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Introduction

Kindly welcome to Implementing Machine Learning for Finance. This book 

is your guide to mastering machine and deep learning applied to practical, 

real-world investment strategy problems using Python programming. In 

this book, you will learn how to properly build and evaluate supervised 

and unsupervised machine learning and deep learning models adequate 

for partial algorithmic trading and investment portfolio and risk analysis.

To begin with, it prudently introduces pattern recognition and 

future price forecasting exerting time-series analysis models, like the 

autoregressive integrated moving average (ARIMA) model, seasonal 

ARIMA (SARIMA) model, and additive model, and then it carefully 

covers the least squares model and the long-short term memory (LSTM) 

model. Also, it covers hidden pattern recognition and market regime 

prediction applying the Gaussian hidden Markov model. Third, it presents 

the practical application of the k-means model in stock clustering. 

Fourth, it establishes the practical application of the prevalent variance- 

covariance method and empirical simulation method (using Monte 

Carlo simulation) for value-at-risk estimation. Fifth, it encloses market 

direction classification using both the logistic classifier and the multilayer 

perceptron classifier. Lastly, it promptly presents performance and risk 

analysis for investment portfolios.

I used Anaconda (an open source distribution of Python 

programming) to prepare the examples. The libraries covered in this book 

include, but are not limited to, the following:

• Auto ARIMA for time-series analysis

• Prophet for time-series analysis



xviii

• HMM Learn for hidden Markov models

• Yahoo Finance for web data scraping

• Pyfolio for investment portfolio and risk analysis

• Pandas for data structures and tools

• Statsmodels for basic statistical computation and 

modeling

• SciKit-Learn for building and validating key machine 

learning algorithms

• Keras for high-level frameworks for deep learning

• Pandas MonteCarlo for Monte Carlo simulation

• NumPy for arrays and matrices

• SciPy for integrals, solving differential equations, and 

optimization

• Matplotlib and Seaborn for popular plots and graphs

This book targets data scientists, machine learning engineers, and 

business and finance professionals, including retail investors who want 

to develop systematic approaches to investment portfolio management, 

risk analysis, and performance analysis, as well as predictive analytics 

using data science procedures and tools. Prior to exploring the contents of 

this book, ensure that you understand the basics of statistics, investment 

strategy, Python programming, and probability theories. Also, install the 

packages mentioned in the previous list in your environment.

InTroduCTIon



1© Tshepo Chris Nokeri 2021 
T. C. Nokeri, Implementing Machine Learning for Finance,  
https://doi.org/10.1007/978-1-4842-7110-0_1

CHAPTER 1

Introduction to 
Financial Markets and 
Algorithmic Trading
This is the initial chapter of a book that presents algorithmic trading. 

This chapter carefully covers the foreign exchange (FX) market and 

the stock market. It explores how we pair, quote, and exchange official 

currencies. Subsequently, it covers the stock exchange. In addition, it 

presents key market participants, principal brokers, liquidity providers, 

modern technologies, and software platforms that facilitate the exchange 

of currencies and shares. Furthermore, it looks at the speculative nature 

of the FX market and stock exchange market and specific aspects of 

investment risk management. Last, it covers several machine learning 

methods that we can apply to combat problems in finance.

 FX Market
The FX market represents an international market in which investors 

exchange currency for another. It does not have a principal visible location 

in which transactions occur, each investor holds their own transaction 

https://doi.org/10.1007/978-1-4842-7110-0_1#DOI
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records, and each transaction happens electronically. Key market 

participants self-regulate using guidelines prescribed by a regulatory body 

within their geographic boundaries.

 Exchange Rate
Each official country generally has its own currency. The currency is a class 

of payments administered and distributed by the central government and 

dispersed around their geographic boundaries. In relation to foreign trade, 

an individual or corporation that purchases foreign goods or services 

and sells them to their local market typically has to exchange currencies. 

We universally recognize an exchange rate as the ratio of the price of a 

local currency to a foreign currency. The major currencies include the 

US dollar ($), euro (€), Great Britain pound (£), Japanese yen (¥), etc. The 

cross rate is the price of a currency against another, where the US dollar is 

uninvolved. For instance, euro/GBP is a cross rate between the euro and 

the sterling.

 Exchange Rates Quotation

An exchange rate represents the price of a currency relative to an 

alternative. We quote currencies directly or indirectly. Using the direct 

method, the exchange shows how much we have to exchange the local 

currency for one unit of a foreign currency. For instance, EUR/USD = 1.19. 

The indirect method shows how much foreign currency trades for one unit 

of the local currency. For instance, USD/EUR = 0.84.

 Exchange Rate Movement
The exchange rate is inconstant; it varies over time. There are several 

prime factors that influence changes in the exchange rate. For instance, 

economic and growth factors such as gross domestic product growth 
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(GDP), inflation rates (consumer price index or GDP deflator), and stocks 

traded, external debt stocks, current account balance, total reserves, etc. 

In other instances, rates may react to geopolitical news, natural disasters, 

labor union activities, social-unrest, corporate scandals, among others. 

When changes befall, we say that one currency is stronger or weaker than 

another currency. For instance, with the EUR/USD currency pair, if the 

euro strengthens, the USD progressively weakens. Let’s say EUR/USD 

opened at 1.2100 and closed at 1.2190; we say that the EUR strengthened 

since 1 EUR bought more USD at the close than at open.

• Assuming an investor buys 1 million euros at 1.2100 at 

the open, assuming it will strengthen on that day, but 

the euro closes at 1.2190, the investor has experienced 

$7 383. 10(€9000) loss.

$1 000 0000 $1 000 000 €1 219 000 €1 210 000
 

0 €9 000
Euro Loss

+ = − = − +
=

− −

 Bids and Offers
A market maker represents an organization that exchanges currencies 

on its own account at prices reflected on their systems. Common market 

makers include banks and brokers. They quote two rates as follows:

• Bid: The rate at which market makers buy the currency

• Offer: The rate at which market makers sell the base 

currency
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 The Left Bid and Right Offer Rule

As tricky as it may be when market makers trade, they are buying and 

selling at the same time. They buy the base currency on the left side of the 

quote and sell the currency on the right side of the quote. For instance, if a 

market maker quotes the EUR/USD at 1.2100/15, they will buy the dollars 

at €1.2100 and sell them at €1.2115.

EUR/USD

Bid Ask

1.2100 1.2115

The difference between the bid and offer is called the spread. It 

informs us about liquidity. The more liquid the market, the more narrow 

the spread. To understand how this works, let’s look at the minor currency 

pairs and major currencies. Currency pairs in emerging markets such as 

South African rand to rupees (ZAR/INR), Bangladeshi taka to Omani rial 

(BDT/OMR), among others, have low trading activities and are traded in 

small quantities. This results in higher spreads when compared to major 

currencies such as the GBP to the US dollar (USD), Australian dollar to the 

US dollar, etc. Equation 1-1 shows how we find the spread.

 Spread Bid Ask� �  (Equation 1-1)

Consider the scenario where the EUR/USD is quoted at 1.2100/15; the 

spread equals 0.015.

The margin represents the difference between the bid and ask divided 

by the ask. It can be written mathematically as in Equation 1-2.

 Margin Bid Ask Ask� �� � �/ %100  (Equation 1-2)
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Margin equals 1.2381 percent.

• Assume you are a US tourist who is visiting Europe 

and wants euros; you must buy the euros using the US 

dollars you arrived with. The market makers will sell 

them to you at €1.2115. In contrast, if you are on the 

seller’s side, the market maker buys the currency at 

€1.2100.

 The Interbank Market
The interbank market encompasses a substantial segment of the FX 

market. It is an international network of large financial companies, 

especially multinational banks that use their cash balances to trade 

currencies. We equally recognize the interbank market as the wholesale 

market. Key participants in this market influence the direction of price 

movements and interest rate risk through their purchasing activities 

and sales operations. They set the bid and ask price for a currency pair 

based on future price predictions. The central bank frequently examines 

the activities of key market participants to determine the effects of 

their transactions on economic stability. In addition, they use complex 

instruments such as fiscal policies and monetary policies to drive price 

movements.

 The Retail Market
The retail market is a narrow segment of the FX market. It encompasses 

investors who are not directly part of the interbank market. In the 

retail market, investors carry out transactions over the internet using 

sophisticated technologies, systems, and software that brokerage 

companies provide.
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Figure 1-1 shows that Electronic Broker Services (EBS) receives prices 

from banks, brokerage companies, and other financial institutions, and 

then provides them to retail investors. It provides an electronic platform 

that enables retail investors to trade with money markers. Key financial 

institutions in the market include insurance firms, investment firms, 

hedge funds, etc. EBS compromises leading banks (an alternative to EBS is 

Thomson Reuters Matching). Established banks include Goldman Sachs, 

JP Morgans, and HSBC among others. Some of the most popular brokerage 

firms include Saxo Bank, IG Group, Pepperstone, among others.

 Brokerage

A brokerage involves providing a stable platform that facilitates 

transactions. Brokerage companies typically issue retail investors’ trading 

accounts and the infrastructure for exchanging financial instruments. 

Figure 1-2 exhibits the various types of brokers.

Retail 
Investors Online FX

Electronic 
Brokerage 
Services

Banks Brokerage

Financial 
Institutions

Figure 1-1. Simple example of the FX market
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Brokerage companies differ subtly in their modus operandi. These 

companies must be registered and follow compliance standards set 

by regulatory organizations within their geographic boundaries. Key 

regulators include the US Commodities and Futures Trading Commission, 

Australian Securities and Investments Commission (ASIC), and UK 

Financial Conduct Authority (FCA). Underneath, we consider primary 

brokerage companies.

Desk Dealing Brokers

Desk dealing (DD) brokers present fixed spreads and liquidity to investors. 

They establish a market for investors and take the opposing side of 

investors’ orders, meaning that they trade against their customers. They 

Types of 
Brokerage

Dealing Desk

No Dealing 
Desk

Money  Marker

ECN

STP

STP+ECN

Figure 1-2. Types of brokers
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uniformly determine the bid and ask prices based on their own future 

price predictions. Their rates do not come from the interbank market.

No Desk Dealing Brokers

No desk dealing (NDD) brokers do not pass on investors’ orders through 

desk dealing. They also do not take the other side of the trade executed by 

investors. To generate revenue, they charge a small commission and/or 

slightly influence the spread. There are two principal NDD brokers, namely: 

1) electronic communications network brokers and 2) straight-through 

processing brokers.

Electronic Communications Network Brokers

Electronic communications network (ECN) brokers ensure investors’ 

orders interact with the orders of other investors in the network. 

Traditionally, investors include commercial banks, institutional investors, 

hedge funds, etc. They trade against each other by offering bid prices and 

asking prices. To generate revenue, they call for a small commission and 

attract an enormous pool of investors through robust marketing initiatives.

Straight-Through Processing Brokers

Straight-through processing (STP) brokers direct investors’ orders to 

liquidity providers with access to the interbank market. At most, these 

brokers favorably get many bid prices and ask prices from many liquidity 

providers such as Citibank, Barclays Bank, Morgan Stanley, among others, 

who carefully sort them and then offer investors a price with a markup. To 

generate revenue, they call for a hefty commission. Unlike the two types of 

brokerage firms mentioned earlier, these brokers are not concerned with 

influencing trading activities.
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 Understanding Leverage and Margin
The FX market offers more excessive leverage compared to the stock 

market. Leverage represents the amount that brokers loan investors to 

transact. It exposes an investor to a position that they would not have 

with their cash balance. Brokers offer trading accounts that use leverage 

through margin trading. The margin represents the difference between 

the total value of the positions held and the total value of the loan. 

Margin quantity increases as a result of a decrease in leverage or vice 

versa. Leverage enables investors to execute numerous trades they would 

ordinarily trade using the current account; you can basically look at it 

as credit without the requirement of collateral. It is often depicted in a 

ratio. Standard trading accounts have leverage types that range from 1:10 

to 1:100. However, some brokerages do offer accounts with leverage up 

to 1:1000. The lower the ratio, the higher the capital needed to execute 

a trade. Investors exert leverage to generate more returns with slight 

price changes. For instance, an account with 1:1000 enables investors to 

execute numerous trades compared to 1:10. Also, the higher leveraged 

accounts amplify profits and magnify losses. To some extent, an account’s 

leverage type gives a slight idea of an investors’ risk profile. For instance, 

an investor expecting to rapidly generate profits in the market will have a 

high leveraged account, and a more conservative investor will have a low 

leveraged account.

 The Contract for Difference Trading
The contract for difference (CFD)1 represents a financial derivative 

with a value that comes from a financial asset. It enables investors to 

generate profits from price differences rather than safeguarding an asset. 

1 https://web.archive.org/web/20160423094214/https://www.nsfx.com/
about-nsfx/risk-disclosure/
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Consequently, investors can speculate on price movements. Besides CFDs, 

there is a more complex financial derivative known as futures. Unlike 

CFDs, which are privately traded through brokers, futures are traded 

through a large exchange. With futures, an investor on the buyer’s side is 

obliged to execute the trade when the contract expires, and an investor 

on the seller’s side ought to deliver the asset at a certain period. Futures 

have an expiry date, and there is a cap on the number of trades that an 

investor can execute at a certain period. Given that, the future has stricter 

regulatory mechanisms than CFDs.

 The Share Market
We equally recognize the share market as the equity market or the stock 

market. It is also one of the most liquid markets in the world. It is an 

international market mostly made up of large financial companies that 

trade listed stocks. A share represents the ownership of equity. A company 

sells equity to raise capital.

 Raising Capital
At most, companies seek to expand their business operations, but 

funds are constrained by capital. They may privately or publicly seek 

debt financing or equity financing. Debt financing involves borrowing 

funds using collateral. The most conventional source of debt financing 

is big commercial banks. Most startups cannot source financial capital 

from these banks because they are at high risk (most startups fail). 

They use alternative debt financing sources like micro-lenders, angel 

investors, and seed investors depending on the phase they are at in their 

entrepreneurship journey. More established companies may raise capital 

by selling their shares to the public.
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 Public Listing

If an established company wants to gain a large financial capital, then it 

can list on a public stock exchange.2 Before they exchange company stocks, 

they must first comply with the accreditation process of a commission in a 

specific jurisdiction and make an initial public offering.

 Stock Exchange

The stock market exchange facilitates the exchange of shares between 

companies and investors. The most popular stock exchanges include the 

London Stock Exchange, New York Stock Exchange, and NASDAQ among 

others. Figure 1-3 shows a simple example of the stock exchange market.

Figure 1-3 shows that the brokers interact with the stock exchanges 

and pass prices to investors. Also, the stock exchange releases a stock 

market index. There are two markets on the stock exchange. First, there 

is the primary market, where a company shows intent of enlisting in 

the stock exchange by delivering an official press release, partaking 

2 https://www.investopedia.com/terms/i/ipo.asp

Stock 
Exchange Broker Investors

Index

Figure 1-3. A simple example of the stock exchange market
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in roadshows to make their intentions known to the public, filing for 

enlistment, and making an initial public offer (IPO), which involves issuing 

shares prior to enlistment. Post enlistment on the exchange, a company 

enters the secondary market by making a follow-on offer and opening 

trading activities to the public. This occurs upon satisfying the compliance 

requirements of the exchange.

 Share Trading

The stock market exchange facilitates the exchange of securities like 

shares, bonds, and stocks. Key markets in the stock exchange include the 

following: the primary market, where a company may issue shares before 

they are listed on an exchange, which is known as an initial public offer 

(IPO), and the secondary market, where the actual trading happens.

 Stocks Index
A stock index represents an estimate of the stock market or part of its 

segment. The index constitutes a set of stocks that investors may buy as a 

coherent whole or in an EFT or mutual fund that typically resembles the 

index. Table 1-1 shows key stock indexes.

Table 1-1. Key Stock Indices

Name Description

standard & poor (s&p) 500 Measures the stock performance of 500 large 

companies in the united states

dow Jones Industrial average 

(dJI 30)

Measures the stock performance of 30 large 

companies in the united states

nasdaQ Composite Index Measures the stock performance of almost all the 

nasdaQ stock market
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The stock major index (S&P 500, DJI 30, and NASDAQ 100, etc.) applies 

a divisor (often discrete) to divide total market capitalization and get the 

index value. They compromise stocks across diverse industries. They do 

not differ from other asset classes by the way we exchange them.

 Speculative Nature of the Market
In the exchange market, investors speculate on future prices of an asset 

and execute trades, so they yield reasonable returns as the price moves 

toward their speculation. If the price moves in the opposite direction, 

then investors incur losses. As a result of leverage, investors are exposed 

to high risk since investors are given room to trade asset classes they 

cannot afford, meaning they may lose an enormous amount of their capital 

with slight changes in the market (see https://www.capitalindex.com/

bs/eng/pages/trading- guides/margin- and- leverage- explained). 

Most retail investors trading CFDs lose their capital. An investor must 

understand the risks associated with trading prior to investing their capital.

 Techniques for Speculating Market Movement
Investors use either the subjective method or the objective method to 

speculate the market or a combination of both. When using subjective 

means, an investor uses their rationalized belief, experience, opinions 

of others, and emotions to decide on whether to buy or sell at a specific 

price. When using objectivity, an investor applies mathematical models 

to identify patterns in the data and forecast future prices and then decides 

on whether to buy or sell a currency pair at a specific price. This book only 

covers machine learning and deep learning models.
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 Investment Strategy Management Process
Figure 1-4 shows a simple investment strategy management process.

Reliable?
No

Strategy 
Formulation

Modeling

Backtesting

Strategy 
Execution

Strategy 
Evaluation

Reliable?

Yes

No

Yes

Figure 1-4. A simple investment strategy management process
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 Strategy Formulation
Strategy formulation is the first step in investment management. It involves 

the following tasks:

• Identifying risk and opportunity

• Setting short-term and long-term objectives

• Identifying resources and ways of organizing, 

managing, and directing those resources (human, 

financial, and technical)

• Establishing a structure and policies

Systematic investors model data to draw meaningful insights that 

influence strategy.

