Machine Learning
in the Browser

Quick-start Guide to Gait Analysis
with JavaScript and TensorFlow.js

Nagender Kumar Suryadevara

ApPress’

Beginning Machine
Learning in the
Browser

Quick-start Guide to Gait
Analysis with JavaScript
and TensorFlow.js

Nagender Kumar Suryadevara

Apress’

Beginning Machine Learning in the Browser: Quick-start Guide to Gait
Analysis with JavaScript and TensorFlow.js

Nagender Kumar Suryadevara
School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, Telangana, India

ISBN-13 (pbk): 978-1-4842-6842-1 ISBN-13 (electronic): 978-1-4842-6843-8
https://doi.org/10.1007/978-1-4842-6843-8

Copyright © 2021 by Nagender Kumar Suryadevara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black

Development Editor: James Markham

Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,

1 NY Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978-1-4842-6842-1. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

https://doi.org/10.1007/978-1-4842-6843-8

Table of Contents

About the AUhOFccccmmiemmmssmnmsns s ann s vii
About the Technical REVIEWETccccmsssemmmmssnsmsssnsssssnsssssnsssssnssnssnnsnns ix
Acknowledgmentsccemmmmmsnmmmmmsssnmmmsssnmmmmsssnnmssssnnssnnmam——— xi
Preface ... ——————— Xiii
Chapter 1: Web Developmentccccccmmmmmnnnnssssssssssnnmmssssssssssssssssessnnes 1
Machine Learning OVEIVIEWc.cccevererrenernsmsssesssssessssessssssessssesssssssssssessssesenns 1
Web Communication ... 4
Organizing the Web with HTML ..o sesessennens 6

Web Development Using IDES/EITOrS........cccvverrervrerrerierenensensesessssessessessssessessenes 6
Building Blocks of Web Development...........cocvcvvvevnnenneniennsessensesessssessessens 9
HTML and CSS Programmingc.cceeeverversereressersessesssssssessesssssssessessessssessessenes 9

B AT BT 0] 2 T [18
Including the JAVaSCHPL........ccevivrrriniene s sas e ene s 18
Where t0 INSErt JS SCHPIS.....cccvvverrrrrerere s sse s s ssesessessessens 19
JavaScript for an Event-Driven ProCessccvvevererverseressssessesessesessessensens 22
Document Object Model Manipulation ... 23
INtroduction t0 JAUEIYcoveeieeeece st 26
SUMIMANY....eieeererere e e e e e e e 28
REfBIBNCESeiveeeereer et 29

iii

TABLE OF CONTENTS

Chapter 2: Browser-Based Data Processing.......cccussssessessssssnssssssnnnnss 31
JavaScript Libraries and API for ML on the Web ..., 31
W3C WebML CG (Community GrOUP) ..coccveererrnrersererensessessesssssssessessessssessessens 32
Manipulating HTML Elements Using JS Librariescccovverrnnennnesesienesensenens 33
DS ettt —————————————————————— 34
Drawing Graphical ODJECEScccevevrrreriererr e enes 35
Manipulating DOM ODJECESccevrerrerererererreserrese s sessese s sessesesennes 36
DOM onEvent(mousePressed) Handlingccveeveverrerierenensensesseseesensessenees 38
Multiple DOM Objects onEvent Handlingccccveveernrenenenernsesensesensenenennes 39
HTML Interactive EIeMents...........ccovernnnmrenerenersesesese e 41
Hierarchical (Parent-Child) Interaction of DOM Elements...........cccorrvrernnne. 45
Accessing DOM Parent-Child Elements Using Variablesccccevvereruene. 47
Graphics and Interactive Processing in the Browser Using p5.jS.....ccccvrvverrererees 49
Interactive Graphics Application..........cccccvvvrvninincnin 51
Object Instance, Storage of Multiple Values, and Loop Through Object......... 53
Getting Started with Machine Learning in the Browser Using ml5.js
AN P5JS 1erriririirre e e r e e ae e 56
Design, Develop, and Execute Programs LOcallyccccccvvererenensensesenensensenens 56
Method 1: Using Python — HTTP SErVer..........cocorrerrnenerenerenseresesesseseneenes 56
Method 2: Using Visual Studio Code Editor with Node.js Live Server............ 58
SUMMANY....ceirierrresere e s er e s r e e 63
REfBIBNCES.....c e 63
Chapter 3: Human Pose Estimation in the Browsercuussseeennnnnnnas 65
Human Pose at @ GIaNnCe ... 66
PoSeNEt VS. OPENPOSE........cccuerrreerreerisesrse s 66
Human Pose Estimation Using Neural NEtWOrKSccocvvvverernnenserienenensensenens 67
DeepPose: Human Pose Estimation via Deep Neural Networksccvevee. 67
Efficient Object Localization Using Convolutional Networksccccccveevuenee. 68

iv

TABLE OF CONTENTS

Convolutional Pose Machines..........c.covrmnmnennnsssssssssese s 68

Human Pose Estimation with Iterative Error Feedbackccocveenerinernnne. 69

Stacked Hourglass Networks for Human Pose Estimation..........c.ccoccovvennene. 69

Simple Baselines for Human Pose Estimation and Trackingcccceveeruene. 69

Deep High-Resolution Representation Learning for Human

P0SE ESHMALION.........cccoeiriirci s 70
Using the ml5.js:posenet() Methodcccooorernninncnenese e 70
Input, Output, and Data Structure of the PoseNet Modelcccccrververerernene. 90

INPUL . —————————— 90

OUPUL .. e e e s 92

ON() FUNCHION......civiiiiricc et 92

101011 T OO 92
RETEBIBNCESceeeeeeee e e 93

Chapter 4: Human Pose Classification............cccusmmssmssssssssssssnsssansssnss 95
Need for Human Pose Estimation in the Browsercccccuvverninnneneniesesnsennns 96
ML Classification Techniques in the BroOWSErccccocevvvrvrennnensensenesessensenens 97
ML USIiNg TENSOIFIOW.]S....ciciieireriirinrie st se s s sse e s sneas 100

Changing Flat File Data into TensorFlow.js Format...........ccccccvvrrervrenreriennen 106
Artificial Neural Network Model in the Browser Using TensorFlow.js 113

Trivial Neural NETWOIKccvvinerinerrrcrenese e 114

Example 1: Neural Network Model in TenSOrFIow.js.........cceeevververreereriennns 115

Example 2: A Simple ANN to Realize the “Not AND” (NAND)

Boolean OPerationc.cveververrerenenserseressesesessessesessessessesessessessessesessensens 117
Human Pose Classification Using PoseNetcccccivrvnininincncncnscensennens 121
Setting Up @ POSENEL Projectcccoevvecrrenerenersseresese e 123

Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML

Program (Main Fil€)couecerenerererncrerener e s sesnenens 123

Step 2: Single-Person Pose Estimation Using a Browser Webcam 124

TABLE OF CONTENTS

PoseNet Model Confidence ValUues............cocorrninenenernnsnssssesessssssesesesssssenes 129
31111117 o O 133
RETBIBNCES ..o s 134
Chapter 5: Gait ANalySisccuucemmmmsssnnnmmsssssnnnmsssssnnnmssssssnssssssnnnnssssnnns 135
Gait Measurement TEChNIQUES........cccevvrririenn s 135
Gait Cycle Measurement Parameters and Terminologyc.cccoevererenerensenenns 137
Web User Interface for Monitoring Gait Parametersc.ccoovvevvvverievnnenseniennns 138
INAEXNEMLL...e e ————— 140
Real-Time Data Visualization of the Gait Parameters (Patterns) on
TNE BIOWSET.....ccviereeeresceree s 152
Determining Gait Patterns Using Threshold Values...........ccccooevvvnvnienncensennenn 160
SUMMANY....eiveereeeresee s e s e pe e nr e 161
REfEIBNCEScveeeerreerte et 162

Chapter 6: Future Possibilities for Running Al Methods

iN @ BrOWSEK ...cceeirrirriisssssssssnnnmmmmssssssssssnsnsssssssssssssnsnnnnnssssssssnnnnnnnnnnnss 163
100 T 1 o 163
Additional Machine Learning Applications with TensorFlow..........c.ccceevienuenne. 165
Face Recognition Using face-api.jS........cccvrvrmrriernsnnssesnnnnnsessesessssensensens 165
Hand Pose EStimation...........ccccuvrinnsnininnsncness s sessessesnens 167
SUMMANY....eiveerieereree e se e e e pe e nr e e 175
L) (=] (][] 175
CONCIUSION ..uvveeeeennnsrrssssssssnnsnnsssesssssssssnsnssssssssssssssnnnnnnssesssssssnnnnnnnnnnnss 177

T 179

About the Author

Dr. Nagender Kumar Suryadevara received
his Ph.D. degree from the School of
Engineering and Advanced Technology,
Massey University, New Zealand, in 2014.
He is an Associate Professor at the School

of Computer and Information Sciences,

\ . University of Hyderabad, India. His research

1 !,' w interests include wireless sensor networks,

the Internet of Things, and time-series data

mining. He has authored two books, edited
two books, and published more than 50 papers in various international
journals, conferences, and book chapters. He has delivered numerous
presentations, including keynote, tutorial, and special lectures. He is a
senior member of IEEE. Dr. Suryadevara is passionate about development
possibilities for great Al-based products in resource-constrained
computing environments. Google Scholar citations:h-index:19,i10-
index:30.

https://scholar.google.com/citations?user=5280dGMAAAAJ&h]=en

vii

https://scholar.google.com/citations?user=S28OdGMAAAAJ&hl=en

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated from BITS Pilani, where he studied
mechanical engineering, in 2018. Since then, he has worked with
BigVision LLC on deep learning and computer vision and was involved in
creating official OpenCV Al courses. Currently, he is working at Mercedes
Benz Research and Development India Pvt. Ltd. He has a keen interest

in programming and Al and has applied that interest in mechanical
engineering projects. He has also written multiple blogs on OpenCV and
deep learning on LearnOpenCV, a leading blog on computer vision. He has
also authored Machine Learning for OpenCV (2nd edition) by Packt. When
he is not writing blogs or working on projects, he likes to go on long walks
or play his acoustic guitar.

ix

Acknowledgments

This journey would not have been possible without the support of my
family, professors, mentors, and friends. I am especially grateful to my
parents, who supported me emotionally. To my family, thank you for
encouraging me in all of my pursuits and inspiring me to follow my
dreams.

I want to express my sincere gratitude and heartfelt thanks to
Vishwesh Ravi Shrimali for allocating some time and taking responsibility
for reviewing the book chapters and providing valuable comments and
helpful suggestions.

Thanks to everyone in the publication team, especially Aaron Black,
who helped me in getting the book content into great shape, James
Markham, who took great pains in grooming the book, and Jessica Vakili,
who made sure the book writing process went smoothly and on time.

I am indebted to many of my students and colleagues who were
involved with various projects over several years, and some of their works
have been used in this book. I would especially like to give credit to one of
my students, Ashish Gupta, for helping me in executing the programs in
Chapter 5.

Preface

In recent times, artificial intelligence (AI) and machine learning

(ML) techniques have been widely used in many applications, such

as monitoring environmental parameters, monitoring, and control

of industrial situations, intelligent transportation, structural health
monitoring, health care, and so on. The advancement of electronics,
embedded control, smart sensing, networking, and communication has
made it possible to develop low-cost smart systems. Although there are
smart systems, the computing capabilities are minimal, and hence they
are considered to be resource-constrained computing devices (e.g., mobile
phones, smart watches, and mini electronic gadgets).

Applying smart strategies involving complex mathematical operations
of AT and ML methods on resource-constrained computing devices and
browsers is challenging. The advancements in Internet technologies,
primarily JavaScript skills, have made it possible to execute AI/ML models
in the browsers and resource computing devices. There are many other
publications on Al, ML, and JavaScript, but this book provides beneficial
information and practical knowledge to develop intelligent methods/models
from scratch and deploy them on browsers and resource-constrained
computing devices.

The complete book is divided into six chapters:

Chapter 1 describes the fundamentals of web development. This
chapter provides a short description of designing and developing web
applications using web building blocks. For developing an AI/ML model
and running on the browser or resource-constrained computing device,
this chapter’s practical knowledge is essential. For a beginner in any field

xiii

PREFACE

of study and interested in developing web apps, this chapter provides the
necessary practical skills to better realize web applications.

Chapter 2 delivers the steps to be performed and the necessary
JavaScript libraries to be considered for processing the data at the
computer’s browser application level. The latest JavaScript libraries
(p5.js and ml5.js) that help build the AI/ML models with practical steps are
covered.

Chapter 3 introduces the human pose estimation application as an
example that enables the reader to understand how an AI/ML model
involving complex mathematical operations can be used to run in the
browser. The stepwise procedure teaches you how to implement ML
methods to estimate an individual’s poses.

Chapter 4 covers the open-source JavaScript library TensorFlow.
js, which will be useful for building and deploying AI/ML models in the
browser. The architecture of the TensorFlow.js, including its accelerators
that support massive data processing at the browser, is explained. Practical
examples of executing a neural network model for useful classification
tasks are elucidated using the TensorFlow.js library.

Chapter 5 examines how to determine gait parameters by applying
AI/ML methods along with the JavaScript libraries in the web browser
application. The chapter walks you through the basics of gait analysis and
expands on the observational method considered in determining the vital
parameters for analysis using the Al in the browser.

Chapter 6 provides a few more advanced applications to run on the
browser by applying the A[/ML methods. This chapter encourages the
reader to think about the advancements possible when running AI/ML
models in the browser.

I'hope that you enjoy reading the book. If you need any help
whatsoever with the practicals, please feel free to contact me.

Dr. S. Nagender Kumar Suryadevara

Associate Professor, School of Computer and Information Sciences,

University of Hyderabad, India.

Xiv

CHAPTER 1

Web Development

This chapter introduces you to the fundamentals of machine learning
(ML) and provides a practical primer to web design and development for
complete beginners. Topics covered in this chapter include the following:

e Hypertext Markup Language (HTML)
e Cascading Style Sheets (CSS)

e JavaScript (JS)

e Document Object Model (DOM)

« jQuery

These building blocks of web development enable you to implement
rich user functionalities into your web design.

Machine Learning Overview

Machine learning, a subset of artificial intelligence (AI), aims to enable
computers to learn without interacting with specific programs. ML enables
computers to develop programs that can access data and use it to learn for
themselves (and thus perform like a human).

© Nagender Kumar Suryadevara 2021 1
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_1

https://doi.org/10.1007/978-1-4842-6843-8_1#DOI

CHAPTER 1 WEB DEVELOPMENT

Arthur Samuel, who believed that computers could learn without
specific programs, popularized the term machine learning in 1959. In 1997,
Tom Mitchell further clarified the concept of ML, stating that a computer
could learn from some relative measure involving past performance while
processing some task, thus giving some experience to the computer.

Today, electronics of all kinds are outfitted with cutting-edge,
high-sensitivity sensors. Further, Internet connectivity allows for
communication among gadgets (things) for better environment-condition
monitoring. Accordingly, the massive amount of data generated from
these gadgets drives the Internet of Things (IoT) concept. Using Al and
ML strategies, the broad information gathered can be processed, scaled,
ordered, and used to predict events.

In conventional ML approaches, data is sent to and handled through
a central server, which experiences communication overhead, latency,
protection loss, and security issues. To overcome these difficulties,
inferences from the data collected in the IoT realm can be made by
deploying better ML techniques near the data origin using, for instance,
browser-environment capabilities. Exploiting ML strategies on resource-
constrained computing devices through a browser helps respective entities
to make better decisions in real time for enhanced functionality.

The tremendous computational demands of current Al strategies and
the development of ever-increasing numbers of Al-enhanced applications
forecast more data-processing problems. After all, computer-based
intelligence systems features are more demanding as they seek to reduce
resource utilization, to quicken resource accessibility, and to exploit
resource utilization for precision.

Software developers and engineers can now more effectively leverage
Al to conceptualize exceptionally responsive applications that respond to
user-sourced information in real time, such as voice or facial recognition.
They can also make smarter applications that can learn from user behavior.

CHAPTER 1 WEB DEVELOPMENT

Computer-based intelligence enables us to automate applications to
incorporate substantive proposals, to respond to voice requests or physical
motions, to use mobile phone cameras to recognize items or places, and to
figure out how to help users with day-by-day activities.

In the past, many of the best ML and deep learning (DL) systems
required familiarity with Python and its related library system. Production
of ML models required unique reasoning equipment and programming
tools, such as NVIDIA graphical processing units (GPUs) and CUDA. Now,
however, incorporating ML into JavaScript (JS) applications often involves
deploying the ML part on remote cloud systems, such as Amazon Web
Services (AWS), and getting the model to run on the local system via
application programming interface (API) calls. This nonlocal, back-end
centered methodology has likely kept many web engineers from taking
advantage of the abundant prospects Al offers to front-end improvement.

The main advantage of running Al strategies on users’ local devices
(i.e., near the data-origin source) is that the information never leaves the
user’s device. This point is critically significant because users rightfully
worry about their data privacy, especially in the wake of well-publicized
and embarrassing information leaks and security breaches.

With the help of TensorFlow.js software tools, developers/users can
exploit Al without sending their information over a system that potentially
makes it available to an outsider. These tools make it simpler to develop
secure applications that comply with information security guidelines, such
as healthcare applications that read wearable clinical sensors. The tools
also make Al program augmentation possible, thus allowing upgrades
while shielding user conduct/information.

Integrating JS programming features with Al strategies in a simple
interface can lead to more straightforward access to rich sensor
information from IoT devices. User behavior can be modeled based on
interactivity with device information sources such as voice or webcams.

Because similar programming code can run on, for example, mobile

CHAPTER 1 WEB DEVELOPMENT

phones utilizing accelerometers, gyroscopes, and Global Positioning
System (GPS), integrating AI computational capabilities into user devices
themselves can prove highly beneficial.

Web Communication

Figure 1-1 shows the big-picture web basics for Al applications that run on

user devices.

Get Information ﬁ Localhost Server
——m—— g Get/Put
[~ g h
Put Information E‘ Information

Client Server f I :
D D Applications/

Programs/
(a) Services/
(b) Clients

Figure 1-1. Web communication through the Internet and localhost

The three web development essentials are as follows:
o Client (web browsers, used to surf the web)

e Server systems (used to supply information to the
browsers)

o Computer networks (used to support browser-server

communication)

The web activity shown in Figure 1-1(a) illustrates the internetworking
principle, where communication between the client and server is done
through protocols such as the Internet Protocol (IP), Transmission
Control Protocol (TCP), Hypertext Transfer Protocol (HTTP), and the File
Transfer Protocol (FTP). Figure 1-1(b) shows that communication between

CHAPTER 1 WEB DEVELOPMENT

the client (browser/services/applications) and the server (localhost)

happens locally and provides the required information to the respective

applications (client/browser/services).

The following terms relate to the communication:

o World Wide Web (WWW or web): A system of
interlinked, hypertext documents that runs over the

Internet. There are two types of software: client and

server. A system that wants to access the information

provided by servers must run client software (e.g., a

web browser), and an Internet-connected computer

that wants to provide information to others must run

server software. The client and server applications

communicate over the Internet by following a protocol
built on TCP/IP (i.e., HTTP) (Figure 1-2).

Makes HTTP requests on behalf of the user

— Reformat the URL entered as a valid HTTP request

— Use DNS to convert server’'s host name to appropriate
IP address

— Establish a TCP connection using the |P address

= Send HTTP over the and wait for
server's response

= Displaythe d nt ined in the r

If the document is not a plain-text document but instead is

written in HTML, this involves rendering the document

(positioning text, graphics, creating table borders, using

appropriate fonts, etc.)

/ -Server waits for connect requests

-When a connection request is received, the server creates |
a new process to handle this connection

-The new process establishes the TCP connection and

waits for HTTP requests

-The new process invokes software that maps the

requested URL to a resource on the server

If the resource is a file, creates an HTTP response that
contains the file in the body of the response message
If the isa runs the progi and

| retums the output

Figure 1-2. The communication between the web client (browser)

and the web server

e Hypertext: An information format that enables one to

move from one part of a document to another or from

one document to another through hyperlinks.

CHAPTER 1 WEB DEVELOPMENT

e Uniform Resource Locator (URL): Unique identifiers
used to locate a particular resource on the network.

e Markup language: Defines the structure and content of
hypertext documents.

Organizing the Web with HTML

To design and develop web pages, you want to be thoroughly familiar with
Hypertext Markup Language (HTML). HTML enables you to define a web
page’s structure, including sections, lists, headings, connection points,
pictures, mixed-media players, and more.

HTML is not a programming language. It is a markup language that
tells Internet browsers how to structure web pages that a user visits. HTML
consists of various components that you use to manipulate substantive
page elements to show in a specific way. Encasing labels, for instance, can
turn content into a hyperlink that associates with another page or can be
used to emphasize words/terms.

Web Development Using IDEs/Editors

The difference between an integrated development environment (IDE)
and an editor (text) for web development is that an IDE does everything
from fundamental content management to advanced development that
cannot be done with a text editor.

For example, editors such as Sublime, Notepad++, and Atom can be
used with HTML and Cascading Style Sheets (CSS) when writing the code for
web page design. These editors include many good features (e.g., language
structures that include adaptable interfaces and comprehensive navigation
tools for web developers who want enhanced application capabilities).

https://www.sublimetext.com/
https://notepad-plus-plus.org/downloads/
https://atom.io/

CHAPTER 1 WEB DEVELOPMENT

For instance, a web developer may require a debugger and a compiler to
develop web applications effectively. Figure 1-3 shows the programming
environments of these three editors.

Figure 1-3. Notepad++, Sublime, and Atom editor environments

With the best IDEs, however, you have less to worry about. They
often include comprehensive development tools in one application,
including for automation, testing, and forecasting. Mainly, they provide
web developers the necessary support to transform code into a working
application. Here are some of the more popular IDEs:

o Visual Studio Code: Visual Studio Code is perhaps
the best JavaScript IDE for Windows, Mac, and Linux
platforms. In addition to supporting JS functionality,

https://code.visualstudio.com/

CHAPTER 1

WEB DEVELOPMENT

it also supports Node.js and TypeScript features,

and it includes a system of extensions for different
programming dialects, including C++, C#, Python,

and PHP. Visual Studio Code makes for programmer-
friendly operations with excellent syntax features and
autocomplete with IntelliSense that responds to myriad
factors, word definitions, and imported modules.

NetBeans: NetBeans is one of the best web
development IDEs because it enables you to create

a neat and versatile work area and develop web
applications quickly. It also works well with JS,

HTMLS5, PHP, and C/C++. Itis a free JS IDE and a great
HTMLS5 IDE for everyday use. This IDE allows you to
review code for errors and lets you automatically fix
syntax if necessary (including for Java 8 features such as
lambda expressions).

PyCharm: PyCharm is not the best free JS

IDE. However, the paid Professional Edition is
worth considering if you are looking for a solid web
development IDE for Python.

Intelli] IDEA: Intelli] IDEA is an excellent web
development IDE. A free version is available, but if
you want all the JS features it offers, consider the paid
Ultimate Edition. Intelli] IDEA can save you time and
energy in web development, and it is an excellent CSS
IDE. Note, as well, that it supports a wide range of
programming dialects.

https://netbeans.org/

CHAPTER 1 WEB DEVELOPMENT

Building Blocks of Web Development

The three building blocks of web development are as follows:

e HTML: Via HTML5, computers can now understand
what is on your website rather than just display website
content dynamically. Earlier HTML versions provide
static or dynamic information to the users. Website
content is shown via HTML code.

e (CSS: CSS determines what the website/pages look
like. HTML is for making the content, whereas CSS is
for showing the content in the way you want (i.e., the
design; the different styles, colors, backgrounds, and
layout). CSS makes a website/page look interesting.

e JavaScript:]S is a programming language used to
manipulate HTML and CSS. Its main function is to
provide interactive features for the user. It is sturdy and
can be used to create full web applications (apps).

Note To develop and test the applications/code in this book,
consider using Google’s Chrome browser, which has versions for
Mac, Windows, and Linux.

HTML and CSS Programming

A coherent web development process requires that you first define what
you want to say (HTML) and then define how you want to say it (CSS).
An HTML component (element) is the combination of a start tag, its
characteristics (attributes), an end tag, and everything in between.

CHAPTER 1 WEB DEVELOPMENT

An HTML tag—either opening (< >) or closing (</ >)—is used to identify
the beginning or end of a component (element). The following code shows
the structure of an HTML document and some of its basic elements:

<!DOCTYPE html>
<html>
<head>
<!-- Metadata goes here -->
</head>
<body>
<!-- Content goes here -->
</body>
</html>

The first line, <!DOCTYPE html>, informs the browser that it is an
HTMLS5 version web page. The entire web page content is to be wrapped in
<html> tags. The actual <html> text is called an opening tag, and </html>
is called a closing tag. Everything inside of these tags is considered part
of the <html> element, which is the actual thing that gets created when a
web browser parses your HTML tags. Inside the <html> element are two
more elements: <head> and <body>. A web page <head> contains all of its
metadata, such as the page title, any CSS style sheets, and other things
required to render the page but that you do not necessarily want the user
to see. The bulk of our HTML markup will live in the <body> element,
which represents the visible content of the page.

Comments are given between the tags <!-- and -->. Listing 1-1 shows
a more complete HTML example, and Figure 1-4 shows the corresponding
output.

