
AI for Healthcare
with Keras and
Tensorflow 2.0

Design, Develop, and Deploy Machine
Learning Models Using Healthcare Data
—
Anshik

AI for Healthcare with
Keras and Tensorflow 2.0

Design, Develop, and Deploy
Machine Learning Models Using

Healthcare Data

Anshik

AI for Healthcare with Keras and Tensorf low 2.0: Design, Develop, and Deploy
Machine Learning Models Using Healthcare Data

ISBN-13 (pbk): 978-1-4842-7085-1			 ISBN-13 (electronic): 978-1-4842-7086-8
https://doi.org/10.1007/978-1-4842-7086-8

Copyright © 2021 by Anshik

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark symbol with
every occurrence of a trademarked name, logo, or image we use the names, logos, and images only in an
editorial fashion and to the benefit of the trademark owner, with no intention of infringement of the
trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not
identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to
proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Laura Berendson
Coordinating Editor: Divya Modi

Cover designed by eStudioCalamar

Cover image designed by Pixabay

Distributed to the book trade worldwide by Springer Science+Business Media New York, 1 New York Plaza,
Suite 4600, New York, NY 10004-1562, USA. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and the sole
member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc). SSBM Finance Inc
is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for reprint,
paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook versions and
licenses are also available for most titles. For more information, reference our Print and eBook Bulk Sales
web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available to
readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-7085-1. For more
detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Anshik
New Delhi, India

https://doi.org/10.1007/978-1-4842-7086-8

This book is dedicated to my beloved parents,

Smt. Meenakshi Bansal

and

Sh. Jitender Kumar

v

Table of Contents

Chapter 1: ��Healthcare Market: A Primer��� 1

Different Stakeholders of the Healthcare Marketplace�� 1

Regulators�� 2

Payers��� 3

Providers�� 6

Regulation of Healthcare Information�� 7

AI Applications in Healthcare��� 9

Screening��� 9

Diagnosis�� 9

Prognosis�� 9

Response to Treatment��� 10

What Is the Industry Landscape?��� 10

Conclusion��� 17

Chapter 2: ��Introduction and Setup�� 19

Introduction to TensorFlow 2�� 19

TensorFlow Core��� 20

TensorFlow JS�� 21

TensorFlow Lite�� 22

TensorFlow Extended��� 22

About the Author�� xi

About the Technical Reviewers�� xiii

Introduction��xv

vi

TensorFlow 1.x vs 2.x��� 23

What Is TF 1.x?��� 23

Embracing TF 2.x�� 25

Recommendations for Best Use��� 30

Installation and Setup�� 31

Python Installation�� 31

Using the Virtual Environment�� 33

Library and Versions��� 34

Conclusion��� 38

Chapter 3: ��Predicting Hospital Readmission by Analyzing Patient EHR Records�����39

What Is EHR Data?��� 39

MIMIC 3 Data: Setup and Introduction��� 42

Access�� 43

Introduction and Setup��� 43

Data�� 47

Social and Demographic�� 48

Admissions Related�� 52

Patient’s Clinical Data��� 56

Lab Events�� 61

Comorbidity Score�� 64

Modeling for Patient Representation��� 69

A Brief Introduction to Autoencoders�� 70

Feature Columns in TensorFlow��� 71

Creating an Input Pipeline Using tf.data��� 73

Creating Feature Columns�� 76

Building a Stacked Autoencoder�� 76

Cohort Discovery�� 81

What Is an Ideal Cohort Set?�� 81

Optimizing K-Means Performance�� 82

Deciding the Number of Clusters by Inertia and Silhouette Score Analysis��������������������������� 84

Checking Cluster Health��� 86

Table of Contents

vii

Multitask Learning Model�� 87

What Is Multitask Learning ?�� 87

Different Ways to Train a MTL Model�� 88

Training Your MTL Model�� 91

Conclusion��� 97

Chapter 4: ��Predicting Medical Billing Codes from Clinical Notes���������������������������� 99

Introduction�� 99

Data�� 101

NOTEEVENTS�� 101

DIAGNOSES_ICD��� 105

Understanding How Language Modeling Works�� 105

Paying Attention��� 106

Transforming the NLP Space: Transformer Architecture��� 109

BERT: Bidirectional Encoder Representations from Transformers�� 114

Modeling�� 118

BERT Deep-Dive��� 119

Training��� 124

Conclusion��� 131

Chapter 5: ��Extracting Structured Data from Receipt Images
Using a Graph Convolutional Network��� 133

Data�� 133

Mapping Node Labels to OCR Output��� 135

Node Features�� 141

Hierarchical Layout��� 145

Input Data Pipeline��� 154

What Are Graphs and Why Do We Need Them?�� 155

Graph Convolutional Networks��� 159

Convolutions over Graph��� 159

Understanding GCNs��� 161

Layer Stacking in GCNs�� 163

Training��� 164

Table of Contents

viii

Modeling�� 164

Train-Test Split and Target Encoding�� 165

Creating Flow for Training in StellarGraph�� 166

Training and Model Performance Plots��� 167

Conclusion��� 171

Chapter 6: ��Handling Availability of Low-Training Data in Healthcare�������������������� 173

Introduction�� 173

Semi-Supervised Learning��� 174

Transfer Learning��� 179

Weak Supervised Learning��� 179

Exploring Snorkel��� 180

Data Exploration��� 184

Introduction�� 184

Labeling Functions��� 186

Pipeline�� 202

Writing Your LFs�� 203

Training��� 209

Evaluation��� 210

Generating the Final Labels�� 211

Conclusion��� 214

Chapter 7: ��Federated Learning and Healthcare��� 215

Introduction�� 216

How Does Federation Learning Work?��� 216

Types of Federated Learning�� 219

Privacy Mechanism�� 222

Secure Aggregation�� 223

Differential Privacy��� 225

TensorFlow Federated�� 228

Input Data��� 229

Custom Data Load Pipeline��� 231

Table of Contents

ix

Preprocessing Input Data��� 237

Creating Federated Data��� 238

Federated Communications�� 239

Evaluation��� 242

Conclusion��� 243

Chapter 8: ��Medical Imaging�� 245

What Is Medical Imaging?�� 245

Image Modalities�� 247

Data Storage��� 251

Dealing with 2-D and 3-D Images�� 252

Handling 2-D Images�� 253

Handling 3-D Images�� 267

Image Classification on 2-D Images�� 280

Image Preprocessing�� 280

Model Creation��� 282

Preparing Input Data�� 286

Training��� 288

Image Segmentation for 3-D Images��� 289

Image Preprocessing�� 289

Model Creation��� 293

Preparing Input Data�� 298

Training��� 304

Performance Evaluation��� 309

Transfer Learning for Medical Images��� 309

Conclusion��� 311

References��� 311

Table of Contents

x

Chapter 9: ��Machines Have All the Answers, Except What’s the
Purpose of Life��� 313

Introduction�� 313

Getting Data��� 316

Designing Your Q&A��� 321

Retriever Module�� 321

Comprehension�� 328

Final Design and Code��� 331

Step 0: Preparing the Document Data�� 332

Step 1: BERT-QE Expansion�� 332

Step 2: Semantic Passage Retrieval��� 338

Step 3: Passage Reranking Using a Fine-Tuned Covid BERT Model on the
Med-Marco Dataset�� 339

Step 4: Comprehension�� 343

Conclusion��� 348

Chapter 10: ��You Need an Audience Now�� 349

Demystifying the Web�� 349

How Does an Application Communicate?��� 350

Cloud Technology�� 352

Docker and Kubernetes��� 353

Why Docker?�� 353

OS Virtualization��� 353

Kubernetes��� 354

Deploying the QnA System��� 354

Building a Flask Structure�� 354

Dockerizing Your Application�� 361

Making It Live Using Heroku��� 367

Conclusion��� 372

�Index�� 375

Table of Contents

xi

About the Author

Anshik has a deep passion for building and shipping data

science solutions that create great business value. He is

currently working as a senior data scientist at ZS Associates and

is a key member on the team developing core unstructured

data science capabilities and products. He has worked across

industries such as pharma, finance, and retail, with a focus

on advanced analytics. Besides his day-to-day activities,

which involve researching and developing AI solutions

for client impact, he works with startups as a data science

strategy consultant. Anshik holds a bachelor’s degree from

Birla Institute of Technology and Science, Pilani. He is a regular speaker at AI and

machine learning conferences. He enjoys trekking and cycling.  

xiii

About the Technical Reviewers

Dev Bharti is a seasoned, hands-on technical leader with

close to 20 years of experience in delivering data, insights, and

AI solutions for consumer products and goods, healthcare,

manufacturing, pharmaceutical, and retail industries. He

leads enterprises from conception to delivery through data

governance, data science, and AI-based initiatives. His broad

skills allow him to build, mentor, and lead multi-disciplinary

teams comprising scientists, engineers, partners, product

managers, and subject domain experts. He is currently

pursuing his PhD from Oxford Brookes University on

Federated Learning (AI). 

-Himanshu is currently an AI tech lead at Legato Healthcare

(an Anthem Incorporation Company). He has over 7 years

of experience and has an MBA in Marketing and Analytics.

He is the co-founder of Infinite Epochs Research Lab and

the author of four books in the machine learning domain.

Himanshu is also a corporate trainer and guest faculty at

institutes like Edureka, Imarticus, NMIMS, and IMT. 

xiv

Ashish Soni is an experienced AIML consultant and

solutions architect. He has worked and solved business

problems related to computer vision, natural language

processing, machine learning, artificial intelligence,

data science, statistical analysis, data mining, and cloud

computing. Ashish holds a B. Tech. degree in Chemical

Engineering from Indian Institute of Technology, Bombay,

India; a master’s degree in Economics; and a post graduate

diploma in Applied Statistics. He has worked across different

industry areas such as finance, healthcare, education,

sports, human resources, retail, and logistics automation.

He currently works with a technology services company based out of Bangalore.

He maintains a blog (Phinolytics.com) that focuses on data science and artificial

intelligence applications in the field of finance. 

Mitahee Divesh Kumar is currently working as an associate

NLP engineer at Legato Health Technologies (an Anthem

Company). He has over 3 years of experience in the field of

data science and machine learning in the domain of natural

language processing and computer vision. He is currently

solving health care-related problems using AI.  

About the Technical Reviewers

xv

Introduction

Like most readers of this book, your knowledge of healthcare is probably limited to

your doctor visits and then reluctantly eating that bitter/sour medicine prescribed to

you. But beyond that experience is a vast machinery of different stakeholders that have

made it possible for us to receive the basic need of humankind: healthcare. If you want

to understand how the healthcare system works and see how to apply AI to some of the

most pressing problems in this space, read along.

Through this book, I will share my knowledge of the healthcare space gained from

working with leaders from the top pharma companies in the world. I’ll explain how they

are using AI to automate, reorganize, and restructure different processes.

This book is a practitioner’s book. You will explore seven case studies covering

multiple problems that often occur in healthcare analytics. I start by introducing you

to the healthcare ecosystem so that the basic fundamentals are in place and then I

offer a fun exercise of identifying what’s hot in the industry right now using company

descriptions.

You’ll then move on to the problems often faced when working with EHR data

(MIMIC-III). You’ll use a multi-task setup to account for a heterogeneous patient

population on downstream tasks like readmission prediction. Next, you will be

introduced to the ICD code system, which is used for patient healthcare reimbursement,

and you’ll leverage the mighty transformer models to identify them.

Chapter 5 discusses the Graph Convolutional Network and how you can leverage its

structure learning capability to read food receipts submitted by sales reps of a pharma

company.

Chapter 6 and 7 cover more nuanced aspects such as the availability of training data

and privacy preservation. You will be introduced to semi-supervised learning using

Snorkel and TensorFlow’s Federated API in detail.

Chapter 8 is all about medical images and how to get the best of them using AI. You

will learn about different image formats like DICOM and NIFTI, image modalities

(X-Ray, CT, MRI, etc.) and different shapes (2-D, 3-D, and 4-D). You will solve two cases,

image classification and segmentation using 2-D and 3-D images.

xvi

The last case study deals with how you can make your text alive by building a search

engine on Covid research reports. You start by learning about different QnA systems

and then you dive deeper by creating a closed-domain QnA system. You will learn about

query paraphrasing, semantic retrieval, and reranking to fetch the right document on

which you use a pretrained QnA model on SQUAD dataset.

Finally, you will deploy your model. In the last chapter, you will learn how web

apps came into existence and how cloud technology is taking over. Docker-based app

deployment using Flask is discussed.

—Curiosity fuels the world

Anshik

Introduction

1
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_1

CHAPTER 1

Healthcare Market:
A Primer
This chapter presents an overview of the healthcare system with special focus on the US

health market. Healthcare systems are organized to meet the care and health needs of

people. The systems include several stakeholders that come together to provide efficient

care for people.

By the end of this chapter, you will understand how a healthcare environment

functions and what role each group plays. You will also be aware of regulatory laws on

data protection, which will help you make better decisions as a developer on what kind

of data can be used. Lastly, you will understand the industry landscape. We will also

discuss how AI is changing the healthcare system around us and for the good.

�Different Stakeholders of the Healthcare
Marketplace
As shown in Figure 1-1, there are different groups involved in bringing together a

comprehensive medical system for consumers.

https://doi.org/10.1007/978-1-4842-7086-8_1#DOI

2

Let’s dive deeper into the main actors of the healthcare delivery pipeline.

�Regulators
All groups/actors are subject to regulation from various government and non-

governmental agencies. Primarily, US healthcare is regulated by a variety of divisions

and agencies that fall under the Department of Health and Human Services (HHS). The

federal or central government manages various programs, research, direction, funding,

and so on through HHS. This department in turn works with state and local governments

along with private players to ensure that a constant balance is maintained between

quality, access, and costs of healthcare.

The overall goal of HHS is guided by four key ideas, focusing on

•	 The patient as the consumer

•	 Providers as accountable entities

•	 Establishing payment for outcomes

•	 Prevention

The next few sections cover the three main functionaries of HHS.

Figure 1-1.  Healthcare supply chain

Chapter 1 Healthcare Market: A Primer

3

�Food and Drug Administration (FDA)

The primary role of the FDA is to ensure safety and approval of drugs, biological

products, and medical devices. It is also tasked with making sure that food being served

to US citizens is safe, pure, and wholesome.

The FDA also plays a role in advancing the public health through innovations that

make medical products more effective, safer, and more affordable and by helping the

public get better access to information needed to improve their health.

�Center for Medicare and Medicaid Services (CMS)

The CMS manages federal and state payment programs, namely Medicare and Medicaid,

respectively. It also helps to administer the Children’s Health Insurance Program (CHIP)

and it protects the transfer of sensitive patient health information without patient’s

consent or knowledge.

�Center for Medicare and Medicaid Innovation (CMMI)

The innovation center allows the Medicare and Medicaid programs to test models that

improve care, lower costs, and better align payment systems to support patient-centered

practices. The innovation broadly centers around keeping patients healthy at home and

for providers/physicians to keep patients healthy by providing higher value.

�Payers
A payer or payor is an umbrella term used for organizations or state agencies that are

responsible for making payments for any delivered healthcare service. They aim to

control healthcare costs by maximizing the quality in patients’ healthcare outcome.

The three main functions of payers are keeping patients healthy, managing costs of

direct care, and maximizing outcomes. These functions are detailed in Figure 1-2.

Chapter 1 Healthcare Market: A Primer

4

In 2018, more than two-thirds of national health expenditure was made by private

insurance (which includes contributions from funders such as US households, private

business, and government on the federal, state, and local levels), Medicare, and

Medicaid programs.

In many markets, healthcare is a state issue, and in more developed markets, it

is driven by public and private partnerships. The US spends roughly 8.5 % of its GDP

on health out of public funds, which is comparable to spending by other countries.

However, private spending is almost four times higher in terms of percentage of GDP

than its counterpart in other countries.

Figure 1-3 shows the healthcare spend by different payers, with a major chunk

dominated by private payers followed by government programs like Medicare and

Medicaid.

Figure 1-2.  Different functions of a payer

Chapter 1 Healthcare Market: A Primer

5

As shown in Figure 1-3, since the majority spend of healthcare comes from

insurance, it’s good to have a look at the insurance options available for patients, which

can vary depending upon age, income, and employment status.

Table 1-1 provides a complete overview of different insurance programs and

costs. We are going to use claims data in our first case study, which is maintained

by collaboration with payers, so you should have knowledge about different payer

programs.

Figure 1-3.  2018 US healthcare spending distribution by payer

(continued)

Table 1-1.  Insurance Options for Individuals, A Brief Comparison

Type of
Insurance

Insurance
Name

Description Eligibility Costs

Government Medicare Federally funded health

program covering adults

with disabilities and those

over age 65

Adults over age 65 Medicare Part

A is free; low

premiums for

other parts

Chapter 1 Healthcare Market: A Primer

6

�Providers
Providers are individuals or organizations that provide healthcare services to patients.

There are four prominent categories of providers in the healthcare market:

•	 Integrated delivery networks (IDNs): Hospital systems

•	 Integrated payer-provider networks (IPPNs): Physicians, nurses, and

other caregivers

Type of
Insurance

Insurance
Name

Description Eligibility Costs

Government Medicaid A joint health program run

by states and the federal

government that covers

low-income individuals

Low-income adults and

children

No or very low

premiums

Private Various

private

insurers

Insurance you buy on an

exchange or directly from a

health insurance company

(UHG, Aetna, Kaiser,

Anthem, etc.)

All U.S. citizens except

Medicare and Medicaid

recipients

Higher

premiums

overall

Private Employer-

sponsored

Insurance you buy through

an employer

Anyone working for an

employer that offers

health insurance, and

usually their dependents

Premiums are

often subsidized

by the employer

Others Tricare Provided to military

service members and their

families, operated by the

U.S. Department of Defense

Defense personnel and

family members; active

or retired

Varies with

ranks

Others Veteran

Affairs

Provided to veterans and

some retired military

service members, operated

by Veterans Affairs

Active military, naval,

or air service personnel

who didn’t receive a

dishonorable discharge

Full for people

with serious

disabilities

Table 1-1.  (continued)

Chapter 1 Healthcare Market: A Primer

7

•	 Clinically integrated networks (CINs): Clinics, nursing homes

•	 Accountable care organizations (ACOs): Alternate sites like multi-

specialty group practices like Mayo Clinic, Cleveland Clinic, etc.

These groups are not mutually exclusive; they might integrate at different levels

to have more control over costs and quality of care. Examples include the Hospital

Corporation of America, Dignity Health, etc. Table 1-2 lists the different types of

providers.

�Regulation of Healthcare Information
Healthcare information within the US has received federal protection. This means

federal agencies like the Department of Health and Human Services and the Federal

Trade Commission looks after the generation, collection, and distribution of data (see

https://sitn.hms.harvard.edu/flash/2019/health-data-privacy/ for a history

of US health data protection laws by Jordan Harroda and Dan Utter, titled Health Data

Privacy: Updating HIPAA to match today’s technology challenges, May 15, 2019, figure 1).

Table 1-2.  Descriptions of Different Types of Providers

Type of
Provider

Description

IDNs A network of hospitals and other provider facilities that work together to offer patient

services across the continuum of care. These different facilities are owned by the parent

company.

IPPNs A network of hospitals, provider facilities, and a self-administered insurance plan

that collects insurance premiums, provides medical services, and reimburses these

procedures for some or all of the network’s patients.

CIN A network of loosely affiliated provider facilities (with different owners) collaborating

within the same community to achieve the triple aim of healthcare. CINs are allowed to

collectively contract with payers despite not being owned by the same parent company.

ACO A network of hospitals, doctors, and other healthcare providers that contract with a payer

(commercial or government). It coordinates care for a specific population of patients.

Chapter 1 Healthcare Market: A Primer

https://sitn.hms.harvard.edu/flash/2019/health-data-privacy/

8

Key major events:

•	 Defining protected health information (PHI): In 2003, the HIPPA

Privacy Rule defined what health information should be protected.

This included payments, medical history, and payer information.

•	 Maintaining electronic health records: The Health Information

Technology for Economic and Clinical Health Act (HITECH)

introduced and incentivized health care records in electronic

formats in 2009. Incentivization was managed through Medicare and

Medicaid programs. Secondly, any security breach to EHRs came

under the Breach Notification Rule if the breach affected more than

500 people.

•	 Final Omnibus Rule: Introduced in 2013, this rule gives more power

to patients in a sense that those who pay for their healthcare on

their own can have information private from the health plan so that

no bias or differential treatment is practiced based on past medical

history. It also empowers patients more as preauthorization is

required from an individual before use. Also, a patient can ask for an

electronic copy of their medical record (even if it is across different

healthcare systems).

As technology is becoming more advanced, so are the ways to breach one’s privacy.

Moreover, we can federally control the use of healthcare data that are collected by

organizations falling under government compliance laws but recent trends of being

“always social” has led various people to be open about various aspects of their medical

health, like reporting adverse events of drugs on Twitter. Digital devices and the

burgeoning IoT ecosystem are beginning to generate a lot of data outside the clinical

system, and this is currently not regulated under government laws.

This leads one to think that we need stricter laws, like GDPR, currently in the EU

region, which protects “personal data” including all kinds of physical, physiological,

genetic, mental, commercial, cultural, or social identity data, to become universal.

Chapter 1 Healthcare Market: A Primer

9

�AI Applications in Healthcare
If I were to define why we are trying to solve problems in healthcare using AI, I would do

that using just nine words:

•	 To reduce costs

•	 To improve outcomes

•	 To better quality

To act upon any of the above levers, AI will do screening, diagnosis, outcome/

prognosis and response to treatment. Let me explain these terms briefly.

�Screening
Screening is the identification of a disease before it starts showing any signs or

symptoms. Early detection of diseases, especially chronic diseases, can lead to better

outcomes at a much reduced cost.

This means an ideal screening should be done in time so that the outcome can be

changed, with a highly precise model/process that is cost-effective.

�Diagnosis
Diagnosis is a procedure through which a disease is found in a patient. It helps us

reach the part of the body that is highly affected due the disease and hence it’s quite an

important step and one in which AI is frequently used.

�Prognosis
Prognosis is another term to measure outcome of a treatment offered to the patient

suffering from a disease. It can be measured by various metrics, like in how many days is

the patient readmitted to the hospital or the chances of survival of the patient.

Chapter 1 Healthcare Market: A Primer

10

�Response to Treatment
Different patients respond differently to treatments and hence based on a person’s

genetic makeup we are trying to develop more responsive treatment. This is also known

as personalized medicine. A typical genetic data processing can take a large amount of

time due to huge data and lack of algorithms to prune irrelevant information for analysis,

but with advancements in data storage and processing technologies as well as innovative

ML algorithms, personalize medicine is not a far-reaching aim anymore.

�What Is the Industry Landscape?
As AI and tech advance, so do the methods to advance healthcare. Many companies use

various technologies to solve multiple healthcare issues like health insurance coverage,

managing care processes, accessibility, and so on.

I could share with you a list of top companies and what they are doing currently, but

instead I will share with you a very effective yet simple way of looking at emerging trends

in any industry.

We will use Crunchbase’s dataset. Crunchbase is a platform for finding business

information about private and public companies. Crunchbase information includes

investments and funding information, founding members and individuals in leadership

positions, mergers and acquisitions, news, and industry trends.

Crunchbase offers different versions of its Data API. Its Enterprise and Applications

API is priced while free access is provided to limited data on its website through the

Open Data Map. We will be using data from Open Data Map to get started.

You could look at information like funding, leadership, etc. But to understand the

industry landscape, we are going to use company’s short description.

Let’s get started.

	 1)	 First, register with the Crunchbase Data API at this link and

click the Get Started button: https://about.crunchbase.com/

crunchbase-basic-access/

	 2)	 Fill the form, which looks something like Figure 1-4.

Chapter 1 Healthcare Market: A Primer

https://about.crunchbase.com/crunchbase-basic-access/
https://about.crunchbase.com/crunchbase-basic-access/

11

	 3)	 After the due diligence at Crunchbase’s end, you will receive an

email at your registered email address. This will be your user key.

Loading required libraries

from urllib import parse

import requests

import pandas as pd

import numpy as np

import re

def create_urlquery_from_args(args):

 url_query = ""

 for k,v in args.items():

 # quote_plus helps us handle special characters like ~_. and spaces

 url_query += '&' + parse.quote_plus(k) + '=' + parse.quote_plus(v)

 return url_query

Figure 1-4.  Crunchbase basic data access form

Chapter 1 Healthcare Market: A Primer

12

Setup the basic url for rest api query

API_BASE_URL = 'https://api.crunchbase.com/'

API_VERSION = '3.1' # soon to be updated to v4

API_URL = API_BASE_URL + 'v' + API_VERSION + '/odm-organizations'

API_KEY = "xxxxxxxxx" #<--- Enter the user key you received from crunchbase

In order to know more about the endpoints available for the Odm API, please visit

https://data.crunchbase.com/v3.1/reference#odm-organizations.

This can help you generate sample queries and show you the expected outcome:

We are interested in getting organization name and their descriptions

query = 'healthcare' # this will search for keyword 'healthcare' in

organization name, it's aliases and short text

param_dict = {"query":query,"organization_types":"company","user_key":API_KEY}

rest_api_url = API_URL + '?' + create_urlquery_from_args(param_dict)

Making Get Request

headers = {

 'accept': 'application/json',

 'content-type': 'application/json',

 }

resp = requests.get(rest_api_url, headers = headers)

Checking api call status and seeing few values of the data

if resp.status_code != 200:

 raise ApiError('GET /tasks/ {}'.format(resp.status_code))

Parsing JSON data

company_data = resp.json()

for items in company_data['data']["items"][:10]:

 �print('{} ---> {}'.format(items['properties']['name'],

items['properties']['short_description']))

Let us create a dataframe from analysis

data = pd.DataFrame([[items['properties']['name'], items['properties']

['short_description']] for items in company_data['data']["items"]],

columns = ["name","short_description"])

Chapter 1 Healthcare Market: A Primer

https://data.crunchbase.com/v3.1/reference#odm-organizations

13

Note there is paging information provided in the paging property of data, hence you

can request again to get results of the next page. See Figure 1-5.

