simulation results. It highlights a dominant

upward trend. Listing 7-12 tabulates raw simulations (see Table 7-5).

Listing 7-12. Raw Simulations

pd.DataFrame(mc.data).head()

Figure 7-3. Monte Carlo simulations

Chapter 7 StoCk Market SiMulation

140

Ta
bl

e
7-

5.
 R

aw
 S

im
u

la
ti

on
s

Or
ig

in
al

1
2

3
4

5
6

7
8

9

0
0.

00
00

00
-0

.0
18

16
8

-0
.0

02
65

9
-0

.0
21

09
8

-0
.0

06
35

7
0.

01
80

90
-0

.0
10

11
0

-0
.0

06
55

5
-0

.0
04

11
9

0.
02

05
57

1
0.

01
70

05
0.

00
55

21
-0

.0
14

64
6

0.
00

05
41

-0
.0

09
13

4
-0

.0
00

60
2

-0
.0

06
80

1
-0

.0
03

37
3

0.
00

43
42

-0
.0

02
25

7

2
-0

.0
04

80
0

-0
.0

03
90

0
-0

.0
02

49
4

0.
02

77
38

0.
00

59
24

-0
.0

12
83

4
-0

.0
04

09
5

-0
.0

03
31

5
0.

00
01

16
0.

11
38

51

3
0.

01
54

01
0.

00
66

88
0.

00
11

44
0.

00
55

86
-0

.0
04

92
4

0.
01

13
99

0.
00

98
17

-0
.0

01
27

3
0.

00
61

64
0.

02
33

55

4
0.

00
10

72
0.

00
56

17
0.

01
00

52
0.

01
17

48
0.

00
78

78
0.

01
00

80
-0

.0
08

66
6

-0
.0

05
12

6
0.

03
64

59
0.

01
54

38

Chapter 7 StoCk Market SiMulation

141

Listing 7-13 returns the statistics of the simulation model (Table 7-6).

Listing 7-13. Monte Carlo Statistics

ev = pd.DataFrame(mc.stats, index=["s"])

ev

Table 7-6 highlights the dispersion. It also highlights the maximum

drawdown (the maximum amount of loss from a peak).

 Conclusions
When investing in a stock or a set of stocks, it is important to understand,

quantify, and mitigate the underlying risk in an investment portfolio. This

chapter discussed VAR; thereafter, it showed ways to calculate the VAR of

an investment portfolio, followed by simulating stock market changes by

applying Monte Carlo simulation. The simulation technique has many

applications; we can also use it for asset price structuring, etc. The next

chapter further expands on the investment portfolio and risk analysis.

Table 7-6. Monte Carlo Statistics

min max mean median std maxdd bust goal

s 2.094128 2.094128 2.094128 2.094128 2.145155e- 15 -0.164648 0.2 0.8

Chapter 7 StoCk Market SiMulation

143© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_8

CHAPTER 8

Market Trend
Classification Using
ML and DL
Thus far, we have progressively introduced the parametric method. All

the problems we solved involved a continuous variable. We can also make

use of the nonparametric method to predict the possible direction of the

market. This chapter presents the nonparametric (or nonlinear) method,

also called the classification method. This prevalent method operates on

independent variables and triggers a bounded value. It is suitable when

dealing with a categorical dependent variable (a dependent variable that

is limited by a specific range). There are two primary types of classification

methods: the binary classification method, which is used when the

dependent variable has two outcomes, and the multiclass classification

method, which is used when the dependent variable is a categorical

variable with over two outcomes. In this chapter, we use both SciKit-

Learn and Keras. The SciKit-Learn library is pre-installed in the Python

environment. To install Keras in the Python environment, we use pip

install Keras, and in the conda environment, we use conda install -c

conda-forge keras.

https://doi.org/10.1007/978-1-4842-7110-0_8#DOI

144

 Classification in Practice
Recognizing supply-and-demand activities helps investors make well-

informed investment decisions. In this chapter, we create a categorical

variable with the two outcomes 0 and 1, where 0 represents a downward

market and 1 represents an upward market. We use a logistic classifier to

predict future classes. Listing 8-1 applies the get_data_yahoo() method

to get the price data of crude oil1 from November 1, 2010, to November 1,

2010 (see Table 8-1).

Listing 8-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'CL=F'

df = data.get_data_yahoo(ticker, start_date, end_date,)

df.head()

1 https://finance.yahoo.com/quote/CL=F/

Chapter 8 Market trend ClassifiCation Using Ml and dl

https://finance.yahoo.com/quote/CL=F/

145

Ta
bl

e
8-

1.
 D

at
as

et

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se

20
10

-1
1-

 01
83

.8
60

00
1

81
.3

20
00

0
81

.4
49

99
7

82
.9

49
99

7
35

85
35

.0
82

.9
49

99
7

20
10

-1
1-

 02
84

.4
70

00
1

82
.8

30
00

2
82

.8
79

99
7

83
.9

00
00

2
28

18
34

.0
83

.9
00

00
2

20
10

-1
1-

 03
85

.3
60

00
1

83
.5

70
00

0
84

.3
70

00
3

84
.6

90
00

2
39

37
35

.0
84

.6
90

00
2

20
10

-1
1-

 04
86

.8
30

00
2

84
.9

19
99

8
85

.0
89

99
6

86
.4

89
99

8
31

79
97

.0
86

.4
89

99
8

20
10

-1
1-

 05
87

.4
30

00
0

85
.9

59
99

9
86

.5
99

99
8

86
.8

49
99

8
31

79
97

.0
86

.8
49

99
8

Chapter 8 Market trend ClassifiCation Using Ml and dl

146

Listing 8-2 estimates the returns and log returns (see Table 8-2).