10

CHAPTER 1 WEB DEVELOPMENT

Listing 1-1. Basic HTML Content of a Web Page

<html>

<head>

<title>

Basic HTML Web Page

</title>

</head>

<body>

<h1> Web Development is Easy! </h1>

<p> First, we need to learn some basic HTML </p>

<h2> Headings </h2>

<p> Headings structure the outline of the website.

There are six levels of headings </p>

<h2> Lists </h2>

<p> There are two types of Lists </p>

<h3> Unordered List </h3>

Add a "ul" element (it stands for unordered list)
Add each item in its own "1i" element</1li>
They don't need to be in any particular order

<h3> Ordered List </h3>

Notice the new "ol" element wrapping everything
But, the list item elements are the same
Also note how the numbers increment on their own</1li>
You should be noticing things is this precise order,

because this is an ordered list

<h2>Inline Elements</h2>

11

CHAPTER 1 WEB DEVELOPMENT

<p>Sometimes, you need to draw attention to a
particular word or

phrase.</p>

<p>This is some emphasized text</p>

<p>Other times you need to strongly emphasize
the importance of a word or phrase.</p>

<h2>Empty Elements and Line break using br tag</h2>

<p>Web Programming is easier.</p>

<p>Regards,

The Authors</p>

<h2> Horizontal Line </h2>

<hr/>

<p>P.S. This is a basic HTML Web page to understand how a web
page looks like. </p>

</body>
</html>
. HI.. . .. 4%h2caya !. ERSY =1 BEEIER -, rc> I.A'n.b."m"'.'l‘.‘n " 8 » 8

B | Web Development is Easy!

Wit e el 50 o st it BITME

. Headings
“i el Daveiopeant is Earyt <
Tt e naed te Tedmm aoms Saste SIS </p> Howbings sirwctors the oot of the websate. Thaor arw sin brvebs of beadizgs
D0 Bewdings ©
- Basdisge stresturs G sutline of the wbuite Lists
mmumw-umm v .
i
o Tates ine e Srpas ot Liste <5 Theve ace two types of Lo
A1 Unardered ey -
1k @ Twl® slemest (L% stasds for wnerder o4 et esiis b ion o
1A ek Ltem in bis sws "1i0 slemsatcls e
S o AM AT dlos
11 They dea’t maed e be ia any partieuien sederc/lis Add
3> Sedeses Lisk </ * They doa't aeed
Metise the sew "4l slesaut wiappisg evaryihisg/iis Orvdered List
Bt the 11a1 ten slsmests are the
1iise mete hew the Barbers Lisreeer b Telr

“Tou abauld be nuo-q Whings 1a this presiis erdes, hessmse Wi

\‘u’bﬁrl!hxh‘d&ul 4 s prevcise cober. becemse the o sa o dered et

Inline Elements

b shrvagly pephaciss S imporiases of 8 woed of pleace

«| Empiy Elements and Line break using br tag

LT el a1 G2 e Wondows KRLF) UTI ma | Wb Programesiag o sse

| R — ol B CS ¢ A & Qrme s 2w

Figure 1-4. Screenshot of the basic HTML code and. its output

12

CHAPTER 1 WEB DEVELOPMENT

Dynamic HTML

Dynamic HTML (DHTML) enables developers to control the display and
position of HTML elements in a browser window. HTML is used to create
static web pages, and DHTML is used to create dynamic web pages. HTML
consists of simple HTML tags, whereas DHTML consists of HTML tags plus
CSS plus JS.

Cascading Style Sheets

CSS helps us to specify how elements on the web page should be
presented. With CSS, we can determine the style and layout of the web
page. There are three ways to use style sheets:

o Inline style sheets (Listing 1-2)
o Embedded style sheets (Listing 1-3)

o External style sheets (Listing 1-4)

Inline Style Sheets

An inline style sheet is used to apply various unique styles to a single
element. You can also use an inline style sheet to define a style for a special
type of element or add a class attribute to the element. Listing 1-2 shows
how inline styles can be used along with HTML elements. Figure 1-5 shows
the corresponding output.

13

CHAPTER 1 WEB DEVELOPMENT

Listing 1-2. Inline Style Sheets Example

<HTML>

<head>

<TITLE> Inline Style sheets </TITLE>

</head>

<Body>

<p> This is Simple Text </p>

<p Style="font-size:30pt; font-family:arial"> This text is
different </p>

<p style="font-size:40pt;color:#ff0000"> This text is colored
</p>

</Body>

</HTML>

“ O @ File | Cy/Mtmi%20code/inline_demao.htmil k=3 » g

This s Sumple Text

This text is different

This text 1s colored

Figure 1-5. Output of the inline CSS style settings

Embedded Style Sheets

For embedded style sheets, we write all desired selectors along with the
properties and values in the head section. Then, in the body section, newly
defined selector tags are used with the actual content. The DHTML script
in Listing 1-3 defines h1, h2, h3, and p selectors with different properties
and values. Figure 1-6 shows the corresponding output of the embedded
style settings along with the HTML code.

14

CHAPTER 1 WEB DEVELOPMENT

Note that to define embedded style sheets we have to mention style
type= "test/css" in the head section.

Listing 1-3. Embedded Style Sheets Example

<HTML>

<head>

<TITLE> Embedded Style sheets </TITLE>

<style type="text/css">

h1,h2,h3{font-family:arial;}

h2 {color:red;left:20px }

h3 {color:blue;}

p {font-size:14pt;font-family:verdana;}

.special {color:green}

</style>

</head>

<Body>

<h1 class="special"> <center>

This page is created using Embedded style sheets </center> </h1>
<h2> This line is aligned left and red colored </h2>

<p> The embedded style sheet is the most commonly used style
sheet. This paragraph is written in Verdana font with font size
of 14pt</p>

<h3> This is blue

 colored line</h3>

</Body>

</HTML>

15

CHAPTER 1 WEB DEVELOPMENT

@ Embedded Style sheets

& C (0 @ File| C//Mmtmi%20code/embedded_demo... » @

3% Apps G http//www.google.. M httpsi/mail.gocgle.... » Other bookmarks

This page is created using Embedded
style sheets

This line is aligned left and red colored

The embedded style sheet is the most commonly used style
sheet. This paragraph is written in Verdana font with font size of
14pt

This is blue colored line

Figure 1-6. Output of the embedded style settings

External Style Sheets

When we want to apply a particular style to more than one web page, we
can use external style sheets. This type of style sheet is stored in one .css
file, and we must mention the name of that file in our relevant web pages.
When we do so, the styles defined in .css file are applied to these web pages.
Listing 1-4 is a simple program in which external style sheets are used.

Listing 1-4. External Style Sheet Example

<HTML>

<head>

<TITLE> External Style sheets </TITLE>

<link rel="stylesheet" type="txt/css" href=exi.css"/>
</head>

16

CHAPTER 1 WEB DEVELOPMENT

<Body>

<h1 class="special"> <center>

This page is created using External style sheets </center>
</h1>

<h2> This line is aligned left and red colored </h2>

<p> The embedded style sheet is the most commonly used style
sheet. This paragraph is written in Verdana font with font size
of 14pt</p>

<h3>This is blue

 colored line</h3>

</Body>

</HTML>

The external style sheet is referenced in the href attribute as a value
linking to ex1.css. Create a file named ex1.css in the same folder:

hi {font-family:arial;}
h2 {
font-family:times new roman;

color:red;
left:20px;

}

h3 {
font-family:arial;
color:blue

}

p{

font-size:14pt;
font-family:cambria;

}

special {color:green }

17

CHAPTER 1 WEB DEVELOPMENT

JavaScript Basics

JavaScript is a scripting language (a lightweight programming language)
and an interpreted language (executing without preliminary compilation).
It is usually embedded directly into HTML pages and is designed to add
interactivity to them. Java and JS are different.

JS attributes include the following:

e]S gives HTML designers a programming tool.
e]S can put dynamic text into an HTML page.

e JScanreactto events.

e JScanread and write HTML elements.

e]S can be used to validate data.

e JavaScript can be used to apply A, ML and DL
techniques in the browser.

e JavaScript can be used to create cookies (Store and

retrieve information on the visitor’s computer).

Including the JavaScript

The HTML <script> tagis used to insert a script (JS) into an HTML page:

<script type="text/javascript">
document.write("Hello World!");
</script>

The <script> tagis used to embed a client-side script. The <script>
element either contains scripting statements or points to an external script
file through the src attribute.

18

CHAPTER 1 WEB DEVELOPMENT

Where to Insert JS Scripts

You can include scripts in the head, body, or external JavaScript file (.js).
Scripts in the head section (Listing 1-5) will be executed when the head
section is invoked. Figure 1-7 shows the corresponding output. Scripts in
the body section executes while the page loads (Listing 1-6), and Figure 1-8
shows the corresponding output.

Listing 1-5. JavaScript Inside the Head Section

<html>

<head>

<script type="text/javascript">
function msg(){

alert("Hello message");

}

</script>

</head>

<body>

<p>Welcome to JavaScript</p>
<form>

<input type="button" value="click" onclick="msg()"/>
</form></body></html>

19

CHAPTER 1 WEB DEVELOPMENT

o
EHE LRI ERIcinh 22 ARG 1 FIRNs® EEEER

‘Esemieiund |
a<html> Wiebkeese o JaxaSeript

@ Larsiet e x|+

PO O e | FNe-BeowierMLS Eximgies codnTs EuamplesSanplel bl

o<heads [
3 p<seript type="text/javascript">
cfunction mag() (

alert ("Hello message")

2 f @ Serpietae x +
7 (<fscript>) - -
i r</head> T R | K terples. codells | ik
T ody> Wekome to Jwaser
*

1 <prWelcome to JavaScript</p> This page says
11 s<form>» ek el midage

<input type="button" value="click" onclick="msg{)"/: -
Lertorn> Eq
< body>
</html>

e

Figure 1-7. JavaScript inside the head section

Listing 1-6. JavaScript Inside the Body Section

<html>

<body>

<p id="demo">Hello Java Script</p>

<script>

document.getElementById("demo").innerHTML = "Java Script within
the body!";

</script>

</body>

</html>

20

CHAPTER 1 WEB DEVELOPMENT

] @ et e = 4
a =@ FEB PO D File | Rl inBrowseyMLS Exsmples sode/JS Exemplesndind himl
- Hella Favn Sovipe
tml>
2 w<body>
3 |<p id="demo":>Mello Java Script</p>
4
5 Be!
& >
7 |decument . getElementById ("dems™) . innerHTML = "Java Scripy
8 |</script>
G fe=x
10
11 fe/body>
12 '</html>
¢ 1At Gt PosiTB Wadens {AL) LT [
b e . 2 i «
Tie DS Gewch View Do Lavpoe Lotegy T s W x
L ETTE R IR] SN ETMEE e % © @ File | FiAkin Browsed ™S Bameles code/Is Earclefindecl biml
EE=T| Jua Seript within the body!
1 e<html>
2 o<body>

3 |<p id="demo">Helle Java Script</p>

5 pascripts>

(3 idc-c:ument.getl}lementﬂyld(": emc"} .innerATML = "Java Script
! lefmeripts
8
9 t</body>
10 *</html>
¢ s
ypor o s tangpn; 180 s 10 it ot Resat Wecows IRL LT 3

Figure 1-8. JavaScript inside the body section

Listing 1-7 provides the JS function external to the program, and
Listing 1-8 shows the HTML for the corresponding output in Figure 1-9.

Listing 1-7. Message.js

function msg(){
alert("Hello I am Outside your program");

}

Listing 1-8. HTML for Click Button

<html>
<head>

<script type="text/javascript" src="message.js"></script>
</head>

21

CHAPTER 1 WEB DEVELOPMENT

<body>

<p>Program call to external JavaScript</p>

<form>

<input type="button" value="click" onclick="msg()"/>
</form>

</body>
</html>
¥ D ‘B = I
L AN Vi B ey OCHOL TN MRS e g TR g iz}
ELELEEC T SEIE EEEIE EIEEE T L ECIIE L] & @ @ Fle | F-n BonsenMiS Bamoles codeff bamples. % B 0 & B
e = Prinpras call %0 wxtinioel TavaBiniph
1 gfunction msg(){ Ry
[alert("Hello I am Outside your program™): L
)

ipt</p>

L Lype="button" value="elick" onclick="msg()"/>

[ten ks 285 serin a0 Gt it ko R W [

Figure 1-9.]S external to the program

JavaScript for an Event-Driven Process

Dynamic website development is possible by leveraging event-driven
programming with JS. Commonly, after a website page has stacked, the JS
program keeps running (and waiting for an event to occur). If you interact
with the web page, a JS script executes the code that corresponds with that
interaction (event), and the behavior of the page changes based on the
event. Figure 1-10 shows a typical event-driven process with the help of JS
features.

22

CHAPTER 1 WEB DEVELOPMENT

/W

eb Page

The page’s

appearance is JS code runs in
updated/ response
Modified based

function myeEvent() {
on response

L -

Figure 1-10. Event-driven process on the web page with the help of]S
code

Document Object Model Manipulation

At the point when a web page is stacked, the browser (program) creates
a Document Object Model (DOM) of the page. The HTML DOM is
developed as a tree of objects. Through DOM, the elements (components)
of the HTML can be manipulated, move across the web page and process
efficiently.

The HTML DOM is an object model for HTML:

e HTML components as items(elements)
o Properties(attributes) for all HTML components
e Techniques for all HTML components

o Events for all HTML components

23

CHAPTER 1 WEB DEVELOPMENT

The HTML DOM is an application programming interface (API) for
JavaScript:

e JScaninclude/change/delete HTML components.
e JScaninclude/change/delete HTML traits.

e JScaninclude/change/delete CSS styles.

e JScanrespond to HTML events.

e JScaninclude/change/delete HTML events.

When creating site pages and applications, one of the main things
you must do is control the archive structure. Developers typically do so by
using the DOM, incorporating a lot of APIs to control HTML, and styling
data that uses the document object.

Discovering HTML Elements: When you need to get to HTML
components with JS, you need to discover the components first. You can
do so in a few different ways:

e Discover HTML elements by ID

e Discover HTML elements by label name

o Discovering HTML elements by class name

o Discover HTML elements by CSS selectors

e Discover HTML elements by HTML object assortments

A web page while used in JS is a document, and JS provides an object
called document, which is considered a complete web page. The document
object offers various properties and methods to identify, access, and

24

CHAPTER 1 WEB DEVELOPMENT

modify the web components/elements when loaded on the browser. To
identify and access the DOM elements, JS uses the previously described
discovery capability

The following HTML source code shows such discovery at work:

<!DOCTYPE html>

<html>

<body>

<h2>Finding HTML Elements by Id</h2>

<p id="intro">Hello World!</p>

<p>This example demonstrates the getElementsById
method.</p>

<p id="demo1"></p>

<p id="demo2"></p>

<p class="intro">The DOM is very useful.</p>

<p class="intro">This example demonstrates the
getElementsByClassName method.</p>

<script>

var myElement = document.getElementById("intro");
document.getElementById("demo1").innerHTML =

+ myElement.innerHTML;
var x = document.getElementsByTagName("p");
document.getElementById("demo2").innerHTML =

'The text in first paragraph (index 0) is: ' + x[0].innerHTML;

"The text from the intro paragraph is

var x1 = document.getElementsByClassName("intro");
document.getElementById("demo").innerHTML =

'The first paragraph (index 0) with class="intro": ' + x1[0].
innerHTML;

</script>

</body>

</html>

25

CHAPTER 1 WEB DEVELOPMENT

Introduction to jQuery

jQuery is a lightweight JS library that enables developers to compose less
but accomplish more. The jQuery library enables the web programmers to
do the following tasks easily:

e HTML and DOM element manipulation
e (CSS management and control

o Provides event-driven techniques to trigger and react
to an event on a web page such as mouse click, button
click, key press, and so on

» Improves the functionality of Asynchronous JavaScript
and XML (AJAX) calls for the exchange of information
between two entities (such as client and server)

There are two ways to use the jQuery library in your program:
1. Download the jQuery library

(https://code.jquery.com/jquery-3.5.1.min.js)
from jQuery.com and store it in the same folder as that
of the source code (HTML and CSS code) location and
use it as follows:

<head>
<script src="jquery-3.5.1.min.js"></script>
</head>

26

https://code.jquery.com/jquery-3.5.1.min.js

CHAPTER 1 WEB DEVELOPMENT

Or

2. Ifyou are connected to the Internet, use the
following link from Google CDN to include jQuery
features:

<head>

<script src="https://ajax.googleapis.com/ajax/libs/
jquery/3.5.1/jquery.min.js">

</script>

</head>

Listing 1-9 shows how to use the jQuery library and its functionality,
and Figures 1-11 and 1-12 show its corresponding output.

Listing 1-9. Using the jQuery Library

<!DOCTYPE html>

<html>

<head>

<script src="jquery-3.5.1.min.js"></script>

<script>

$(document).ready(function(){
$("button").click(function(){

$("p").hide();

D;

D;

</script>

</head>

<body>

<h2>jQuery Example</h2>
<p>first paragraph</p>

27

CHAPTER 1 WEB DEVELOPMENT

<p>second paragraph</p>
<button>hide</button>
</body>

</html>

review/Afterreview_Updations/Chapter_Code/C1_Bhtml

jQuery Example
first paragraph
second paragraph

hide

Figure 1-11. Listing 1-9 output before the Hide button is clicked

JQuery Example

hide:

Figure 1-12. Listing 1-9 output after the Hide button is clicked

Summary

This chapter introduced ML and provided a practical overview of web
design and development. Following are some key takeaways:

o HTML is the language that we use to structure
the various pieces of our content and define their
importance.

o (CSSis the language that we use to style and design our
web content to make it more lively.

e]JSisthe scripting language that we use to add dynamic
usefulness to website pages.

28

CHAPTER 1 WEB DEVELOPMENT

e DOM describes the logical structure of documents
(web pages) and the way a document is accessed and
manipulated using the components (elements of the
web pages).

e jQueryis a small JavaScript library that simplifies

HTML document (web page) traversal and
manipulation event handling, and animation.

You should now be able to start designing and developing applications
that incorporate AI/ML in their web components.

References

Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.

Singh, Himanshu. Practical Machine Learning and
Image Processing. Apress, 2019.

Marsland, Stephen. Machine Learning: An
Algorithmic Perspective. Chapman & Hall/CRC
Machine Learning & Pattern Recognition; 1st
Edition, 2009.

bin Uzayr, Sufyan, Nicholas Cloud, and Tim
Ambler. JavaScript Frameworks for Modern Web
Development: The Essential Frameworks, Libraries,
and Tools to Learn Right Now. Apress, 2019.

29

CHAPTER 1

30

WEB DEVELOPMENT

Cook, Craig, and David Schultz. Beginning HTML
with CSS and XHTML, Modern Guide and Reference.
Apress, 2007.

https://code.visualstudio.com/
https://netbeans.org/
https://www.jetbrains.com/pycharm/

Ferguson, Russ. Beginning JavaScript, The Ultimate
Guide to Modern JavaScript Development.
Apress, 2019.

https://code.visualstudio.com/
https://netbeans.org/
https://www.jetbrains.com/pycharm/

CHAPTER 2

Browser-Based Data
Processing

Now that you understand the basics of web development, this chapter
introduces two JavaScript (JS) libraries: p5.js and ml5.js. The chapter also
delves deeper into JS features and syntax related to various problem-
solving and application-development implementations. It then discusses
various ways to use graphics and machine learning (ML) application
processing interface methods to actualize artificial intelligence (AI) in the
browser.

Browser computer vision techniques, such as image classification, are
also discussed relative to JS programming. In this chapter, you also work
through practical examples of running web applications using the Node.js
and Python Hypertext Transfer Protocol (HTTP) server programs.

JavaScript Libraries and API for ML
on the Web

Al and ML are at the forefront of modern computing and are currently hot
topics. How “smart” your computational frameworks are can factor into the
success or failure (or optimization) of your applications’ data processing.
ML is better via soft computing interfaces rather than via hard-wired
ones. Although AI/ML is becoming ubiquitous, most web developers have

© Nagender Kumar Suryadevara 2021 31
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_2

https://doi.org/10.1007/978-1-4842-6843-8_2#DOI

CHAPTER 2 BROWSER-BASED DATA PROCESSING

yet to master it. However, ML is an inevitable advance in the development of
human-machine interaction. The only issue I have with regard to this relates
to certain software vendors. Anybody can begin developing applications
on the web (this unrivaled, genuinely open, and dispersed stage), and at
present open-source technologies support, to a large extent, the design and
development of web applications. However, the key thing that matters now
is the ability to apply the smart concepts onto ML interfaces.

Presently, ML on the web looks significantly more open and less
standard focused than I would like. To train models or try and get bits of
data from models, you must use the API library.

W3C WebML CG (Community Group)

The W3C calls for making and incorporating APIs optimized for ML into
the web development arena that will eventually allow developers to create
interoperable ML content on various platforms. Intel and Microsoft began
this work, and I am pleased that some APIs have been developed, but now
we need to utilize the features effectively to make ML on the web a reality
and thus achieve the following:

o Improved execution: Results from the prepared model
return quickly, with no system slowdown.

e Disconnected (offline) usefulness: Queries running on
devices/gadgets do not rely on an association with a
cloud computing administration (and so avoid the
issues of latency, throughput, and connectedness
inherent in cloud computing).

o Upgraded protection (privacy): Incredibly, many cloud
administrations offer already prepared models to
run our solicitations. We need not send our privacy
information to others.

32

CHAPTER 2 BROWSER-BASED DATA PROCESSING

Although incorporating browser intelligence promises exciting
functionality, it is important to remember that certain restrictions
(limitations) also apply, including the following:

e Record size: Previously prepared models will, in
general, be extremely large (e.g., often several
megabytes). Such large record sizes on the client
side will result in I/O delays and be subject to RAM
constraints.

e Restricted performance: Earlier browser programs are
limited to single-thread JavaScript execution instances,
with no provisions to utilize the core computing
features of the device/gadget.

Presently, you can use JS libraries to converse with existing AI/ML
models, or you can develop your intelligent program to run on a browser
or electronic device/gadget. With a scientific learning model that leverages
JS library software, with some forethought, and with a couple lines of code,
you can now develop applications that induce intelligence in the browser.

Manipulating HTML Elements Using JS
Libraries

The following subsections show how to use the two most popular JS
libraries (p5.js and ml5.js) to implement various functions such as
graphics and ML on the browser.

The ml5.js library makes ML approachable for a broad audience,
including artists, creative coders, and students. The library provides
access to ML algorithms and models in the browser. The p5.js library is
for handling graphical processing unit (GPU)-accelerated mathematical
operations and memory management for ML algorithms.

33

CHAPTER 2 BROWSER-BASED DATA PROCESSING

p5.js

The p5.js library is a JavaScript library for creative coding intended to
make comprehensive coding available for designers, developers, teachers,
students, and more. It is free and open-source programming; the tools

to learn p5.js are available to everybody. The p5.js library incorporates
Processing principles for the modern web. A p5.js library can be any JS
code that extends or adds to existing JS code.

A p5.js library is classified as either a core library or a contributed
library. As with programmer JS code, p5.js has a full toolbox of drawing
utilities that support HTML5 objects for text, input, video, webcam, and
sound. To include a p5.js library in the program, link it to your HTML file.
The following code snippet shows what an HTML file linked with a p5.js
library looks like:

<!doctype html>

<html>

<head>

<script src="p5.js"></script>
<script src="user_code.js"></script>
</head>

<body>

</body>

</html>

Note You can download the p5.js (single file, full uncompressed
version) or p5.min.js (single file, compressed version) library from this
link. You want to ensure that the p5.js/p5.min.js library and the HTML
file are in the same folder (computer system path).

To develop and execute programs with p5.js library functionality, you
need an editor (Notepad++) and a web browser (Chrome or Firefox).

34

https://p5js.org/
https://processing.org/
https://p5js.org/libraries/
https://p5js.org/libraries/
https://p5js.org/download/

CHAPTER 2 BROWSER-BASED DATA PROCESSING

Drawing Graphical Objects

Listings 2-1a and 2-1b show the inclusion of the p5.js library with the user
code p5ex1_index.html. Figure 2-1 shows the corresponding output.

Listing 2-1a. p5ex1_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example#f1 p5.js </title>

<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex1 user codel.js">
</script>

</head>

<body>
<h1> Example #1: p5.js and user_codel.js </h1>
<p>Program for linking p5.js library and user code.js </p>

</body>

</html>

Listing 2-1b. p5ex1_user_codel.js

function setup() {
createCanvas(720, 400);
background(200);
}
function draw() {
rect(40, 120, 120, 40); // A rectangle
ellipse(240, 240, 80, 80); // An ellipse
triangle(300, 100, 320, 100, 310, 80); //A triangle

}

35

CHAPTER 2 BROWSER-BASED DATA PROCESSING

@ bramcies i x4+

© @ e | FAln-BromoenPS mamples_code/psed_indschtmd a v @ » 0

Example #1: p5.js and user_codel js

Pregris o beang 1 Shes oot s
O

(J

[

Figure 2-1. Inclusion of p5.min.js library with the user JS code

Manipulating DOM Objects

Listings 2-2a and 2-2b show how to create DOM objects using JS libraries
(in this case, p5.js): p5ex2_index.html. Figure 2-2 shows the corresponding
output.