Figure 1-5.  Paging property from Crunchbase API’s JSON output

Chapter 1 Healthcare Market: A Primer

14

So now you have the data necessary to draw preliminary insights from it. Let’s get

coding!

plotly library

import chart_studio.plotly as py

from plotly.offline import init_notebook_mode, iplot

init_notebook_mode(connected=True)

import plotly.graph_objs as go

word cloud library

from wordcloud import WordCloud

matplotlib library

import matplotlib.pyplot as plt

#stopwords

from nltk.corpus import stopwords

Let us remove some frequent words from this domain

common_words = "|".join(["healthcare","medical","service","health","care","AI",

"data","solution","software","platform","provide","company","technology"])

data["short_description"] = data["short_description"].apply(lambda x:

re.sub(common_words,"",x.lower()))

data["short_description"] = data["short_description"].apply(lambda x: " "

.join([word for word in x.split() if word not in stopwords.words("english")]))

plt.subplots(figsize = (8,8))

wordcloud = WordCloud (

 background_color = 'white',

 width = 512,

 height = 512,

).generate(' '.join(data["short_description"]))

plt.imshow(wordcloud) # image show

plt.axis('off') # to off the axis of x and y

plt.savefig('word_cloud_trend.png')

plt.show()

Chapter 1 Healthcare Market: A Primer

15

You can see in Figure 1-6 that the solutions are targeting patients and hospitals and

are mostly focused on accessibility and tackling chronic disease.

You can build upon this by seeing another version of the word cloud, this time

weighted by the importance of a word, which in turn is decided by how frequently it

occurs. If a word occurs very often in a document and also across the document, it is not

as important as a word occurring sparsely across documents. This score is also called a

words tf-idf score.

from sklearn.feature_extraction.text import TfidfVectorizer

vectorizer = TfidfVectorizer()

tf_idf_fit = vectorizer.fit_transform(data["short_description"])

Figure 1-6.  Word cloud from the short descriptions of the targeted companies

Chapter 1 Healthcare Market: A Primer

16

weights = np.asarray(tf_idf_fit.mean(axis=0)).ravel().tolist()

words = vectorizer.get_feature_names()

weight_list = {x:y for x,y in zip(words, weights)}

wordcloud.generate_from_frequencies(weight_list)

plt.imshow(wordcloud) # image show

plt.axis('off') # to off the axis of x and y

plt.savefig('word_cloud_trend.png')

plt.show()

Figure 1-7 tells the same story. You can also find some mention of clinical data and

medical devices as well as company names.

You can definitely extend the analysis and play around with the data, but the idea

was to share with you a method to look at the ever-expanding industry landscape from a

lazy lens.

Figure 1-7.  Wordcloud weighted by a word’s TF-IDF score

Chapter 1 Healthcare Market: A Primer

17

�Conclusion
You have come a long way. I hope you are now curious about AI and also about

healthcare. Healthcare, like any other system, has its own imperfections and gaps. In the

next seven case studies, you are going to fill in those gaps. But before that, you will learn

how to set up your systems and fetch the data necessary for the case studies. You will

also get acquainted with the latest and greatest in TensorFlow 2.0 very briefly.

Chapter 1 Healthcare Market: A Primer

19
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_2

CHAPTER 2

Introduction and Setup
In Chapter 1, I covered the basics of the healthcare market, primarily that of the US. This

introduction is simple enough that you can understand the healthcare system even in

your own country; I say so as many countries with an underdeveloped system are taking

inspiration from the US so their structure and order will likely remain fundamentally the

same but with some indigenous flavor to the particular ecosystem.

Now let’s shift gears to explore the behemoth of a library called TensorFlow and what

is special about its new edition. The idea is not to cover each topic in length but to just

pique your interest enough so you start exploring the ones you are interested in. You will

also learn how to set up your systems and some best practices you can apply while you

are learning.

�Introduction to TensorFlow 2
TensorFlow started as an open source deep learning library from Google and has evolved

into an ecosystem that contains four major components:

•	 TensorFlow Core

•	 TensorFlow JS

•	 TensorFlow Lite

•	 TensorFlow Extended

It was first made available under the Apache 2.0 License in November of 2015

and has since grown rapidly. It now consists of tools, libraries, and resources for the

research community (and now even enterprises) looking to build ML- and DL-powered

applications.

https://doi.org/10.1007/978-1-4842-7086-8_2#DOI

20

�TensorFlow Core
TensorFlow Core is the core open source library to help you develop and train ML/DL

models. TensorFlow 2 focuses on simplicity and ease of use, with updates like eager

execution, intuitive higher-level APIs, and flexible model building on any platform.

There are multiple extensions and libraries to TensorFlow Core that help in building

advanced models or methods using TensorFlow, such as

	 1)	 TensorBoard

	 a)	 Track and visualize metrics such as accuracy and loss

	 b)	 View changes in weights and biases over time

	 c)	 Display data

Official Documentation: www.TensorFlow.org/tensorboard/
get_started

	 2)	 TensorFlow Federated: It is a framework that allows you to build

DL/ML apps on decentralized data. This book offers a whole

chapter on this where you will deep dive into this library.

Official Documentation: www.TensorFlow.org/federated/
get_started

	 3)	 Neural Structured Learning: It leverages the structure of a signal.

In other words, it tries to leverage patterns or similarities between

input data to train ML models. As a result, during training both

labeled and unlabeled data is used.

Official Documentation: www.TensorFlow.org/neural_

structured_learning/framework

	 4)	 Serving Models: It is a system designed for production

environments. Here serving means deployment, so it is a quick

and dirty way to deploy your ML models for the world to see. It

can be integrated with TensorFlow models and other third-party

models and data. Have you ever thought about dockerizing your

Chapter 2 Introduction and Setup

http://www.tensorflow.org/tensorboard/get_started
http://www.tensorflow.org/tensorboard/get_started
http://www.tensorflow.org/federated/get_started
http://www.tensorflow.org/federated/get_started
http://www.tensorflow.org/neural_structured_learning/framework
http://www.tensorflow.org/neural_structured_learning/framework

21

ML model and are a little confused as to how to do it? The code

snippet below (taken from official documentation) shows how

easy it is to dockerize your app.

Official Documentation: www.TensorFlow.org/tfx

Download the TensorFlow Serving Docker image and repo

docker pull TensorFlow/serving

git clone https://github.com/TensorFlow/serving

Location of demo models

 �TESTDATA="$(pwd)/serving/TensorFlow_serving/servables/TensorFlow/

testdata"

Start TensorFlow Serving container and open the REST API port

 docker run -t --rm -p 8501:8501 \

 -v "$TESTDATA/saved_model_half_plus_two_cpu:/models/half_plus_two" \

 -e MODEL_NAME=half_plus_two \

 TensorFlow/serving &

Query the model using the predict API

 curl -d '{"instances": [1.0, 2.0, 5.0]}' \

 -X POST http://localhost:8501/v1/models/half_plus_two:predict

Returns => { "predictions": [2.5, 3.0, 4.5] }

�TensorFlow JS
TensorFlow JS enables ML models to run in the browser without any hassle of installing

libraries/extensions/packages. Just open a webpage and your program is ready to run.

TensorFlow.js supports WebGL, which can speed up your code behind the scenes

when a GPU is available.

You can connect or embed external hardware into your main device like a webcam

(visual input) for laptops/computers or sensor input like a gyroscope or accelerometer

for mobile devices. Isn’t that amazing?

Figure 2-1 shows the different layers that make up TensorFlow JS.

Chapter 2 Introduction and Setup

http://www.tensorflow.org/tfx

22

�TensorFlow Lite
TensorFlow Lite is a framework for on-device inference. TensorFlow Lite works with a

huge range of devices, from tiny microcontrollers to powerful mobile phones. It enables

on-device machine learning inference with low latency and a small binary size.

TensorFlow Lite consists of two main components:

•	 TensorFlow Lite interpreter

•	 TensorFlow Lite converter

�TensorFlow Extended
TensorFlow Extended (TFX) helps you build a complete end-to-end machine learning

pipeline via multiple independent and scalable components. These components are

•	 TensorFlow Data Validation

•	 TensorFlow Transform

•	 TensorFlow Model Analysis

•	 TensorFlow Serving

•	 ML Metadata

In Figure 2-2 you can see how many components from a typical machine learning

pipeline are covered by TensorFlow Extended.

Figure 2-1.  TensorFlow JS

Chapter 2 Introduction and Setup

23

A very good overview of TensorFlow Extended can be found on YouTube by

searching for “TensorFlow Extended An End to End Machine Learning Platform for

TensorFlow.”

�TensorFlow 1.x vs 2.x
Well, first things first: If you are someone who has never worked with TensorFlow 1,

the good news is you won’t be confused by TensorFlow 2 code. But if you are someone

like me who has used TensorFlow 1.x, then this section will help you understand the

differences better.

If I had to summarize the difference in one line, I would say that TF 2.x offers higher-

level APIs that abstract more lower-level details such as creating and manipulating

computational graphs, tensor operations, etc. Let’s build upon this.

�What Is TF 1.x?
Let’s start with how a typical workflow in TF 1.x is defined. In TF 1.x, we first need to

build a blueprint of the neural network by building something called a computational

graph. To build a computational graph, we define all the constants, variables, and

operations that we need to perform.

Figure 2-2.  Components of TensorFlow Extended

Chapter 2 Introduction and Setup

24

After creating the computational graph, we execute the graph using a session object

in which tensors and operations are evaluated. Evaluation in simple terms here means

actual calculations of gradients and updates to parameters.

TensorFlow at a fundamental level allows you to play around with tensors. A tensor is

basically an n-dimensional array. All types of data (that is, scalar, vectors, and matrices)

are special types of tensors, which are

	 1.	 Constants: Constants are tensors whose values don’t change.

	 2.	 Variables: Variable tensors can update their values within a

session. Examples are weights and the bias of a neural network.

Variables need to be explicitly initialized before use.

	 3.	 Placeholders: Placeholders are normally used to feed new

training examples while training a neural network. We assign

values to a placeholder while running the graph in a session. They

don’t to be initialized like variables.

Using these different tensors we define any NN or computational flow using TF 1.x.

Here’s an example showing TF 1.x code defining how a linear output from a hidden layer

is created before it passes through the activation function:

import TensorFlow.compat.v1 as tf

tf.disable_v2_behavior()

 in_a = tf.placeholder(dtype=tf.float32, shape=(4))

 def nn_tfv1(x):

 with tf.variable_scope("matmul"):

 W = tf.get_variable("W", initializer=tf.ones(shape=(4,4)))

 b = tf.get_variable("b", initializer=tf.zeros(shape=(4)))

 return x * W + b

out_a = nn_tfv1(in_a)

with tf.Session() as sess:

 sess.run(tf.global_variables_initializer())

 hidden_output = sess.run([out_a],

 feed_dict={in_a: [1, 0, 1, 0]})

Chapter 2 Introduction and Setup

25

A couple of things to note:

	 1)	 A placeholder with a particular data type and of a definite shape

is declared.

	 2)	 TensorFlow uses scopes to allow variable sharing. There are

broadly two types of scopes: name or variable scopes.

tf.variable_scope() adds a prefix to the names of all variables,

operations, and constants. On the other hand, tf.name_scope()

ignores variables created with tf.get_variable() because it

assumes that you know which is the variable and in what scope

you want to use them. Hence using a matmul scope we define W

and b variables, since these are defined for matmul operation.

	 3)	 global_variables_initializer() allows variables to initialize,

hold, and update values throughout the session.

	 4)	 We evaluate using the run method defined in the Session class as

run (fetches, feed_dict=None, options=None, run_metadata)

	 5)	 If fetches is a list, run returns a list object. If it is a single tensor,

then it returns a Python data type.

Also, feed_dict is used to pass in input data using the tf placeholder.

I think this provides a very high level but necessary overview of basics in TF 1.x. Now

let’s see how TF 2.x changed all of this.

�Embracing TF 2.x
Let’s discuss some key aspects that make TF2.x developer friendly.

�Eager Execution

TensorFlow 2.x natively supports “eager execution.” There is no longer the need to first

statically define a computational graph and then execute it, which inhibits immediate

error logging, faster debugging, and native Python control.

import TensorFlow as tf

 a = tf.constant([[1,0], [0,1]], dtype = float)

print(a)

Chapter 2 Introduction and Setup

26

tf.Tensor(

 [[1. 0.]

 [0. 1.]], shape=(2, 2), dtype=float32)

�AutoGraph

AutoGraph takes eager-style Python code and automatically converts it to graph-

generating code.

To use Python code, we need to add a decorator @tf.function. This converts

that code to an equivalent static graph. @tf.function marks the code for just-in-time

compilation (JIT), which enables compilation of a Python function to a TensorFlow

function and hence overall with simple Pythonic logic we get the same optimization as

that of a TF lower-level API.

For comparison, look at the following code:

 def huber_loss(a):

 if tf.abs(a) <= delta:

 loss = a * a / 2

 else:

 loss = delta * (tf.abs(a) - delta / 2)

 return loss

Using decorator on the above function basically converts it to something like

 def tf__huber_loss(a):

 with tf.name_scope('huber_loss'):

 def if_true():

 with tf.name_scope('if_true'):

 loss = a * a / 2

 return loss,

 def if_false():

 with tf.name_scope('if_false'):

 loss = delta * (tf.abs(a) - delta / 2)

 return loss,

 loss = ag__.utils.run_cond(tf.less_equal(tf.abs(a), delta), if_true,

 if_false)

 return loss

Chapter 2 Introduction and Setup

27

�TensorFlow Datasets

TensorFlow datasets provide an easy way to deal with heterogeneous data such as

columnar, text, image, etc. along with making it possible to handle large amounts and

varieties of data and perform complex transformations.

Creation: Create data

•	 from_tensor_slices(): Individual (or multiple) NumPy (or tensors)

and supports batches

•	 from_tensors(): Similar to above but doesn’t support batches

•	 from_generator(): Takes input from a generator_function

Transformation: Transform data

•	 batch(): Divides the data into a sequence of predefined sizes

•	 repeat(): Duplicates the data

•	 shuffle(): Randomly shuffle the data

•	 map(): Applies a function to all the elements of the data

•	 filter(): Filters the data using a function/expression

Optimizations:

GPUs and TPUs radically cut back the time needed to execute one training step.

Achieving peak performance needs an efficient input pipeline that delivers information

for the ensuing step before the current step has finished. The tf.data API helps us achieve

that. There’s more information at www.TensorFlow.org/guide/data_performance. You

are going to effectively leverage tf.data at various places in different case studies, so be

watchful.

�tf.keras

tf.keras offers a higher API level, with three different programming models: Sequential

API, Functional API, and Model Subclassing.

•	 Sequential API: Sequential groups a linear stack of layers into a

tf.keras.Model. Each layer is callable (with a tensor in input), and

each layer returns a tensor as an output.

Chapter 2 Introduction and Setup

http://www.tensorflow.org/guide/data_performance

28

tf.keras.Sequential(

 layers=None, name=None

)

Arguments

layers Optional list of layers to add to the model

name Optional name for the model

•	 Functional API: Allows multiple inputs and outputs and building

non-linear topology of neural networks such as one with residual

networks.

tf.keras.Model(

 *args, **kwargs

)

Arguments

inputs The input(s) of the model: a keras.Input object or list of

keras.Input objects

outputs The output(s) of the model

name String, the name of the model

•	 Model Subclassing: It allows you to define your own custom layer. In

order to create a custom layer, you must subclass tf.keras.layers.

Layer and also implement the following functions:

•	 __init__: Optionally used to define all the sublayers to be used

by this layer. It takes all hyperparameters as arguments.

•	 build: Used to create the weights of the layer. You can add

weights with add_weight().

•	 call: Used to define the forward pass and computes the output of

the layer after activation of linear input of weights and bias

Chapter 2 Introduction and Setup

29

Note U se tf.Keras instead of Keras for better integration with other
TensorFlow APIs such as eager execution and tf.data, etc.

�Estimators

The Estimators API was added to TensorFlow in Release 1.1 and provides a high-level

abstraction over lower-level TensorFlow core operations. It works with an Estimator

instance, which is TensorFlow's high-level representation of a complete model. See

Figure 2-3.

Keras is similar to the Estimators API in that it abstracts deep learning model

components such as layers, activation functions, and optimizers to make it easier for

developers. See Figure 2-4.

Figure 2-3.  TF Stack

Chapter 2 Introduction and Setup

30

So both the Estimator API and Keras API provide a high-level API over low-level core

TensorFlow API, and you can use either to train your model. But the Estimators API is

better integrated with the TF ecosystem and is optimized for training and distribution

and hence is sometimes preferred.

You can convert your Keras model to an Estimator object and get the best of

both worlds. Go to www.TensorFlow.org/tutorials/estimator/keras_model_to_

estimator.

�Recommendations for Best Use
There are some best practices that can be followed while using TF 2.x

	 1.	 Use higher-level APIs from tf.keras wherever possible and don’t

default to v1 for performance enhancement unless and until

required.

Figure 2-4.  TF 2.x Stack

Chapter 2 Introduction and Setup

http://www.tensorflow.org/tutorials/estimator/keras_model_to_estimator
http://www.tensorflow.org/tutorials/estimator/keras_model_to_estimator

31

	 2.	 Add a tf.function decorator to make it run efficiently in graph

mode with AutoGraph.

	 3.	 Write a high performance data input pipeline using

tf.data datasets to leverage things like shuffling, batching,

and prefetching.

	 4.	 Write custom layers using Model Subclassing and use it as any

other layer in a Functional or Sequential Keras Model.

�Installation and Setup
In this section, you will learn about how to set your system up. By no means this is

a complete guide but it gives you some ideas. I always suggest following the latest

documentation from official pages.

�Python Installation
I always suggest using Anaconda to set your system up. To set it up on Windows, go to

www.anaconda.com/products/individual#windows. Depending upon your machine,

choose the right installer (Figure 2-5).

After you download and click the “I Agree” button, select a destination folder to

install Anaconda and click the Next button (Figure 2-6).

Figure 2-5.  Anaconda Windows installation

Chapter 2 Introduction and Setup

http://www.anaconda.com/products/individual#windows

32

Choose whether to add Anaconda to your PATH environment variable (Figure 2-7).

I don’t recommend adding Anaconda to the PATH environment variable, since this can

interfere with other software. Instead, use the Anaconda software by opening Anaconda

Navigator or the Anaconda prompt from the Start menu.

Figure 2-6.  Choosing a destination folder

Chapter 2 Introduction and Setup

33

Click the Install button. If you want to watch the packages Anaconda is installing,

click Show Details and then click the Next button.

�Using the Virtual Environment
For each case study, it is a good practice to set up different virtual environments each

time so that different versions don't conflict with each other.

In order to create a conda environment,

	 1)	 Open the Anaconda Prompt as an Administrator.

	 2)	 In the terminal, enter

conda create -n virtual_env_name python=3.7 pip scikit-learn

matplotlib numpy pandas

Figure 2-7.  Choosing the path

Chapter 2 Introduction and Setup

34

	 3)	 Activate the virtual environment:

conda activate virtual_env_name

	 4)	 Make sure that ipykernel is installed:

pip install --user ipykernel

	 5)	 Add the new virtual environment to Jupyter:

python -m ipykernel install --user --name='environment_name'

If you mistakenly made an environment or want to remove it for any other reason,

make note of the following commands:

 ## To remove conda environment

conda env remove -n 'environment_name'

 ## To remove the environment from Jupyter

jupyter kernelspec uninstall 'environment_name'

�Library and Versions
For all the libraries you are going to use, you can install the latest version, but may

be some codependencies for which you need to make sure that the correct version is

maintained.

�TensorFlow and GPU

Go to www.TensorFlow.org/install/source_windows to find which version of CUDA

and cuDNN goes with your TensorFlow version (Figure 2-8). I personally like to work

with 2.2.0 or 2.3.0 but not higher as there can be a lot of unknown bugs in the latest

release and a very old release might not be suitable or might be outdated.

Chapter 2 Introduction and Setup

http://www.tensorflow.org/install/source_windows

35

Figure 2-8.  TensorFlow and GPU version

After you pick the TensorFlow version and the corresponding cuDNN and CUDA

version, go to the Nvidia website.

The Nvidia CUDA Toolkit enables creation of GPU-accelerated applications.

The Nvidia CUDA Deep Neural Network library (cuDNN) provides efficient

implementations for standard operations such as forward and backward convolution,

pooling, normalization, and activation layers.

Both are necessary to enable GPUs with your TensorFlow environment.

The cuDNN library contains three files:

•	 \bin\cudnn64_7.dll (the version number may be different)

•	 \include\cudnn.h

•	 \lib\x64\cudnn.lib.

You should copy them to the following locations, respectively:

•	 %CUDA_Installation_directory%\bin\cudnn64_7.dll

•	 %CUDA_Installation_directory%\include\cudnn.h

•	 %CUDA_Installation_directory%\lib\x64\cudnn.lib

By default, %CUDA_Installation_directory% points to C:\Program Files\NVIDIA

GPU Computing Toolkit\CUDA\v10.1. See Figure 2-9.

Chapter 2 Introduction and Setup

36

Add the following paths to the Environment System variables:

•	 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\bin

•	 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\libnvvp

•	 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v10.1\lib\x64

For other OSes, instructions are pretty easy to follow and are mentioned on the

official website.

�Others

For packages like TensorFlow Federated, there is a tested TensorFlow version associated

with it (Figure 2-10). If you are installing Federated using pip, it can happen that your

TensorFlow version can alter so please precheck before running any code.

Figure 2-9.  CUDA installation

Chapter 2 Introduction and Setup

37

Figure 2-10.  TensorFlow Federated and its compatible versions

Also, for using packages like nltk and scispacy there are some presetups required.

For nltk, make sure you download all the prepackages required by using nltk.

download() before you start using the package.

For scispacy models, you need to pip install on the model link you want:

pip install scispacy

pip install <Model URL>

Model links can be obtained from https://allenai.github.io/scispacy/.

Note  Spacy released v3.0 on Jan 31, 2021. You should use v2.0 for these case
studies since it is what the code was tested on.

Chapter 2 Introduction and Setup

https://allenai.github.io/scispacy/

38

�Conclusion
You now have a solid foundation: you know what you will be working with (Chapter 2)

and the ecosystem you will enter (Chapter 1) and are ready for a deep dive in the

upcoming chapters. I recommend that you follow the above steps to set up your Python

environment. Most of the code associated with the case studies is available as Jupyter

notebooks on the official GitHub page of the book.

Chapter 2 Introduction and Setup

39
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_3

CHAPTER 3

Predicting Hospital
Readmission by Analyzing
Patient EHR Records
A discharged patient who goes back to the hospital within a specified time frame

is called readmitted in medical parlance. These readmission time frames can vary

anywhere from 30 days to 1 year. The CMS that monitors the largest insurance programs,

Medicare and Medicaid, defines a hospital readmission as "an admission to an acute

care hospital within 30 days of discharge from the same or another acute care hospital.”

Why it is even important to analyze this data? As evident due to a time-frame

restriction, if a patient is readmitted in a short amount of time, it raises doubts about

the healthcare quality. Hence it becomes imperative to analyze readmission rates as a

quality benchmark. Payer programs like those of CMS have linked their reimbursement

decisions on this metric as part of the Patient Protection and Affordable Care Act,

which penalizes the healthcare system for an unusual and high readmission rate. This

penalization can go up to 3% lower reimbursement. A patient’s readmission is associated

with an increase in mortality and morbidity. Hence, it becomes quite important for

physicians to provide care not just for the disease the patient was admitted for but also

any issues in their past medical record.

In this case study, you are going to see how readmission can be predicted by

examining various factors like comorbidities, lab test values, chart events, and

demographic features of the patient.

�What Is EHR Data?
To understand EHR data, let’s follow the journey of a patient consulting a physician.

https://doi.org/10.1007/978-1-4842-7086-8_3#DOI

40

Typically when a patient starts showing some symptoms of a disease in the modern

world, they consult the Internet or their friends and families. If it gets worse, the patient

can choose to visit a doctor.

The doctor (a.k.a. the provider) can order imaging or lab tests to diagnose the

problem better, make prescriptions, and write notes about the patient’s adherence and

outcome from prescriptions. All of this is stored in a patient's medical record. Figure 3-1

shows how the pipeline flows. The first three steps show how a medical record can be

created.

Figure 3-1.  Steps in a patient's care

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

41

You may have noticed that I have been interchangeably using medical and health

records. For our purposes, where we are just going to use clinical information for a

patient, there is no difference, but actually there is a slight difference between the two.

An EMR (electronic medical record) tracks medical data over time and contains

information on screenings/checkups and observations on how the patient is doing on

certain parameters for which they are diagnosed.

An EHR (electronic health record) is EMR plus a lot of other patient-level data. It

goes beyond standard clinical data collected at the provider’s end and includes other

care elements such as data from wearable devices, patient’s genomic data, and signals

data like ECG, respiration, etc.

Figure 3-2 shows a timeline view of different events during care for different patients.

In your case, you will be using MIMIC 3 dataset. Here’s how to obtain access to it and

set it up for analysis.

I hope you have a good idea of EHR data. Let’s dive deeper into the MIMIC-3

dataset, which is available after you complete a certain test, and is licensed for research

purposes. It is a highly cited dataset and you will be using it for two case studies so I hope

you are as excited as I am to get started.

