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ABOUT THIS BOOK

Quality 4.0 is the secret ingredient for a successful digital transformation
(Chapter 1). Quality 4.0 initiatives support digital transformation, enhancing
connectedness (Chapter 2), intelligence (Chapter 3), and automation (Chapter
4) with emerging technologies. These three aspects come together to solve
practical problems across many industries (Chapter 5).

Data is the foundation of a digital transformation that successfully
enhances quality and performance. It fuels the advanced analytics that are
produced by machine learning and other algorithms (Chapter 6). Data science
is the practice that ties it all together, linking the mechanics of acquiring and
assimilating the data with analysis and communication of outcomes to the
business (Chapter 7). For data science efforts to yield useful results, an
organization must have a solid foundation in data quality and data
management (Chapter 8). With this foundation in place, software systems can
be implemented to digitize manual processes and add a layer of checks and
balances (Chapter 9). Blockchain can augment these systems, especially
when data quality and immutability are imperative, but relational databases
should always be considered first (Chapter 10).

To turn digital strategy into action, start by understanding your business
and the competitive environment it is embedded within. Clear roles,
responsibilities, data-driven decision-making processes, and standard work
should be defined. The Baldrige Excellence Framework (BEF), total quality
management (TQM), Toyota Production System (TPS), and kaizen can all be
used (jointly or individually) to make this happen (Chapter 11). Then,
articulate your impacts on the environment, protect the health and safety of
your workforce, and protect your business by investing in cybersecurity
(Chapter 12). Once the foundations are in place, seek out the voice of the
customer (VoC)—a process that is greatly supported by using digital systems,



social media, and other Industry 4.0 technologies (Chapter 13).
When your organizational backbone to coordinate people, processes, and

technologies is in place, define the smart products and services you will offer
(if any). Make sure that the workforce (and members of the customer and
supplier ecosystem, if appropriate) has access to accurate, timely, and
complete knowledge assets (Chapter 14). Finally, you will be ready to create
and execute your own strategy for digital transformation. Anchoring it with a
quality-driven foundation and focus greatly increases your likelihood of
success (Chapter 15).

Peter Merrill, author of Innovation Generation and Innovation Never
Stops, and chair of the Canadian National Committee on Innovation for the
International Organization for Standardization (ISO), describes innovation as
“quality for tomorrow.” This book will show you and your team, regardless
of your industry or level of quality maturity, how to use digital
transformation and emerging technologies to innovate with quality—for
tomorrow and the years ahead.



THE UNKNOWN CITIZEN
He was found by the Bureau of Statistics to be
One against whom there was no official complaint,
And all the reports on his conduct agree
That, in the modern sense of an old-fashioned word, he was a saint,
For in everything he did he served the Greater Community.
Except for the War till the day he retired
He worked in a factory and never got fired,
But satisfied his employers, Fudge Motors Inc.
Yet he wasn’t a scab or odd in his views,
For his Union reports that he paid his dues,
(Our report on his Union shows it was sound)
And our Social Psychology workers found
That he was popular with his mates and liked a drink.
The Press are convinced that he bought a paper every day
And that his reactions to advertisements were normal in every way.
Policies taken out in his name prove that he was fully insured,
And his Health-card shows he was once in hospital but left it cured.
Both Producers Research and High-Grade Living declare
He was fully sensible to the advantages of the Instalment Plan
And had everything necessary to the Modern Man,
A phonograph, a radio, a car and a frigidaire.
Our researchers into Public Opinion are content
That he held the proper opinions for the time of year;
When there was peace, he was for peace: when there was war, he went.
He was married and added five children to the population,
Which our Eugenist says was the right number for a parent of his generation.
And our teachers report that he never interfered with their education.
Was he free? Was he happy? The question is absurd:
Had anything been wrong, we should certainly have heard.

©1940 W. H. AUDEN



PREFACE
Connected, Intelligent, Automated

The Definitive Guide to Digital Transformation and Quality
4.0

The moral is that it is necessary to innovate, to predict needs of the customer, give
him more. He that innovates and is lucky will take the market.
—W. EDWARDS DEMING, THE NEW ECONOMICS (1993)

If you were to ask any thought leader what they consider to be today’s most
important technology trend, they’d likely say digital transformation. The
popularity of this term probably exceeds most people’s understanding of it,
but that hasn’t prevented it from becoming sine qua non for almost every
organization in the world today. Essentially, digital transformation is the
application of digital technology to enhance an organization’s abilities to
meet its strategic objectives, build capabilities, and enhance agility.

Since 2016, many organizations have started a digital transformation
initiative but are struggling to achieve desired levels of operational excellence
and customer experience. According to a 2019 survey by Celonis
(https://tinyurl.com/yyhbp85m), 73% of C-suite execs are jumping straight
into the tactics of launching artificial intelligence (AI), machine learning, and
automation initiatives and experiencing disappointing results. Even though
more than a third of businesses surveyed report spending more than $500,000
on digital transformation over the past year, 45% of C-suite executives “don’t
know where to start when developing their transformation strategy.”

A 2018 McKinsey survey (https://www.mckinsey.com/business-
functions/organization/our-insights/unlocking-success-in-digital-
transformations) revealed that success rates for digital transformation efforts
are dismal—below 26% for technology, media, and telecom firms, and
between 4% and 11% for the oil and gas, pharmaceutical, and automotive
industries. Company size also matters. Small organizations (fewer than 100
employees) are nearly three times as likely as larger organizations to report a
successful initiative.

https://tinyurl.com/yyhbp85m
https://www.mckinsey.com/business-functions/organization/our-insights/unlocking-success-in-digital-transformations


Building and executing a quality-driven digital strategy can help solve
these issues and mitigate the overall risks of digital transformation initiatives.
While lack of clarity can lead to disappointing improvement initiatives,
delayed product introductions, and wasted investments, Celonis notes that
“the rush to transform is threatening to derail the potential for success”
(Celonis 2019).

A quality-driven approach lays the foundations for success, and this book
will help you get started. It provides a conceptual framework for
understanding how emerging technologies can be leveraged to improve
quality and performance—and a practical, actionable guide for moving
forward. Through compelling, pragmatic examples, it demonstrates that
Industry 4.0 and Quality 4.0 are not new but have a deep history with
templates for success. Had W. H. Auden known (when he wrote The
Unknown Citizen in 1940) that data collection on people and systems would
become even more prevalent in our time, he may have used even starker
language to describe data-driven innovation.

The Quality 4.0 banner reflects the consolidation of research and practice
around connected, intelligent, automated technologies for more effectively
managing and improving our organizations. This book presents a Quality 4.0-
based approach for ensuring digital transformation success.

WHO THIS BOOK IS FOR

CEOs, CIOs, CTOs, and business leaders who want to drive excellence, value, and
growth by embracing technology to enhance performance
Chief strategy officers, chief digital officers, and SVP/VPs of digital transformation
who are leading digital transformation efforts
Anyone participating in digital transformation efforts, including data science, AI, and
machine learning leaders
Senior leaders and executives who want to create a Quality 4.0 strategy
Senior leaders and executives outside the quality profession who have started digital
transformation efforts but have not improved performance or customer experience
Anyone in any industry who wants to learn how Industry 4.0 and Quality 4.0 can help
improve quality and performance in their team or organization

QUALITY 4.0 IS FOR ALL INDUSTRIES
Although many publications and research articles have focused on the smart-
factory aspects of Industry 4.0, Quality 4.0 is for everyone. Any business
system that has hierarchies or networks, where data can be collected at any



level, can benefit from the new technologies that support connectedness. AI
and machine learning are more accessible now than ever, and even small
businesses can explore the potential of Quality 4.0 to improve processes.
Thanks to cloud services, you can be up and running and create your own
machine learning models in minutes—at a fraction of what you’d pay if you
had to set up and maintain the infrastructure yourself (as we had to do 10 and
20 years ago).

Similar to how the practice and profession of quality expanded beyond
manufacturing into all other industries, the new Quality 4.0 techniques and
philosophies will expand far beyond manufacturing. This book will provide
you with a foundation to understand them and to begin to explore ways to
leverage them as you plan and execute digital transformation initiatives.

WHY I WROTE THIS BOOK
This book is the culmination of two and a half decades of research and
practice: exploring, implementing, and critically examining the quality and
performance improvement aspects of (what we now call) Industry 4.0
technologies. The changes ahead are powerful, exciting, and overwhelming—
and we can draw on the lessons from past work to mitigate the risks of digital
transformation today.

My goal is to share what I’ve learned to help you sift through the noise,
find the signals for your organization, and drive successful digital
transformation initiatives grounded in quality.

MY INDUSTRY 4.0/QUALITY 4.0 STORY
When I graduated from college in the mid-1990s with a meteorology degree,
I was more interested in the information technology part than the weather
forecasting part. After working at an e-commerce consultancy for a few years
postgraduation, building storefronts and websites when it was still a
technically complex task, I moved to Boulder, Colorado, to work at the
Forecast Systems Lab (FSL) of the National Oceanic and Atmospheric
Administration. It was my first introduction to quality and Industry 4.0
technologies.

It’s fascinating to look back at your life and career to find that some of the
smallest revelations led to the biggest shifts in your professional identity. The
FSL was one of those experiences, thanks mostly to my office mate, a



software engineer and member of the American Society for Quality (ASQ).
He was a Certified Software Quality Engineer (CSQE), and much older and
more mature than I, so I really looked up to him. (He was in his mid-30s at
the time; I was 22.)

The job we were working on was also my first introduction to what we
now call Industry 4.0 technologies. We were building a sensor network to
take “junk data” from Global Positioning System (GPS) receivers, scattered
across the United States and sited in about half the states, and find water
vapor content in the atmosphere. We built connections to each of the sites,
developed a data acquisition and processing framework, and wrote programs
to assess the quality of the data and make our data collection and
troubleshooting processes more intelligent.

My office mate loved to code, and he loved to tinker with instrumentation.
But most important, nothing ever stressed him out. He trusted the process!
And he realized that in order to trust the process, there had to be a process
that everyone was aware of, that everyone was brought into, and that was
continually improving. I observed the zen-like way in which he moved
through his day, always learning, and always improving. I admired that inner
professional peace and wanted some for myself.

I wanted to be like him, so I joined ASQ!
Over the next decade, my love of quality and my love of data deepened. I

helped enterprises successfully implement their Customer Relationship
Management (CRM) applications and integrate them with other business
systems, using lean principles. I led a software development team at a
national lab, working on monitor, control, and data analysis soon after. I
helped them implement agile practices and ISO 9001–based practices to set
expectations, improve product and service quality, and reduce stress—not
only for ourselves but for our customers too.

Next, I worked with an executive team for a few years on data
management, answering questions like when and how to archive data, how to
support pipelines for processing data in motion, how to use machine learning
to understand the data you’ve collected, and how to analyze data when it’s
too big, can’t fit in one file (or even on one machine), or can’t even be
downloaded due to its size. I learned how to balance compliance and
effectiveness, using standards and frameworks to support business objectives
rather than threaten them. Then, I went to a university, and for the next
decade worked to distill all this knowledge into an undergraduate program



focused on data-driven production systems.
All these things I spent time with—working with big data, using AI and

machine learning, and building pipelines to draw insights from data in motion
—are currently hot topics across industries. Depending on your specific
interests or industry, these initiatives might be referred to as digital
transformation, Industry 4.0, smart factory, smart manufacturing, quality
intelligence, smart quality, or Quality 4.0. Although I didn’t know it at the
time, I was (along with everyone else in the research community working in
these areas) one of the pioneers. We were learning how to bring these new
technologies and capabilities into practice.

I had a feeling that the digital transformation of quality would eventually
happen, that automation and data-driven intelligence would become a normal
and natural part of most work environments. And indeed, that time is now.
We are on the cusp of a broad transformation that will likely last decades.

Much as the manufacturing workforce needs to be retooled to develop
more skills in visualizing and interpreting data, the quality workforce will
benefit from a deeper understanding of technologies to drive quality and
performance. How will technology impact quality management, product life
cycle management, or process management? How do all these emerging
technologies work together? Should you invest in AI or machine learning,
and if so, when? How can you use connectedness, intelligence, and
automation pragmatically to avoid the deep financial pits that can come from
chasing hype?

HOW THIS BOOK IS STRUCTURED

Part 1: The Quality Revolution—The first five chapters describe the tools,
techniques, and emerging technologies that are available to help you be more
competitive and achieve long-term success. Chapter 2 explains how technologies
connect people, machines, materials, and data, and why these connections matter.
Chapter 3 shows the profound link between quality management and intelligent
systems (including machine learning) and can help you determine whether (and how)
to apply those methods to your problems. Chapter 4 examines the spectrum of
possibilities for automating processes, tasks, and data analysis. Chapter 5 brings all
these concepts together to describe performance improvement in cross-industry use
cases.
Part 2: Turn Data into Intelligence—Data is the life-giving blood of the connected,
intelligent, automated enterprise. Without available high-quality data when people or
machines need it, processes will be less effective and decisions will be less robust.
Chapters 6 and 7 provide background and context about algorithms, analytics, and



data science, including guidance on how to manage those efforts. Chapter 8 covers
data management foundations that should be in place to protect those investments,
while Chapter 9 examines the relationships between software systems like quality
management systems (QMS), enterprise resource planning (ERP), manufacturing
execution systems (MES), and environment, health, and safety (EHS). Chapter 10
explains blockchain and when you should (and should not) consider using it.
Part 3: Turn Digital Strategy into Action—Armed with the background and
conceptual framework from Parts 1 and 2, the remaining chapters provide actionable
guidance for developing a visionary, customer-focused, fact-driven, agile learning
organization that can excel in its digital transformation efforts. Excellence frameworks
are covered in Chapter 11, because for intelligent agents to function, basic questions
about how the business runs and how decisions are made must be answered.
Chapter 12 explains the convergence of environment, health, safety, and quality
(EHSQ), and how to get deeper and richer information about quality and performance
by looking across traditional system boundaries. Chapter 13 examines how VoC is
changing in the digital age. Chapter 14 ties these concepts together and outlines the
requirements for a quality-driven strategy for digital transformation, while Chapter 15
provides ways to realize these principles in your organization.

Rather than simply describing each of the technologies and concepts,
examples are provided to tie them to quality and performance improvement.
Each chapter addresses social and political issues that can impact the success
of your Quality 4.0 strategy or digital transformation initiatives. Finally, the
main points from each chapter are summarized at the end in a section called
“The Bottom Line.”

With the information you learn in this book, you will understand how
emerging technologies can contribute to quality and performance
improvement, and be able to apply these lessons to create a successful
strategy for digital transformation that meets quality and performance goals.

MOVING FORWARD
If you’re older than 25, you probably remember what the web was like when
it was fresh: lots of static pages to read, and maybe a form here or there
where you could send information to someone over the internet, but not much
more than that. By the mid-2000s, most web pages were dynamic and driven
by databases. People using the web could interact with the content—leaving
comments, adding bookmarks, and creating user-generated content (for
example, in blogs and wikis)—and with each other. The enabling
technologies of Web 2.0 expanded connectedness, leveraged the intelligence
of crowds, and automated content updating and delivery.

Quality management and organizational excellence are about to



experience a similar shift. Here’s an example: today, QMS display
information about risks, controls, and events on dashboards. In some cases,
forecasts and projections are available to aid in planning and decision
making. But in general, there is little interaction with the data, little
exploration, and nearly no collaboration with other people or organizations
that is enabled by software and systems. The QMS of the future will guide us
toward better ways to manage our organizations, and may even do it for us
autonomously, having learned the best decisions to make under different
circumstances.

The Industry 4.0 and Quality 4.0 labels will fade from the vernacular as
we become acclimated to hyperconnectivity in our work environments,
ubiquitous and embedded intelligent systems, and automated processes. What
will not fade is the new attention to sourcing, analyzing, and interpreting
information in real time, and using it to make better decisions, implement
smoother processes, and accelerate innovation. Data is about to fuel the
revolution.

REFERENCES
Celonis. (2019, March 21). “Half of C-suite executives admit to launching

transformation initiatives without a clear strategy.”
https://www.celonis.com/press/celonis-study-almost-half-of-c-suite-
executives-admit-to-launching-transformation-initiatives-without-a-clear-
strategy

https://www.celonis.com/press/celonis-study-almost-half-of-c-suite-executives-admit-to-launching-transformation-initiatives-without-a-clear-strategy


CHAPTER ONE

QUALITY 4.0 AND THE FOURTH
INDUSTRIAL REVOLUTION

Any sufficiently advanced technology is indistinguishable from magic.
—ARTHUR C. CLARKE

Covering 140,000 miles, the privately owned and maintained U.S. rail
network transported nearly 1.1 million carloads of freight each month in
2017, and again in 2018. Rail transportation carries coal to power plants, food
to grocery stores, cars to dealerships, and many other things to many other
places. This massive industry reports approximately $74 billion in revenue
each year. The efficiency of rail transport is impressive too: a single train can
carry the load of a hundred trucks. Because the rails are nearly frictionless,
one train can, on average, move a ton of freight 470 miles, with 75% fewer
greenhouse gas emissions than if the same cargo were transported by truck
(Association of American Railroads [AAR], 2019).

But rail disasters can be expensive and deadly and, additionally, can
disrupt supply chains. On April 4, 2019, a relatively small derailment on the
Palmerston North line in New Zealand interrupted deliveries to 70 companies
and cost the forestry and logging sector more than $115,000 each day
(Lawrence & Mitchell, 2019). In 2005, a derailment on one track in western
Wyoming stalled coal deliveries and was associated with price increases for
electric utilities (Gedik et al., 2014). Natural disasters can also lead to railway
incidents. In 1993, for example, flooding on the Mississippi and Missouri
rivers was associated with $182 million of supply chain disruptions (Haefner
et al., 1996).

Like many industries, rail transportation is experiencing unprecedented
digital transformation, focused on risk assessment, asset management, and
improving safety. The most exciting performance improvements are being
driven by what we now refer to as Quality 4.0: improving connectedness,
intelligence, and automation to enhance performance and promote



organizational excellence.
An ounce of prevention is worth a pound of cure. For example, people and

cargo are now protected by real-time diagnostic monitoring that supports
more effective maintenance programs. This is made possible by the
emergence of condition-based maintenance (CBM) from corrective and
preventive maintenance approaches. Corrective (or reactive) maintenance is
initiated once a defect or failure occurs. Preventive maintenance anticipates
future issues and addresses potential problems through scheduled inspections,
replacements, renewals, and preplanned equipment overhauls. CBM, a
special type of predictive maintenance, focuses on using data for
“discovering those components where maintenance is required so that the
maintenance cost is greatly reduced” (Ghofrani et al., 2018). The foundations
of CBM are big data and machine learning models.

Today, many of the activities related to railway inspection and traffic
monitoring are performed using new sensor technologies, machine vision,
and some machine learning. In January 2019, at the annual conference for the
AAR, I was able to see some of this CBM technology in action, including a
system for structural health monitoring on the underbody of the railcars. As
the train cars are in motion (referred to as “rolling stock”), images are
recorded at multiple wavelengths, including in the visible and infrared bands,
by stationary cameras mounted in a shallow pit between the rails. The images
are segmented, compared with prior expectations about how frequently
problems are typically detected, and used to train machine learning classifiers
that flag when problems are emerging (Schlake et al., 2009).

The multispectral approach makes it possible for the automated system to
detect issues that human inspectors, performing regular visual inspections,
would not be able to identify. This enables more thorough and efficient
inspections, opens up the possibility to inspect continuously rather than
occasionally, and improves safety by eliminating the physical risks of safety
inspections. By reducing the costs of inspections and audits, real-time quality
management enhances the efficiency of the rail network while substantially
improving safety.

There are many other examples in the research, all of which use new
technologies to increase connections, enhance intelligence, and automate
decision making or operational processes. Each of these examples improves
quality in some way. For example, Quality 4.0 approaches can be used to:

Detect wheel defects using neural networks and support vector machines (SVMs) to



classify flat spot, shelling, and nonroundness faults before they cause accidents or
loss to assets (Krummenacher et al., 2017)
Reduce maintenance time by a factor of 10 and improve rail noise emission and train
integrity, protect against derailment, and reduce maintenance costs and downtime by
implementing standards for CBM (Pfaff et al., 2017)
Alert operators to rail fractures, scoring, and wear by generating 25,000 image
profiles per second using 3D laser cameras, with data analyzed using Principal
Component Analysis (PCA) and random forests (a machine learning technique) to
classify tracks as healthy or faulty (Santur et al., 2016)
Detect track anomalies by applying deep learning, which addresses the complexities
associated with large numbers of failure modes and the high likelihood of false
alarms (Gibert et al., 2016)
Detect moving obstacles at railway crossings using machine vision and image
processing, which improves safety at crossings while protecting assets from costly
damage (Pu et al., 2014)
Predict the degree of remedial action required to prepare a segment of track for
transport of dangerous goods (like pollutants), using multilayer perceptrons,
classification and regression trees (CARTs), and SVM (Matías et al., 2007)

The most interesting thing I learned at this railroad conference, though,
was that despite all these exciting advancements, the rail professionals I
spoke with didn’t feel as though they’re on the cutting edge of Industry 4.0 or
Quality 4.0. “Most of us still keep track of our inspections and corrective
actions in spreadsheets, so I think we’re pretty far behind,” one told me.

The moral of this story is: sometimes, even if you’re on the cutting edge of
Quality 4.0 innovation like many in the rail industry, it may be difficult to see
and appreciate if you’re close to it—because these new capabilities have been
slowly becoming part of our lives for several years.

THE FOURTH INDUSTRIAL REVOLUTION
Every April since 1947, engineers and innovators have gathered at the
Hannover Messe trade fair in Germany to share new technologies and
breakthrough techniques in manufacturing. The event is widely recognized as
the premier forum for industrial technology. By 2019, there were over
250,000 attendees and 6,500 exhibitors at the weeklong show.

In 2011, Hannover Messe chose the “Industrie 4.0” theme to advertise the
event, emphasizing the increasing intelligence and interconnectedness of
“smart” manufacturing systems (Kagermann et al., 2011). In addition to the
new technologies, the conference organizers wanted to make sure that
attendees also recognized the social and workforce benefits of the emerging
technology-enabled ecosystem:



Industrie 4.0 will address and solve some of the challenges facing the world today such
as resource and energy efficiency, urban production and demographic change. Industrie
4.0 enables continuous resource productivity and efficiency gains to be delivered across
the entire value network. It allows work to be organized in a way that takes demographic
change and social factors into account. Smart assistance systems release workers from
having to perform routine tasks, enabling them to focus on creative, value-added
activities. In view of the impending shortage of skilled workers, this will allow older
workers to extend their working lives and remain productive for longer. Flexible work
organization will … [promote] a better work-life balance. (Kagermann et al., 2013)

The Americanized “Industry 4.0” label was chosen to reflect a turning point
informed by industrial revolutions of the past. How did we get to where we
are now, and what does it reveal? We can understand the evolution better by
tracing the development of key technologies from the 1700s to the present
time. During the first industrial revolution (late 1700s and early 1800s),
innovations in steam and water power made it possible for production
facilities to scale up—and expanded the potential locations in which
production facilities could be constructed. Before that time, manufacturing
facilities had to be constructed along rivers so that water wheels could be
used to generate power and water transport could be used to move whatever
was being produced.

By the late 1800s, the second industrial revolution was under way. The
discovery of electricity, establishment of the infrastructure for delivering it to
plants and facilities, and development of rail infrastructure enabled engineers
to develop machinery for mass production. Iron ore production increased, so
the machines themselves could be mass produced. In the United States, the
expansion of railways also made it easier to obtain supplies and deliver
finished goods. In Europe, railways and an expanding canal infrastructure
were both used to facilitate transport. In addition, electric light made it
possible to extend operating hours, which directly contributed to more
productivity—especially on assembly lines.

The widespread availability of reliable power also led to a renaissance in
computing: from predominantly analog to digital methods. By the end of
World War II, this process had begun in earnest. For example, digital
calculators gradually replaced slide rules for common computations, and
computer programs replaced tools like nomograms for determining the
relationships between inputs and outputs.

The third industrial revolution occurred between 1969 and 1972, with the
invention and rapid adoption of the Programmable Logic Controller (PLC).
With PLCs, common processes like filling and reloading tanks, turning



engines on and off, and controlling sequences of events could be automated,
and no longer required human monitoring or intervention. The rapid adoption
was due in part to PLCs specifically not being marketed as computers—at the
time, many people had a mental image of “computer” that included an air-
conditioned room packed with cabinets and wires, and operations fraught
with reliability problems. PLCs, which were designed for reliability and
relatively easy to program using ladder logic, evolved throughout the 1980s
and 1990s and remain ubiquitous in industrial environments (Segovia &
Theorin, 2012).

Throughout the 1980s, the cost of computing continued to decrease and
personal computers entered most workplaces in the early to mid-1990s. The
advent of the internet led to another revolution in connecting people to
information, but it wasn’t enough to fundamentally transform the way people
live and work until interactive capabilities (“Web 2.0”) became more
prevalent. The expansion of mobile devices, the introduction of mobile apps,
and the increasing reliability of cloud computing led to a convergence of
services. Multiple customer touch points (phone, fax, web, tablets) gradually
blended into the “single view of the customer” that most organizations now
have. Less than twenty years ago, companies had a hard time keeping track of
customer service phone calls, e-mails, and web queries—if you wrote an e-
mail to check on the status of a prior call, they might not be able to figure out
you were the same person. Now, this single view is taken for granted.

And now, we are on the cusp of the fourth industrial revolution, one that
introduces intelligent cyber-physical systems to the mix (Figure 1.1). Cyber-
physical systems link objects in the physical world to people, data sources,
and other objects, and communicate via local and global networks. In 2015,
the World Economic Forum (WEF) launched its Digital Transformation
Initiative to coordinate research to anticipate the impact on business and
society. Recognizing that digital transformation has been ongoing since the
emergence of digital computing in the 1950s—first with mainframes, then
client-server computing and personal computers, followed by the advent of
the web and the early e-commerce sites—the WEF aimed to explore the next
phase.



By examining previous patterns of convergence, the WEF anticipated an
even broader convergence among physical, digital, and biological worlds.
Klaus Schwab (2016), executive chairman of the WEF, explains:

We have yet to grasp fully the speed and breadth of this new revolution. Consider the
unlimited possibilities of having billions of people connected by mobile devices, giving
rise to unprecedented processing power, storage capabilities and knowledge access. Or
think about the staggering confluence of emerging technology breakthroughs, covering
wide-ranging fields such as artificial intelligence (AI), robotics, the internet of things (IoT),
autonomous vehicles, 3D printing, nanotechnology, biotechnology, materials science,
energy storage, and quantum computing.… The changes are historic in terms of their
size, speed, and scope.… The changes are so profound that, from the perspective of
human history, there has never been a time of greater promise or potential peril.

The first industrial revolution was characterized by steam-powered
machines, and the second by electricity and assembly lines. Innovations in
computing and industrial automation defined the third. The fourth industrial
revolution brings us machine intelligence, pervasive computing, affordable
storage, and robust connectivity. How can we leverage them to improve
quality and performance? That’s the domain of Quality 4.0, the pursuit of



performance excellence during this disruptive era of physical, digital, and
social transformation.

WHY NOW?
Although the growth and expansion of the internet accelerated innovation,
there are many reasons why the revolution is just beginning now:

Cloud Computing: Until recently, each organization had to create its own
information technology (IT) infrastructure, buying and setting up servers and firewalls
and hiring staff to maintain connections to the internet. With reliable cloud computing,
companies can outsource these tasks, significantly shortening setup time and
allowing organizations to focus on their own core competencies. Software as a
Service (SaaS), Platform as a Service (PaaS), and Infrastructure as a Service (IaaS)
can optimize resource utilization, provide better responsiveness, increase resilience,
and result in cost savings.
More Data Is More Readily Available: IoT devices and people are producing data at
greater rates than ever before. Enabling technologies like sensors and actuators, and
devices like Arduino and Raspberry Pi are now affordable, accessible, and powerful.
Together, they are catalyzing innovation.
IP Inventory and Global Connectivity: Since 1988, computer scientists have known
that, eventually, the bank of internet protocol (IP) addresses would be depleted
(Huston, 2008). Billions of new IoT devices exacerbated this problem. Fortunately, IP
version 6 (IPv6), which does have enough address space, is now in use worldwide. In
addition, improved network infrastructure is expanding availability and robustness of
connections, and innovations in this field are making it easier to work fully or partially
off-line and automatically synchronize.
Intelligent Processing: Affordable data storage, computing capabilities, and
processing power are available to generate insights in near real time for decision
making. Technologies for augmenting and enhancing human performance (e.g.,
exoskeletons and brain-computer interfaces) will reveal new mechanisms for
innovation. Software reuse, a difficult proposition until recently, means that more
options for intelligent processing are available. High-performance software libraries
for advanced processing and visualization of data are now often free, easy to find,
and, in many cases, easy to use.
New Modes of Interacting with People and Data: Touchscreens, voice-activated
interfaces, and personal assistants are now common. New interfaces like virtual
reality (VR), augmented reality (AR), and mixed reality (MR)—collectively referred to
as XR in many publications—expand possibilities for training and navigating a hybrid
physical-digital environment with greater ease, and also for delivering training
(especially in dangerous or always-on industrial environments).
New Modes of Production: Technologies like 3D printing, nanotechnology, and
gene editing (CRISPR) are poised to change the nature of business models and
means of production across industries. Utilities like blockchain may challenge
ingrained centralized perceptions of trust, control, consensus, and value creation,
opening up new ways to reliably produce goods and deliver services.



Many of these technologies have been in existence for years but have not
been reliable, accessible, or affordable enough. Now that these barriers to
entry have been lessened, the technologies can be more readily applied across
industries to improve quality and performance.

THE IMPACT OF INDUSTRY 4.0 ON QUALITY
With so many new developments beginning to change the way we live and
work, it is not surprising that quality management and quality engineering
may also need to adapt. The impact of Industry 4.0 on the quality profession
was first described, albeit indirectly, in the 2015 American Society for
Quality (ASQ) Future of Quality report. This study, which is conducted every
few years, aims to uncover key issues related to quality that might emerge in
the upcoming five- to ten-year period.

Although the term Quality 4.0 would not be used in print for another year,
the findings in this report were clearly intended to prepare the quality
community for the challenges of the Industry 4.0 future. The new reality of
quality, according to the experts whose perspectives were captured in the
study, would focus not so much on the interests of individual companies but
on the health and viability of the entire industrial ecosystem. They projected
that between 2015 and 2025, there would be:

A change in the nature of boundaries, both within and between organizations, and
how information is shared between them. These shifting boundaries will result from
increased availability and transparency of data, making it possible to work efficiently
at any distance. Technology will help us break down communication silos.
A greater focus on customer experience, participative markets (e.g., where
customers both consume and produce energy), and prosumerism (where customers
engage in co-creation to design and develop the products they want). As a result of
shifting organizational boundaries, customers, employees, suppliers, and partners
may assume multiple roles. Voice of the customer (VoC) will expand to include the
voice of things (VoT), which will provide information about our customers from the
connected objects around them (Goasduff, 2017).
Enhanced visibility into business processes, with the ability to monitor and respond to
any element in near real time. Supply chain “omniscience” will provide information in
the gaps that were previously obscured, opening up new opportunities for
optimization.
A shift to prioritizing continuous learning and adaptation over traditional factors like
efficiency, effectiveness, usability, and satisfaction. The overall goals of quality will
not change, but there will be more and different ways to use technology to achieve
them.

Although these are not all the issues raised in the report, the key themes are



clear. The nature of “organization” as a concept is changing, and the nature of
“customer” is changing as well. Organizations will no longer be defined
solely by their employees and business partners but also by the customers
who participate—without even explicitly being aware of their integral
involvement—in ongoing dialogues that shape the evolution of product lines
and new services. New business models will not have to rely on ownership,
consumption, or centralized production. The value-based approach will
accentuate the importance of trust, transparency, and security; and new
technologies like blockchain will help us implement and deploy systems to
support those changes.

QUALITY 4.0: THE NEXT GENERATION OF EXCELLENCE
The themes described in the 2015 ASQ Future of Quality report suggest that
quality and performance improvement will be driven by connectedness,
intelligence, and automation. In many cases, this will be enabled by Industry
4.0 technologies like IoT and machine learning. In the organizational
ecosystems built on these technologies, humans and machines will cooperate
to achieve shared goals, and use data to generate insights and deliver value in
near real time.

Examples of these three elements will be presented in the following
sections. Although the technologies and external environment will change
over the upcoming decades, the role of the quality professional will remain
the same as always: to harmonize people, processes, and technologies to help
organizations achieve their goals and deliver business results sustainably.

Connectedness
Every hour of every day, drivers consult Google Traffic to find traffic jams
and plan better routes. Some people use the raw data to decide, on their own,
whether to dynamically reroute (Figure 1.2). Others trust Google to choose a
route for them and guide them to their destination using voice prompts. In its
most basic form, Google Traffic provides nothing more than data
aggregation: it looks at the total number of cars, how fast they’re traveling,
and how the speeds compare with the speed limits on those roads to make its
determinations. Although other services like Waze and Mapquest also
provide traffic information, Google data is more comprehensive and accurate,
thanks to its user base. The more users providing information about their
location and speed, the more accurate the traffic reports will be (Stenovec,



2015).

This example demonstrates the Quality 4.0 principle of connectedness: by
gathering and aggregating data from thousands of people, the real-time state
of the entire system can be inferred. This enables drivers to make more
informed (and often better) decisions about their travel. Even without
intelligent agents to select candidates for best routes, or implementing
automation to choose the best one, there is value in connecting people to data
like this.

Large-scale data aggregation can also reveal unexpected insights. A screen
capture taken from Google Traffic at 11:30 p.m. local time on Monday, May
27, 2019, shows traffic jams north of Trotwood, Ohio, in the immediate
vicinity of Northridge, and just west of Byron (Figure 1.3).



Why were there three jams this late at night in suburban areas just north of
a major city? The traffic jams were not due to accidents or congestion.
Approximately 45 minutes earlier, a large, violent tornado had started ripping
a path through Trotwood (National Weather Service, 2019). Nearly two-
thirds of a mile wide, and with winds approaching 200 mph, it moved east
across the metro area for the next half hour. The winds leveled homes and
businesses, and wrapped cars around utility poles with extreme force.
Because vehicles were unable to navigate through roadways covered with
debris, the path of the tornado was clearly marked by Google Traffic.

The moral of the story is: it’s not just network connectivity that drives
insights, but connectedness. By connecting people to data (or other people),
they can get the information they need to perform.

Intelligence
In 1956, when the first group of researchers and practitioners who had been
exploring artificial intelligence (AI) gathered on the campus of Dartmouth for
the world’s first workshop on this subject, they didn’t really know what it
was. Their goal was to define it, by looking for common threads through the
problems each one had been working on, and then figuring out how to form
solid collaborations.

The problems these people were exploring were fundamental and
compelling, especially during the 1950s. Allen Newell, a cognitive



psychologist, wanted to explore the problem of teaching a machine to play
chess, and also to understand the concept of search. Herbert Simon, who
would eventually win the 1978 Nobel Prize in Economics, was interested in
decision making in organizations—in particular, the cognitive processes
associated with rational decision making. John McCarty, a cognitive scientist,
developed the Lisp family of programming languages that supported much of
the early AI research. Ross Ashby, a psychiatrist, wanted to understand
mechanical and biological control systems. Over 40 other people, with
interests and pursuits just as diverse as these, also attended.

All the participants in the Dartmouth workshop shared a unifying goal: to
create machines that could match or exceed the cognitive performance of
humans. Intelligence could be defined in many ways, including deliberating
on the next move in a game, making a well-reasoned recommendation for a
new purchase, or understanding the meaning of a paragraph of text. Although
deep learning has started to approach human performance on tasks like image
recognition, speech recognition, and handwriting analysis, more complex
tasks like detecting emotions, emulating beliefs, and interpreting meanings
are still not in reach. Despite some practical success, the research landscape
for AI today is still rather broad, deep, and aspirational.

Automation
Automating a process means reducing or eliminating the need for human
intervention. Credit card fraud detection, for example, is no longer a manual
task: sophisticated machine learning algorithms use datasets describing
patterns of behavior for each cardholder and compare new transactions with
the baseline to determine whether there may be a problem. Automation
makes it possible for the credit card company to provide millions of
customers with accurate, timely handling of potential criminal incidents,
minimizing losses for both parties.

Automation isn’t an all-or-nothing commitment. On the path to autonomy,
there are many degrees of automation that can be implemented. For example,
an operator can define a process that a computer or intelligent agent executes,
the computer can make and execute all decisions, or a combination (or
context-dependent) choice can be made between the strategies. Machine
intelligence fits seamlessly into this spectrum: an algorithm can provide
advice, take action with approvals or adjustments, or take action entirely on
its own. As part of process design, we have to decide what value to deliver



through various degrees of intelligence and automation.
This was explained in more detail by Sheridan and Verplank (1978), who

outlined ten degrees of automation. Their list can be used to select
appropriate automation approaches for a given problem context:

1. Human specifies process, and computer directly executes the instructions
2. Computer assists human by determining options, and human selects the desired

option
3. Computer assists human by determining options and suggesting a choice; human

selects an option that may or may not be what was recommended
4. Computer assists human by determining options and selecting a choice; human has

the option to follow the computer’s recommendation or not
5. Computer selects and implements option, but requires human approval prior to

executing it
6. Computer selects the best option and automatically implements it, but gives the

human the chance to stop the process
7. Computer selects and implements options automatically, then reports results to the

human
8. Computer selects and implements options automatically, telling the human about the

results only if asked, and reports comprehensive results
9. Computer selects and implements options automatically, telling the human about the

results only if asked, and reports only some information
10. Computer selects options, implements options, and automatically performs the

whole job; it may or may not tell the human anything that has transpired, although
logs may be collected to keep track of what occurred

Keeping a human in the loop can improve the quality of the automated
solution. For example, on June 18, 2019, Jean-Francois Bonnefon (a
behavioral scientist at the MIT Media Lab) shared a story on Twitter about
his recent experience submitting a scientific paper for review. The journal
had recently implemented an automated system for the first step of the
process—checking the submission to make sure it fits the scope of the
journal, is the right length, has the right kind of references, and is in general
reviewable. This is usually a task performed manually by the editor or
associate editors, and if the paper doesn’t pass that initial quality check, it’s a
desk reject that does not proceed to peer review.

When Bonnefon submitted his paper, the automated system quickly did its
thing and sent him an automated desk reject less than two minutes later. The
paper could not be accepted, the e-mail explained, because of “a high level of
textual overlap with previous literature.” The author was confused because
neither he nor his coauthors had engaged in any plagiarism. Fortunately, the
editor-bot sent a copy of his paper with all the so-called plagiarized areas



highlighted. About half the references, written in the standard citation format
that the journal requires, had been flagged for bad behavior. “It would have
taken 2 minutes,” he said, “for a human to realize the bot was acting up. But
there is obviously no human in the loop here. We’re letting bots make
autonomous decisions to reject scientific papers. I’m so excited to be at the
forefront of this new era! (a little pissed, too).”

But like connectedness and intelligence, automation can be valuable on its
own. For example, when I signed up for automatic bill pay for my power bill,
I authorized the utility company to automate the payments on the same day
each month. The service doesn’t require me to be connected to the internet or
to connect with the utility company in any way—the payment just
automatically happens, triggered by a business rule that specifies what day to
issue the payment. Executing business rules does not typically rise to the
level of an intelligent system.

DISCOVERY: THE NEW ROLE OF QUALITY
Connectedness, intelligence, and automation improve performance by
helping us discover patterns and insights without having to explicitly define
them, and accelerate the process of acting on data through automation. My
credit card company, for example, implements intelligent agents to monitor
my purchases, and detects when potential fraud has occurred. I get an
automated text message listing the last three transactions, and asking me to
review them for legitimacy. If I respond YES, no action is taken, and the
fraud detection algorithms are updated (having learned more about my
purchasing behaviors). If I text NO, my card is immediately shut down to
avoid further losses, and a new card is issued. Delivery of value and
prevention of loss are nearly instantaneous depending only on how quickly I
can respond to the text message.

Today’s quality profession began in the early 1900s, during the middle of
the second industrial revolution. Scientific management, introduced
contemporaneously by Henri Fayol in France and Frederick Winslow Taylor
in the United States, modeled production systems as machines and aimed to
use data and observations to make them perform better. Factories needed
methods to make sure assembly lines ran smoothly, to produce artifacts to
specifications, to train workers to perform accurately and consistently, and to
control costs by standardizing work. The methods for statistical process
control introduced by statistician Walter A. Shewhart (1891–1967) helped



operators determine whether variation was due to random or special causes.
As industrial production matured, methods expanded to encompass design.

Processes were consciously constructed to be able to produce to
specifications. Joseph M. Juran (1904–2008) introduced the concept of
Quality by Design in the 1960s and formalized it in 1986. Since then, it has
been formalized in pharmaceutical manufacturing through the International
Council for Harmonisation of Technical Requirements for Pharmaceuticals
for Human Use (ICH) Guidelines Q8 through Q11 (DeFeo, 2019). In the
1980s and 1990s, the adoption of personal computing once again changed the
landscape. Business productivity software established a foothold, in
particular, spreadsheets and word processing. Organizations regrouped
quality efforts around the value of culture and active engagement in quality—
and total quality management (TQM), lean, and Six Sigma gained in
popularity.

The progression can be summarized through four themes:
Quality by Inspection: In the earliest days of quality as a practice and profession,
quality control relied on inspecting bad quality out of the total items that had been
produced. By the 1950s, the broader management focus of quality assurance had
emerged.
Quality by Design: Inspired by statistician W. Edwards Deming’s recommendation to
“cease dependence on inspection” and Juran’s Quality by Design, holistic methods
emerged for designing quality into processes, to prevent quality problems before they
could occur.
Quality by Empowerment: TQM and the philosophy of Six Sigma advocated a
holistic approach to quality, making it everyone’s responsibility and empowering
individuals to contribute to continuous improvement.
Quality by Discovery: In a smart, hyperconnected environment, quality will depend
on how quickly data can be assimilated, aggregated, and applied. It will result in
discovering and addressing root causes quickly, and rapidly capturing opportunities
for growth and improvement.

As adaptive systems that are connected, intelligent, and automated are
more widely implemented, opportunities for breakthrough performance
improvement will be revealed—and there will once again be a renaissance in
quality tools and methods. The pace will depend on how well we can
discover (and act on) new insights about ourselves, our products, and our
organizations.

VALUE PROPOSITIONS FOR QUALITY 4.0
A value proposition explains the benefits a product or activity will deliver.



Quality 4.0 initiatives that enhance connectedness, add intelligence, or
advance automation tend to offer one or more of these value propositions
(Radziwill, 2018):

1. Augment (or improve on) human intelligence
2. Increase the speed and quality of decision making
3. Improve transparency, traceability, and auditability
4. Anticipate changes, reveal biases, and adapt to new circumstances and knowledge
5. Reveal opportunities for continuous improvement and new business models
6. Learn how to learn; cultivate self-awareness and other-awareness as a skill

For example, predictive maintenance can help operators anticipate equipment
failures and proactively reduce downtime. Intelligent algorithms can assess
supply chain risk on an ongoing basis and provide recommendations about
whether to take corrective action. Traditional quality practices can also be
used to improve performance in new areas like cybersecurity, where
documenting and benchmarking processes can provide the basis for detecting
anomalies. Without an understanding of expected performance, it can be
difficult to detect potential attacks or other situations that are not nominal.
There are many more examples in the following chapters to demonstrate all
these value propositions.

QUALITY PROFESSIONALS: LEADING THE TRANSFORMATION
With better and more timely information about business processes,
responding and adapting to changing customer and stakeholder needs—or a
changing external environment—will become easier in some cases and
feasible in others. When AI and machine learning are woven into data-driven
decision making, quality systems will start becoming self-aware. But it won’t
be a purely technological transformation: designing effective intelligent
agents and using the recommendations they provide will be a uniquely human
proposition. The changes will have particular implications for the
manufacturing workforce, where cognitive skills and the ability to make
decisions based on data are already starting to become just as important as
physical capabilities and dexterity.

Quality professionals already have the unique skills and capabilities to
lead organizations in their digital transformation efforts. These include the
following:

Systems thinking
Data-driven decision making



Leadership for organizational learning
Defining processes and managing continuous improvement
Understanding how processes, policies, and decisions impact people: their lives,
relationships, communities, well-being, health, and society in general

Quality professionals are distinctively good at structured problem solving,
data-driven decision-making, and leveraging cultural change to facilitate
improvement. In Quality 4.0, these fundamentals will not change, even as the
amount and variety of data increase.

The last point is particularly important. Many machine learning algorithms
must be trained, and training is subject to personal and cognitive biases.
Quality professionals can anticipate positive and negative impacts, and help
organizations protect against negative consequences while capturing
opportunities that will benefit society and the planet. There are exciting
opportunities as well to enhance environment, health, and safety (EHS)
outcomes by applying quality principles and practices to those domains—
driven by the ability to examine data across functional boundaries.

BRAVE NEW WORLD
Even the most magical of technological capabilities can become ordinary and
commonplace. I remember the first time I connected to WiFi on a new laptop.
It was so shocking that I could check my e-mail without an Ethernet cable. I
waved my hands around the outside of the machine, tracing the air on all
sides. “Look,” I told my colleague, “no wires!” He was giddy too, because
we had both received new machines from our employer that day.

But fast-forward almost 20 years, and now WiFi is as essential as
electricity and running water, and certainly doesn’t get me excited every time
I use it (unless it’s not working). Optical character recognition (OCR) is
another example of a technology that used to be magical but is now just
everyday AI—it’s used to sort and route most of our mail, and it’s embedded
in most scanners as well. When the technology solves a previously intractable
problem, AI finds its footholds.

Three fundamental characteristics of deployed AI can be seen in action. First, they
identify a long-unsolved problem or unrealized opportunity. Next, they’re solved in a

way that simply wouldn’t be possible without AI. Finally, they demonstrate that AI
has a role to play in just about every industry, whether tech-focused or not.

Sooner or later, every technology transitions from an elite niche to a mainstream
tool. AI is now undergoing a similar transformation. After years of hype around
mysterious neural networks and the PhD researchers who design them, we’re



entering an age in which just about anyone can leverage the power of intelligent
algorithms to solve the problems that matter to them. Ironically, although

breakthroughs get the headlines, it’s accessibility that really changes the world.
That’s why, after such an eventful decade, a lack of hype around machine learning

may be the most exciting development yet.
—ANDREW MOORE, HEAD OF GOOGLE CLOUD AI, IN MOORE (2019)

The performance breakthroughs introduced by Quality 4.0 and Industry
4.0 technologies will impact our organizations and our lives gradually,
slowly, and deeply. Although they will initially seem magical to us, in two
more decades we’ll take many things for granted—like being able to sense
and analyze our operating environments in real time, and check the status of
supply chains and ecosystems whenever and wherever we like. Traceability
will be expected. Audits, process improvement, and risk management will be
semiautonomous and aided by intelligent systems that recommend and
prioritize actions. Instead of spending time dealing with nonconformances
and management reviews, we’ll have more time to focus on the bigger
picture: innovation and growth.

The era of intelligent, autonomous quality systems is only beginning. This
book will help you understand the emerging landscape, anticipate
opportunities for improvements and breakthroughs, and develop strategies
and initiatives for your own organization.

THE BOTTOM LINE

The fourth industrial revolution introduced machine intelligence and cyber-physical
systems (tangible objects that can communicate over the internet).
The revolution is beginning because storage is cheap, hardware is much more
affordable than in years past, software to perform complex tasks is available, internet
connectivity is widespread, and a workforce skilled in these new technologies is
ready to go.
Quality 4.0 improves connectedness, intelligence, and automation so that people,
machines, and data can work together to improve performance and achieve
organizational goals:

Connectedness means finding ways to bring people, machines, and data
together—and may or may not involve internet connections or smartphones.
Intelligence can come from new ways of collecting and interacting with data,
new ways to learn, or automated methods like machine learning algorithms.
Automation means having a system perform tasks that a human previously
had to do. There are many degrees of automation, from machines providing
recommendations that humans act on, to fully autonomous systems that
make (and execute) all the decisions on their own.



The practice of quality is shifting again, just like it has over the past hundred years.
Quality by inspection evolved into quality by design. Next, engagement became
critical as organizations realized that to be successful, quality must be everyone’s job.
Now, with increased connectedness, intelligence, and automation, quality can
discover new insights for us, helping us meet our organization’s goals more quickly
and effectively.
Quality 4.0 initiatives can augment human intelligence; improve decision making;
improve traceability, transparency, and auditability; anticipate changes and adapt to
changing circumstances; reveal opportunities; and help us learn how to learn.
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CHAPTER TWO

CONNECTED ECOSYSTEMS

It is collaboration among many, not sudden epiphanies, that really changes the
world.

—GREG SATELL, AUTHOR OF MAPPING INNOVATION AND CASCADES

On July 4, 2019, a magnitude 6.6 earthquake struck the high desert of
California, near San Bernardino, at 10:43 a.m. local time. Within five
minutes, social media posts had spread the word to Europe and beyond, even
though the U.S. Geological Survey website had crashed almost immediately
under the surprise load. Just ten years earlier, it would have taken one to two
days for people outside California to find out about what happened. Today,
we can see personal videos of these news events captured by smartphones
moments after they occur.

But the value of connectedness is even greater than the ability for news to
circumnavigate the globe in near-real time. In the spring of 2019, I had a
conversation with a director of operations at a large company that
manufactures appliances. We were talking about failure modes and effects
analysis (FMEA), a tool developed by reliability engineers in the 1950s to
systematically identify and study all possible things that can go wrong in a
product design process or manufacturing process. By critically examining
failure modes in the design or production planning stages, steps can be taken
to mitigate or eliminate defects and other problems. Because FMEA can
significantly reduce the potential for failures, rework, and returns, lots of
organizations use it. The director I spoke with was trying to figure out a
better strategy for making sure his team’s FMEA worksheets accurately
reflected current processes and controls.

“It’s great that I have a way to keep track of my own data, and some of the
other people here in my division,” he said. “I keep them all on this server. But
it’s really the connections that matter. I need a way to find out when process
steps have changed, so I know when to take another look at the risks. I need



for my systems to talk to each other so they can keep in sync. If we have to
make sure all the systems are kept up to date with the right information
manually, it’s going to drive all of us up the wall.”

Connections enhance performance, drive innovation, and transform people
and relationships. Sometimes, these connections occur between people or
organizations, who provide each other with information, knowledge, support,
interest, guidance, leadership, and new perspectives. Connections between
people can also lead to provisions of tangible goods, or even funding. Other
times, connections between people and data help people monitor the status of
processes, control processes, or monitor the state of the business itself.
Machine-to-machine communication can be used to coordinate subsystems
within a system and achieve tasks like dynamically optimizing fuel
efficiency. When machines and data are connected, machines can gain new
capabilities, such as the ability to produce milled or 3D-printed objects from
pre-programmed designs, or to work with custom tooling more easily.

In the most profound cases, connectedness can transform and move the
human spirit. In the summer of 2016, I attended a dissertation defense at the
MIT Media Lab in Cambridge, Massachusetts. This self-proclaimed
“antidisciplinary research lab” is known around the world for pushing the
boundaries of human-machine interaction, spanning disciplines from
cognitive science to art, and promoting radical creativity.

Xiao Xiao, at the front of the room, dimmed the lights and turned on the
projector so we could see an image of her at a piano. This was no ordinary
piano. Instead, it was the machine she had invented, one that looked and
sounded like a piano, but with one extra feature. Instead of a solid fallboard
immediately behind the player’s hands, she had installed a mirror that could
play and record video. This prototype, called MirrorFugue, makes it possible
for more than one person to collaborate on a single piano through both sound
and images (Figure 2.1).



The video started. On the screen, a young girl sits at a piano and begins to
play “Twinkle, Twinkle Little Star.” Shortly after, we see Xiao sit at
MirrorFugue, with the girl on the video screen and her hands reflected in the
fallboard. Xiao and the girl play a duet (which you can see and hear at
https://vimeo.com/61927293, starting at 1:56). Afterward, Xiao asked the
audience:

What would it be like to return 10, 20, 50 years later to converse with reflections from
various points in the past? I like to imagine that my reflection as a little girl still resides
within my piano. I’d like to find my former self still playing the same familiar tunes and
join her in a duet, filling in an accompaniment to her melody. Or perhaps my children and
grandchildren can meet me at their age as a reflection in the piano and play a duet with
me. (Xiao, 2011)

Although her media work used the piano as a centerpiece, what Xiao was
really exploring was how augmented reality can create shared experiences.
Her work “introduced a philosophy of communication in which the details of
human presence form essential threads in the fabric of an interpersonal
discourse, even when stitched across the folds of space and time” (Xiao,
2011). She demonstrated how technology makes it possible to deliver user
experiences where value is not even constrained by basic elements of

https://vimeo.com/61927293


physics.
A great musical performance feeds both the mind and spirit, for it distills and delivers
essential expressions of the human experience. I wonder if more computer interactions
should strive to be similarly evocative, where facets of ourselves are reflected back at us
so that we become more mindful at the immensity of our existence. (Xiao, 2011)

The MirrorFugue example shows how powerful new and emerging
technologies can connect people to data, to experiences, and to each other—
even to a past or future self. Couple this with always-on internet, and more
possibilities for increasing connectedness across workplace and home
ecosystems will be revealed. More connectedness among people, machines,
and data means more potential ways to create value—and billions of internet
of things (IoT) devices to use as levers and enablers.

NATURAL AND ORGANIZATIONAL ECOSYSTEMS
What is an ecosystem? In a natural ecosystem, living and nonliving entities
coexist with one another, interacting as a system and dynamically exchanging
energy with each other and the environment. It’s the energy exchange that
determines the health and well-being of the ecosystem. Every living thing in
that system is dependent on the ecosystem as a whole, and although natural
ecosystems can often bounce back from disruptions, a problem with one part
of the system will often impact others.

Organizations work in a similar way. They consist of smaller,
interconnected networks of people, organized into departments and functional
areas, and informal networks of projects and friends that get the work done.
People also interact with nonliving entities like hardware, machinery,
software applications, and databases. Networks can be formal (e.g.,
companies, organizational units, research centers, legally binding
partnerships, teams) or informal (e.g., established by cooperation and
collaboration). The organization has direct relationships with suppliers,
partners, and collaborators, and indirect relationships with other stakeholders
and society.

But how does energy flow? In the concept of an “industrial ecosystem,”
raw materials are the energy and the goal is to minimize material waste to
lessen environmental impacts (Frosch & Gallopoulos, 1989). In an optimal
industrial ecosystem, plants would “use each other’s waste material and
waste energy flows as resources” (Korhonen et al., 2001). In psychology,
flow is a word that describes reservoirs of mental energy that, when tapped,



results in focused attention and compels action. In organizations, energy
flows through value streams and communication networks (Schippers &
Hogenes, 2011; Peltoniemi & Vuori, 2004).

Value is the energy in the organizational ecosystem. And because value
can flow through processes, transactions, information exchanges, or financial
exchanges, there are many sources and sinks for that energy. Non-value-
adding activity is not desirable, because it draws energy out of a system
rather than creating new energy to sustain the system. The purpose of a
quality management system, using this analogy, is to design ways for the
nonfinancial value to flow that will help the financial flows as well.

Connections create ecosystems by facilitating the flow of value. For
example, data gathered by one entity can be used or turned into value by
another if the right connections (human and technological) are in place. Value
can be created by connecting people to data and information repositories so
they can find what they need to solve problems, or by connecting algorithms
to data sources so they perform better. The most disruptive innovation takes
place at the “edges” (that is, not in the highly controlled environments of
R&D labs), so designing the connections between networks within an
ecosystem is critical (Ito, 2012).

For the ecosystems to be healthy, a communications infrastructure must be
in place to connect the entities within it. This includes physical connections
(the internet infrastructure, WiFi, and cellular networks) as well as conceptual
connections (policies, procedures, protocols, and formats). The
communications infrastructure makes it possible to exchange information,
share data, make decisions, and interact in ways that help people within the
networks collectively achieve business goals.

Within an organizational ecosystem, the entities that need to be connected
to each other can be broadly classified into three groups:

People include individuals as well as groups of people in teams, functional divisions,
entire organizations, suppliers, research centers, community support organizations,
cities and towns, countries, and society in general.
Objects and machines include industrial equipment, operations technology such as
historians or supervisory control and data acquisition (SCADA) systems, models to
process and understand data (e.g., simulations, optimization models, statistical
models, machine learning models), sensors, actuators, beacons, radio frequency
identification (RFID) tags, embedded systems, biological machines (e.g., CRISPR),
smart materials (which can function like machines), and any physical item that can be
connected to a network.
Data include values, objects (like images), files, unstructured data, streaming data



(e.g., from sensors), and data repositories like databases, data lakes, and data
warehouses.

The remainder of this chapter walks through each of these categories
(infrastructure, people, objects and machines, and data). Each section
describes some of the key enabling technologies that enhance connectedness
between these elements, providing the substrate for value creation.

INFRASTRUCTURE
Everything we do—whether it’s going to the grocery store to buy food or
paying an invoice to a supplier on another continent—requires infrastructure
to support the task. This includes roads, railways, airports, shipping lanes,
power grids, emergency services, and telecommunications systems. It also
includes the financial systems that support payments and other exchanges of
value. In some countries, the school system is part of the infrastructure.
Information technology infrastructure (on-premise as well as cloud-based
systems) support business applications and communications, and can consist
of routers, servers, firewalls, and data centers.

Critical infrastructure is defined as “systems and assets, whether physical
or virtual, so essential to the nation that any disruption of their services could
have a serious impact on national security, economic well-being, public
health or safety, or any combination of these” (Alcaraz & Zeadally, 2015).
Each U.S. presidential administration typically identifies key elements of the
national critical infrastructure to guide policy and funding priorities.
Presidential Policy Directive PPD-21, the most recent directive, identified the
elements shown in Figure 2.2.

Infrastructure is in place to help people easily exchange materials and



information. When materials and information can flow, economies also flow.

Connectivity and 5G Networks
Lack of available, reliable infrastructure can present challenges for all of
these sectors. This can be the case even in the most advanced countries in the
world, including the United States. In South Carolina, for example, over half
a million people (11% of the state’s population) do not have internet services
that can support streaming video, sharing and downloading large files, or
even some interactive websites. Not only does this make homework difficult
for many of the state’s students, but it makes business difficult for
manufacturers and is impeding growth. David Cline, owner of Piedmont
CMG, remarked that “there were extreme limitations, even on a good day”
(Barton, 2019a). Hospitals, however, are bearing the brunt of the
infrastructure crisis in South Carolina. Rural hospital closures and difficulties
communicating with patients have exacerbated this issue, which is now a
priority among the state’s lawmakers (Barton, 2019b).

The next innovation in connectivity is 5G, driven by the need to match
extreme demands on the global network by mobile devices that the existing
4G infrastructure cannot accommodate. 5G promises to catalyze adoption of
technologies that require higher transfer speeds and lower latency, like
augmented reality and IoT devices, but rollout will take some time. By mid-
2019, parts of Chicago and Minneapolis had Verizon 5G, while Dallas,
Houston, Kansas City, and Atlanta could access Sprint’s 5G. New devices
from Sprint, Apple, and Samsung had been released to coincide with network
availability.

Once 5G is broadly available, though, it will likely be years before new
real-time services and business models start to emerge in great numbers.
When 4G was released in 2010, for example, it took four to five years for
people to start watching videos on their phones and hailing taxis from a live
network of drivers (McGarry, 2019). Unfortunately, “the coverage dilemma
is likely to remain the same, thus widening the rural-urban digital divide
further,” prompting researchers to explore architectural innovations for 5G in
rural areas (Khalil et al., 2017).

According to the United Nations, only half the world’s population has
access to the internet. After 2015, the rate of new connections slowed, with
an estimate of nearly 4 billion people remaining off-line in 2019 (Dreyfuss,
2018). As a result, executives and senior leaders planning Industry 4.0 and



Quality 4.0 initiatives cannot assume availability and reliability of internet
connectivity. The conditions and projections for each stakeholder group must
be evaluated separately. The types of devices that will be used, frequency of
uploads and downloads, and sizes of those transactions must be considered
during feasibility assessments.

Internet Protocol Version 6 (IPv6)
Every device that relies on the internet to communicate needs an internet
protocol (IP) address. From 1983 until at least 2019, version 4 of this
protocol (IPv4) supported most internet traffic. Unfortunately, IPv4 has a
critical limitation: there are only 4.3 billion unique addresses. But because 50
billion internet-connected devices are projected to be in service by 2020,
IPv4 addresses will run out.

Fortunately, this problem has been known since the 1980s, when network
engineers observed a more rapid depletion of addresses than they initially
anticipated. Work on a new protocol, IPv6, started soon after in the 1990s
and entered limited service, commercially, by 2006. (What happened to IPv5,
you may ask? This version number was assigned to an experimental platform
for supporting data streaming that never became a viable solution.)

Pickard et al. (2018) studied the spread of IPv6 using Rogers’s (1962)
diffusion of innovations model and found that “IPv6 adoption will meet the
50% point to begin the Late Majority phase between March of 2021 and
October 2022.” If your organization has not started considering IPv6, this
result strongly suggests that now is the time.

Cloud Computing
Although there was a long ramp-up period as businesses learned to trust
compute power owned and maintained by other organizations, cloud
computing is now a more popular solution for hosting critical business
systems than on-premises installations. Data protection, compliance
management, and service-level agreements are now frequently well
maintained. In some industries—for example, aerospace in India—cloud
computing is increasingly trusted for mission-critical operations technology
on factory floors (Misra et al., 2018).

There are four kinds of clouds (deployment models) and three general
service models representing functionality that can be offered (Figure 2.3).
Infrastructure as a Service (IaaS) leaves the systems administration, operating



system management, data management, and software up to the customer.
Platform as a Service (PaaS) shifts each of these responsibilities to the cloud
provider except the software management. Software as a Service (SaaS) is
even more hands-off, representing a model where the customer rents software
that the cloud provider builds, grows, and maintains. In addition, cloud
infrastructure can be deployed completely on-premises (private cloud), can be
shared with affiliated organizations (community cloud), can be shared with
unaffiliated organizations (public cloud), or can use a combination of the
methods (hybrid cloud). Leaders planning Industry 4.0 and Quality 4.0
initiatives should be aware that the risk profile is different for the
combinations of service and deployment models (Novkovic & Korkut, 2017).

Software-Defined Systems
In a software-defined system, specialized hardware is replaced by software
that runs on a single, shared computing device. This eliminates the need to
install, manage, and maintain multiple distinct hardware elements. For
example, in software-defined networking, routers and switches are replaced
with software that has more finely tuned power to handle various kinds of
network traffic. This is called network function virtualization (Kreutz et al.,
2015).

Because there is no longer a need for different pieces of hardware, the
nature of the new product development life cycle shifts completely, becoming



a software project rather than a hardware project. Although both approaches
have challenges, software development is typically somewhat faster and less
expensive than hardware development. Additionally, shifting the
maintenance burden to software saves time and money and means that less
specialized skill sets are needed to improve and evolve devices. This makes it
easier to innovate and grow.

In addition to networking, there are several other use cases for this
approach, including software-defined industrial internet of things (IIoT),
software-defined cloud manufacturing, software-defined control systems, and
software-defined supply chains (Thames & Schaefer, 2016). For the Industry
4.0 or Quality 4.0 leader, the value of these emerging approaches is that it
may help us design agile, programmable production systems that are more
easily managed, configured, and secured. Before investing in specialized
hardware, explore the possibility of a software-defined system.

Edge Computing
Huge amounts of data will be collected by sensors and IoT devices, and not
all of that data will need to be captured or transferred. Some data will be
analyzed and used locally, and, once it’s processed, may not need to be
stored. For example, if a voltage is being read every 100 milliseconds
because the sensor is configured that way, but only a 1-second average is
needed for further computations, that operation can be done close to the
sensor (“at the edge”). Specialized chips (resource-constrained devices) can
also acquire data and execute machine learning algorithms at the edge,
sending back only the results (Alizadeh et al., 2019). In Figure 2.4, for
example, a machine learning classifier embedded with a camera can gather
images, determine whether a cat is carrying prey such as a dead mouse or
bird, and then send a signal back to the cat flap to prevent the cat from
entering the house. This is an effective arrangement of processing and
networking resources that would yield greater efficiencies as the size of the
camera network grew.



By processing data as close to the point of capture as possible, costs are
minimized while issues like latency are made nearly irrelevant. Additionally,
datasets produced by sensors or other instruments can become so large that
they are impossible to move around the network. Edge computing helps
alleviate these potential issues as well (Chen et al., 2018). When
implementing an Industry 4.0 or Quality 4.0 solution, examine possibilities
for pushing processing and analysis as close to the edge as you can to
minimize costs and reduce the data footprint of the system.

Cyber-Physical Systems (CPS)
The backbone of the connected enterprise and the smart city is cyber-physical
systems (CPS)—physical objects that can communicate with people,
machines, or data stores over networks. According to the National Institute of
Standards and Technology (NIST, n.d.), cyber-physical systems or “smart”
systems are “co-engineered interacting networks of physical and
computational components.” CPS have a cyber (connected) part and a
physical (tangible) part and disrupt the traditional automation hierarchy in
industrial systems by increasing connections between each of the layers
(Figure 2.5) (Monostori, 2014).



Components within each of the levels can connect with other components
in context-dependent ways, from the process level through the supply chain
level. These systems will provide the foundation of our future critical
infrastructure and form the basis for emerging and future smart services.

PEOPLE
Even though the changes and disruptions associated with Industry 4.0 and
Quality 4.0 are brought about by technology, people are at the heart of the
transformation. Overall process efficiency depends on the combined
performance of people, processes, and technologies. Delivering an excellent
customer experience requires a committed, engaged workforce. Acting based
on beliefs, intentions, and values is a uniquely human experience, as is
demonstrating empathy.

Imagine you’re on a road trip, driving across the country, and you pull into a
Starbucks drive-through that you’ve never been to before.… You’re a loyal

customer and you buy about the same thing every day, at about the same time. So
as you pull up to the order screen, we show you your order, and the barista

welcomes you by name. Does that sound crazy? No, actually, not really. In the
coming months and years you will see us continue to deliver on a basic aspiration:

to deliver technology that enhances the human connection.
—GERRI MARTIN-FLICKENGER, CTO OF STARBUCKS, IN MARCH 2016

Technology represents all the ways that social groups create the tangible
objects of their civilizations—bringing together people, processes, materials,
and information to create utility and value. This section covers several



technology-enabled ways to connect people to one another, using the broad
definition to capture technologies that are not digital in nature.

Protocols and Procedures
Until 2015, industrial communications used a diverse array of mechanisms to
help machines communicate with each other, including fieldbus systems,
Ethernet-based approaches, Modbus, and ZigBee (Wollschlaeger et al.,
2017). A device was unable to talk to another device without a shared
communications protocol. Even with a shared protocol, without a structure in
place to know how to work together and make decisions based on those
communications, the mere ability to pass information back and forth will not
be valuable.

The same is true with people. Sharing information and acting on
information are two different things. To effectively act on shared information,
an organization has to know itself. How do decisions get made? How does
the organization maintain a customer focus? How does workforce
development ensure that capability and capacity are managed? Guidance like
the Baldrige Excellence Framework can help organizations answer these
questions to make sure that enhancing connectedness will add value (NIST,
2019).

The policies, practices, and procedures captured in self-study and award
programs like Baldrige, by quality systems, by environmental management
systems, and by occupational health and safety systems are all technologies.
The lesson for Industry 4.0 and Quality 4.0 is this: traditional technologies
are as critical as ever and cannot be ignored in favor of software and
intelligent systems; rather, they should be used as a complement.

Social Media and Engagement
By the mid-2000s, static websites had evolved into interactive platforms for
co-creation. This “Web 2.0” emphasized sharing, collaboration, online
discussions, and user-generated content. You could log into systems where
you had a profile, and use that profile information to interact with others or
make purchases. By allowing people to engage with businesses and with each
other, web use increased tremendously, making knowledge sharing more
effective and efficient. “Social media offers the potential to reduce the
transaction costs of knowledge acquisition, knowledge linking and the
occasional incorporation of key knowledge holders in a project. It does this



by removing the need for lengthy coordination processes and complex
decision-making channels” (Bauer et al., 2015).

Today, social media and proprietary community sites are places where
unstructured data can be mined to unveil VoC. In addition, Suresh et al.
(2018) and others have demonstrated that deep learning, a complex machine
learning algorithm based on neural networks, shows promise in helping
companies interpret customer feedback, intentions, and pain points. The
value of social media to Industry 4.0 and Quality 4.0 initiatives is that it can
provide a platform for people to find each other, share news and bulletins,
and gain deep insights into VoC, reducing the cost of knowledge acquisition
for everyone.

Chatbots and Intelligent Conversational Agents
A contemporary way to connect people with knowledge is through a chatbot,
an interactive dialogue interface connected to a program rather than a human.
The best ones (that you might interact with on a customer service website)
may not be distinguishable from human conversation. Although this
technology has existed since the 1960s, chatbots have only recently become
widespread thanks to advancements in natural language processing (a form of
AI) and ease of setup via the SaaS model (Radziwill & Benton, 2017). More
advanced intelligent conversational agents are also available to connect
people with knowledge—for example, the personal assistants Alexa (from
Amazon), Siri (from Apple), and Bixby (from Samsung). Although most use
cases center on customer service, text-based and voice response chatbots may
be used for any kind of search for information. Leaders advancing Industry
4.0 and Quality 4.0 initiatives can consider implementing chatbots and
intelligent conversational agents anytime human operators need assistance
accomplishing their tasks.

Random Collisions of Unusual Suspects (RCUS)
Connecting people to machines and data can improve decision making, and
connecting people to others in your organization or supplier ecosystem can
smooth processes that cross organizational boundaries. Cultivating
connections to support innovation, though, is also important. Using a term
coined by Saul Kaplan of the Business Innovation Factory in Providence,
Rhode Island, staging opportunities for “random collisions of unusual
suspects” can strengthen innovative potential:



Most innovation isn’t about inventing anything new but merely the recombination of what
already exists in new ways to solve a problem or deliver new value. Everything we need
to innovate is in our sandbox and can be found at the edges between our sectors,
disciplines, and silos. Getting better faster is all about exploring the adjacent possible …
by creating the conditions for more random collisions of unusual suspects. We spend far
too much time hanging out with usual suspects, people exactly like us. We don’t learn
anything new that way. The gold is in the grey areas between our silos if we only spend
time at the edge colliding with more unusual suspects. (Anderson, 2017)

The message to Industry 4.0 and Quality 4.0 leaders is a recipe for
stimulating recombinant innovation: breakthrough ideas come from
combining bits and pieces of established ideas (Radziwill & Owens, 2014).
Plan opportunities for people to connect with those outside their sectors,
disciplines, and silos, instead of waiting for those opportunities to
serendipitously occur.

OBJECTS AND MACHINES
The physical objects to be connected, and the machines that facilitate the
connections, will also play a role in many Industry 4.0 and Quality 4.0
initiatives. To understand the emergence of the new internet-connected
enabling technologies, we first take a quick look at how machines have
evolved in plants and factories since the 1960s.

