
Beginning
Machine Learning
in the Browser

Quick-start Guide to Gait Analysis
with JavaScript and TensorFlow.js
—
Nagender Kumar Suryadevara

Beginning Machine
Learning in the

Browser
Quick-start Guide to Gait
Analysis with JavaScript

and TensorFlow.js

Nagender Kumar Suryadevara

Beginning Machine Learning in the Browser: Quick-start Guide to Gait

Analysis with JavaScript and TensorFlow.js

ISBN-13 (pbk): 978-1-4842-6842-1 ISBN-13 (electronic): 978-1-4842-6843-8
https://doi.org/10.1007/978-1-4842-6843-8

Copyright © 2021 by Nagender Kumar Suryadevara

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Aaron Black
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,
1 NY Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail
orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
978- 1- 4842- 6842- 1. For more detailed information, please visit http://www.apress.com/
source- code.

Printed on acid-free paper

Nagender Kumar Suryadevara
School of Computer and Information Sciences,
University of Hyderabad, Hyderabad, Telangana, India

https://doi.org/10.1007/978-1-4842-6843-8

iii

About the Author ��vii

About the Technical Reviewer ���ix

Acknowledgments ��xi

Preface ��xiii

Table of Contents

Chapter 1: Web Development ���1

Machine Learning Overview ���1

Web Communication ���4

Organizing the Web with HTML ���6

Web Development Using IDEs/Editors ���6

Building Blocks of Web Development ��9

HTML and CSS Programming ��9

JavaScript Basics ��18

Including the JavaScript ��18

Where to Insert JS Scripts ���19

JavaScript for an Event-Driven Process ��22

Document Object Model Manipulation ��23

Introduction to jQuery ���26

Summary���28

References ��29

iv

Chapter 2: Browser-Based Data Processing ���������������������������������������31

JavaScript Libraries and API for ML on the Web ���31

W3C WebML CG (Community Group) ���32

Manipulating HTML Elements Using JS Libraries ���33

p5�js ��34

Drawing Graphical Objects ��35

Manipulating DOM Objects ��36

DOM onEvent(mousePressed) Handling ��38

Multiple DOM Objects onEvent Handling ���39

HTML Interactive Elements ��41

Hierarchical (Parent-Child) Interaction of DOM Elements ������������������������������45

Accessing DOM Parent-Child Elements Using Variables �������������������������������47

Graphics and Interactive Processing in the Browser Using p5�js������������������������49

Interactive Graphics Application ��51

Object Instance, Storage of Multiple Values, and Loop Through Object ���������53

Getting Started with Machine Learning in the Browser Using ml5�js
and p5�js ���56

Design, Develop, and Execute Programs Locally ��56

Method 1: Using Python – HTTP Server ���56

Method 2: Using Visual Studio Code Editor with Node�js Live Server ������������58

Summary���63

References ��63

Chapter 3: Human Pose Estimation in the Browser ����������������������������65

Human Pose at a Glance ���66

PoseNet vs� OpenPose ���66

Human Pose Estimation Using Neural Networks ��67

DeepPose: Human Pose Estimation via Deep Neural Networks ��������������������67

Efficient Object Localization Using Convolutional Networks �������������������������68

Table of ConTenTs

v

Convolutional Pose Machines ��68

Human Pose Estimation with Iterative Error Feedback ���������������������������������69

Stacked Hourglass Networks for Human Pose Estimation ����������������������������69

Simple Baselines for Human Pose Estimation and Tracking �������������������������69

Deep High-Resolution Representation Learning for Human
Pose Estimation ���70

Using the ml5�js:posenet() Method ���70

Input, Output, and Data Structure of the PoseNet Model ������������������������������������90

Input ��90

Output ��92

 �on() Function ���92

Summary ���92

References ��93

Chapter 4: Human Pose Classification ��95

Need for Human Pose Estimation in the Browser ���96

ML Classification Techniques in the Browser ���97

ML Using TensorFlow�js ���100

Changing Flat File Data into TensorFlow�js Format��������������������������������������106

Artificial Neural Network Model in the Browser Using TensorFlow�js ���������������113

Trivial Neural Network ���114

Example 1: Neural Network Model in TensorFlow�js ������������������������������������115

Example 2: A Simple ANN to Realize the “Not AND” (NAND)
Boolean Operation ���117

Human Pose Classification Using PoseNet ���121

Setting Up a PoseNet Project ��123

Step 1: Including TensorFlow�js and PoseNet Libraries in the HTML
Program (Main File) ���123

Step 2: Single-Person Pose Estimation Using a Browser Webcam �������������124

Table of ConTenTs

vi

PoseNet Model Confidence Values ��129

Summary���133

References ��134

Chapter 5: Gait Analysis ���135

Gait Measurement Techniques ��135

Gait Cycle Measurement Parameters and Terminology ������������������������������������137

Web User Interface for Monitoring Gait Parameters ���138

index�html ��140

Real-Time Data Visualization of the Gait Parameters (Patterns) on
the Browser���152

Determining Gait Patterns Using Threshold Values ���160

Summary���161

References ��162

Chapter 6: Future Possibilities for Running AI Methods
in a Browser ���163

Introduction ���163

Additional Machine Learning Applications with TensorFlow �����������������������������165

Face Recognition Using face-api�js ���165

Hand Pose Estimation ��167

Summary���175

References ��175

Conclusion ��177

 Index ���179

Table of ConTenTs

vii

About the Author

Dr. Nagender Kumar Suryadevara received

his Ph.D. degree from the School of

Engineering and Advanced Technology,

Massey University, New Zealand, in 2014.

He is an Associate Professor at the School

of Computer and Information Sciences,

University of Hyderabad, India. His research

interests include wireless sensor networks,

the Internet of Things, and time-series data

mining. He has authored two books, edited

two books, and published more than 50 papers in various international

journals, conferences, and book chapters. He has delivered numerous

presentations, including keynote, tutorial, and special lectures. He is a

senior member of IEEE. Dr. Suryadevara is passionate about development

possibilities for great AI-based products in resource- constrained

computing environments. Google Scholar citations:h- index:19,i10-

index:30.

https://scholar.google.com/citations?user=S28OdGMAAAAJ&hl=en

https://scholar.google.com/citations?user=S28OdGMAAAAJ&hl=en

ix

About the Technical Reviewer

Vishwesh Ravi Shrimali graduated from BITS Pilani, where he studied

mechanical engineering, in 2018. Since then, he has worked with

BigVision LLC on deep learning and computer vision and was involved in

creating official OpenCV AI courses. Currently, he is working at Mercedes

Benz Research and Development India Pvt. Ltd. He has a keen interest

in programming and AI and has applied that interest in mechanical

engineering projects. He has also written multiple blogs on OpenCV and

deep learning on LearnOpenCV, a leading blog on computer vision. He has

also authored Machine Learning for OpenCV (2nd edition) by Packt. When

he is not writing blogs or working on projects, he likes to go on long walks

or play his acoustic guitar.

xi

Acknowledgments

This journey would not have been possible without the support of my

family, professors, mentors, and friends. I am especially grateful to my

parents, who supported me emotionally. To my family, thank you for

encouraging me in all of my pursuits and inspiring me to follow my

dreams.

I want to express my sincere gratitude and heartfelt thanks to

Vishwesh Ravi Shrimali for allocating some time and taking responsibility

for reviewing the book chapters and providing valuable comments and

helpful suggestions.

Thanks to everyone in the publication team, especially Aaron Black,

who helped me in getting the book content into great shape, James
Markham, who took great pains in grooming the book, and Jessica Vakili,
who made sure the book writing process went smoothly and on time.

I am indebted to many of my students and colleagues who were

involved with various projects over several years, and some of their works

have been used in this book. I would especially like to give credit to one of

my students, Ashish Gupta, for helping me in executing the programs in

Chapter 5.

xiii

Preface

In recent times, artificial intelligence (AI) and machine learning

(ML) techniques have been widely used in many applications, such

as monitoring environmental parameters, monitoring, and control

of industrial situations, intelligent transportation, structural health

monitoring, health care, and so on. The advancement of electronics,

embedded control, smart sensing, networking, and communication has

made it possible to develop low-cost smart systems. Although there are

smart systems, the computing capabilities are minimal, and hence they

are considered to be resource-constrained computing devices (e.g., mobile

phones, smart watches, and mini electronic gadgets).

Applying smart strategies involving complex mathematical operations

of AI and ML methods on resource-constrained computing devices and

browsers is challenging. The advancements in Internet technologies,

primarily JavaScript skills, have made it possible to execute AI/ML models

in the browsers and resource computing devices. There are many other

publications on AI, ML, and JavaScript, but this book provides beneficial

information and practical knowledge to develop intelligent methods/models

from scratch and deploy them on browsers and resource- constrained

computing devices.

The complete book is divided into six chapters:

Chapter 1 describes the fundamentals of web development. This

chapter provides a short description of designing and developing web

applications using web building blocks. For developing an AI/ML model

and running on the browser or resource-constrained computing device,

this chapter’s practical knowledge is essential. For a beginner in any field

xiv

of study and interested in developing web apps, this chapter provides the

necessary practical skills to better realize web applications.

Chapter 2 delivers the steps to be performed and the necessary

JavaScript libraries to be considered for processing the data at the

computer’s browser application level. The latest JavaScript libraries

(p5.js and ml5.js) that help build the AI/ML models with practical steps are

covered.

Chapter 3 introduces the human pose estimation application as an

example that enables the reader to understand how an AI/ML model

involving complex mathematical operations can be used to run in the

browser. The stepwise procedure teaches you how to implement ML

methods to estimate an individual’s poses.

Chapter 4 covers the open-source JavaScript library TensorFlow.

js, which will be useful for building and deploying AI/ML models in the

browser. The architecture of the TensorFlow.js, including its accelerators

that support massive data processing at the browser, is explained. Practical

examples of executing a neural network model for useful classification

tasks are elucidated using the TensorFlow.js library.

Chapter 5 examines how to determine gait parameters by applying

AI/ML methods along with the JavaScript libraries in the web browser

application. The chapter walks you through the basics of gait analysis and

expands on the observational method considered in determining the vital

parameters for analysis using the AI in the browser.

Chapter 6 provides a few more advanced applications to run on the

browser by applying the AI/ML methods. This chapter encourages the

reader to think about the advancements possible when running AI/ML

models in the browser.

I hope that you enjoy reading the book. If you need any help

whatsoever with the practicals, please feel free to contact me.

Dr. S. Nagender Kumar Suryadevara

Associate Professor, School of Computer and Information Sciences,

University of Hyderabad, India.

PrefaCe

1© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_1

CHAPTER 1

Web Development
This chapter introduces you to the fundamentals of machine learning

(ML) and provides a practical primer to web design and development for

complete beginners. Topics covered in this chapter include the following:

• Hypertext Markup Language (HTML)

• Cascading Style Sheets (CSS)

• JavaScript (JS)

• Document Object Model (DOM)

• jQuery

These building blocks of web development enable you to implement

rich user functionalities into your web design.

 Machine Learning Overview
Machine learning, a subset of artificial intelligence (AI), aims to enable

computers to learn without interacting with specific programs. ML enables

computers to develop programs that can access data and use it to learn for

themselves (and thus perform like a human).

https://doi.org/10.1007/978-1-4842-6843-8_1#DOI

2

Arthur Samuel, who believed that computers could learn without

specific programs, popularized the term machine learning in 1959. In 1997,

Tom Mitchell further clarified the concept of ML, stating that a computer

could learn from some relative measure involving past performance while

processing some task, thus giving some experience to the computer.

Today, electronics of all kinds are outfitted with cutting-edge,

high-sensitivity sensors. Further, Internet connectivity allows for

communication among gadgets (things) for better environment-condition

monitoring. Accordingly, the massive amount of data generated from

these gadgets drives the Internet of Things (IoT) concept. Using AI and

ML strategies, the broad information gathered can be processed, scaled,

ordered, and used to predict events.

In conventional ML approaches, data is sent to and handled through

a central server, which experiences communication overhead, latency,

protection loss, and security issues. To overcome these difficulties,

inferences from the data collected in the IoT realm can be made by

deploying better ML techniques near the data origin using, for instance,

browser-environment capabilities. Exploiting ML strategies on resource-

constrained computing devices through a browser helps respective entities

to make better decisions in real time for enhanced functionality.

The tremendous computational demands of current AI strategies and

the development of ever-increasing numbers of AI-enhanced applications

forecast more data-processing problems. After all, computer-based

intelligence systems features are more demanding as they seek to reduce

resource utilization, to quicken resource accessibility, and to exploit

resource utilization for precision.

Software developers and engineers can now more effectively leverage

AI to conceptualize exceptionally responsive applications that respond to

user-sourced information in real time, such as voice or facial recognition.

They can also make smarter applications that can learn from user behavior.

Chapter 1 Web Development

3

Computer-based intelligence enables us to automate applications to

incorporate substantive proposals, to respond to voice requests or physical

motions, to use mobile phone cameras to recognize items or places, and to

figure out how to help users with day-by-day activities.

In the past, many of the best ML and deep learning (DL) systems

required familiarity with Python and its related library system. Production

of ML models required unique reasoning equipment and programming

tools, such as NVIDIA graphical processing units (GPUs) and CUDA. Now,

however, incorporating ML into JavaScript (JS) applications often involves

deploying the ML part on remote cloud systems, such as Amazon Web

Services (AWS), and getting the model to run on the local system via

application programming interface (API) calls. This nonlocal, back-end

centered methodology has likely kept many web engineers from taking

advantage of the abundant prospects AI offers to front-end improvement.

The main advantage of running AI strategies on users’ local devices

(i.e., near the data-origin source) is that the information never leaves the

user’s device. This point is critically significant because users rightfully

worry about their data privacy, especially in the wake of well-publicized

and embarrassing information leaks and security breaches.

With the help of TensorFlow.js software tools, developers/users can

exploit AI without sending their information over a system that potentially

makes it available to an outsider. These tools make it simpler to develop

secure applications that comply with information security guidelines, such

as healthcare applications that read wearable clinical sensors. The tools

also make AI program augmentation possible, thus allowing upgrades

while shielding user conduct/information.

Integrating JS programming features with AI strategies in a simple

interface can lead to more straightforward access to rich sensor

information from IoT devices. User behavior can be modeled based on

interactivity with device information sources such as voice or webcams.

Because similar programming code can run on, for example, mobile

Chapter 1 Web Development

4

phones utilizing accelerometers, gyroscopes, and Global Positioning

System (GPS), integrating AI computational capabilities into user devices

themselves can prove highly beneficial.

 Web Communication
Figure 1-1 shows the big-picture web basics for AI applications that run on

user devices.

The three web development essentials are as follows:

• Client (web browsers, used to surf the web)

• Server systems (used to supply information to the

browsers)

• Computer networks (used to support browser-server

communication)

The web activity shown in Figure 1-1(a) illustrates the internetworking

principle, where communication between the client and server is done

through protocols such as the Internet Protocol (IP), Transmission

Control Protocol (TCP), Hypertext Transfer Protocol (HTTP), and the File

Transfer Protocol (FTP). Figure 1-1(b) shows that communication between

Figure 1-1. Web communication through the Internet and localhost

Chapter 1 Web Development

5

the client (browser/services/applications) and the server (localhost)

happens locally and provides the required information to the respective

applications (client/browser/services).

The following terms relate to the communication:

• World Wide Web (WWW or web): A system of

interlinked, hypertext documents that runs over the

Internet. There are two types of software: client and

server. A system that wants to access the information

provided by servers must run client software (e.g., a

web browser), and an Internet-connected computer

that wants to provide information to others must run

server software. The client and server applications

communicate over the Internet by following a protocol

built on TCP/IP (i.e., HTTP) (Figure 1-2).

• Hypertext: An information format that enables one to

move from one part of a document to another or from

one document to another through hyperlinks.

Figure 1-2. The communication between the web client (browser)
and the web server

Chapter 1 Web Development

6

• Uniform Resource Locator (URL): Unique identifiers

used to locate a particular resource on the network.

• Markup language: Defines the structure and content of

hypertext documents.

 Organizing the Web with HTML
To design and develop web pages, you want to be thoroughly familiar with

Hypertext Markup Language (HTML). HTML enables you to define a web

page’s structure, including sections, lists, headings, connection points,

pictures, mixed-media players, and more.

HTML is not a programming language. It is a markup language that

tells Internet browsers how to structure web pages that a user visits. HTML

consists of various components that you use to manipulate substantive

page elements to show in a specific way. Encasing labels, for instance, can

turn content into a hyperlink that associates with another page or can be

used to emphasize words/terms.

 Web Development Using IDEs/Editors
The difference between an integrated development environment (IDE)

and an editor (text) for web development is that an IDE does everything

from fundamental content management to advanced development that

cannot be done with a text editor.

For example, editors such as Sublime, Notepad++, and Atom can be

used with HTML and Cascading Style Sheets (CSS) when writing the code for

web page design. These editors include many good features (e.g., language

structures that include adaptable interfaces and comprehensive navigation

tools for web developers who want enhanced application capabilities).

Chapter 1 Web Development

https://www.sublimetext.com/
https://notepad-plus-plus.org/downloads/
https://atom.io/

7

For instance, a web developer may require a debugger and a compiler to

develop web applications effectively. Figure 1-3 shows the programming

environments of these three editors.

With the best IDEs, however, you have less to worry about. They

often include comprehensive development tools in one application,

including for automation, testing, and forecasting. Mainly, they provide

web developers the necessary support to transform code into a working

application. Here are some of the more popular IDEs:

• Visual Studio Code: Visual Studio Code is perhaps

the best JavaScript IDE for Windows, Mac, and Linux

platforms. In addition to supporting JS functionality,

Figure 1-3. Notepad++, Sublime, and Atom editor environments

Chapter 1 Web Development

https://code.visualstudio.com/

8

it also supports Node.js and TypeScript features,

and it includes a system of extensions for different

programming dialects, including C++, C#, Python,

and PHP. Visual Studio Code makes for programmer-

friendly operations with excellent syntax features and

autocomplete with IntelliSense that responds to myriad

factors, word definitions, and imported modules.

• NetBeans: NetBeans is one of the best web

development IDEs because it enables you to create

a neat and versatile work area and develop web

applications quickly. It also works well with JS,

HTML5, PHP, and C/C++. It is a free JS IDE and a great

HTML5 IDE for everyday use. This IDE allows you to

review code for errors and lets you automatically fix

syntax if necessary (including for Java 8 features such as

lambda expressions).

• PyCharm: PyCharm is not the best free JS

IDE. However, the paid Professional Edition is

worth considering if you are looking for a solid web

development IDE for Python.

• IntelliJ IDEA: IntelliJ IDEA is an excellent web

development IDE. A free version is available, but if

you want all the JS features it offers, consider the paid

Ultimate Edition. IntelliJ IDEA can save you time and

energy in web development, and it is an excellent CSS

IDE. Note, as well, that it supports a wide range of

programming dialects.

Chapter 1 Web Development

https://netbeans.org/

9

 Building Blocks of Web Development
The three building blocks of web development are as follows:

• HTML: Via HTML5, computers can now understand

what is on your website rather than just display website

content dynamically. Earlier HTML versions provide

static or dynamic information to the users. Website

content is shown via HTML code.

• CSS: CSS determines what the website/pages look

like. HTML is for making the content, whereas CSS is

for showing the content in the way you want (i.e., the

design; the different styles, colors, backgrounds, and

layout). CSS makes a website/page look interesting.

• JavaScript: JS is a programming language used to

manipulate HTML and CSS. Its main function is to

provide interactive features for the user. It is sturdy and

can be used to create full web applications (apps).

Note to develop and test the applications/code in this book,
consider using Google’s Chrome browser, which has versions for
mac, Windows, and linux.

 HTML and CSS Programming
A coherent web development process requires that you first define what

you want to say (HTML) and then define how you want to say it (CSS).

An HTML component (element) is the combination of a start tag, its

characteristics (attributes), an end tag, and everything in between.

Chapter 1 Web Development

10

An HTML tag—either opening (< >) or closing (</ >)—is used to identify

the beginning or end of a component (element). The following code shows

the structure of an HTML document and some of its basic elements:

<!DOCTYPE html>

<html>

 <head>

 <!-- Metadata goes here -->

 </head>

 <body>

 <!-- Content goes here -->

 </body>

</html>

The first line, <!DOCTYPE html>, informs the browser that it is an

HTML5 version web page. The entire web page content is to be wrapped in

<html> tags. The actual <html> text is called an opening tag, and </html>

is called a closing tag. Everything inside of these tags is considered part

of the <html> element, which is the actual thing that gets created when a

web browser parses your HTML tags. Inside the <html> element are two

more elements: <head> and <body>. A web page <head> contains all of its

metadata, such as the page title, any CSS style sheets, and other things

required to render the page but that you do not necessarily want the user

to see. The bulk of our HTML markup will live in the <body> element,

which represents the visible content of the page.