 Modeling
After deciding on ways to manage an investment portfolio, the subsequent 

step involves modeling. It involves the use of quantitative methods. This 

book focuses exclusively on machine learning and deep learning models 

from a finance perspective. The subsequent section discusses learning 

methods applicable to finance, especially investment management.

 Supervised Learning

In supervised learning, a model predicts future values of a dependent 

variable using a function that operates on a set of independent variables 

based on labels we provide them in the training process. Supervised 

learning requires us to split data into training and test data (at times 

validation data too). We present a model with a set of correct answers 

and allow it to predict unseen answers. There are three primary types 

of supervised learning methods, namely, the parametric method, the 

nonparametric method, and the ensemble method. See Figure 1-5.
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The Parametric Method

The parametric method is also called the linear method. It makes strong 

assumptions about the structure of the data. We assume the underlying 

structure of the data is linear and normal. It handles dependent variables 

as a continuous dependent variable (a dependent variable that is limited 

to a specific range). This covers time-series analysis in Chapter 2 and the 

ordinary least squares model in Chapter 6.

The Nonparametric Method

Unlike the parametric method, the nonparametric method does not 

have substantial assumptions of linearity and normality. It handles a 

categorical dependent variable (a dependent variable that is limited to a 

specific range). There are two primary nonparametric methods: binary 

classification and multiclass classification.

Supervised 
Learning

Parametric

Non-
Parametric

Ensemble

Regression
Time Series

Regression / 
Classification

Classification

Figure 1-5. Supervised machine learning
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Binary Classification

In binary classification, the independent variable produces two classes 

such as no and yes or fail and pass. We code the classes as 0 and 1 and train 

binary classifiers to predict subsequent classes.

Multiclass Classification

We use multiclass classification when the dependent variable is over  

two classes such as negative, neutral, or positive. We code the classes 

as 0, 1, 2...n. The coded values should not exceed 10. The most popular 

multiclass classification models include random forest and linear 

discriminant analysis, among others. This book does not cover multiclass 

classification models.

The Ensemble Method

The ensemble method encompasses both the parametric method and 

the nonparametric method. We use it when the dependent variable is a 

continuous variable or categorical variable. It addresses linear regression 

and classification problems. The most popular ensemble methods include 

support vector machine and random forest tree, among others. This book 

does not cover ensemble models.

 Unsupervised Learning

Unsupervised learning does not call for data to split the data into training 

data, test data, and validation data. We do not hand out correct answers 

to a model; we allow it to form intelligent guesstimates on its own. Cluster 

analysis is the most prevalent unsupervised learning method. See Figure  1- 6.
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Dimension Reduction

Dimension reduction is a technique to summarize data by reducing 

it to small dimensions. We mainly use this technique for variable 

selection. Popular dimension reduction techniques include the principal 

components analysis (PCA), which identifies components that account for 

most of the variation in the data, and factor analysis, which identifies latent 

factors that account for most of the variation in the data. This book covers 

dimension reduction in Chapter 5.

Cluster Analysis

Cluster analysis involves grouping data based on similar similarities. It is 

useful when we have no assumptions about the structure of the data. In 

cluster analysis, there is no actual dependent variable. The most common 

cluster model is the K-Means; it partitions the data into k (clusters) with 

the nearest mean (centroids); it then finds the distance between subgroups 

to produce a cluster. This book covers K-Means in Chapter 5.

Unsupervised 
Learning

Dimension 
Reduction

Cluster

PCA/FA/LDA

K-
Means/DBSC

AN

Figure 1-6. Unsupervised learning
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 Backtesting
After we develop a model, we must determine how reliable the model is. 

Backtesting3 sits between strategy formulation and execution. It involves 

determining the extent to which a model performs. At most, systematic 

investors’ backtest simulated markets. The easiest way to understand 

market patterns involves visualizing historical trade executions and price 

movements. Key Python frameworks that support backtesting include 

PyAlgoTrade and Zipline.

 Strategy Implementation
After finding a reliable investment strategy, we may deploy a model to buy 

and sell asset classes, thus risking the capital of the investment portfolio. 

A system may trade manually or be automated, using reliable systematic 

applications. Key Python frameworks that support paper and live trading 

include QuantConnect, Quantopia, Zipline, etc. This book does not cover 

backtesting and live trading frameworks.

 Strategy Evaluation
Strategy evaluation involves assessing how well a strategy performs. It 

enables investors to devise action plans for performance improvements. 

When analyzing the performance of a strategy, investors mainly focus on 

the value at risk, the annual rate of return, the cumulative rate of the return 

value, and drawdown. Investors use these statistics to revise their strategy. 

This book covers investment risk analysis and performance using Pyfolio.

3 Backtesting Systematic Trading Strategies in Python: Considerations and Open 
Source Frameworks: https://www.quantstart.com/articles/backtesting- 
systematic- trading-strategies-in-python-considerations-and-open- 
source-frameworks/
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 Algorithmic Trading
Instead of vigorously observing action prices and physically executing 

orders, an investor may automate or partially automate tasks using 

sophisticated applications operating a set of predetermined rules 

(algorithms). This trading technique helps meaningfully reduce redundant 

tasks, consequently allowing investors to focus on more important duties. 

Using automated programs eliminates subjectivity. Meaning, investors do 

not execute orders ostensibly based on some opinion, feeling, or emotion. 

Instead, they deploy scalable machine learning and deep learning models. 

This book conceals the art and science of developing and testing scalable 

machine learning models and deep learning models. High-frequency 

trading4 goes hand in hand with algorithmic trading; however, we do not 

cover the topic in this book. You can apply the models discussed in this 

book to solve complex problems outside the realm of finance.

this book does not provide any financial advice. It is a technical book 
that introduces data scientists, machine learning engineers, business, 
and finance professionals to algorithmic trading by exploring several 
supervised learning models and unsupervised learning models.

4 High-Frequency Trading: An Innovative Solution to Address Key Issues 
(harvard.edu): https://corpgov.law.harvard.edu/2014/09/17/
high-frequency-trading-an-innovative-solution-to-address-key-issues/
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CHAPTER 2

Forecasting Using 
ARIMA, SARIMA, and 
the Additive Model
Time-series analysis is a method for explaining sequential problems. It 

is convenient when a continuous variable is time-dependent. In finance, 

we frequently use it to discover consistent patterns in the market data and 

forecast future prices. This chapter offers a comprehensive introduction 

to time-series analysis. It first covers ways of finding stationary in series 

data using the augmented Dickey-Fuller (ADF) test and testing for white 

noise and autocorrelation. Second, it reveals techniques of succinctly 

summarizing the patterns in time-series data using smoothening, such 

as the moving average technique and exponential technique. Third, it 

properly covers the estimation of rates of return on investment. Last, 

it covers hyperparameters optimization and model development and 

evaluation. This chapter enables you to design, develop, and test time-series  

analysis models like the autoregressive integrated moving average 

(ARIMA) model, seasonal ARIMA (SARIMA) model, and additive model, 

to identify patterns in currency pairs and forecast future prices. In this 

chapter, we use pandas_datareader to scrape financial data from Yahoo 

Finance, and we use conda install -c anaconda pandas-datareader. 
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For time-series modeling, we use the statsmodels library, which is  

pre-installed in the Python environment. We also use pmdarima, which 

is an extension of statsmodels. To install it in the Python environment, 

we use pip install pmdarima; in the conda environment, we use conda 

install -c saravji pmdarima. Lastly, we use FB Prophet for high-quality 

time-series analysis. To install it in the Python environment, we use pip 

install fbprophet; in the conda environment, we use conda install -c 

conda-forge fbprophet. Before you install fbprophet, ensure that you 

first install pystan. To install pystan, we use conda install -c conda-

forge pystan.

Anaconda is the most popular open source Python distribution and 

enables one to manage, install, update, and manage packages (download 

the platform from https://www.anaconda.com/products/individual). 

You can install the platform on Windows, macOS, and Linux operating 

systems. Find out more about system requirements and hardware 

requirements at https://docs.anaconda.com/anaconda-enterprise/

system-requirements/.

 Time Series in Action
Time-series analysis is suitable for estimating a continuous variable that 

is time-dependent. In this chapter, we use it to identify the structure 

of sequential data. It is a seamless method for identifying patterns and 

forecasting future prices of currency pairs. Market data is often sequential 

and has some stochastic elements, meaning there is an underlying random 

process. We analyze the historical data of one of the most traded currency 

pairs in the world, the US dollar ($) and Japanese yen (¥), or the (USD/

JPY) pair. We are interested in uncovering patterns in the adjusted closing 

price of the currency pair across time and then making reliable predictions 

of price movements. To create a time-series model, first launch Jupyter 

Notebook and create a new notebook.
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Listing 2-1 collects the price data of the USD/JPY pair from November 

1, 2010, to November 2, 2020 (see Table 2-1).

Listing 2-1. Scrap Data

import pandas as pd

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'usdjpy=x'

df = data.get_data_yahoo(ticker, start_date, end_date)

df.head()

As mentioned, we are interested in the adjusted closing price (Adj 

Close). Listing 2-2 deletes columns that we will not make use of.

Table 2-1. Dataset

Date High Low Open Close Volume Adj Close

2010-11-01 81.111000 80.320000 80.572998 80.405998 0.0 80.405998

2010-11-02 80.936996 80.480003 80.510002 80.558998 0.0 80.558998

2010-11-03 81.467003 80.589996 80.655998 80.667999 0.0 80.667999

2010-11-04 81.199997 80.587997 81.057999 81.050003 0.0 81.050003

2010-11-05 81.430000 80.619003 80.769997 80.776001 0.0 80.776001
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Listing 2-2. Delete Columns and Drop Missing Values

del df["Open"]

del df["High"]

del df["Low"]

del df["Close"]

del df["Volume"]

df = df.dropna()

df.info()

<class 'pandas.core.frame.DataFrame'>

DatetimeIndex: 2606 entries, 2010-11-01 to 2020-11-02

Data columns (total 1 columns):

 #   Column     Non-Null Count  Dtype

---  ------     --------------  -----

 0   Adj Close  2606 non-null   float64

dtypes: float64(1)

memory usage: 40.7 KB

In this listing, we deleted most columns and dropped missing values. 

The remaining column is the adjusted closing price column; the format is 

Adj Close.

 Split Data into Training and Test Data
There are 2,606 data points in the time-series data. Listing 2-3 splits the 

data using the 80/20 split rule (the first 2,085 data points are for training 

the model, and the remaining are for testing the model).

Listing 2-3. Split Data into Training and Test Data

train = df[:2085]

test = df[2085:]
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 Test for White Noise
If time-series data is stationary, then it contains white noise. The most 

straightforward way to investigate white noise involves generating random 

data and finding out whether there is white noise in the arbitrary data. 

Listing 2-4 returns random numbers and plots the autocorrelation across 

different lags (see Figure 2-1).

Listing 2-4. White Noise Test

from pandas.plotting import autocorrelation_plot

import matplotlib.pyplot as plt

import numpy as np

randval = np.random.randn(1000)

autocorrelation_plot(randval)

plt.show()

Figure 2-1. Random white noise test
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Figure 2-1 shows that there is no white noise in the series because 

there are significant spikes above 95 percent and 99 percent confidence 

intervals. Listing 2-5 plots training data autocorrelation to show white 

noise (see Figure 2-2).

Listing 2-5. Training Data White Noise Test

autocorrelation_plot(train["Adj Close"])

plt.show()

Figure 2-2 indicates for lag 1 there is a sharp decline, and after 

the 500th lag the line goes lower and approaches zero. Since all 

autocorrelations are not equal to zero, we can confirm that there is no 

white noise.

Figure 2-2. Training data white noise test

Chapter 2  ForeCasting Using ariMa, sariMa, and the additive Model



27

 Test for Stationary
The presence of the stochastic (or random) process in ordered data may 

affect the conclusions. Listing 2-6 checks whether the series is stationary 

using a unit root test called the augmented Dickey-Fuller test (see 

Table 2-2). A series is stationary when the mean value of the series data 

is zero, which means the observations do not vary across time. With the 

augmented Dickey-Fuller (ADF) test when the p-value is greater than 0.05, 

we do not reject the hypothesis.

The hypothesis of an ADF test is written as follows:

Null hypothesis: There is no unit root.

Alternative hypothesis: There is a unit root.

A series is nonstationary when the ADF F% statistics is below zero and 

the p-value is less than 0.05.

Listing 2-6. Augmented Dickey-Fuller Test

from statsmodels.tsa.stattools import adfuller

adfullerreport = adfuller(train["Adj Close"])

adfullerreportdata = pd.DataFrame(adfullerreport[0:4],

                                  columns = ["Values"],

                                  index=["ADF F% statistics",

                                         "P-value",

                                         "No. of lags used",

                                          "No. of observations"])

adfullerreportdata
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Table 2-2 highlights that the F statistics result is negative and the 

p-value is greater than 0.05. We do not reject the null hypothesis; the series 

is nonstationary. This entails that the series requires differencing.

 Autocorrelation Function
Listing 2-7 determines the serial correlation between y and yt (yt 

entails that the observation y is measured in time period t). We use the 

autocorrelation function to measure the degree to which present values 

of a series are related to preceding values when we consider the trend, 

seasonality, cyclic, and residual components.

Figure 2-3 shows that most spikes are not statistically significant. In 

addition, we use the partial autocorrelation function (PACF) to further 

examine the partial serial correlation between lags.

Listing 2-7. Autocorrelation

from statsmodels.graphics.tsaplots import plot_acf

plot_acf(train["Adj Close"])

plt.xlabel("Lag")

plt.ylabel("ACF")

plt.show()

Table 2-2. F Statistics

Values

ADF F% statistics -1.267857

P-value 0.643747

No. of lags used 6.000000

No. of observations 2078.000000
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 Partial Autocorrelation Function
The PACF plot expresses the partial correlation coefficients not described 

at low-level lags. Listing 2-8 constructs the PACF plot (see Figure 2-4).

Listing 2-8. Partial Autocorrelation

from statsmodels.graphics.tsaplots import plot_pacf

plot_pacf(train["Adj Close"])

plt.xlabel("Lag")

plt.ylabel("ACF")

plt.show()

Figure 2-3. Autocorrelation
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We use a correlogram to discover lags that explain the effect outside 

the 95 percent confidence boundary. For instance, Figure 2-3 shows that 

there is a significant spike in lag 1 and lag 2. This means the lags can 

explain all higher-order autocorrelation (at most the second lag is the 

highest-order lag). It shows spikes that are not statistically significant. 

(There is a strong positive correlation until lag 2; after lag 2, the p-value is 

less than 0.05.) The autocorrelation is close to zero, which is around the 

statistical control (see the blue boundary in Figure 2-3). There is a strong 

dependency on the time-series data.

Figure 2-4. Partial autocorrelation
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 The Moving Average Smoothing Technique
The most familiar smoothing technique is the moving average (MA) 

technique; it returns the means of weight average of preceding and new data 

points, where weighting depends on the cohesion of the time-series data.  

In this example, we use Pandas to perform rolling window calculations. After 

that, we discovered the rolling mean with two fixed-size moving windows. 

A moving window represents the number of data points for calculating the 

statistics. Listing 2-9 smooths the time-series data using a 10-day rolling 

window and a 50-day rolling window (see Figure 2-5).

Listing 2-9. Time Series (10-Day and 50-Day Moving Average)

MA10 = train["Adj Close"].rolling(window=10).mean()

MA50 = train["Adj Close"].rolling(window=50).mean()

df.plot(kind="line",color="navy")

MA10.plot(kind="line",color="green",label="10D MA")

MA50.plot(kind="line",color="orange",label="50D MA")

plt.xlabel("Date")

plt.xticks(rotation=45)

plt.ylabel("Adj Close")

plt.legend()

plt.show()
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 The Exponential Smoothing Technique
The exponential smoothing method weighs values outside the window to 

zero, where enormous weighted values rapidly die out and minor weighted 

values gradually vanish. Listing 2-10 smooths the time-series data using 

the exponential smoothing technique and sets the half-life to 3. Half-life 

is a parameter that specifies the lag at which exponential weights decay by 

half. In Listing 2-10, we specified the parameter as 3 since there is a strong 

positive correlation until lag 2; after lag 2, the p-value is less than 0.05 (refer 

to Figure 2-3).

Listing 2-10. Develop Smooth Series (Exponential)

Exp = train["Adj Close"].ewm(halflife=30).mean()

df.plot(kind="line", color="navy")

Exp.plot(kind="line", color="red", label="Half Life")

Figure 2-5. Time series (10-day and 50-day moving average)
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plt.xlabel("Time")

plt.ylabel("Adj Close")

plt.xticks(rotation=45)

plt.legend()

plt.show()

Figure 2-6 shows the core structure of the time-series data using the 

moving average technique and exponential technique.

 Rate of Return
Listing 2-11 estimates and plots the rate at which an asset yield returns 

annually (see Figure 2-7).

Figure 2-6. Time series (exponential)
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Listing 2-11. Rate of Return

pr = df.pct_change()

pr_plus_one = pr.add(1)

cumulative_return = pr_plus_one.cumprod().sub(1)

fig, ax = plt.subplots()

cummulative_return = cumulative_return.mul(100)

cummulative_return_max = cummulative_return.max()

cummulative_return_min = cummulative_return.min()

cummulative_return.plot(ax=ax, color="purple")

plt.axhline(y=cummulative_return_max.item(), color="green",

             label="Max returns: " + str(round(cummulative_

return_max.item(),2)) + " %")

plt.axhline(y=cummulative_return_min.item(), color="red",

             label="Min returns: " + str(round(cummulative_

return_min.item(),2)) + " %")

plt.xlabel("Date")

plt.ylabel("Return (%)")

plt.legend(loc="best")

plt.xticks(rotation=45)

plt.show()
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Figure 2-7 shows a reasonable rate of returns over a period of ten years 

(from 2010 to 2020). The minimum rate is -5.8 percent, and the maximum 

rate is 56.24 percent.

 The ARIMA Model
In the next section, we use ARIMA to model the series and forecast its 

future instances. ARIMA is by far the most widespread univariate time-

series analysis model. Let’s break it down:

• Autoregressive (AR): Linear combination of previous 

errors. AR considers observation terms of previous 

observations, including random white noise and 

preceding random white noise.