Figure 3-2.  Patients’ medical events timeline view

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

42

�MIMIC 3 Data: Setup and Introduction
MIMIC stands for Medical Information Mart for Intensive Care. It is part of a larger

dataset called PhysioNet, which is a large open source collection of physiologic and

clinical data submitted by many institutions. It comprises deidentified health-related

data associated with over 40,000 patients who stayed in critical care units of the Beth

Israel Deaconess Medical Center between 2001 and 2012.

The database includes information such as demographics, vital sign measurements

made at the bedside (~1 data point per hour), laboratory test results, procedures,

medications, caregiver notes, imaging reports, and mortality (both in and out of

hospital). Figure 3-3 gives an overview of the MIMIC-3 Dataset.

Figure 3-3.  Overview of Mimic-3 Data. Source: www.nature.com/articles/
sdata201635

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

http://www.nature.com/articles/sdata201635
http://www.nature.com/articles/sdata201635

43

�Access
To obtain access, please follow the instructions at https://mimic.physionet.org/

gettingstarted/access/.

Mainly, these are the steps to follow:

	 1)	 Create a PhysioNet account.

	 2)	 Complete the CITI Training Course.

	 3)	 Request the MIMIC 3 dataset.

	 4)	 Access MIMIC 3.

	 a)	 Access the MIMIC 3 dataset at https://physionet.org/content/

mimiciii/1.4/ after logging in into your PhysioNet account.

	 b)	 Go to the Files Section at the bottom of the page.

Note Y ou will need to enter a reference such as a colleague and clearly state
your purpose for obtaining the access. The reference will be sent an email to verify.
Unless and until you want to use it for commercial purposes, PhysioNet has been
generous enough to give licenses without any trouble.

The instructions are quite easy to follow as detailed on the website. If you get stuck

anywhere, just google it.

�Introduction and Setup
If you have access to AWS or GCP, there is good news: the MIMIC 3 dataset is present in

their datamart, ready to be queried.

Recently, the MIT Laboratory of Computational Physiology (LCP) started hosting the

MIMIC 3 dataset on the AWS cloud through the AWS Public Dataset program. You can

now use the MIMIC 3 dataset via S3 without having to download, copy, or pay to store it.

Instead, you can analyze the MIMIC 3 dataset in the AWS Cloud using AWS services like

Amazon EC2, Athena, AWS Lambda, or Amazon EMR.

To get access to these databases on the cloud, follow the steps detailed at https://

mimic.physionet.org/gettingstarted/cloud/.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://mimic.physionet.org/gettingstarted/access/
https://mimic.physionet.org/gettingstarted/access/
https://physionet.org/content/mimiciii/1.4/
https://physionet.org/content/mimiciii/1.4/
https://mimic.physionet.org/gettingstarted/cloud/
https://mimic.physionet.org/gettingstarted/cloud/

44

I will assume you don’t have access to any of these cloud facilities, so you will

download the zip and use it for your purpose.

Before you take a deep dive into your problem and start using MIMIC, let’s

understand just the basics of it. As you have seen, MIMIC 3 is available as a zip of a

different CSV, which means it is a very well organized relational database. To have a look

at the schema or entity relationship diagram for MIMIC 3, visit

https://cloud.githubusercontent.com/assets/26095093/23737659/454872b0-

0449-11e7-987d-639b0415dca4.png

or

https://mit-lcp.github.io/mimic-schema-spy/relationships.html.

The first link is generated using DbSchema while the second one is generated using

open source schema spy. I personally like DbSchema.

Some things to know about MIMIC:

	 1)	 All tables have at least one unique identifier which is the ROW_ID.

See Figure 3-4.

	 a)	 This ROW-ID is present just to make the values unique at the row level.

	 b)	 This should never be used for the JOIN linkage variable.

	 c)	 From a functional standpoint, there can be a single primary key for the

table or a combination of multiple keys. This primary key or a set of it

represents the data uniquely in that table. See Figure 3-4.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://cloud.githubusercontent.com/assets/26095093/23737659/454872b0-0449-11e7-987d-639b0415dca4.png
https://cloud.githubusercontent.com/assets/26095093/23737659/454872b0-0449-11e7-987d-639b0415dca4.png
https://mit-lcp.github.io/mimic-schema-spy/relationships.html

45

	 2)	 The most important IDs are

	 a)	 SUBJECT_ID: Refers to a unique patient

	 b)	 HADM_ID: Refers to a hospital admission event for a patient.

	 c)	 ICUSTAY_ID: Refers to an ICU episode for a patient

	 3)	 Dictionary Tables: MIMIC has five dictionary tables that begin

with D_XXXX. They help convert coded information into a

human-readable format like text.

	 a)	 D_CPT: High-level dictionary of Current Procedural Terminology

(CPT) codes

	 b)	 D_ICD_DIAGNOSES: Dictionary of International Statistical

Classification of Diseases and Related Health Problems (ICD-9)

codes relating to diagnoses

Figure 3-4.  ROW_ID column present in each MIMIC table

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

46

	 c)	 D_ICD_PROCEDURES: Dictionary of International Statistical

Classification of Diseases and Related Health Problems (ICD-9)

codes relating to procedures

	 d)	 D_ITEMS: Dictionary of local codes (ITEMIDs) appearing in the

MIMIC database, except those that relate to laboratory tests

	 i)	 For example, every row of CHARTEVENTS is associated with a

single ITEMID. By joining CHARTEVENTS and D_ITEMS on ITEMID

you can find the concept measured like blood pressure,

respiratory rate, etc.

	 e)	 D_LABELITEMS: Dictionary of local codes (ITEMIDs) appearing in

the MIMIC database that relate to laboratory tests

	 4)	 The database contains dynamic data such as patient-id, patient’s

demographic information, and ICU stay id, and static data such as

measurement coming from lab values associated with each visit

across time, etc.

	 5)	 Two different critical care information systems were in place

over the data collection period: Philips CareVue and iMDsoft

MetaVision ICU. With exception to data relating to fluid intake,

which differed significantly in structure between the CareVue and

MetaVision systems, data was merged when building the database

tables. For details, please refer to https://mimic.physionet.org/

mimicdata/io/.

	 6)	 Data is deidentified according to HIPAA compliance. Remember

Chapter 1?

	 a)	 Dates are shifted by a random offset. But intervals are preserved.

	 b)	 Time of day, day of the week, and approximate seasonality were

conserved during date shifting.

	 c)	 Dates of birth for patients aged over 89 were shifted to obscure

their true age and comply with HIPAA regulations. These patients

appear in the database with ages of over 300 years.

	 d)	 Protected health information was removed from free text using

lookups and regex.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://mimic.physionet.org/mimicdata/io/
https://mimic.physionet.org/mimicdata/io/

47

�Data
From various studies researching the readmission problem, there are four main

categories of predictors of a patient’s readmission. They are

	 1)	 Social and demographic information like age, ethnicity, and payer

	 2)	 Admission-related such as discharge time, first care unit, number

of transfers, length of stay

	 3)	 Lab results of important elements like urea, platelets, albumin, etc.

	 4)	 Patient’s clinical data like blood pressure, heart rate, glucose, etc.

	 5)	 Comorbidities, which are preexisting chronic conditions that

can affect the severity of a disease within a patient. Elixhauser

codified them into 29 categories using ICD-9 codes. Finally, Quan

et al proposed an enhanced ICD-9 coding methodology based on

examining inconsistencies among previous definitions.

Table 3-1 details all the values you will be calculating in order to predict for

readmissions.

Table 3-1.  Predictors for Readmission

Social and Demographic Age

Gender

Ethnicity

Payor

DOB (to get age)

Admission Related Discharge Duration

First Care Unit

Discharge Location

Number of Transfers within 24 hours (for a ICU STAY ID)

(continued)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

48

�Social and Demographic
To get social and demographic data, you need admissions and patient data. Load

the two datasets and get the features for each subject ID as laid out in the Social and

Demographic tab.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import random

Text Processing

import re

 admissions = pd.read_csv("./Data/ADMISSIONS.csv", index_col = None)

 patients = pd.read_csv("./Data/PATIENTS.csv", index_col = None)

Table 3-1.  (continued)

Lab Results of Important Elements Platelets (cells x 10^3 /μL)

Hematocrit %

Albumin (g/dL)

Sodium (mg/dL)

Potassium (mg/dL)

Calcium (mg/dL)

Patient’s Clinical Data Blood Glucose Level

Respiratory Rate

Blood Pressure (Systolic and Diastolic)

Heart Rate

Body Temperature

Comorbidity Score ELIXHAUSER-Quan Score

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

49

Convert all the date columns

 �admissions.ADMITTIME = pd.to_datetime(admissions.ADMITTIME, format =

'%Y-%m-%d %H:%M:%S', errors = 'coerce')

 �admissions.DISCHTIME = pd.to_datetime(admissions.DISCHTIME, format =

'%Y-%m-%d %H:%M:%S', errors = 'coerce')

 �admissions.DEATHTIME = pd.to_datetime(admissions.DEATHTIME, format =

'%Y-%m-%d %H:%M:%S', errors = 'coerce')

 �patients.DOB = pd.to_datetime(patients.DOB, format = '%Y-%m-%d

%H:%M:%S', errors = 'coerce')

You will keep the admissions data sorted per subject to see what the post admission

journey looks like.

 admissions = admissions.sort_values(['SUBJECT_ID','ADMITTIME'])

admissions.reset_index(drop = True, inplace = True)

Now, since you already have the patient's admit time and DOB from the patient's

table, you can calculate a patient's age. See the result in Figure 3-5.

 �patient_age = {row[1]: row[2] for row in patients[['SUBJECT_ID',

'DOB']].itertuples()}

 �admissions["AGE"] = [int((adm_time.date() - patient_age[subj_id].

date()).days/365)

 �for adm_time, subj_id in zip(admissions

["ADMITTIME"], admissions["SUBJECT_ID"])]

age_plot = admissions.AGE.hist()

 age_plot.set_xlabel('Age of Patients')

 age_plot.set_ylabel('Count of Patients')

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

50

This histogram shows that that more or less the age is spread up to 100, but there are

a lot of patients with an age of 300. Don't be confused. This is just because patients with

age of over 89 are noted as 300 in the MIMIC 3 dataset due to HIPAA compliance. There

are relatively fewer patients with an age of over 89 and, based on their ICU stay and

demographic pattern, it is easier to identify them so such measures were taken.

You will do two things to get the right age graph/distribution for your use case.

	 1)	 You will randomly spread the people with age 300 in your current

dataset to any age between 90 and 100.

	 2)	 You will remove young patients, preferably those below the

age of 18, as their chances of readmission are quite low due to

rare occurrence of any existing comorbidity and general better

health. This can also help correct for any imbalance between the

readmission and non-readmission classes.

 �admissions.loc[admissions.AGE >= 300,"AGE"] = random.

choices(list(range(90,100)),k = sum(admissions.AGE >= 300))

 admissions = admissions[admissions.AGE >18]

Figure 3-5.  Histogram plot of age and number of subjects withing that age bin

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

51

Lastly, you see that there are over 41 ethnicities in the data but the support (number

of subjects) for each type is quite low. Hence you will be clubbing some of the ethnicities

to get a better representation while just slightly affecting precision. See Figure 3-6.

 �admissions.ETHNICITY.value_counts().head(10).sort_values().

plot(kind = "barh")

 def normalize_ethnicity(x):

 """

 �Helper Function to Normalize Ethnicity into "WHITE", "HISPANIC",

"ASIAN", "BLACK" and "OTHERS"

 """

 if "WHITE" in x:

 return "WHITE"

 elif "HISPANIC" in x:

 return "HISPANIC"

 elif "ASIAN" in x:

 return "ASIAN"

 elif "BLACK" in x:

 "BLACK"

 else:

 return "OTHERS"

Figure 3-6.  Number of patients per ethnicity types

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

52

admissions.ETHNICITY.value_counts()

admissions.ETHNICITY = admissions.ETHNICITY.apply(lambda x: normalize_

ethnicity(x) if pd.notnull(x) else x)

This helps get all the patient-level characteristics that you aimed for. You will

merge this data on subject ID with the admissions table. This admission table will be

used to train your algorithms. Why wait? Let’s quickly see how to merge the data in the

admissions table and get your desired features.

�Admissions Related
Similar to the reasons for the ethnicity data, you can club various discharge locations

into normalized categories, which will have better support for each of them.

Let’s club the discharge location into three categories: Medical Facility, Home, and

Others:

 def normalize_discharge(x):

 """

 �Helper Function to Normalize Discharge Location into "HOME",

"MEDICAL_FACILITY", and "OTHERS"

 """

 if "HOME" in x:

 return "HOME"

 elif len(re.findall("OTHER|DEAD",x)) > 0:

 return "OTHER"

 else:

 return "MEDICAL_FACILITY"

admissions.DISCHARGE_LOCATION = admissions.DISCHARGE_LOCATION.apply(lambda

x: normalize_discharge(x) if pd.notnull(x) else x)

The discharge location in days can easily be calculated by subtracting the discharge

time from the admit time:

 �admissions["DISCHARGE_DURATION"] = (admissions["DISCHTIME"] -

admissions["ADMITTIME"]).dt.total_seconds()/(24*60*60)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

53

Now, to get your train flag readmission/no-readmission, you need to get the number

of days it took for each patient until the next admission. To get this, follow a two-step

approach:

	 1)	 Shift the next admit time against last admit time.

	 2)	 Subtract the discharge time from the next admit time to get days

until next admission.

Step 1:- Add the next Admit Time

 �admissions = admissions.sort_values(['SUBJECT_ID','ADMITTIME'])

#make sure the admittime is sorted before the shift operation

 �admissions['NEXT_ADMITTIME'] = admissions.groupby('SUBJECT_ID').

ADMITTIME.shift(-1)

Step 2:- Subtract Discharge Time from Next Admit Time

 �admissions['DAYS_NEXT_ADMIT']= (admissions.NEXT_ADMITTIME - admissions.

DISCHTIME).dt.total_seconds()/(24*60*60)

 �admissions["IS_READMISSION"] = admissions.DAYS_NEXT_ADMIT.apply

(lambda x: 0 if pd.isnull(x) else (0 if x >30 else 1))

Also, you need only unplanned medical care and your patient cohort should not

represent newborns, so filter out "ELECTIVE" and "NEWBORN":

admissions.ADMISSION_TYPE.value_counts()

 �admissions = admissions[~admissions.ADMISSION_TYPE.isin(["ELECTIVE",

"NEWBORN"])].reset_index(drop = True)

Lastly we will remove those any death related admission events.

 �admissions = admissions[admissions.HOSPITAL_EXPIRE_FLAG == 0].reset_

index(drop = True)

 �admissions = admissions[["SUBJECT_ID", "HADM_ID", "AGE", "ADMISSION_

TYPE","DISCHARGE_DURATION","DISCHARGE_LOCATION","INSURANCE","ETHNICITY",

"IS_READMISSION"]]

 �admissions = pd.merge(admissions, patients[["SUBJECT_ID","GENDER"]],

how="left", on = "SUBJECT_ID")

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

54

So far you have filtered the relevant events and got the discharge duration for

admission-related characteristics. You have also generated your target label of

readmission vs. no readmission within 30 days.

Now you can move on to get other features.

	 1)	 Prepping the data:

 icustays = pd.read_csv("./Data/ICUSTAYS.csv", index_col = None)

 transfers = pd.read_csv("./Data/TRANSFERS.csv", index_col = None)

 # Convert all the date columns

 �icustays.INTIME = pd.to_datetime(icustays.INTIME, format = '%Y-%m-%d

%H:%M:%S', errors = 'coerce')

 �icustays.OUTTIME = pd.to_datetime(icustays.OUTTIME, format = '%Y-%m-%d

%H:%M:%S', errors = 'coerce')

 transfers.dropna(subset=["ICUSTAY_ID"], inplace = True)

transfers.ICUSTAY_ID = transfers.ICUSTAY_ID.astype(int)

The number of transfers is an important determination of how critical the patient’s

case is and depending on comorbidities multiple ICUs can be used.

As an ICUSTAY_ID in the ICUSTAYS table groups all ICU admissions within 24 hours

of each other, it is possible for a patient to be transferred from one type of ICU to another

and have the same ICUSTAY_ID. To get the exact number of transfers for a particular

ICUSTAYID, you can use the TRANSFERS table.

The TRANSFERS table contains EVENTTYPE, which contains two values, transfer and

admit. You will sum up all the transfers for a ICUSTAY event (a unique ICUSTAY_ID) to get

the transfers done within 24 hours for that patient.

 �transfers_num = transfers.groupby(["SUBJECT_ID","HADM_ID","ICUSTAY_ID"])

['EVENTTYPE'].apply(lambda x : sum(x=="transfer")).reset_index()

 �transfers_num.columns = ["SUBJECT_ID","HADM_ID","ICUSTAY_ID", "NUM_

TRANSFERS"]

Updating ICU Data with number of transfer a patient undergoes once

admitted

 �icustays = pd.merge(icustays, transfers_num, on=["SUBJECT_ID","HADM_

ID","ICUSTAY_ID"], how="left")

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

55

Making sure that if a key (SUBJECT_ID,HADM_ID,"ICUSTAY_ID") is not found

then number of transfers for that key automatically becomes 0

 icustays.NUM_TRANSFERS.fillna(0, inplace = True)

ICU Transfers within 24hrs for a unique hospital admission

 �icustays_transfers_num = icustays.groupby(["SUBJECT_ID","HADM_ID"])

["NUM_TRANSFERS"].sum().reset_index()

Now let’s calculate the same ICU transfers for a hospital admission (a unique

HADM_ID).

ICU Transfers across days (>24 hours) for a unique hospital admission

 �icustays_num = icustays.groupby(["SUBJECT_ID","HADM_ID"])

["ICUSTAY_ID"].nunique().reset_index()

 icustays_num.columns = ["SUBJECT_ID","HADM_ID","ICU_TRANSFERS"]

Another important determinant of patient’s health during ICU STAYS can be LOS

(length of stay). You get this information from ICUSTAYS table itself.

Average Length of stay in ICU for a patient

 �icustays_avg_los = icustays.groupby(["SUBJECT_ID","HADM_ID"])["LOS"].

mean().reset_index()

You should also get the first care unit for the admission.

 icustays = icustays.sort_values(['SUBJECT_ID','HADM_ID','INTIME'])

 �icustays_firstcare = icustays.groupby(['SUBJECT_ID','HADM_ID'])['FIRST_

CAREUNIT'].nth(0).reset_index()

Merge all the different dataframes on SUBJECT_ID, HADM_ID.

import functools

_dfs = [icustays_num, icustays_avg_los, icustays_transfers_num, icustays_

firstcare]

 �icustays_final = functools.reduce(lambda left,right: pd.merge(left,right,

on=["SUBJECT_ID","HADM_ID"], how="inner"), _dfs)

 �icustays_final["TOTAL_TRANSFERS"] = icustays_final["ICU_TRANSFERS"] +

icustays_final["NUM_TRANSFERS"]

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

56

Lastly, if the first care unit relates to a newborn, it is unnecessary and insignificant

for analysis, so you just drop such ICU stays.

 �icustays_final = icustays_final[~icustays_final.FIRST_CAREUNIT.isin([

"NICU","NWARD"])].reset_index(drop = True).drop(["NUM_TRANSFERS",

"ICU_TRANSFERS"], axis = 1)

For more information, refer to https://mimic.physionet.org/mimictables/

transfers/.

�Patient’s Clinical Data
The clinical data for a patient is present in the CHARTEVENTS table. Historically, physicians

used to maintain a complete record of a patient's key clinical data and medical history,

such as demographics, vital signs, diagnoses, medication, etc.

Now both the lab events and patient’s clinical data are pretty big files, almost 32GB

in size, so it becomes imperative to be able to handle them seamlessly. You will adopt a

smart way to read in and work with these files.

As you already know, you are working with a subset of CHARTEVENTS, the essential

ones that help in understanding a patient’s health. You will try to find information from

such large tables only for those chart events.

For each patient’s clinical event present in CHARTEVENTS there is an ITEMID associated

with it, the definition for which is present in the D_ITEM table. Let’s see the ITEMIDs

corresponding to the clinical values.

 dictionary_itemid = pd.read_csv("./Data/D_ITEMS.csv", index_col = None)

 dictionary_itemid.dropna(subset=["LABEL"], inplace = True)

We only need those ITEM IDs which links to chart events

 �dictionary_itemid = dictionary_itemid[dictionary_itemid.LINKSTO.

isin(["chartevents"])]

To get the ITEMIDs, follow these steps:

	 1)	 Make a combination of words you expect to show up as

description.

	 2)	 Use your domain knowledge to filter down the ITEMIDs.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://mimic.physionet.org/mimictables/transfers/
https://mimic.physionet.org/mimictables/transfers/

57

 dictionary_itemid = pd.read_csv("./Data/D_ITEMS.csv", index_col = None)

 dictionary_itemid.dropna(subset=["LABEL"], inplace = True)

We only need those ITEM IDs which links to chart events

 �dictionary_itemid = dictionary_itemid[dictionary_itemid.LINKSTO.

isin(["chartevents"])]

 �dictionary_itemid[[True if ("sys" in x.lower() and len(re.findall(

"bp|blood pressure|blood",x.lower())) > 0) else False for x in

dictionary_itemid.LABEL]]

 sys_bp_itemids = [51, 442, 6701, 220050, 220179]

 �dictionary_itemid[[True if ("dia" in x.lower() and len(re.findall(

"bp|blood pressure|blood",x.lower())) > 0) else False for x in

dictionary_itemid.LABEL]]

 dia_bp_itemids = [8368, 8440, 8555, 220051, 220180]

 �dictionary_itemid[[True if ("resp" in x.lower() and len(re.

findall("rate",x.lower())) > 0) else False for x in dictionary_itemid.

LABEL]]

 respr_itemids = [615, 618, 3603, 224690, 220210]

 �dictionary_itemid[[True if ("glucose" in x.lower()) else False for x

in dictionary_itemid.LABEL]]

 �glucose_itemids = [1455, 1310, 807, 811, 3744, 3745, 1529, 2338,

225664, 220621, 226537]

Similarly

 heartrate_itemids = [211, 220045]

 temp_itemids = [676, 678, 223761, 223762]

Read the CHARTEVENTS data. Keep the HADM_IDs you found in ICUSTAYs and the

relevant ITEMIDs.

hadm_filter = icustays_final.HADM_ID.tolist()

total_itemids =

sys_bp_itemids+dia_bp_itemids+respr_itemids+glucose_itemids+temp_itemids

+heartrate_itemids

 n_rows = 100000

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

58

create the iterator

chartevents_iterator = pd.read_csv(

 "./Data/CHARTEVENTS.csv",

 iterator=True,

 chunksize=n_rows,

 �usecols = ["SUBJECT_ID", "HADM_ID", "ICUSTAY_ID", "ITEMID",

"VALUE", "VALUENUM", "VALUEUOM"])

concatenate according to a filter to get our labevents data

chartevents = pd.concat(

� �[chartevent_chunk[np.logical_and(chartevent_chunk['HADM_ID'].isin(hadm_

filter),

 chartevent_chunk['ITEMID'].isin(total_itemids))] if

 str(chartevent_chunk.HADM_ID.dtype) == 'int64'

 else

 chartevent_chunk[np.logical_and(chartevent_chunk['HADM_ID'].isin([float(x)

 for x in hadm_filter]),

� chartevent_chunk['ITEMID'].isin(total_itemids))]

 for chartevent_chunk in chartevents_iterator])

 chartevents.dropna(axis = 0, subset = ["VALUENUM"], inplace = True)

 chartevents.drop('VALUE', axis = 1, inplace = True)

Since the CHARTEVENTS data is collected from two different systems, it becomes important

for you to check for different reporting units for your events. Let’s quickly have a look.

Since the data is collected from two different systems let us check for

units for each of our patients clinical data

 print("Systolic BP :-

 ",chartevents[chartevents.ITEMID.isin(sys_bp_itemids)].VALUEUOM.unique())

 print("Diastolic BP :-

 ",chartevents[chartevents.ITEMID.isin(dia_bp_itemids)].VALUEUOM.unique())

 print("Respiratory Rate :-

 ",chartevents[chartevents.ITEMID.isin(respr_itemids)].VALUEUOM.unique())

 print("Glucose Levels :-

 ",chartevents[chartevents.ITEMID.isin(glucose_itemids)].VALUEUOM.unique())

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

59

 print("Heart Rate :-

 ",chartevents[chartevents.ITEMID.isin(heartrate_itemids)].VALUEUOM.unique())

 print("Temperature :-

 ",chartevents[chartevents.ITEMID.isin(temp_itemids)].VALUEUOM.unique())

Output

###

Systolic BP :- ['mmHg']

Diastolic BP :- ['mmHg']

Respiratory Rate :- ['insp/min' 'BPM']

Glucose Levels :- [nan 'mg/dL']

Heart Rate :- ['bpm' 'BPM']

Temperature :- ['?F' '?C' 'Deg. F' 'Deg. C']

##

There are three observations from above:

•	 insp/min is same as BPM, so no conversion is required here.

•	 You won't impute for NA in Glucose as the value is in the same range

as when the unit is present.

•	 You need to convert Fahrenheit to Celsius.

Let’s also replace the ITEMIDs by their descriptive labels to aid readability and also

make them refer to a single category.