Operations Technology (OT)
Operations technology (OT) refers to the hardware and software that control
physical equipment and monitor and control production processes, usually in
an industrial environment. This can include manufacturing processes, defense
networks, transportation systems, or any other element of critical
infrastructure. Industrial control systems (ICSs) are OT, with components to
monitor the state and status of machines, people, and their work throughout
the production process, and to control machinery and associated devices to
ensure that products are reliably produced to specifications.

In contrast, IT systems are used for e-mail, apps, databases, document
management, and other enterprise functions. While you may upgrade your
apps or operating system every few years, OT life cycles are much longer,
and it is not uncommon to find 30- or 40-year-old technology on a factory
floor. In addition, OT is much more likely to run continuously, with
inspections and downtime planned well in advance to minimize losses.

As a result, priorities for managing OT (and the data it produces) are



safety, availability, integrity, and confidentiality, in that order. IT priorities
are exactly the opposite: confidentiality is most important, followed by
integrity, availability, and (sometimes) safety. Cybersecurity was not
traditionally a concern among manufacturers of OT components, because
most were not designed to use internet protocols for communications, and the
long life cycles mean that many OT components are still too old to use
wireless networks. SCADA systems, responsible for directing field
controllers on factory floors, used so many protocols for transmitting data
(e.g., Modbus, Profibus, Conitel, IEC 60870-5-101, and DNP3) that the
systems were secure because it was really difficult to get one machine to talk
to another. “Security by obscurity” worked, but not because it was
necessarily a good thing (Kranz, 2018).

Industrial Internet of Things (IIoT)
Newly manufactured OT components can communicate over modern
protocols like IPv4, IPv6, and Ethernet. Although this makes interoperability
much easier to achieve, it also expands the attack surface for potential cyber
incidents. The industrial internet of things (IIoT) is the culmination of
hundreds of OT protocols converging to IP-based communications, making
the hardware that controls equipment and production processes more versatile
and capable—the “SCADA-fication of everything.”

Internet of Things (IoT)
When CPSs are used for nonindustrial purposes that do not involve OT, this
is known as the internet of things (IoT). Just like in IIoT, IoT consists of
objects that can communicate with one another over networks, coordinated
through special platforms. Unlike IIoT, these objects are not typically the
kinds you find in manufacturing plants, utility companies, and other critical
infrastructure facilities.

In addition to supporting consumer devices like smart appliances, smart
home security, and personal assistants, IoT can be used for air quality (Oh et
al., 2015) and water quality monitoring (Vijayakumar & Ramya, 2015),
equipment monitoring in the healthcare industry (Satija et al., 2017),
monitoring of patient vital signs for rural healthcare (Rohokale et al., 2011),
and precision agriculture to improve product quality and yield (Shenoy &
Pingle, 2016). These applications are important to Industry 4.0 and Quality
4.0 leaders because IoT “will boost a tremendous amount of innovation,



efficiency, and quality. Connecting production, medical, automotive, or
transportation systems with IT systems and business-critical information will
provide tremendous value” (Weyrich & Ebert, 2016).

Sensors, Actuators, and Microcontrollers
At the center of IoT functionality are the components that make it function:
the sensors that perceive inputs; the actuators that move physical parts like
switches and turn on motors; and the microcontrollers that collect, synthesize,
interpret, and share the data the sensors collect. Microcontrollers are designed
to be embedded in objects. Unlike general-purpose microprocessors,
microcontrollers are usually designed for a particular task or group of tasks.
Sensors and microcontrollers can also be packaged together. Modern
microcontrollers like Arduino and Raspberry Pi come with an onboard power
source, ability to connect sensors, and sometimes even sensors or actuators.
These are the foundational building blocks of IoT and IIoT.

Radio Frequency Identification (RFID) and Beacons
Two special types of sensors commonly seen on factory floors are radio
frequency identification (RFID) systems and beacons. These technologies are
used for near-real-time location tracking and asset management. Sensors can
be active (with an onboard transmitter and battery) or passive (communicates
only when prompted by the RFID reader). Active RFID sensors are either
transponders, activated by a reader, or beacons, which regularly broadcast
signals. Passive RFID sensors have shorter ranges and are less expensive.
Ultra-wideband systems are an alternative to RFID, providing reliable asset
tracking and local positioning to within centimeters (Huang et al., 2017).

Even outside of manufacturing, Industry 4.0 and Quality 4.0 initiatives can
leverage the data gathered from these sensors to track work in progress,
evaluate the layout of workspaces, keep track of assets, and dynamically
explore opportunities for improvement through simulation. These
applications are starting to take hold in facilities and building management as
well as in healthcare. RFID and beacon data can be provided to inform digital
twins for simulations and exploratory studies.

Digital Twins
The best explanation of digital twins comes from the engineers who
conceived the term in 2014:



Up until fairly recently, the only way to have extensive knowledge of the physical object
was to be in close proximity to that object. The information about any physical object was
relatively inseparable from the physical object itself. We could have superficial
descriptions of that object, but at best they were limited in both extensiveness and
fidelity.… It was then only in the last half of the twentieth century, that we could strip the
information from a physical object and create what we are calling a Digital Twin.… The
range of investigation into its behavior was both expensive and time consuming. We first
had to physically create the object, a one-off proposition. We then had to create a
physical environment in which the object was impacted by actual forces. This meant that
we were limited to investigating forces and their associated levels that we thought were
of concern. Often, the forces would result in destruction of the object, dramatically
increasing the expense.…

This meant that the first time we actually saw a condition not covered by a physical
test would be when the physical object was in actual use. This meant that there were
going to be many unforeseen conditions or emergent behaviors that resulted in failures
that could result in harm and even death to its users.…

The idea of the Digital Twin is to be able to design, test, manufacture, and use the
virtual version of the systems.… This will reduce failures of the physical system when it
is deployed and in use, reducing expenses, time, and most importantly harm to its users.
(Grieves & Vickers, 2017)

They cite the example of computer-aided design (CAD) drawings, which
began as conceptual models of physical systems. Today, however,
simulations can be carried out on CAD drawings within systems like
SolidWorks and Autodesk Fusion 360, making it possible to test the object
and even explore trade-offs like the impact of material selection on
sustainability.

Although the term is new, the concept is not. In the early 2000s, at the
Green Bank Telescope in Green Bank, West Virginia, we routinely had to
test new observing capabilities on the telescope. But with a $55 million asset,
where each hour of lost observing time was assessed at $5,800, taking the
telescope out of operations for testing was not an attractive option. Our
software engineers built a “simulated telescope” with digital twins of
receivers at different observing bands, the backends that interpreted the
signals, and the connective infrastructure that transported the data. Using
these digital twins made it much easier (and more cost-effective) to optimize
operation and maintenance of the physical assets and data acquisition and
analysis processes.

Robotics
The value of industrial robotics extends well beyond manufacturing. In
addition to mechanical support for routine tasks like picking, placing, and



sorting, robots can provide access to inaccessible or unsafe environments and
perform tasks that may be dangerous for humans (like entering confined
spaces or deep mines). Agricultural productivity increases due to robotics;
precision robotics enhance success rates for surgeries (Bauzano et al., 2014);
and collaborative robotics are being explored to alleviate musculoskeletal
disorders by humans and robots sharing loads (Munoz, 2017).

Robotics innovations are not to be confused with Robotic Process
Automation (RPA), the software-driven automation of service tasks. For
example, scripts that automatically and routinely process applications, clean
data, route calls, route e-mails, or apply business rules might all be
considered RPA. Automating routine processes such as these can reduce
variability, improve performance, and reduce costs.

Wearables
Robotics can be controlled from the body, and when embedded in personal
protective equipment (PPE) like hard hats, antivibration gloves, or goggles, it
can significantly reduce exposure of workers to hazards. These wearables can
alert workers of possible exposure to environmental risks (like toxins, heat
stress, cold stress, and excessive noise), emergency conditions on machinery,
dangerous postures and lifting conditions, and potential overburdening of
physical or cognitive capabilities. There is still much innovation to be
pursued, because “in today’s production environments, productive use of this
new abundance of data has not been exploited, neither for the benefit of the
workers, nor for corporate reasons” (Romero et al., 2018). Quality 4.0
initiatives will harness that data to improve products, processes, and
occupational health and safety.

3D Printing
Additive manufacturing builds parts and objects incrementally rather than
milling them out of larger blocks of material. As a result, there is much less
waste. 3D printing is one form of additive manufacturing and provides one
way to support the mass customization requirements of Industry 4.0.
Although the most common material for 3D printing is poly lactic acid
filament, metal powders, concrete, textiles, smart materials, and food can all
be 3D printed. Even nanofabrication is possible (Dilberoglu et al., 2017).

Although the technology may not be as revolutionary as initially assumed,
there is power in being able to produce an object locally from software code



that specifies how to build it. 3D printing will increase the number of
potential products that can be offered, create a market for niche goods, and
support rapid prototyping. It may also reduce delays associated with
obtaining replacement parts or specialized tools (Strange & Zucchella, 2017).
For Industry 4.0 and Quality 4.0 leaders, the main benefit of additive
manufacturing and 3D printing is that data is transferred instead of objects,
eliminating one source of waste: transport.

Smart Materials and 4D Printing
The label smart materials refers to two different things: materials that change
characteristics under external stimuli like temperature or electric charge (e.g.,
artificial muscles, shape memory alloys, color-changing fabric), and objects
that can be tagged or otherwise embedded with intelligence, becoming
somewhat self-aware and able to communicate. When 3D printing is used to
generate material that can dynamically change characteristics, this is
sometimes called 4D printing. These smart materials may be useful in
extreme environments like space, or in creating programmable materials,
self-assembling structures, or compact configurations for storing the
structures (Dilberoglu et al., 2017). The implication for Industry 4.0 leaders is
that future manufacturing processes will not fully occur within the bounds of
the plants or facilities.

Neurotechnologies
Brain-computer interfaces (BCIs) and other neurotechnologies are being
developed to “influence neural activity” and, presumably at some point in
time, enact some degree of external control. For the time being, healthcare
and advertising are the practical frontiers for application. Work to date in
neural stimulation has been focused on improving the quality of life for those
with Parkinson’s disease and psychiatric conditions. Noninvasive methods to
read signals from the brain are also used in advanced marketing to determine
optimal choices and combinations for new product features, and to identify
emotional preferences. Future BCIs may be used to enhance cognition and
improve safety in industrial environments (Roelfsema et al., 2018).

In addition to the ethical issues associated with these innovations, there are
also security concerns. Loss of agency through “brainjacking” could, at some
point in the future, present significant threats to people and operators in smart
factories, connected buildings, and smart cities (Pycroft et al., 2016).



DATA
In addition to the connections among people, objects, and machines,
connectedness to data sources is also essential. This can include enterprise
data repositories, real-time streams from sensors and other instruments, and
data owned by other people and organizations that is accessible over the
internet.

Ways to make connections extend beyond setting up channels for data to
flow. For example, good visualizations, animations, and simulations can help
people draw more value from data. Production processes can be made leaner
and more efficient by moving data instead of objects (for example, 3D
printing instead of shipping). This section covers some key concepts
associated with connecting to and engaging with data and big data in the
Industry 4.0 era, including reality technologies that can “enhance cognition
by new forms of data interaction” (Simões et al., 2018).

Structured and Unstructured Data
Much of the data generated by companies from the 1980s until around 2010
was structured. That means it was (and continues to be) stored in databases
where tables, fields, data types, and relationships were explicitly defined in a
data model. But even a decade ago, the volume of unstructured data (text,
images, videos, e-mails, audio files, XML, JSON) was beginning to grow
(Manyika et al., 2011). In Industry 4.0, unstructured data, which can be more
challenging to manipulate and analyze for quality improvement purposes, is
far more prevalent. Additionally, streaming data from heterogeneous IIoT
and IoT devices is unstandardized, unstructured, and often high volume. It
can decrease in value quickly after it is produced, so it is not routinely
archived (Gokalp et al., 2016).

Streaming Data and Analysis Pipelines
A hallmark of Industry 4.0 is the ability to assimilate and analyze data in real
time, as it streams from sensors, instruments, and other sources. The often-
custom software that processes these streams are called pipelines. Streaming
data, and the insights that can be produced when it is analyzed while in
motion, can help organizations become more agile:

Data can take several forms, such as data at rest and data in motion. Data that are
sitting in warehouses waiting to be analyzed are referred to as data at rest.… Data in
motion (data analyzed in real time as the event occurs, such as click streams and



sensors) flow through a connected device to a database on the receiving end for
immediate analysis … used to fine tune the [predictive] models … and analytics at the
edge … deploys information to control processes in real time. (Duarte, 2017)

Although the idea of near-real-time data processing pipelines is not new
(Radziwill, 2008), the availability of robust frameworks for setting up and
managing pipelines is. Frameworks like Apache Kafka, Kinesis Streams,
Apex, and Hadoop make it possible for more organizations, even small and
medium-size businesses, to get up-to-date information about operations
extremely fast.

Data Lakes and Data Warehouses
There’s plenty of information that a typical organization needs to collect and
track. This could include information about products, services, customers,
and suppliers; things the company says to customers, and what customers say
in return; and reports about feelings, preferences, or product and service
failures on social media. In Industry 4.0, it may also include information
about predictive models and the aggregated, assimilated data used to feed
them.

When data must be stored, organizations have choices about just how
much order to impose. A data lake collects and aggregates data, and provides
a unified location where structured, semistructured, and unstructured data can
live. The model for the data lake is that everyone has some water (their own
data) and contributes it to the larger reservoir. The data may not be clean, but
at least it’s all in the same lake. Data lakes solve the problem of not being
able to track or access data stored in private or limited-access repositories,
and can protect organizations from losing knowledge when employees leave.
Unfortunately, they can also become dirty and unmanageable, becoming
“data swamps” (Miloslavskaya & Tolstoy, 2016).

A data warehouse, in contrast, usually has a rigid structure or schema
governing what gets stored, whereas the data lake just has a catalog so people
can find resources. The warehouse is usually cleaned and audited on a regular
basis. The model for the data warehouse is a physical warehouse—you know
exactly what’s there and where it is because you’ve organized it the way you
want it to be.

Virtual, Augmented, and Diminished Reality (VR/AR/DR)
Once data is available and accessible, effective connectedness between



people and data requires that insights and knowledge be extracted. The richer
and more compelling the experience, the more insights can be communicated.
Virtual reality (VR) and augmented reality (AR) immersive technologies can
make this happen. For industrial training, VR is particularly value-adding,
especially when a worker needs to be trained for dangerous environments like
mines or oil refineries. AR uses special glasses or smartphones to
superimpose information about the operations environment on real objects in
the user’s field of vision, providing immediate visibility to monitor data.
Diminished reality (DR) is a complementary approach that uses the AR
environment to remove stimuli from the work environment. This technique is
not as widely used as AR yet, but has the potential to help workers improve
cognitive processing by enabling better focus (Schwald & De Laval, 2003;
Fraga-Lamas et al., 2018). The lesson to Industry 4.0 and Quality 4.0 leaders
is that cost-effective methods are available for making training more
effective, as well as new interfaces for live data access in the field that can
support and improve cognitive function.

THE BOTTOM LINE
Connectedness is one of the three key themes of Quality 4.0. By connecting
people to each other, to objects and machines, and to data, we can make
better and faster decisions. Effective decisions improve our products,
processes, and organizations. Energy can flow into, out of, and through the
ecosystem, and value can be created.

Enhancing connectedness requires thinking about four elements:
Infrastructure: Industry 4.0 and Quality 4.0 initiatives should not assume availability
and reliability of internet connectivity. Despite broad availability and new 5G networks
coming online rapidly, there are still issues with sufficient speeds and latency in some
rural and suburban areas of the United States and around the world.
People: Quality systems, management systems, and digital technologies are all
technologies. Find opportunities to use them to increase the quantity and quality of
connections between people within and outside your organization. Make room for
people to connect with those outside their normal area of work or expertise to support
recombinant innovation.
Objects and Machines: As communications protocols for the OT on factory floors
converged to internet-based standards over the past two decades, enhanced
interoperability led to the emergence of the IIoT. These same concepts expanded
beyond manufacturing and critical infrastructure to consumer goods and
environmental monitoring, creating the IoT. Technologies are now available to sense
inputs from a multitude of sources and take goal-directed actions in near real time to
achieve quality and performance goals.



Data: Connecting people to data enables better decision making and more effective
control of processes. Data visualizations, animations, and simulations also help
people draw more value from data, and processes can be made leaner and more
efficient by moving data instead of objects (for example, with 3D printing).

The culmination of enhanced connectedness will be a new way of living,
made up of smart roads, smart utilities, smart factories, smart homes, and
smart cities. But grand systems like these are built step by step as new
devices and organizations join the network. For now, Industry 4.0 and
Quality 4.0 leaders can focus on adding value by incrementally increasing
connectedness, providing a foundation for smart cities and workplaces.

REFERENCES
Alcaraz, C., and S. Zeadally. (2015). “Critical infrastructure protection: Requirements and challenges

for the 21st century.” International Journal of Critical Infrastructure Protection 8: 53–66.
https://www.nics.uma.es/pub/papers/alcaraz2015CRI.pdf

Alizadeh, K., A. Farhadi, and M. Rastegari. (2019). Butterfly transform: An efficient FFT based neural
architecture design. arXiv preprint arXiv:1906.02256.

Anderson, K. (2017, August 11). “Random Collisions of Unusual Suspects: Unleashing the Adjacent
Possible.” Forbes. https://www.forbes.com/sites/kareanderson/2017/08/11/random-collisions-of-
unusual-suspects-unleashing-the-adjacent-possible/#6bea7c091dd2

Barton, T. (2019a, March 11). “Lagging internet left rural South Carolina biz stranded: Lawmakers
seek to fix ‘digital divide.’ ” Greenville News.
https://www.greenvilleonline.com/story/news/2019/03/11/south-carolina-seeks-fix-digital-divide-
boost-rural-internet-speed/3131109002/

________. (2019b, April 5). “SC House passes Bill to expand high-speed internet access in rural areas
that need it.” The State. Available from https://www.thestate.com/news/politics-
government/article228793939.html

Bauer, Wilhelm, Moritz Hämmerle, Sebastian Schlund, and Christian Vocke. (2015). “Transforming to
a hyper-connected society and economy—Towards an ‘Industry 4.0.’ ” Procedia Manufacturing 3:
417–424.

Bauzano, Enrique, Belen Estebanez, Isabel Garcia-Morales, and Victor F. Muñoz-Martinez. (2014)
“Robot collaborative assistance for suture procedures via minimally invasive surgery.” In
ROBOT2013: First Iberian Robotics Conference, pp. 255–269. Springer, Cham.

Chen, B., J. Wan, A. Celesti, D. Li, H. Abbas, and Q. Zhang. (2018). “Edge Computing in IoT-based
Manufacturing.” IEEE Communications Magazine 56 (9): 103–109.

Dilberoglu, U. M., B. Gharehpapagh, U. Yaman, and M. Dolen. (2017). “The role of additive
manufacturing in the era of Industry 4.0.” Procedia Manufacturing 11: 545–554.

Dreyfuss, E. (2018, October 23). “Global internet access is even worse than dire reports suggest.”
Wired. https://www.wired.com/story/global-internet-access-dire-reports/

Duarte, J. (2017). “Data disruption.” ASQ Quality Progress 50 (9): 20–24.
Fraga-Lamas, P., T. M. Fernández-Caramés, Ó. Blanco-Novoa, and M. A. Vilar-Montesinos. (2018).

“A review on industrial augmented reality systems for the Industry 4.0 shipyard.” IEEE Access 6:
13358–13375.

Frosch, R. A., and N. E. Gallopoulos. (1989). “Strategies for manufacturing.” Scientific American 261

https://www.nics.uma.es/pub/papers/alcaraz2015CRI.pdf
https://www.forbes.com/sites/kareanderson/2017/08/11/random-collisions-of-unusual-suspects-unleashing-the-adjacent-possible/#6bea7c091dd2
https://www.greenvilleonline.com/story/news/2019/03/11/south-carolina-seeks-fix-digital-divide-boost-rural-internet-speed/3131109002/
https://www.thestate.com/news/politics-government/article228793939.html
https://www.wired.com/story/global-internet-access-dire-reports/


(3): 144–152.
Gokalp, M. O., K. Kayabay, M. A. Akyol, P. E. Eren, and A. Koçyiğit. (2016, December). “Big data

for Industry 4.0: A conceptual framework.” In 2016 International Conference on Computational
Science and Computational Intelligence (CSCI), 431–434. IEEE.

Grieves, M., and J. Vickers. (2017). “Digital twin: Mitigating unpredictable, undesirable emergent
behavior in complex systems.” In Transdisciplinary Perspectives on Complex Systems, 85–113.
Switzerland: Springer.

Huang, S., Y. Guo, S. Zha, F. Wang, and W. Fang. (2017). “A real-time location system based on RFID
and UWB for digital manufacturing workshop.” Procedia Cirp 63: 132–137.

Ignite Seattle. (2019, June 6). “Cats, rats, AI, oh my!” [Video]. YouTube.
https://www.youtube.com/watch?v=1A-Nf3QIJjM

Ito, J. (2012, June 12). “Innovation on the edges.” Edge. https://www.edge.org/conversation/joichi_ito-
innovation-on-the-edges

Khalil, M., J. Qadir, O. Onireti, M. A. Imran, and S. Younis. (2017, March). “Feasibility, architecture
and cost considerations of using TVWS for rural internet access in 5G.” In 2017 20th Conference on
Innovations in Clouds, Internet and Networks (ICIN), 23–30. IEEE.

Korhonen, J., M. Wihersaari, and I. Savolainen. (2001). “Industrial ecosystem in the Finnish forest
industry: Using the material and energy flow model of a forest ecosystem in a forest industry
System.” Ecological Economics 39 (1): 145–161.

Kranz, Maciej. (2018). “Why industry needs to accelerate IoT standards.” IEEE Internet of Things
Magazine (1): 14–18.

Kreutz, D., F. M. Ramos, P. Verissimo, C. E. Rothenberg, S. Azodolmolky, and S. Uhlig. (2015).
“Software-defined networking: A comprehensive survey.” Proceedings of the IEEE 103 (1): 14–76.

Manyika, J., M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers. (2011, May). Big
data: The next frontier for innovation, competition, and productivity. McKinsey Global Institute.

McGarry, C. (2019, June 17). “The truth about 5G: What’s coming (and what’s not) in 2019.” Network
World.

Miloslavskaya, N., and A. Tolstoy. (2016). “Big data, fast data and data lake concepts. Procedia
Computer Science 88: 300–305.

Misra, S. C., R. Mishra, and A. K. Munnangi. (2018). “Trust concerns in adoption of cloud services in
the aerospace sector in India.” Software Quality Professional 21 (3).

Monostori, L. (2014). “Cyber-physical production systems: Roots, expectations and R&D challenges.”
Procedia CIRP 17: 9–13. http://www.sciencedirect.com/science/article/pii/S2212827114003497

Munoz, L. M. (2017). “Ergonomics in the Industry 4.0: Collaborative robots.” Journal of Ergonomics
7: 7556.

National Institute of Standards and Technology. (n.d.). “Cyber-physical systems (CPS) web site.”
https://www.nist.gov/el/cyber-physical-systems

________. (2019). “Baldrige excellence framework (Business/Nonprofit): Proven leadership and
management practices for high performance.” https://www.nist.gov/baldrige/publications/baldrige-
excellence-framework/businessnonprofit

Novkovic, G., and T. Korkut. (2017). “Software and data regulatory compliance in the cloud.” Software
Quality Professional 20 (1).

Oh, C. S., M. S. Seo, J. H. Lee, S. H. Kim, Y. D. Kim, and H. J. Park. (2015). “Indoor air quality
monitoring systems in the IoT environment.” The Journal of Korean Institute of Communications
and Information Sciences 40 (5): 886–891.

Peltoniemi, M., and E. Vuori. (2004, September). “Business ecosystem as the new approach to complex
adaptive business environments.” In Proceedings of eBusiness research forum (2): 267–281.

https://www.youtube.com/watch?v=1A-Nf3QIJjM
https://www.edge.org/conversation/joichi_ito-innovation-on-the-edges
http://www.sciencedirect.com/science/article/pii/S2212827114003497
https://www.nist.gov/el/cyber-physical-systems
https://www.nist.gov/baldrige/publications/baldrige-excellence-framework/businessnonprofit


Pickard, J., M. Angolia, and T. S. Chou. (2018). “IPv6 diffusion on the internet reaches a critical
point.” Journal of Technology Management & Applied Engineering (JTMAE) 34 (1).

Pycroft, L., S. G. Boccard, S. L. Owen, J. F. Stein, J. J. Fitzgerald, A. L. Green, and T. Z. Aziz. (2016).
“Brainjacking: Implant security issues in invasive neuromodulation.” World Neurosurgery 92: 454–
462.

Radziwill, N. M. (2008, July). “End-to-end operations at the National Radio Astronomy Observatory.”
In Observatory operations: Strategies, Processes, and Systems 2 (7016): 701612. International
Society for Optics and Photonics.

Radziwill, N. M., and M. Benton. (2017). “Quality in chatbots and intelligent conversational agents.”
Software Quality Professional Magazine 19 (3).

Radziwill, N. M., and T. Owens. (2014). “Fresh perspective: Innovation.” ASQ Quality Progress 47
(1): 30.

Roelfsema, P. R., D. Denys and P. C. Klink. (2018). “Mind reading and writing: The future of
neurotechnology.” Trends in Cognitive Sciences 22 (7): 598–610.

Rogers, E. M. (1962). Diffusion of innovations. Simon and Schuster.
Rohokale, V. M., N. R. Prasad, and R. Prasad. (2011, February). “A cooperative Internet of Things

(IoT) for rural healthcare monitoring and control.” In 2011 2nd International Conference on
Wireless Communication, Vehicular Technology, Information Theory and Aerospace & Electronic
Systems Technology (Wireless VITAE), 1–6. IEEE.

Romero, D., S. Mattsson, Å. Fast-Berglund, T. Wuest, D. Gorecky, and J. Stahre. (2018, August).
“Digitizing occupational health, safety and productivity for the operator 4.0.” In IFIP International
Conference on Advances in Production Management Systems, 473–481. Springer.

Satija, U., B. Ramkumar, and M. S. Manikandan. (2017). “Real-time signal quality-aware ECG
telemetry system for IoT-based health care monitoring.” IEEE Internet of Things Journal 4 (3): 815–
823.

Schippers, M. C., and R. Hogenes. (2011). “Energy management of people in organizations: A review
and research agenda.” Journal of Business and Psychology 26 (2): 193.

Schwald, B., and B. De Laval. (2003). “An augmented reality system for training and assistance to
maintenance in the industrial context.” Journal of WSCG 11 (1).

Shenoy, J., and Y. Pingle. (2016, March). “IOT in agriculture.” In 2016 3rd International Conference
on Computing for Sustainable Global Development (INDIACom), 1456–1458. IEEE.

Simões, B., R. De Amicis, I. Barandiaran, and J. Posada. (2018). “X-Reality system architecture for
Industry 4.0 processes.” Multimodal Technologies and Interaction 2 (4): 72.

Strange, R., and A. Zucchella. (2017). “Industry 4.0, global value chains and international business.”
Sussex Multinational Business Review 25 (3): 174–184.

Suresh, S., G. Raja, and V. Gopinath. (2018, April). “VoC-DL: Revisiting voice of customer using deep
learning.” In 32nd AAAI Conference on Artificial Intelligence.

Thames, L., and D. Schaefer. (2016). “Software-defined cloud manufacturing for industry 4.0.”
Procedia CIRP 52: 12–17.

Vijayakumar, N., and A. R. Ramya. (2015, March). “The real time monitoring of water quality in IoT
environment.” In 2015 International Conference on Innovations in Information, Embedded and
Communication Systems (ICIIECS), 1–5. IEEE.

Weyrich, M., and C. Ebert. (2016). “Reference architectures for the internet of things.” IEEE Software,
(1): 112–116.

White House. (2013, February 12). Presidential policy directive 21: Critical infrastructure security and
resilience (PPD-21). https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-
policy-directive-critical-infrastructure-security-and-resil

Wollschlaeger, M., T. Sauter, and J. Jasperneite. (2017). “The future of industrial communication:

https://obamawhitehouse.archives.gov/the-press-office/2013/02/12/presidential-policy-directive-critical-infrastructure-security-and-resil


Automation networks in the era of the internet of things and industry 4.0.” IEEE Industrial
Electronics Magazine 11 (1): 17–27.

Xiao, X. (2011). “MirrorFugue: Communicating presence in musical collaboration across space and
time.” PhD diss., Massachusetts Institute of Technology.



CHAPTER THREE

INTELLIGENT AGENTS AND MACHINE
LEARNING

You can use all the quantitative data you can get,
but you still have to distrust it and use your own intelligence and judgment.

—ALVIN TOFFLER, AUTHOR OF FUTURE SHOCK

Sheet metal forming is an efficient and economic way to make parts.
Consequently, it’s a key aspect of the manufacturing process for appliances,
some consumer goods, and automotive components like a car’s roof, hood,
and doors. For personal vehicles, the forming process is critical, because
achieving the perfect geometry for each component has consequences. Any
deviation from specifications can impact the fit between different
components, the assembly process overall, and the aesthetics of the final
product—which strongly influence the perceived quality of the final product.
Surface curvature for every part has to be smooth and even, with no visible
defects, to ensure that light is elegantly reflected from all angles.

Figuring out whether one of these metal components meets hundreds of
geometric specifications is no easy task. Coordinate measuring machines,
which are expensive and require trained specialists to operate, provide one
way to detect part shape fluctuations. An easier approach is to use digital
image processing, with photogrammetric algorithms that measure surface
geometry and strain states, but the accuracy of this method depends on the
resolution of the camera. Still, the approach is not perfect, so researchers
have developed methods based on springback analysis and critical strain
distributions to improve the manufacturer’s ability to detect the most
common defects (Boesemann et al., 2000). Despite the utility of these
approaches, critical problems remain—for example, even dust or oil residue
left on the metal component can be confused with fine cracks and other
defects. For that reason, issues like this are called pseudo-defects.

Thanks to AI, though, this challenge is being addressed head-on. Leggett



(2019) shares a story from automotive manufacturers BMW Group, which
embraced AI in 2018 to improve its ability to distinguish real defects from
pseudo-defects. Since it already had a camera-based quality control system in
place, it was able to use the same image data it was already collecting but
funnel those images through a neural network. Because the neural network
had been pretrained with known images that illustrated good quality, various
defects, pseudo-defects due to dust, and pseudo-defects due to oil residue, the
intelligent agent running the neural network was able to classify each new
image with a high degree of accuracy. BMW has substantially improved its
ability to flag real defects, especially in cases that were previously “visual
close calls.”

In 2014, Quality Manufacturing Today shared another story from an auto
manufacturer that was trying to improve root cause analysis results using a
software package called SigmaGuardian. Embedded with machine learning
(ML) algorithms and proprietary techniques based on information theory, the
package scans through lists of failures to find emerging patterns. This
manufacturer was having trouble with recurrent faults for the rear taillights
on multiple modes, a problem that also carried high warranty costs. Each
corrective action investigation and root cause analysis led to the same
destination: nowhere.

Traditional methods exhausted, the company decided to see if the new
methods might provide a cost-reducing clue. It was quickly surprised:

The engineers had been looking at the rear of the vehicle for the answer (and not
succeeding) however the software quickly found the root cause of the fault to be located
in the roof of the vehicle, a part of the car that had not even been investigated as a
possible source. Sometimes prior experience, or being too close to a problem, can inhibit
a solution if an old hypothesis is applied to a new problem. (Somers, 2014)

In addition to uncovering a surprising result, the maker of this particular
software claims that it can be used to identify and resolve issues on the fly
(rather than after the fact, using statistical hypothesis tests). It can also handle
difficult challenges like finding root causes based on stacked tolerances that
would otherwise not be picked up by statistical process control (SPC) or
manufacturing execution systems (MESs) (Love, 2018).

Techniques for early warning systems like this, based on ML, are still in
the formative stages in the market. Even so, intelligent algorithms and agents
have been the subject of research and prototypes for over two decades. In his
master’s thesis from the KTH Royal University of Sweden, Möller (2017)



summarized many examples of how intelligent algorithms have been used in
industrial quality control:
Neural Networks for Classification

Using neural networks to determine when X-bar and R charts are in or out of control,
a technique that worked particularly well for large shifts (Smith, 1994)
Using neural networks to determine assignable causes, integrating SPC with
feedback control (Shao & Chiu, 1999)
Monitoring autocorrelated process data with recurrent neural networks (Pacella &
Semeraro, 2007)
Using neural networks to determine when variance is out of control in an
autocorrelated process (Low et al., 2003)

Image Recognition and Classification

Visual determination of fruit quality (Pandey et al., 2013; Sa et al., 2016)
Visual determination of whether holes have been properly drilled by machine vision or
deep learning (Johansson, 2017)

Decision Trees for Anomaly Detection and Classification

Using decision trees (Guh & Shiue, 2005; Wang et al., 2008) and deep learning
(Gauri & Chakraborty, 2007) to identify patterns and features in control charts
Applying gradient boosting and random forests (ensembles of decision trees) to
classify manufacturing failures (Bosch, 2016)

Other Applications

Association rule learning can identify links between a breakdown in one component
and failures or issues in other components or parts of the system (Snellman, 2017)
Using convolutional neural networks to process expected and anomalous engine
noises from different models (Möller, 2017)

Why aren’t capabilities like these in broader use today? In short, because they
can be challenging to apply in practice. Most of the research studies these
capabilities are based on used simulated data. Unfortunately, operations data
can be messy, especially when it is streaming in near real time from devices
and machines. Additionally, traditional techniques for quality engineering
often work well, and without a proven order of magnitude increase in
prevention or detection capabilities using ML, these systems can be difficult
to justify (Weisbrod, 2019).

But the pace of progress continues, and so does the democratization of



ML. Amazon Web Services (with AWS Machine Learning), Microsoft Azure
(with Machine Learning Studio), IBM Watson, Google Cloud ML Engine
(based on the popular TensorFlow), and others all make it possible to deploy
ML solutions quickly—with all the ease of Software as a Service (SaaS).

The business challenge for AI and ML is no longer primarily technical.
Information technology and infrastructure can be outsourced, but
nontechnical factors cannot. These include selecting appropriate projects,
making sure there is a clear and demonstrable potential for value generation,
building data science teams with solid statistical knowledge, and making
good use of institutional capabilities and knowledge. (When a company cuts
corners in any of these areas, it can lead to disasters like the $50 million
horror story in Chapter 7.)

This chapter covers algorithms and approaches for adding intelligence to
systems, including intelligent agents, AI, ML, edge computing, embedded
intelligence, and affective computing. The information in this chapter will
help you map business drivers to potential AI/ML solutions and evaluate the
suitability of these methods for satisfying your organization’s needs (see
Figure 3.1).



MODELS DRIVE CONTINUOUS IMPROVEMENT
Every organization has models that describe how it functions. The business
model establishes what value the company plans to provide, to whom, and
how it will generate revenue in the process. There are models that describe
how leaders lead—how they set direction, create a plan, deploy that plan to
the workforce, monitor progress, and help incorporate lessons learned into
standard work and future decisions. Governance models explain how a
company will ensure accountability for strategy, fiscal performance, and
protection of stakeholder interests. Operations models describe the value-
added processes used to transform inputs to outputs, and how they are
monitored and adjusted to keep the organization on track to achieve its goals.

Where there is no standard, there can be no kaizen.



—TAIICHI OHNO

Without a model, there is no baseline for performance. Even simple models,
like flowcharts and value streams, can help teams make sure that each person
on the team shares the exact same understanding of goals, process steps, and
what’s important. Learning occurs as we create models, as we compare those
models against new information, and as we advance those models to help us
more effectively and efficiently meet business goals.

What Is Learning?
As we learn about our individual work and our businesses, we can improve
the accuracy, performance, and completeness of these organizational and
operational models. As we learn about the environment in which the business
operates, and how it is changing, these models can be continually improved
to adapt to those changes.

Learning … [changes] relationships among the learner, the other human participants,
and the tools. Thus learning involves not only acquiring new knowledge and skills, but
taking on a new identity and social position within a particular discourse or community of
practice. Learning changes who we are by changing our ability to participate, to belong,
and to experience our life and the world as meaningful. (Moss, 2003)

This process of evolution and adaptation helps organizations survive, helps
people grow personally and professionally, and expands the capabilities of
the workforce. At the same time, learning promotes the development of new
relationships, as people with new skills are sought out by others to support
efforts and initiatives.

Learning Fuels Continuous Improvement
Strategic planning sessions usually include reflection on past successes and
challenges. They may also address strengths and opportunities for
improvement, to identify larger-scale adjustments to better meet strategic
objectives. Operations meetings reflect on metrics gathered on shorter scales
to consistently meet expectations.

For organizations that use ISO 9001 as their quality management system,
improvement comes from corrective and preventive actions (CAPA),
responses to audit findings, or recommendations that emerge from
management reviews. Organizations that use the Baldrige Excellence
Framework (BEF) to build their models engage in regular self-study and
assessment, or the award process, to identify strengths to amplify and



opportunities for improvement to close gaps. Board meetings, and other
governance sessions, often culminate in recommended actions to adjust the
strategic and operating models.

These adjustments are based on new data. Sometimes, that new data is
taken from monthly or quarterly financial statements. Sometimes, it comes
from quarterly reports that describe different aspects of operational
performance like Key Performance Indicators (KPIs) or quality events like
nonconformances. Other times, the new data emerges as themes from lessons
learned from projects or initiatives, or market research that anticipates
upcoming threats or opportunities.

But does learning really matter in continuous improvement? In a
particularly compelling study, Kovach and Fredendall (2013) used a
structural equation model to test the link among continuous improvement
practices, organizational learning, and improvement outcomes. They tested
the model using survey responses from 183 people in oil and gas,
manufacturing, services, construction, and hospitals.

Their model, in Figure 3.2, shows that learning is the secret sauce that
helps organizations improve: “Learning has a direct, significant effect on the
maturity of the organization’s use of [continuous improvement practices],
which in turn affects organizational improvement” (Kovach and Fredendall
2013). Organizations improve not because they implement continuous
improvement practices but because of the learning that takes place when
practices are followed.



Machine Learning
While people can learn and adapt leadership, governance, and operational
models to improve performance, machines can learn as well—in certain well-
defined cases. Though you wouldn’t want an intelligent agent to occupy a
seat at your board meeting or a role on your audit team (at least not yet), ML
algorithms can find patterns in observations, detect anomalies, predict values,
and classify observations into groups. Because they can be continually
updated based on new data, they are ideal for sorting and forecasting models
like the ones in the stories at the beginning of this chapter.

The similarities between traditional continuous improvement and the
practice of applying ML algorithms are shown in Table 3.1. Continuous
improvement and ML in practice share a singular goal: to help models
perform better as they adapt to new information and changing circumstances.
This is learning: gathering experiences and new data and updating or
adapting the models that describe how you operate and the relationships that
enable you to operate.

TABLE 3.1.  Continuous improvement and ML learning are analogous.

Continuous improvement practice AI/ML practice

Models are conceptual and
operational

Models are mathematical or statistical

Works on a large scale
(departments, organizations,
business ecosystems)

Works on a smaller scale (individual processes,
recipes and mixtures, KPIs)

New data comes from financial
statements, audits, management
reviews, other reviews, root cause
analysis, and corrective actions

New data comes from new observations of the
process being modeled (e.g., new incidents,
new communications with customers, new
quality events like nonconformances)

Data is often qualitative (e.g.,
lessons learned, audit findings) but
can also be quantitative (financial,
operations KPIs)

Data is quantitative or can be represented
quantitatively (e.g., frequency of words,
numbering categories)

Continuous improvement of policies,
procedures, and heuristics that
define the conceptual and
operational models

Continuous improvement of mathematical and
statistical models for forecasting, classification,
defining best or anomalous conditions, or
defining optimal paths or sequences

This means that ML is the technological analog for what quality
professionals have done for decades, only on a smaller scale. ML adds



intelligence and automation to the practice of continuous improvement. It can
complement, catalyze, and supplement continuous improvement, but it does
not replace it.

Artificial Intelligence
ML algorithms, and the models that can be built from them, are just one
group of techniques within the broader category of approaches referred to as
artificial intelligence (AI). Any machine or program that demonstrates
cognitive capabilities that are usually attributed to humans can be considered
AI. Examples include vision, perception, interpreting spoken language,
understanding the meaning of spoken language, reasoning, problem solving,
creativity, insight, or pattern recognition.

AI and ML are not interchangeable terms: while all ML is AI, not all AI is
ML. AI is often implemented as intelligent agents that perform a task on
behalf of someone or something else, and an intelligent agent may
incorporate AI, ML, or both. Conversely, advanced methods may not use any
AI or ML at all. Here are some examples related to optical character
recognition (OCR) from Alkhalaf et al. (2014) and Barve (2012):

In 1929, inventor Gustav Tauschek received a patent for an OCR machine that
optically sensed letters and then compared them with patterns on a wheel marked by
punched holes. When the sensed image matched a pattern on the wheel, a printing
drum would rotate to and print the proper letter. Although mechanical, this could be
considered an early form of analog AI.
In the 1970s, an OCR process would split a scanned document into tiny regions, one
for each character. Dark pixels were assigned a value of 1, and others received a 0.
A statistical algorithm computed correlations between the placements of the 1s and
0s and stored examples to compare against those in other regions. This is a
statistical method that is neither AI nor ML.
Throughout the 1980s and 1990s, computer vision techniques were applied to the
OCR problem, using sophisticated preprocessing techniques and rulesets to identify
letters. This is AI but does not use ML.
In the 2000s and 2010s, artificial neural networks and deep learning (a special kind of
neural network) have been used to expand OCR capabilities, recognizing handwritten
letters and numbers with high accuracy. This is ML, which by definition is also AI.

The most recent wave of OCR research has been motivated by search
innovation. Why? Because companies recognized that people want to search
for (or translate) words on signs they see, and search using pictures instead of
text. Navigating a country in which you do not speak the language is much
easier when you can just point your phone’s camera at a sign or menu and



your phone interprets the text for you on the screen.

The Hype
AI can solve all problems—autonomously and perfectly. But you’re a smart
professional; you know this is not true. It’s deep learning that has these
magical properties (especially when paired with blockchain).

Of course, neither of the above assertions is truthful. In June 2019, a
controversial post (which has since been removed) appeared on the Medium
blog site that called out the abuses of terminology in marketing campaigns
and pitches to investors based on the author’s personal experience:

When I worked at [Company X], I filled out the application that ultimately placed us on
the 2018 version of the AI 100 [list in major technology magazine]. Like almost every
other award application, it was an exercise in innovation theatre.… About a month after
we appeared on the AI 100, an analyst … reached out and asked to know more about
how we were using artificial intelligence to transform marketing and reduce fraud. I gave
him an in-depth demo of our platform and live customer user cases, walking through
each capability without once mentioning AI [because there was none in the platform].
The next week, we were listed in his report as one of the top five companies in AI
alongside Alphabet, IBM, Facebook and Salesforce.

Because of overinflated expectations about the power of AI and ML (and
free-flowing funding from investors, if you do it), there is pressure for
companies to claim that they implement AI/ML, when in fact they do not.
When you are evaluating marketing claims, look for evidence of the problem
types and algorithms described later in this chapter. If a claim seems too good
to be true, chances are it’s just hype.

The Reality: Strong and Weak AI
AI has become proficient at winning games, recognizing speech, recognizing
faces, creating finely tuned dynamic schedules, optimizing policies, and
filtering spam from your e-mail. Still, these tasks do not incorporate many
attributes of intelligence, such as emotions, beliefs, values, ethics, or
convictions, to guide decision making. When AI encounters an ethical
dilemma, how does it even know there is a dilemma to be weighed? All the
current implementations of AI, whether or not they use ML or deep learning,
are examples of weak AI.

This does not mean that the algorithms are not powerful, just that they lack
the ability to do things that humans struggle with (such as deliberate based on
unclear or conflicting evidence) or do instinctively (making judgments or



decisions based on intuition). Artificial general intelligence (AGI), or strong
AI, is expected to close this gap—at least to some degree. Bostrom (2014)
explains that there are three directions in which this can go:

Speed superintelligence—a system that can perform cognitive tasks of a human,
but much faster
Collective superintelligence—a system of smaller subsystems that can perform
cognitive tasks as well as humans over a broad domain of capabilities
Quality superintelligence—a system that performs cognitive tasks as quickly as
humans, but much better

You may not need to incorporate AGI into your long-term strategic planning
unless your time horizon is several decades long. Citing composite results
from multiple surveys of expert committees made up of AI researchers,
Bostrom gives a 90% chance that AGI will be demonstrated—at least in a
prototype—sometime between 2065 and 2093.

Intelligent Agents
An agent performs an action on behalf of someone or something else, and
when critical analysis is part of the process, that agent is an intelligent agent.
When a computer system is situated in a specific environment and is capable
of autonomous, goal-directed action within this environment, then that
technology is also an intelligent agent.

Real estate agents, insurance agents, lawyers, and home assistants like Siri
and Alexa are all examples of intelligent agents. Russell and Norvig (2016)
described key questions that must be answered if you are designing an
intelligent agent:

Percepts: What information is available?

What information is available to your agent, and how often is it available?
What senses (or sensors) can gather information for your agent?
There should be percepts to support every decision about whether (and
when) an action should be taken.

Actions: What actions should be performed based on the percepts?

Using the information from the percepts, what atomic actions can you take?
There should be sufficient percepts to start and support every action.

Goals: What goal should the action(s) contribute to?

What goals should those actions be able to accomplish together?
There should be a chain of actions to support each goal.

Environment: Where is the agent supposed to do its work?



Is the agent embodied (like in a robot), or a component within a production
system, or part of a cyber-physical system?
Is there anything unique about the conditions of deployment (e.g., a zero-
gravity environment; confined space; inaccessibility once deployed, as on a
satellite)?
All actions should be executable within the target environment.

The intelligent agent gathers information, processes it, and takes small steps
(actions) to gradually achieve goals. The way the information is interpreted,
and the manner in which actions should be taken, will depend on the unique
characteristics of the target environment.

EXAMPLES OF AI
Historically, most capabilities in AI have been enabled by symbolic or rule-
based approaches, many of which required new research into how knowledge
should be captured and represented. Because they depend on prior knowledge
to inform the rules and relationships, the quality of the AIs depend on the
quality of the data and whether meaning can be extracted from it. Today,
many subfields have emerged in AI, including robotics, image processing and
recognition, ML and data mining, knowledge representation and reasoning,
semantic web, expert systems, natural language processing, and search.

Knowledge representation and reasoning takes a look at how information
and knowledge can be structured and stored so that they lend themselves to
intelligent computational scenarios (like search). Research in this area has
produced relational databases, document-based databases like CouchDB and
MongoDB, and graph databases like Oracle Spatial, RedisGraph, and Neo4j.

Expert systems capture reasoning in the form of facts and rules to generate
new inferences. For example, facts might be “Nicole is the daughter of Mary”
and “Mary is the daughter of John.” Rules would be “A daughter is a child”
and “The parent of a parent is a grandparent.” Although a few more facts and
rules would be required to make this example functional, when an inference
engine is presented facts and rules, it can generate new facts like “John is the
grandfather of Nicole.”

Natural language processing (NLP) deals with the computational
requirements for understanding language and generating it. It requires
understanding linguistics, word formation, word order, the structure of
phrases, and even things like sarcasm and ambiguity. Of course, gaining
understanding in some of these areas is much easier than in others. For NLP
to be effective, both traditional (e.g., Earley algorithm, Yarowsky algorithm,



Hidden Markov Models) and ML algorithms (e.g., decision trees, support
vector machines, Naive Bayes) are leveraged (Liu et al., 2017).

Search and optimization are often powered by AI. While most people
associate these activities with internet search engines like Google and Bing,
they are also important in many other places. Video games, for example, have
some unique challenges, since computers have many different options for the
agents they use to compete against the human player. With large multiplayer
online games, these options increase exponentially. Researchers are therefore
using search and optimization techniques to help the computer search through
a portfolio of options to identify strong strategies during gameplay (Churchill
& Buro, 2015).

Hybrid intelligent systems combine several of these approaches to
generate an optimal solution. In some cases, hybrid intelligent systems also
incorporate or leverage human intelligence to achieve their goals. This was
the case with reCAPTCHA, the program that asks you to type in two words
or sequences of characters that have been garbled so that humans can read
them but machines cannot. Although the purpose of reCAPTCHA is to
validate that a human is attempting to use a credit card, sign up for a new e-
mail account, or access a gated resource, the combined results from users
around the world—in essence, the human interpretations of text that was hard
to read by machines—were used to digitize books and a hundred years of the
New York Times (Law & Ahn, 2011).

ML Problem Types
ML algorithms that look for patterns in massive amounts of data are used to
build intelligent systems and some AI applications. As a subfield of AI,
hundreds of ML algorithms have been developed over the past few decades,
each of which can be used to directly or indirectly generate new business
knowledge. Part of the challenge is knowing which algorithm, or family of
algorithms, is appropriate for your business task. A description of many of
the common statistical and ML models used in data science can be found in
Appendix A.

In general, there are five main things you can do:
Find patterns with unsupervised learning
Identify key predictors through data reduction techniques
Identify irregularities or anomalies
Learn from examples with supervised learning
Learn from experience with reinforcement learning



For example, consider credit card fraud detection. Because fraud patterns
change over time, using ML algorithms to automatically detect emerging
patterns can strengthen a bank’s capabilities to defend its customers and
respond faster than if humans had to monitor all the transactions manually.

You can conceptualize past transaction data as a spreadsheet with millions
of rows, where each row (an observation) represents a transaction. The
columns might contain information like the date, time, latitude and longitude
of the transaction, the amount, the merchant, and perhaps even what was
purchased. There is another column that gives us the “answer” to the question
of fraud, telling us whether the transaction is legitimate or fraudulent. This
column exists because the bank has had enough time to verify the validity of
questionable transactions with the account holders. An unsupervised
approach might cluster the transactions into two groups to see if you can
separate the legitimate from the fraudulent. In a supervised or semisupervised
approach, the algorithm looks for the similarities and differences between
legitimate and fraudulent transactions, because it knows (at least to some
extent) which are which.

Finding Patterns (Unsupervised Learning)
Unsupervised learning uses “unlabeled” data to find relationships between
observations. In the credit card fraud case, for example, “unlabeled” might
mean we have information about the transactions, but we don’t know which
ones are fraudulent; there are no labels telling us which observations are good
and which are bad.

One example of unsupervised learning is clustering, a family of algorithms
that examine the relationships between the variables using distance metrics
and similarity functions. Observations that are close to each other are
assigned to the same cluster. Clustering is performed by iteratively building
hierarchies, by partitioning observations in different ways, or by testing
observations against prior knowledge and experience (Bayesian approaches).
One of the most popular methods for clustering is the k-means algorithm,
which can be computationally intensive.

The notion of “closeness” between the observations can be defined in
many ways. For example, if you walk into a plenary session at a conference,
you may want to split the attendees into groups for an exercise or breakout
session. There are many ways to determine similarity, dissimilarity, and
closeness, including height, hair color, physical distance, interests, or even



the strength of friendships and relationships. You don’t need to know which
groups the people fit into, but based on one or more of those variables, you
can use unsupervised learning to guess who is a member of each
hypothesized group. After the group assignments are made by the
unsupervised learning algorithm, the next step would be to examine the
characteristics of the groups to make a determination about why the groups
are different.

Here are some examples of how clustering and other unsupervised
techniques have been used for quality and process improvement research
across different industries:

Grieco et al. (2017) used k-means clustering to extract patterns from Engineering
Change Requests (ECRs) with a high degree of accuracy. Organizing ECRs based
on similarity can help companies respond to themes rather than individual requests,
improving the overall efficiency of their work.
Recognizing that process quality impacts product quality, Wu et al. (2000) used
unsupervised Kohonen Maps (a special kind of neural network) to examine process
disturbances in welding production lines, indicated by voltage readings. Their model
made a correct assessment of process issues in 22 out of 24 test cases.
Although automatic diagnosis is a goal in medical research, it is hindered by the
inability to provide large enough datasets with accurate labels (e.g., malignant or
benign, nominal or not nominal). Unsupervised methods are thus more practical for
this purpose. Shin et al. (2012) used unsupervised deep neural networks (deep
learning) on a video dataset to take the first step, accurately identifying which organ
was in the imagery. Their model was able to identify the liver and heart in the majority
of cases, although it had difficulty identifying the kidney and spleen.
Khodabandelou et al. (2014) used Hidden Markov Models to generate process maps
from event logs. Their goal was to advance understanding of software users’ thinking
and motivations as they navigate through an application.

Unsupervised learning is useful for detecting patterns in observations as long
as all variables are quantitative (or can be expressed somehow as numbers,
like word frequencies in a document). These methods, however, are often
very sensitive to the way distance between observations is calculated. For
example, the distance between two people will be shorter if they can just
draw a line between them and follow that path (Euclidean distance) than if
they have to follow a path that takes them along specified north–south and
east–west routes (Manhattan distance). Unsupervised methods also often
require human intervention to make sense of the results.

Identifying Key Predictors (Data Reduction)
Sometimes, the data you have to process is too unwieldy and overwhelming.



Imagine the same credit card transaction dataset considered earlier, but
instead of just information about the transaction amount, location, and
characteristics, there are also a few hundred other variables. Which variables
should you use to determine whether a transaction is valid or fraudulent?

If you use all the predictors, there are two risks. First, the model-building
process may be computationally intensive, meaning that it may take more
time or more processing power to build the model than you have available.
Second, by building a model with too many predictors, you run the risk of
modeling the noise instead of the signal, an outcome called overfitting. An
overfit model has fantastic predictive power on the data you used to train it,
but it won’t do as well on new data it hasn’t seen before.

Common methods for data reduction (also called dimensionality
reduction) include Principal Component Analysis (PCA), Linear
Discriminant Analysis (LDA), and autoencoder-type neural networks.
Although they are not expressly adaptive, reactive, or proactive (and thus are
more appropriately classified as statistical models than ML models), applying
them to commercial problems tends to require significant processing power.
They are often applied before sending data through unsupervised or
supervised ML algorithms, so are sometimes included in ML texts.

Both computational performance and the accuracy of the resulting ML
model are improved when you use the right features and reduce the number
of them so that only the best predictors are used. Reducing dimensionality
can increase the ultimate power of your model.

Identifying Irregularities (Anomaly Detection)
ML algorithms can be trained to understand what a “good” or “normal”
condition looks like, even when it is difficult or impossible for a human to
describe what makes that condition nominal. This approach is referred to as
anomaly detection. Many different ML algorithms can be applied to anomaly
detection problems, including neural networks, support vector machines
(SVMs), k-nearest neighbor classification, Bayesian Networks, decision
trees, and deep learning. For example:

Post-silicon validation is the largely manual process of testing computer processors
that have been prototyped and are in physical form. The goal is to understand the
root causes of any deviations from specification so that they can be repaired before
full production runs. DeOrio et al. (2013) used k-means clustering on various monitor
points at each timestep and found that points outside the clusters often indicated
anomalies. Because the dataset had over 10,000 variables (features), they used PCA



and developed a heuristic to use as preprocessing steps to make the data more
manageable.
Energy is one of the leading costs of operations at production facilities, especially
when facilities are distributed. Faltinski et al. (2012) compared the performance of
neural networks, SVMs, and decision trees with that of traditional models using
differential equations and automata. They built a prediction system that yielded
almost 99% accuracy for detecting both overconsumption and underconsumption of
energy, conditions that may require countermeasures.
Intrusion detection (finding network traffic that is malicious or harmful) is an active
area of research in network security. George (2012) used PCA to reduce the
dimensionality from 42 to 28 variables, followed by a multiclass SVM, and found that
the bulk of intrusions could successfully be detected.

As you can see, the problem-solving process in anomaly detection examples
regularly benefits from applying one, two, or even three techniques to build
the model. This is one of the reasons modeling with ML is part art and part
science. Domain expertise is always required to interpret and apply ML
models to real-life business or production situations.

Learning from Examples (Supervised Learning)
Supervised learning is used to generate a model from a sufficient number of
old observations. In the credit card transaction example from earlier, this
means determining the characteristics of transactions for which you already
know the answer—each observation in the dataset is labeled as either
fraudulent or not fraudulent. Although there have been some compelling
recent successes with applying unsupervised methods, supervised methods
have historically led to more powerful implemented models:

For water utilities, early detection of burst pipes across the expansive network of a
city or town can prevent wasted water and protect water pressure quality for
customers farther from the burst. Huang et al. (2018) used dynamic time warping for
feature extraction, which finds patterns that may have slightly different time
signatures (similar to how a song can be identified whether it is played at fast or slow
speeds). Next, they applied a random forest (an ensemble of decision trees) to figure
out how and when to best detect bursts. Their method was tested on a real
distribution network and had a low false positive rate and high accuracy.
Stolpe and Morik (2011) examined the quality of groups of steel sticks, processed
sequentially at multiple production stations. Using a k-nearest neighbors classifier,
they wanted to predict the quality of the individual sticks early in the process because
catching problems earlier would reduce costs of poor quality. In their supervised
model, classification accuracy (good quality vs. bad quality) was better than manual
inspection.

Semisupervised learning can also be applied when labels are available for



some observations but not others. Sometimes this happens when there are
missing values in the data, but other times, people can manually make
judgments and label observations. For example, imagine that you are building
a model to classify tens of thousands of legal documents that are related to
each other. You can manually go through the documents and determine
whether they are valid or invalid, but it costs $200 an hour even with the
most junior of lawyers performing the reviews. You pay for 100 documents
to be labeled and then use a semisupervised learning algorithm on your
documents (modeled as a network of nodes and connections) to group them
(Kipf & Welling, 2016).

Learning from Experience (Reinforcement Learning)
Reinforcement learning (RL) is a type of unsupervised learning that defines
potential rewards for making different choices instead of labeling each
observation with a defining characteristic. While supervised learning builds a
model based on known information, RL dynamically explores an
environment to discover it. RL can be used to determine the best ways for an
intelligent agent to interact with its environment.

For example, you may want to find an optimal path from a location in a
building to the nearest fire exit. If you associate each outdoor location with a
high reward, areas near exits with a small reward, and areas deep within the
building with zero reward, RL can identify the optimal paths that generate the
highest reward.

Dowling and Cahill (2004) claims that RL may be the most useful and
applicable technique for solving problems in industrial environments. Here
are some examples:

RL can be used to learn customer preferences by observing behavior, which can
provide information that is critical for marketing departments. Halperin (2017)
demonstrates how the method can be used to design marketing strategies for new
products and services, and devise pricing strategies that are tuned to the competitive
environment.
Students learn better when concepts are presented in logical ways. West et al. (2019)
used RL to find optimal learning paths for a curriculum, which could improve higher
education and training outcomes while enhancing student satisfaction.
Improving the quality of a sound source, especially in a noisy environment, is
important for hearing aid manufacturing. Koizumi et al. (2017) explored this problem
using RL, defining “reward” as an increase in perceived quality of the source.
Challenging medical conditions like sepsis require doctors to quickly identify
treatment policies. Raghu et al. (2018) used RL (supplemented by several other
supervised and supervised approaches) to identify how clinicians could use models



to substantially improve mortality.

RL involves building a model by letting the algorithm explore the system of
observations based on the rewards that are defined, make mistakes, and try
over and over again. The approach is very similar to what organizations do
when they set policies of “failing quickly” to support innovation, even more
so because RL seeks to maximize rewards over the long term. Although it
requires lots of data to be effective, RL has been used to develop many wildly
successful game-playing AIs and addresses a different style of problem than
the other ML approaches.

THE SOCIAL CONTEXT OF INTELLIGENT, CONNECTED
SYSTEMS

Although ML models can be powerful, they can also pose risks and dangers
to both individuals and groups. From a quality perspective, safety is often
critical to consider (especially in high-risk industries like food and beverage
production), but it is just as important for us to consider algorithm safety in
the Industry 4.0/Quality 4.0 era. This section illustrates the central role social
context will play in designing ethical, responsible high-quality systems by
sharing stories about nonconformances and unintended consequences.

Most intelligent systems are imagined, developed, and deployed by
technologists. Attempting to build humanlike intelligence into machines
means that human biases can also be built into systems, which can have a
range of consequences:

Silly and embarrassing (mistaken identities, Tay.ai, autonomous vehicle witchcraft)
Potentially damaging if used inappropriately (OKCupid)
Potentially trauma inducing (Facebook’s emotional contagion experiment), hostile, or
deadly (identifying criminals, ethnic cleansing)
Challenging to social norms, behaviors, and regulations (RealDoll, Google it)

Business leaders and engineers will have to ask: Is it appropriate and right to
deploy this AI/ML? Will it be appropriate in the future? Does this AI/ML
impact human agency, safety, or well-being? Does this AI/ML put an
individual or group in danger of harassment or death? Although intelligent
agents and ML models may be regulated in the future, in the interim, leaders
will have to exercise additional caution to protect their employees, customers,
and society.

Silly and Embarrassing



As often as AI/ML can “get it right,” an algorithm can also make a whopper
of an error or lead to unintended circumstances. In addition, human agents
can interact with intelligent agents in unexpected ways, yielding outcomes
that were not anticipated by designers or quality assurance. For example:

Autonomous vehicle witchcraft. If you ever see a parked autonomous vehicle with
a dotted chalk line inside a solid chalk line circling it, you have not stumbled upon a
magic ritual. Instead, you’re seeing a prankster who’s trapped that car, rendering it
incapable of motion (Figure 3.3). The vehicle can’t tell that the lines, which are
supposed to indicate differences between lanes, are not actually in lanes oriented
straight ahead (Mufson, 2017).
“Google can’t tell its tabby from its tabasco.” In 2019, a medical researcher
demonstrated how adding a tiny bit of noise to a picture of a tabby cat—which is
invisible to the human eye—tricked a classifier into thinking there was a 99% chance
it was guacamole (Brown, 2019). If an automated system takes action based on an
incorrect classification like this (for example, in a medical diagnosis), the
consequences could be lethal.

As IoT ecosystems grow, intelligent agents will also increasingly interact
with other intelligent agents, increasing the likelihood of problems like this.
Ensuring that one product meets its specifications will no longer be sufficient
—manufacturing organizations will need to anticipate how connected
products may interact with each other or with rogue data sources.

Potentially Damaging If Used Incorrectly
On March 23, 2016, Microsoft released @TayAndYou on Twitter, an AI-
powered chatbot that was designed to learn from its interactions with other
Twitter users to generate a “personality.” Sixteen hours and 96,000 tweets



later, Tay was shut down by its creators. In that short time, the AI had
become a drug-loving Hitler fanatic and Holocaust denier, and had been
reported several times for abusing individuals in replies and direct messages.
This was not the image Microsoft wanted to achieve (Metz, 2018).

Although catastrophes like this seem as though they should be
preventable, our relative collective inexperience with AIs means that we are
learning as the scenarios unfold:

The dark side of online dating. In 2010, dating site OKCupid selected 526,000
users at random and asked what makes their culture unique. Sashimi was mentioned
only by Asians, soul food was listed 20 times more for black people than all other
groups, and Diet Coke was mentioned only by whites. Although the site just intended
this to be a fun way to get users engaged (literally and figuratively), results like this
could easily be used in reverse for racial profiling based on user profiles (Fisher,
2010).
When Siri and Alexa go rogue. What if your home assistant automatically orders
illegal drugs on your behalf—could you go to jail? This is exactly what happened with
Random Darknet Shopper, a shopping bot for a Swedish art exhibition that was given
$100 in bitcoin each week to make random purchases on the dark web, which were
then displayed in the exhibit. “Swedish officials weren’t amused when it purchased
ecstasy, which the artist put on display.” The artist was not arrested, but the drugs
were confiscated after the exhibition ended (Wyner, 2016).

Much like in the earlier examples, problems arise when AIs inadvertently
impact human agency, safety, or well-being. This is especially the case when
it is not anticipated or intended.

Potentially Trauma Inducing, Hostile, or Deadly
Even more concerning, AIs can directly cause physical or mental harm. For
AIs used to perform medical diagnoses, the link is strong, clear, and
immediate (Raghu et al., 2018). A more subtle incident occurred in 2012,
when Facebook secretly manipulated the emotional tone of posts presented to
certain users for a week to see if it would have an impact on their moods
(Kramer et al., 2014).

Emotional states can be transferred to others via emotional contagion, leading people to
experience the same emotions without their awareness … in contrast to prevailing
assumptions, in-person interaction and nonverbal cues are not strictly necessary for
emotional contagion, and that the observation of others’ positive experiences constitutes
a positive experience for people. (Kramer et al., 2014)

When people had positive content removed from their News Feed, more of
their own posts were negative and fewer were positive. When negative



content was removed, subjects engaged much more positively with the
platform. The researchers learned that they could quickly and easily
manipulate the moods and perceptions of Facebook users just by controlling
the types of information they were exposed to—no in-person contact,
personal connections, or knowledge of the person’s default mood was
required. These experiments were performed without informed consent, and
this was quickly recognized as an ethical problem (Kramer et al., 2014).
Facebook was pressured to discontinue this practice.

The potential dangers compound rapidly. In “What If AI in Health Care Is
the Next Asbestos?”, statistics are shown that raise doubt about whether AI
can really provide broad improvements to the accuracy of medical diagnoses
(Ross, 2019). Schwarcz and Prince (2019) outline how credit-based insurance
and the loan underwriting process can lead to “proxy discrimination,” where
a seemingly neutral automated practice can instead systematically block
groups of people from access to resources and privileges. Surveillance of
political activists and dissidents, surveillance and systematic oppression of
minorities via social media, and facial recognition for policing can all lead to
fatal outcomes (Hagerty & Rubinov, 2019).

Challenging to Social Norms, Behaviors, and Regulations
As connected, intelligent, and automated technologies become more
pervasive in daily life, and as embodied AIs challenge our notions of what it
means to be a “person,” collectively held notions about what is possible and
what is permissible will also shift. After the Citizens United decision, for
example, nonpersons may have the right to free speech, which may
complicate how we design, use, and respond to interactions with chatbots and
IoT consumer devices (Radziwill, 2016). In 2017, Saudi Arabia granted
citizenship to Sophia the Robot, manufactured by Hanson Robotics in Hong
Kong (Morby, 2017). Researchers like Eskens (2017) explore questions about
how embodied AIs may challenge our notions of informed consent. Although
each of these things is inherently technological, everyone has the potential to
shape how we think about, and interact with, other humans.

COUNTERMEASURES

Researchers and concerned citizens have already started exploring ways to
combat the inevitable invasion of privacy and security that may arise with
more broad deployment of AI/ML models, particularly those for facial



recognition. For example:
Hack your face: As early as 2014, researchers started exploring the use of noise (much like

the “tabby vs. guacamole” example mentioned earlier) to fool facial recognition models into
incorrectly identifying a known individual. Lynch (2018) shares the status of facial
recognition in the UK, where police have started using AI/ML systems (with high failure
rates) for locating suspects and monitoring crowds. Powerful recognition systems like
Hyperface (Ranjan et al., 2017) can be fooled using extreme makeup and hairstyles (Figure
3.4) and “Hyperface Fabric” (Figure 3.5)—both efforts pioneered by artist Adam Harvey—to
confound the models.

Sousveillance: As a response to surveillance, this technique involves people actively
countersurveilling individuals or organizations that monitor their needs, desires, behaviors,
and movement. Sousveillance can be performed by recording audio or video by
smartphones, or using wearables that capture data about people or the environment (Levy
& Barocas, 2018).



A systematic response would certainly be better than addressing the
symptoms of these AIs, especially for large organizations. As a result of a
multiyear collaboration among experts across disciplines led by John C.
Havens, the Institute of Electrical and Electronics Engineers has produced the
guidebook Ethically Aligned Design (https://ethicsinaction.ieee.org/#read).
This framework can help organizations explore how intelligent systems
influence power dynamics, wealth distribution, social mobility, gender
equality, and race relationships at all stages of the life cycle for autonomous
and intelligent systems. Drawing from a strong foundation in the humanities,
this guidebook recognizes that intelligent agents can both establish and
reinforce culture—and thus can be powerful forces for (or against) change.

THE BOTTOM LINE
The greatest impact of intelligent technologies won’t be from eliminating jobs but
from changing what people do and driving innovation deeper into the business.

—S. BARRO AND T. H. DAVENPORT

Continuous improvement and ML share a singular goal: to improve model
performance as new information is acquired and circumstances change (e.g.,
the competitive environment, or the capabilities of the workforce). Those
models can be structural (standard work), conceptual (business models,

https://ethicsinaction.ieee.org/#read


business rules), or operational (prediction, classification, forecasting). ML
models are most often applied to operations, although future research may
demonstrate its applicability to structural and conceptual models.

These activities, in fact, define learning—gathering experiences and new
data, and updating or adapting the models that describe how you operate and
the relationships that enable you to operate. While continuous improvement
can be applied on any scale, from process to ecosystem (and does not require
a computer or extensive amounts of data), machine learning is usually
applied on the scale of an individual process or KPI (and often requires a
computer to process lots of data). In this chapter, we learned the following:

Without a model, there is no baseline for performance improvement. Models can
be conceptual (business models), structural (standard work), or quantitative
(prediction, classification, and forecasting models).
Learning is the key that improves business performance. ML algorithms are used
to classify, predict, forecast, distinguish, and optimize. They can be applied to several
problem types:

Unsupervised learning to find patterns
Data (dimensionality) reduction techniques to simplify predictors
Anomaly detection via multiple methods
Supervised learning to learn from examples
Reinforcement learning to learn from experience

Machine learning models are only as good as the data they learn from and the
people that build the models.

Human biases can unfortunately be incorporated into models, leading to
unintended consequences or detrimental impacts to people or groups of
people.
Machine learning models can be powerful—but they can also be potentially
dangerous. Ethical concerns should be addressed at all stages of a model’s
life cycle.
The most serious problems occur when AIs negatively impact human agency,
safety, or well-being.

Finally, know that simple methods often outperform more advanced
algorithms. The principle of parsimony should be applied for every
implementation: the simplest model with the best performance, balanced
against computational complexity and runtime requirements, should be the
one put into a production environment. If you are interested in learning more
about the different kinds of models, an index of the most common statistical
and machine learning algorithms used to analyze and interpret massive
datasets can be found in Appendix A.
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CHAPTER FOUR

AUTOMATION: FROM MANUAL LABOR TO
AUTONOMY

Beyond driving cars, AI can learn from previous situations to provide input and
automate complex future decision-making processes, making it easier and faster to

arrive at concrete conclusions based on data and past experiences.
—KLAUS SCHWAB, FOUNDER AND EXECUTIVE CHAIRMAN OF WORLD

ECONOMIC FORUM

When I started working at the Green Bank Observatory in West Virginia in
2002, many of the astronomers were using the spectrometer (Figure 4.1) to
process their observations. After receiving the highly focused signals from
the antenna, the spectrometer determined precisely which frequencies were
dominant. From the patterns they observe in the spectra (Figure 4.2),
astronomers can figure out things like the chemical composition, temperature,
or luminosity of the planets, galaxies, or star-forming regions they are
studying.