Figure 2-7. Rate of return
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• Integrated (I): Transformation to make the series 

stationary through differencing (estimating the change 

in rows over a certain period).

• Moving average (MA): Linear combination of 

previously weighted means (refer to the moving 

average smoothing techniques covered previously).

Similar to the least-squares model, ARIMA makes strong assumptions 

about the structure of the data. The model assumes the structure of the 

series data is linear and normal. We can view the ARIMA model as a 

complex regression method since we are applying the regressing regress 

lag1, lag2 to lag = k. The model assumes that the series is stationary. In a 

case where the series is not stationary, the series must show a trend over 

time. Also, one can perform data transformation to improve the predictive 

power of the model.

 ARIMA Hyperparameter Optimization
Listing 2-11 finds the best hyperparameters (values whose configuration 

alters the behavior of the model). Traditionally, we use autocorrelation 

function (ACF) and PACF to find the optimal hyperparameters, which 

is subjective. Listing 2-12 uses the itertools package to find the best 

hyperparameters using Akaike information criterion, which measures 

out-of-sample predictions errors. itertools is pre-installed in the Python 

environment.

Listing 2-12. ARIMA Hyperparameters Optimization

from statsmodels.tsa.arima_model import ARIMA

import itertools

p = d = q = range(0, 2)

pdq = list(itertools.product(p, d, q))
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for param in pdq:

    mod = ARIMA(train, order=param)

    results = mod.fit()

    print('ARIMA{} AIC:{}'.format(param, results.aic))

ARIMA(0, 0, 0) AIC:17153.28608377512

ARIMA(0, 0, 1) AIC:14407.085213632363

ARIMA(0, 1, 0) AIC:3812.4806641861296

ARIMA(0, 1, 1) AIC:3812.306176824848

ARIMA(1, 0, 0) AIC:3823.4611095477635

ARIMA(1, 0, 1) AIC:3823.432441560404

ARIMA(1, 1, 0) AIC:3812.267920836725

ARIMA(1, 1, 1) AIC:3808.9980010413774

 Develop the ARIMA Model
Listing 2-13 completes the ARIMA (1, 1, 1) model and constructs profile 

tables for model performance evaluation (see Table 2-3). We choose only 

ARIMA (1,1,1) since it has the lowest AIC score. AIC is a statistical test that 

determines the goodness of fit and model simplicity. Simply, it indicates 

the extent to which a model loses information. So, order = (1,1,1) by 

default has a more predictive power than the other orders with the range 

in Listing 2-12.

Listing 2-13. Finalize the ARIMA Model

arima_model = ARIMA(train, order=(1, 1, 1))

arima_fitted = arima_model.fit()

arima_fitted.summary()
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 Forecast Using the ARIMA Model
After completing the ARIMA (1, 1, 1) model, the subsequent step normally 

requires recognizing the underlying pattern of the adjusted close price and 

forecasting future prices (see Figure 2-8). See Listing 2-14.

Listing 2-14. Forecast ARIMA Model

fc, se, conf = arima_fitted.forecast(501, alpha=0.05)

fc_series = pd.Series(fc, index=test.index)

lower_series = pd.Series(conf[:, 0], index=test.index)

Table 2-3. ARIMA Model Results

Dep. Variable: d.adj Close No. Observations: 2084

Model: ariMa(1, 1, 1) Log Likelihood -1900.499

Method: css-mle S.D. of innovations 0.602

Date: thu, 01 apr 2021 AIC 3808.998

Time: 02:54:35 BIC 3831.566

Sample: 1 HQIC 3817.267

coef std err Z P>|z| [0.025 0.975]

const 0.0156 0.013 1.199 0.231 -0.010 0.041

ar.L1.D.Adj Close -0.8638 0.094 -9.188 0.000 -1.048 -0.680

ma.L1.D.Adj Close 0.8336 0.103 8.095 0.000 0.632 1.035

Real Imaginary Modulus Frequency

AR.1 -1.1576 +0.0000j 1.1576 0.5000

MA.1 -1.1996 +0.0000j 1.1996 0.5000
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upper_series = pd.Series(conf[:, 1], index=test.index)

plt.plot(train, label="Training",color="navy")

plt.plot(test, label="Actual",color="orange")

plt.plot(fc_series, label="Forecast",color="red")

plt.fill_between(lower_series.index,

                 lower_series,

                 upper_series,

                 color='gray')

plt.legend(loc='upper left')

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 2-8. ARIMA (1, 1, 1) forecast
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Figure 2-8 shows that the model makes errors when forecasting. The 

gray area (fill between) represents the confidence interval.

 The SARIMA Model
Although the ARIMA model is a powerful model for analyzing patterns 

in univariate time-series data, it commits errors when handling seasonal 

data. Adding seasonal order to the model enhances its performance. 

SARIMA extends the ARIMA model. It considers the seasonal component 

when modeling time-series data.

 SARIMA Hyperparameter Optimization
Listing 2-15 uses the itertools package to find the best hyperparameters 

using AIC (refer to Listing 2-12). The SciPy package comes pre-install in a 

Python environment.

Listing 2-15. SARIMA Hyperparameter Optimization

import scipy.stats as stats

p = d = q = range(0,2)

pdq = list(itertools.product(p,d,q))

seasonal_pdq = [(x[0],x[1],x[2],12) for x in list(itertools.

product(p,d,q))]

for param in pdq:

    for param_seasonal in seasonal_pdq:

        try:

            model = sm.tsa.statespace.SARIMAX(train,

                             order=param,

                              seasonal_order=param_seasonal,

                              enforce_stationarity=False,

                              enforce_intervibility=False)
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            results = model.fit()

             print("SARIMAX {} x {} 12 - AIC: {}".

format(param,param_seasonal,results.aic))

        except:

            continue

SARIMAX (1, 1, 1) x (0, 1, 1, 12) 12 - AIC: 3822.8419684760634

SARIMAX (1, 1, 1) x (1, 0, 0, 12) 12 - AIC: 3795.147211266854

SARIMAX (1, 1, 1) x (1, 0, 1, 12) 12 - AIC: 3795.0731989219726

SARIMAX (1, 1, 1) x (1, 1, 0, 12) 12 - AIC: 4580.905706671067

SARIMAX (1, 1, 1) x (1, 1, 1, 12) 12 - AIC: 3824.843959188799

Note that we showed only the last five outputs. The previous code 

estimates the AIC from SARIMAX (0, 0, 0) × (0, 0, 0, 12) 12 up until 

SARIMAX (1, 1, 1) × (1, 1, 1, 12) 12. We found that the SARIMAX (1, 1, 1) × 

(1, 1, 1, 12) 12 has the lowest AIC score. Listing 2-16 finalizes the SARIMA 

model with order = (1,1,1).

 Develop a SARIMA Model
Listing 2-16 completes the SARIMA model without enforcing stationary 

and invertibility and constructs a table with information about the model’s 

performance (see Table 2-4).

Listing 2-16. Finalize the SARIMA Model

import pmdarima as pm

sarimax_model = pm.auto_arima(train, start_p=1, start_q=1, 

start_P=1, start_Q=1,

                      max_p=5, max_q=5, max_P=5, max_Q=5, 

seasonal=True,
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                      stepwise=True, suppress_warnings=True, 

D=10, max_D=10,

                      error_action='ignore')

sarimax_model.summary()

Table 2-4 shows that p-values of ar.L1, ma.L1, and sigma greater than 

0.05. We can confirm that the series is stationary.

Table 2-4. SARIMA Profile

Dep. Variable: Y No. Observations: 2085

Model: sariMaX(1, 1, 1) Log Likelihood -1901.217

Date: sat, 14 nov 2020 AIC 3808.435

Time: 02:01:47 BIC 3825.361

Sample: 0 HQIC 3814.637

- 2085

Covariance Type: opg

coef std err z P>|z| [0.025 0.975]

ar.L1 -0.8645 0.083 -10.411 0.000 -1.027 -0.702

ma.L1 0.8344 0.090 9.258 0.000 0.658 1.011

sigma2 0.3630 0.007 52.339 0.000 0.349 0.377

Ljung-Box (Q): 58.77 Jarque-Bera (JB): 955.16

Prob(Q): 0.03 Prob(JB): 0.00

Heteroskedasticity (H): 1.35 Skew: 0.04

Prob(H) (two-sided): 0.00 Kurtosis: 6.32
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 Forecast Using the ARIMA Model
Listing 2-17 constructs a plot that shows previously adjusted close prices of 

the USD/JPY pair and those predicted by the SARIMA (1, 1, 12) model (see 

Figure 2-9).

Listing 2-17. SARIMA Model Forecast

n_periods = 24

fitted, confint = sarimax_model.predict(n_periods=n_periods, 

return_conf_int=True)

index_of_fc = pd.date_range(train.index[-1], periods =  

n_periods, freq='MS')

fitted_series = pd.Series(fitted, index=index_of_fc)

lower_series = pd.Series(confint[:, 0], index=index_of_fc)

upper_series = pd.Series(confint[:, 1], index=index_of_fc)

plt.plot(train, label="Training",color="navy")

plt.plot(test, label="Actual",color="orange")

plt.plot(fitted_series, label="Forecast",color="red")

plt.fill_between(lower_series.index,

                 lower_series,

                 upper_series,

                 color='gray')

plt.legend(loc='upper left')

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()
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Figure 2-9 shows a forecast with a narrow range. Both models do not 

best explain the time-series data; they commit marginal errors when 

forecasting future prices. In the next section, we will overcome this 

problem by using the additive model present on the Prophet package.

 The Additive Model
Besides trends and seasonality, there are other factors that influence price 

changes. For instance, during public holidays, trading activities differ 

from normal trading days. Both the ARIMA and SARIMA models do not 

take into consideration the effects of public holidays. The additive model 

addressed this challenge. It considers daily, weekly, and yearly seasonality 

and nonlinear trends. It assumes that trends and cycles are one term and 

Figure 2-9. SARIMA (1, 1, 1, 12) forecast
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seamlessly adds the effects of official public holidays and an error. The 

formula is written mathematically as in Equation 2-1.

 y g t s t h t i� � �� � �� � ���  (Equation 2-1)

Here, g(t) represents the linear or logistic growth curve for modeling 

changes that are not periodic, s(t) represents the periodic changes (daily, 

weekly, yearly seasonality), h(t) represents the effects of holidays, and + 𝜀𝑖 
represents the error term that considers unusual changes.

Listing 2-18 repurposes the data (see Table 2-5). Please note that in 

Listing 2-2 we deleted columns of the low price, high price, open price, and 

close price. We are interested in forecasting the adjusted close price.

Listing 2-18. Data Preprocessing

df = df.reset_index()

df["ds"] = df["Date"]

df["y"] = df["Adj Close"]

df.set_index("Date")

Table 2-5. Dataset

Date Adj Close ds y

2010-11-01 80.405998 2010-11-01 80.405998

2010-11-02 80.558998 2010-11-02 80.558998

2010-11-03 80.667999 2010-11-03 80.667999

2010-11-04 81.050003 2010-11-04 81.050003

2010-11-05 80.776001 2010-11-05 80.776001

... ... ... ...

(continued)
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Listing 2-19 specifies the official public holidays whose effects will be 

added in the model (see Listing 2-20).

Listing 2-19. Specify Holidays

holidays = pd.DataFrame({

  'holiday': 'playoff',

   'ds': pd.to_datetime(["2020-12-25", "2020-12-24", "2020-12-23", 

"2019-12-25", "2021-01-01", "2021-01-20"]),

    "lower_window": 0,

    "upper_window": 1,

})

Listing 2-20 completes the additive model with a confidence interval 

of 95 percent; it considers yearly seasonality, weekly seasonality, daily 

seasonality, and official public holidays.

Listing 2-20. Develop Prophet Model

from fbprophet import Prophet

m = Prophet(holidays=holidays,

            interval_width=0.95,

            yearly_seasonality=True,

Date Adj Close ds y

2020-10-27 104.832001 2020-10-27 104.832001

2020-10-28 104.544998 2020-10-28 104.544998

2020-10-29 104.315002 2020-10-29 104.315002

2020-10-30 104.554001 2020-10-30 104.554001

2020-11-02 104.580002 2020-11-02 104.580002

Table 2-5. (continued)
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            weekly_seasonality=True,

            daily_seasonality=True,

            changepoint_prior_scale=0.095)

m.add_country_holidays(country_name='US')

m.fit(df)

 Forecast
Listing 2-21 forecasts the future adjusted close price and shows patterns in 

the time-series data and in the prices that the additive model forecast (see 

Figure 2-10).

Listing 2-21. Forecast

future = m.make_future_dataframe(periods=365)

forecast = m.predict(future)

m.plot(forecast)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.xticks(rotation=45)

plt.show()
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Figure 2-10 disagrees with both the ARIMA model and SARIMA (both 

models predicted an upward trend). However, the additive model actually 

agrees with the data.

 Seasonal Decomposition
Listing 2-22 applies the plot_decompose() method to decompose the 

series into seasonality, trend, and irregular components (see Figure 2-11). 

Decomposition involves breaking down a time series into components 

to understand the repeating patterns in the series. It helps determine 

parameters of univariate time-series analysis; we can identify whether 

there is a trend and seasonality in the series.

Listing 2-22. Seasonal Components

m.plot_components(forecast)

plt.show()

Figure 2-10. Forecast

Chapter 2  ForeCasting Using ariMa, sariMa, and the additive Model



49

Figure 2-11. Seasonal components
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Figure 2-11 shows clear daily, weekly, and yearly seasonality. In the 

first months of the year, the adjusted close price decreases and peaks in the 

last two quarters of the year.

 Conclusion
This chapter carefully introduced the time-series analysis method. We 

developed and justly compared the performance of the ARIMA and 

SARIMA models. In addition, we looked at the additive model from the 

Prophet package. After carefully reviewing the performance of all three 

models, we noticed the additive model commits slight errors and has a 

stronger forecast for the future price of the USD/JPY pair. To improve the 

performance of the models, we can use techniques such as changing the 

data split ratio, outlier removal, data transformation, and including the 

effects of holidays.
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CHAPTER 3

Univariate Time Series 
Using Recurrent 
Neural Nets
This chapter covers the basics of deep learning. First, it introduces the 

activation function, the loss function, and artificial neural network 

optimizers. Second, it discusses the sequence data problem and how a 

recurrent neural network (RNN) solves it. Third, the chapter presents a 

way of designing, developing, and testing the most popular RNN, which is 

the long short-term memory (LSTM) model. We use the Keras framework 

for rapid prototyping and building neural networks. To install keras in 

the conda environment, use conda install -c conda-forge keras. 

Ensure that you also install tensorflow. To install tensorflow in the conda 

environment, use conda install -c conda-forge tensorflow.

 What Is Deep Learning?
Deep learning is a subset of machine learning that operates neural 

networks. A neural network is a network of interconnected groups of nodes 

that receive, transform, and transmit input values layer by layer until they 

reach the output layer. The activation function enables this process by 

operating a set of variables in each hidden layer.

https://doi.org/10.1007/978-1-4842-7110-0_3#DOI
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 Activation Function
The activation function adds nonlinearity to an artificial neural network 

and enables back propagation (a completed pass in reverse). There are 

three main activation functions.

The sigmoid activation function: Fits an S-shaped curve 

to the data and triggers output values between 0 and 1.

The tangent hyperbolic (tanh) activation function:  

Fits a tanh curve to the data and triggers outputs 

between -1 and 1.

The rectified linear unit (ReLu) activation function: 

Retrieves values that are unconstrained by a specific 

range and addresses the vanishing gradient problem  

(a condition in which the gradient increases as we  

add more training data into the model, which results  

in slow training).

 Loss Function
A loss function assesses the difference between the actual values and 

those predicted by an artificial neural network. Key loss functions include 

the mean squared error (MSE), mean absolute error, and mean squared 

logarithmic error. In this chapter, we use the MSE (the variability explained 

by the model about the data after considering a regression relationship).

 Optimize an Artificial Neural Network
There are several methods for model optimization. The most common 

optimizer is the adaptive movement estimation (Adam), and it works 

better in minimizing the cost function during training.
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 The Sequential Data Problem
Sequential data encompasses order data points with some dependency. 

The time series is an excellent example of sequential data. In time-series 

data, each data point represents an observation at a certain period. 

Traditional neural networks like the feed-forward network encounter 

challenges when modeling sequential data because they cannot remember 

the preceding output values. This means that feed-forward networks 

merely produce output values without considering any dependencies in 

the data (a recurrent net combats this problem).

 The RNN Model
A recurrent neural network model is applicable in sequential modeling. 

We call it recurrent because the model performs repetitive tasks for each 

data point in a series, whereby the output value depends on the preceding 

values. The decision outcomes of the recurrent network at time step t-1 

influence the decision outcomes at the last time step t. It maintains a state 

to reference historical analysis at a given point. The state manages the 

information stored in preceding estimates and recurs back into a network 

with unique input values. Figure 3-1 depicts a recurrent with a single 

hidden layer.

Recurrent Net

hnew

W W

x y

W Wh

hprev

Figure 3-1. RNN model
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The formula is expressed as shown in Equation 3-1.

 
h W h W xnew h prv x� � � �� �tanh  (Equation 3-1)

Here, Wx represents the weight matrix between the input and the 

hidden unit, Wy represents …, Wh represents weights multiplied by 

preceding states, x represents input data that the hidden layer receives, 

hprv represents the preceding state the hidden layer receives, and hnew 

represents the new state that the hidden layer estimates. We apply the RNN 

model to speech recognition, image captioning, and sentiment analysis. 

Although the model combats problems that most models find difficult, it 

has its own drawbacks.

 The Recurrent Neural Network Problem
The full RNN model must reasonably maintain a cell state. When dealing 

with big data, the network becomes computationally expensive; it is 

sensitive to alterations in parameters. Furthermore, it is prone to the 

vanishing gradient problem and the exploding gradient problem. This 

problem commonly occurs with traditional models, whereby at the initial 

phase of the training process, the model has a small gradient, but as we 

increase the training data, the gradient increases, resulting in a slower 

training process (this phenomenon is recognized as the vanishing gradient 

problem). The LSTM model combats the vanishing gradient problem.