Comments are given between the tags <!-- and -->. Listing 1-1 shows

a more complete HTML example, and Figure 1-4 shows the corresponding

output.

Chapter 1 Web Development

11

Listing 1-1. Basic HTML Content of a Web Page

<html>

<head>

<title>

Basic HTML Web Page

</title>

</head>

<body>

<h1> Web Development is Easy! </h1>

<p> First, we need to learn some basic HTML </p>

<h2> Headings </h2>

<p> Headings structure the outline of the website.

There are six levels of headings </p>

<h2> Lists </h2>

<p> There are two types of Lists </p>

<h3> Unordered List </h3>

 Add a "ul" element (it stands for unordered list)

 Add each item in its own "li" element

 They don't need to be in any particular order

<h3> Ordered List </h3>

 Notice the new "ol" element wrapping everything

 But, the list item elements are the same

 Also note how the numbers increment on their own

 You should be noticing things is this precise order,

because this is an ordered list

<h2>Inline Elements</h2>

Chapter 1 Web Development

12

<p>Sometimes, you need to draw attention to a

particular word or

phrase.</p>

<p>This is some emphasized text</p>

<p>Other times you need to strongly emphasize

the importance of a word or phrase.</p>

<h2>Empty Elements and Line break using br tag</h2>

<p>Web Programming is easier.</p>

<p>Regards,

The Authors</p>

<h2> Horizontal Line </h2>

<hr/>

<p>P.S. This is a basic HTML Web page to understand how a web

page looks like. </p>

</body>

</html>

Figure 1-4. Screenshot of the basic HTML code and its output

Chapter 1 Web Development

13

 Dynamic HTML

Dynamic HTML (DHTML) enables developers to control the display and

position of HTML elements in a browser window. HTML is used to create

static web pages, and DHTML is used to create dynamic web pages. HTML

consists of simple HTML tags, whereas DHTML consists of HTML tags plus

CSS plus JS.

 Cascading Style Sheets

CSS helps us to specify how elements on the web page should be

presented. With CSS, we can determine the style and layout of the web

page. There are three ways to use style sheets:

• Inline style sheets (Listing 1-2)

• Embedded style sheets (Listing 1-3)

• External style sheets (Listing 1-4)

 Inline Style Sheets

An inline style sheet is used to apply various unique styles to a single

element. You can also use an inline style sheet to define a style for a special

type of element or add a class attribute to the element. Listing 1-2 shows

how inline styles can be used along with HTML elements. Figure 1-5 shows

the corresponding output.

Chapter 1 Web Development

14

Listing 1-2. Inline Style Sheets Example

<HTML>

<head>

<TITLE> Inline Style sheets </TITLE>

</head>

<Body>

<p> This is Simple Text </p>

<p Style="font-size:30pt; font-family:arial"> This text is

different </p>

<p style="font-size:40pt;color:#ff0000"> This text is colored

</p>

</Body>

</HTML>

 Embedded Style Sheets

For embedded style sheets, we write all desired selectors along with the

properties and values in the head section. Then, in the body section, newly

defined selector tags are used with the actual content. The DHTML script

in Listing 1-3 defines h1, h2, h3, and p selectors with different properties

and values. Figure 1-6 shows the corresponding output of the embedded

style settings along with the HTML code.

Figure 1-5. Output of the inline CSS style settings

Chapter 1 Web Development

15

Note that to define embedded style sheets we have to mention style

type= "test/css" in the head section.

Listing 1-3. Embedded Style Sheets Example

<HTML>

<head>

<TITLE> Embedded Style sheets </TITLE>

<style type="text/css">

h1,h2,h3{font-family:arial;}

h2 {color:red;left:20px }

h3 {color:blue;}

p {font-size:14pt;font-family:verdana;}

.special {color:green}

</style>

</head>

<Body>

<h1 class="special"> <center>

This page is created using Embedded style sheets </center> </h1>

<h2> This line is aligned left and red colored </h2>

<p> The embedded style sheet is the most commonly used style

sheet. This paragraph is written in Verdana font with font size

of 14pt</p>

<h3> This is blue

 colored line</h3>

</Body>

</HTML>

Chapter 1 Web Development

16

 External Style Sheets

When we want to apply a particular style to more than one web page, we

can use external style sheets. This type of style sheet is stored in one .css

file, and we must mention the name of that file in our relevant web pages.

When we do so, the styles defined in .css file are applied to these web pages.

Listing 1-4 is a simple program in which external style sheets are used.

Listing 1-4. External Style Sheet Example

<HTML>

<head>

<TITLE> External Style sheets </TITLE>

<link rel="stylesheet" type="txt/css" href=ex1.css"/>

</head>

Figure 1-6. Output of the embedded style settings

Chapter 1 Web Development

17

<Body>

<h1 class="special"> <center>

This page is created using External style sheets </center>

</h1>

<h2> This line is aligned left and red colored </h2>

<p> The embedded style sheet is the most commonly used style

sheet. This paragraph is written in Verdana font with font size

of 14pt</p>

<h3>This is blue

 colored line</h3>

</Body>

</HTML>

The external style sheet is referenced in the href attribute as a value

linking to ex1.css. Create a file named ex1.css in the same folder:

h1 {font-family:arial;}

h2 {

font-family:times new roman;

color:red;

left:20px;

}

h3 {

font-family:arial;

color:blue

}

p {

font-size:14pt;

font-family:cambria;

}

special {color:green }

Chapter 1 Web Development

18

 JavaScript Basics
JavaScript is a scripting language (a lightweight programming language)

and an interpreted language (executing without preliminary compilation).

It is usually embedded directly into HTML pages and is designed to add

interactivity to them. Java and JS are different.

JS attributes include the following:

• JS gives HTML designers a programming tool.

• JS can put dynamic text into an HTML page.

• JS can react to events.

• JS can read and write HTML elements.

• JS can be used to validate data.

• JavaScript can be used to apply AI,ML and DL

techniques in the browser.

• JavaScript can be used to create cookies (Store and

retrieve information on the visitor’s computer).

 Including the JavaScript
The HTML <script> tag is used to insert a script (JS) into an HTML page:

<script type="text/javascript">

 document.write("Hello World!");

</script>

The <script> tag is used to embed a client-side script. The <script>

element either contains scripting statements or points to an external script

file through the src attribute.

Chapter 1 Web Development

19

 Where to Insert JS Scripts
You can include scripts in the head, body, or external JavaScript file (.js).

Scripts in the head section (Listing 1-5) will be executed when the head

section is invoked. Figure 1-7 shows the corresponding output. Scripts in

the body section executes while the page loads (Listing 1-6), and Figure 1-8

shows the corresponding output.

Listing 1-5. JavaScript Inside the Head Section

<html>

<head>

<script type="text/javascript">

function msg(){

 alert("Hello message");

}

</script>

</head>

<body>

<p>Welcome to JavaScript</p>

<form>

<input type="button" value="click" onclick="msg()"/>

</form></body></html>

Chapter 1 Web Development

20

Listing 1-6. JavaScript Inside the Body Section

<html>

<body>

<p id="demo">Hello Java Script</p>

<script>

document.getElementById("demo").innerHTML = "Java Script within

the body!";

</script>

</body>

</html>

Figure 1-7. JavaScript inside the head section

Chapter 1 Web Development

21

Listing 1-7 provides the JS function external to the program, and

Listing 1-8 shows the HTML for the corresponding output in Figure 1-9.

Listing 1-7. Message.js

function msg(){

 alert("Hello I am Outside your program");

}

Listing 1-8. HTML for Click Button

<html>

<head>

<script type="text/javascript" src="message.js"></script>

</head>

Figure 1-8. JavaScript inside the body section

Chapter 1 Web Development

22

<body>

<p>Program call to external JavaScript</p>

<form>

<input type="button" value="click" onclick="msg()"/>

</form>

</body>

</html>

 JavaScript for an Event-Driven Process
Dynamic website development is possible by leveraging event-driven

programming with JS. Commonly, after a website page has stacked, the JS

program keeps running (and waiting for an event to occur). If you interact

with the web page, a JS script executes the code that corresponds with that

interaction (event), and the behavior of the page changes based on the

event. Figure 1-10 shows a typical event-driven process with the help of JS

features.

Figure 1-9. JS external to the program

Chapter 1 Web Development

23

 Document Object Model Manipulation
At the point when a web page is stacked, the browser (program) creates

a Document Object Model (DOM) of the page. The HTML DOM is

developed as a tree of objects. Through DOM, the elements (components)

of the HTML can be manipulated, move across the web page and process

efficiently.

The HTML DOM is an object model for HTML:

• HTML components as items(elements)

• Properties(attributes) for all HTML components

• Techniques for all HTML components

• Events for all HTML components

Web Page

The page’s

appearance is

updated/

Modified based

on response

An “event”

occurs

JS code runs in

response

Figure 1-10. Event-driven process on the web page with the help of JS
code

Chapter 1 Web Development

24

The HTML DOM is an application programming interface (API) for

JavaScript:

• JS can include/change/delete HTML components.

• JS can include/change/delete HTML traits.

• JS can include/change/delete CSS styles.

• JS can respond to HTML events.

• JS can include/change/delete HTML events.

When creating site pages and applications, one of the main things

you must do is control the archive structure. Developers typically do so by

using the DOM, incorporating a lot of APIs to control HTML, and styling

data that uses the document object.

Discovering HTML Elements: When you need to get to HTML

components with JS, you need to discover the components first. You can

do so in a few different ways:

• Discover HTML elements by ID

• Discover HTML elements by label name

• Discovering HTML elements by class name

• Discover HTML elements by CSS selectors

• Discover HTML elements by HTML object assortments

A web page while used in JS is a document, and JS provides an object

called document, which is considered a complete web page. The document

object offers various properties and methods to identify, access, and

Chapter 1 Web Development

25

modify the web components/elements when loaded on the browser. To

identify and access the DOM elements, JS uses the previously described

discovery capability.

The following HTML source code shows such discovery at work:

<!DOCTYPE html>

<html>

<body>

<h2>Finding HTML Elements by Id</h2>

<p id="intro">Hello World!</p>

<p>This example demonstrates the getElementsById

method.</p>

<p id="demo1"></p>

<p id="demo2"></p>

<p class="intro">The DOM is very useful.</p>

<p class="intro">This example demonstrates the

getElementsByClassName method.</p>

<script>

var myElement = document.getElementById("intro");

document.getElementById("demo1").innerHTML =

"The text from the intro paragraph is " + myElement.innerHTML;

var x = document.getElementsByTagName("p");

document.getElementById("demo2").innerHTML =

'The text in first paragraph (index 0) is: ' + x[0].innerHTML;

var x1 = document.getElementsByClassName("intro");

document.getElementById("demo").innerHTML =

'The first paragraph (index 0) with class="intro": ' + x1[0].

innerHTML;

</script>

</body>

</html>

Chapter 1 Web Development

26

 Introduction to jQuery
jQuery is a lightweight JS library that enables developers to compose less

but accomplish more. The jQuery library enables the web programmers to

do the following tasks easily:

• HTML and DOM element manipulation

• CSS management and control

• Provides event-driven techniques to trigger and react

to an event on a web page such as mouse click, button

click, key press, and so on

• Improves the functionality of Asynchronous JavaScript

and XML (AJAX) calls for the exchange of information

between two entities (such as client and server)

There are two ways to use the jQuery library in your program:

 1. Download the jQuery library

(https://code.jquery.com/jquery- 3.5.1.min.js)

from jQuery.com and store it in the same folder as that

of the source code (HTML and CSS code) location and

use it as follows:

<head>

<script src="jquery-3.5.1.min.js"></script>

</head>

Chapter 1 Web Development

https://code.jquery.com/jquery-3.5.1.min.js

27

Or

 2. If you are connected to the Internet, use the

following link from Google CDN to include jQuery

features:

<head>

<script src="https://ajax.googleapis.com/ajax/libs/

jquery/3.5.1/jquery.min.js">

</script>

</head>

Listing 1-9 shows how to use the jQuery library and its functionality,

and Figures 1-11 and 1-12 show its corresponding output.

Listing 1-9. Using the jQuery Library

<!DOCTYPE html>

<html>

<head>

<script src="jquery-3.5.1.min.js"></script>

<script>

$(document).ready(function(){

 $("button").click(function(){

 $("p").hide();

 });

});

</script>

</head>

<body>

<h2>jQuery Example</h2>

<p>first paragraph</p>

Chapter 1 Web Development

28

<p>second paragraph</p>

<button>hide</button>

</body>

</html>

 Summary
This chapter introduced ML and provided a practical overview of web

design and development. Following are some key takeaways:

• HTML is the language that we use to structure

the various pieces of our content and define their

importance.

• CSS is the language that we use to style and design our

web content to make it more lively.

• JS is the scripting language that we use to add dynamic

usefulness to website pages.

Figure 1-12. Listing 1-9 output after the Hide button is clicked

Figure 1-11. Listing 1-9 output before the Hide button is clicked

Chapter 1 Web Development

29

• DOM describes the logical structure of documents

(web pages) and the way a document is accessed and

manipulated using the components (elements of the

web pages).

• jQuery is a small JavaScript library that simplifies

HTML document (web page) traversal and

manipulation event handling, and animation.

You should now be able to start designing and developing applications

that incorporate AI/ML in their web components.

 References
Mitchell, Tom M. Machine Learning. McGraw-Hill, 1997.

Singh, Himanshu. Practical Machine Learning and

Image Processing. Apress, 2019.

Marsland, Stephen. Machine Learning: An

Algorithmic Perspective. Chapman & Hall/CRC

Machine Learning & Pattern Recognition; 1st

Edition, 2009.

bin Uzayr, Sufyan, Nicholas Cloud, and Tim

Ambler. JavaScript Frameworks for Modern Web

Development: The Essential Frameworks, Libraries,

and Tools to Learn Right Now. Apress, 2019.

Chapter 1 Web Development

30

Cook, Craig, and David Schultz. Beginning HTML

with CSS and XHTML, Modern Guide and Reference.

Apress, 2007.

https://code.visualstudio.com/

https://netbeans.org/

https://www.jetbrains.com/pycharm/

Ferguson, Russ. Beginning JavaScript, The Ultimate

Guide to Modern JavaScript Development.

Apress, 2019.

Chapter 1 Web Development

https://code.visualstudio.com/
https://netbeans.org/
https://www.jetbrains.com/pycharm/

31© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_2

CHAPTER 2

Browser-Based Data
Processing
Now that you understand the basics of web development, this chapter

introduces two JavaScript (JS) libraries: p5.js and ml5.js. The chapter also

delves deeper into JS features and syntax related to various problem-

solving and application-development implementations. It then discusses

various ways to use graphics and machine learning (ML) application

processing interface methods to actualize artificial intelligence (AI) in the

browser.

Browser computer vision techniques, such as image classification, are

also discussed relative to JS programming. In this chapter, you also work

through practical examples of running web applications using the Node.js

and Python Hypertext Transfer Protocol (HTTP) server programs.

 JavaScript Libraries and API for ML
on the Web
AI and ML are at the forefront of modern computing and are currently hot

topics. How “smart” your computational frameworks are can factor into the

success or failure (or optimization) of your applications’ data processing.

ML is better via soft computing interfaces rather than via hard-wired

ones. Although AI/ML is becoming ubiquitous, most web developers have

https://doi.org/10.1007/978-1-4842-6843-8_2#DOI

32

yet to master it. However, ML is an inevitable advance in the development of

human-machine interaction. The only issue I have with regard to this relates

to certain software vendors. Anybody can begin developing applications

on the web (this unrivaled, genuinely open, and dispersed stage), and at

present open-source technologies support, to a large extent, the design and

development of web applications. However, the key thing that matters now

is the ability to apply the smart concepts onto ML interfaces.

Presently, ML on the web looks significantly more open and less

standard focused than I would like. To train models or try and get bits of

data from models, you must use the API library.

W3C WebML CG (Community Group)
The W3C calls for making and incorporating APIs optimized for ML into

the web development arena that will eventually allow developers to create

interoperable ML content on various platforms. Intel and Microsoft began

this work, and I am pleased that some APIs have been developed, but now

we need to utilize the features effectively to make ML on the web a reality

and thus achieve the following:

• Improved execution: Results from the prepared model

return quickly, with no system slowdown.

• Disconnected (offline) usefulness: Queries running on

devices/gadgets do not rely on an association with a

cloud computing administration (and so avoid the

issues of latency, throughput, and connectedness

inherent in cloud computing).

• Upgraded protection (privacy): Incredibly, many cloud

administrations offer already prepared models to

run our solicitations. We need not send our privacy

information to others.

Chapter 2 Browser-Based data proCessing

33

Although incorporating browser intelligence promises exciting

functionality, it is important to remember that certain restrictions

(limitations) also apply, including the following:

• Record size: Previously prepared models will, in

general, be extremely large (e.g., often several

megabytes). Such large record sizes on the client

side will result in I/O delays and be subject to RAM

constraints.

• Restricted performance: Earlier browser programs are

limited to single-thread JavaScript execution instances,

with no provisions to utilize the core computing

features of the device/gadget.

Presently, you can use JS libraries to converse with existing AI/ML

models, or you can develop your intelligent program to run on a browser

or electronic device/gadget. With a scientific learning model that leverages

JS library software, with some forethought, and with a couple lines of code,

you can now develop applications that induce intelligence in the browser.

 Manipulating HTML Elements Using JS
Libraries
The following subsections show how to use the two most popular JS

libraries (p5.js and ml5.js) to implement various functions such as

graphics and ML on the browser.

The ml5.js library makes ML approachable for a broad audience,

including artists, creative coders, and students. The library provides

access to ML algorithms and models in the browser. The p5.js library is

for handling graphical processing unit (GPU)-accelerated mathematical

operations and memory management for ML algorithms.

Chapter 2 Browser-Based data proCessing

34

 p5.js
The p5.js library is a JavaScript library for creative coding intended to

make comprehensive coding available for designers, developers, teachers,

students, and more. It is free and open-source programming; the tools

to learn p5.js are available to everybody. The p5.js library incorporates

Processing principles for the modern web. A p5.js library can be any JS

code that extends or adds to existing JS code.

A p5.js library is classified as either a core library or a contributed

library. As with programmer JS code, p5.js has a full toolbox of drawing

utilities that support HTML5 objects for text, input, video, webcam, and

sound. To include a p5.js library in the program, link it to your HTML file.

The following code snippet shows what an HTML file linked with a p5.js

library looks like:

<!doctype html>

<html>

<head>

<script src="p5.js"></script>

<script src="user_code.js"></script>

</head>

<body>

</body>

</html>

Note You can download the p5.js (single file, full uncompressed
version) or p5.min.js (single file, compressed version) library from this
link. You want to ensure that the p5.js/p5.min.js library and the htML
file are in the same folder (computer system path).

to develop and execute programs with p5.js library functionality, you
need an editor (notepad++) and a web browser (Chrome or Firefox).

Chapter 2 Browser-Based data proCessing

https://p5js.org/
https://processing.org/
https://p5js.org/libraries/
https://p5js.org/libraries/
https://p5js.org/download/

35

 Drawing Graphical Objects
Listings 2-1a and 2-1b show the inclusion of the p5.js library with the user

code p5ex1_index.html. Figure 2-1 shows the corresponding output.

Listing 2-1a. p5ex1_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example#1 p5.js </title>

 <script type="text/javascript" src="p5.min.js"></script>

 <script type="text/javascript" src="p5ex1_user_code1.js">

</script>

 </head>

 <body>

 <h1> Example #1: p5.js and user_code1.js </h1>

 <p>Program for linking p5.js library and user_code.js </p>

 </body>

</html>

Listing 2-1b. p5ex1_user_code1.js

function setup() {

 createCanvas(720, 400);

 background(200);

}

function draw() {

 rect(40, 120, 120, 40); // A rectangle

 ellipse(240, 240, 80, 80); // An ellipse

 triangle(300, 100, 320, 100, 310, 80); //A triangle

}

Chapter 2 Browser-Based data proCessing

36

 Manipulating DOM Objects
Listings 2-2a and 2-2b show how to create DOM objects using JS libraries

(in this case, p5.js): p5ex2_index.html. Figure 2-2 shows the corresponding

output.

Listing 2-2a. p5ex2_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example#2 p5.js </title>

 <script type="text/javascript" src="p5.min.js"></script>

 <script type="text/javascript" src="p5ex2_user_code2.js">

</script>

 </head>

Figure 2-1. Inclusion of p5.min.js library with the user JS code

Chapter 2 Browser-Based data proCessing

37

 <body>

 <h1> Example #2: p5.js and user_code2.js </h1>

 <p>Program for manipulating DOM objects using p5.js library </p>

 </body>

</html>

Listing 2-2b. p5ex2_user_code2.js

var mycanvas,myh1;

function setup() {

 mycanvas = createCanvas(150, 150);

 mycanvas.position(200, 250);

 myh1 = createElement('h1', 'h1-New DOM Object .');

 myh1.position(100, 150);

 createP("****This is a new Paragraph*****");

}

function draw() {

 background(150, 150);

 fill(255, 0, 0);

 }

Figure 2-2. Creating DOM objects using JS libraries (in this case, p5.js)

Chapter 2 Browser-Based data proCessing

38

 DOM onEvent(mousePressed) Handling
Listings 2-3a and 2-3b provide the programs for calling DOM objects based

on events using the p5.js library. Figure 2-3 shows the corresponding output.