Listing 8-2. Estimate Returns and Log Returns

df = df.dropna()

df['pct_change'] = df["Adj Close"].pct_change()

df['log_ret'] = np.log(df["Adj Close"]) - np.log(df["Adj

Close"].shift(1))

df.head()

Chapter 8 Market trend ClassifiCation Using Ml and dl

147

Ta
bl

e
8-

2.
 D

at
as

et
 w

it
h

E
st

im
at

ed
 R

et
u

rn
s

an
d

Lo
g

R
et

u
rn

s

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se
pc

t_
ch

an
ge

lo
g_

re
t

20
10

-1
1-

01
83

.8
60

00
1

81
.3

20
00

0
81

.4
49

99
7

82
.9

49
99

7
35

85
35

.0
82

.9
49

99
7

na
n

na
n

20
10

-1
1-

02
84

.4
70

00
1

82
.8

30
00

2
82

.8
79

99
7

83
.9

00
00

2
28

18
34

.0
83

.9
00

00
2

0.
01

14
53

0.
01

13
88

20
10

-1
1-

03
85

.3
60

00
1

83
.5

70
00

0
84

.3
70

00
3

84
.6

90
00

2
39

37
35

.0
84

.6
90

00
2

0.
00

94
16

0.
00

93
72

20
10

-1
1-

04
86

.8
30

00
2

84
.9

19
99

8
85

.0
89

99
6

86
.4

89
99

8
31

79
97

.0
86

.4
89

99
8

0.
02

12
54

0.
02

10
31

20
10

-1
1-

05
87

.4
30

00
0

85
.9

59
99

9
86

.5
99

99
8

86
.8

49
99

8
31

79
97

.0
86

.8
49

99
8

0.
00

41
62

0.
00

41
54

Chapter 8 Market trend ClassifiCation Using Ml and dl

148

Listing 8-3 drops the missing values and estimates the market direction

(see Table 8-3).

Listing 8-3. Drop Missing Values and Estimate Market Direction

df = df.dropna()

df['direction'] = np.sign(df['pct_change']).astype(int)

df.head(3)

Chapter 8 Market trend ClassifiCation Using Ml and dl

149

Ta
bl

e
8-

3.
 D

at
as

et
 w

it
h

E
st

im
at

ed
 R

et
u

rn
s,

 L
og

 R
et

u
rn

s,
 a

n
d

M
ar

ke
t D

ir
ec

ti
on

Da
te

Hi
gh

Lo
w

Op
en

Cl
os

e
Vo

lu
m

e
Ad

j C
lo

se
pc

t_
ch

an
ge

lo
g_

re
t

di
re

ct
io

n

20
10

-1
1-

 02
84

.4
70

00
1

82
.8

30
00

2
82

.8
79

99
7

83
.9

00
00

2
28

18
34

.0
83

.9
00

00
2

0.
01

14
53

0.
01

13
88

1

20
10

-1
1-

 03
85

.3
60

00
1

83
.5

70
00

0
84

.3
70

00
3

84
.6

90
00

2
39

37
35

.0
84

.6
90

00
2

0.
00

94
16

0.
00

93
72

1

20
10

-1
1-

04
86

.8
30

00
2

84
.9

19
99

8
85

.0
89

99
6

86
.4

89
99

8
31

79
97

.0
86

.4
89

99
8

0.
02

12
54

0.
02

10
31

1

Chapter 8 Market trend ClassifiCation Using Ml and dl

150

 Data Preprocessing
Listing 8-4 creates a categorical variable with the two outcomes 0 and

1, where 0 represents a downward market and 1 represents an upward

market. This enables us to use a classifier that can predict the probability of

two classes. We start by defining the number of lags, and then we estimate

daily returns and convert the lag returns into binary classes. We also use

the GridSearchCV() method to standardize the data in such a way that the

mean value is 0 and the standard deviation is 1.

Listing 8-4. Data Preprocessing

from sklearn.preprocessing import StandardScaler

df["direction"] = pd.get_dummies(df["direction"])

from sklearn import preprocessing

x=df.iloc[::,5:8]

y=df.iloc[::,-1]

scaler = StandardScaler()

x=scaler.fit_transform(x)

Listing 8-5 splits the data into training data and test data using the

80/20 split ratio.

Listing 8-5. Split Data into Training and Test Data

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test =train_test_split(x , y, test_

size=0.2,shuffle= False)

 Logistic Regression
Although the term logistic regression contains the word regression, it is not

a regression model but a classification model. A linear regression model

estimates a continuous variable. Meanwhile, a logistic regression model

Chapter 8 Market trend ClassifiCation Using Ml and dl

151

estimates a categorical dependent variable. Regression models assume the

data is linear and comes from a normal distribution, but logistic classifiers

are free from those assumptions. In logistic regression, we fit an S-shaped

curve (or logistic curve or sigmoid curve) to the data. We use a logistic

classifier to predict market movements. Stock prices change significantly

in specific periods. If the market should upsurge within a certain period,

then there is an upward market or a bullish market. In contrast, if the

market price consistently decreases within a specific period, then there is a

downward market or bearish market.

 Develop the Logistic Classifier
Listing 8-6 finalizes the logistic classifier.

Listing 8-6. Finalize the Logistic Classifier

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(x_train, y_train)

 Evaluate a Logistic Classifier

Listing 8-7 constructs a table that highlights the predicted market classes

(see Table 8-4).