 The LSTM Model
The LSTM model can model long sequential data. It holds a strong 

gradient across several timestamps. There are two keys to the LSTM, 

namely, the cell state that moves information along without changes, and 

gates that control the information that flows alongside. See Figure 3-2.
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 Gates
The LSTM model encompasses three gates, namely, the input gate, the 

forget gate, and the output gate. The input gate determines additional 

information to be written in a memory cell. An input gate encompasses 

two layers. We recognize the first layer as the sigmoid layer. It determines 

the values that must be updated. The second layer is considered the 

tanh layer; it develops a vector of new values to include in a state. The 

forget gate determines the extent to which the model must forget and 

delete historical information no longer useful. Last, the output controls 

reading access from the memory cells. This is done by using estimates 

of the compressed function that is represented as (0,1), where 0 shows 

that the read access is denied and 1 indicates we grant read access. The 

previous gates are the operations of the LSTM that perform a function on a 

linear combination of inputs of the network, previously hidden state, and 

preceding output. The LSTM model uses gates to determine which data it 

should remember or forget.

Yprev

Wy

x y

hprev

Figure 3-2. LSTM
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 Unfolded LSTM Network
In the first timestamp, the input gate receives and passes the first data 

point to the network. Thereafter, the LSTM uses random initialized hidden 

states to produce a new hidden state and transmits its output value to the 

subsequent timestamp. This continues until the last timestamp. The unit 

contains the previously hidden state and timestamp outputs across time.

 Stacked LSTM Network
We recognize an LSTM network with more than one hidden layer as a 

stacked LSTM network. In a stacked LSTM network, it uses the output of a 

preceding hidden layer as the input of the subsequent layer. This process 

continues until the last layer. This allows for greater model complexity. For 

instance, subsequent layers are a more complex future representation of 

output compared to the preceding layers. Consequently, stacking an LSTM 

network may cause optimal model performance. In training, an LSTM 

does the following:

• Determines which data to add as inputs, including 

weights

• Estimates the new state based on the present and 

preceding internal state

• Learns corresponding weights and biases

• Determines how the state must be transmitted as 

output
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 Develop an LSTM Model Using Keras
Listing 3-1 applies the get_data_yahoo() method to extract Amazon stock 

prices1 (see Table 3-1).

Listing 3-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'AMZN'

df = data.get_data_yahoo(ticker, start_date, end_date)

df.head()

1 https://finance.yahoo.com/quote/AMZN
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We are interested in studying the adjusted close price. Listing 3-2 

creates a new dataframe that comprises only the adjusted closing price.

Listing 3-2. Create New Dataframe

df_close = pd.DataFrame(df["Adj Close"])

Listing 3-3 returns descriptive statistics of the adjusted closing price 

(see Table 3-2).

Listing 3-3. Descriptive Statistics

df_close.describe()

Table 3-2 highlights that the mean value of the adjusted close is 881.18, 

and the standard deviation is 744.447. Listing 3-4 defines a functional 

argument to create attributes and find a list of instances, representing time 

without delays. First, we define the start date and end date. Thereafter, 

we set datetime as the index and create a copy of the dataframe so that 

Table 3-2. Descriptive Statistics

Adj Close

count 2518.000000

mean 881.182176

std 774.472276

min 157.779999

25% 269.540001

50% 551.135010

75% 1544.927551

max 3531.449951
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we can create a list of previous instances from the specified start date and 

end date. Lastly, we create new columns with the frequent attributes and 

previous instances and merge the columns.

Listing 3-4. Create Regressor Attribute Function

def create_regressor_attributes(df, attribute, list_of_prev_t_

instants):

    list_of_prev_t_instants.sort()

    start = list_of_prev_t_instants[-1]

    end = len(df)

    df['datetime'] = df.index

    df.reset_index(drop=True)

    df_copy = df[start:end]

    df_copy.reset_index(inplace=True, drop=True)

    for attribute in attribute :

            foobar = pd.DataFrame()

            for prev_t in list_of_prev_t_instants :

                 new_col = pd.DataFrame(df[attribute].

iloc[(start - prev_t) : (end - prev_t)])

                 new_col.reset_index(drop=True, inplace=True)

                 new_col.rename(columns={attribute :  

'{}_(t-{})'.format(attribute, prev_t)}, 

inplace=True)

                 foobar = pd.concat([foobar, new_col], 

sort=False, axis=1)

             df_copy = pd.concat([df_copy, foobar], sort=False, 

axis=1)

    df_copy.set_index(['datetime'], drop=True, inplace=True)

    return df_copy

Listing 3-5 compiles a list of previous time instances.
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Listing 3-5. List All Attributes

list_of_attributes = ['Adj Close']

list_of_prev_t_instants = []

for i in range(1,16):

    list_of_prev_t_instants.append(i)

list_of_prev_t_instants

[1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15]

The output shows a list of 15 instances. Listing 3-6 passes the list 

of attributes and list of previous t instances into a Pandas dataframe. 

Thereafter, it merges them with the adjusted closing price.

Listing 3-6. Create New Dataframe

df_new = create_regressor_attributes(df_close, list_of_

attributes, list_of_prev_t_instants)

Listing 3-7 imports key dependencies.

Listing 3-7. Import Important Libraries

from tensorflow.keras.layers import Input, Dense, Dropout

from tensorflow.keras.optimizers import SGD

from tensorflow.keras.models import Model

from tensorflow.keras.models import load_model

from tensorflow.keras.callbacks import ModelCheckpointfunction

Listing 3-8 creates the architecture of the neural network. We train the 

model with 15 variables using the linear activation in two dense layers and 

one output layer.
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Listing 3-8. Design the Architecture

input_layer = Input(shape=(15), dtype='float32')

dense1 = Dense(60, activation='linear')(input_layer)

dense2 = Dense(60, activation='linear')(dense1)

dropout_layer = Dropout(0.2)(dense2)

output_layer = Dense(1, activation='linear')(dropout_layer)

Listing 3-9 trains and summarizes the model. To determine the extent 

to which the model makes correct predictions in the training process, 

we use the mean squared error, representing variability explained in the 

model after we consider a linear relationship. To improve the performance 

of the model, we use the Adam optimizer, which is an optimizer that 

considers the force that keeps the gradient moving and lowers the rate at 

which the model learns the data.

Listing 3-9. Network Structure

model = Model(inputs=input_layer, outputs=output_layer)

model.compile(loss='mean_squared_error', optimizer='adam')

model.summary()

Model: "model"

_______________________________________________________________

Layer (type)                 Output Shape              Param #

===============================================================

input_1 (InputLayer)         [(None, 15)]              0

_______________________________________________________________

dense (Dense)                (None, 60)                960

_______________________________________________________________

dense_1 (Dense)              (None, 60)                3660

_______________________________________________________________

dropout (Dropout)            (None, 60)                0
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_______________________________________________________________

dense_2 (Dense)              (None, 1)                 61

===============================================================

Total params: 4,681

Trainable params: 4,681

Non-trainable params: 0

_______________________________________________________________

The neural networks encompass two hidden layers and a dropout layer 

(applying the probability of setting each input of the layer to 0). Listing 3- 10 

splits the data into training, test data, and validation data.

Listing 3-10. Split Data into Training, Test, and Validation Data

test_set_size = 0.05

valid_set_size= 0.05

df_copy = df_new.reset_index(drop=True)

df_test = df_copy.iloc[ int(np.floor(len(df_copy)*(1- test_set_

size))) : ]

df_train_plus_valid = df_copy.iloc[ : int(np.floor(len(df_

copy)*(1-test_set_size))) ]

df_train = df_train_plus_valid.iloc[ : int(np.floor(len(df_

train_plus_valid)*(1-valid_set_size))) ]

df_valid = df_train_plus_valid.iloc[ int(np.floor(len(df_train_

plus_valid)*(1-valid_set_size))) : ]

X_train, y_train = df_train.iloc[:, 1:], df_train.iloc[:, 0]

X_valid, y_valid = df_valid.iloc[:, 1:], df_valid.iloc[:, 0]

X_test, y_test = df_test.iloc[:, 1:], df_test.iloc[:, 0]

print('Shape of training inputs, training target:', X_train.

shape, y_train.shape)

print('Shape of validation inputs, validation target:',  

X_valid.shape, y_valid.shape)

print('Shape of test inputs, test target:', X_test.shape,  

y_test.shape)
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Here, we have this information:

• Shape of training inputs, training target: (2258, 15) 

(2258,)

• Shape of validation inputs, validation target: (119, 15) 

(119,)

• Shape of test inputs, test target: (126, 15) (126,)

Listing 3-11 applies the MinMaxScaler() method to scale numeric 

values between 0 and 1.

Listing 3-11. Normalize Data

from sklearn.preprocessing import MinMaxScaler

Target_scaler = MinMaxScaler(feature_range=(0.01, 0.99))

Feature_scaler = MinMaxScaler(feature_range=(0.01, 0.99))

X_train_scaled = Feature_scaler.fit_transform(np.array(X_

train))

X_valid_scaled = Feature_scaler.fit_transform(np.array(X_

valid))

X_test_scaled = Feature_scaler.fit_transform(np.array(X_test))

y_train_scaled = Target_scaler.fit_transform(np.array(y_train).

reshape(-1,1))

y_valid_scaled = Target_scaler.fit_transform(np.array(y_valid).

reshape(-1,1))

y_test_scaled = Target_scaler.fit_transform(np.array(y_test).

reshape(-1,1))Develop the LTSM Model

Listing 3-12 trains the LTSM model across 30 epochs (complete 

forward and backward passes) in 5 batches (sets of sample trains at one 

time). A pass represents the complete training iteration, from receiving a 

set of input values to firing them with different weights and biases across 

the network until an output value is produced.
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Listing 3-12. Train the Recurrent Network

history = model.fit(x=X_train_scaled, y=y_train_scaled, batch_

size=5, epochs=30, verbose=1, validation_data=(X_valid_scaled, 

y_valid_scaled), shuffle=True)

 Forecasting Using the LTSM
Listing 3-13 applies the predict() method to forecast future instances of 

the series and perform an inverse transformation (produces exponential 

random variables). See Table 3-3.

Listing 3-13. LTSM Forecast

y_pred = model.predict(X_test_scaled)

y_test_rescaled =   Target_scaler.inverse_transform(y_test_

scaled)

y_pred_rescaled = Target_scaler.inverse_transform(y_pred)

y_actual = pd.DataFrame(y_test_rescaled, columns=['Actual Close 

Price'])

y_hat = pd.DataFrame(y_pred_rescaled, columns=['Predicted Close 

Price'])

pd.DataFrame(y_pred_rescaled, columns = ["Forecast"]).head()

Table 3-3. Forecast

Forecast

0 2370.852783

1 2355.488281

2 2338.975586

3 2380.348633

4 2397.861084
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Listing 3-14 shows the actual value of the adjusted close prices= and 

the values that the LSTM model forecasts (see Figure 3-3).

Listing 3-14. Forecast

plt.plot(y_actual,color='red')

plt.plot(y_hat, linestyle='dashed', color='navy')

plt.legend(['Actual','Predicted'], loc='best')

plt.ylabel('Adj Close')

plt.xlabel('Test Set Day no.')

plt.xticks(rotation=45)

plt.yticks()

plt.show()

Figure 3-3. Forecast
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Figure 3-3 shows there is a difference between the actual values of 

the adjusted closing price and the values that the LSTM model forecasts. 

Moreover, the difference is not significant enough to impact conclusions.

 Model Evaluation
Table 3-4 highlights key metrics we used to evaluate a classifier.

Listing 3-15 returns a table with key regression evaluation metrics (see 

Table 3-5).

Listing 3-15. Develop a Model Evaluation Matrix

from sklearn import metrics

MAE = metrics.mean_absolute_error(y_test_rescaled,y_pred_

rescaled)

MSE = metrics.mean_squared_error(y_test_rescaled,y_pred_

rescaled)

Table 3-4. Key Evaluation Metrics

Metric Description

mean absolute error (mae) the average degree of error in estimates without 

considering the direction

mean squared error the variability explained by the model about the data 

after considering a regression relationship

root mean squared error the variability explained without considering a 

regression relationship

r-squared the variability explained by the model about the data
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RMSE = np.sqrt(MSE)

R2 = metrics.r2_score(y_test_rescaled,y_pred_rescaled)

EV = metrics.explained_variance_score(y_test_rescaled,y_pred_

rescaled)

MGD = metrics.mean_gamma_deviance(y_test_rescaled,y_pred_

rescaled)

MPD = metrics.mean_poisson_deviance(y_test_rescaled,y_pred_

rescaled)

lmmodelevaluation = [[MAE,MSE,RMSE,R2,EV,MGD,MPD]]

lmmodelevaluationdata = pd.DataFrame(lmmodelevaluation,

                                     index = ["Values"],

                                     columns = ["MAE",

                                                "MSE",

                                                "RMSE",

                                                "R2",

                                                 "Explained 

variance 

score",

                                                 "Mean gamma 

deviance",

                                                 "Mean Poisson 

deviance"]).

transpose()

lmmodelevaluationdata
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Table 3-5 highlights that the LSTM model explains 94.44 percent of 

the variability in the data. The average magnitude of the error without 

considering the direction of the relation is 60.67. Another way of evaluating 

the performance of an LSTM model involves assessing changes in the loss 

across different epochs. Loss measures the difference between the actual 

values and the values that the models predict. Figure 3-4 depicts how the 

LSTM model learns how to differentiate between the actual values and the 

predicted values. See Listing 3-16.

Listing 3-16. Training and Validation Loss Across Epochs

plt.plot(history.history["loss"],color="red",label="Training 

Loss")

plt.plot(history.history["val_loss"],color="navy",label="Cross- 

Validation Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.legend(loc="best")

plt.show()

Table 3-5. Model Performance

Values

mae 60.672022

mSe 6199.559394

rmSe 78.737281

r2 0.944119

explained variance score 0.944151

mean gamma deviance 0.000657

mean poisson deviance 2.010341
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Figure 3-4 shows that at the first epoch the training loss drops sharply. 

Cross-validation loss is stable across time; it is also above training loss 

across different epochs. The LSTM model shows the characteristics of a 

well-behaved model.

 Conclusion
This chapter introduced deep learning. It covered an artificial neural 

network model that we used for time-series data recognized as the LSTM 

model. It also showed a way to create variables for modeling and showed 

the structure of the neural network. Thereafter, it covered techniques for 

modeling and testing the network.

Figure 3-4. Training and validation loss across epochs
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After reviewing the network, we found that the model best explains the 

variability in the data. We can use this model to forecast future instances 

of the adjusted closing price. We can improve the performance of the 

network by reducing layers, introducing a penalty term, etc. The next 

chapter covers ways of identifying hidden patterns in sequential data using 

hidden Markov models.
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CHAPTER 4

Discover Market 
Regimes
This chapter presents a widespread generative probabilistic model called 

the hidden Markov model (HMM). It covers effective techniques for 

identifying hidden patterns in time-series data using HMM and generating 

a sequence of observations. After reading this chapter, you will be able to 

design and develop a hidden Markov model with a Gaussian process to 

discover market regimes. To install hmmlearn in the Python environment, 

use pip install hmmlearn, and in the conda environment, use conda 

install -c conda-forge hmmlearn.

 HMM
In the preceding chapter, we used the augmented Dickey-Fuller test (a 

unit root test) to inspect and determine whether a series was stationary. 

A series is stationary when the mean value does not vary across time. In 

that chapter, we found the series to be not stationary. In this chapter, we 

use the hidden Markov model. We can use this model for a stationary 

or nonstationary series. It is a generative, unsupervised learning model; 

it does not require labels, and we resort to it for unstructured data. We 

https://doi.org/10.1007/978-1-4842-7110-0_4#DOI
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call it generative because it generates data after uncovering patterns in 

sequential data. You will learn more about HMM as you progress through 

this chapter.

 HMM Application in Finance
We frequently use HMM for speech analysis, weather forecasting, etc. In 

this chapter, we will apply HMM to uncover hidden patterns in the stock 

prices of the S&P 500 index. We will exploit this model to detect market 

regimes (periods in which there is low or high volatility in the market) and 

future regimes.

 Develop a GaussianHMM
There are two principal reasons we will apply the Gaussian mixture 

model in this chapter. To begin with, we are interested in the likelihood 

of a series given a class representing two conditions: a condition in which 

the market is rising and expected to reasonably rise (called a bullish 

trend) and a condition in which the market is declining and is expected 

to decline (called a bear trend). Second, we assume that the observations 

are Gaussian with known variance and mean. This is referred to as a 

Gaussian mixture because of the shared distributions that are constrained 

to Gaussian. More generally, we will unanimously predict future classes 

of the trend based on observed classes. In the training process, the model 

learns a single Gaussian state output distribution. Thereafter, a distribution 

with the highest variance is fragmented, and the process iterates until a 

junction. Listing 4-1 shows the price data of the Standard & Poor (S&P) 
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500 index,1 which is a stock market index that serves as a benchmark for 

500 global companies listed on the US stock exchange. Table 4-1 shows the 

price data from November 1, 2010, to November 2, 2020.

Listing 4-1. Scraped Data

from pandas_datareader import data

from datetime import datetime

ticker = "^GSPC"

start_date = datetime.date(2010, 11, 1)

end_date = datetime.date(2020, 11, 1)

df = data.DataReader(ticker, 'yahoo', start_date, end_date)

df.head()

1 https://finance.yahoo.com/quote/%5EGSPC/
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Listing 4-2 applies the describe() function to get basic statistical 

results about the S&P 500 index (see Table 4-2).

Listing 4-2. Descriptive Statistics

df.describe()
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Table 4-2 gives us an idea of the central tendency and dispersion of the 

price and volume. It highlights that the mean value of the adjusted closing 

price is 2130.652759, and the standard deviation is 617.991582. In relation 

to the volume, the maximum volume is 9.044690e+09, and the minimum 

volume is 1.025000e+09. The average low price is 2118.590950, and the 

average high price is 2140.962839. After performing a descriptive analysis, 

we start the data preprocessing process. Listing 4-3 drops the irrelevant 

variables.