Listing 2-2a. p5ex2_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example#2 p5.js </title>
<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex2_user code2.js">
</script>
</head>

36

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<body>
<h1> Example #2: p5.js and user_code2.js </h1>

<p>Program for manipulating DOM objects using p5.js library </p>

</body>
</html>

Listing 2-2b. p5ex2_user_code2.js

var mycanvas,myhi;
function setup() {
mycanvas = createCanvas(150, 150);
mycanvas.position(200, 250);
myhl = createElement('h1', "hi1-New DOM Object .');
myh1.position(100, 150);
createP("****This is a new Paragraph*****");
}
function draw() {
background(150, 150);
fill(255, 0, 0);

 Ett o s, 1 Co0RIL LN - =+
e GGt e Wes aoSng Unguge Setiegt Rk Mo Bun gl Wadow f

Example #2: p5.js and user_code2.js

R IER A Tungram for masipuilaing TN sbjeces using pé js Borar
anpledz ps.3s </titles " pulatng DOM obeces using p j Borary
Fpe=-text/ javesccipt® are=tpl.zin. jatrofacsipts

Bt type="text/)avASCTipt® nro="phend_user_coded.)s"></script>

o 1 h1-New DOM Object .
ﬁ:::nh #2: p5.4s and user_codal.ds

128 o
14 Program for manipulating DM objects using pf.3s library
15 | <
16 | </body>
17 1>
L
FEI e o
M Run Pugas Wiedew %

Fla G0 Sk View Rwcedeg Lanoge Semiags Tooks Moo
PRI T s T IR CEE 1

vt wstin 0]

++++Thit it new Paraguaph®+++*

4
5 obgect . ¢}
oy
8 Ly
5 ofunction draw(l {
1 background { . e
11 £111(28%, 0, 0);
120l
i tengn 300 112 8 et Pon Wade (R UTFR "

g '
@i wki2eay a3 1 EIRRcsEaFEER | © @ Fle | FAln-Browsen TS samples_todeipbe indechiml

o

(]

» 8

Figure 2-2. Creating DOM objects using JS libraries (in this case, p5.js)

37

CHAPTER 2 BROWSER-BASED DATA PROCESSING

DOM onEvent(mousePressed) Handling

Listings 2-3a and 2-3b provide the programs for calling DOM objects based
on events using the p5.js library. Figure 2-3 shows the corresponding output.

Listing 2-3a. p5ex3_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example#3 p5.js </title>
<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex3 user code3.js">
</script>
</head>
<body>
<h1>Example #3: p5.js and user_code3.js </h1>
<p>Program for calling DOM objects based on events using
p5.js library </p>
</body>
</html>

Listing 2-3b. p5ex3_user_code3.js

var bgcolor,button;
function setup() {
canvas = createCanvas(200, 200);
bgcolor = color(200);
button = createButton('Click this Button to change the color');
button.position(250,150);
button.mousePressed(changeColor);

38

CHAPTER 2 BROWSER-BASED DATA PROCESSING

function changeColor() {
bgcolor = color(random(255));

}

function draw() {
background(bgcolor);

| @ e

C @ fle

-+

Futhd-in Boowsen/P% exterples code/plend indebhim| * B8 » 0

Example #3: p5.js and user_codel.js

Pogras boe calling DOM objects biied oo eveses usisg ps i Boray

‘Goick s Dution o changs Fe cor

Figure 2-3. Using the p5.js library to call DOM objects based on

events

Multiple DOM Objects onEvent Handling

Listings 2-4a and 2-4b show interaction of various HTML elements using

the p5.js library. Figure 2-4 shows the corresponding output.

Listing 2-4a. p5ex4_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example#4 p5.js </title>

<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex4 user code4.js">

</script>
</head>

39

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<body>
<h1> Example #4: p5.js and user_code4.js </h1>
<p> Program for interacting various HTML elements using
p5.js library
</p>
</body>
</html>

Listing 2-4b. p5ex4_user_code4.js

var mybgcolor,mybutton,myslider1,myinput1,myname;
function setup() {
mycanvas = createCanvas(200, 200);
mybgcolor = color(200);
myname = createP('Your name!');
mybutton = createButton('Click to resize the circle');
mybutton.mousePressed(changeColor);
mysliderl = createSlider(10, 100, 86);
myinputl = createInput('Enter your name::');
}
function changeColor() {
mybgcolor = color(random(255));

}

function draw() {
background(mybgcolor);
fi11(255, 0, 175);
ellipse(100, 100, myslideri.value(), myslideri.value());
myname . html(myinputi.value());
text(myinputi.value(), 10, 20);

40

CHAPTER 2 BROWSER-BASED DATA PROCESSING

D tmecien i x +

e e pe—

Example #4: p5.js and user_coded.js

Progra b istornctisg vaszous HTML cheients using 5.4 By

W — x
2 BR -1 EDNELss BEE ") & O @ Fe | FllineBeowser /P exsmphes code/pesd indeshimd * B8 » 0

Fber o v

!

11

F .

1

14

12

16

17 rl.valuot}, myslidesl.value ()}

1 Tml (mying ! your name::

1 text dmyinputl, value (), v 1:

' e et o e

@ ampesa pige * 4+ = G =
“ @ File | Fin-Browsey™S_samoles_code/pest indexheml + 8 *0

Example #4: p5.js and user_coded.js

o FITMIL elements sring i ji ibeary
Cries yins mam g
Esties your e Hag
ﬂﬂhnvnmm_—

Figure 2-4. Using the p5.js library to create interactivity between
various HTML elements

HTML Interactive Elements

Listings 2-5a and 2-5b show another example for interacting with
various HTML elements using the p5.js library. Figure 2-5 shows the
corresponding output.

Listing 2-5a. p5ex5_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example#5 p5.js </title>
<script type="text/javascript" src="p5.min.js"></script>

41

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<script type="text/javascript" src="p5ex5 user code5.js">
</script>

</head>

<body>
<h1>Example #5: p5.js and user_code5.js</h1>
<p> Program for interacting various HTML elements using
p5.js library
</p>

</body>

</html>

Listing 2-5b. p5ex5_user_codeb5.js

var bgcolori,mybuttoni,myslider1,mynameInput,mynamepar;
function setup() {
mycanvas = createCanvas(200, 200);
mycanvas.mouseOver (overpara);
mycanvas.mouseOut (outpara);
mycanvas.mousePressed(changeColor);
bgcolorl = color(200);
createP('Dummy Text!');
createButton('Click");
mybuttoni1.mousePressed(changeColor);
mysliderl = createSlider(10, 100, 86);
mynameInput = createInput('Enter your name::');

mynamepar
mybuttoni

mynamepar .mouseOver (overpara);

mynamepar .mouseOut (outpara);

mynameInput.changed(updateText);

}
function updateText(){mynamepar.html(mynameInput.value()); }
function overpara() {mynamepar.html('your mouse is over me');}
function outpara() {mynamepar.html('your mouse is out');}

42

CHAPTER 2 BROWSER-BASED DATA PROCESSING

function changeColor(){bgcolorl = color(random(255));}
function draw(){ background(bgcolor1);
fil1(255, 0, 175);
ellipse(100, 100, myslideri.value(), myslider1.
value());
text(mynameInput.value(), 10, 20);

I -
=« D e | RSP gl codeipbet ede bl % B » 0 :
Example #5: p5.js and user_code5.js

Propram for isteractig varisus HEML clements using ps js Bbeary.

Estan vt e iy

‘your mouse i aver me

| —

Figure 2-5. Using the p5.js library to create HTML interactive
elements

Interaction with HTML and CSS Elements

Listings 2-6a and 2-6b show the interaction of various HTML elements
using the p5.js library with CSS elements. Figure 2-6 shows the
corresponding output.

Listing 2-6a. p5ex6_index.html

<!DOCTYPE html>
<html>
<head>
<meta charset="UTF-8">
<title>Example #6 p5.js and CSS </title>

43

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<script type="text/javascript" src="p5.min.js"></script>
<style>
#item1 {
font-size: 52pt;
}
.paraclass {
font-size: 26pt;
background-color: #EOF;
}
p { padding: 10pt; }
</style>
</head>

<body>

<h1>Example #6: p5.js for CSS selectors and user_code6.js</h1>
<p>Program for interacting with CSSelements using p5.js
library</p>

<p id = "item1" class="paraclass">Items</p>

<p class="paraclass">Paragraph2</p>

<p class="paraclass">Paragraph3</p>

<p>Paragraph4.</p>

</body>

</html>

Listing 2-6b. p5ex6_user_code6.js

function setup() {}
function draw() {}

44

CHAPTER 2 BROWSER-BASED DATA PROCESSING

o v ol | Y x * = G

AHE A4 R dclay @2 B3R %1 ERRAs=EEE | ¢ C © Fe | Fln Bensen™S esemples codepbent index bl + 2 » 0
gt sen e 3 B s]
1 <!DOCTTPE html>
Jneals

Example #6: p5.js for CSS selectors and user_code6.js

Progras foe isserscting wilb C5Selements wiing 58 ji Ubeary

lectors and user_coded. jsc/his
usieg p5.3a libeacy</p:

Fangraphi.

Figure 2-6. p5.js with CSS elements example

Hierarchical (Parent-Child) Interaction of DOM
Elements

Listings 2-7a and 2-7b show p5.js with parent-child DOM elements.
Figure 2-7 shows the corresponding output.

Listing 2-7a. p5ex7_index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Multi level (Parent-Child)DOM elements </title>
<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex7_user code7.js">
</script>

<style> body{padding:0;margin:0;}canvas{vertical-align:top;}
</style>

</head>

45

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<body>
<h1>Example #7::Parent and Child DOM Elements</h1>
<p id="canvaspara">This paragraph should include the canvas.</p>
<p> I am a parent and a child. </p>
<h1>List of Emotions</h1>
<button id="button">Click for the Emotion</button>
<ol id="listofemotions">
</body>
</html>

Listing 2-7b. p5ex7_user_code7.js

var emotions = ['happy', 'sad', 'neutral', ‘angry'];
function setup() {
var canvasl = createCanvas(300, 300);
canvasl.parent("canvaspara");
var buttoni = select('#button');
buttoni.mousePressed(addItem1);
}
function addItem1() {
var r = floor(random(0, emotions.length));
var 1i = createElement('1i', emotions[r]);
li.parent('listofemotions');

}

function draw(){
background(150);

}

46

CHAPTER 2 BROWSER-BASED DATA PROCESSING

S Pt oo P sramplel SoonSed_roaae - Nagis s R T . =
T S e e motey eguge M Tus imoe e Aepes e x

AHGLGAI{WR 2ciay t(“‘*‘iI‘ll\.l‘ mEEE=ED « @ File | FAlin-Browsen ™5 exemples code/pSexd indechtml * B » 0 :
m

=T BT o
T g.m\'rs htmlz

Example #7::Parent and Child DOM Elements

his poagraph ehould inchade the v

: (nw-a>
mAta charsstseUTH-|
1

<tiElesMuled |-m-\ w-r-nt aﬂldpw alamants </tit !-u

T |<script type= :uh’:wus:m arce p.'md umr ooau'l :|- ><fxcr pE>
g |[<oryler body Lign:tep:]</atylex
¥ e wm>
10 fenod
11 (M:hmml. #7:;Parent and Child DM Elements</hi>
13 | id=*casvaspaza“>This pasagzeph should include the canves.</p>
<p> 1 am a parent and & child, </p>
<hlsList of Emetisnsc/nlx
<button ide~button”>Click for the Emotion</button:
ol idecliseefemstisns=s cjals

17 </ body>
£ le/htnld
[H et 617 s a1 Cel:B Peazftd Windows (CRL AT S nE |
by Lapn et Wk Mo P Pugen et * Lam a parest sad 2 child.
5 HU n.-:l»f"ll\’acl‘a a2 |BE%1 [FaRbu s R @
Ew-m-ma..ul . v
L war emotions = [‘happy', ‘sad', 'mewtral’, ‘argeytly St or

 unenisa sstwp) {
v sl

1

b Cack for e Emtion

vaz attond = sateotl: louttontd s

Butteal.meuserressed (a1 uau: L ;:,,.u
3. happy
sotions tengtnn + happy

al=10 ¢ 5ol

Backgraund 901 ¢

rarngm 412 mas 13 Lact st feect Wetews (ORI} U8 .

Figure 2-7. Using p5.js with parent-child DOM elements

Accessing DOM Parent-Child Elements Using
Variables

Listings 2-8a and 2-8b show parent-child elements with variables using
p5.js. Figure 2-8 shows the corresponding output.

Listing 2-8a. p5ex8_index.html

<!DOCTYPE html>
<html>
<head>

<meta charset="UTF-8">
<title> Example #8 parent() and child() with variables
</title>
<script type="text/javascript" src="p5.min.js"></script>
<script type="text/javascript" src="p5ex8 user code8.js">
</script>

47

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<style> body {padding: 0; margin: 0;} canvas {vertical-
align: top;}
</style>
</head>
<body>
</body>
</html>

Listing 2-8b. p5ex8_user_code8.js

var p;
function setup() {
noCanvas();
p = createP('This is a link to click for: ");
p.style('background-color','#AAA");
p.style('padding', '48px');
var a = createA('#', 'flower');
a.mousePressed(addpic);
a.parent(p);
}
function addpic() {
var img = createImg('flowerl.jpg');
img.size(100, 100);
img.parent(p);
}

48

CHAPTER 2 BROWSER-BASED DATA PROCESSING

D b o1 pareee) s oy, X+

€ 0 O O Fe | PN e PS omde et n. & 0 *»0 :

il
tL [
Fie Do Seweh View Encodieg Loeguoge Semings Teok Mate Rus Megins Wisdsw 1 LS
JOHR BRI RRiIcinh 2B nI IRl EERER
bt s oot B

I war p;

2 Bfunction setupl) {
roCanvas () ;|

]
4

[poatylel
1 var a = creazeR('!’,
8 a.mouserressed (addplc) ;
a.parent(p) ;

10 Ly
1l pfunetien addpic() |

1Z | war img = createlng (' flowerl.ipa'd:
13 img.size(e 1 i

14 | img.parentip);

5L)

o e e e e)

Figure 2-8. p5.js with parent-child variables example

Graphics and Interactive Processing
in the Browser Using p5.js

This section provides examples that show how to use p5.js libraries to

implement a browser’s interactive and graphics features. Listings 2-9a
and 2-9b show how to use the p5.js library to implement graphics functions

to illustrate mouse press events. Figure 2-9 shows the corresponding output.

Listing 2-9a. p5_graphics_ex_index.html

<IDOCTYPE html>
<html>
<head>

<script src="p5.min.js"></script>

<meta charset="utf-8" />
</head>

49

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<body>
<script src="p5_graphics_ex1 user codel.js"></script>
</body>
</html>

Listing 2-9b. p5_graphics_ex1_user_codel.js

let x = 100;
let y = 100;
let extraCanvasi;

function setup()

{
createCanvas(300, 300);
extraCanvasl = createGraphics(300, 300);
extraCanvasi.clear();

}

function draw()
{
background(255,204,0);
X += random(-5, 5);
y += random(-5, 5);
if (mouseIsPressed) {
extraCanvas1.fill(255, 150);
extraCanvas1.noStroke();
extraCanvasl.ellipse(mouseX, mouseY, 60, 60);
}
image(extraCanvasi, 0, 0);
fill('blue'); stroke(255);
rectMode(CENTER); rect(x, y, 20, 20);

50

CHAPTER 2 BROWSER-BASED DATA PROCESSING

. i Wi A i W g i L i I
sdHE R GA I Nk e A ta B3 1 B3Rl EEE @ + Q@ Pl | e BrovaenPS eemples codeplgea. o *» 0 :

Figure 2-9. Graphics functions with mouse press event using p5.js
library

Interactive Graphics Application

Listings 2-10a and 2-10b show a graphics script for a bouncing ball
illustration using the p5.js library. Figure 2-10 shows the corresponding
output.

Listing 2-10a. p5_graphics_ex2_index.html

<!DOCTYPE html>
<html>
<head>
<script src="p5.min.js"></script>
<meta charset="utf-8" />
</head>
<body>
<script src="p5 graphics_ex2 user code2.js"></script>
</body>
</html>

51

CHAPTER 2 BROWSER-BASED DATA PROCESSING

Listing 2-10b. p5_graphics_ex2_user_code2.js

var ball = {
x: 300,
y: 200,
xspeed: 4,
yspeed: -3
};
function setup() {
createCanvas (600, 400);
}
function draw() {
background('blue');
move();
bounce();
display();
}
function bounce() {
if (ball.x > width || ball.x < 0) {
ball.xspeed = ball.xspeed * -1;
}
if (ball.y > height || ball.y < 0) {
ball.yspeed = ball.yspeed * -1;
}

}
function display() {

stroke(255);

strokeWeight(4);

fill(200, 0, 200);
ellipse(ball.x, ball.y, 36, 36);

52

CHAPTER 2 BROWSER-BASED DATA PROCESSING

function move() {

ball.x = ball.x + ball.xspeed;
ball.y = ball.y + ball.yspeed;
}
-J: lnh _" = -{.’.-. [:.o;: -"a ,.(‘.“.-‘- = =... L F .”.:J' ----- : f "'w:;"':?"-:”r 1;::.1 n;o«::l‘! exsmples code/pS graphics sx2 indehiml 3 | QEB x
- "";.";_I.;'i i [®

0

y.n-w.lrntu x < 0} A
t ball.xspeed = ball.xspeed * ¥
L it (ball.y > height If ball.y < 1) {
ball.yspeed = ball.yspeed * -1 ;

I cfunctiom displayd) {
4 stroke (255)

Wedow [CAL) D v

Figure 2-10. pb5.js graphics script for bouncing ball

Object Instance, Storage of Multiple Values,
and Loop Through Object

Listings 2-11a and 2-11b show a p5.js graphics function using class, object,
array, and loop features. Figure 2-11 shows the corresponding output.

Listing 2-11a. p5_graphics_ex3_index.html

<!DOCTYPE html>

<html>

<head>
<script src="p5.min.js"></script>
<meta charset="utf-8" />

</head>

53

CHAPTER 2 BROWSER-BASED DATA PROCESSING

<body>
<script src="p5_graphics_ex3_user code3.js"></script>
</body>
</html>

Listing 2-11b. p5_graphics_ex3_user_code3.js

var circles = [100, 25, 46, 72];

let squarei;

let squarez;

function setup() {
createCanvas(500, 400);
squarel = new Square();
square2 = new Square();

}

function draw() {
background('red");
for (var i = 0; 1 < 4; i++) {
stroke(255);
fil11(51);
ellipse(i * 100 + 100, 200, circles[i], circles[i]);
}
squarel.move();
squarel.show();
square2.move();
square2.show();
}
class Square {
constructor(x, y, 1) {
this.x = 200;

54

this.y
}
move() {
this.x

this.y
}
show() {
stroke(255);
strokehWeight
noFill();

150;

CHAPTER 2

)

(4);

this.x + random(-5, 5);
this.y + random(-5, 5);

square(this.x, this.y, 36, 6);

BROWSER-BASED DATA PROCESSING

Crree T

var circles = [.
function setup() {
ereatecanvas
squarel = new Square();
5 sguarel = new Square();
&)}
Gfunczion drawi] {
background ["red’};
9 o for (var i = (7

0
squarel.move ()
squareZ.show() ;

1 1
19 Eelase Square |
0 B construater(x, ¥, r) |

Yilat squarel;lat square?;

» circles[i], circles[i]);

this.x =
this.y =
24 B mowel) [
25 this.x = this.x + random(-", "};
this.y = this.y + rasdomi=", °};
]
show() [
2 stroke{2%%) 7
a0 strokedalght (1) 7
RoFLLLL)
square(this.x, this.y, J&, 2);
33 i
=TS
————— e e Wane AR IR -

P —

“ @ Fle | Pl BrowsenPS exemples codelps grachics e indechid . & @

- g =

» 0 :

=+

(e 0O

Figure 2-11. pb5.js graphics function that uses class, object, array, and

loop features

55

CHAPTER 2 BROWSER-BASED DATA PROCESSING

Getting Started with Machine Learning
in the Browser Using mi5.js and p5.js

The ml5.js library makes Al accessible to creative coders. The library
was created at New York University, and it was openly released in July
2018. The library gives access to Al methods and models in the program,
expanding on TensorFlow.js and with no other outside dependencies. The
ml5.js library makes life simpler for those who are new to the ML field. You
can find more information at this link.

To develop and execute programs that incorporate p5.js and ml5.js
libraries, you need the following:

Editor: Visual Studio Code or Notepad++
Web browser: Chrome or Firefox

Sample images and datasets for developing ML
applications

Design, Develop, and Execute Programs
Locally

There are two methods for running a local web server on your computer to
develop and execute your programs on the local computer.

Method 1: Using Python — HTTP Server

1. Install Python 3+ on your computer.

2. cd /path_to/ml5_p5-examples (At the command
prompt, go to the folder that holds your ml5/p5
programs.)

56

https://ml5js.org/
https://ml5js.org/

CHAPTER 2 BROWSER-BASED DATA PROCESSING

3. python -m http.server 8081

4. Inthe browser URL, type the following:
localhost:8081/indexfilename

Listings 2-12a and 2-12b show the ml5.js library using a Python web
server for image classification. Figure 2-12 shows the corresponding
output.

Listing 2-12a. ml5_ex1_index.html

<html>
<head>
<meta charset="UTF-8">
<title>Image Classification Example</title>
<script src="ml5.min.js" type="text/javascript"></script>
</head>
<body>
<h1>Image classification using MobileNet model</h1>
<p>The MobileNet model labeled this as
... with a confidence of
....
</p>

<script src="ml5 ex1 user codel.js"></script>
</body>
</html>

Listing 2-12b. ml5_ex1_user_codel.js

const image = document.getElementById('image');

const result = document.getElementById('result');

const probability = document.getElementById('probability');
ml5.imageClassifier('MobileNet")

57

CHAPTER 2

BROWSER-BASED DATA PROCESSING

.then(classifier => classifier.classify(image))

.then(results => {

result.innerText = results[0].label;
probability.innerText = results[0].confidence.toFixed(4);

};

F:

feerving HTTP on :: port 8881 (http://[::]:8881/) ...
::1 - - [28/3anf2021 21:27:45] "GET /mlS_ex1 index.html HTTP/1.
o _

121 - - [20/)an/2021 21:27:45] "GET /ml5.min.js HTTP/1.1" 280 -

111 - - [2@/Jan/2021 21:27:45] “GET /images/birdl.png HTTP/1.1"
208 -

111 - - [28/Jan 2821 21:27:45] "GET /mlS_ex1_user_codel.js HTTH
1.1" 2¢@ -

$:1 - - [2@f)anf2021 21:27:456] code 484, message File not found

111 - - [2@/Janf2021 21:27:46] “GET /favicon.ico HTTP/1.1" 424

* [l P am vt LS Erirpten_ oeoevers il e vl - Hotepkds o - a x
| bie (3t Saan e fcodey Lngage Srmsgs Tom Msm e Pupes Wi ?
+OHR AL IxDIoeag a2 TR 1 EIPR=BEIE "
. CeT] - R e |

\AI-in-Browser\ML5_Examples_code»python -m http.server 2831

208

x

s>Inage Classification Exasple:/titles
pt src=~mlS.min.j* types-text/javascripts></scripts

& M., o/spans with & confidence of
de"probabl1ity” >.. </

erctn 450 GeeW Laid Celid Fenld Wecow ALY U2 3
B - T

Tmage classification using MobileNet model

£ typehere tosearcn o Hl- B & €

@ me p 0 O

Figure 2-12. Usage of ml5.js library along with Python server and
Notepad++ (example related to image classification)

Method 2: Using Visual Studio Code Editor
with Node.js Live Server

58

1. Download and install Node.js from this link.

2. Install Node Package Manager (NPM) from this link.

3. Download and install Visual Studio Code from this link.

4. Open the Visual Studio Code editor and click the
GolLive button so that the output of the program can

be seen in the browser.

https://nodejs.org/en/download/
https://www.guru99.com/download-install-node-js.html#2
https://code.visualstudio.com/docs/setup/windows

CHAPTER 2 BROWSER-BASED DATA PROCESSING

The following examples show the execution of the programs under this
method.

Listing 2-13 is an example of an image classification using Node.js
server. The outputs related to different images are shown in Figure 2-13(a),
Figure 2-13(b), Figure 2-13(c), and Figure 2-13(d).

Listing 2-13. Image Classification Using the Node.js Server

<html>
<head>
<meta charset="UTF-8">
<title>Image Classification Example</title>
<script src="ml5.min.js" type="text/javascript"></script>
</head>
<body>
<h1>Image classification using MobileNet model</h1>
<p>The MobileNet model labeled this as

... with a confidence of
....
</p>

<script src="ml5_ex1 user codel.js"></script>
</body>
</html>
ml5_ex1 1 user_codel.js
const image = document.getElementById('image');
const result = document.getElementById('result');
const probability = document.getElementById('probability');
ml5.imageClassifier('MobileNet")
.then(classifier => classifier.classify(image))

59

CHAPTER 2 BROWSER-BASED DATA PROCESSING

.then(results => {
result.innerText = results[0].label;
probability.innerText = results[0].confidence.toFixed(4);

};

@ ruptmdcmn e X | & i o

+ C O 1ET001S500r5, exl indnchtm * BT A0
: Image classification using MobileNet model
ta charset="UTr-3"

Inage Classification Exarple:/titles
srce"alS.min.js" types"text/javascript™ro/soripts

obin, Turds sigratouiuss with &

e

<p:The MobileNet mcdel labeled this as
<span fde"res
cspan kda"probabi

</px
mRge” widsha"ae™ /3

£l
L <hirImage clessification using MebileNet model</ni:
a
]

« «/epan> with 3 confidence of
Jspan.