Listing 8-7. Predicted Values

y_predlogreg = logreg.predict(x_test)

pd.DataFrame(y_predlogreg,columns=["Forecast"])

Chapter 8 Market trend ClassifiCation Using Ml and dl

152

Table 8-4 does not provide us with sufficient information about how

well the logistic classifier predicts. To find an abstract background of the

logistic classifier’s performance, we use a confusion matrix.

Confusion Matrix

We typically use a confusion matrix to identify two types of errors: the false

positive, which incorrectly predicts that an event took place, and the false

negative, which incorrectly predicts an event that never happened. It also

highlights the true positive, which correctly predicts an event that took

place, and the true negative, which correctly predicts an event that never

took place. Listing 8-8 constructs a confusion matrix (see Table 8-5).

Table 8-4. Predicted Classes

Forecast

0 1

1 1

2 0

3 1

4 1

... ...

494 1

495 0

496 1

497 0

498 1

Chapter 8 Market trend ClassifiCation Using Ml and dl

153

Listing 8-8. Confusion Matrix

from sklearn import metrics

cmatlogreg = pd.DataFrame(metrics.confusion_matrix(y_test,y_

predlogreg),

 index=["Actual: Sell","Actual: Buy"],

 columns=("Predicted:

Sell","Predicted: Buy"))

cmatlogreg

Table 8-5 does not tell us much besides giving us a count of actual

“sell” and actual “buy,” and predicted “sell” and predicted “buy.” To better

understand how the logistic classifier works, we use the classification report.

Classification Report

Table 8-8 provides sufficient details about the classifier’s performance.

It tabulates the accuracy (how often a classifier gets predictions right),

precision (how often a classifier is correct), F-1 score (the harmonic mean

value of precision and recall), and support (the number of samples of the

actual response in that class). It also shows whether there is an imbalance

in the data. To understand how this works, in this section we show you

how to estimate both accuracy and precision (also refer to Table 8-6).

 Accuracy TP TN TP TN FP FN� � � � �/ (Equation 8-1)

 Precision TP TP FP� �/ (Equation 8-2)

Table 8-5. Confusion Matrix Estimates

Predicted: Sell Predicted: Buy

Actual: Sell 234 0

Actual: Buy 0 265

Chapter 8 Market trend ClassifiCation Using Ml and dl

154

To understand how this works, look at Table 8-6. Also refer to Table 8-7.

Listing 8-9 shows the classification report (see Table 8-8).

Listing 8-9. Classification Report

creportlogreg =pd.DataFrame(metrics.classification_report(y_

test,y_predlogreg,output_dict=True)).transpose()

creportlogreg

Table 8-6. Understanding Confusion Matrix Estimates

Metric Description

TP representing true positives (how many times the classifier predicted a

“sell” signal when it was a “sell” signal)

TN representing true negatives (how many times the classifier predicted a

“buy” signal when it was a “buy” signal)

FP representing false positives (how many times the classifier predicted a

“sell” signal when it was a “buy” signal)

FP representing false negatives (how many times the classifier predicted a

“buy” signal when it was a “sell” signal)

Table 8-7. How to Obtain Confusion

Matrix Estimates

Predicted: Sell Predicted: Buy

Actual: Sell tp fp

Actual: Buy fn tn

Chapter 8 Market trend ClassifiCation Using Ml and dl

155

Table 8-8 highlights that the logistic classifier is accurate 100 percent

of the time (the accuracy is at 1.0). This also shows there is an imbalance

in the data. We will not depend on the accuracy score to assess its

performance.

ROC Curve

We use the ROC curve to find the area under the curve (AUC). ROC stands

for “receiver operating characteristic,” which shows the extent to which the

classifier distinguishes between classes. The roc_curve() method takes

the actual classes and probabilities of each class to develop the curve.

Listing 8-10 constructs an ROC curve to summarize the trade-offs between

the false positive rate and the true positive rate across different thresholds

(see Figure 8-1).

Listing 8-10. ROC Curve

y_predlogreg_proba = logreg.predict_proba(x_test)[::,1]

fprlogreg, tprlogreg, _ =metrics.roc_curve(y_test,y_predlogreg_

proba)

auclogreg = metrics.roc_auc_score(y_test, y_predlogreg_proba)

plt.plot(fprlogreg, tprlogreg, label="AUC:

"+str(auclogreg),color="navy")

Table 8-8. Classification Report

precision recall f1-score support

0 1.0 1.0 1.0 256.0

1 1.0 1.0 1.0 243.0

accuracy 1.0 1.0 1.0 1.0

macro avg 1.0 1.0 1.0 499.0

weighted avg 1.0 1.0 1.0 499.0

Chapter 8 Market trend ClassifiCation Using Ml and dl

156

plt.plot([0,1],[0,1],color="red")

plt.xlim([0.00,1.01])

plt.ylim([0.00,1.01])

plt.xlabel("Specificity")

plt.ylabel("Sensitivity")

plt.legend(loc=4)

plt.show()

The AUC score is greater than 0.80. This means the logistic classifier

is skillful in distinguishing classes. Ideally, we want a classifier that has an

AUC score that is closer to 1.

Figure 8-1. ROC curve

Chapter 8 Market trend ClassifiCation Using Ml and dl

157

 Learning Curve
Figure 8-2 has two axes: the training set size on the x-axis and the accuracy

score on the y-axis. It illustrates how the classifier learns to make accurate

predictions as we progressively increase the data. See Listing 8-11.