Let us Replace ItemIds by their respective Chart Event Names to aid

readability

 mapping = {"Systolic_BP":sys_bp_itemids,

 "Diastolic_BP":dia_bp_itemids,

 "Resp_Rate":respr_itemids,

 "Glucose":glucose_itemids,

 "Heart_Rate":heartrate_itemids,

 "Temperature":temp_itemids}

item_id_map = {item_id: k for k,v in mapping.items() for item_id in v}

 chartevents["ITEMID"] = chartevents["ITEMID"].replace(item_id_map)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

60

Let’s convert Fahrenheit to Celsius:

 �cond1 = np.logical_and(np.logical_or(chartevents["VALUEUOM"] == "?F",

chartevents["VALUEUOM"] == "Deg. F"),

 pd.notnull(chartevents["VALUEUOM"])).tolist()

 �cond2 = np.logical_or(chartevents["VALUEUOM"] != "?F",

chartevents["VALUEUOM"] != "Deg. F").tolist()

 condval1 = ((chartevents["VALUENUM"]-32)*5/9).tolist()

 condval2= chartevents["VALUENUM"].tolist()

 chartevents["VALUENUM"] = np.select([cond1, cond2], [condval1,condval2])

This brings you to standardized charts data for all the patients within your data. For

analysis, you will be using two measures: one is a measure of central tendency (mean)

and one is a measure of variability (standard deviation):

 charts = chartevents.pivot_table(index=['SUBJECT_ID', 'HADM_ID'],

 columns='ITEMID', values='VALUENUM',

 aggfunc=[np.mean, np.std]).reset_index()

 �charts.columns = charts.columns.get_level_values(0)+'_'+charts.columns.

get_level_values(1)

There are going to be many nulls that depend on the data captured within MIMIC,

and in general the number of nulls for standard deviation columns would be larger than

mean columns since there are a lot of single values for a HADM_ID, but the difference is

not much, as you can see:

Output

###

SUBJECT_ID_ 0

HADM_ID_ 0

mean_Diastolic_BP 10988

mean_Glucose 610

mean_Heart_Rate 111

mean_Resp_Rate 134

mean_Systolic_BP 10981

mean_Temperature 241

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

61

std_Diastolic_BP 11215

std_Glucose 2557

std_Heart_Rate 121

std_Resp_Rate 173

std_Systolic_BP 11212

std_Temperature 687

###

Some of these nulls can be corrected for by backfilling with values from the last

admission visit:

 charts = charts.groupby(['SUBJECT_ID_']).apply(lambda x: x.bfill())

Let’s check how many null values you were able to correct. It looks like you were able

to remove several nulls from the columns.

Output

###

SUBJECT_ID_ 0

HADM_ID_ 0

mean_Diastolic_BP 9053

mean_Glucose 526

mean_Heart_Rate 97

mean_Resp_Rate 116

mean_Systolic_BP 9047

mean_Temperature 210

std_Diastolic_BP 9258

std_Glucose 2131

std_Heart_Rate 107

std_Resp_Rate 150

std_Systolic_BP 9255

std_Temperature 600

###

�Lab Events
Similar to CHARTEVENTS, you will first find ITEMDs corresponding to the lab events you

want to focus on and then use that to read the lab data.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

62

hadm_filter = icustays_final.HADM_ID.tolist()

 total_labitems = [51265, 51221, 50862, 50983, 50971, 50893]

 n_rows = 100000

create the iterator

labevents_iterator = pd.read_csv(

 "./Data/LABEVENTS.csv",

 iterator=True,

 chunksize=n_rows)

concatenate according to a filter to get our labevents data

labevents = pd.concat(

� �[labevent_chunk[np.logical_and(labevent_chunk['HADM_ID'].isin

(hadm_filter),

� labevent_chunk['ITEMID'].isin(total_labitems))]if

 str(labevent_chunk.HADM_ID.dtype) == 'int64'

 else

 �labevent_chunk[np.logical_and(labevent_chunk['HADM_ID'].isin([float(x)

for x in hadm_filter]),

� labevent_chunk['ITEMID'].isin(total_labitems))]

 for labevent_chunk in labevents_iterator])

Let’s replace ITEMIDs with actual names.

labevents_label =

dictionary_labitemid[dictionary_labitemid.ITEMID.isin(total_labitems)]

item_id_map = dict(zip(labevents_label.ITEMID,labevents_label.LABEL))

 labevents["ITEMID"] = labevents["ITEMID"].replace(item_id_map)

Let’s quickly check if you need to normalize for any units.

 labevents.groupby(["ITEMID"])['VALUEUOM'].apply(lambda x: set(x))

Output

###

Albumin {nan, g/dL}

Calcium, Total {nan, mg/dL}

Hematocrit {nan, %}

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

63

Platelet Count {nan, K/uL}

Potassium {nan, mEq/L}

Sodium {nan, mEq/L}

###

It looks like you are good with units in case of lab events. All of the different events

have a single type of unit.

Similar to CHARTEVENTS, you will calculate the mean and standard deviation on

values of your lab events and then backfill any missing values.

 labs = labevents.pivot_table(index=['SUBJECT_ID', 'HADM_ID'],

 columns='ITEMID', values='VALUENUM',

 aggfunc=[np.mean, np.std]).reset_index()

 �labs.columns = labs.columns.get_level_values(0)+'_'+labs.columns.

get_level_values(1)

 labs = labs.groupby(['SUBJECT_ID_']).apply(lambda x: x.bfill())

labs.isnull().sum()

Output

###

SUBJECT_ID_ 0

HADM_ID_ 0

mean_Albumin 16302

mean_Calcium, Total 1849

mean_Hematocrit 17

mean_Platelet Count 30

mean_Potassium 139

mean_Sodium 153

std_Albumin 30443

std_Calcium, Total 5083

std_Hematocrit 746

std_Platelet Count 836

std_Potassium 1026

std_Sodium 1104

###

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

64

�Comorbidity Score
Comorbidities are important for predicting patient mortality, and higher comorbidities

can adversely affect the mortality rate. Elixhauser and Quan’s extensive research gives

a numerical value to the comorbidity level of a patient. You can find more details at

www.ncbi.nlm.nih.gov/pmc/articles/PMC6381763/.

Most of the ideas for creating this comorbidity score are calculated from MIMIC’s

original repo; see https://github.com/MIT-LCP/mimic-code/blob/master/concepts/

comorbidity/elixhauser_quan.sql.

 diagnosis_icd = pd.read_csv("./Data/DIAGNOSES_ICD.csv", index_col = None)

 �mapping = {'congestive_heart_failure':['39891','40201','40211','40291',

'40401','40403','40411','40413','40491','40493','4254','4255','4257',

'4258','4259','428'],'cardiac_arrhythmias':['42613','42610','42612',

'99601','99604','4260','4267','4269','4270','4271','4272','4273','4274',

'4276','4278','4279','7850','V450','V533'],'valvular_disease':['0932','7463',

'7464','7465','7466','V422','V433','394','395','396','397','424'],

 'pulmonary_circulation_disorder':['4150','4151','4170','4178','4179',

 �'416'],'peripheral_vascular_disorder':['0930','4373','4431','4432','4438',

'4439','4471','5571','5579','V434','440','441'],'hypertension':['401',

'402','403','404','405'],'paralysis':['3341','3440','3441','3442',

'3443','3444','3445','3446','3449','342','343'],'other_neurological':

['33392','3319','3320','3321','3334','3335','3362','3481','3483','7803',

'7843', '334','335','340','341','345'],'chronic_pulmonary_disease':

['4168','4169','5064','5081','5088', '490','491','492','493','494','495',

'496','500','501','502','503','504','505'],'diabetes_w_complications':

['2504','2505','2506','2507','2508','2509'],'hypothyroidism':

['2409','2461','2468', '243','244'],'renal_failure':['40301','40311',

'40391','40402','40403','40412','40413','40492','40493', '5880','V420',

'V451', '585','586','V56'],'liver_disease':['07022','07023','07032',

'07033','07044','07054','0706','0709','4560','4561','4562','5722','5723',

'5724','5728','5733','5734','5738','5739','V427','570','571'],

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6381763/
https://github.com/MIT-LCP/mimic-code/blob/master/concepts/comorbidity/elixhauser_quan.sql
https://github.com/MIT-LCP/mimic-code/blob/master/concepts/comorbidity/elixhauser_quan.sql

65

 �'chronic_ulcer':['5317','5319','5327','5329','5337','5339','5347',

'5349'],'hiv_aids':['042','043','044'],'lymphoma':['2030','2386',

'200','201','202'],'metastasis_solid_tumor':['140','141',

'142','143','144','145','146','147','148','149','150','151','152','153',

'154','155','156','157','158','159','160','161','162','163','164','165',

'166','167','168','169','170','171','172','174','175','176','177','178',

'179' ,'180','181','182','183','184','185','186','187','188','189',

'190','191','192','193','194','195'],

 �'rheumatoid_arthiritis':['72889','72930',

'7010','7100','7101','7102','7103','7104','7108','7109','7112','7193',

'7285', '446','714','720','725'],

 'coagulation_deficiency':['2871','2873','2874','2875', '286'],

 'obesity':['2780'],

 'weight_loss':['7832','7994', '260','261','262','263'],

 'fluid_electrolyte_disorders':['2536','276'],

 'blood_loss_anemia':['2800'],

 'deficiency_anemia':['2801','2808','2809', '281'],

 'alcohol_abuse':['2652','2911','2912','2913','2915','2918','2919', '3030',

 �'3039','3050','3575','4255','5353','5710','5711','5712','5713','V113',

'980'],

 �'drug_abuse':['V6542', '3052','3053','3054','3055','3056','3057','3058',

'3059', '292','304'],

 'psychoses':['29604','29614','29644','29654','2938','295','297','298'],

 'depression':['2962','2963','2965','3004','309','311']}

 mapping_score = pd.DataFrame({'congestive_heart_failure':9,

 'cardiac_arrhythmias':8,

 'valvular_disease':0,

 'pulmonary_circulation_disorder':3,

 'peripheral_vascular_disorder':4,

 'hypertension':-2,

 'paralysis':4,

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

66

 'other_neurological':5,

 'chronic_pulmonary_disease':3,

 'diabetes_w_complications':1,

 'hypothyroidism':0,

 'renal_failure':7,

 'liver_disease':7,

 'chronic_ulcer':0,

 'hiv_aids':0,

 'lymphoma':8,

 'metastasis_solid_tumor':17,

 'rheumatoid_arthiritis':0,

 'coagulation_deficiency':12,

 'obesity':-5,

 'weight_loss':10,

 'fluid_electrolyte_disorders':11,

 'blood_loss_anemia':-3,

 'deficiency_anemia':0,

 'alcohol_abuse':0,

 'drug_abuse':-11,

 'psychoses':-6,

 'depression':-5}, index = [0])

You should map the ICD_9 code to the comorbidity it represents. You will use the

get_mapping function to get the comorbidity label against the ICD-9 code.

 def get_mapping(icd_code, mapping):

 for k,v in mapping.items():

 if str(icd_code) in v:

 return k

 elif str(icd_code)[:4] in v:

 return k

 elif str(icd_code)[:3] in v:

 return k

 return None

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

67

 �diagnosis_icd["ICD9_CODE"] = diagnosis_icd.ICD9_CODE.apply(lambda x:

get_mapping(x, mapping) if pd.notnull(x) else None)

 diagnosis_icd.dropna(subset = ['ICD9_CODE'], axis =0, inplace = True)

Let’s pivot up the table and represent comorbidity as a column with the number of

times that comorbidity has come up for that subject and hospital admission as the cell

values.

 �diagnosis_icd = diagnosis_icd.drop_duplicates(['SUBJECT_ID', 'HADM_ID',

'ICD9_CODE'])[['SUBJECT_ID', 'HADM_ID','ICD9_CODE']]

.pivot_table(index=['SUBJECT_ID', 'HADM_ID'],columns='ICD9_CODE',

aggfunc=len, fill_value = 0).reset_index()

Finally, you multiply these comorbidities with the effect value given by Elixhauser

and then later improved by Quan.

 �diagnosis_icd["ELIXHAUSER_SID30"] = diagnosis_icd.iloc[:,2:].multiply(

np.array(mapping_score[list(diagnosis_icd.iloc[:,2:].columns)]),

axis='columns').fillna(0).sum(axis = 1)

 �diagnosis_icd = diagnosis_icd[['SUBJECT_ID', 'HADM_ID','ELIXHAUSER_

SID30']]

As a last step, you merge all the data together for analysis and check for missing data.

 import functools

_dfs = [admissions, diagnosis_icd, charts, labs, icustays_final]

 �train_data = functools.reduce(lambda left,right: pd.merge(left,right,on=[

"SUBJECT_ID","HADM_ID"], how="inner"), _dfs)

The number of nulls in the merged dataset is

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

68

Output

###

SUBJECT_ID 0

HADM_ID 0

AGE 0

ADMISSION_TYPE 0

DISCHARGE_DURATION 0

DISCHARGE_LOCATION 0

INSURANCE 0

ETHNICITY 3777

IS_READMISSION 0

ADMITTIME 0

GENDER 0

ELIXHAUSER_SID30 0

mean_Diastolic_BP 7046

mean_Glucose 185

mean_Heart_Rate 40

mean_Resp_Rate 56

mean_Systolic_BP 7042

mean_Temperature 54

std_Diastolic_BP 7200

std_Glucose 1346

std_Heart_Rate 44

std_Resp_Rate 71

std_Systolic_BP 7197

std_Temperature 153

mean_Albumin 9488

mean_Calcium, Total 611

mean_Hematocrit 5

mean_Platelet Count 8

mean_Potassium 23

mean_Sodium 32

std_Albumin 20102

std_Calcium, Total 2162

std_Hematocrit 218

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

69

std_Platelet Count 240

std_Potassium 325

std_Sodium 374

LOS 2

FIRST_CAREUNIT 0

TOTAL_TRANSFERS 0

###

There are three steps you will follow to fill in the missing values. This staggered

approach is made keeping in mind at any time in imputation you are using the closest

approximation possible.

	 1)	 Initially, you backfill missing lab and clinical values at the Subject

ID and Hospital Visit level as this is the closest estimate. But

now the closest estimate is to backfill all numeric values at the

Subject ID level, assuming a single patient might have the same

characteristics as their last visit.

	 2)	 Secondly, you group by SUBJECT_ID and impute by a measure of

central tendency like mean.

	 3)	 Lastly, you group on ethnicity, age, and gender and impute on

mean. This will fill all missing values for you.

More details are in the official GitHub repo for the chapter.

�Modeling for Patient Representation
Machine learning models developed for clinical prediction tasks have the ability to aid

care staff in deciding appropriate treatments. However, these clinical decision-making

tools typically are not developed with specific subpopulations in mind, or they are

developed for a single subpopulation and can suffer from data scarcity. The existence of

these different subpopulations gives rise to a multifaceted problem:

•	 A single model built for the entire patient population in aggregate

does not imply equally good performance across distinct patient

subpopulations.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

70

•	 Separate models learned on each of the distinct patient

subpopulations do not take advantage of the shared knowledge that

is common across patient subgroups.

In your dataset, you are dealing with a diverse set of individuals, so having one

model for the whole population can give you a lower performance. Also, having different

models for each population will inhibit across population learning and hence can lead to

an overall lower performance.

The idea of addressing such heterogeneous populations for patients in ICU was

first handled by H. Suresh, J. Gong, et al in their paper “Learning Multitask Learning:

Heterogeneous Patient Populations in the ICU.” The authors used mortality prediction as

a problem for ICU patients and showed how a multitask learning setup can help account

for the diverse population set in the MIMIC data.

You are going to try to address this problem but with slight modifications:

•	 Patient representation

•	 Cohort discovery

�A Brief Introduction to Autoencoders
Autoencoders are feed-forward neural networks that learn via an unsupervised or semi-

supervised training technique. Generally, the way autoencoders learn is by recreating

the input, which utilizes an encoder and a decoder. In essence, an autoencoder works

on minimizing the reconstruction error. This reconstruction is done by the decoder from

the compressed representation of the encoder.

Any kind of data panel data, text data, or even image data can be used in the

autoencoder. This just means that the cascaded network of the encoder and decoder can

thus be constructed by different types of neural network layers: dense, rnn/lstm, and

convolutional.

Depending on the various factors listed below, there can be different types of

autoencoders. Some of these factors are

•	 Dimension of bottleneck layers: Undercomplete (like vanilla

autoencoder, sparse autoencoder, etc.) and overcomplete (like

denoising autoencoders)

•	 Number of neurons that are used for training: Sparse autoencoder

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

71

•	 Method of training: Stacked autoencoder, denoising autoencoder, etc.

•	 Expected output: Variational autoencoder (generative) vs. traditional

(non-generative like denoising and vanilla autoencoders)

Figure 3-7 shows a vanilla autoencoder. Every autoencoder contains a bottleneck

layer which limits the number of dimensions for latent representation for the input.

�Feature Columns in TensorFlow
To accomplish your task, first you need to select the columns that pertain to patient

characteristics and can help in a better representation of them. Table 3-2 shows different

columns that reflect different aspects of patient characteristics.

Figure 3-7.  Vanilla autoencoder

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

72

Now, to encode your features into a neural network, you will use an excellent feature

provided in TensorFlow called feature columns. They are not new to TF2.0 but are

relatively new as a concept (introduced in late 2017).

All deep nets work on numbers (tf.float32) but as you can see even for your input data

you can have a range of input data types ranging from categorical to numerical to even free

text columns. Feature columns helps bridge this gap of converting raw data into a numerical

format seamlessly and experiment with different representations of input features.

You will use the DenseFeatures layer to input them into your Keras model:

tf.keras.layers.DenseFeatures()

It’s a layer that produces a dense tensor based on given feature_columns. More

information can be found at www.tensorflow.org/versions/r2.0/api_docs/python/

tf/keras/layers/DenseFeatures.

Table 3-3 helps you figure out the different feature columns and what data type they

work on.

Table 3-2.  Features Representing Patients

Demographics AGE Numerical/Continuous

INSURANCE Categorical

ETHNICITY Categorical

GENDER Categorical

Comorbidities ELIXHAUSER_SID30 Numerical/Continuous

Patients Clinical Data FIRST_CAREUNIT Categorical

All Labs and ChartEvents related features Numerical/Continuous

Table 3-3.  Feature Columns in TF 2.0

Feature Column Type Description Data Type

Numeric Columns Represents real valued features. The data remains unchanged. Numerical

Bucketized Columns Buckets real value features into categories and one-hot encodes

them. The buckets are decided by boundaries/cuts.

Numerical

Categorical Column

with Vocabulary

One-hot encodes a fixed set of categorical values. Categorical

(continued)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/DenseFeatures
http://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/layers/DenseFeatures

73

�Creating an Input Pipeline Using tf.data
The tf.data API enables you to build custom input pipelines and handle large amounts of

data read from different formats. It provides an abstraction td.data.Dataset which holds

sequences of elements. These elements can be of any type.

For your case, you will be using tf.data.Dataset.from_tensor_slices. It’s a static

method that combines different elements into one dataset, such as combining predictor

and target variables into one dataset. More information can be found at

www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices.

import os

import tensorflow as tf

from tensorflow import feature_column

from tensorflow.keras import layers

 tf.keras.backend.set_floatx('float32')

 tf.random.set_seed(123)

 np.random.seed(123)

 random.seed(123)

 os.environ['PYTHONHASHSEED']=str(123)

Feature Column Type Description Data Type

Embedding Column Generally used in cases where categorical values are really large

in number and hence a lower-dimensional representation is

generated instead of a one-hot encoding, which will be sparse.

Categorical

Categorical Column

with Hash Bucket

Hashes different categorical values and fits into one of the hash

buckets. Number of buckets can be optimized.

Note: As hashing is applied, it can lead to collision.

Categorical

Crossed Feature Used in cases where you want feature interaction.

Note: Not all combinations are created. Rather, a hashed

approach is used.

Categorical

Table 3-3.  (continued)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

http://www.tensorflow.org/api_docs/python/tf/data/Dataset#from_tensor_slices

74

 �def df_to_dataset(dataframe, target_col_name, shuffle=True, batch_

size=32, autoenc=True):

 """

 �A utility method to create a tf.data dataset from a Pandas Dataframe

 """

 dataframe = dataframe.copy()

 labels = dataframe.pop(target_col_name)

 if autoenc:

 �ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), feature_

layer(dict(dataframe)).numpy()))

 else:

 ds = tf.data.Dataset.from_tensor_slices((dict(dataframe), labels))

 if shuffle:

 ds = ds.shuffle(buffer_size=len(dataframe))

 ds = ds.batch(batch_size)

 return ds

One thing to note in the df_to_dataset function is how easy it is to create training

labels using the tensor_slices function, even for a dataframe as an output!

Note A lthough the target column doesn't make sense for autoencoders, the
function is kept generic for later use.

Before moving onto creating your feature columns, you must make sure that the

variable names in your dataframe adhere to the variable_scope of TensorFlow. You can

find more info here:

https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/

framework/ops.py#L2993.

import pandas as pd

import numpy as np

import random

import re

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/framework/ops.py#L2993
https://github.com/tensorflow/tensorflow/blob/r1.2/tensorflow/python/framework/ops.py#L2993

75

 data =pd.read_csv("./train.csv", index_col = None)

 �data.columns = [re.sub(r"[,.;@#?!&$]+\ *", " ",x).replace('/\s\s+/g',

' ').replace(" ","_") for x in data.columns]

After defining the feature columns, you will create a layer to input them into your

Keras model. You will use the DenseFeatures layer for this. Also, since you have just

numerical and categorical columns, you will let the numerical columns remain as is and

do one-hot encoding on categorical variables.

But before that, let’s make sure you have scaled your numerical columns before

ingesting them into a neural network. This is a very important step before training your

autoencoder as all neural networks work on is on a gradient descent. Having a non-

scaled data can make your loss really huge and the network won’t actually converge

properly as it can lead to weights of some features having more representation.

 �num_cols = ['AGE', 'ELIXHAUSER_SID30', 'mean_Diastolic_BP', 'mean_

Glucose',

 'mean_Heart_Rate', 'mean_Resp_Rate', 'mean_Systolic_BP',

 �'mean_Temperature', 'std_Diastolic_BP', 'std_Glucose',

'std_Heart_Rate',

 ��'std_Resp_Rate', 'std_Systolic_BP', 'std_Temperature',

'mean_Albumin',

 'mean_Calcium_Total', 'mean_Hematocrit', 'mean_Platelet_Count',

 �'mean_Potassium', 'mean_Sodium', 'std_Albumin',

'std_Calcium_Total',

 �'std_Hematocrit', 'std_Platelet_Count', 'std_Potassium', 'std_

Sodium']

from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()

data_minmax = min_max_scaler.fit(data[num_cols])

data_num = data_minmax.transform(data[num_cols])

data_scaled = pd.concat([pd.DataFrame(data_num, columns = num_cols),

 �data[['INSURANCE', 'ETHNICITY', 'GENDER',

'FIRST_CAREUNIT','IS_READMISSION']]],

 axis = 1)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

76

You will also split your data into train and validation sets to test the performance of

your autoencoder later.

from sklearn.model_selection import train_test_split

 train, val = train_test_split(data_scaled, test_size=0.2)

�Creating Feature Columns
You are finally ready to create your feature columns. In the following code you see how

numeric and categorical columns can be handled:

feature_columns = []

numeric cols

for numeric_cols in num_cols:

 feature_columns.append(feature_column.numeric_column(numeric_cols))

categorical cols

 for cat_cols in ['INSURANCE', 'ETHNICITY', 'GENDER', 'FIRST_CAREUNIT']:

 �categorical_column = feature_column.categorical_column_with_vocabulary_

list(

 cat_cols, train[cat_cols].unique())

 indicator_column = feature_column.indicator_column(categorical_column)

 feature_columns.append(indicator_column)

feature_layer = layers.DenseFeatures(feature_columns)

�Building a Stacked Autoencoder
Now you will convert the train and validation pandas dataframe to TensorFlow’s Dataset

class. Please note in the code below, besides having train and validation data, you are

also keeping a full unshuffled data for the next task, which is cohort discovery.

 batch_size = 32

train_ds = df_to_dataset(train,

 �target_col_name='IS_READMISSION',

 �batch_size=batch_size)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

77

val_ds = df_to_dataset(val,

 �target_col_name='IS_READMISSION',

 �batch_size=batch_size)

full_ds = df_to_dataset(data_scaled,

 target_col_name='IS_READMISSION',

 batch_size=batch_size,

 shuffle = False)

To modularize the shape of output layer in the autoencoder

 output_shape = feature_layer(next(iter(train_ds))[0]).numpy().shape[1]

Creating an autoencoder is very simple. You just need to keep a couple of things in

mind:

•	 There are two different submodels representing the encoder and

decoder.

•	 Try to reduce the DenseLayer size stepwise.

•	 Make sure the input and output tensor shapes match.

•	 Since it is a regression problem, you can use mse as your loss

function. If all your features were 0 or 1, as in the case of a black and

white image, you could also use binary cross entropy loss to converge

the network faster.

•	 No overfitting is observed on the train set. This can happen

unknowingly since you are using a very small data with over 2k

parameters.

encoder = tf.keras.Sequential([

 feature_layer,

 �layers.Dense(32, activation = "selu", kernel_initializer="lecun_normal"),

 �layers.Dense(16, activation = "selu", kernel_initializer="lecun_normal"),

 �layers.Dense(8, activation = "selu", kernel_initializer="lecun_normal"),

 �layers.Dense(4, activation = "selu", kernel_initializer="lecun_normal"),

 layers.Dense(2, activation = "selu", kernel_initializer="lecun_normal")

])

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

78

decoder = tf.keras.Sequential([

 �layers.Dense(4, activation = "selu", kernel_initializer="lecun_

normal", input_shape=[2]),

 layers.Dense(8, activation = "selu",kernel_initializer="lecun_normal"),

 �layers.Dense(16, activation = "selu",kernel_initializer="lecun_

normal"),

 �layers.Dense(32, activation = "selu",kernel_initializer="lecun_

normal"),

 �layers.Dense(output_shape, activation = "selu", kernel_initializer=

"lecun_normal"),

])

stacked_ae = tf.keras.Sequential([encoder, decoder])

 stacked_ae.compile(loss='mse', metrics = "mean_absolute_error",

 �optimizer= tf.keras.optimizers.Adam(learning_

rate=0.01))

history = stacked_ae.fit(train_ds,

 validation_data = val_ds,

 epochs=15)

A couple of things about what’s happening in the code above:

	 1)	 Note the use of the feature layer as an input layer to the encoder

submodel.