Unfortunately, the spectrometer at that time was not easy to use, and the
observing process was inefficient. Even though it was designed to be
extremely powerful (and indeed it was), every time a new observing mode
was needed, hundreds of wires had to be manually repositioned. If there was
a problem during the observation, a specialist had to go to the instrument and
move wires until the issue was resolved. If the astronomer needed to make a
change to the observing mode and the engineers were unavailable, the
astronomer was stuck.

The process needed a little more automation, and the system itself needed
to be more flexible and agile so that new observing capabilities could be
added more easily. Work was started to create a new spectrometer that could
be fully configured by software, and not require the manual intervention of
engineers rewiring the device for each observing mode. This was, in effect, a
transition from what is called hard automation (where reconfiguration or
rewiring is required to support the operation of an automated or
semiautomated system) to soft automation, which is more flexible.

Although additional automation was needed to transform raw
electromagnetic signals to insight, developing new spectrometers over the
next few years brought some other benefits too. By using reconfigurable off-
the-shelf hardware platforms instead of engineering special purpose boards,
the team was able to create a new data processing backend more quickly and
leverage the learning that had taken place in industry. By making use of
software tools for rapid design, verification, and deployment, they created a
more robust end product. Finally, because the new spectrometer was built on
industry-standard hardware and software, it was easier to hire and train new
engineers to maintain the device and continue development (DuPlain et al.,
2008).

This chapter explores the evolution of work from manual labor to the
autonomous cyber-physical systems (CPSs) of Industry 4.0. Examples drawn
from multiple industries will help you learn how to effectively distribute
work among humans, machines, and computers.

MECHANIZATION AND AUTOMATION
Since the first industrial revolution in the late 1700s, manual labor has been
gradually and continually replaced by mechanized and automated solutions.
Mechanization is the use of machinery to help human workers perform
physical tasks. The machinery can be static (e.g., handheld tools) or powered



by electricity, electric motors, or internal combustion engines. Cognitive and
sensory aspects of the task, however, are still performed by people in
mechanized solutions. The “level of mechanization” can be thought of as the
degree to which work must be powered by physical labor (Groover, 2016).

Automation, the “technology by which a process or procedure is
accomplished without human assistance,” reduces or eliminates the need for
human intervention. The progression from manual operations to full
automation and autonomy rarely happens in one step; rather, the evolutionary
process occurs in steps and stages and can extend over years or decades
(Groover, 2016).

There are mechanical and computational aspects of automation, and
digitization of systems is often required for automated computation to be
possible. Mechanical aspects replace human physical power with machine
power. Computational aspects include “replacement of cognitive tasks, such
as human sensory processes and mental activity” (Chiantella, 1982). The
relationships between the stages are shown in Figure 4.3.

Innovation Happens at the Edges
Transitioning from one stage to another yields innovation. Jerome (1934)
provided a fascinating look into the social and technological context of the
transition from manual labor to mechanization, experienced during a time
when the possibility to fully automate any industrial process was limited. His
paper uses the word automation, but he considers only the “full and complete
mechanization” of a process with no cognitive or decision-making support.

Some examples from his paper, plus additional examples of innovation
that has emerged while introducing mechanization and automation, are
shown in Table 4.1. Note that all but one of the examples in the middle
column, “Mechanization to automation,” required digitization to occur first.



Digitizing systems (so that data can be captured and retrieved electronically)
makes it possible to automate in many cases.

TABLE 4.1.  Examples of innovation at the boundaries of mechanization and
automation.

Manual labor to
mechanization

Mechanization to
automation Manual labor to automation

Harvester-thresher
combine reduces
farm labor
requirements by
80%–84%

iPads eliminate some job
tasks done by human
servers at restaurants

Algorithms replace human
workers doing credit approvals at
financial institutions

Mechanical
loading of
bituminous coal
reduces labor by
25%–50%

BMW introduces fully
automated auto
production

Voice-to-text software replaces
human transcription in courtrooms

Machines for
painting buildings
reduce labor
requirements by
80%–85%

Software developers use
code generators to write
code

iPhone manufacturer Foxconn
moves from manual labor directly
to automation

Semiautomatic
glass bottle
production
reduces labor by
29%–71%; fully
automatic by
86%–97%

Credit card fraud
detection algorithms alert
customers directly
(bypassing bank
employees) if a
fraudulent transaction is
detected

Toyota replaces its master
craftsmen forging and cutting
crankshafts but later reverts to
manual labor because it yields
10% less waste (sometimes it
doesn’t work out as intended)

In rare situations, progressing from manual labor to mechanization (or
advancing to automation or autonomy) does not result in desired performance
improvements, either at the individual or organizational level. When Toyota
replaced the master craftsmen managing its crankshaft forging and cutting
process, for example, the process generated more waste and was not
appreciably faster (Jerew, 2014). Consequently, leaders should not always
assume that more automation is better. Using simulation and pilot programs
can hedge against this risk.

Reasons for Automation
While humans are good at performing some tasks, machines can often do



them better and faster. In general, tasks that require intelligence or higher-
level thinking have been done by humans, while repetitive or rule-based tasks
can be done by machines (Figure 4.4). The human element links
mechanization and automation, by physical labor as well as cognitive skills
and intelligence (Figure 4.5). Although wider adoption of artificial
intelligence is shifting these boundaries, choosing what to automate and
whether to automate remains important.

The decision to automate must also be considered with the market in
mind. Automation may help you respond to increased demand, or eventually
offer your product at a lower price point. It may help you improve safety and
productivity. But in the meantime, it may require significant investments in
machinery and other assets. Consider automation if you need or want to:

Accomplish processes that cannot be done manually
Improve complex tasks that are otherwise slow, labor intensive, or error prone
Improve safety by giving more hazardous tasks to robots and nonhumans
Improve labor productivity and throughput while reducing lead time
Improve product quality and reduce variation in production
Increase flexibility and enhance ability to add new products quickly



Reduce costs by shifting expensive labor to less expensive maintenance
Reduce outages and improve time-to-recovery
Detect errors faster and more accurately
Reduce the risk of labor shortages

Despite these benefits, there are also positive outcomes associated with not
automating. For new or highly customized products, automation can be
costly, especially if machines and other assets are expensive and
requirements are likely to change. Avoiding automation can be a hedge
against market failure. If demand is inconsistent, organizations can save
money by not automating. If the product must be delivered quickly, it can
often be too difficult to implement automated systems in a short amount of
time. Finally, production methods can be rooted in history and tradition. To
preserve skills that are culturally important, it may be necessary or desirable
to avoid introducing either mechanized or automated solutions.

For example, cultured pearl production requires finely tuned skills and has
intense monitoring requirements. Pearl farmers develop expertise over time to
respond to subtle cues in the environment over the two- to three-year
production life cycle, as it is common to lose 10%–40% of the pearls due to
illness or death of the oysters (Figure 4.6). This production system is not well
suited for automation.



Building Blocks for Automation
Automation can be mechanical, computational, or both; computational
automation often requires that systems be digitized and data be captured (and
be retrieved) electronically. Mechanical automation is often equated to
robotics, but as Goldberg (2011) points out, researchers in robotics tend to
focus on the mechanics of the enabling technologies, while researchers in
automation focus on quality and other related drivers (Table 4.2).

TABLE 4.2.  Robotics versus automation.

Robotics Automation

• Systems that incorporate sensors
and actuators operating
autonomously or
semiautonomously
• Research emphasizes intelligence
and adaptability to new
environments
• Emphasizes feasibility and proof-

• Research emphasizes quality, efficiency,
productivity, and reliability
• Quality can be improved with new
techniques, analysis, models, or results that
inform robustness, stability, or productivity
• May explore the feasibility of new
mechanisms, models, or theories for
repetitive operations



of-concept
• Research demonstrates new
abilities of a robot (e.g., walking,
driving, performing a skilled task)

• Makes existing abilities or subtasks more
efficient, reliable, or cost-effective

Source: Adapted from Goldberg, 2011.

Any kind of automation requires, at the very least:
1. Power to move (or actuate) physical components, drive controller units, and enable

data acquisition and processing. Power can be provided through hydraulic,
pneumatic, electrical, chemical, mechanical, thermal, or magnetic mechanisms.

2. Instructions or operating procedures for manipulating mechanical equipment, wiring,
software, and/or infrastructure.

3. A control system to execute instructions and monitor telemetry.

Automation is typically accomplished through control systems and the
software that drives them. Control systems have four functions:

Measure—obtain values from sensors or instruments, and provide the values to
other parts of the system
Compare—examine observed values in the context of targets, specifications, or
models
Compute—calculate quantities, compute or estimate errors
Correct—alert the operator to perform actions, or automatically perform actions on
behalf of the operator (as intelligent agents)

Although the descriptions above relate to control system functions in
manufacturing and similar organizations, every organization has control
systems that demonstrate these four elements. For example, consider a nurse
treating a patient in a hospital room. He or she collects vital signs and
reviews other test results, comparing them with what is considered normal. If
there is a problem, the nurse may perform computations to determine the
right amount of medicine or support to administer. Finally, based on all the
available information, he or she may correct (or adjust) the protocol for
restoring the patient to health.

In manufacturing control systems, these four functions are performed by
different kinds of hardware. Sensors are devices that measure physical
properties of objects or the environment. These can include temperature
sensors, motion sensors, gas sensors, optical sensors, or accelerometers.
Sensors can also measure water quality, detect the presence of smoke, and
detect rotational velocity using gyroscopes. Transducers and encoders sense
mechanical motion and convert nonelectrical signals into electrical signals for
transmission. Transmitters (such as beacons) send those signals. Controllers,



including Programmable Logic Controllers (PLCs), provide logic that
understands how and when to make changes in the system, and execute
actions when they are required. Finally, control elements and actuators make
the physical changes requested by the controllers, such as moving rods, gears,
and cams.

Industrial Control System (ICS)
An industrial control system (ICS) is “a collection of personnel, hardware,
and software that can affect or influence the safe, secure, and reliable
operation of an industrial process” (ANSI/ISA 62443). An ICS must monitor
and control processes. To do this, it

gathers information about a process from devices at its endpoints,
interprets that information in the context of production system goals, and
facilitates interactions among human operators, field controllers, and field devices.

On the control side,
Field devices obtain process data, often in the form of monitor points (or telemetry).
This provides feedback for the controllers to use as they decide whether to adjust the
process, and how, independently or as support for human decision making. Switches,
sensors, valves, meters, actuators, and RFID tags are all field devices.
Field controllers track (and sometimes analyze) information about the state of the
process, and take action using that information within preprogrammed logic of PLCs,
Programmable Automation Controllers (PACs), remote terminal units (RTUs),
proportional–integral–derivative (PID) controllers, and new technologies like Arduino
and Raspberry Pi are examples of field controllers.
The industrial internet of things (IIoT) is made up of field devices and field controllers
connected to the internet. In essence, the transition to IIoT is nothing more than the
expansion of SCADA systems using a common protocol for communication.

On the monitor side, human-machine interfaces (HMIs)
display information about the state of the system,
often provide human operators with the ability to adjust or manipulate controls, and
can present information on workstations, tablets, smartphones or other custom
handheld devices, augmented reality (AR) devices, or wearables (like smart hard
hats and vests).

The extent to which a control system is allowed to make corrections
depends on the level of automation that managers and control systems
engineers have chosen for a particular task or group of tasks. Because there
are varying degrees of automation that can be considered, several researchers
have explored what these differences imply for strategy and planning. These



findings are presented in the next section.

LEVELS OF AUTOMATION
Automation can be described by where in the organization it occurs (which
informs the types of automation that are possible), what kind of automation
can be realized, and how humans, machines, and computers can cooperate to
achieve shared objectives. Knowing these things can help leaders identify
new opportunities.

Where Automation Occurs
The ANSI/ISA 95 (IEC/ISO 62264) standards (referred to as ISA 95) were
created to provide common definitions and terminology for the systems that
support manufacturing operations. Before the standards, it was hard for
manufacturers to effectively communicate their requirements to systems
integrators, especially where digitization and automation were concerned.
After the release of ISA 95, projects that previously took one to two years to
deploy could instead be rolled out in only two to four months, and more than
90% were successful (as compared with less than 50% previously) (Brandl,
2012).

ISA 95 conceptualizes operations into five levels, from Level 0 (which
represents the physical process) to Level 4 (which covers the business
processes that connect operations with strategy and the market). The ISA 95
automation pyramid (Figure 4.7) is also organized by timescale, so while
events occur (and data is generated) at the millisecond/microsecond scale at
Level 0, events at the business and enterprise Level 4 occur on the order of
days or months. Although the model was created for manufacturing
environments, the pyramid (from bottom to top) could be applied to any
production environment because it addresses physical processes, digitization
and monitoring, process control, workflows, planning, and management.



Together, Levels 0 and 1 describe how to exchange information about
operations processes that is collected on the front lines, Level 2 controls
processes, and Level 3 manages flows (workflows, material flows, and
information flows). Table 4.3 shows examples of the types of automation in
each level.



What Kind of Automation Can Be Done
The introduction of CPSs in Industry 4.0 expands the capabilities (and
power) of the various interconnected components. New communications
protocols make it possible to communicate across all levels of the automation
hierarchy (Figure 4.8). Although this makes tight integration of processes
possible, it also expands the “attack surface” for potential cyberattacks.



In general, this networked framework for CPS-based automation implies
that there are four stages of automation maturity in an organization beyond
manual operations:

Manual operations—Processes are managed on paper or on individual
spreadsheets that are difficult to track or trace. Limited (or no) records may be kept.
Digitization—Some document repositories, data repositories, or software packages
are available to support electronic data entry, retrieval, and possibly visualization.
Horizontal integration—Some systems are connected and can be used to
exchange information across functional areas of the organization (e.g., sales,
marketing, production).
Vertical integration—Information and material flows connect the sensor level,
control level, production level, and/or enterprise level.
Connected work systems—Information and materials flow across functional areas
and between levels of the automation hierarchy, making it possible for the
organization to anticipate, adjust, and adapt to changing circumstances and
requirements.

Note that this framework could be used by most organizations. The sensor
level would correspond to the level closest to the work processes, and data
could be sensed by individuals or participants in the process rather than
instruments.

How Humans, Machines, and Computers Automate
When automation is absent, systems provide no decision or labor support.
With some automation, the system can provide suggestions to the human,
which he or she has the option to follow through with or not. Notifications
can also be provided to the human to facilitate decision support and provide



supporting information when the system takes actions automatically. Finally,
a system may act mostly autonomously, potentially providing the human
operator with the option to manage by exception and stop the system from
proceeding if issues are detected (Lorenz et al., 2001).

EXAMPLES OF AUTOMATION
To enable the different levels of automation in Table 4.4, an automated
system can collect data, report or track events or movements, monitor events
and issue alerts if needed, provide alternatives to human decision makers, and
carry out actions. Manual and routine tasks are much more easily automated
than cognitive, nonroutine tasks.

TABLE 4.4.  Levels of automation in terms of decision support.

Sarter et al.
(1997); Ruff
et al. (2002) Sheridan and Verplank (1978)

Kaber et
al. (1999)

Manual
control

Human specifies process, and computer directly
executes the instructions

Manual
control;
batch
processing

Management
by consent

Computer assists human by determining options, and
human selects the desired option

Action
support

Management
by consent

Computer assists human by determining options and
suggesting a choice; human selects an option that
may or may not be what was recommended

Shared
control;
decision
support

Management
by consent

Computer assists human by determining options and
selecting a choice; human has the option to follow the
computer’s recommendation or not

Blended
decision
making

Management
by exception

Computer selects and implements option, but requires
human approval before executing it

Blended
decision
making;
rigid
system

Management
by exception

Computer selects the best option and automatically
implements it, but gives the human the chance to stop
the process

Rigid
system;
automated
decision
making

Assisted Computer selects and implements options Supervisory



control automatically, then reports results to the human control

Unassisted
control

Computer selects and implements options
automatically, but tells the human about the results
only if asked, and reports comprehensive results

Supervisory
control

Unassisted
control

Computer selects and implements options
automatically, but tells the human about the results
only if asked, and reports only some information

Supervisory
control

Autonomous
control

Computer selects options, implements options, and
automatically performs the whole job; it may or may
not tell the human anything that has transpired,
although logs may be collected to keep track of what
occurred

Full
automation

Robotic Automation
Fueled by a vibrant global robotics market, machines to perform manual and
routine tasks can now be acquired more readily than in the past.
Implementing robotic automation can directly address the worker deficit in
manufacturing, while improving occupational health and safety and
increasing productivity. In addition, combining robotic automation with
emerging technologies like AR can enhance information flows and ease
human-machine interaction (Malý et al., 2016).

In one example from aircraft engine turbine manufacturing, Caggiano and
Teti (2018) describe how a manufacturing cell’s performance was improved
by robotic automation of its deburring (smoothing) station. The cell included
a grinding machine tool with a robot for loading and unloading (which was
already in place), a coordinate measuring machine, and the new automated
robotic deburring station.

The robotic components were responsible for grabbing components,
inspecting surfaces, and deburring. The human operator was responsible for
assembly and disassembly of the parts, part positioning in the grinding
machine, and manual part transfer between the machines. With the new
robotic components, utilization of the elements in the entire manufacturing
cell improved from 13% to 61%. The difference between the projected
outcomes predicted by discrete event simulation (DES) and the actual
performance was only about 1.5%. Using DES helped this team of industrial
engineers find a viable solution for performance improvement before buying
and installing the physical machines.



Robotic Process Automation (RPA)
Many business processes can be partially or fully automated by triggering
software scripts, based on business rules, that run under certain conditions or
at specific times. Although the label conjures up images of humanoid
machines and robotic arms, Robotic Process Automation (RPA) is actually
much more straightforward and emphasizes the automation of routine tasks.
What most people think of as robots are not a part of RPA; rather, the
“robots” are software programs that carry out the activities. Here are some
examples:

Mobile Communications Provider. Telefonica “learned that low-performing back
offices can be transformed to high-performing back offices through six transformation
levers: centralize physical facilities and budgets, standardize processes across
business units, optimize processes to reduce errors and waste, relocate from high-
cost to low-cost destinations, [enable with] technology (e.g., self-service portals), and
automate services” (Lacity & Willcocks, 2015). In response, it automated over a third
of its 15 core processes using approximately 160 RPA scripts. With a payback period
of just 12 months, its three-year return on investment (ROI) was estimated to be
between 650% and 800%.
RPA Service Provider. OpusCapita, a financial services company in Espoo, Finland,
deploys RPA solutions for companies in its sector. It selects RPA initiatives for its
clients based on eight criteria: high transaction volume, actions that touch multiple
systems, stable and unchanging environment, low cognitive overhead, easily defined
in terms of business rules, likelihood of human error, highly standardized task, and a
clear understanding of the current costs of manual operations (Asatiani & Penttinen,
2016).
Process Mining to Identify RPA Opportunities. Process mining reconstructs the
flow of business processes from large transaction logs. Geyer-Klingeberg et al.
(2018) generated a Purchase-to-Pay (P2P) process flow from an SAP ERP system
for two firms. Based on the frequency that a process has consistent steps with few
deviations, they were able to select an appropriate candidate for automation.
Choosing the right processes for RPA can significantly reduce the cost, risk, and
time-to-value of implementation.

With RPA, automation scripts leverage existing software systems and IT
infrastructure without changes. Data validation, report preparation and
sharing, routine mass e-mails, updating business scorecards, installing
software updates, updating vendor records, responding to partners, and
configuring products can all be done using RPA. Chatbots and virtual
assistance also provide examples of RPA in action, when routine tasks are
facilitated.

Design Automation



New product development (NPD) can be complex, expensive, and time-
consuming. Thanks to software for Simulation-Based Design, virtual
prototyping, and design optimization, advances in design automation can
significantly speed up the process while reducing the risks and making the
final products more robust and reliable.

As one example, Ang et al. (2016) examined design automation for
shipbuilding. Designing a new ship is a massive exercise in concurrent
engineering, with stakeholders scattered across the globe. New ships take
months to build and cost between $10 million and $100 million. Motivated
by changing fuel prices and increasingly tough environmental regulations,
time-to-market is still a concern, with the ability to customize designs a
compelling differentiator. They proposed the Hull Form Design Optimization
framework to automate the exploration of design alternatives, presenting the
designer with a catalog of feasible options. He or she can examine these
suggestions in the context of a project’s unique constraints rather than
attempting to sort through all possible designs manually.

Automatic Code Generation
One of the goals of model-based software engineering is to be able to
describe the abstract structure of a system in such a way that the source code
can be automatically generated. Consequently, models (informational,
behavioral, and structural) have to be more complete and more precise so that
the code they produce yields the intended outcomes. Design tools like
Unified Modeling Language and SysML, which are well established, provide
the basis for the automated code generation (Ciccozzi et al., 2018). Also,
researchers like Morin et al. (2017) believe that code generation may be
useful for programming the internet of things (IoT), especially when
functionality has to be distributed across many nodes in a group of devices.

Test Automation
When new software features are released, testers make sure that the new
capabilities do not break preexisting functionality. As a result, and
particularly for large software packages, many regression tests must be
executed to provide this assurance. In one case study, Garousi and Yildirim
(2018) automated the testing process for the graphical user interface (GUI) of
a large-scale law practice management software. In addition to reducing the
test time from two days to one hour for each release, they were able to



increase the frequency of releases from once every two weeks to multiple
times daily, making continuous delivery possible. During demos and progress
meetings with customers, they were able to show the results from the
automated test processes, which built trust and satisfaction.

AUTOMATION ACCEPTANCE
Automating processes and systems may yield beneficial outcomes and
increase productivity, but only if they are accepted by the people who work
with them. People adopt technologies when they provide clear benefits, make
jobs easier to do, and do not require excessive cognitive overhead.
Unfortunately, even the smallest and most beneficial changes can be difficult
to adopt, because all change requires cognitive effort. This section shares
insights for helping the workforce and senior leaders more easily adopt new
technologies, especially when they involve automation.

Preserving Agency and Countering Resistance
In 1983, a research team led by Lynne Markus wanted to find out why people
were so reluctant to adopt software that was developed to help them—
software specifically designed to make their lives easier. If the software was
so beneficial, the researchers wondered, why was it so difficult to get people
to use it?

Their work uncovered three theories of resistance. If people aren’t
responding to system and process improvements, their findings, which were
reiterated over several years, suggested that one of three things is going on:

People Issues. There may be an issue with the people using, or being affected by,
the new technology. They may need additional education or training, enticement to
try the new technology, or a better explanation of why they are being asked to
change.
System Issues. Perhaps the new technology doesn’t behave as anticipated, provide
the right answers, or execute tasks consistently. People who have been performing
the task manually will be reluctant to adopt an automated solution if it doesn’t do as
good a job as they used to. Furthermore, they may need some time to observe the
system in action to develop trust, or may need an intermediary solution where the
automated solution recommends next steps, and the people get to approve or
disapprove. The solution is straightforward: fix the bugs, improve the infrastructure,
ease into automation, or do all three—and make sure a process is in place to ensure
that future releases are solid.
Power Issues. Finally, look at how the system has changed access to information.
As Markus explains, where information flows, power goes. By democratizing access
to information, you may have inadvertently disrupted the power balance in your



organization. You may be threatening someone’s sense of meaning, purpose, or
agency. If you can get to the root cause of that issue to solve it, resistance will
(probably) magically ebb.

Most significant here is the need to preserve human agency. Every person
needs to have a sense of control regarding his or her own work, tools, and
body. Automated systems should not make decisions on behalf of people, or
limit or remove their agency in any way, unless they have explicitly declared
that this is acceptable to them. Lack of (or insufficient) agency can negatively
impact adoption of automated solutions.

Technology Follows Behavior
If you think about software implementations that have occurred in your
career, which ones have been successful, and which ones have failed? In
general, if a software package is adopted to automate a task that is not yet
being performed by people, there is a risk that no one will start doing that
task just because the software is available. For example, let’s say you buy a
software system that manages sales communications with prospects and will
provide you with intelligence about how well each pitch works so that you
can customize pitches to future prospects. If your sales force does not
currently think or work in terms of “pitching,” it is unlikely that they will
start thinking this way just because the software becomes available to do it.

Strategic conformance is the “match in problem-solving style between
decision aiding automation and the individual operator” (Westin et al., 2015).
What this implies is that technology follows behavior. You can increase the
chances of adoption by automating or facilitating tasks that people already do
and are already comfortable with:

Given technical advances in areas previously considered unique to human cognitive
skills, automation is expected to increasingly assume authority in problem-solving and
decision-making tasks. The inevitable trajectory of many work domains will involve more
capable automation acting in an intelligent advisory capacity. As such, automation will
likely provide support that is more strategic in timescale, less transparent to the operator
in that decision rationales are concealed, and presented as recommendations. In this
context, the issue of acceptance is central. It is reasonable to hypothesize that a
recommended solution matching the individual’s problem-solving style would be more
readily accepted. (Westin et al., 2015)

Workforce Implications
Automating processes often results in needing fewer people to perform a
task. Even if automation reduces or eliminates risks due to health or safety,



there will still be resistance from workers if they believe that technology is
taking their jobs.

But not all jobs are easy to automate. Robotic automation, for example, is
often supplemented by human labor to move parts between machines or to
perform intermediary inspections. Industry segments most likely to lose jobs
as a result of automation, according to Bonekamp and Sure (2015), were
office and administrative support, service, sales, production, and
transportation. Least likely to be automated were education, legal, arts,
media, healthcare, management, science and engineering, and financial
functions. Frohm et al. (2008) reports these changes:

Simple and repetitive activities replaced by CPSs and intelligent agents
Greater automation of control, supervising, and scheduling activities
More decentralized decision-making and planning processes
Greater need for process integration and cross-functional perspectives
More automated quality assurance and maintenance processes
Greater importance of interdisciplinary cooperation
Greater requirements for IT competence and data literacy
Engagement with partner and supplier networks more significant
Teamwork becomes more important as work becomes more flexible

The most supportive view of automated systems is that they will enable real-
time control of work processes and provide individualized guidance for the
workforce. By augmenting human intelligence, theoretically, a balance will
be struck between the need for explicit and tacit (or experiential) knowledge.
In all cases, the continued adoption of automation means there will be a
sustained shift toward the need for cognitive skills (including data literacy
and interpretation) in manufacturing as well as most other industries.

THE BOTTOM LINE
Automation is a cornerstone of Industry 4.0, enabled by CPSs that
communicate through networks. To create an automated system, manual
labor is mechanized, then systems are digitized. Finally, mechanical and
computational automation can be introduced in a stepwise manner, ultimately
leading to the potential for autonomous operations. Automation is not an all-
or-nothing pursuit—there are degrees of automation that can range from a
system that executes preset instructions under certain conditions to a system
that is fully autonomous, like a self-driving car. (Being able to view the
organization in terms of levels of automation can also help cybersecurity
professionals more accurately identify the ICS attack surface.)



Automated systems collect data, report or track events or movements,
monitor events and issue alerts if needed, provide alternatives to human
decision makers, and carry out actions (sometimes, using robotics). In
general, CPSs enable different levels of automation maturity beyond manual
operations:

Digitization—Systems provide partial support for electronic data entry, retrieval,
and/or visualization
Horizontal integration—Some systems exchange information across functional
areas of the organization (e.g., sales, marketing, production)
Vertical integration—Information and material flows connect the sensor level,
control level, production level, and/or enterprise level
Connected work systems—Information flows horizontally and vertically, enabling a
flexible and adaptable organization

Automation can make it possible to accomplish tasks that are not otherwise
feasible or safe for humans, and to make processes faster and less error prone.
There are also benefits to not automating—for example, if products are very
new or highly customized, production assets are expensive and requirements
are likely to change, demand is inconsistent, or delivery must be rapid.
Leaders should not always assume that more automation is better. Using
simulation and pilot programs can hedge against the risk of unintended
consequences.

Managing change so that the workforce and senior leaders not only accept
but benefit from the new automated solutions also requires thinking in terms
of people, systems, power, agency, and behavior. Strategically developing
competencies in the workforce, in particular cognitive skills and data literacy,
can help alleviate the fear of being automated out of a job (particularly in
manufacturing).
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CHAPTER FIVE

QUALITY 4.0 USE CASES ACROSS
INDUSTRIES

While initial developments stimulated by Industry 4.0 did not require significant
advances in quality to build basic connectivity of its system, currently evolving

advances require thinking algorithms that have an ability to make choices … that
not only observe, collect, and distribute data, but … creatively consider what to do
with the data and how to improve upon the current way that this data is generated.

—GREGORY H. WATSON, PAST CHAIR AND FELLOW OF ASQ AND PAST
CHAIR AND HONORARY MEMBER OF THE INTERNATIONAL ACADEMY FOR

QUALITY

I’m not a frequent user of the ATM at the bank, but every now and then I
need to get some cash. Several months ago, I went through the motions on a
Sunday so I could get my son some funds for a field trip the next day. I
pulled my car up to the ATM window, put my card into the slot, and entered
my secret code into the terminal. Everything was humming along without a
hitch, and after less than a minute, the “thank you” screen appeared.

But my cash didn’t come out! I pressed a few more buttons, but nothing. I
started to panic. The machine ate my card and didn’t give me any money.
And on a Sunday, there was nothing I could do to remedy the situation. I
quickly pressed more buttons, faster! But nothing was working. I’d have to
tell my son he couldn’t go on the trip.

Then, I noticed that my card was sticking out of the card slot. Thankfully,
at least I didn’t lose my card. As soon as I pulled it out, though, there was
another whirr—and out popped a stack of bills.

As someone who thinks about quality and process improvement all the
time, I realized what had happened immediately. I was in awe. What a great
idea! Although people are highly motivated to take their cash, they are not as
motivated to remember to take their card. Most process flows at the ATM
return the card and then dispense the cash. But the process that had been
programmed into this machine had been mistake-proofed (poka-yoke in



Japanese), so no one could possibly leave their card behind. I had to pull out
the card in order to trigger the dispenser.

This was such a good idea, I was shocked that in my 25 years of ATM use
I hadn’t encountered it before. Like a good academic, I went to Google
Scholar immediately to see if the idea had ever been considered in the
research. Not only had it been studied in depth, but the results from
improving this particular process flow had been well known for almost two
decades:

A “card-returned-then-cash-dispensed” ATM dialogue design was at least 22% more
efficient (in withdrawal time) and resulted in 100% fewer lost cards (i.e., none) compared
with a “cash-dispensed-then-card-returned” dialogue design. (Zimmerman & Bridger,
2000)

Why couldn’t this mistake-proofing have been done sooner? Simply put,
because changing the process flow on hundreds of thousands of ATMs was
not an easy task. For years, the process was dictated by hardware rather than
software, which could have been more easily reconfigured. Newer ATMs are
much more flexible and may even be programmed to be responsive to
customer needs. By moving the automation capabilities to the software,
financial institutions could improve ATM processes in hours or days rather
than decades.

Pickett (2019) notices the same trend in industrial sensors, which can be
programmed to notice potential human errors in real time and help people
correct them, or manage a no-touch approach to optimizing the life-cycle
value of assets:

Industry 4.0 and the Internet of Things have given rise to IoT-enabled, mistake-proofing
sensors that connect to other shop floor devices and systems. On top of that, AI software
is increasingly being used to analyze the data that these sensors collect, finding patterns
and adjusting processes without the need for human intervention.… Maximo, IBM’s
cloud-based Enterprise Asset Management [EAM] software, is designed to handle
constant streams of data from IoT sensors and devices. The company’s Watson IoT
platform connects, manages, and analyzes IoT data with the help of artificial intelligence.

These examples show that even the most basic improvement methods can be
enhanced and accelerated with connected, intelligent, and automated digital
approaches. With near-real-time feedback, amazing opportunities for
improvement will be revealed in many processes, even outside of
manufacturing.

CONNECTED, INTELLIGENT, AND AUTOMATED



These stories provide examples of Quality 4.0 use cases—practical scenarios
that use both traditional methods and digital technologies to:

Enhance connectedness (of people, machines, and/or data)
Augment, increase, or improve on human intelligence
Increase automation to some degree

Although not all three must be present in each digital transformation,
Industry 4.0, or Quality 4.0 initiative, the impacts (and sometimes benefits)
compound. For example, Romero et al. (2018) explore how “Industry 4.0
technologies, such as enterprise wearables, can foster better industrial
hygiene to keep operators healthy, safe, and motivated within emerging
cyber-physical production systems.” In one of their three case studies, they
describe how workers’ personal protective equipment (PPE) can be
modernized to provide better protection from workplace hazards like toxins,
temperature extremes, and noise.

First, the PPE is fitted with sensors that can detect whether a hazard is a
threat. When the PPE is connected to a network, it has access to information
about what is normal and acceptable, versus what is dangerous. Intelligence
can be embedded into the sensor to automatically alert the worker when there
is a problem. An alert raised by one worker’s PPE can be propagated to other
workers in proximity to provide an early warning. A fully automated system
may also report the issues to a central software system, finding patterns in the
aggregated data over time and using that information to better protect the
workers in real time.

Connectedness, intelligence, and automation are not just present or absent:
each of these dimensions reflects a spectrum of capabilities. Figure 5.1 shows
the relationships, using the degrees of automation initially developed by
Sheridan and Verplank (1978). A Quality 4.0 initiative will shift the
capabilities of an entity, infrastructure element, or process higher on at least
one of the three dimensions, and usually two or three.



Making systems connected, intelligent, and automated can increase the
speed and quality of decision making; improve transparency, traceability, and
auditability; anticipate changes, reveal biases, and adapt to new
circumstances and knowledge; reveal opportunities for continuous
improvement and new business models; and help people and systems learn
how to learn, cultivating self-awareness and other-awareness as a skill. In
addition, connectedness has two aspects: digitization and information
sharing. Information can be shared in many ways (e.g., face-to-face, phone,
letter, e-mail, text message, online chat), only some of which require a
communications network. Although information can be shared without being
digitized, wider sharing is enabled when data sources are digital.

By implementing connected, intelligent, and automated systems, at least
one of the following outcomes can be achieved:

Improved product or process quality
Reduced cost, waste, defects, rework, or Cost of Quality (CoQ)
Increased customer satisfaction or reduced dissatisfaction
Enhanced workforce capability or capacity
Enhanced decision-making capability
Improved environment, health, or safety outcomes and conditions
Improved leadership, governance, or ethical outcomes
Improved ability to meet legal, financial, or compliance requirements
Greater benefits to society



Improved financial results
Improved ability to realize strategic objectives
Enhanced ability to bring products and services to market
Creation of a new business model

This chapter explores patterns identified from studying hundreds of Quality
4.0 example initiatives across several industries. They illustrate how
organizations have already successfully used digital technologies to improve
performance and expand competitive advantage, and provide a model for
how you can select directions and structure initiatives.

KEY THEMES IN INDUSTRY 4.0 AND QUALITY 4.0
To select the most representative use cases and case studies specific to
Industry 4.0 and Quality 4.0, I first examined previous studies that addressed
key themes in this area. This section summarizes Martinelli et al.’s (2019)
patent studies, Dombrowski et al.’s (2017) evaluation of 260 research papers
containing use cases in Industry 4.0, and my original study of 430 abstracts
covering Industry 4.0 as well as Quality 4.0 work from outside manufacturing
and related industries.

Patents: 1990–2014
Martinelli et al. (2019) examined 363,803 patents filed between 1990 and
2014 with the United States Patent and Trademark Office. Because the
United States was a leader in innovation throughout this period, the authors
felt that this sample would provide a representative glimpse into worldwide
progress. The six categories that they tracked were artificial intelligence (AI),
big data, cloud computing, internet of things (IoT), 3D printing and additive
manufacturing, and industrial robotics. In addition to noting uneven patterns
of adoption, their work revealed several interesting things:

There was a continuum between adoption of smart technologies and adoption of
presmart technologies (e.g., CAD [computer-aided design], CAE [computer-aided
engineering], and CAM [computer-aided manufacturing]), and no break or
discontinuity was detected
High future growth was indicated for IoT and additive manufacturing
Slower growth was indicated for industrial robotics (a more mature market segment)
Slower growth was indicated for human-machine interfaces, possibly reflecting the
difficulty of applying AI and machine learning in production processes.
Large companies are leading Industry 4.0 technology adoption, and small and
medium-sized firms are lagging
Barriers to adoption are costs and absorptive capacity (difficulty of learning,



internalizing, and applying the new technologies)

Through the patent analysis, they also uncovered insights into what is driving
the adoption of some Industry 4.0 technologies. These factors included more
efficient production, cost optimization, greater flexibility, improved product
quality, and decreased errors. They also noticed that “the application of new
business models figures prominently in the preferences of smaller firms,”
suggesting that business model innovation may be the most important Quality
4.0 use case for some organizations.

Industry 4.0 Use Cases
Dombrowski et al. (2017) analyzed 260 papers in Industry 4.0 to identify key
themes, selected specifically because they emphasized use cases. Their goal
was to understand the interdependencies between Industry 4.0 and lean
production systems. They used affinity analysis to organize the papers into
the three categories (process oriented, systems focused, and technology
focused) shown in Figure 5.2. Next, they grouped the papers by eight lean
principles or practices (standardization, zero defects principle, visual
management, continuous improvement, management by objectives, flow,
pull, and avoidance of waste).

There were three main conclusions regarding the interplay of lean and
Industry 4.0:

Cloud computing is used to reduce waste, although it is also used frequently to
implement flow and pull-based systems
Big data is used to reduce defects, driving operations via the zero defects principle
Digitalization (new business models and value streams opened up by digital



technologies) is strongly supported by standardization

Their study also called out the implementation themes originally identified
by Monostori (2014):

Manual operations—Processes are managed on paper or on spreadsheets
Digitization—Some processes support electronic data entry, retrieval, and
visualization
Horizontal integration—Some systems can exchange information across functional
areas of the organization (e.g., sales, marketing, production)
Vertical integration—Information and material flows connect sensors, control
systems, and business systems
Connected work systems—Information and materials flow horizontally and
vertically; organization can anticipate, adjust, and adapt

Literature Review and Text Analysis
To identify key themes specific to Industry 4.0 and Quality 4.0 use cases, I
conducted a literature review using resources from Google Scholar,
ProQuest, and Scopus. This was a broader study than Dombrowski et al.
(2017) and included papers and preprints available through August 2019.
Papers were selected if they referred to Industry 4.0 (or any of the other
“4.0s” that appear to be synonymous with Quality 4.0 in general) and
explicitly contained one or more use cases or case studies, were organized as
use cases or scenarios, or otherwise contained practice and experience
reports.

There were no research papers before 2014 that focused on Industry 4.0
and Quality 4.0 use cases; instead, earlier papers emphasized new
engineering capabilities in sensors, networks, and cyber-physical systems
(Figure 5.3). Fewer than 10 papers from 2014 were included. A small number
of preprints expected to be published in 2020 were also included.



From the 630 items that were initially identified, 436 were relevant during
initial review. A total of 430 contained enough descriptive data to be included
in the analysis. Preliminary analysis showed that use cases usually focused on
one entity engaged in a single process type (Table 5.1). For example, the
paper may have used real-time data to enhance decision support for workers
guiding manufacturing processes (smart operator/executing processes) or
simulation on digital twins to improve return on assets (smart
assets/exploring processes).

TABLE 5.1.  Entities and processes featured in Industry 4.0 and Quality 4.0 use
cases.

Entity Process

• Asset/equipment • Planning
• City • Exploring
• Customer • Designing
• Data platforms/repositories • Executing
• Factory/workplace • Auditing
• Intelligent agent
• Operator
• Product
• Vehicle
• Worker



The scenarios illustrated several ways in which digitized, connected,
smart, augmented entities could engage in more efficient and effective
planning, exploring, designing, executing, and auditing:

Digitization of data about the entities or processes
Digitization of data for use by the entities or processes
Adding connections among entities, processes, and data sources
Augmenting physical or cognitive capabilities of entities
Using intelligent agents and intelligent systems to improve or enrich processes
Using connectedness, intelligence, and automation to improve health and safety
Using connectedness, intelligence, and automation to discover ways to improve

This element of real-time discovery and self-regulation is particularly
characteristic of the new digitally transformed era. Watson (2020) describes
Quality 4.0 in these terms as well, as a “holistic sociotechnical system that is
purposefully designed to discover and apply profound knowledge in pursuit
of continual improvement and consistently achieve an organization’s
purposeful objectives.” To Watson (2019), discovery manifests in several
ways in Quality 4.0:

“Digitization is used to optimize signal feedback and process adjustment, and
adaptive learning supports self-induced system corrections.
Quality shifts its control-oriented focus from the process operators to the process
designers.
Machines learn how to self-regulate and manage their own productivity and quality.
Human performance is essential; the emphasis shifts from production to system
design and integration with the business system.”

Next, I performed text analysis of the abstracts from the 430 papers that
were ultimately selected. After building a corpus containing all the abstracts,
I used the latent Dirichlet allocation (LDA) technique. This generative
probabilistic model, often used by machine learning practitioners, considers
each document as a distribution of topics, and within each topic there is a
distribution of terms. By examining the statistical structure of these topics
and terms, it is possible to identify themes from large collections of
documents. The themes that the LDA algorithm constructs have to be
manually inspected for relevance, and each document can contain one or
more themes.

LDA was used to explore the corpus of 430 abstracts for four to eight
themes. The final selection of seven themes was based on capturing all topics
that appeared in at least 13% of the abstracts. Each of these themes (and the
common words that describe it) represents a platform for driving quality and



performance outcomes through connected, intelligent, and automated digital
systems:

Smart Manufacturing and Internet of Things (IoT): manufacturing systems smart
industry cyberphysical internet industrial technologies integration things intelligent
Environment, Health, Safety, and Security: health analytics society safety
predictive risks reliability healthcare transport
Lean and Supply Chain: industry lean future supply chain challenges review SMEs
methodology maturity
Digitization and Design: production systems design work proposed tools process
framework engineering
Data-Driven Maintenance: data information control application maintenance
machine sensors software platform
Quality Management Systems: quality management approach human potential
knowledge processes performance results
Innovation and New Business Models: new digital transformation business models
products value innovation concept sustainability

In addition to manufacturing, the industries that appeared in key themes were
automotive, construction, food and beverage, healthcare, and transportation.
The top three issues tackled with Industry 4.0 and Quality 4.0 approaches
were energy efficiency, sustainability, and safety (mentioned 39, 38, and 37
times, respectively). Most frequently mentioned technologies or techniques
were augmented and virtual reality, predictive maintenance, and digital twins
(mentioned 26, 17, and 12 times).

The low frequency of use cases from the petrochemical industry was
surprising since oil and gas has been leading other industries in adopting IIoT
technologies, with 50% of the installed base (Martinelli et al., 2019).
Similarly, the lack of attention to cybersecurity was unexpected since this is
critical for all networked systems. Notably absent from the collection were
use cases or case studies on facility management, even though commercial
building automation is considered to be a driving use case for smart cities
(Table 5.2).

TABLE 5.2.  Frequency of terms in 430 abstracts of research papers with use cases.

Most frequent Least frequent

Manufacturing — 471 Pharmaceutical — 13
Smart Mfg/Smart Factory — 62 Agriculture — 10
Construction — 37 Shipbuilding — 10
Automotive — 34 Petrochemical — 7
Food & Beverage — 28 Patient — 5
Healthcare — 22 Cybersecurity — 4



Medical — 21 Hospitality — 3
Government — 19 Aerospace — 2
Autonomous Vehicles — 17

NEW BUSINESS MODELS
Revealing new, innovative business models through increased connectedness,
intelligence, and automation is the heart of digital transformation for all
organizations. Business model innovation may be the most important Quality
4.0 use case for smaller organizations (Martinelli et al., 2019). Regardless of
the size of your organization, the path toward growth and expansion is filled
with many opportunities for value creation, delivery, and capture.

For example, Ibarra et al. (2018) take a look at growth and innovation
through digital transformation, focusing on sustainability as a driver (Figure
5.3). They note that process optimization is the first step of innovation, but as
this matures, new interfaces can be provided to customers for co-creation of
products and services (Figure 5.4). Beyond interfaces, companies can seek to
move value creation ecosystems and supply networks online. Finally, the
ability to develop and release novel smart products and services can create
entirely new markets. The relationship between these four stages and value,
as defined by Ibarra et al. (2018), is shown in Table 5.3.



Weking et al. (2018) also conducted a study to build a taxonomy of all the
business models that could be configured from the modes of value creation,
delivery, and capture explored by Ibarra et al. (2018). Their results are shown
in Figure 5.5. Within each meta-dimension (the leftmost column) the
business model options at the right are related to one another to show
relationships and interactions.



For example, in the “Value proposition” meta-dimension, one row
displays “Product” and the row below it displays “Service.” At the very left
portion of these two rows, if the business model is built on a physical
product, it is possible that there will be no service model. However, there is a
possibility that the physical product will be coupled with a service plan to
provide repair and maintenance, or in limited cases, a service package for
remote monitoring. On the rightmost side of this pair of rows, if there is no
product offering, there may be advice and consultancy offered to drive
revenue, or perhaps digital information services (e.g., data as a service, or
DaaS). This chart can be used for brainstorming and to explore the
relationships between many meta-dimensions that make up a modern
business model.

QUALITY 4.0 CASE STUDIES
With a better understanding of the key themes and industries, I selected 10
papers that best demonstrate the spirit and values of Quality 4.0. What
distinguishes these studies from Industry 4.0 projects and initiatives (Table
5.4) is that each of these projects, prototypes, or feasibility studies was
specifically designed with quality and performance in mind.





Rather than launching a project to introduce AI to the organization, or
incorporate machine learning into processes, or implement IoT, these
initiatives started with the business needs, and technology requirements then
emerged. It is this strategic focus that increases the likelihood of digital
transformation success.

Case 1: Healthy Operator 4.0
Managing for quality also requires that operators stay safe, healthy, and
engaged. A lapse of concentration or attempting to perform dangerous work
when you’re tired or ill can lead to adverse outcomes for both workers and
products. To adapt to changing conditions in the environment and in the
body, industrial wearables are a core Industry 4.0 use case. Romero et al.
(2018) define requirements for sensors and interactions to manage conditions
in the work environment, cognitive and physical workloads, and proximity to
hazardous conditions.

The wearables monitor exposure to toxins, pollutants, temperatures, and
noise level and vital signs in response to lifting tasks and ergonomic postures.
They keep track of both physical and cognitive workloads and compare them
against conditions to prevent unsafe working conditions. According to the
U.S. Centers for Disease Control and Prevention (CDC), musculoskeletal
disorders caused by hazardous working conditions cost the American
economy an average of $50 billion a year, so addressing just one of these
factors can have a solid positive impact.

Connected: Wireless communications transport sampled monitor data on a regular
(seconds, minutes) basis as needed and provide real-time job information
Intelligent: Ambient intelligence monitors vital signs, environmental conditions, and
social scenarios to help operators proactively manage their own health and workload
Automated: Alerts are issued if unsafe conditions are detected, emergency stops are
automatically issued to protect operators against hazardous conditions, and
employers are protected against accidental violations of standards and regulations

Case 2: Augmented Worker
Augmented workers are human workers who use technology to improve how
they do their jobs, such as laborers who use exoskeletons to assist with heavy
lifting. Exoskeleton technology comes in many shapes and sizes and can
perform various tasks. Butler (2016) explains that in addition to helping give
workers added strength and agility for hazardous tasks, an exoskeleton can



help workers perform tasks more safely and ergonomically—for example, by
limiting their range of motion. A Personal Ergonomic Device offering
assistive technology can also help extend a worker’s productivity by
compensating for the physical and mental changes associated with aging.

The use of technology to augment job performance provides direct (and
immediate) benefits to quality and productivity. In a field test, welders and
painters were first asked to perform “moderate to severe ergonomic tests”
until fatigued (Butler, 2016). Quality and productivity were measured using
work simulators. A few days later, the same workers were provided with an
exoskeleton and subjected to identical conditions. Painting productivity
improved by 20%–50%, and one welder’s productivity increased by 86%
compared with the benchmark. Quality of the work was not only maintained
but became more consistent with the aid of the exoskeleton, and workers
could put in longer hours before becoming fatigued.

Connected: Oftentimes, exoskeletons can work locally, without communications
Intelligent: Continuous monitoring and feedback are provided to help the worker
manage the physical and cognitive workload and accomplish jobs more effectively
Automated: Some exoskeletons can automate manual or skilled labor tasks, helping
workers complete tasks like lifts that may be above the recommended limits for
humans

Case 3: Logistics 4.0
Motion and transport, of both physical objects and information, are
considered waste in the world of quality. If an object is near you, then you
don’t have to expend energy to retrieve it. When information is available and
accessible, you don’t need to expend energy to locate and evaluate it. The
concept of Logistics 4.0, driven by increasing demand for highly
individualized products and services, seeks to optimize processes around
sourcing and providing resources. The primary quality goals are to improve
customer satisfaction (for all links in the supply network), reduce motion and
transport in production processes, and reduce storage costs.

Barreto et al. (2017) describe a system where people, processes, and
technologies are seamlessly integrated throughout a logistics ecosystem.
Real-time resource planning, which is a data-intensive effort, requires
visibility and transparency of information as well as integration across
organizational boundaries and supply networks. Warehouses are automated
and can report item status and location on demand. Transportation planning is
response-driven and incorporates real-time capabilities and capacities of



partners. Intelligent transportation systems route the items to their
destinations without human intervention. Security controls are autonomous
and continuously audited to reduce risk exposure.

Connected: A real-time data platform captures, aggregates, and assimilates data
from each entity in motion in the logistics network
Intelligent: The system processes the data and anticipates when issues require
rerouting or adaptation
Automated: The system can dynamically respond to fluctuations in demand, adverse
conditions (e.g., transport routes, geopolitical turmoil, weather), and workloads across
organizational boundaries, ensuring customer satisfaction regardless of risks

Case 4: Leaner Management
Lean production and lean management rely on collaborative problem solving,
with people, processes, and technologies working in harmony to achieve
shared goals. Any deviation from this harmony can negatively impact quality
and performance outcomes. Rittberger and Schneider (2018) examined the
barriers to lean management and whether they could be overcome with
Quality 4.0. With Plan-Do-Check-Act (PDCA) as a frame of reference, they
noted information latency as a potential issue at the Plan phase, lack of
workforce capacity as a major barrier for the Do phase, independent and
manual review of data and results at the Check stage, and effective
knowledge transfer, which can also impede sustaining improvements, at the
Act stage.

They identified five elements, each supported by digital technologies, that
could mitigate or remove the barriers. First, real-time information about
problem occurrence and resolution would prevent teams from incompletely
characterizing or scoping issues, or not having enough information before
moving forward with an improvement. Next, mobile informational assistance
(e.g., augmented reality interfaces) could provide them with up-to-date
information about gemba (where the work is done).

An intelligent system for predicting or anticipating issues would ensure
that appropriate improvement projects were selected at the right times.
Intelligent agents, possibly enabled with machine learning, could examine the
available data and provide insight into real root causes, eliminating the risks
of “opinion-based methods” for root cause analysis like 5 Whys. Finally,
robotics and RPA could be used to automate routine tasks, freeing
improvement teams to work on breakthrough innovation.

Connected: Wireless communications consolidate operations information;



augmented reality displays provide additional connectedness to data sources
Intelligent: Real-time operations data is analyzed to identify high-value problems and
provide additional insight into causes
Automated: Routine tasks are automated, freeing human labor for creative work

Case 5: Smart Labels
Traditional labels are printed with information that eventually becomes
obsolete, unless the label falls off first. Before barcodes, supermarket and
retail employees used to spend their days walking through the store with a
label printer, affixing the right price to each item. This process was labor
intensive and error prone, and rework was necessary every time there was a
price change or a sale. Furthermore, a missing price tag always led to a delay
at the cashier’s kiosk for everyone in line, as an employee ran through the
store trying to figure out the right price.

Fernandez-Carames and Fraga-Lamas (2018) envision the next step in the
evolution of labeling capabilities. Although process steps in manufacturing
are increasingly being automated, actions that must be taken by humans
require documentation and time to read and understand it. This additional
information, they argue, could be provided through a smart label and read by
a tablet or smartphone (potentially using an augmented reality interface).
Being able to program the labels remotely means that any number of labels
could be updated in an instant, or supplemented with information about
discounts, specials, or recalls. Operational costs are reduced because human
errors are avoided, along with the need to check, print, or replace labels.

Connected: Wireless communication facilitates dynamic reprogramming of the
labels, as well as labels being able to send information to a central, intelligent server
Intelligent: Label can determine information about the product and/or voice of the
customer (VoC) after the product has been sold
Automated: Label can automatically coordinate with other systems to communicate
data to provide real-time product information

Case 6: Predictive Maintenance/Smart Asset Management
In the oil and gas industry, acquiring and installing equipment is typically
capital intensive and requires substantial time and effort to commission. In
addition, the availability of capital is often tied to the crude oil price, which
can be volatile. Being able to keep an asset in service longer, while
minimizing downtime and service time, is a highly attractive and very cost-
effective goal.



Abbasi et al. (2019) created a Long Short Term Memory neural network, a
special kind of network architecture that can process sequences of data. It
uses 14 features to predict a process variable for a motor in an air separation
unit of an oil and gas facility. Using historical data as a training set, they were
able to build a prediction model to generate prediction alerts if the condition
of the motor suggests potential faults. The operator is given the opportunity
to take action to prevent damage to the expensive assets.

Connected: The neural network is trained off-line with historical data and no real-
time connections are needed
Intelligent: A prediction model uses historical data to determine how a motor failure
can be anticipated in advance
Automated: The neural network does not make changes to the operations
technology autonomously but provides the operator with suggestions that can be
acted on

Case 7: Rail Accident Prevention
Rail accidents are typically highly complex and require long forensic studies
to establish the multiple causes that lead to them. Systematic failures are
usually the most devastating, and they are also more difficult to predict.
Engineering, operation, and management can all be sources of risks to safety
when systematic hazards are in play. Design defects, poor maintenance,
inadequate training, carelessness or tiredness, inclement weather, and
financial constraints can all contribute to unsafe conditions.

Parkinson and Bamford (2016) examined three major railway accidents to
see what kinds of data may have been useful for preventing the incidents.
They decided that train design information, information about close calls and
safety audits, maintenance records from asset management systems, and
remote monitoring were all essential data requirements. Although software
systems and appropriate algorithms are not yet available to acquire and
process the large amounts of data that they identified, through this analysis
safety professionals were able to take the first step toward determining how
big data can be used to improve rail safety. If the data had been available in a
central location, operators may have been able to prevent at least one of the
high fatality incidents that they studied.

Connected: Wireless communications transmit remote monitoring data, asset
records, audit and near-miss information, and up-to-date design to a central location
Intelligent: Intelligent agents at the central location process the records and provide
an alert if any leading indicators suggest that conditions are not nominal



Automated: The system potentially prevents transit on identified railways, by
identified cars, and/or during hazardous conditions to ensure that accidents cannot
occur

Case 8: Olive Oil Supply Chain
In this case study by Ojo et al. (2018), an olive oil manufacturer in Spain
invested in Industry 4.0 technologies for the purpose of building a more
sustainable food supply chain. Implementing a data platform improved the
company’s ability to perform monitoring, especially regarding traceability
and quality control of agricultural products. Processes for communicating and
coordinating with suppliers were improved to more effectively manage just-
in-time (JIT) production. The production lines at two facilities were retrofit
with industrial robotics and cyber-physical systems for automation and
monitoring, but no intelligent algorithms were applied. This automation
eliminated the need for some human employees. Additional monitoring made
it easier to control energy usage, and improved coordination reduced the need
for transportation, further reducing greenhouse gas emissions.

Connected: Enhanced data platform and monitoring capabilities made it possible to
more easily communicate with suppliers, enhancing efficiency of JIT production
Intelligent: No intelligent algorithms were implemented
Automated: Robotics and cyber-physical systems were employed to more fully
automate two production lines

Case 9: Medical Process Control with Blockchain
Although blockchain has been proposed as a solution for more closely
guarding and protecting the privacy of electronic health records, Shifrin et al.
(2019) provide another option. They explain that blockchain has the potential
to help organizations manage widely distributed business processes,
especially when the parties do not completely trust one another. They specify
four medical processes that could be more effectively managed with
blockchain: queue flows in clinical studies, organ donation, distributed
treatment processes, and integrating information across organizational
boundaries. They argue that the potential to self-organize the healthcare
ecosystem could yield improved outcomes, including shortening the time to
clinical approval of a drug and increasing participation in donor programs.

Connected: Blockchain provides a mechanism to connect parties that may not
necessarily trust one another; in this case, the increased connectedness directly
leads to achieving desired outcomes



Intelligent: No intelligent algorithms are leveraged in this case
Automated: No automation is implemented in this case

Case 10: Pharma 4.0
Because pharmaceutical design, testing, and production are data intensive,
this industry is particularly well suited to reaping benefits from Industry 4.0.
In fact, simple solutions may have the greatest impact. Data integrity issues
are cited in the majority of warning letters issued by the U.S. Food and Drug
Administration (FDA). Manzano and Langer (2018) outline some of the ways
that the new and emerging technologies may help solve the pharmaceutical
industry’s lingering issues with data quality and integrity. They suggest that
much of the industry’s challenge with data is because the data is not highly
structured, and that machine learning will fix this problem. Unfortunately,
this is not very realistic in practice.

Other applications of new technologies that they mention do seem
compelling. For example, they recommend investigating new methods for
cloud-based system qualification (that is, making sure the software systems
that support your business meet rigorous standards for quality management
and configuration management). System and design qualification is a labor-
intensive activity, even when the process is automated. Further automation on
just this one process could generate substantial cost savings.

Connected: Distributed innovation environments, connecting researchers at partner
institutions with shared data sources, are expected to accelerate the pace of change
Intelligent: Predicting trends in processes and operations, not just using the data for
compliance, will find new ways to demonstrate system qualification
Automated: Streamlining the compliance-driven processes of system qualification
and design qualification will make them less labor-intensive

THE BOTTOM LINE
Quality 4.0 uses traditional methods and digital technologies to accomplish
quality objectives (e.g., reduce waste, reduce costs) and improve performance
by:

Enhancing connectedness (of people, machines, and/or data)
Augmenting, increasing, or improving on human intelligence
Increasing automation to some degree

There are multiple levels in each category (Table 5.5).

TABLE 5.5.  Levels of connectedness, intelligence, and automation.



Connectedness Intelligence Automation

Manual process Human intelligence Machine executes
Digital process
Connected
process
Vertical
integration
Horizontal
integration
Connected work
systems

Augmented intelligence
Collective intelligence
Augmented collective
intelligence
Machine intelligence

Machine gives options
Machine suggests
Machine selects
Human approves
Human aborts
Machine reports
Machine reports (if
asked)
Machine partially reports
(if asked)
Complete autonomy

Even the most fundamental quality improvement methods will be
enhanced and accelerated using connected, intelligent, and/or automated
digital technologies. An original analysis of 430 abstracts uncovered the most
frequent and viable topics:

Smart Manufacturing and Internet of Things (IoT): smart factory, smart production
Environment, Health, Safety, and Security: connected worker, connected safety
Lean and Supply Chain: horizontal integration, sustainability, energy efficiency,
smart supply chain
Digitization and Design: vertical integration, digital design, process exploration with
digital twins
Data-Driven Maintenance: predictive maintenance, smart asset management
Quality Management Systems: smart planning, smart auditing, optimizing human
performance and human-machine interactions
Innovation and New Business Models: Data as a Service (DaaS), smart cities

Product and process design will become more robust as engineers gain the
ability to critically evaluate more design alternatives in advance, using
simulation and digital twins. Digitization can be used to provide effective
real-time feedback to adjust processes and understanding, and machines will
learn to self-regulate and provide useful information to people, if and when
they need it.

ACKNOWLEDGMENTS
The contents of this chapter draw from preliminary research by Graham
Freeman and Nicole Radziwill, which we expect to publish in 2020.

REFERENCES



Abbasi, Tayaba, King Hann Lim, and Ke San Yam. (2019). “Predictive Maintenance of Oil and Gas
Equipment using Recurrent Neural Network.” In IOP Conference Series: Materials Science and
Engineering 495 (1): 012067.

Barreto, L., A. Amaral, and T. Pereira. (2017). “Industry 4.0 implications in logistics: An overview.”
Procedia Manufacturing 13: 1245–1252.

Butler, T. R. (2016). “Exoskeleton technology: Making workers safer and more productive.”
Professional Safety 61 (09): 32–36.

Dombrowski, U., T. Richter, and P. Krenkel. (2017). “Interdependencies of Industrie 4.0 & lean
production systems: A use cases analysis.” Procedia Manufacturing 11: 1061–1068.

Fernández-Caramés, T. M., and P. Fraga-Lamas. (2018). “A review on human-centered IoT-connected
smart labels for the industry 4.0.” IEEE Access 6: 25939–25957.

Ibarra, Dorleta, Jaione Ganzarain, and Juan Ignacio Igartua. (2018) “Business model innovation
through Industry 4.0: A review.” Procedia Manufacturing 22 (2018): 4–10.

Manzano, T., and G. Langer. (2018, December). “Getting Ready for Pharma 4.0.” Pharmaceutical
Engineering: 72–79.

Martinelli, A., A. Mina, and M. Moggi. (2019). The enabling technologies of Industry 4.0: Examining
the seeds of the fourth industrial revolution (No. 2019/09). Laboratory of Economics and
Management (LEM). Pisa, Italy: Sant’Anna School of Advanced Studies.

Monostori, L. (2014). “Cyber-physical production systems: Roots, expectations and R&D challenges.”
Procedia CIRP 17: 9–13. http://www.sciencedirect.com/science/article/pii/S2212827114003497

Ojo, O. O., S. Shah, A. Coutroubis, M. T. Jiménez, and Y. M. Ocana. (2018, November). “Potential
impact of Industry 4.0 in sustainable food supply chain environment.” In 2018 IEEE International
Conference on Technology Management, Operations and Decisions (ICTMOD), 172–177.

Parkinson, H. J., and G. J. Bamford. (2016, October). “Big data and the virtuous circle of railway
digitization.” In INNS Conference on Big Data, 314–322. Springer, Cham.

Pickett, L. (2019, August). “The state of sensors in the industrial IoT.” Quality Magazine 58 (8): 12–13.
Rittberger, Sven, and Markus Schneider. (2018, June). “Continuous Improvement of Lean Processes

with industry 4.0 Technologies.” 11th International Doctoral Students Workshop on Logistics,
Magdeburg, Germany.

Romero, D., S. Mattsson, Å. Fast-Berglund, T. Wuest, D. Gorecky, and J. Stahre. (2018, August).
“Digitalizing occupational health, safety and productivity for the operator 4.0.” In IFIP International
Conference on Advances in Production Management Systems, 473–481. Cham, Switzerland:
Springer.

Sheridan, T. B., and W. L. Verplank. (1978). Human and computer control of undersea teleoperators.
Cambridge: Massachusetts Institute of Technology, Man-Machine Systems Lab.

Shifrin, M., A. Khavtorin, V. Stepurin, and B. Zingerman. (2019). “Blockchain as a process control
tool for healthcare.” Studies in Health Technology and Informatics 262: 172–175.

Watson, G. H. (2019, March). “The ascent of Quality 4.0.” ASQ Quality Progress, 25–30.
________. (2020). “The infrastructure of Quality 4.0.” ASQ Quality Progress, forthcoming.
Weking, J., Maria Stöcker, Marek Kowalkiewicz, Markus Böhm, and Helmut Krcmar. (2018, August

16). Archetypes for Industry 4.0 business model innovations. In 24th Americas Conference on
Information Systems (AMCIS 2018), New Orleans, LA.

Zimmermann, C. M., and R. S. Bridger. (2000). “Effects of dialogue design on automatic teller
machine (ATM) usability: Transaction times and card loss.” Behaviour & Information Technology
19 (6): 441–449.

http://www.sciencedirect.com/science/article/pii/S2212827114003497


CHAPTER SIX

FROM ALGORITHMS TO ADVANCED
ANALYTICS

At a conference on the social study of algorithms in 2013, a senior scholar stepped
up to the audience microphone: “With all this talk about algorithms,” he said, “I
haven’t heard anybody talk about an actual algorithm. Bubble sort, anyone?”

—N. SEAVER

Next generation quality is enabled by connectedness, intelligence, and
automation. Together, these characteristics can enhance the performance of
people and the organizations they serve, making it possible to augment
human intelligence in new and compelling ways. Unfortunately, marketing
hype abounds, and it can be hard to tell the difference between amazing new
capabilities and smoke and mirrors. The purpose of this chapter is to help you
distinguish between truth and hype by clarifying the language around
algorithms, analytics, business intelligence, artificial intelligence (AI), and
machine learning.

Advanced analytical and statistical methods were once the domain of
highly trained programmers and engineers, because coding was required to
realize their value. Business decision making, driven by simulations and
modeling, has traditionally been in the domain of operations research and
management science for the same reason. As a result of technological
innovations in software reusability, cloud computing, and algorithms that
perform well even on large and streaming datasets, these techniques are now
becoming more accessible and democratized. Business users are now just as
likely to use “advanced methods” as engineers and programmers.

With increased accessibility comes more excitement about the topic—
expressed in blog posts, marketing materials, and books. This excitement can
also lead to less precise use of terminology than what was intended by the
original stewards of the fields from which these techniques emerged. This is
the case with algorithm, a word whose meaning has become less distinct in



recent years, as you’ll see later in this chapter.
What is the proper modern use of the word algorithm in the context of

analytics, AI, data science, machine learning, and other methods for
generating business insights? Does proper use even matter? What are the
practical ramifications of these distinctions, and do they impact the practice
of software quality with respect to advanced analytics? To find out, I
informally interviewed data scientists with an average of ten years’
experience in that field. No distinction was made between those who build
models using algorithms and those who use the results of the models to make
business decisions, even though the conclusions were geared toward
informing quality assurance practice. With that in mind, this process revealed
four considerations for quality assurance practitioners in the development of
analytics and models.

Using more concise language helps reduce the risks of improperly
managing expectations, which can be important when digital strategy is
translated into action plans to develop analytics and machine learning
models. By examining how key terms related to Industry 4.0–era analytics
are used, and framing them within the current context of what it means to be
(and not to be) an algorithm, practical guidance for quality assurance in
analytics is uncovered.

ANALYTICS AND BUSINESS INTELLIGENCE
In management, the core concept of analytics has been around for thousands
of years. Calculating the appropriate amount of taxes to collect, for example,
was noted as an issue in Egypt in 2390 BC, China in 594 BC, and England in
the fourteenth century (Burg, 2004). Actuaries in seventeenth-century
England needed to understand factors impacting mortality to determine
appropriate prices for life insurance (Bhaduri & Fogarty, 2016).

Attention to analytics mushroomed in response to “Competing on
Analytics,” a 2006 article in Harvard Business Review by Thomas H.
Davenport and Jeanne G. Harris. It was followed in 2007 by a book with the
same name. Their work described numerous companies that were linking data
to action plans with analytics, making sure that they had visibility into
strategic goals and initiatives. By using analytics strategically, they were able
to demonstrate that the most successful companies were investing in rigorous
approaches to analytics that were measuring everything from customer
satisfaction to supply chain efficiency.



Davenport and Harris (2007, p. 46) define analytics as “the extensive use
of data, statistical and quantitative analysis, explanatory and predictive
models, and fact-based management to drive decisions and actions.” Evans
(2012) says that business analytics is “the use of data, information
technology, statistical analysis, quantitative methods, and mathematical or
computer-based models to help managers gain improved insight about their
business operations and make better, fact-based decisions.” These
descriptions describe analytics as both the activity of data-driven
collaboration and the product of that activity.

Evans (2015) explains how analytics, as a discipline, came to be:
Modern analytics can be viewed as an integration of the three fundamental disciplines:
business intelligence/information systems (BI/IS), statistics, and quantitative
methods/operations research (see Figure 2). These disciplines have been around for
more than half a century. However, their integration, supported by various tools such as
spreadsheets, statistical software, and more complex business intelligence suites that
integrate data with analytical software, have led to new and more powerful ways to view,
understand, and use data and information intelligently. For example, data mining can be
characterized as the integration of BI/IS and statistics. Spreadsheets and formal models
allow one to manipulate data to perform what-if analysis—how specific combinations of
inputs that reflect key assumptions will affect model outputs. What-if analysis results
from integrating concepts of BI/IS with operations research.

Analytics is data-driven decision making, on all scales and with all data
volumes.

From Analytics to Advanced Analytics
Advanced analytics is a much more recent label. In the 1980s and 1990s,
Bhaduri and Fogarty (2016) explain that building and populating databases,
and developing methods for easier querying and reporting, were the primary
business drivers. Not until the introduction of Customer Relationship
Management (CRM) in the late 1990s were executives motivated to invest in
analytics. CRM systems provided a basis to characterize the unique
profitability and promise of every customer relationship, and use this
information to deploy resources to the areas of the business that would
generate the most revenue. Even more significantly, capturing information
about customer interactions at every touch point (web, phone, e-mail, and so
on) meant that decisions could be made based on what each customer was
actually doing rather than what the business guessed they were doing from
general market research, customer surveys, and limited direct contact



(Khirallah, 2001).
Although briefly mentioned with respect to geospatial analysis by Musick

et al. (1997), the concept of advanced analytics did not emerge until CRM
systems were beyond the fad stage. By 2002, CRM systems were so firmly
entrenched that Gartner released its Hype Cycle for Advanced Analytics soon
after (Linden & Fenn, 2003). Gartner describes analytics as “a very large and
fragmented space … with roots in statistics, operations research, pattern
recognition, optimization and decision theory … [and] mathematics.” They
go on to describe the specifics of what they considered “advanced”:

Analytics also encompasses many interdisciplinary schools, such as data mining,
simulation, artificial intelligence, information retrieval and computational linguistics. Many
of the more advanced analytics technologies, such as genetic algorithms, Bayesian
approaches and fuzzy logic, while often hyped by the press, have only taken hold in
niche markets. Technologies such as neural nets, data mining and mathematical
programming have already matured in some areas, but in others they still lack traction
and therefore it has been difficult to place these technologies precisely on the Hype
Cycle.… This Hype Cycle shows the more advanced analytical technologies, [and] their
impact on business and anticipated adoption.

The Hype Cycle for 2003 (Figure 6.1) reveals some interesting context about
how business leaders perceived the value and utility of what they considered
“advanced analytics” nearly 20 years ago. Viable, proven techniques that
they felt would become mainstream within a couple of years included neural
nets (which, in their description, could be any means of predicting or
classifying), data mining, linear programming and related techniques, and
“automated text categorization” (determining the documents most relevant to
a particular category or concern). They saw personalization, intelligent
agents, and autonomous systems on the horizon but overestimated the
analytical power of video mining, swarm intelligence, and genetic algorithms.
Still, their forecasts anticipated the emerging power of technologies to
catalyze collaboration and engagement.