Listing 2-3a. p5ex3_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example#3 p5.js </title>

 <script type="text/javascript" src="p5.min.js"></script>

 <script type="text/javascript" src="p5ex3_user_code3.js">

</script>

 </head>

 <body>

 <h1>Example #3: p5.js and user_code3.js </h1>

 <p>Program for calling DOM objects based on events using

p5.js library </p>

 </body>

</html>

Listing 2-3b. p5ex3_user_code3.js

var bgcolor,button;

function setup() {

 canvas = createCanvas(200, 200);

 bgcolor = color(200);

 button = createButton('Click this Button to change the color');

 button.position(250,150);

 button.mousePressed(changeColor);

}

Chapter 2 Browser-Based data proCessing

39

function changeColor() {

 bgcolor = color(random(255));

}

function draw() {

 background(bgcolor);

 }

 Multiple DOM Objects onEvent Handling
Listings 2-4a and 2-4b show interaction of various HTML elements using

the p5.js library. Figure 2-4 shows the corresponding output.

Listing 2-4a. p5ex4_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example#4 p5.js </title>

 <script type="text/javascript" src="p5.min.js"></script>

 <script type="text/javascript" src="p5ex4_user_code4.js">

</script>

 </head>

Figure 2-3. Using the p5.js library to call DOM objects based on
events

Chapter 2 Browser-Based data proCessing

40

 <body>

 <h1> Example #4: p5.js and user_code4.js </h1>

 <p> Program for interacting various HTML elements using

p5.js library

 </p>

 </body>

</html>

Listing 2-4b. p5ex4_user_code4.js

var mybgcolor,mybutton,myslider1,myinput1,myname;

function setup() {

 mycanvas = createCanvas(200, 200);

 mybgcolor = color(200);

 myname = createP('Your name!');

 mybutton = createButton('Click to resize the circle');

 mybutton.mousePressed(changeColor);

 myslider1 = createSlider(10, 100, 86);

 myinput1 = createInput('Enter your name::');

}

function changeColor() {

 mybgcolor = color(random(255));

}

function draw() {

 background(mybgcolor);

 fill(255, 0, 175);

 ellipse(100, 100, myslider1.value(), myslider1.value());

 myname.html(myinput1.value());

 text(myinput1.value(), 10, 20);

}

Chapter 2 Browser-Based data proCessing

41

 HTML Interactive Elements
Listings 2-5a and 2-5b show another example for interacting with

various HTML elements using the p5.js library. Figure 2-5 shows the

corresponding output.

Listing 2-5a. p5ex5_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example#5 p5.js </title>

 <script type="text/javascript" src="p5.min.js"></script>

Figure 2-4. Using the p5.js library to create interactivity between
various HTML elements

Chapter 2 Browser-Based data proCessing

42

 <script type="text/javascript" src="p5ex5_user_code5.js">

</script>

 </head>

 <body>

 <h1>Example #5: p5.js and user_code5.js</h1>

 <p> Program for interacting various HTML elements using

p5.js library

 </p>

 </body>

</html>

Listing 2-5b. p5ex5_user_code5.js

var bgcolor1,mybutton1,myslider1,mynameInput,mynamepar;

function setup() {

 mycanvas = createCanvas(200, 200);

 mycanvas.mouseOver(overpara);

 mycanvas.mouseOut(outpara);

 mycanvas.mousePressed(changeColor);

 bgcolor1 = color(200);

 mynamepar = createP('Dummy Text!');

 mybutton1 = createButton('Click');

 mybutton1.mousePressed(changeColor);

 myslider1 = createSlider(10, 100, 86);

 mynameInput = createInput('Enter your name::');

 mynamepar.mouseOver(overpara);

 mynamepar.mouseOut(outpara);

 mynameInput.changed(updateText);

 }

function updateText(){mynamepar.html(mynameInput.value()); }

function overpara() {mynamepar.html('your mouse is over me');}

function outpara() {mynamepar.html('your mouse is out');}

Chapter 2 Browser-Based data proCessing

43

function changeColor(){bgcolor1 = color(random(255));}

function draw(){ background(bgcolor1);

 fill(255, 0, 175);

 ellipse(100, 100, myslider1.value(), myslider1.

value());

 text(mynameInput.value(), 10, 20);

 }

 Interaction with HTML and CSS Elements

Listings 2-6a and 2-6b show the interaction of various HTML elements

using the p5.js library with CSS elements. Figure 2-6 shows the

corresponding output.

Listing 2-6a. p5ex6_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title>Example #6 p5.js and CSS </title>

Figure 2-5. Using the p5.js library to create HTML interactive
elements

Chapter 2 Browser-Based data proCessing

44

 <script type="text/javascript" src="p5.min.js"></script>

 <style>

 #item1 {

 font-size: 52pt;

 }

 .paraclass {

 font-size: 26pt;

 background-color: #E0F;

 }

 p { padding: 10pt; }

 </style>

 </head>

<body>

<h1>Example #6: p5.js for CSS selectors and user_code6.js</h1>

<p>Program for interacting with CSSelements using p5.js

library</p>

<p id = "item1" class="paraclass">Items</p>

<p class="paraclass">Paragraph2</p>

<p class="paraclass">Paragraph3</p>

<p>Paragraph4.</p>

</body>

</html>

Listing 2-6b. p5ex6_user_code6.js

function setup() {}

function draw() {}

Chapter 2 Browser-Based data proCessing

45

 Hierarchical (Parent-Child) Interaction of DOM
Elements
Listings 2-7a and 2-7b show p5.js with parent-child DOM elements.

Figure 2-7 shows the corresponding output.

Listing 2-7a. p5ex7_index.html

<!DOCTYPE html>

<html>

<head>

<meta charset="UTF-8">

<title>Multi level (Parent-Child)DOM elements </title>

<script type="text/javascript" src="p5.min.js"></script>

<script type="text/javascript" src="p5ex7_user_code7.js">

</script>

<style> body{padding:0;margin:0;}canvas{vertical-align:top;}

</style>

</head>

Figure 2-6. p5.js with CSS elements example

Chapter 2 Browser-Based data proCessing

46

<body>

<h1>Example #7::Parent and Child DOM Elements</h1>

<p id="canvaspara">This paragraph should include the canvas.</p>

 <p> I am a parent and a child. </p>

 <h1>List of Emotions</h1>

 <button id="button">Click for the Emotion</button>

 <ol id="listofemotions">

</body>

</html>

Listing 2-7b. p5ex7_user_code7.js

var emotions = ['happy', 'sad', 'neutral', 'angry'];

function setup() {

 var canvas1 = createCanvas(300, 300);

 canvas1.parent("canvaspara");

 var button1 = select('#button');

 button1.mousePressed(addItem1);

}

function addItem1() {

 var r = floor(random(0, emotions.length));

 var li = createElement('li', emotions[r]);

 li.parent('listofemotions');

}

function draw(){

 background(150);

}

Chapter 2 Browser-Based data proCessing

47

 Accessing DOM Parent-Child Elements Using
Variables
Listings 2-8a and 2-8b show parent-child elements with variables using

p5.js. Figure 2-8 shows the corresponding output.

Listing 2-8a. p5ex8_index.html

<!DOCTYPE html>

<html>

 <head>

 <meta charset="UTF-8">

 <title> Example #8 parent()_and_child() with variables

</title>

 <script type="text/javascript" src="p5.min.js"></script>

 <script type="text/javascript" src="p5ex8_user_code8.js">

</script>

Figure 2-7. Using p5.js with parent-child DOM elements

Chapter 2 Browser-Based data proCessing

48

 <style> body {padding: 0; margin: 0;} canvas {vertical-

align: top;}

 </style>

 </head>

 <body>

 </body>

</html>

Listing 2-8b. p5ex8_user_code8.js

var p;

function setup() {

 noCanvas();

 p = createP('This is a link to click for: ');

 p.style('background-color','#AAA');

 p.style('padding', '48px');

 var a = createA('#', 'flower');

 a.mousePressed(addpic);

 a.parent(p);

}

function addpic() {

 var img = createImg('flower1.jpg');

 img.size(100, 100);

 img.parent(p);

 }

Chapter 2 Browser-Based data proCessing

49

Figure 2-8. p5.js with parent-child variables example

 Graphics and Interactive Processing
in the Browser Using p5.js
This section provides examples that show how to use p5.js libraries to

implement a browser’s interactive and graphics features. Listings 2-9a

and 2-9b show how to use the p5.js library to implement graphics functions

to illustrate mouse press events. Figure 2-9 shows the corresponding output.

Listing 2-9a. p5_graphics_ex_index.html

<!DOCTYPE html>

<html>

<head>

 <script src="p5.min.js"></script>

 <meta charset="utf-8" />

</head>

Chapter 2 Browser-Based data proCessing

50

<body>

<script src="p5_graphics_ex1_user_code1.js"></script>

</body>

</html>

Listing 2-9b. p5_graphics_ex1_user_code1.js

let x = 100;

let y = 100;

let extraCanvas1;

function setup()

{

 createCanvas(300, 300);

 extraCanvas1 = createGraphics(300, 300);

 extraCanvas1.clear();

 }

function draw()

{

 background(255,204,0);

 x += random(-5, 5);

 y += random(-5, 5);

 if (mouseIsPressed) {

 extraCanvas1.fill(255, 150);

 extraCanvas1.noStroke();

 extraCanvas1.ellipse(mouseX, mouseY, 60, 60);

 }

 image(extraCanvas1, 0, 0);

 fill('blue'); stroke(255);

 rectMode(CENTER); rect(x, y, 20, 20);

}

Chapter 2 Browser-Based data proCessing

51

Figure 2-9. Graphics functions with mouse press event using p5.js
library

 Interactive Graphics Application
Listings 2-10a and 2-10b show a graphics script for a bouncing ball

illustration using the p5.js library. Figure 2-10 shows the corresponding

output.

Listing 2-10a. p5_graphics_ex2_index.html

<!DOCTYPE html>

<html>

<head>

 <script src="p5.min.js"></script>

 <meta charset="utf-8" />

</head>

<body>

<script src="p5_graphics_ex2_user_code2.js"></script>

</body>

</html>

Chapter 2 Browser-Based data proCessing

52

Listing 2-10b. p5_graphics_ex2_user_code2.js

var ball = {

 x: 300,

 y: 200,

 xspeed: 4,

 yspeed: -3

};

function setup() {

 createCanvas(600, 400);

}

function draw() {

 background('blue');

 move();

 bounce();

 display();

}

function bounce() {

 if (ball.x > width || ball.x < 0) {

 ball.xspeed = ball.xspeed * -1;

 }

 if (ball.y > height || ball.y < 0) {

 ball.yspeed = ball.yspeed * -1;

 }

}

function display() {

 stroke(255);

 strokeWeight(4);

 fill(200, 0, 200);

 ellipse(ball.x, ball.y, 36, 36);

}

Chapter 2 Browser-Based data proCessing

53

function move() {

 ball.x = ball.x + ball.xspeed;

 ball.y = ball.y + ball.yspeed;

}

 Object Instance, Storage of Multiple Values,
and Loop Through Object
Listings 2-11a and 2-11b show a p5.js graphics function using class, object,

array, and loop features. Figure 2-11 shows the corresponding output.

Listing 2-11a. p5_graphics_ex3_index.html

<!DOCTYPE html>

<html>

<head>

 <script src="p5.min.js"></script>

 <meta charset="utf-8" />

</head>

Figure 2-10. p5.js graphics script for bouncing ball

Chapter 2 Browser-Based data proCessing

54

<body>

<script src="p5_graphics_ex3_user_code3.js"></script>

</body>

</html>

Listing 2-11b. p5_graphics_ex3_user_code3.js

var circles = [100, 25, 46, 72];

let square1;

let square2;

function setup() {

 createCanvas(500, 400);

 square1 = new Square();

 square2 = new Square();

}

function draw() {

 background('red');

 for (var i = 0; i < 4; i++) {

 stroke(255);

 fill(51);

 ellipse(i * 100 + 100, 200, circles[i], circles[i]);

 }

 square1.move();

 square1.show();

 square2.move();

 square2.show();

}

class Square {

 constructor(x, y, r) {

 this.x = 200;

Chapter 2 Browser-Based data proCessing

55

Figure 2-11. p5.js graphics function that uses class, object, array, and
loop features

 this.y = 150;

 }

 move() {

 this.x = this.x + random(-5, 5);

 this.y = this.y + random(-5, 5);

 }

 show() {

 stroke(255);

 strokeWeight(4);

 noFill();

 square(this.x, this.y, 36, 6);

 }

}

Chapter 2 Browser-Based data proCessing

56

 Getting Started with Machine Learning
in the Browser Using ml5.js and p5.js
The ml5.js library makes AI accessible to creative coders. The library

was created at New York University, and it was openly released in July

2018. The library gives access to AI methods and models in the program,

expanding on TensorFlow.js and with no other outside dependencies. The

ml5.js library makes life simpler for those who are new to the ML field. You

can find more information at this link.

To develop and execute programs that incorporate p5.js and ml5.js

libraries, you need the following:

Editor: Visual Studio Code or Notepad++

Web browser: Chrome or Firefox

Sample images and datasets for developing ML

applications

 Design, Develop, and Execute Programs
Locally
There are two methods for running a local web server on your computer to

develop and execute your programs on the local computer.

 Method 1: Using Python – HTTP Server
 1. Install Python 3+ on your computer.

 2. cd /path_to/ml5_p5-examples (At the command

prompt, go to the folder that holds your ml5/p5

programs.)

Chapter 2 Browser-Based data proCessing

https://ml5js.org/
https://ml5js.org/

57

 3. python -m http.server 8081

 4. In the browser URL, type the following:

localhost:8081/indexfilename

Listings 2-12a and 2-12b show the ml5.js library using a Python web

server for image classification. Figure 2-12 shows the corresponding

output.

Listing 2-12a. ml5_ex1_index.html

<html>

<head>

 <meta charset="UTF-8">

 <title>Image Classification Example</title>

 <script src="ml5.min.js" type="text/javascript"></script>

</head>

<body>

 <h1>Image classification using MobileNet model</h1>

 <p>The MobileNet model labeled this as

 ... with a confidence of

 </p>

 <script src="ml5_ex1_user_code1.js"></script>

</body>

</html>

Listing 2-12b. ml5_ex1_user_code1.js

const image = document.getElementById('image');

const result = document.getElementById('result');

const probability = document.getElementById('probability');

ml5.imageClassifier('MobileNet')

Chapter 2 Browser-Based data proCessing

58

 .then(classifier => classifier.classify(image))

 .then(results => {

 result.innerText = results[0].label;

 probability.innerText = results[0].confidence.toFixed(4);

 });

 Method 2: Using Visual Studio Code Editor
with Node.js Live Server

 1. Download and install Node.js from this link.

 2. Install Node Package Manager (NPM) from this link.

 3. Download and install Visual Studio Code from this link.

 4. Open the Visual Studio Code editor and click the

GoLive button so that the output of the program can

be seen in the browser.

Figure 2-12. Usage of ml5.js library along with Python server and
Notepad++ (example related to image classification)

Chapter 2 Browser-Based data proCessing

https://nodejs.org/en/download/
https://www.guru99.com/download-install-node-js.html#2
https://code.visualstudio.com/docs/setup/windows

59

The following examples show the execution of the programs under this

method.

Listing 2-13 is an example of an image classification using Node.js

server. The outputs related to different images are shown in Figure 2-13(a),

Figure 2-13(b), Figure 2-13(c), and Figure 2-13(d).

Listing 2-13. Image Classification Using the Node.js Server

<html>

<head>

 <meta charset="UTF-8">

 <title>Image Classification Example</title>

 <script src="ml5.min.js" type="text/javascript"></script>

</head>

<body>

 <h1>Image classification using MobileNet model</h1>

 <p>The MobileNet model labeled this as

 ... with a confidence of

 </p>

 <script src="ml5_ex1_user_code1.js"></script>

</body>

</html>

ml5_ex1_1_user_code1.js

const image = document.getElementById('image');

const result = document.getElementById('result');

const probability = document.getElementById('probability');

ml5.imageClassifier('MobileNet')

 .then(classifier => classifier.classify(image))

Chapter 2 Browser-Based data proCessing

60

 .then(results => {

 result.innerText = results[0].label;

 probability.innerText = results[0].confidence.toFixed(4);

 });

Figure 2-13(a). Image classification(Example:Bird)using the Node.js
server and Visual Studio Code

Chapter 2 Browser-Based data proCessing

61

The ml5.js library’s methods and functions are asynchronous (because

ML models can take significant amounts of time to process input and

generate output).

Using Promises the ml5.js library also supports promises. if no
callback is provided to any asynchronous function, a promise is
returned. with promises, the image classification example can be
used in the following way.

Figure 2-13(b). Image Classification(Example:Flower) using the
Node.js server and Visual Studio Code

Chapter 2 Browser-Based data proCessing

https://ml5js.org/
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise

62

Figure 2-13(d). Image classification (Example:Vehicle) using Node.js
server and Visual Studio Code

Figure 2-13(c). Image classification (Example:Fruit) using the
Node.js server and Visual Studion Code

Chapter 2 Browser-Based data proCessing

63

Note in the preceding example, a Mobilenet library is used for
illustration. Mobilenet is a convolutional neural network (Cnn)
architecture model for image classification and mobile vision. it is
best suited for web browsers because browsers have limitations
related to computation, graphic processing, and storage.

 Summary
AI/ML researchers have provided us a huge number of functionalities

in the form of libraries, making the implementation of AI/ML as easy as

including the various libraries in our solution space.

In this chapter, you learned how to use two JS libraries (p5.js and

ml5.js) that enable you to build and deploy interactive graphics and ML

applications on the browser. These new and improved libraries have

proven themselves effective in numerous utilization cases.

By using these libraries, you can compose code for various real-time

applications on the browser in a simpler and more naturally intuitive way.

 References
https://p5js.org/

https://p5js.org/reference/

McCarthy, Lauren. Getting Started with p5.js:

Making Interactive Graphics in JavaScript and

Processing. Make Community, 2015.

https://ml5js.org/

Chapter 2 Browser-Based data proCessing

https://p5js.org/
https://p5js.org/reference/
https://ml5js.org/

64

https://blog.etereo.io/machine-learning-

in-the-browser-for-the-entire-family-

125ca5a449a1

https://towardsdatascience.com/introduction-

to-ml5-js-3fe51d6a4661

https://www.opensourceforu.com/2020/02/ml5-

js-machine-learning-made-more-user-friendly/

https://github.com/processing/p5.js?files=1

https://github.com/ml5js

Chapter 2 Browser-Based data proCessing

https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://blog.etereo.io/machine-learning-in-the-browser-for-the-entire-family-125ca5a449a1
https://towardsdatascience.com/introduction-to-ml5-js-3fe51d6a4661
https://towardsdatascience.com/introduction-to-ml5-js-3fe51d6a4661
https://www.opensourceforu.com/2020/02/ml5-js-machine-learning-made-more-user-friendly/
https://www.opensourceforu.com/2020/02/ml5-js-machine-learning-made-more-user-friendly/
https://github.com/processing/p5.js?files=1
https://github.com/ml5js

65© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_3

CHAPTER 3

Human Pose
Estimation in
the Browser
This chapter describes human pose estimation, a computer vision

advancement that seeks to understand human movement through

pictures and videos. The chapter discusses the various ways to estimate

human poses through machine learning (ML) methods, with a focus on

Dan Oved’s PoseNet method.

PoseNet is an ML model that allows for real-time human pose

estimation by finding different points on the human body and face. This

chapter shows you step by step how to write the code to recognize various

poses (keypoints) of the human face. Programming instructions teach

you how to collect and manage the data related to these keypoints. This

procedure will help you estimate other vital human pose keypoints and

understand their classification patterns, as discussed in the following

chapters.

https://doi.org/10.1007/978-1-4842-6843-8_3#DOI

66

 Human Pose at a Glance
Human pose assessment is an important topic that the computer vision

community has been grappling with for the past few decades. It is a pivotal

advancement toward understanding individuals in pictures and videos.

Human pose estimation is done by defining joints of a human body

(otherwise called keypoints: elbows, wrists, and so on) in still images or

videos. It is also characterized as the quest for a specific pose in the space

of all poses.