Listing 4-3. Initial Data Preprocessing

df.reset_index(inplace=True,drop=False)

df.drop(['Open','High','Low','Adj Close'],axis=1,inplace=True)

df['Date'] = df['Date'].apply(datetime.datetime.toordinal)

df = list(df.itertuples(index=False, name=None))

Listing 4-4 assigns arrays.

Listing 4-4. Final Data Preprocessing

dates = np.array([q[0] for q in df], dtype=int)

end_val = np.array([q[1] for q in df])

volume = np.array([q[2] for q in df])[1:]

Listing 4-5 shows “differenced” time-series data (a series without 

temporal dependence).

Listing 4-5. Time Series

from matplotlib.dates import YearLocators

diff = np.diff(end_val)

dates = dates[1:]

end_val = end_val[1:]

X = np.column_stack([diff, volume])

fig, ax = plt.subplots()

Chapter 4  DisCover Market regiMes



80

plt.gca().xaxis.set_major_locator(YearLocator())

plt.plot_date(dates,end_val,"-",color="navy")

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 4-1 shows that after the acute crisis, the longest bullish market 

in history started emerging, which was inevitably followed by a minor 

correction at the beginning of 2020. Afterward, the price increased in 

massive increments. The market hit 3,400 in October and rallied upward. 

Figure 4-1. Time series
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 Gaussian Hidden Markov
The Gaussian hidden Markov model (GaussianHMM) assumes that the 

underlying structure of the probabilistic distributions is normal. We use 

GaussianHMM when dealing with a continuous variable that comes from 

a normal distribution. In the preceding chapter, we found that the  time- 

series data has a serial correlation across different lags. GaussianHMM is 

more suitable for the problem at hand. HMM represents an unsupervised 

learning model for unraveling sequential problems. In unsupervised 

learning, we do not hide any data away from the model; we expose the 

model to all the data. It does not require us to split the data into training 

and test data. Now that we recognize the pattern of the time-series data, 

we can proceed and complete the model. Listing 4-6 applies the fit() 

method to complete a Gaussian hidden Markov model (with a spectral 

mixture kernel that produces Gaussian emissions). It specifies the number 

of components as 5, the number of iterations as 10, and the total as 0.0001.

Listing 4-6. Finalize the GaussianHMM

model = GaussianHMM(n_components=5, covariance_type="diag", 

n_iter=1000)

model.fit(X)

Listing 4-7 predicts the sequence of internal hidden states. Thereafter, 

it tabulates the sequence and shows the first five predicted hidden states 

(see Table 4-3).

Listing 4-7. Hidden States

hidden_states = model.predict(X)

pd.DataFrame(hidden_states,columns=["hidden_state"])
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Table 4-3 highlights the parameters of the most appropriate sequence 

of hidden states. It does not provide sufficient information to conclude 

how GaussianHMM models the time-series data. Listing 4-8 plots the 

sequence of internal hidden states of S&P 500 time-series data that the 

GaussianHMM model produced (see Figure 4-2).

Listing 4-8. HMM Results

num_sample = 3000

sample, _ = model.sample(num_sample)

plt.plot(np.arange(num_sample), sample[:,0],color="navy")

plt.xlabel("Samples")

plt.ylabel("States")

plt.xticks(rotation=45)

plt.show()

Table 4-3. Hidden States

hidden_state

0 1

1 1

2 1

3 1

4 1

... ...

2512 1

2513 1

2514 3

2515 1

2516 1

Chapter 4  DisCover Market regiMes



83

Figure 4-2 shows the sample data. At most, there is stability in the 

states. After the 500th observation, there was a slight spike. The most 

significant spike after the sample was 1,200.

 Mean and Variance
The mean value gives us a lot of information about the central tendency 

of data points, and the variance shows the dispersion of data points away 

from the mean value. We use both the mean value and the variance 

to summarize the optimal sequence of the hidden states that the 

GaussianHMM model produced. Listing 4-9 estimates the mean value and 

variance of each internal hidden state.

Figure 4-2. HMM results
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Listing 4-9. Hidden States

for i in range(model.n_components):

    print("{0} order hidden state".format(i))

    print("mean = ", model.means_[i])

    print("var = ", np.diag(model.covars_[i]))

    print()

0 order hidden state

mean =  [-8.29728342e-01  4.41641901e+09]

var =  [8.50560173e+02 4.47992619e+17]

1 order hidden state

mean =  [2.22719353e+00 3.22150428e+09]

var =  [1.33720438e+02 6.16375025e+16]

2 order hidden state

mean =  [2.04319405e+00 3.73786775e+09]

var =  [1.79332780e+02 9.03360887e+16]

3 order hidden state

mean =  [9.56404042e-01 2.50937758e+09]

var =  [8.46343104e+01 3.11987532e+17]

4 order hidden state

mean =  [-1.12364778e+01  6.07623360e+09]

var =  [8.06282637e+03 1.77082805e+18]

Listing 4-10 plots the sequence of each internal hidden state (see 

Figure 4-3).

Listing 4-10. Individual Sequence of Hidden States

fig, axs = plt.subplots(model.n_components, sharex=True, 

sharey=True, figsize=(15,15))

colours = cm.rainbow(np.linspace(0, 1, model.n_components))

for i, (ax, colour) in enumerate(zip(axs, colours)):
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    mask = hidden_states == i

    ax.plot_date(dates[mask], end_val[mask], ".", c=colour)

    ax.set_title("{0}th hidden state".format(i))

    ax.set_xlabel("Date")

    ax.set_ylabel("Adj Close")

    ax.xaxis.set_major_locator(YearLocator())

    ax.xaxis.set_minor_locator(MonthLocator())

    ax.grid(True)

plt.show()

Figure 4-3. Individual sequence of hidden states
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Figure 4-3 shows the volatility in the upward trend. Most of 2020 

happened in the third hidden state.

 Expected Returns and Volumes
Listing 4-11 tabulates the expected returns and volumes estimated by the 

GaussianHMM (see Table 4-4).

Listing 4-11. Expected Returns and Volumes

expected_returns_and_volumes = np.dot(model.transmat_, model.

means_)

returns_and_volume_columnwise = list(zip(*expected_returns_and_

volumes))

expected_returns = returns_and_volume_columnwise[0]

expected_volumes = returns_and_volume_columnwise[1]

params = pd.concat([pd.Series(expected_returns), 

pd.Series(expected_volumes)], axis=1)

params.columns= ['Returns', 'Volume']

pd.DataFrame(params)

Table 4-4. Expected Returns and Volume

Returns Volume

0 1.789235 3.752679e+09

1 -0.433996 4.258633e+09

2 2.013629 3.288045e+09

3 -9.934745 5.868430e+09

4 1.139917 2.752306e+09
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Listing 4-12 creates a dataframe for future returns and volumes, and it 

plots the actual values of the adjusted close price and those predicted by 

the GaussianHMM (see Figure 4-4).

Listing 4-12. Actual Price and Predicted Price

lastN = 7

start_date = datetime.date.today() - datetime.

timedelta(days=lastN*2)

dates = np.array([q[0] for q in df], dtype=int)

predicted_prices = []

predicted_dates = []

predicted_volumes = []

actual_volumes = []

for idx in range(lastN):

    state = hidden_states[-lastN+idx]

    current_price = df[-lastN+idx][1]

    volume = df[-lastN+idx][2]

    actual_volumes.append(volume)

    current_date = datetime.date.fromordinal(dates[-lastN+idx])

    predicted_date = current_date + datetime.timedelta(days=1)

    predicted_dates.append(predicted_date)

     predicted_prices.append(current_price + expected_

returns[state])

    predicted_volumes.append(np.round(expected_volumes[state]))

fig, ax = plt.subplots()

plt.plot(predicted_dates,end_val[-lastN:],color="navy",label="A

ctual Price")

plt.plot(predicted_dates,predicted_prices,color="red",label="Pr

edicted Price")

plt.legend(loc="best")

plt.xticks(rotation=45)
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plt.xlabel("Date")

plt.ylabel("Adj Close")

plt.show()

Figure 4-4 displays the notable characteristics of a well-behaved 

GaussianHMM model. The differences between the actual values of the 

adjusted closing price and predicted values are small. Listing 4-13 plots the 

actual volume and the predicted volume (see Figure 4-5).

Figure 4-4. Actual price and predicted price
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Listing 4-13. Actual Volume and Predicted Volume

fig, ax = plt.subplots()

plt.plot(predicted_dates,actual_volumes,color="navy",label="Act

ual Volume")

plt.plot(predicted_dates,predicted_volumes,color="red",label="P

redicted Volume")

plt.legend(loc="best")

plt.xticks(rotation=45)

plt.xlabel("Date")

plt.ylabel("Volume")

plt.show()

Figure 4-5. Actual volume and predicted volume
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GaussianHMM does well in modeling the time-series data; however, 

there are minimal differences between the actual values of the volume and 

those predicted by the model.

 Conclusions
This chapter presented the hidden Markov model. It artfully covered 

practical ways of designing and developing an HMM with a spectral 

kernel that produces Gaussian emissions to combat complex sequential 

problems. We rigorously applied the model to the time-series data of the 

S&P 500 index to estimate the best sequence of internal hidden states. 

After carefully reviewing the performance of the model, we noticed that 

the model is skillful in identifying hidden patterns in the price and volume 

of the S&P 500 index.
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CHAPTER 5

Stock Clustering
A combination of stocks that an investor selects influences the investment 

portfolio’s performance. Some assets are highly risky to invest in, but 

others are not. High-risk assets are those whose prices change drastically 

in short periods. To secure capital, investors may select groups of stocks, 

rather than investing in a single stock or class of stocks. Given that there 

are many stocks to choose from, investors ordinarily find it arduous to 

single out a group of stocks with optimal performance. To find a group 

of stocks with similarities, we use an unsupervised learning technique 

called cluster analysis. It involves grouping data points based on similar 

characteristics. The most popular cluster analysis model is the k-means 

model.

 Investment Portfolio Diversification
Investors ought to be careful and not put all their eggs in one basket by 

directing all their investment funds to one area of interest. They may use 

portfolio diversification to secure capital. It involves allocating funds to 

assets across various industries, sectors, geographic locations, etc., and a 

conservative investor diversifies their portfolio by investing in less risky 

and more profitable stocks. They ensure that their strategy matches their 

risk appetite and invest in the best-performing stocks with minimum 

volatility.

https://doi.org/10.1007/978-1-4842-7110-0_5#DOI
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 Stock Market Volatility
We mentioned in the preceding chapters that prices in the foreign 

exchange market and the stock market are not constant. There is an 

element of randomness because they fluctuate across time. In terms of 

liquidity, the foreign exchange market is the most liquid market, followed 

by the stock market, and so on. Market makers drive price movements by 

the volume of large transactions and sales activities.

Investing in contracts for difference (CFD) and exchange-traded funds 

(EFTs) involves risk. The price of an asset may go in the opposite direction, 

resulting in capital loss. Investors ought to have robust risk management 

strategies. Ideally, they must select the best stocks based on certain 

criteria. The most common criterion is volatility, which is an estimate 

of the degree of drastic changes in prices in a short period. We basically 

assume that if liquidity increases in a market, then volatility increases, 

and vice versa. We measure volatility by estimating the standard deviation 

of logarithmic returns and beta coefficients. Besides large transactions 

and sales activities of multinational financial institutions, there are other 

factors that influence volatility such as social events, economic events, 

holidays, pandemics, labor unrest, natural disasters, war, etc.

 K-Means Clustering
The k-means model partitions the data into k (clusters) with the nearest 

mean (centroids); it then finds the distance between subgroups to produce 

a cluster. It simultaneously shrinks the intracluster distances and improves 

the intercluster. We express the formula as shown in Equation 5-1.

 
Dis x x x y
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n

i i1 2
0

1 2

2
,� � � �� �

�
�

 
(Equation 5-1)
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Dis(x1,x2) reflects the distance between the data points. Based on the 

formula in Equation 5-1, we are interested in discovering the square root of 

the sum squares of the deviation of independent data points (represented 

as coordinates (x1, y1) and (x2, y2)) away from the mean value (the center). 

It finds the initial k (the number of clusters) and estimates the distance 

between clusters, and then it distributes data points to the adjoining 

centroid. It splits the data points into k groups of similarities. The most 

popular method of estimating similarities in space is Euclidean distance 

(which connects angles and distances). This cluster model requires the 

numbers to specify on the set. Data partitioning relies on a number of 

clusters. This algorithm randomly initializes centroids.

 K-Means in Practice
Listing 5-1 extracts the data from Yahoo Finance and applies the web 

scraping get_data_yahoo() method. Thereafter, it performs the data 

processing tasks required to have quality data.

Listing 5-1. Scraped Data

rom pandas_datareader import data

tickers = ['AMZN','AAPL','WBA',

           'NOC','BA','LMT',

           'MCD','INTC','NAV',

           'IBM','TXN','MA',

           'MSFT','GE','AXP',

           'PEP','KO','JNJ',

           'TM','HMC','MSBHY',

           'SNE','XOM','CVX',

           'VLO','F','BAC']
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start_date = '2010-01-01'

end_date = '2020-11-01'

df = data.get_data_yahoo(tickers, start_date, end_date)[['Adj 

Close']]

Listing 5-1 extracts stocks from companies such as Amazon, Apple, 

and Walgreens Boots Alliance, among other stocks. There are 27 stocks. 

Remember that you may include as many stocks as you want. Listing 5-2 

estimates the return and volatility.

Listing 5-2. Estimate Returns and Volatility

returns = df.pct_change().mean() * (10*12)

std = df.pct_change().std() * np.sqrt((10*12))

ret_var = pd.concat([returns, std], axis = 1).dropna()

ret_var.columns = ["Returns","Standard Deviation"]

Listing 5-3 is an elbow curve (see Figure 5-1). We use it to determine 

the number of clusters to specify when we develop the k-means model.

Listing 5-3. Elbow Curve

X =  ret_var.values

sse = []

for k in range(1,15):

    kmeans = KMeans(n_clusters = k)

    kmeans.fit(X)

    sse.append(kmeans.inertia_)

plt.plot(range(1,15), sse)

plt.xlabel("Value of k")

plt.ylabel("Distortion")

plt.show()
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The y-axis shows the compressed variance of the correlation matrix 

(eigenvalues), and the x-axis shows the number of factors. We use 

the figure to determine the required number of clusters for a cluster 

model by finding a point in a curve where a sharp decline begins. To 

clearly understand how this works, consider the y-axis as the severity 

of the correlation. We are interested in the borderline between severe 

correlation and nonsevere correlation. Figure 5-1 displays a smooth 

bend from 1 to 5. However, from 5, the curve bends abruptly. We use 5 as 

the cutoff point. Listing 5-4 sorts the standard deviation by descending 

order, removes all missing values, and creates a NumPy array of the 

Pandas dataframe.

Figure 5-1. Elbow curve
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Listing 5-4. Data Preprocessing

stdOrder = ret_var.sort_values('Standard 

Deviation',ascending=False)

first_symbol = stdOrder.index[0]

ret_var.drop(first_symbol,inplace=True)

X = ret_var.values

Listing 5-5 completes the k-means model with five clusters. Thereafter, 

it depicts the data points in their respective clusters (see Figure 5-2).

Listing 5-5. Finalize the K-Means Model

kmeans =KMeans(n_clusters = 5).fit(X)

centroids = kmeans.cluster_centers_

plt.scatter(X[:,0],X[:,1], c = kmeans.labels_, cmap ="viridis")

plt.xlabel("y")

plt.scatter(centroids[:,0], centroids[:,1],color="red",mark

er="*")

plt.show()
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The k-means model made intelligent guesstimates until it allocated 

data points to the most adjacent centroid and discovered the mean value 

of the centroids. Figure 5-2 shows that there are five apparent clusters in 

the data. Listing 5-6 tabulates each stock, with the cluster it belongs to, 

together with its returns and volatility (see Table 5-1).

Listing 5-6. Returns and Volatility per Cluster

stocks = pd.DataFrame(ret_var.index)

cluster_labels = pd.DataFrame(kmeans.labels_)

stockClusters = pd.concat([stocks, cluster_labels],axis = 1)

stockClusters.columns = ['Symbol','Cluster']

x_df = pd.DataFrame(X, columns = ["Returns", "Volatitity"])

Figure 5-2. K-means model
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closerv = pd.concat([stockClusters,x_df],axis=1)

closerv = closerv.set_index("Symbol")

closerv

Table 5-1. Returns and Volatility per Cluster

Symbol Cluster Returns Volatility

(Adj Close, AMZN) 4 0.161408 0.219298

(Adj Close, AAPL) 4 0.142889 0.195379

(Adj Close, WBA) 2 0.025647 0.190772

(Adj Close, NOC) 1 0.099201 0.156376

(Adj Close, BA) 3 0.082153 0.241547

(Adj Close, LMT) 1 0.093110 0.144674

(Adj Close, MCD) 0 0.076895 0.132607

(Adj Close, INTC) 3 0.066716 0.195823

(Adj Close, IBM) 2 0.019773 0.154294

(Adj Close, TXN) 1 0.105104 0.185222

(Adj Close, MA) 4 0.128066 0.194152

(Adj Close, MSFT) 1 0.108985 0.175395

(Adj Close, GE) 2 0.006920 0.217385

(Adj Close, AXP) 3 0.061691 0.195526

(Adj Close, PEP) 0 0.055847 0.120965

(Adj Close, KO) 0 0.048256 0.120660

(Adj Close, JNJ) 0 0.054099 0.117171

(Adj Close, TM) 0 0.042555 0.147653

(continued)
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To understand the k-means performance, we resort to the silhouette 

method, which examines the mean intracluster and the mean near-cluster 

distance for each sample. The value obtained is considered the silhouette 

score; it measures the separation. A silhouette score ranges from -1 to 1.  

Specifically, -1 shows poor model performance, and 1 shows optimal 

model performance. Listing 5-7 finds the score.

Listing 5-7. Find the Silhouette Score

from sklearn import metrics

y_predkmeans = pd.DataFrame(kmeans.predict(X))

y_predkmeans = y_predkmeans.dropna()

metrics.silhouette_score(X,y_predkmeans)

0.4260002825147118

The silhouette score is 0.42. The score suggests that the model does not 

sufficiently interpret the data.