	 2)	 All dense layer sizes (32, 16, 8) reduce in a staggered fashion and

are less than the maximum dimension, which is 41 in your case,

equal to output_shape. This forces the network to learn more

condensed representation of the features.

	 3)	 Note the use of selu as an activation function. SELU, or scaled

exponential linear unit, is a relatively new activation function

with many advantages like internal normalization of weights

and biases, which centers the mean of weights to zero and

guarantees that vanishing and exploding gradient problems can’t

happen, which intuitively makes sense as the weights follow a

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

79

standard normal distribution. The activation function is shown in

Figure 3-8. The image is adapted from the paper “SNDCNN: Self-

Normalizing Deep CNNs with Scaled Exponential Linear Units for

Speech Recognition” by Z. Huang et al.

Let’s also see how the performance metric and loss charts look for the validation

chart over different epochs. Divergence in charts means either underfitting or overfitting.

In your case, you observe no such issues. See Figure 3-9.

Plotting libraries and parameters

import matplotlib.pyplot as plt

 plt.figure(figsize=(12,8))

import seaborn as sns

 mae = history.history['mean_absolute_error']

 val_mae = history.history['val_mean_absolute_error']

 loss = history.history['loss']

 val_loss = history.history['val_loss']

Figure 3-8.  SELU activation function

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

80

 epochs_range = range(15)

 plt.subplot(1, 2, 1)

 plt.plot(epochs_range, mae, label='Training MAE')

 plt.plot(epochs_range, val_mae, label='Validation MAE')

 plt.legend(loc='upper right')

 plt.title('Training and Validation MAE')

 plt.subplot(1, 2, 2)

 plt.plot(epochs_range, loss, label='Training Loss')

 plt.plot(epochs_range, val_loss, label='Validation Loss')

 plt.legend(loc='upper right')

 plt.title('Training and Validation Loss')

plt.show()

Let’s also save your model for future reference.

 stacked_ae.save('trained_model')

Figure 3-9.  Training and validation plots of loss and performance metric

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

81

�Cohort Discovery
Now let’s use a condensed representation of patient-level features from the autoencoder

trained in the previous section. You’ll shift the focus to see how many patient clusters

exist in your data for which you will the multitask learning.

�What Is an Ideal Cohort Set?
Before diving into different techniques, here’s how the clustering algorithm should

behave:

	 1)	 Able to use the full data for clustering

	 2)	 Noise-aware so that a small patient group with different

characteristics doesn’t distort the clustering

	 3)	 Healthy cluster size and similar prevalence. The clusters formed

from the algorithm should have a decent n-size and the same

prevalence, which basically means the number of readmission

and non-readmission patients should be similar.

	 4)	 No prior assumption over distribution of points belonging to a

cluster like that in the case of GMMs.

	 5)	 You are also not that concerned with finding embedded structures

in your data. Nor are you too focused on finding just dense

clusters and rendering everything else as noise. For these reasons,

a hierarchical clustering or density-based clustering is out of

scope.

This means you can go for a centroid-based clustering algorithm like k-means.

Now k-means doesn’t fit the bill for all the expected behaviors listed above but you can

still mitigate some of these issues by changing the initialization strategy and number

of clusters. Also, you will keep an extra eye on boundary points. If there are a lot of

boundary points, then maybe you will have to choose another clustering algorithm, such

as GMM.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

82

�Optimizing K-Means Performance
K-means is present in the sklearn library and offers a variety of options to cluster data.

A lot of information regarding this on the official page documentation at https://

scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.

Key parameters to note here are

•	 n_clusters: Number of clusters. As it is a centroid-based clustering

algorithm, you need to provide the number of clusters beforehand.

•	 init: The parameter to select the initial centroids.

•	 n_init: The number of times a centroid is initialized (with

different seeds).

•	 max_iter: The number of times k-means is run

•	 algorithm: Which algorithm to use, eklan or auto. You will not touch

this parameter because based on the data (dense or sparse) the

algorithm is auto-selected.

Let’s take each of the parameters one by one and discuss each in length.

The init parameter tells the algorithm a way to decide on the initial centroids.

The default method is to select randomly but based on a 2006 paper by David Arthur

et al titled “K-means++: The Advantages of Careful Seeding,” there is a smarter way to

initialize these clusters. In summary, k-means++ tries to select centroids in a way that

all centroids are far away from each other. It starts with selecting a random point as a

centroid and then the next centroid is selected such that the probability of its selection

is proportional to its distance from the nearest centroid. This is iteratively done until the

total number of centroids matches the n_clusters parameter value.

n_init, a parameter closely tied to the init parameter, is used to choose the

clustering with best inertia while also stabilizing the results of the init parameter, so you

are not going to experiment a lot with this parameter. Keep it a fixed value of 10.

Next, let’s move on to max_iter. This parameter helps k-means converge and find

the optimum distribution of points around the centroids. This can play an important role

in determining the overall health of your clusters, such as the total number of datapoints,

overall silhouette score or inertia, and also prevalence of datapoints.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html

83

Lastly, the most important parameter is n_clusters. It helps you see how many

clusters are present in your data. You will try to determine this number by two methods:

	 1)	 Inertia (a.k.a. the Elbow Method): The sum of within (intra)

cluster variances

	 2)	 Silhouette Score: This takes both intra and inter cluster distances

into account. It varies from -1 to 1, where a value close to 1

indicates that the data points align well to the cluster it is present

in and less to neighboring clusters (so it tells both the things as

compared to inertia), while for values far away from 1 show that

the data points are misclustered.

Since you are deciding how to deal with init and n_init parameters, let’s have a

quick look at the max_iter and n_clusters parameters.

from sklearn.cluster import KMeans

import matplotlib.pyplot as plt

 plt.figure(figsize=(12,8))

import seaborn as sns

codings = encoder.predict(full_ds)

 k_means_data = pd.concat([data[["SUBJECT_ID","IS_READMISSION"]],

 �pd.DataFrame(codings, columns =

["val1","val2"])],

 axis = 1)

 kmeans_iter1 = KMeans(n_clusters=4, init="k-means++", n_init=5,

 max_iter=1, random_state=123)

 kmeans_iter2 = KMeans(n_clusters=4, init="k-means++", n_init=5,

 max_iter=2, random_state=123)

 kmeans_iter3 = KMeans(n_clusters=4, init="k-means++", n_init=5,

 max_iter=3, random_state=123)

kmeans_iter1.fit(codings)

kmeans_iter2.fit(codings)

kmeans_iter3.fit(codings)

If you plot the centroid and labels for these three different versions, the plot will look

something like Figure 3-10.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

84

You can see that max_iter doesn’t have a big effect on the clustering performance

and hence here as well you keep the max_iter fixed to 3.

�Deciding the Number of Clusters by Inertia and Silhouette
Score Analysis
Now the only thing you must decide on is the number of clusters. For this you will see

both the inertia values and the silhouette score. If they mutually agree on a number, you

will take it.

 kmeans__ncluster = [KMeans(n_clusters=x, init="k-means++",

 max_iter = 3,

Figure 3-10.  Clustering with different numbers of iterations

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

85

 n_init = 5,

 random_state=123).fit(codings)

 for x in range(1, 10)]

inertias = [kmeans_model.inertia_ for kmeans_model in kmeans__ncluster]

from sklearn.metrics import silhouette_score

silhouette_scores = [silhouette_score(codings, kmeans_model.labels_)

 for kmeans_model in kmeans__ncluster[1:]]

 plt.figure(figsize=(12, 6))

 plt.subplot(121)

 plt.plot(range(1, 10), inertias, "ro-")

 plt.xlabel("Number of Clusters", fontsize=15)

 plt.ylabel("Inertia", fontsize=15)

 plt.subplot(122)

 plt.plot(range(2, 10), silhouette_scores, "ro-")

 plt.xlabel("Number of Clusters", fontsize=15)

 plt.ylabel("Silhouette score", fontsize=15)

plt.show()

Figure 3-11 shows that a cluster size of 4 gives the best clustering performance.

Figure 3-11.  Inertia and silhouette scores over different cluster numbers

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

86

�Checking Cluster Health
Let’s quickly check for the sample size in each cluster as well as prevalence of

readmission patients.

 k = 4

 �kmeans = KMeans(n_clusters=k, init="k-means++", n_init=5, max_iter = 3,

random_state=123)

cluster_predictions = kmeans.fit_predict(codings)

 k_means_data["cluster_label"] = cluster_predictions

Appending the cluster prediction to the main data

 data["cluster_label"] = cluster_predictions

 �count_labels = k_means_data.groupby(['cluster_label','IS_READMISSION'])

['SUBJECT_ID'].count().reset_index()

 �sample_count = pd.pivot_table(count_labels, index="cluster_label",

columns=['IS_READMISSION'], values="SUBJECT_ID").reset_index()

 �sample_count.columns = [sample_count.columns.name + "_" +str(x) if

type(x)!=str else x for x in list(sample_count.columns)]

sample_count.reset_index(drop = True, inplace = True)

 �sample_count["Total_Samples"] = sample_count[["IS_READMISSION_0",

"IS_READMISSION_1"]].apply(sum, axis =1)

 �sample_count["Readmission_Percentage"] = (sample_count

["IS_READMISSION_1"]/sample_count["Total_Samples"])*100

Figure 3-12 shows the sample size and readmission percentage across the four

patient cohorts.

Figure 3-12.  Distribution of samples and of positive class in each cluster

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

87

Now you have four patient cohorts to work with. The final prediction model should

perform well overall but also on these distinct patient cohorts. You’ll see how to do this

in the next section.

�Multitask Learning Model
�What Is Multitask Learning ?
Imagine building an image classification system and you want to detect people in the

images. If you just had a single label depicting whether the image has people in it or not,

then you could very well create a classification model. But what if you had the chance

to make the model more robust by optimizing your model for other objectives as well to

help generalize your solution of people detection?

A multitask model helps you further improve your learning metric by cotraining

certain auxiliary but relevant tasks. In the case of the image classification example above,

an auxiliary class can be for bounding box identification. This can help it learn features

such as a person’s box, which has low width but longer height. If a bbox of such a nature

occurs, then the image is more likely to be an image with people. Figure 3-13 shows how

the bounding box can help you further improve on your image classifying capability by

sharing info on the dimensions of bboxes.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

88

�Different Ways to Train a MTL Model
There are various ways to train a MTL model. Some of the prominent ones are

•	 Hard parameter sharing: It involves sharing hidden layers

parameters while having a separate output layer for each task.

Figure 3-14 is an abstract figure adapted from Sebastian Ruder’s blog

on MTL.

Figure 3-13.  An image that can be classified as “people”

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

89

•	 Soft parameter sharing: This is a little different. Here all tasks

have their own model, and then all the parameters of this distinct

model are regularized using trace norm to allow reuse of learned

information. You can understand a trace norm as something that

measures complexity. If you have a more complex model vs. a

simpler one where both are able to understand the data well, which

one would you choose? The simpler one, right? That’s what happens

in soft parameter sharing. See Figure 3-15.

Figure 3-14.  Hard parameter sharing for multi-task learning in deep neural
networks

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

90

•	 Continual incremental learning: This is a relatively new approach

and you can think of it as a form of hard parameter sharing but with

a new way of looking at MTL. It was proposed fairly recently at AAAI

‘20 by Yu Sun et al in a paper titled “Ernie 2.0: A Continual Pre-

Training Framework for Language Understanding.” The approach is

represented in Figure 3-16.

For simplicity, you are going to try the hard parameter sharing approach as it is most

widely used and is good enough to introduce MTL.

Figure 3-15.  Soft parameter sharing for multi-task learning in deep neural
networks

Figure 3-16.  Continual incremental learning

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

91

�Training Your MTL Model
You start by aligning the cluster prediction of each sample to the original data.

import pandas as pd

import numpy as np

 data["cluster_labels"] = cluster_predictions

 �data.columns = [re.sub(r"[,.;@#?!&$]+\ *", " ",x).replace('/\s\s+/g',

' ').replace(" ","_") for x in data.columns]

Next, you include all the numeric and categorical columns for the final model

training.

Updating the num_cols and categorical_cols

 �num_cols = ['AGE', 'DISCHARGE_DURATION', 'ELIXHAUSER_SID30',

'mean_Diastolic_BP', 'mean_Glucose',

 'mean_Heart_Rate', 'mean_Resp_Rate', 'mean_Systolic_BP',

 �'mean_Temperature', 'std_Diastolic_BP', 'std_Glucose',

'std_Heart_Rate',

 �'std_Resp_Rate', 'std_Systolic_BP', 'std_Temperature',

'mean_Albumin',

 'mean_Calcium_Total', 'mean_Hematocrit', 'mean_Platelet_Count',

 �'mean_Potassium', 'mean_Sodium', 'std_Albumin', 'std_Calcium_Total',

 �'std_Hematocrit', 'std_Platelet_Count', 'std_Potassium',

'std_Sodium','LOS','TOTAL_TRANSFERS']

 target_col = ['IS_READMISSION']

 �categorical_col = ['ADMISSION_TYPE','DISCHARGE_LOCATION','INSURANCE',

'ETHNICITY', 'GENDER', 'FIRST_CAREUNIT']

Now you scale and split the data into training and validation sets.

Updating Scaling with new numerical columns

from sklearn import preprocessing

min_max_scaler = preprocessing.MinMaxScaler()

data_minmax = min_max_scaler.fit(data[num_cols])

data_num = data_minmax.transform(data[num_cols])

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

92

data_scaled = pd.concat([pd.DataFrame(data_num, columns = num_cols),

 �data[categorical_col + target_col + ["cluster_

labels"]]],

 axis = 1)

from sklearn.model_selection import train_test_split

 train, val = train_test_split(data_scaled, test_size=0.2)

The next set of functions help you create a multi-output label:

•	 gen_labels: Creates an output of 1 or 0 for each output (or cluster)

•	 df_to_dataset_multio: Returns a tuple of features used for training

and mapping of each output layer to the output cluster

•	 get_data_generator: A generator function that yields a batch of

training samples

 def gen_labels(readm_val, cluster_val):

 """

 Helper function to generate labels for multi-output system

 """

 res = [0,0,0,0]

 if readm_val:

 res[cluster_val] = 1

 return res

 def df_to_dataset_multio(dataframe, target_col_name = 'IS_READMISSION'):

 """

 A utility method to create a Input data for the MTL NN

 """

 dataframe = dataframe.copy()

 �labels = [gen_labels(row[1], row[2]) for row in dataframe[[

target_col_name, 'cluster_labels']].itertuples()]

 assert np.sum(labels) == dataframe[target_col_name].sum()

 �dataframe.drop([target_col_name, 'cluster_labels'], axis = 1,

inplace = True)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

93

 # Generating Tensorflow Dataset

 train_ds = feature_layer(dict(dataframe)).numpy()

 y_train_ds = {'cluster_0':np.array([x[0] for x in labels]),

 'cluster_1':np.array([x[1] for x in labels]),

 'cluster_2':np.array([x[2] for x in labels]),

 'cluster_3':np.array([x[3] for x in labels])}

 return train_ds, y_train_ds

train_ds, train_col_map = df_to_dataset_multio(train)

val_ds, val_col_map = df_to_dataset_multio(val)

 def get_data_generator(df, cluster_map, batch_size=32):

 """

 �Generator function which yields the input data and output for

different clusters

 """

 feats, cluster_0, cluster_1, cluster_2, cluster_3 = [], [], [], [], []

 while True:

 for i in range(len(df)):

 feats.append(df[i])

 cluster_0.append(cluster_map['cluster_0'][i])

 cluster_1.append(cluster_map['cluster_1'][i])

 cluster_2.append(cluster_map['cluster_2'][i])

 cluster_3.append(cluster_map['cluster_3'][i])

 if len(feats) >= batch_size:

 �yield np.array(feats), [np.array(cluster_0),

np.array(cluster_1), np.array(cluster_2),

np.array(cluster_3)]

 �feats, cluster_0, cluster_1, cluster_2, cluster_3 = [], [],

[], [], []

Finally, you create a model as shown in Figure 3-17, which shows the architecture

you are going to build for your MTL task.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

94

 input_layer = layers.Input(shape = (train_ds.shape[1]))

 �_ = layers.Dense(32, activation = "selu", kernel_initializer=

"lecun_normal")(input_layer)

 �_ = layers.Dense(16, activation = "selu", kernel_initializer=

"lecun_normal")(_)

 �last_shared_layer = layers.Dense(8, activation = "selu", kernel_

initializer="lecun_normal")(_)

 �_ = layers.Dense(4, activation = "selu", kernel_initializer="lecun_

normal")(last_shared_layer)

 �cluster_0 = layers.Dense(1, activation = "sigmoid", name='cluster_0')(_)

Figure 3-17.  Model architecture

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

95

 �_ = layers.Dense(4, activation = "selu", kernel_initializer="lecun_

normal")(last_shared_layer)

 cluster_1 = layers.Dense(1, activation = "sigmoid", name='cluster_1')(_)

 �_ = layers.Dense(4, activation = "selu", kernel_initializer="lecun_

normal")(last_shared_layer)

 cluster_2 = layers.Dense(1, activation = "sigmoid", name='cluster_2')(_)

 �_ = layers.Dense(4, activation = "selu", kernel_initializer="lecun_

normal")(last_shared_layer)

 cluster_3 = layers.Dense(1, activation = "sigmoid", name='cluster_3')(_)

mtl_model = tf.keras.Model(inputs = input_layer,

 �outputs = [cluster_0, cluster_1, cluster_2,

cluster_3])

 mtl_model.compile (optimizer=tf.keras.optimizers.Adam(learning_rate=0.01),

 loss={'cluster_0': 'binary_crossentropy',

 'cluster_1': 'binary_crossentropy',

 'cluster_2': 'binary_crossentropy',

 'cluster_3': 'binary_crossentropy'},

 loss_weights={'cluster_0': 0.25,

 'cluster_1': 0.25,

 'cluster_2': 0.25,

 'cluster_3': 0.25},

 metrics={'cluster_0': 'AUC',

 'cluster_1': 'AUC',

 'cluster_2': 'AUC',

 'cluster_3': 'AUC'})

 batch_size = 32

 valid_batch_size = 32

train_gen = get_data_generator(train_ds, train_col_map, batch_size=

batch_size)

valid_gen = get_data_generator(val_ds, val_col_map, batch_size=

valid_batch_size)

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

96

history = mtl_model.fit_generator(train_gen,

 steps_per_epoch=len(train)//batch_size,

 epochs=10,

 validation_data=valid_gen,

 validation_steps=len(val)//valid_batch_size)

One clear takeaway from the code above is how versatile constructing a neural net

is. In case of multioutput, you can use different loss and loss_weights metrics for each

output.

Finally, please see the performance and loss charts in Figure 3-18. Some clusters

learn really well, like clusters 1 and 3, while there is mild overfitting in cluster 2 as the

loss chart for cluster 2 shows that validation loss is generally higher than the train loss.

Figure 3-18.  Validation and training performance of the MTL model

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

97

�Conclusion
Firstly, congratulations on working through and understanding one of the most complex

data within pharma. The EHR data contains all kinds of data like tabular and text, and

some EHR systems also contain images.

Secondly, we covered many topics and TensorFlow-specific features in this chapter.

You learned about the use of feature columns and how to build an input pipeline. You

also explored autoencoders and clustering in detail. Lastly, you were introduced to

multitask learning and its types. Multi-task learning is an emerging field especially

in NLP where tasks are generally complex and a single global model can’t learn all

the complexities, hence a multi-task model is useful. I hope you learned a lot and are

looking forward to more.

Chapter 3 Predicting Hospital Readmission by Analyzing Patient EHR Records

99
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_4

CHAPTER 4

Predicting Medical Billing
Codes from Clinical Notes
Clinical notes contain information on prescribed procedures and diagnosis from doctors

and are used for accurate billing in the current medical system, but they are not readily

available. We must extract them manually or use some assistive technology for the

process to be carried out seamlessly.

This adds to the administrative costs for both the payers and providers. Providers

alone spend roughly $282 billion on just the insurance and medical billing costs. Good

record keeping and quality tracking is an added cost. Compared to the professional

revenue associated with each type of visit, the emergency department visit generates the

greatest billing costs, equal to 25.2 percent of revenue.

In this chapter, you will explore the latest transformer models with a deep-dive on

BERT and the transformer architecture in depth. You will also learn how different fine-

tuning techniques can be applied to transformer models. Finally, you will learn to use

concepts of transfer learning in NLP with multi-label classification as a downstream task.

Prediction of diagnosis and procedures from unstructured clinical notes saves time,

eliminates errors, and minimizes costs, so let’s get started.

�Introduction
First things first: what are these ICD codes I am talking about? Those familiar with ICD

codes might be confused with the difference between ICD-9 and ICD-10 codes.

ICD stands for International Classification of Disease, and it is a set of standard

codes regulated and maintained by the Department of Health and Human Services

(remember HHS from Chapter 1?). These codes are used to accurately measure

outcomes and care provided to patients while also providing a structured way to report

disease and symptoms for research and clinical decision-making.

https://doi.org/10.1007/978-1-4842-7086-8_4#DOI

100

HHS mandated that all entities under the HIPAA act must transition their ICD codes

to the ICD-10 format. This was done to various reasons but the key ones are

•	 Tracking new diseases and health conditions: The old system

contained roughly 17.8K distinct ICD codes but ICD-10 maps more

than 150,000 conditions and diseases to distinct codes.

•	 More space allows for better and more accurately defined ICD codes

and supports epidemiological research such as comorbidity or

severity of disease, etc.

•	 Prevents reimbursement fraud

Since MIMIC 3 contains EHR data from before a new system of codes was mandated,

you can comfortably proceed with using the ICD data present there, but keep this in

mind in case you see a new EHR data. Don’t worry. You can get your hands dirty and

apply your learning from here to the new ICD convention.

Since there are a lot of ICD-9 codes, for all practical purposes you will just try to

identify the top 15 ICD-9 codes, which is decided by how many admitted patients were

tagged with that particular ICD-9 code.

I already covered MIMIC 3 data in depth, so let’s just focus on picking the right tables

and outlining steps to prepare the data. Let’s dive deeper into it.

Figure 4-1 shows the difference in ICD-9 and ICD-10 CM codes. Note that there are

two variations of the type of ICD codes.

•	 CM (clinical modifications): Diagnosis coding on inpatient and

outpatient data

•	 PCS (procedure coding systems): Procedure coding on inpatient data

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

101

�Data
I covered the MIMIC 3 dataset in depth in the last chapter, so let’s jump right into

creating the data.

�NOTEEVENTS
This table contains the text pertaining to all the clinical notes recorded after a patient's

admission. Two important columns to look at in the NOTEEVENTS table are CATEGORY and

DESCRIPTION. While CATEGORY contains the anonymized clinical notes, DESCRIPTION tells

us whether these are full reports or addendum.

Since the use case centers around making admin costs for providers and payers lower,

the best source of this information is present in the “Discharge summary - Reports”.

 n_rows = 100000

create the iterator

noteevents_iterator = pd.read_csv(

 "./Data/NOTEEVENTS.csv",

 iterator=True,

 chunksize=n_rows)

Figure 4-1.  ICD-9-CM and ICD-10-CM diagnosis coding systems

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

102

concatenate according to a filter to get our noteevents data

 �noteevents = pd.concat([noteevents_chunk[np.logical_and(noteevents_

chunk.CATEGORY.isin(["Discharge summary"]), noteevents_chunk.

DESCRIPTION.isin(["Report"]))]

 for noteevents_chunk in noteevents_iterator])

noteevents.HADM_ID = noteevents.HADM_ID.astype(int)

Now that you have your dataset in place, let’s explore it a little.

Duplicates on primary keys: There are duplicates within the NOTEEVENTS dataset

although there should be a unique record for a SUBJECT_ID and HADM_ID pair.

On further investigation, it looks like the records have different discharge summary

text at different dates for the same Admission ID. This looks like an impossible event and

hence is a more data issue. For now, you will sort your data on the CHARTDATE column

and keep the first entry.

try:

 �assert len(noteevents.drop_duplicates(["SUBJECT_ID","HADM_ID"])) ==

len(noteevents)

except AssertionError as e:

 print("There are duplicates on Primary Key Set")

 �noteevents.CHARTDATE = pd.to_datetime(noteevents.CHARTDATE , format =

'%Y-%m-%d %H:%M:%S', errors = 'coerce')

 pd.set_option('display.max_colwidth',50)

 �noteevents.sort_values(["SUBJECT_ID","HADM_ID","CHARTDATE"], inplace

=True)

 noteevents.drop_duplicates(["SUBJECT_ID","HADM_ID"], inplace = True)

noteevents.reset_index(drop = True, inplace = True)

One more thing to do before you move onto the next datasource to look at the text

data. You can see a sample abstract of the text below:

 Admission Date: [**2118-6-2**] Discharge Date: [**2118-6-14**]

Date of Birth: Sex: F

Service: MICU and then to [**Doctor Last Name **] Medicine

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

103

 HISTORY OF PRESENT ILLNESS: This is an 81-year-old female

with a history of emphysema (not on home O2), who presents

with three days of shortness of breath thought by her primary

care doctor to be a COPD flare. Two days prior to admission,

she was started on a prednisone taper and one day prior to

admission she required oxygen at home in order to maintain

 oxygen saturation greater than 90%. She has also been on

levofloxacin and nebulizers, and was not getting better, and

 presented to the [**Hospital1 18**] Emergency Room.

You can see certain patterns that can be used to clean the text:

	 1)	 Anonymized dates, patient name, hospital and physician’s name

	 2)	 Use of a pattern like “Topic: Text” such as “Admission Date:

[**2118-6-2**]:, "HISTORY OF PRESENT ILLNESS: This is an

81-year-old female....