The fundamentals of a human 2D pose is the estimate of a 2D

coordinate (x, y) for each joint of the human pose from an RGB (red,

green, blue) image. Human 2D pose estimation can be used to assess

(and analyze and hopefully improve) the specific movements of a football

player (or other sportsperson) during a game. A gait analysis can be

monitored for early diagnosis of potential problems related to such.

 PoseNet vs. OpenPose
You can enable human pose estimation on computing devices by utilizing

various libraries such as PoseNet developed by Ross Wightman and

from Carnegie Mellon University. PoseNet is built to run on lightweight

computing devices such as browsers and mobile phones, whereas

OpenPose is much more precise and intended to be run on graphical

processing unit (GPU)-powered systems.

Note It is more expensive and complex (including less flexibility)
to run AI/ML programs on GPU-powered systems as compared to on
non-GPU electronic devices.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

67

PoseNet output for a 2D system is processed fast, but it may miss a

number poses throughout the video, which you can tell by the flickering

and disappearing skeleton. Nevertheless, if you really need to use

PoseNet on resource-constrained devices such as on a mobile phone or

an embedded system with less computational resources (e.g., limited

processing capability, less storage, and fewer communication workloads

and fast response), PoseNet is the right choice. Human pose estimation

using PoseNet will enable the user to make smart decisions in near real

time when the AI methods are executed on the browser or the lightweight

computational resources.

You can improve PoseNet estimation accuracy with better data

processing procedures at the web application to generate better inferences.

 Human Pose Estimation Using Neural
Networks
In the literature, numerous human pose estimation methods use neural

network philosophy proposed by various research groups. The following

sections briefly describe the evolution of the human pose estimation

methods.

 DeepPose: Human Pose Estimation via Deep
Neural Networks
DeepPose was the main significant paper that applied deep learning

(DL) to human pose assessment. It accomplished state-of-the-art (SOTA)

execution and beat existing models. In this methodology, pose assessment

is detailed, like a convolutional neural network (CNN)-based relapse issue

toward body joints. In addition, the method utilizes a course of regressors

to refine the posture appraisals and to improve gauges. One significant

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

68

thing this methodology does is explain posture in comprehensive design

(i.e., whether certain joints are covered up; they can be assessed if the

posture is contemplated comprehensively). The paper contends that

CNNs typically give possible poses and show reliable results. The xy

coordinate values generated from the method specified by the authors are

not accurate as it shows the multifaceted (multiple set of values) that are

inadequate to specific joints of human body.

 Efficient Object Localization Using Convolutional
Networks
This approach creates heatmaps by running a picture through various

resolutions to capture the joints at an assortment of scales. The yield is a

discrete heatmap rather than a nonstop relapse. A heatmap predicts the

likelihood of the common happening at every pixel. This yield model is

useful, and a number of the papers that followed anticipated heatmaps

rather than direct regression. The authors have considered the joint

utilization of a CNN and graphical model.

 Convolutional Pose Machines
Convolutional pose machines are differentiable, and their multistage

engineering can be prepared start to finish. They give a successive forecast

system to learning-rich specific spatial models and work very well for

human posture. One real inspirations of this paper is to learn long-range

spatial connections, and they show this can be accomplished by utilizing

deep multistage networks. The paper utilized moderate management after

each phase to avoid the issue of evaporating inclinations, which is a typical

issue for profound multistage organizations.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

69

 Human Pose Estimation with Iterative Error
Feedback
This method directly foresees the outcomes in one go. The method

utilize a self-adjusting model that logically changes an underlying

arrangement by taking care of feedback data, and this cycle is called

iterative error feedback.

 Stacked Hourglass Networks for Human Pose
Estimation
A stacked hourglass network is a novel and intuitive design that beats

every past technique. It is called a stacked hourglass network because

the organization comprises steps of pooling and upsampling layers

(resembling an hourglass), and these are stacked together. The plan of the

hourglass is driven by the need to catch data at each scale.

 Simple Baselines for Human Pose Estimation
and Tracking
Earlier methodologies work well overall but are unpredictable.

Accomplished the best in class at mean average precision (mAP) of

73.7% on Common Objects in Contest (COCO) dataset. The organization

structure is straightforward and comprises a residual neural network

(ResNet) and a few deconvolutional layers toward the end.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

70

 Deep High-Resolution Representation Learning
for Human Pose Estimation
The high-resoulution network model is better than the previous methods

with respect to the single-person keypoint detection and multiperson pose

estimation using the particular dataset. This method works well when

compared to the previous mentioned methods.

This section briefly described the most outstanding and influential

models in human pose estimation. The approaches were based on the DL

methodology with varying percentages of accuracy.

 Using the ml5.js:posenet() Method
Although various methods enable us to estimate human pose keypoints,

Dan Oved’s PoseNet model does the real- time human pose estimation on

the browser and resource-constrained computing devices. This section

outlines his steps for collecting human pose estimation using the ml5.

posenet method.

Note we will add the instructions (code) step by step in the 1.js
script file to capture the video and identify the human pose keypoints
so that you can better understand the development of the browser
application.

Step 1A. Include ml5.js and p5.js libraries for the PoseNet model

(Listing 3-1a).

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5

71

Listing 3-1a. 1.html

<html>

<head>

<h1> <center> Demo#1</center></h1>

<h2> <center> Posenet using m15.posenet</center> </h2>

<h3> <center> The standard ML5.JS and P5.JS libraries are

included </center> </h3>

<script src="p5.js"</script>

<script src="m15.min.js"></script>

<meta charset="utf-8">

<link rel="stylesheet" type="text/css" href="style.css">

</head>

<body>

<script src="1.js"> </script>

</body>

</html>

Step 1B. See the 1.js script (Listing 3-1b) to capture the video. Main file

(1.html) programming instructions remain the same.

Listing 3-1b. 1.js

Let video;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

}

Function draw() {

 Image(video,0,0);

}

Figure 3-1 shows the corresponding output for the code. You must click

the Allow button to view the face.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

72

Figure 3-1. Screenshot (output) related to the 1.html and 1.js
script to capture the browser webcam video after clicking the Allow
button. The two videos depict i) the original video capture and ii) the
captured video drawn onto the canvas

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

73

Step 2. Add the video.hide() function to hide the captured video and

show only the canvas video in the 1.js script (Listing 3-2). Figure 3-2 shows

the corresponding output.

Listing 3-2. Adding video.hide()

Let video;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

 video.hide();

}

Function draw() {

 Image(video,0,0);

}

Figure 3-2. Screenshot (output). Display only the captured video on
the canvas; the original video is hidden

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

74

Step 3. Invoke the ml5.poseNet() method in the 1.js script (Listing 3-3).

Figure 3-3 shows the output.

Listing 3-3. Invoking ml5.poseNet()

Let video;

Let posenet;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

}

Function modelready() {

 Console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

75

Step 4. Real-time poses are estimated for this poseNet.on() method

in the 1.js, (i.e., listening to the new poses) (Listing 3-4). Figure 3-4 shows

the corresponding output.

Listing 3-4. poseNet.on()

Let video;

Let posenet;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

 video.hide();

 posenet=m15.poseNet(video.modelready);

 posenet.on('pose',showPoses);

}

Figure 3-3. Screenshot (output) on calling the method ml5.poseNet().
The model is loaded onto the browser application, as shown on the
browser console

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

76

Function showPoses(poses) {

 console.log(poses)

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

}

Step 5. Add function showPoses() in the 1.js script file so that the

data related to the poses is stored in the corresponding tensors, which

are shown in the browser console (Listing 3-5). Figure 3-5 shows the

corresponding output.

Figure 3-4. Screenshot (output) once the PoseNet model is loaded
and poseNet.on() listens to the new poses of the user

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

77

Listing 3-5. Adding showPoses()

Let video;

Let posenet;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

 video.hide();

 posenet=m15.poseNet(video.modelready);

 posenet.on('pose',showPoses);

}

Function showPoses(poses) {

 console.log(poses)

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

78

Step 6. Add an array of poses collected in the object poses in 1.js script

file (Listing 3-6). Figure 3-6 shows the corresponding output.

Listing 3-6. Array of Poses Collected in the Object Poses

Let video;

Let posenet;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

 video.hide();

 posenet=m15.poseNet(video.modelready);

 posenet.on('pose',showPoses);

}

Function showPoses(poses) {

 console.log(poses)

}

Figure 3-5. Screenshot (output). Data as collected in the tensors is
shown in the browser console

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

79

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

}

Step 7. poseNet.on () returns an array with a single object of

several poses (keypoints), and recognizes the pose such as nose x and y

coordinates by altering the function draw() in 1.js script file (Listing 3-7).

Figure 3-7 shows the corresponding output.

Listing 3-7. Altering the draw() Function by Adding the ellipse

Method to Display the Specific Keypoints

Let video;

Let posenet;

Figure 3-6. Screenshot (output). An array of poses as collected in the
object poses is shown in the browser console

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

80

Let pose;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

posenet.on('pose',showPoses);

}

Function showPoses(numberofposes) {

console.log(numberofposes);

if(numberofposes.length>0)

{

 Pose=numberofposes[0].pose;

}

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

 If(pose) {

fill(255,0,0);

ellipse(pose.nose.x,pose.y,64);}

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

81

Step 8. Add instructions (code) in the 1.js script file draw() function

to recognize two different human poses (keypoints): nose and ear

(Listing 3-8). Figure 3-8 shows the corresponding output.

Listing 3-8. Highlighting the Nose and Ear

Let video;

Let posenet;

Let pose;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

posenet.on('pose',showPoses);

}

Figure 3-7. Screenshot (output) showing a single object with several
poses and recognizing the specific pose (keypoint): nose x and y
coordinates with a red ellipse

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

82

Function showPoses(numberofposes) {

console.log(numberofposes);

if(numberofposes.length>0)

{

 Pose=numberofposes[0].pose;

}

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

 If(pose) {

fill(255,0,0);

ellipse(pose.nose.x,pose.nose.y,64);

ellipse(pose.leftEar.x.pose.leftEar.y,64);

ellipse(pose.rightEar.x.pose.rightEar.y,64);

}

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

83

Step 9. Modify the draw() function in the 1.js script file to distinguish

poses (keypoints) with multiple colors (Listing 3-9). Figure 3-9 shows the

corresponding output.

Listing 3-9. Adding Multiple Colors

Let video;

Let posenet;

Let pose;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

posenet.on('pose',showPoses);

}

Figure 3-8. Screenshot (output) to recognize two different poses
(keypoints): nose and ear

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

84

Function showPoses(numberofposes) {

console.log(numberofposes);

if(numberofposes.length>0)

{

 Pose=numberofposes[0].pose;

}

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

 If(pose) {

fill(255,0,0);

ellipse(pose.nose.x,pose.nose.y,64);

ellipse(pose.leftEar.x.pose.leftEar.y,32);

ellipse(pose.rightEar.x.pose.rightEar.y,32);

}

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

85

Figure 3-9. Screenshot (output) to distinguish poses with multiple
colors

Step 10. Change the recognized poses’ size and shape by modifying the

instructions in the 1.js script file draw() function (Listing 3-10). Figure 3-10

shows the corresponding output.

Listing 3-10. Changing Size and Shape

Let video;

Let posenet;

Let pose;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

posenet.on('pose',showPoses);

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

86

Function showPoses(numberofposes) {

console.log(numberofposes);

if(numberofposes.length>0)

{

 Pose=numberofposes[0].pose;

}

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

 If(pose) {

fill(255,0,0);

ellipse(pose.nose.x,pose.nose.y,32);

fill(255,255,0);

ellipse(pose.leftEar.x.pose.leftEar.y,32);

ellipse(pose.rightEar.x.pose.rightEar.y,32);

let lEye=pose.leftEye;

let rEye=pose.rightEye;

let d;

d=dist(rEye.x,rEye.y,lEye.x,lEye.y);

print(d);

}

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

87

Step 11. Find the distance between the recognized poses by modifying

the 1.js script file draw() function (Listing 3-11). Figure 3-11 shows the

corresponding output.

Listing 3-11. Finding the Distance Between the Recognized Poses

Let video;

Let posenet;

Let pose;

Function setup() {

 createCanvas(640,480);

 video=createCapture(VIDEO);

video.hide();

posenet=m15.poseNet(video.modelready);

posenet.on('pose',showPoses);

}

Figure 3-10. Screenshot(output). Changing the size and shape of the
recognized poses

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

88

Function showPoses(numberofposes) {

console.log(numberofposes);

if(numberofposes.length>0)

{

 Pose=numberofposes[0].pose;

}

}

Function modelready() {

 console.log('posenet model is ready');

}

Function draw() {

 Image(video,0,0);

 If(pose) {

fill(255,0,0);

ellipse(pose.nose.x,pose.nose.y,32);

fill(255,255,0);

ellipse(pose.leftEar.x.pose.leftEar.y,32);

ellipse(pose.rightEar.x.pose.rightEar.y,32);

let lEye=pose.leftEye;

let rEye=pose.rightEye;

let d;

d=dist(rEye.x,rEye.y,lEye.x,lEye.y);

print(d);

for (let i=0;i<pose.keypoints.length;i++) {

 let x=pose.keypoints[i].position.x;

 let y=pose.keypoints[i].position.y;

 fill(0,250,0);

 ellipse(x,y,20,20);

 }

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

89

for(let i=0;i<line_connecting_points.length;i++){

 let m=line_connecting_points[i][0];

 let n=line_connecting_points[i][1];

 strokeWeight(2);

 stroke(250);

 line(m.position.x,m.position.y,n.position.x,n.

position.y);

 }

}

}

Now that you understand how to identify the keypoints using the

PoseNet model, the focus turns to how to collect and store the data for

recognizing the patterns of data through various programming structures

for realizing multiple applications.

Figure 3-11. Screenshot (output). Finding the distance between the
recognized poses and displaying them on the browser console

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

90

 Input, Output, and Data Structure
of the PoseNet Model
This section covers the various functions available in the program when

the input is video data. This will help you to understand various functions

(methods) that are available to render (load) the video on the browser and

to identify the various poses whenever any movement (change) occurs.

PoseNet enables you to gauge either a solitary posture (i.e., a single

pose of an individual) or various stances of multiple persons in a picture

or video, which means that a rendition of the calculation can distinguish

just a single individual in a picture/video and that one form can identify

numerous people in a picture/video.

 Input
An input, in this case, is an HTML video or an image element (picture) or

a p5 image/video element of the page. If specific input is not provided,

PoseNet defaults to the browser’s webcam as the input. The following code

snippet shows how to read the input (poses) of an individual:

const video = document.getElementById("video");

// Create a new myposeNet method

const myposeNet = ml5.poseNet(video, modelLoaded);

// When the model is loaded in the browser

function modelLoaded() {

 console.log("Model Loaded!");

}

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

91

The various parameters for the PoseNet method are as follows:

• ml5.poseNet(video[Optional], type[Optional],

callback[Optional])

• ml5.poseNet(video[Optional], options[Optional],

callback[Optional])

• ml5.poseNet(callback[Optional],

options[Optional])

Table 3-1 describes the arguments (parameters) for the ml5.poseNet

method.

Table 3-1. ml5.poseNet Arguments

Video
(Optional)

A video element(HTML or p5)

type
(Optional)

Estimation for single or multiple people
poses.

Callback
(optional)

A method to run once the model is loaded
on the browser. Otherwise, a promise
will be executed once the model has
loaded.

Options
(optional)

To specify the model accuracy and
performance.Values to these parameters
are set accordingly: imageScaleFactor,
outputStride,flipHorizontal,minConfidence,
maxPoseDetections,scoreThreshold,
nmsRadius,detectionType,multiplier

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

92

 Output
When the pose of an individual is loaded on the browser (i.e., the

browser webcam reads the video stream data), the corresponding poses

(keypoints) are given as the results (output) by the function poseNet().

The results (outputs) are then passed to the temporary program variable

myposes, as shown here:

// Listen to new 'pose' events when there are changes // in the

orientation of the poses.

myposeNet.on("pose", function(results) {

 myposes = results;

});

 .on() Function
The .on ('pose', function(results)) method triggers an event

whenever a new pose is detected. The method continuously listens for a

change in the poses over the video frames. The function (results) returns

the results in an array of objects consisting of pose recognitions.

 Summary
This chapter showed you step by step how to depict the real-time human

pose estimation in the browser using Dan Oved’s PoseNet model.

You learned about PoseNet model intricacies such as what a pose

contains: pose confidence score, an array of 17 keypoints, and each

keypoint in turn consisting of keypoint position and keypoint confidence

score along with the input image space.

This chapter also covered the programming constructs required to

process the collected keypoints’ data. In the following chapters, you will

learn about programming skills required to develop multiple applications

such as human pose classifications and gait analysis.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

93

 References
https://ml5js.org/reference/api- PoseNet/

https://github.com/ml5js/ml5- library/tree/

release/src/PoseNet

https://parleylabs.com/2020/01/05/

exploration-pose-estimation- with- openpose-and-

posenet/#:~:text=PoseNet%20is%20built%20to%

20run,see%20the%20performance%20benchmarks%

20below.&text=Our%20first%20look%20was%20on,

from%20both%20OpenPose%20and%20Posenet

Toshev, A., and C. Szegedy, “DeepPose: Human

Pose Estimation via Deep Neural Networks.”

2014 IEEE Conference on Computer Vision and

Pattern Recognition, pp. 1653-1660, doi: 10.1109/

CVPR.2014.214. Columbus, OH, 2014.

Tompson, J., R. Goroshin, A. Jain, Y. LeCun, and

C. Bregler, “Efficient Object Localization Using

Convolutional Networks.” 2015 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR),

pp. 648-656, doi: 10.1109/CVPR.2015.7298664.

Boston, MA, 2015.

Carreira, J., P. Agrawal, K. Fragkiadaki, and J. Malik,

“Human Pose Estimation with Iterative Error

Feedback.” 2016 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pp. 4733-

4742, doi: 10.1109/CVPR.2016.512. Las Vegas, NV,

2016.

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

https://ml5js.org/reference/api-PoseNet/
https://github.com/ml5js/ml5-library/tree/release/src/PoseNet
https://github.com/ml5js/ml5-library/tree/release/src/PoseNet
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run
https://parleylabs.com/2020/01/05/exploration-pose-estimation-with-openpose-and-posenet/#:~:text=PoseNet is built to run

94

Newell A., K. Yang K., and J. Deng J. “Stacked

Hourglass Networks for Human Pose Estimation.”

In: Leibe B., J. Matas, N. Sebe, and M. Welling (eds).

Computer Vision – ECCV 2016. Lecture Notes in

Computer Science, vol 9912. Springer Verlag, 2016.

Xiao, Bin, Haiping Wu, and Yichen Wei. Simple

Baselines for Human Pose Estimation and Tracking.

Springer International Publishing, 2018.

https://doi.org/10.1007/978- 3- 030- 01231- 1_29,

Computer Vision – ECCV 2018

Sun, K., B. Xiao, D. Liu, and J. Wang. (2019a).

Deep High Resolution Representation Learning

for Human Pose Estimation. In CVPR: https://

openaccess.thecvf.com/content_CVPR_2019/

papers/Sun_Deep_High-Resolution_

Representation_Learning_for_Human_Pose_

Estimation_CVPR_2019_paper.pdf

https://zhangtemplar.github.io/pose/

https://nanonets.com/blog/human-pose-

estimation-2d-guide/

ChAPter 3 hUMAn Pose estIMAtIon In the Browser

https://doi.org/10.1007/978-3-030-01231-1_29
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://openaccess.thecvf.com/content_CVPR_2019/papers/Sun_Deep_High-Resolution_Representation_Learning_for_Human_Pose_Estimation_CVPR_2019_paper.pdf
https://zhangtemplar.github.io/pose/
https://nanonets.com/blog/human-pose-estimation-2d-guide/
https://nanonets.com/blog/human-pose-estimation-2d-guide/

95© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_4

CHAPTER 4

Human Pose
Classification
This chapter covers various human pose estimation experiments. In the

preceding chapter, you learned the basics of human pose estimation in the

browser.

This discussion first answers why we need human pose estimation in

the browser, and then the discussion turns to various artificial intelligence

(AI) and machine learning (ML) classification techniques that can be

executed in the browser.

The chapter also provides a high-level overview of the open-source

JavaScript (JS) library TensorFlow.js. You will learn how to use it to

implement and deploy deep learning (DL) systems in browsers. The

discussion covers the TensorFlow.js framework’s architecture and its

building-block tensors and includes two practical examples of using

the library to run neural network programs on the browser. Note that

TensorFlow.js is a library for ML in JS that enables you to develop ML

models in JS and use ML directly in the browser or Node.js.