Listing 8-11. Learning Curve

from sklearn.model_selection import learning_curve

trainsizelogreg, trainscorelogreg, testscorelogreg

=learning_curve(logreg, x, y, cv=5, n_jobs=5,train_sizes=np.

linspace(0.1,1.0,50))

trainscorelogreg_mean = np.mean(trainscorelogreg,axis=1)

testscorelogreg_mean = np.mean(testscorelogreg,axis=1)

plt.plot(trainsizelogreg,trainscorelogreg_mean,color="red",labe

l="Training score", alpha=0.8)

plt.plot(trainsizelogreg,testscorelogreg_

mean,color="navy",label="Cross validation score", alpha=0.8)

plt.xlabel("Training set size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()

Chapter 8 Market trend ClassifiCation Using Ml and dl

158

Figure 8-2 conveys that the classifier commits many mistakes in the

foundation phase of the training. The average accuracy score surges as

we increase the training set size, and the training score is predominantly

beneath the cross-validation score.

 Multilayer Layer Perceptron
Chapter 5 covered deep learning and its application in finance. Thereafter,

we explained the fundamental structure of an artificial neural network

and revealed ways in which you can combat sequential problems using

the recurrent neural network (RNN). We developed and assessed the

long short-term memory (LSTM) model to forecast future stock prices. In

this chapter, we use a multilayer perceptron (MLP) classifier to estimate

the probabilities of an upward or downward market. It comprises three

layers: the input layer, which receives input values; the hidden layer, which

Figure 8-2. Learning curve

Chapter 8 Market trend ClassifiCation Using Ml and dl

159

transforms the values; and the output layer, which triggers an output

value. The MLP model receives a set of input values, transforms them, and

triggers output values in the output layer. It is basically a combination of

multiple restricted Boltzmann machines (a neural network that maintains

a visible layer and hidden layer). The model addresses the vanishing

gradient problem through backward propagation, which involves

estimating the gradient from the right to the left (the opposite of forward

propagation that involves estimating the gradient from the left to the right).

Visible Layer Hidden Layer Output Layer

Figure 8-3. Multilayer perceptron

Chapter 8 Market trend ClassifiCation Using Ml and dl

160

Figure 8-3 shows an MLP with three nodes at the visible layer, four

nodes at the hidden layer, and an output layer with only one possible

outcome. Listing 8-12 imports the Keras library.

Listing 8-12. Import Libraries

from keras import Sequential, regularizers

from keras.layers import Dense, Dropout

from keras.wrappers.scikit_learn import KerasClassifier

After importing the Keras framework, we start establishing the

structure of the neural network.

 Architecture
Listing 8-13 builds up the logical structure of the neural network. There

are eight input variables (High, Low, Open, Close, Volume, Adj Close,

pct_change, log_ret, direction), and we intentionally set input_dim as 8

and apply the sigmoid function. The sigmoid function operates on a set of

input values and generates output values that range between 0 and 1. We

implement the ReLu function on the hidden layer and the output layer.

Unlike the sigmoid function, the ReLu function limits the data between

0 and 1, and it processes the data until it invariably produces an optimal

value. We typically use the adaptive moment estimation (Adam) optimizer

over other optimizers because at most it generalizes data better than its

predecessors, especially when dealing with a large dataset. It extends both

from Adadelta (an optimizer that properly adjusts learning rates based

on a moving window of the modified gradients) and RMSProp (estimates

the notable difference between the gradients’ current weights and

preceding weights; thereafter, it estimates the square root of the obtained

standard deviation). Adam is straightforward; it subtly alters the adaptive

learning rate and implements the stochastic gradient descent method

(a prevalent method for training neural networks faster by randomly

selecting terms to estimate rather than estimating all terms). It adequately

Chapter 8 Market trend ClassifiCation Using Ml and dl

161

considers substantial variations in the loss function. In addition, it is not

computationally demanding. In summary, it solves the problem of slow

training (which we mostly experience with other optimizers when there

are many variables or many observations in the data).

Listing 8-13. Architecture

def create_dnn_model1(optimizer="adam"):

 model1 = Sequential()

 model1.add(Dense(8, input_dim=8, activation="sigmoid"))

 model1.add(Dense(8, activation="relu"))

 model1.add(Dense(1, activation="relu"))

 model1.compile(loss="binary_crossentropy",

optimizer=optimizer, metrics=["accuracy"])

 return model1

Listing 8-14 wraps the architecture of the network using the

KerasClassifier() method.

Listing 8-14. Wrap the Model

model1 = KerasClassifier(build_fn=create_dnn_model1)

 Finalize the Model
Listing 8-15 trains the neural network across 64 epochs in 15 batches. An

epoch represents a complete forward and backward pass, and a batch

represents the number of samples that progressively increase throughout

the network.

Listing 8-15. Finalize the Model

history1 = model1.fit(x_train, y_train, validation_data=(x_

val,y_val), batch_size=15, epochs=64)

history1

Chapter 8 Market trend ClassifiCation Using Ml and dl

162

Listing 8-16 returns the key performance evaluation metrics (see

Table 8-9).

Listing 8-16. Classification Report

y_predmodel1 = model1.predict(x_test)

creportmodel1 = pd.DataFrame(metrics.classification_report(y_

test,y_predmodel1, output_dict=True)).transpose()

creportmodel1

Table 8-9 highlights that the neural network is less accurate and precise

than the logistic classifier. It also shows that the data is imbalanced. You

can further understand how skillful the classifier is by looking at the loss.

 Training and Validation Loss Across Epochs

Loss represents a metric that establishes the difference between actual

values and those predicted by the model. Listing 8-17 plots the training

and validation loss across epochs to show how the neural network learns

to differentiate between a downward and upward market in training and in

cross-validation (see Figure 8-4).