Table 5-1. (continued)

Symbol Cluster Returns Volatility

(Adj Close, HMC) 2 0.010742 0.167794

(Adj Close, MSBHY) 2 0.019532 0.171736

(Adj Close, SNE) 3 0.074899 0.225855

(Adj Close, XOM) 2 -0.003797 0.159237

(Adj Close, CVX) 2 0.029708 0.184557

(Adj Close, VLO) 3 0.086470 0.263032

(Adj Close, F) 2 0.028089 0.216344

(Adj Close, BAC) 3 0.053830 0.244936
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 Conclusions
This chapter introduced an unsupervised learning model that helps 

investors better manage risk and select a group of best-performing assets. 

We used the k-means model to assign data points to distinct clusters. We 

used the silhouette score to evaluate the performance of the model. After 

careful consideration, we found that the model shows the characteristics 

of a well-behaved cluster model. The silhouette score is closer to 1 

than -1. However, there is room for improvement. There are overlaps 

in some clusters, but they are not excessively large enough to affect the 

conclusions.
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CHAPTER 6

Future Price 
Prediction Using 
Linear Regression
This chapter introduces the parametric method, also called the linear 

regression method. We use this method to determine the nature of the 

relationship between an independent variable (continuous or categorical) 

and a dependent variable (always continuous). Whereas independent 

variables are continuous variables or categorical variables, a dependent 

variable is inevitably a continuous variable. It investigates how a change in 

an independent variable influences a change in a dependent variable. The 

most conventional model for finding estimates of an intercept and a slope is 

the least squared model. We express the formula as shown in Equation 6-1.

 ŷ X i� � �� � �0 1 1  (Equation 6-1)

Here, ŷ  represents an expected dependent variable, β0 represents an 

intercept, β1 represents a slope, X1 represents an independent variable, 

and εi represents the error terms (the residual for the ith of n data points), 

expressed as shown in Equation 6-2.

 e y yi i i� �   (Equation 6-2)
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The least squares model ensures that the sum squares of residuals are 

small. We find the sum squares of residuals by applying the property in 

Equation 6-3.

 e e ei1
2

2
2 2� �  (Equation 6-3)

This property assumes that residuals are always equal to zero and 

estimates are unbiased.

 Linear Regression in Practice
In this chapter, we predict the closing price of gold based on the highest 

and lowest price changes and returns. Listing 6-1 scraps data from Yahoo 

Finance.

Listing 6-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'GC=F'

df = data.get_data_yahoo(ticker, start_date, end_date)

df_orig=df

Listing 6-2 calculates the highest and lowest price changes and the 

returns of the stock price (see Table 6-1).

Listing 6-2. Calculate the Highest and Lowest Price Change and 

Returns

df['HL_PCT']=(df['High']-df['Low'])/df['Adj Close'] *100.0

df['PCT_change']= (df['Adj Close']-df['Open'])/df['Open'] 

*100.0
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df = df[['Adj Close','HL_PCT','PCT_change','Volume']]

date = df.index

df.head()

 Correlation Methods
Correlation estimates the apparent strength of a linear relationship 

between an independent variable and a dependent variable. Prior 

to training a regression model, we must identify the severity of the 

association between variables since the degree of severity influences the 

performance of a model. There are three principal correlation methods 

for determining the correlation among variables: the Pearson correlation 

method, which estimates the correlation among continuous variables; 

the Kendall correlation method, which estimates the association between 

rankings and ordinal variables; and the Spearman correlation method, 

which also estimates the association between rankings of a combination of 

variables.

Table 6-1. Dataset

Date Adj Close HL_PCT PCT_change Volume

2010-11-01 1350.199951 0.711013 -0.742490 40.0

2010-11-02 1356.400024 0.095846 -0.029483 17.0

2010-11-03 1337.099976 2.370799 -1.058166 135.0

2010-11-04 1382.699951 1.728504 1.030248 109.0

2010-11-05 1397.300049 1.417022 0.474588 109.0
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 The Pearson Correlation Method
Given that we are dealing with continuous variables, we use the Pearson 

correlation method, which produces values that range from -1 to 1. Here, 

-1 shows a strong negative correlation relationship, 0 shows no correlation 

relationship, and 1 shows a strong positive correlation relationship. 

Listing 6-3 produces the Pearson correlation matrix. We use a heatmap 

to visually represent the matrix (see Figure 6-1). To install seaborn in the 

conda environment, use conda install -c anaconda seaborn.

Listing 6-3. Pearson Correlation Matrix

import seaborn as sns

dfcorr = df.corr(method="pearson")

sns.heatmap(dfcorr, annot=True,annot_kws={"size":12},cmap="cool

warm")

plt.show()

Figure 6-1. Pearson correlation matrix heatmap
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There is a line of 1s that goes from the top left to the bottom right. This 

means that each variable perfectly correlates with itself. The correlation is 

0.98 (which is close to 1).

 The Covariance Method
Listing 6-4 estimates joint variability between the two variables. It 

estimates how variables vary together (see Figure 6-2).

Listing 6-4. Estimate and Plot a Covariance Matrix

dfcov =df.cov()

sns.heatmap(dfcov, annot=True,annot_kws={"size":12},cmap= 

"coolwarm")

plt.show()

Figure 6-2. Covariance matrix heatmap
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The covariance matrix confirms more positive joint variability. When 

we use the Pearson correlation method, we have to first find the covariance 

since the coefficients of the method are the covariance between two 

variables divided by their deviation away from the mean value.

 Pairwise Scatter Plots
A pairwise scatter plot is typically needed to test for normality. We 

consider data as normally distributed when independent observations 

are near the mean value. Regression models assume normality: non- 

normal data results in negative model performance. In cases where the 

data is not normal, we may perform a data transformation, i.e., square 

root transformation for positively skewed data (a condition where the data 

is saturated to the right side of the distribution) or exponential/power 

transformation for negatively skewed data (a condition where the data is 

saturated to the left side of the distribution). There are several factors that 

may influence non-normality, i.e., missing values and outliers (presence of 

extreme values), among others. See Listing 6-5.

Listing 6-5. Highest and Lowest Price Changes and Closing Price

sns.jointplot(x="HL_PCT",y="Adj Close",data=df,kind="reg",color

="navy")

plt.ylabel("Adj Close")

plt.xlabel("HL_PCT")

plt.show()

Figure 6-3 shows a straight line that cuts through the data points. 

Moreover, the data points are perfectly undistributed to a straight line.
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Listing 6-6 constructs a pairwise scatter plot that shows the correlation 

between the returns and the closing price (see Figure 6-4). The joint 

plot also shows that HL_PCT is negatively skewed and that Adj Close is 

positively skewed.

Figure 6-3. Highest and lowest price changes and closing price 
scatter plot
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Listing 6-6. Returns and Closing Price

sns.jointplot(x="Corr",y="Adj Close",data=xy,kind="reg",color="

red")

plt.ylabel("Adj Close")

plt.xlabel("Corr")

plt.show()

Figure 6-4. Returns and closing price scatter plot
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We can develop a formula for a straight-line relationship. Moreover, 

the straight line is not linear. Figure 6-5 illustrates the association between 

the volume and the adjusted closing price. The figure also shows that the 

PCT_change follows a normal distribution (the distribution is bell- shaped). 

See Listing 6-7.

Listing 6-7. Volume and Closing Price

sns.jointplot(x="Corr",y="Adj 

 Close",data=xy,kind="reg",color="red")

plt.ylabel("Adj Close")

plt.xlabel("Corr")

plt.show()

Figure 6-5. Volume and closing price scatter plot
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Figure 6-5 shows a linear straight line, but the data points are not close 

to the line.

 Eigen Matrix
In the previous section we discovered the strength of the linear 

relationship among variables. Next, we must diagnose the severity of 

correlation among the variables using eigenvalues. The eigenvalue 

represents a flattened variance of the correlation matrix. A combination of 

more than two variables highly correlated may reduce the predicted power 

of the model. An eigen matrix is a convenient tool in model selection. 

Table 6-2 shows an equivalent number of eigenvalues as the variables. 

An eigenvalue less than 0 indicates no multicollinearity; between 10 

and 100 shows moderate multicollinearity, and over 100 shows extreme 

multicollinearity. Listing 6-8 returns the eigen matrix. Multicollinearity is a 

problem in which more than two variables are highly correlated.

Listing 6-8. Eigen Matrix

eigenvalues, eigenvectors = np.linalg.eig(dfcov)

eigenvalues = pd.DataFrame(eigenvalues)

eigenvectors = pd.DataFrame(eigenvectors)

eigen = pd.concat([eigenvalues,eigenvectors],axis=1)

eigen.index = df.columns

eigen.columns = ("Eigen values","Adj Close","HL_PCT","PCT_

change","Volume")

eigen

Chapter 6  Future priCe prediCtion using Linear regression



111

Ta
bl

e 
6-

2.
 E

ig
en

 M
at

ri
x

Ei
ge

n 
va

lu
es

Ad
j C

lo
se

HL
_P

CT
PC

T_
ch

an
ge

Vo
lu

m
e

Ad
j C

lo
se

1.
92

15
28

e+
10

-1
.4

48
57

0e
-0

4
1.

00
00

00
-5

.7
58

48
1e

- 0
4

-2
.6

88
69

5e
- 0

4

HL
_P

CT
4.

33
42

01
e+

04
3.

71
06

74
e-

07
0.

00
06

24
8.

10
63

54
e-

 01
5.

85
55

10
e-

 01

PC
T_

ch
an

ge
6.

52
88

12
e-

01
-4

.1
66

47
5e

-0
8

0.
00

01
19

5.
85

55
10

e-
 01

-8
.1

06
35

6e
- 0

1

Vo
lu

m
e

8.
54

01
29

e-
01

-1
.0

00
00

0e
+

00
-0

.0
00

14
5

3.
59

81
92

e-
 07

2.
90

00
14

e-
 07

Chapter 6  Future priCe prediCtion using Linear regression



112

Table 6-2 highlights that there is moderate multicollinearity (the 

eigenvalue is less than 10).

 Further Descriptive Statistics
There are several ways to summarize the data. Listing 6-9 summarizes the 

opening and closing prices across time (see Figure 6-6).

Listing 6-9. Opening and Closing Prices

 df_orig[["Open","Close"]].head(20).plot(kind='bar',cmap="rainbow")

plt.ylabel("Price")

plt.show()
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Figure 6-6 shows that there are no major deviations of the closing price 

away from the opening price. Figure 6-7 depicts the low price and closing 

price across time. See Listing 6-10.

Listing 6-10. Low and Closing Prices

df_orig[["Low","Close"]].head(20).plot(kind="bar",cmap="rainbow")

plt.ylabel("Price")

plt.show()

Figure 6-6. Opening and closing prices
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To further understand the changes in prices, we can graphically 

represent the high price and closing price across time (see Figure 6-8). See 

Listing 6-11.

Listing 6-11. High and Adjusted Close Prices

df_orig[['High','Close']].head(20).plot(kind='bar',cmap="rainbow")

plt.ylabel("Price")

plt.show()

Figure 6-7. Low and closing prices
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Listing 6-12 shows the volume of trades over time from November 1, 

2020, to November 2, 2020 (see Figure 6-9).

Listing 6-12. Volume

df_orig.Volume.plot(color="green")

plt.ylabel("Volume")

Figure 6-8. Low and adjusted close prices
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Figure 6-1 shows that there was less active market participation from 

2011 to early 2019. In mid-2019, the volume grew exponentially to over 

three million. Post-2019, there was a severe decline in trade volume; the 

volume was between half a million and two million.

 Develop the Least Squares Model
Listing 6-13 splits the data into training and test data applying the 80/20 

split ratio.

Listing 6-13. Split Data into Training and Test Data

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test = train_test_split(x,y,test_

size=0.2, random_state=0)

Figure 6-9. Volume
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Listing 6-14 normalizes the training data using the StandardScaler() 

method (transforms data in such a way that the mean value is 0 and the 

standard deviation is 1).

Listing 6-14. Normalize Data

from sklearn.model_selection import StandardScaler

scaler = StandardScaler()

x_train = scaler.fit_transform(x_train)

x_test = scaler.transform(x_test)

Listing 6-15 fits the least squares model with default hyperparameters.

Listing 6-15. Develop the Least Squares Model

from sklearn.linear_model import LinearRegression

lm = LinearRegression()

lm.fit(x_train,y_train)

Listing 6-16 defines a function to find the mean value and standard 

deviation of the cross-validation score by applying the R2 as a criterion for 

finding the cross-validation scores.

Listing 6-16. Develop a Function to Obtain Cross-Validation Mean 

and Standard Deviation

from sklearn.model_selection import cross_val_score

def get_val_score(model):

     scores = cross_val_score(model, x_train, y_train, 

scoring="r2")

    print("CV mean: ", np.mean(scores))

    print("CV std: ", np.std(scores))

    print("\n")
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Listing 6-17 prints the mean value and standard deviation value of the 

cross-validation scores.

Listing 6-17. Cross-Validation Mean and Standard Deviation

get_val_score(lm)

CV mean:  0.9473235769188586

CV std:  0.018455084710127526

Listing 6-18 finds the names and default values of a parameter.

Listing 6-18. Find Default Parameters

lm.get_params()

Listing 6-19 creates a grid model. A hyperparameter represents settings 

or values that we must configure for a model prior to training. We perform 

hyperparameter optimization to identity values that produce optimal 

model performance. The GridSearchCV method considers all parameters 

and discovers the most suitable combination. For example, in Listing 6-19 

we want to find whether we must fit the intercept, normalize X prior to 

fitting the model, and copy X.

Listing 6-19. Develop a Grid Model

from sklearn.model_selection import GridSearchCV

param_grid = {'fit_intercept':[True,False],

              'normalize':[True,False],

              'copy_X':[True, False]}

grid_model  = GridSearchCV(estimator=lm,

                           param_grid=param_grid,

                           n_jobs=-1)

grid_model.fit(x_train,y_train)

Listing 6-20 finds the best score and best hyperparameters.
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Listing 6-20. Hyperparameter Optimization

print("Best score: ", grid_model.best_score_, "Best parameters: 

", grid_model.best_params_)

Here’s the result:

• Best score: 0.9473235769188586

• Best parameters: {'copy_X': True, 'fit_intercept': True, 

'normalize': False}

Listing 6-21 completes the least squares model by applying the 

hyperparameters returned by the grid model to train the model.

Listing 6-21. Finalize the Least Squares Model

lm = LinearRegression(copy_X= True,

                      fit_intercept= True,

                      normalize= False)

lm.fit(x_train,y_train)

Listing 6-22 finds the intercept. An intercept is the mean value of an 

independent variable, given that we hold a dependent variable constant.

Listing 6-22. Intercept

lm.intercept_

15.725513886138613

Listing 6-23 estimates the coefficients.

Listing 6-23. Coefficients

lm.coef_

array([1.45904887, 0.04329147])
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 Model Evaluation
Listing 6-24 applies the predict() method to return Table 6-3 (it highlights 

the values that the regressor produces).

Listing 6-24. Forecast Values

y_pred = lm.predict(x_test)

pd.DataFrame(y_pred,columns=["Forecast"])

Listing 6-25 plots future instances of the adjusted close price (see 

Figure 6-10).

Table 6-3. Forecast

Forecast

0 1469.400024

1 1466.699951

2 1475.599976

3 1478.400024

4 1475.000000

... ...

253 1902.699951

254 1908.800049

255 1876.199951

256 1865.599976

257 1877.400024
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Listing 6-25. Forecast

num_samples = df.shape[0]

df['Forecast'] = np.nan

df['Forecast'][int(0.9*num_samples):num_samples]=y_pred

df['Adj Close'].plot(color="navy")

df['Forecast'].plot(color="red")

plt.legend(loc="best")

plt.xlabel('Date')

plt.ylabel('Price')

plt.show()

Figure 6-10. Forecast
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Listing 6-26 returns a table that contains information about the 

performance of the regressor (see Table 6-4). It shows key regression 

evaluation metrics, such as the mean absolute error (the magnitude 

of errors without considering the direction), mean squared error (the 

variability explained after considering a linear relationship, and R2 score 

(the variability explained by the model about the data).

Listing 6-26. Model Performance

from sklearn import metrics

MAE = metrics.mean_absolute_error(y_test,y_pred)

MSE = metrics.mean_squared_error(y_test,y_pred)

RMSE = np.sqrt(MSE)

R2 = metrics.r2_score(y_test,y_pred)

EV = metrics.explained_variance_score(y_test,y_pred)

MGD = metrics.mean_gamma_deviance(y_test,y_pred)

MPD = metrics.mean_poisson_deviance(y_test,y_pred)

lmmodelevaluation = [[MAE,MSE,RMSE,R2,EV,MGD,MPD]]

lmmodelevaluationdata = pd.DataFrame(lmmodelevaluation,

                                     index = ["Values"],

                                     columns = ["MAE",

                                                "MSE",

                                                "RMSE",

                                                "R2",

                                                 "Explained 

variance 

score",

                                                 "Mean gamma 

deviance",

                                                 "Mean Poisson 

deviance"]).

transpose()

lmmodelevaluationdata
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Table 6-4 highlights that the model explains 100 percent of the 

variability in the data. There is a significant correlation in the time- 

series data. On average, the magnitude of errors without considering the 

direction is 2.82, and the mean sum of errors is 1.15.

 Conclusion
In this chapter, we briefly covered the least squared model and its 

application. To begin with, we covered covariance and correlation. Next, 

we showed you how to design, build, and test a regressor. After carefully 

reviewing the regressor’s performance, we found that the model best 

explains the data. We may use it for reliable future price predictions. In the 

subsequent chapter, we cover market simulation.