15 cing arcemimage ong” i

14 | cacript srce"alf_exl waer_codel.ja"s¢/scrip
<[body>

5 «fhtals

e e coce —pT—
1 const imags = document.getElomentByla(’image’);
& const result = document.getClementlyld(‘result'):

3 const probability = docement.getflementlyTd{'probability’);
1 ml5.irageclassitior Mobdlenot')
5 .then(classifier - classifier.classify(isage))

7 rosult. innerText = results[0].Jatel;
2 probability.innerText = results[a].confidence . tofixed(d);

S A mE i O

B P typehoretosearch

Figure 2-13(a). Image classification(Example:Bird)using the Node.js
server and Visual Studio Code

60

CHAPTER 2

BROWSER-BASED DATA PROCESSING

@ e Cusiticaion Braraie
&

= 4+
C O WINR0ASS00/miS ex] indachim

- o kS
il 3 il 3 2 bedy 3 6 imgbimage & a8 'e i
Image classification using MobileNet model
The Mobilele! &

cxocel labseled this 33 diaivy with n confiderce of 0 7116

h :nn classification using Mi]ﬂh: modele
cpsThe mintw]!wlwﬂ-

unant. getElomentayla(imay g)
nt.petllenentlyld(" r

t');
ooumen: tzlmntvnd(probability’)

&
B P typehoretosearch

CHIRHGCRCEs A

TR L e N

Figure 2-13(b). Image Classification(Example: Flower) using the
Node.js server and Visual Studio Code

The ml5.js library’s methods and functions are asynchronous (because

ML models can take significant amounts of time to process input and
generate output).

Using Promises The ml5.js library also supports promises. If no
callback is provided to any asynchronous function, a promise is

returned. With promises, the image classification example can be
used in the following way.

61

https://ml5js.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

CHAPTER 2 BROWSER-BASED DATA PROCESSING

@ wuge Curaicadon By x F

“ C O L0155

b * BE MO ;

bady ¥ 63 imghimage

mage classification using MobileNet model

The Mubileet caodel labeled this 21 bas sifidence of 06341

tion Exasplec titles
Types"text/javascript™r/scripts

<hirImage clessification using MebileNet model</ni:
cp>The MobileNet model labeled this as
a confidence of

imags = document.getElomentayla(image’);
result = document.getClementlyld(result’');
probasility = £ getElemently Td{ ' probability ');
sifior{ Msbiledot’)
ier « classifier.classify(image))

= L
innerText = results(0].dasel;
ility.innerTest = results[a].confidence. tofixed(4);

\ILCE % fpsow? UMD OB WA EPoii00 A

B £ hpenecioseacn oIl B & € = ¢ & & o w~me bt O

Figure 2-13(c). Image classification (Example:Fruit) using the
Node.js server and Visual Studion Code

@ wuge Curaicadon By x F

- C O WAL

him * BE N i
13 63 hird 3 63 bocdy 3 G ivghimage a

mage classification using MobileNet model

charset="UTF
Tise Mushileiet el labseled this 31 sports car, sgoet ear with # confidesce of 0 657

tion Exasple:

*Image classification using MebileNet model</ni:
cp>The MobileNet model labeled this as

<span fde fepan: with 3 confidence of
<o t/apany,

wer_crcie ju 3 (3 then() calbacs
imags = document.getElomentayla(image’);
result = document.getClementlyld(result’');
2t probanility = decoment.getflementByTd(‘probability’);
nl5. irageClassitior(Hobilenot')
Jthen[classifier « classifier.classify(image))
.than[Fesules = [
-innerText = results[8].Jasel;
probability.innerText = results[d].confidence. toFixed(d);

UMD OE WML P2 K

1L Ca 2 Spsom

B £ pehereiosarcn oIl B & € = ¢ & & 9 w~me bt O

Figure 2-13(d). Image classification (Example:Vehicle) using Node.js
server and Visual Studio Code

62

CHAPTER 2 BROWSER-BASED DATA PROCESSING

Note In the preceding example, a MobileNet library is used for
illustration. MobileNet is a convolutional neural network (CNN)
architecture model for image classification and mobile vision. It is
best suited for web browsers because browsers have limitations
related to computation, graphic processing, and storage.

Summary

Al/ML researchers have provided us a huge number of functionalities
in the form of libraries, making the implementation of AI/ML as easy as
including the various libraries in our solution space.

In this chapter, you learned how to use two JS libraries (p5.js and
ml5.js) that enable you to build and deploy interactive graphics and ML
applications on the browser. These new and improved libraries have
proven themselves effective in numerous utilization cases.

By using these libraries, you can compose code for various real-time

applications on the browser in a simpler and more naturally intuitive way.

References

https://p5js.org/
https://p5js.org/reference/

McCarthy, Lauren. Getting Started with p5.js:
Making Interactive Graphics in JavaScript and
Processing. Make Community, 2015.

https://ml5js.org/

63

https://p5js.org/
https://p5js.org/reference/
https://ml5js.org/

CHAPTER 2

64

BROWSER-BASED DATA PROCESSING

https://blog.etereo.io/machine-learning-
in-the-browser-for-the-entire-family-
125ca5a449al

https://towardsdatascience.com/introduction-
to-ml5-js-3fe51d6a4661

https://www.opensourceforu.com/2020/02/ml5-
js-machine-learning-made-more-user-friendly/

https://github.com/processing/p5.js?files=1
https://github.com/ml5]js

https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://towardsdatascience.com/introduction-to-ml5-js-3fe51d6a4661
https://towardsdatascience.com/introduction-to-ml5-js-3fe51d6a4661
https://www.opensourceforu.com/2020/02/ml5-js-machine-learning-made-more-user-friendly/
https://www.opensourceforu.com/2020/02/ml5-js-machine-learning-made-more-user-friendly/
https://github.com/processing/p5.js?files=1
https://github.com/ml5js

CHAPTER 3

Human Pose
Estimation in
the Browser

This chapter describes human pose estimation, a computer vision
advancement that seeks to understand human movement through
pictures and videos. The chapter discusses the various ways to estimate
human poses through machine learning (ML) methods, with a focus on
Dan Oved’s PoseNet method.

PoseNet is an ML model that allows for real-time human pose
estimation by finding different points on the human body and face. This
chapter shows you step by step how to write the code to recognize various
poses (keypoints) of the human face. Programming instructions teach
you how to collect and manage the data related to these keypoints. This
procedure will help you estimate other vital human pose keypoints and
understand their classification patterns, as discussed in the following
chapters.

© Nagender Kumar Suryadevara 2021 65
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_3

https://doi.org/10.1007/978-1-4842-6843-8_3#DOI

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Human Pose at a Glance

Human pose assessment is an important topic that the computer vision
community has been grappling with for the past few decades. It is a pivotal
advancement toward understanding individuals in pictures and videos.

Human pose estimation is done by defining joints of a human body
(otherwise called keypoints: elbows, wrists, and so on) in still images or
videos. It is also characterized as the quest for a specific pose in the space
of all poses.

The fundamentals of a human 2D pose is the estimate of a 2D
coordinate (x, y) for each joint of the human pose from an RGB (red,
green, blue) image. Human 2D pose estimation can be used to assess
(and analyze and hopefully improve) the specific movements of a football
player (or other sportsperson) during a game. A gait analysis can be
monitored for early diagnosis of potential problems related to such.

PoseNet vs. OpenPose

You can enable human pose estimation on computing devices by utilizing
various libraries such as PoseNet developed by Ross Wightman and

from Carnegie Mellon University. PoseNet is built to run on lightweight
computing devices such as browsers and mobile phones, whereas
OpenPose is much more precise and intended to be run on graphical
processing unit (GPU)-powered systems.

Note It is more expensive and complex (including less flexibility)
to run Al/ML programs on GPU-powered systems as compared to on
non-GPU electronic devices.

66

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

PoseNet output for a 2D system is processed fast, but it may miss a
number poses throughout the video, which you can tell by the flickering
and disappearing skeleton. Nevertheless, if you really need to use
PoseNet on resource-constrained devices such as on a mobile phone or
an embedded system with less computational resources (e.g., limited
processing capability, less storage, and fewer communication workloads
and fast response), PoseNet is the right choice. Human pose estimation
using PoseNet will enable the user to make smart decisions in near real
time when the Al methods are executed on the browser or the lightweight
computational resources.

You can improve PoseNet estimation accuracy with better data
processing procedures at the web application to generate better inferences.

Human Pose Estimation Using Neural
Networks

In the literature, numerous human pose estimation methods use neural
network philosophy proposed by various research groups. The following
sections briefly describe the evolution of the human pose estimation
methods.

DeepPose: Human Pose Estimation via Deep
Neural Networks

DeepPose was the main significant paper that applied deep learning

(DL) to human pose assessment. It accomplished state-of-the-art (SOTA)
execution and beat existing models. In this methodology, pose assessment
is detailed, like a convolutional neural network (CNN)-based relapse issue
toward body joints. In addition, the method utilizes a course of regressors
to refine the posture appraisals and to improve gauges. One significant

67

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

thing this methodology does is explain posture in comprehensive design
(i.e., whether certain joints are covered up; they can be assessed if the
posture is contemplated comprehensively). The paper contends that
CNN:s typically give possible poses and show reliable results. The xy
coordinate values generated from the method specified by the authors are
not accurate as it shows the multifaceted (multiple set of values) that are
inadequate to specific joints of human body.

Efficient Object Localization Using Convolutional
Networks

This approach creates heatmaps by running a picture through various
resolutions to capture the joints at an assortment of scales. The yield is a
discrete heatmap rather than a nonstop relapse. A heatmap predicts the
likelihood of the common happening at every pixel. This yield model is
useful, and a number of the papers that followed anticipated heatmaps
rather than direct regression. The authors have considered the joint
utilization of a CNN and graphical model.

Convolutional Pose Machines

Convolutional pose machines are differentiable, and their multistage
engineering can be prepared start to finish. They give a successive forecast
system to learning-rich specific spatial models and work very well for
human posture. One real inspirations of this paper is to learn long-range
spatial connections, and they show this can be accomplished by utilizing
deep multistage networks. The paper utilized moderate management after
each phase to avoid the issue of evaporating inclinations, which is a typical
issue for profound multistage organizations.

68

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Human Pose Estimation with lterative Error
Feedback

This method directly foresees the outcomes in one go. The method
utilize a self-adjusting model that logically changes an underlying
arrangement by taking care of feedback data, and this cycle is called
iterative error feedback.

Stacked Hourglass Networks for Human Pose
Estimation

A stacked hourglass network is a novel and intuitive design that beats
every past technique. It is called a stacked hourglass network because

the organization comprises steps of pooling and upsampling layers
(resembling an hourglass), and these are stacked together. The plan of the
hourglass is driven by the need to catch data at each scale.

Simple Baselines for Human Pose Estimation
and Tracking

Earlier methodologies work well overall but are unpredictable.
Accomplished the best in class at mean average precision (mAP) of
73.7% on Common Objects in Contest (COCO) dataset. The organization
structure is straightforward and comprises a residual neural network
(ResNet) and a few deconvolutional layers toward the end.

69

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Deep High-Resolution Representation Learning
for Human Pose Estimation

The high-resoulution network model is better than the previous methods
with respect to the single-person keypoint detection and multiperson pose
estimation using the particular dataset. This method works well when
compared to the previous mentioned methods.

This section briefly described the most outstanding and influential
models in human pose estimation. The approaches were based on the DL
methodology with varying percentages of accuracy.

Using the mi5.js:posenet() Method

Although various methods enable us to estimate human pose keypoints,
Dan Oved’s PoseNet model does the real-time human pose estimation on
the browser and resource-constrained computing devices. This section
outlines his steps for collecting human pose estimation using the m15.
posenet method.

Note We will add the instructions (code) step by step in the 1.js
script file to capture the video and identify the human pose keypoints
so that you can better understand the development of the browser
application.

Step 1A. Include ml5.js and p5.js libraries for the PoseNet model
(Listing 3-1a).

70

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER
Listing 3-1a. 1.html

<html>

<head>

<h1> <center> Demo#1</center></h1>

<h2> <center> Posenet using mi5.posenet</center> </h2>
<h3> <center> The standard ML5.]S and P5.JS libraries are
included </center> </h3>

<script src="p5.js"</script>

<script src="mi5.min.js"></script>

<meta charset="utf-8">

<link rel="stylesheet" type="text/css" href="style.css">
</head>

<body>

<script src="1.js"> </script>

</body>

</html>

Step 1B. See the 1.js script (Listing 3-1b) to capture the video. Main file
(1.html) programming instructions remain the same.

Listing 3-1b. 1.js

Let video;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

}

Function draw() {
Image(video,0,0);

}

Figure 3-1 shows the corresponding output for the code. You must click
the Allow button to view the face.

71

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

C @ ©pomeretFowtia Eampe 11l + @
tiiah [T, L B voututr B M) st of Ol

T USEIET W ey

The standard MLEIS and PEIS lbraries ave incluibed

0ie Woiows [CRLFI UTF

Joagth L2 Cofi1 Sel.
B e

Figure 3-1. Screenshot (output) related to the 1.html and 1.js

script to capture the browser webcam video after clicking the Allow
button. The two videos depict i) the original video capture and ii) the
captured video drawn onto the canvas

72

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Step 2. Add the video.hide() function to hide the captured video and
show only the canvas video in the 1.js script (Listing 3-2). Figure 3-2 shows
the corresponding output.

Listing 3-2. Adding video.hide()

Let video;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

video.hide();
}
Function draw() {

Image(video,0,0);
}

D@y L '_', © T r_b:.:o-,n-:ra-_|_._‘..,...‘_T__J —
— L] L] o & o - P -
Demo#l s R =

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

Wirciown (T

in-8 Col- S 200

=
| = R

Figure 3-2. Screenshot (output). Display only the captured video on
the canvas; the original video is hidden

73

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Step 3. Invoke the m15.poseNet() method in the 1.js script (Listing 3-3).
Figure 3-3 shows the output.

Listing 3-3. Invoking ml5.poseNet()

Let video;
Let posenet;
Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);
video.hide();
posenet=m15.poseNet (video.modelready);
}
Function modelready() {
Console.log('posenet model is ready');

}

Function draw() {
Image(video,0,0);

}

74

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

-] .+

@ © fie | EfposenetToshiet Earmple 11 beel - @

Demo#l

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

Wirciown (T

=TS
B

Figure 3-3. Screenshot (output) on calling the method m15. poseNet ().
The model is loaded onto the browser application, as shown on the
browser console

Step 4. Real-time poses are estimated for this poseNet.on() method
in the 1.js, (i.e., listening to the new poses) (Listing 3-4). Figure 3-4 shows
the corresponding output.

Listing 3-4. poseNet.on()

Let video;

Let posenet;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);
video.hide();
posenet=m15.poseNet (video.modelready);
posenet.on('pose’,showPoses);

75

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function showPoses(poses) {
console.log(poses)

}
Function modelready() {

console.log('posenet model is ready');

}

Function draw() {

Image(video,0,0);

-] .+

@ © fie | EfposenetToshiet Earmple 11 beel - @

Demo#l

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

In-12 CoT Se 010

Jmom
| = [

Figure 3-4. Screenshot (output) once the PoseNet model is loaded
and poseNet.on() listens to the new poses of the user

Step 5. Add function showPoses () in the 1.js script file so that the
data related to the poses is stored in the corresponding tensors, which
are shown in the browser console (Listing 3-5). Figure 3-5 shows the
corresponding output.

76

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER
Listing 3-5. Adding showPoses|()

Let video;

Let posenet;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);
video.hide();
posenet=m15.poseNet(video.modelready);
posenet.on('pose',showPoses);

}

Function showPoses(poses) {
console.log(poses)

}

Function modelready() {
console.log('posenet model is ready');

}

Function draw() {
Image(video,0,0);

}

77

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

D 'ty S

O @ e | EfposnetMosehet Daamgle 171 haml -z @

Demo#l

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

0
Figure 3-5. Screenshot (output). Data as collected in the tensors is
shown in the browser console

Step 6. Add an array of poses collected in the object poses in 1.js script
file (Listing 3-6). Figure 3-6 shows the corresponding output.

Listing 3-6. Array of Poses Collected in the Object Poses

Let video;

Let posenet;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);
video.hide();
posenet=m15.poseNet(video.modelready);
posenet.on('pose’,showPoses);

}

Function showPoses(poses) {
console.log(poses)

}

78

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function modelready() {
console.log('posenet model is ready');

}
Function draw() {
Image(video,0,0);
}
D 'ty S
- ' ; o '-f.b.'lm':vml'-".:ru-k'.':rTJ. e . .- - - @
Demo#l ; ; > _"’ 1

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

Wirciown (T

e G
Bl 5 oo

Figure 3-6. Screenshot (output). An array of poses as collected in the
object poses is shown in the browser console

Step 7. poseNet.on () returns an array with a single object of
several poses (keypoints), and recognizes the pose such as nose xand y
coordinates by altering the function draw() in 1.js script file (Listing 3-7).
Figure 3-7 shows the corresponding output.

Listing 3-7. Altering the draw() Function by Adding the ellipse
Method to Display the Specific Keypoints

Let video;
Let posenet;

79

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Let pose;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);
posenet.on('pose',showPoses);

}

Function showPoses(numberofposes) {
console.log(numberofposes);
if(numberofposes.length>0)
{

Pose=numberofposes[0].pose;
}
}

Function modelready() {
console.log('posenet model is ready');

}

Function draw() {
Image(video,0,0);
If(pose) {
£i11(255,0,0);
ellipse(pose.nose.x,pose.y,64);}

}

80

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

] . x + 5 o

© Tie | Efposenet/Tosehiet Exrmcle 1/10erl

o - = @
HUsLR@ iR ocaw 2=2E3IA 1 0ETMF ” " -

Demo#l 18 . e
Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

g Ln- 24 Wecown (TALF) U114

T
n P e here 1o searen

Figure 3-7. Screenshot (output) showing a single object with several

poses and recognizing the specific pose (keypoint): nose x and y
coordinates with a red ellipse

Step 8. Add instructions (code) in the 1.js script file draw() function
to recognize two different human poses (keypoints): nose and ear
(Listing 3-8). Figure 3-8 shows the corresponding output.

Listing 3-8. Highlighting the Nose and Ear

Let video;
Let posenet;
Let pose;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);
posenet.on('pose’,showPoses);

}

81

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function showPoses(numberofposes) {
console.log(numberofposes);
if(numberofposes.length>0)
{

Pose=numberofposes[0].pose;
}
}

Function modelready() {
console.log('posenet model is ready');

}

Function draw() {

Image(video,0,0);

If(pose) {
£i11(255,0,0);
ellipse(pose.nose.x,pose.nose.y,64);
ellipse(pose.leftEar.x.pose.leftEar.y,64);
ellipse(pose.rightEar.x.pose.rightEar.y,64);
}
}

82

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

] . x + 5 o

O e | EfposenetMoseiet Daamgle 171 hael -z @

Demo#l 8 s vl
Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

g 02 o0 S 010 Wecown (TALF) U114

T

Figure 3-8. Screenshot (output) to recognize two different poses
(keypoints): nose and ear

Step 9. Modify the draw() function in the 1.js script file to distinguish
poses (keypoints) with multiple colors (Listing 3-9). Figure 3-9 shows the
corresponding output.

Listing 3-9. Adding Multiple Colors

Let video;
Let posenet;
Let pose;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);
posenet.on('pose’,showPoses);

}

83

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function showPoses(numberofposes) {
console.log(numberofposes);
if(numberofposes.length>0)
{

Pose=numberofposes[0].pose;
}

}
Function modelready() {

console.log('posenet model is ready');

}

Function draw() {

Image(video,0,0);

If(pose) {
£i11(255,0,0);
ellipse(pose.nose.x,pose.nose.y,64);
ellipse(pose.leftEar.x.pose.leftEar.y,32);
ellipse(pose.rightEar.x.pose.rightEar.y,32);
}
}

84

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

] . x + 5 o

© O e | EfposenetMosehiet Daamgle 171 hawl -z @

Demo#l

Posenet using ml5.posenet

The standard MLEJIS and PAIS libraskes are included

Wirciown (EAL

o 3 e G
n P e here 1o searen

Figure 3-9. Screenshot (output) to distinguish poses with multiple
colors

Step 10. Change the recognized poses’ size and shape by modifying the
instructions in the 1.js script file draw() function (Listing 3-10). Figure 3-10
shows the corresponding output.

Listing 3-10. Changing Size and Shape

Let video;
Let posenet;
Let pose;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEQ);

video.hide();

posenet=m15.poseNet(video.modelready);
posenet.on('pose’,showPoses);

}

85

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function showPoses(numberofposes) {
console.log(numberofposes);
if(numberofposes.length>0)
{

Pose=numberofposes[0].pose;
}

}
Function modelready() {

console.log('posenet model is ready');

}

Function draw() {

Image(video,0,0);

If(pose) {
£i111(255,0,0);
ellipse(pose.nose.x,pose.nose.y,32);
fil1(255,255,0);
ellipse(pose.leftEar.x.pose.leftEar.y,32);
ellipse(pose.rightEar.x.pose.rightEar.y,32);
let 1Eye=pose.leftEye;
let rEye=pose.rightEye;
let d;
d=dist(rEye.x,rEye.y,lEye.x,lEye.y);
print(d);
}
}

86

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

-] . o+

) Efposenet/Tosehiet Exwmgle 1/13erl -z @

Demo#l 06 . T e
Posenel using ml3, posenet @ s A

The standard MLEJIS and PAIS libraskes are included

g
Figure 3-10. Screenshot(output). Changing the size and shape of the
recognized poses

Step 11. Find the distance between the recognized poses by modifying
the 1.js script file draw() function (Listing 3-11). Figure 3-11 shows the
corresponding output.

Listing 3-11. Finding the Distance Between the Recognized Poses

Let video;

Let posenet;

Let pose;

Function setup() {
createCanvas(640,480);
video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);
posenet.on('pose’,showPoses);

}

87

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Function showPoses(numberofposes) {
console.log(numberofposes);
if(numberofposes.length>0)
{

Pose=numberofposes[0].pose;
}

}
Function modelready() {

console.log('posenet model is ready');

}

Function draw() {
Image(video,0,0);
If(pose) {
£i11(255,0,0);
ellipse(pose.nose.x,pose.nose.y,32);
fil1(255,255,0);
ellipse(pose.leftEar.x.pose.leftEar.y,32);
ellipse(pose.rightEar.x.pose.rightEar.y,32);
let 1Eye=pose.leftEye;
let rEye=pose.rightEye;
let d;
d=dist(rEye.x,rEye.y,lEye.x,lEye.y);
print(d);
for (let i=0;i<pose.keypoints.length;i++) {
let x=pose.keypoints[i].position.x;
let y=pose.keypoints[i].position.y;
fi11(0,250,0);
ellipse(x,y,20,20);

88

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

for(let i=0;i<line_connecting points.length;i++){
let m=line connecting points[i][0];
let n=1line_connecting points[i][1];

strokeWeight(2);
stroke(250);
line(m.position.x,m.position.y,n.position.x,n.
position.y);
}
}
}
e e e “re
915 1 7 5 i o O W 0| | -

Demo#1

Posenet using mlS. posenet

The standard MLEJS and PEIS lbraries are included

Figure 3-11. Screenshot (output). Finding the distance between the
recognized poses and displaying them on the browser console

Now that you understand how to identify the keypoints using the
PoseNet model, the focus turns to how to collect and store the data for
recognizing the patterns of data through various programming structures
for realizing multiple applications.

89

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Input, Output, and Data Structure
of the PoseNet Model

This section covers the various functions available in the program when
the input is video data. This will help you to understand various functions
(methods) that are available to render (load) the video on the browser and
to identify the various poses whenever any movement (change) occurs.

PoseNet enables you to gauge either a solitary posture (i.e., a single
pose of an individual) or various stances of multiple persons in a picture
or video, which means that a rendition of the calculation can distinguish
just a single individual in a picture/video and that one form can identify
numerous people in a picture/video.

Input

An input, in this case, is an HTML video or an image element (picture) or

a p5 image/video element of the page. If specific input is not provided,
PoseNet defaults to the browser’s webcam as the input. The following code
snippet shows how to read the input (poses) of an individual:

const video = document.getElementById("video");
// Create a new myposeNet method
const myposeNet = ml5.poseNet(video, modellLoaded);

// When the model is loaded in the browser
function modelloaded() {
console.log("Model Loaded!");

}

90

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

The various parameters for the PoseNet method are as follows:

o ml5.poseNet(video[Optional], type[Optional],
callback[Optional])

o ml5.poseNet(video[Optional], options[Optional],
callback[Optional])

o ml5.poseNet(callback[Optional],
options[Optional])

Table 3-1 describes the arguments (parameters) for the m15.poseNet

method.

Table 3-1. ml5.poseNet Arguments

Video
(Optional)

type
(Optional)

Callback
(optional)

Options
(optional)

A video element(HTML or p5)

Estimation for single or multiple people
poses.

A method to run once the model is loaded
on the browser. Otherwise, a promise
will be executed once the model has
loaded.