	 3)	 Use of newline character (“\n”)

You will leverage all of these patterns to clean the data and make sure that each

unique sentence gets recorded correctly.

There are two things that you will do. First, you will make sure that all the irrelevant

topics are removed from the discharge summary. For this, you will find the most

frequent topics.

import re

import itertools

 def clean_text(text):

 �return [x for x in list(itertools.chain.from_iterable([t.split("<>")

for t in text.replace("\n"," ").split("|")])) if len(x) > 0]

 �most_frequent_tags = [re.match("^(.*?):",x).group() for text in

noteevents.TEXT for x in text.split("\n\n") if pd.notnull(

re.match("^(.*?):",x))]

 pd.Series(most_frequent_tags).value_counts().head(10)

An extract of the most frequent topic tags is shown in Figure 4-2.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

104

 �irrelevant_tags = ["Admission Date:", "Date of Birth:", "Service:",

"Attending:", "Facility:", "Medications on Admission:", "Discharge

Medications:", "Completed by:", "Dictated By:" , "Department:" , "Provider:"]

 �updated_text = ["<>".join(["|".join(re.split("\n\d|\n\s+",re.sub(

"^(.*?):","",x).strip())) for x in text.split("\n\n") if pd.notnull(

re.match("^(.*?):",x)) and re.match("^(.*?):",x).group() not in

irrelevant_tags]) for text in noteevents.TEXT]

 updated_text = [re.sub("(\[.*?\])", "", text) for text in updated_text]

 updated_text = ["|".join(clean_text(x)) for x in updated_text]

 noteevents["CLEAN_TEXT"] = updated_text

For the above sample, the following is the cleaned text. Pretty neat, right?

Figure. 4-2.  Most frequent topics from the discharge summary

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

105

 �'This is an 81-year-old female with a history of emphysema (not on home O2),

who presents with three days of shortness of breath thought by her

primary care doctor to be a COPD flare. Two days prior to admission,

she was started on a prednisone taper and one day prior to admission

she required oxygen at home in order to maintain oxygen saturation

greater than 90%. She has also been on levofloxacin and nebulizers, and

was not getting better, and presented to the Emergency Room.',

 � 'Fevers, chills, nausea, vomiting, night sweats, change in weight,

gastrointestinal complaints, neurologic changes, rashes, palpitations,

orthopnea. Is positive for the following: Chest pressure occasionally

with shortness of breath with exertion, some shortness of breath that

is positionally related, but is improved with nebulizer treatment.'

�DIAGNOSES_ICD
This is the ICD-9 code table. It contains all of the ICD-9 codes relevant to a subject’s

admission events. As discussed in the introduction, you are looking for the top 15 most

frequent ICD-9 codes for the problem at hand.

 top_values = (icd9_code.groupby('ICD9_CODE').

 agg({"SUBJECT_ID": "nunique"}).

 �reset_index().sort_values(['SUBJECT_ID'], ascending =

False).ICD9_CODE.tolist()[:15])

icd9_code = icd9_code[icd9_code.ICD9_CODE.isin(top_values)]

�Understanding How Language Modeling Works
Before you jump into using BERT directly, let’s first understand how it works, what the

building blocks are, why it’s required, etc.

The paper titled “BERT: Pre-training of Deep Bidirectional Transformers for

Language Understanding” released by the Google AI Language Team in 2018 was when

the non-research community got really excited about the new form of language modeling

and the application of transformer model. Transformer models were introduced in 2017

by the Google Brain Team in a paper titled “Attention Is All You Need.”

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

106

Interesting thus far, right? Attention was introduced to learn language in a more

human way, such as by correlating words in a sentence. Attention helped better model

sentences for transduction problems within NLP, thereby improving the encoder-

decoder architecture.

The encoder-decoder architecture was in turn built on RNNs, LSTMs, and Bi-LSTMs,

which were at some stage the state of the art for sequence modeling. They all fall under

the recurrent networks class. Since a sentence is a sequence of words, you need a

sequence modeling network in which the current inputs reoccur in the second element

of the sequence to understand the word better. This chain of information then helps in

encoding a meaningful representation of a sentence.

The point that I am trying to make here is that to actually understand BERT or any

other transformer-based architecture models, you need a deep understanding of many

interconnected concepts. To keep the discussion focused on BERT, I will restrict it to

mostly discussing attention and BERT architecture.

�Paying Attention
Let’s start with an example. If I ask you to tell me the sentiment for the following

sentences, what would you say?

	 1)	 Dogs are very cute. I love spending my time with them.

	 2)	 Dogs are very cute. I love spending my time with them.

For both sentences it’s very easy for a human to understand that the speaker has a

positive sentiment for dogs. But what about the following sentence?

	 3)	 Dogs are very cute. I love spending my time with them.

For this sentence as well, although not conclusively, we can say that the sentence

should be something positive about dogs. This is called attention. To understand a

sentence, we anchor on certain words only, while all others are just garbage (from

understanding perspective).

The recurrent net family, although helpful in modeling sequences, fails for very

large sentences because a fixed-length representation that encodes the contextual

information can only capture so much of these correlations. But what if we picked

only the important ones from a large sentence? Then we don’t have to worry about the

vestiges.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

107

I like to understand this from the information theory perspective. We can model all

the whole numbers by just using different combinations of the powers of 2, as shown in

Figure 4-3.

So to get any number, what we are essential doing is taking a dot-product of two vectors:

	 Anywhole number x , 	

	 x � �� � �� �, , , , , , , , ,32 16 8 4 2 1 0 0 0 0 1, ,  	

Attention works in a very similar manner. It takes the context vector or the encoded

vector of a sequence and weighs only the important aspects. Although in our case, we

shift from whole numbers to real numbers. See Figure 4-4.

Figure 4-3.  Whole numbers as power of 2

Figure 4-4.  Shows how adding a feed-forward layer can help us learn attention
weights

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

108

The concept of attention was first discussed in the paper by Dzmitry Bahdanau et al

in 2014 called “Neural Machine Translation by Jointly Learning to Align and Translate.”

In Figure 4-4, notice the green arrow coming from the last decoder unit. This is the

decoder state represented by St-1. The way we combine the hidden state and the output

of the last hidden layer can provide various kinds of attention, as shown in Table 4-1.

This is also called the score or the energy of the encoder output. This combination

function or scoring function is designed to maximize similarity between the decoder’s

hidden state and the encoder output. This way more coherent words are generated,

giving more power to MTL (multilanguage translation) systems.

Some details you should keep in mind:

•	 To make this process faster, you leverage Keras’

TimeDistributedLayer, which makes sure that the feed-forward

happens faster for each time unit. (It is just a dense layer.)

•	 The last consolidated encoder hidden state is fed as input to the first

decoder cell. The output of this decoder cell is called the first decoder

hidden state.

Table 4-1.  Different Scoring Functions for Computing Similarity Between Decoder

and Encoder States

Attention Name Paper

Additive or Concat: Last decoder unit’s hidden state is

added to the encoder unit hidden state. Say the dimension

is d, then the concatenated dimension becomes 2d.

Bahdanau et al, 2014, “Neural Machine

Translation by Jointly Learning to Align

and Translate”

Dot-Product: Last decoder unit’s hidden state is multiplied

by the encoder unit’s hidden state. Say the dimension is d,

then the concatenated dimension becomes d.

Luong et al, 2015, “Effective

Approaches to Attention-based Neural

Machine Translation”

Scaled Dot Product: Same as above, just a scaling factor

is added to normalize the value and be in a differentiable

range of the Softmax function.

Vaswani et al, 2017, “Attention Is All

You Need”

General (Dot Product): The encoder hidden state is

passed through a feed-forward net before calculating the

scores.

Luong et al, 2015, “Effective

Approaches to Attention-based Neural

Machine Translation”

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

109

•	 All the scores are passed through a Softmax layer to give the attention

weights, which are then multiplied with the encoder’s hidden state to

get the context vector Ct from each encoder unit.

Lastly, there are many classes of attention:

•	 Local and global attention

•	 Self-attention

•	 Multi-head attention

I will discuss them briefly for completeness as each one deserves a write-up of

its own and hence I am including only definitions for an overall understanding. I will

discuss multi-head attention in detail in the transformer architecture discussion. Please

refer to Table 4-2 for an overview of different types of attention.

�Transforming the NLP Space: Transformer Architecture
Transformer models can be said to have brought the ImageNet movement for NLP

transfer learning tasks. Until now, this required a large dataset to capture context, huge

amounts of compute resources, and even greater time. But as soon as transformer

architecture came into picture, it could capture context much better, have shorter

Table 4-2.  Different Types of Attention

Attention Description Paper

Local and

Global

Attention

Global: All encoder units are given importance.

Local: Only a part of the input is considered for

context vector generation. This input is centered at a

position pt and has a width of pt-2L to pt+2L, where

L is the window length.

Inspired from Xu et al, 2015,

“Show, Attend and Tell: Neural

Image Caption Generation with

Visual Attention”

Self-

Attention

Works similarly to the attention explained in the

encoder-decoder architecture above; we just replace

the target sequence with the input sequence itself.

Cheng et al, 2016, “Long

Short-Term Memory-Networks

for Machine Reading”

Multi-Head

Attention

Multi-head attention is a way of implementing self-

attention but with multiple keys. More on this later.

Vaswani et al, 2017, “Attention

Is All You Need”

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

110

training time because they can be parallelized, and also set the SOTA for many tasks.

Figure 4-5 shows the transformer architecture from the paper by Vaswani et al titled

“Attention Is All You Need.”

For the uninitiated, the model can be quite daunting at first, but it is very easy to

understand if different concepts are understood in silos.

Figure 4-5.  The transformer model

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

111

To understand transformers, you need to understand

•	 Encoder-decoder frameworks

•	 Multi-head attention

•	 Positional encoding

•	 Residual connections

The encoder and decoder modules were discussed along with the attention topic

above and the residual connection just serves the purpose of making sure that residuals

from the target loss can easily help in changing the weights accurately as sometimes due

to non-linearities the gradient doesn’t produce the desired effect.

�Positional Encoding

Transformers are able to parallelize and achieve faster training with bigger data and

even bigger numbers of parameters. But how is it possible? It is possible by removing all

the stateful cells like RNN, GRU, or LSTM.

But then how do we make sure that syntactic grammar of the sentence is not

disrupted and there is some sense of ordering in the words of a sentence? We do so by

using a dense vector that encodes the position of a word within a sequence.

One very simple way of thinking about this is to label each word a positive integer

(unbounded). But what if we get a very long sentence or sentences with different

lengths? In both cases, having an unbounded number representation doesn’t work.

Ok, then can a bounded representation work? Let’s order everything between [a to

b] where a represents the first word and b represents the last and everything else lies in

between. Since it is range bound to model a 10-word sentence, you must increment the

index by
(b a��
��

�
��10

 and for a 20-word sentence the delta is
(b a��
��

�
��20

. Hence the increment

doesn’t have the same meaning. The author proposed the formulas in Figure 4-6 for the

positional encoding vector.

Figure 4-6.  Positional encoding

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

112

A good way to understand this, without going into much of the math, is

•	 The positional encoder is a vector of d-dimension. This vector is

added to the word-vector representation of the word and hence

dpe = dmodel.

•	 It is a matrix of size (n, d) where n is the number of words in the

sequence and d is the dimension of word embedding.

•	 It is a unique vector for each position.

•	 A combination of sin and cos functions allows the model to learn

relative positions well. Since any offset k, PEpos+k can be represented

as a linear function of PEpos.

•	 This positional information is preserved in the deeper layers as well

due to presence of residual blocks.

�Multi-Head Attention

Multi-head attention is the main innovation of the transformer architecture. Let’s

understand it in detail. The paper is used a general framework to define attention.

It introduced three terms:

	 1)	 Key (K)

	 2)	 Query (Q)

	 3)	 Value (V)

Each embedding of the word should have these three vectors. They are obtained by

using matrix multiplications. This captures a certain subspace of information from the

embedding vector.

An abstract understanding is something like this: you are trying to identify certain

key,value pairs by the use of a query. The word for which you are trying to identify the

attention score is the query.

Example: There is traffic congestion due to bad weather.

Say your query is traffic. The query vector captures some semantic meaning of the

word traffic, maybe its pos tag or that is related to travel/commute, etc. Similarly for the

key and value vectors, some nuances are captured.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

113

Now you reach the word weather and similarly you capture K, Q, and V. If the query

of traffic has a high similarity with the key of weather, then the value of the weather

contributes highly to the self-attention vector of the word traffic. See Figure 4-7.

In multi-headed attention, there are multiple such matrix multiplications, which allow

you to capture different subspaces each time. They are all done in parallel. See Figure 4-8.

Figure 4-7.  Self-attention. Image adapted from “Attention Is All You Need”

Figure 4-8.  Multi-head self-attention. Image adapted from “Attention Is all You
Need”

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

114

The above two were the main innovations in the transformer model. No doubt it is

able to capture sentence semantics so well. Here are some other details that deserve

mention:

•	 The decoder model contains a masked multi-head attention model.

It masks out all the words after the query word. The value vector is

masked, which then carries on to the self-attention vector.

•	 The self-attention vector from the masked attention block serves as

the value vector to the multi-head attention block above it.

•	 Skip connections (inspired from ResNet, introduced by He et al in

“Deep Residual Learning for Image Recognition”) are used to prevent

signal loss.

•	 There are multiple encoder-decoder blocks stacked on top of each

other, Figure 4-5 shows the last of such pairs. Softmax is added to just

the last decoder block.

Note T he output from the last encoder is passed to all the decoder units and not
just the last one.

�BERT: Bidirectional Encoder Representations from
Transformers
BERT laid the foundation for bringing the ImageNet movement for NLP to reality. Now

we have a BERT model zoo, which basically means there is a BERT model for almost

every kind of application.

From the standpoint of architecture, BERT is nothing but just stacked transformers

(only the encoder block). But it brought some new innovations in handling the input

data and training. Let’s discuss them briefly before we deep-dive into the code.

�Input

BERT authors shared some innovative ways to input text. I already discussed position

embedding in length so let’s quickly jump to token and segment embeddings. See

Figure 4-9.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

115

Token Embeddings

Token embeddings are just a way to represent each token in a numerical form. In BERT,

this is a 768-dimensional vector. What’s interesting here is the workpiece tokenization

technique. It helps BERT maintain a decent sized library, which is 30,522 and yet not

compromised on the out-of-vocabulary words.

Let’s understand it by example. Say initially you have a dictionary of just five words

and their respective count from the corpus are known:

	 1)	 Church</w>, 5

	 2)	 Child</w>, 3

	 3)	 Return</w>, 8

	 4)	 Earn</w>, 10

	 5)	 Lift</w>, 5

The </w> at the end represents the word boundary. The WordPiece algorithm looks

through each character in the text and tries to find the highest frequency character

pairing.

Say the system encounters an out-of-vocabulary word like Churn. For this word,

BERT would do the following:

	 1)	 c : 5 + 3 = 8 <- count of alphabet c in the start of a word.

	 2)	 c + h : 5+3 = 8 <- count of c and h alphabet pair.

	 3)	 c + h + u: 5, Rejected as the overall sum has come down

Figure 4-9.  BERT input representation. Image adapted from “BERT: Pre-training
of Deep Bidirectional Transformers for Language Understanding”

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

116

	 4)	 n</w> : 10

	 5)	 r + n</w> : 8, Rejected as it brings down the count for n</w> as

well.

	 6)	 u + r :8, count of u +r

Hence the tokens that get created are

[ch,ur,n</w>]

What I discussed above is BPE or binary pair encoding. As you can observe, it works

in a greedy manner to merge individual characters based on frequency. The WordPiece

algorithm is slightly different, in a way that the character merging is still based on

frequency but the final decision is taken based on the likelihood of occurrence (seeing

which wordpieces are more likely to occur).

Segment Embeddings

BERT is trained on two distinct kinds of training tasks:

	 1.	 Classification: Determines the category of the input sentence

	 2.	 Next-sentence prediction: Predicts the next sentence or a

sentence that ideally/coherently follows the previous one

(as present in the training corpora)

To do a next-sentence prediction, BERT needs a way to distinguish between the two

sentences, hence a special token [SEP] is introduced at the end of each sentence.

Since I have already talked about positional embeddings, I will not be taking it up

again here.

�Training

The BERT model is pretrained on two tasks:

	 1.	 Masked language mModeling

	 2.	 Next-sentence prediction

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

117

Masked Language Modeling

Masked language mModeling was mainly introduced to allow models to learn in a

bidirectional manner and enable the model to capture context for any random word

within the sequence.

A classification layer is added on top of the encoder output. These outputs are

passed through a time-distributed dense layer to convert them to a dimension size of the

vocabulary and the probability is then calculated for each word. See Figure 4-10.

•	 In order to make the model position-agnostic and yet give enough

context, only 15% of the words in each sequence were randomly

masked.

•	 Not all masked words were replaced by [MASK] tokens as shown in

Figure 4-10. Rather the following approach was chosen:

•	 80% of the time the [MASK] token was used.

•	 10% of the time the words were replaced with random words.

•	 The remaining 10% of the time words were left unchanged.

Now if you’re thinking deeply, there are many questions that would come to your

mind about the choice of these percentages. No ablation study was done to support

these empirical numbers; however, there are some intuitions.

Figure 4-10.  Masked language mModeling

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

118

•	 Can using random words make BERT learn wrong embeddings?

Ideally not, as it is corrected by the correct label during

backpropagation. It is also done to introduce variance.

•	 Why not keep 100% [MASK] token? It is done to avoid any confusion

during fine-tuning where if the [MASK] token is not found it will give

some random output depending on the task.

Next-Sentence Prediction

According to the authors, learning how to relate two sentences can have significant

performance improvements for tasks like question answering and natural language

inference.

Here as well they proposed certain ratios with which they created a training data for

the NSP:

•	 For 50% of the sentences from the corpus, the next sentence is the

same sentence as present in the corpus.

•	 For the remaining 50%, the next sentence is picked randomly.

This gives us a binary classifier to train. The [CLS] token is used for binary

classification, the final state of which is passed to a FFN plus Softmax Layer.

I hope you now have a deeper understanding of transformer-based models and

BERT in particular. I think this should be sufficient for you to apply BERT to the case and

learn how to fine-tune it.

�Modeling
Let’s deep dive into modeling now. You already prepared your data in the “Data” section

above. You are trying to do multi-label classification. You will have to prepare your data

in such a way.

For your task, you will use the BERT large model from the DMIS (Data Mining and

Information Systems) Lab, Korea University. You are doing so because it is one of the few

pretrained models that offers a custom vocabulary for BERT. Most of the free pretrained

models keep the same vocabulary, which in my opinion is a bad practice.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

119

Secondly, you are also going to leverage a transformers library by the Hugging Face

group which provides general-purpose architectures (BERT, GPT-2, RoBERTa, XLM,

DistilBert, XLNet) for language understanding (NLU) and natural language generation

(NLG) tasks.

But before that, let’s a sense of how the vocabulary for a BERT model looks. Post that,

you will form your data and do the multi-label classification.

�BERT Deep-Dive
One of the benefits of having a custom vocabulary, besides just better performance,

is the ability to see what concepts are getting captured. You are going to use a UMLs

database to identify which concepts are getting captured in the vocabulary; for this,

you are going to see subword tokens (without “##”) and pick up all tokens with a length

greater than 3.

For this, you must set up the scispacy library. Built on spacy, it is an extremely fast

and useful library for applied NLP work. Please see the installation steps in Chapter 2.

Scispacy provides a way to link knowledge bases. The concept extraction works on

string overlap. It covers most of the major biomedical DBs available openly like UMLs,

Mesh, RxNorm, etc.

Also, you are going to use a large spacy model based on biomedical data. Make

sure that you have already set up the model by downloading and linking it to spacy.

Keep the default parameters for the match because it is just an exploratory exercise and

your modeling is not directly affected by this choice. The official documentation is at

https://github.com/allenai/scispacy.

�What Does the Vocabulary Actually Contain?

Before you deep-dive into training the classification model or further improving it using

fine-tuning, you should have a closer look at the vocabulary you have. Does it even cover

biomedical concepts? What is the average token length? (Biomedical words generally

have decent token length of >5 characters in general.)

Let’s have a look at these questions one by one.

	 1)	 Finding any biomedical concepts

To find biomedical concepts, you will make use of an extensive UMLs KB. It comes

linked with scispacy through an easy interface.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

https://github.com/allenai/scispacy

120

For the first run, linking can take some time depending on your PC configuration.

Firstly, you start by importing the libraries and loading the relevant model.

Load Hugging-face transformers

from transformers import TFBertModel, BertConfig, BertTokenizerFast

import tensorflow as tf

For data processing

import pandas as pd

from sklearn.model_selection import train_test_split

Load pre-trained model tokenizer (vocabulary)

 �tokenizer = BertTokenizerFast.from_pretrained('dmis-lab/biobert-large-

cased-v1.1')

Let’s next find total number of unique tokens.

vocab = tokenizer.vocab.keys()

Total Length

 print("Total Length of Vocabulary words are : ", len(vocab))

The total length of vocabulary words are 58996, which is almost twice as long as the

first BERT model shared by the team at Google. Any guesses why?

Well, the vocabulary size is something that’s decided on the basis of how distinctly

you are able to encode each word present in the corpus with the subword of the

vocabulary. Google didn’t share the code so the exact reason is unknown, but I place

my bet on the hypothesis that the above size is sufficient to represent different words in

the corpus in an optimized manner. You can read more about it from Google’s official

repo at https://github.com/google-research/bert#learning-a-new-wordpiece-

vocabulary.

Let’s link the UMLs database.

import spacy

import scispacy

from scispacy.linking import EntityLinker

 nlp = spacy.load('en_core_sci_lg')

 linker = EntityLinker(resolve_abbreviations=False, name="umls")

keeping default thresholds for match percentage.

nlp.add_pipe(linker)

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

https://github.com/google-research/bert#learning-a-new-wordpiece-vocabulary
https://github.com/google-research/bert#learning-a-new-wordpiece-vocabulary

121

subword vs whole word selection based on length

 �target_vocab = [word[2:] for word in vocab if "##" in word and

(len(word[2:]) > 3)] + [word[2:] for word in vocab if "##" not in word

and (len(word) > 3)]

umls_concept_extracted = [[umls_ent for entity in doc.ents for umls_ent in

entity._.umls_ents] for doc in nlp.pipe(target_vocab)]

 �umls_concept_cui = [linker.kb.cui_to_entity[concepts[0][0]] for

concepts in umls_concept_extracted if len(concepts) > 0]

Capturing all the information shared from the UMLS DB in a dataframe

umls_concept_df = pd.DataFrame(umls_concept_cui)

UMLs provides a class name to each of its TXXX identifiers. TXXX is code for parents

for each of the CUI numbers, a unique concept identifier used by UMLs KB. Let’s next

map the TXXX ids to human-readable labels.

To obtain this file please login to https://www.nlm.nih.gov/research/

umls/index.html

Shared in Github Repo of the book :)

 type2namemap = pd.read_csv("SRDEF", sep ="|", header = None)

 type2namemap = type2namemap.iloc[:,:3]

 type2namemap.columns = ["ClassType","TypeID","TypeName"]

 �typenamemap = {row["TypeID"]:row["TypeName"] for i,row in type2namemap.

iterrows()}

Create the count for each Type ID.

concept_df = pd.Series([typenamemap[typeid] for types in umls_concept_

df.types for typeid in types]).value_counts().reset_index()

 concept_df.columns = ["concept","count"]

Let’s visualize the top 20 concepts. See Figure 4-11.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

122

Wow, the vocabulary actually does capture a variety of biomedical concepts like

disease, body parts, organic chemicals (compounds), and pharmacologic substances

(used in treatment of pathologic disorders). It looks like you have the right model for

your task. All of these concepts are quite a common occurrence in EHR notes as well.

Next, let’s also look at the token lengths you observe in the dataset for both the

subword and the actual tokens.

 subword_len = [len(x.replace("##","")) for x in vocab]

token_len = [len(x) for x in vocab]

import seaborn as sns

import matplotlib.pyplot as plt

import matplotlib.ticker as ticker

 with sns.plotting_context(font_scale=2):

 fig, axes = plt.subplots(1,2, figsize=(10, 6))

 sns.countplot(subword_len, palette="Set2", ax=axes[0])

 sns.despine()

 axes[0].set_title("Subword length distribution")

 axes[0].set_xlabel("Length in characters")

 axes[0].set_ylabel("Frequency")

Figure 4-11.  Distribution of biomedical concepts in the BERT vocabulary

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

123

 sns.countplot(token_len, palette="Set2", ax=axes[1])

 sns.despine()

 axes[1].set_title("Token length distribution")

 axes[1].set_xlabel("Length in characters")

 axes[1].set_ylabel("Frequency")

In Figure 4-12, you indeed see the mean of the distribution in between [5-8], which is

a good indicator that you are using a right pretrained model.

If you want to peruse through different words present in the vocabulary, you can visit

the following link:

https://huggingface.co/dmis-lab/biobert-large-cased-v1.1/blob/main/

vocab.txt.

Figure 4-12.  Length distribution of vocabulary tokens

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

https://huggingface.co/dmis-lab/biobert-large-cased-v1.1/blob/main/vocab.txt
https://huggingface.co/dmis-lab/biobert-large-cased-v1.1/blob/main/vocab.txt

124

�Training
BERT can be used for fine-tuning in multiple ways:

•	 Fine-tuning: You add a another set of layers on top of the last

pretrained layer of the BERT model and then train the whole model

with a task-specific dataset, although in this process you must make

sure that the weights of the pretrained model are not disrupted,

so you freeze them for some epochs and then resume the full

backpropagation into BERT layers for another set of epochs. This is

also called warm-up.

•	 Extracting weights from the last set of layers: The extracted

contextual embeddings are used as input to the downstream task.