More recently, Bose (2009) says that “data integration and data mining are
the basis for advanced analytics … [the] more information that is gathered
and integrated allows for more pattern recognition and relationship
identification.” Barton and Court (2012) and Franks (2012) supported this
orientation and reinforced the message that these insights should be tied to
driving business value. There is a general consensus now that advanced
analytics are (or can be) run on big data, which the National Science
Foundation (2012) describes as “large, complex, and longitudinal data sets
generated from instruments, sensors, internet transactions, and/or other digital
sources.” Duarte (2017) further explains that advanced analytics should
derive value from streaming data, which he calls “data in motion.”

Advanced analytics, thus, can be considered the canon of emerging
methods for (and the professional practice of) generating value from large,
complex, historical, and/or streaming datasets, coupled with the results
produced by those methods. These datasets may be aggregated from various
real-time or archived sources. As adoption increases and businesses seek new
ways to achieve competitive advantage, specific methods, techniques, and
algorithms will shift and evolve over time—and so too will the understanding
of what “advanced analytics” involves.



Descriptive, Diagnostic, Predictive, Prescriptive
One of the most frequently used categorizations spanning ordinary and
advanced analytics is the “three perspectives” that businesses view analytics
from: descriptive, predictive, and prescriptive (Evans, 2012). The additional
category of diagnostic analytics also appears in many references,
distinguished from descriptive analytics by context of use (Delen & Ram,
2018). These categories are illustrated in Figure 6.2. Both descriptive and
diagnostic categories examine data from the past and present; predictive and
prescriptive analytics use it to create new information about the future:
Descriptive Analytics: Virtually all organizations use descriptive analytics in some form,

commonly encountered on business intelligence dashboards. These dashboards include
metrics that describe things that have already happened or are in the process of
happening. Both levels and trends can be captured. Descriptive analytics can reveal trends
or anomalies, and by presenting information in the form of charts and graphs, provide
decision makers with the basis to adjust as necessary.

Diagnostic Analytics: This area of emphasis uses data to identify causal relationships,
determine the most significant variables or features, and uncover root causes. Diagnostic
analytics can reveal why anomalies or patterns have emerged. This typically involves using
descriptive analytics for a particular forensic purpose, and as a result, relies on historical
data. Many practitioners lump these into the predictive category since understanding past
situations can improve the accuracy of predictions (Puget, 2016).

Predictive Analytics: This class of analytics projects future states. It can include forecasting,
model building, and incorporating diagnostic results to assess new cases. In environmental,
health, and safety (EHS) operations, predictive analytics can identify conditions that have
been observed leading up to past safety and health incidents, and then continuously
monitor incoming data to determine whether similar conditions start to emerge. If this
happens, operators or managers are alerted so they can take action.

Prescriptive Analytics: Techniques in this category are used to identify a recommended
course of action and, specifically, “use optimization to identify the best alternatives to
minimize or maximize some objective” (Evans, 2012). The action can be recommended to
a human or automated and executed without intervention. These practices have been used
for decades to optimize production, improve the efficiency and effectiveness of scheduling,
and manage inventories and supply chains.



Examples of how researchers have grouped specific techniques into these
categories are presented in Table 6.1. In practice, the techniques do not map
so cleanly into the four groups (Puget, 2016). For example, machine learning
(typically positioned as a means of making predictions) often involves an
optimization step (which is considered prescriptive). The random forest
technique creates many different decision trees and then iteratively decides
which branches to keep and which to prune. The end result is a “best of
class” model that can be used to predict or classify new instances. Many
popular AIs (including IBM’s Watson and Google AlphaGo) go beyond even
the prescriptive step, not only choosing recommended actions but developing
and adapting a model to update the decision process over time.

TABLE 6.1.  Examples of methods to generate descriptive, diagnostic/explanatory,
predictive, and prescriptive analytics.

Domain Category Examples

Business Intelligence +
Business Analytics

Descriptive • Scorecards
• Descriptive statistics (e.g., mean,
variance, range, confidence intervals)
• Histograms, scatterplots, Pareto
charts, time series, boxplots, pie/waffle
charts
• Correlation and association analysis



• Signal to noise analysis
Diagnostic
or
explanatory

• Design of experiments
• Root cause analysis
• Clustering and community detection
• Text mining
• Network analysis
• Data reduction (e.g., PCA, SVD,
factor/discriminant analysis)

Data Science +
Operations Research

Predictive • Regression
• Classification
• Neural networks
• Time series forecasting
• Statistical process control (SPC)
• Scoring systems
• Risk assessment
• Ensemble methods (e.g., random
forest)

Prescriptive • Simulations
• Optimization techniques
• Decision trees
• Discrete event simulation (DES)
• Simulation-based scenario analysis
• Recommender systems
• A/B testing (and multiarmed bandit)
• Multicriteria decision making
• Reinforcement learning
• System dynamics

Although these four categories are sometimes presented as stages or
phases of analytics, with prescriptive analytics the ultimate goal, there is no
indication that the complexity or value of the business knowledge increases
as you move down the rows in Table 6.1 (although computational complexity
does increase as you move down). Strong return on investment can be
realized by implementing analytics in any of the categories. Success will be
determined more by factors like how well model results are communicated
and to what degree the organization learns from those results, rather than by
the complexity of the algorithms themselves.

Business Intelligence
The term business intelligence (BI) was first used by Devens (1868), who



described a banker whose systematic, regular practice of collecting and
analyzing data gave him substantial competitive advantage. Luhn (1958), an
IBM researcher, used BI to describe the practices associated with collecting,
analyzing, managing, and reporting data. BI, as it was considered throughout
the early 2000s, is a support function that adds to analytics by providing a
translation layer, making them understandable and useful for decision
making.

In practice, perhaps because the use of information systems is now
ubiquitous, there seems to be little distinction between analytics work and BI
work. Anderson (2019) describes BI as the “combination of data, appropriate
metrics, and the relevant skills, tools, and processes to make sense of what is
happening in a business, and to make recommendations as to what should
change or happen next. Most organizations attempt to leverage analytics to
drive decision making. However, few of them are able to access the full value
of what business intelligence has to offer.”

WHAT IS AN ALGORITHM?
Until the mid-twentieth century, the concept of an algorithm was
straightforward: a sequence of goal-directed instructions that could be carried
out by a general purpose computation machine. Algorithms are now ordinary
and ubiquitous. Today’s “computation machines” can now span multiple
computers in the cloud, include computations done on edge devices in the
IoT, and leverage reusable software libraries to accomplish tasks. The
algorithmic sequence of instructions may instead resemble a deeply
interconnected fabric of operations.

An algorithm has been defined as a sequence of instructions that can be
carried out by a machine that is Turing complete—that is, a machine that is
capable of performing general computations (Minsky, 1967; Savage, 1972;
Gurevich, 2000). Most programming languages at present are Turing
complete, but markup languages like HTML are not, because they cannot
change the state of the underlying system. It is easier to frame the concept of
Turing completeness by considering that modern computers were not
available at the time that the idea was developed. A machine is not Turing
complete if you can demonstrate that there are calculations it cannot do,
which is easy for examples from analog computing.

Analog Computing and Algorithms



Analog computing, which was dominant at the time that algorithms were first
being envisioned, required building new hardware (sequences of gears, cams,
and other components) whenever new types of computation were required.
For example, aiming large guns and determining the time required to set
fuses so that explosives detonated at the right time and in the right place used
to require complex calculations. To perform these calculations, custom
hardware would be built to leverage the mathematical relationships between
differential gears, so that a series of input positions pointed to an output
position that produced the recommended action (Clymer, 1993). Figure 6.3
shows one example of a fire control analog computer used in World War II to
position equipment for accurate bomb targeting. (This example will become
important again in Chapter 14, which covers cybersecurity and risk.)

Algorithms are thus concepts that describe computable recipes. The steps
to calculate travel times on multiple paths home from work, and then
selecting an optimal choice, would be accomplished by an algorithm.
Although there are clear inputs and outputs, the steps you use to cook dinner
would be a procedure (and not an algorithm) because those steps are not
essentially computable. The design of an analog computing machine would



not be an algorithm, although the steps used to transform inputs to outputs
within that machine would be.

Although there is a widespread tendency to equate algorithms with the
implementation or automation of those algorithms, algorithms have no power
until they are enacted—that is, combined with data and embodied in
programs. Dourish (2016) explains that “an algorithm may express the core
of what a program is meant to do, but that core is surrounded by a vast
penumbra of ancillary operations that are also a program’s responsibility and
also manifest themselves in the program’s code.” He calls on Wirth’s 1975
description of “algorithm + data = program” to express this relationship.

According to Seaver (2017, emphasis mine), “The proper definition of
algorithms serves to distinguish them from typical critical concerns:
algorithms are not automation (thus excluding questions of labor), they are
not code (thus excluding questions of texts), they are not architecture (thus
excluding questions of infrastructure), and they are not their materializations
(or outputs).” He goes on to explain that they are, however, “cultural …
because they are composed of collective human practices.” Because
algorithms are enacted by humans in social and cultural contexts, the
technical and nontechnical aspects are fused together, making algorithms
“rather unstable objects, culturally enacted by the practices people use to
engage with them.”

Examples of Algorithms and Non-Algorithms
If we accept Seaver’s definition of algorithms as unstable cultural objects,
then sorting algorithms, optimization algorithms, combinatorial algorithms,
root finding algorithms, or anything else on Wikipedia’s List of Algorithms
(https://en.wikipedia.org/wiki/List_of_algorithms) would count as
algorithms. In addition, these more complex systems of algorithms can be
considered algorithms because they are computable recipes that generate
outputs based on inputs:

Facebook’s algorithm for personalizing content in the feed
Twitter’s algorithm for customizing the order and display of tweets
Google’s algorithm for selecting the most relevant documents for a search

These algorithms are only as good as the data used to build them; they may
be subject to bias if the datasets they are trained on are biased. The following
examples are not algorithms:

https://en.wikipedia.org/wiki/List_of_algorithms


Descriptive statistics, because they are the outputs from algorithms
Scorecards, because they are display mechanisms for the outputs from algorithms
Root cause analysis, because the problem-solving process is often not translatable
into computable recipes
Design of experiments (DoE), because it is a broad class of methods or techniques
for establishing causal links between variables that uses computational recipes
A/B testing, because it is a method for determining significant preference between
two options

Both of the above lists should be considered illustrative rather than
exhaustive. Analytics thus cannot be equated with the concept of algorithms,
even though sometimes algorithms will be applied in the conduct of analytics
practice. Analytics is an overarching practice that seeks to apply algorithms,
evaluate models, and use the generated insights to deliver business value.

INTRODUCING DATA SCIENCE
Data science, in contrast, is concerned with building, validating, and
continuously improving models that adapt to (and learn from) new data. This
adaptation and learning is what distinguishes data science from analytics,
business intelligence, and even data mining—and for adaptation to be
possible, access to newly observed and streaming data (“data in motion”)
must be accessible (Duarte, 2017).

Data science usually requires the use of algorithms, but not necessarily
their development. Although initially envisioned by Cleveland (2001), data
science did not emerge as a professional practice with a unique identity until
popularized by people including DJ Patil, Drew Conway, and Hadley
Wickham between 2008 and 2012.

Because the role of data science is to enable data-driven decision making
across all categories of analytics (Puget, 2016), the scope of analytics practice
had to expand to incorporate data capture and preparation, storage, security,
and governance (Aasheim et al., 2015). More recently, the National
Academies of Sciences, Engineering, and Medicine (2017) also recognized
that data science encompasses data management and processing in addition to
“the analytical methods and theories for descriptive and predictive analysis
and for prescriptive analysis and optimization.”

Data science is concerned with building, validating, and continuously
improving models that integrate and incorporate computational recipes.
Although many tasks faced by data scientists are predictive in nature, those
predictions may require descriptive or diagnostic analytics, and may also



require optimization steps. The fundamental elements of data science practice
are thus:

Models—Models are mathematical descriptions of the relationships between inputs
and outputs, designed based on beliefs about those relationships. Models can be
adapted and adjusted as new data is obtained and those beliefs change. Creating a
model may require employing one or more analytical methods. Models are fit using
algorithms, but are not themselves algorithms.
Methods or Techniques—These procedures describe analytical techniques for
problem solving and may incorporate data acquisition, assimilation, and quality
assessment. Methods and techniques can be used to create models (e.g., AI
techniques, computer vision techniques) or analytics (e.g., Monte Carlo methods,
Bayesian methods).
Machine Learning Algorithms—These are core computational recipes used to carry
out machine learning methods that are used to build models. For example, the
backpropagation algorithm can be used to create a neural network model for
predictions and classifications based on training data.
Machine Learning Methods—These techniques leverage machine learning
algorithms to create models that can adapt to new data and revise themselves to
increase prediction accuracy. Machine learning methods use one or more machine
learning algorithms.

As expressed by P. Mohanty (personal communication, July 2019), “models
+ methods + data = predictions.” The methods bring together the algorithms
required to create the models that describe relationships within the data.

Quality Considerations
With these distinctions in mind, how should quality assurance be conducted
by practitioners of analytics and data science? First and foremost, a
systematic and disciplined approach to data quality assurance and identifying
suitable analytical techniques is essential (Jugulum, 2018, 2019). Because
machine learning algorithms are used to discover new models based on
shifting and evolving data, the quality of the input data is paramount. The
model will only be as good as the data used to develop, train, and update it
over time. This is not a new insight; Feigenbaum (1979) made the same
assertion in his first law of knowledge engineering for developing expert
systems.

Next, the analytical approach(es) selected must be aligned with the need
for accuracy and speed in business decision making, as well as the risk
appetite of the organization implementing the analytics. Niranjan Krishnan,
head of data science at Tiger Analytics, articulated some of these in an
interview with Ismail (2018). Although the “AI vs. Algorithms” dichotomy is



overly simplified, he provides a distinction between the choices that should
be considered (Table 6.2) when choosing among straightforward algorithms
(such as those that might be found in descriptive, and possibly diagnostic
analytics), predictive model building, and prescriptive action determination.

TABLE 6.2.  Algorithms versus AI.

Algorithms: More control and
transparency

AI: “Black box” or not easily
explainable

Decision
criteria

• Cost of errors is high
• Slower decisions are
acceptable
• Data structures or volumes
are manageable using
traditional methods
• Explainability is more
important than accuracy
• Environment is highly
regulated with requirements
for auditing or traceability

• Cost of errors is low
• Rapid decisions are needed
• Data structures or volumes do
not lend themselves to traditional
analysis
• Accuracy is more important than
explainability
• Environment is not as highly
regulated with limited
requirements for auditing or
traceability

Appropriate
use cases

• Credit risk assessment
• Insurance underwriting
• Claims processing

• Marketing campaigns
• Targeted advertising
• Predictive maintenance
• Product recommendations
• Fraud detection

Source: Adapted from Krishnan’s comments to Ismail (2018).

As suggested in Table 6.2, the degree of explainability is critical. For a
deep learning implementation that recognizes whether a chocolate muffin or
blueberry muffin is on the conveyor belt of a production facility, being able
to report the percentage of time the muffin was correctly identified may be
sufficient. However, it is difficult (and usually impossible) to conceptualize
the “thinking process” used by that deep learning model to make the
determination. In contrast, in the case of a credit scoring model, there may be
regulatory requirements that govern the degree to which the organization
must be able to explain how it made its decision.

A deep learning model would not be auditable in the same way that a
scoring model based on simpler methods like decision trees would be, owing
to the low degree of explainability (Figure 6.4). Data scientists can tell you
how well the deep learning model works but cannot articulate, in a detailed
step-by-step way, how it draws its conclusions.



Finally, establish whether the analytics support learning—not just by the
models but also by the people using and developing the models—and
whether the organization has the communication channels in place to
facilitate it. Aydiner et al. (2019) found no direct link between analytics
programs and firm performance, but there was a link between business
process reengineering efforts and performance. Specifically, the activities that
enhanced communication, knowledge sharing, and sharing lessons learned
led to improvements. This underscores the findings of Kovach and Fredendall
(2013), who identified learning as the driver for the effectiveness of
continuous improvement programs.

Lessons for Quality Assurance
Programs that use or combine machine learning algorithms blend descriptive
with predictive techniques, and complete the modeling task using iterative
optimization to prescribe actions. Those prescriptions can be automated and
executed without the intervention of a human, or they can be delivered to
human decision makers to augment their own intelligence. In investigating
the foundations for analytics, algorithms, and AI (in particular, data science
practice that focuses on model building using machine learning), the
following four considerations for quality assurance emerged:

1. A systematic and disciplined approach to (a) data quality assurance and (b)
identifying suitable analytical techniques must be established

2. The analytical approach(es) selected must be aligned with the need for accuracy
and speed in business decision making, as well as the risk appetite of the
organization



3. The degree of explainability must be considered at the time the methods are
selected

4. The degree to which learning is supported, and communication channels are
established to derive the most value from that learning, must also be evaluated

Classifying analytics as descriptive, diagnostic, predictive, and prescriptive
does not seem to be as useful as understanding the process and models
required to produce the analytics. Organizations seeking to increase their
level of analytics maturity should first make sure that a solid foundation is in
place for data quality assurance and systematic selection and validation of
analytical methods. Next, ensure that the methods are aligned with the
organization’s requirements and capabilities, and build those capabilities as
required for future growth.

THE BOTTOM LINE

Analytics is the practice of data-driven decision making, on all scales and with all
data volumes. In research papers, there are four categories of analytics identified:

Descriptive—Levels and trends that describe things that have already
happened or are in the process of happening
Diagnostic—Data to identify causal relationships, determine the most
significant variables or features, and uncover root causes
Prescriptive—Data to anticipate future states, which can include forecasting
or model building
Predictive—Analytics to identify a recommended course of action

Advanced analytics refers to the body of emerging methods for generating value
from large, complex, historical, and/or streaming datasets.
Business intelligence practitioners add value to analytics by making them more
engaging, understandable, and useful for decision making.
Data science is concerned with building, validating, and continuously improving
models that adapt to (and learn from) new data. Those models often use algorithms.

An algorithm is a sequence of instructions or activities (carried out with a
goal in mind) using a machine that performs computing. Slide rules do not
use algorithms, but sorting functions do.

When data scientists build models that learn, they should consider quality at the start,
and

use a disciplined approach to development,
identify proper analytical techniques to match the problem,
choose an appropriate degree of explainability for the task at hand, and
figure out how human learning will be supported by their work.
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CHAPTER SEVEN

DELIVERING VALUE AND IMPACT
THROUGH DATA SCIENCE

We dance round in a ring and suppose,
But the Secret sits in the middle and knows.

—ROBERT FROST

THE CASCADIA STORY
Deep under the surface of the Pacific Ocean, just off the coast of Washington
and Oregon, the Cascadia Subduction Zone lies in wait. It runs a thousand
miles from north to south, the quiet interface between the North American
plate and the tiny Juan de Fuca plate, which itself is wedged between the
large continental plate and the Pacific plate.

Until recently, geologists recognized it as one of the least active regions in
the seismically intense Ring of Fire, an arc tracing the coasts of the Pacific
Ocean. But it’s often been the subject of intense speculation because
elsewhere in the world, subduction zones have hosted some of the world’s
most intense megathrust earthquakes: the 1755 earthquake that destroyed
Lisbon, the great Chilean earthquake of 1960, the “Good Friday” earthquake
in Alaska in 1964, and more recently, the 2011 Tohoku earthquake in Japan.
In a subduction zone, one plate is pushed under another slowly and steadily.
Tremendous pressure builds up until the moment when it can no longer be
suppressed, and then, in one violent release of energy, the balance between
the plates is restored in a maelstrom of death and destruction (Bryant, 2014).

Everyone thought Cascadia was a little different—at least until data
science became a part of understanding the region. In recorded history, there
had been no observations of a major, devastating earthquake in the Pacific
Northwest. But thanks to mathematical modeling (and apocalyptic
imaginations), it wasn’t difficult for scientists to project what might happen if
“the big one” were to hit the Vancouver, Seattle, Olympia, and Portland



corridor, where 10 million live.
Historically, the area hasn’t appeared prone to large earthquakes. As a

result, structures built before 1994 were not constructed to withstand major
tremors or a fast-moving tsunami. In a severe earthquake, over 75% of them
are expected to collapse, the electrical grid will fail, and all communications
will be interrupted. In a July 2015 article in the New Yorker, Kathryn Schulz
(2015) quotes FEMA representative Kenneth Murphy, who explains that in a
worst-case scenario, the “operating assumption is that everything west of
Interstate 5 will be toast.” That’s millions dead, hundreds of thousands of
square miles of devastation, and an economy that will be crippled for
decades.

In a Reddit discussion in 2015, John Vidal, a seismologist for Washington
state, presented a little more optimism: “Communications may black out,
transportation may grind to a halt, stores conceivably could run out of goods
for a while, but that doesn’t constitute ‘toast’ in one’s mind” (Seattle Times,
2016). Regardless of the magnitude of devastation, there’s general agreement
among seismologists that the big one is coming, the region is not prepared,
and a period of intense chaos after the event (followed by an equally intense,
and long, recovery) is likely.

Investigating the Ghost Forest
So how do scientists know “the big one” is coming? How did they figure out
that the Pacific Northwest is due for a major earthquake? Discovering the
region’s seismic history required a little bit of data analysis magic, and a lot
of time for the pieces of the mystery to come together. Keep in mind that in
the 1970s, the key question was whether Cascadia had ever produced a large
earthquake, not when the last earthquake might have occurred.

First, there were environmental clues. In the 1980s, geologist Brian
Atwater and his student David Yamaguchi (who studied patterns in tree
rings) teamed up to investigate the “ghost forest” near Copalis Beach,
Washington. Along this two-mile stretch, hundreds of lifeless cedars sit
submerged alongside a river (Figure 7.1). Atwater wanted to know what
killed all the ancient trees. So, together, he and Yamaguchi compared the
story told by the tree rings in the ghost forest with the story told by the
subsurface layers of soil, sand, and ancient mud. They concluded that
sometime in 1699 or 1700, the earth abruptly sunk in the area. A saltwater
tsunami, triggered by a huge quake, inundated the region around what would



soon become the ghost forest.

Insights from Historical Records
Although Atwater and Yamaguchi had solved their own problem, other
scientists continued to explore problems related to the origin of the ghost
forest and the mystery quake that produced it. In the 1990s, Japanese
seismologist Kenji Satake made another connection based on an entirely
different data source: historical records from Japan in the early 1700s
described a widespread seawater flood that devastated villages, leading to
fires and “massive fright.” Although not coupled with an earthquake, the
Japanese had experienced events like this on occasion throughout their
thousand years of recorded history. It was odd, but not completely abnormal.
The Japanese called these “orphan tsunamis”—not recognizing that an
earthquake on the other side of the ocean could produce a tsunami with dire
local consequences.

When Satake and his colleagues explored original historical records from
each of six Japanese villages, they discovered that each place reported the
exact times of arrival of large waves not associated with an earthquake, and
subsequent damage (Figure 7.2). Coupling those historical records with
earthquake and tsunami simulations, they determined that a magnitude 9.0
earthquake occurred a little after 9 p.m. just off the coast of Washington or
Oregon on January 26, 1700.



Lessons from Cascadia
Working with multiple disparate data sources to generate insights about what
lies between them is nothing new. Scientists have uncovered new knowledge
this way for hundreds of years. But it took almost three decades, four
different disciplines, and several people working on related problems
independently to reconstruct the full story of what happened during and after
the Cascadia earthquake in 1700. What if you had the ability to get that
answer much more quickly—maybe even fast enough to use the information
to make better urban planning decisions in coastal Oregon today?

This is the main premise of data science. The tools and technologies to
quickly gather, store, integrate, and analyze data sources, then create adaptive
models that adjust to new data and a changing external environment, are now
broadly available—and reliable. Although domain expertise and caution are
both required, profound, near-real-time insights can be generated by
leveraging open source software packages that implement complex
algorithms.

While the Cascadia story illustrates the slow process of scientific
discovery, data science promises to speed the process up so that our



organizations can discover new information and new patterns in data, and
quickly act to generate business value. Data science is about aggregating data
and building models to solve mysteries and make actionable predictions.

WHAT IS DATA SCIENCE?
Data science is an interdisciplinary activity that encompasses all the activities
required to support data-driven decision making: from collecting or obtaining
data, to building and optimizing models, to generating insights, to delivering
value and broader impacts. The key is building models that adapt to new data
and learn. The practice of data science is not new, but the formation of a
community of researchers and practitioners around a hybrid field that blends
statistics, programming, data management, and domain experience is. That
community only started coalescing around 2010.

The Death of the Scientific Method
One of the catalysts for the consolidation of the community—and the
expansion of data science practice—was a 2008 article in Wired by editor
Chris Anderson. This magazine takes an interdisciplinary look at emerging
technologies and their impact on the way we live, work, and play. Although
Anderson’s article accurately describes the new vantage point that huge
amounts of data were starting to provide across many fields at the time, it was
a little too enthusiastic in its willingness to throw out the lessons science had
provided over hundreds of years (the article was titled The End of Theory):

The scientific method is built around testable hypotheses. These models, for the most
part, are systems visualized in the minds of scientists. The models are then tested, and
experiments confirm or falsify theoretical models of how the world works. This is the way
science has worked for hundreds of years.

Scientists are trained to recognize that correlation is not causation, that no
conclusions should be drawn simply on the basis of correlation between X and Y (it
could just be a coincidence). Instead, you must understand the underlying mechanisms
that connect the two. Once you have a model, you can connect the data sets with
confidence. Data without a model is just noise.

But faced with massive data, this approach to science—hypothesize, model, test—is
becoming obsolete. Consider physics: Newtonian models were crude approximations of
the truth (wrong at the atomic level, but still useful). A hundred years ago, statistically
based quantum mechanics offered a better picture—but quantum mechanics is yet
another model, and as such it, too, is flawed, no doubt a caricature of a more complex
underlying reality.

There is now a better way. Petabytes allow us to say: “Correlation is enough.” We can



stop looking for models. We can analyze the data without hypotheses about what it
might show. We can throw the numbers into the biggest computing clusters the world
has ever seen and let statistical algorithms find patterns where science cannot.

The article caused a stir among readers, with intense debate ensuing both
in online and in published articles for several years thereafter. Mazzocchi
(2015) provided one of the more comprehensive critiques. He reminded
everyone that the value of deductive, Aristotelian problem solving had
already been compared to inductive methods in the 1600s by Francis Bacon,
Tycho Brahe, and Johannes Kepler. Both research driven by hypotheses and
exploratory research driven by data had a critical role to play in knowledge
generation and learning:

The data-driven approach constitutes a novel tool for scientific research. Yet this does
not imply that it will supersede cognitive and methodological procedures, which have
been refined during centuries of philosophical and scientific thought. There is no “end of
theory” but only new opportunities.

Despite Anderson’s provocative article, the scientific method is not dead, nor
has it become less important. Instead, mass amounts of data with the
computing power to learn from it quickly means that we have more
opportunities to identify patterns and drive value.

The Evolution of Data-Driven Decision Making
The value of data-driven decision making has been recognized for decades.
When Frederick Taylor published The Principles of Scientific Management in
1911, he advised that all management and process improvement activities be
grounded in measurable data. This approach led to more rigorous processes
for quality control and quality assurance shortly thereafter, and then the birth
of operations research during World War II—a discipline devoted to
analytically examining work processes and making better decisions about
how to design and exploit them.

By the 1980s, many managers recognized that without knowing the full
context within which a decision would be made, the data was less valuable.



In addition, they realized that it was difficult to make adjustments in an
organization’s processes without complete engagement and buy-in, which
would ensure the “stickiness” of the improvements. Total quality
management (TQM), in particular, placed the responsibility for achieving
quality goals with everyone in the organization.

In the 1990s, data-driven decision making was emphasized in many
improvement-oriented business activities, including business process
reengineering, change management, and knowledge management. Peter
Senge’s (1990) concept of the learning organization became popular during
this decade, encouraging people and companies to use that data to capture
best practices and evaluate opportunities for growth. During this decade and
into the 2000s, lean manufacturing (for reducing waste) and Six Sigma (to
reduce variation or defects), both data-driven approaches, also became more
popular.

Because data science has deep roots in other fields, a definition is hard to
pin down. Data science techniques are grounded in data mining and
predictive analytics, well-established areas of study that focus on extracting
knowledge from data. Model building has always been part of statistics, even
as the data volumes and types have expanded.

By “Data Science” we mean almost everything that has something to do with data:
collecting, analyzing, modeling … yet the most important part is its applications—all
sorts of applications. This journal is devoted to applications of statistical methods at

large.
—FROM THE JANUARY 2003 LAUNCH OF DATA SCIENCE JOURNAL

Perhaps the simplest and most elegant definition comes from Duarte and
Dame (2019), who define data science as “the process of asking questions
and getting answers from data.” They also note that, using this definition,
quality professionals are data scientists even though additional technology
skills beyond those found in modern quality training would be required to
meet the industry’s requirements for data science practitioners.

Of course, asking questions and getting answers from data is precisely
what statisticians have been doing for decades. How is data science any
different? Some supporters of data science claim that since techniques are
now available for inspecting and digesting all the data, there’s no longer a
need to take samples and infer characteristics of populations—one of the
primary roles of statistical inference. But “sound statistical practices, such as
ensuring high-quality data, incorporating sound domain (subject matter)



knowledge, and developing an overall strategy or plan of attack for large
modeling problems, are even more important for big data problems than
small data problems” (Hoerl et al., 2014).

Why Is Data Science So Popular?
If data-driven decision making has been around for over a hundred years,
why is there so much buzz around data science today? The answer ties
together many elements:

Success stories. Early adopters have produced very promising results. Shell Oil, for
example, reduced the latency of its inventory analysis from 48 hours to less than 45
minutes in a project that only took months, reducing inventory costs by millions of
dollars each year (Boulton, 2018).
More data. We are gathering and storing data at a more rapid pace than ever, due in
large part to sensor data from the IoT and social media.
Connectivity and easier communications. We have streamlined access to more
data than we could have ever imagined 20 years ago, via the internet. No longer are
sensors obscured by complex or specialized communications protocols.
Free, open source software, utilities, and services. Many of these tools are
available to help us analyze that data with sophisticated techniques and algorithms.
We can use those libraries rather than programming the algorithms ourselves,
enhancing quality and accelerating time-to-value.
A skilled workforce. Workers equipped with interdisciplinary data science are now
available to bridge the gaps between data management, data engineering, and model
building.
Competitive pressures. If you don’t mine available data for insights and capitalize
on them quickly, your competitors will.

The rising popularity of data science, and the hefty salaries that often
accompany even entry-level positions, means that there is quite a bit of
variation in résumés, skills, and experiences. Although there has been a
renaissance in online data science training, which has done wonders for
democratizing the field and reducing the barriers to entry, the extreme
popularity of data science as a career means that caution is advised in hiring.

What Does a Data Scientist Do?
Even among data scientists who are deeply trained, their backgrounds, skills,
and experiences are diverse. I’ve worked with epidemiologists, psychologists,
ecologists, physicists, astronomers, operations researchers, mathematicians,
and cybersecurity specialists on data science projects, in addition to the
programming-oriented statisticians that populate the field. Despite these
differences in backgrounds and training, there are several characteristics that



most data scientists share:
They solve problems from the perspective of data-analytic thinking, constantly asking
How do I know that I know this? This is similar to the data-driven decision making of
Taylor’s scientific management and Six Sigma.
They are skilled at collecting, selecting, and acquiring appropriate data, integrating it
with data in other formats or data that has been collected in different ways, and
cleaning it prior to analysis.
They are able to apply many different techniques and models to a problem and
carefully select which approach (or combination of approaches) will yield the most
accurate insights based on experimentation, optimization, and ground truthing.
They use one or more programming languages and utilities—for example, R, Python,
Hadoop, MapReduce, Spark, Pandas, NumPy, SciPy, and NoSQL databases.
They communicate their results in compelling ways, often using visualizations, but
always with a keen sensitivity to the business they are working with, and the
environment within which that business is embedded.
They love exploring data, often more than they love the discipline or domain where
they originally received their training.

By its nature, data science is interdisciplinary and requires working with
programmers, engineers, business leaders, and subject matter experts:

Data management is a strategic role that answers questions about how to collect,
document, organize, manage, and preserve data throughout its entire lifetime. The
goal of a data manager is to strategically ensure that the value of data is preserved
over time, regardless of who is using that data. A data management plan describes
how the data will be stored and made accessible throughout its lifetime, and can be
useful for companies of all sizes to plan and strategize. The DataONE project, funded
by the National Science Foundation, has pioneered the development of data
management plans and offers online training materials to guide effective data
management at the institutional level (Allard, 2012). Its materials are freely available.
Data engineering focuses on system administration, data warehouse design and
administration, storage, archival, and acquisition. A data engineer may also work on
data modeling (that is, designing and implementing logical structures for data
storage, or even mathematical modeling and analysis). The data engineering function
handles infrastructure requirements like streaming, storage, and building production-
class application programming interfaces (APIs).
Data science focuses on generating insights by developing and analyzing models,
and translating them to business value using visualization and storytelling. Data
science requires the foundations and infrastructure that are typically provided by data
engineers and data managers. It provides the basis for adaptive, intelligent models
that deliver demonstrable business value.
Data analytics and business intelligence (BI) roles typically focus on extraction,
transformation, and loading of data, writing SQL queries to one or more databases
(depending on the business question being asked), and building dashboards using
tools like Tableau and Microsoft’s PowerBI. Analytics may incorporate forecasts and
projections, but BI specialists typically do not build or deploy machine learning
models.



Because the boundaries between each of these domains can be fluid, it is not
uncommon to find a data scientist who is also responsible for the engineering
or management aspects, especially in small companies. To map this to the
quality profession, Duarte and Dame (2019) describe four additional
distinctions within the data scientist role: DS 1 (strategist), who engages
subject matter experts and is responsible for the overall viability of the
project; DS 2 (boundary spanner), who focuses less on theory and more on
the mechanics of working with multiple team participants; DS 3 (applications
ninja), who understands data science within the problem domain; and DS 4
(communicator and storyteller), who can explain the findings and prepare the
final reports. One person may occupy more than one role. The relationships
between these distinctions are shown in Figure 7.3.

In addition, companies sometimes advertise for data scientists when all
they really want is an analyst or BI specialist. Knowing the distinctions can
help you staff and manage projects more effectively.

DATA SCIENCE AND BIG DATA



It’s no secret that people and organizations are producing and storing data
faster than ever. As early as 2010, The Economist reported that, collectively,
people and companies in the United States were generating 150 billion
gigabytes of data annually. According to Kleiner Perkins Caufield & Byers,
the rate of production had expanded to over 1000 billion gigabytes in 2015
(Schlein, 2015). A $125 billion industry had also emerged around big data to
help companies respond to the changing technological environment.

What Is the Data Deluge?
The exact magnitude of the collective data production isn’t important, even
though the progression from gigabytes to petabytes and beyond can feel
overwhelming. The exciting (and potentially revolutionary) part of the story
is that the focus is now shifting to automation: rapidly ingesting and combing
through data to make better decisions. A competitive game of speed, smarts,
and agility is brought on by this data deluge.

Some industries have been working with big data for years. Research
instruments in science have been producing at the terabyte-per-day level
since the early 2000s, for example, for studying pulsars in observational
astronomy. As another example, the use of business analytics and BI has
been steadily increasing since the 1990s, especially in finance and marketing.
Larger companies were positioned early to take advantage of the emerging
practice of data science, which has revealed some very tangible and practical
results, including these discoveries reported by The Economist (“The data
deluge,” 2010):

Stolen credit cards are more likely to be used for fraudulent purchases of hard liquor
rather than beer
Fraudulent insurance claims are more likely to be made on Mondays than Tuesdays
Telecommunications companies regularly analyze subscribers’ call patterns to
identify up-selling opportunities and prevent churn

More recently, you’ve seen and experienced the fruits of data science every
time you’ve purchased a recommended item from Amazon or watched a
movie that Netflix suggested for you. You interact with recommendation
systems (like those used by Amazon and Netflix), clustering systems (to
determine shared interests among consumers or identify communities),
classification systems (for customer segmentation), and the results of
sentiment analysis (to determine how people collectively feel about products,
services, and events)—usually expressed on social media on a daily basis—



whether or not you realize it. “Growth hacking” to get social media followers
is a thing. The innovation is not over. In fact, we are experiencing the Wild
West of data science right now, as even more sophisticated mathematical
techniques that will benefit businesses and organizations are in the research
stage.

Do All Data Scientists Work with Big Data?
No, not all data scientists are big data specialists. Most, however, have had
education or training in handling large, distributed datasets, or alternatively,
can work effectively with data engineers to solve problems using big data.

My favorite definition of big data was also the most surprising to me. In
the spring of 2015, I was at a meeting at the National Science Foundation,
surrounded by industry and academic leaders in high-performance computing
and large-scale data processing. Sitting around the conference table eating
lunch, I asked them, “Since I’m surrounded by so many experts, I want to
know … what do you think the best definition is for ‘big data’?”

First, they all laughed. They know as well as everyone else that there’s
lots of confusion in industry around what constitutes big data. After some
discussion, one of the heads of a major supercomputing center spoke up, and
soon all heads were nodding, “Big data is any volume of data that you don’t
have the tools or the expertise to explore right now.”

That means there’s no terabyte or petabyte threshold for what constitutes
big data—it’s relative to what you are accustomed to working with and what
you are able to handle given current resources. Are you working with big
data when your data warehouse is bigger than 100 terabytes? Maybe. Are you
working with big data when you’re generating more than a terabyte a day?
Maybe. Are you working with big data whenever your machine can’t fit the
dataset into memory? Maybe. Whenever you’re at the limits of what you can
appreciably handle with your current computing resources, you’re using big
data.

Despite this relativity, it’s common to think of big data as any amount of
data that’s too big to store in one place. There’s so much of it that it can’t fit
on one machine or in one file. In fact, sometimes a single file is so large that
it can’t fit on one machine. Sometimes, one file or data collection has to
reside on many machines—and in the internet age, thanks to cloud
computing, those machines might be in vastly different geographical areas.
Many machine learning algorithms can run on small datasets, but typically



the larger the volume of data that can be processed (and the quicker the
models can be updated based on newly arriving data), the more accurate the
predictions or classifications will be.

Even though not all data scientists work with big data, every data scientist
should have the skills to scale up—to be able to work with larger data
volumes and more distributed data sources as the needs of the business
expand.

SOLID STATISTICAL FOUNDATIONS ARE ESSENTIAL
Interest and enthusiasm in data science can be providing a boost for budget
allocations right now, but when building a team of data scientists, traditional
statisticians can be the key to success. Without solid foundations in statistics,
conclusions drawn from any volume of data—but particularly big data—can
be inaccurate, misleading, or plain wrong. This can have potentially
disastrous consequences.

Survivorship Bias
Take, for example, the decidedly “small data” case of Abraham Wald, a
member of the Statistical Research Group at Columbia University. During
World War II, he was tasked with figuring out where to fortify B-29 bombers
to prevent losses and deaths. Increasing the armor on airplanes, at the time,
was labor intensive, expensive, and changed the aerodynamics of the planes
—so, a somewhat risky proposition (Mangel & Samaniego, 1984). The Naval
Research Group examined several planes that had returned home after battle,
and discovered that the bullet holes were focused on the end of the tail, the
tips of the wings, and the fuselage, as shown in Figure 7.4.



Wald, however, drew a different conclusion. He realized that the dataset of
planes that had returned were the survivors—there were many more aircraft
that were also shot at but never made it back in one piece. As a result, the
areas that required fortification were the engines and other parts that had no
bullet holes. Ellenberg (2015) shares another example of survivorship bias:
“If you go to the recovery room at the hospital, you’ll see a lot more people
with bullet holes in their legs than people with bullet holes in their chests. But
that’s not because people don’t get shot in the chest; it’s because the people
who get shot in the chest don’t recover.”

Although a data scientist may be able to process hundreds of thousands of
bullet hole locations over many planes or people, only one with statistical
foundations will understand the assumptions that point to the real answer.
Sometimes this is not an issue, and other times it’s the difference between life
and death. It can be difficult to make the distinction in advance.

The Importance of Sampling



Here’s another anecdote from a story I recently overheard. First, some
background. It’s easy to get attached to a particular programming language,
especially if you spend more hours a day with it than you do with your
spouse or significant other. And since the genesis of computer programming,
there have been “language wars”—discussions and debates over the pros and
cons of favorite languages, many of which are imbued with religious fervor.

A highly skilled data scientist with decades of experience but limited
statistical background was attempting to make the following argument to his
colleagues about why one language should clearly be chosen over another for
their project. “I organized a conference where 80% of the accepted speakers
were using Python, and almost none of them were using R,” he said. “So
Python is clearly the predominant language people are using for machine
learning.” A statistician might look a little more deeply into this assertion and
discover that the announcements for the conference were sent to mailing lists
and social media groups populated predominantly by Python users. With a
conference committee of Python users evaluating submissions from mostly
Python users, it’s not surprising at all that Python appeared to be the
“winner.”

Which programming language is the real winner? Unfortunately, that’s
not a problem data science can solve. As with most problems quality
professionals encounter, many factors have to be considered when choosing
the right tool for the job, like the organization’s strategy and goals, the task to
be performed, and the skills and needs of the workforce.

Lack of Theory Can Be Expensive
With companies feeling the pressure from the data science gold rush, many
are pouring large amounts of money into launching data science projects or
even creating departments dedicated to data science and machine learning.
Although it’s wonderful to see so many organizations interested in taking
intelligent risks, sometimes, they’re just risks. This $50 million horror story,
similar to stories playing out right now in other companies, was posted on
Reddit in April 2019 by user AlexSnakeKing:

At Company A, Team X does advanced analytics using on-prem ERP tools and older
programming languages. Their tools work very well and are designed based on very
deep business and domain expertise. Team Y is a new and ambitious Data Science
team that thinks they can replace Team X’s tools with a bunch of R scripts and a custom
built ML platform. Their models are simplistic, but more “fashionable” compared to the
econometric models used by Team X, and team Y benefits from the ML/DS (machine



learning/data science) moniker so leadership is allowing Team Y to start a large scale
overhaul of the analytics platform in question. Team Y doesn’t have the experience for
such a larger scale transformation, and is refusing to collaborate with team X.

The post goes on to say that Team X has deep domain experience and
decades of experience with data, but because “they got most of their chops
using proprietary enterprise tools [prior to 2010] instead of the open source
tools popular nowadays,” they don’t completely identify with the “data
scientist” label. Young, enthusiastic Team Y, which reported directly to the
CEO and had no requirement to work with (or even communicate with) Team
X, pitched development of a Naive Bayes classifier to their director, which
was immediately approved. When Team X found out about this new project
indirectly, they were initially enthusiastic, recognizing that their statistical
and econometric skills (and domain experience with the models that the
classifier was intended to ultimately replace) could contribute to the overall
success of the project. But Team Y, according to the story, refused to
collaborate and moved forward as if Team X didn’t exist:

Team X got resentful: … Team Y’s model … had little chance of scaling or being
sustainable in production, and they knew exactly how to help with that. Deploying the
model to production would have taken them a few days.… And despite how old school
their own tech was, Team X were crafty enough to be able to plug it in to their existing
architecture. Moreover, the output of the model was such that it didn’t take into account
how the business will consume it or how it was going to be fed to downstream systems,
and the product owners could have gone a long way in making the model more
amenable to adoption by the business stakeholders. But Team Y wouldn’t listen, and
their leads brushed off any attempts at communication, let alone collaboration. The vibe
that Team Y was giving off was “We are the cutting edge ML team, you guys are the
legacy server grunts. We don’t need your opinion” and they seemed to have a complete
disregard for domain knowledge, or worse, they thought that all that domain knowledge
consisted of was being able to grasp the definitions of a few business metrics.

Team X got frustrated and tried to express their concerns to leadership … [but] it was
impossible for them to get their voices heard.… Unbeknownst to Team X, the original
Bayesian risk analysis project has now grown into a multimillion-dollar major overhaul
initiative, which included the eventual replacement of all of the tools and functions
supported by team X along with the necessary migration to the cloud. The CIO and a
couple of business VPs are [now on] board, and tech leadership is treating it as a done
deal.

A refusal to collaborate is sometimes (but not always) nefarious. Oftentimes,
people are just busy or following the orders from their direct supervisor.
Other times, they truly believe that there is no useful information or guidance
to be mined from older projects. Whatever the reason, it is the job of
leadership to make sure that new initiatives like this are fully informed by



institutional knowledge—even if it requires additional time or expense up
front. When a paradigm shift is in progress, giving team members sufficient
time to progress through the forming, storming, and norming stages of team
building can significantly mitigate business risks downstream.

Although the story is likely being told by a disgruntled member of Team
X, many lessons can be taken from this example:

Data science is a strategic business function, not an IT function
A disregard for domain knowledge can be severely detrimental to success
Data science teams should not operate independently or autonomously
Replacing legacy teams can introduce risks to new projects, while negatively
impacting employee satisfaction (and ultimately retention) for those who feel as if
their voices cannot be heard

This story also provides us with direct advice about hiring data scientists:
[Data science] interviews nowadays all seem to be: Can you tell me what a p-value is?
What is elastic net regression? Show me how to fit a model in [the Python package]
sklearn? How do you impute NAs in an R dataframe? Any smart person can look those
up on Stackoverflow or Cross-Validated [help sites for programmers].… Instead teams
should be asking stuff like: why does portfolio optimization use QP (quadratic
programming) not LP (linear programming)? How does a forecast influence a customer
service level? When should a recommendation engine be content based and when
should it use collaborative filtering? (AlexSnakeKing, 2019)

Instead of focusing on the mechanics of data manipulation and cleaning, or
the syntax of building models in a particular programming language, find out
if candidates understand when and why models are used. This will reduce the
risk of applying improper models to good data, as well as attempting to use
proper models on bad data. Alternatively, make sure that data science
practitioners are paired with mentors or leaders with strong domain and
theoretical knowledge.

STATISTICAL ENGINEERING FACILITATES DATA SCIENCE
IMPACT

Incorporating domain expertise, statistical thinking, and business
considerations to the process of building and deploying models seems to be
the solution indicated to remedy these kinds of failures. But in fact, those
needs were anticipated by statisticians Roger Hoerl and Ron Snee as early as
2010, when they began describing statistical engineering:

The statistical engineering discipline would be the study of how to use the principles and
techniques of statistical science for the benefit of humankind. From an operational



perspective, statistical engineering is defined as the study of how to best use statistical
concepts, methods and tools, and integrate them with IT and other relevant sciences to
generate improved results.

In other words, engineers—statistical or otherwise—do not focus on advancement of
the fundamental laws of science, but rather how these laws might be best used for
practical benefit. This is not to say engineers do not research or develop theory. Rather,
it suggests engineers’ theoretical developments tend to be oriented toward the question
of how to best use known science to benefit society. (Hoerl & Snee, 2010)

Although the envisioned role of statistical engineering was to ensure that
multiple statistical tools would be used appropriately in the strategic context
of a problem, this approach can also inform data science. Hoerl and Snee
(2017) describe the online competitions at kaggle.com that thousands of data
scientists participate in, and ask, “Is the real problem to develop an optimal
model … or to develop subject matter knowledge of the phenomenon of
interest, or to guide intervention in the system to achieve enhanced results in
the future?”

Anyone who has been a project manager or senior leader will know the
answer: the model doesn’t matter if it doesn’t help you advance your goals or
your business. As a result, the goal of statistical engineering is to build a
body of knowledge and best practices that will guide teams toward practical,
actionable results:

Applying the principles of statistical thinking, particularly taking the time to understand
the pedigree of data, and utilizing sequential strategies for addressing large, complex
unstructured problems, such as those based on the discipline of statistical engineering,
will bring the realities of big data analytics much closer to the hype. (Hoerl et al., 2014)

Without a strong foundation and strategic orientation, data science can only
deliver the value that organizations dream of accidentally. A conscious
approach to building data science teams and approaching large, unstructured,
and often complex problems with statistical thinking as the foundation will
make this deliberate.

THE BOTTOM LINE

Data science is concerned with building, validating, and continuously improving
models that adapt to (and learn from) new data.

Those models often use algorithms, and the data can be stationary or in
motion (streaming) in real time from sensors and other devices.
Data science can help us identify new data sources, discover the most
important predictors, uncover patterns, detect anomalies, and build models to



describe the behavior of systems.

In a large organization, data scientists work with data managers (stewards of data
over its entire life cycle), data engineers (who access, format, and clean it), and
analytics or BI specialists. These specializations have arisen because the tasks have
become complex.

Although there is a misconception that data scientists don’t need statistics because
they have enough data to observe patterns directly, this is wrong. The scientific
method, informed by a solid foundation in statistics, can help prevent data science
disasters.

Whatever roles are represented on your data science team, make sure all the bases
are covered by using the PDCA cycle:

Strategy and a connection to business goals and drivers
A solid statistics foundation
Building and evaluating models that learn
Deploying those models
Monitoring performance and taking action to maintain the gains

(You’ll notice that this follows the PDCA cycle exactly.)
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CHAPTER EIGHT

DATA QUALITY AND DATA MANAGEMENT

In God we trust. All others must bring data.
—W. EDWARDS DEMING

On April 26, 1986, my mother and I were away from home, visiting my aunt
in Pennsylvania. The three of us, my new month-old cousin, and two of the
in-laws sat in my aunt’s living room, watching Peter Jennings on the nightly
news. We were near the Poconos, and the air was crisp for that time of year.
The fireplace was burning. It was already nearly dark.

In the stoic, direct manner of 1980s news, Jennings let us know that there
had been a terrible accident on the other side of the world—at the Chernobyl
nuclear plant. I’d just had a birthday the day before, and based on the dire
projections on the screen, the radioactive cloud would soon be over my head.

Petrified, I interpreted the news as a death sentence: I would surely not live
to see my next birthday. (I did; but many adults, children, and animals near
the site of the incident would not.)

The event was clearly catastrophic, but the world would not comprehend
its magnitude for months. Only the nuclear incident at Fukushima in Japan
(after the 9.0 magnitude Tohoku earthquake in March 2011) has been
comparable to Chernobyl in terms of death, damage, and global impact. In
2019, film director and screenwriter Craig Mazin captured the stories of the
plant workers and residents of Pripyat, the town where the nuclear plant was
located, in HBO’s Chernobyl (Mazin & Renck, 2019). The entire five-part
miniseries is fascinating, but what really caught my attention was one of the
early scenes. Shortly after the meltdown, while the operators were still in the
control room trying to figure out if there was a legitimate problem, one of
them measured the radiation in the environment using a dosimeter. (Figure
8.1 shows a later version of a standard issue model that was available in
Russia in the mid-1980s.)



When the operator turns the dosimeter on, it reads 3.6 roentgens per hour.
“That’s not great, but not terrible,” remarks a supervisor. Minutes later, the
operators find a more sensitive instrument, but as soon as they turn it on it
shorts out. They consider retrieving the more sensitive dosimeter from a safe,
but it’s locked, and no one recalls where to find the key.

Shortly thereafter, government officials come to the facility. From a
protected bunker somewhere underneath the site, they discuss the looming
catastrophe and brainstorm a response plan. One official confronts the
operator who took the measurements with the dosimeter. “You reported that
the radiation situation was within normal limits.” The operator responds yes
and says that that’s what the instrument showed.

At this point, nuclear chemist Valery Legasov looks visibly startled.
“What value did you say the instrument reported?” he asks. The operator
responds that it was 3.6 roentgens per hour—again a little high, but nothing
to be terribly concerned about as long as safety protocols are followed.

Roentgens are the unit of measurement for how much radiation is being
emitted in the environment—in German, the word itself means “x-ray.” The
roentgen is not a perfect measure for radiation compared with, for example,
the sievert, which indicates the impact of radiation on the human body. But



the number 3.6 is special, and when Legasov hears it, he realizes just how
badly everyone has underestimated the magnitude of the disaster.

Because of his expertise and experience, Legasov knows exactly what is
being measured. He also knows the context within which the measurement
was taken. He is aware that the second dosimeter has shorted out, and he has
observed a few cases of radiation sickness only hours after the meltdown
occurred. Most critically, he knows something very important about that
standard issue dosimeter.

The World Health Organization (WHO) has established limits on exactly
how much radiation people can endure. For most of us, the WHO limit is half
a roentgen per year—not per hour like the dosimeter measures, but per year.
For nuclear engineers and operators, the limit is 5 roentgens per year. That
initial dosimeter reading indicated that the radiation limit for nuclear power
plant workers was exceeded in just an hour and a half. An accumulation of
around 300 roentgens results in radiation sickness—and workers were
already sick. By the time 500 roentgens accumulate, radiation exposure can
be fatal.

The shocking insight Legasov had was that 3.6 roentgens per hour was the
maximum value that could be read by that particular model of dosimeter. The
instrument wasn’t designed to go any higher. In reality, the ambient radiation
produced near the reactor was between 800 and 1,500 roentgens per hour;
and at the site of the meltdown, as much as 20,000 roentgens were emitted
each hour. By underestimating the danger, officials failed to evacuate
immediately, which led to many deaths and serious health issues.

The situation itself was deadly, but lack of understanding of the data—
about what it really meant in the context of the immediate situation—cost
many people their lives. The 3.6 roentgens per hour measurement was only
one data point, but its impact was profound. Imagine what the situation might
have been like if the operators had to monitor hundreds, thousands, or
millions of monitor points.

There is no need to imagine though. Many of today’s operations
environments are being revolutionized by a multitude of connected sensors
and actuators, collectively referred to as the industrial internet of things
(IIoT). The Internet and Television Association (NCTA, 2019) estimates that
in 2020 there will be 50.1 billion connected devices across consumer and
industrial segments. Each of these devices will be producing a handful—or
maybe hundreds—of observations every minute or hour. That’s a lot of data



to process and understand, especially when lives and assets are at risk.

DRIVING VALUE FROM DATA ASSETS IN INDUSTRY 4.0
Since organizations started storing and managing data, even before the advent
of electronic systems to capture and manipulate it, data has been a critical
asset. While good data is necessary, bad data is expensive. As one example,
Hazen et al. (2014) found that as a percentage of revenue, the cost of poor
data ranged from 8% to 12% for “typical” organizations and up to 40% to
60% in service organizations.

Data is the raw material, while information is generated by critically
evaluating data through the lens of meaning and purpose; knowledge
examines that information in a particular context and environment and puts it
into action. Some organizations have even created the new position of chief
data officer to provide a dedicated focus on driving value from data,
information, and knowledge.

In the Industry 4.0 era, the value of data as an asset is increasing
tremendously due to several drivers. These include the following:

The introduction of cyber-physical systems, many of which produce big data (some
on a nearly continuous basis)
Network infrastructure being more widely available, and emerging
telecommunications infrastructure like 5G making it possible to transmit large data
volumes and different data types, resulting in shareable data for real-time decision
support
Software libraries for advanced analytics being accessible, comprehensive, and
reliable
People, machines, and data being connected, in many cases in near real time

Cyber-physical systems, like the IoT and the IIoT, and other systems (e.g.,
social media), individually and collectively produce big data. Building on the
5V model from Demchenko et al. (2013) shown in Figure 8.2, big data can be
described by several characteristics:

There is lots of it (volume)
It’s coming at you fast, and may even be streaming in real time (velocity)
It comes in different formats and sampling frequencies (variety)
There may be huge variations in data quality, or it may fluctuate (veracity)
There will be differences in how useful the data is (value)
Different people or organizations produce it or own it (governance)
It could easily change or disappear, impacting your operations (control)
There may be restrictions on how you use it (policy)



Despite these challenges, organizations still have to respond and adapt. But
how do you know if you’re working with big data? You may recall the
anecdote in an earlier chapter about big data being anything bigger or more
complex than what your organization is currently prepared to handle. What it
means is that all organizations, to some extent, are working with big data. For
example, any organization that mines social media data to identify VoC is
dealing with big data, even if it doesn’t feel that big. And for organizations
that rely on mostly manual processes, the competitive pressure of knowing
that other organizations are trying to leverage big data to gain advantages
may be enough to compel additional learning and investigation.

Effective data management and governance can provide strategic
advantages, while lack of attention to issues regarding data can present
strategic challenges. Poor data management leads to waste (when accurate,
up-to-date information is difficult to find) and can slow or stall decision



making. Organizations without effective data processes are less agile, spend
more to deliver products and services, and are more likely to have customer
satisfaction issues. Finally, the lack of high-quality information for decision
making at the executive and senior leader levels can lead to costly missteps.
The insights in this chapter can help you avoid some of them.

ORGANIZING DATA MANAGEMENT AND GOVERNANCE
Particularly in the Industry 4.0 era, more data means additional care must be
taken to ensure data quality, promote data management processes, and
establish appropriate structures for data governance. Effective information
and knowledge management practices can greatly improve cross-functional
communication and overall performance.

The Data Management Association (DAMA International) provides
resources and a Body of Knowledge (BoK) to organize these efforts. The
framework consists of 11 data management knowledge areas, illustrated in
Figure 8.3.

These 11 knowledge areas can be organized into three general categories:



data quality, data management, and data governance. The tasks and
responsibilities associated with each of them are as follows:

Data Quality—defining quality and identifying important data quality dimensions for
an organization; installing processes that maintain data quality over all phases of the
data life cycle
Data Management—overseeing practices to ensure that data meets requirements
and specifications, is fit for use and purpose, and has all the characteristics needed
to support enterprise decision making

Data Architecture—maintaining the enterprise road map for how and where
data is stored; conducting risk assessments and addressing risks;
guaranteeing clarity and consistency of data strategy
Data Modeling and Design—ensuring that the way the data is stored in
each repository or platform is appropriate and managed; maintaining
structure and architecture of data warehouse; logical modeling and
conversion of logical models to physical storage models
Data Storage and Operations—managing regular backups, emergency
preparedness, and recovery processes; handling life-cycle maintenance,
including purging old or unused data; managing types of data storage
systems (e.g., RDBMS vs. NoSQL, cloud-based vs. on-premise, graph
databases, streaming services, and IoT hubs)
Data Security—managing privacy, confidentiality, and access controls;
maintaining awareness of emerging security issues, including threats and
vulnerabilities; making sure the workforce responds to these issues quickly,
adequately, and responsibly
Data Integration and Interoperability—providing infrastructure and
processes for data acquisition, movement, transformation, and migration;
managing ETL (extract, transform, and load) capabilities; managing for
redundancy, provenance, and incorporating third-party data; maintaining
compliance with government regulations that pertain to data
Document and Content Management—implementing configuration
management for physical and virtual documents; designing, updating, and
using taxonomies to make information retrieval easier for the workforce;
protecting confidentiality of documents and access to sensitive data within
documents
Reference and Master Data—managing and maintaining systems of record;
maintaining reference data (e.g., topographical and land use models, zip
codes, certain CAD/CAM models)
Data Warehousing and Business Intelligence—managing and maintaining
on-premise and cloud-based data platforms; providing services for querying,
reporting, and data visualization; maintaining processes for updating the data
warehouse
Metadata—maintaining data definitions and dictionaries; managing
information for data asset discovery; providing support for internationalization
and multilingual environments

Data Governance—executing oversight, policy development, and policy deployment



for all data quality and data management issues; ensuring appropriate stewardship
and ownership of all data; handling ethical issues and communication about data
quality and data management; and overseeing data management maturity

While data management is often the responsibility of the chief information
officer and IT staff, data governance is championed by the executive team
and senior leaders, and data quality requires input and participation from
across the organization. Figure 8.4 provides an alternative way to look at
these tasks and responsibilities. While data governance, which includes
establishing policies, identifying owners and stewards, and driving a quality-
oriented data culture, sets the tone, managing the data life cycle depends on a
solid foundation that includes security, metadata management, and data
quality management.

DATA QUALITY
Data quality is “fitness for use or purpose for a given context or specific task
at hand” and must be quantified to be useful for management purposes
(Mahanti, 2018). Ensuring data quality means protecting against negative
attributes (e.g., incorrect, inconsistent, or unreliable) while promoting



positive attributes (e.g., unambiguous, contextual, understandable).
The quality of every piece of data is important. To assess data quality, you

need to know the following:
The sensor, instrument, person, or machine that provided the data (who)
The type of data that is being measured or assessed (what)
The time that the data was collected (when)
The location and context of the measurement or data collection (where)
The reason why the measurement was taken or the data was produced (why)
The process used to obtain the data, and the provenance of the data—that is, what
steps were taken to clean it, transform it, produce it, or format it (how)

Data quality is even more essential in connected, intelligent, automated
environments. For example, one of the key use cases for Industry 4.0 is
predictive maintenance (using advanced analytics to anticipate breakdowns
and engaging in interventions to avoid downtime or damage to assets).
Despite the projected benefits of predictive maintenance, including increasing
the availability and reliability of machines and extending the useful life of
equipment, making it happen in practice is not easy. Requirements for data
quality and data access, and the need to preserve quality when data is
aggregated from many sources, may ultimately impact prediction accuracy.
Without data quality, predictive models may be useless (Li et al., 2016).

Causes and Consequences of Bad Data Quality
Data quality can be impacted at any stage of its life cycle. Both humans and
machines can generate or obtain data at its origin. Humans may do this by
using physical senses (sight, smell, touch) or by providing data that they have
access to (birthdate, address, mother’s maiden name). Machines like sensors
and instruments can measure things, while other machines may process those
measurements, obtain other data from other sources, or aggregate or analyze
information. If the human is an unreliable observer, the sensor is invalid, or
the instrument is uncalibrated, this will also lead to issues with data quality. If
the data is being collected by an IoT device, onboard processing or machine
learning language may manipulate it before it is transmitted to a hub.

Once the data is created, it may be synthesized, processed, or combined
with other data. Cleaning or transformation may be attempted to convert the
data into useful features. At some point, the data may be stored in a database,
repository, or other data platform. It may be archived for long-term access,
and people or systems may share the data with one another. Data quality can
be adversely impacted at any step along the way.



There are many reasons for data quality problems. Manual data entry,
intrusions by hackers, inadequate validation, insufficient data cleaning, and
issues with data migration processes can corrupt data even when it has been
gathered properly. Lack of ownership, lack of understanding, and lack of
processes for continuity when people leave a company can negatively impact
data quality. Organizational issues like mergers and acquisitions can be
damaging if data quality is not specifically managed during the transition
process. Data can become less applicable or valuable over time (for example,
any marketer who is trying to contact me at my address or phone number
from the late 1990s will be disappointed). Finally, unintended data loss and
incomplete disaster recovery can negatively impact an organization’s data
quality.

Bad data, like cancer, can weaken and kill an organization.
—R. MAHANTI

When data does not meet quality requirements, there can be consequences
for individuals, the business, and even the environment or society. Decision
making is always impacted by bad data quality, and this is compounded when
the decision maker is unaware of it. Data quality problems can reduce trust in
people, between people, and in the organization itself. Making decisions
based on bad data can lead to reduced productivity and higher costs.
Ultimately, bad data can also lead to compliance risk, including exposure to
legal penalties and material loss if industry laws and regulations are not
followed (Djali et al., 2010; Mahanti, 2018).

Identifying and Measuring Data Quality Dimensions
What characteristics define data quality? First, an organization must examine
its processes and priorities in terms of data quality dimensions. Not all data
quality dimensions will be important to all organizations at all times. The
Baldrige Excellence Framework (BEF), for example, calls out only accuracy,
validity, integrity, reliability, and currency (NIST, 2019) even though other
data quality dimensions may be critical for a particular organization. Mahanti
(2018) provides 29 quality dimensions (Figure 8.5).



While some dimensions can be assessed only subjectively (accessibility,
believability, interpretability, ease of manipulation), others can be evaluated
objectively (accuracy, currency, volatility, precision). Data quality should be
evaluated using objective measures wherever possible. For example,
completeness can be measured based on the characteristics of the database
(e.g., schema completeness), and accuracy can be assessed by comparing
stored values with known references. Cai & Zhu (2015) provide additional
indicators that can be used to guide data quality assessment, focused on
evaluating the quality of big data.

Some of the dimensions are closely related to one another. For example,
being able to trace the provenance of data can have an impact on its
believability and trustworthiness. Data may be more interpretable if it is
concise and has adequate coverage. Availability may be supported by
redundancy, since if the data cannot be obtained from one source, it may be
sourced from another.

Mahanti (2018) also provides recommendations for managing the
assessment process:

Master data and reference data should be given priority for data quality assessment,
since problems with these values can impact hundreds or thousands of transactions.



Owners and stewards of data should be asked to identify which data is critical for
operations, decision making, or compliance.
Industry-specific data quality issues should be examined. For example, the quality of
data that describes assets is critical for water and wastewater management, while the
quality of reference data can significantly impact overall costs in the finance industry.

In addition to industry-specific data quality management issues, there may be
additional guidance based on the specific technologies that you implement.
Large amounts of data impose significant requirements on data quality.

Data Quality in IoT Environments
Although a traditional treatment of data quality is important, it is also critical
to look at how requirements for data quality management will change in
connected, intelligent, automated environments. Perez-Castillo et al. (2018)
did just this, motivated by the threats that bad data quality could pose to the
key value propositions for Industry 4.0:

The vast amount of data in the IoT environments, gathered from a global-scale
deployment of smart-things, is the basis for making intelligent decisions and providing
better services. In other words, data represents the bridge that connects cyber and
physical worlds. Despite its tremendous relevance, if data are of poor quality, decisions
are likely to be unsound.

By examining case studies in the context of ISO/IEC 25012 and ISO/IEC
8000, these researchers developed a framework for data quality management
in IoT environments (Figure 8.6). The purpose was to anticipate data quality
impacts for smart, connected products. They recommend thinking about IoT
data quality in terms of acquisition, processing, and utilization steps, and
considering data quality issues on the device separately.



They also uncovered specific patterns in sensor data that manufacturers of
smart, connected products should be aware of, as these could indicate data
quality problems:

Constant or offset error: Observations deviate from expected value by a constant
Continuous varying or drifting error: Deviation between observations and
expected value is continuously changing
Crash or jammed error: Sensor stops providing any readings or gets stuck on an
incorrect value
Trimming error: Data is correct in some interval but incorrect outside the interval
Outliers: Observations occasionally deviate from expected value
Noise error: Observations randomly deviate from expected value

Finally, they proposed 23 best practices for data quality management in this
environment. These include collecting sensor data sequentially, addressing
security at all stages of the product life cycle, performing data quality checks
on incoming sensor data, automating procedures for assessing sensor data
quality, and creating policies to monitor and compare sensor data across the
installed base for the product.

DATA MANAGEMENT
Data management practices ensure that data meets requirements and



specifications, is fit for use and purpose, and has all the characteristics needed
to support enterprise decision making. DAMA International defines data
management as the “development, execution, and supervision of plans,
policies, programs, and practices that control, protect, deliver, and enhance
the value of data and information assets” (Mosley, 2008). Consequently, data
management is quality management for data.

Data management planning can have a limited scope, or a large scope that
spans multiple sites and facilities, or even organizational boundaries. The
DataONE project of the U.S. National Science Foundation (NSF), which
helps scientists at national laboratories manage their data more effectively,
recommends building a data management plan that describes the following:

The data and its format(s)
Metadata content and format
Policies for access, sharing, and reuse
Plans for storage and management over the life cycle of the data
Budget for storage, providing access, and supporting management activities

Additional details are provided in Strasser et al. (2012). Although this
describes a microcosm of the requirements that may be needed to support a
large enterprise, the concepts are similar to what is needed for master data
management and a supportive organizational context.

Master Data Management
Effective decision making depends on being able to obtain data that meets
your required data quality dimensions when you need it. In addition,
successful business and process outcomes depend on building a culture of
quality around data, which includes creating and following effective
management processes. Master data management (MDM) can play this role.

One strategy for improving process quality through data is to identify
master data (Figure 8.7) and decide which system of record will hold each
type of master data. Master data is some of the most important data your
organization has—and represents the key objects that your business is built
on. In contrast with reference data, which may be the same for different
organizations, master data is unique to your organization and can provide a
source of competitive advantage. In general, it is nontransactional and defines
the common objects and entities that are used by many business processes.
Master data is not historical data, which represents old transactions. In
industrial systems, transactional data is often captured by event logs, while



historical data is stored on the historian or in data archives.

By strategically managing master data, you can establish a single source of
truth for your most important information. According to Cleven and
Wortmann (2010), master data typically includes authoritative information
about the following:

People or parties (customers, suppliers, employees)
Things (products, services, assets)
Locations (facilities, sites, offices)

Managing master data is similar to identifying the most trusted people in your
company, being able to find them when you need them, and being able to rely
on them to provide you with accurate, up-to-date information. For example,
your environment, health, safety, and quality (EHSQ) software system may
be your system of record containing master data for emissions, incidents,
exposure data, and quality events, providing authoritative information about
those processes. Master Data Management provides structure:

Master Data Management (MDM) is the framework of processes and technologies aimed
at creating and maintaining an authoritative, reliable, sustainable, accurate and secure
data environment that represents a single version of truth, an accepted system of record
used … across a diverse set of application systems, lines of business, and user
communities. (Berson et al., 2011)

The absence of master data (or processes to find, use, and maintain its
integrity) can result in wasted time, confused workers, faults and downtime in
operations, and long recovery or repair times. Knowing where to find
reliable, authoritative data will shorten the time required for anyone in your
organization to make decisions, and ensure that their decisions are fact based.



System of Record
A system of record (SoR) provides the authoritative source for each type of
master data, and can be a data repository, software application, or both. This
master data will be each party, thing, or location your organization identifies
as important, and can be records or documents that contain data. Each of
these important data types must be associated with the SoR where it will be
stored and maintained. Because both people and digital systems will look to
the SoRs for truth, maintaining the accuracy and timeliness of the
information is important:

I met this week with the director of a large health department and her information
technology (IT) manager. The team described the following challenges in how the
department currently functions:

Multiple overlapping computer systems: Through circumstances too frustrating
to unravel, her staff were compelled to use multiple systems, each with some
margin of value.
No system of record: Lacking a single trustworthy system, any query required
cross-checking and reconciliation with the next best source.
Abandoned environments: At least one system [was not being maintained] and
data were not being backed up at all! Yet, the system remained online because
none of the auxiliary systems could perform.
Manual report reconciliation: [Inspection reports] were so unbelievable that
leadership asked the staff to return to their paper records and hand tally the true
numbers.

Staff struggled to do their jobs. Managers scrambled to show progress. Leadership
was … frustrated. Taking control of one’s system implementation can make all the
difference. (Booth, 2018, p. 30)

Once your organization has identified master records for its critical
objects, management processes should be built to ensure that it meets all
appropriate data quality dimensions. This may include cleaning data,
committing new records, tracking changes to records, or auditing data
management processes. How do you know if a particular type of data should
be in an SoR? Hurst (2018) recommends that data be included in an SoR if
several of the following characteristics are met:

The data is proprietary
The data supports one or more mission-critical business processes
Many employees use or interact with it daily or weekly
It is needed for important operational or strategic business decisions
It captures knowledge that the business needs even if the employee leaves
It is enhanced and improved over time



Linstedt (2006) says that an SoR has some defining characteristics itself:
1. It is a data origination point
2. It feeds other systems’ authoritative data
3. It may be auditable, traceable, or cleaned, “but in all cases it provides business

value in different formats and assists the business in doing business on a daily
basis”

Identifying master data and the SoRs they live in can improve the efficiency
of work processes and drive continuous improvement. Instead of wasting
time hunting in multiple locations, people will immediately know where to
go and what systems to trust. They will no longer be making decisions based
on bad (or old) information.