Table 6-4. Model Performance

Values

MAE 2.820139e-13

MSE 1.150198e-25

RMSE 3.391457e-13

R2 1.000000e+00

Explained variance score 1.000000e+00

Mean gamma deviance -2.581914e-18

Mean Poisson deviance 0.000000e+00
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CHAPTER 7

Stock Market 
Simulation
The stock exchange market typically responds to socio-economic 

conditions. The active participation of key market players undoubtedly 

creates liquidity in the market. There are other factors that influence 

variations in the market besides the large transactions that key market 

makers make. For instance, markets react to news of social events, 

economic events, natural disasters, pandemics, etc. In certain conditions, 

the effects of those events drive price movement drastically. Systematic 

investors (investors who base their trade execution on a system that 

depends on quantitative models) need to prepare for future occurrences 

to preserve capital by learning from near-real-life conditions. If you 

inspect industries that involve considerable risk, for example, aerospace 

and defense, you will notice that the subjects learn through simulation. 

Simulation is a method that involves generating conditions that mimic 

the actual world so that subjects know how to act and react in a condition 

similar to preceding ones. In finance, we deal with large funds. They 

habitually take risk into account when experimenting and testing models.

In this chapter, we implement a Monte Carlo simulation to simulate 

considerable changes in the market without exposing ourselves to risk. 

Simulating the market helps identify patterns in preceding occurrences and 

forecasts future prices with reasonable certainty. If we can reconstruct the 

actual world, then we can understand the preceding market behavior and 

https://doi.org/10.1007/978-1-4842-7110-0_7#DOI
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predict future market behavior. In the preceding chapters, we sufficiently 

covered models for sequential pattern identification and forecasting. We 

use the panda_montecarlo framework to perform the simulation. To install 

it in the Python environment, use pip install pandas-montecarlo.

When an investor trades a stock, they expect their speculation to 

yield returns over a certain period. Unexpected events occur, and they 

can influence the direction of prices. To build sustained profitability over 

the long run, investors can develop models to recognize the underlying 

pattern of preceding occurrences and to forecast future occurrences.

Let’s assume you are a prospective conservative investor with an 

initial investment capital of $5 million US dollars. After conducting a 

comprehensive study, you have singled out a set of stocks to invest in. 

You can use Monte Carlo simulation to further understand the risks of 

investing in those assets.

 Understanding Value at Risk
The most convenient way to estimate risk is by applying the value at risk 

(VAR). It reveals the degree of financial risk we are exposing an investment 

portfolio to. It shows the minimum capital required to compensate for 

losses at a specified probability level. There are two primary ways of 

estimating VAR; we can either use the variance-covariance method or 

simulate it by applying Monte Carlo.

 Estimate VAR by Applying the Variance- 
Covariance Method
The variance-covariance method makes strong assumptions about the 

structure of the data. The method assumes the underlying structure 

of the data is linear and normal. It is also sensitive to missing data, 

nonlinearity, and outliers. To estimate the standard VAR, we first find 
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the returns, and then we create the covariance matrix and find the mean 

value and standard deviation of the investment portfolio. Thereafter, we 

estimate the inverse of the normal cumulative distribution and compute 

the VAR. Figure 7-1 shows the VAR of a portfolio alongside the simulated 

distributions.

Here we show you how to calculate the VAR by applying the variance/

covariance calculation.

Assume:

Investment capital is $5,000,000.

Standard deviation from an annual trading calendar 

(252 days) is 9 percent.

Portfolio

Simulated 

Distribution

Returns

VAR

Pr
ob

ab
ili
ty

Figure 7-1. VAR
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Using the z-score (1.65) at 95 percent confidence 

interval, the value at risk is as follows:

$5,000,0000*1.645*.09 = $740 250

Listing 7-1 scrapes the stock prices for Amazon, Apple, Walgreens 

Boots Alliance, Northrop Grumman Corporation, Boeing Company, and 

Lockheed Martin Corporation (see Table 7-1).

Listing 7-1. Scraped Data

from pandas_datareader import data

tickers = ['AMZN','AAPL','WBA',

           'NOC','BA','LMT']

start_date = '2010-01-01'

end_date = '2020-11-01'

df = data.get_data_yahoo(tickers, start_date, end_date)[['Adj 

Close']]

df.head()
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Listing 7-2 specifies the investment weights of the portfolio.

Listing 7-2. Specify Investment Weights

weights = np.array([.25, .3, .15, .10, .24, .7])

From then on we specify the initial investment capital in the portfolio. 

See Listing 7-3.

Listing 7-3. Specify Initial Investment

initial_investment = 5000000

Listing 7-4 estimates the daily returns (see Table 7-2).

Listing 7-4. Estimate Daily Returns

returns = df.pct_change()

returns.tail()
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Table 7-2 highlights the first five rows of each stock’s daily return. 

Listing 7-5 estimates the joint variability between the stocks in the 

portfolio (see Table 7-3).

Listing 7-5. Covariance Matrix

cov_matrix = returns.cov()

cov_matrix
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Listing 7-6 estimates the VAR. First, we specify the average daily 

returns, then we specify the confidence interval and cutoff value, and 

finally we obtain the mean and standard deviations. Subsequently, we find 

the inverse of the distribution.

Listing 7-6. Estimate Value at Risk

conf_level1 = 0.05

avg_rets = returns.mean()

port_mean = avg_rets.dot(weights)

port_stdev = np.sqrt(weights.T.dot(cov_matrix).dot(weights))

mean_investment = (1+port_mean) * initial_investment

stdev_investment = initial_investment * port_stdev

cutoff1 = norm.ppf(conf_level1, mean_investment, stdev_

investment)

var_1d1 = initial_investment - cutoff1

var_1d1

166330.5512926411

At a 95 percent confidence interval, the investment portfolio of 

$5,000,000 will not exceed losses greater than 166,330.55 a day. Listing 7-7 

prints the 10-day VAR.

Listing 7-7. Print 10-Day VAR

var_arry = []

num_days = int(10)

for x in range(1, num_days+1):

    var_array.append(np.round(var_1d1 * np.sqrt(x),2))

     print(str(x) + " day VaR @ 95% confidence: " + str 

(np.round(var_1d1 * np.sqrt(x),2)))

1 day VaR @ 95% confidence: 166330.55

2 day VaR @ 95% confidence: 235226.92

3 day VaR @ 95% confidence: 288092.97
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4 day VaR @ 95% confidence: 332661.1

5 day VaR @ 95% confidence: 371926.42

6 day VaR @ 95% confidence: 407424.98

7 day VaR @ 95% confidence: 440069.27

8 day VaR @ 95% confidence: 470453.84

9 day VaR @ 95% confidence: 498991.65

10 day VaR @ 95% confidence: 525983.39

Listing 7-8 graphically represents the VAR over a 10-day period (see 

Figure 7-2).

Listing 7-8. 10-Day VAR

plt.plot(var_array, color="navy")

plt.xlabel("No. of Days")

plt.ylabel("MaX Portfolio Loss (USD)")

plt.show()

Figure 7-2. Max portfolio loss (VAR) over a 15-day period
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Figure 7-2 shows that as we increase the number of days, the maximum 

investment portfolio increases too. In the next section, we explored Monte 

Carlo simulation.

 Understanding Monte Carlo
Monte Carlo simulation uses resampling techniques to combat sequential 

problems. It reconstructs real-life conditions to identify and understand 

the results of the preceding occurrences and predict future occurrences. 

It also enables us to experiment with different investment strategies. Not 

only that, but it performs repetitive measurements on random variables 

that come from a normal distribution to determine the probability of each 

output, and then it assigns a confidence interval output.

 Application of Monte Carlo Simulation in Finance
We use Monte Carlo simulation to evaluate a strategy’s rigorousness. 

It helps us determine whether the strategy is optimistic. An optimistic 

strategy stops yielding optimal returns when parameters of the 

environment are adjusted. It enables us to simulate the market and 

identify the risk we expose ourselves to. For this example, we focus on only 

one stock, the Northrop Grumman Corporation stock. See Listing 7-9 and 

Table 7-4.

Listing 7-9. Scraped Data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'NOC'

df = data.get_data_yahoo(ticker, start_date, end_date)

df['return'] = df['Adj Close'].pct_change().fillna(0)

df.head()
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 Run Monte Carlo Simulation
Listing 7-10 applies the panda_montecarlo() method to run the Monte 

Carlo simulation with five simulations. Also, we set the bust/max 

drawdown to -10.0 percent and the goal threshold to +100.0 percent.

Listing 7-10. Run the Monte Carlo Simulation

mc = df['return'].montecarlo(sims=10, bust=-0.1, goal=1)

 Plot Simulations
Listing 7-11 plots the 10 simulations that the Monte Carlo simulation ran 

(see Figure 7-3).

Listing 7-11. Simulations

mc.plot(title="")
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Figure 7-3 shows the simulation results. It highlights a dominant 

upward trend. Listing 7-12 tabulates raw simulations (see Table 7-5).

Listing 7-12. Raw Simulations

pd.DataFrame(mc.data).head()

Figure 7-3. Monte Carlo simulations
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Listing 7-13 returns the statistics of the simulation model (Table 7-6).

Listing 7-13. Monte Carlo Statistics

ev = pd.DataFrame(mc.stats, index=["s"])

ev

Table 7-6 highlights the dispersion. It also highlights the maximum 

drawdown (the maximum amount of loss from a peak).

 Conclusions
When investing in a stock or a set of stocks, it is important to understand, 

quantify, and mitigate the underlying risk in an investment portfolio. This 

chapter discussed VAR; thereafter, it showed ways to calculate the VAR of 

an investment portfolio, followed by simulating stock market changes by 

applying Monte Carlo simulation. The simulation technique has many 

applications; we can also use it for asset price structuring, etc. The next 

chapter further expands on the investment portfolio and risk analysis.

Table 7-6. Monte Carlo Statistics

min max mean median std maxdd bust goal

s 2.094128 2.094128 2.094128 2.094128 2.145155e- 15 -0.164648 0.2 0.8
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CHAPTER 8

Market Trend 
Classification Using 
ML and DL
Thus far, we have progressively introduced the parametric method. All 

the problems we solved involved a continuous variable. We can also make 

use of the nonparametric method to predict the possible direction of the 

market. This chapter presents the nonparametric (or nonlinear) method, 

also called the classification method. This prevalent method operates on 

independent variables and triggers a bounded value. It is suitable when 

dealing with a categorical dependent variable (a dependent variable that 

is limited by a specific range). There are two primary types of classification 

methods: the binary classification method, which is used when the 

dependent variable has two outcomes, and the multiclass classification 

method, which is used when the dependent variable is a categorical 

variable with over two outcomes. In this chapter, we use both SciKit- 

Learn and Keras. The SciKit-Learn library is pre-installed in the Python 

environment. To install Keras in the Python environment, we use pip 

install Keras, and in the conda environment, we use conda install -c 

conda-forge keras.

https://doi.org/10.1007/978-1-4842-7110-0_8#DOI
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 Classification in Practice
Recognizing supply-and-demand activities helps investors make well- 

informed investment decisions. In this chapter, we create a categorical 

variable with the two outcomes 0 and 1, where 0 represents a downward 

market and 1 represents an upward market. We use a logistic classifier to 

predict future classes. Listing 8-1 applies the get_data_yahoo() method 

to get the price data of crude oil1 from November 1, 2010, to November 1, 

2010 (see Table 8-1).

Listing 8-1. Scraped Data

from pandas_datareader import data

start_date = '2010-11-01'

end_date = '2020-11-01'

ticker = 'CL=F'

df = data.get_data_yahoo(ticker, start_date, end_date,)

df.head()

1 https://finance.yahoo.com/quote/CL=F/
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Listing 8-2 estimates the returns and log returns (see Table 8-2).

Listing 8-2. Estimate Returns and Log Returns

df = df.dropna()

df['pct_change'] = df["Adj Close"].pct_change()

df['log_ret'] = np.log(df["Adj Close"]) - np.log(df["Adj 

Close"].shift(1))

df.head()
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Listing 8-3 drops the missing values and estimates the market direction 

(see Table 8-3).

Listing 8-3. Drop Missing Values and Estimate Market Direction

df = df.dropna()

df['direction'] = np.sign(df['pct_change']).astype(int)

df.head(3)
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 Data Preprocessing
Listing 8-4 creates a categorical variable with the two outcomes 0 and 

1, where 0 represents a downward market and 1 represents an upward 

market. This enables us to use a classifier that can predict the probability of 

two classes. We start by defining the number of lags, and then we estimate 

daily returns and convert the lag returns into binary classes. We also use 

the GridSearchCV() method to standardize the data in such a way that the 

mean value is 0 and the standard deviation is 1.

Listing 8-4. Data Preprocessing

from sklearn.preprocessing import StandardScaler

df["direction"] = pd.get_dummies(df["direction"])

from sklearn import preprocessing

x=df.iloc[::,5:8]

y=df.iloc[::,-1]

scaler = StandardScaler()

x=scaler.fit_transform(x)

Listing 8-5 splits the data into training data and test data using the 

80/20 split ratio.

Listing 8-5. Split Data into Training and Test Data

from sklearn.model_selection import train_test_split

x_train, x_test, y_train, y_test =train_test_split(x , y, test_

size=0.2,shuffle= False)

 Logistic Regression
Although the term logistic regression contains the word regression, it is not 

a regression model but a classification model. A linear regression model 

estimates a continuous variable. Meanwhile, a logistic regression model 

Chapter 8  Market trend ClassifiCation Using Ml and dl



151

estimates a categorical dependent variable. Regression models assume the 

data is linear and comes from a normal distribution, but logistic classifiers 

are free from those assumptions. In logistic regression, we fit an S-shaped 

curve (or logistic curve or sigmoid curve) to the data. We use a logistic 

classifier to predict market movements. Stock prices change significantly 

in specific periods. If the market should upsurge within a certain period, 

then there is an upward market or a bullish market. In contrast, if the 

market price consistently decreases within a specific period, then there is a 

downward market or bearish market.

 Develop the Logistic Classifier
Listing 8-6 finalizes the logistic classifier.

Listing 8-6. Finalize the Logistic Classifier

from sklearn.linear_model import LogisticRegression

logreg = LogisticRegression()

logreg.fit(x_train, y_train)

 Evaluate a Logistic Classifier

Listing 8-7 constructs a table that highlights the predicted market classes 

(see Table 8-4).

Listing 8-7. Predicted Values

y_predlogreg = logreg.predict(x_test)

pd.DataFrame(y_predlogreg,columns=["Forecast"])
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Table 8-4 does not provide us with sufficient information about how 

well the logistic classifier predicts. To find an abstract background of the 

logistic classifier’s performance, we use a confusion matrix.

Confusion Matrix

We typically use a confusion matrix to identify two types of errors: the false 

positive, which incorrectly predicts that an event took place, and the false 

negative, which incorrectly predicts an event that never happened. It also 

highlights the true positive, which correctly predicts an event that took 

place, and the true negative, which correctly predicts an event that never 

took place. Listing 8-8 constructs a confusion matrix (see Table 8-5).

Table 8-4. Predicted Classes

Forecast

0 1

1 1

2 0

3 1

4 1

... ...

494 1

495 0

496 1

497 0

498 1
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Listing 8-8. Confusion Matrix

from sklearn import metrics

cmatlogreg = pd.DataFrame(metrics.confusion_matrix(y_test,y_

predlogreg),

                          index=["Actual: Sell","Actual: Buy"],

                           columns=("Predicted: 

Sell","Predicted: Buy"))

cmatlogreg

Table 8-5 does not tell us much besides giving us a count of actual 

“sell” and actual “buy,” and predicted “sell” and predicted “buy.” To better 

understand how the logistic classifier works, we use the classification report.

Classification Report

Table 8-8 provides sufficient details about the classifier’s performance. 

It tabulates the accuracy (how often a classifier gets predictions right), 

precision (how often a classifier is correct), F-1 score (the harmonic mean 

value of precision and recall), and support (the number of samples of the 

actual response in that class). It also shows whether there is an imbalance 

in the data. To understand how this works, in this section we show you 

how to estimate both accuracy and precision (also refer to Table 8-6).

 Accuracy TP TN TP TN FP FN� � � � �/  (Equation 8-1)

 Precision TP TP FP� �/  (Equation 8-2)

Table 8-5. Confusion Matrix Estimates

Predicted: Sell Predicted: Buy

Actual: Sell 234 0

Actual: Buy 0 265
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To understand how this works, look at Table 8-6. Also refer to Table 8-7.

Listing 8-9 shows the classification report (see Table 8-8).

Listing 8-9. Classification Report

creportlogreg =pd.DataFrame(metrics.classification_report(y_

test,y_predlogreg,output_dict=True)).transpose()

creportlogreg

Table 8-6. Understanding Confusion Matrix Estimates

Metric Description

TP representing true positives (how many times the classifier predicted a 

“sell” signal when it was a “sell” signal)

TN representing true negatives (how many times the classifier predicted a 

“buy” signal when it was a “buy” signal)

FP representing false positives (how many times the classifier predicted a 

“sell” signal when it was a “buy” signal)

FP representing false negatives (how many times the classifier predicted a 

“buy” signal when it was a “sell” signal)

Table 8-7. How to Obtain Confusion 

Matrix Estimates

Predicted: Sell Predicted: Buy

Actual: Sell tp fp

Actual: Buy fn tn
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Table 8-8 highlights that the logistic classifier is accurate 100 percent 

of the time (the accuracy is at 1.0). This also shows there is an imbalance 

in the data. We will not depend on the accuracy score to assess its 

performance.

ROC Curve

We use the ROC curve to find the area under the curve (AUC). ROC stands 

for “receiver operating characteristic,” which shows the extent to which the 

classifier distinguishes between classes. The roc_curve() method takes 

the actual classes and probabilities of each class to develop the curve. 

Listing 8-10 constructs an ROC curve to summarize the trade-offs between 

the false positive rate and the true positive rate across different thresholds 

(see Figure 8-1).