The chapter also includes practical examples that cover detecting the

keypoints of an individual through browser webcams and locally stored

pictures (images).

https://doi.org/10.1007/978-1-4842-6843-8_4#DOI

96

 Need for Human Pose Estimation
in the Browser
Human pose estimation is one task required for an individual to assess

the human pose classifications to predict the abnormalities that may

arise soon. The human poses evaluation will indicate an individual’s

classification levels in performing his or her day-to-day activities. People

prefer to have their poses computed without losing their privacy; hence,

the human pose computations are preferred on the client side rather than

on the server side of the data collection. So, the human pose classification

(determination) with the help of AI methods is to be performed on the

client side (i.e., at the browser application).

The need for ML techniques for the estimation of human poses and to

evaluate the performance of the classification in the browser is as follows:

• Privacy: Provision for executing ML methods and the

user data at the browser will ensure that data does

not move to the servers. Data related to sensitive

documents, medical application data such as user

identification, and domain-specific user text will be

processed at the client (users) end only. Thus, user

privacy is maintained by implementing ML methods at

the client application itself (i.e., at the browser).

• Sharing of data (distribution) across several software

not required: The reliance of data to be executed on

several software/tools can be avoided. There is no

requirement to install additional software/tools. The

application will be executed at the user end, and

therefore navigation to several methods will be easy.

Chapter 4 human pose ClassifiCation

97

• Low latency: ML models can be optimized for efficient

storage and speed to run on resource-constrained

devices very efficiently. Therefore, wait time (round-

trip time in the client/server model web application)

for server responses can be lessened/avoided.

Applications run faster if they execute at the client side

only.

• Reliability: Reliability issues can be avoided because

there would be no intermittent connectivity steps. The

data is not transmitted to another location (server).

Therefore, the data is very reliable to be processed at

the client.

• User interactivity: Today’s technological browser is

integrated with the input and output devices such

as cameras and screens. This integration supports

rich user interactive experiences. ML can amplify

user interactivity easily and, especially, in real-time

operations.

Also, executing ML methods (models) on the browsers (at the client

side) is appropriate for tasks such as transfer learning, parameter tuning

for existing models, and output interpretation.

 ML Classification Techniques
in the Browser
Neural network concepts are a set of ML methods/algorithms that behave

similarly to how the brain works, using an artificial neurons structure.

A neural network is one of several ML methods that can help to solve

classification problems. Its novel quality is in its capacity to make detailed

Chapter 4 human pose ClassifiCation

98

forecasts work powerfully and to imitate human speculation within

a reasonable time of execution. This chapter does not go into neural

networks in detail, but you will learn the basics of neural networks so that

you have a better understanding of the problems presented.

There are numerous powerful ways to classify entities automatically.

Application requirements determine the ideal choice for solving

classification problems and whether applying neural systems is worth the

effort. Artificial neural networks (ANNs) and deep neural networks (DNNs)

are successful for solving complex dimensionality issues; however, they are

themselves also hypothetically complex. Some profound learning systems

that are DL frameworks, such as TensorFlow, can help you set deep neural

systems quicker, with just a couple of code lines.

Classification models predict the class labels such that it belongs to

a particular entity. A few classifiers are paired, bringing about a yes/no

choice. Others are multiclass, ready to classify a thing into one of a few

classifications. Characterization is another common use case of AI. For

instance, arrangement calculations are utilized to tackle email spam

separating, record classification, discourse acknowledgment, picture

acknowledgment, and penmanship recognition. In this specific situation,

a neural system is a few AI calculations that can help take care of grouping

issues. Its unique quality is its capacity to progressively make detailed

forecasts and imitate human deduction, in a way that no other calculation

can. Neural systems have yielded the best outcomes in numerous cases

related to classification problems.

To understand classification problems with neural systems, it’s

necessary to figure out how other order calculations work and to

understand their exceptional qualities. For some issues, a neural system

might be inadmissible or pointless exercise. For other people, it may be

the central arrangement. ANNs are made up of essential components

called neurons, which take in value, increase it by weight, and run

Chapter 4 human pose ClassifiCation

99

it through a nondirect enactment work. A neural network can learn

the non-linear properties efficiently provided enough computational

capabilities are existing. The system can learn exceptionally complex

capacities. Hypothetically, given enough computational capabilities, a

neural system can learn the state of nearly any capacity.

• ANN Positives: Extremely powerful for solving big

dimensionality problems, ready to manage complex

relations between factors, non-thorough classification

sets, and complex capacities relating to yield factors.

Excellent tuning alternatives to forestall over-and

under-fitting.

• ANN Shortcomings: Hypothetically complicated,

hard to actualize, and requires expertise to tune the

parameters for better classification. Sometimes, require

a large training set of samples for better realization

(to have better output).

Note make your neural network and train it in the program with
the tensorflow.js library. Collect data and prepare your neural
organization or utilize existing information to prepare your neural
organization progressively. When it is prepared, your neural network
will perform the classification or regression tasks accordingly.

Running AI/ML programs completely on the client

side through a browser is an interactive application,

and that is smart. Applications such as human pose

estimation can be realized using the open-source JS

library TensorFlow.js.

Chapter 4 human pose ClassifiCation

100

 ML Using TensorFlow.js
TensorFlow.js is used to characterize, train, and run AI models totally in

the browser by utilizing JS and application programming interface (API)

methods. If you are a JS web developer and new to ML, TensorFlow.js is

an extraordinary way to start learning and developing applications that

incorporate intelligence in the browser. However, if you are an ML designer

and new to JS, the material in this book will give you a speedy primer on

how TensorFlow.js resources will help you develop smart applications.

While developing applications using TensorFlow.js, you might prefer

one the following methods:

• You can import a pretrained model for derivation

(inference). If you have a TensorFlow or Keras existing

model and the model was prepared in the offline mode,

you can change over into TensorFlow.js and load it into

the browser for inference.

• For rapidly developing applications, the transfer

learning method can be appropriate. This method

allows you to use TensorFlow.js to characterize, train,

and run models totally in the browser via JS and layers

of API. If you are acquainted with Keras, the layers of

API should be familiar to transform into a new model.

• Web developers can use TensorFlow.js to describe,

train, and execute the models entirely in the browser

using the JS features.

TensorFlow.js is a JS library system for AI and replaces deeplearn.

js, which is presently called TensorFlow.js Core. TensorFlow.js also

incorporates a Layers API, a higher-level library for building AI models

that utilize Core (e.g., devices for porting TensorFlow and Keras models).

Figure 4-1 shows an overview of TensorFlow.js.

Chapter 4 human pose ClassifiCation

101

You can create/build models legitimately in a browser. In addition,

you can import existing previously prepared models from Python and

retrain them also. If you are already working under JS stack with Not only

SQL (NoSQL) and JavaScript Object Notation (JSON), a use case that

you should consider is utilizing TensorFlow.js to builds models using a

browser. TensorFlow.js incudes Keras API, a simple software tool used to

build AI/ML learning models. It likewise incorporates a lower-level API,

previously called deeplearn.js, which can be used for direct variable-based

math and programmed separation. The Ops API supports eager execution.

Underneath everything, TensorFlow.js is fueled by WebGL, a JS API for

delivering 2D and 3D illustrations inside any Internet browser without the

plug-in modules.

Figure 4-1. Overview of TensorFlow.js

Chapter 4 human pose ClassifiCation

102

Note tensorflow eager execution is an imperative programming
environment that evaluates operations immediately, without building
graphs. instead, operations return concrete values instead of
constructing a computational graph to run later. this makes it easy
to get started with tensorflow and debug models. tf Cpu (central
processing unit), tf Gpu (graphical processing unit), and tf tpu
(tensor processing unit) are the distribution strategies wherein
models can be executed on the respective devices.

If there is limited information for the neural network learning

process, tools such as Tensorflow are computationally efficient for better

realization. Suppose there is a requirement for large data sets processing,

then the Compute Unified Device Architecture (CUDA) systems such as

NVIDIA GPUs/Google TPUs or Field Programmable Gate Arrays (FPGAs)

are very much required. Basically, Tensorflow tools are based on

JavaScript (JS) programming execution. It will support GPU for efficient

data processing through WebGL API which is better than CUDA systems.

TensorFlow.js is a library for creating and preparing AI models in JS

and sending them to a program or on Node.js. You can utilize existing

models, convert Python TensorFlow models, use move figuring out how to

retrain existing models with your information, and create models without

any preparation. The TensorFlow.js Node.js condition underpins utilizing

an introduced work of Python/C TensorFlow as a back end, which may

utilize the machine’s accessible equipment increasing speed, for instance,

CUDA. There is likewise a JS-based back end for Node.js. However, its

capacities are restricted. TensorFlow.js has a few back closures with

various attributes. The WebGL back end provides GPU uphold utilizing

WebGL surfaces for capacity and WebGL shaders for execution, and it can

be up to 100x quicker than the direct CPU back end. WebGL does not need

CUDA, so it can exploit whatever GPU is available.

Chapter 4 human pose ClassifiCation

103

The WebAssembly (WASM) TensorFlow.js back end for the program

utilizes the XNNPACK library for upgraded CPU execution of neural

organization administrators. The WASM back end is commonly a lot

quicker (10x to 30x) than the JS CPU back end, but it usually is slower than

the WebGL back end (aside from tiny models). Your mileage may vary, so

test both the WASM and WebGL back closures for your models on your

equipment.

Example: Basic usage of TensorFlow.js, consider a linear regression

problem with salary and experience attributes relationship, as shown in

Figure 4-2.

We can infer from Figure 4-2 the y value for a particular x value even

if we do not have the exact data. In ML, we can train a model based on

the input data, and we do this in a browser with the help of JS features.

Figure 4-3 shows the trend line and the relationship between x and y.

Figure 4-2. Linear regression problem (years of experience vs. salary)

Chapter 4 human pose ClassifiCation

104

Listings 4-1a and 4-1b provide the corresponding code using

TensorFlow.js to illustrate the preceding regression problem. The main file

includes the TensorFlow.js and call to the corresponding script file.

Listing 4-1a. TF_JS_1.html

<html>

<head>

<script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@2.0.0/dist/tf.min.js">

</script>

</head>

<body>

<script src="TF_JS_1.js"></script>

 <div id="Predicted_Y_Value"></div>

</body>

</html>

Figure 4-3. Relationship between x and y (years of experience vs.
salary)

Chapter 4 human pose ClassifiCation

105

Listing 4-1b. TF_JS_1.js

async function learnLinear() {

 const model= tf.sequential();

 model.add(tf.layers.dense({units: 1,inputShape: [1]}));

 model.compile({

 loss: 'meanSquaredError',

 optimizer: 'sgd'

 });

 const

 await model.fit(xs,ys,{epochs: 400});

 document.getElementById('Predicted_Y_Value').

innerText=model.predict(tf.tensor2d([11],[1,1]));

 }

learnLinear();

Figure 4-4 shows the screenshot (output) of the regression expression.

Chapter 4 human pose ClassifiCation

106

 Changing Flat File Data into TensorFlow.js
Format
Consider the iris dataset, which consists of data items with 15 samples

(rows) related to various types of flowers. The iris dataset is of the JSON

format, as shown in Figure 4-5. To convert the data (i.e., a flat file(Array)

into TensorFlow.js format), the tf.tensor2D() function helps in creating

data that TensorFlow.js can understand. The function loadJSON() in the

setup() function will read the iris.json data into the model of the browser

application. The browser graphical user interface (GUI) can be customized

to interact with the user to the inputs such as the epochs and other

parameter values.

Basically, the JSON file contains the attribute-value pair for various

instances of the iris flowers. Listing 4-2a is the main file that invokes the

corresponding script file consisting of operational functionalities given in

Listing 4-2b.

Figure 4-4. Screenshot of the source code and the corresponding
output related to the regression problem

Chapter 4 human pose ClassifiCation

107

The function setup() in the script file is responsible for setting the size

of the canvas window for user interactive operations, loading the JSON

data file for processing, and providing the user interactive buttons to start

the model.

Loading the JSON data file contents into the user-defined temporary

variables is done by the function loaddata(). The temporary data held in

the user-defined variable is converted into the tensor data structures by

the function convertToTensor().

After the neural network learning process is completed (i.e. after the

execution of trainModel() and nn_model() functions) the model data

is stored in the tensors data structure. The model gets learned with the

corresponding data present in the tensors that is executed by the neural

network configuration with the help of trainModel() and nn_model()

functions.

Note You can download the iris.json dataset from https://www.
kaggle.com/rtatman/iris-dataset-json-versio.

Figure 4-5. Iris dataset in the JSON format

Chapter 4 human pose ClassifiCation

https://www.kaggle.com/rtatman/iris-dataset-json-versio
https://www.kaggle.com/rtatman/iris-dataset-json-versio

108

Listing 4-2a. TensorFlow.js. index.html function setup() to Load

the .json Data

<!DOCTYPE html>

<html>

<head>

 <title>Iris Dataset Classification</title>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@1.0.0/dist/tf.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs-vis@1.0.2/dist/tfjs-vis.umd.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/p5@1.1.9/lib/

p5.js"></script>

 <script src="script10.js"></script>

</head>

<body>

</body>

</html>

Listing 4-2b. script10.js

let input, button

let IRIS_NUM_CLASSES =3

let nn_model;

let train_x;

let train_y;

let epoch_val;

function setup()

{

 createCanvas(710, 400);

 // Loading Data

 loadJSON('iris.json',loadData)

Chapter 4 human pose ClassifiCation

109

 // GUI Form Elements

 fill(0);

 textSize(30)

 text('Train Model',10,50)

 textSize(18)

 text('Train Epochs:',10,90)

 input = createInput();

 input.position(140, 80);

 button = createButton('Train Model From Scratch');

 button.position(20,110, 200);

 let col = color(255,127,80)

 button.style('background-color', col);

 button.size(200,40)

 button.mousePressed(greet);

 }

//The functions loaddata() and converttoTensor()to //convert

the data into tensorflow objects(tensor2D() //objects):

function loadData(data)

{

 const values = data.map(item => ({

 a: item.sepalLength,

 b: item.sepalWidth,

 c: item.petalLength,

 d: item.petalWidth,

 label: item.species

 }));

 const dataset = values.filter(item => (

 item.a != null && item.b != null && item.c != null &&

item.d != null && item.label != null

));

Chapter 4 human pose ClassifiCation

110

 const {inputs, labels} = convertToTensor(dataset);

 train_x = inputs

 train_y = labels

 console.log(train_x.shape[0])

}

function convertToTensor(dataset)

{

 return tf.tidy(() => {

 tf.util.shuffle(dataset);

 const inputs = dataset.map(item => [item.a, item.b, item.c,

item.d])

 const labels=[];

 for(i=0;i<dataset.length;i++)

 {

 if(dataset[i].label == 'setosa')

 labels.push(0)

 else if(dataset[i].label == 'versicolor')

 labels.push(1)

 else if(dataset[i].label == 'virginica')

 labels.push(2)

 }

 const inputTensor = tf.tensor2d(inputs, [inputs.length, 4]);

 const labelTensor = tf.oneHot(tf.tensor1d(labels).toInt(),

IRIS_NUM_CLASSES);

 const inputMax = inputTensor.max();

 const inputMin = inputTensor.min();

 const normalizedInputs = inputTensor.sub(inputMin).

div(inputMax.sub(inputMin));

 return {

 inputs: normalizedInputs,

 labels: labelTensor,

Chapter 4 human pose ClassifiCation

111

// Return the min/max bounds so we can use them //later.

 inputMax,

 inputMin,

 }

 });

}

//Function iris_nn_model() to invoke the //createmodel()and

train the neural network model

function iris_nn_model()

{

 epoch_val = int(input.value())

 if(epoch_val>0)

 {

 nn_model = createModel()

 tfvis.show.modelSummary({name: 'Model Summary'},

nn_model);

 if(train_x.shape[0] >0 && train_y.shape[0] >0)

 trainModel(nn_model)

 }

}

// Function createModel() tf.sequential(),adding //input layers

through tf.layers.dense and //trainModel() with the model.fit()

methods

function createModel()

{

 const model = tf.sequential();

 model.add(tf.layers.dense({inputShape: [4], units: 50,

useBias: true, activation:'relu'}));

 model.add(tf.layers.dense({units: 20, activation: 'relu'}));

Chapter 4 human pose ClassifiCation

112

 //model.add(tf.layers.dense({units: 10, activation: 'relu'}));

 model.add(tf.layers.dense({units: 3, activation: 'softmax'}));

 return model;

}

async function trainModel(model)

{

 model.compile({

 optimizer: tf.train.adam(),

 loss: tf.losses.softmaxCrossEntropy,

 metrics: ['accuracy'],

 });

 const batchSize = 32;

 const epochs = epoch_val;

 const validationSplit =0.3;

 return await model.fit(train_x, train_y, {

 batchSize,

 epochs,

 validationSplit,

 shuffle: true,

 callbacks: tfvis.show.fitCallbacks(

 { name: 'Training Performance' },

 ['loss', 'val_loss','acc','val_acc'],

 { height: 200, callbacks: ['onEpochEnd'] })

 });

}

Figure 4-6 shows the output related to the training process and the

epoch accuracy using the TensorFlow.js visualization.

Chapter 4 human pose ClassifiCation

113

 Artificial Neural Network Model
in the Browser Using TensorFlow.js

 1. Load or prepare the data.

 2. Set your neural network structure.

 3. Add configuration information to the neural network.

 4. Train your neural organization.

 5. Utilize the prepared model to make an order.

 6. Accomplish something (classification/predicting)

with the outcomes obtained.

The next section provides a brief description of a simple neural

network and then covers the intricacies of developing an ANN through

TensorFlow.js programming principles.

Figure 4-6. Screenshot(output) for the input read from the JSON file

Chapter 4 human pose ClassifiCation

114

 Trivial Neural Network
Consider the neural network organization consisting of one hidden layer

for the function y(output)=x’ (inverse of x) with four neurons in the hidden

layer, two neurons in the input layer, and one neuron in the output layer,

where x is the set of inputs (see Figure 4-7).

Building neural structures is typically done by stacking layers.

TensorFlow.js gives an API to stack various sorts of layers. The number of

various parameters to be considered for configuration is more than you

anticipate. One reason is that this model incorporates weight and bias values.

For the time being, you can consider the inclinations from one layer to

another through the parameters that encourage you to improve models. The

errors continue to be lessened all through the process of training; it implies

that our model is getting learned.

Input Layer

Hidden Layer

Output Layer

Figure 4-7. Basic structure of an ANN

Chapter 4 human pose ClassifiCation

115

 Example 1: Neural Network Model
in TensorFlow.js
Listing 4-3a is in the main index file, and Listing 4-3b is the script file that

includes the data structures to hold the data in the tensors, setup, and

configuration of the neural network model to realize the functionality of

the inverse operation.

Listing 4-3a. Demo1.html (Main File)

<!DOCTYPE html>

<html>

<head>

 <title>A simple Neural Network model </title>

 <!-- Import TensorFlow.js -->

 <script src="https://cdn.jsdelivr.net/npm/@tensorflow/

tfjs@1.0.0/dist/tf.min.js"></script>

 <!-- Import the main script file -->

 <script src="script.js"></script>

</head>

<body>

<h2> Neural Network to demonstrate y=x' (Y is equal to inverse

of X)

</body>

</html>

Listing 4-3b. Script.js (Script File)

//Step 1:load data, xs=Input and ys=Output

const xs=tf.tensor2d([[0,0],[0.5,0.5],[1,1]]);

const ys=tf.tensor2d([[1],[0.5],[0]]);

//Step 2: Set your neural network structure

const model =tf.sequential();

Chapter 4 human pose ClassifiCation

116

const confighidden={

 inputShape:[2],

 units:4,

 activation:'sigmoid'

}

const configoutput={

 units:1,

 activation:'sigmoid'

}

const hidden =tf.layers.dense(confighidden);

const output=tf.layers.dense(configoutput);

model.add(hidden);

model.add(output);

//Step 3: add configuration information

const sgdopt=tf.train.sgd(0.1);

const config={

 optimizer:sgdopt,

 loss:'meanSquaredError'

}

//Step 4: Train your neural organization

model.compile(config);

async function train()

{

 for(let i=0;i<5000;i++) {

const response=await model.fit(xs,ys);

console.log(response.history.loss[0]);

} }

Chapter 4 human pose ClassifiCation

117

Step 5 and 6: Utilize the results (prediction)

train().then(() => {

 let outputs=model.predict(xs);

 outputs.print();

 console.log('training complete');

});

Figure 4-8 shows the browser console’s output for the preceding code.

 Example 2: A Simple ANN to Realize the “Not
AND” (NAND) Boolean Operation
Not AND (NAND) Boolean operation rules are simple: Given two Boolean

values (true/false), if only both are true, then return false; otherwise,

return true. The neural network to realize this operation based on the

input values can be demonstrated in applying a sequential model with the

TensorFlow.js script library.

Figure 4-8. Screenshot (output) for the y=x’through ANN using
TensorFlow.js

Chapter 4 human pose ClassifiCation

118

Figure 4-9 shows the basic logical NAND operation, and its

corresponding functionality is shown in the truth table.