ISO/TS 8000
In 2011, ISO (2016) introduced a master data quality management
framework, a multipart international standard for data quality and enterprise
master data. The 100 series of this standard explains how to ensure quality of
master data, while the 60 series outlines internal processes to gather, store,
and provide quality data to stakeholders. The standard has been written with
total quality in mind, and assumes that data quality is driven continuously at
all levels of the organization (Benson, 2019). The utility of ISO 8000 is
questioned by information scientists, who claim that “its value is limited due
to its naive model of data and information” (Clarke, 2016). Regardless, it has
been used by researchers to successfully navigate data quality management
issues in Industry 4.0 (Cai & Zhu, 2015; Perez-Castillo et al., 2018).

DATA GOVERNANCE
DAMA defines governance as “the exercise of authority, control, and shared
decision making (planning, monitoring, and enforcement) over the
management of data assets” (Khatri & Brown, 2010). Establishing a data
governance framework is one of the most important aspects of enterprise data
quality management. The primary purpose of data governance is to help the
company maximize the value of its data assets for business purposes over the
lifetime of the data. As a result, this effort should be driven by business
leaders and from outside the corporate IT function.

Data governance provides the policies, guidelines, and approaches that the
organization will use to drive value from data. IT organizations, as partners,
implement them in the most efficient and effective ways. Effective data



governance results in greater transparency and visibility of data, more
efficient operations, and higher-quality decisions.

Elements of a Data Governance Framework
According to Mahanti (2018), a data governance framework has six
components:

Rules and rules of engagement: a definition of what the program aims to achieve
and the rationale for setting that goal; rules for all functions and departments to follow
as they manage data; standards and guidance that will be supported (e.g., ISO 8000,
ISO 27001)
Data policies: documented guidelines, principles, and rules for managing data at all
stages of the life cycle
Processes: an articulation of decision-making processes and decision rights; how
data will be defined and how data quality requirements will be established; how
issues will be resolved
People: defined roles and responsibilities with respect to the organization at the
executive, strategic, tactical, operational, and support levels; information about how
to organize and coordinate to achieve shared goals
Roles and responsibilities: defined roles and responsibilities with respect to the
data (e.g., data producer, consumer, owner, steward)
Technology: selection of appropriate tools to support data quality and data
management processes

For core principles, she recommends recognizing data as a strategic asset,
establishing clearly defined accountability for data and documents, defining a
statement that the rules and policies should be followed, and a call to
consistently manage data according to defined policies over the entire life
cycle of the data.

Governance for Cyber-Physical Systems
Yebenes and Zorrilla (2019) extend the governance concept to specifically
address the “third generation platforms” that will support Industry 4.0. These
platforms provide intense computing power in any environment, the ability to
ingest and process large volumes of data in real time without storing it,
scaling compute power according to workload, the ability to interact with
intelligent systems and intelligent environments, and AI and machine
learning services.

They articulated five key processes, as shown in Figure 8.8:
Planning: selecting appropriate principles, rules, and standards for the organization
to follow (e.g., ISO 11179 for metadata management, ISO 8000 and ISO 25012 for
data quality, and ISO 27001 for security)



Organization: choosing an executive sponsor, business owners for data who are not
in the IT organization, and a cross-functional Data Governance Council made up of
executives from all departments
Operation: enacting processes staffed by people “capable of evolving with the new
technologies and dealing with the changes in the new way of operating with data and
developing the automation of industrial processes” (Yebenes & Zorrilla, 2019)
Implementation: focusing on data security and risk management, data and metadata
quality, and data life-cycle management, to better deal with unstructured, low-latency
data
Monitoring: establishing a shared decision-making process, based on mutually
determined KPIs, that incorporates all stakeholders on a data platform (e.g., cloud
service providers)

They note that the operating environment of Industry 4.0 and digital
transformation initiatives “makes [it] more difficult to understand the context,
importance, and associations of data. Moreover, applications developed on
[third-generation platforms] require hiring of processing and storage services
in the cloud to satisfy availability, latency and throughput requirements
(among others) and all of this under demanding security and regulatory
conditions” (Yebenes & Zorrilla, 2019). For this, better (and continuous)
communication across cross-functional boundaries is suggested. Data
governance in Industry 4.0 is a team sport.

THE BOTTOM LINE



Data quality, management, and governance activities provide the foundation
for quality in every other business process, from operations to strategy
execution. Although the focus in Industry 4.0 is on ensuring the quality of big
data, “small data” remains just as important. For example, Six Sigma projects
will not generate reliable improvements unless they are using valid
measurements; similarly, value stream maps will be less beneficial if
employees are not using the same data sources to describe the value-added
steps in their processes.

In addition to separating data acquisition and data analytics from the main
systems where data and security are managed, there are three conceptual
elements of an organization’s data quality management program:

Data quality: Establish critical data quality dimensions for all phases of the data life
cycle, focusing on the data with the highest impact or financial value
Data management: Establish master data and SoRs, and use standards like ISO
8000, ISO/IEC 25012, and ISO 27001 as necessary
Data governance: Define the rules, policies, processes, and roles to guide the effort

Together, these processes reduce costs and risks, eliminate waste, and
empower decision making, while proactively helping an organization address
security and regulatory requirements. Information is useful only when it is
generated from high-quality data and you are connected to it. Intelligence
helps you understand and respond to current conditions, especially when
there’s lots of data to sift through. Automation can bring data and information
to people and machines when it is needed, freeing up time and effort and
shortening feedback loops.

Industry 4.0 and digital transformation present unique use cases that make
data quality even more critical than before. For example, without data quality,
predictive models may be useless. But once solid foundations for data quality
management are put in place, software systems can help organizations more
effectively collect, retrieve, and protect their data. The next chapter describes
those logical containers that can be used to manage data.
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CHAPTER NINE

SOFTWARE APPLICATIONS AND DATA
PLATFORMS

What is it about the container that is so important? Surely not the thing itself … the
value of this utilitarian object lies not in what it is, but in how it is used. The

container is at the core of a highly automated system for moving goods from
anywhere, to anywhere, with a minimum of cost and complication on the way.

—MARC LEVINSON IN THE BOX: HOW THE SHIPPING CONTAINER MADE THE
WORLD SMALLER AND THE WORLD ECONOMY BIGGER

Until the 1950s, the transportation industry had busy ports and bustling docks
as its heart, employing millions of people worldwide and keeping the nascent
global economy humming. Levinson (2016) paints the chaotic picture:
warehouses and manufacturing plants operating close by, sweaty workers
carrying loads on their backs and up gangplanks, cargo packed into sacks and
bales and wooden boxes. There were no standards for packaging or
organizing, so he describes a daily scene in which safety risks were
everywhere:

The dock would be covered with a jumble of paperboard cartons and wooden crates and
casks. There might be steel drums of cleaning compound and beef tallow alongside 440-
pound bales of cotton and animal skins. Borax in sacks so heavy it took two men to lift
them, loose pieces of lumber, baskets of freshly picked oranges, barrels of olives, and
coils of steel wire might all be part of the same load of “mixed cargo,” waiting on the dock
amid a tangle of ropes and cables, as lift trucks and hand carts darted back and forth.

Loading and unloading required mostly manual labor, aided by hooks and
winches, and was literally backbreaking. Although the work was treacherous,
demand was highly variable because it depended on the arrival times of the
ships and the type of cargo—perishable goods had to be unloaded much more
quickly, requiring more workers. Competition to receive an hourly wage was
intense, and corruption was the norm, so getting paid was never guaranteed.
Gangs took over some of the docks, and violent strikes erupted at others,
eventually leading to labor laws and an imposed system for full-time



employment. Still, the conditions created a tight-knit culture, group identity,
and commitment to the “global fraternity” of longshoremen.

By the 1950s, these freight terminals had been acknowledged as
bottlenecks, and the first cargo containers were proposed as a way to simplify
packing, carrying, and unpacking. Although safety improved, there were
drawbacks. The lack of weight limits made lifting more difficult, unused
container space was a significant economic penalty, and it was much more
expensive to ship in containers—up to 75% more. Many times, there was also
an additional fee to ship the container itself back to the point of origin.
Because everyone in the industry wanted to reduce the total cost of shipping,
the hunt for a solution continued. And as Levinson explains, “The solution
came from an outsider who had no experience with ships.”

In 1934, twenty-one-year-old Malcolm McLean started driving trucks for
a local transport company. Just one year later, he owned three of his own
trucks and employed nine other drivers. Skilled at managing cash flow,
negotiating, and finding creative ways to build business while cutting costs,
McLean obtained corporate discounts from gas stations along his routes. His
company was the first to invest in training programs for new drivers, and he
recognized that employee involvement was the key to safety and quality: he
empowered his drivers to make choices driven by safety, and awarded
bonuses for serving as mentors.

In 1953, McLean noticed that the roads were becoming congested, and
started looking for lower-cost ways to move his cargo. Since domestic
shipping had stalled since the 1930s, he decided to try driving truck trailers
onto ships that would move them up and down the U.S. East Coast. Because
of drastically different regulations between land and sea transport at the time,
it was a move that could make him the clear price leader in his industry—
even though it required completely restructuring his company to circumvent
regulations that governed ownership of a shipping company by a trucking
line. The Port Authority of New York was so enthusiastic about his
innovative idea that it funded his trucking port with bonds that were issued
directly.

By 1955, bothered by the loss of cargo space due to the truck’s wheels and
engine, McLean envisioned an even more revolutionary idea. He would buy
old tankers from World War II and customize them to transport only the
trailer part of the truck, stacked optimally to fill the space and make loading
and unloading smoother. Using a beer company as the guinea pig, McLean



prototyped the system. He demonstrated that the full value stream around
moving twenty tons of beer from Newark to Miami—with all costs included
—was 94% less expensive than the traditional approach. This garnered plenty
of interest, so he partnered with engineer Keith Tantlinger to build out the full
system and demonstrate to regulators that the fully loaded ship would be
seaworthy.

The real win came in 1956, when he demonstrated to the market that the
cost of transporting loose cargo the old way, at $5.83 per ton, could be
reduced to 15.8 cents per ton using standard shipping containers:

McLean’s fundamental insight, commonplace today but quite radical in the 1950s, was
that the shipping industry’s business was moving cargo, not sailing ships. That insight
led to a concept of containerization quite different from anything that had come before.
McLean understood that reducing the cost of shipping goods required not just a metal
box but an entire new way of handling freight. Every part of the system—ports, ships,
cranes, storage facilities, trucks, trains, and the operations of the shippers themselves—
would have to change. (Levinson, 2016)

The shipping container revolutionized the transportation industry because it
reoriented everyone to realize that the value came from moving cargo. An
analogous revolution has been happening in computing, with the mass shift to
cloud-based offerings using Software as a Service (SaaS), Infrastructure as a
Service (IaaS), and Platform as a Service (PaaS) models (Novkovic &
Korkut, 2017). Now, organizations can think of software in terms of its
ability to move information and support business planning and operations
processes, rather than as applications they need to buy, customize, and own.
Moving data and information most effectively requires looking at every part
of the system in a new way—as software in support of connectedness,
intelligence, and automation.

Software applications (like CRM, ERP, and EHS systems) and data
platforms (like IoT hubs) provide containers for various master data
collections and the information generated by business or operations
functions. The notion of software systems as containers has been used for
decades as a way to understand, design, test, and maintain complex systems
(Rational, 1987). Logical containers make it easier to manage data and
information flows than if the data were not logically separated in some way.
Nearly all organizations use software and data platforms to streamline data
generation, collection, organization, and manipulation—to get it to the people
who need it, when they need it.

This chapter uses the ISA-95 model to describe containers that hold data.



This includes the software applications (many of which are now available via
cloud computing) and data platforms that support typical organizations.
Although much of the analysis in this chapter comes from manufacturing
environments, many of the concepts can be applied across industries.

CONVERGENCE
Breakthroughs like this occur when multiple, disparate ideas converge toward
more similar or more mutually supportive ideas. Convergence means coming
together—for example, replacing many different technologies with a single
technology, or moving to a shared platform or infrastructure.

In the shipping industry, the value stream was enhanced when a single,
standard shipping container became the platform to support multiple modes
of transport. In business and industry, the value stream has been enhanced by
several forms of convergence over the past two decades. Macaulay and
Singer (2016) provide the following examples:

Internet Protocol (IP) Convergence—Field devices and field controllers all
supported Transmission Control Protocol (TCP/IP) by the early 2000s, in contrast
with 20+ communications protocols in the 1970s and 1980s
Fixed-Mobile Convergence—Field devices and field controllers that were formerly
restricted to wired communications have started broadly adopting wireless
Triple Play Convergence—Voice, data, and video services are all being delivered
using IP, supplanting public switched telephone network (PSTN), cable TV, and
analog TV
Blue-Sky Convergence—New products automatically have the ability to send and
receive messages using IP
Cloud Convergence—Abstracting systems administration from software and
business processes provides flexibility in deployment and fewer requirements for
workforce capability

Convergence has many potential benefits for companies that adopt the
technologies and practices that are converging:

Cost reductions
Capture of new revenue streams
Increase in process productivity and efficiency
Increase in labor efficiency through added remote monitoring
Improvement of assets control
Business continuity and disaster recovery enhancements

Although convergence is generally beneficial, it also creates security
dependencies between parts of the system. For example, endpoints (field
devices and field controllers) in an industrial control system are more



vulnerable now that “security by obscurity” (uncommon communications
protocols) can no longer serve as a deterrent. As the benefits of convergence
continue to be realized, companies must simultaneously adapt and modernize
their security practices to avoid making vulnerabilities worse.

The ISA-95 Models
Concepts can converge just as technologies can. For example, ANSI/ISA-95
(also known as ISA-95), maintained by the International Society of
Automation (ISA), is a group of technology-agnostic information models that
describe relationships between business and production data. The result is a
reference architecture that explains the relationships among the hardware,
software, and data in a typical industrial organization.

ISA-95 emerged in the 1990s, drawing from the Purdue Enterprise
Reference Architecture (PERA), as a model to help companies more easily
integrate business logistics and manufacturing or production operations
systems. PERA addressed people, processes (for control and information
flow), and technologies (governing the production process and physical
plant) and covers the entire production life cycle from concept development
through asset disposal (Chacon et al., 2010).

The ISA-95 levels, including an additional level incorporated by LNS
Research (Jacob, 2017) to tie operations to strategy, are listed in Table 9.1
along with examples of software systems implemented at each level. The
acronyms will be described and expanded on later in this chapter. An
illustration of the types of information exchanged between Level 3 (inside the
dotted line) and Level 4 (outside the dotted line) is shown in Figure 9.1.

TABLE 9.1.  The automation pyramid according to PERA/ISA-95.

ISA-
95 Timescale Description Software and hardware

“Level
5”

Months/years Strategy and
Governance

Executive-level activities, including
APM, CPM, GRC, knowledge
management, ORM, SPI

Level
4

Days Business
Planning and
Logistics
(why work is
done;
ensuring work
meets

Management-oriented activities,
including APQP, CRM, document
control, ERP, GXP/PRP, HACCP, PLM
(CAD/CAM, ETO, MTO), PPAP,
project management, QMS (audits,
CAPA/CAR, continuous improvement,
management review), risk



specifications) management (DFMEA, PFMEA,
control plans), SCM (SQM/SRM),
training and certification management

Level
3

Hours Operations
Management
(how work is
done)

Workflows, including deviations, EAM,
EHS, inspections, LIMS, MES/MOM,
MSA, SIEM, SPC. A function is in
Level 3 if it is critical to product quality,
workplace safety, plant reliability, or
plant efficiency or is critical to
maintaining product or production
regulatory compliance

Level
2

Minutes Monitoring
and
Supervising

Monitor and control-oriented activities,
including DCS, historian, HMI,
intelligent devices (e.g., cameras,
scanners), SCADA, SIS

Level
1

Seconds Sensors,
Field
Devices,
Field
Controllers

Execution-oriented activities, including
PLC, sensors, switches, actuators,
beacons, tags

Level
0

Milliseconds/
Microseconds

Physical
Production
Process

Hardware, physical devices, industrial
robots

Source: Adapted from ANSI, 2000, 2001, 2005; with “Level 5” added following Jacob, 2017.



Until ISA-95, integrating ERP systems and process control was a costly,
extensive, and high-risk venture. Integration projects could last many years,
as teams struggled with organizational silos, different technical languages and
jargon, unique departmental cultures, and software systems that were not
designed to be useful cross-functionally. Every time a company wanted to
integrate its order management and production scheduling systems, for
example, it had to go through an extensive process of requirements gathering,
design, testing, and rollout. Even though all companies are different, these
integrations were very similar to one another, so facilities were essentially
duplicating each other’s efforts. Many of these projects failed, leaving behind
disparate systems and substantial sunk costs (Scholten, 2007).

Using the guidance provided by each of the ISA-95 reference models
(Table 9.2), companies could benefit from the prior work and best practices
identified by other organizations that had previously attempted similar
integrations. The model covers the entire production life cycle and is just as



useful in environments with little automation as in those with extensive
automation.

TABLE 9.2.  Descriptions of ISA-95 guidance documents.

Type of
guidance Model description Key topics

Information
exchange
between
business
systems and
manufacturing
systems

ANSI/ISA-95.01-2000,
Enterprise—Control System
Integration—Part 1: Models
and Terminology

Provides standard terminology
for integrating control systems
with enterprise systems,
providing a basis for
communication

ANSI/ISA-95.02-2001,
Enterprise—Control System
Integration—Part 2: Object
Attributes

Describes key objects/entities
and their characteristics; having
a common basis for
understanding these objects can
reduce the risk, cost, and errors
of integration projects

ANSI/ISA-95.05-2007,
Enterprise—Control System
Integration—Part 5: Business
to Manufacturing Transactions

Describes types of information
exchanged between business
(Level 4) and manufacturing
(Level 3) systems

Information
exchange
within and
between
manufacturing
systems

ANSI/ISA-95.00.04-2018,
Enterprise—Control System
Integration—Part 4: Objects
and Attributes for
Manufacturing Operations
Management Integration

Provides guidance for integrating
production, maintenance,
quality, and inventory systems
within Level 3

ANSI/ISA-95.00.06-2014,
Enterprise—Control System
Integration—Part 6:
Messaging Service Model

Describes how message-
passing facilitates information
exchange between business
(Level 4) and manufacturing
(Level 3), and within Level 3 as
well

ANSI/ISA-95.00.07-2017,
Enterprise—Control System
Integration—Part 7: Alias
Service Model

Provides guidance for converting
between global names (at sites)
and local names (within areas or
at facilities)

Activities that
take place
within
manufacturing

ANSI/ISA-95.03-2005,
Enterprise—Control System
Integration—Part 3: Models of
Manufacturing Operations

Provides a standard language
for production, maintenance,
quality, and inventory functions
in Level 3



systems

ISA-95 helps organizations bridge the gap between automation providers
and IT services or software vendors. In particular, mapping an organization’s
processes and systems to a model like ISA-95 can help people better
understand where and when to implement a system of record. A system of
record (SoR) is a software system that stores critical proprietary data and
information that the workforce interacts with on a regular (daily, weekly, or
monthly) basis. It contains the single source of truth for a particular object,
entity, or transaction. For example, knowing which system is the authoritative
source of employee data can help managers avoid accidentally scheduling
employees who have left the company or who are on vacation.

Models like ISA-95 can be used to describe the link between strategy and
operations in terms of systems of record in many industries. For example,
Figure 9.2 shows how well construction can be described using the different
levels (De Wardt, 2016). This picture calls out the software systems needed
to manage business logistics and planning (well proposal, well design, cost
estimation and control, risk and uncertainty management, scheduling, supply
chain management, business intelligence) and systems needed to manage
operations (drilling process management, operations states monitoring).

ISA-95 continues to grow and evolve, especially in response to the



changes brought on by emerging Industry 4.0 technologies. Poole (2017)
shares that two additional guidance documents, Part 8 (covering Level 3
information exchange) and Part 9 (common operations events), are now in
discussion. They will address new scenarios like automatically exchanging
asset capability information, acknowledging work performed, expanding the
definition of physical processes to include abstract and specialized cases (for
example, process flows that are the same for every step except packaging),
incorporating spatial and location-based information, and communicating
quality targets so systems can automatically manage to them.

The remainder of this chapter walks through the different software
systems from ISA-95 Level 2 (Monitoring and Supervising) to ISA-95 Level
4 (Business Planning and Logistics), and includes a “Level 5” (Strategy and
Governance) as recommended by Jacob (2017). For each level, the key
software systems and their functions, along with the objects, entities, or
transactions they might manage as a system of record, are listed.

ISA-95 LEVEL 2: MONITORING AND SUPERVISING
The role of Level 2 is to monitor, coordinate, and control the field devices
and field controllers (Level 1) attached to physical objects or cyber-physical
systems (Level 0) in industrial control systems (ICSs). An ICS is a
“collection of personnel, hardware, and software that can affect or influence
the safe, secure, and reliable operation of an industrial process” (ISA-99/IEC
62443). The ICS gathers information about the process from devices at the
endpoints (Level 0 and Level 1), interprets that information in the context of
production system goals, and facilitates interactions between the people who
operate the system and the devices at lower levels (Table 9.3).

TABLE 9.3.  Functions and entities in a system of record for key ISA-95 Level 2
systems.

ISA-
95

Software
system Function

System of
record for:

2 Historian • Record data about the process
context like temperature, pressure,
level, flow rates

Process
monitor data

• Record outputs, system states, or
telemetry data

2 Safety
Instrumented

• Monitor control systems and abort
operations if unsafe conditions are

Process
safety



System (SIS) detected requirements

Distributed Control System (DCS)
The distributed control system (DCS) is a special kind of active automation
control system that serves as the full, state-driven “brain” of the system.
Because bandwidth was historically very limited, decision making had to be
done closer to the field devices at the endpoints of a process, with minimal
data sent back to a central location to be monitored. The DCS performed
most of the detailed work at this level and reported results back to the passive
SCADA system. DCS is process-oriented, whereas SCADA mainly performs
data gathering and assimilation.

Historian
The historian is in place to provide a record of process data and compliance
data. As a replacement for chart recorders, this is an electronic system that
captures telemetry data and information about the state of the system. When
there is a problem, the historian can be queried for data that can be used in a
root cause analysis, helping to quickly identify the source of uncommon
issues.

Human-Machine Interfaces (HMIs)
Human–machine interfaces (HMIs) facilitate monitoring tasks. They are the
primary interfaces between human operators and the process. They display
information about the state of the system, and often provide operators with
the ability to adjust or manipulate controls. Because HMIs provide only a
view into the data, they are a presentation layer and do not serve as a system
of record for any object or entity. HMIs can be implemented as hardware
(e.g., devices with physical switches and buttons), software (applications on
smartphones, tablets, or screens), or a combination, depending on the
environment and health and safety implications of the process.

Intelligent Devices
Sometimes, Level 1 components contain onboard intelligence (e.g., in
embedded systems) that provide local control and supervision. For example,
consider access controls on a door to an authorized area. A camera is
programmed to turn on every time someone or something approaches the
doorway, take a picture, analyze the picture against a training set of all the



authorized people (using edge computing), and trigger an alarm or incident
report if they are not recognized.

Supervisory Control and Data Acquisition (SCADA)
In contrast to a DCS, the SCADA system performs only supervisory
gathering of data and reporting. In many environments, operators will refer to
any HMIs as “the SCADA system.” There are typically three modules that
define a SCADA system (Rocha & Scholl, 2015):

Runtime module—responsible for data exchange with field devices and field
controllers including RTUs and PLCs; stores and analyzes data for alarm conditions;
loads SCADA configurations to devices
Design module—a passive component that defines the configuration for the system,
including communication parameters, variables, alarms, events, and scripts
Client module—the portion of the system that the user interacts with, including
physical buttons and widgets on screens/devices

SCADA systems are evolving as a result of the industrial internet of things
(IIoT) and cloud computing. Sajid et al. (2016) describe a web-based
SCADA where multiple remote sites, made up of field devices and field
controllers, are coordinated in the cloud with monitoring HMIs available in
the browser. These could be used in any industry where SCADA is found
today, including agriculture, food and beverage, chemical processing, nuclear
power, civil administration, water and wastewater, healthcare, energy,
financial systems, transportation, and aerospace.

Safety Instrumented System (SIS)
Safety instrumented systems (SISs) are robust, hardened, high-reliability ICSs
that have one and only one purpose: stopping or shutting down processes if
unsafe conditions occur, which protects workers and assets. SISs act against
random, unintended hardware faults. They often use the same technology and
platforms as other parts of the ICS, so vulnerabilities are common. Because
SISs must be connected to the rest of the control system to function, there is
always an attack path and the presence of an SIS does not guarantee that the
system is secure.

ISA-95 LEVEL 3: OPERATIONS MANAGEMENT
Level 3 systems manage how work is done, following the policies, schedules,
and plans set at Level 4. Many of these systems sit within the process rather



than beyond it, or are associated with checking the process to make sure it
stays in control. As a result, many of these systems require configuring and
managing workflows, which may include multiple handoffs or approvals, as
shown in Table 9.4.

TABLE 9.4.  Functions and entities in a system of record for key ISA-95 Level 3
systems.

ISA-
95

Software
system Function

System of
record for:

3 Enterprise Asset
Management
(EAM)

• Manage scheduled and predicted
maintenance
• Manage workflows from
maintenance events

Equipment
(unless in an
APM system)

3 Environment,
Health, and
Safety (EHS)

• Track emissions and
environmental impacts to meet
compliance obligations
• Manage workflows to resolve the
cause of safety issues or incidents

Emissions
incidents;
EHS audits/
inspections

3 Statistical
Process Control
(SPC)

• Monitor processes and trigger
nonconformances if special cause
variation is detected

N/A

Deviations
Particularly in high-risk or safety-critical industries like pharmaceutical
manufacturing and food and beverage, any deviation from a standard
operating procedure may impact safety, quality, or performance outcomes.
The FDA defines this as any “deviation from current good manufacturing
practice (CGMP), applicable regulations, applicable standards, or established
specifications, or an unexpected or unforeseeable event (such a deviation or
unexpected, unforeseen event is referred to hereafter as an ‘event’) that may
affect the safety, purity, or potency [of a product]” (Biological Products,
2014). Many organizations track deviations using specialized software that
can keep records, alert operations, or provide an audit trail if issues are found
later.

Enterprise Asset Management (EAM)
EAM systems issue work orders based on predicted, planned, or triggered
maintenance events, and helps workers make sure they are following standard
operating procedures and keeping the right records for compliance purposes.



EAM is different from Asset Performance Management (APM) systems.
APM, in contrast, monitors real-time equipment data to obtain optimal
performance over the life cycle of the asset.

Environment, Health, and Safety (EHS)
Companies need to make sure they are protecting their people and the planet.
Tracking environmental impacts, like greenhouse gas (GHG) emissions, can
help them ensure that they are complying with legal obligations. Protecting
workers is also important, especially when they operate in hazardous or high-
risk environments. EHS systems can track exposure to contaminants, make
sure workers are not exposed to extreme heat or cold, design safe material
handling systems to prevent musculoskeletal disorders, schedule safety
checks and inspections, track results, and make sure action items that result
from those activities are completed quickly. Techniques like Job Hazard
Analysis and Process Hazard Analysis can empower organizations to design
danger out of their work systems.

Laboratory Information Management System (LIMS)
If your company is a laboratory or uses the services of a laboratory, you may
need a LIMS. For example, industrial hygiene data that is gathered to
determine whether workers have been exposed to contaminants is often not
processed on site but is sent to a specialized lab. Similarly, water treatment
facilities and food processing plants often gather data about their processes
that must be sent out for analysis. Sample management, provenance (chain of
custody), workflow management, and electronic data exchange with one or
more laboratories are commonly handled by LIMSs.

Manufacturing Execution System (MES)
While MES refers to all the subsystems that carry out (and report on the
results of) production processes, manufacturing operations management
(MOM) is a newer label to describe the broader context that includes quality
management, planning, forecasting, materials management, and analytics. In
practice, MES and MOM vendors offer products that cross these boundaries,
making the distinctions less important.

Measurement Systems Analysis (MSA)
Processes cannot be controlled without accurate data about whether those



processes should be adjusted. Measurement systems analysis (MSA)
examines the bias and repeatability of the gage or measurement device (MSA
Type I), or alternatively, the repeatability and reproducibility of
measurements by different operators (MSA Type II). Process capability
analysis and analysis of variance (ANOVA) drive these methods (Roth,
2011).

Security Incident and Event Management (SIEM)
The analog to EHS systems that monitor environmental, health, and safety
related incidents and near misses for security is security incident and event
management (SIEM). SIEM systems continuously monitor access and event
logs and capture information about security breaches and potentially
malicious events (like failed logins or malware signatures).

Statistical Process Control (SPC)
Production processes must be monitored to detect when (if ever) a problem
occurs that could negatively impact the product. SPC software examines
quantitative variables (e.g., length, width, diameter) or attributes (e.g.,
percent of defects/nonconformities in a sample) to determine whether the
observed issues are due to random variation or something more serious. The
goal is to intervene only when special cause variation is observed and get the
process back on track as quickly as possible to minimize the costs associated
with waste and rework.

ISA-95 LEVEL 4: BUSINESS PLANNING AND LOGISTICS
Level 4 systems establish what work will be done and why it will be done,
linking strategic goals to production objectives. The processes associated
with carrying out those instructions are in the domain of Level 3. While
Level 3 emphasizes the workflows themselves, Level 4 addresses the
processes that support those workflows (Table 9.5).

TABLE 9.5.  Functions and entities in a system of record for key ISA-95 Level 4
systems.

ISA-
95 Software system Function

System of
record for:

4 Asset Performance
Management (APM)

• Manage equipment
characteristics

•
Equipment



• Manage records for
equipment performance

• High-
value
systems

• Manage records for
equipment maintenance

4 Customer Relationship
Management (CRM)

• Manage contacts • Contacts

• Manage sales funnel •
Customers

• Manage multiple customer
touch points

•
Documents

4 Document Control • Manage access to key
documents
• Manage approval workflows
• Track changes to
documents

4 Enterprise Resource
Planning (ERP)—
Finance

• Financial planning and
analysis

• Financial
transactions

• Manage accounts payable
and receivable

• Balance
sheets

• Keep records for financial
compliance

4 Enterprise Resource
Planning (ERP)—
Human Resources (HR)

• Manage employee
information
• Track onboarding, training,
and professional
development

•
Employee

4 Enterprise Resource
Planning (ERP)—
Information Technology
(IT)

• Manage IT requests and
field service
• Manage IT processes and
security
• Track problems, alerts, and
outages

• IT
processes
• Security
controls
• IT
service
tickets

4 Enterprise Resource
Planning (ERP)—Order
Management

• Process orders from
submission to fulfillment
• Request that goods are
produced or services are
scheduled

• Sales
orders
• Bill of
materials
(BoM)

4 Quality Management
System (QMS)

• Record and track product
and process issues

• Quality
controls

• Manage the problem-solving
process to resolve those
issues and/or sustain
improvements

• Quality
issues



4 Training and
certification
management

• Proactively ensure that all
workers keep required
training up to date

• Training
schedules

• Track certificates and
courses

•
Certifications
• Course
completion

Advanced Product Quality Planning (APQP)
Sometimes, developing a new product requires close collaboration among
tens or hundreds of suppliers, each of which contributes a part to the final
assembly. In the mid-1990s, U.S. Tier 1 automotive suppliers collaborated to
solve the problem of how to communicate and share controlled
documentation, and Advanced Product Quality Planning (APQP), a
collaborative project management tool to prevent production issues before
they arise, was born. This is a stage-gate process with five phases: planning,
product design and development, process design and development,
validation, and production. Many APQP systems focus on providing
document management and support for workflows and approvals across
organizational boundaries that aligns with the five-phase structure.

Asset Performance Management (APM)
Straddling Levels 3, 4, and 5, APM systems catalog high-value systems and
assets, identify asset failures before they occur, and create risk-based
maintenance strategies that maximize return on assets. In contrast with EAM
systems that issue and track work orders based on maintenance events, APM
is used to monitor real-time equipment data, helping senior leaders define
policies and strategies to drive optimal performance over the life cycle of the
assets.

Customer Relationship Management (CRM)
From the time someone first makes contact with your company as a prospect,
it is important to keep a record of all the interactions anyone in your company
makes with them. Providing a single image across all departments and
customer touch points (e.g., phone, e-mail, web, social media) will positively
impact their experience. A good experience can move them more smoothly
through the sales funnel, and a bad experience can send them to your



competitors. A Customer Relationship Management (CRM) system serves at
least one (and sometimes all) of these roles: managing contact information,
managing records of interactions at each touch point and supporting
documentation, supporting the sales process as the contact progresses from a
lead to an opportunity to a customer, and then tracking that relationship
through its life cycle. Some CRM systems help you identify and nurture the
customers that contribute most to your business.

Document Control
For the most critical documents in your business, it is important to know
whether you are looking at the most recent versions. Although most
document control systems just provide mechanisms for securely storing
documents, managing access controls, and keeping track of changes, some
have more advanced features. For example, electronic signature capability is
sometimes provided to comply with regulations like the FDA’s 21 CFR 11.
Other document control systems make it possible to electronically collaborate
on documents and manage workflows and approval processes.

Enterprise Resource Planning (ERP)
The most complex information management system in organizations today is
the ERP system. ERP was originally built to handle production planning,
scheduling, and inventory management but rapidly grew into a collection of
subsystems to manage all of an organization’s resources. Today, there are
many different ERP modules:

Financial and management accounting
Human resources management
Order management and fulfillment
Supply chain management
Product management
Manufacturing execution (e.g., production, quality, product life-cycle management)
Customer management

ERP systems very commonly serve as the system of record for objects,
entities, and financial transactions. For example, ERP provides employee
information to other systems that need to grant access, and sales orders or bill
of materials (BoM) to manufacturing execution systems (some of which may
themselves be ERP modules). After production is complete, ERP receives
information about product results, inventory levels, and process performance.



Good Manufacturing Practice (GMP)/Prerequisite Programs (PRPs)
Prerequisite programs (PRPs) are part of Good Manufacturing Practice
(GMP). These practices, which include sanitation and pest control, are
intended to be applied at all levels of the supply network and are required by
most standards governing the food and beverage and pharmaceutical
industries. Regulatory agencies understand that quality assurance is not
possible in some industries without establishing and ensuring clean, safe
conditions first.

Hazard Analysis and Critical Control Points (HACCP)
Hazard analysis and critical control points (HACCP) is a seven-step process
for assessing and mitigating risks to food safety. It begins with conducting a
hazard analysis, then using the hazards identified to uncover ways to control
or prevent each of them. A monitoring system to regularly evaluate these
critical control points (CCPs) is put in place, and from this, corrective actions
may be identified. Performance of the system, in terms of the variables that
are monitored using the CCPs and their limits, is tracked and recorded to
support compliance audits.

Product Life-Cycle Management (CAD/CAM, ETO, MTO)
Managing the design and production of complex products can require
tracking hundreds (or thousands) of documents and variables—including 2D
or 3D computer-aided design (CAD)/computer-aided manufacturing (CAM)
models (which can be annotated), BoMs, part attributes, revisions, and
engineering change requests—and collaborating across teams that may be
geographically distributed. Make to Order (MTO) systems require tighter
synchronization among product definitions, facility capabilities, and
production orders. Engineer to Order (ETO) systems require sophisticated
integrations, because change requests may be issued while production is
ongoing. Some product life-cycle management (PLM) systems incorporate
MES/MOM functionality, ensuring a seamless transition between product
definition and production.

Production Part Approval Process (PPAP)
Before engaging a supplier, sometimes it is important to get additional
information about its product and the quality management systems used to
maintain the production process. In some industries, including automotive



and aerospace, this communication process is accomplished by the
production part approval process (PPAP). PPAP software helps you select the
right controlled documents to include in Part Submission Warrants (PSWs),
and send the documents and the PSW (sometimes electronically) to the
organization that is performing the design qualification on you. Alternatively,
you may be performing a design qualification on an item from another
organization and need to request a PPAP from the organization. PPAP
packages can include many other artifacts, including FMEA, control plans,
and inspection reports.

Quality Management System (QMS)
Software for a QMS helps track requirements, identify and resolve issues that
prevent requirements from being met, ensure progress toward continuous
improvement, and drive a quality-focused culture. Some of the functions
supported by QMS software include the following:

Nonconformance Reporting. A nonconformance arises when variation exceeds the
normal limits in a process, or a product is produced that does not meet a
requirement. The requirement that was violated, along with its source, evidence, and
the source of the evidence, is captured, triaged, and contained.
Customer Complaints. These are nonconformances raised by customers.
Continuous Improvement/Corrective and Preventive Action (CAPA). If there is a
broader problem that an immediate countermeasure cannot resolve, a corrective
action is launched. Problem-solving processes, such as root cause analysis, are
applied in response to the severity and complexity of the nonconformance.
Audit Management. Especially for organizations that maintain certifications to ISO
standards, internal and external audits are used to ensure that each clause of the
standard is being effectively addressed. Audit systems help reviewers keep track of
requirements, evidence, and findings and carry out action items to respond to those
findings.
Management Review. A regular, cross-functional leadership review of an
organization’s QMS is required to obtain some certificates (including ISO 9001, ISO
13485, and ISO 27001). Management review software gathers audit results,
customer feedback, process performance results, the status of nonconformance
reports and corrective actions, follow-up actions from previous reviews, and external
changes that could impact the performance of the QMS.

In addition to continuously improving products and production processes,
QMS processes are used to improve the QMS itself.

Risk Management (DFMEA, PFMEA, Control Plans)
Both product design and production processes have risks, many of which can



be addressed or mitigated with appropriate planning. Failure modes and
effects analysis (FMEA) provides one approach for conducting this due
diligence. A design FMEA (DFMEA) articulates potential failure modes for
each function of a product, while a process FMEA (PFMEA) outlines
potential failure modes at each step of its production. DFMEA can be used to
draw out requirements for test and verification plans, while PFMEA is used
to identify effective process controls that are captured in control plans.

Supply Chain Management (SCM)
There are many different types of supply chain management (SCM)
applications. These include supplier relationship management (SRM) systems
that manage only supplier contacts, certifications, and supplier-issued
nonconformances, and supplier quality management (SQM) applications that
go deeper, populating scorecards and performing risk monitoring to make
sure that suppliers are meeting their obligations. Suppliers that do not meet
requirements can quickly be identified, and restorative actions taken. More
complex SCM applications address supply chain planning, including
managing against variability in demand and balancing production
requirements across multiple sites and facilities.

Training and Certification Management
Many organizations need to keep track of who is qualified to perform what
job, whose training is up to date for high-risk work (e.g., confined space
training), and who is qualified to audit others’ work (particularly for internal
ISO auditors). Training systems, which are sometimes integrated with
employee records in ERP, can be obtained to make sure training and
qualifications are up to date before a worker performs a task. This is
important to maintain a safe work environment and to demonstrate
compliance with certain standards.

LEVEL 5: STRATEGY AND GOVERNANCE
Although not called out by the ISA-95 model, there are other information
management systems that operate on timescales from months to years. These
are the systems that monitor performance at a high level and provide
information to executives and senior leaders regarding how well policies are
performing and how well the strategy is being deployed. Key systems are
described in Table 9.6.



TABLE 9.6.  Functions and entities in a system of record for key strategy and
governance systems.

ISA-95 Software system Function
System of
record for:

Not
Available

Corporate
Performance
Management
(CPM)

• Budgeting
• Planning
• Modeling
• Forecasting

• Strategic
plan
•
Scorecards
• Budget
• Financial
reports
•
Operations
reports

Not
Available

Governance, Risk
Management, and
Compliance (GRC)

• Monitor information access
against privileges
• Maintain records for
financial and legal/regulatory
compliance (e.g., SOX,
GDPR), including audits
• Maintain records for
management systems (e.g.,
ISO 9001, 14001, 31000,
45001), security (ISO 27001),
and IT compliance (ITIL,
COBIT)

• Controls
•
Processes
(sometimes)
• Records
• Financial
audits
• Legal
audits

Not
Available

Organizational
Risk Management
(ORM)/ Integrated
Risk Management
(IRM)

• Identify hazards
• Assess risks
• Address risks

• Hazards
• Risks
• Risk
management
plans

Corporate Performance Management (CPM)
CPM systems track information that is needed by the CEO and his or her
closest senior leaders to keep the business running. This includes financial
planning and projections, performance to budget, and performance of
initiatives to the strategic plan. There is overlap between CPM systems and
financial modules in many ERP systems.

Governance, Risk Management, and Compliance (GRC)
GRC systems help organizations comply with financial regulations (e.g.,



SOX), data protection regulations (e.g., GDPR), labor laws, and management
system standards (e.g., ISO 9001, 14001, 27001, 45001). Although GRC
systems are intended to provide a view into these functions from the
executive and board levels, there is a clear overlap between GRC systems and
QMSs. GRC software reduces the risk of fraud and increases the ability to
detect malicious attacks in other software systems (e.g., ERP).

Knowledge Management
Knowledge management systems capture and organize information, and often
create taxonomies and expose utilities like search to make information easier
to find. Many software applications brand themselves as knowledge
management, and in fact, any software system that manages data could fall
into this category. Content management systems, wikis, document
repositories, and messaging systems for team support all provide ways to
manage knowledge.

Organizational Risk Management (ORM)
Risk management often requires intense coordination across functional
boundaries. Especially if an organization is using the ISO 31000 standard for
guidance, addressing risks requires establishing an organizational context,
deciding on risk communication plans, outlining hazards, assessing risks
(which includes identifying, analyzing, and evaluating them), and addressing
risks. This last step can include a decision to avoid or ignore the risk, accept
or amplify the risk to capture opportunities, remove the risk by changing
organizational processes or business context, or shift the burden of the risk
(e.g., by getting insurance). Because the environment changes regularly, this
catalog of risks and how they are being handled changes on a regular basis.
ORM software, which is sometimes called Integrated Risk Management
(IRM), keeps track of these elements.

Sustainability Performance Indicators (SPIs)
Nearly 75% of the S&P 500 in the United States prepare a sustainability
report each year, describing their company’s performance with respect to the
economy, the environment, and society. Reporting is governed by Global
Reporting Initiative guidelines. Economic indicators include proportion of
spending on local suppliers and wage ratios across genders. Environmental
factors include GHG emissions, energy consumption, water quality



discharged into the environment, and the proportion of recycled materials
used as inputs. Social factors include human rights, fair labor practices, and
handling of customer and employee privacy. This data is often captured as
Sustainability Performance Indicators (SPIs) in a Sustainability Performance
Assessment system. SPIs are sometimes included in EHS software (Paun et
al., 2016).

DATA PLATFORMS
Before Industry 4.0, when companies referred to a “data platform” they
typically meant the enterprise relational database (RDBMS). This was where
all mission critical data was stored. It was assumed that the data volume and
velocity were not that large, and it imposed requirements on the structure and
types of data that could be stored.

With the advent of broader data types (image, audio, spectrum, video,
unstructured), the traditional RDBMS could no longer support all the
organization’s needs. Rather than force-fitting unstructured data into the
RDBMS, for example (which would be better served by a NoSQL database),
the concept of a wider, distributed data platform emerged—an amalgam of
on-premise and cloud-based services that together could satisfy new use
cases stimulated by big data:

I now see the “Data Platform” as much broader than ever before and includes many
other “non-traditional” data services …

Relational Database Platform (RDBMS) (i.e., SQL Server, Azure SQL DB/DW,
Oracle, SAP Hana, MySQL, etc.)
NoSQL (i.e., DocumentDB, MongoDB, Cassandra, etc.)
Big data Solutions (i.e., Hadoop, Data Lake, etc.)
Intelligent Data (i.e., Cognitive Services, Machine Learning, Deep Learning, etc.)
Data Ingestion/Management (i.e., Event Hub, IoT Hub, Stream Analytics,
Polybase, Data Catalog, Data Factory, etc.)

Just outside of the periphery of these are additional services such as Bots, and Workflow
(i.e., Logic Apps, Flow, etc.) which are not “Data Platform” per se but worth mentioning.
Some will probably successfully argue these could and should be part of the Data
Platform? Time will tell. (Tesmer, 2017)

The relationship between types of technologies that form the data platform
and ISA-95 levels is shown in Table 9.7. Although there may be differences
between organizations and between industries, this should provide a general
view of where the technologies will be used. Organizations will need to
examine their data platform at all levels of the ISA-95 hierarchy, with their



specific business planning and production needs in mind, to ensure that all
scenarios for data storage and retrieval are covered.

Together, software applications and data platforms can be used to more
easily manage the information flows between levels of the ISA-95 hierarchy
(Figure 9.3). This model can also be used to make sure that the data required
to establish business results flows from its source to the level where it is
analyzed and acted on.

THE BOTTOM LINE
Software applications and data platforms provide containers that hold logical
subsets of an organization’s knowledge and process intelligence. Every
organization should have a clear picture of which software systems provide
the system of record for each key object, entity, and transaction. This helps



reduce the costs and risks of information management and increase the
quality of decisions made using that information. The ISA-95 hierarchy can
be used to describe any organization’s work systems, recognizing that the
IIoT is making it possible for systems and devices to easily communicate
across levels if desired:

Levels 0 and 1—Physical Process Control/Gemba (where the work is done)
Level 2—Monitoring and Supervision
Level 3—Operations Management
Level 4—Business Planning and Logistics
“Level 5” (Jacob, 2017)—Strategy and Governance

Even though this chapter was focused on understanding the links between
software systems, not all these information systems must be supported by
software or be resident on a data platform. In most (if not all) organizations,
there remain manual processes or processes supported by rudimentary
technologies (like Excel). For effective data management, the important part
is to have an awareness of where these processes are taking place, what
systems are supporting them, and where accurate and complete master data
(in systems of record) can be found. This will help prevent waste and rework.
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CHAPTER TEN

BLOCKCHAIN

The blockchain revolution is coming, but you might not see it.
—BRIAN BEHLENDORF, EXECUTIVE DIRECTOR OF HYPERLEDGER

(BLOCKCHAIN PLATFORM)

Maersk is a cargo network founded and originally headquartered in Denmark.
Today, the company operates in 120 countries, is over 100 years old, and is
still family owned and operated. In fact, Maersk is in its fourth generation of
leaders from the same family. As of 2019, the company has grown to employ
nearly 80,000 people. It transports shipping containers by sea and by land,
manages logistics for those shipments, forwards freight that originates on
other networks, and operate terminals at ports. Maersk is the largest global
transport company and has been an all-around technology leader since the
1980s, when it operated its own communications network, including a private
way to transfer data.

One Tuesday afternoon, in an office at one of the main facilities in
Copenhagen, an employee glanced at her laptop and noticed the screen was
black. She checked to make sure the power plugs were correctly attached—
when the cable slips out, the whole battery can quickly drain. But the power
cords were firmly in place, and the green power light was on. A minute or
two later, she noticed a tiny little text warning in the upper left-hand corner
that said “Repairing file system on the C drive.” She hadn’t received any e-
mails about maintenance from the IT department, and it wasn’t a good time
for an update. There were too many e-mails to finish before closing time.

No matter how many times she hit Enter or pressed Escape, the message
just stayed on the screen. The hard drive wasn’t whirring at all, and there
were no other clues to be found. She left her office to visit the IT desk.

When she got there, the line was out the door and down the hallway. She
found out that the other people standing in line were all there because their
laptops had also gone dark. The man in front of her explained that some



rogue process had encrypted all of his files, and the newest error message
said he wouldn’t get them back unless he sent bitcoin. There were varying
levels of responsiveness from the laptops people in line were holding.

All of a sudden, every computer in the building shut down. People were
disoriented and confused, and some started to panic—maybe something was
really wrong. An announcement went out over the building’s speaker system,
directing everyone to unplug or turn off all machines immediately. The quiet
soon overtook every room and hallway. In a completely connected company,
there was nothing to do—everyone was told to go home.

What these Maersk employees didn’t realize was that this same scenario
was playing out in every Maersk office in 130 countries. Not too long after
the shutdown, trucks in transit started backing up at the ports, making lines
along the road back from the security gates. Some of them had cargo that
needed to be refrigerated, and yet only had so much fuel to maintain the
chillers. Drivers were getting angry. The ports had shut down, and trucks
could not even pull out of the line and head elsewhere because there was no
room to navigate. Everyone was stuck.

Nearly all of Maersk’s operations were at a standstill. Over a million
dollars was being lost every minute. Although it hadn’t traced the problem
back to its source yet, someone had installed accounting software on one
computer in the Maersk office in Odessa. It was software specific to Ukraine
operations, and it also happened to be infected with ransomware that was
programmed to lay dormant until it received its orders. And on that Tuesday,
the orders were silently—and electronically—issued to the machines in wait.

This was the beginning of the NotPetya cyberattack, which, within hours,
knocked out the entire Maersk infrastructure. Although the incident resulted
in $200–$300 million in losses, theft of a shipping line’s data could have had
even more serious consequences. For example, pirates or enemy nations
could use ship location data to plan and execute cargo theft, take seamen
hostage, or worse.

There is a happy ending to the Maersk story. All of the company’s domain
controllers had been wiped out, and its recovery plan assumed that a backup
could be obtained from another live site. With zero live domain controllers,
this was impossible. Fortunately, a power outage at the Accra office in Ghana
had knocked its domain controller off-line, and serendipitously, it had not
been impacted by NotPetya. Maersk was able to recover, but only thanks to
this fortunate accident (McQuade, 2018).



The reason Maersk operations came to a standstill is that its information
resources were centralized in databases connected to one another by a
network of domain controllers. Once the ransomware got inside the Maersk
network, it was able to take the whole thing down as soon as it was activated
because all the data repositories were connected. Distributed data
management systems that do not rely on a single network or infrastructure,
like cloud-based systems, could have protected its data from a catastrophic
attack more effectively—but even secure cloud systems do not have the level
of security needed to support a business the size of Maersk.

In 2015, Maersk partnered with IBM to implement a system based on
permissioned blockchain (which will be described later in this chapter) to
connect the containers, shippers, carriers, and the ports. A heavily paper-
based process was digitized, with records captured in the blockchain. In
addition to adding transparency, the improvement removed process
inefficiencies and reduced losses due to errors, tampering, and fraud (Hackius
& Petersen, 2017).

Learning from this proof of concept, Maersk joined the TradeLens
blockchain consortium in 2019, in which members “gain a comprehensive
view of their data and can collaborate as cargo moves around the world,
helping create a transparent, secured, immutable record of transactions”
(Maersk, 2019). Although the link between the attack and the choice to invest
in blockchain was never explicitly made, the company’s decision came only
months after realizing the losses.

There are many more cases like this one. Prototypes and pilots based on
blockchain, particularly when they use permissioned systems, are beginning
to demonstrate clear and compelling business impact. In this chapter, you will
learn what a blockchain-based system is and understand when it should (and
should not) be considered as one of the elements of your organization’s
digital transformation.

WHAT IS BLOCKCHAIN?
A blockchain is a shared, digital ledger that contains transaction data. Each
transaction is joined to the sequence of prior transactions like a link in a
chain, and the data structure containing them cannot be changed once a new
record has been logged and verified. The algorithms used to create each new
link in a blockchain mathematically guarantee that, once accepted, the details
of the transaction in the ledger cannot be altered without applying an



immense (and impractical) level of computing power.
All parties to the transaction, and neutral third parties that are members of

the supply network or business ecosystem, maintain their own copy of the
ledger. This ledger is a blockchain. The nature of this data structure, and the
unique computational processes used to create it, means that it is impossible
to fake information or cheat on a transaction.

As the name implies, the blockchain data structure is made up of blocks of
information, linked together in sequence. The content of each block is
determined by the nature of the transactions that need to be stored. With
bitcoin, each block contains a list of recent transactions of bitcoin moving
between digital wallets. For supply chain tracking, a block could contain
information about an event (e.g., arrival, departure, inspection) and
characteristics of the event (e.g., time, status, environmental conditions), or
any transaction of information, materials, or money. A block can contain any
information that can be represented digitally, including photographs, video,
audio, or text.

Permissioned Versus Permissionless
There are different ways blockchain can be implemented, depending on the
degree of anonymity that is required and the degree of trust that is present in
the network or ecosystem. As a result, blockchains can be public or private,
and “permissioned” or “permissionless.”

In public blockchains, no one controls the blockchain (maintenance is
shared among participants), whereas private blockchains are more like your
company’s corporate network. In permissionless blockchains, anyone can
join the transaction network at any time (as in the bitcoin and Ethereum
cryptocurrencies, for example). Permissioned blockchains, in contrast, can be
managed and manipulated only by trusted partners that have been granted
access to the blockchain.

The blockchain concept emerged from the concepts of distributed systems
and peer-to-peer networks. In distributed systems, participants are well
known and their behavior can be somewhat controlled. Peer-to-peer systems,
in contrast, let any participant join the network and provide distributed access
to files or resources (e.g., Napster for music, BitTorrent for videos). Because
a request can be fulfilled by multiple participants (sometimes even within a
single transaction), they are robust and provide high availability, but are
particularly prone to cyberattacks. Peer-to-peer networks are thus essentially



“permissionless” systems—they assume that most of the participants are
honest. This assumption reduces the barriers to entry but increases the risks
associated with cyberattacks (Benton & Radziwill, 2017).

Bitcoin Versus Blockchain
Although often confused with one another, the bitcoin cryptocurrency
(though based on a permissionless blockchain) is not the same as blockchain
itself. Bitcoin, which is one example of an application that is enabled by this
emerging technology, runs on a public, permissionless blockchain. New
bitcoins are “mined” by solving a prescribed, difficult class of computational
problem, a task that requires extreme processing power that is inaccessible to
typical computer users (called Proof of Work). Due to the computational
nature of the bitcoin mining game, only 21 million bitcoins can ever be
obtained; by mid-2019, nearly 18 million were already in existence.

Although bitcoin was published as an idea in 2008 and initially released as
software in 2009, it attracted interest because it was not backed by any
government and was purely digital. Trading with bitcoin began shortly
thereafter, its independence from government currencies making it the
method of choice for illegal purchases. The price of a bitcoin hovered under
US$10 and then spiked to $100 in early 2013 and $1000 in late 2013. At the
end of 2017, a frenzy ensued when the price surged to $19,783.06 on
December 17. The frenzy amplified when bitcoin tumbled, losing over half
its value in just two weeks. (Bitcoin prices are available from
http://www.coindesk.com and http://bitcointicker.co.)

Even though bitcoin is compelling, there are drawbacks. First of all, if you
lose your password or access to your bitcoin wallet, your investment is
inaccessible forever—it cannot be recovered. As a public, permissionless
blockchain, bitcoin is subject to the “51% attack,” in which a group of
affiliated bitcoin miners gain control of the ability to approve new blocks on
the bitcoin blockchain and can prevent miners who are not in their group
from verifying the computations used to mine new bitcoin (Boddy, 2019).

Growing the Blockchain
As time goes on, and events and transactions occur in a supply network or
business ecosystem, information about them is stored in the public or private
blockchain that supports the network. Much like the adoption of fax
machines in the 1970s and 1980s, the value of any particular blockchain

http://www.coindesk.com
http://bitcointicker.co


(especially private, permissioned blockchains) will increase as the number of
participants in the network increases.

Figure 10.1 shows an example of the data stored in a single block in the
bitcoin blockchain. This is representative of the types of data you might see
stored in any blockchain. The number of times bitcoin was bought or sold is
included (Number of Transactions), as well as details about the event when
the block was recorded (Timestamp, Received Time, Relayed By) and even
energy usage (Weight). Details about each of the 1,121 transactions recorded
in this block are at the bottom, off the screen. In the right-hand column, two
key fields that define this collection as a blockchain can be found: a long
string of letters and numbers called a hash under Hash, and another long
string of letters and numbers (also a hash) under Previous Block.

The process of constructing the next block in the blockchain goes
something like this:



1. Gather information to store in fields (Number of Transactions, Output Total, etc.)
2. Copy the hash from the previous block (Previous Hash) into a field in the new block
3. Hash the entire collection of information (fields + Previous Hash) to get a new hash
4. Store the new hash in the Hash field

This is great, but what’s a hash and how do you get one? That’s the subject of
the next section.

HOW BLOCKCHAIN WORKS
Blockchains depend on hashing, a cryptographic, mathematical process that
turns an object into a sequence of unique numbers and letters. (The root
crypto- in the word cryptocurrency also reflects the importance of
cryptography in building the blockchains that support new currencies.) In
fact, you are already familiar with cryptography, even if you don’t realize it.

Hashing Algorithms
Most of the password-protected systems you use do not know your actual
password. When you save a new password, the system hashes your password
to create a random-looking sequence of numbers and letters. It stores that
sequence, but not your actual password. When you log in, your input is
hashed and compared with the hash of your real password that the system
knows. If the two hashes match, your login is successful. This is why so
many systems require you to reset your password if you forget it—it’s not
that they won’t give it to you but that they don’t actually know what your
password is. They just know the hash, and it is impossible to un-hash a
sequence to recover the original. Examples of some hashes are shown in
Table 10.1.

TABLE 10.1.  Example of hashes for “Hello World!” using different hashing algorithms.

Hashing
algorithm Hash

SHA-1 a7cfe0581825aaeb63231804f8ef181e54305a10
CRC32 32253911
MURMUR32 ef6abc31
MD5 7737f5add04daf9160355b65338a5caa
SHA-256 9374f2c6f404965fb4ef8299642a8ede7b1cbe5a5e58f65a05d7a52e4e20ed91

There are numerous hashing algorithms, each producing different lengths



of sequences. As you can imagine, the longer the sequence, the less chance
that if you hash two different data objects, the same string of letters and
numbers will be produced. As a result, the greatest collision avoidance for the
hashing algorithms in Table 10.1 comes from SHA-256, SHA-1, and MD5
respectively. This is why SHA-256 (which stands for “secure hashing
algorithm”) is often used in production systems.

Hash My Cat
Because you can hash nearly any data type, in the following example we will
hash my cat, Lexington, whose picture appears in Figure 10.2. To do the
hashing, we use the digest package from the R Statistical Software. (You can
get the image data to walk through this example yourself at
https://github.com/NicoleRadziwill/Data-for-R-
Examples/blob/master/kitty.7z on GitHub. First, download and unzip the file
to a directory on your hard drive. The four files in this zip archive are on my
D: drive in the Test directory.)

https://github.com/NicoleRadziwill/Data-for-R-Examples/blob/master/kitty.7z


The hashing process encapsulates all the information in a data object, no
matter how big it is, in a string. For SHA-256, this resulting string is a 256-
bit, 64-character sequence of numbers and letters. Applying a SHA-256 hash
to the picture of my cat in Figure 10.2 results in a 64-character string starting
with dcd239 (Figure 10.3).

Using this SHA-256 hash, we can easily solve problems that would
otherwise be difficult. In Figure 10.4, there are four pictures of my cat. One



of them has been manipulated and is not the same as the others. Can you tell
which one? The hashes for each picture are in Figure 10.5.

Looking at the code in Figure 10.5, it is easy to see that the third picture is
the deviant (the one with the hash that begins with fe5751). But when you go
back to the collection of images in Figure 10.4, can you tell what the
difference is? Probably not, and this is one of the limitations of hashing: you



can quickly pick out which object is different, but it takes extra work to
figure out exactly what the difference is. (In the third picture, a single pixel
on the back left corner of the cutting board to the right of the cat has been
turned to white. If you zoom in or use a magnifying glass, you may see it.)

The Value of Blockchain
Tiny changes in data that would be undetectable to even the most careful
human will generate easily detectable changes in a hash. Because each new
block of records includes the unique hash from the previously recorded
block, no new data is recorded without keeping a snapshot of all the data that
has ever been recorded in the blockchain, in sequence, in the form of the
previous block’s hash. As a result, any attempts to tamper with data in a
blockchain will disrupt the sanctity of the hashes. The blockchain will
immediately alert its administrators if fraud has occurred anywhere along the
chain of transactions (Figure 10.6).

Blockchain is an immutable peer-to-peer transaction record, transparent to
everyone in its network and instantly auditable. In fact, since rules in the
form of “smart contracts” are in place in most blockchain-based systems to
evaluate and validate the data before it can be committed to the blockchain,
bad data shouldn’t even be able to get in. Thus, blockchain has the potential
to help organizations significantly improve data quality, reduce fraud and
tampering, and substantially improve visibility and transparency.



CASE STUDIES
Competing in a fast-moving global business environment means that the
quicker you can get accurate, complete information, the better decisions you
will make. Unfortunately, with so many different ways work processes can be
performed, and so many different ways data can be captured, it can be a
challenge to synchronize processes across organizational boundaries. This is
true even when supply network or business ecosystem partners share the
same spoken language.

Blockchain-based systems provide the opportunity to standardize the
language of exchanging information without necessarily constraining its
content or structure. This section describes four examples, from research and
practice, of how blockchain prototypes are already smoothing business
processes that were formerly extremely complicated.

Walmart: Safer Food with Instant Traceability
Consumers are accustomed to hearing about occasional food safety issues in
the news, including the up-front delay as investigators rush to figure out the
source of the outbreak. The situation can become dire when deaths are
involved and the affected food items have not yet been isolated. In the United
States, every year 48 million people become ill due to foodborne illness,
while 128,000 are hospitalized. From this group, 3,000 will ultimately die
(Freeman, 2019).

The more quickly organizations can respond to a health crisis that results
from food contamination, the fewer number of people will be affected, and
the less likely people will become ill or die. Consequently, finding the source
of the problem as quickly as possible is the priority. Being able to respond
more quickly can save lives and corporate reputations when food safety is
concerned.

One day [in December 2016], Frank Yiannas went to a Walmart store near company
headquarters in Fayetteville, Ark., and picked up a package of sliced mangoes. Yiannas
is Walmart’s vice president of food safety, and the fruit was part of a crucial experiment.
He brought the mangoes back to his office, placed the container on a conference table,
and gave his team a mission. “Find out where those mangoes came from,” he ordered,
setting a timer. It took six days, 18 hours, and 26 minutes to get an answer.… In the
event of an outbreak of foodborne illness—one in which a suspected pathogen is tied to
mangoes somewhere—a lag that long could be painfully costly. By that point, Walmart
might have had to pull every package of every mango product off its shelves, as a
precaution; farmers, distributors, and Walmart itself would take the hit. (Hackett, 2017)



But it’s hard to manage information within an organization, and
exponentially harder to keep track of information that goes beyond
organizational boundaries. In an increasingly globalized marketplace,
scouring the records from what may amount to hundreds of organizations can
be not only time-consuming but potentially impossible.

Traceability can improve response time by making the investigation step
nearly instantaneous: Walmart’s prototype solution for mangoes reduced
tracking time from a week to 2.2 seconds (Kamath, 2018). These pilot
programs demonstrated value to all stakeholders and motivated players across
all parts of the supply network to collaborate further. Moving forward,
Walmart required its suppliers of leafy greens to join the IBM Food Trust, a
supply chain traceability network built using a permissioned blockchain, by
September 2019 (Lin, 2019).

IBM Food Trust: A Hyperledger Exemplar
The Food Safety Modernization Act (FSMA) was signed into law by
President Obama in 2011. Organizations immediately began a multiyear
process to comply with the new standards. FSMA establishes a broad vision,
driven by safety, quality, and sustainability. It compels organizations to think
more holistically about the interrelationships among risk management,
decision making, and the environment, and is raising the bar for what can and
should be done in food and beverage operations, even outside the United
States. To meet these heightened requirements, some organizations are
turning to blockchain-based solutions.

The IBM Food Trust, one of these efforts, is built on the Hyperledger
blockchain platform pioneered by an open source effort led by the Linux
Foundation. This blockchain initiative, from its inception, has been driven by
actual and business needs of more than a hundred large organizations that are
committed to becoming early adopters.

I have all the information I need to prevent an outbreak and I can’t see it because of
all the noise. Because everything is on paper and I can’t connect the dots.

—NATALIE DYERSON, VP OF FOOD SAFETY & QUALITY, DOLE

IBM Food Trust is designed to serve small, medium, and large enterprises
and is one of the most active enterprise blockchain networks in operation.
Growers, suppliers, and retailers can all cooperatively share details about
food origin, processing events, handoffs, shipping details, and transit



conditions. The end result is a degree of transparency that serves as a
cornerstone for holistic and integrated food safety and quality management
systems. Not only can this ease FSMA compliance, but it is tremendously
beneficial for responding to food safety incidents quickly and accurately to
prevent injury and illness (Newsroom, 2018; Lin, 2019).

Circular Economy: The Textile Industry
In addition to enhancing traceability of events and transactions, many
companies are being pressured to ensure traceability of their products as well.
Sometimes, this pressure comes from consumers who demand information
about what they buy; other times, the pressure is from regulatory bodies that
need to enforce legal requirements in their countries. Whether motivated by
competitive pressure or compliance, many industries are pursuing emerging
technologies like blockchain to enhance transparency and enable new kinds
of decision making.

Rusinek et al. (2018) explored how blockchain might be used to enable
circular and sustainable textile supply chain management. A circular
economy is an economic system, like a supply chain, that is designed to
minimize or eliminate waste. The sustainable life cycle for textiles involves
reuse, recycling, and remanufacturing, all to avoid the landfill (which leaves
waste) or incineration (which requires energy) at end of life. The value-add
for a blockchain solution in textiles—in contrast with food production, where
safety is the driver—is providing information to supply chain partners so they
can more effectively choose suppliers that share their core values:

All actors involved in the supply chain—from raw material producers to consumers—can
see the full environmental and social impacts of their choices and use this information as
the basis for exploring alternative procurements. (Rusinek et al., 2018)

Their solution used a requirements-based approach to envision the structure
of a system to support the specific needs of the textile industry. A collection
of blockchains, each supporting a particular goal of the textile, was proposed.
Figure 10.7 shows potential economic, environmental, social, and other data
objects that would be stored on blocks. This framework could be used to start
a blockchain network like IBM Food Trust, but for textiles.



Energy Demand Management
Blockchain is also being investigated to support new business models. These
include energy markets where residential, commercial, and industrial
consumers may also produce energy to contribute back into the market (ASQ,
2015) and demand management in these distributed energy systems.

Wang et al. (2019) prototyped a system to explore the latter case of
demand management. They implemented smart contracts to ensure data
quality surrounding programmable user behaviors, and perform checks to
make sure transaction records were credible and legitimate as compared with
historical data. They concluded that peer-to-peer power trading is certainly
feasible but, using their specific design, may not be robust to high-frequency
trading and scalability to larger service areas.

The Future of Auditing
Audits in finance and healthcare have also been identified as candidates for
breakthrough improvement using blockchain solutions. The impact of
blockchain on quality audits has not yet been explored by researchers and
remains an open area for investigation.



In finance, Vishnia and Peters (2019) built a prototype to explore
resilience given malicious actors, efficiency for high-volume transactions,
and the ability to support dark pools (trading executed on private networks
that are not accessible to the trading public). Based on their results, they
recommended a “governed blockchain,” with distributed nodes at each
trading venue and optionally at the regulator as well. Ortman (2018)
concluded that the biggest benefit for applying blockchain to financial audits
may actually be financial and come from the ability for firms to dispatch
smaller audit teams to accomplish typical jobs:

Auditing, the examination of financial transactions, has always been an essential part of
the regulation of markets. Proving the order of events and verifying who the action
takers, i.e., traders were in each event, is fundamental to ensure that the markets are
operating successfully without interruptions and added risk to market participants …
[regulators and] individual exchanges ensure veracity and validity of the reported trade
actions. (Vishnia & Peters, 2019)

In healthcare, blockchain has also been explored for record keeping,
particularly for electronic health records (EHRs) (Anderson, 2018). Angraal
et al. (2017) explored using blockchain to improve authenticity and
transparency for several use cases, including EHR and claims processing.
Although the desire for improved auditability of health records was clear,
they found that several issues may delay implementations, including concerns
about scaling, cost, storing personally identifiable healthcare data in a ledger
that may be publicly exposed, and the potential to “re-identify” patients by
making inferences.

IS A BLOCKCHAIN SOLUTION APPROPRIATE?
Despite the excitement and promise of blockchain applications, there are
many cases in which a traditional relational database solution will be more
appropriate than a blockchain solution. Wüst and Gervais (2018) provide
guidance on how to tell the difference in Figure 10.8. They explain that the
decision depends primarily on five factors:

Statefulness—If you need to exchange information but not store it, a blockchain
solution is not appropriate (in these cases, a database may not be required either)
Multiple writers—If a single person, organization, or agent commits new records to
the data repository, blockchain is probably not necessary
Trusted third party (TTP)—If an external agent is always available to verify
transactions and you do not need to rely on distributing the task of verifying data,
blockchain may not be needed



Trust in parties that will commit data—If you can monitor and verify all people and
agents that will be committing data (for example, through logins on a corporate
network), blockchain may provide a solution that is too heavy for your needs
Public verifiability—Sometimes members of the general public will want or need to
verify details of any transaction that is stored in the system; if all the other conditions
apply, this determines whether a public or private permissioned solution is better.

The default position for organizations should be that they will not use
blockchain unless a compelling business case can be made, preferably using
the guidelines above. If blockchain is an option, small pilots or prototypes
should be conducted, with data entry, validation through smart contracts, and
access to blockchain analytics all thoroughly investigated prior to a larger
commitment.

THE BOTTOM LINE
A blockchain keeps an immutable record of events, transactions, or both.
Blockchain solutions have the potential to help organizations significantly
improve data quality, reduce fraud and tampering, and substantially improve
visibility and transparency. As a result, they are ideal for solving large-scale



monitoring problems that require trust and cooperation across organizational
and global boundaries. A blockchain solution is best when multiple
organizations that do not all trust one another need to interact with a system,
and change states and data, but cannot agree on a TTP to validate all
transactions:

Blockchains are good for maintaining records of events and transactions.
A cryptographic hash is a unique string of characters and numbers that can be
produced from a data object. Although you can reliably convert the object into a hash,
you can never reverse the process and recover the object from the hash. A common
hashing algorithm is SHA-256, which generates 64-character hashes that are nearly
always unique (that is, they have good collision avoidance).
A blockchain is formed by creating a new data structure (a block) that contains a
unique cryptographic hash of the block that came before it, as well as the hash from
the new block of information that contains the previous hash.
The ledgers from public blockchains are visible to everyone, while those from private
blockchains are only visible to authorized parties.
Permissioned blockchains accept updates only from trusted participants.

Blockchain solutions provide supply network or business ecosystem
partners a single source of truth for event and transaction data at any point in
time, and across the entire network of participants, while letting data
producers maintain ownership and control over their own information.
Blockchain hype, however, means that many organizations are investigating
blockchain when a relational database would be more appropriate. To
determine whether you should consider blockchain, use the guidance from
Wüst and Gervais (2018). If you need to store information that will persist,
collect information from multiple writers, and cannot rely on a TTP to be
online all the time to validate transactions, a blockchain may be appropriate.
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CHAPTER ELEVEN

PERFORMANCE EXCELLENCE

The great enemy of communication, we find, is the illusion of it. We have talked
enough; but we have not listened. And by not listening we have failed to concede

the immense complexity of our society—and thus the great gaps between
ourselves and those with whom we seek understanding.