To specify the model accuracy and
performance.Values to these parameters
are set accordingly: imageScaleFactor,
outputStride, flipHorizontal,minConfidence,
maxPoseDetections, scoreThreshold,
nmsRadius,detectionType, multiplier

91

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

Output

When the pose of an individual is loaded on the browser (i.e., the
browser webcam reads the video stream data), the corresponding poses
(keypoints) are given as the results (output) by the function poseNet ().
The results (outputs) are then passed to the temporary program variable
myposes, as shown here:

// Listen to new 'pose' events when there are changes // in the
orientation of the poses.
myposeNet.on("pose", function(results) {

myposes = results;

1

.on() Function

The .on ('pose’, function(results)) method triggers an event
whenever a new pose is detected. The method continuously listens for a
change in the poses over the video frames. The function (results) returns
the results in an array of objects consisting of pose recognitions.

Summary

This chapter showed you step by step how to depict the real-time human
pose estimation in the browser using Dan Oved’s PoseNet model.

You learned about PoseNet model intricacies such as what a pose
contains: pose confidence score, an array of 17 keypoints, and each
keypoint in turn consisting of keypoint position and keypoint confidence
score along with the input image space.

This chapter also covered the programming constructs required to
process the collected keypoints’ data. In the following chapters, you will
learn about programming skills required to develop multiple applications
such as human pose classifications and gait analysis.

92

CHAPTER 3 HUMAN POSE ESTIMATION IN THE BROWSER

References

https://ml5js.org/reference/api-PoseNet/

https://github.com/ml5js/ml5-1ibrary/tree/
release/src/PoseNet

https://parleylabs.com/2020/01/05/
exploration-pose-estimation-with-openpose-and-
posenet/#:~:text=PoseNet%20is%20built%20to%
20run, see%20the%20performance%20benchmarks’
20below.&text=0ur%20first%20look%20was%200n,
from%20both%200penPose%20and%20Posenet

Toshey, A., and C. Szegedy, “DeepPose: Human
Pose Estimation via Deep Neural Networks.”
2014 IEEE Conference on Computer Vision and
Pattern Recognition, pp. 1653-1660, doi: 10.1109/
CVPR.2014.214. Columbus, OH, 2014.

Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and

C. Bregler, “Efficient Object Localization Using
Convolutional Networks.” 2015 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR),
pp. 648-656, doi: 10.1109/CVPR.2015.7298664.
Boston, MA, 2015.

Carreira, J., P. Agrawal, K. Fragkiadaki, and J. Malik,
“Human Pose Estimation with Iterative Error
Feedback”” 2016 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4733-
4742, doi: 10.1109/CVPR.2016.512. Las Vegas, NV,
2016.

93

https://ml5js.org/reference/api-PoseNet/
https://github.com/ml5js/ml5-library/tree/release/src/PoseNet
https://github.com/ml5js/ml5-library/tree/release/src/PoseNet
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run

CHAPTER 3

94

HUMAN POSE ESTIMATION IN THE BROWSER

Newell A., K. Yang K., and J. Deng J. “Stacked
Hourglass Networks for Human Pose Estimation.”
In: Leibe B., J. Matas, N. Sebe, and M. Welling (eds).
Computer Vision - ECCV 2016. Lecture Notes in
Computer Science, vol 9912. Springer Verlag, 2016.

Xiao, Bin, Haiping Wu, and Yichen Wei. Simple
Baselines for Human Pose Estimation and Tracking.
Springer International Publishing, 2018.

https://doi.org/10.1007/978-3-030-01231-1_29,
Computer Vision - ECCV 2018

Sun, K., B. Xiao, D. Liu, and J. Wang. (2019a).
Deep High Resolution Representation Learning
for Human Pose Estimation. In CVPR: https://
openaccess.thecvf.com/content_CVPR_2019/
papers/Sun_Deep High-Resolution_
Representation Learning for Human Pose
Estimation CVPR 2019 paper.pdf

https://zhangtemplar.github.io/pose/

https://nanonets.com/blog/human-pose-
estimation-2d-guide/

https://doi.org/10.1007/978-3-030-01231-1_29
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://zhangtemplar.github.io/pose/
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://nanonets.com/blog/human-pose-estimation-2d-guide/

CHAPTER 4

Human Pose
Classification

This chapter covers various human pose estimation experiments. In the
preceding chapter, you learned the basics of human pose estimation in the
browser.

This discussion first answers why we need human pose estimation in
the browser, and then the discussion turns to various artificial intelligence
(AI) and machine learning (ML) classification techniques that can be
executed in the browser.

The chapter also provides a high-level overview of the open-source
JavaScript (JS) library TensorFlow.js. You will learn how to use it to
implement and deploy deep learning (DL) systems in browsers. The
discussion covers the TensorFlow.js framework’s architecture and its
building-block tensors and includes two practical examples of using
the library to run neural network programs on the browser. Note that
TensorFlow.js is a library for ML in]S that enables you to develop ML
models in JS and use ML directly in the browser or Node.js.

The chapter also includes practical examples that cover detecting the
keypoints of an individual through browser webcams and locally stored
pictures (images).

© Nagender Kumar Suryadevara 2021 95
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_4

https://doi.org/10.1007/978-1-4842-6843-8_4#DOI

CHAPTER 4 HUMAN POSE CLASSIFICATION

Need for Human Pose Estimation
in the Browser

Human pose estimation is one task required for an individual to assess
the human pose classifications to predict the abnormalities that may
arise soon. The human poses evaluation will indicate an individual’s
classification levels in performing his or her day-to-day activities. People
prefer to have their poses computed without losing their privacy; hence,
the human pose computations are preferred on the client side rather than
on the server side of the data collection. So, the human pose classification
(determination) with the help of Al methods is to be performed on the
client side (i.e., at the browser application).

The need for ML techniques for the estimation of human poses and to
evaluate the performance of the classification in the browser is as follows:

e Privacy: Provision for executing ML methods and the
user data at the browser will ensure that data does
not move to the servers. Data related to sensitive
documents, medical application data such as user
identification, and domain-specific user text will be
processed at the client (users) end only. Thus, user
privacy is maintained by implementing ML methods at
the client application itself (i.e., at the browser).

e Sharing of data (distribution) across several software
not required: The reliance of data to be executed on
several software/tools can be avoided. There is no
requirement to install additional software/tools. The
application will be executed at the user end, and
therefore navigation to several methods will be easy.

96

CHAPTER 4 HUMAN POSE CLASSIFICATION

Low latency: ML models can be optimized for efficient
storage and speed to run on resource-constrained
devices very efficiently. Therefore, wait time (round-
trip time in the client/server model web application)
for server responses can be lessened/avoided.
Applications run faster if they execute at the client side
only.

Reliability: Reliability issues can be avoided because
there would be no intermittent connectivity steps. The
data is not transmitted to another location (server).
Therefore, the data is very reliable to be processed at
the client.

User interactivity: Today’s technological browser is
integrated with the input and output devices such
as cameras and screens. This integration supports
rich user interactive experiences. ML can amplify
user interactivity easily and, especially, in real-time
operations.

Also, executing ML methods (models) on the browsers (at the client

side) is appropriate for tasks such as transfer learning, parameter tuning

for existing models, and output interpretation.

ML Classification Techniques
in the Browser

Neural network concepts are a set of ML methods/algorithms that behave

similarly to how the brain works, using an artificial neurons structure.

A neural network is one of several ML methods that can help to solve

classification problems. Its novel quality is in its capacity to make detailed

97

CHAPTER 4 HUMAN POSE CLASSIFICATION

forecasts work powerfully and to imitate human speculation within
areasonable time of execution. This chapter does not go into neural
networks in detail, but you will learn the basics of neural networks so that
you have a better understanding of the problems presented.

There are numerous powerful ways to classify entities automatically.
Application requirements determine the ideal choice for solving
classification problems and whether applying neural systems is worth the
effort. Artificial neural networks (ANNs) and deep neural networks (DNNs)
are successful for solving complex dimensionality issues; however, they are
themselves also hypothetically complex. Some profound learning systems
that are DL frameworks, such as TensorFlow, can help you set deep neural
systems quicker, with just a couple of code lines.

Classification models predict the class labels such that it belongs to
a particular entity. A few classifiers are paired, bringing about a yes/no
choice. Others are multiclass, ready to classify a thing into one of a few
classifications. Characterization is another common use case of Al. For
instance, arrangement calculations are utilized to tackle email spam
separating, record classification, discourse acknowledgment, picture
acknowledgment, and penmanship recognition. In this specific situation,
a neural system is a few Al calculations that can help take care of grouping
issues. Its unique quality is its capacity to progressively make detailed
forecasts and imitate human deduction, in a way that no other calculation
can. Neural systems have yielded the best outcomes in numerous cases
related to classification problems.

To understand classification problems with neural systems, it’s
necessary to figure out how other order calculations work and to
understand their exceptional qualities. For some issues, a neural system
might be inadmissible or pointless exercise. For other people, it may be
the central arrangement. ANNs are made up of essential components
called neurons, which take in value, increase it by weight, and run

98

CHAPTER 4 HUMAN POSE CLASSIFICATION

it through a nondirect enactment work. A neural network can learn
the non-linear properties efficiently provided enough computational
capabilities are existing. The system can learn exceptionally complex
capacities. Hypothetically, given enough computational capabilities, a
neural system can learn the state of nearly any capacity.

e ANN Positives: Extremely powerful for solving big
dimensionality problems, ready to manage complex
relations between factors, non-thorough classification
sets, and complex capacities relating to yield factors.
Excellent tuning alternatives to forestall over-and
under-fitting.

e ANN Shortcomings: Hypothetically complicated,
hard to actualize, and requires expertise to tune the
parameters for better classification. Sometimes, require
a large training set of samples for better realization
(to have better output).

Note Make your neural network and train it in the program with
the TensorFlow.js library. Collect data and prepare your neural
organization or utilize existing information to prepare your neural
organization progressively. When it is prepared, your neural network
will perform the classification or regression tasks accordingly.

Running AI/ML programs completely on the client
side through a browser is an interactive application,
and that is smart. Applications such as human pose
estimation can be realized using the open-source JS
library TensorFlow.js.

99

CHAPTER 4 HUMAN POSE CLASSIFICATION

ML Using TensorFlow.js

TensorFlow.js is used to characterize, train, and run Al models totally in

the browser by utilizing JS and application programming interface (API)

methods. If you are a JS web developer and new to ML, TensorFlow.js is

an extraordinary way to start learning and developing applications that

incorporate intelligence in the browser. However, if you are an ML designer

and new to JS, the material in this book will give you a speedy primer on

how TensorFlow.js resources will help you develop smart applications.

While developing applications using TensorFlow.js, you might prefer

one the following methods:

You can import a pretrained model for derivation
(inference). If you have a TensorFlow or Keras existing
model and the model was prepared in the offline mode,
you can change over into TensorFlow.js and load it into

the browser for inference.

For rapidly developing applications, the transfer
learning method can be appropriate. This method
allows you to use TensorFlow.js to characterize, train,
and run models totally in the browser via JS and layers
of API. If you are acquainted with Keras, the layers of
API should be familiar to transform into a new model.

Web developers can use TensorFlow.js to describe,
train, and execute the models entirely in the browser
using the JS features.

TensorFlow.js is a]S library system for Al and replaces deeplearn.

js, which is presently called TensorFlow.js Core. TensorFlow.js also

incorporates a Layers API, a higher-level library for building Al models

that utilize Core (e.g., devices for porting TensorFlow and Keras models).

Figure 4-1 shows an overview of TensorFlow.js.

100

CHAPTER 4 HUMAN POSE CLASSIFICATION

Keras Layers
Model : APl
Il fl
e
Browser Node.js
WebGL TF CPU/
= TF GPU/
TF TPU

Figure 4-1. Overview of TensorFlow.js

You can create/build models legitimately in a browser. In addition,
you can import existing previously prepared models from Python and
retrain them also. If you are already working under JS stack with Not only
SQL (NoSQL) and JavaScript Object Notation (JSON), a use case that
you should consider is utilizing TensorFlow.js to builds models using a
browser. TensorFlow.js incudes Keras API, a simple software tool used to
build AI/ML learning models. It likewise incorporates a lower-level API,
previously called deeplearn.js, which can be used for direct variable-based
math and programmed separation. The Ops API supports eager execution.
Underneath everything, TensorFlow.js is fueled by WebGL, a JS API for
delivering 2D and 3D illustrations inside any Internet browser without the
plug-in modules.

101

CHAPTER 4 HUMAN POSE CLASSIFICATION

Note TensorFlow eager execution is an imperative programming
environment that evaluates operations immediately, without building
graphs. Instead, operations return concrete values instead of
constructing a computational graph to run later. This makes it easy
to get started with TensorFlow and debug models. TF CPU (central
processing unit), TF GPU (graphical processing unit), and TF TPU
(tensor processing unit) are the distribution strategies wherein
models can be executed on the respective devices.

If there is limited information for the neural network learning
process, tools such as Tensorflow are computationally efficient for better
realization. Suppose there is a requirement for large data sets processing,
then the Compute Unified Device Architecture (CUDA) systems such as
NVIDIA GPUs/Google TPUs or Field Programmable Gate Arrays (FPGAs)
are very much required. Basically, Tensorflow tools are based on
JavaScript (JS) programming execution. It will support GPU for efficient
data processing through WebGL API which is better than CUDA systems.

TensorFlow.js is a library for creating and preparing Al models in JS
and sending them to a program or on Node.js. You can utilize existing
models, convert Python TensorFlow models, use move figuring out how to
retrain existing models with your information, and create models without
any preparation. The TensorFlow.js Node.js condition underpins utilizing
an introduced work of Python/C TensorFlow as a back end, which may
utilize the machine’s accessible equipment increasing speed, for instance,
CUDA. There is likewise a JS-based back end for Node.js. However, its
capacities are restricted. TensorFlow.js has a few back closures with
various attributes. The WebGL back end provides GPU uphold utilizing
WebGL surfaces for capacity and WebGL shaders for execution, and it can
be up to 100x quicker than the direct CPU back end. WebGL does not need
CUDA, so it can exploit whatever GPU is available.

102

CHAPTER 4 HUMAN POSE CLASSIFICATION

The WebAssembly (WASM) TensorFlow.js back end for the program
utilizes the XNNPACK library for upgraded CPU execution of neural
organization administrators. The WASM back end is commonly a lot
quicker (10x to 30x) than the JS CPU back end, but it usually is slower than
the WebGL back end (aside from tiny models). Your mileage may vary, so
test both the WASM and WebGL back closures for your models on your
equipment.

Example: Basic usage of TensorFlow.js, consider a linear regression
problem with salary and experience attributes relationship, as shown in
Figure 4-2.

140000
120000 e]

100000 P

Salary(UsD)
-
8 8

e
&
L]
[]

0 2 4 6 8 10 12

Years of Experience

Figure 4-2. Linear regression problem (years of experience vs. salary)

We can infer from Figure 4-2 the y value for a particular x value even
if we do not have the exact data. In ML, we can train a model based on
the input data, and we do this in a browser with the help of JS features.
Figure 4-3 shows the trend line and the relationship between x and y.

103

CHAPTER 4 HUMAN POSE CLASSIFICATION

f

HENIEiErEEE g em
1
¥

e —
el
o
o o susses i
s ey TR
auzen o =
'y e
2 o .
u
=
* raam
a
*
=
x
5 "
o [P
n
.
n
= TR 1
= L] L "
h 1 - ~ i
W £ noehereiosexch cH|lm B CCaAd @omw S, O

Figure 4-3. Relationship between x and y (years of experience vs.
salary)

Listings 4-1a and 4-1b provide the corresponding code using
TensorFlow.js to illustrate the preceding regression problem. The main file
includes the TensorFlow.js and call to the corresponding script file.

Listing 4-1a. TF_JS_1.html

<html>
<head>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/
tfjs@2.0.0/dist/tf.min.js">
</script>
</head>
<body>
<script src="TF_JS 1.js"></script>
<div id="Predicted Y Value"></div>
</body>
</html>

104

CHAPTER 4 HUMAN POSE CLASSIFICATION
Listing 4-1b. TF_JS_1.js

async function learnLinear() {
const model= tf.sequential();
model.add(tf.layers.dense({units: 1,inputShape: [1]}));
model.compile({
loss: 'meanSquaredError’,
optimizer: 'sgd’
s

const

xs=tf.tensor2d([(1.1,1.3,1.5,2,2.2,2.9,3,3.2,3.2,3.7,3.9,4,4,4.
1,4.5,4.9,5.1,5.3,5.9,6,6.8,7.1,7.9,8.2,8.7,9,9.5,9.6,10.3,10.5],([30
(1]) i

const
ys=tf.tensor2d([39343,46205,37731,43525,39891,56642,60150,54445,¢6444
5,57189,63218,55794,56957,57081,61111,67938,66029,83088,81363,93940,
91738,98273,101302,113812,109431,105582,116969,112635,122391,121872]
 [30,1]):

await model.fit(xs,ys,{epochs: 400});
document.getElementById('Predicted Y Value').
innerText=model.predict(tf.tensor2d([11],[1,1]));

}

learnlLinear();

Figure 4-4 shows the screenshot (output) of the regression expression.

105

CHAPTER 4 HUMAN POSE CLASSIFICATION

I EDRfs e FE N ER ¢ o Wi Bl -

="hEtpasfodn, dadelive. net/eonE tansorflow/ tE 1832, 0. 0/ diat/ sl min, 30

stsnapes [1100):

) - innerTextamade] predict (41, tenaar2dq[17], L1, 1)}

frr—— e — Windicmn (£8 "

B £ e tere o seacet o Hl- @ &€ o € A = womwd o O

Figure 4-4. Screenshot of the source code and the corresponding
output related to the regression problem

Changing Flat File Data into TensorFlow.js
Format

Consider the iris dataset, which consists of data items with 15 samples
(rows) related to various types of flowers. The iris dataset is of the JSON
format, as shown in Figure 4-5. To convert the data (i.e., a flat file(Array)
into TensorFlow.js format), the tf.tensor2D() function helps in creating
data that TensorFlow.js can understand. The function 10adJSON() in the
setup() function will read the iris.json data into the model of the browser
application. The browser graphical user interface (GUI) can be customized
to interact with the user to the inputs such as the epochs and other
parameter values.

Basically, the JSON file contains the attribute-value pair for various
instances of the iris flowers. Listing 4-2a is the main file that invokes the
corresponding script file consisting of operational functionalities given in
Listing 4-2b.

106

CHAPTER 4 HUMAN POSE CLASSIFICATION

The function setup() in the script file is responsible for setting the size
of the canvas window for user interactive operations, loading the JSON
data file for processing, and providing the user interactive buttons to start
the model.

Loading the JSON data file contents into the user-defined temporary
variables is done by the function loaddata(). The temporary data held in
the user-defined variable is converted into the tensor data structures by
the function convertToTensor ().

After the neural network learning process is completed (i.e. after the
execution of trainModel() and nn_model() functions) the model data
is stored in the tensors data structure. The model gets learned with the
corresponding data present in the tensors that is executed by the neural
network configuration with the help of trainModel () and nn_model()
functions.

o et]

{"sepalLength”:
{"sepalLength”:

“sepalWidth™:

S 5, "petalLength”:
» "sepalWidth™:

.08, “petaliLength”™:

“petalWidth”:

v “species”: “"setosa”"},
» “petalwidth®:

"species”: “"setosa"},

{"sepalLength”: "sepalWidth": 2, "petalLength”: » “petalwidth”: » "species”: “setosa"},
{"sepalLength”: 1, “petalLength”: » “species”: "setosa”}
{"sepalLength”: » "sepalwWidth™: 3.6, "petallLength”: » “petalwWidth™: "species”:

{"sepalLength”:
{"sepalLength”:
{"sepalLength”:
{"sepalLength”:

» "sepalWidth™:
» “sepalwWidth®:
@, "sepalwidth®:
4, “"sepalWidth":

9, "petalLength”:
4, "petalLength”:
4, "petaliLength™:
.9, "petalLength”:

» "petalWidth”:
, "petalWwidth”:
5, “petalWidth™:
4, "petalwidth”:

“species”:
“species”:
“species”:
“species”:

1 4
9 4
7 3
6, "sepalwWidth”: 5, “petalwidth®:
) 4
4 7
6 4

{"sepalLength”: 9, "sepalWidth™: 1, “petaliLength”: 5, “petalwWwidth®: » “species”™:
{"sepalLength”: 5.4, “"sepalWidth": 3.7, “petallength”: 1.5, "petalwWidth": “species”:
{"sepalLength”: “sepalWidth™: 3.4, "petalLength”: "petalwWidth": » "species”: “setosa"},
{"sepalLength”: 8, "sepalwidth™: “petalLength™: 1.4, “petalWidth": “species”: “"setosa"}
{"sepalLength”: 3, "sepalwidth™: 3.8, “"petaliLength®: 1.1, “petalwWidth”: “species”: “"setosa"},

{"sepalLength”: 8, "sepalWidth™: 4.8, "petallength”: 2, “petalWidth”: “species”: “setosa"}

VBNV VVMVMOWMALBLBEVBAVBVMVEDREBWN
o

WOW W W W W W W OB B W W W W W W W W W W W W W

o

el I e e Tl
o

CoOQoOoOoOoOoOoOOoOoOoOoOoOoOoOoOooOoCoOoOeEe®

I T X g i N]

{"sepalLength”: 7, “sepalwidth®: 4.4, “petalLength”: 5, “petalwWidth®: » “species”: “setosa®}
{"sepalLength™: 5.4, "sepalWidth": 3.9, "petalLength”: 1.3, “petalwWidth”: “species”: “"setosa"}
{"sepalLength”: 1, "sepalwidth": 5, "petalLength”: 4, "petalwidth”: , "species”: “"setosa"}
{"sepalLength”: 7, "sepalwidth™: 8, "petallLength”: 7, "petalwidth": » "species”: “setosa”},
{"sepalLength”: 1, “"sepalWidth®: 3.8, “"petalLength”: 5, “petalWwidth®: » "species™: “"setosa"},
{"sepalLength”: 5.4, “"sepalWidth": 3.4, "petallLength”: 7, "petalWidth™: » "species”: “"setosa"},
{"sepalLength®: 1, “sepalWidth®: 7, “petaliLength®: 5, “petalwWidth®: » "species”: “setosa"},
{"sepalLength”: 4.6, "sepalWidth™: 3.6, "petalLength”: 1.0, “petalWidth”: "species”: “"setosa"},
{"sepalLength”: 1, "sepalwidth”: 3, “petaliLength”: 7, “petalwidth™: , “species”: "setosa”},

Figure 4-5. Iris dataset in the JSON format

Note You can download the iris.json dataset from https://www.
kaggle.com/rtatman/iris-dataset-json-versio.

107

https://www.kaggle.com/rtatman/iris-dataset-json-versio
https://www.kaggle.com/rtatman/iris-dataset-json-versio

CHAPTER 4 HUMAN POSE CLASSIFICATION

Listing 4-2a. TensorFlow.js. index.html function setup() to Load
the .json Data

<!DOCTYPE html>

<html>

<head>
<title>Iris Dataset Classification</title>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/
tfjs@1.0.0/dist/tf.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/
tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/p5@1.1.9/1ib/
p5.js"></script>
<script src="script10.js"></script>

</head>

<body>

</body>

</html>

Listing 4-2b. scriptl0.js

let input, button

let IRIS NUM CLASSES =3

let nn_model;

let train_x;

let train_y;

let epoch val;

function setup()

{
createCanvas(710, 400);
// Loading Data
loadJSON('iris.json',loadData)

108

CHAPTER 4 HUMAN POSE CLASSIFICATION

// GUI Form Elements
£il11(0);
textSize(30)
text('Train Model',10,50)
textSize(18)
text('Train Epochs:',10,90)
input = createInput();
input.position(140, 80);
button = createButton('Train Model From Scratch');
button.position(20,110, 200);
let col = color(255,127,80)
button.style('background-color', col);
button.size(200,40)
button.mousePressed(greet);
}
//The functions loaddata() and converttoTensor()to //convert
the data into tensorflow objects(tensor2D() //objects):

function loadData(data)
{

const values = data.map(item => ({
a: item.sepallength,
b: item.sepalWidth,
c: item.petallength,
d: item.petalWidth,
label: item.species

)

const dataset = values.filter(item => (

item.a != null && item.b != null && item.c != null &&
item.d != null && item.label != null

));

109

CHAPTER 4 HUMAN POSE CLASSIFICATION

const {inputs, labels} = convertToTensor(dataset);

train x = inputs
train_y = labels

console.log(train x.shape[0])

}

function convertToTensor(dataset)

{

return tf.tidy(() => {

110

tf.util.shuffle(dataset);

const inputs = dataset.map(item => [item.a, item.b, item.c,
item.d])

const labels=[];

for(i=0;i<dataset.length;i++)

{
if(dataset[i].label == 'setosa')
labels.push(0)
else if(dataset[i].label == 'versicolor")
labels.push(1)
else if(dataset[i].label == 'virginica")
labels.push(2)
}

const inputTensor = tf.tensor2d(inputs, [inputs.length, 4]);
const labelTensor = tf.oneHot(tf.tensorid(labels).toInt(),
IRIS NUM_CLASSES);
const inputMax = inputTensor.max();
const inputMin = inputTensor.min();
const normalizedInputs = inputTensor.sub(inputMin).
div(inputMax.sub(inputMin));
return {

inputs: normalizedInputs,

labels: labelTensor,

CHAPTER 4 HUMAN POSE CLASSIFICATION

// Return the min/max bounds so we can use them //later.
inputMax,
inputMin,
}
1
}

//Function iris nn_model() to invoke the //createmodel()and
train the neural network model
function iris nn_model()

{
epoch val = int(input.value())
if(epoch val»>0)
{
nn_model = createModel()
tfvis.show.modelSummary({name: 'Model Summary'},
nn_model);
if(train_x.shape[0] >0 && train_y.shape[0] >0)
trainModel(nn_model)
}
}

// Function createModel() tf.sequential(),adding //input layers

through tf.layers.dense and //trainModel() with the model.fit()

methods

function createModel()

{
const model = tf.sequential();
model.add(tf.layers.dense({inputShape: [4], units: 50,
useBias: true, activation:'relu'}));
model.add(tf.layers.dense({units: 20, activation: 'relu'}));

111

CHAPTER 4 HUMAN POSE CLASSIFICATION

//model.add(tf.layers.dense({units: 10, activation: 'relu'}));
model.add(tf.layers.dense({units: 3, activation: 'softmax'}));
return model;

}

async function trainModel(model)
{
model.compile({
optimizer: tf.train.adam(),
loss: tf.losses.softmaxCrossEntropy,
metrics: ['accuracy'],
D;
const batchSize = 32;
const epochs = epoch val;
const validationSplit =0.3;
return await model.fit(train x, train y, {
batchSize,
epochs,
validationSplit,
shuffle: true,
callbacks: tfvis.show.fitCallbacks(
{ name: 'Training Performance' },
['loss', 'val loss','acc','val acc'],
{ height: 200, callbacks: ['onEpochEnd'] })
}s

Figure 4-6 shows the output related to the training process and the
epoch accuracy using the TensorFlow.js visualization.