The training data for the NAND Boolean operation realization is by using

two arrays, one for the inputs (X0 and X1) and the other for outputs (Y). The

two arrays are the tensors that can be used in the neural network structure:

//Step 1: Load or prepare the data

const xs=tf.tensor2d([[0,0],[0,1],[1,0],[1,1]],[4,2]);

const ys=tf.oneHot(tf.tensor1d([1,1,1,0]).toInt(),2);

So, the shape of the input array is [4,2] because there is an array of

4 values and each array has 2 values. It would be better mentioning the

arrays (input and output) with the appropriate TensorFlow.js functions.

Once the inputs and outputs are defined, the neural system can be

structured in the form of layers. As the data moves forward in one direction

from the input layer to the output layer, we can consider a sequential model

for the neural system structure, as given in the previous example. The

input consisting of X0 and X1 is passed on to the next layer (hidden), which

Figure 4-9. Basic logical NAND gate and its truth table

Chapter 4 human pose ClassifiCation

119

consists of 5 neurons. They are then passed to the output layer consisting

of 2 neurons, which shows us the certainty percentage (a value between 1

and 0) of the related outputs (true or false):

//Step 2: Set up the NN structure
const model =tf.sequential();

const confighidden={
 inputShape:[2],
 units:5,
 activation:'sigmoid'
}

const configoutput={
 units:2,
 activation:'sigmoid'
}

const hidden =tf.layers.dense(confighidden);
const output=tf.layers.dense(configoutput);

model.add(hidden);
model.add(output);

The neural network model can be trained with the optimizer function

Adam along with the loss function of categoricalCrossentropy. This will

enable the model to train by correlating the given input values with the

corresponding output values:

//Step 3: Add configuration parameters to the NN //structure

const admopt=tf.train.adam(0.1);

const config={

 optimizer:admopt,

 loss:'categoricalCrossentropy' }

//Step 4: Train the NN organization

model.compile(config);

Chapter 4 human pose ClassifiCation

120

The training is performed by the .fit() function of the model object.

This method receives the XS and YS training data and the configuration

object. The config includes epochs. The .fit() method returns a promise

function when the model gets to train. The output data is retrieved by

calling the async call to the training method:

async function train()

{

 for(let i=0;i<200;i++) {

const response=await model.fit(xs,ys);

console.log(response.history.loss[0]);

} }

//Steps 5 and 6: Collect the results

train().then(() => {

 let outputs=model.predict(xs);

 outputs.print();

 console.log('training complete');

});

The output:

Tensor

 [[0, 1],

 [0.0004133, 0.9995866],

 [0.0004822 , 0.9995178],

 [0.9984748, 0.0015252]]

In this example, for the inputs of [0,0],[0,1] and [1,0], the predicted

outputs are [0, 1] , [0.0004153, 0.9995866] and [0.0004822 , 0.9995178]

implies that 0.0% certainty of FALSE and a 99.9% certainty of TRUE;

whereas for the input [1,1], the output is [0.9984748, 0.0015252 implies 99%

FALSE and 0.0% TRUE.

Chapter 4 human pose ClassifiCation

121

Figure 4-10 shows the output in the browser console for the preceding

code.

 Human Pose Classification Using PoseNet
“PoseNet is a vision model” that can be used to gauge the posture of an

individual in a picture or video by assessing where key body joints are

located. See Figure 4-11 for model terminology.

PoseNet does not perceive who is in a picture/video. The estimation

is virtually assessing where human key body joints are located. PoseNet

can be used to assess either a single person’s posture or numerous

stances of people present in a picture/video. The estimation of PoseNet

can distinguish just a single individual in a picture/video and can also

recognize different people in a picture/video. The single-person posture

identifier is quicker and more straightforward, but requires just one subject

be present in the picture. The posture assessment occurs in two stages:

Figure 4-10. Screenshot (output) for the NAND Boolean operation
through ANN using TensorFlow.js

Chapter 4 human pose ClassifiCation

122

 1. An information RGB picture is taken care of through

a convolutional neural system.

 2. Posture estimation is utilized to interpret keypoint

positions and keypoint certainty scores from the

model’s output.

Figure 4-11. Terminology related to PoseNet model

Chapter 4 human pose ClassifiCation

123

 Setting Up a PoseNet Project
 Step 1: Including TensorFlow.js and PoseNet
Libraries in the HTML Program (Main File)
<html>

 <body>

 <!-- Load TensorFlow.js -->

 <script src="https://unpkg.com/@tensorflow/tfjs"></script>

 <!-- Load Posenet -->

 <script src="https://unpkg.com/@tensorflow-models/posenet">

 </script>

 <script type="text/javascript">

 posenet.load().then(function(net) {

 // posenet model loaded

 });

 </script>

 </body>

</html>

Figure 4-12 shows the inclusion of library files in the main file and

the corresponding output in the browser. ml5.js, along with TensorFlow.

js, gives the PoseNet model. A ready-to-use model that has a previously

prepared convolutional neural network (CNN) inside it accepts a picture

as information and yields a keypoint heatmap and the corresponding

vectors.

Chapter 4 human pose ClassifiCation

124

 Step 2: Single-Person Pose Estimation Using
a Browser Webcam
There are two files for the complete code: Demo_3.html (the main web

page to display the output) and Demo_3script.js (the JS code to capture

user video). Demo_3.html is the main page to display the output with the

keypoints. Because of this, the libraries are added in this file:

<html>

<head>

<title> Demo on Posenet Model </title>

<script src="p5.min.js"></script>

<script src="p5.dom.min.js"></script>

<script src="ml5.min.js" type="text/javascript"></script>

</head>

<body>

<h2> Demo of PoseNet ML model in the browser</h2>

<p id='uservideo'> Loading Model....</p>

<script src="Demo_3script.js"> </script>

</body>

</html>

Figure 4-12. Output text rendered on the browser and its console
window as shown after the libraries are loaded in the browser

Chapter 4 human pose ClassifiCation

125

The Demo3_script.js consists of three methods (functions):

 1. function setup(): The initial setup to capture

video using browser webcam and set the user video

at the said location by calling the PoseNet model.

This first function is executed and runs exactly once.

function setup() {

 createCanvas(640,480);

 webcam_output=createCapture(VIDEO);

 webcam_output.size=(width,height);

 myposenet=ml5.poseNet(webcam_output,function(){

 select('#uservideo').html('User Video Loaded')});

 myposenet.on('pose',function(results) {

 poses=results; });

 webcam_output.hide();

}

createCanvas(width, height) of the p5.js library

is to create a window (box) in the browser to display

the output. The size of the window (canvas) is set

with width:640px and height:480px.

createCapture(VIDEO) is used to capture a webcam

feed video and return a p5 object, which is stored

in the user-defined variable webcam_output. The

webcam video is also the same height and width as

the canvas.

poseNet() method creates a new PoseNet model ,

taken as input from the webcam_output, and loaded

into the main .html page to display the user video.

Chapter 4 human pose ClassifiCation

126

poseNet.on() method is an event listener.

Whenever a change occurs in the user position/

video, a new image is given to the myposenet

model. The function poseNet, in turn, calls the

function(results) where the model gives the

keypoints and their corresponding scores. The

results are stored in the array named poses.

The function webcam_output.hide(), hides the

actual webcam output, and only the canvas with the

keypoints as output is displayed on the browser.

 2. function draw (): The function is called and

repeats forever until the browser is closed. This

method in turn calls to identify the keypoints:

function draw() {

 image(webcam_output,0,0,width,height);

 displayKeypoints();

}

The draw () function continuously runs to display

the image in the canvas. It has five parameters,

the webcam_output (video to be displayed), xy

coordinates of the upper-left corner in relation to

the canvas, and width,height to draw the video.

This function calls the displayKeypoints() to

display the recognized keypoints as dots (ellipses).

 3. function displayKeypoints(): This method

displays the recognized keypoints from the array

poses. The identified points are displayed in the

form of circles to show that there is a keypoint:

Chapter 4 human pose ClassifiCation

127

function displayKeypoints() {

 for(let i=0;i<poses.length;i++) {

 let pose=poses[i].pose;

 for(let j=0;j<pose.keypoints.length;j++) {

 let point=pose.keypoints[j];

 fill(0,0,255);

 noStroke();

ellipse(point.position.x,point.position.y,10,10);

 }

 }

}

Figure 4-13 shows the corresponding output.

Single-person pose estimation using a picture: The function setup()

consists of a createImg method to load the image (picture) from the local

hard disk onto the browser for recognizing the keypoints on the image.

Figure 4-14 shows the corresponding output.

Figure 4-13. Single-person pose estimation using a browser webcam

Chapter 4 human pose ClassifiCation

128

The following set of instructions in the functions are to be written in

Demo_4script.js. The main file Demo_4.html remains the same:

function setup() {

 createCanvas(640, 360);

 img= createImg('pics/pexels-derick-santos-2773934.jpg');

 img.size(width, height);

 myposenet = ml5.poseNet(img, function(){

 select('#userpic').html('Image Loaded');

 myposenet.singlePose(img);});

 myposenet.on('pose', function (results) {

 poses = results; });

}

The function draw() contains the methods to display the keypoints

and also to display the skeleton (sketch related to the joining of keypoints)

based on the poses array:

function draw() {

 if (poses.length > 0) {

 image(img, 0, 0, width, height);

 displayKeypoints(poses);

 displaySkeleton(poses);

 }

}

The logic of the displayKeypoints remains the same as discussed in

the previous example. The function displaySkeleton() is to draw the lines

on the current image. draw() does this in an infinite loop, hence showing a

continuous output to the user.

Chapter 4 human pose ClassifiCation

129

 PoseNet Model Confidence Values
The draw function executes and loops through every keypoint that is

part of the body, and the keypoints array poses contains the following

information:

"part": The name of the body part recognized.

"position.x" and "position.y": Values of a point

in the image.

"score": Confidence value indicates the accuracy of

detection.

Figure 4-15 shows the output on the browser console.

Figure 4-14. Display of keypoints from a picture

Chapter 4 human pose ClassifiCation

130

Figure 4-15. Confidence values as seen from the poses in the browser
console

Chapter 4 human pose ClassifiCation

131

We can draw a point if the detection accuracy is greater than a certain

value (e.g., 0.2 or 0.3, or 0.7 and above when you are concerned

about certain points). Figure 4-16 shows the scores related to the

drawn skeleton.

Figure 4-16. Scores of certain threshold values as seen in the poses
object on the browser console

Chapter 4 human pose ClassifiCation

132

Note When storing data using the Json format related to output of
the posenet model, steps are to be written in Demo_4script.js. the
main file Demo_4.html remains the same

To capture the keypoint onto a separate file in terms of JSON format,

you can use the p5 library functions as follows:

Step 1. Declare a global variable:

let writer;

Step 2. In the setup function, initialize the writer variable with the

createWriter along with the file name for storing the data in the JSON

format:

// writer object is initialized with createWriter function

writer=createWriter('data_keypoints.json');

Step 3. In the displayKeypoints method, invoke the function print by

using the writer object:

writer.print("keypoint: "+keypoint.part+" x:"+keypoint.

position.x+" y:"+keypoint.position.y);

Step 4. Define a function for an event to occur such as mouseclick,

so that the event will trigger the print method to store the values of the

continuous draw() method:

function mouseClicked() {

 writer.close();

 }

The output is stored in a .json file, as shown in Figure 4-17.

Chapter 4 human pose ClassifiCation

133

 Summary
This chapter covered the importance of ANN and its strategies in ML

modeling for human pose estimation. Through theory and examples in

this chapter, you learned the basics of ANN and how to realize it in the

browser through TensorFlow.js programming. Such an understanding will

certainly help you to implement various ML models such as PoseNet in the

browser.

PoseNet model as presented in the chapter is an Machine Learning

model that estimates human pose key-points in real-time on a browser.

The corresponding implementation details are presented in this chapter.

This information will serve as the basis to perform complex data

analysis on the browser (as you will learn in the following chapters).

Figure 4-17. Storage of key points data in the .json file

Chapter 4 human pose ClassifiCation

134

 References
https://medium.com/tensorflow/real-time-

human-pose-estimation-in-the-browser-with-

tensorflow-js-7dd0bc881cd5

https://js.tensorflow.org/api/latest/

https://github.com/topics/neural-network

https://github.com/tensorflow/tfjs-models/

tree/master/posenet

https://codelabs.developers.google.com/

codelabs/neural-tensorflow-js/index.

html?index=..%2F..index#0

https://rubikscode.net/2019/03/25/image-

classification-with-tensorflow-js/

https://p5js.org/reference/#/p5/createWriter

https://www.smashingmagazine.com/2019/09/machine-

learning-front-end-developers-tensorflowjs/

https://www.pexels.com/search/running/

https://www.pexels.com/search/jogging/

https://frl.nyu.edu/pose-estimation-in-

javascript-with-tensorflow-js/

https://www.irenealvarado.com/tensorflowjs-posenet

https://learn.ml5js.org/docs/#/reference/

neural-network

https://becominghuman.ai/machine-learning-

in-the-browser-using-tensorflow-js-

3e453ef2c68c

Chapter 4 human pose ClassifiCation

https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://medium.com/tensorflow/real-time-human-pose-estimation-in-the-browser-with-tensorflow-js-7dd0bc881cd5
https://js.tensorflow.org/api/latest/
https://github.com/topics/neural-network
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://github.com/tensorflow/tfjs-models/tree/master/posenet
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://codelabs.developers.google.com/codelabs/neural-tensorflow-js/index.html?index=../..index#0
https://rubikscode.net/2019/03/25/image-classification-with-tensorflow-js/
https://rubikscode.net/2019/03/25/image-classification-with-tensorflow-js/
https://p5js.org/reference/#/p5/createWriter
https://www.smashingmagazine.com/2019/09/machine-learning-front-end-developers-tensorflowjs/
https://www.smashingmagazine.com/2019/09/machine-learning-front-end-developers-tensorflowjs/
https://www.pexels.com/search/running/
https://www.pexels.com/search/jogging/
https://frl.nyu.edu/pose-estimation-in-javascript-with-tensorflow-js/
https://frl.nyu.edu/pose-estimation-in-javascript-with-tensorflow-js/
https://www.irenealvarado.com/tensorflowjs-posenet
https://learn.ml5js.org/docs/#/reference/neural-network
https://learn.ml5js.org/docs/#/reference/neural-network
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c
https://becominghuman.ai/machine-learning-in-the-browser-using-tensorflow-js-3e453ef2c68c

135© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_5

CHAPTER 5

Gait Analysis
Gait analysis refers to the systematic study of animal locomotion, more

specifically the study of human motion, using the eye and the brain of

observers augmented by instrumentation to measure body movements,

body mechanics, and muscle activity. Gait analysis is used to assess and

treat people with medical conditions that affect their ability to walk.

Gait analysis envelopes the measurements (presentation and

investigation of quantifiable boundaries of walks) and interpretation from

the person’s gait patterns.

 Gait Measurement Techniques
Gait analysis involves measurement, where measurable parameters are

introduced, analyzed, and interpreted to conclude the subject’s walking

styles (patterns). Table 5-1 describes pressure measurements, and

Table 5- 2 identifies motion measurements.

Table 5-1. Using Force/Pressure Measurements

Type of Devices Types of Measurements
Foot switches cadence, timing
Glass plate views Pressure distribution
Pressure plates Pressure distribution
Pressure insoles Pressure distribution inside a shoe
Force plates Net force, centre of pressure

https://doi.org/10.1007/978-1-4842-6843-8_5#DOI

136

Table 5-2. Motion Measurements

Device Type Measurement Type

Goniometers Range of motion

Electro goniometers Joint angle at successive instants

Observational gait analysis: Conductive

walkway using video cameras

Stride length, cadence, velocity, and

dynamic base

High-speed video Stop-motion measurements

Accelerometers Accelerations

Gyroscopes Change in orientation

3D marker systems All possible kinematic measures using

• Passive (reflectors) and active (lights)

• Markers on landmarks (joint angles by

“connecting the dots”)

Electromagnetic field All possible kinematic measures

Noisy and qualitative

Indicator of when the muscle is active

Surface Electromyography (sEMG) (most

common):

Cheap, easy

Difficult to interpret because of crosstalk

and noise

Fine-wire and needle EMG:

Penetrate skin

Isolate single muscle

CHAPtER 5 GAIt ANAlySIS

137

Note With regard to the observational gait analysis, the conductive
walkway using video camera technique is considered in this book
to analyze the individual’s gait patterns using a low-cost resource-
constrained computing device such as Raspberry Pi or mobile device.
For understanding, the programs can be run using a laptop browser.

 Gait Cycle Measurement Parameters
and Terminology
Table 5-3 provides the basic terminology and the normal conditions

of the gait cycle measurements. To understand an individual’s walking

patterns through the artificial intelligence (AI) in a browser, the following

conditions will be considered for the normal gait patterns.

CHAPtER 5 GAIt ANAlySIS

138

The design and development of the graphical user interface (GUI)

through a browser in the following section will enable us to measure the

gait parameters of an individual.

 Web User Interface for Monitoring Gait
Parameters
Figure 5-1 shows the initial output of the keypoints, skeleton, and the gait

parameter values using the PoseNet model with the help of the ml5.js

library.

Table 5-3. Basic Gait Cycle Terminiology

Gait Cycle
(Synonym)

Stride

Definition The fundamental unit to describe the gait (i.e., the period
from the time that the heel contacts the ground to the
time that the same heel contacts the ground again)

Operational
definition

The duration from heel strike of one foot to heel strike of
the same foot

Normal gait cycle consist of two phases:

Stance phase Heel strike on the ground toe off
Contact period, midstance period, and propulsive period

Swing phase Toe off heel strike on the ground
Acceleration, mid-swing and deceleration

Step length Average step length = 35.41cm
Stride length Average stride length = 70.82cm
Cadence Average cadence = 111 steps/min
Velocity Average walking speed = 82m/min

Stance Phase (60%) Swing Phase (40%)

Heel Strike Toe Off Heel Strike

CHAPtER 5 GAIt ANAlySIS

139

The source code consists of the following two files:

index.html: The main page to show output, as

shown in Figure 5-1

video-script.js: Our JavaScript (JS) code running

using ml5 library functions

Figure 5-2 shows the corresponding source code screenshot in the

Visual Studio Code.

Figure 5-1. Monitoring of gait parameters on the browser

CHAPtER 5 GAIt ANAlySIS

140

 index.html
This is the front page to display the output (PoseNet skeleton and the

measures parameters). The library ml5.js is added using the script tag in

the head section of the index.html file:

<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js">

</script>

The front page of the user interface is defined in the body section of the

HTML file. Our own JS code is inside the body. Run the index.html file in

the Visual Studio Code to see the output (Listing 5-1).

Note the developed program takes the input from a recorded video
file. If the user wants to provide the input from the browser webcam,
the steps given in Chapter 4 apply to collecting user data.

Figure 5-2. Screenshot of gait parameter monitoring source code

CHAPtER 5 GAIt ANAlySIS

141

Listing 5-1. The body Section of the index.html File

 <body>

 <h1 id="heading">GAIT ANALYSIS</h1>

 <div id="container-1">

 <canvas id="pose-canvas"></canvas>

 <video id="pose-video" loop muted> </video>

 </div>

 <div id="container-2">

 <div id="block-1">

 <h2 id="time">0:0</h3>

 </div>

 <div id="block-2">

 <label for="height">Height:</label>

 <input type="text" id="height" name="height"

placeholder="Your height in cm..">

 <button type="button" id="bttn3">Initialize

Parameters</button>

 </div>

 <table id="block-3">

 <tr>

 <th>Parameters</th>

 <th>Value</th>

 <th>Enable/Disable</th>

 </tr>

 <tr>

 <td>Stride Length (cm)</td>

 <td id="stride"></td>

 <td><button id="bttn4" type="button">Detect

</button></td>

 </tr>

 <tr>

CHAPtER 5 GAIt ANAlySIS

142

 <td>Right Step Length (cm)</td>

 <td id="rs-d"></td>

 <td><button id="bttn5" type="button">Detect</button>

</td> </tr>

 <tr>

 <td>Left Step Length (cm)</td>

 <td id="ls-d"></td>

 <td><button id="bttn6" type="button">Detect</button></td>

 </tr>

 <tr>

 <td>Distance between Knees (cm)</td>

 <td id="knee-d"></td>

 <td><button id="bttn7" type="button">Detect</button></td>

 </tr>

 <tr>

 <td>Distance (cm)</td>

 <td id="distance"></td>

 <td><button id="bttn8"type="button">Start</button></td>

 </tr>

</table>

</div>

<script src="video-script.js"> </script>

</body>

Figure 5-3 shows the initial output when the program is run on the

browser.

CHAPtER 5 GAIt ANAlySIS

143

The head section of the index.html consists of Cascading Style Sheets

(CSS) styles for the front page of the web interface (Listing 5-2).