Table 8-9. Classification Report

precision recall f1-score support

0 0.468938 1.000000 0.638472 234.000000

1 0.000000 0.000000 0.000000 265.000000

accuracy 0.468938 0.468938 0.468938 0.468938

macro avg 0.234469 0.500000 0.319236 499.000000

weighted avg 0.219903 0.468938 0.299404 499.000000

Chapter 8 Market trend ClassifiCation Using Ml and dl

163

Listing 8-17. Training and Validation Loss Across Epochs

plt.plot(history1.history["loss"],color="red",label="Training

Loss")

plt.plot(history1.history["val_loss"],color="green",label="Cro

ss- Validation Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.legend(loc=4)

plt.show()

Figure 8-4 shows that at the first epoch, the training loss drops and

remains until the 64th epoch (7.59). Meanwhile, the cross-validation loss

remains constant across epochs (around 7.58).

Figure 8-4. Training and validation loss across epochs

Chapter 8 Market trend ClassifiCation Using Ml and dl

164

 Training and Validation Accuracy Across Epochs

Accuracy refers to how often a classifier correctly predicts classes. Listing 8-18

plots the training and validation accuracy to demonstrate how the neural

network learns how to get the answers correct. (See Figure 8-5.)

Listing 8-18. Training and Validation Accuracy Across Epochs

plt.plot(history1.history["accuracy"],color="red",label="Traini

ng Accuracy")

plt.plot(history1.history["val_accuracy"],color="green",label="

Cross-Validation Accuracy")

plt.xlabel("Epochs")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()

Figure 8-5. Training and validation accuracy across epochs

Chapter 8 Market trend ClassifiCation Using Ml and dl

165

Figure 8-5 shows that both the training accuracy and the validation

accuracy remain constant across epochs (with the training accuracy

around 0.5291 and the cross-validation around 0.528).

 Conclusions
This chapter introduced binary classification. It covered a way of

designing, developing, and testing a machine learning model known as

logistic regression, and it covered a neural network model known as the

MLP model to solve a binary classification. It also showed metrics for

classification model performance evaluation. After carefully reviewing the

model’s performance, we found that the independent variables are good

predictors of the probability for an upward market and downward market.

Chapter 8 Market trend ClassifiCation Using Ml and dl

167© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0_9

CHAPTER 9

Investment Portfolio
and Risk Analysis
This chapter properly concludes the book by covering a comprehensive

framework for investment portfolio and risk analysis. Thus far, we have

developed several machine learning models and deep learning models

for robust investment management decision-making. Throughout the

book, we alluded to investing in markets involving risk. In this chapter,

we present the primitives of investment risk and performance analysis

using the Pyfolio package. To install Pyfolio in the Python environment,

we use pip install pyfolio, and in the conda environment, we use

conda install -c conda-forge pyfolio. Before you install pyfolio, first

install theano. To install theano in the conda environment, we use conda

install -c conda-forge theano.

An investor typically invests in an asset expecting future financial

returns. For instance, a company acquires plants and machinery to

transform raw materials into products that can be sold to attain financial

returns. There are ample asset classes that an investor can invest in.

Common asset classes include stocks, bonds, equities, commodities,

hedge funds, real estate, and retail investment trusts, among others.

Each asset class has its own underlying characteristics and considerable

value expressed in monetary terms. The value of an asset varies over

time because of many factors. An investor must constantly monitor and

improve an investment portfolio’s performance.

https://doi.org/10.1007/978-1-4842-7110-0_9#DOI

168

 Investment Risk Analysis
A clear understanding of the risks associated with an asset enables

effective planning for unfavorable market conditions that may occur. By

default, investors get exposed to risk when they take a position in the

market, irrespective of the side of the position they take. When the market

moves against an investor’s position, they suffer losses. Managing losses

is key to stable and viable investment strategies. Table 9-1 describes basic

investment performance metrics.

 Pyfolio in Action
This chapter convincingly demonstrates the Pyfolio package, a powerful

package for investment risk and performance analysis. We can use this

package with other complementary packages like Zipline and Quantopian

to backtest an investment strategy. Backtesting represents considering

how well an investment system manages risk and makes returns. We base

it on the notion that past performance impacts future performance. In this

chapter, we use the Pyfolio package as a stand-alone package. Before using

it, we first extract the data. Listing 9-1 scrapes market data from Yahoo

Finance by applying the get_data_yahoo() method. In this chapter, the

Table 9-1. Basic Investment Performance Metrics

Metric Description

Value at risk Representing the minimum capital required to compensate for

losses at a specified probability level

Drawback Representing the rate at which an asset suffers losses

Volatility Representing the extent at which an asset’s price deviates away

from the true mean value

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

169

Amazon1 performance is benchmarked alongside the Standard & Poor

(S&P) 500 index.2 Amazon is a US-based computer company giant whose

stock is exchanged as an S&P 500 component. The S&P 500 is a stock index

for gauging the performance of 500 companies listed in the United States.

Listing 9-1. Scraped Data

from pandas_datareader import data

import pyfolio as pf

ticker = 'AMZN'

start_day = '2010-10-01'

end_day = '2020-10-01'

amzn = data.get_data_yahoo(ticker, start_day, end_day)

spy = data.get_data_yahoo('SPY', start_day,end_day)

After web scraping, we perform necessary feature engineering tasks

(see Listing 9-2).

Listing 9-2. Estimate the Returns

amzn = amzn["Adj Close"].pct_change()[1:]

spy = spy["Adj Close"].pct_change()[1:]

After estimating the daily returns, we use varying matrices to test the

performance of the Amazon stock.