—WILLIAM H. WHYTE IN FORTUNE (1950)

To serve your community, you aren’t limited to volunteering in soup kitchens
or making donations to charity. In 2009, I led a five-person team of
undergraduate and graduate students working on a “service learning” project
—donating their new skills and expertise in quality and process improvement
to help the local community. Our focus was Social Services, an agency long
challenged by an extended placement time for foster children.

At the beginning of the project, the agency shared its as-is process
performance for child placement. It took (on average) 157 days to place a
child in out-of-home care, even when the assigned guardians were relatives.
That’s nearly four months. Because the majority of placements were the
result of court orders or serious safety concerns, any delays could seriously
impact the well-being of the child. Understandably, Social Services wanted to
improve its process.

Documenting the way an organization works gets everyone—literally—on
the same page. And working with Social Services, we learned this lesson the
hard way.

There were five key people at the agency working on this process, located
at three different buildings around town. I matched each of my students to
one of these key players and gave them three weeks to go meet their partner
and document the process flow from that person’s perspective. Usually, this
activity results in a collection of mostly similar process flows. When the
group reconvenes, they use the slight differences to call out places where
there is confusion or places where process participants have slightly different
expectations. You can use these gaps to identify issues that might be



negatively impacting the process, and then fix them during the improvement
process.

But this time was different. The five process flows looked nothing like one
another, and it was clear that there would be no reconciliation. I had the
students swap agency partners, and sent them back to duplicate the same
assignment. Three weeks later they came back with the exact same results—
five completely different processing and handoff processes.

Although we had grand plans for using discrete event simulation to
investigate and improve this process, I had to abandon that goal. We needed a
single process flow diagram, and we needed to confirm that each of the five
key players was meeting the expectations of the others.

It took six more weeks and two in-person meetings (with everyone around
the same table and collaborating at whiteboards) to come up with that single
sheet of paper. By the end of the sessions, the five key people were
apologizing to each other, saying that they had no idea they weren’t doing
exactly what the others were expecting, but that they were happy to start
working from the process flow they had all created as soon as possible.

Months later, we found that the placement times had dropped to an
average of 21 days. That’s nearly three potentially life-saving months per
child. We made a real impact by doing something simple: getting all the
players on the same page:

The truth is that having data, simply for the sake of having it, doesn’t benefit quality
improvement efforts. What manufacturers need is real-time process control and data
interrogation.… Effective process control in dairy production is all about consistency, not
only in taste profile and packaging, but also in how everyone works on the plant floor.
Critical to achieving this consistency is making sure everyone is on the “same page.” …
This means standardization in one quality intelligence system, overall production
processes and even naming conventions for parts, features and processes. The right
people need to get the right information at the right time—otherwise, too many
opportunities for improvement will be lost. To aid in consistency, workflows can provide
prescriptive steps to walk users through timely response. That way, in the event of an
issue, plant personnel always follow the same best practices. (Weisbrod, 2019)

Aligning workers around a shared understanding of the work may require
“coming to terms” with one another. Especially when emerging technologies
are concerned, it is important to clarify key terms to confirm that everyone is
talking about the same thing, no matter what your industry:

Take a public safety-first responder project I was involved in years ago. We stakeholders
weren’t speaking the same language. The municipality referred to “edge” as the data
visible to dispatchers at its network operations center. The drone company defined



“edge” as the computing and AI capability running in real time on the drone. We
considered “edge” the transport and compression capabilities to determine response
time in the cellular network and on the drone. Technically speaking, all these are edge
components. (Allgood, 2019)

Lack of a common vernacular, a basis for understanding one another, or
mutual trust can threaten any project or initiative. Roles and responsibilities
should be clearly articulated at the individual and team levels. Inputs,
outputs, and decision-making processes should be clarified and written down
so that no one has to guess or make assumptions. Project details, initiatives,
agreements, and updates should be captured and formalized to eliminate
subjectivity as much as possible. The greatest enemy of communication is the
illusion of it.

WHAT IS PERFORMANCE EXCELLENCE?
A model is a map for understanding a complex system (Edgeman, 2019);
frameworks for performance excellence are models that help build
understanding and trust in organizations. As defined by the Baldrige
Excellence Framework and explained in detail by Thürer et al. (2018),
performance excellence is

an integrated approach to organizational performance management that results in

1. delivery of ever-improving value to customers and stakeholders, contributing to
ongoing organizational success;

2. improvement of your organization’s overall effectiveness and capabilities; and
3. learning for the organization and for people in the workforce.

These frameworks go by several names, including business excellence,
operational excellence, and organizational excellence. They provide guidance
for describing work, aligning objectives with strategy, and monitoring
progress so that organizations can more easily adjust dynamically. These
frameworks share common features, including a focus on the customer, core
values that include efficiency and effectiveness, and an emphasis on risk-
based thinking and data-driven decision making. They provide a basis for
establishing a quality culture, navigating the dynamics of control and power,
and providing the discipline that leads to order and innovation (Freeman,
2019). Most significantly, using an excellence framework increases
opportunities for genuine communication across functional and
organizational boundaries, and focuses everyone in the organization on
continuous improvement.



Competitive advantage comes from the combined impact of improvements made
over time by each and every employee. If you and your organization aren’t

continuously improving, you are being left behind.
—REBECCA SIMMONS, ASSISTANT PROFESSOR OF INTEGRATED SCIENCE

AND TECHNOLOGY, JAMES MADISON UNIVERSITY

This chapter examines nine frameworks from the perspective of the
shifting technological landscape: ISO 9001:2015, TQM, lean management
(which incorporates practices from the Toyota Production System and
kaizen), Six Sigma (and Lean-Six Sigma), the Shingo model, Capability
Maturity Model Integration, agile methods, the European Foundation for
Quality Management model, and the Baldrige Excellence Framework.

CORE VALUES
Organizations pursue excellence to achieve sustainable, customer-driven
results, and to provide a solid foundation for innovation (Thürer et al., 2018).
To be successful, a delicate balance among autonomy, coordination, and
control must be achieved. Selecting a quality management philosophy or
excellence framework that best resonates with a company’s needs, given its
stage of growth and maturity, can support this journey.

In Table 11.1, core values from the nine frameworks considered in this
chapter are shown. While some models are holistic (addressing strategy,
operations, and competitive context), others are not (and address only aspects
of performance improvement specific to, for example, operations processes).
Many of the models are nonprescriptive, meaning that they capture principles
associated with best practices and not the practices themselves.

TABLE 11.1.  Core values associated with quality philosophies and excellence
frameworks.

Approach
to
excellence Holistic Nonprescriptive Core values

ISO
9001:2015

X Customer focus, leadership,
engagement of people, process
approach, improvement, evidence-
based decision making,
relationship management

Total Quality
Management
(TQM)

X X Customer focus, total employee
involvement, process focus,
integrated systems, strategic and



systematic approach, continuous
improvement, fact-based decision
making, effective communications

Lean
management

X X Long-term thinking, value, flow,
pull, continuous improvement,
teamwork, customer focus,
respect for people, information
sharing, management by facts,
management commitment,
honesty, responsibility

Six
Sigma/Lean-
Six Sigma

Reducing variation, data-driven
decision making, continuous
improvement, breakthrough
improvement, use of statistical
tools, top management
commitment, stakeholder
involvement, customer focus

Shingo
model

X X Respect every individual; lead with
humility; seek perfection; flow and
pull value; ensure quality at the
source; focus on process;
embrace scientific thinking (data-
driven decision making); think
systematically; create constancy of
purpose

Capability
Maturity
Model
Integration
(CMMI)

X Better process leads to a better
product, discipline, standardization

Agile
methods

Customer responses, minimal
overhead, requirements
refinement; from Agile Manifesto:
individuals and interactions over
processes and tools, working
software over comprehensive
documentation, customer
collaboration over contract
negotiation, responding to change
over following a plan

European
Foundation
for Quality
Management
(EFQM)

X X Adding value for customers;
creating a sustainable future;
developing organizational
capability; harnessing creativity
and innovation; leading with vision,



model inspiration, and integrity;
managing with agility; succeeding
through the talent of people;
sustaining outstanding results

Baldrige
Excellence
Framework
(BEF)

X X Systems perspective, visionary
leadership, customer-focused
excellence, valuing people,
organizational learning and agility,
focus on success, managing for
innovation, management by fact,
societal contributions, ethics and
transparency, delivering value and
results

Source: Adapted from Hellsten & Klefsjö, 2000; Chen et al., 2016; Van Dun et al., 217;
Shingo Institute, 2017; Elshafey & Galal-Edeen, 2008; van der Wiele et al., 2000.

Many of these philosophies and approaches share common elements:
Value and impact. Most frameworks assume that the reason people organize (as
businesses or nonprofits or even informal clubs) is to provide value to someone,
somewhere. These are often customers and stakeholders, but they can also be
members of a community, society in general, or nonhuman stakeholders like the
environment. Impact is the degree or extent to which that value is delivered.
Empathy and customer focus. Nearly all models assume that to deliver value to
customers, an organization must dedicate effort to understand their needs, respond
to them, and adapt to changes in those needs on a continuous basis. Empathy, “the
caring, individualized attention given to customers,” is an important element of this
process. The SERVQUAL instrument (for capturing customer perceptions of service
quality) includes empathy as one of its five key drivers of those perceptions
(Parasuraman et al., 1988). In addition, Coo and Verma (2002) found that empathy
was also tightly linked to the success of strategic planning and the quality of market
focus.
Data-driven decision making. High-performance organizations are committed to
finding (and making decisions based on) truth, even when it is uncomfortable. Kendall
and Bodinson (2016) tell the story of a financial services organization that had lots of
financial data but no market data, benchmarks, or in-process performance measures.
By gathering and making these other data sources transparent across the
organization, it was able to cultivate a culture where “data would not be used in a
punitive way but as a source of information that would lead to process improvement.”
Systems thinking. If two people can dig a five-foot hole in two hours, how deep will
four people dig in six hours? If you started calculating in your head, you’re missing
some of the elements that systems thinking might bring into play. For example, what
are the requirements for digging the hole, the environmental conditions, or the
characteristics of the workers? Are they all trained? Do they have the capability and
motivation to complete the task? Do we have a permit for digging? Will this negatively
impact other nearby projects? Is this digging legal, acceptable, or in a protected



area? There are lots of unanswered questions that will all influence how deep the
hole can get with our four people in six hours. Systems thinking requires us to step
back and outline as many of them as possible before we start digging.
Learning. Continuous improvement happens when we learn, collectively, about
ourselves, our work, our interactions, and the competitive environment we do
business within. Kovach and Fredendall (2013) found that learning is what makes a
continuous improvement successful, not just the presence of the structures or
practices for improvement.

Each of these core values is overlaid onto a basis for action in the
performance excellence frameworks. Defining actions, examining whether
those actions yield desired results (and if not, making appropriate adjustments
as quickly as possible), and balancing efficiency and effectiveness will all
still be essential (Thürer et al., 2018). For example, an organization that
implements lean management may decide to accept some waste in processes
if it leads to enhanced customer satisfaction. Although a digital
transformation initiative to replace a human customer service team with
chatbots and voice-response systems may have a substantial ROI and quick
payback period, if customers become unhappy as a result, holistic
performance has not truly improved.

PERFORMANCE EXCELLENCE FRAMEWORKS
Every organization is a complex assortment of people, processes, and
technologies. When a performance excellence framework is used as the basis
for communication, coordination, and improvement across organizational
boundaries, the workforce shares a common concept of what is required. In
addition, leaders can more effectively identify gaps in processes or issues
with organizational design that may be negatively impacting performance.

Determining which framework is best is always contextual. An
organization’s choice should be influenced by the size of the company, its
life-cycle stage (e.g., startup, growth, expansion, maturity), the company’s
core values and culture, its immediate needs, and the background and
capabilities of the workforce:

Highly technical frameworks like Six Sigma can be inaccessible to workers on shop
floors, in contrast with the principles of lean management, which are broadly
understandable (Mika, 2006).
Small, high-growth startups would benefit less from the rigor and complexity of CMMI
but could experience substantial performance improvements by implementing some
agile practices (Staples et al., 2007; Pino et al. 2008).
Software companies may struggle to see performance benefits from ISO 9001, which



can only help organizations achieve a baseline level of process maturity as described
by CMMI (Ijaz et al., 2016). Software companies may benefit more from domain-
specific alternatives like SPICE and ISO/IEC 29110—systems and software
engineering (Sanchez-Gordon, 2017).
Some frameworks are more common in particular industries. For example, the BEF is
well known and understood in healthcare, education, and government/nonprofits.

With these things in mind, nine frameworks are briefly summarized. The role
and relevance of each framework in the context of Industry 4.0 and emerging
technologies are also explored.

ISO 9001:2015
The ISO 9001:2015 quality management standard is “a set of criteria that,
when satisfied by an organization, enables it to demonstrate their capability
and in doing so give customers confidence that they will meet their needs and
expectations” (Hoyle, 2017). There are ten clauses (criteria categories) in ISO
9001:2015. In the text of the standard, detailed guidance is provided on the
following:

1. Scope
2. Normative references
3. Terms and definitions
4. Context of the organization
5. Leadership
6. Planning
7. Support
8. Operation
9. Performance evaluation

10. Improvement

Clauses 1 through 4 establish the context, while Clauses 5 through 10 identify
requirements for strategy development, execution, and improvement. In the
latest update, there are fewer requirements on documentation (for example, a
quality manual is no longer strictly required), but processes must still be
documented and records must be maintained and retained. ISO 9001:2015
was written to align with the 10-clause Annex SL standard, making it look
and feel like the other standards that use Annex SL. This update makes it
easier to integrate environmental management, occupational health and
safety, and quality processes, improving performance across the board while
streamlining audits.

Although risk management has always been part of ISO 9001, it takes a
much more prominent role in ISO 9001:2015. For example, Clause 4 requires



that you characterize your organization’s capabilities and desired outcomes in
the context of internal and external stakeholders’ needs. The purpose is to
help organizations recognize the need to tie structures for management and
continuous improvement to business outcomes.

Each organization can determine the appropriate level of rigor for its risk
management practices, and ISO 31000 can be used to supplement ISO 9001
for this purpose. Once the organizational context is identified (Clause 4), the
risk assessment process has three parts (identification, analysis, and
evaluation), followed by risk treatment. Treatment means making a choice:
you can accept the risk (or just agree to let it happen), avoid the risk (by
ignoring it or somehow externalizing it), transfer the risk (for example, by
buying insurance), or implement controls to reduce the risk. At the core of
this decision is identifying the potential negative consequences, their
likelihood, and the impact on your organization.

ISO 9001 is a common sense framework that can be used in any industry,
environment, or organization to support, scale and evolve your operational

processes. It provides a solid starting point for any digital transformation initiatives
you may want to pursue.

—NICKY JAINE, DIRECTOR OF QUALITY AND CONTINUOUS IMPROVEMENT
AT INTELEX TECHNOLOGIES ULC

In the past, ISO 9001 has been criticized because companies can “do all
the things right”—that is, operate according to documented processes and
procedures—and still not be guaranteed to “do all the right things.” Many
organizations have reported that it was very easy to achieve conformance
even without a viable business model using earlier versions of ISO 9001
(Priede, 2012; Aba et al., 2015). Many of the changes in ISO 9001:2015 were
made to remedy this. In the context of Industry 4.0 and emerging
technologies, ISO 9001 should accommodate improvements in intelligence
and automation well, although it may not be as robust in its support for
enhanced connectedness.

Total Quality Management (TQM)
In the 1980s, the notion of performance excellence began to grow from the
more limited roots of the quality practice in manufacturing. TQM applied to
all industries, fueled by scientific management and incorporating principles
from Deming’s system of profound knowledge, including psychology and
systems thinking. Evans and Lindsay (2005) contrasted TQM with the Six



Sigma philosophy, explaining that TQM
focused more on worker empowerment and teams,
provided tools for quality improvement activities within functional areas or
departments,
promoted tools and concepts that were straightforward and mostly qualitative, and
emphasized improvement for improvement’s sake, rather than the impact of process
and system improvement on business outcomes.

Although extremely popular at the time, TQM became a catch-all label for
all quality management practices rather than an actionable collection of tools
and best practice. Even today, researchers such as Bergman and Klefsjö
(2010) consider Six Sigma, ISO 9000, and lean management all part of the
TQM concept. This breadth and conflation may have contributed to its
downfall as a management approach:

Considerable confusion arises from the rhetoric of the quality movement. Many confuse
quality as a competitive issue with the particular name we assign to the efforts taken to
achieve that end at any given time. In the course of the 1980s, the term total quality
management became dominant. For some, TQM means simply doing quality control in
an environment of good communication and feedback. For others, it requires
participative management with strong leadership from the top. Still others think of quality
as doing things right the first time or conceive of it exclusively in terms of defect-free
products. Many equate it with customer satisfaction. Still others see quality as a toolkit of
quality methodologies. Finally, some see it as a management model.…

With management and media dynamics so close in America, almost as soon as such
a term spreads widely, it becomes a symbol for everything that goes wrong under that
rubric. By the mid-1980s, predictably, articles began appearing with the inevitable title
“Beyond Quality.” By the early 1990s, the very name TQM was already stigmatized and
increasingly out of favor.… [Many] had come to believe that the name was a liability.
(Cole, 1999)

Although TQM fell out of favor, the principles and practices it espoused
are solid and many provide the foundation for other excellence frameworks.
In fact, van der Wiele et al. (2000) note that the ISO 9000 series grew from
the foundation of TQM, providing organizations with an actionable route to
demonstrate and validate adherence to quality principles. Today, TQM is
rarely mentioned, but the predominance of “modern” frameworks like agile
and lean suggest that its core principles are deeply embedded in the corporate
zeitgeist.

Lean Management
The concepts of lean production and lean management emerged from
practices developed at the Toyota Motor Company in Nagoya, Japan, by Eiji



Toyoda and Taiichi Ohno. After observing the production system at Ford’s
Rouge plant in Detroit in 1950, they felt they could improve it. In addition,
they were aware that Ford’s mass production environment would not suit
Japanese workers, who expected to be treated well and would not put up with
the substandard work environment that the American “guest workers” would
tolerate.

By the late 1950s, Toyota had discovered many things. First, Ohno
perfected a process for quick exchange of the stamping dies used to form
steel auto components. This process, which could be performed by the
workers, made it possible to produce smaller batches. Being able to produce
smaller batches of stampings reduced inventory holding costs and revealed
quality problems much earlier in the process. Empowering anyone to call out
potential quality issues yielded far less waste and rework, even when the
production lines were halted.

“To make this system work at all—Ohno needed both an extremely skilled
and a highly motivated workforce” (Womack et al., 1990). The salary
structure in Japan dictates that senior workers receive much higher pay. Long
tenures at a company are expected, since switching companies resets the
worker’s position on the pay scale regardless of age. To create this skilled
and motivated workforce, Toyota offered lifetime employment and began
strategically cultivating workforce capabilities.

All the mechanics of the Toyota Production System (TPS) had taken form
by the late 1960s. Today, companies that use lean management as their
organizing framework emphasize the same principles that Toyota did many
decades ago:

Identify value. What does the customer want and need? All definitions of value
should come from the customer and should be informed by an examination of the full
experience that a customer has with a product or service. This often requires looking
beyond the boundaries of your own product or service to gain an appreciation for the
customer’s perspective.
Map the value stream. To draw out value-adding and non-value-adding steps from a
process, it should be mapped from a cross-functional perspective. This process helps
you identify and remove wastes.
Create flow. Once wastes are removed, interruptions or delays should be removed
from the process to generate the best performance from the value-adding steps. By
removing distractions, too, you can create a work environment that helps people “get
into flow,” removing waste from the cognitive processes that support operational
processes (Csikszentmihalyi, 2013).
Establish pull. The waste generated by waiting can be eliminated when actors in a
process can “pull” what they need for their process step at any time. Lean



management seeks to create just-in-time systems where pull is enabled.
Seek perfection. Lean thinking and a spirit of continuous improvement (kaizen – 改
善) should be “baked into” your corporate culture. Where there is an opportunity to
improve, it should be pursued. When everyone in the organization is tuned to
reducing waste, improving flow, and capturing opportunities for improvement,
progress is rapid and visible.

Reducing waste (muda – 無駄) is also a common theme in lean practices.
This includes the waste associated with transport, inventory, motion, waiting,
overproduction, overprocessing, defects, and underutilization of skills (these
can be recalled using the mnemonic TIMWOODS). In addition, confusion
(people not sharing a common understanding of their goals or process, or
believing that they do when in fact they do not) can be a particularly
pernicious waste. Reducing overwork (muri – 無理) and unevenness (mura –
斑) is also important. In fact, anytime you see people in your office
performing heroic efforts to solve problems or meet deadlines, that is waste
—it is to be avoided in lean by developing processes that respect effective
resource loading.

Toyota/Lean principles remind us that we should not try to automate a bad process.
We should use well-tested technologies that serve our people and our processes.

—MARK GRABAN, AUTHOR OF MEASURES FOR SUCCESS AND THE
EXECUTIVE GUIDE TO HEALTHCARE KAIZEN

Some major companies, like the conglomerate Danaher (and its spin-off,
Fortive, also a conglomerate), have customized their recipe for deploying
TQM and lean principles throughout the workforce. The Danaher Business
System (DBS) and Fortive Business System (FBS) are applied at each of the
group’s operating companies, providing a shared conceptual model for how
to organize and improve work. Forms and templates for several lean practices
have been customized to match the types of businesses they specialize in, and
employees trained at one operating company can easily shift to another,
maintaining a strong culture of quality:

The [Danaher] operating model creates value by emphasizing discipline and continuous
improvement. This is particularly important for the Danaher businesses with high
average gross margins. Unless well-managed, such margins have a habit of being self-
destructive, as they tend to encourage lax management practices. Danaher also
generates considerable value by applying DBS to newly acquired businesses. The
company has repeatedly improved operating margins by seven percentage points or
more in what were already high-margin businesses at the time of acquisition. For
example, after Danaher’s acquisition of Tektronix in 2007, its sales grew by 14.9% and
margins increased to 15.8% in 2008. (Pidun et al., 2019)



Lean is not just about efficient production; it’s also about the effective
flow of information from strategy through to action. By creating more value
with fewer resources, organizations benefit, but so will customers, partners,
and suppliers. These factors make lean management ideal for operating
Industry 4.0 and other digitally enabled business models.

Six Sigma/Lean Six Sigma
Strictly speaking, Six Sigma is a collection of statistical tools for reducing
variation (including process control, process capability, and design of
experiments). But after Motorola won the Malcolm Baldrige National Quality
Award (MBNQA) in 1988, Six Sigma was increasingly adopted as a
management system and philosophy focused on fact-based, data-driven
decision making, supported by statistical methods.

While the Six Sigma philosophy does place quality culture at the forefront,
it does not specifically address leadership, governance, strategic planning, or
the link between strategy and execution to the extent that other models do.
Even so, many organizations with a strong commitment to Six Sigma at all
levels have demonstrated performance improvements and better business
results (Pyzdek, 2001).

More recently, Pepper and Spedding (2010) recommended a combined
approach: to apply the business improvement philosophy and tools of lean
while leveraging the statistical tools of Six Sigma to drive optimal results.
They used the example that reducing inventory levels can lead to greater
variability in demand satisfaction, and higher risk exposure, when lean
management is applied without broader awareness of the production system’s
context in mind.

Shingo Model
The Shingo model is based on four categories into which ten guiding
principles are classified (Shingo Institution, 2017). The influence of lean
management and Deming’s principles are evident:

Cultural enablers: lead with humility, respect every individual
Continuous improvement: follow the principle of flow and pull, ensure quality at the
source, focus on the process, embrace scientific thinking, seek perfection
Enterprise alignment: create constancy of purpose, think systematically
Results: create value for the customer

The model is maintained by the Shingo Institute at Utah State University,



which administers the Shingo Prize for Operational Excellence to applicants
worldwide. Established to honor Shingo’s contributions to the TPS, the
award process examines the extent to which the ideal behaviors of a quality
culture are demonstrated. Joseph A. DeFeo, chairman and CEO of Juran
Global, said, “I like to tell people on your way to being excellent in your
manufacturing company … win the Shingo prize first then go on to win
Baldrige. There’s a pretty good chance it is a stepping stone” (quoted in
Bailey, 2016).

Capability Maturity Model Integration (CMMI)
In the mid-1980s, the Software Engineering Institute at Carnegie Mellon
University partnered with MITRE Corporation to develop a framework to
help organizations improve their software processes. Motivated by the need
to promote process maturity for government contractors, the TQM-based
Software Capability Maturity Model (SW-CMM) was initially released in
1991. It was based in part on Crosby’s Quality Management Maturity Grid
and its six stages of measuring quality in an organization (Table 11.2).

TABLE 11.2.  Crosby’s six stages of quality measurement.

Measurement
category Uncertainty Certainty

Management
understanding

Leadership has no
concept of how a quality
system improves
outcomes

Leadership believes that quality
systems are an essential part of
operations and directly contribute to
delivering results

Quality
organization
status

Hidden Thought leader in quality

Problem
handling

Problems are fought Problems are prevented

Cost of quality
as a % of
sales

20% 2.5%

Quality
improvement
actions

No organized quality
activities

Quality is a normal and continuous
activity

Company
quality
posture

“We don’t know why we
have problems with
quality”

“We know exactly why we do not have
problems with quality”



Source: Adapted from Paulk, 2009.

CMMI grew from what has become the “standard” five (plus one) level
maturity model:

Level 0: Incomplete. Work is ad hoc and may or may not get done.
Level 1: Initial or Chaotic. Work gets done, but may be costly or incomplete.
Workers are stressed and anxious.
Level 2: Repeatable. Processes and projects are defined, managed, and controlled.
Level 3: Defined. Organization is proactive rather than reactive, and demonstrates
alignment across functional areas and organizational levels.
Level 4: Managed. Organization is data-driven; processes are predictable,
monitored, adjusted. Outcomes meet customer and stakeholder needs.
Level 5: Optimized. Organization is stable and flexible, and continuous improvement
is a way of life.

Although the Capability Maturity Models for Integration (CMMI) has
since been retired, the CMMI emerged in its place. This is a family of
models, including CMMI-DEV for software development, that consist of
various practice areas (PAs). CMMI v2.0, released in March 2018, has 20
PAs (Table 11.3). In a CMMI assessment, each of the PAs is evaluated
against the maturity levels.

TABLE 11.3.  PAs in CMMI v2.0.

• Causal analysis and resolution
(CAR)

• Supplier agreement management (SAM)

• Decision analysis and resolution
(DAR)

• Managing performance and measurement
(MPM)

• Risk and opportunity
management (RSK)

• Process quality assurance (PQA)

• Organizational training (OT) • Configuration management (CM)
• Process management (PCM) • Monitor and control (MC)
• Process asset development
(PAD)

• Planning (PLAN)

• Peer reviews (PR) • Estimating (EST)
• Verification and validation (VV) • Requirements development and

management (RDM)
• Technical solution (TS) • Governance (GOV)
• Product integration (PI) • Implementation infrastructure (II)

Paulk (2009) notes that “one drawback to the use of maturity levels,
however, has been the dysfunctional behavior associated with organizations
more concerned with assessment results than improving against business



objectives.”

Agile Methods
Agile methods emerged as a way to improve product and process quality in
software engineering in the late 1990s. Agile was originally envisioned as a
response to the cumbersome waterfall model of development (a stage-gate
approach where requirements are gathered, followed by design,
implementation, test, and release). The waterfall approach was slow, error
prone, and often resulted in a product that no longer met customer needs
(because they had changed during the time it took to build the software). In
2001, a group of 17 software engineers met to envision a new way of
designing quality into software, which they called the Agile Manifesto (Table
11.4).

TABLE 11.4.  The Agile Manifesto, established in 2001.

We are uncovering better ways of developing software by doing it, and helping others do it.
Through this work we have come to value:

• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation.
• Responding to change over following a plan.

That is, while there is value on the items on the right, we value the items on the left more

Source: Beck et al., 2001.

Since 2001, many agile practices have emerged to make these principles
actionable. These include daily stand-up meetings, short development
iterations, maintaining close ties with the customer, pair programming,
maintaining a product backlog by splitting the work into tiny slices, test-
driven development, and release planning. Other practices, like agile
documentation (drawing on whiteboards and taking pictures of flowcharts
rather than drawing them in software programs), have also taken hold.
Kanban boards, signaling the flow of work from planning to release, are now
as common in marketing departments as they are in software development
teams.

Agile was not intended to provide organizations with the ability to
rationalize a lack of planning or documentation. In fact, Paulk (2002)
concluded that “agile methodologies imply disciplined processes, even if the



implementations differ in extreme ways from traditional software engineering
and management practices; the extremism is intended to maximize the
benefits of good practice. The SW-CMM tells what to do in general terms,
but does not say how to do it; agile methodologies provide a set of best
practices that contain fairly specific how-to information—an implementation
model—for a particular kind of environment.” Agile methods are thus
excellent for rapid prototyping and daily work management, but less adept at
helping organizations manage the link between strategy and execution or the
special nature of Industry 4.0 initiatives.

European Foundation for Quality Management (EFQM)
The quality model most commonly used in Europe is the European
Foundation for Quality Management (EFQM) Excellence Model. It consists
of nine elements: five “enablers” that build the quality system and four
results categories (people, customers, business, and society). It is the basis for
the European Quality Award and is based on the foundations of TQM (Figure
11.1).

The self-assessment process (and award application approach) used by
EFQM is flexible so that applicants can modify their approach according to
their unique organizational context. Nagyova and Markulic (2016) describe



the assessment approach used to evaluate a public university in the Slovak
Republic. This applicant wrote five sections, one for each of the enablers.
Within each section, the applicant articulated self-assessed strengths,
opportunities for improvement, and evidence to support each of the claims.
There are no specific aspects of EFQM that differentiate its applicability for
initiatives involving emerging digital technologies.

Baldrige Excellence Framework (BEF)
Creating a strategy that tells your organization where it needs to go is easy,
but actually getting there can be hard. The Baldrige Excellence Framework
(BEF) has been developed and continually improved by senior leaders from
all industries over three decades, in part to support the process for identifying
winners of the annual MBNQA. Like many of the other models, it draws
heavily from TQM but makes the principles actionable.

Emphasizing the links among culture, strategy, execution, and results,
BEF provides hundreds of self-study questions for organizations to critically
examine seven interconnected areas:

1. Leadership. Senior leaders set the tone and model the behavior they wish to see
throughout the organization. They establish the vision, mission, and values, develop
protocols for governance and communication, and create the conditions for success.

2. Strategy. BEF provides criteria questions for developing, deploying, and
implementing a strategy across an organization. This process must be supported by
development of relevant core competencies, development and execution of action
plans, and establishment of timetables that are matched to resource availability.

3. Customer Focus. Figuring out what customers want should be a data-driven,
holistic, continuous process. Mapping customer needs to product and service
offerings that appeal to defined customer segments, and action plans to engage
customers via two-way communication, will impact the potential for success.

4. Data and Knowledge Management. Measuring and improving performance using
data is also critical. BEF criteria questions help organizations increase transparency,
avoid data silos, and promote decision making based on accurate and complete
information.

5. Workforce Management. Because strategic objectives can’t be realized without
capable, engaged, motivated employees (who have manageable workloads), a solid
workforce management plan will directly address capability building and retention.
Effective workforce management will also help the entire organization adapt to
changing needs and changing demands from the market.

6. Operations. Understanding what you do, and what other departments in your
organization do, is the basis for communication and collaboration. Written
procedures for standard work also provides a basis for growth and innovation, and
can be used to align with processes in the broader supply network.

7. Results. Governance, work processes, and support systems are only as good as



the results they can achieve. The final category in BEF links the six process
categories to overall performance in the seventh category focusing on results.
Outcomes are expressed in terms of product and process results, customer-focused
results, workforce-focused results, leadership and governance results, and financial
and market results.

Many organizations that adopt the BEF also implement ISO 9001:2015,
ISO 14001:2015, and ISO 45001:2018 management systems. Even with these
other systems in place, BEF encourages organizations to think holistically
and helps draw out gaps that may impact strategy execution. By highlighting
the connections among people, processes, data, and technologies, BEF can
help eliminate silos as performance is improved. Because of its emphasis on
connectedness, and recent work to incorporate critical capabilities like
cybersecurity, BEF is particularly well suited for helping organizations
achieve success in their digital transformation efforts.

WHAT MAKES THEM WORK
Consistently applied, broadly deployed structures to align daily work with
strategic objectives and long-term stretch goals can provide the basis for an
organization to achieve and innovate. This foundation is provided by the
consistent application and reinforcement of behaviors that support quality and
performance in digital cultures:

Risk aversion, weak customer focus, and siloed mind-sets have long bedeviled
organizations. In a digital world, solving these cultural problems is no longer optional.

Shortcomings in organizational culture are one of the main barriers to company
success in the digital age. That is a central finding from McKinsey’s recent survey of
global executives, which highlighted three digital culture deficiencies: functional and
departmental silos, a fear of taking risks, and difficulty forming and acting on a single
view of the customer. (Goran et al., 2017)

According to this McKinsey survey, culture and behavioral challenges are the
most significant roadblocks for digital effectiveness. Because excellence
models are drivers for culture and behavior, effective application with
consistent commitment from senior leadership can remove these barriers. Key
elements of the value system include:

Values made tangible. An organization’s culture is not enacted by statements of
core values but by the way those core values play out in day-to-day interactions and
decisions. By compelling organizations to critically examine the way they structure
and carry out their work, opportunities arise for an organization’s value system to be
continuously revealed through everyone’s actions.
Patterns for discipline. The practices associated with several of the excellence



frameworks establish a discipline for daily management that supports the attainment
of strategic goals. Implementing these models helps free up cognitive energy that can
be dedicated to tasks that require insight, creativity, or quick responses.
Collective effort. Each model seeks to unify the workforce, aligning them to achieve
strategic goals by adopting a shared approach. Although grassroots change is
possible, broad, collective change is more likely to be sustainable.
Empowerment and engagement. Toyota was the first to recognize that quickly
identifying and resolving problems would require everyone to actively participate, not
just the managers. Its practice (dating back to the 1960s) of empowering workers to
halt production as quality issues emerge set the standard for broad involvement. An
organization with a stand-alone quality department will not be as successful as one
where the commitment to quality is designed into every job.
Phased approach. None of these excellence frameworks require comprehensive
adoption, nor will they provide benefits overnight. It takes time for the behaviors
promoted by the models to take hold and become part of the organization’s DNA. For
example, organizations can use Baldrige one criterion at a time. Radziwill and
Mitchell (2010) used Criterion 5 to rapidly develop a workforce management plan,
building on mature human resources (HR) practices to identify gaps and implement
improvements.

There are, however, limitations to these frameworks. The need for trade-offs
is not well represented in excellence models, and most models are generic
enough to be applied to any organization. Design decisions that arise when
implementing excellence frameworks must be made with the unique
characteristics of the organization in mind (in ISO 9001:2015, this is the
organizational context in clause 4; in Baldrige, it is the Organizational Profile
that precedes the criteria questions). Best practices specific to industries or
domains must be identified in other ways (Thürer et al., 2017).

THE BOTTOM LINE
Because culture and behavioral challenges are the most significant
roadblocks for digital effectiveness, digital transformation efforts benefit
from a solid foundation in quality. Excellence frameworks can be used to
drive culture and behavior, and coupled with consistent commitment from
senior leadership, behaviors that support the success of digital transformation
initiatives can be established and reinforced. Holistic, nonprescriptive models
may be most effective in supporting enhancements to connectedness,
intelligence, and automation that are brought by emerging technologies
(Table 11.5). However, more prescriptive models like CMMI may better
satisfy the needs of high-risk, safety-critical, or highly regulated
environments with complex software engineering requirements.





Quality management philosophies and excellence models describe what
organizations should be focusing on and doing, but not how to apply practices
and tools. Ultimately, it is not the tools that matter but the clarity and
transparency they bring to the organization, coupled with the discipline of
groups working together to follow (and continually improve) their work.
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CHAPTER TWELVE

ENVIRONMENT, HEALTH, SAFETY,
QUALITY (EHSQ), AND CYBERSECURITY

There is no greater threat to the future of our species than the environmental and
safety impacts of the companies we operate.

—MARK JAINE, CEO OF INTELEX TECHNOLOGIES ULC

The centrifuges at the uranium enrichment plant outside Natanz in central
Iran had been failing at an alarming rate. Although it was not uncommon to
replace about 10% of the facility’s fragile centrifuges in any given year,
unconfirmed reports by anonymous European diplomats who had visited the
plant in 2010 put that number closer to 20%–25%. Inspectors from the
International Atomic Energy Agency, who had been assigned to monitor the
facility by the United Nations, could not confirm or deny these reports. As
part of their inspection responsibilities, they verified that each centrifuge was
not harboring rogue nuclear material as a part of decommissioning, but they
were not responsible for determining or tracking the root cause of the
failures.

Occupational health and safety are critical at all gaseous diffusion plants
(the innocuous name for facilities that produce enriched uranium for
generating power and building weapons). Exposure over short and long terms
to uranium hexafluoride, neptunium, plutonium, ionizing radiation,
trichloroethylene and other chemicals, and toxic metals (arsenic, beryllium,
chromium, nickel) can lead to higher rates of adverse health outcomes. These
include lung, lymphatic, brain, and pancreatic cancers, as well as leukemia
(Chan et al., 2010).

Construction workers in particular are prone to health hazards at these
plants, and the majority of them are contractors who work short periods and
move between sites. Workers routinely handle transite and asbestos thermal
insulation, are exposed to dust, radon, and welding fumes, and deal with
harsh, noisy conditions on a regular basis. Hearing loss, degenerative joint



disease, and asbestos-linked lung diseases have been observed in a large
proportion of workers studies on a retrospective basis (Wages et al., 2003).
Without effective management of worker and job data over (at least) the
lifetime of the worker, when health impacts are uncovered—which can be
years after the construction project has ended—it can be difficult to track
down the worker to inform him or her of the exposure.

Safety at a uranium plant includes implementing security and access
controls, protecting workers during operations and decommissioning phases,
and designing work processes to prevent safety hazards. Personal protective
equipment (PPE) and work processes that put distance between the workers
and the hazards are common. Since structures and buildings can degrade over
time, controls can be implemented such as “installation of modular work
platforms, lifelines for accessing process piping ducts, corbel/beam repairs,
cross bracing for wind loads, imposition of significant floor loading
restrictions, and an intensive structural inspection program” (Kopotic et al.,
2013). Disposal of radioactive waste using processes similar to single-piece
flow can prevent safety issues associated with giant debris piles, and on-site
disposal facilities with dedicated hauling roads can limit exposure to local
communities.

Uranium enrichment plants can also have adverse environmental impacts,
not only when processes and equipment fail but also when the plants are
running smoothly. Equipment, vehicles, diesel generators, and boiler rooms
can all generate air pollution. Plant operations frequently contaminate the
sites where they are constructed—for example, by polychlorinated biphenyl
(PCBs), trichloroethylene (a degreaser), and technetium-99 (a fission
product), which can contaminate groundwater in the vicinity. Equipment is
often contaminated due to uranium exposure. When mined uranium is ground
and processed with acid, a radioactive sand-like byproduct (uranium tailings)
is pumped as a slurry into impoundments (Carvalho, 2011). Studies have also
shown that in the vicinity of uranium mining and milling operations,
radiation may exceed the recommended limits for the general population. So
in addition to protecting workers, there is a responsibility to protect local and
regional communities, during regular operations as well as in the unfortunate
event of a nuclear accident or meltdown.

At any uranium enrichment plant, highly sensitive centrifuges have to be
carefully controlled and regularly monitored. This is critically important
because the tiniest issues could cause the devices to explode. In 2006, the



head of the Atomic Energy Organization in Iran noted that before technicians
wore gloves to assemble the centrifuges, germs on their hands could degrade
the materials to the point where they would disintegrate on spin-up (Zetter,
2014).

In Natanz, the human-machine interfaces (HMIs) in the control room
showed no issues during the inspection. Despite the high failure rates, the
monitor data indicated regular activity patterns and production output. But
behind the scenes, reality was much different. Many of the centrifuges were
dutifully following rogue commands, executed by Programmable Logic
Controllers (PLCs), that made them spin up to well beyond their design
specifications long enough to destroy the devices at a higher than anticipated
rate—and ultimately slow the progress of uranium enrichment.

What was going on? The field devices in the Iranian plant, including the
centrifuges, were controlled mainly by a particular model of Siemens PLCs.
When an engineer needs to change a control sequence on a machine on the
factory floor (which is usually not accessible via the internet to provide
security in the form of an “air gap”), this requires creating a PLC program
using a language called ladder logic, storing it on a USB drive, and walking it
to the machine for direct upload.

But at the Natanz plant, several of these project files carried the malicious
(and now well-known) computer worm Stuxnet. “By infecting [the PLC]
project files and investing Stuxnet with the power to jump the air gap as a
USB stowaway, the attackers had essentially turned every engineer into a
potential carrier for their weapon” (Zetter, 2014). While the Stuxnet
infections resulted in major asset damage and geopolitical impacts, similar
cyberattacks could just as easily affect safety-critical systems (and endanger
workers) or release toxins or pollutants into the air, soil, or water in the
vicinity of the plant. The potential impacts of cyberattacks like this are
staggering, in particular because it is a relatively new frontier and presents
substantial payoffs to rogue actors, enemy nation states, and terrorist
organizations.

Environment, health, safety, and quality are all interconnected, even more
so in a world where additional risks are presented by the potential for
cyberattacks. In an industrial scenario, risk is the synergistic result of threats,
vulnerabilities, and the possible consequences that can emerge from them
(Figure 12.1). The stakes are high because these risks can impact the product,
the customers, the company, countries, the environment, human civilization,



or a combination of all these things (Boyce et al., 2011; Foglietta et al., 2015;
Agrafiotis et al., 2018).

This chapter looks at environment, health, safety, and quality (EHSQ)—
which is quickly becoming an identifiable discipline with its own Body of
Knowledge (BoK)—and cybersecurity, which can make or break EHSQ
outcomes as the Stuxnet case shows. Addressing these areas in a holistic
manner will be critical for digital transformation and Industry 4.0 success for
many organizations. Future EHSQ systems will provide “smart assistance for
compliance managers” (Thimm, 2017) and help leaders discover issues and
identify appropriate containment strategies before incidents occur.

HUMAN FACTORS THAT INFLUENCE QUALITY
Many of the risks in Figure 12.1 are driven by or impacted by human factors,
and people are central to quality practice. Quality management systems align
people, processes, and technology to efficiently and effectively achieve
shared goals. In the Industry 4.0 era, this increasingly involves planning for
how humans, machines, and intelligent agents will work together. Many
FACETS (fatigue, attention, confusion, environment, training, situation
awareness) of human-machine interaction that influence safety and security
in complex systems should be included in this planning process, since each
can impact product quality and operational performance:

Fatigue—Body and mind can be tired, overworked, or otherwise weary
Attention—Clear, engaging displays, proper training, and sound body and mind can
ensure that appropriate signals are received



Confusion—Ambiguous signals or improper training can lead to incorrect
interpretation
Environment—Adverse environmental conditions can compound fatigue, reduce
attention, add to confusion, or interfere with situation awareness
Training—Ineffective or incomplete training can adversely impact attention, lead to
confusion, and complicate situation awareness
Situation awareness—An inability to accurately characterize a situation and project
it forward in time can negatively impact decision making

Here’s another way to think about it. For you to optimally advance your
organization’s quality and performance goals, your body must be fit for
purpose (it’s hard to do work when you have the flu), your brain must be up
to the task (it’s difficult to do anything when you’re distracted, exhausted, or
jet-lagged), and you must be trained for the work and prepared to respond
and adapt as needed (context). The relationships among these internal human
factors that drive quality are shown in Figure 12.2.

There are also external drivers. Workplace conditions impact the people in
it (including exposure to toxins and hazardous materials, heat and cold stress,
musculoskeletal stress and strain, and cognitive demands). Similarly,
cyberattacks can potentially impact health and safety (for example, if hacked
PLCs release hazardous chemicals at times when workers are not equipped to
handle it).

ENVIRONMENT
In many countries, companies are required to comply with laws and
regulations that govern how they interact with the environment. Regulatory
bodies enforce these requirements, and penalties can be both civil and
criminal, ranging from settlements and cleanup enforcement to fines and jail



time. The laws are in place not only to protect the environment from harm but
also to protect other diverse economic and commercial interests and the
global economy itself. Areas governed by environmental compliance laws
include the following:

Air: pollution, particulate matter, ozone
Emergencies: oil spills, release of hazardous chemicals
Materials: asbestos, lead, mercury, PCBs
Waste disposal: solid, hazardous, radioactive
Water: drinking water, fracking, mining operations
Wildlife: land, marine, endangered species

Demonstrating compliance can be labor intensive, and often requires keeping
track of production on a very granular level to be able to accurately calculate
emissions and releases for annual reporting. Many organizations have EHSQ
software systems that make this process less overwhelming, which can also
facilitate a strategic shift in thinking from compulsory compliance to
sustainability as a strategic advantage.

Compliance
In the United States, the Environmental Protection Agency (EPA) routinely
monitors organizations to ensure that they obey environmental laws and
regulations. This is done by interviewing workers, performing inspection, and
training inspectors. At the same time, the EPA provides a mechanism for
anyone to report potential environmental violations online, which allows the
whistleblower to specify the affected entity (land, water, air, or workers) and
pertinent incident (e.g., illegal dumping or releasing, a spill, or falsified
documents or permits).

In the United States, the main compliance monitoring effort relates to
greenhouse gas reporting in March and April. The Greenhouse Gas Reporting
Program requires facilities that generate or receive over 25,000 metric tons of
carbon dioxide a year to declare and justify their activities. Each July,
facilities with 10 or more full-time employees in manufacturing, energy,
mining, or waste management, and federal facilities are also required by the
Toxics Release Inventory to declare the release of several chemicals or waste
products. In Canada, the National Pollutant Release Inventory establishes that
releases, disposals, and transfers of specific wastes or pollutants must be
reported each June by facilities where wood preservation, fuel operations,
pits or quarries, or waste or sewage incineration takes place. The European



Union (EU) also requires facilities in 28 member states to declare waste and
wastewater transfer, in addition to the release of pollutants and other
substances, on an annual basis (Sarnowski, 2019).

Sustainability
Many organizations take a “beyond compliance” approach, and quality
management systems can support this reorientation toward sustainability.
Siva et al. (2016) explains that the recent alignment of the ISO 9001 (quality
management), ISO 14001 (environmental management), and ISO 45001
(health and safety) standards to the high-level Annex SL structure will help
promote sustainability by making it easier to maintain integrated EHSQ
management systems. In addition, these systems should make it possible to
integrate sustainability considerations into daily work and process design,
while better supporting stakeholder management and a focus on the customer.

In addition to a sustainability emphasis, some companies have started to
pursue “green product innovation” to catalyze growth, recognizing that
“environmental value and social good is fostered by market-driven product
innovation and new technologies rather than regulation alone” (Dangelico &
Pujari, 2010). This is one step along the continuum from compliance to
sustainability to eco-design to sustainable design:

Most of the focus [in organizations] is on eco-design (the integration of environmental
considerations into product design and development) rather than sustainable design (the
integration of a balanced approach to social, environmental and economic
considerations into design and development), and is focused on product-related
environmental compliance rather than innovation or the creation of new business
models. The social component of sustainability is still largely missing from product
design and development, outside of “bottom of the pyramid” and ethical product
discussions.… Commercialisation still remains weak.… Tackling the softer
organisational issues associated with implementing product sustainability will be a
growing issue for those companies wanting to move from a compliance to an innovation
mindset. (Charter, 2016)

To begin supporting this continuum from the compliance side, the recent ISO
14001 revision expanded its focus on sustainability. It includes additional
management and leadership responsibilities, risk-based thinking, and a
broader look at environmental impact throughout the supply network and
across all phases of the product life cycle.

Sustainability is not limited to a single organization but is a process that
connects all parties in the production ecosystem. While connectedness can



make it easier to reduce energy requirements and optimize processes to
advance sustainability goals, it introduces cybersecurity risks and the
potential for human error:

The sustainability of cybermanufacturing systems can be extended to stakeholders along
the entire product life cycle including material suppliers, manufacturing systems,
distributors, customers, and material recovery facilities which all benefit from
digitalization of traditional information handling. Three relations are particularly improved:
customers with factories, suppliers with factories, and the production control within
manufacturing systems. Cyber systems enable customers to communicate directly with
factories on design, processing, and other customization needs which, however, requires
a flexible platform to coordinate and plan resources for production towards economic
and environmental sustainability. Suppliers are able to receive information (e.g.,
inventory, quality feedback) from production processes in a timely manner. Within the
manufacturing system digitalization and dematerialization of information handling creates
opportunities for efficient energy planning and process optimization.

This type of system, however, faces risk of attacks at both physical (e.g., machine,
materials, power) and cyber elements (e.g., server, programs) of the factory, becoming a
new challenge in future manufacturing. In the aspect of social sustainability at the shop
floor level, the evolution of cybermanufacturing changes the interaction between human
and machine systems, reducing physical hazard environment health impact but
increasing risks of user interface misoperations.” (H. Zhang, 2019)

HEALTH AND SAFETY
Although mechanization and automation have reduced the need for manual
lifting and material handling in industry, and exoskeletons promise to ease
labor even more, many jobs still require physical exertion. Any strenuous or
repetitive physical activity can present the potential for serious and costly
injuries. Musculoskeletal disorders (such as lower back injuries, muscle
strain, and carpal tunnel syndrome) and heat stress are two of the most
common afflictions. In 2011, in the United States alone, these cost businesses
over $50 billion in expenses associated with industrial accidents, medical
expenses, and workers’ compensation claims, and loss of productivity as a
result of injuries. These costs, which represent nearly 2% of the U.S. GDP,
have been relatively consistent since the 1970s (Garg et al., 1982; Shi et al.,
2015).

Ergonomics in Industry 4.0
Ergonomics is the study of people engaged in physical and cognitive work.
Ergonomists design work systems to eliminate discomfort and risk of injury
and reduce the physical and cognitive harm impacts of environmental stress.



They design safety and physical comfort into the workplace while keeping
the costs associated with providing them low. Ineffectively designed work
environments, in addition to presenting hazards, can lead to waste due to
excessive motion and strain.

To increase worker safety and prevent injury, enhance productivity, and
improve human well-being in work environments, physical tasks must be
designed so that the physical capabilities of the workers are not exceeded. In
particular, manual materials handling (MMH) tasks (e.g., lifting, carrying,
holding, and placing) must be designed so that the physical requirements of a
task do not exceed the physical capabilities of the workers who must perform
those tasks. That is, task demands and worker capacity must be balanced to
ensure quality, performance, and safety. This is usually the domain of
occupational safety and health professionals, “biasing managers to link its
role to safety and not to effectiveness, performance or costs” even though the
discipline of ergonomics shares many goals with both lean and Six Sigma
(Nunes, 2015, p. 14).

People need active, capable muscles (supported by strong bones and
connective tissues) to do physical work. For muscles to function, they must
be supported by healthy motor neurons, which tell the muscles when to
contract and relax, and they must have energy available to consume in the
form of adenosine triphosphate. The energy that those muscles need can
come from myoglobin within the muscles (although only a tiny bit is
available), creatine phosphate (which provides energy for another one or two
seconds after muscle activation), anaerobic glycolysis (used once the body
warms up, and also when oxygen is not available), and aerobic glycolysis,
which requires an abundance of oxygen (and is thus the most common
pathway to support sustained muscular work).

Making oxygen available to the muscle tissues throughout the body is the
job of the lungs and circulatory system. The efficiency of these systems, from
the perspective of physical ergonomics, depends on (1) the volume of oxygen
that an individual can pull in, which can be improved through physical
activity and training, and (2) the amount of that oxygen that can be
effectively transported by hemoglobin in the blood to the muscles that need it
to function. If core body temperature or blood acidity increases, then the
hemoglobin will not be as effective in transporting oxygen throughout the
body (called the “Bohr Effect”). Also, both muscles and nerves can fatigue,
leading to lower physical efficiency.



Although this is a greatly simplified picture of the processes that go on
inside the body when physical work is performed, it provides the basis for
four categories of ergonomic considerations (Table 12.1). Each category is
accompanied by questions that can serve as the basis for improvement
projects. Biomechanical, physiological, and psychophysical considerations
are specific to each individual worker, whereas environmental conditions
may be similar for all workers. Although a worker’s biomechanical limits
will be influenced primarily by gender, age, and muscle characteristics,
physiological limits will be determined by physical fitness. Only
psychophysical assessments are subjective, but they can also vary depending
on an individual’s mood and cognitive state.

TABLE 12.1.  Ergonomic considerations and key questions.

Ergonomic consideration Key questions

Biomechanical: Is the
worker’s musculoskeletal
system capable of
supporting this task?

Are the compressive forces and shear forces on the
lower spine (especially at the L5/S1 vertebrae), which
depend on the postures an individual uses within a job,
less than the National Institute of Occupational Safety
and Health (NIOSH) limits?
What is the lifting capacity for this task, depending on the
physical specifications for the motion and the frequency
with which the task will be performed?
What is the muscle force required for a particular task?
What portion of an individual’s maximum muscle capacity
(called %MVC) is used by a particular task?

Physiological: Are the
worker’s circulatory and
respiratory systems fit to
support this task?

Is the metabolic energy required for a job matched to
what the individual can safely provide?
Is the required heart rate less than 220 beats per minute
minus the person’s age?
Is the heart rate variability between work and rest periods
less than 40 beats per minute?
Are core body temperature and blood acidity stable?
(Note: Blood acidity may not be possible to easily
measure in a business or industrial setting.)

Psychophysical: Does the
person feel comfortable
and capable of doing the
task?

Is the person comfortable with the physical requirements
of the job?
Is the person comfortable with the cognitive requirements
of the job?

Environmental: Will
environmental conditions

Are environmental conditions too hot or humid for
physical labor?



increase the physical
burden on the body, or is
the environment neutral?

Are environmental conditions too cold for physical labor?
Is the noise profile of the environment conducive to the
work?

The biomechanical and psychophysical approaches to MMH have some
limitations—in particular, that they do not effectively factor cognitive
workload into assessment and design tasks, which can have physical impacts
(DiDomenico & Nussbaum, 2011). Consequently, physiological and
psychophysical measures provide an essential complement to biomechanical
measures during job design and assessment. Ideally, job design and
assessment will include measurement approaches across all categories.

Kadir et al. (2019) reviewed all the research in cyber-physical systems and
Industry 4.0 to determine how human factors and ergonomics are shifting as a
result of technological progress. Like Laudante (2017), they noted that
“environment, competitiveness and safety are the main current drivers of
innovation of products and process, achievable through the implementation
of the current production systems of digitization, simulation of processes and
use of advanced digital technologies.” Laudante also believes that virtual and
augmented reality will provide the mechanism for a “new ergonomic study of
the workplace.”

Personal Protective Equipment (PPE) and Wearables
Safety management is an ongoing process. Safety managers control
occupational safety and health risks, address vulnerabilities, and strive to
continuously improve conditions and encourage workers to comply with
safety regulations. Like quality, the work of safety is never finished. Safety is
also management led: the directive to achieve a safe, healthy, and secure
workplace must be championed by senior and executive management, who
set the tone. It is a risk-based practice, and different industries will have
different risk appetites and risk profiles.

In addition to audits, inspections, training, and risk management,
organizations can protect their workers by providing them with protective
gear and clothing. Personal protective equipment (PPE) refers to the robust
equipment, clothing, and gear used to protect workers from hazards. PPE
includes hard hats and steel-toed boots, safety glasses, latex gloves,
respirators, aprons, and sensors. It includes protection for eyes, lungs,
hearing, hands, and feet. Wearables provide indirect protection by sensing



hazards or issues (e.g., worker in a confined space with expired training,
operator using equipment that has not been calibrated) and alerting the
worker or triggering an alert or corrective action request.

In Industry 4.0, wearable tech will provide real-time insights into the safety of each
worker, granting us greater insights into how to manage. It will allow us to seize an
unprecedented opportunity to proactively identify and mitigate hazards and risks,

protecting worker well-being and keeping people alive.
—TAMARA PARRIS, DIRECTOR OF COMMUNITY DEVELOPMENT,

SAFEOPEDIA

Podgorski et al. (2017) investigated the next generation of PPE, enhanced
with smart materials, internet connections, and wearable sensors referred to
as integrated computing technologies (ICTs):

New sensor technologies offer numerous possibilities for the improvement of OSH by
means of real-time monitoring of hazardous and strenuous factors, such as noise,
exposure to toxic chemical substances, optical radiation and high or low temperature.
Furthermore, ICT applications allow facilitating other key functions of OSH management
related to hazard identification and risk management. Such functions cover, e.g.,
monitoring workers’ health state by measuring key physiological parameters (i.e., body
temperature, heart rate, breathing rate, etc.); monitoring work comfort (e.g.,
underclothing temperature and humidity, work posture); geographical localisation of
workers with regard to other, potentially dangerous objects or high-risk zones; monitoring
the current protection level provided by PPE; detecting the end-of-service-life of PPE
used by workers; providing warnings to workers in case of emergence of hazardous
situations; and the activation of protective systems after exceeding a high-risk threshold
value.

At the same time, the role of PPE in the management of the working environment has
started to change. Besides being used as a means of passive protection against
hazards, PPE items have also started to be used as carriers of sensors for monitoring
work environment parameters, worker’s health status and his or her location in the
workplace space. Another trend has concerned incorporating signalisation systems into
the PPE modules, which enabled displaying warnings to the worker, e.g., information on
the occurrence of hazards or instructions on how to avoid them.… On the other hand,
the implementation of new ICT technologies in the working environment leads to
significant changes by modifying methods of work and introducing new objects and
complex systems that may have functions which are not fully recognised.… Such
systems may not function according to users’ expectations and may be subject to
unforeseen failures and consequences.

Podgorski et al. (2017) describe the convergence of these technologies as the
Smart Work Environment. However, they do not see it as a panacea for safety
but a call to action to develop new methods for risk management that fit the
innovation: “As a result of dynamically changing manufacturing processes,
workplaces, together with their potential hazards and the environment



surrounding workers, will be subjected to frequent fluctuations that are
imposed by hardly predictable process variations. New approaches to OSH
risk management are therefore needed to sufficiently address the mentioned
challenges.” The ergonomic design of human work integrated within cyber-
physical systems, and the safe design of human-machine interaction, is still
nascent.

Human-Machine Interaction
The most significant shift, though, is that pervasive digital technologies
imply that interactions between people and machines will have a greater
impact on health and safety than previously. Function allocation (Fitts, 1951;
Jordan, 1963; McCauley & Matsangas, 2004) is one technique used to
determine the degree of automation that is optimal for a system.

How do you decide which level of automation is right for a particular
task? How do you decide what humans should do, and what the system
should do? Function allocation separates activities into three groups: tasks
that should be done by humans, tasks that can be shared with machines, and
tasks that can be fully automated without increasing risk. Next, consider the
eight areas in Figure 12.3. This information can also be included in value
stream maps.



CYBERSECURITY
Safety and security (including cybersecurity) can be strongly interdependent;
in fact, one can be a precondition for the other:

Safety is associated with accidental risks originating from the system that could result
in loss or damage to humans or assets. Ensuring safety means protecting someone
or something, both physically and emotionally, from accidental harm.
Security is related to malicious risks (e.g., attacks), which can be accomplished
physically (through local access to the system) or electronically (through local or
remote access). Security is freedom from the danger or damage that can arise from
malicious intent.

This section presents three tools that can help you distinguish between safety
and security, and adopt best practices to support cybersecurity from the
physical and digital perspectives.



SEMA Referential Framework
The SEMA Referential Framework (Figure 12.4) illustrates the
interrelationship between security and safety. It considers harm in two
dimensions: where the harm comes from (S-E for system-environment) and
what was intended (M-A for malicious-accidental) (Piètre-Cambacédès &
Bouissou, 2013). Because threat actors can gain access to control rooms or
critical equipment and plant malware or ransomware, delete files, or
otherwise vandalize systems and software, physical security is a prerequisite
for cybersecurity (Kriaa et al., 2015). The old practice of “gates, guards, and
guns” is no longer sufficient to protect organizations, even though physical
controls and access controls may still be needed to protect systems and
software (Rogers & Weinstein, 2019).

Each segment of the SEMA diagram is associated with an area of
management focus—that is, what you should work on to mitigate each safety
or security risk (Figure 12.5). The top row specifies actions that can be taken
to address cybersecurity. The bottom row shows that systems should be
hardened to protect against threats from the environment (e.g., temperature,
excess dust), systems should be contained to prevent accidental impact on the
environment, and systems should be made more reliable to protect against
accidental threats from within. In addition, quality systems can help you
identify how to mitigate each risk in a consistent and reliable manner.



For most information technology systems, security specialists aim to
protect confidentiality, integrity, and availability, in that order. In contrast,
priorities for industrial plan operations technology (OT) are completely
reversed: safety, availability, integrity, and confidentiality are the concerns in
order of criticality (Hahn, 2016). Industrial control systems (ICSs) require
special standards and guidance because of the unique nature of OT:

OT failures tend to have physical consequences, such as damage to production
equipment or other assets
OT security problems often present as maintenance failures or other small process
issues, and so are difficult to detect and repair
OT security can be more difficult to manage, since the systems are often old: life
cycle for OT is 10–30 years, while life cycle for IT is 2–10 years
OT security is also impacted by other factors, including additional network protocols,
commands that can’t be delayed or blocked (e.g., interrupts), or real-time
requirements that preclude scanning or inspecting network traffic

All four of these factors were present in the Stuxnet case. But by far the most
serious cybersecurity threat to ICS (or any other business system) is people.
“In many situations the potential for accidental or intentional subversion of



security by a person will be the system’s weakest link” (Boyce et al., 2011).
Insider threats from contractors or disgruntled employees (Dalal & Gorab,
2016), security fatigue (Stanton et al., 2016), decision fatigue (Nobles, 2019),
groupthink and ignorance (Kelly, 2017), and bad design of processes and
interfaces (Nurse et al., 2011) can all pose threats to cybersecurity.

NIST Cybersecurity Framework (NIST CSF)
The NIST Cybersecurity Framework provides risk-based guidance and a
common, technology-neutral language for managing cybersecurity risk. It
was designed to complement an organization’s preexisting cybersecurity
program but can also be used to launch new cybersecurity programs.

The NIST CSF is organized in terms of five functions or practice areas:
Identify, Protect, Detect, Respond, and Recover (Figure 12.6). Within each
group, there are multiple categories and subcategories. Each subcategory
specifies a best practice. Rather than criteria elements or clauses, the NIST
CSF is instead a toolkit of “pointers” to guidance provided by COBIT, the
CCS CSC (Center for Cybersecurity Top 20 Critical Security Controls), ISA
62443, ISO/IEC 27001, and NIST SP 800-53 (Figure 12.7). In this sense, it
ties together controls and best practices from other authoritative sources to
define a holistic reference for cybersecurity practice.



The NIST CSF can be used in conjunction with ISO 31000 (risk
management), ISO/IEC 27005 (information technology risk management),
and NIST SP 800-395 (information security risk) (Figure 12.8). Together,
these provide systematic processes for aligning cybersecurity risk
management with process risk management, and continuously improving risk
management processes.



Baldrige Cybersecurity Excellence Builder (BCEB)
The Baldrige Cybersecurity Excellence Builder (BCEB) is a self-assessment
tool to help organizations assess how effectively they are applying the NIST
CSF. It is derived from the Baldrige Excellence Framework (BEF) and
administered by NIST, which supports the Malcolm Baldrige National
Quality Award (MBNQA). The BCEB complements an organization’s
cybersecurity program, connects cybersecurity operations to business results,
and is flexible (so can also be used independent of the NIST CSF). For
organizations that plan to go through the full process with COBIT or ISO
27001, the BCEB may provide additional information about how to link
holistic business practices with cybersecurity (Figure 12.9).



The BCEB is used by senior and executive management to:
“determine cybersecurity-related activities that are important to business strategy and
the delivery of critical services;
prioritize investments in managing cybersecurity risk;
assess the effectiveness and efficiency in using cybersecurity standards, guidelines
and practices;
assess their cybersecurity results; and
identify priorities for improvement.” (NIST, 2016)

The BCEB is a collection of questions focused on conduct and management
of cybersecurity operations. There are six process-oriented sections and one
results section, corresponding to the criteria sections in the BEF:

Each answer in the process section should include information about the systematic
approach the organization takes to satisfy that element, the manner in which this
approach is deployed (broadly across the organization, and deeply, throughout all
organizational levels), the feedback and learning process in place to ensure that
improvement occurs, and how the element is integrated with other elements.
Each answer in the results section should report which quantitative metrics are used,
and provide recent levels (values) for those metrics. Depending on the maturity of the
organization’s cybersecurity program, the answer can also include trends to show
how those levels have changed, comparisons to indicate whether the measurements
are good, and information about how that metric is used in conjunction with other
metrics (integration) to ensure that the cybersecurity program is meeting the needs of
the business.

The BCEB can help organizations plan, manage, assess, and continually
improve cybersecurity operations and risk management. The BCEB should



not, however, be used if there is no cybersecurity risk management or
cybersecurity operations in place. As guidance, it may be useful for new
organizations that want to start developing systematic, repeatable processes
for cybersecurity to learn how to design cybersecurity operations that best
support customers and business results.

QUALITY IMPROVEMENT IN ENVIRONMENT, HEALTH, AND
SAFETY (EHS)

Where Lean and Six Sigma have been used in conjunction with ergonomics,
the methods often involve reviewing records of incidents rather than aiming
to anticipate or prevent them. The projects aim to reduce workers’
compensation costs, reduce the number of injuries or strains, prevent
workplace accidents, reduce perceived stress, demonstrate cost savings in
health and safety administration, or prevent workplace deaths.

Ng et al. (2005), for example, aimed to reduce work accidents in the
shipping industry by studying historical data linking work procedures to falls
from cargo containers. They examined the data using Six Sigma tools and a
root cause analysis approach, and discovered that lack of concentration at
work, disregard of safety regulations, and use of worn-out hooks and slings
all contributed to threats to worker safety. Nunes (2015) described two case
studies, one that reduced physical demands on the workers by almost half
while increasing productivity slightly, and another that related a reduction in
lead time and process efficiency to the redesign of an MMH task.

There will always be trade-offs: even if a task is biomechanically and
physiologically sound, a person may not feel comfortable doing it; similarly,
an individual may be comfortable performing a task that is physically
dangerous. As a result, all considerations should be used together, and an
improvement project should never focus on just one. Consequently, a quality
improvement process in EHS should ask each of the following questions, in
order:

1. Is the job biomechanically sound?
2. Is the job physiologically sound?
3. Is the job psychophysically sound?
4. Is the job environment sound?
5. Is the job environmentally sound?
6. If the job is sound, can you increase the workload or productivity without

compromising worker safety, health, or comfort, or the environment?



Although improvements can target job design or process design, these
questions are mainly focused on human-centered job design. To answer them,
relevant performance measures are needed (Table 12.2). When collecting this
data, you may wish to involve an ergonomist to ensure that each
measurement is being collected appropriately. For example, surface
electromyography (EMG) requires frequent calibration and skin preparation
to ensure validity of measurements.

TABLE 12.2.  Ergonomic variables and data collection resources.

Ergonomic
performance
measure Data collection Reference

Compressive
and shear forces
on lower back
(especially
L5/S1 spinal
disc)

Univ. of Michigan 3-Dimensional Static Strength
Prediction Program.™

University
of
Michgan

Lifting capacity NIOSH lifting equation. Capacity changes with lift
frequency, tightness of grip, and vertical and
horizontal distances traveled.

Waters et
al. (1994)

Muscle force
and %MVC

Surface EMG using components from online stores
that supply makerspaces.

Roberts &
Gabaldón
(2008)

Metabolic
energy

Break task into subcomponents and assess the
energy required for each using the 48 models
provided by Garg et al. (1978).

Garg et al.
(1978)

Heart rate and
heart rate
variability

Heart rate monitor using components from online
stores that supply makerspaces. Make sure that
heart rate does not exceed (220−age) and that the
difference between resting and working heart rate
is 40 beats per minute or less.

Paritala
(2009)

Core body
temperature

Thermometer Richmond
et al.
(2015)

Physical
requirements

Borg’s Rating of Perceived Exertion. Ranges from
6 to 20 and is approximately equal to the maximum
heart rate divided by 10.

Borg
(1982)

Cognitive
requirements

Effort (1 = easy to 9 = hard), difficulty (1 = easy to
9 = hard), or response time to a secondary task.

DeLeeuw
& Mayer
(2008)



Heat stress Wet Bulb Globe Temperature. Use three-term
version if in the sun, and two-term version if in the
shade.

Budd
(2008)

Cold stress Required clothing insulation. Holmér
(1994)

These performance measures can be easily integrated into Six Sigma
problem solving using the Define-Measure-Analyze-Improve-Control
(DMAIC) process improvement approach:

Define: Identify goals in terms of one or more ergonomic performance measures,
preferably from more than one category of considerations. Create a process map or
value stream map. Draw pictures or diagrams to illustrate the motions associated with
the task. Describe how the job is split into multiple component tasks.
Measure: Collect historical data to describe the past state of the system in terms of
ergonomic performance measures. Determine baseline values for ergonomic
performance measures in terms of historical data, anthropometric data, or benchmark
data for a particular worker or worker category.
Analyze: Gather data and/or perform sensitivity analysis using the performance
measures and techniques described in Table 12.2. Reduce waste by preventing
overexertion. Reduce variation in how jobs are conducted, how well employees
conform to task requirements (as designed), or how well employees conform to rest
requirements. Reduce defects by associating performance measures with incidence
of injury or accident. Correlation analysis can be conducted between performance
measures, injury reports, and costs.
Improve: Based on the analysis, identify appropriate interventions at the levels of the
worker, the environment, and job design.
Control: Identify how the selected interventions will be maintained at the levels of the
worker, the environment, and the job.

Note that improvement can involve any combination of factors at one or
more levels: the worker, the environment, and the job design. Modifying the
worker’s clothing, physical fitness, and food and drink intake (on or off the
job); controlling or adjusting the environment; or changing the recommended
approach to the work itself are all potential improvement strategies.

QUALITY IMPROVEMENT IN CYBERSECURITY
Quality techniques can be used to improve cybersecurity, which in turn can
enhance quality by protecting operational processes from threats. For
example, Bishop et al. (2014) suggest that process improvement provides a
unique opportunity to directly address one of the most challenging attack
vectors in cybersecurity, the insider threat, by strategically identifying
monitor points:



Traditional approaches have focused on examining the actions of agents (people with
access to the data or resources under consideration). In these approaches the actions
themselves are analyzed to find suspicious or unexpected patterns, where agent
behavior may be derived from technical logs or external indicators … [but] rather than
focusing on identifying insider attacks as they occur by monitoring event logs, we use a
rigorous, process-based approach to identify places in organizational processes where
insider attacks can be successfully launched. In knowing how such attacks might be
launched, organizations will often be able to restructure their processes to reduce their
exposure to such insider attacks.