Listing 5-2. The head Section of the index.html file

<head>

 <style>

 #heading{

 text-align: center;

 }

 #pose-canvas{

 position: absolute;

 }

 #pose-video{

 display: none;

 }

 #container-1{

 float: left;

Figure 5-3. Initial output. The user has to enter the height value and
click appropriate buttons to view the gait parameters

CHAPtER 5 GAIt ANAlySIS

144

 width: 50%;

 padding: 5px;

 }

 #container-2{

 float: right;

 width: 40%;

 padding: 5px;

 }

 #block-1{

 text-align: center;

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 1px;

 margin: 8px 0;

 }

 #block-2{

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 10px;

 }

 #block-2 input[type=text] {

 width: 80%;

 padding: 6px 20px;

 margin: 8px 0;

 display: inline-block;

 border: 1px solid #ccc;

 border-radius: 4px;

 box-sizing: border-box;

 }

 #block-2 button{

 width: 100%;

 background-color: #4CAF50;

CHAPtER 5 GAIt ANAlySIS

145

 color: white;

 padding: 10px 20px;

 margin: 8px 0;

 border: none;

 border-radius: 4px;

 cursor: pointer;

 }

 #block-2 label{

 font-family: "Trebuchet MS", Arial, Helvetica,

sans-serif;

 font-size: 14px;

 }

 #block-3{

 font-family: "Trebuchet MS", Arial, Helvetica,

sans-serif;

 width: 100%;

 margin: 8px 0;

 border-radius: 5px;

 background-color: #f2f2f2;

 padding: 10px;

 }

 #block-3 td, #gait-details th {

 padding: 8px;

 }

 #block-3 td{

 font-size: 14px;

 }

 #block-3 th{

 padding-top: 12px;

 padding-bottom: 12px;

CHAPtER 5 GAIt ANAlySIS

146

 text-align: left;

 }

 </style>

<title>Gait Analysis</title>

<link rel="icon" type="image/png" href="img/uoh.png">

<script src="https://unpkg.com/ml5@0.4.3/dist/ml5.min.js">

</script>

</head>

The Video-script.js file that follows consists of these functions:

• async function main(): This function is executed and

runs only once. When the user interacts by clicking the

buttons to read the respective values from the video

file, the initial setup is done here. The width and height

of the video file are initialized. ml5.poseNet() creates a

new PoseNet model, taking as input from the video file.

• function modelReady():Invokes the draw() function

to identify the keypoints after the video file is read.

video.play() function repeatedly plays the video file.

• function draw(): This function loop forever.invoke

the drawImage() function to display the video image

by image with the width, height, x-position, y-position,

and the video to display. The keypoints and the

skeleton to draw the dots and the lines on the current

image. As the draw() does this in an infinite loop, it

shows the user's continuous output, which makes it

look like a video.

• The measurements (for the keypoints) identified for

walking a certain distance are measured with the help

of the positions of the video’s keypoints.

CHAPtER 5 GAIt ANAlySIS

147

• function document.addEventListener(): Appends an

event listener for events whose type attribute value is

type. The callback argument sets the callback that will

be invoked when the event is dispatched. The callback

function is the main() function.

async function main()

{

const initializeBttn = document.getElementById("bttn3");

const strideBttn = document.getElementById("bttn4");

const rightStepBttn = document.getElementById("bttn5");

const leftStepBttn = document.getElementById("bttn6");

const kneeBttn = document.getElementById("bttn7")

const distanceBttn = document.getElementById("bttn8");

 initializeBttn.onclick = function(){

 initializeParameters(initializeBttn)

 }

// when the user clicks the buttons, appropriate //method is

invoked

 strideBttn.onclick = function(){

 toggleStrideLength(strideBttn)

 }

 rightStepBttn.onclick = function(){

 toggleRightStep(rightStepBttn)

 }

 leftStepBttn.onclick = function(){

 toggleLeftStep(leftStepBttn)

 }

CHAPtER 5 GAIt ANAlySIS

148

kneeBttn.onclick = function(){

 toggleKnee(kneeBttn)

 }

 distanceBttn.onclick = function(){

 toggleDistance(distanceBttn)

 }

const options = {

 imageScaleFactor: 0.3,

 outputStride: 16,

 flipHorizontal: false,

 minConfidence: 0.5,

 maxPoseDetections: 2,

 scoreThreshold: 0.5,

 nmsRadius: 20,

 detectionType: 'multiple',

 multiplier: 0.75,

 }

 video.src = "videos/video5.mp4"; // video File

 video.width = conFigure video.width;

 video.height= conFigure video.height;

 canvas.width = conFigure video.width;

 canvas.height = conFigure video.height;

 console.log("Canvas initialized");

const poseNet = ml5.poseNet(video,options, modelReady);

 poseNet.on('pose',gotPoses);

}

CHAPtER 5 GAIt ANAlySIS

149

function modelReady()

{

 console.log('Model Ready')

 video.play();

 draw();

}

function draw()

{

 if (video.paused || video.ended) {

 return;

 }

 ctx.drawImage(video,0, 0, video.width, video.height)

//For each pose, measure the distance between the //respective

keypoints of the body part.

 if(pose)

 {

 for(i=0;i< pose.pose.keypoints.length;i++)

 {

 let x = pose.pose.keypoints[i].position.x;

 let y = pose.pose.keypoints[i].position.y

 drawPoint(x,y,3,'red')

 }

 let skeleton = pose.skeleton

 for(i=0;i<skeleton.length;i++)

 {

 let partA = skeleton[i][0];

 let partB = skeleton[i][1];

drawLine(partA.position.x, partA.position.y, partB.

position.x, partB.position.y,'red')

 }

CHAPtER 5 GAIt ANAlySIS

150

 let ankleL = pose.pose.leftAnkle

 let ankleR = pose.pose.rightAnkle

 let kneeL = pose.pose.leftKnee

 let kneeR = pose.pose.rightKnee

 if(dflag)

 {

 let end_point = (ankleL.y+ankleR.y)/2

 let d = Math.abs(start_point - end_point)

 d = (height_cm / height_px) * d

document.getElementById("distance").innerHTML = d.toFixed(2)

 }

 if(kflag == true)

 {

 let d = distance(kneeL.x, kneeL.y, kneeR.x,

kneeR.y)

 d = (height_cm / height_px) * d

 document.getElementById("knee-d").innerHTML=

d.toFixed(2);

 }

 if(rsflag == true)

 {

 let d = ankleR.y - ankleL.y

 d = (height_cm / height_px) * d

 if (d <= lr_step_threshold)

 {

 document.getElementById("rs-d").innerHTML = 0;

 }

CHAPtER 5 GAIt ANAlySIS

151

 else

 {

 document.getElementById("rs-d").innerHTML = (d- lr_step_

threshold).toFixed(2);

 n1=d;

 }

 }

 if(lsflag == true)

 {

 let d = ankleL.y - ankleR.y

 d = (height_cm / height_px) * d

 if (d <= lr_step_threshold)

 {

 document.getElementById("ls-d").innerHTML = 0;

 }

 else

 {

 document.getElementById("ls-d").innerHTML = (d- lr_step_

threshold).toFixed(2);

 n2=d;

 }

 }

 if(strideflag == true)

 {

 if(n1 > 0 && n2 > 0)

document.getElementById("stride").innerHTML = (n1+n2).

toFixed(2)

 else

document.getElementById("stride").innerHTML = "Unable to detect

feet";

CHAPtER 5 GAIt ANAlySIS

152

 }

 }

 requestAnimationFrame(draw);

}

document.addEventListener("DOMContentLoaded",function(){

 main();

});

 Real-Time Data Visualization of the Gait
Parameters (Patterns) on the Browser
We have a function to draw detected points on the image. We saved all the

results from the PoseNet output in the poses array. Here, we loop through

every pose of the person in the image and get its keypoints:

function gotPoses(poses)

{

 if(poses.length > 0)

 {

 pose = poses[0]

 }

}

We loop through every point that is a body part in the keypoints array,

which further has the following:

• Part: The name of the part that was detected

• Position: x and y values of a point on the image

• Score: Accuracy of detection

CHAPtER 5 GAIt ANAlySIS

153

We only draw a point with fill (red, green, blue), taking an RGB

intensity value ranging from 0 to 255 to decide the color of a point:

function drawPoint(x, y, radius, color)

{

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 ctx.fillStyle = color;

 ctx.fill();

}

function drawLine(x1,y1,x2,y2,color)

{

 ctx.beginPath();

 ctx.moveTo(x1, y1);

 ctx.lineTo(x2, y2);

 ctx.strokeStyle = color;

 ctx.lineWidth = 2;

 ctx.stroke();

}

//Similarly, the function initializeParameters do //adjust the

confidence values

async function initializeParameters(button)

{

 let eyeL = pose.pose.leftEye

 let eyeR = pose.pose.rightEye

 let ankleL = pose.pose.leftAnkle

 let ankleR = pose.pose.rightAnkle

 let count =0;

 let timeFrame = 1000

 let start = new Date().getTime();

 let end = start;

CHAPtER 5 GAIt ANAlySIS

154

 while(end - start < timeFrame)

 {

 if(eyeL.confidence >= cnfThreshold && eyeR.confidence

>= cnfThreshold && ankleL.confidence >= cnfThreshold &&

ankleR.confidence>=cnfThreshold)

 {

 height_px = height_px+ (distance(0, eyeL.y, 0,

ankleL.y) + distance(0, eyeR.y, 0, ankleR.y))/2

 start_point = start_point+ (ankleL.y +ankleR.y)/2

 lr_step_threshold = lr_step_threshold + distance(0,

ankleL.y, 0, ankleR.y)

 count = count +1;

 button.innerHTML = "Initializing"

 }

 end = new Date().getTime();

 }

 height_cm = document.getElementById("height").value;

 height_px = (height_px / count).toFixed(2);

 lr_step_threshold = ((lr_step_threshold/count) * (height_cm

/ height_px)).toFixed(2)

 start_point = (start_point / count).toFixed(2)

 button.innerHTML = "Done"

}

function toggleDistance(button)

{

 if (dflag)

 {

 dflag = false;

 button.innerHTML= "Start";

 }

CHAPtER 5 GAIt ANAlySIS

155

 else

 {

 dflag = true;

 timer()

 button.innerHTML= "Stop";

 }

}

function timer()

{

 let sec=0,min=0;

 var time = setInterval(function(){

 if (!dflag) {

 clearInterval(time);

 }

document.getElementById('time').innerHTML=min+":"+sec;

 sec++;

 if(sec == 60)

 {

 sec=0;

 min++;

 }

 }, 1000);

}

function toggleKnee(button)

{

 if (kflag)

 {

 kflag = false;

 button.innerHTML= "Detect";

 }

CHAPtER 5 GAIt ANAlySIS

156

 else

 {

 kflag = true;

 button.innerHTML= "Pause";

 }

}

function toggleStrideLength(button)

{

 if (strideflag)

 {

 strideflag = false;

 button.innerHTML= "Detect";

 }

 else {

 if(!rsflag){

document.getElementById("stride").innerHTML= "Activate Right

Step Length"

 }

 else if(!lsflag){

document.getElementById("stride").innerHTML = "Activate Left

Step Length"

 }

 else{

 strideflag = true;

 button.innerHTML= "Pause";

 }

 }

}

function toggleRightStep(button)

{

 if (rsflag)

CHAPtER 5 GAIt ANAlySIS

157

 {

 rsflag = false;

 button.innerHTML= "Detect";

 }

 else

 {

 rsflag = true;

 button.innerHTML= "Pause";

 }

}

function toggleLeftStep(button)

{

 if (lsflag)

 {

 lsflag = false;

 button.innerHTML= "Detect";

 }

 else

 {

 lsflag = true;

 button.innerHTML= "Pause";

 }

}

function distance(x1,y1,x2,y2)

{

 let a = x2-x1;

 let b = y2-y1;

 let result = Math.sqrt(a*a + b*b);

 return result;

}

Figure 5-4 shows the initial parameters screen before entering the

height of the person.

CHAPtER 5 GAIt ANAlySIS

158

Figure 5-5 shows the output after we enter the height of the user (in

centimeters), click the Initialize Parameters button, and then click the

Detect button for stride length.

Figure 5-4. Initial output as seen on the browser. The user has to
provide the height manually (input) into the user interface and click
the Detect buttons to measure the parameters

Figure 5-5. Stride length values display after the corresponding
button is clicked

CHAPtER 5 GAIt ANAlySIS

159

When the user clicks Right Step Length and Left Step Length buttons,

the values display as shown in Figure 5-6.

The total distance covered while walking displays upon click of the

Distance button, as shown in Figure 5-7.

Figure 5-6. Right step length and left step length values display after
the user clicks the buttons

CHAPtER 5 GAIt ANAlySIS

160

 Determining Gait Patterns Using Threshold
Values
The threshold score in the options variable can be set to a certain value so that

the corresponding poses with the scores above the threshold values display:

const options = {

 imageScaleFactor: 0.3,outputStride: 16,

 flipHorizontal: false,minConfidence: 0.5,

 maxPoseDetections: 2,scoreThreshold: 0.5,

 nmsRadius: 20,detectionType: 'multiple',

 multiplier: 0.75,

 }

while(end - start < timeFrame)

{

if(eyeL.confidence >= cnfThreshold && eyeR.confidence >=

cnfThreshold && ankleL.confidence >= cnfThreshold && ankleR.

confidence>=cnfThreshold)

Figure 5-7. Gait parameters displayed on the web browser

CHAPtER 5 GAIt ANAlySIS

161

 {

height_px = height_px+ (distance(0, eyeL.y, 0, ankleL.y) +

distance(0, eyeR.y, 0, ankleR.y))/2

start_point = start_point+ (ankleL.y +ankleR.y)/2

 lr_step_threshold = lr_step_threshold + distance(0,

ankleL.y, 0, ankleR.y)

 count = count +1;

 button.innerHTML = "Initializing"

 }

end = new Date().getTime();

}

height_cm = document.getElementById("height").value;

height_px = (height_px / count).toFixed(2);

lr_step_threshold = ((lr_step_threshold/count) * (height_cm /

height_px)).toFixed(2)

start_point = (start_point / count).toFixed(2)

button.innerHTML = "Done"

 Summary
Deep neural nets for stride and stance (gait) examination is a progressive

thought. These measurements help assess stride irregularities, which may

quantitatively indicate the proportion of medical condition seriousness

that is influencing walk and stance. The measurements will help assess

disturbances in gait, locomotion, balance, and risk for falls. The present

methodology using AI in the browser will help with the following:

• Determining need for assistive, adaptive, orthotic,

protective, supportive, or prosthetic devices or

equipment

• Assessment of difficulty in integrating sensory, motor,

and neural processes

CHAPtER 5 GAIt ANAlySIS

162

• Establishing a diagnosis, prognosis, plan of care,

referral to other services

• Foot Switch Stride Analysis

• Define temporal and distance factors, classify patient’s

ability to walk

• Measure response to treatment programs, calculation of

velocity, stride length, cadence, single stance, initial and

terminal double stance, total stance, gait cycle duration.

Readers of this book will develop applications such as gait analysis

as described in this chapter by implementing the features learned from

Chapters 1 through 4. The main features and tools to be considered in the

gait analysis application’s design and development are JS, DOM, jQuery,

p5.js, ml5.js, and TensorFlow.js.

 References
Levine D. F., J. Richards, and M. Whittle. Whittle's

Gait Analysis. Elsevier Health Sciences, 2012.

https://en.wikipedia.org/wiki/Gait_analysis

Humphrey, Ellen, and Jim Patton. “’Normal’

Gait – Part of Kinesiology.” Department of

Physical Therapy & Human Movement Sciences,

Northwestern University, Medical School.

https://www.medicine.missouri.edu/sites/

default/files/Normal- Gait- ilovepdf-

compressed.pdf

Normal Gait, Heikki Uustal, MD, Medical Director,

Prosthetic/Orthotic Team, JFK-Johnson Rehab

Institute, Edison, NJ

CHAPtER 5 GAIt ANAlySIS

https://www.amazon.com/Whittles-Gait-Analysis-David-Levine/dp/070204265X
https://www.amazon.com/Whittles-Gait-Analysis-David-Levine/dp/070204265X
https://en.wikipedia.org/wiki/Gait_analysis
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf
https://www.medicine.missouri.edu/sites/default/files/Normal-Gait-ilovepdf-compressed.pdf

163© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8_6

CHAPTER 6

Future Possibilities
for Running AI
Methods in a Browser
This chapter covers two new JavaScript (JS) libraries that run with the help

of the TensorFlow.js framework: face-api.js and handpose. The evolving JS

libraries show a path to explore real-time responsive applications that can

run on browser and computational resource devices (electronic devices

with less computing capability).

 Introduction
As discussed in the previous chapters, human posture assessment differs

from other basic computer vision undertakings in some significant ways.

Object identification finds objects inside of a picture. However, this is

ordinarily coarse grained, consisting of a jumping box incorporating

the object. Posture assessment goes further, foreseeing the exact area of

keypoints related to the human subject.

https://doi.org/10.1007/978-1-4842-6843-8_6#DOI

164

Essentially, two-dimensional (2D) assessment gauges the area of

keypoints in 2D space comparative with a picture or video outline. The

model gauges an x and y coordinate for each keypoint of the human being.

Three-dimensional (3D) assessment attempts to change an object in a 2D

picture into a 3D object by adding a z coordinate to the forecast.

3D assessment enables us to anticipate the genuine spatial situating

of an individual or item. As you might expect, 3D assessment is currently

a testing issue for machine learning (ML) students, given the multifaceted

nature required to make datasets and calculations that consider an

assortment of variables for a picture’s or video’s experience scene or the

lighting conditions.

A qualification applies between recognizing one or various areas in

a picture or video. The 2D and 3D methodologies can be alluded to as

single-person and multiperson assessment. Single-person assessment

approaches distinguish and track one individual or item, whereas

multiperson assessment approaches recognize and track numerous

individuals or items.

We can plainly imagine the intensity of posture assessment by thinking

about its application in various aspects: from virtual game mentors and

artificial intelligence (AI)-fueled fitness coaches to following developments

on manufacturing plant floors to guaranteeing worker well-being. Current

PoseNet assessment may result in a deluge of robotized devices intended

to gauge human development accuracy.

The PoseNet assessment methods open up applications in the scope of

zones (for example, increased reality, liveliness, gaming, and mechanical

technology). This is not a thorough rundown, but it remembers a portion

of the essential ways for which present assessment is forming our future.

TensorFlow.js has empowered ML analysts to make their calculations

more available to other people. For instance, the Magenta.js library

(Roberts et al., 2018) gave in-program admittance to generative music

models created by the Magenta group and ported to the web with

TensorFlow.js. Magenta.js has expanded the permeability of their work

Chapter 6 Future possibilities For running ai Methods in a browser

165

with their intended interest group (specifically, performers). This has

released a wide assortment of ML-fueled music applications worked by the

network. Examples include Latent Cycles Parviainen (2018a). and Neural

Drum Machine Parviainen (2018b). You can find these and more models at

https://magenta.tensorflow.org/demos.

A fundamental specialized commitment of TensorFlow.js is the

arrangement of methods used to repurpose web stage design application

programming interfaces (APIs) for superior numeric processing while at

the same time keeping up similarity with an enormous number of gadgets

and execution conditions.

We accept there are various chances to expand and upgrade

TensorFlow.js. Given the fast advancement of program improvement,

it appears likely that extra GPU programming models may open up.

Specifically, program developers see discussions to execute broadly

useful GPU programming APIs Apple (2017) W3C (2017) that will make

these sorts of toolboxes more performant and simpler to maintain. Future

work will zero in on improving execution, progress on gadget similarity

(especially cell phones), and expand equality with the Python TensorFlow

usage. We additionally observe a need to offer help for full AI work

processes, including information, yield, and change.

 Additional Machine Learning Applications
with TensorFlow
The remaining sections discuss AI applications that can run on the

browser with the help of various JS libraries.

 Face Recognition Using face-api.js
Face detection and facial recognition using ML with TensorFlow in the browser.

The face-api.js JS module executes convolutional neural networks (CNNs)

Chapter 6 Future possibilities For running ai Methods in a browser

https://magenta.tensorflow.org/demos

166

to detect faces and recognize face marks (keypoints). The face-api.js uses

TensorFlow.js and is streamlined for the work area and portable web.

In addition to face detection and recognition, a few models are

available with face-api.js that enable facial expression recognition, age

assessment of an individual, and gender determination.

To begin with face-api.js, web developers include the most recent JS

library of face-api.js or install it using npm. The face-api.js is open-source

software accessible through the MIT license.

The visualization of face detection and face marks (keypoints) using

face-api.js can be viewed on the browser, as shown in Figure 6-1.