 Performance Statistics
The pyfolio package enables us to comprehensively examine the

fundamental performance of an investment strategy with some simple

code. Listing 9-3 tabulates the Amazon stock performance from November

1, 2010, to November 2, 2020 (see Table 9-2).

1 https://finance.yahoo.com/quote/AMZN
2 https://finance.yahoo.com/quote/%5EGSPC/

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

https://finance.yahoo.com/quote/AMZN
https://finance.yahoo.com/quote/%5EGSPC/

170

Listing 9-3. Performance Results

pf.show_perf_stats(amzn, spy)

Table 9-2. Performance Results

Start date 2010-10-04

End date 2020-10-01

Total months 119

Backtest

Annual return 35.6%

Cumulative returns 1995.7%

Annual volatility 31.6%

Sharpe ratio 1.12

Calmar ratio 1.04

Stability 0.97

Max drawdown -34.1%

Omega ratio 1.23

Sortino ratio 1.71

Skew 0.42

Kurtosis 7.53

Tail ratio 1.07

Daily value at risk -3.8%

Alpha 0.23

Beta 1.02

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

171

Table 9-2 highlights the risk that an investor bears when they exchange

Amazon stocks. We use the SPY stock index as the benchmark in our

analysis. It specifies that the annual rate of return is at 35.6 percent, and

the cumulative return is at 19995.7 percent. Relating to risk, the daily

value at risk is at 3.8 percent, and the maximum drawdown is at -34.1

percent. When observing investment performance findings, at most we are

interested in studying three key ratios: Calmar ratio, Beta ratio, and Sharpe

ratio. We equally devote our attention to alpha and beta. Underneath, we

take you through how we measure these ratios. Table 9-3 provides a high-

level overview of the key performance result mentioned.

Table 9-3. Key Performance Results

Metric Description

Calmar ratio Representing estimates of the uniform annual rate of return

divided by the maximum drawdown

Beta ratio Representing estimates of the difference between the anticipated

return from investment and the anticipated return from the

market over an exact risk-free return

Sharpe ratio Representing estimates of the difference between a risk-free rate

and portfolio returns

Alpha Representing estimates of investment returns compared to a

market key index

Beta Representing estimates of volatility associated with an investment

In the following section, we study the underwater maximum drawback

across time.

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

172

 Drawback
Listing 9-4 applies the plot_drawdown_underwater() method to exhibit

the rate at which an investment strategy suffered losses for 10 years (see

Figure 9-1).

Listing 9-4. Portfolio Drawback

pf.plot_drawdown_underwater(amzn)

plt.show()

Figure 9-1 postulates that the drawdown of the Amazon stock was

between 0 percent and -30 percent from November 1, 2010, and November

2, 2020. In 2019, they vicariously experienced the uppermost drawdown;

nevertheless, in the subsequent year, they promptly recovered losses.

Figure 9-1. Underwater drawback plot

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

173

 Rate of Returns
The most convenient way of determining whether an investment is

attractive involves studying the rate of returns. Rate of return shows the

period’s beginning price and the period’s end price.

 Annual Rate of Return

The annual rate of return represents the rate at which an asset yield returns

annually. We study returns over time to make forecasts. Listing 9-5 applies

the plot_annual_returns() method to plot the annual rate of returns of

Amazon stocks over 10 years (see Figure 9-2).

Listing 9-5. Annual Rate of Returns

pf.plot_annual_returns(amzn)

plt.show()

Figure 9-2. Amazon annual rate of return

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

174

Figure 9-2 shows that Amazon stocks produced an instable annual rate

of return from November 1, 2010, to November 2, 2020. There are changes

in annual returns. In 2014, the portfolio had the worst performance.

However, in the following year, the annual returns exceeded 100 percent.

 Rolling Returns
Listing 9-6 returns backtested cumulative returns over 10 years (see Figure 9-3).

Unlike the annual rate of returns, we weigh the cumulative returns. Pyfolio

estimates the cumulative returns across time by estimating the notable

differences between current returns and preceding returns (representing the

total amount gained from an investment) over the cost of the stock.

Listing 9-6. Rolling Returns

pf.plot_rolling_returns(amzn)

plt.show()

Figure 9-3. Rolling rate of returns

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

175

Figure 9-3 shows clear small increments in cumulative returns from

November 1, 2020. In 2016, an upward trend started gaining momentum.

 Monthly Rate of Returns

The monthly rate of returns represents the rate at which an asset yield

returns monthly. We review rates of returns monthly to identify historical

behavior and cautiously make short-term to midterm forecasts. Listing 9-7

applies the plot_monthly_returns_heatmap() method to plot a heatmap

of Amazon stocks’ monthly rate of return over 10 years (see Figure 9-4).

Listing 9-7. Monthly Rate of Return Heatmap

pf.plot_monthly_returns_heatmap(amzn)

plt.show()

Figure 9-4. Monthly rate of returns heatmap

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

176

Figure 9-4 shows that Amazon stock had unstable monthly rates of

return from November 1, 2010, to November 2, 2020. In the first nine

months of 2010, the rate is represented as zero, which is the same as in the

last two months of 2020. This is because we extracted data from November

1, 2010, to November 2, 2020. Figure 9-4 indicates returns were at their

peak (at 27 percent) in April 2020. In October 2018, the stock experienced

its worst performance; the monthly rate of return was -20 percent. Also,

from 2017 to 2020 the stock shows positive returns, which was the same

as in the fourth month of the year. For clarity, we carefully examined the

distribution of the data to summarize the monthly rate of returns. The most

widespread distribution is the normal distribution. Data follows a normal

distribution when actual values saturate around the true mean value.