This knowledge should give organizations insights that will help them to know where
to look first if an attack is suspected, and what steps in the process should be
considered for more careful activity monitoring (e.g., using audit logging or video
surveillance) or restructuring, e.g., to avoid single points of failure or add redundancy.

Their proposed method uses fault tree analysis and suggests that failure
modes and effects analysis (FMEA) may also be promising. In either case,
taking the perspective of the process rather than the attacker is the distinctive
contribution of this work.

THE BOTTOM LINE
Environment, health, safety, and quality are all interconnected, a theme that
becomes apparent when cyberattacks threaten assets, operations, and worker
health and safety. Risk, which emerges from threats, vulnerabilities, and the
possible consequences that can emerge from them, should be examined
holistically for organizations pursuing digital transformation in the Industry
4.0 era. Guidelines like the SEMA Referential Framework, the NIST CSF,
and the BCEB can be used to align quality, risk, and cybersecurity operations
in a way that addresses both safety and security.

Because many of the risks are driven by human factors, quality may be
compromised unless workers are well suited for their tasks. The human body
must be fit for purpose, the brain must be capable of the task at the right time,
and training and situational preparation must be provided. In addition to
industrial hygiene and safety considerations, organizations should also be on
the alert for these issues that can impair workers and threaten quality: fatigue,
attention, confusion, environment, training, and situation awareness.

Ergonomic job and safe process design can also protect quality.
Biomechanical, physiological, psychophysical, and environmental
considerations are all important. But as a result of more pervasive digital and
networked technologies, interactions between people and machines will have
a greater impact on health and safety in the decades to come.
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CHAPTER THIRTEEN

VOICE OF THE CUSTOMER (VOC)

Customers are empowered by digital; they have new behaviors and new
expectations that are pushing us to evolve. We have to be more reactive and more
agile. We need to listen to what our customers expect and also track how our digital

environment is evolving.
—BENEDICTE JAVELOT, CHIEF STRATEGY OFFICER OF ORANGE GROUP

On September 2, 2013, Twitter user Hasan Syed (@HVSVN) had a problem:
his father’s suitcase had been lost on a British Airways flight. After an
unsatisfactory experience at the service desk (and still no luggage), he posted
a scathing tweet: “Don’t fly @BritishAirways. Their customer service is
terrible.” Eight hours later, a real person monitoring the airline’s account
responded, asking him for more information to hopefully help him find his
bag.

But the damage had already been done—the airline had stumbled into an
admission that it wasn’t able to find the information he and his father had
given it earlier. Also, the time gap from the initial tweet to the response
provided a fertile environment for the tweet to go viral, which it did; there
were 76,000 retweets, nearly 10,000 an hour—and still no luggage. Although
we’re not sure how (or if) Hasan’s case was resolved, since 2013, British
Airways has made tremendous investments in its customer service presence
so that issues like this no longer arise.

Many companies have implemented automated bots to handle these kinds
of publicly accessible online customer service inquiries, but ensuring a
lightning-fast response time comes with a trade-off: appropriateness of the
response. Sarcasm, in particular, is hard to detect. Consider these examples
from Rajadesingan et al. (2015):
User 1: You are doing great, @MajorAirline! Who could predict heavy travel between

#Thanksgiving and #NewYearsEve. And bad cold weather in Dec. Crazy!
Major Airline 1: We #love the kind words! Thanks so much.
User 2: Ahhh … **** reps. Just had a stellar experience w them at Westchester, NY.

#CustomerSvcFail



Major Airline 2: Thanks for the shout-out Bonnie. We’re happy to hear you had a #stellar
experience flying with us. Have a great day.

A November 2016 survey by Publicis Groupe DigitasLBi indicated that in
addition to the customer service problems, in exchanges like this, 60% of
Americans were turned off by the awareness that they were not engaging
with a human. This was the case whether the conversational agent was
implemented on Twitter, on the company’s website, or in other forums.
Seventy-three percent said they would not engage with a chatbot after just
one bad experience. Even so, more than 60% were open to continue using
chatbots if they were able to reliably get the answer or recommendation they
were seeking.

By 2020, four out of five organizations that provide customer service will
offer one or more chatbots for customer support and to provide information
(Faw, 2016). But chatbots and Twitter bots are just one class of emerging
technology that can help us connect with our customers and stakeholders, to
identify their wants, needs, and expectations—and how they change over
time. While digital transformation emphasizes incorporating new
technologies to solve old problems, established mechanisms for
communicating and uncovering needs are just as important.

This chapter outlines many of these approaches, techniques, and tools and
presents them within a conceptual framework you can use to organize a
contemporary VoC process. Although explanations of how to use each VoC
method are not provided (you will have to consult the primary sources in the
tables and references), the information in this chapter will help you create a
strategy that incorporates Industry 4.0 and Quality 4.0 technologies into your
VoC efforts.

THE EVOLVING VOICE OF THE CUSTOMER (VOC)
Most organizations are better at speaking to their customers than listening to
them. Listening activities are usually bound to motives: upselling products
and services, placating customer anger, or gaining market intelligence.
Marketing budgets are often dedicated to persuasive advertising, lead
generation, and public relations, despite the evidence that poor listening
practices contribute significantly to customer attrition and distrust in
corporations (Macnamara, 2018).

Proactively addressing customer needs and requirements is a good
business decision: it is far more cost-effective to incorporate customer needs



when new products are developed, thus reducing the likelihood of waste and
rework later. Voice of the customer (VoC) refers to the process of identifying,
articulating, and prioritizing customer needs, and the results obtained from
that process. Understanding the multiple levels on which customer needs are
expressed can help organizations produce, improve, and prioritize work to
drive quality.

Organizations with mature VoC processes avoid a common pitfall: most
effort dedicated to promoting the appearance of being seen listening to
customers rather than acting on the insights obtained. Gathering but not using
customer data can present a significant waste of resources and loss of
opportunities that could have been identified from actionable customer
information (Chauhan & Sarabhai, 2018). Overall customer experience is
diminished when organizations depend on simplistic trackers to get feedback;
while providing ample amounts of data, these approaches rarely uncover the
customers’ fundamental motivations and behaviors, the true VoC.

Over the past three decades, more than 40 VoC techniques have been
described in the research literature and demonstrated in practice. Some are
qualitative, and some are quantitative, with newer methods that are primarily
digital in nature. Additionally, VoC techniques based on Quality 4.0
technologies like machine learning have recently emerged or become more
democratized and accessible.

Today, VoC is data driven and requires infrastructure to handle data. Paul
Jarman (2013), CEO of call center firm inContact, explains that
understanding customers and how they change requires solid and strategic
data management: “[Voice of the customer] is evolving to include all the
various interactions that customers have with your organization, including
written communications through chat, text/SMS, and emails.… The most
successful organizations share this data broadly and strategically across other
departments, including sales, marketing, and operations.”

A FOUR-STAGE VOC PROCESS
Strategies, tools, and techniques for gathering VoC data and transforming it
into actionable intelligence abound. Every VoC process consists of the
following stages:

VoC Stage I: Identify customer needs. This stage involves using traditional
techniques from marketing and quality management to identify:



IA: Stated needs that can be directly expressed by the customer
IB: Implied needs that cannot be expressed, but can be found indirectly
IC: Silent (or hidden) needs that cannot be expressed or determined
indirectly but can be identified by examining context, relationships, and needs
expressed by large-scale social and societal trends

VoC Stage II: Understand and prioritize needs. One need can be satisfied in many
different ways. In Stage II, methods such as quality function deployment (QFD) and
Kano’s model can be used to determine specific means to address customer needs,
and determine the best order in which they should be satisfied.
VoC Stage III: Create meaningful customer experiences. This stage involves
using the insights derived from Stage II to produce business value and engineer
exceptional customer experiences.
VoC Stage IV: Anticipate future needs. Identifying needs that do not currently exist
is the basis for innovation. In this stage, advanced analytical methods (including
applied machine learning) can be used to predict future needs, possibly even before
customers are aware that those needs exist. In this context, VoC tools can be used to
find voices of the future, catalyzing innovation.

To realize the benefits from a VoC process, organizations must design
structures and functions to support continuous data collection, analysis,
implementation, and learning—blending each of these elements. The case
study on VoC architecture later in this chapter illustrates this.

Stage I: Identify Customer Needs
In the past, VoC data would typically be gathered at regular intervals (daily,
monthly, annually) and analyzed. Results could be incorporated into choices
and initiatives in strategic plans, and sometimes into more granular action
plans. Today, data from many sources (e.g., social media) is being produced
continuously so companies need to continuously monitor it, look for leading
indicators to project future characteristics, and prepare forward-looking
models to anticipate and adapt to shifts in sentiment.

STAGE IA: IDENTIFY STATED NEEDS

Many organizations have experience capturing stated needs. These methods
involve customers explicitly expressing their needs and describing how they
would like products and services to meet those needs. The organization has
flexibility in determining how the needs will be satisfied, and sometimes this
involves further work with the customer or cooperative development (for
example, using agile methods).

Table 13.1 lists 24 methods that can be used to gather needs from
customers, with references that describe those approaches in greater detail.



Most VoC programs triangulate results from several of these methods to
construct more detailed and nuanced pictures of customers’ stated needs.

TABLE 13.1.  VoC techniques for assessing stated needs.

Technique Description References

Customer
knowledge
management

Tracking all activities related to customer
characteristics, demographics, and interactions
to better understand the customers,
considering them to be at the center of the
business.

Sachamanorom
& Senoo (2016)

Observations of
customers/
”Lens Model”

Observing customers using a product or
service can reveal needs that they may be able
to express, but only when prompted by the
experience. Talking out loud with a
representative of the organization collecting the
observational data is recommended.

Griffin &
Hauser (1993)

Online brand
communities

Online portals, usually membership based, that
track customer questions and answers allow
customers to provide support to one another
and allow firms to solicit information about
branding, satisfaction, product features, and
service elements.

Lee et al.
(2014)

Surveys and
direct elicitation

Surveys use a series of defined questions (and
sometimes use predefined answer choices) to
provide easily quantifiable feedback to the
organization. They can be conducted in
person, over the phone, through a web form, or
through videoconferencing. Surveys are useful
for assessing and monitoring customer
preferences and satisfaction, and to evaluate
and assess the impact of changes to products
or services.

Ding et al.
(2011)
Hayes (2008)

Benchmarking Benchmarking helps organizations understand
how other organizations and market leaders
satisfy their customers’ needs. Benchmarking
allows organizations to study successes and
best practices in other organizations,
pinpointing places where they can make
improvements in their own processes.

Brandt (2018)
Cooper (1998)

Gemba visits By going directly to the workplace (gemba),
information about what customers want and
need can be directly obtained. Because many
unsatisfied customers do not complain, direct
observation can reveal the source of that

González
Bosch &
Tamayo
Enríquez
(2005)



dissatisfaction. Cooper (1998)

Focus groups/
customer
interviews

Focus groups and customer advisory panels
allow organizations to spend time with select
groups of customers to solicit specific
information or engage in brainstorming
sessions, and can be conducted in-person or
using collaborative technology.

Cooper &
Dreher (2010)
Hayes (2008)
Griffin &
Hauser (1993)

Brainstorming Brainstorming, in which ideas and suggestions
flow in a less structured way than they do in
structured surveys and interviews, is an
effective tool that can be used internally as well
as externally (with customers).

Cooper &
Dreher (2010)
Berry &
Parasuraman
(1997)

Social media
analysis

Feedback on social media provides timely and
unmediated customer insights that can be
addressed, actioned, and, if necessary,
remedied immediately.

Kohl et al.
(2018)
Jeong et al.
(2017)
Trainor et al.
(2014)

Chat transcripts Transcripts of chats with service
representatives on customer websites provide
evidence of product deficiencies, customer
difficulties, and how call centers solve (or don’t
solve) their problems.

Trainor et al.
(2014)

Web analytics Web analytics specify the amount of traffic to
specific parts of a website, which can provide
significant insight into customer priorities and
interests.

Croll & Power
(2009)

Feedback
forms

Feedback forms are often provided
immediately after customers have an
interaction with the organization providing the
product or service.

Brandt (2018)
Cooper &
Dreher (2010)
Hayes (2008)

E-mail E-mails can be an excellent source of
unstructured feedback from customers who
have interacted with the organization.

Brandt (2018)

Research
results

Many organizations have market research
departments that conduct both qualitative and
quantitative research, the results of which they
regularly share internally.

Gopalani &
Shick (2011)
Griffin &
Hauser (1993)

Analyst reports Research firms, such as Gartner and Forrester,
offer market and needs assessments for
purchase.

Gopalani &
Shick (2011)
Griffin &
Hauser (1993)

Call Customer service agents take notes or make Shaw &



center/customer
service notes

recordings during customer interactions that
can provide insights into customer
dissatisfaction and product or service defects.

Hamilton
(2016)
Goodman
(2006)

Suggestion box The traditional suggestion box, in which
customers or employees can place handwritten
feedback into a sealed box, remains a valuable
way of collecting spontaneous feedback.

Cooper &
Dreher (2010)

Complaints Analyzing customer complaints provides an
opportunity for an organization to move beyond
solving the immediate customer dissatisfaction
and to diagnose process or product failures
that are producing it.

Goodman
(2006)

Product
cancellation
information

Many organizations provide feedback forms
requesting details when customers cancel
products or services.

Wu (2012)
Goodman
(2006)

Lost deals Sales teams frequently collect valuable insights
from informal conversations with potential
customers after failed bids or deals.

Snelgrove
(2017)

Delphi Method The Delphi Method presents multiple rounds of
questionnaires to subject matter experts.
Respondents deliberate on responses during
each round until they reach a consensus.

Lee & Huang
(2009)

Sales meetings,
service calls,
trade show
interactions,
communities of
enthusiasts

Personal interactions with customers and
potential customers can provide valuable
anecdotal information that may not make it into
a generic customer survey. The drawback is
that most of these interactions are not
effectively documented or analyzed, therefore
limiting the potential impact of the information.

Cooper &
Dreher (2010)

Willingness to
pay

The amount of money a customer is willing to
pay for a product, and the minimum amount a
person is willing to accept to abandon a
product or put up with negative features can
provide valuable insight into the financial
meaning they attach to needs.

Snelgrove
(2017)

Warranty data Warranty data collected during the servicing of
warranty claims is a valuable source of product
failures and customer dissatisfaction; it
suggests the thresholds at which customers
believe that their products fail to live up to
promises of performance.

Wu (2012)

STAGE IB: IDENTIFY IMPLIED NEEDS



Tools used to identify implied needs originate in the fields of psychology,
philosophy, ethnography, and data science. This section provides a brief
overview of tools for gathering the implied needs that influence product or
service quality but that are rarely called out by the methods in Table 13.1. A
selection of the 11 techniques in Table 13.2 should be used in conjunction
with a selection of the 22 techniques in Table 13.1 to ensure that both stated
and implied needs are covered by VoC data collection.

TABLE 13.2.  VoC techniques for assessing implied needs.

Technique Description References

Observation Observing a customer as he or she uses a
product or service can reveal information about
needs that he or she may not be able to
articulate directly.

Zultner (1993)
Karat et al.
(2003)

Lead user
process

A specific customer or group of customers is
selected to actively and iteratively participate in
a new product development or continuous
improvement process. Originally developed at
3M.

von Hippel
(1986)
von Hippel et al.
(1999)

Typology of
customer
value

Based on the idea that perception of value
depends on the interaction between a customer
and a product or service, this technique helps an
organization identify feelings and beliefs that
may be associated with definitions of quality.

Holbrook (1996)

Prosumerism
and
customization

When customers participate (partially or fully) in
the creation or improvement of a product or
service, or in generating supporting artifacts
(e.g., videos, blog posts) for a product, those
contributions can yield a valuable source of
intelligence about implied needs.

Hartmann
(2016)

Experience
sampling

Prompting a customer on an occasional basis to
provide brief information and insights about a
product or service (usually using an electronic
tool, such as a smartphone) as they are using it
can provide surprising insights because the
customer has little time to think about their
answers.

Larson &
Czikszentmihalyi
(1983)

Repertory
grid

A comprehensive method that requires users to
identify quality attributes, rate them (one or more
times) on a five- or seven-point scale, and
categorize them to find signals for what
contributes to perception of value in a complex

Tan & Hunter
(2002)
Lemke et al.
(2011)
Pike (2003)



customer experience.

Ergonomic
studies

Implicit in a statement of needs is the customer’s
desire to remain safe, comfortable, and free from
bodily harm and injury. Ergonomic studies
provide information about how products and
services can be designed for safety and comfort,
and about requirements that a customer may not
be able to verbalize.

Nath et al.
(2017)

A/B testing Customers are presented with Option A and
Option B and then decide which one they like
better. This does not require the customer to
explain why a particular option is more desirable.
Results are analyzed statistically to determine
which option is more effective and desirable.

Kohavi &
Thomke (2017)

Semantic
differential
technique

This method asks customers to evaluate the
degree to which a product, service, or concept
aligns with one or more pairs of descriptive
words (e.g., wet/dry, brave/cowardly,
confusing/clear). It became one of the
cornerstones of kansei engineering decades
later.

Snider &
Osgood (1969)

Kansei
engineering

This family of methods seeks to incorporate
emotional needs and responses into product
design. Semantic differential technique is one
method used in kansei engineering.

Huang et al.
(2012)
Schutte et al.
(2014)

Zaltman
Metaphor
Elicitation
Technique
(ZMET)

This approach asks customers to choose
images that reflect their feelings and needs
regarding products, services, and concepts, or
alternatively, asks them to tell stories about
images that reveal unconscious issues.
Zaltman’s 2003 book was written to help
companies apply the ZMET method.

Zaltman &
Coulter (1995)
Zaltman (2003)

STAGE IC: IDENTIFY SILENT (OR HIDDEN) NEEDS

Some customer needs cannot easily be expressed by the customer or
suggested by the customer indirectly. As a result, it will be difficult to detect
these needs using the methods described above. These additional needs are
just as critical and must be articulated because they can mean the difference
between success and failure over the full life cycle of the product or service.

Many ways to identify hidden or silent needs are made possible by
Industry 4.0 technologies and Quality 4.0 approaches. Table 13.3 outlines 11
that can be used to articulate silent or hidden requirements. The methods



broadly represent three scenarios: new knowledge made possible by public
(or social) data and trends, new knowledge gathered from the customer’s
products or environments, and new knowledge from combining emerging
technologies with established methods from anthropology. Table 13.3 is not a
comprehensive list but rather a representative list, because new technologies
are emerging regularly to identify customer needs from new sources.

TABLE 13.3.  VoC techniques for uncovering silent needs.

Technique Description References

Sensor
surveillance (e.g.,
IoT)

Sensors embedded into products or the
customer’s environment (e.g., via the IoT) can
provide information about how, when, and why
they use products and services.

Radziwill &
Benton
(2017a)

Voice of product
(VoP), Voice of
things (VoT),
Online behavior
monitoring

IoT devices, particularly in consumer settings,
can provide information about product usage,
the user’s context of use, and the user’s
environment. Other products, particularly
software products, may be able to provide
indirect information about how and why a
product or service is used.

Davies
(2017)
Radziwill &
Benton
(2017b)

Topic modeling This method takes any collection of
unstructured text (e.g., online reviews, social
media posts, customer comments) and
identifies themes or priorities.

Radziwill
(2018)
Ko et al.
(2018)

Sentiment analysis This method takes any collection of
unstructured text (e.g., online reviews, social
media posts, customer comments) and
compares it with established lexicons that
contain word characteristics to determine
whether overall sentiment is positive or
negative, and/or whether certain emotions are
represented more than others over time.

Radziwill
(2018)
Jeong et al.
(2017)

Voice of the
customer table
(VoCT)

This method examines vague or nebulous
customer needs to extract true, actionable
needs.

Tague
(2005)

Corporate
ethnography

This method involves observing or shadowing
customers to inductively build concept maps
that explain needs, motivations, and
preferences. It requires highly trained
researchers to gather and interpret data.

Anderson
(2009)
Ladner
(2014)

ISO 26000
Guidance on

This method provides best practices for “how to
ensure social equity, healthy ecosystems and

Hahn
(2012)



Corporate Social
Responsibility

good organizational governance, with the
ultimate objective of contributing to sustainable
development” (Frost, 2011).

ISO 9241
Ergonomics of
Human System
Interaction

This method provides guidance on meeting
customers’ usability needs for hardware and
software displays, Interactive Voice Response
systems, visual presentation of information,
forms, tactile and haptic response, and so on.

Bevan
(2009)
Bevan et al.
(2015)

Sensor
surveillance (e.g.,
IoT)

Sensors embedded in products or the
customer’s environment (e.g., via the IoT) can
provide information about how, when, and why
they use products and services.

Radziwill &
Benton
(2017b)

Sousveillance This technique involves customers actively
countersurveilling organizations that monitor
their needs, desires, and behaviors.

Mann et al.
(2002)
Levy &
Barocas
(2018)

VoT—
anthropomorphized

Adding intelligence to the raw customer-
oriented data could create opportunities for
greater insights: “Humanizing a connected
thing creates the opportunity to obtain feedback
from it in the same way we would from a
human being, complementing existing human
feedback.”

Davies
(2017)

As the IoT and connected products become more common, VoT (Voice of
Things) will become a more significant mechanism for identifying hidden
needs. What better way to learn about a customer than to have their purchases
report on their needs, interests, and behavior? This may sound far-fetched,
but Facebook’s software is already surveilling users’ browsing habits to
inform its advertising network, which stretches far beyond the social media
platform itself. The next step is for products to participate in that surveillance.

Interesting legal ramifications may also emerge. For example, the 2010
Supreme Court decision for Citizens United v. Federal Election Commission
(FEC) was based on a curious assumption: that nonpersons have the right to
free speech. Although the case examined the free speech rights of
corporations, technically, any object that can “speak” also has that right. The
IoT will require us to rethink fundamental questions about how our interests
as consumers and stakeholders are represented. For example:

What will the world look (and feel) like when objects you interact with have a “voice”?
How will VoC be interpreted when customers and the things they own or use have a



voice? What if there is a conflict or difference of perspective?
Will IoT objects have “agency”—that is, the right to represent your needs and
interests to other products, services, or companies?

Although there are potential pitfalls, the volume and variety of data from
your customers and about your customers will continue to expand. Ethical
collection and use of that data must be considered as VoC programs are
designed and implemented.

Stage II: Understand and Prioritize Needs
Collecting VoC data is only the first step of the process. Next, organizations
must translate what is needed into how those needs will be satisfied—and
decide which are most important. Stated, implied, and hidden customer needs
must be critically examined to understand how requirements should be used
to make design choices. In some cases, an organization will know the needs
of customers and how they should best be satisfied, but will be constrained
by feasible or available options for satisfying those needs.

For example, when a patient with a medical condition wants their issue to
be resolved, there are usually multiple ways to make it happen. The
availability of medical procedures and technology, and the feasibility of
performing those procedures on the patient at a particular time, need to be
evaluated. Table 13.4 outlines some qualitative and quantitative techniques
used to extract meaning from VoC data and prioritize outcomes. Although all
methods have been in use for decades by quality professionals and market
researchers, the analytical approaches listed here are more powerful thanks to
reliable open source software packages that can be used to analyze large
volumes of customer data.

TABLE 13.4.  Examples of methods for analyzing and prioritizing VoC data.

Technique Description References

Kano model A classification technique to help prioritize
features of products and services

Kano et al.
(1984)

Quality function
deployment (QFD)

A qualitative tool for examining trade-offs to
decide how customer needs should best be
met

Chan &
Mazur
(2017)

Analytic Hierarchy
Process

A quantitative tool to make complex decisions
based on multiple attributes by simplifying the
problem into many smaller pairwise
comparisons

Saaty
(1999)



Conjoint Analysis A quantitative tool to identify the best
combination of features based on which ones
contribute the most to overall perception of
value

Green &
Srinivasan
(1990)

Technique for Order
of Preference by
Similarity to Ideal
Solution

A quantitative tool that compares a set of
alternatives based on weights assigned with
components of those alternatives

Yoon
(1987)
Hwang et
al. (1993)

Stage III: Create Meaningful Customer Experiences
While VoC can be useful for uncovering customer preferences for pricing,
product features, or product configurations, a truly insightful VoC process
will discover what constitutes a meaningful customer experience. While
customers are often rational decision makers, they are also emotional and
value pleasurable, beneficial, and educational experiences. Customers (and
people in general) also value experiences that allow them to co-create objects
and experiences through their interaction with brands and companies (Hwang
& Seo, 2016).

Total customer experience describes the end-to-end evolution of social,
physical, and emotional realities as a customer moves from the initial stages
of awareness to the postransactional “nurture” stage (Hwang & Seo, 2016).
Greater connectedness to opportunities for co-creation means that customer
experience has the potential to be a powerful differentiator and competitive
edge for today’s organizations (Alcántara et al., 2014). Another approach to
co-creation is Customer Experience Management, which complements
Customer Relationship Management (CRM) by negotiating the gap between
customer expectations and customer experience and working to continually
enhance customer loyalty (Hwang & Seo, 2016).

A universal way to assess customer experience, however, remains elusive.
Some organizations evaluate a customer’s experience only as positive or
negative, while other more holistic approaches include values such as
pleasure, learning, nostalgia, and fantasy. Measurements are made along a
continuum that is intended to reflect the highs and lows of everyday life
(Hwang & Seo, 2016). Using this baseline, a meaningful experience does not
need to be something overwhelming or sublime, but something that honors
the needs and personal realities of the customers, or their intentions for
enhancing the well-being of the environment or the needs of cultures and
social groups (Jensen, 2014). Experience is more than simply solving a



customer’s immediate problem: it is a dialogue or interaction or exchange
that helps that person explore possibilities for living, self-actualization, and
building relationships (Jensen, 2014).

VoC is the fundamental exercise that exposes the customer values that can
help organizations create those meaningful experiences. Customers adopt
products when those products interact with, and are seamlessly interwoven
into, the complex social systems that make up the customers’ lives. VoC is
therefore a critical input to the design process for all products and services.

One of the most valuable ways to create meaning around VoC is
storytelling. Storytelling is how people and organizations create common
cultures by sharing their knowledge and values to create emotional
connections (Beckman & Barry, 2009). Designers can incorporate
storytelling into their process by using the VoC toolbox to learn how the
customer views the narrative of their lives, the performative actions that
might confirm or contradict their interpretation of their experiences, and
workarounds that they could consciously or unconsciously incorporate into
their lives as they negotiate the complex systems of their experiences on a
daily basis. The stories the customer tells, whether overtly or tacitly through
their behavior, become the inputs designers use to inspire new and innovative
solutions that complement and delight customers (Beckman & Barry, 2009).
Designers learn from those stories (and become characters within them) as
they find ways to inspire customers to adopt products that blend seamlessly
and profoundly with the customer experience. These stories can also become
structural narratives that inspire other customers and create new communities
and cultural values.

Stage IV: Anticipate Future Needs
Capturing customer needs and desires is important, but being able to identify
the needs that they will have in the future is the basis for innovation.
Anticipating future needs, which is an active area of study in market and
quality management research, is being driven in large part by Industry 4.0
technologies and Quality 4.0 approaches. This section introduces techniques
to forecast or infer future needs. Many of these methods are exploratory and
not yet validated, so only a few are summarized.

For example, Gotzamani et al. (2018) used multivariate Markov Chain
models to capture the dynamic nature of VoC and how it changes over time
and in different contexts. They developed an adaptation of QFD, a qualitative



tool to help organizations evaluate trade-offs and select product specifications
that will meet customers’ needs. Stansfield and Azmat (2017) have started
exploring “artificial intelligence infused ISO 16355” to make QFD more
responsive to the new data available from the IoT and sensor networks.
Trainor et al. (2014) studied “social customer relationship management
(CRM)” to see if customers’ needs can be predicted or anticipated by the
decisions their friends and social contacts are making.

Horizon scanning, the “systematic search for incipient trends,
opportunities and constraints that might affect the probability of achieving
management goals and objectives” (Sutherland et al., 2011), has also
emerged as a paradigm for capturing high-level trends in VoC. Some
software packages are now available to manage the collection, organization,
and analysis of horizon scanning data that can contribute to understanding
VoC. Ernstsen et al. (2018) recommend a three-step horizon scanning process
specifically aimed to anticipate disruptive forces that will transform customer
needs and requirements. The steps are (1) defining, (2) identifying, and (3)
synthesizing. Most significantly, they recommend examining the following
resources to anticipate future customer needs:

Technology reports (e.g., those by analysts including Gartner, IDC, Forrester,
McKinsey)
Industry-specific reports (e.g., those from World Economic Forum, McKinsey)
Conferences and seminars
Technology conferences
Foresight reports (e.g., those by public authorities, governments, U.S. agencies,
European Union)

Ernstsen et al. (2018) also recommended that techniques like topic modeling
and sentiment analysis be applied to the horizon scanning resources to
uncover future needs. The most critical requirement, however, is to embed
horizon scanning into product design and development processes to adapt to
newly emerging needs as soon as they can be detected.

Case Study: VoC Architecture at Fuji Xerox
In the late 2000s, Fuji Xerox changed its strategy from “Make and Sell” to
“Sense and Respond.” The company wanted to be more agile and responsive
to changing customer needs, instead of relying on long product development
life cycles and the hope that a market would be in place when the product
was released. Consequently, a modern overhaul of its VoC program that took
into consideration Industry 4.0 technologies and Quality 4.0 values was in



order (Sachamanorom & Senoo, 2016).

STAGE I: IDENTIFY CUSTOMER NEEDS

Fuji identified customer needs according to the three levels and provided
labels (VoC 1.0, 2.0, and 3.0) to describe the increase in maturity as new
varieties of data were added:

Stated needs = knowledge from customer (VoC 1.0)
Implied needs = knowledge about customer (VoC 2.0)
Hidden needs = knowledge discovered through interactions (VoC 3.0)

Within each of these levels, it identified several elements or mechanisms of
the process to draw out the customer needs and desires, the characteristics of
the workplace, and the tools required to enable the data collection. This
started the process of identifying an architecture (Table 13.5) to make VoC
gathering and analysis systematic, repeatable, and robust.

TABLE 13.5.  Fuji Xerox approach to modernizing the VoC program.

Needs Process Workplace Tools

Stated
needs

Customer satisfaction data, daily
interactions (complaints, claims,
requests, inquiries through
traditional and social media
channels), position statements

Integrated customer
support center;
provide onsite
service to
customers to gather
data

•
Customer
support
• Help
desk
• Website

Implied
needs

Focus group market research;
cross-division meetings

New product
development
meeting room;
another Fuji
development and
technology center

• Meeting
monitoring
devices

Hidden
needs

Share company information with
participants in co-creation lab;
ask customers to talk about their
business challenges; use
facilitators and visualization
methods during co-creation
sessions

Use open space for
discussion instead
of closed rooms;
incorporate themes
into environment to
stimulate innovation

• Open-
office-
board
•
Anonymous
open-
office-
cards
• Co-
creation
lab

Source: Adapted from Sachamanorom & Senoo, 2016.



STAGE II: UNDERSTAND AND PRIORITIZE NEEDS

To synthesize and prioritize needs, Fuji Xerox established (1) an integrated
call center/support center to serve as the main contact point for customers; (2)
a VoC data collection and management system that is available and
accessible to all employees; (3) a website with 24-hour customer support,
including human and automated response mechanisms; (4) a process for
external market research; and (5) strategic initiatives focused on customer
satisfaction survey results. Systematic, repeatable processes were established
so that people would know when, how, and why the data would be examined,
and how the findings would be incorporated into new product development.

STAGE III: CREATE MEANINGFUL CUSTOMER EXPERIENCES

To add the dimension of creating meaningful customer experiences, which
the company felt it had been missing, the company launched the Co-creation
Laboratory in 2010. The lab brings together executives, managers, and
decision makers from customer companies in “diversified co-creation
sessions” that promote free, open, two-way communication. Results from the
sessions are captured in a Co-creation Database that becomes part of the
unified VoC data collection and management system accessible to all
employees.

There were several Key Performance Indicators (KPIs) assigned to the lab,
designed to ensure continuity between understanding and prioritizing needs,
and creating and deploying meaningful experiences that led to improved
customer satisfaction:

Number of visitors/number of companies participating in co-creation events
Number of projects entering the intellectual property secured lab
Number of projects emerging from the intellectual property (IP) secured lab
Number of customer/partner co-creations
Number of projects that became revenue-producing business ideas
Number of VoC records generated
Number of new themes introduced in open laboratory
Number of employees who use the VoC system
Percentage of executive-level participants
Percentage of business ideas characterized by “usefulness”
Net Promoter Score (NPS) to gauge changing customer satisfaction

From 2010 to 2014, NPS improved from –4 (bad) to +35 (very good), as the
number of employees actively using the VoC data collection and
management system to launch and track co-creation events grew from 1,840
to 4,090. Fuji Xerox was pleased with the definitive results.



STAGE IV: ANTICIPATE FUTURE NEEDS

By evaluating the performance of the Co-creation Laboratory over the five-
year period from 2010 to 2014, Fuji Xerox confirmed that it had been able to
capture ideas for innovation in its Co-creation Database. Because the data
was available cross-functionally and easy to access, employees from every
department of the organization were able to analyze it and provide different
insights.

Guiding the innovative approach to modernizing the VoC program at Fuji
was the recognition that its internal experts may not be the best people to
identify customer needs. “Value which Fuji Xerox believes … is essential
might not always be the same from their customers’ viewpoints.” The
company wanted to develop a strategy that involved customers more directly
in the ideation and design processes. “That is why Fuji Xerox invites their
customers, partners and other stakeholders to join the co-creation session and
by doing activities together, they can find and create value through the
process” (Sachamanorom & Senoo, 2016). The experience of Fuji Xerox
shows one example of how traditional and modern methods can be
incorporated into a robust VoC system that is responsive to emerging needs
while being an exemplar of innovation through VoC.

THE BOTTOM LINE
This chapter outlined 24 techniques for extracting customers’ stated needs, 11
methods for identifying implied needs, and 11 approaches for examining
silent needs. To design a VoC program, this proven four-stage process can be
applied:

VoC Stage I: Identify customer needs.

IA: Stated needs that can be directly expressed by the customer
IB: Implied needs that cannot be expressed but can be found indirectly
IC: Silent (or hidden) needs that must be determined by context or models

VoC Stage II: Understand and prioritize needs.
VoC Stage III: Create meaningful customer experiences.
VoC Stage IV: Anticipate future needs. Identifying needs that do not currently exist
is the basis for innovation. Advanced analytical methods can be used to predict future
needs, possibly even before customers are aware that those needs exist.

A robust, comprehensive VoC program will incorporate multiple methods
from each of the three needs categories (IA, IB, IC) and use techniques like
co-creation and storytelling to create and deliver meaningful customer



experiences. Developing systematic, repeatable processes for data collection
and management, and identifying the requirements for workspaces and tools,
can be the basis for an architecture of systems and processes to support the
VoC program.

Understanding customer needs and desires is important because it helps
organizations develop high-quality products and services now—and helps
drive innovation to meet customer needs in the future. For guidance beyond
the four-stage process, Brandt (2018) provides insights about how to design
systematic, repeatable processes to support a VoC program.
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CHAPTER FOURTEEN

ELEMENTS OF A QUALITY 4.0 STRATEGY

The future will be driven by humans collaborating with other humans to design work
for machines that creates value for other humans.

—GREG SATELL, AUTHOR OF CASCADES AND MAPPING INNOVATION

In a quiet valley in eastern West Virginia, tucked between two ridges just
northeast of Snowshoe Mountain, a giant satellite dish looms over the hilly
horizon. At 485 feet (148 meters), it’s taller than the Statue of Liberty in New
York City, and almost as imposing as the 555-foot (169-meter) Washington
Monument in the District of Columbia. Mobile phones, microwave ovens,
and baby monitors are prohibited here in the National Radio Quiet Zone.
Radio frequency interference, which is kryptonite to this larger-than-life
machine, must be battled at all costs.

As you may have suspected, the Green Bank Telescope (GBT), named for
the town that hosts it, is no ordinary dish. First of all, it receives
electromagnetic signals from outer space (rather than transmitting them). The
GBT has such a vast collecting surface that it can detect the presence of tiny
amino acids light-years away. Astronomers use it to collect tiny amounts of
energy from planets, galaxies, pulsars, and star-forming regions to help them
understand how astronomical bodies form, evolve, and die (Figure 14.1).



The GBT itself is a marvel of engineering: it is the world’s only fully
steerable single dish radio telescope. It took the U.S. National Science
Foundation (NSF) 12 years to design, build, and commission it at a cost of
$95 million. The 2.3-acre surface of the parabolic dish is built from 2209
individual motorized panels, each of which can be optimally controlled. This
way, the antenna can maintain its perfect parabolic shape, even when it’s
pointed toward the horizon and the force of gravity on the 17 million pounds
of steel is most intense. Despite constructing a unique and irreproducible
instrument, the NSF chose to defund the GBT in 2016. Fortunately, it would
continue to be supported primarily by private grants and international
sources; by 2019, however, the long-term fate of the GBT was still up in the
air (Scoles, 2016).

Even though the GBT is not a manufacturing facility, the physical and
electronic infrastructure that collects, consolidates, amplifies, and interprets
the signals from space is similar to a supervisory control and data acquisition
(SCADA) control system. It should thus not be surprising that in the early
2000s, the GBT was a platform for improvements that would now fall under
the Quality 4.0 banner—projects leveraging technologies for connectedness,



intelligence, and automation to improve quality and performance.
All high-impact initiatives start with at least one compelling business

need. In this case, there were two: observing was expensive for the
astronomer (the customer), and lost observing time due to equipment issues
or weather was expensive for the observatory (the business).

When the telescope started receiving research astronomers in 2002, most
would travel long distances to get to Green Bank. In a typical week, in
addition to researchers from U.S. universities, it wasn’t uncommon to host
observers who had flown in from Russia, the Netherlands, Chile, and Canada.
The observers paid for their lodging at the on-site dormitory and meals in the
full-time cafeteria from their research funding. A typical trip might cost
$3000 for a single astronomer. Once onsite, there was no guarantee that you
would actually get to run your observation. Radio signals are sensitive to
water vapor in the atmosphere, and West Virginia is not a desert. In addition,
if there was a problem with any component on the telescope during your
scheduled observing time, you may not be able to gather your data. At a cost
to taxpayers of $5,800 an hour, neither of these scenarios was particularly
good.

I worked at the GBO during this time, so I had the privilege of being part
of developing solutions to these problems. First, travel time and costs could
be eliminated if the astronomers could “drive the telescope” from their home
computer instead of the computer in the telescope’s control room.
Additionally, we could reduce or remove uncertainty in slotting observations
if we monitored the weather in real time with our own sensors, created
algorithms to decide whether a particular observation was viable, and then
dynamically rescheduled astronomers based on best conditions. This would
also help us respond much more effectively to equipment issues. Because
astronomers could connect to the telescope from home, adjusting to a shift in
schedule would no longer be quite so challenging. The remote observing and
dynamic scheduling projects, which would take nearly three years to
complete (but were highly successful), were thus born.

The lessons I learned from these projects can be applied to developing
strategies for Quality 4.0 today. First, establish one to three measurable goals
for improving quality or performance. Next, identify value propositions to
support those goals. Finally, identify strategic initiatives (and execute them
by building thematically related action plans) that combine work systems and
technologies for enhancing connectedness, intelligence, and automation. This



progression, with estimates of the results that were presented to audit and
review panels, is shown in Table 14.1.

TABLE 14.1.  Early, ad hoc development of a Quality 4.0 strategy in 2004.

Quality and
performance
goals (what to
achieve)

Value propositions
(how benefits will be
delivered)

Strategic
initiatives
(how to
engage
and act)

Results (what to
achieve)

Reduce time
and cost of
travel for
astronomer

Enable a new
business model to
democratize access to
the telescope

Make it logistically
possible for people to
remote observe by
implementing dynamic
scheduling

Remote
observing
project

Cost reduced from
$3,000 to $0 per
observer; savings to
customers of
$600,000–$800,000
per year

Reduce lost
time/money
due to weather
issues and/or
equipment
failure

Augment human
intelligence to choose
better times to
observe, thus
increasing the quality
of observations

Increase speed and
quality of decision
making

Dynamic
scheduling
project

Approximately 1,500
reclaimed hours of time
per year at
$5,800/hour; total
increase in science
value delivered ~$8.7
million per year

The terms digital transformation, Industry 4.0, and Quality 4.0 are
interconnected. Digital transformation refers to the process of incorporating
digital technologies for connection, intelligence, and automation, with or
without particular quality and performance goals as drivers. Beneficial digital
shifts can be catalyzed in any industry, from healthcare to finance, retail,
service, or software. Industry 4.0, based on research papers written between
2011 and 2019, specifically refers to digital transformation in manufacturing
industries like automotive, aviation, chemicals, defense, medical devices, and
pharmaceuticals. Precision agriculture, intelligent transportation, and various
terms with “4.0” appended (like Tourism 4.0, Healthcare 4.0, and HR 4.0)
also appear in the literature and are used to refer to the digital transformation
of those domains using Industry 4.0 and related emerging technologies.



A Quality 4.0 strategy is an Industry 4.0 strategy or digital transformation
strategy where quality and performance goals are front and center. While
Industry 4.0 research may be limited to how cyber-physical systems impact
discrete manufacturing and process industries, Quality 4.0 is for all
industries. It addresses the interplay among people, processes, and new
technologies that enhances connectedness, intelligence, and automation.

This chapter develops the three requirements for a Quality 4.0 strategy—
that is, a digital transformation (or Industry 4.0) strategy driven by quality
and performance. To identify them, we

revisit the quality goals associated with digital transformation, in terms of quality
costs;
review drivers for digital transformation: why companies pursue it;
describe digital transformation and Industry 4.0 stories from old and new
organizations; and
summarize existing models for digital transformation strategy and Industry 4.0
maturity.

The resulting approach is applicable to every industry and provides
guidance for developing initiatives and action plans to realize success.

THE VISION FOR QUALITY 4.0
In the Industry 4.0 era, the goals for quality and performance improvement
are the same as they have been since the early and mid-1900s. Quality
planning, control, and improvement activities are performed in order to:

achieve conformity,
meet requirements and specifications,
reduce variation,
reduce and/or prevent defects,
reduce waste and rework,
eliminate non-value-adding activity,
prevent human error,
improve productivity,
improve efficiency,
improve the effectiveness of people and resources,
improve usability and customer experience, and
drive innovation. (Evans, 2013)

Only two things are changing with the fourth industrial revolution: (1) the
amount of data is increasing, and (2) quality goals can be accomplished faster
and more completely because emerging technologies are becoming more
powerful and accessible.



As an example, the earlier a problem is detected, the less it costs and the
lower the impact. We reduce failures by catching them in advance (by
applying controls for prevention, mistake-proofing, or implementing early
warning systems), catching them as they occur (via controls for detection), or
designing them out of the system so they can’t happen in the first place.
Imagine having an intelligent software system connected to multiple sources
of data from a production process in real time. When the data starts to
indicate that a failure is imminent, instead of the operator interpreting the
data and intervening, the system knows it’s about to happen and takes action
before an out-of-control action plan is required. This saves time, money, and
effort—and recovery from the failures is unnecessary, because they aren’t
able to occur.

DeFeo (2018) explains these dynamics in terms of quality costs. Each of
the columns in Figure 14.2 represents a company’s total revenue. The first
column on the left of the figure shows that revenue covers operating costs,
and whatever is left over is profit. The second column shows that part of the
total cost of operations is the Cost of Quality (CoQ), which represents all the
activities an organization engages in to prevent (or recover from) quality
issues and quality events.



CoQ has four categories: costs to prevent quality problems (e.g., design,
mistake-proofing, or planned maintenance and calibrations), costs for
appraisal (e.g., assessments, audits, management reviews), costs of internal
failures that occur before they impact the customer, and costs of external
failures that do ultimately impact the customer.

When siloed or struggling companies start to implement quality
management programs, the amount of time and effort spent on prevention
and appraisal usually increases so that internal and external failures begin to
fall, as shown in the rightmost column in Figure 14.2. After two to three
years, the distribution shifts: external failures decrease greatly, while internal
failures decrease at a lesser rate; prevention and appraisal activities decrease
as efficiencies are discovered. The increase in quality maturity means that
costs are lower and profits are higher.

Imagine, though, the level of quality maturity that will be possible once a
complete digital transformation has occurred and is being continuously
renewed. Failures do not happen, because prevention activities are perfect
and self-correcting based on new data that comes in. Appraisal costs are
nearly nothing, because operations teams are empowered to respond to
assessments and monitor data in real time, audits are performed automatically
by the software, and management reviews are just a formality. Some
prevention activities are required, like regular calibration and asset
maintenance, but with predictive maintenance in place these costs are
minimized as well. In addition to optimizing profit potential (Figure 14.3),
additional revenue may be generated by making other areas of the business
more effective and efficient, like environment, health, and safety (EHS).



Examples of how quality performance goals shift in response to Industry
4.0 and digital transformation are provided in Table 14.2. Although this table
is not comprehensive, it does provide representative examples of how quality
practice can become deeper, more complete, and more powerful by adding
the connectedness, intelligence, and automation of Quality 4.0.

TABLE 14.2.  How quality and performance goals shift in Quality 4.0.

Traditional quality Quality 4.0

Reduce total costs of
operations by eliminating
waste and non-value-adding
activity

Minimize total costs of operations by eliminating waste
and non-value-adding activity

Reduce internal and external
failures

Eliminate internal and external failures

Reduce costs of appraisal by
streamlining audits, reviews,
and related activities

Minimize or eliminate costs of appraisal by automating
audits and reviews, and detecting issues before they
occur

Reduce variation Minimize variation where appropriate; create variation
where appropriate (e.g., innovation)

Use Theory of Constraints, Automated intelligent systems provide guidance for



Pareto analysis, or
cost/benefit analysis to
determine resource allocation
and risk reduction priorities

optimally allocating resources, choosing the highest
value corrective actions, and selecting the most risk-
reducing actions based on the organization’s current
risk appetite and priorities

[No Analog] Increase profit by identifying and capturing new
opportunities for growth

DRIVERS FOR DIGITAL TRANSFORMATION
The essence of digital transformation is establishing new ways to create
value. For example, in an article in Forbes, Newman (2018) explains that
connected consumers, customized experiences, empowered employees,
optimized production, and connected products are the desired outcomes
driving digital transformation. Although his article focuses on digital
transformation in Industry 4.0, these drivers of change and technology
adoption apply across all industries.

Why do companies start a digital transformation journey? New companies,
like Uber and Lyft, are “digital natives” that have based their business models
on the availability of pervasive networked digital technologies. Established
enterprises, on the other hand, see opportunities for growth and greater
customer satisfaction, and fear falling behind and losing competitive
advantage if they don’t take action. Small and medium-sized companies are
somewhere in between, with many recognizing the value of digital and trying
to figure out how and where to make the highest-impact investments.

Liere-Netheler et al. (2018) studied 67 research articles on digital
transformation and found six organizational drivers, five external drivers, and
a workforce driver. The organizational drivers were process improvement,
workplace improvement (e.g., improving safety, ergonomics, or usefulness),
vertical integration, horizontal integration, management support, and cost
reduction. External drivers were responding to customer demands,
streamlining the supply chain, enhancing innovation, responding to market
pressures, and improved compliance with laws and regulations. The
workforce driver was employee support (providing digital systems to help
employees better perform tasks).

Organizational Drivers
Organizational drivers are goals that the organization would like to achieve
for itself as a result of digital transformation initiatives. These are typically



related to strategy development, leadership and governance practices,
workforce development and operations, and emphasize operational
efficiency. The World Economic Forum (WEF, 2015) identified the earliest
organizational drivers as creating new revenue streams, reducing operations
costs, and optimizing asset utilization, followed closely by improving
sustainability, worker productivity, safety, and customer experience.

Machadoa et al. (2019) held a workshop with seven companies in the
aviation, machining processes, plastic packaging, heavy vehicles, and
automobile industries. This study uncovered several drivers in operations:
improving safety, improving data quality, improving products and processes,
enhancing efficiency, assessing machine conditions, collecting and using
project data, controlling and stabilizing processes, closing resource gaps,
increasing speed and time-to-value, and making it possible to analyze
systems by simulation. They found that low digital maturity—in particular,
lack of technology and data literacy in the front-line workforce—negatively
impacted the success of digital transformation initiatives in the companies
that participated.

More drivers for digital transformation can be found by exploring the
research specific to paradigms for thinking about manufacturing, like “smart
manufacturing” and “sustainable manufacturing.” The results from Lu et al.
(2016) in Table 14.3 summarize the findings across these paradigms. Most of
the drivers should be familiar to quality professionals. What has changed in
the era of Industry 4.0 and digital transformation is that the technologies
available to realize quality and performance goals are more plentiful,
powerful, and accessible.

TABLE 14.3. Manufacturing paradigms.

Manufacturing
paradigm Drivers Enablers

Smart Enhance productivity through
connectedness, interoperability,
intelligence, and collaboration across
the supply network; enhance decision
making for energy and resource
efficiency and accelerating innovation

• Pervasive
digitization
• Connected devices
• Connected supply
chain
• Advanced sensors
• Advanced analytics

Lean Eliminate waste • Process monitoring
• Resource leveling
• Workflow



optimization
• Real-time monitoring

Flexible Adapt to changes in production
volume, process, and types

• Modular design for
interoperability
• Service-oriented
architecture

Sustainable Conserve energy and natural
resources, and enhance human safety

• Advanced materials
• Processes designed
for sustainability

Digital Reduce production cost and time-to-
value

• Model-based
engineering
• Product life-cycle
management (PLM)

Cloud Improve maintainability and make it
possible to focus on core
competencies by outsourcing
infrastructure and services

• Cloud computing
• Internet of Things
(IoT)
• Virtualization
• Advanced analytics

Intelligent Adapt to changing environments and
process requirements; optimize asset
utilization

• Artificial intelligence
(AI)
• Advanced sensing &
control
• Optimization

Holonic Make changes dynamically and
continuously to adapt to changing
requirements and environment

• Multiagent systems
• Decentralized
control

Agile Respond quickly to customer needs
and market changes

•
Collaborative/concurrent
engineering
• Supply chain
management (SCM)
• PLM

Source: Adapted from Lu et al., 2016.

External Drivers
Sometimes organizations pursue digital transformation because they feel
external pressure from customers, stakeholders, or markets (WEF, 2015).
More effectively responding to market volatility, shifting client expectations,
and new competitors that are not as firmly entrenched in a market can also be
motivating factors (Ismail et al., 2017). This includes enhancing the richness
of interactions among employees, suppliers, and customers; providing a



seamless customer experience across all channels and touch points; ensuring
immediacy and availability of information; enhancing transparency and
visibility across the business ecosystem; and providing self-service
mechanisms wherever it is feasible.

Enhanced engagement and customer service are not the only motivators.
Legal and regulatory changes (for example, more stringent requirements for
labeling and provenance in the food and beverage industry) may also compel
organizations to adopt digital strategies. Alternatively, input from customer
advisory groups or user committees can provide the push for change (Stentoft
et al., 2019).

Workforce Drivers
Finally, organizations may pursue digital transformation because they want to
improve employee experience, employee engagement, or both. This means
supporting better communication and collaboration between humans and
machines, both within organizations and across organizational boundaries, to
enhance productivity and make tasks easier to accomplish (Lu et al., 2016).
Improving communication and access to resources internally can also enable
better customer experiences (WEF, 2015; Lu et al., 2016).

Retention of employees is another challenge that can be addressed through
effective digital transformation initiatives. Many employees desire flexibility
in their working environment and demand that tools be available to enable
their success, so digitally enabled companies are often more attractive
employers. Engineers and developers, in particular, tend to gravitate to new
environments where they can learn about cutting-edge technologies. Finally,
demands from a younger workforce to advance sustainability goals and
corporate social responsibility can also push organizations to engage in
digital transformation (Ismail et al., 2017).

CASE STUDIES: FROM DRIVERS TO DIGITAL OUTCOMES
Quality 4.0 strategies emphasize real-time access to information and visibility
into processes, intelligent decision support, and enhanced communication
among people, systems, and machines. In contrast with pure digital
transformation or Industry 4.0 strategies, when quality is the central element,
specific quality and performance goals are emphasized more than the digital
transformation itself. The following cases show how other companies have
approached these initiatives, to what degree they focused on quality and



performance goals, and the relative degrees of success (or failure)
experienced.

Audi: Big Data Analytics
Automotive manufacturing is being upended by Industry 4.0. In addition to
competitive pressure not related to connected, intelligent, automated
technologies (like stylish electric vehicles, and the charging infrastructure to
make them practical), autonomous driving, pay-as-you-go services like Uber
and Lyft, and revolutions in predictive maintenance are changing the nature
of auto ownership. This impacts the viability of traditional auto
manufacturers, which are required to respond to maintain competitiveness in
unique and differentiating ways.

At German manufacturer Audi AG and its subsidiary Lamborghini S.p.A.,
the senior leadership team recognized that its best chance was to compete on
insights from data, which it already had, scattered around the organization. At
the same time, the team was well aware that a data transformation would
require a more profound shift: “Adopting and assimilating big data analytics
requires structural, capability, cultural, and procedural transformations across
the entire organization. First, issues concerned with data access, data
ownership, and joint analytics projects become important, and their resolution
often requires organizational transformations” (Dremel et al., 2017).

With this in mind, Audi planned a three-stage, five-year evolutionary
process. In the first two years, it would obtain analytics capabilities from
partners, pursue reporting and descriptive analytics, and engage in one-off
problem solving driven by business needs. In years three and four, the
organization would begin bringing the skills and capabilities in-house as it
introduced more advanced analytics and began prioritizing analytics
initiatives across business units. Finally, starting in the fifth year, Audi would
implement analytics as an internal service, gradually introducing predictive
analytics and integrating the insights into strategic planning as well as
operations.

The gradual advancing-enabling-leveraging approach helped the company
successfully shift to a data-driven culture and break down silos. Although
Audi’s inaugural Industry 4.0 strategy was not specifically tuned to quality
and performance goals, it still produced demonstrable change.

Media Corp: Connected Products and Services



The anonymous, century-old Nordic publishing and broadcasting business
Media Corp launched a digital transformation initiative in 2016 to maintain
its leading position in several market segments. Plagued by the strategic
challenges of decreasing revenue and low profitability, it recognized the need
to identify new sources of revenue and decrease costs while responding to
changing customer needs and increasing pressures from the market. New
entrants to the market, which were not limited by a workforce trained
primarily in traditional publishing and broadcasting, were also threats to
Media Corp.

The company’s response was to take an incremental approach. It dedicated
3%–5% of revenue to digitizing current products and services, and hired a
chief digital officer and chief transformation officer to manage the
technological and process perspectives, respectively. The new leaders
empowered business unit directors to develop concepts for connected
products and services that would leverage the new governance structures. The
incremental approach helped Media Corp maintain its market position, but it
was not bold enough to substantially improve its financial position (Hyvönen,
2018).

Nikon: Real-Time Measurement
Nikon is one of the few companies that specifically discuss their Quality 4.0
strategy. Its approach, announced in 2018 and described by the tagline
“digital, automated, connected,” focuses on real-time measurement:
improving and automating measurement systems, automating inspections,
and centralizing the results electronically. By digitizing and connecting as
much as possible, its goal is to shorten the time it takes to make decisions
about production processes, thus improving availability and productivity
(Cutting Tool Engineering, 2018). Results and outcomes are not yet
available.

Sweden: Near-Real-Time Dementia Monitoring
Initiated in 2013 and continuing through 2017, this digital transformation
project was launched by a consortium of healthcare providers and universities
in Sweden that were interested in improving the safety and quality of long-
term residential dementia care. The performance of the system was evaluated
through regular workshops with nurses, care providers, and family members
where incremental results could be compared with ongoing risk assessments



in a collaborative setting where providers could co-create new processes to
most effectively make use of the technology.

The technology consisted of 67 monitoring systems that linked IoT-based
door sensors and bed monitors, middleware, and a cloud-based portal. Care
providers could access the data from computers, tablets, or smartphones, and
alerts were sent by text message if movement outside nominal patterns was
detected. The system was adaptable so that it could respond to changes in
patients’ needs, behaviors, and dementia progression.

From year to year, demonstrable benefits in patient safety and quality care
were observed during the regular workshops. Adoption of the technology was
enhanced by the co-creation aspect of the project, with relatives of the
patients driving interest and support.

This Quality 4.0 project successfully achieved its qualitative goals for
improving safety and care. In addition, “the care providers became
experienced innovators … [and took] calculated risks and experimented with
the technology in contrast to previous reports from implementation of
monitoring technology in residential care” (Dugstad et al., 2019, p. 366). This
was a marked improvement from previous projects attempting to implement
digital monitoring technology in healthcare.

Kaiser Permanente: Connected Customer Engagement
In the early 2010s, the nonprofit healthcare consortium Kaiser Permanente
chose to shift from a volume-based model to a value-based model. To make
this happen, its strategy incorporated digital elements to help patients gain
access to care, care providers, and information about their condition from any
device. Its quality and performance goals were to (1) increase the quantity
and quality of communications channels between healthcare providers and
patients, (2) identify best practices for personal outreach and supporting
compliance to medical protocols, like taking medication according to
instructions, and (3) deepen engagement among patients, providers, and
others who share similar interests.

These overall goals were enacted through three initiatives, respectively:
enhancing online communications, investing in predictive and prescriptive
analytics, and using social media to create care circles. Its “Generation 2”
digital services platform, a cloud-based portal, was released in mid-2014
combining the results of the initiatives. By 2016, the company reported the
industry’s highest NPS for customer satisfaction, with 70% of customers



actively engaged with the new online platform (Sebastian et al., 2017). The
company attributes its success to a clear vision, well-defined initiatives, and
strong, consistent support from executives.

LEARNING FROM SUCCESS
What these examples reveal is that digital transformation and Industry 4.0
initiatives are similar, even though only some are driven specifically by
quality and performance goals. Every organization that embarks on a digital
transformation journey, though, wants to be successful.

To identify a prescription for success, researchers have (1) developed
readiness and maturity models based on the real experiences of companies
that have started their transformations, and (2) performed meta-analyses to
find patterns and trends. These models (referred to as digital maturity models,
digital readiness models, Industry 4.0 readiness models, or Industry 4.0
maturity models in the research) can be used to self-assess and identify gaps
between current and desired digital and Industry 4.0 capabilities. Because no
models have been designed specifically for Quality 4.0 across industries yet,
this section aims to outline the common elements in these models and meta-
analyses that support quality and performance goals.

Readiness and Maturity Models
To find themes and patterns, Schumacher et al. (2019) compared and
contrasted the main Industry 4.0 assessment models that have been developed
and used in Europe:

IMPULS Industrie 4.0 Readiness (Lichtblau et al., 2015)
Empowered Implementation Strategy for Industry 4.0 (Lanza et al., 2016)
Industry 4.0/Digital Operations Self Assessment (PricewaterhouseCoopers, 2016)
Connected Enterprise Maturity Model (Rockwell Automation, 2014)
Industry 4.0 Reifegradmodell (Jodlbauer, 2016)

By systematically examining the research literature in both German and
English that informed these models, and applying concept mapping, they
found nine themes. Those themes were translated into an assessment tool that
was validated in two enterprises, where additional feedback was provided to
ensure that the model was reliable. The themes Schumacher et al. (2019)
found, which demand focused attention during any digital transformation
efforts, were the following:



Strategy—implementation road map, available resources, new business models
Leadership—executive commitment, management competencies, central
coordination
Customers—customer data management, digitization of sales and services
Products—individualization, customization, connected products, integrated into
systems
Operations—decentralized, interdisciplinary, use of modeling and simulation
Culture—knowledge sharing, open innovation, openness to technology
People—openness, interest, autonomy, competencies, learning
Governance—adoption of standards, security, privacy, intellectual property
Technology—openness to mobile, cloud, machine-to-machine, and other enablers

The elements in each of these themes reflected competencies or activities that
were observed across multiple models or case studies. Although this
collection is not prescriptive, it does cover facets of digital transformation
and Industry 4.0 initiatives that are very often encountered.

Meta-Analyses of Digital Transformation
The meta-analysis technique scours volumes of research studies to uncover
patterns, in this case the elements that are common to digital transformation
strategies in Industry 4.0 and other markets. Ross et al. (2019) found five
building blocks of digital transformation: an operational backbone (digital
systems supported by systematic, repeatable processes), shared customer
insights, a digital platform (or single source of truth for organizational
knowledge assets), an accountability framework (with clear ownership, roles,
and responsibilities), and an external developer platform (so that suppliers,
partners, and collaborators can interact directly with a company’s digital
systems, without requiring a human in the loop).

Sony and Naik (2019) examined 68 research papers on digital
transformation in Industry 4.0 to identify six key themes: Strategy,
Digitization of the Organization, Digitization of the Supply Chain, Smart
Product and Services, Employee Adaptability, and Top Management
Commitment. Their work called out an important element of Industry 4.0—
that it is not just about production or operations, but encompasses every
aspect of a business and extends beyond the business to examine its role
within (and impact on) society.

Basl and Doucek (2019) found six areas of emphasis in Industry 4.0
assessment: Technologies, Human Resources, Strategies, Processes, Data,
and Security. They also looked at relationships between the organization and
nature (e.g., resource utilization and sustainable practices), the organization



and local community support, the organization and its customers, the
organization and its value chain partners (e.g., collaboration and
coordination), and the organization and society as a whole (for example, by
supporting dignified work conditions). Each of these conditions, the authors
explain, should be considered when constructing an Industry 4.0 strategy.

Many researchers have attempted to develop frameworks for ideation and
execution of Industry 4.0 initiatives. For example, Trotta and Garengo (2019)
identify five areas to focus on: Strategy, Technology, Production, Products,
and People. Specific recommendations include adding a digital officer to the
leadership team, moving manufacturing operations to the cloud, enabling
automated data exchange between machines, embedding sensors in products,
gathering product usage data automatically, assessing individual attitudes
toward emerging technologies, and “implementing big data.” With the
exception of the last item, which will differ in scope and details between
companies and across industries, the recommendations are actionable and
generalizable.

Recipe for a Digital Foundation
Combining the results from the models and meta-analyses, a holistic view of
what is required for digital transformation success emerges:

Product—Smart Products and Services

Leveraging connectedness of people, machines, and data
Embedding intelligence into products and systems
Implementing appropriate levels of automation

Process—Organizational Backbone to align people, processes, and technologies

Clear, consistent executive commitment
Framework for translating strategic objectives into action plans
Clear roles, responsibilities, and accountability
Standard work/descriptions of work processes
Value stream maps for production
Workforce capability and capacity development
Framework for continuous organizational learning
Effective communication channels between customers, suppliers,
collaborators, workforce, and leaders

Data—Digital Platform (single source of truth)

Knowledge repository and digital services for workforce
Knowledge repository and digital services across supply network
Data platform for sharing and managing critical data, and ensuring data



integrity
External developer platform for shared work and collaborative innovation
Cybersecurity and data management infrastructure
Availability of mobile, machine-to-machine, and prototyping tools

THE BALDRIGE EXCELLENCE FRAMEWORK (BEF)
Fortunately, there’s no need to develop an entirely new framework for
Industry 4.0 or Quality 4.0. Guidance for developing and maintaining an
Organizational Backbone and Digital Platform is embodied in the Baldrige
Excellence Framework (BEF), maintained by the U.S. National Institute of
Standards and Technology (NIST, 2019), which can be extended to
accommodate the new requirements of quality-driven digital transformation.

The elements in the models and meta-analyses covered in the previous
section are mapped to the Baldrige criteria sections in Table 14.4. This shows
how projects, initiatives, and capabilities can be aligned with the
Organizational Backbone recommended by several of the studies.

TABLE 14.4.  Key elements of digital transformation/Industry 4.0 mapped to Baldrige
Criteria.

BEF criteria
element Assessment items References

Organizational
Profile: Products
and Services

• Use of cloud technology
• Product individualization
• Flexibility of product characteristics
• Availability of information about product
use
• Data processing in products
• Internet connection to/info exchange with
products
• Digital compatibility and interoperability
• IT services attached to physical products
• Legal protection for digital products and
services

Schumacher
et al.
(2019);
Sony & Naik
(2019)

• Embedding sensors in products
• Gathering product usage data
automatically
• Leveraging voice of things (VoT)

Trotta &
Garengo
(2019)

Organizational
Profile: Assets

• Technology for information exchange
• Decentralized information storage
• Sensors for data collection

Schumacher
et al. (2019)

• Resource utilization and sustainable
practices

Basl &
Doucek



(2019)

Leadership • Financial resources to support new
technologies

Schumacher
et al. (2019)

• Centralized coordination of initiatives
• Effective two-way communication about
incorporation of new technologies
• Provision of resources and access to
appropriate competencies

Wolf et al.
(2018)

• Accountability framework, with clear roles,
responsibilities, and decision-making
processes

Ross et al.
(2019)

• Add one or more members to the
leadership to be solely responsible for digital
transformation

Trotta &
Garengo
(2019)

Strategy • Road map for integration of new
technologies
• Risk assessment for new technologies

Schumacher
et al. (2019)

• Holistic thinking and networking across the
enterprise; connected processes

Wolf et al.
(2018)

• Guide resource allocation and drive
decisions about capital investments

Sebastian et
al. (2017)

Customer Focus • Platform for VoC and shared customer
insights

Ross et al.
(2019)

• Openness to new technology Schumacher
et al. (2019)• Digitization of customer contact

• Customer integration in product
development
• IT collaboration for product
development/evolution
• Use of customer-related data

Measurement,
Analysis, and
Information
Management

• Digital platform and master data
management (single source of truth)

Ross et al.
(2019);
Basl &
Doucek
(2019)

• Digital information management processes
• Automated data collection
• Automated provision of information
• Individualization of information
• Digital process visualization
• Simulation/exploration of future scenarios

Schumacher
et al. (2019)

• Active knowledge management programs Wolf et al.
(2018)

• External developer platform (so that Ross et al.



suppliers, partners, and collaborators can
participate in co-creation of value and
innovation)

(2019);
Basl &
Doucek
(2019)

• Identification and leverage of dark data Sundarraj &
Natrajan
(2019)

• Enabling automated data exchange
between machines

Trotta &
Garengo
(2019)

Workforce
Development

• Workforce segment competence with
information and communication technologies

Schumacher
et al. (2019)

• Training/retooling on digital competencies
• Flexible work arrangements
• Autonomy of workers at all levels
• Experience with interdisciplinary work
• Openness to continuous learning
• Incentive systems that cross organizational
boundaries
• Motivation, encouragement, and time to try
out new things; support for employee
adaptability

Wolf et al.
(2018);
Sony & Naik
(2019)

Operations • Integrated computing/edge computing in
machines

Schumacher
et al.
(2019);

• Integrated computing/edge computing in
tools

Basl &
Doucek
(2019)

• Use of additive manufacturing
• Use of robotics
• Autonomy of machines
• Digitization of communication with partners
• Information exchange between machines
• Remote control of machines
• Automated quality control
• Collaboration of humans and robots
• Mobile devices for business processes
• Mobile devices for operations processes
• Agile methods Wolf et al.

(2018)
• Operations moved to the cloud; as much
as possible outsourced to focus on core
competencies

Trotta &
Garengo
(2019)



THE BOTTOM LINE
A Quality 4.0 strategy is an Industry 4.0 strategy or digital transformation
strategy where quality and performance goals are front and center. Since
2010, there have been thousands of research publications on digital
transformation and Industry 4.0 that document case studies and lessons
learned. They provide insight into the three elements that are required for a
quality-driven digital transformation to be successful:

Smart Products and Services with connectedness, intelligence, and automation
Organizational Backbone to coordinate people, processes, and technologies
Digital Platform (single source of truth for data, information, and sharing)

Jeanne Ross, principal research scientist for MIT’s Center for Information
Systems Research, has identified a similar structure in her research. She
describes the first part as identifying and delivering viable digital offerings,
while digitization incorporates the latter two. Digitization promotes
“disciplined adoption of appropriate standardized business processes to
ensure reliability, predictability, security, and visibility into customer
interactions.” She encourages organizations to consciously address both
digital and digitization initiatives for optimal success (Ross et al., 2019). In
the next chapter, I bring these concepts together in a practical, actionable
playbook for quality-driven digital transformation success.
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CHAPTER FIFTEEN

PLAYBOOK FOR TRANSFORMATION

The fundamentals of leadership—being the kind of leader you would want to have
—won’t change. But much of leadership is contextual, and in the digital world, how

you exercise leadership will change.
—BILL TROY, FORMER CEO, ASQ

Every other chapter in this book started with a story. But this chapter is
different. It’s going to be about your story—your journey to lead your
organization to improved operational efficiency; enhanced environment,
health, and safety outcomes; and new product lines and business models.
Although this chapter will help make it easier, your journey will not be easy.
Digital transformation, like managing quality, risk, health, and safety, is a
never-ending process that can get bumpy.

If you’ve ever taken a trip on an airplane, you’ve probably encountered
turbulence there too. Although turbulence can be frightening for passengers,
it’s usually nothing to worry about, and pilots don’t mind at all. They’re
accustomed to “light chop,” the most common way to describe those minor
bumps, and take action only if it interferes with maintaining a steady altitude.
If the turbulence is severe, though, the pilot has to protect the aircraft from
damage. Structural failures can occur if the pilot flies the plane through areas
where forces exceed the design limits of the aircraft.

When confronted with a potentially dangerous situation, there are some
options. The pilot can go around the turbulence, but only if there’s
information available about the conditions ahead, which is usually obtained
from other pilots. The other option is to change altitude to a level where the
airflow has different characteristics.

If neither of these options is viable, there’s one more action that can be
taken: slow the aircraft to the “turbulence penetration speed” or maneuvering
speed—the ideal speed for navigating through bad air, one that assumes a
heavy load on the wings. Some pilots even believe that the safest speed is
even slower than the recommended speed:



Most of the time, turbulence is only a mild annoyance, but occasionally, it can attack with
a vengeance, assaulting the aircraft unmercifully. For those inside, this can lead to
fatigue, nausea, and injury. Deterioration of vision also may be experienced, because
turbulence excites an airplane’s natural vibrations, making it almost impossible for a pilot
to read the instruments … [for many reasons] the slower the better.

A pilot is not likely to jeopardize safety unless he manhandles the controls, is close to
the ground, or is flying an airplane with undesirable stall characteristics.… When an
aircraft is flown into severe or extreme turbulence, gust loads are punishing and
potentially destructive. Unfortunately, many pilots compound the problem by rapidly
jerking and shoving the controls in an effort to maintain a reasonably level attitude. The
effect of this, however, is to create maneuvering loads that combine with gust loads to
make the total G load greater than necessary. Although a pilot understandably is filled
with anxiety (and possibly fear) at such a time, he must make every effort not to
contribute to the hazard. The controls should be moved deliberately yet smoothly.
(Schiff, 1985)

Although it may be the pilot’s instinct, more control is not the solution.
Fearful attempts to get a handle on the situation can compound the problem,
even to the point of damaging or destroying the aircraft and endangering the
lives inside.