They are fixed vectors and hence are non-trainable. There are four

different types of methods discussed in the original paper to do so

(Table 7).

•	 Weighted sum of the 12 layers. Weighing can be empirical.

•	 Use the last hidden layer.

•	 Extract the penultimate hidden layer (second to last).

•	 Concat the last four hidden layers.

•	 Word embeddings: Take word embeddings from the encoder layer of

BERT. The wrapper is present in Hugging Face’s transformer library.

Fine-tuning is argued to be the best approach with better control on model

performance, so you will be going with that approach.

Since you are going to train a multi-label classification, let’s prepare your final

dataset for the same. You are making a practical decision of not keeping shorter

sentences where there are just three tokens or less.

Making icd9_code unique at SUBJECT ID and HADM_ID level by clubbing

different ICD9_CODE

 �icd9_code = icd9_code.groupby(["SUBJECT_ID","HADM_ID"])["ICD9_CODE"].

apply(list).reset_index()

 �full_data = pd.merge(noteevents, icd9_code, how="left", on =

["SUBJECT_ID","HADM_ID"])

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

125

Removing any SUBJECT_ID and HADM_ID pair not having the top 15 ICD9 Codes

 full_data = full_data.dropna(subset = ["ICD9_CODE"]).reset_index(drop = True)

Make sure we have text of considerable length

 �full_data.CLEAN_TEXT = [" ".join([y for y in x.split("|") if len(

y.split()) > 3]) for x in full_data.CLEAN_TEXT]

You will also create the training and validation set with the full_data variable. Also,

your target will be a one-hot matrix with each sample having one label for the ICD-9

code it belongs to and zero for the remaining one.

Binarizing the multi- labels

from sklearn.preprocessing import MultiLabelBinarizer

from sklearn.model_selection import train_test_split

mlb = MultiLabelBinarizer()

mlb_fit = mlb.fit(full_data.ICD9_CODE.tolist())

 �train_X,val_X,train_y,val_y = train_test_split(full_data[["SUBJECT_ID"," ",

"CLEAN_TEXT"]],full_data.ICD9_CODE.values, test_size=0.2, random_state=42)

You are finally ready to load the Hugging Face transformer library and get the BERT

model from DMIS Labs.

Load Huggingface transformers

from transformers import TFBertModel, BertConfig, BertTokenizerFast

import tensorflow as tf

import numpy as np

For data processing

import pandas as pd

from sklearn.model_selection import train_test_split

Load pre-trained model tokenizer (vocabulary)

 �tokenizer = BertTokenizerFast.from_pretrained('dmis-lab/biobert-large-

cased-v1.1')

Import BERT Model

from transformers import BertModel, BertConfig, TFBertModel

 bert = TFBertModel.from_pretrained("./dmis-lab/biobert-large-cased-v1.1",

 from_pt = True)

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

126

The model shared by the DMIS team is a pytorch model and hence can’t be directly

used for your task. You are going to use a wrapper function provided in the transformers

library to convert the pytorch model to a TensorFlow BERT model.

You must make sure you pass the parameter from_pt = True which signifies that

you are trying to create a TFBertModel from a Python pretrained file.

Next, decide on the model parameters you are going to use.

 EPOCHS = 5

 BATCH_SIZE = 32

 MAX_LEN = 510

 LR = 2e-5

 NUM_LABELS = 15 # Since we have 15 classes to predict for

Ideally, you decide on MAX_LEN. You can draw a histogram plot of the sentence length

present in your corpus, but since the text is generally long, you have taken the maximum

length possible for a sentence in terms of number of tokens.

For now, the learning rate is kept static with no warm-up. The design parameters

used, like the choice of activation functions, batch size, etc., are just empirical design

choices, so you can explore and experiment with different design choices.

Just like in Chapter 3, you will create a generator function which will yield the input

data in batch size dimension.

 �X = (BATCH_SIZE, {'input_ids':[0 to VOCAB LENGTH],'token_type_ids':

[1/0],'attention_mask':[1/0]}

BERT takes a dictionary as input:

•	 input ids represent the index of tokenized words as per the BERT

model vocabulary

•	 token type ids is also called the segment ID. Since you are training a

sequence classification problem, all the token type ids are all zero.

•	 attention mask is a 1/0 vector, which tells which word to focus on.

Generally all words are considered important but this can be easily

changed as per the design decisions.

Note that you are also padding the sentences to a maximum length of tokens

possible.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

127

 def df_to_dataset(dataframe,

 dataframe_labels,

 batch_size = BATCH_SIZE,

 max_length = MAX_LEN,

 tokenizer = tokenizer):

 """

 Loads data into a tf.data.Dataset for finetuning a given model.

 """

 while True:

 for i in range(len(dataframe)):

 if (i+1) % batch_size == 0:

 multiplier = int((i+1)/batch_size)

 print(multiplier)

 �_df = dataframe.iloc[(multiplier-1)*batch_size:

multiplier*batch_size,:]

 input_df_dict = tokenizer(

 _df.CLEAN_TEXT.tolist(),

 add_special_tokens=True,

 �max_length=max_length, # TO truncate larger sentences,

similar to truncation = True

 truncation=True,

 return_token_type_ids=True,

 return_attention_mask=True,

 padding='max_length', # right padded

)

 �input_df_dict = {k:np.array(v) for k,v in input_df_dict.

items()}

 �yield input_df_dict, mlb_fit.transform(dataframe_

labels[(multiplier-1)*batch_size:multiplier*batch_size])

train_gen = df_to_dataset(train_X.reset_index(drop = True),train_y)

val_gen = df_to_dataset(val_X.reset_index(drop = True),val_y)

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

128

from tensorflow.keras import layers

 def create_final_model(bert_model = bert):

 �input_ids = layers.Input(shape=(MAX_LEN,), dtype=tf.int32,

name='input_ids')

 �token_type_ids = layers.Input((MAX_LEN,), dtype=tf.int32,

name='token_type_ids')

 �attention_mask = layers.Input((MAX_LEN,), dtype=tf.int32,

name='attention_mask')

 # Use pooled_output(hidden states of [CLS]) as sentence level embedding

 �cls_output = bert_model({'input_ids': input_ids, 'attention_mask':

attention_mask, 'token_type_ids': token_type_ids})[1]

 x = layers.Dense(512, activation='selu')(cls_output)

 x = layers.Dense(256, activation='selu')(x)

 x = layers.Dropout(rate=0.1)(x)

 x = layers.Dense(NUM_LABELS, activation='sigmoid')(x)

 �model = tf.keras.models.Model(inputs={'input_ids': input_ids,

'attention_mask': attention_mask, 'token_type_ids': token_type_ids},

outputs=x)

 return model

model = create_final_model(bert_model = bert)

Also, make sure that you are only learning the custom layers at least for the few first

epochs; then you can learn the whole network. For this, you freeze the BERT layers and

only train the custom layers.

for layers in bert.layers:

 print(layers.name)

 layers.trainable= False

Let’s check how the model looks; see Figure 4-13. Take a special note of the number

of trainable and non-trainable parameters.

model.summary()

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

129

Figure 4-13.  Model summary

One thing to note here is that you are using a sigmoid function and not a Softmax

function since you are trying to identify whether a particular ICD-Code exists or not and

hence Softmax is suffice for the same.

model.compile(optimizer= tf.keras.optimizers.Adam(learning_rate=LR),

 loss='binary_crossentropy',

 metrics=['AUC'])

Since this is a big model and can take a lot of time to train, it would be good to set up

a TensorBoard to keep track of the loss and AUC.

You can change the directory name

 LOG_DIR = 'tb_logs'

import os

if not os.path.exists(LOG_DIR):

 os.makedirs(LOG_DIR)

 �tensorboard_callback = tf.keras.callbacks.TensorBoard(log_dir=LOG_DIR,

histogram_freq=1)

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

130

 with tf.device('/device:GPU:0'):

 history = model.fit(train_gen,

 steps_per_epoch=len(train_X)//BATCH_SIZE,

 epochs=EPOCHS,

 validation_data=val_gen,

 callbacks=[tensorboard_callback])

You can train the model with or without a GPU but make sure that the hardware you

are using has the GPU enabled. If you don’t have it set up, please revisit Chapter 2 for the

notes.

To know if you have a GPU available, run the following command:

tf.test.gpu_device_name()

The training of this model can take a lot of time on a CPU and little lesser on the

GPU for NVIDIA GeForce GTX 1660Ti. It takes roughly four hours for one epoch whereas

it takes almost five times longer on a CPU machine. Hence I will not be discussing the

results from the model here.

Here are a couple of ideas to enhance training:

	 1)	 For a couple of epochs, you can keep the BERT layer frozen,

but eventually to achieve slightly better performance on the

downstream task you can unfreeze and train the parameters of the

BERT layer as well.

	 2)	 Try using a more distilled model. Distilled models are less

parameter-hungry models, achieving almost equal performance

on many downstream tasks. This makes overall training really fast.

	 3)	 Another modification can be made in the dataset generation.

input_token_dict can be made on the whole data and subsetted

for each batch.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

131

�Conclusion
Well, with those thoughts I would like to end this chapter. In this chapter, you learned

about the transformer, multiple attention concepts, and BERT in length. You applied all

of these learned concepts to train a multi-label classification model with the use of the

Hugging Face library.

The foundations of transformers you learned in this chapter is going to be

really important for the coming years as there are multiple papers trying to leverage

transformers for a variety of tasks. They being used for image problems, drug prediction,

graph networks, and more.

Although there is a developing interest in making inference from such models faster

without much loss of performance, papers such as “When BERT Plays the Lottery, All

Tickets Are Winning” by Rogers et al show that you can prune away many of BERT’s

components and it still works. This paper analyzes BERT pruning in light of the Lottery

Ticket Hypothesis and finds that even the "bad" lottery tickets can be fine-tuned to good

accuracy. It still remains a very important milestone in pushing the boundary for NLU. I

urge you to read about XLNext, Longformer and Reformer, Roberta, etc. They are other

transformer-based or inspired architectures and they perform better than BERT on

certain tasks. You will be using the BERT model to develop the Question and Answering

system. Until then, keep reading and learning.

Chapter 4 Predicting Medical Billing Codes from Clinical Notes

133
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_5

CHAPTER 5

Extracting Structured
Data from Receipt
Images Using a Graph
Convolutional Network
Just like any other sales job, the sales rep of a pharma firm is always in the field. Being

in the field means generating lots of receipts for reimbursement on food and travel. It

becomes difficult to keep track of bills that don’t follow company guidelines. In this case

study, you will explore how to extract information from receipt images and structure this

various information.

You are also going to learn how to use different information extraction techniques on

templatic documents (documents following a standard template or set of entities). You

are going to build upon the use case of information extraction from out-of-the-box OCR

to a graph convolutional network (GCR). GCRs are relatively new and belong to the class

of graph neural networks, an idea that is being actively researched and applied.

�Data
The data you are going to use for this case is the ICDAR 2019 Robust Reading Challenge

on Scanned Receipts OCR and Information Extraction Dataset. The website link is

https://rrc.cvc.uab.es/?ch=13. It can be obtained easily from the Downloads

section after you register on the website. You may find blogs/articles that mention data

issues in the original data because some data was incorrectly labeled, but this has been

corrected by the team.

https://doi.org/10.1007/978-1-4842-7086-8_5#DOI
https://rrc.cvc.uab.es/?ch=13

134

What you are trying to do is identify certain entities, namely company, date, address,

and total. Figure 5-1 shows some of the image samples with labels and their values.

The dataset is split into a training/validation set (trainval) and a test set (test). The

trainval set consists of 626 receipt images whereas the test set contains roughly 361

images.

There are two kinds of labeled data available:

	 1)	 OCR output: Each image in the dataset is annotated with text

bounding boxes (bboxes) and the transcript of each text bbox.

Locations are annotated as rectangles with four vertices, which

are in clockwise order starting from the top.

	 a)	 You can simplify this representation. What you effectively need

is (xmin,ymin) and (xmax,ymax), which is the top right and bottom left

corner, respectively, of the rectangle.

	 2)	 Node labels: Each image in the dataset is annotated with a text file.

Now there are no labels present at the OCR output level so you must find a way to

model each text bbox to any of the four labels.

Figure 5-1.  Sample images and their labels

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

135

�Mapping Node Labels to OCR Output
If you carefully peruse through the labels and the text, you can observe certain things

such as:

	 1)	 The OCR text is broken into multiple lines, whereas the label

output contains a concatenated version of the same. Hence you

can do a substring search both ways because sometimes label text

is short compared to the output, especially for date labels.

	 2)	 The total is sometimes reported with currency and sometimes

not, so this is a little inconsistent but it should be ok because you

will be just focusing on the numerical part of the total label.

Let’s start by loading the data. Download the data from the competition website,

unzipped it, changed the folder name to ICDAR_SROIE, and then place the folder in a

Data folder for better organization.

You are also going to create a folder named processed inside your directory to

store the bounding box of the text along with its label, but it is not as simple as there are

several nuances to it, which I will discuss further into the chapter.

import pandas as pd

import numpy as np

import glob

import os

 PROCESSED_PATH = "./Data/ICDAR_SROIE/processed/"

Loading ocr and label data

 �receipt_train_img = {os.path.split(x)[-1].replace(".jpg",""):x for x in

glob.glob("./Data/ICDAR_SROIE/0325updated.task1train(626p)/*.jpg") if

not os.path.split(x)[-1].replace(".jpg","").endswith(")")}

 �ocr_data = {os.path.split(x)[-1].replace(".txt",""):x for x in

glob.glob("./Data/ICDAR_SROIE/0325updated.task1train(626p)/*.txt") if

not os.path.split(x)[-1].replace(".txt","").endswith(")")}

 �label_data = {os.path.split(x)[-1].replace(".txt",""):x for x in

glob.glob("./Data/ICDAR_SROIE/0325updated.task2train(626p)/*.txt") if

not os.path.split(x)[-1].replace(".txt","").endswith(")")}

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

136

Checking if all the sets have the same number of labeled data

assert len(receipt_train_img) == len(ocr_data) == len(label_data)

Next, create three functions:

	 1)	 Read the OCR output and just keep (xmin,ymin) and (xmax,ymax),

i.e. (x1,y1) and (x3,y3).

	 2)	 Read the label data as a dictionary.

	 3)	 Map the OCR output to the labels.

import json

 def extract_ocr_data_fromtxt(file_path, key, save = False):

 """

 �Extract the bounding box coordinates from txt and returns a pandas

dataframe

 """

 with open(file_path, 'r') as in_file:

 stripped = (line.strip() for line in in_file)

 �lines = [line.split(",")[:2] + line.split(",")[4:6] +

[",".join(line.split(",")[8:])] for line in stripped if line]

 �df = pd.DataFrame(lines, columns = ['xmin', 'ymin','xmax',

'ymax','text'])

 # Option to save as a csv

 if save:

 if not os.path.exists(PROCESSED_PATH):

 os.mkdir(PROCESSED_PATH)

 �df.to_csv(os.path.join(PROCESSED_PATH,key + '.csv'), index

=None)

 return df

 def extract_label_data_fromtxt(file_path):

 """

 Read the label json and return as a dictionary

 """

 with open(file_path) as f:

 json_data = json.load(f)

 return json_data

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

137

 def map_labels(text,k):

 """

 Maps label to ocr output using certain heuristics and logic

 """

 text_n = None

 k_n = None

 try:

 text_n = float(text)

 except Exception as e:

 pass

 try:

 k_n = float(k)

 except Exception as e:

 pass

 # if both are text then we are doing a substring match

 if (pd.isnull(text_n) and pd.isnull(k_n)):

 if (text in k) or (k in text):

 return True

 # if both are numerical then we just check for complete match

 elif (text_n is not None) and (k_n is not None):

 return text == k

 # special case to handle total, using endswith

 # as sometimes symbols are attached to ocr output

 elif (k_n is not None) and (text_n is None):

 return text.endswith(k)

 return False

Note that the mapping function map_labels is not a perfect way to create labels.

There can be many false positives for the total tag, as shown in Figure 5-2 where the total

gets mismatched. But it is not a frequent occurrence and hence can be either manually

corrected or labeled as is. Let’s keep the label as is.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

138

Finally, you make a wrapper function to save the mapped data in a separate folder.

 def mapped_label_ocr(key):

 """

 Wrapper function to yield result of mapping in desired format

 """

 data = extract_ocr_data_fromtxt(ocr_data[key],key)

 label_dict = extract_label_data_fromtxt(label_data[key])

 �data['labels'] = ["".join([k for k,v in label_dict.items() if

map_labels(text, v)]) for text in data.text]

 if not os.path.exists(PROCESSED_PATH):

 os.mkdir(PROCESSED_PATH)

 data.to_csv(os.path.join(PROCESSED_PATH,key + '.csv'), index =None)

 return data

save the data

mapped_data = {key: mapped_label_ocr(key) for key in ocr_data.keys()}

Let’s quickly check if the heuristic you applied even works. Figures 5-2 and 5-3 show

two examples for comparison.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

139

Figure 5-2.  Example 1: Heuristic lLabeling

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

140

Both examples show that a simple substring search can’t be used due to data

inconsistencies. Hence you are going to go the fuzzy route and try to fuzzy search for text

with a very high cutoff in place.

For this you are going to use the fuzzywuzzy package, a very effective package that

provides access to various types of fuzzy matches (Levenstein, phonetic, etc.) applied in

various ways (token, character level, etc.).

import json

from fuzzywuzzy import fuzz

 def extract_ocr_data_fromtxt(file_path, key, save = False):

 """

 �Extract the bounding box coordinates from txt and returns a pandas

dataframe

 """

Figure 5-3.  Example 2: Heuristic lLabeling

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

141

 def extract_label_data_fromtxt(file_path):

 """

 Read the label json and return as a dictionary

 """

 def map_labels(text,k):

 """

 Maps label to ocr output using certain heuristics and logic

 """

 # if both are text then we are doing a fuzzy match

 if (pd.isnull(text_n) and pd.isnull(k_n)):

 if fuzz.token_set_ratio(text,k) > 90:

 return True

Also, sometimes the company name becomes part of the address. For this, you

modify your wrapper function and give preference to the address.

�Node Features
In order to model these receipts with a GCN, you need to transform them into a graph.

Each word that gets extracted as part of the OCR process can be considered an individual

node.

These nodes can be of the following types:

	 1)	 Company

	 2)	 Address

	 3)	 Date

	 4)	 Total

	 5)	 Undefined

Each node will have a feature vector associated with it, which will tell about the

data that the node carries. Ideally you can use any advanced LM models to extract

information from text, but in this particular case the text doesn’t entail a lot of semantic

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

142

context, so using any LM model can be overkill. Instead, you can go with a trivial feature

generation pipeline for text. You will be generating the following features:

•	 SpecialCharacterCount: Total number of special character count

•	 isFloat: If the text represents a floating point number, then the

column has a value of 1.

•	 isDate: See if a text represents a date or not.

•	 TotalDistinctNumber: How many distinct digits are present in the

text. The idea is that an address generally contains a lot of digits (such

as house number, street number, and Pin/ZIP code) compared to

other entities and hence it can be a useful feature.

•	 BigNumLength: Length of the biggest number. Pin/ZIP codes will have

a higher length than house and row number. Also, the total of the bill

could be the highest number.

•	 IsContainsNum: Whether the text contains a numerical entity or not.

•	 POSTagDistribution: See the distribution (total counts) of the

following pos tags for each text. You will use the spacy pos tagger for

this purpose (https://spacy.io/api/annotation#pos-tagging)

•	 SYM: Currency symbol (total value of the bill can have currency

symbols)

•	 NUM: Cardinal number

•	 CCONJ: Conjunctions (addresses can have a lot of conjunctions)

•	 PROPN: Proper nouns

So you have a total of 10 features for each node.

You will maintain an in-memory object for the processed dataframe but let’s also

save it for later reference in a separate directory

 PROCESSED_TEXT_PATH = "./Data/ICDAR_SROIE/processed_text_features"

if not os.path.exists(PROCESSED_TEXT_PATH):

 os.mkdir(PROCESSED_TEXT_PATH)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

https://spacy.io/api/annotation#pos-tagging

143

import spacy

import string

import collections

import re

from dateutil.parser import parse

from itertools import groupby

import en_core_web_sm

nlp = en_core_web_sm.load()

 def get_text_features(text):

 # SpecialCharacterCount

 special_chars = string.punctuation

 �SpecialCharacterCount = np.sum([v for k, v in collections.

Counter(text).items() \

 if k in special_chars])

 # isFloat

 try:

 float(text)

 isFloat = 1

 except Exception as e:

 isFloat = 0

 # isDate

 try:

 parse(text, fuzzy=True)

 isDate = int(True and len(text) > 5)

 except Exception as e:

 isDate = 0

 # TotalDistinctNumber

 num_list = re.findall(r"(\d+)", text)

 num_list = [float(x) for x in num_list]

 TotalDistinctNumber = len(num_list)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

144

 # BigNumLength

 BigNumLength = np.max(num_list) if TotalDistinctNumber > 0 else 0

 # DoesContainsNum

 DoesContainsNum = 1 if TotalDistinctNumber > 0 else 0

 # POSTagDistribution

 spacy_text = nlp(text)

 pos_list = [token.pos_ for token in spacy_text]

 POSTagDistribution = {}

 for k in ['SYM','NUM','CCONJ','PROPN']:

 POSTagDistribution['POSTagDistribution' + k] = [0]

 �POSTagDistribution.update({'POSTagDistribution'+ value:

 [len(list(freq))] for value, freq in groupby(sorted(pos_list)) if

 value in ['SYM','NUM','CCONJ','PROPN']})

 pos_features = pd.DataFrame.from_dict(POSTagDistribution)

 other_features = pd.DataFrame([[SpecialCharacterCount, isFloat, isDate,

 �TotalDistinctNumber, BigNumLength,

DoesContainsNum]],

 �columns = ["SpecialCharacterCount",

"isFloat","isDate",

"TotalDistinctNumber",

"BigNumLength", "DoesContainsNum"])

 df = pd.concat([other_features, pos_features], axis = 1)

 return df

As explained, you will be creating 10 features with the text values. Although the code

is self-explanatory, there are some points to be discussed.

•	 You’re using the dateutil package to extract and identify date values,

but it’s not perfect and led to many false positives, so now there’s

another condition that the length of the text should be at least 5. This

removes the false positives that got captured.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

145

•	 itertools is a phenomenal package when it comes to performance, so

you should always try to leverage it for your applications. There are

other ways to get the frequency of list elements, but this method is

really good and optimal.

Store the results in a separate dataframe.

mapped_data_text_features = {}

for k, v in mapped_data.items():

 _df = pd.concat([get_text_features(x) for x in v.text], axis = 0)

 �final_df = pd.concat([v.reset_index(drop = True), _df.reset_index(

drop = True)], axis = 1)

 �final_df.to_csv(os.path.join(PROCESSED_TEXT_PATH,k+".csv"),

index = None)

 mapped_data_text_features[k] = final_df

There are two more things that need to be seen before you move further in this

chapter.

	 1.	 In the datasets you have there, are no connections given between

words and nodes.

	 2.	 How is the input data decided for training? Is it in batches of

nodes or a single node matrix?

�Hierarchical Layout
Lohani et al in their paper titled “An Invoice Reading System Using a Graph

Convolutional Network” discussed how to model relationships for the nodes/words for

an invoice system. These relations are formed on the concept of nearest neighbor. See

Figure 5-4.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

146

Each word node has only one neighbor in each direction. This can be generalized to

any semi-structured document graph modeling problem beyond this case study.

The authors propose two main steps to create this hierarchical layout in their paper.

�Line Formation

	 1.	 Sort words based on the top coordinate.

	 2.	 Form lines as group of words, which obeys the following:

Two words (Wa and Wb) are in same line if Top(Wa) ≤

Bottom(Wb) and Bottom(Wa) ≥ Top(Wb)

	 3.	 Sort words in each line based on the left coordinate

This gives a direction to the link formation. You start from the top left and end at the

right bottom. This also ensures that you are seeing a word/node only once.

import itertools

 def get_line_numbers(key):

 """

 Get line number for each word.

 """

Figure 5-4.  Creating edges based on the nearest neighbor concept. Image source:
Lohani et al paper titled “An Invoice Reading System Using a Graph Convolutional
Network”

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

147

 ################ 1 ##################

 df = mapped_data_text_features[key]

 df.sort_values(by=['ymin'], inplace=True)

 df.reset_index(drop=True, inplace=True)

 # To avoid spacing issue, lets reduce ymax by some small value

 df["ymax"] = df["ymax"].apply(lambda x: int(x) - 0.5)

 ################ 2 ##################

 # In order to get line number we start with left most word/phrase/node

 �# and then check all non-matching words and store their indices from L->R

 word_idx = []

 for i, row in df.iterrows():

 flattened_word_idx = list(itertools.chain(*word_idx))

 #print(flat_master)

 # check if the word has not already been checked

 if i not in flattened_word_idx:

 top_wa = int(row['ymin'])

 bottom_wa = int(row['ymax'])

 # Store the word

 idx = [i]

 for j, row_dash in df.iterrows():

 if j not in flattened_word_idx:

 # check a different word, double check

 if not i == j:

 top_wb = int(row_dash['ymin'])

 bottom_wb = int(row_dash['ymax'])

 # Valid for all the words next to Wax

 if (top_wa <= bottom_wb) and (bottom_wa >= top_wb):

 idx.append(j)

 #print(line)

 word_idx.append(idx)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

148

 # Create line number for each node

 �word_df = pd.DataFrame([[j,i+1] for i,x in enumerate(word_idx) for j

in x], columns= ["word_index","line_num"])

 # put the line numbers back to the list

 final_df = df.merge(word_df, left_on=df.index, right_on='word_index')

 final_df.drop('word_index', axis=1, inplace=True)

 ################ 3 ##################

 final_df = final_df.sort_values(by=['line_num','xmin'],ascending=True)\

 .groupby('line_num').head(len(final_df))\

 .reset_index(drop=True)

 final_df['word_id'] = list(range(len(final_df)))

 return final_df

Since the axes are inverted,

	 1)	 The top coordinate is Ymin (leftmost coordinate).