Listing 9-8 applies the plot_monthly_hist() method to plot a histogram of

the monthly rate of returns of the Amazon stock (see Figure 9- 5).

Listing 9-8. Monthly Rate of Returns Histogram

pf.plot_monthly_returns_dist(amzn)

plt.show()

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

177

The actual monthly rate of returns is scattered around the mean value.

We can sufficiently summarize the data using the sample mean value.

From November 1, 2010, to November 2, 2020, on average, the Amazon

stock exhibited a long-run upward trend.

 Conclusions
This chapter concludes the book in which we introduced ways to remedy

financial problems, especially investment management problems,

using machine learning and deep learning. It covered several ways for

objectively analyzing the performance of an investment portfolio using a

Python package known as Pyfolio. To begin with, it discussed the concept

Figure 9-5. Monthly rate of returns histogram

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

178

of risk and techniques for identifying risk exposure. Last, it covered an

annual and monthly rate of return estimation. We are not limited to the

package covered in this chapter. We can use the packages alongside

Zipline and Quantopian to backtest investment strategies.

ChapteR 9 InVestment poRtfolIo anD RIsk analysIs

179© Tshepo Chris Nokeri 2021
T. C. Nokeri, Implementing Machine Learning for Finance,
https://doi.org/10.1007/978-1-4842-7110-0

Index

A
Activation function, 52
Adaptive movement estimation

(Adam), 52
Additive model

data preprocessing, 45
forecast, 47
model, 46
seasonal decomposition, 48, 50

Area under the curve (AUC), 155
Augmented Dickey-Fuller (ADF)

test, 21
Australian Securities and Investments

Commission (ASIC), 7
Autoregressive integrated moving

average (ARIMA) model, 21
definition, 35
develop, 37
forecasting, 38–40
hyperparameters, 36, 37

B
Backtesting, 19
Bear trend, 74
Binary classification, 17
Brokerage, 6, 7
Bullish trend, 74

C
Classification method

accuracy across epochs,
training/validation, 164

architecture, 161
data preprocessing, 150
dataset, 145, 147, 149
finalize method, 161, 162
loss across epochs, 162, 163
scrap data, 144

Cluster analysis, 18, 91
Contracts for difference

(CFD), 9, 92
Correlation method

covariance, 105
definition, 103
Eigen matrix, 110, 112
pairwise scatter

plot, 106–108
Pearson, 104

D
Deep learning model, 51, 167
Desk dealing (DD) brokers, 7
Dickey-Fuller (ADF) test, 27, 73
Dimension reduction, 18

https://doi.org/10.1007/978-1-4842-7110-0#DOI

180

E
Electronic Broker Services (EBS), 6
Electronic communications

network (ECN) brokers, 8
Ensemble method, 17
Exchange-traded funds (EFTs), 92
Exponential smoothing method,

32, 33

F
Financial Conduct Authority (FCA), 7
fit() method, 81
Foreign exchange (FX) market

bids/offers, 3, 4
CFD, 9, 10
definition, 1
exchange rates, 2, 3
interbank market, 5
leverage/margin, 9
retail market, 5–8

G
Gaussian hidden Markov model

(Gaussian HMM)
definition, 81
hidden results, 82, 83
hidden states, 81

Gaussian mixture model, 74
get_data_yahoo() method, 57, 93,

144, 168
GridSearchCV() method, 150
Gross domestic product growth

(GDP), 2

H
Hidden Markov model (HMM)

Application, finance, 74
gaussian, 74, 75, 77, 79, 80
mean/variance

hidden state, 83, 84
returns/volumes, 86, 87, 89, 90

I, J
Initial public offer (IPO), 12
Investment risk analysis

performance metrics, 168
Investment strategy management

process
algorithmic trading, 20
backtesting, 19
modeling, 15, 16, 18
strategy evaluation, 19
strategy formulation, 15
strategy implementation, 19

Itertools package, 40

K
Kendall correlation method, 103
KerasClassifier() method, 161
K-means clustering

data preprocessing, 96
definition, 92
elbow curve, 94, 95
returns/volatility, 94, 97
scrap data, 93
silhouette score, 99

INDEX

181

L
Least squares model, 102
Linear regression

correlation, 103
dataset, 103
definition, 101
descriptive statistics, 112–116
least square model, 116–119
model evaluation, 120, 122, 123
scrap data, 102

Logistic regression
classification report, 153, 154
confusion matrix, 152
definition, 150
learning curve, 157, 158
logistic classifier, 151
MLP, 158, 159
ROC curve, 155, 156

Long short-term memory (LSTM)
model, 51, 158

definition, 54
forecasting, 65, 66
gates, 55
keras, 57, 59–61, 63, 64
model evaluation, 67–70
stacked, 56
unfolded, 56

Loss function, 52

M
Machine learning model, 167
Mean squared error (MSE), 52

Monte Carlo simulation, 125
definition, 136
finance, 136
plot simulations, 138–141
run, 138

Moving average (MA) technique,
31, 32

Multiclass classification, 17
Multilayer perceptron (MLP), 158

N, O
No desk dealing (NDD) brokers, 8
Nonparametric method, 16, 143

P, Q
panda_montecarlo framework, 126
panda_montecarlo() method, 138
Parametric method, 16
Partial autocorrelation function