Figure 6-1. Visualizing the detection results by drawing the
bounding boxes into a canvas using the face-api.js library

The application has two files: index1.html (Listing 6-1) and main.js ,

which you can download from https://justadudewhohacks.github.io/

face- api.js/docs/index.html.

Chapter 6 Future possibilities For running ai Methods in a browser

https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://justadudewhohacks.github.io/face-api.js/docs/index.html

167

Listing 6-1. Index1.html

<!DOCTYPE html>

<html lang="en">

 <head>

 <meta charset="UTF-8" />

 <meta name="viewport" content="width=device-width,

initial- scale=1.0" />

 <title>AI in Browser-Face Mask Detection</title>

 </head>

 <body>

 <h1>Deep Learning in Browser-Face Mask detection for IoT/

mOBILE Devices</h1>

 <p id="GFG"></p>

 <video id="video" height="320" width="240" autoplay true>

</video>

 <script src="js/face-api.min.js"></script>

 <script src="js/main.js"></script>

 </body>

</html>

 Hand Pose Estimation
Being able to see the shape and movement of hands can help to improve

the client experience over an assortment of innovative areas and stages.

For instance, it can shape the reason for gesture-based communication

comprehension and hand signal control and likewise empower the overlay

of advanced substance and data on the physical world’s head in increased

reality. While falling into place without any issues for individuals, robust

constant hand recognition is a distinctly testing computer vision task,

because hands regularly impede themselves or one another (for example,

finger/palm impediments and handshakes) and need high-difference

designs.

Chapter 6 Future possibilities For running ai Methods in a browser

168

This engineering is like that utilized by us as of late distributed face

work ML pipeline and that others have utilized for present assessment.

Giving the precisely trimmed palm picture to the hand milestone model

diminishes the requirement for information enlargement (for example,

rotation, interpretation, and scaling) and rather permits the organization

to commit the vast majority of its ability to facilitate expectation precision.

The hand pose estimation method determines the joints (keypoints)

when the palm image or a video is given as input. Basically, the sign

language precision can be easily understood from the hand pose estimation.

Figure 6-2 shows the screenshot (output) after running an AI program

in the browser.

We intend to broaden this innovation with a more stable and robust

following, extend the measure of hand signals. Novel applications can be

explored with the help of Hand pose estimation and we eager to see what

best can be resulted from the usage of the method.

Listings 6-2 and 6-3 provide the source code (index2.html and script.js)

for the hand pose estimation.

Figure 6-2. Hand pose estimation with the keypoints

Chapter 6 Future possibilities For running ai Methods in a browser

169

Listing 6-2. Index2.html

<!DOCTYPE html>

<html>

 <head>

 <title>Hand Pose Detection</title>

 <script src="https://cdn.jsdelivr.net/npm/@

tensorflow/tfjs-core@2.4.0/dist/tf-core.min.js">

</script>

 <script src="https://cdn.jsdelivr.net/npm/@

tensorflow/tfjs-converter@2.4.0/dist/tf-converter.

min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/@

tensorflow/tfjs-backend-webgl@2.4.0/dist/tf-

backend-webgl.min.js"></script>

 <script src="https://cdn.jsdelivr.net/npm/@

tensorflow-models/handpose@0.0.6/dist/handpose.min.

js"></script>

 <script src="script.js"></script>

 <style>

 #pose-canvas{

 position: absolute;

 top: 0;

 left: 0;

 }

 </style>

 </head>

 <body>

 <div id="video-container">

 <video id="pose-video" autoplay="true">

</video>

 <canvas id="pose-canvas"></canvas>

Chapter 6 Future possibilities For running ai Methods in a browser

170

 </div>

 </body>

</html>

Listing 6-3. script.js

const config ={

 video:{ width: 640, height: 480, fps: 50}

 };

function drawPoint(ctx, x, y, radius, color)

{

 ctx.beginPath();

 ctx.arc(x, y, radius, 0, 2 * Math.PI);

 ctx.fillStyle = color;

 ctx.fill();

}

function drawLine(ctx,x1,y1,x2,y2,color)

{

 ctx.beginPath();

 ctx.moveTo(x1, y1);

 ctx.lineTo(x2, y2);

 ctx.strokeStyle = color;

 ctx.stroke();

}

function draw(ctx,part,radius,color)

{

 let k=0;

 for(k=0; k<part.length-1; k++)

 {

 const[x1,y1,z1] = part[k];

 const[x2,y2,z2] = part[k+1];

Chapter 6 Future possibilities For running ai Methods in a browser

171

 drawPoint(ctx,x1,y1, radius,color);

 drawLine(ctx,x1,y1,x2,y2,color);

 }

 const[x1,y1,z1] = part[k];

 drawPoint(ctx,x1,y1, radius, 0, 2 * Math.PI);

}

async function estimateHands(video, model, ctx)

{

 ctx.clearRect(0, 0, conFigure video.width, conFigure

video.height);

 const predictions = await model.estimateHands(video);

 if (predictions.length > 0)

 {

 for(let i=0; i<predictions.length;i++)

 {

 const thumb_finger = predictions[i].

annotations['thumb'];

 const index_finger = predictions[i].

annotations['indexFinger'];

 const middle_finger = predictions[i].

annotations['middleFinger'];

 const ring_finger = predictions[i].

annotations['ringFinger'];

 const pinky_finger = predictions[i].

annotations['pinky'];

 const palm = predictions[i].annotations['palmBase'];

 draw(ctx,thumb_finger,3,'red');

 draw(ctx,index_finger,3,'red');

 draw(ctx,middle_finger,3,'red');

Chapter 6 Future possibilities For running ai Methods in a browser

172

 draw(ctx,ring_finger,3,'red');

 draw(ctx,pinky_finger,3,'red');

 let[x1,y1,z1] = palm[0];

 drawPoint(ctx,x1,y1, 3, 0, 2 * Math.PI);

 let[x2,y2,z2] = thumb_finger[0];

 drawLine(ctx,x1,y1,x2,y2,'red');

 [x2,y2,z2] = index_finger[0];

 drawLine(ctx,x1,y1,x2,y2,'red');

 [x2,y2,z2] = middle_finger[0];

 drawLine(ctx,x1,y1,x2,y2,'red');

 [x2,y2,z2] = ring_finger[0];

 drawLine(ctx,x1,y1,x2,y2,'red');

 [x2,y2,z2] = pinky_finger[0];

 drawLine(ctx,x1,y1,x2,y2,'red');

 }

 }

 setTimeout(function(){

 estimateHands(video, model, ctx);

 }, 1000 / conFigure video.fps)

}

async function main()

{

 const video = document.getElementById("pose-video");

 const model = await handpose.load();

 const canvas = document.getElementById("pose-canvas");

Chapter 6 Future possibilities For running ai Methods in a browser

173

 const ctx = canvas.getContext("2d");

 estimateHands(video, model,ctx);

 console.log("Starting predictions")

}

async function init_camera()

{

 const constraints ={

 audio: false,

 video:{

 width: conFigure video.width,

 height: conFigure video.height,

 frameRate: { max: conFigure video.fps }

 }

 };

 const video = document.getElementById("pose-video");

 video.width = conFigure video.width;

 video.height= conFigure video.height;

navigator.mediaDevices.getUserMedia(constraints).then(stream => {

 video.srcObject = stream;

 main();

 });

}

function init_canvas()

{

 const canvas = document.getElementById("pose-canvas");

 canvas.width = conFigure video.width;

 canvas.height = conFigure video.height;

 console.log("Canvas initialized");

}

Chapter 6 Future possibilities For running ai Methods in a browser

174

document.addEventListener('DOMContentLoaded',function(){

 init_canvas();

 init_camera();

});

Following are the parameters for the handpose.load in the async

function:

Chapter 6 Future possibilities For running ai Methods in a browser

175

 Summary
TensorFlow.js enables web developers to prepare and run AI models

entirely in their browsers or resource-constrained devices. It is an great

way for JS developers to discover advances in the universe of AI. The best

thing is not normal for CoreML, which runs inside Apple’s environment.

TensorFlow.js can run on iOS, macOS, Linux, Android, and any stage that

support a program.

I trust the libraries mentioned in this chapter motivate you to begin

building astonishing AI-fueled web applications.

 References
https://justadudewhohacks.github.io/face-

api.js/docs/index.html

https://glitch.com/~face- api- js- for-

beginners

https://github.com/tensorflow/tfjs- models/

tree/master/handpose

https://blog.tensorflow.org/2020/03/face-

and-hand- tracking- in- browser- with- mediapipe-

and- tensorflowjs.html

A. Roberts, C. Hawthorne and I. Simon, “Magenta.js:

A JavaScript API for Augmenting Creativity with

Deep Learning.” 2018 Joint Workshop on Machine

Learning for Music (ICML).

Chapter 6 Future possibilities For running ai Methods in a browser

https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://justadudewhohacks.github.io/face-api.js/docs/index.html
https://glitch.com/~face-api-js-for-beginners
https://glitch.com/~face-api-js-for-beginners
https://github.com/tensorflow/tfjs-models/tree/master/handpose
https://github.com/tensorflow/tfjs-models/tree/master/handpose
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html
https://blog.tensorflow.org/2020/03/face-and-hand-tracking-in-browser-with-mediapipe-and-tensorflowjs.html

177© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8

 Conclusion
AI is becoming ubiquitous, a part of our everyday lives, especially in

computer browsers and myriad electronic devices. Applying AI methods

through browser has many advantages. Running AI in the browser can

accelerate computing activities by executing them legitimately at the client

end itself. It can execute with the help of API methods at the client side

rather than via cloud computing methods.

It can likewise provide an AI app that can collect rich information from

customer mobile device sensors such as webcams, amplifiers, and GPS. It

tends to provide privacy by running browser-based AI information at the

customer end. Also, it brings AI close enough for the immense pool of web

developers who work in JS and other client-side dialects, structures, and

devices.

The browser-side programming languages and scripts help

demonstrate, prepare, execute, and represent AI, interactive learning, and

other AI models in the program. They would all be able to take advantage

of privately introduced designs preparing units and other AI-improved

equipment to speed model execution. In addition, many of them give

built-in and pretrained neural net models to speed improvement of

relapse, order, picture acknowledgment, and other AI-empowered tasks in

the browser.

AI in-browser applications are proliferating. Google has the most tools

to help web developers construct ML and DL applications for the browser

and to develop customer applications and gadgets.

Google expanding the TensorFlow framework, an intuitive

representation of neural networks written in TypeScript. This new

framework supports intelligent JS improvements of customer-side AI

https://doi.org/10.1007/978-1-4842-6843-8#DOI

178

applications in which models are assembled and prepared completely or

generally in the browser, with their information staying there. It likewise

permits pretrained AI models to be imported—or changed through

transfer learning—just for program-based inferencing. The system enables

designers to import models recently prepared disconnected in Python

with Keras or TensorFlow SavedModels and afterward use them for

inferencing or move learning in the program, utilizing WebGL quickening

for client-side GPU acceleration. The TensorFlow.js group is intending to

refresh it to help the back-end Node.js JS advancement system, as follows:

• Mobile device embedded AI system: Google officially

delivered Swift for TensorFlow and made this

open- source ML advancement structure accessible on

GitHub. The developed system by the Google can be

useful across multiple platforms.

• Updates to its mobile computer vision AI library: The

organization presented MobileNetV2, the most recent

age group of broadly useful, DL-fueled computer vision

neural organizations inserted in cell phones.

• Updates to its broadly useful, electronic

gadget- implanted AI structure: Google latest releases

include the Tensorflow lite, a lightweight framework

which converts the prepared ML model into an

versatile program to run on the edge devices.

The edge device such as Raspberry Pi can easily

execute the ML models efficiently.

 ConClusion

179© Nagender Kumar Suryadevara 2021
N. K. Suryadevara, Beginning Machine Learning in the Browser,
https://doi.org/10.1007/978-1-4842-6843-8

Index

A, B
Amazon Web Services (AWS), 3
Application processing

interface (API)
features, 32
restrictions, 33

Application programming
interface (API),
 24, 100, 165

Artificial intelligence
(AI), 1, 95

ML application, TensorFlow
face recognition, 165, 166
hand pose estimation,

167–170, 172
PoseNet assessment, 164
TensorFlow.js, 164, 165
3D assessment, 164

Artificial neural network
(ANN), 98

NAND Boolean operation, 117,
118, 120, 121

PoseNet, 121
TensorFlow.js, 115–117
training process output, 113
trivial neural network, 114

async function, 174

C
Cascading style sheets, CSS,

6, 13, 143
Closing tag, 10
Common Objects in Contest

(COCO), 69
Community Group, 32
Complete Unified Device

Architecture (CUDA), 102
Computer-based intelligence, 3
convertToTensor() function, 107
Convolutional neural networks

(CNNs), 165
Convolutional pose machines, 68

D
Deep learning (DL), 3, 67, 95
Deep neural nets, 161
Deep neural networks (DNNs), 98
Discovering HTML Elements, 24
displaySkeleton(), 128
Document Object Model

(DOM), 23
draw () function, 79, 126, 146
drawImage() function, 146
Dynamic HTML (DHTML), 13

https://doi.org/10.1007/978-1-4842-6843-8#DOI

180

E
Embedded style sheets, 14
Event-driven process, 23
External style sheets, 16

F
Field programmable gate arrays

(FPGAs), 102
File Transfer Protocol (FTP), 4
.fit() function, 120
function displayKeypoints(), 126
function document.

addEventListener(), 147
function draw (), 126, 128
function modelReady(), 146
function setup(), 127

G
Gait analysis

AI methodology, 161
definition, 135
Gait cycle measurement

parameters, 137
Gait measurement techniques,

135–137
real-time data visualization,

152, 153, 155–157, 160
threshold values, patters, 160, 161
web user interface, monitoring

Gait parameters, 138,
140–150, 152

Global Positioning System (GPS), 4

Graphical processing unit (GPU),
3, 33, 66, 165

Graphical user interface (GUI),
106, 138

Graphics functions, 49
object/array/loop, 53, 55
p5.js library, 51
script, 51, 53

H
High-resolution network (HRNet)

model, 70
HTML and CSS Programming

CSS, 13
DHTML, 13
embedded style sheets, 14, 16
external style sheets, 16, 17
inline style sheet, 13, 14
web page, 10

HTML interactive elements,
41, 43, 45

Human-machine interaction, 32
Human pose assessment, 66, 67
Human pose classification

estimation, browser, 96, 97
ML techniques

ANN, 99
neural networks, 98
TensorFlow.js, 100

Human pose estimation, 67
baselines, 69
CNN, 68
DeepPose, 67
HRNet, 70

INDEX

181

iterative error feedback, 69
stacked hourglass network, 69

Hypertext Markup Language
(HTML), 1, 6

Hypertext Transfer Protocol
(HTTP), 4, 31

I
Inline style sheet, 13, 14
Integrated development

environment (IDE), 6
IntelliJ IDEA, 8
Internet of Things (IoT), 2
Iterative error feedback, 69

J, K
JavaScript (JS), 163

attributes, 18
body section, 20, 21
event-driven programming, 22
head section, 19
including, 18
insert, 19

JavaScript (JS) library, 95, 102, 163
JavaScript Object Notation

(JSON), 101
jQuery library, 26, 27
JS libraries, 33

L
loaddata() function, 107
Local web server, 56

Python, 56, 58
Visual Studio Code, 58, 60, 62

M
Machine learning (ML), 1, 56, 65,

95, 164
main() function, 147
Mean average precision (mAP), 69
ml5.posenet method, 70, 74

array of poses, 78
distance between poses, 87, 89
instructions, 81
invoke, 74
modify instructions, 85
multiple colors, 83
screenshot, 72, 73
single object, 79

N, O
NetBeans, 8
Neural network, 67, 97
Node Package Manager (NPM), 58
Not AND (NAND) Boolean

operation, 117, 118

P, Q
Parent-child DOM elements,

45, 47, 49
p5.js library, 34

DOM objects, 36
DOM onEvent, 38, 39
graphical objects, 35, 36

INDEX

182

HTML events, 41
HTML file, 34

poseNet() method, 92, 125
PoseNet, 121

browser webcam, 124–126, 128
input, 90
on() function, 92
output, 92
TensorFlow.js, 123, 124
values, 129, 131, 132

PoseNet model, 70, 76
poseNet.on() method, 75, 126
PoseNet vs. OpenPose, 66
PyCharm, 8

R
read.video.play() function, 146
Real-time poses, 75
Residual neural network (ResNet), 69

S
setup() function, 106, 107
showPoses() function, 76
Software developers, 2
Stacked hourglass network, 69, 94
State-of-the-art (SOTA), 67

T
TensorFlow.js, 95, 100

AI models, 102
create/build models, 101

definition, 100
flat file data, 106, 107
JSON format, 108–113
linear regression problem, 103
methods, 100
Ops API, 101
regression expression, 105, 106
TF_JS_1.html, 104
WASM, 103

tf.tensor2D()function, 106
Three-dimensional (3D)

assessment, 164
trainModel() and nn_model()

functions, 107
Transmission Control Protocol

(TCP), 4
Two-dimensional (2D)

assessment, 164

U
Uniform Resource Locator

(URL), 6

V
video.hide() function, 73

W, X, Y, Z
Web communication, 4, 5
Web development, building

blocks, 9
World Wide Web (WWW), 5

p5.js library (cont.)

INDEX

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Preface
	Chapter 1: Web Development
	Machine Learning Overview
	Web Communication
	Organizing the Web with HTML

	Web Development Using IDEs/Editors
	Building Blocks of Web Development
	HTML and CSS Programming
	Dynamic HTML
	Cascading Style Sheets
	Inline Style Sheets
	Embedded Style Sheets
	External Style Sheets

	JavaScript Basics
	Including the JavaScript
	Where to Insert JS Scripts
	JavaScript for an Event-Driven Process

	Document Object Model Manipulation
	Introduction to jQuery
	Summary
	References

	Chapter 2: Browser-Based Data Processing
	JavaScript Libraries and API for ML on the Web
	W3C WebML CG (Community Group)

	Manipulating HTML Elements Using JS Libraries
	p5.js
	Drawing Graphical Objects
	Manipulating DOM Objects
	DOM onEvent(mousePressed) Handling
	Multiple DOM Objects onEvent Handling
	HTML Interactive Elements
	Interaction with HTML and CSS Elements

	Hierarchical (Parent-Child) Interaction of DOM Elements
	Accessing DOM Parent-Child Elements Using Variables

	Graphics and Interactive Processing in the Browser Using p5.js
	Interactive Graphics Application
	Object Instance, Storage of Multiple Values, and Loop Through Object

	Getting Started with Machine Learning in the Browser Using ml5.js and p5.js
	Design, Develop, and Execute Programs Locally
	Method 1: Using Python – HTTP Server
	Method 2: Using Visual Studio Code Editor with Node.js Live Server

	Summary
	References

	Chapter 3: Human Pose Estimation in the Browser
	Human Pose at a Glance
	PoseNet vs. OpenPose

	Human Pose Estimation Using Neural Networks
	DeepPose: Human Pose Estimation via Deep Neural Networks
	Efficient Object Localization Using Convolutional Networks
	Convolutional Pose Machines
	Human Pose Estimation with Iterative Error Feedback
	Stacked Hourglass Networks for Human Pose Estimation
	Simple Baselines for Human Pose Estimation and Tracking
	Deep High-Resolution Representation Learning for Human Pose Estimation

	Using the ml5.js:posenet() Method
	Input, Output, and Data Structure of the PoseNet Model
	Input
	Output
	.on() Function
	Summary

	References

	Chapter 4: Human Pose Classification
	Need for Human Pose Estimation in the Browser
	ML Classification Techniques in the Browser
	ML Using TensorFlow.js
	Changing Flat File Data into TensorFlow.js Format

	Artificial Neural Network Model in the Browser Using TensorFlow.js
	Trivial Neural Network
	Example 1: Neural Network Model in TensorFlow.js
	Example 2: A Simple ANN to Realize the “Not AND” (NAND) Boolean Operation

	Human Pose Classification Using PoseNet
	Setting Up a PoseNet Project
	Step 1: Including TensorFlow.js and PoseNet Libraries in the HTML Program (Main File)
	Step 2: Single-Person Pose Estimation Using a Browser Webcam

	PoseNet Model Confidence Values
	Summary
	References

	Chapter 5: Gait Analysis
	Gait Measurement Techniques
	Gait Cycle Measurement Parameters and Terminology
	Web User Interface for Monitoring Gait Parameters
	index.html

	Real-Time Data Visualization of the Gait Parameters (Patterns) on the Browser
	Determining Gait Patterns Using Threshold Values
	Summary
	References

	Chapter 6: Future Possibilities for Running AI Methods in a Browser
	Introduction
	Additional Machine Learning Applications with TensorFlow
	Face Recognition Using face-api.js
	Hand Pose Estimation

	Summary
	References

	Conclusion
	Index