When there’s no way to avoid turbulence by shifting your strategy, you do
have the option of adjusting your speed. “We can’t slow down; there’s too
much to do!” you might hear from your workforce or your leaders. You
might be saying it yourself. And despite the very real pressure that people
feel, and the desire to get to growth goals or revenue targets quickly, even
well-intentioned attempts to harness control can backfire. The solution is to
take it slowly and focus on building the habits and discipline that provide the
foundation for every technology you leverage.

Transformation means shifting from one form or experience to another, or
becoming something entirely new; it does not have to be rapid. The
caterpillar becomes a butterfly. Baking a cake or a casserole transforms raw
ingredients into a final product. A mathematical transformation turns
numbers or models into entirely new ones. Learning is perhaps the most
profound transformation, as it helps people see themselves and the world in
new ways, exposing opportunities for growth and improvement.

When the concept of transformation emerged in the business literature in
the 1990s, there were two research streams: business transformation and IT-
enabled transformation. Business transformation consisted of four constructs:
business process reengineering and restructuring (to obtain efficiencies),
renewal through employee empowerment, and regeneration of the business
concept itself. IT-enabled transformation was all about reframing a



company’s view of itself, restructuring for agility and flexibility, revitalizing
the value chain by horizontal and vertical integration, and empowerment of
people (Ismail et al., 2017).

Digital transformation, in contrast, is not focused just on a company’s
internal processes. The digital technologies used to make operations more
efficient and effective can also be used to improve, enhance, or transform the
customer’s experience. In addition, they can be used to build robust supplier
networks (and even broader ecosystems) that support near-real-time
visibility, communication, and collaboration. Always-on information
networks challenge the old concepts of seams and transitions that kept
workers and companies siloed (ASQ, 2015).

PLANNING FOR DIGITAL TRANSFORMATION
How should you transform? Table 15.1 brings together everything you’ve
learned in this book to create a quality-driven road map for digital
transformation. Even though many of the concepts have been drawn from
Industry 4.0 and manufacturing, they are applicable across industries.

TABLE 15.1.  Steps in a quality-driven digital transformation.

Step Guiding question Tools References

1 Who are you and how
does your organization
work? (create an
organizational profile)

1. Organizational Profile
(e.g., from Baldrige
Excellence Framework
(BEF):

• Product offerings
• Delivery mechanisms
• Mission, vision,
values, and culture
• Workforce profile
• Assets
• Regulatory
environment
• Organizational
structure
• Customer and
stakeholder profile
• Suppliers, partners,
and collaborators
• Competitive
environment
• Strategic challenges

NIST
(2019);
Ross et al.
(2019)



and advantages
• Processes for
evaluating performance

2. Organizational
Backbone: Work systems
—learning and
communications
framework
3. Single Source of
Truth: Data quality,
management, and
governance processes

2 Why do you want to
transform? (establish
strategic orientation and
quality/performance
goals)

Select an orientation and set
targets for the quality and
performance goals you want
to achieve:

Ismail et al.
(2017)
Ibarra et al.
(2018)
Figure 15.1
Table 15.21. Internal and external

process optimization
2. Customer interface
and experience
improvement
3. New ecosystems and
value networks
4. New business
models: smart products
and services

3 How can you transform?
(establish value
propositions and
brainstorm initiatives)

Determine viable initiatives
by:

• Examining entities
and processes
• Examining degrees of
connectedness,
intelligence, and
automation

Table 15.3
Table 15.4

4 How should you
transform? (prioritize
initiatives)

Evaluate each potential
initiative in terms of:

• Magnitude—
anticipated impacts on
customers,
stakeholders,
employees, society,
environment

Radziwill
(2018)

• Opportunity—how
well the initiative
captures opportunities



and addresses
intelligent risks

• Deployment—
whether sufficient
workforce capability,
capacity, and available
assets exist to advance
the initiative

5 How much should you
transform? (make buy-
build-partner decisions)

Examine strategic
orientation with respect to
technology, value creation,
structural changes, and
financial aspects.

Hess et al.
(2016)

6 How will you measure
success? (determine
KPIs)

Identify metrics for each
initiative to determine if you
are winning and if you should
make adjustments.

Kotarba
(2017)

STEP 1: WHO ARE YOU?
Before you begin any transformation or major change, it is important to have
a clear understanding of your organization. What makes your company
unique and compelling? How do you go to market and compete for business?
What advantages, challenges, and risks will influence your interest and
ability in pursuing Industry 4.0 and digital transformation objectives and
initiatives? It is important to answer all these questions (in writing,
preferably) because they can provide an anchor for your workforce during a
time of disruption and change.

The Organizational Profile section of the BEF is one approach that can
guide you through this process of anchoring. NIST (2019) explains that it is
important because it can help you quickly call out areas where “conflicting,
little, or no information is available, [using] these topics for action planning.”
The Organizational Profile establishes a context and process for formulating a
shared understanding of how your organization operates, from which you can
identify gaps.

Kendall and Bodinson (2016) discuss another compelling reason to invest
in an Organizational Profile before you launch a transformation:

Dr. Katherine Gottlieb, CEO of Southcentral Foundation (a Baldrige Award health care
recipient in 2011), described exploring the Baldrige Criteria with her VPs and the board
in 2003. “We knew it would cost us time, cost us money. But we came to an agreement
that this [using the Baldrige framework] would be the tool to drive systematic change.”



She also found that developing the Organizational Profile—the five-page description of
what an organization does, how it functions, and its competitive environment—was a
driving force for gaining leadership buy-in from the VPs and the managers as they
provided input and feedback to document who Southcentral Foundation was.

In addition to providing a basis for shared understanding across the
workforce, the Organizational Profile can also serve as a tool for buy-in and
change management support. Keep in mind, though, that this step is not
intended to constrain your vision. Kane et al. (2015) recommend using the
approach taken by spice manufacturer McCormick & Company, which set an
audacious goal in its digital transformation strategy process that it would be
able to personalize and customize spice blends to meet local and regional
tastes around the globe. Even though the vision wasn’t technologically
feasible when the company dreamed of it, “McCormick [now] uses
FlavorPrint to recommend recipes to its consumers. But the vision is much
bolder. McCormick thinks of FlavorPrint as the Pandora of flavorings, which
has prompted the organization to see itself as a food experience company
rather than a purveyor of spices.”

STEP 2: WHY TRANSFORM? WHY NOW?
If your organization has committed to or started a digital transformation
journey, you’ve already decided that you want to be different in some way.
Have you articulated exactly what you’re aiming for? Digital transformation
mechanisms developed by Ismail et al. (2017) and Ibarra et al. (2018) can
help you identify the best focus (Figure 15.1).



Figure 15.1 was developed by examining how sustainability could serve as
a driver for growth and innovation through digital transformation. Process
optimization is the first step, but as processes mature, new interfaces can be
provided to customers for co-creation of products and services. When
companies move value creation ecosystems and supply networks online, all
partners can benefit from greater information sharing. Beyond networks and
ecosystems, ideation of smart products and services can create entirely new
markets. Using this model requires that you use your Organizational Profile
to choose where you want to focus, based on your strategic advantages,
strategic challenges, and organizational capabilities.

This may require that you drill down a little deeper. Research shows that
strategy, and not technology, determines successful digital transformation
initiatives (Kane et al., 2015). This is why so many transformation initiatives
that focus on implementing a specific technology fail, like the $50 million
data science horror story in Chapter 7.

Technology is increasingly not about the tech itself but how that tech best serves
the end user. User-centric products have always been important but I don’t think

the expectations have ever been this high in our modern world of consistently
newer and shinier things. Making a difference in someone’s quality of life is more

important than finding someone to impress. Users are demanding and deserving of
more. The best technologies and services will be those that focus on what they can

do to make users’ lives easier, more efficient, happier. The tables have turned
really, and with end-user focus being such a natural part of what quality assurance

practitioners live for, that makes it a very exciting time to be in the quality
profession.

—AUSTIN S. LIN, TECHNICAL PROGRAM MANAGER, GOOGLE, ASQ CHAIR
(2020)

Setting quality and performance goals up front, with a clear understanding
of why those goals are important for your business, can make the difference
between success and failure. Once you have identified your focus area,
evaluate the quality and performance goals in Table 15.2 to establish why
your organization is motivated to pursue that focus. Finally, why now? For
each focus area and quality goal, establish a case for why that pursuit is
timely.





To supplement Table 15.2 and to provide more examples, Table 15.3
outlines additional ways from the research to think about how to frame
quality and performance goals.

STEP 3: HOW CAN YOU TRANSFORM?
Once you know why you are pursuing a digital transformation initiative, and
have identified quality and performance goals for each target mechanism
(process optimization, customer interface and experience, new ecosystems,
new business models, and smart products) that is important to you, it’s time
to start thinking more about specifics.



One fun way to come up with digital transformation objectives is to
brainstorm. Mixing and matching descriptors, entities, and processes like
those listed in Table 15.4 (which provides representative, but not exhaustive,
lists) can provide many ideas.

TABLE 15.4.  A brainstorming grid to convert quality and performance goals to
initiatives.

Descriptors Entities Processes

Connected: Person: Planning
Exploring
Designing
Improving

• Electronic • Agent
• Digitized • Customer
• Integrated • Intelligent agent
• Remote • Operator

• Worker
Intelligent:

• Smart Place: Executing:
• Predictive • Factory • Monitoring
• Prescriptive • Office • Control

• Site • Maintenance
Automated:

• Augmented Entity: Compliance:
• Autonomous • Asset • Auditing

• Building • Managing
• City
• Data platform
• Data repository
• Energy
• Environment
• Equipment
• Health
• Pollutants
• Product
• Process
• Safety
• Software system
• Vehicle
• Waste

Brainstorming
Choose one descriptor, plus an entity, process, or both (preferably as part of a



group or team exercise), and see where it leads you. For example, here are
some speculative combinations determined by randomly choosing from the
above lists:

Integrated customer planning—horizontal integration of systems to better
anticipate services and offerings through all stages of the customer journey
Remote vehicle control—providing the ability to navigate vehicles through small,
dangerous, or unsafe places, increasing capabilities while protecting workers
Intelligent asset management—using machine learning to anticipate threats and
vulnerabilities to high-risk assets
Predictive safety design—using simulation or analyzing incidents and near misses
to design safer work processes
Autonomous process planning—using intelligent systems and automation
technologies to dynamically plan and execute operational processes

Contextualization
After brainstorming, it’s time to think about the ideas you generated in the
context of your entire organization. Table 15.5 presents multiple ideas for
how you can realize your objectives, and illustrates the relationships you will
have to consider in doing so.



All organizations should have an organizational backbone in place,
supported by solid data management, to coordinate people, processes, and
technologies. ISO 9001, Baldrige, and lean management can all be used for
this, because they provide a framework for translating strategic objectives
into actions, clear roles, responsibilities, and accountability; standard
descriptions of work and value delivery; and approaches to learning and
communication.

Similarly, a solid digital platform is a prerequisite for digital
transformation initiatives. This includes a knowledge repository and digital
services for the workforce and the supply network, a platform for sharing and
managing critical data and ensuring data integrity, and tools for shared work
and collaborative innovation within and beyond your organization.

The digital platform supports connectedness among people, machines, and
data. The extent of connectedness can be thought of in terms of these
categories, based on Monostori (2014):



Manual process—processes are managed ad hoc, on paper or on spreadsheets
Digitization—some processes support electronic data entry, retrieval, and
visualization
Horizontal integration—some systems can exchange information across functional
areas of the organization (e.g., sales, marketing, product)
Vertical integration—information and material flows connect sensors, control
systems, and business systems
Connected work systems—information and materials flow horizontally and
vertically; organization can anticipate, adjust, and adapt

Digitization is the easiest way to connect people with data, taking it out of
manila folders and off desktops and personal data directories to benefit
multiple people. Systems integration is another way to enhance
connectedness, because when systems can exchange data and information, it
is often easier for people to find and use it.

The extent of intelligence can be represented in terms of how people and
machines collaborate to generate accurate and actionable insights:

Human intelligence—relying on the understanding and interpretations of one person
Augmented intelligence—intelligent systems that provide assistance and guidance
to add to the understanding and interpretations of one person
Collective intelligence—relying on the wisdom of many (e.g., crowdsourcing)
Augmented collective intelligence—using data and intelligent systems to add to,
improve on, or leverage the knowledge of the crowd
Machine intelligence—intelligent systems that can monitor, control, and respond to
processes and changes, improving on the understanding and interpretations of one
or more people

Finally, the extent of automation can be evaluated using the Sheridan and
Verplank (1978) framework, where the simplest form of automation involves
a machine performing a task that the human has completely specified in
advance, and continuing on to complete autonomy, where the machine just
executes on its own—it does not provide any insight into its choices or
behavior.

Gap Analysis
At this point, you should have a list of initiatives you would like to consider.
For most of these efforts, it is unlikely that your organization will be starting
from scratch. Figure 15.2 can help you compare the as-is state of your area of
interest with the to-be (desired) state. An accurate assessment of the gap will
help you determine whether pursuing the initiative is feasible.



For example, consider a company that manages all of its processes and
quality events on paper and in Excel. Its performance goal is to reduce costs
without compromising safety. It identified an integrated management system
for handling quality and safety events as a potential digital transformation
opportunity.

To examine options from the spectrum of possibilities, consider the
degrees of connectedness, intelligence, and automation for this particular
company using Figure 15.2. At present, it has a digitized but not connected
process for handling quality events and incidents, and it relies on human
intelligence to administer and manage its work processes. There is no
automation, but the people involved in these processes say that they would be
open to guidance from an intelligent system (for example, knowing which
corrective actions they should work on first). The distinction between the
current state and the possible future state is shown as follows:

As-is: digitized process, human intelligence, no automation
To-be: connected process (shared software systems), augmented intelligence,
machine gives options or selects options for what to work on next (but human
controls the work)

The gap analysis process can be used to support group discussions that can
call out exactly how much digitization, integration, intelligence, or



automation is appropriate to achieve defined quality and performance goals.
There is a caveat though: it is not always best to move up all three scales, nor
is it best to jump straight to the top of any of the scales. Every project or
initiative will have its own context, and what is appropriate and desirable in
one case may be inappropriate, dangerous, infeasible, or unethical in another.
Not all processes should be governed by connected, autonomous work
systems driven by machine intelligence (Stormont, 2008).

STEP 4: HOW SHOULD YOU TRANSFORM?
By the time you get to step 4, you should have a list of potential initiatives
that match the strategy and quality goals you identified in step 2. Before
moving forward, prioritize the possibilities. Evaluate each one in terms of the
following:

Magnitude—the extent of anticipated impacts on customers, stakeholders,
employees, society, and the environment (both positive and negative)
Opportunity—how well the initiative affirms strategic advantages, responds to
strategic challenges, captures opportunities, and/or addresses intelligent risks
Deployment—whether sufficient workforce capability, capacity, and available assets
exist (or can be obtained) to advance the initiative

Your organization may have additional factors to incorporate into the
assessment and prioritization process. The most important outcome of this
step is to have a prioritized list your organization can use to make decisions
about resourcing and adjustments to work plans if necessary.

STEP 5: HOW MUCH SHOULD YOU TRANSFORM?
Digital transformation is a team sport, and it is rare for any organization to
shoulder the entire burden of a transformation initiative. It is possible to buy
capabilities (e.g., contractors, consultants, companies), build or develop
capabilities, or partner to obtain capabilities, and these options are widely
used. Before committing to specific initiatives, defining project plans, and
dedicating resources, think about how much of the job your organization
should do itself.

Hess et al. (2016) provide an excellent overview of the key decisions that
need to be made at this step, which are summarized in Figure 15.3. There are
four categories of questions: strategic use of technology (two questions),
means of value creation (three questions), whether structural changes will be
required (four questions), and financial considerations (two questions).



Although these authors focus on digital transformation in media companies,
their recommendations translate well to many other industries.

Strategic Use of Technology
Because digital transformation initiatives are technology intensive,
companies must determine what role information technology will play in
their overall strategy, and whether it is one of their core capabilities. This can
help you choose the right technologies. For example, a legal firm that uses
information technology to support operations but does not have aspirations to
be a technology innovator or early adopter should not build its own
blockchain-based system for document management. In contrast, a software
company that considers itself a technology innovator may want to take this
step.

Value Creation
Because digital technologies can impact a company’s business model, it will
be important to examine what those changes might be and how they might
impact revenue generation. First, Hess et al. (2016) recommend looking at
the digital environment of your products and services. Are digital channels
just being used to enhance sales and distribution, or do they provide a value-
add to existing products and services? Do they define completely new
offerings?

Next, what are the revenue models associated with the enhanced or new
offerings? Although there are more possibilities, these authors call out paid



digital content, “freemium” content (some free teaser material or services,
with paid products, memberships, or enhanced service agreements for
customers who want more), ad sales, and product referrals as opportunities.
Finally, how do the new digital offerings transform the scope of the business?
For example, a company whose revenues are dominated by product sales may
find new service-based revenue channels as a result of its digital
transformation efforts.

Structural Changes
Digital transformation may also require building new internal or external
relationships, or growing new capabilities internally. Changes to the
organizational structure may be needed to communicate executive
commitment, establish authority for key decisions, and create spaces for new
relationships to form. Hess et al. (2016) recommend deciding who has overall
responsibility for the digital transformation and ensuring that they are in a
position where authority and accountability are clear.

Next, leadership must decide whether the transformation activities will be
separate from other functional areas or tied to existing functional areas (e.g.,
by setting up matrix management structures). Whether the emphasis is on
product development, process optimization, or new skills development is also
important to identify, because this will impact which leaders need to be part
of the transformation effort. Also, the way in which competencies will be
developed must be identified. This will be tied to buy-build-partner decisions.

Financial Considerations
Finally, the organization should evaluate whether there is financial pressure
that needs to be addressed, and whether financial support will come from
internal or external sources. This will depend on the age and size of the
company (a new startup will be under different pressures than an established
enterprise) and the forces motivating the transformation effort (e.g., growth
vs. the need to gain operational efficiencies).

STEP 6: HOW WILL YOU MEASURE SUCCESS?
Are you winning? Are you done? Choosing the right measures for success
will not only guide the progress of your initiatives but also provide you with
a clear indication of what benefits your organization has obtained from its
digital transformation efforts. Key Performance Indicators (KPIs) should be



tied to the quality and performance goals you outlined in step 2.
For example, if you want to reduce operations costs, how much do you

want to reduce them by—and by when? If you want to make work processes
more efficient, do you want to save time, eliminate non-value-adding steps,
use less energy, or do all the above? Who is impacted, what is impacted, and
when they are impacted will all be valuable indicators of whether progress is
taking place or whether adjustments should be made.

EXAMPLE
In Chapter 14, I shared a Quality 4.0 strategy—a digital transformation
strategy guided by quality and performance goals—that was developed by a
national research laboratory in 2004. The details of that approach are repeated
in Table 15.6. The only elements that are not apparent are steps 1 and 5, but
the activities from both of those steps were indeed undertaken. For step 1, the
organization made sure that its wiki, which contained information about work
processes and a digital repository with information for staff, customers, and
partners, was accurate and up to date. It had robust processes in place for
cybersecurity, and effective data management and governance, which was
externally reviewed once every two years.

TABLE 15.6.  Early, ad hoc development of a Quality 4.0 strategy in 2004 (from
Chapter 14).

Step 2: Quality and
Performance Goals

Step 3: Value
Propositions

Step 4:
Prioritized
Strategic
Initiatives Step 6: Results

(what to achieve) (how benefits will be
delivered)

(how to
engage
and act)

(what to achieve)

Orientation Enhance
customer interface
and experience by:

In order to reduce
time and cost of
travel, we need to:

Remote
observing
project

Cost reduced
from $3,000 to $0
per observer;
savings to
customers of
$600,000–
$800,000 per
year

Quality and
Performance Goal—
Reducing time and

• Enable a new
business model to
democratize



cost of travel for
astronomer

access to the
telescope
• Make it
logistically possible
for people to
remote observe by
implementing
dynamic
scheduling

Orientation Internal
process optimization
(to make it possible to
enhance customer
interface and
experience)

In order to reduce
lost time, we need to:

Dynamic
scheduling
project

Approximately
1,500 reclaimed
hours of time per
year at
$5,800/hour; total
increase in
science value
delivered ~$8.7
million per year

Quality and
Performance Goal—
Reduce lost time/$
due to weather issues
and/or equipment
failure

• Augment human
intelligence to
choose better
times to observe,
thus increasing the
quality of
observations
• Increase speed
and quality of
decision making

For step 5, strategic use of technology definitely played a role in the
decision to build the new digital systems internally. At a national lab,
technological innovation to support scientific discovery is a prerogative, so
building is typically preferred to buying or partnering, unless specialized
capabilities need to be sourced from a university that performs basic research.
No changes in value creation or organizational structure were required, and
financing was internal.

THE BOTTOM LINE
Evidence of digital transformation is everywhere. You, in fact, may not even
have a physical book in your hands right now but may be reading a digital
copy on your computer or tablet. Successful digital transformation initiatives
place quality and performance front and center, and leaders ensure that the



right foundations, processes, capabilities, and habits are in place to bring
about the desired results.

Effective Quality Management is all about process discipline. Blending the
emerging tools, process discipline, and a robust closed loop approach is beyond

effective—it is powerful and insightful. It is taking real time and predictive data and
turning it into actionable information. Just focusing on the latest tools is damaging.
A fool with a tool is still a fool, and all you have is a bunch of data you don’t know

what to do with.
—JASON GUZEK, DIRECTOR OF QUALITY AND FORTIVE BUSINESS SYSTEM,

INDUSTRIAL SCIENTIFIC CORPORATION

This chapter presented a six-step playbook for digital transformation
planning that incorporates people, process, and technology:

Step 1—Who are you and how does your organization work? (Create an
organizational profile)
Step 2—Why do you want to transform, and why now? (Establish strategic
orientation and quality/performance goals)
Step 3—How can you transform? (Establish value propositions and potential
initiatives)
Step 4—How should you transform? (Prioritize initiatives)
Step 5—How much should you transform? (Make buy-build-partner decisions)
Step 6—How will you measure success? (Determine KPIs)

Following these steps will produce an actionable Quality 4.0 strategy—that
is, a digital transformation strategy driven by quality and performance. While
Industry 4.0 research may focus on cyber-physical systems for manufacturing
and related industries, Quality 4.0 is for all industries. It addresses the
interplay among people, processes, and new technologies that enhance
connectedness, intelligence, and automation.

Good luck!
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APPENDIX A

INDEX OF STATISTICAL AND MACHINE
LEARNING MODELS

This appendix provides a brief description of several common machine
learning algorithms. The purpose of this section is to help you understand, at
a high level, what types of problems these methods are used to solve. These
are simple examples using very small datasets, neither of which you will find
in the real world. Machine learning practice is messy and requires hours upon
hours of data cleaning and data wrangling.

Some of the algorithms in this appendix are just statistical or probabilistic
methods that are commonly applied to large datasets—approaches that would
be unwieldy if attempted without a computer. Questions about whether some
of these approaches (e.g., linear regression) are “real” machine learning
methods are routinely posed on Stack Overflow and Twitter—in general, data
scientists who are first and foremost programmers say yes, while data
scientists who are statisticians say no. The difference seems to lie in how
each community uses the models. While programmers are concerned with the
ultimate performance of the model (e.g., how well it predicts values or
classifies observations), statisticians are more focused on estimating the
characteristics of the parameters inside the model to understand why
relationships are in place and why variation is occurring.

All the examples in this section are fully reproducible and use
prepackaged datasets that come with packages from the R Statistical
Software. To run them yourself, sign up for an account at
https://rstudio.cloud, and after you launch that application, type the code that
appears in the examples below. Do not type the leading caret > if you see it.
After lines of code that start with the caret character, the results are displayed

https://rstudio.cloud


below the code. To reproduce the example, type everything but the leading
caret.

ALGORITHMS AND EXAMPLES

Artificial Neural Networks
Neural networks are a supervised machine learning method that can be used
to perform prediction and classification tasks. A neural network must be
trained with many prior observations. These observations contain one or
more inputs (each of which becomes a node in the input layer), and the model
is created with the intention of generating one or more outputs (nodes in the
output layer). In the following example, we will predict one number (housing
price) based on 13 other numbers. For a complex task like predicting whether
an integer appears in an image, the input layer would have one node for each
pixel in an image in the training set, and the output layer would consist of ten
nodes, each representing a digit from zero to nine.



What this plot shows: This shows the structure of the neural network we
created, but not the output. There are 13 input variables on the left, which are
input nodes I1 through I13 (the gray circles are large and partially cover each



other). In the middle, there is a hidden layer with 6 nodes, H1 to H6. On top,
there are two “bias terms,” B1 and B2, that each add a constant to the
equation that describes the neural network. Finally, there is one variable in
the output layer, O1. This is the median housing value, medv.

Now, compare the predictions from the neural network with the actual
values in the training data:

What this plot shows: Actual values are on the x-axis, and predicted
values are on the y-axis. Most of the values fall close to the diagonal line
where the predicted value equals the actual value, so this neural network may
be a good prediction model.

C5.0
C5.0 is an algorithm used to build a decision tree or rule set. It uses
information entry to determine the appropriate questions, meaning that it
finds the most general questions first and then eventually generates more
narrow questions to distinguish between groups.



What this plot shows: You are observing an iris flower out in the wild.
To determine what species it belongs to, check the petal length. If it is less
than 1.9 cm, there is a nearly 100% chance it is from species Setosa. If the
petal length is greater than 1.9 cm, check the petal width. If the petal width is
greater than 1.7 cm, there is a very high chance it is from species Virginica.
Otherwise, check the petal length. If petal length is less than 4.9 cm, there is a
very high chance it is from species Versicolor (unlabeled). If petal length is
greater than 4.9 cm, there is a 70% chance it is species Virginica and a 30%
chance it is Versicolor.



Decision Trees
Decision trees are used to visualize the interconnected rules used to make a
complex decision, and (sometimes) display the likelihood of making each
choice at each step. In most cases we don’t know the rules up front, but
instead have examples that we use to figure out what those rules are. The
classification and regression tree (CART) approach works with categorical
and numerical data and tolerates outliers well.

For example, if we have 150 measurements of the sepals and petals of four
different species of iris, we can construct a decision tree that finds the
patterns.



What this plot shows: You are observing an iris flower out in the wild.
To determine what species it belongs to, measure the petal length. If the petal
length is less than 2.5 cm, the iris belongs to species Setosa. Otherwise,
measure the petal width. If it is less than 1.8 cm, it belongs to species
Versicolor. If it is greater than 1.8 cm, it belongs to species Virginica.

Deep Learning
Deep neural networks are an extension of neural networks that can be
configured with many different types of hidden layers. They are “deep”
because they can also have a multitude of hidden layers, making the depth
between input and output layers great. Because it can be a challenge to get
your runtime environment set up to do deep learning yourself, I do not
include an example on RStudio Cloud.

Here is an example of a deep neural network configured using the keras
package. There is an art associated with defining layers and ordering of layers
in a deep network. This portion of an example comes from Kisler (2018):



The only type of layer in a regular neural network is the “dense” (or “fully
connected”) layer, where a linear combination of inputs and weights is
formed. Deep neural networks have many additional types of layers. The
example above has additional layer types, including convolution layers,
which scan the inputs for notable features; activation layers, which interpret
the numerical results from dense and convolution layers and decide how to
handle them; normalization layers, which shift the mean of their inputs to
zero and standard deviation to 1; and flatten layers, which reshape the data
structure before the next step. A deep learning network can be considered a
massive pipeline, where inputs are transformed and manipulated and
interpreted at many steps.

Dynamic Time Warping
If you hear a song you recognize, it usually doesn’t matter whether the song
is played fast or slow—you will still recognize it. Dynamic time warping is
an algorithm that measures the alignment between two sequences of numbers.
It is useful in clustering problems when you are trying to figure out whether
several plots of some variable over time are similar to each other. This
example uses the dtw package from Giordino (2009). Find out more at



Sobolewska (2019).

What this plot shows: It shows the points on the shorter sine wave that
match up to the points on the longer sine wave in the best possible way.

Expert Systems
Although very popular in the 1970s and 1980s and one of the first success
stories in AI, expert systems have been eclipsed by other, more powerful
methods, especially those in machine learning. Building the expert system



involves defining facts and rules, and then the inference engine generates
new facts based on the combination of facts and rules it has available. An
expert system typically has a user interface, an inference engine, and a
knowledge base. Prolog, JESS, CLIPS, and PyCLIPS are examples of
specially designed packages with built-in inference engines; the user interface
is the command line.

Here’s how an expert system works. The user enters Fact #1: Alex is the
son of Mary and Fact #2: Mary is the daughter of John into the knowledge
base. The user also enters one Rule: The parent of a parent is a grandparent.
The inference engine in the expert system generates a new fact: John is the
grandparent of Alex.

K-Means Clustering
K-means clustering is an unsupervised machine learning task for knowledge
discovery. It does not generate a model but rather creates a new variable
(cluster membership) that can be used to understand differences between
observations. Thus, it cannot be used for prediction: the algorithm only
generates the clusters; it does not tell you what those clusters represent or
why they are important. People have to manually inspect and interpret
clustering solutions to determine what they mean.

There are many different algorithms for clustering. This example uses the
k-means approach to see whether we can cluster 150 iris observations into
three species: Setosa, Versicolor, and Virginica (Enhance Data Science,
2017). The processing requires only one line of code. This example uses a
package called GGally to plot fancy results that are easier to interpret.



What this plot shows: Starting with the plot in the upper left, this shows
us that sepal length may be able to help us distinguish between the three
species, but continuing diagonally down and to the right, sepal width
definitely cannot (all the peaks are too close together). Going down and to the
right one more time, we see that it should be easy to distinguish Setosa using
just petal length and petal width, because its values are far smaller than the
other two categories. In the bottom right, we see how well the clustering
solution grouped our 150 observations. Setosa were perfectly identified, and
Versicolor were almost perfectly identified. It was more difficult to
characterize Virginica, and around a quarter of observations were
inaccurately assigned to the Versicolor cluster.



K-Nearest Neighbors
The supervised machine learning algorithm k-nearest neighbors classifies a
new observation into a group based on the group membership of its nearest
neighbors. The value of k represents the number of neighbors you consult to
determine which group to assign the new observation to. “Nearest” can be
determined by the Euclidean distance (“as the crow flies”) or other distance
metrics like Manhattan (distance using only perpendicular streets and
avenues).

This example comes from data in Lantz (2019) about characteristics of
fruits, vegetables, and proteins. There are two quantitative variables
(sweetness and crunchiness), rated from 1 (not sweet or crunchy) to 10 (very
sweet or crunchy), one categorical label (ingredient), and one categorical
variable representing the classification of the food item (food.type). The goal
is to use the first seven observations as the “neighbors” and then classify the
last three observations based on that information.



A plot shows that fruits, vegetables, and proteins are nearly distinct from
one another when comparing them in terms of sweetness and crunchiness:



The classifier tells us that the last three observations (green bean, nuts, and
orange) are a vegetable, protein, and fruit, respectively. (The last line just
tells us the labels for all groups.) The confusion matrix at the end provides
another way to show this perfect classification. Not all classifiers perform this
well, obviously.

Latent Dirichlet Allocation (LDA)
Latent Dirichlet allocation (LDA) is an unsupervised machine learning
algorithm that examines a collection of documents (called a corpus), looking
for words that describe a set number of topics. It is a statistical model that
looks for how words are distributed within each topic, and also how topics
are distributed across the documents. This example finds six topics within a
corpus containing 2246 publications from the U.S. Associated Press:



Logistic Regression
Logistic regression uses an S-curve to classify observations into groups. In
the case of binary logistic regression, discussed in this example, we use the
value on the x-axis to determine the probability of group membership (the y-
axis). One group is represented by the lower tail at y = 0 and the other group
at y = 1.



This example is on a simple dataset of fictitious people. We know their
height, weight, gender (0 is female and 1 is male), and age. We’d like to
predict gender (a binary categorical variable, in this particular problem) from
the other variables.



What this table shows: The values in the bottom right column tell us
whether each predictor is significant. To be significant, the value should be
(at the very least) less than 0.05. None of the values are tiny, so none of our
predictors are helpful for trying to determine gender. So let’s try another
model, only this time we’ll try weight as a predictor.

What this table shows: The values in the bottom right column, as above,
tell us whether each predictor is significant. To be significant, the value
should be (at the very least) less than 0.05. The values are right on the edge
of that threshold, so this is a tough case. Weight is possibly a significant



predictor of gender, but we would have to collect a larger sample to know for
sure.

Naive Bayes Classification
Bayesian classification depends on the concept of conditional probability.
Given that you know one condition is true, what is the probability that a
second thing is also true? You can think about this in the context of a weather
forecast. If you know that skies are overcast today, what is the probability of
rain? If you know the skies are clear today, what is the probability of rain? It
shouldn’t be too hard to understand why the probability in the first case will
be much higher than in the second case.

In addition, for a Bayesian classifier, we need to be able to provide a
general idea about how many items are expected to be in the groups after we
classify them. In the weather case, we might already know that, on average,
10% of our days will be rainy and 90% will be sunny (perhaps we live in
Arizona). These are called prior probabilities. This method is often used for
building utilities like spam filters—if the word Viagra appears in an e-mail
message, there’s a high probability that it’s spam; in general, system
administrators will know what proportion of incoming e-mails are spam
versus not spam (the prior probabilities). The more accurate estimates we can
provide for our priors, the better (in general) the classifier should be.

In this example, we observe four e-mails and classified them as spam or
not spam (“ham”). In addition, we determined whether the word Viagra
appeared in each of them, and built a training set from that information:

Bayes theorem, the cornerstone on which this method is based, can help us
calculate the probability that an e-mail is spam if it contains the word Viagra.



This would be P = (1 × 0.25/0.50) = 0.50 or 50%.

Just as we calculated earlier, the probability that an e-mail is spam if it
contains the word Viagra is 50%. Although this result isn’t that interesting
because it’s easy to calculate manually, you can try it with larger datasets by
adding more terms to the data.frame at the beginning of this example.

Principal Component Analysis (PCA)
If a dataset has hundreds or thousands of predictors (i.e., columns in a
spreadsheet), that’s a potential problem for two reasons. First, it makes
machine learning algorithms computationally expensive, meaning you need
more time or money (or both) to get results. Second, even if you can get the
machine learning algorithm to run, using so many predictors can get you into
a terrible situation called overfitting, where you’re modeling the noise instead
of the signal. Principal Component Analysis (PCA) is one statistical
technique that can be used to reduce large datasets to only the most important
linear combinations of their significant predictors. No example is provided
since our test datasets are all small.

Q-Learning
Reinforcement learning “learns” an optimal path through a system by trying
lots of paths, each of which has a reward associated with it, and keeping
score. These algorithms gain information by interacting with the
environment, and gain feedback using a reward signal. An agent interacts
with its environment and takes actions, and these actions impact the state of
the environment (e.g., increases or decreases the agent’s score). The best path
is the one that, after a multitude of attempts, yields the best score. This
method is based on Markov decision processes (a model in which the state of
the system depends only on its previous state).

Q-learning is one of several algorithms for reinforcement learning. It
chooses the best sequence of steps to maximize a reward, given that you



don’t have a model for how to get from start to finish, only a record of what
the reward is when you move between individual steps. For example,
McCullock (2012) uses Q-learning to determine the quickest way out of a
building (that is, the quickest way to “Room 5”):

To do Q-learning, we first need to set up a matrix of rewards. We will
assign a –1 if “you can’t get there from here,” a 0 if the next room is not the
target state, and 100 if it is the target state. Rows represent “from” and
columns represent “to.” The top left value, –1, is the “reward” when going
from Room 0 to Room 0 (staying in place). Since this gets you no closer to
your goal, it is assigned a –1. The bottom rightmost number, which is in row
5 and column 5, represents the reward when you are in Room 5 and you stay
in Room 5 (the target).



What this table shows: Start at the top left of the matrix, in row zero
(which is labeled [1,]). The goal is to start in a room (a row) and find the
biggest reward that Q-learning has found, then go there. Continue to the row
that is recommended, and do the same process over. A policy is a “path”
through the states of the system, so if you:

Start at 0: Choose 4 (80), then from 4 choose 5 (100) to get outside
Start at 1: Choose 5 (100)
Start at 2: Choose 3 (64), then from 3 choose 1 or 4 (80); from 1 or 4 choose 5 (100)
Start at 3: Choose 1 or 4 (80), then 5 (100)
Start at 4: Choose 5 (100)
Start at 5: Stay at 5 (100)

Reinforcement learning has given us optimal paths to get outside, no matter
where we start.

Random Forests
A random forest is a supervised classification method that, because it is an
ensemble method, generates a multitude of random decision trees and then
picks the one that best predicts the observations in the training set. Typically,
cross-validation is used, where you split the training data into a training set
(used to build the random forest) and a test set (used to evaluate its
performance). In this example, we will build a random forest from the entire
iris dataset.



What this table shows: This is a confusion matrix that shows us how well
the random forest predicted which observation belonged to which species.
Most of the observations were correctly classified: only seven observations
confused Virginica with Versicolor. Setosa were predicted perfectly, which
matches the conclusion from the “K-Means Classification” section above.

Support Vector Machine (SVM)
Support vector machines (SVMs) can be used for both regression (predicting
numbers) and classification (predicting group membership). For SVM
classifiers, they create a hyperplane boundary between categories in the
training data (much like the simplest neural networks create an equation
splitting a plane into sections, each of which forms a group). In this example,
the goal is to predict the type of glass (1 through 6) by its chemical
composition:



What this table shows: This is a confusion matrix that compares the
values predicted by the SVM with the actual values from the test set. The
numbers that appear along the diagonal have been correctly classified (17, 16,
2, 2, 1, 7). The classifier had the most difficulty with glass type #2. It
incorrectly put observations in this group 15 times and correctly classified
observations into this group 16 times.

Sentiment Analysis
Comparing words, word frequencies, and word positions within a document
can provide insight into the sentiments or emotions in a text document. This
is possible because sentiment analysis packages compare the words with
predefined lexicons that serve as an interpretation guide. Although these
packages are excellent at basic analysis, they are not good at detecting
sarcasm.

For this example, I analyzed the entire first chapter of this book to make
sure it’s setting the right tone for your reading experience.



What this plot shows: Time moves from left to right, from the beginning
of Chapter 1 until the end. Measurements above the line show positive
emotional valence, while those below the line show negative emotional
valence. Although I kept the majority of the chapter positively oriented, it
does look like I started out with a negative or concerning story. This is true.

You can also use lexicons to determine the percentage of the story or
narrative that emphasizes or suggests certain emotions. I also ran Chapter 1
through this process, using the NRC emotion lexicon that compares texts
with eight basic emotions:



What this plot shows: You can be the judge about whether this sentiment
analysis accurately represents Chapter 1 of this book.
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APPENDIX B

DIGITAL TRANSFORMATION PLANNING
CHECKLIST

This appendix provides a checklist for the recommendations in Chapter 15.









GLOSSARY OF TERMS

A
A/B testing. An experiment where two choices are randomly presented to users or prospects to
determine which one is more effective or desirable. See also multiarmed bandit.

additive manufacturing. Building a three-dimensional object from a CAD model in a way that
iteratively adds layers, rather than milling a part out of a solid block of raw material.

agent. Someone or something that performs an action on behalf of someone or something else—for
example, real estate agents, insurance agents, lawyers, home assistants (Siri, Alexa).

agile methodology. Approaches for managing software development that have grown to be applied
in other disciplines, like sales, marketing, and services. Agile methodologies are iterative and
exploratory, depend on close interactions with customers, and are sometimes pull-based. Includes
Scrum, Dynamic Systems Development Method (DSDM), kanban, lean, Crystal, and SaFE.

American Society for Quality (ASQ). An international professional organization with the mission
“to empower people, communities, and organizations of the world to achieve excellence through
quality.”

analytics. Using math, statistics, and/or machine learning to generate and communicate insights about
business processes and entities. See also descriptive analytics, diagnostic analytics, predictive
analytics, and prescriptive analytics.

anomaly detection. Identification of data points, rare events, or observations that deviate from the
normal characteristics of behavior of a dataset.

application programming interface (API). A mechanism for programmers to talk directly to a
software system, online service, or data platform. Facilitates connectedness and automation, and
supports process optimization.

artificial general intelligence (AGI). A long-term goal for artificial intelligence research in which a
machine has the capacity to understand or learn in a way similar to humans. See also strong AI.

artificial intelligence. The ability of machines to demonstrate any aspect of human intelligence, such
as pattern recognition, language understanding, reasoning, planning, perception, or emotions.

artificial neural network (ANN). See neural network.

attack surface. The sum total of places in a software system or infrastructure where an unauthorized



“attacker” can gain access to or interact with the data in an environment. An attack surface should be
minimized by design.

autocorrelated process data. Outcomes or measurements from the same process, produced in
different time periods, that are related to one another. Common in production environments and
chemical operations.

autoencoder. A type of neural network with a hidden layer for encoding and an output layer for
decoding, whose purpose is to match the input it was provided.

automata. A concept dating back to the 1940s to analyze behaviors of complex systems, where
individual agents (or cells) change state based on their interactions with one another. Also called
cellular automata.

automotive SPICE. See SPICE.

B
bag of words. An approach in unsupervised machine learning where text is broken into individual
words and analyzed based on frequency, association, and proximity.

Baldrige Cybersecurity Excellence Builder (BCEB). A guidebook and self-study road map (and
companion to the Baldrige Excellence Framework) to help organizations assess and address
cybersecurity risks, threats, and vulnerabilities and their relationship to strategy, operations, and
business results.

Baldrige Excellence Framework (BEF). A guidebook and self-study road map to help
organizations reach their goals and improve their competitiveness by defining and linking strategy,
operations, and business results. Administered by the Baldrige Performance Excellence Program
(BPEP) at the U.S. National Institute of Standards and Technology (NIST).

big data. Extremely large or heterogeneous datasets or data streams that are difficult to analyze,
especially in real time.

bitcoin. A cryptocurrency built on a public, permissionless, decentralized blockchain infrastructure. Its
value does not depend on a central government, bank, administrator, or national currency.

blockchain. A series of groups of records, typically describing events or transactions, that cannot be
altered because they have been linked together using a cryptographic hash of the previous group of
records, the timestamp of the current hash, and newly stored data. See also hyperledger.

body of knowledge (BoK). An outline of the key topics in a discipline and their relationships to
each other, often used to organize knowledge requirements for certification and education.

C
cellular automata. See automata.

classification and regression trees. Predictive modeling approaches used to present decision-
making processes visually.

cloud computing. Delivery model where infrastructure, servers, software, and compute resources
can be obtained over the internet without the need to install or support the hardware that runs those
services.

clustering. An unsupervised machine learning technique that finds patterns in observations that



consist of one of more variables.

community detection. Algorithms that examine characteristics of nodes and connections in a
network to determine which should be grouped together.

computer-aided design (CAD). Using computers to build, modify, or evaluate 2D or 3D structures
and technical documents; the digital analog of drafting.

computer-aided engineering (CAE). Using simulation and modeling to explore dynamic aspects
of engineering design, including fluid dynamics, and stress and reliability analysis.

computer-aided manufacturing (CAM). Using software to control operations technology (OT), in
particular, CNC (computer numerical control) machines for rendering parts from electronic drawings.
See also operations technology (OT).

computer-integrated manufacturing (CIM). The practice of using computers to monitor, control,
and automate a production process. This acronym emerged in the 1980s and is considered a precursor
to Industry 4.0, which is expected to (at least partially) realize the goals of CIM.

confusion matrix. 2 × 2 grid that describes the performance of a classifier algorithm in terms of true
positives, false positives, true negatives, and false negatives.

Control Objectives for Information and Related Technology (COBIT). A collection of best
practices and controls for IT management and IT governance. Administered by ISACA (Information
Systems Audit and Control Association).

convergence. When multiple disparate ideas or technologies come together and are replaced by a
common concept, single technology, or shared platform or infrastructure.

coordinate measuring machine. Specialized industrial robot that is used to test the geometry of a
part or assembly against design specifications or intent.

corpus. A collection of documents. In machine learning, the data structure used for text analysis
algorithms like latent Dirichlet allocation (LDA) and sentiment analysis.

cost of quality (CoQ). Costs associated with preventing quality problems, evaluating management
systems to anticipate or proactively address quality problems (appraisal), responding to errors and
failures that emerge prior to the product or service reaching the customer, and responding to errors and
failures experienced by customers.

cross-validation. A technique for validating a model where some of the training data is withheld and
not used to train the model, but instead is used as “new data” to simulate the process of the model
encountering data it has never seen before.

customer relationship management (CRM). A software system used to manage information
about customers throughout the sales funnel and customer life cycle.

cyberinfrastructure. First introduced by the U.S. National Science Foundation (NSF), this refers to
research and commercial environments that provide innovative and advanced high-performance
computing services.

cyber-physical systems (CPS). Smart systems that NIST describes as “co-engineered interacting
networks of physical and computational components” (Monostori, 2014). CPSs have a cyber
(connected) part and a physical (tangible) part.

cybersecurity. The practice of protecting computers, networks, and data from threats and malicious



attacks.

D
dashboard. An information management tool that presents key performance indicators (KPIs) to the
people who need them for decision making. Most organizations have many dashboards.

data as a service (DaaS). Cloud service where (usually clean) data is served over a network, often
after receiving and processing data that is owned by or used by the customer.

data cleaning. The preprocessing steps taken before any data science modeling or programming
activity to remove spurious data, straighten out formatting issues, and select or create the most
significant features and/or reduce dimensionality to increase the value of the resulting models.

data integrity. The practice of maintaining all the data quality dimensions for a dataset or repository
over the full life cycle of the data.

data lake. An unstructured storage repository of an organization’s raw data, intended to provide
visibility and access but not necessarily structure.

data quality dimensions. Characteristics that define data quality for a particular user or
organization (e.g., accuracy, completeness, credibility, objectivity, conciseness, traceability, timeliness,
redundancy, and validity).

data science. An interdisciplinary activity that encompasses all the activities required to support
data-driven decision making, from collecting or obtaining data, to building and optimizing models, to
generating insights, to delivering value and broader impacts.

data warehouse. A structured repository to gather and organize a company’s multiple sources of
data, often for unified reporting.

data wrangling. Like data cleaning, but with more of a struggle and a greater chance of being
abandoned due to pain. See also data cleaning.

decision tree. A data structure that breaks down complex predictions or classifications into multiple
choices or probabilistic results. See also random forest.

deep learning. Technique in machine learning where neural networks with multiple layers, some
specialized (e.g., convolution, pooling), are applied to perform complex tasks like image recognition.

deep neural network. Data structure used to support deep learning. See also deep learning.

descriptive analytics. Metrics that describe things that have already happened or are in the process
of happening. Includes both levels and trends; typically displayed on dashboards.

diagnostic analytics. Metrics used to identify causal relationships, determine the most significant
variables or features, or uncover root causes. Can reveal why anomalies or patterns have emerged.

digital native. New companies, like Uber and Lyft, whose initial business models were based on the
availability of pervasive, networked digital technologies.

digital transformation. A strategic, pervasive shift driven by customer and business requirements
that leverages digital technologies to promote new business models, new sources of value, and the
organizational change to realize them.

digital twin. A software replica of a physical system that can be manipulated with software in the
same way that a physical system can be. Changes to the physical system can be explored by running



simulations that use the digital twins.

digitalization. New business models and value streams opened up by digital technologies.

digitization. Changing from analog to digital; state where some organizational processes are
supported by electronic data entry, retrieval, and visualization.

discrete event simulation (DES). A modeling technique that tracks entities as they flow through
locations in a system where they are sometimes provided service by operators. DES is useful for
modeling queuing systems, routing systems, and service systems.

distributed control system (DCS). The full state-driven “brain” of an industrial control system.
DCS is an active system that is engaged with field controllers and reports results back to a SCADA
system.

DMAIC (Define, Measure, Analyze, Improve, Control). A methodology associated with Six
Sigma to guide process improvement projects.

E
Earley algorithm. A recipe for separating and analyzing words and concepts. See also natural
language processing (NLP).

edge computing. Technique where incoming sensor data is processed onboard before a subset or
calculated value is sent to a more centralized hub.

ensemble methods. Techniques that combine the results from many models to generate a best-fit or
consensus model.

enterprise resource planning (ERP). A collection of software systems to manage the key
resources for an organization, including (but not limited to) finances, people, information technology,
and product offerings.

environment, health, and safety (EHS). A discipline that seeks an integrated treatment of
environmental impact and occupational health and safety due to common hazards. Also refers to
software systems that support these capabilities.

ergonomics. The study of work and human physical and cognitive performance.

exoskeleton. A mechanical (and often robotic) augmentation to a worker’s body that helps him or her
accomplish fine, difficult, or hazardous tasks.

expert systems. An approach to artificial intelligence in which a body of knowledge is represented
by facts and rules, and an inference engine is applied to generate new facts. For example: Fact #1: Alex
is the son of Mary. Fact #2: Mary is the daughter of John. Rule: The parent of a parent is a
grandparent. New fact generated by expert system: John is the grandparent of Alex.

exploit. In cybersecurity, a way that a vulnerability can be used to stage a malicious attack.

extract, transform, load (ETL). Data processing technique where multiple data sources are pulled
from a data source, cleaned or manipulated in some way, and stored in a target system.

F
feature. Predictor variables in a dataset. If observations are arranged in rows, each column (containing
one predictor, either categorical or quantitative) represents one feature.



feature extraction. Converting data to a more useful format (e.g., extracting phrases from a
document, converting unwieldy date/time formats to Julian day, combining features to obtain a new one
that is a more powerful predictor).

feature selection. Removing unnecessary predictor variables in a dataset.

field controllers. Devices that manage information about the state of a system or subsystem (e.g.,
PLCs, PACs, RTUs, PID controllers, or embedded microcontrollers like Arduino, or Raspberry Pi).

field devices. Instruments that drive processes and obtain process data at monitor points (e.g.,
switches, sensors, valves, meters, actuators, beacons, RFID tags).

Food Safety Modernization Act (FSMA). Signed into law by President Obama in 2011, it
establishes stronger requirements for food safety, quality, and sustainability. Rollout of FSMA is
expected to take several years.

G
gemba (現場). A Japanese term often used in lean management that reflects where the work is done.
This can be on the shop floor, on a computer screen where a software application is being used, in a
conference room, or at a customer site.

General Data Protection Regulation (GDPR). Approved by the EU Parliament in 2016 and
enacted in May 2018, GDPR provides consistency between data privacy and protection regulations
across EU member nations and establishes that information about a person belongs to that person. If
your organization collects data that in any way relates to a citizen of the EU, that person should be
informed about how you plan to use that information, and kept informed as your organization’s data
management strategy evolves.

generative adversarial networks (GAN). A special kind of neural network that generates new
data with the same statistical properties as training data. Can be used to reconstruct 3D models,
generate video game worlds, and create fake photos (of people, animals, or any other object) based on
collections of real photos.

H
hazard. From ISO 31000:2018 Risk management—Guidelines: a source of potential harm. See also
risk.

hidden layer. A group of nodes in between the input and output layers of a neural network that exist
to transform the inputs into values the output layer can use.

hidden Markov model (HMM). A model that describes a sequence of observable events, when one
or more of them are not completely observable.

high dimensional data. A dataset with so many features (predictors) that calculations become
difficult, or where the number of features (predictors) is greater than the number of observations.

historian. A machine (or group of machines) that keeps track of historical production status,
performance, quality information, tracking and provenance, alarms, and other events. Also used for
troubleshooting, regulatory reporting (e.g., for ISO 9001 certification), cost accounting, identifying
process improvement opportunities or justifying past process improvements, tracking downtime, and
tracking energy consumption.

horizontal integration. Connecting systems across functional boundaries (e.g., sales, marketing,



development, service), usually with the aid of digital systems.

human–machine interfaces (HMIs). The interfaces between human operators and a process (often
industrial in nature). HMIs enable the operator to closely monitor production and respond to changing
demands in real time. Can be deployed via computer, tablet, smartphone, augmented reality, or
wearable.

hybrid intelligent system. System that combines or blends techniques from different artificial
intelligence domains (e.g., expert systems, computer vision, reinforcement learning) to solve a real-
world problem.

hyperledger. A blockchain framework developed and managed by IBM and the Linux Foundation,
supporting major new proof of concept initiatives like the IBM Food Trust for enhancing the
transparency and auditability of the food supply chain.

I
industrial control systems (ICSs). Hardware and software that gather information about a process
from its endpoints, interprets that information in the context of production system goals, and facilitates
interactions among operators, field controllers, and field devices.

industrial hygiene. The study and practice of protecting the health and safety of workers, in
particular from chemical, physical, biological, and ergonomic stressors.

industry 4.0. Term that emerged from a German government project in 2011, intended to catalyze
Germany’s industrial economy by implementing smart factories enabled by connected, intelligent,
automated technologies. Describes the digital transformation of some industries, including automotive,
aviation, chemicals, defense, medical devices, and pharmaceuticals.

information technology (IT). Department in many companies that handles internet connectivity,
infrastructure, applications for business systems, and software, including finance, HR, and support
functions.

Information Technology Infrastructure Library (ITIL). A best practices framework for IT
service management that originated in the UK.

infrastructure as a service (IaaS). The most common and lowest risk cloud service model, in
which the cloud service provider supplies computational capabilities, storage, and network management
that the customer uses to manage their data and run their applications.

input layer. Nodes of a neural network that represent each element of an input array. For example,
when an image is used as input to a neural network, the input layer contains one node for each pixel.

Institute of Electrical and Electronics Engineers (IEEE). A professional association based in
the United States that initially served electrical engineers but has grown to support engineers from all
disciplines and scientists that support engineering efforts.

intelligence. Ability to think, reason, solve problems, be creative, and apply emotional reasoning;
self-awareness.

intelligent agent. A computer system situated in a specific environment and capable of autonomous,
goal-directed action within this environment. See also agent.

intelligent system. Any system—human, machine, or a combination—that is autonomous, reactive,
proactive, social, adaptive, and/or capable of learning.



internet of things (IoT). An interconnected collection of cyber-physical systems that can
communicate over a network.

internet of things (IoT) hub. A cloud-based and typically cloud-managed service that handles
bidirectional communication between IoT endpoint devices and the applications that analyze, process,
or use that data.

ISA-95. A technology-agnostic information model developed in the 1990s by the International Society
of Automation (ISA) that describes the relationships between business and production data; intended to
ease systems integration (particularly for industrial and manufacturing facilities).

ISO 8000. ISO standard for data quality and enterprise master data.

ISO 9001. ISO standard for quality management systems.

ISO 14001. ISO standard for environmental management systems.

ISO 31000. ISO standard for risk management.

ISO 45001. ISO standard for occupational health and safety management systems.

ISO/IEC 15504. See SPICE.

ISO/IEC 27001. ISO standard for information technology security management systems.

ISO/IEC 27005. ISO standard for information technology risk management.

J
journey map. Model for the stages of interaction a company and customer have with one another.
Also called customer journey map.

just-in-time (JIT). A pull-based system in lean production for managing people, materials, and
inventory, in which resources arrive or are replenished only when they are needed.

K
kaizen (改善). Change for the good. A Japanese word used to summarize the principles and practices
of continuous improvement as embodied by lean management.

kanban (看板). A lean method for managing work in process that visually tracks work in terms of
what tasks are outstanding, what are currently being worked on, and what has been completed. Means
“sign” in Japanese; used to refer to billboards and shop signs. See also just-in-time (JIT).

key performance indicators (KPIs). A metric used to assess performance (e.g., product, process,
customer satisfaction, customer engagement, workforce capability, workforce capacity, leadership,
governance, financial, market, and strategy).

L
lagging indicators. Metrics or KPIs that indicate results that have already occurred. See also leading
indicators.

latent Dirichlet allocation (LDA). A statistical technique in natural language processing that models
a document as groups of related topics.

leading indicators. Predictive factors that can be used to anticipate future changes, scenarios, or



events. See also lagging indicators.

lean management. An approach to organizational management and performance improvement that
focuses on customer value, defining a value stream, creating flow, establishing pull-based systems, and
aiming for perfection.

linear discriminant analysis (LDA). A linear transformation technique used to pre-process
machine learning data for dimensionality reduction (choosing the most powerful predictors).

linear regression. A statistical method used to create predictive models where one dependent
variable is predicted by one or more explanatory (independent) variables. Although linear regression is
often performed on large datasets and often included in books on machine learning, many practitioners
do not believe it qualifies as machine learning, while others argue that it definitely does, especially
when there are hundreds of independent variables.

logistic regression. A probabilistic model that estimates how likely it is that an observation will fall
into one of two categories (binary logistic regression) or one of many categories (ordinal logistic
regression). Although logistic regression is often performed on large datasets and often included in
books on machine learning, many practitioners do not believe it qualifies as machine learning, while
others argue that it definitely does, especially when there are hundreds of independent variables.

M
machine learning (ML). A subset of artificial intelligence (AI) that focuses on the use of algorithms
and statistical models that are implemented by machines to generate analytics and insights on big data.

machine learning algorithm. Core computational recipes used to carry out machine learning
methods that are used to build models.

machine learning method. Techniques that leverage machine learning algorithms to create models
that can adapt to new data, and revise themselves to increase prediction accuracy. Machine learning
methods use one or more machine learning algorithms.

machine learning model. A mathematical description of the relationships between inputs and
outputs, expressed by implementing a machine learning algorithm.

Malcolm Baldrige National Quality Award (MBNQA). The highest level of national recognition
for performance excellence that can be obtained by a U.S. organization, administered by the Baldrige
Performance Excellence Program (BPEP) at the National Institute of Standards and Technology
(NIST). Award applicants are evaluated using the Baldrige Excellence Framework (BEF).

manual materials handling (MMH). Tasks carried out in an industrial environment (e.g., lifting,
carrying, holding, and placing) that must be designed so the physical requirements do not exceed the
physical capabilities of the workers who must perform those tasks.

Markov chain. A model that describes a sequence of observable events. Compare with hidden
Markov model (HMM).

master data. Data entities that represent parties (people), locations, and things and are critical to
business processes.

master data management (MDM). Policies, procedures, and guidelines for managing key business
data. See also master data.

metadata. Data about other data (e.g., timestamp, keywords, storage location).



model. A mathematical description of the relationships between inputs and outputs, designed based on
beliefs about those relationships.

model-based software engineering. The formalized application of information modeling to
defining software and system requirements, capturing design, and verifying and validating designs
against requirements.

muda (無駄). Japanese word for waste. Includes waste associated with transport, inventory, motion,
waiting, overproduction, overprocessing, defects, and underutilization of skills.

multi-armed bandit. A variation on A/B testing that helps decision makers determine the most
beneficial option from a set of choices. See also A/B testing.

multi-class. A classification model that separates results into three or more categories.

mura (斑). Japanese word for unevenness; the waste that comes from working too little, and then too
much.

muri (無理). Japanese word for overwork; the waste that comes from exhaustion or depletion.

musculoskeletal disorders. Issues such as lower back injuries, muscle strain, and carpal tunnel
syndrome that cost businesses over $50 billion per year in medical expenses, lost time, lost
productivity, and workers’ compensation claims.

N
Naive Bayes. A supervised or semi-supervised machine learning approach where observations are
classified based on previous knowledge about the characteristics of those observations or relationship
of the observations to external factors (e.g., an e-mail containing the word “Viagra” is much more
likely to be spam than legitimate).

National Institute of Standards and Technology (NIST). U.S. government agency that
promotes innovation and competitiveness through standards for physical measurements, scientific
processes, communications, security, and operations.

natural language processing (NLP). A branch of artificial intelligence that focuses on systems for
speech recognition, understanding natural language, understanding meaning, and generating language.
Chatbots are an example of a technology that heavily leverages NLP.

neural network. A computing construct that models systems of inputs, outputs, and their connections
to make predictions or classify observations. See artificial neural network (ANN).

NIST Cybersecurity Framework (CSF). A policy framework consisting of standards, guidelines,
and best practices for managing cybersecurity-related risk. See also National Institute of Standards
and Technology (NIST).

NoSQL. A nonrelational database (e.g., CouchDB, MariaDB, MongoDB) designed to store and
retrieve information from unstructured data objects like web pages.

O
observation. A row of a dataset where each column corresponds to one (and only one) predictor
variable (feature).

operations technology (OT). Hardware and software close to a production process, including field
devices, field controllers, and human–machine interfaces (HMIs), usually in Level 1 or Level 2 of the



ISA-95 automation hierarchy. See also ISA-95.

opportunities for improvement. Possibilities for reducing variation, reducing waste, improving
flow, improving effectiveness, or enhancing any other quality or performance outcome. Popularized by
the Malcolm Baldrige National Quality Award (MBNQA). Pronounced “oh-fee.”

output layer. The nodes in a neural network that represent the answer to a prediction or classification
problem. For example, the output layer for a neural network that classifies integer digits from 0 through
9 might have ten nodes, one for each potential answer (there are many ways to design neural networks,
so this may not always be the case).

overfitting. In machine learning, the practice of creating a model from data that so closely describes
that data, it is unable to generalize to new incoming observations effectively. As a result, the model
overwhelmingly describes the noise in the input data rather than the signal.

P
personal protective equipment (PPE). Special clothing, hats, goggles, boots, or other apparel that
is designed to withstand harsh or hazardous work conditions.

platform as a service (PaaS). A cloud computing service that provides customers with
infrastructure, operating system, and runtime environment, allowing the customer to focus on
maintaining only the data and applications.

precision. A performance measure for machine learning classifiers that evaluates its ability to
correctly classify into one category; the number of true positives divided by all positives. See also
recall.

predictive analytics. Metrics that project future states. Can incorporate results from forecasting,
model building, descriptive analytics, or diagnostics.

prescriptive analytics. Metrics used to identify a recommended course of action, typically created
using optimization to identify the best alternatives to achieve an objective.

principal component analysis (PCA). Dimensionality reduction technique that extracts
“components” (combinations of independent variables) that best describe changes in the dependent
variable that is being predicted. See also linear discriminant analysis (LDA).

programmable automation controller (PAC). A more modern form of a programmable logic
controller (PLC) that can have additional memory, data logging, or enhanced I/O capacity and can
integrate more easily with databases; used for discrete control.

programmable logic controller (PLC). Developed to replace physical relays, each PLC contains
electrical inputs and outputs, and the capability to program logic that determines how and when the
outputs are triggered based on the inputs; used for discrete control. Invented in 1969, it was the catalyst
for the third industrial revolution.

proportional—integral—derivative (PID) controller. Measures the gap between an observed
value from a field device or remote terminal unit (RTU) and the target value.

Q
Q-learning. A reinforcement learning algorithm that learns what steps an agent must take under what
circumstances to maximize rewards. In contrast with other reinforcement learning approaches, Q-
learning does not use a model, just information about the relative rewards that can be obtained at each



step.

quality. The characteristics of an entity (product, service, person, system, project, agent) that bear on
its ability to satisfy stated or implied needs (old ISO 8402); fitness for use or purpose (Juran);
conformance to requirements (Crosby); the efficient production that the market expects (Deming).

Quality 4.0. Enhancing connectedness, intelligence, and/or automation to achieve quality goals and
improve performance. Each of these three areas builds on each other to amplify quality and
performance benefits. While Industry 4.0 is the digital transformation of certain industries and
describes how new and emerging technologies support performance breakthroughs in manufacturing
and other industrial processes (e.g., smart factory), Quality 4.0 can serve as an umbrella term for similar
practices in any industry (e.g., Health 4.0, Lean 4.0, Logistics 4.0, smart agriculture, smart cities,
Supply Chain 4.0, Tourism 4.0).

Quality 4.0 initiative. Any digital transformation or Industry 4.0 initiative that has been designed to
satisfy quality objectives or improve quality or performance, regardless of industry.

Quality 4.0 strategy. A digital transformation (or Industry 4.0) strategy driven by quality and
performance.

R
radio frequency identification (RFID). Tags that store information electronically and can be
affixed to products and assets to track movement.

random forest. A supervised machine learning approach that creates an ensemble of decision trees
from a set of training observations, and then recommends the classification or regression tree that best
represents a consensus view of the decision process.

recall. A performance measure for classifiers that describes how many of a particular class are
successfully identified from all true members of that class. For example, a medical test that can
successfully identify all members of a community infected with a disease so they can be quarantined
would have a high recall.

reinforcement learning. A machine learning technique that explores a sequence of steps or
activities to learn how to maximize reward or quality.

relational database management system (RDBMS). A database structure where information is
stored in tables that contain fields, and fields are linked to one another to create relationships between
the fields.

remote terminal unit (RTU). The simplest type of field controller, it collects analog signals from the
field and converts them to digital signals. More advanced RTUs have capabilities nearing those of
programmable logic controllers (PLCs). Can also be referred to as remote telemetry unit.

risk. From ISO 31000:2018 Risk management—Guidelines: the effect of uncertainty on objectives. See
also hazard and threat.

robotic process automation (RPA). Software programs or scripts that are used to execute
repetitive, recurring, or nondeterministic tasks or processes.

S
safety instrumented system (SIS). Robust, hardened, high-reliability industrial control system
(ICS) that has one and only one purpose: stopping or shutting down processes if unsafe conditions



occur. An SIS protects against random, unintended hardware faults.

sampling frequency. Number of observations taken in a particular unit of time. For example, 5G
communications will support data transmission at a higher sampling frequency from IoT sensors than
4G or 3G.

Sarbanes-Oxley (SOX). A 2002 U.S. law that imposed requirements for transparency and
auditability of corporate accounting, intended to protect against fraud and corruption.

SCADA (Supervisory Control and Data Acquisition). Often used to refer to the combination
and coordination of programmable logic controllers (PLCs) and human–machine interfaces (HMIs);
some operators refer to the HMIs alone as “the SCADA system.” Performs supervisory gathering and
reporting only and does not make decisions. Has distributed intelligence so monitor and control can
continue even if communications are temporarily lost. Sometimes called Master Terminal Unit.

sensitivity. A performance measure for a classifier that describes the proportion of observations for
the dominant group (e.g., positives) that are correctly identified (e.g., you correctly identify everyone in
a group that has a certain disease).

simulation. The act of using a model or collection of models to critically examine or reproduce the
behavior of a system.

simulation-based design. An Industry 4.0 approach to prototyping and new product development
in which simulation is the primary way to evaluate and verify how well design alternatives satisfy
specification and design goals. The objective is to eliminate unfit or unsuitable designs as early as
possible to prevent waste.

situation awareness. A model for examining decision-making scenarios for individual and team
readiness. It considers perception of available data (Level 1), comprehension of that data and its context
(Level 2), and projection of that knowledge into the awareness of future states (Level 3).

Six Sigma. A statistical methodology for reducing defects and errors; to some, a more generalized
management philosophy.

small and medium enterprises (SMEs). A term used by the World Bank and European Union to
describe companies of a certain size (less than 40 million Euro revenue and fewer than 250 employees).

smart contract. Business rules that verify the validity of records or transactions before committing
them to an immutable blockchain.

smart product. Offerings that have connected, intelligent, and sometimes automated capabilities
(e.g., personalization, situation awareness, location awareness, proximity management, responsiveness
to changing environment or needs).

software as a service (SaaS). Delivery model where customers subscribe to use a cloud-based
software system rather than purchase and install it on premises.

spam. Unsolicited commercial e-mail or unsolicited communications, sometimes initiated with
malicious intent.

sparse. A matrix or a column in a dataset that contains mostly zeroes.

specificity. A performance measure for a classifier that describes the proportion of observations for
the nondominant group (e.g., negatives) that are correctly identified (e.g., you correctly identify
everyone in a group that has a certain disease).



SPICE (ISO/IEC 15504). A model that defines processes and best practices for software
development, tailored for the automotive industry, that includes recommendations for acquisition,
supplier management, systems engineering, software development, support processes, management
processes, process improvement, and software reuse.

standard work. The rate at which output must be produced, the steps to produce it, and an outline of
the materials required to carry out those steps. See also lean management.

statistical process control (SPC). A quality control technique used to monitor variables or
attributes of a process to determine whether special cause variation has occurred, at which point an
intervention to restore quality should be taken.

strong AI. Artificial intelligence that can apply beliefs, desires, emotions, intentions, or similar
higher-level processes attributed to humans to pattern identification, prediction, classification,
reasoning, or inference tasks.

support vector machine (SVM). A supervised machine learning approach (often used for
classification) that separates observations into groups using a plane or hyperplane that is separated by
each of the data points in the training set by a maximum margin.

system of record (SoR). A software application or data platform that is considered the “gold
standard” for a particular data object or entity (e.g., employee, customer, financial transaction). Most
organizations will have multiple SoRs but should manage them so that no more than one system is the
SoR for a particular data source. If multiple systems need to use a data record, that information should
be sourced from the SoR.

systems thinking. Consideration of a problem context by examining the components of the system,
their interconnections and relationships, and the impact of parts of the system on each other and on the
environment within which they are situated.

T
threat. In cybersecurity, a person or event that has the potential to damage or otherwise negatively
impact a process, resource, or asset.

trusted third party (TTP). From cryptography, an entity that facilitates interactions between two
parties. The two parties may not trust each other, but each does trust the third party.

U
Unified Modeling Language. A modeling language used to specify, visualize, and document the
design of software systems. Also sometimes used in model-based software engineering as the basis for
automated code generation.

V
value. Importance, worth, or the benefit that may be gained from a product or a service; always
measured from the point of view of the customer or stakeholder.

value proposition. The specific ways you choose to respond to your customer or stakeholder’s needs
or wants.

value stream. The set of all steps in a process that creates value, from ideation through delivery and
maintenance of the value proposition.



value stream map (VSM). A technique for studying a process that focuses on the value-adding steps
and helps teams eliminate steps that do not add value. See also lean management.

variable. One categorical or quantitative measurement that describes an observation (in full or in part).
See also feature.

variety. In big data terms, the many different types and formats of data that an organization may need
or wish to use in analysis or modeling.

velocity. In big data terms, the rate at which new data arrives.

veracity. In big data terms, the uncertainty of the incoming data quality.

vertical integration. Connecting systems so communication can be supported across logical layers
(e.g., ISA-95).

voice of the customer (VoC). The continuous process of identifying and interpreting customer
needs, measuring or estimating the relative priorities of those needs against the needs of other
stakeholders, and applying that knowledge to enhance customer satisfaction.

volume. In big data terms, the amount of data an organization needs to manage (which usually keeps
growing over time, sometimes very quickly).

vulnerability. A weakness in a process, control, or resource. In cybersecurity, an error or weakness
that can be leveraged to support a malicious attack.

W
weak AI. Artificial intelligence that carries out a limited pattern identification, prediction,
classification, reasoning, or inference task but does not apply beliefs, desires, emotions, intentions or
similar higher-level processes attributed to humans.

X
XML (eXtensible Markup Language). A structured, nonrelational mechanism for storing and
transmitting data.

Y
Yarowsky algorithm. An unsupervised machine learning approach for disambiguating word
meanings based on proximity to other words that provide context.

Z
zettabyte. A billion terabytes of data. International Data Corporation (IDC) anticipates that this
amount of data will be generated on an annual basis worldwide by 2025.
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