Listing 8-10. ROC Curve

y_predlogreg_proba = logreg.predict_proba(x_test)[::,1]

fprlogreg, tprlogreg, _ =metrics.roc_curve(y_test,y_predlogreg_

proba)

auclogreg = metrics.roc_auc_score(y_test, y_predlogreg_proba)

plt.plot(fprlogreg, tprlogreg, label="AUC: 

"+str(auclogreg),color="navy")

Table 8-8. Classification Report

precision recall f1-score support

0 1.0 1.0 1.0 256.0

1 1.0 1.0 1.0 243.0

accuracy 1.0 1.0 1.0 1.0

macro avg 1.0 1.0 1.0 499.0

weighted avg 1.0 1.0 1.0 499.0
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plt.plot([0,1],[0,1],color="red")

plt.xlim([0.00,1.01])

plt.ylim([0.00,1.01])

plt.xlabel("Specificity")

plt.ylabel("Sensitivity")

plt.legend(loc=4)

plt.show()

The AUC score is greater than 0.80. This means the logistic classifier 

is skillful in distinguishing classes. Ideally, we want a classifier that has an 

AUC score that is closer to 1.

Figure 8-1. ROC curve
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 Learning Curve
Figure 8-2 has two axes: the training set size on the x-axis and the accuracy 

score on the y-axis. It illustrates how the classifier learns to make accurate 

predictions as we progressively increase the data. See Listing 8-11.

Listing 8-11. Learning Curve

from sklearn.model_selection import learning_curve

trainsizelogreg, trainscorelogreg, testscorelogreg 

=learning_curve(logreg, x, y, cv=5, n_jobs=5,train_sizes=np.

linspace(0.1,1.0,50))

trainscorelogreg_mean = np.mean(trainscorelogreg,axis=1)

testscorelogreg_mean = np.mean(testscorelogreg,axis=1)

plt.plot(trainsizelogreg,trainscorelogreg_mean,color="red",labe

l="Training score", alpha=0.8)

plt.plot(trainsizelogreg,testscorelogreg_

mean,color="navy",label="Cross validation score", alpha=0.8)

plt.xlabel("Training set size")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()
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Figure 8-2 conveys that the classifier commits many mistakes in the 

foundation phase of the training. The average accuracy score surges as 

we increase the training set size, and the training score is predominantly 

beneath the cross-validation score.

 Multilayer Layer Perceptron
Chapter 5 covered deep learning and its application in finance. Thereafter, 

we explained the fundamental structure of an artificial neural network 

and revealed ways in which you can combat sequential problems using 

the recurrent neural network (RNN). We developed and assessed the 

long short-term memory (LSTM) model to forecast future stock prices. In 

this chapter, we use a multilayer perceptron (MLP) classifier to estimate 

the probabilities of an upward or downward market. It comprises three 

layers: the input layer, which receives input values; the hidden layer, which 

Figure 8-2. Learning curve
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transforms the values; and the output layer, which triggers an output 

value. The MLP model receives a set of input values, transforms them, and 

triggers output values in the output layer. It is basically a combination of 

multiple restricted Boltzmann machines (a neural network that maintains 

a visible layer and hidden layer). The model addresses the vanishing 

gradient problem through backward propagation, which involves 

estimating the gradient from the right to the left (the opposite of forward 

propagation that involves estimating the gradient from the left to the right).

Visible Layer Hidden Layer Output Layer

Figure 8-3. Multilayer perceptron
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Figure 8-3 shows an MLP with three nodes at the visible layer, four 

nodes at the hidden layer, and an output layer with only one possible 

outcome. Listing 8-12 imports the Keras library.

Listing 8-12. Import Libraries

from keras import Sequential, regularizers

from keras.layers import Dense, Dropout

from keras.wrappers.scikit_learn import KerasClassifier

After importing the Keras framework, we start establishing the 

structure of the neural network.

 Architecture
Listing 8-13 builds up the logical structure of the neural network. There 

are eight input variables (High, Low, Open, Close, Volume, Adj Close, 

pct_change, log_ret, direction), and we intentionally set input_dim as 8 

and apply the sigmoid function. The sigmoid function operates on a set of 

input values and generates output values that range between 0 and 1. We 

implement the ReLu function on the hidden layer and the output layer. 

Unlike the sigmoid function, the ReLu function limits the data between 

0 and 1, and it processes the data until it invariably produces an optimal 

value. We typically use the adaptive moment estimation (Adam) optimizer 

over other optimizers because at most it generalizes data better than its 

predecessors, especially when dealing with a large dataset. It extends both 

from Adadelta (an optimizer that properly adjusts learning rates based 

on a moving window of the modified gradients) and RMSProp (estimates 

the notable difference between the gradients’ current weights and 

preceding weights; thereafter, it estimates the square root of the obtained 

standard deviation). Adam is straightforward; it subtly alters the adaptive 

learning rate and implements the stochastic gradient descent method 

(a prevalent method for training neural networks faster by randomly 

selecting terms to estimate rather than estimating all terms). It adequately 
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considers substantial variations in the loss function. In addition, it is not 

computationally demanding. In summary, it solves the problem of slow 

training (which we mostly experience with other optimizers when there 

are many variables or many observations in the data).

Listing 8-13. Architecture

def create_dnn_model1(optimizer="adam"):

    model1 = Sequential()

    model1.add(Dense(8, input_dim=8, activation="sigmoid"))

    model1.add(Dense(8, activation="relu"))

    model1.add(Dense(1, activation="relu"))

    model1.compile(loss="binary_crossentropy", 

optimizer=optimizer, metrics=["accuracy"])

    return model1

Listing 8-14 wraps the architecture of the network using the 

KerasClassifier() method.

Listing 8-14. Wrap the Model

model1 = KerasClassifier(build_fn=create_dnn_model1)

 Finalize the Model
Listing 8-15 trains the neural network across 64 epochs in 15 batches. An 

epoch represents a complete forward and backward pass, and a batch 

represents the number of samples that progressively increase throughout 

the network.

Listing 8-15. Finalize the Model

history1 = model1.fit(x_train, y_train, validation_data=(x_

val,y_val), batch_size=15, epochs=64)

history1
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Listing 8-16 returns the key performance evaluation metrics (see 

Table 8-9).

Listing 8-16. Classification Report

y_predmodel1 = model1.predict(x_test)

creportmodel1 = pd.DataFrame(metrics.classification_report(y_

test,y_predmodel1, output_dict=True)).transpose()

creportmodel1

Table 8-9 highlights that the neural network is less accurate and precise 

than the logistic classifier. It also shows that the data is imbalanced. You 

can further understand how skillful the classifier is by looking at the loss.

 Training and Validation Loss Across Epochs

Loss represents a metric that establishes the difference between actual 

values and those predicted by the model. Listing 8-17 plots the training 

and validation loss across epochs to show how the neural network learns 

to differentiate between a downward and upward market in training and in 

cross-validation (see Figure 8-4).

Table 8-9. Classification Report

precision recall f1-score support

0 0.468938 1.000000 0.638472 234.000000

1 0.000000 0.000000 0.000000 265.000000

accuracy 0.468938 0.468938 0.468938 0.468938

macro avg 0.234469 0.500000 0.319236 499.000000

weighted avg 0.219903 0.468938 0.299404 499.000000
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Listing 8-17. Training and Validation Loss Across Epochs

plt.plot(history1.history["loss"],color="red",label="Training 

Loss")

plt.plot(history1.history["val_loss"],color="green",label="Cro

ss- Validation Loss")

plt.xlabel("Epochs")

plt.ylabel("Loss")

plt.legend(loc=4)

plt.show()

Figure 8-4 shows that at the first epoch, the training loss drops and 

remains until the 64th epoch (7.59). Meanwhile, the cross-validation loss 

remains constant across epochs (around 7.58).

Figure 8-4. Training and validation loss across epochs
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 Training and Validation Accuracy Across Epochs

Accuracy refers to how often a classifier correctly predicts classes. Listing 8-18 

plots the training and validation accuracy to demonstrate how the neural 

network learns how to get the answers correct. (See Figure 8-5.)

Listing 8-18. Training and Validation Accuracy Across Epochs

plt.plot(history1.history["accuracy"],color="red",label="Traini

ng Accuracy")

plt.plot(history1.history["val_accuracy"],color="green",label="

Cross-Validation Accuracy")

plt.xlabel("Epochs")

plt.ylabel("Accuracy")

plt.legend(loc=4)

plt.show()

Figure 8-5. Training and validation accuracy across epochs
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Figure 8-5 shows that both the training accuracy and the validation 

accuracy remain constant across epochs (with the training accuracy 

around 0.5291 and the cross-validation around 0.528).

 Conclusions
This chapter introduced binary classification. It covered a way of 

designing, developing, and testing a machine learning model known as 

logistic regression, and it covered a neural network model known as the 

MLP model to solve a binary classification. It also showed metrics for 

classification model performance evaluation. After carefully reviewing the 

model’s performance, we found that the independent variables are good 

predictors of the probability for an upward market and downward market.
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CHAPTER 9

Investment Portfolio 
and Risk Analysis
This chapter properly concludes the book by covering a comprehensive 

framework for investment portfolio and risk analysis. Thus far, we have 

developed several machine learning models and deep learning models 

for robust investment management decision-making. Throughout the 

book, we alluded to investing in markets involving risk. In this chapter, 

we present the primitives of investment risk and performance analysis 

using the Pyfolio package. To install Pyfolio in the Python environment, 

we use pip install pyfolio, and in the conda environment, we use 

conda install -c conda-forge pyfolio. Before you install pyfolio, first 

install theano. To install theano in the conda environment, we use conda 

install -c conda-forge theano.

An investor typically invests in an asset expecting future financial 

returns. For instance, a company acquires plants and machinery to 

transform raw materials into products that can be sold to attain financial 

returns. There are ample asset classes that an investor can invest in. 

Common asset classes include stocks, bonds, equities, commodities, 

hedge funds, real estate, and retail investment trusts, among others. 

Each asset class has its own underlying characteristics and considerable 

value expressed in monetary terms. The value of an asset varies over 

time because of many factors. An investor must constantly monitor and 

improve an investment portfolio’s performance.
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 Investment Risk Analysis
A clear understanding of the risks associated with an asset enables 

effective planning for unfavorable market conditions that may occur. By 

default, investors get exposed to risk when they take a position in the 

market, irrespective of the side of the position they take. When the market 

moves against an investor’s position, they suffer losses. Managing losses 

is key to stable and viable investment strategies. Table 9-1 describes basic 

investment performance metrics.

 Pyfolio in Action
This chapter convincingly demonstrates the Pyfolio package, a powerful 

package for investment risk and performance analysis. We can use this 

package with other complementary packages like Zipline and Quantopian 

to backtest an investment strategy. Backtesting represents considering 

how well an investment system manages risk and makes returns. We base 

it on the notion that past performance impacts future performance. In this 

chapter, we use the Pyfolio package as a stand-alone package. Before using 

it, we first extract the data. Listing 9-1 scrapes market data from Yahoo 

Finance by applying the get_data_yahoo() method. In this chapter, the 

Table 9-1. Basic Investment Performance Metrics

Metric Description

Value at risk Representing the minimum capital required to compensate for 

losses at a specified probability level

Drawback Representing the rate at which an asset suffers losses

Volatility Representing the extent at which an asset’s price deviates away 

from the true mean value
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Amazon1 performance is benchmarked alongside the Standard & Poor 

(S&P) 500 index.2 Amazon is a US-based computer company giant whose 

stock is exchanged as an S&P 500 component. The S&P 500 is a stock index 

for gauging the performance of 500 companies listed in the United States.

Listing 9-1. Scraped Data

from pandas_datareader import data

import pyfolio as pf

ticker = 'AMZN'

start_day = '2010-10-01'

end_day = '2020-10-01'

amzn = data.get_data_yahoo(ticker, start_day, end_day)

spy = data.get_data_yahoo('SPY', start_day,end_day)

After web scraping, we perform necessary feature engineering tasks 

(see Listing 9-2).

Listing 9-2. Estimate the Returns

amzn = amzn["Adj Close"].pct_change()[1:]

spy = spy["Adj Close"].pct_change()[1:]

After estimating the daily returns, we use varying matrices to test the 

performance of the Amazon stock.

 Performance Statistics
The pyfolio package enables us to comprehensively examine the 

fundamental performance of an investment strategy with some simple 

code. Listing 9-3 tabulates the Amazon stock performance from November 

1, 2010, to November 2, 2020 (see Table 9-2).

1 https://finance.yahoo.com/quote/AMZN
2 https://finance.yahoo.com/quote/%5EGSPC/
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Listing 9-3. Performance Results

pf.show_perf_stats(amzn, spy)

Table 9-2. Performance Results

Start date 2010-10-04

End date 2020-10-01

Total months 119

Backtest

Annual return 35.6%

Cumulative returns 1995.7%

Annual volatility 31.6%

Sharpe ratio 1.12

Calmar ratio 1.04

Stability 0.97

Max drawdown -34.1%

Omega ratio 1.23

Sortino ratio 1.71

Skew 0.42

Kurtosis 7.53

Tail ratio 1.07

Daily value at risk -3.8%

Alpha 0.23

Beta 1.02
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Table 9-2 highlights the risk that an investor bears when they exchange 

Amazon stocks. We use the SPY stock index as the benchmark in our 

analysis. It specifies that the annual rate of return is at 35.6 percent, and 

the cumulative return is at 19995.7 percent. Relating to risk, the daily 

value at risk is at 3.8 percent, and the maximum drawdown is at -34.1 

percent. When observing investment performance findings, at most we are 

interested in studying three key ratios: Calmar ratio, Beta ratio, and Sharpe 

ratio. We equally devote our attention to alpha and beta. Underneath, we 

take you through how we measure these ratios. Table 9-3 provides a high- 

level overview of the key performance result mentioned.

Table 9-3. Key Performance Results

Metric Description

Calmar ratio Representing estimates of the uniform annual rate of return 

divided by the maximum drawdown

Beta ratio Representing estimates of the difference between the anticipated 

return from investment and the anticipated return from the 

market over an exact risk-free return

Sharpe ratio Representing estimates of the difference between a risk-free rate 

and portfolio returns

Alpha Representing estimates of investment returns compared to a 

market key index

Beta Representing estimates of volatility associated with an investment

In the following section, we study the underwater maximum drawback 

across time.
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 Drawback
Listing 9-4 applies the plot_drawdown_underwater() method to exhibit 

the rate at which an investment strategy suffered losses for 10 years (see 

Figure 9-1).

Listing 9-4. Portfolio Drawback

pf.plot_drawdown_underwater(amzn)

plt.show()

Figure 9-1 postulates that the drawdown of the Amazon stock was 

between 0 percent and -30 percent from November 1, 2010, and November 

2, 2020. In 2019, they vicariously experienced the uppermost drawdown; 

nevertheless, in the subsequent year, they promptly recovered losses.

Figure 9-1. Underwater drawback plot
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 Rate of Returns
The most convenient way of determining whether an investment is 

attractive involves studying the rate of returns. Rate of return shows the 

period’s beginning price and the period’s end price.

 Annual Rate of Return

The annual rate of return represents the rate at which an asset yield returns 

annually. We study returns over time to make forecasts. Listing 9-5 applies 

the plot_annual_returns() method to plot the annual rate of returns of 

Amazon stocks over 10 years (see Figure 9-2).

Listing 9-5. Annual Rate of Returns

pf.plot_annual_returns(amzn)

plt.show()

Figure 9-2. Amazon annual rate of return
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Figure 9-2 shows that Amazon stocks produced an instable annual rate 

of return from November 1, 2010, to November 2, 2020. There are changes 

in annual returns. In 2014, the portfolio had the worst performance. 

However, in the following year, the annual returns exceeded 100 percent.

 Rolling Returns
Listing 9-6 returns backtested cumulative returns over 10 years (see Figure 9-3). 

Unlike the annual rate of returns, we weigh the cumulative returns. Pyfolio 

estimates the cumulative returns across time by estimating the notable 

differences between current returns and preceding returns (representing the 

total amount gained from an investment) over the cost of the stock.

Listing 9-6. Rolling Returns

pf.plot_rolling_returns(amzn)

plt.show()

Figure 9-3. Rolling rate of returns
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Figure 9-3 shows clear small increments in cumulative returns from 

November 1, 2020. In 2016, an upward trend started gaining momentum.

 Monthly Rate of Returns

The monthly rate of returns represents the rate at which an asset yield 

returns monthly. We review rates of returns monthly to identify historical 

behavior and cautiously make short-term to midterm forecasts. Listing 9-7 

applies the plot_monthly_returns_heatmap() method to plot a heatmap 

of Amazon stocks’ monthly rate of return over 10 years (see Figure 9-4).

Listing 9-7. Monthly Rate of Return Heatmap

pf.plot_monthly_returns_heatmap(amzn)

plt.show()

Figure 9-4. Monthly rate of returns heatmap
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Figure 9-4 shows that Amazon stock had unstable monthly rates of 

return from November 1, 2010, to November 2, 2020. In the first nine 

months of 2010, the rate is represented as zero, which is the same as in the 

last two months of 2020. This is because we extracted data from November 

1, 2010, to November 2, 2020. Figure 9-4 indicates returns were at their 

peak (at 27 percent) in April 2020. In October 2018, the stock experienced 

its worst performance; the monthly rate of return was -20 percent. Also, 

from 2017 to 2020 the stock shows positive returns, which was the same 

as in the fourth month of the year. For clarity, we carefully examined the 

distribution of the data to summarize the monthly rate of returns. The most 

widespread distribution is the normal distribution. Data follows a normal 

distribution when actual values saturate around the true mean value. 

Listing 9-8 applies the plot_monthly_hist() method to plot a histogram of 

the monthly rate of returns of the Amazon stock (see Figure 9- 5).

Listing 9-8. Monthly Rate of Returns Histogram

pf.plot_monthly_returns_dist(amzn)

plt.show()
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The actual monthly rate of returns is scattered around the mean value. 

We can sufficiently summarize the data using the sample mean value. 

From November 1, 2010, to November 2, 2020, on average, the Amazon 

stock exhibited a long-run upward trend.

 Conclusions
This chapter concludes the book in which we introduced ways to remedy 

financial problems, especially investment management problems, 

using machine learning and deep learning. It covered several ways for 

objectively analyzing the performance of an investment portfolio using a 

Python package known as Pyfolio. To begin with, it discussed the concept 

Figure 9-5. Monthly rate of returns histogram
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of risk and techniques for identifying risk exposure. Last, it covered an 

annual and monthly rate of return estimation. We are not limited to the 

package covered in this chapter. We can use the packages alongside 

Zipline and Quantopian to backtest investment strategies.
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