(PACF), 28
plot_annual_returns() method, 173
plot_decompose() method, 48
plot_drawdown_underwater()

method, 172
plot_monthly_hist() method, 176
plot_monthly_returns_heatmap()

method, 175
predict() method, 65, 120
Pyfolio package

definition, 168
drawback, 172
performance statistics, 169, 171

INDEX

182

rate of returns, 173
rolling returns, 174–177
scrap data, 169

R
Recurrent neural network (RNN),

158
definition, 53
problem, 54
Sequential data problem, 53

roc_curve() method, 155

S
SciKit-Learn library, 143
Seasonal ARIMA (SARIMA) model

forecast, 43
hyperparameters, 40, 41
profile, 42

Share market
raising capital

financing, 10
public listing, 11
share trading, 12
stock exchange, 11

speculation, 13
stock index, 12, 13

statsmodel library, 22
Stock clustering

investors, 91
volatility, 92

Stock exchange market, 125

Stock index, 12
Straight-through processing (STP)

brokers, 8
Supervised learning, 15
Systematic investors, 125

T
Time-series analysis, 21

dataset, 23, 24
definition, 22
rate of return, 33, 35
split data, training/test

data, 24
stationary test

ADF, 27, 28
autocorrelation

function, 28, 29
PACF, 29, 30

white noise, 25, 26

U
Unsupervised learning, 17, 100

V, W, X, Y, Z
Value at risk (VAR), 126
Variance-covariance method

covariance matrix, 132, 134
definition, 126
initial investment, 130
scrap data, 128
VAR, 127, 134, 136

Pyfolio package (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Chapter 1: Introduction to Financial Markets and Algorithmic Trading
	FX Market
	Exchange Rate
	Exchange Rates Quotation

	Exchange Rate Movement
	Bids and Offers
	The Left Bid and Right Offer Rule

	The Interbank Market
	The Retail Market
	Brokerage
	Desk Dealing Brokers
	No Desk Dealing Brokers
	Electronic Communications Network Brokers
	Straight-Through Processing Brokers

	Understanding Leverage and Margin
	The Contract for Difference Trading

	The Share Market
	Raising Capital
	Public Listing
	Stock Exchange
	Share Trading

	Stocks Index

	Speculative Nature of the Market
	Techniques for Speculating Market Movement

	Investment Strategy Management Process
	Strategy Formulation
	Modeling
	Supervised Learning
	The Parametric Method
	The Nonparametric Method
	Binary Classification
	Multiclass Classification

	The Ensemble Method

	Unsupervised Learning
	Dimension Reduction
	Cluster Analysis

	Backtesting
	Strategy Implementation
	Strategy Evaluation

	Algorithmic Trading

	Chapter 2: Forecasting Using ARIMA, SARIMA, and the Additive Model
	Time Series in Action
	Split Data into Training and Test Data
	Test for White Noise
	Test for Stationary
	Autocorrelation Function
	Partial Autocorrelation Function

	The Moving Average Smoothing Technique
	The Exponential Smoothing Technique
	Rate of Return
	The ARIMA Model
	ARIMA Hyperparameter Optimization

	Develop the ARIMA Model
	Forecast Using the ARIMA Model

	The SARIMA Model
	SARIMA Hyperparameter Optimization
	Develop a SARIMA Model
	Forecast Using the ARIMA Model

	The Additive Model
	Forecast
	Seasonal Decomposition

	Conclusion

	Chapter 3: Univariate Time Series Using Recurrent Neural Nets
	What Is Deep Learning?
	Activation Function
	Loss Function
	Optimize an Artificial Neural Network
	The Sequential Data Problem
	The RNN Model
	The Recurrent Neural Network Problem
	The LSTM Model
	Gates

	Unfolded LSTM Network
	Stacked LSTM Network
	Develop an LSTM Model Using Keras
	Forecasting Using the LTSM
	Model Evaluation
	Conclusion

	Chapter 4: Discover Market Regimes
	HMM
	HMM Application in Finance

	Develop a GaussianHMM
	Gaussian Hidden Markov
	Mean and Variance
	Expected Returns and Volumes

	Conclusions

	Chapter 5: Stock Clustering
	Investment Portfolio Diversification
	Stock Market Volatility
	K-Means Clustering
	K-Means in Practice

	Conclusions

	Chapter 6: Future Price Prediction Using Linear Regression
	Linear Regression in Practice
	Correlation Methods
	The Pearson Correlation Method

	The Covariance Method
	Pairwise Scatter Plots
	Eigen Matrix
	Further Descriptive Statistics
	Develop the Least Squares Model
	Model Evaluation

	Conclusion

	Chapter 7: Stock Market Simulation
	Understanding Value at Risk
	Estimate VAR by Applying the Variance-Covariance Method

	Understanding Monte Carlo
	Application of Monte Carlo Simulation in Finance

	Run Monte Carlo Simulation
	Plot Simulations
	Conclusions

	Chapter 8: Market Trend Classification Using ML and DL
	Classification in Practice
	Data Preprocessing
	Logistic Regression
	Develop the Logistic Classifier
	Evaluate a Logistic Classifier
	Confusion Matrix
	Classification Report
	ROC Curve

	Learning Curve

	Multilayer Layer Perceptron
	Architecture
	Finalize the Model
	Training and Validation Loss Across Epochs
	Training and Validation Accuracy Across Epochs

	Conclusions

	Chapter 9: Investment Portfolio and Risk Analysis
	Investment Risk Analysis
	Pyfolio in Action
	Performance Statistics
	Drawback
	Rate of Returns
	Annual Rate of Return

	Rolling Returns
	Monthly Rate of Returns

	Conclusions

	Index