112

CHAPTER 4 HUMAN POSE CLASSIFICATION

- BT A0
prove = » & i ox
Train Model ® ® a
Visor C
Train Epochs: 140 e metwork XL HitoReuest:
pr—. Ot Shape BOfParama Trainates xt onky .

-

»

C P O Fl- B & € a6 A A wome d o, O

Figure 4-6. Screenshot(output) for the input read from the JSON file

Artificial Neural Network Model
in the Browser Using TensorFlow.js

1. Load or prepare the data.

2. Setyour neural network structure.

3. Add configuration information to the neural network.
4. Train your neural organization.

5. Utilize the prepared model to make an order.

6. Accomplish something (classification/predicting)
with the outcomes obtained.

The next section provides a brief description of a simple neural
network and then covers the intricacies of developing an ANN through
TensorFlow.js programming principles.

113

CHAPTER 4 HUMAN POSE CLASSIFICATION

Trivial Neural Network

Consider the neural network organization consisting of one hidden layer
for the function y(output)=x’ (inverse of x) with four neurons in the hidden
layer, two neurons in the input layer, and one neuron in the output layer,
where x is the set of inputs (see Figure 4-7).

Hidden Layer

\‘—

Output Layer

Input Layer

Figure 4-7. Basic structure of an ANN

Building neural structures is typically done by stacking layers.
TensorFlow.js gives an API to stack various sorts of layers. The number of
various parameters to be considered for configuration is more than you
anticipate. One reason is that this model incorporates weight and bias values.
For the time being, you can consider the inclinations from one layer to
another through the parameters that encourage you to improve models. The
errors continue to be lessened all through the process of training; it implies
that our model is getting learned.

114

CHAPTER 4 HUMAN POSE CLASSIFICATION

Example 1: Neural Network Model
in TensorFlow.js

Listing 4-3a is in the main index file, and Listing 4-3b is the script file that
includes the data structures to hold the data in the tensors, setup, and
configuration of the neural network model to realize the functionality of
the inverse operation.

Listing 4-3a. Demol.html (Main File)

<!DOCTYPE html>
<html>
<head>
<title>A simple Neural Network model </title>
<!-- Import TensorFlow.js -->
<script src="https://cdn.jsdelivr.net/npm/@tensorflow/
tfjs@1.0.0/dist/tf.min.js"></script>
<!-- Import the main script file -->
<script src="script.js"></script>
</head>
<body>
<h2> Neural Network to demonstrate y=x' (Y is equal to inverse
of X)
</body>
</html>

Listing 4-3b. Script.js (Script File)

//Step 1:load data, xs=Input and ys=Output
const xs=tf.tensor2d([[0,0],[0.5,0.5],[1,1]]);
const ys=tf.tensor2d([[1],[0.5],[0]]);

//Step 2: Set your neural network structure
const model =tf.sequential();

115

CHAPTER 4 HUMAN POSE CLASSIFICATION

const confighidden={
inputShape:[2],
units:4,
activation:'sigmoid’

}

const configoutput={
units:1,
activation:'sigmoid’

}

const hidden =tf.layers.dense(confighidden);
const output=tf.layers.dense(configoutput);

model.add(hidden);
model.add(output);

//Step 3: add configuration information
const sgdopt=tf.train.sgd(0.1);

const config={
optimizer:sgdopt,
loss: 'meanSquaredError'
}
//Step 4: Train your neural organization
model.compile(config);

async function train()

{

for(let i=0;i<5000;i++) {
const response=await model.fit(xs,ys);
console.log(response.history.loss[0]);

b}

116

CHAPTER 4 HUMAN POSE CLASSIFICATION

Step 5 and 6: Utilize the results (prediction)
train().then(() => {
let outputs=model.predict(xs);
outputs.print();
console.log('training complete');

1

Figure 4-8 shows the browser console’s output for the preceding code.

® 4+ - o X

B AfermbenAltreview, UpcrsonuChapterd, b/t b »0
=8 . nach e " ' 9 i ox
Neural Network to demonstrate y=x' (Y is equal to inverse of X) 5 o = vl efoull hevels ™ &
T
L T
M| £ ypenoreiosewa ol 8% C= €@ wame s 00 O

Figure 4-8. Screenshot (output) for the y=xthrough ANN using
TensorFlow.js

Example 2: A Simple ANN to Realize the “Not
AND” (NAND) Boolean Operation

Not AND (NAND) Boolean operation rules are simple: Given two Boolean
values (true/false), if only both are true, then return false; otherwise,
return true. The neural network to realize this operation based on the
input values can be demonstrated in applying a sequential model with the
TensorFlow.js script library.

117

CHAPTER 4 HUMAN POSE CLASSIFICATION

Figure 4-9 shows the basic logical NAND operation, and its
corresponding functionality is shown in the truth table.

XU
Xi |
Inputs Outputs
Xo X3 Y=NOT (XoAND X;)
0 0 1
0 1 1
1 0 !
1 1 0

Figure 4-9. Basic logical NAND gate and its truth table

The training data for the NAND Boolean operation realization is by using
two arrays, one for the inputs (X0 and X1) and the other for outputs (Y). The
two arrays are the tensors that can be used in the neural network structure:

//Step 1: Load or prepare the data
const xs=tf.tensor2d([[o0,0],[0,1],[1,0],[1,1]],[4,2]);
const ys=tf.oneHot(tf.tensor1ad([1,1,1,0]).toInt(),2);

So, the shape of the input array is [4,2] because there is an array of
4 values and each array has 2 values. It would be better mentioning the
arrays (input and output) with the appropriate TensorFlow.js functions.

Once the inputs and outputs are defined, the neural system can be
structured in the form of layers. As the data moves forward in one direction
from the input layer to the output layer, we can consider a sequential model
for the neural system structure, as given in the previous example. The
input consisting of X0 and X1 is passed on to the next layer (hidden), which

118

CHAPTER 4 HUMAN POSE CLASSIFICATION

consists of 5 neurons. They are then passed to the output layer consisting
of 2 neurons, which shows us the certainty percentage (a value between 1
and 0) of the related outputs (true or false):

//Step 2: Set up the NN structure
const model =tf.sequential();

const confighidden={
inputShape:[2],
units:5,
activation:'sigmoid'

}

const configoutput={
units:2,
activation:'sigmoid’

}

const hidden =tf.layers.dense(confighidden);
const output=tf.layers.dense(configoutput);

model.add(hidden);
model.add(output);

The neural network model can be trained with the optimizer function
Adam along with the loss function of categoricalCrossentropy. This will
enable the model to train by correlating the given input values with the
corresponding output values:

//Step 3: Add configuration parameters to the NN //structure
const admopt=tf.train.adam(0.1);

const config={
optimizer:admopt,
loss:'categoricalCrossentropy' }
//Step 4: Train the NN organization
model.compile(config);

119

CHAPTER 4 HUMAN POSE CLASSIFICATION

The training is performed by the . fit() function of the model object.
This method receives the XS and YS training data and the configuration
object. The config includes epochs. The . fit() method returns a promise
function when the model gets to train. The output data is retrieved by
calling the async call to the training method:

async function train()
{
for(let i=0;i<200;i++) {
const response=await model.fit(xs,ys);
console.log(response.history.loss[0]);
b}
//Steps 5 and 6: Collect the results
train().then(() => {
let outputs=model.predict(xs);
outputs.print();
console.log('training complete');

1

The output:

Tensor
([0, 1],
[0.0004133, 0.9995866],
[0.0004822 , 0.9995178],
[0.9984748, 0.0015252]]

In this example, for the inputs of [0,0],{0,1] and [1,0], the predicted
outputs are [0, 1], [0.0004153, 0.9995866] and [0.0004822 , 0.9995178]
implies that 0.0% certainty of FALSE and a 99.9% certainty of TRUE;
whereas for the input [1,1], the output is [0.9984748, 0.0015252 implies 99%
FALSE and 0.0% TRUE.

120

CHAPTER 4 HUMAN POSE CLASSIFICATION

Figure 4-10 shows the output in the browser console for the preceding
code.

®x |+ - o x

Bs*»0
= 0 o . Y g o i x
Newral Network to demonsirate NAND Operation (Y ks equal n s BARED o
t0 Not of (X0 and X1)) PR
T
N
]
Bl | © npehoreiosearcr o & I-Li ¢ @ !Li “A.,.-_.@:_I;_‘:w (]

Figure 4-10. Screenshot (output) for the NAND Boolean operation
through ANN using TensorFlow.js

Human Pose Classification Using PoseNet

“PoseNet is a vision model” that can be used to gauge the posture of an
individual in a picture or video by assessing where key body joints are
located. See Figure 4-11 for model terminology.

PoseNet does not perceive who is in a picture/video. The estimation
is virtually assessing where human key body joints are located. PoseNet
can be used to assess either a single person’s posture or numerous
stances of people present in a picture/video. The estimation of PoseNet
can distinguish just a single individual in a picture/video and can also
recognize different people in a picture/video. The single-person posture
identifier is quicker and more straightforward, but requires just one subject
be present in the picture. The posture assessment occurs in two stages:

121

CHAPTER 4 HUMAN POSE CLASSIFICATION

1. Aninformation RGB picture is taken care of through
a convolutional neural system.

2. Posture estimation is utilized to interpret keypoint
positions and keypoint certainty scores from the
model’s output.

Terminology related to Posenet model

Pose —PoseNet will estimate the posture object that contains a rundown of keypoints and an
occurrence level certainty score for the identified individual in the picture/video.

Pose Confidence score — this decides the general trust in the assessment of a posture. It ranges
somewhere in the range of 0.0 and 1.0.

Keypoint — an aspect of an individual's represent that is assessed, for example, the nose, right ear,
left knee, right foot, and so forth. It contains both a position and a keypoint certainty score. PoseNet
as of now distinguishes 17 keypoints.

Keypoint Confidence Score — this decides the certainty that an expected keypoint position is exact.
It ranges somewhere in the range of 0.0 and 1.0

Keypoint Position — 2-Dimensional x and y facilitates in the first information picture where a
keypoint has been identified.

The key points detected are indexed by "ID and Part", with a confidence score
between 0.0 and 1.0, 1.0 being the highest.

1

nose
leftEye
rightEve
leftEar
rightEar
leftShoulder
rightShoulder
leftElbow
rightElbow
leftWrist
rightWrist
leftHip
rightHip
leftknee
rightknee
leftAnkle
rightAnkie

L
(=]

Figure 4-11. Terminology related to PoseNet model

122

CHAPTER 4 HUMAN POSE CLASSIFICATION

Setting Up a PoseNet Project

Step 1: Including TensorFlow.js and PoseNet
Libraries in the HTML Program (Main File)

<html>
<body>
<!-- Load TensorFlow.js -->
<script src="https://unpkg.com/@tensorflow/tfjs"></script>
<!-- Load Posenet -->
<script src="https://unpkg.com/@tensorflow-models/posenet">
</script>

<script type="text/javascript">
posenet.load().then(function(net) {
// posenet model loaded
D;
</script>
</body>
</html>

Figure 4-12 shows the inclusion of library files in the main file and
the corresponding output in the browser. ml5.js, along with TensorFlow.
js, gives the PoseNet model. A ready-to-use model that has a previously
prepared convolutional neural network (CNN) inside it accepts a picture
as information and yields a keypoint heatmap and the corresponding

vectors.

123

CHAPTER 4 HUMAN POSE CLASSIFICATION

Loading PoseNet model in the = —
browser % 3

Figure 4-12. Output text rendered on the browser and its console
window as shown after the libraries are loaded in the browser

Step 2: Single-Person Pose Estimation Using
a Browser Webcam

There are two files for the complete code: Demo_3.html (the main web
page to display the output) and Demo_3script.js (the JS code to capture
user video). Demo_3.html is the main page to display the output with the
keypoints. Because of this, the libraries are added in this file:

<html>

<head>

<title> Demo on Posenet Model </title>

<script src="p5.min.js"></script>

<script src="p5.dom.min.js"></script>

<script src="ml5.min.js" type="text/javascript"></script>
</head>

<body>

<h2> Demo of PoseNet ML model in the browser</h2>
<p id="uservideo'> Loading Model....</p>

<script src="Demo_3script.js"> </script>

</body>

</html>

124

CHAPTER 4 HUMAN POSE CLASSIFICATION

The Demo3_script.js consists of three methods (functions):

1.

function setup(): The initial setup to capture
video using browser webcam and set the user video
at the said location by calling the PoseNet model.
This first function is executed and runs exactly once.

function setup() {
createCanvas(640,480);
webcam output=createCapture(VIDEO);
webcam_output.size=(width,height);

myposenet=ml5.poseNet(webcam output,function(){
select('#uservideo').html('User Video Loaded')});

myposenet.on('pose"’,function(results) {
poses=results; });
webcam output.hide();

}

createCanvas(width, height) of the p5.js library
is to create a window (box) in the browser to display
the output. The size of the window (canvas) is set
with width:640px and height:480px.

createCapture(VIDEO) is used to capture a webcam
feed video and return a p5 object, which is stored

in the user-defined variable webcam_output. The
webcam video is also the same height and width as
the canvas.

poseNet () method creates a new PoseNet model,
taken as input from the webcam_output, and loaded
into the main .html page to display the user video.

125

CHAPTER 4 HUMAN POSE CLASSIFICATION

126

poseNet.on() method is an event listener.
Whenever a change occurs in the user position/
video, a new image is given to the myposenet
model. The function poseNet, in turn, calls the
function(results) where the model gives the
keypoints and their corresponding scores. The
results are stored in the array named poses.

The function webcam_output.hide(), hides the
actual webcam output, and only the canvas with the
keypoints as output is displayed on the browser.

function draw (): The function is called and
repeats forever until the browser is closed. This
method in turn calls to identify the keypoints:

function draw() {
image(webcam output,0,0,width,height);
displayKeypoints();

The draw () function continuously runs to display
the image in the canvas. It has five parameters,

the webcam_output (video to be displayed), xy
coordinates of the upper-left corner in relation to
the canvas, and width, height to draw the video.
This function calls the displayKeypoints() to
display the recognized keypoints as dots (ellipses).

function displayKeypoints(): This method
displays the recognized keypoints from the array
poses. The identified points are displayed in the
form of circles to show that there is a keypoint:

CHAPTER 4 HUMAN POSE CLASSIFICATION

function displayKeypoints() {
for(let i=0;i<poses.length;i++) {
let pose=poses[i].pose;
for(let j=0;j<pose.keypoints.length;j++) {
let point=pose.keypoints[j];
fill(0,0,255);
noStroke();
ellipse(point.position.x,point.position.y,10,10);

}
}

Figure 4-13 shows the corresponding output.

ox + - o x

- »0
Demo of PoseNet ML model in the browser = O e Network ® o i x
- & v e tlevels ¥ &
Video Losded
T
B A
]
: scle What's New »®
& £ preresiosens oOHIRB®CDE A T

Figure 4-13. Single-person pose estimation using a browser webcam

Single-person pose estimation using a picture: The function setup()
consists of a createImg method to load the image (picture) from the local
hard disk onto the browser for recognizing the keypoints on the image.
Figure 4-14 shows the corresponding output.

127

CHAPTER 4 HUMAN POSE CLASSIFICATION

The following set of instructions in the functions are to be written in
Demo_4script.js. The main file Demo_4.html remains the same:

function setup() {
createCanvas (640, 360);
img= createImg('pics/pexels-derick-santos-2773934.jpg");
img.size(width, height);
myposenet = ml5.poseNet(img, function(){
select('#userpic').html('Image Loaded');
myposenet.singlePose(img);});
myposenet.on('pose’, function (results) {
poses = results; });

The function draw() contains the methods to display the keypoints
and also to display the skeleton (sketch related to the joining of keypoints)
based on the poses array:

function draw() {
if (poses.length > 0) {
image(img, 0, 0, width, height);
displayKeypoints(poses);
displaySkeleton(poses);

The logic of the displayKeypoints remains the same as discussed in
the previous example. The function displaySkeleton() is to draw the lines
on the current image. draw() does this in an infinite loop, hence showing a
continuous output to the user.

128

CHAPTER 4 HUMAN POSE CLASSIFICATION

@ e mcon slpssnon X | 4 s L
C O 17001550 T dbe * BT 0 ¢
Demo on detection of poses on a image

Image Losded

W £ e here tosearcn OFln @ € a6 A & A wAme A e O

Figure 4-14. Display of keypoints from a picture

PoseNet Model Confidence Values

The draw function executes and loops through every keypoint that is
part of the body, and the keypoints array poses contains the following
information:

"part": The name of the body part recognized.

"position.x" and "position.y": Values of a point
in the image.

"score": Confidence value indicates the accuracy of
detection.

Figure 4-15 shows the output on the browser console.

129

CHAPTER 4 HUMAN POSE CLASSIFICATION

D Do crdetetin e 1 M| - o =

C O TN 00— 4

Demo on detection of poses on a image
Gemage Lol

—)
e 8 ATIAAATAAI

o pecorrasg - P X

W O ypehere 1o search o @l n AT f “_:‘_u

= top = | @ | Finer Default levels ¥
* pose

© w[{-}1 ©
o

~ pose
w keypoints: Array(17)
{score: ©.9995953420666199, part: “nose
0.9996417 760848999, t: "leftEy -
0. 9848178029060364, “rightEye”, position: {_)})}
©.9968301653862, part: “leftEar”, position: {-})}
©.18722446262836456, part: “rightEar™, position: {.}}
9.9987556934135669, part: "lefrShoulder”, position: {.}}
©.9931760430335999, part: “rightShoulder”, position: {-}}
0.9838969707489014, part: “leftElbow™, positien: ¥
0.9765656590461731, part rightElbow™, position: {-}}
©.9872R4PEHI6257PI, part frwrist”, positien: {..}
09.9954144954681396, part: “rightWrist”, position: {.}}
©.9212104678153992, pa “lefrHip”, position: {(-)}}
©.9406507611274719, part: position: {.}}
©0.7029228806495667, part position: }
©.6278844475746155, part: “rightknes”, position: {.}}
©.15041154623031616, part: “lefrankle”, position: {.}}
©.16553087532520294, part: “rightankle”, position: {-)}

t Array(0)

leftankle: {x: 276.4B4375, y:1 425.44666708499023, confidence: 0.15041154623031616)
leftfar: {x: 379.7203989096004, y: 60.31516508284599, confidence: 0.9968301653862}
leftElbow: {x: 339.2102598075048, y: 194.6625243664717, confidence: 0.9838969707489014)
leftEye: {x: 249.01565165082846, y: 54.13476181773879, confidence: 0.99954177608408999}
{x: 296.09719557139374, y: 256.529567190%458, confidence: 0.9212104678153992)
{x: 279.6342077424464, y: 367.48183936403507, confidence: ©O.7029228806495667)
leftShoulder: {x: 319.60518701267057, y: 119.66010675560426, confidence: 0.998755693435669)
leftuwrist: {x: 341.74844663742687, y: 264.02671174463933, confidence: O.9872849583625793)
nose: {x: 236.8682611476608, y: 61.879797149122794, confidence: 0.9995953440666199)
rightankle: {x: 177.8671913072612, y: 277.9645239400585, confidence: 0.16553087532520294}
rightEar: (x: 227.0733773452729, y: 59.637168006822606, confidence: 0.18722446262836456)
rightElbow: {x: 165.7646121685185, y: 182.7947962353801, confidence: 0.9765656590461731)
rightEye: (x: 232.184a7322733917, 52.64560870492201, confidence: 0.9848178029060364)
222.11836013645222, y: 241.85371740984402, confidence: 0.9406507611274719)
{x: 209.04761360867445. v: 383.8799418250487. confidence: ©.6278844475746155)

TrYYTTTERYTTYYRROY

Consobke

Figure 4-15. Confidence values as seen from the poses in the browser
console

130

CHAPTER 4 HUMAN POSE CLASSIFICATION

We can draw a point if the detection accuracy is greater than a certain
value (e.g.,0.2 or 0.3, or 0.7 and above when you are concerned
about certain points). Figure 4-16 shows the scores related to the
drawn skeleton.

ofposeson X | NewTab x| +
27.0.0.1:5500/Demo_4.html

& 4l Elements Console Sources Network Performance Memory Application Security Lighthouse

F ® | top ¥ ©® | Filter Default levels ¥
PACTLCIUUWS (RD 337.21023900/3040, ¥: A94.00£3260004/4/, LUNTLIUCILE U.¥020709/0/409016)
» leftEye: {x: 249.01565165082846, y: 54.13476181773879, confidence: ©.9996417760848999}
b leftHip: {x: 296.89719557139374, y: 256.5295671985458, confidence: ©.9212184678153992}
b leftknee: (x: 279.6344077424464, y: 367.48183936403507, confidence: ©.7029228806495667)
» leftShoulder: {x: 319.6@5187@1267957, y: 119.66010675560426, confidence: ©.99B755693435669)
b leftWrist: {x: 341.74844663742687, y: 264.02671174463933, confidence: ©.9871849583625793}
b nose: {x: 236.8682611476688, y: 61.879797149122794, confidence: ©.9995953440666199}
» rightAnkle: {x: 177.8671913072612, y: 277.9645239400585, confidence: ©.16553087532520294}
» rightEar: {x: 227.0733773452729, y: 59.637168006322606, confidence: ©.18722446262836456}
» rightElbow: {x: 165.7646122685185, y: 182.7947962353801, confidence: ©.9765656590461731}
»rightEye: {x: 232.18447322733917, y: 52.64560870492201, confidence: 0.9848175029060364)
»rightHip: {x: 222.11836013645222, y: 241.85371740984402, confidence: ©.9406507611274719}
»rightknee: {x: 209.84761368867445, y: 383.8799418250487, confidence: 0.6278844475746155}
* rightShoulder: {x: 190.71157711988303, y: 112.34163697002921, confidence: 9.9931760430335999}
»rightWrist: {x: 225.58481435794346, y: 197.26737634015592, confidence: 8.9954144954681396}
score: 0.8006949617582209
* __proto__: Object
¥ skeleton: Array(l@)
v@: Array(2)
»9: {score: 0.9212104678153992, part: "leftHip™, position: {.}}
*1: {score: ©.998755693435669, part: “"leftShoulder”, position: {.}}
length:* 2

Array(@)

*2: (D) [{-}; (-}
*3: (2) [{-}, {-}
*a: (2) [{-}, (-}
»5: (2) [{-}, {-}
*6: (2) [{-}, {-}
»7: (2) [{-}, {-}
»8: (2) [{-}, {-}

{-}

: Array(0)

Figure 4-16. Scores of certain threshold values as seen in the poses
object on the browser console

131

CHAPTER 4 HUMAN POSE CLASSIFICATION

Note When storing data using the JSON format related to output of
the PoseNet model, steps are to be written in Demo_4script.js. The
main file Demo_4.html remains the same

To capture the keypoint onto a separate file in terms of JSON format,
you can use the p5 library functions as follows:
Step 1. Declare a global variable:

let writer;

Step 2. In the setup function, initialize the writer variable with the
createlriter along with the file name for storing the data in the JSON
format:

// writer object is initialized with createWriter function
writer=createWriter('data_keypoints.json"');

Step 3. In the displayKeypoints method, invoke the function print by
using the writer object:

writer.print("keypoint: "+keypoint.part+" x:"+keypoint.
position.x+" y:"+keypoint.position.y);

Step 4. Define a function for an event to occur such as mouseclick,
so that the event will trigger the print method to store the values of the
continuous draw() method:

function mouseClicked() {
writer.close();

}

The output is stored in a .json file, as shown in Figure 4-17.

132

CHAPTER 4 HUMAN POSE CLASSIFICATION

@ * x4+

Demo on detection of poses on a image

Byt Losded

Figure 4-17. Storage of key points data in the .json file

Summary

This chapter covered the importance of ANN and its strategies in ML
modeling for human pose estimation. Through theory and examples in
this chapter, you learned the basics of ANN and how to realize it in the
browser through TensorFlow.js programming. Such an understanding will
certainly help you to implement various ML models such as PoseNet in the
browser.

PoseNet model as presented in the chapter is an Machine Learning
model that estimates human pose key-points in real-time on a browser.
The corresponding implementation details are presented in this chapter.

This information will serve as the basis to perform complex data
analysis on the browser (as you will learn in the following chapters).

133

CHAPTER 4 HUMAN POSE CLASSIFICATION

References

134

https://medium.com/tensorflow/real-time-
human-pose-estimation-in-the-browser-with-
tensorflow-js-7ddobc881cd5

https://js.tensorflow.org/api/latest/
https://github.com/topics/neural-network

https://github.com/tensorflow/tfjs-models/
tree/master/posenet

https://codelabs.developers.google.com/
codelabs/neural-tensorflow-js/index.
html?index=..%2F..index#0

https://rubikscode.net/2019/03/25/image-
classification-with-tensorflow-js/

https://p5js.org/reference/#/p5/createlWriter

https://www.smashingmagazine.com/2019/09/machine-
learning-front-end-developers-tensorflowjs/

https://www.pexels.com/search/running/
https://www.pexels.com/search/jogging/

https://frl.nyu.edu/pose-estimation-in-
javascript-with-tensorflow-js/

https://www.irenealvarado.com/tensorflowjs-posenet

https://learn.ml5js.org/docs/#/reference/
neural-network

https://becominghuman.ai/machine-learning-
in-the-browser-using-tensorflow-js-
3e453ef2c68c

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://js.tensorflow.org/api/latest/
https://github.com/topics/neural-network
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://rubikscode.net/2019/03/25/image-classification-with-tensorflow-js/
https://rubikscode.net/2019/03/25/image-classification-with-tensorflow-js/
https://p5js.org/reference/#/p5/createWriter
https://www.smashingmagazine.com/2019/09/machine-learning-front-end-developers-tensorflowjs/
https://www.smashingmagazine.com/2019/09/machine-learning-front-end-developers-tensorflowjs/
https://www.pexels.com/search/running/
https://www.pexels.com/search/jogging/
https://frl.nyu.edu/pose-estimation-in-javascript-with-tensorflow-js/
https://frl.nyu.edu/pose-estimation-in-javascript-with-tensorflow-js/
https://www.irenealvarado.com/tensorflowjs-posenet
https://learn.ml5js.org/docs/#/reference/neural-network
https://learn.ml5js.org/docs/#/reference/neural-network
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c

CHAPTER 5

Gait Analysis

Gait analysis refers to the systematic study of animal locomotion, more
specifically the study of human motion, using the eye and the brain of
observers augmented by instrumentation to measure body movements,
body mechanics, and muscle activity. Gait analysis is used to assess and
treat people with medical conditions that affect their ability to walk.

Gait analysis envelopes the measurements (presentation and
investigation of quantifiable boundaries of walks) and interpretation from
the person’s gait patterns.

Gait Measurement Techniques

Gait analysis involves measurement, where measurable parameters are
introduced, analyzed, and interpreted to conclude the subject’s walking
styles (patterns). Table 5-1 describes pressure measurements, and
Table 5-2 identifies motion measurements.

Table 5-1. Using Force/Pressure Measurements

Type of Devices Types of Measurements
Foot switches cadence, timing
Glass plate views |Pressure distribution
Pressure plates |Pressure distribution .
Pressure insoles |Pressure distribution inside a shoe
Force plates Net force, centre of pressure

© Nagender Kumar Suryadevara 2021 135
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_5

https://doi.org/10.1007/978-1-4842-6843-8_5#DOI

CHAPTER5 GAIT ANALYSIS

Table 5-2. Motion Measurements

Device Type Measurement Type
Goniometers Range of motion
Electro goniometers Joint angle at successive instants

Observational gait analysis: Conductive Stride length, cadence, velocity, and

walkway using video cameras dynamic base

High-speed video Stop-motion measurements
Accelerometers Accelerations

Gyroscopes Change in orientation

3D marker systems All possible kinematic measures using

e Passive (reflectors) and active (lights)
e Markers on landmarks (joint angles by
“connecting the dots”)

Electromagnetic field All possible kinematic measures
Noisy and qualitative
Indicator of when the muscle is active
Surface Electromyography (SEMG) (most
common):
Cheap, easy
Difficult to interpret because of crosstalk
and noise
Fine-wire and needle EMG:
Penetrate skin
Isolate single muscle

136

CHAPTER 5 GAIT ANALYSIS

Note With regard to the observational gait analysis, the conductive
walkway using video camera technique is considered in this book

to analyze the individual’s gait patterns using a low-cost resource-
constrained computing device such as Raspberry Pi or mobile device.
For understanding, the programs can be run using a laptop browser.

Gait Cycle Measurement Parameters
and Terminology

Table 5-3 provides the basic terminology and the normal conditions
of the gait cycle measurements. To understand an individual’s walking
patterns through the artificial intelligence (AI) in a browser, the following

conditions will be considered for the normal gait patterns.

137

CHAPTER 5

GAIT ANALYSIS

Table 5-3. Basic Gait Cycle Terminiology

Gait Cycle Stride

(Synonym)

Definition The fundamental unit to describe the gait (i.e., the period
from the time that the heel contacts the ground to the
time that the same heel contacts the ground again)

Operational [The duration from heel strike of one foot to heel strike off

definition the same foot

Heel Strike

Normal gait cycle consist of two phases:

>

Toe Off Heel Strike

Stance phase

Heel strike on the ground = toe off
Contact period, midstance period, and propulsive period

Swing phase [Toe off 2 heel strike on the ground
Acceleration, mid-swing and deceleration

Step length |Average step length = 35.41cm

Stride length |Average stride length = 70.82cm

Cadence Average cadence = 111 steps/min

Velocity Average walking speed = 82m/min

The design and development of the graphical user interface (GUI)

through a browser in the following section will enable us to measure the

gait parameters of an individual.

Web User Interface for Monitoring Gait
Parameters

Figure 5-1 shows the initial output of the keypoints, skeleton, and the gait

parameter values using the PoseNet model with the help of the ml5.js

library.

138

CHAPTER 5 GAIT ANALYSIS

a4+ B »0
GAIT ANALYSIS

0:0

Parameters Value EnasleDisable
Dtz
Do
=

Etstance butepen Brre oot Dewer

Erutane fom) e

M O npehere o search orl- B ®CEC AN UL i |

Figure 5-1. Monitoring of gait parameters on the browser

The source code consists of the following two files:

index.html: The main page to show output, as
shown in Figure 5-1

video-script.js: Our JavaScript (JS) code running
using ml5 library functions

Figure 5-2 shows the corresponding source code screenshot in the
Visual Studio Code.

139

CHAPTER5 GAIT ANALYSIS

titlergait Amalysisc/title t. et LementBy1d{pos
Link rela"icon” types"image/sng” hee
s o lagefaloe, strideflaget
1dud, helght_pusd, helght_ca;

Figure 5-2. Screenshot of gait parameter monitoring source code

index.html

This is the front page to display the output (PoseNet skeleton and the
measures parameters). The library ml5.js is added using the script tag in
the head section of the index.html file:

<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js">
</script>

The front page of the user interface is defined in the body section of the
HTML file. Our own JS code is inside the body. Run the index.html file in
the Visual Studio Code to see the output (Listing 5-1).

Note The developed program takes the input from a recorded video
file. If the user wants to provide the input from the browser webcam,
the steps given in Chapter 4 apply to collecting user data.

140

CHAPTER 5 GAIT ANALYSIS
Listing 5-1. The body Section of the index.html File

<body>
<h1 id="heading">GAIT ANALYSIS</h1>
<div id="container-1"»
<canvas id="pose-canvas"></canvas>
<video id="pose-video" loop muted> </video>
</div>
<div id="container-2">
<div id="block-1">
<h2 id="time">0:0</h3>
</div>
<div id="block-2">
<label for="height">Height:</label>
<input type="text" id="height" name="height"
placeholder="Your height in cm..">

<button type="button" id="bttn3">Initialize
Parameters</button>
</div>
<table id="block-3">
<tr>
<th>Parameters</th>
<th>Value</th>
<th>Enable/Disable</th>
</tr>
<tr>
<td>Stride Length (cm)</td>
<td id="stride"></td>
<td><button id="bttn4" type="button">Detect
</button></td>
</tr>
<tr>

141

CHAPTER5 GAIT ANALYSIS

<td>Right Step Length (cm)</td>

<td id="rs-d"></td>

<td><button id="bttn5" type="button">Detect</button>
</td> </tr>

<tr>
<td>Left Step Length (cm)</td>
<td id="1s-d"></td>
<td><button id="bttn6" type="button">Detect</button></td>
</tr>
<tr>
<td>Distance between Knees (cm)</td>
<td id="knee-d"></td>
<td><button id="bttn7" type="button">Detect</button></td>
</tr>
<tr>
<td>Distance (cm)</td>
<td id="distance"></td>
<td><button id="bttn8"type="button">Start</button></td>
</tr>
</table>
</div>
<script src="video-script.js"> </script>
</body>

Figure 5-3 shows the initial output when the program is run on the
browser.

142

CHAPTER 5 GAIT ANALYSIS

GAIT ANALYSIS

0:0

Faramaters Value Cnable/Disable
Stride Langeh fooe)

Pight Seew Lemgth fem)
Lt St Lot o)

Dhvtance heteren Braes o

R RR R

8 £ npeneeoseanen o Fl - B e C R AN PR S

Figure 5-3. Initial output. The user has to enter the height value and
click appropriate buttons to view the gait parameters

The head section of the index.html consists of Cascading Style Sheets
(CSS) styles for the front page of the web interface (Listing 5-2).

Listing 5-2. The head Section of the index.html file

<head>
<style>
#heading{
text-align: center;
}
#pose-canvas{
position: absolute;
}
#pose-videof
display: none;
}
#container-1{
float: left;

143

CHAPTER 5

144

GAIT ANALYSIS

width: 50%;
padding: 5px;

}

#container-2{
float: right;
width: 40%;
padding: 5px;

}

#block-1{
text-align: center;
border-radius: 5px;
background-color: #f2f2f2;
padding: 1px;
margin: 8px 0;

}

#block-2{
border-radius: 5px;
background-color: #f2f2f2;
padding: 10px;

}

#block-2 input[type=text] {
width: 80%;
padding: 6px 20px;
margin: 8px 0;
display: inline-block;
border: 1px solid #ccc;
border-radius: 4px;
box-sizing: border-box;

}

#block-2 button{
width: 100%;
background-color: #4CAF50;

color: white;
padding: 10px 20px;
margin: 8px 0;
border: none;
border-radius: 4px;
cursor: pointer;

}
#block-2 label{

font-family: "Trebuchet MS",

sans-serif;
font-size: 14px;
}
#block-3{

font-family: "Trebuchet MS",

sans-serif;
width: 100%;
margin: 8px 0;
border-radius: 5px;
background-color: #f2f2f2;
padding: 10px;

}

#block-3 td, #gait-details th {
padding: 8px;

}

#block-3 td{
font-size: 14px;

}

#block-3 th{
padding-top: 12px;
padding-bottom: 12px;

CHAPTER 5 GAIT ANALYSIS

Arial, Helvetica,

Arial, Helvetica,

145

CHAPTER5 GAIT ANALYSIS

text-align: left;
}
</style>
<title>Gait Analysis</title>
<link rel="icon" type="image/png" href="img/uoh.png">
<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js">
</script>
</head>

The Video-script.js file that follows consists of these functions:

o async function main(): This function is executed and
runs only once. When the user interacts by clicking the
buttons to read the respective values from the video
file, the initial setup is done here. The width and height
of the video file are initialized. m15.poseNet () creates a
new PoseNet model, taking as input from the video file.

o function modelReady():Invokes the draw() function
to identify the keypoints after the video file is read.
video.play() function repeatedly plays the video file.

e function draw(): This function loop forever.invoke
the drawImage() function to display the video image
by image with the width, height, x-position, y-position,
and the video to display. The keypoints and the
skeleton to draw the dots and the lines on the current
image. As the draw() does this in an infinite loop, it
shows the user's continuous output, which makes it
look like a video.

e The measurements (for the keypoints) identified for
walking a certain distance are measured with the help
of the positions of the video’s keypoints.

146

CHAPTER 5 GAIT ANALYSIS

o function document.addEventListener(): Appendsan
event listener for events whose type attribute value is
type. The callback argument sets the callback that will
be invoked when the event is dispatched. The callback
function is the main() function.

async function main()

{

const initializeBttn = document.getElementById("bttn3");
const strideBttn = document.getElementById("bttn4");
const rightStepBttn = document.getElementById("bttn5");
const leftStepBttn = document.getElementById("bttn6");
const kneeBttn = document.getElementById("bttn7")

const distanceBttn = document.getElementById("bttn8");

initializeBttn.onclick = function(){
initializeParameters(initializeBttn)
}
// when the user clicks the buttons, appropriate //method is
invoked
strideBttn.onclick = function(){
toggleStridelength(strideBttn)

}

rightStepBttn.onclick = function(){
toggleRightStep(rightStepBttn)

}

leftStepBttn.onclick = function(){
togglelLeftStep(leftStepBttn)

147

CHAPTER5 GAIT ANALYSIS

kneeBttn.onclick = function(){
toggleKnee(kneeBttn)

}

distanceBttn.onclick = function(){
toggleDistance(distanceBttn)

}

const options = {
imageScaleFactor: 0.3,
outputStride: 16,
flipHorizontal: false,
minConfidence: 0.5,
maxPoseDetections: 2,
scoreThreshold: 0.5,
nmsRadius: 20,
detectionType: 'multiple’,
multiplier: 0.75,

}

video.src = "videos/video5.mp4"; // video File

video.width = conFigure video.width;
video.height= conFigure video.height;

canvas.width = conFigure video.width;
canvas.height = conFigure video.height;
console.log("Canvas initialized");

const poseNet = ml5.poseNet(video,options, modelReady);
poseNet.on('pose’,gotPoses);

148

CHAPTER 5 GAIT ANALYSIS

function modelReady()

{
console.log('Model Ready")
video.play();
draw();

}

function draw()

{

if (video.paused || video.ended) {
return;
}
ctx.drawImage(video,0, 0, video.width, video.height)
//For each pose, measure the distance between the //respective
keypoints of the body part.
if(pose)
{
for(i=0;i< pose.pose.keypoints.length;i++)
{
let x = pose.pose.keypoints[i].position.x;
let y = pose.pose.keypoints[i].position.y
drawPoint(x,y,3, 'red")
}
let skeleton = pose.skeleton
for(i=0;i<skeleton.length;i++)

{
let partA = skeleton[i][0];
let partB = skeleton[i][1];
drawLine(partA.position.x, partA.position.y, partB.
position.x, partB.position.y,'red")

}

149

CHAPTER5 GAIT ANALYSIS

let anklel = pose.pose.leftAnkle
let ankleR = pose.pose.rightAnkle
let kneel = pose.pose.leftKnee
let kneeR = pose.pose.rightKnee

if(dflag)
{
let end point = (anklel.y+ankleR.y)/2
let d = Math.abs(start _point - end point)
d = (height_cm / height px) * d
document.getElementById("distance").innerHTML = d.toFixed(2)

}

if(kflag == true)

{
let d = distance(kneel.x, kneel.y, kneeR.x,
kneeR.y)
d = (height_cm / height px) * d
document.getElementById("knee-d").innerHTML=
d.toFixed(2);

}

if(rsflag == true)

{
let d = ankleR.y - anklel.y
d = (height_cm / height_px) * d
if (d <= 1lr_step threshold)
{

document.getElementById("rs-d").innerHTML = 0;

}

150

document.getElementById("stride").innerHTML

CHAPTER 5 GAIT ANALYSIS

else

{
document.getElementById("rs-d").innerHTML = (d-1r step
threshold).toFixed(2);

ni=d;
}
}
if(lsflag == true)
{
let d = anklelL.y - ankleR.y
d = (height_cm / height px) * d
if (d <= 1r_step threshold)
{
document.getElementById("1ls-d").innerHTML = 0;
}
else
{

document.getElementById("1s-d").innerHTML = (d- 1lr step
threshold).toFixed(2);

n2=d;
}
}
if(strideflag == true)
{

if(n1>08% n2>0)
(n1+n2).

toFixed(2)

document.getElementById("stride").innerHTML

feet";

else
"Unable to detect

151

CHAPTER5 GAIT ANALYSIS

}

requestAnimationFrame(draw);

}
document.addEventListener("DOMContentLoaded", function(){

main();

};

Real-Time Data Visualization of the Gait
Parameters (Patterns) on the Browser

We have a function to draw detected points on the image. We saved all the
results from the PoseNet output in the poses array. Here, we loop through
every pose of the person in the image and get its keypoints:

function gotPoses(poses)

{
if(poses.length > 0)
{
pose = poses|[0]
}
}

We loop through every point that is a body part in the keypoints array,
which further has the following:

e Part: The name of the part that was detected
e Position: x and y values of a point on the image

e Score: Accuracy of detection

152

CHAPTER 5 GAIT ANALYSIS

We only draw a point with fill (red, green, blue), taking an RGB
intensity value ranging from 0 to 255 to decide the color of a point:

function drawPoint(x, y, radius, color)

{
ctx.beginPath();
ctx.arc(x, y, radius, 0, 2 * Math.PI);
ctx.fillStyle = color;
ctx.fill();
}
function drawLine(x1,y1,x2,y2,color)
{
ctx.beginPath();
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.strokeStyle = color;
ctx.lineWidth = 2;
ctx.stroke();
}

//Similarly, the function initializeParameters do //adjust the
confidence values

async function initializeParameters(button)
{

let eyel = pose.pose.leftEye

let eyeR = pose.pose.rightEye

let anklel = pose.pose.leftAnkle

let ankleR = pose.pose.rightAnkle

let count =0;

let timeFrame = 1000

let start = new Date().getTime();

let end = start;

153

CHAPTER5 GAIT ANALYSIS

while(end - start < timeFrame)

{
if(eyel.confidence >= cnfThreshold && eyeR.confidence
>= cnfThreshold && anklel.confidence >= cnfThreshold &&
ankleR.confidence>=cnfThreshold)
{
height px = height_px+ (distance(0, eyel.y, 0,
anklel.y) + distance(0, eyeR.y, 0, ankleR.y))/2
start_point = start point+ (anklel.y +ankleR.y)/2
1r step_threshold = 1r step threshold + distance(o,
ankleL.y, 0, ankleR.y)
count = count +1;
button.innerHTML = "Initializing"
}
end = new Date().getTime();
}

height cm = document.getElementById("height").value;

height px = (height px / count).toFixed(2);

1r step threshold = ((1lr_step threshold/count) * (height cm
/ height px)).toFixed(2)

start_point = (start_point / count).toFixed(2)

button.innerHTML = "Done"

}
function toggleDistance(button)
{

if (dflag)

{

dflag = false;
button.innerHTML= "Start";

154

CHAPTER 5

else
{
dflag = true;
timer()
button.innerHTML= "Stop";

}
}
function timer()
{

let sec=0,min=0;
var time = setInterval(function(){
if (!dflag) {

GAIT ANALYSIS

clearInterval(time);
}
document.getElementById('time").innerHTML=min+":"+sec;
Sec++;
if(sec == 60)
{
sec=0;
min++;
}
}, 1000);
}
function toggleKnee(button)
{
if (kflag)
{
kflag = false;
button.innerHTML= "Detect";
}

155

CHAPTER5 GAIT ANALYSIS

else

{
kflag = true;
button.innerHTML= "Pause";

}
}
function toggleStrideLength(button)
{
if (strideflag)
{
strideflag = false;
button.innerHTML= "Detect";
}
else {

if(lrsflag){
document.getElementById("stride").innerHTML= "Activate Right
Step Length"

}

else if(!1sflag){
document.getElementById("stride").innerHTML = "Activate Left
Step Length"

}
else{
strideflag = true;
button.innerHTML= "Pause";
}
}
}
function toggleRightStep(button)
{

if (rsflag)

156

CHAPTER 5 GAIT ANALYSIS

rsflag = false;
button.innerHTML= "Detect";
}

else

{
rsflag = true;
button.innerHTML= "Pause";

}

function toggleleftStep(button)
{
if (1sflag)
{
1sflag = false;
button.innerHTML= "Detect";
}

else

{
1sflag = true;
button.innerHTML= "Pause";

}

function distance(x1,y1,x2,y2)
{
let a = x2-x1;
let b = y2-y1;
let result = Math.sqrt(a*a + b*b);
return result;

Figure 5-4 shows the initial parameters screen before entering the
height of the person.

157

CHAPTER5 GAIT ANALYSIS

Height

Parameters Value Enable/Diiable

Stride Length jcm) Detect
Righ: Step Length jcm) Dt
Lt Step Length fom) Detect
Dstance between Wrwes (cm) Detec

Distance tcm) St

Figure 5-4. Initial output as seen on the browser. The user has to

provide the height manually (input) into the user interface and click
the Detect buttons to measure the parameters

Figure 5-5 shows the output after we enter the height of the user (in
centimeters), click the Initialize Parameters button, and then click the
Detect button for stride length.

GAIT ANALYSIS

0:0

W £ npeneeiosenc oHI A A CRC 4 A

T L et e

Figure 5-5. Stride length values display after the corresponding
button is clicked

158

CHAPTER 5 GAIT ANALYSIS

When the user clicks Right Step Length and Left Step Length buttons,
the values display as shown in Figure 5-6.

GAIT ANALYSIS

0:0

.........

cHI @S ECDC LA

wAme Aot O

Figure 5-6. Right step length and left step length values display after
the user clicks the buttons

The total distance covered while walking displays upon click of the
Distance button, as shown in Figure 5-7.

159

CHAPTER5 GAIT ANALYSIS

GAIT ANALYSIS

B £ hoenere tosearcy o Hl- @ &€ R € 4 dq P S|

Figure 5-7. Gait parameters displayed on the web browser

Determining Gait Patterns Using Threshold
Values

The threshold score in the options variable can be set to a certain value so that
the corresponding poses with the scores above the threshold values display:

const options = {
imageScaleFactor: 0.3,outputStride: 16,
flipHorizontal: false,minConfidence: 0.5,
maxPoseDetections: 2,scoreThreshold: 0.5,
nmsRadius: 20,detectionType: 'multiple’,
multiplier: 0.75,
}
while(end - start < timeFrame)
{
if(eyeL.confidence >= cnfThreshold && eyeR.confidence >=
cnfThreshold && anklel.confidence >= cnfThreshold && ankleR.
confidence>=cnfThreshold)

160

CHAPTER 5 GAIT ANALYSIS

{
height px = height px+ (distance(0, eyelL.y, 0, anklel.y) +
distance(0, eyeR.y, 0, ankleR.y))/2
start point = start point+ (anklel.y +ankleR.y)/2
1r step threshold = 1r step threshold + distance(o,
anklel.y, 0, ankleR.y)
count = count +1;

button.innerHTML = "Initializing

}
end = new Date().getTime();

}

height cm = document.getElementById("height").value;
height px = (height px / count).toFixed(2);

1r step threshold = ((1lr_step threshold/count) * (height cm /
height px)).toFixed(2)

start point = (start point / count).toFixed(2)
button.innerHTML = "Done"

Summary

Deep neural nets for stride and stance (gait) examination is a progressive
thought. These measurements help assess stride irregularities, which may
quantitatively indicate the proportion of medical condition seriousness
that is influencing walk and stance. The measurements will help assess
disturbances in gait, locomotion, balance, and risk for falls. The present
methodology using Al in the browser will help with the following:

o Determining need for assistive, adaptive, orthotic,
protective, supportive, or prosthetic devices or
equipment

o Assessment of difficulty in integrating sensory, motor,
and neural processes

161

CHAPTER5 GAIT ANALYSIS

o Establishing a diagnosis, prognosis, plan of care,
referral to other services

o Foot Switch Stride Analysis

e Define temporal and distance factors, classify patient’s
ability to walk

e Measure response to treatment programs, calculation of
velocity, stride length, cadence, single stance, initial and
terminal double stance, total stance, gait cycle duration.

Readers of this book will develop applications such as gait analysis
as described in this chapter by implementing the features learned from
Chapters 1 through 4. The main features and tools to be considered in the
gait analysis application’s design and development are JS, DOM, jQuery,
p5.js, ml5.js, and TensorFlow.js.

References

Levine D. F, J. Richards, and M. Whittle. Whittle's
Gait Analysis. Elsevier Health Sciences, 2012.

https://en.wikipedia.org/wiki/Gait_analysis

)

Humphrey, Ellen, and Jim Patton. ““Normal’
Gait - Part of Kinesiology.” Department of
Physical Therapy & Human Movement Sciences,

Northwestern University, Medical School.

https://www.medicine.missouri.edu/sites/
default/files/Normal-Gait-ilovepdf-
compressed.pdf

Normal Gait, Heikki Uustal, MD, Medical Director,
Prosthetic/Orthotic Team, JFK-Johnson Rehab
Institute, Edison, NJ

162

https://www.amazon.com/Whittles-Gait-Analysis-David-Levine/dp/070204265X
https://www.amazon.com/Whittles-Gait-Analysis-David-Levine/dp/070204265X
https://en.wikipedia.org/wiki/Gait_analysis
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf

CHAPTER 6

Future Possibilities
for Running Al
Methods in a Browser

This chapter covers two new JavaScript (JS) libraries that run with the help
of the TensorFlow.js framework: face-api.js and handpose. The evolving JS
libraries show a path to explore real-time responsive applications that can
run on browser and computational resource devices (electronic devices
with less computing capability).

Introduction

As discussed in the previous chapters, human posture assessment differs
from other basic computer vision undertakings in some significant ways.
Object identification finds objects inside of a picture. However, this is
ordinarily coarse grained, consisting of a jumping box incorporating

the object. Posture assessment goes further, foreseeing the exact area of
keypoints related to the human subject.

© Nagender Kumar Suryadevara 2021 163
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_6

https://doi.org/10.1007/978-1-4842-6843-8_6#DOI

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

Essentially, two-dimensional (2D) assessment gauges the area of
keypoints in 2D space comparative with a picture or video outline. The
model gauges an x and y coordinate for each keypoint of the human being.
Three-dimensional (3D) assessment attempts to change an object in a 2D
picture into a 3D object by adding a z coordinate to the forecast.

3D assessment enables us to anticipate the genuine spatial situating
of an individual or item. As you might expect, 3D assessment is currently
a testing issue for machine learning (ML) students, given the multifaceted
nature required to make datasets and calculations that consider an
assortment of variables for a picture’s or video’s experience scene or the
lighting conditions.

A qualification applies between recognizing one or various areas in
a picture or video. The 2D and 3D methodologies can be alluded to as
single-person and multiperson assessment. Single-person assessment
approaches distinguish and track one individual or item, whereas
multiperson assessment approaches recognize and track numerous
individuals or items.

We can plainly imagine the intensity of posture assessment by thinking
about its application in various aspects: from virtual game mentors and
artificial intelligence (AI)-fueled fitness coaches to following developments
on manufacturing plant floors to guaranteeing worker well-being. Current
PoseNet assessment may result in a deluge of robotized devices intended
to gauge human development accuracy.

The PoseNet assessment methods open up applications in the scope of
zones (for example, increased reality, liveliness, gaming, and mechanical
technology). This is not a thorough rundown, but it remembers a portion
of the essential ways for which present assessment is forming our future.

TensorFlow.js has empowered ML analysts to make their calculations
more available to other people. For instance, the Magenta.js library
(Roberts et al., 2018) gave in-program admittance to generative music
models created by the Magenta group and ported to the web with
TensorFlow.js. Magenta.js has expanded the permeability of their work

164

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

with their intended interest group (specifically, performers). This has
released a wide assortment of ML-fueled music applications worked by the
network. Examples include Latent Cycles Parviainen (2018a). and Neural
Drum Machine Parviainen (2018b). You can find these and more models at
https://magenta.tensorflow.org/demos.

A fundamental specialized commitment of TensorFlow.js is the
arrangement of methods used to repurpose web stage design application
programming interfaces (APIs) for superior numeric processing while at
the same time keeping up similarity with an enormous number of gadgets
and execution conditions.

We accept there are various chances to expand and upgrade
TensorFlow.js. Given the fast advancement of program improvement,
it appears likely that extra GPU programming models may open up.
Specifically, program developers see discussions to execute broadly
useful GPU programming APIs Apple (2017) W3C (2017) that will make
these sorts of toolboxes more performant and simpler to maintain. Future
work will zero in on improving execution, progress on gadget similarity
(especially cell phones), and expand equality with the Python TensorFlow
usage. We additionally observe a need to offer help for full AT work
processes, including information, yield, and change.

Additional Machine Learning Applications
with TensorFlow

The remaining sections discuss Al applications that can run on the
browser with the help of various JS libraries.

Face Recognition Using face-api.js

Face detection and facial recognition using ML with TensorFlow in the browser.
The face-api.js JS module executes convolutional neural networks (CNNs)

165

https://magenta.tensorflow.org/demos

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

to detect faces and recognize face marks (keypoints). The face-api.js uses
TensorFlow.js and is streamlined for the work area and portable web.

In addition to face detection and recognition, a few models are
available with face-api.js that enable facial expression recognition, age
assessment of an individual, and gender determination.

To begin with face-api.js, web developers include the most recent JS
library of face-api.js or install it using npm. The face-api.js is open-source
software accessible through the MIT license.

The visualization of face detection and face marks (keypoints) using
face-api.js can be viewed on the browser, as shown in Figure 6-1.

.=+

Deep Learning in Browser-Face Mask detection for loT/mOBILE

R =
Devices il

C R e oHIn @& € niii! N S

Figure 6-1. Visualizing the detection results by drawing the
bounding boxes into a canvas using the face-api.js library

The application has two files: index1.html (Listing 6-1) and main.js,
which you can download from https://justadudewhohacks.github.io/
face-api.js/docs/index.html.

166

https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://justadudewhohacks.github.io/face-api.js/docs/index.html

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

Listing 6-1. Index1.html

<!DOCTYPE html>
<html lang="en">
<head>
<meta charset="UTF-8" />
<meta name="viewport" content="width=device-width,
initial-scale=1.0" />
<title>AI in Browser-Face Mask Detection</title>
</head>
<body>
<h1>Deep Learning in Browser-Face Mask detection for IoT/
mOBILE Devices</h1>

<p 1id="GFG"></p>
<video id="video" height="320" width="240" autoplay true>
</video>
<script src="js/face-api.min.js"></script>
<script src="js/main.js"></script>
</body>
</html>

Hand Pose Estimation

Being able to see the shape and movement of hands can help to improve
the client experience over an assortment of innovative areas and stages.
For instance, it can shape the reason for gesture-based communication
comprehension and hand signal control and likewise empower the overlay
of advanced substance and data on the physical world’s head in increased
reality. While falling into place without any issues for individuals, robust
constant hand recognition is a distinctly testing computer vision task,
because hands regularly impede themselves or one another (for example,
finger/palm impediments and handshakes) and need high-difference
designs.

167

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

This engineering is like that utilized by us as of late distributed face
work ML pipeline and that others have utilized for present assessment.
Giving the precisely trimmed palm picture to the hand milestone model
diminishes the requirement for information enlargement (for example,
rotation, interpretation, and scaling) and rather permits the organization
to commit the vast majority of its ability to facilitate expectation precision.

The hand pose estimation method determines the joints (keypoints)
when the palm image or a video is given as input. Basically, the sign
language precision can be easily understood from the hand pose estimation.

Figure 6-2 shows the screenshot (output) after running an Al program

in the browser.

- ;
- = BE a2
= -
® @ -
8
a
S| © npehoreio searcr o mlii ¢ @ Li! ,bA.,c.oem';_’:wD

Figure 6-2. Hand pose estimation with the keypoints

We intend to broaden this innovation with a more stable and robust
following, extend the measure of hand signals. Novel applications can be
explored with the help of Hand pose estimation and we eager to see what
best can be resulted from the usage of the method.

Listings 6-2 and 6-3 provide the source code (index2.html and script.js)
for the hand pose estimation.

168

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

Listing 6-2. Index2.html

<!DOCTYPE ht
<html>
<head>

</head
<body>

ml>

<title>Hand Pose Detection</title>
<script src="https://cdn.jsdelivr.net/npm/@
tensorflow/tfjs-core@2.4.0/dist/tf-core.min.js">
</script>
<script src="https://cdn.jsdelivr.net/npm/@
tensorflow/tfjs-converter@2.4.0/dist/tf-converter.
min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@
tensorflow/tfjs-backend-webgl@2.4.0/dist/tf-
backend-webgl.min.js"></script>
<script src="https://cdn.jsdelivr.net/npm/@
tensorflow-models/handpose@0.0.6/dist/handpose.min.
js"></script>
<script src="script.js"></script>
<style>
#pose-canvas{

position: absolute;

top: 0;

left: o;

}

</style>
>

<div id="video-container">
<video id="pose-video" autoplay="true">
</video>
<canvas id="pose-canvas"></canvas>

169

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

</div>
</body>
</html>

Listing 6-3. script.js

const config ={
video:{ width: 640, height: 480, fps: 50}
};
function drawPoint(ctx, x, y, radius, color)
{
ctx.beginPath();
ctx.arc(x, y, radius, 0, 2 * Math.PI);
ctx.fillStyle = color;

ctx.fill();
}
function drawLine(ctx,x1,y1,x2,y2,color)
{
ctx.beginPath();
ctx.moveTo(x1, y1);
ctx.lineTo(x2, y2);
ctx.strokeStyle = color;
ctx.stroke();
}
function draw(ctx,part,radius,color)
{
let k=0;
for(k=0; k<part.length-1; k++)
{
const[x1,y1,z1] = part[k];
const[x2,y2,z2] = part[k+1];

170

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

drawPoint(ctx,x1,y1, radius,color);
drawLine(ctx,x1,y1,x2,y2,color);

}

const[x1,y1,z1] = part[k];
drawPoint(ctx,x1,y1, radius, 0, 2 * Math.PI);

}

async function estimateHands(video, model, ctx)

{
ctx.clearRect(0, 0, conFigure video.width, conFigure
video.height);
const predictions = await model.estimateHands(video);

if (predictions.length > 0)
{

for(let i=0; i<predictions.length;i++)
{
const thumb _finger = predictions[i].
annotations['thumb'];
const index finger = predictions[i].
annotations['indexFinger'];
const middle finger = predictions[i].
annotations['middleFinger'];
const ring finger = predictions[i].
annotations['ringFinger'];
const pinky finger = predictions[i].
annotations['pinky'];
const palm = predictions[i].annotations['palmBase’];

draw(ctx,thumb_finger,3, 'red");
draw(ctx,index finger,3, 'red");
draw(ctx,middle finger,3, 'red");

171

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

draw(ctx,ring finger,3, 'red");
draw(ctx,pinky finger,3, 'red");

let[x1,y1,z1] = palm[o0];
drawPoint(ctx,x1,y1, 3, 0, 2 * Math.PI);

let[x2,y2,z2] = thumb_finger[o];
drawLine(ctx,x1,y1,x2,y2, 'red");

[x2,y2,z2] = index finger[0];
drawLine(ctx,x1,y1,x2,y2, 'red");

[x2,y2,z2] = middle finger[o0];
drawLine(ctx,x1,y1,x2,y2, 'red");

[x2,y2,z2] = ring finger[0];
drawLine(ctx,x1,y1,x2,y2, 'red");

[x2,y2,z2] = pinky finger[0];
drawLine(ctx,x1,y1,x2,y2, 'red");

}

setTimeout (function(){
estimateHands(video, model, ctx);
}» 1000 / conFigure video.fps)

}

async function main()

{

const video = document.getElementById("pose-video");
const model = await handpose.load();
const canvas = document.getElementById("pose-canvas");

172

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

const ctx = canvas.getContext("2d");
estimateHands(video, model,ctx);
console.log("Starting predictions™)

}

async function init camera()
{
const constraints ={
audio: false,
video:{
width: conFigure video.width,
height: conFigure video.height,
frameRate: { max: conFigure video.fps }

}
};

const video
video.width
video.height= conFigure video.height;

document.getElementById("pose-video");
conFigure video.width;

navigator.mediaDevices.getUserMedia(constraints).then(stream => {
video.srcObject = stream;

main();
;s
}
function init canvas()
{
const canvas = document.getElementById("pose-canvas");
canvas.width = conFigure video.width;
canvas.height = conFigure video.height;
console.log("Canvas initialized");
}

173

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

document.addEventListener('DOMContentLoaded",function(){
init canvas();
init camera();

};

Following are the parameters for the handpose.load in the async
function:

Parameters for handpose.load()

handpose.load() takes a configuration object with the following
properties:

. maxContinuousChecks - How many framesto go without running the
bounding box detector. Defaults to infinity. Set to a lower value if you
want a safety net in case the mesh detector produces consistently
flawed predictions.

. detectionConfidence - Threshold for discarding a prediction. Defaults
to 0.8.

« iouThreshold - Afloat representing the threshold for deciding whether
boxes overlap too much in non-maximum suppression. Must be
between [0, 1]. Defaultsto 0.3.

. scoreThreshold - Athreshold for decidingwhento remove boxes based
on score in non-maximum suppression. Defaultsto 0.75.

Parameters for handpose.estimateHands{()

. input - The image to classify. Can be a tensor, DOM element image,
video, or canvas.

« flipHorizontal - Whether to flip/mirror the facial keypoints
horizontally. Should be true for videos that are flipped by default (e.g.
webcams).

174

CHAPTER 6 FUTURE POSSIBILITIES FOR RUNNING Al METHODS IN A BROWSER

Summary

TensorFlow.js enables web developers to prepare and run Al models
entirely in their browsers or resource-constrained devices. It is an great

way for JS developers to discover advances in the universe of AL. The best

thing is not normal for CoreML, which runs inside Apple’s environment.

TensorFlow.js can run on iOS, macOS§, Linux, Android, and any stage that

support a program.
I trust the libraries mentioned in this chapter motivate you to begin
building astonishing Al-fueled web applications.

References

https://justadudewhohacks.github.io/face-
api.js/docs/index.html

https://glitch.com/~face-api-js-for-
beginners

https://github.com/tensorflow/tfjs-models/
tree/master/handpose

https://blog.tensorflow.org/2020/03/face-
and-hand-tracking-in-browser-with-mediapipe-
and-tensorflowjs.html

A. Roberts, C. Hawthorne and I. Simon, “Magenta.js:
A JavaScript API for Augmenting Creativity with
Deep Learning.” 2018 Joint Workshop on Machine
Learning for Music (ICML).

175

https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://glitch.com/~face-api-js-for-beginners
https://glitch.com/~face-api-js-for-beginners
https://github.com/tensorflow/tfjs-models/tree/master/handpose
https://github.com/tensorflow/tfjs-models/tree/master/handpose
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html

Conclusion

Al is becoming ubiquitous, a part of our everyday lives, especially in
computer browsers and myriad electronic devices. Applying Al methods
through browser has many advantages. Running Al in the browser can
accelerate computing activities by executing them legitimately at the client
end itself. It can execute with the help of API methods at the client side
rather than via cloud computing methods.

It can likewise provide an Al app that can collect rich information from
customer mobile device sensors such as webcams, amplifiers, and GPS. It
tends to provide privacy by running browser-based Al information at the
customer end. Also, it brings AI close enough for the immense pool of web
developers who work in JS and other client-side dialects, structures, and
devices.

The browser-side programming languages and scripts help
demonstrate, prepare, execute, and represent Al, interactive learning, and
other Al models in the program. They would all be able to take advantage
of privately introduced designs preparing units and other Al-improved
equipment to speed model execution. In addition, many of them give
built-in and pretrained neural net models to speed improvement of
relapse, order, picture acknowledgment, and other Al-empowered tasks in
the browser.

Al in-browser applications are proliferating. Google has the most tools
to help web developers construct ML and DL applications for the browser
and to develop customer applications and gadgets.

Google expanding the TensorFlow framework, an intuitive
representation of neural networks written in TypeScript. This new
framework supports intelligent JS improvements of customer-side Al

© Nagender Kumar Suryadevara 2021 177
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8

https://doi.org/10.1007/978-1-4842-6843-8#DOI

CONCLUSION

applications in which models are assembled and prepared completely or
generally in the browser, with their information staying there. It likewise
permits pretrained Al models to be imported—or changed through
transfer learning—just for program-based inferencing. The system enables
designers to import models recently prepared disconnected in Python
with Keras or TensorFlow SavedModels and afterward use them for
inferencing or move learning in the program, utilizing WebGL quickening
for client-side GPU acceleration. The TensorFlow.js group is intending to
refresh it to help the back-end Node.js JS advancement system, as follows:

e Mobile device embedded Al system: Google officially
delivered Swift for TensorFlow and made this
open-source ML advancement structure accessible on
GitHub. The developed system by the Google can be
useful across multiple platforms.

o Updates to its mobile computer vision Al library: The
organization presented MobileNetV2, the most recent
age group of broadly useful, DL-fueled computer vision
neural organizations inserted in cell phones.

o Updates to its broadly useful, electronic
gadget-implanted Al structure: Google latest releases
include the Tensorflow lite, a lightweight framework
which converts the prepared ML model into an
versatile program to run on the edge devices.

The edge device such as Raspberry Pi can easily
execute the ML models efficiently.

178

Index

A, B
Amazon Web Services (AWS), 3
Application processing
interface (API)
features, 32
restrictions, 33
Application programming
interface (API),
24,100, 165
Artificial intelligence
(AI), 1,95
ML application, TensorFlow
face recognition, 165, 166
hand pose estimation,
167-170, 172
PoseNet assessment, 164
TensorFlow.js, 164, 165
3D assessment, 164
Artificial neural network
(ANN), 98
NAND Boolean operation, 117,
118,120, 121
PoseNet, 121
TensorFlow.js, 115-117
training process output, 113
trivial neural network, 114
async function, 174

© Nagender Kumar Suryadevara 2021

C

Cascading style sheets, CSS,
6, 13, 143
Closing tag, 10
Common Objects in Contest
(COCO), 69
Community Group, 32
Complete Unified Device
Architecture (CUDA), 102
Computer-based intelligence, 3
convertToTensor() function, 107
Convolutional neural networks
(CNNs), 165
Convolutional pose machines, 68

D

Deep learning (DL), 3, 67, 95
Deep neural nets, 161
Deep neural networks (DNNs), 98
Discovering HTML Elements, 24
displaySkeleton(), 128
Document Object Model

(DOM), 23
draw () function, 79, 126, 146
drawImage() function, 146
Dynamic HTML (DHTML), 13

179

N. K. Suryadevara, Beginning Machine Learning in the Browser,

https://doi.org/10.1007/978-1-4842-6843-8

https://doi.org/10.1007/978-1-4842-6843-8#DOI

INDEX

E

Embedded style sheets, 14
Event-driven process, 23
External style sheets, 16

F

Field programmable gate arrays
(FPGAs), 102

File Transfer Protocol (FTP), 4

fit() function, 120

function displayKeypoints(), 126

function document.
addEventListener(), 147

function draw (), 126, 128

function modelReady(), 146

function setup(), 127

G

Gait analysis

Al methodology, 161

definition, 135

Gait cycle measurement
parameters, 137

Gait measurement techniques,
135-137

real-time data visualization,
152, 153, 155-157, 160

threshold values, patters, 160, 161

web user interface, monitoring
Gait parameters, 138,
140-150, 152
Global Positioning System (GPS), 4

180

Graphical processing unit (GPU),
3, 33, 66, 165
Graphical user interface (GUI),
106, 138
Graphics functions, 49
object/array/loop, 53, 55
p5.js library, 51
script, 51, 53

H

High-resolution network (HRNet)
model, 70
HTML and CSS Programming
CSS, 13
DHTML, 13
embedded style sheets, 14, 16
external style sheets, 16, 17
inline style sheet, 13, 14
web page, 10

HTML interactive elements,

41, 43, 45
Human-machine interaction, 32
Human pose assessment, 66, 67
Human pose classification

estimation, browser, 96, 97
ML techniques
ANN, 99
neural networks, 98
TensorFlow.js, 100
Human pose estimation, 67
baselines, 69
CNN, 68
DeepPose, 67
HRNet, 70

iterative error feedback, 69
stacked hourglass network, 69
Hypertext Markup Language
(HTML), 1, 6
Hypertext Transfer Protocol
(HTTP), 4, 31

Inline style sheet, 13, 14

Integrated development
environment (IDE), 6

Intelli] IDEA, 8

Internet of Things (IoT), 2

Iterative error feedback, 69

J, K
JavaScript (JS), 163
attributes, 18
body section, 20, 21
event-driven programming, 22
head section, 19
including, 18
insert, 19
JavaScript (JS) library, 95, 102, 163
JavaScript Object Notation
(JSON), 101
jQuery library, 26, 27
JS libraries, 33

L

loaddata() function, 107
Local web server, 56

INDEX

Python, 56, 58
Visual Studio Code, 58, 60, 62

Machine learning (ML), 1, 56, 65,
95, 164
main() function, 147
Mean average precision (mAP), 69
ml5.posenet method, 70, 74
array of poses, 78
distance between poses, 87, 89
instructions, 81
invoke, 74
modify instructions, 85
multiple colors, 83
screenshot, 72, 73
single object, 79

N, O

NetBeans, 8

Neural network, 67, 97

Node Package Manager (NPM), 58

Not AND (NAND) Boolean
operation, 117,118

P, Q
Parent-child DOM elements,
45, 47, 49
p5.js library, 34
DOM objects, 36
DOM onEvent, 38, 39
graphical objects, 35, 36

181

INDEX

p5.js library (cont.)

HTML events, 41

HTML file, 34
poseNet() method, 92, 125
PoseNet, 121

browser webcam, 124-126, 128

input, 90

on() function, 92

output, 92

TensorFlow.js, 123, 124

values, 129, 131, 132
PoseNet model, 70, 76
poseNet.on() method, 75, 126
PoseNet vs. OpenPose, 66
PyCharm, 8

R

read.video.play() function, 146
Real-time poses, 75
Residual neural network (ResNet), 69

S

setup() function, 106, 107
showPoses() function, 76
Software developers, 2

Stacked hourglass network, 69, 94
State-of-the-art (SOTA), 67

T

TensorFlow.js, 95, 100
Al models, 102
create/build models, 101

182

definition, 100
flat file data, 106, 107
JSON format, 108-113
linear regression problem, 103
methods, 100
Ops AP, 101
regression expression, 105, 106
TF_JS_1.html, 104
WASM, 103
tf.tensor2D()function, 106
Three-dimensional (3D)
assessment, 164
trainModel() and nn_model()
functions, 107
Transmission Control Protocol
(TCP), 4
Two-dimensional (2D)
assessment, 164

U

Uniform Resource Locator
(URL), 6

V

video.hide() function, 73

W XY,Z

Web communication, 4, 5

Web development, building
blocks, 9

World Wide Web (WWW), 5

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Web Development
	Machine Learning Overview
	Web Communication
	Organizing the Web with HTML

	Web Development Using IDEs/Editors
	Building Blocks of Web Development
	HTML and CSS Programming
	Dynamic HTML
	Cascading Style Sheets
	Inline Style Sheets
	Embedded Style Sheets
	External Style Sheets

	JavaScript Basics
	Including the JavaScript
	Where to Insert JS Scripts
	JavaScript for an Event-Driven Process

	Document Object Model Manipulation
	Introduction to jQuery
	Summary
	References

	Chapter 2: Browser-Based Data Processing
	JavaScript Libraries and API for ML on the Web
	W3C WebML CG (Community Group)

	Manipulating HTML Elements Using JS Libraries
	p5.js
	Drawing Graphical Objects
	Manipulating DOM Objects
	DOM onEvent(mousePressed) Handling
	Multiple DOM Objects onEvent Handling
	HTML Interactive Elements
	Interaction with HTML and CSS Elements

	Hierarchical (Parent-Child) Interaction of DOM Elements
	Accessing DOM Parent-Child Elements Using Variables

	Graphics and Interactive Processing in the Browser Using p5.js
	Interactive Graphics Application
	Object Instance, Storage of Multiple Values, and Loop Through Object

	Getting Started with Machine Learning in the Browser Using ml5.js and p5.js
	Design, Develop, and Execute Programs Locally
	Method 1: Using Python – HTTP Server
	Method 2: Using Visual Studio Code Editor with Node.js Live Server

	Summary
	References

	Chapter 3: Human Pose Estimation in the Browser
	Human Pose at a Glance
	PoseNet vs. OpenPose

	Human Pose Estimation Using Neural Networks
	DeepPose: Human Pose Estimation via Deep Neural Networks
	Efficient Object Localization Using Convolutional Networks
	Convolutional Pose Machines
	Human Pose Estimation with Iterative Error Feedback
	Stacked Hourglass Networks for Human Pose Estimation
	Simple Baselines for Human Pose Estimation and Tracking
	Deep High-Resolution Representation Learning for Human Pose Estimation

	Using the ml5.js:posenet() Method
	Input, Output, and Data Structure of the PoseNet Model
	Input
	Output
	.on() Function
	Summary

	References

	Chapter 4: Human Pose Classification
	Need for Human Pose Estimation in the Browser
	ML Classification Techniques in the Browser
	ML Using TensorFlow.js
	Changing Flat File Data into TensorFlow.js Format

	Artificial Neural Network Model in the Browser Using TensorFlow.js
	Trivial Neural Network
	Example 1: Neural Network Model in TensorFlow.js
	Example 2: A Simple ANN to Realize the “Not AND” (NAND) Boolean Operation

	Human Pose Classification Using PoseNet
	Setting Up a PoseNet Project
	Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File)
	Step 2: Single-Person Pose Estimation Using a Browser Webcam

	PoseNet Model Confidence Values
	Summary
	References

	Chapter 5: Gait Analysis
	Gait Measurement Techniques
	Gait Cycle Measurement Parameters and Terminology
	Web User Interface for Monitoring Gait Parameters
	index.html

	Real-Time Data Visualization of the Gait Parameters (Patterns) on the Browser
	Determining Gait Patterns Using Threshold Values
	Summary
	References

	Chapter 6: Future Possibilities for Running AI Methods in a Browser
	Introduction
	Additional Machine Learning Applications with TensorFlow
	Face Recognition Using face-api.js
	Hand Pose Estimation

	Summary
	References

	Conclusion
	Index