	 2)	 You need to run two for loops comparing each word with others

in the dataframe with respect to their position vertically.

	 3)	 The output of the final dataframe is sorted by its line number.

Note  The above strategy can fail in case of lots of overlapping bounding boxes,
which is not the case right now, so we are fine with it.

Finally, you store the results in a separate variable.

mapped_data_text_features_line = {key:get_line_numbers(key) for key,_ in

mapped_data_text_features.items()}

Next, the authors discuss the graph formation where actual linkages are formed.

�Graph Modeling Algorithm

	 1.	 Read words from each line starting from the topmost line going

towards the bottom most line.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

149

	 2.	 For each word, perform the following:

	 2.1	 Check words that are in the vertical projection with it.

	 2.2	 Calculate RDL and RDR for each of them.

	 2.3	 Select the nearest neighbor words in the horizontal direction

that have the least magnitude of RDL and RDR, provided that

those words do not have an edge in that direction.

	 2.3.1	 If two words have same RDL or RDR, the word having the

higher top coordinate is chosen.

	 2.4	 Repeat steps from 2.1 to 2.3 similarly for retrieving nearest

neighbor words in the vertical direction by taking the horizontal

projection, calculating RDT and RDB, and choosing words

having the higher left coordinate in case of ambiguity.

	 2.5	 Draw edges between a word and its four nearest neighbors if

they are available.

First, let’s create a directory to save the graph of connected nodes.

 GRAPH_IMAGE_PATH = "./Data/ICDAR_SROIE/processed_graph_images"

if not os.path.exists(GRAPH_IMAGE_PATH):

 os.mkdir(GRAPH_IMAGE_PATH)

Then, create a class that holds different information for you, namely:

–– Connection list: Nested list containing information on connected

nodes

–– G: Networkx graph object. Networkx is a Python library used for

handling network objects.

–– Processed dataframe: Pandas dataframe containing connections of

a node.

 class NetworkData():

 def __init__(self, final_connections, G, df):

 self.final_connections = final_connections

 self.G = G

 self.df = df

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

150

 def get_connection_list():

 return self.final_connections

 def get_networkx_graph():

 return self.G

 def get_processed_data():

 return self.df

Note  Here you can either use the getter functions or just reference the class
object.

import networkx as nx

from sklearn.preprocessing import MinMaxScaler

 def graph_modelling(key, save_graph =False):

 # Horizontal edge formation

 df = mapped_data_text_features_line[key]

 df_grouped = df.groupby('line_num')

 # for directed graph

 left_connections = {}

 right_connections = {}

 for _,group in df_grouped:

 wa = group['word_id'].tolist()

 #2

 �# In case of a single word in a line this will be an empty dictionary

 _right_dict = {wa[i]:{'right':wa[i+1]} for i in range(len(wa)-1) }

 _left_dict = {wa[i+1]:{'left':wa[i]} for i in range(len(wa)-1) }

 #add the indices in the dataframes

 for i in range(len(wa)-1):

 df.loc[df['word_id'] == wa[i], 'right'] = int(wa[i+1])

 df.loc[df['word_id'] == wa[i+1], 'left'] = int(wa[i])

 left_connections.update(_left_dict)

 right_connections.update(_right_dict)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

151

 # Vertical edge formation

 bottom_connections = {}

 top_connections = {}

 for i, row in df.iterrows():

 if i not in bottom_connections.keys():

 for j, row_dash in df.iterrows():

 �# since our dataframe is sorted by line number and we are

looking for vertical connections

 �# we will make sure that we are only searching for a word/

phrase next in row.

 if j not in bottom_connections.values() and i < j:

 if row_dash['line_num'] > row['line_num']:

 bottom_connections[i] = j

 top_connections[j] = i

 #add it to the dataframe

 df.loc[df['word_id'] == i , 'bottom'] = j

 df.loc[df['word_id'] == j, 'top'] = i

 # break once the condition is met

 break

 # Merging Neighbours from all 4 directions

 final_connections = {}

 �# Taking all the keys that have a connection in either horizontal or

vertical direction

 �# Note : Since these are undirected graphs we can take either of

(right, left) OR (top, bottom)

 for word_ids in (right_connections.keys() | bottom_connections.keys()):

 �if word_ids in right_connections: final_connections.setdefault(

word_ids, []).append(right_connections[word_ids]['right'])

 �if word_ids in bottom_connections: final_connections.setdefault(

word_ids, []).append(bottom_connections[word_ids])

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

152

 # Create a networkx graph for ingestion into stellar graph model

 G = nx.from_dict_of_lists(final_connections)

 # Adding node features

 scaler = MinMaxScaler()

 �scaled_features = scaler.fit_transform(df[['SpecialCharacterCount',

'isFloat', 'isDate', 'TotalDistinctNumber',

 'BigNumLength', 'DoesContainsNum', 'POSTagDistributionSYM',

 'POSTagDistributionNUM', 'POSTagDistributionCCONJ',

 'POSTagDistributionPROPN', 'line_num']])

 node_feature_map = {y:x for x,y in zip(scaled_features, df.word_id)}

 for node_id, node_data in G.nodes(data=True):

 node_data["feature"] = node_feature_map[node_id]

 if save_graph:

 �# There are multiple layouts but KKL is most suitable for

non-centric layout

 layout = nx.kamada_kawai_layout(G)

 # Plotting the Graphs

 plt.figure(figsize=(10,5))

 # Get current axes

 ax = plt.gca()

 ax.set_title(f'Graph form of {key}')

 nx.draw(G, layout, with_labels=True)

 �plt.savefig(os.path.join(GRAPH_IMAGE_PATH, key +".jpg"),

format="JPG")

 plt.close()

 networkobject = NetworkData(final_connections, G, df)

 return networkobject

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

153

The code is quite intuitive. These are the high-level things happening in the code:

	 1)	 Horizontal connections

	 a)	 They can only be formed between words in the same line and

hence you group your processed data on a line number.

	 b)	 You maintain right and left connections for better clarity, but for

the undirected graph a right connection dictionary is sufficient.

	 2)	 Vertical connections

	 a)	 They can never be formed between words belonging to the

same line.

	 b)	 Two for loops are used because you must traverse along

different lines.

	 c)	 Again, direction is not relevant but is maintained for clarity.

	 3)	 Both the right and bottom dictionaries are used to create

adjacency lists for the networkx graph.

	 4)	 Finally, you scale and normalize node features. You also include

line numbers as one of the features because it is a templatic

document with address/company number, etc. coming on the top

and total coming in the bottom.

Calling the above code, you get the results in Figure 5-5.

mapped_net_obj = {key: graph_modelling(key, save_graph=True) for key,_ in

mapped_data_text_features_line.items()}

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

154

�Input Data Pipeline
In the stellar graph library you are using, you can’t train different networks but a union

of all can be used. What this will lead to is a big graph with a large adjacency matrix. See

Figure 5-6.

Figure 5-5.  Examples of Network layout for different Bills

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

155

You will leverage a built-in function in Networkx.

 �U = nx.union_all([obj.G for k,obj in mapped_net_obj.items()],

rename=[k+"-" for k in mapped_net_obj.keys()])

Now, since you finally have the desired data, it’s time to learn a bit about graphs and

the graph convolutional network in detail.

�What Are Graphs and Why Do We Need Them?
In computer science theory, we define graphs as a data structure that consists of a finite

set of vertices (a.k.a. nodes) and a set of edges that connect these nodes. The edges of the

graph can be ordered or unordered depending upon whether the graph is directed or

undirected.

	 G V E� � �, 	

	 V set of vertices or nodes, 	

	 E set of edges, 	

Figure 5-6.  Union of multiple graphs and training process. Source: https://
github.com/tkipf/gcn

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

https://github.com/tkipf/gcn
https://github.com/tkipf/gcn

156

Besides the direction of edges, there are other distinctions between types of graphs:

•	 A graph maybe be weighted or unweighted. In weighted graphs, each

edge is given a weight.

•	 An undirected graph G is called connected if there is a path between

every pair of distinct vertices of G.

•	 A simple graph has no self-loops, meaning there are no edges

connecting a vertex to itself.

So there can be multiple terminologies and ways to differentiate graphs. Now the

question arises, why do we even care about graphs in machine learning?

Most of the readers of this book would generally be familiar with four types of data,

namely

	 1)	 Text

	 2)	 Structured/tabular

	 3)	 Audio

	 4)	 Images

All of this data can be represented by well-known neural network architectures, but

there are is a special class of data that can’t and it’s called a non-Euclidean dataset. Such

datasets can represent much more complex items and concepts with more accuracy

than a 1D or a 2D dataset like those mentioned above.

Let’s understand this.

Say you want to classify a sentence:

	 1)	 John is a nice guy.

In Case 1, you have just the pos tag and you can very well model it in GRU/LSTM/

RNN cells to classify capturing the linear and non-hierarchical connections between

words.

In Case 2, though, you are also given information on the dependencies between

them. How do you plan to model them? See Figure 5-7.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

157

This is where graphs come in. They can help you model such hierarchies naturally

and effectively, more so than for other datasets like social network data, chemical

molecular data, trees/ontologies, and manifolds, which preserve rich information

through hierarchies, interconnectedness, and across multiple dimensions. In these

cases, graphs are more naturally suited.

Graphs help in modeling such non-Euclidean databases. It also allows us to

represent intrinsic features of the node, while also providing information regarding

relationships and structure, and is very easy to represent as a neural network for

learning.

Most of the neural networks can be classified into something called a multipartite

graph, which is basically graph that can be separated into different sets of nodes. These

sets of nodes do not share edges with nodes of the same set. See Figure 5-8.

Figure 5-7.  Modeling connected data, case in point

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

158

Graphs are represented using something called an adjacency matrix in the computer

system. An adjacency matrix is made up of the edge weights between connected entities.

It shows the three most important properties of a graph:

•	 Relation

•	 Relation strength (edge weight)

•	 Direction of the relation

Adjacency matrices of directed graphs will not be symmetrical along the diagonal

line, since directed graphs have edges that go in only one direction. For an undirected

graph, the adjacency matrix is always symmetrical.

Also, a degree shows the complexity of the graph. The degree of a vertex represents

the total number of vertices connected to it. In undirected graphs, it’s a simple sum of

connected components whereas for directed graphs, the degree is further segmented into

inbound and outbound degrees, based on the direction of the relation. See Figure 5-9.

Figure 5-8.  Neural networks as multipartite graphs

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

159

Another matrix that captures the graph information is a Laplacian matrix.

	 L D A� � 	

Each value in the degree matrix is subtracted by its respective value in the adjacency

matrix. A Laplacian matrix basically helps determine how smooth the graph function is.

In other words, when shifting from one vertex to the next, the change in value shouldn’t

be abrupt. This is more true for a densely connected cluster. With isolated nodes,

however, the smoothness reduces and also the performance of various tasks, which can

be done using graph, so the more connected the graph is, the more information it will

contain.

�Graph Convolutional Networks
�Convolutions over Graph
Graph convolutional networks work on the principle of applying convolutions to the

graph networks. But what does this mean? Let’s see.

Figure 5-9.  Undirected graph with adjacency matrix

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

160

You understand convolutions traditionally where given an input image

representation you try to learn a kernel matrix, which helps you aggregate information

from the neighboring pixels. See Figure 5-10 for an illustration.

The main thing that happens here is that you can aggregate information from

neighboring pixels. This is the concept that gets borrowed when modeling graph data for

various tasks, such as

	 1)	 Node classification: Predict the type of node.

	 2)	 Link prediction: Predict if new connections/links are getting

formed between any two nodes

	 3)	 Community detection: Identify if there are any definite clusters

getting formed in the graph, largely similar to densely linked

clusters but in a more statistical sense. (Imagine PageRank.)

	 4)	 Network similarity: If the graph or its subnetwork resembles

another graph or its subnetwork.

There are certain subtle differences in the way convolution works over graph data.

	 1)	 Images have a rigid (there is a strong sense of direction such that

shifting one pixel value to from the left to the right of a central

pixel changes the meaning) and regular (pixels are equidistant

geometrically) connectivity structure. But graphs certainly don’t.

	 2)	 Graph learning should work irrespective of the size of the input

data.

Figure 5-10.  Convolution operation over images

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

161

Just like pixels are there for image representation, there are things known as node

features and edge features in graphs.

Node features semantically identify what the node is all about, whereas edge features

can help identify different relations shared between the two nodes.

The network that I will be talking about is the GCN network conceptualized by Kipf

and Wellling in a paper titled “Semi-Supervised Classification with Graph Convolutional

Networks” from 2017. This network does not take into account the edge features but you

won’t be using them for your application. Edge features are required for most complex

networks. As in molecular chemistry where a double bond is much stronger than a single

bond, so both can’t be treated in the same manner; they have to be used differently.

In your case however, an edge represents a connection between different text entities

present in the invoice and hence carry the same meaning, so you can do away with

networks that can model edge features.

But for the curious lot, here are two papers which are improvements over the GCN

architecture shared by Kipf and Welling:

•	 “MPNN” by Gilmer et al in ICML 2017

•	 “Graph Attention Network” by Veličković et al in ICLR 2018

A good overview is also present in the paper by Zhou, Cui, Zhang et al in “Graph

Neural Networks: A Review of Methods and Applications”

�Understanding GCNs
Figure 5-11 explains how convolutions work over graph data, given an undirected graph

G = (V,E) with nodes vi ∊ V, edges (vi, vj) ∊ E and an adjacency matrix (A) of size NXN

where N represents the number of nodes and a feature matrix (H) of size NXK where K is

the dimension of a feature vector. To find the feature values from the neighbors for each

node, you multiply the matrix A and H.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

162

As you can see in the updated node feature matrix, there are two things that can be

improved:

	 1)	 You can prevent scale issues due to differences in connectivity

degree of a node. Certain nodes are highly connected while some

are not, so naturally a highly connected node will have a higher

feature value as compared to a sparsely connected node.

	 2)	 Each node has completely forgotten its own features and learned

all from the label, so you need to make sure that the current

information is not completely lost.

First, you make sure that each node is able to retain information from itself as well.

For this, you update the graph by adding a connection to itself, which basically means

the adjacency matrix will now have all ones along the diagonal.

Since the scale can be corrected by normalizing with the degree of a node, you

multiply the values with D-1. Since D is a diagonal matrix, D-1 just reciprocates all the

diagonal elements. Note that this D matrix is the updated matrix post the self-loop

created above.

Kipf and Welling in their proposed idea note that a lower degree node will exert

more influence on its neighbors as compared to a highly connected layer. Basically a

node that passes information to all nodes doesn’t provide any “distinct” info about the

Figure 5-11.  Convolution operation over graphs

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

163

nodes. To do so, the authors suggest multiplying the resultant matrix of D-1 AH with D-1.

Since you are normalizing twice, you just make sure to divide by D D . This way, when

computing the aggregate feature representation of the ith node, you not only take into

consideration the degree of the ith node, but also the degree of the jth node. This is also

known as the spectral rule.

One thing to note in this idea is that Kipf et al proposed it keeping in mind that edge

doesn’t have a role to play here. If you have different edge features for connections of

even a highly connected node, then the above assumption doesn’t always hold.

Finally, the updated feature matrix for a node looks like this:

Hupdated = f(A, D, H)

A complete equation looks something like this:

	
H Relu

DD
AHWupdated �

�

�
�

�

�
�

1
	

Relu or any other non-linear activation can be applied for that matter. Here W is a

trainable weight matrix of size (KxK’) where K’ is the dimension of the feature vector for

the next layer. This can basically help address overfitting by reducing dimensions with

depth.

�Layer Stacking in GCNs
All the neighbors of the graphs are updated this way. Once all the nodes are updated

with their immediate neighbor, you have what is called as an output from the first layer.

The second layer is something that captures information from secondary

connections as well, which basically means, since in the first step each node has

modeled information from its children, if you run the same steps again in the next layer,

these features of children of children get added to the parent node. Basically, the deeper

the network, the larger the local neighborhood. See Figure 5-12.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

164

�Training
For a node classification problem like yours, the training largely involves the following steps.

	 1.	 Perform forward propagation through the GCN layers.

	 2.	 Apply the sigmoid function row-wise (i.e. for each node on the last

layer in the GCN).

	 3.	 Compute the cross entropy loss on the known node labels.

	 4.	 Backpropagate the loss and update the weight matrices W in each layer.

Note that there is a final weight matrix that maps the final hidden state

representation of each node with the number of classes expected for the node

classification task. So, if you call the number of classes as C, this weight matrix is of shape

(K’,C). Assuming the last feature representation of the nodes has a dimension of K’, the

total number of weight matrices = L+1, where L is the number of GCN layers.

�Modeling
Although constructing your own GCN layer in TensorFlow isn’t that difficult, there are

some libraries that make doing graph deep learning easier with Keras and TF 2.0 by

providing prebuilt APIs. One such library is StellarGraph. It has over 1.7K stars on its

Figure 5-12.  Layers in a GCN. Image source http://helper.ipam.ucla.edu/
publications/glws4/glws4_15546.pdf

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf
http://helper.ipam.ucla.edu/publications/glws4/glws4_15546.pdf

165

official GitHub and has an active community. StellarGraph can ingest data from various

data sources networkx graphs, pandas, or even numpy arrays.

Since you have already prepared a union of all graphs, let’s load your data directly

from networkx.

 G_sg = sg.from_networkx(U, node_features="feature")

print(G_sg.info())

####################### Output ################

StellarGraph: Undirected multigraph

 Nodes: 33626, Edges: 46820

 Node types:

 default: [33626]

 Features: float32 vector, length 11

 Edge types: default-default->default

 Edge types:

 default-default->default: [46820]

 Weights: all 1 (default)

 Features: none

As you can see, in total you have 33626 nodes and 46820 edges. It is still a small graph

but it’s quite useful for training purposes.

�Train-Test Split and Target Encoding
Next, make sure you have a one-to-one mapping between the node id and the target. For

this, you will create this data from the processed data and replace all empty labels with

“others.”

 labelled_data = pd.DataFrame([[k+"-"+str(node_idx), label]

 for k,obj in mapped_net_obj.items()\

 for node_idx,label in zip(obj.df.word_id,obj.df.labels)],

 columns = ["node_id","node_target"])

 labelled_data = labelled_data.replace(r'^\s*$', "others", regex=True)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

166

The distribution of target class is shown below.

 | | index | node_target |

 |---:|:--------|--------------:|

 | 0 | others | 28861 |

 | 1 | address | 1692 |

 | 2 | total | 1562 |

 | 3 | date | 764 |

 | 4 | company | 747 |

The other class is most represented, which is expected. There is some class

imbalance in the node prediction. I urge you to try to correct the imbalance and then

retrain the model.

Finally, before creating the model, let’s also create your train and validation data.

You will also binarize the multi-class output and set the model for a multiclass

classification problem.

 �train,val = model_selection.train_test_split(labelled_data,

random_state = 42,train_size = 0.8, stratify = labelled_data.node_target)

Encoding the targets

target_encoding = preprocessing.LabelBinarizer()

train_targets = target_encoding.fit_transform(train.node_target)

val_targets = target_encoding.fit_transform(val.node_target)

�Creating Flow for Training in StellarGraph
Next, you will use an built-in generator function to generate batches of nodes given the

Stellar Network Graph.

generator = FullBatchNodeGenerator(G_sg)

Once the generator object is created, you call the flow function and pass the target

label and the nodes to get an object that can be used as a Keras data generator.

train_flow = generator.flow(train.node_id, train_targets)

val_flow = generator.flow(val.node_id, val_targets)

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

167

�Training and Model Performance Plots
You form a very basic Keras model. You add two GCN layers of size 8 and 4. The two

layers also imply that you are going to the second degree neighbors of each node. For

each of the activations (node embeddings), you use a SELU activation function to

prevent vanishing gradient issues.

You also introduce a dropout to prevent overfitting.

Since your input and output gets created using the generator object, you will get the

input and output tensor from the GCN layer to know about the input and output.

Lastly, the output is fed into a dense layer with a shape equal to the number of target

labels. Basically, each node embedding is multiplied with a final weight matrix and then

activations are applied to see which class is most probable for the node. See Figure 5-13.

Model Formation

two layers of GCN

 �gcn = GCN(layer_sizes=[8, 4], activations=["selu", "selu"],

generator=generator, dropout=0.5)

expose in and out to create keras model

x_inp, x_out = gcn.in_out_tensors()

usual output layer

 predictions = layers.Dense(units=train_targets.shape[1],

 activation="softmax")(x_out)

define model

model = Model(inputs=x_inp, outputs=predictions)

compile model

model.compile(

 optimizer=optimizers.Adam(lr=0.01),

 loss=losses.categorical_crossentropy,

 metrics=["AUC"])

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

168

As you can see, you can introduce many more parameters and make an even more

effective model. But for now the model performance is decent for your task.

Now fit the model and check the result.

from tensorflow.keras.callbacks import EarlyStopping

 �es_callback = EarlyStopping(monitor="val_auc", patience=10,

restore_best_weights=True)

history = model.fit(

 train_flow,

 epochs=10,

 validation_data=val_flow,

 verbose=2,

 callbacks=[es_callback])

Figure 5-13.  GCN model summary

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

169

 Epoch 1/10

 1/1 - 1s - loss: 1.7024 - auc: 0.4687 - val_loss: 1.5375 - val_auc: 0.7021

 Epoch 2/10

 1/1 - 0s - loss: 1.5910 - auc: 0.5962 - val_loss: 1.4360 - val_auc: 0.8740

 Epoch 3/10

 1/1 - 0s - loss: 1.4832 - auc: 0.7261 - val_loss: 1.3445 - val_auc: 0.9170

 Epoch 4/10

 1/1 - 0s - loss: 1.3891 - auc: 0.8178 - val_loss: 1.2588 - val_auc: 0.9189

 Epoch 5/10

 1/1 - 0s - loss: 1.2993 - auc: 0.8753 - val_loss: 1.1768 - val_auc: 0.9175

 Epoch 6/10

 1/1 - 0s - loss: 1.2219 - auc: 0.8958 - val_loss: 1.0977 - val_auc: 0.9160

 Epoch 7/10

 1/1 - 0s - loss: 1.1405 - auc: 0.9068 - val_loss: 1.0210 - val_auc: 0.9146

 Epoch 8/10

 1/1 - 0s - loss: 1.0638 - auc: 0.9120 - val_loss: 0.9469 - val_auc: 0.9134

 Epoch 9/10

 1/1 - 0s - loss: 0.9890 - auc: 0.9131 - val_loss: 0.8767 - val_auc: 0.9129

 Epoch 10/10

 1/1 - 0s - loss: 0.9191 - auc: 0.9140 - val_loss: 0.8121 - val_auc: 0.9120

Training for a higher epoch hits the early stop criteria at the 18th epoch and yields

the train and validation curves shown in Figure 5-14.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

170

Looks like there is no case of overfitting but you can definitely use more parameters

and try to improve the performance. The following changes can be made:

	 1)	 Include more features for the node.

	 2)	 Experiment with different normalization techniques except

min-max scaler.

Figure 5-14.  Train and validation performance curves

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

171

	 3)	 A more dense prediction model can help in capturing the nuances

better.

	 a)	 Note that after you get the inputs and outputs from the GCN layer,

the model can be built like any normal Keras model.

	 4)	 Handle class imbalance.

�Conclusion
I hope you were excited about being introduced to this new class of neural networks. It

opens so many doors for handling real-world data. Well, don’t just restrict yourself to the

GCN model discussed here. There is a big ocean of knowledge out there!

You learned a stellar technique but there are shortcomings for GCN:

•	 It doesn’t consider node edges.

•	 It’s mostly useful for homogeneous graphs (graphs with a single type

of nodes/edges).

•	 Node locality still plays a good role in its classification. Try doing

some ablation modeling by removing the line number parameter

from the feature set and remodeling.

The world we live in is deeply connected and will be even more so as we move ahead

in this century. Arming yourself with the knowledge of how to model such data will be a

revered skill and will definitely help further your career and interests.

CHAPTER 5 �EXTRACTING STRUCTURED DATA FROM RECEIPT IMAGES USING A GRAPH CONVOLUTIONAL
NETWORK

173
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_6

CHAPTER 6

Handling Availability
of Low-Training Data
in Healthcare
The availability of training data is a critical bottleneck in machine learning applications.

This is further augmented by working in a specialized domain like healthcare where one

needs to be highly skilled to understand the data and then tag or label it for machine

learning to use. In addition to finding a skill steward, there is a heavy investment in terms

of time and cost for the organization.

You have already learned one way of handling availability of limited information,

which is by transfer learning. Unlike transfer learning, which is an algorithmic approach

to handling low-training data, in this chapter you will use a data-first approach where

you try to understand and model the data in order to create training labels.

You will be learning about different ways of handling low-training data and the

challenges in applying them. Finally, you will take a hands-on case exploring how to

augment training data for biomedical relation extraction using Snorkel.

�Introduction
Creating datasets with high quality training labels involves significant investment of time

and money and sometimes even domain experts for highly specialized domains. Hence,

it becomes imperative for us to find smarter ways to leverage the data patterns of our

unlabeled data in one way or another that can help us create training labels over unseen

data.

https://doi.org/10.1007/978-1-4842-7086-8_6#DOI

174

�Semi-Supervised Learning
Semi-supervised learning involves using a small gold-label dataset and unlabeled data.

There are four key steps to semi-supervised learning:

	 1)	 You use the small amount of gold-label data to train a model of

choice, much like standard supervised learning.

	 2)	 Then you use the unlabeled data to predict the outputs using the

trained model labels. Since the model is trained only on a handful

of samples, it’s difficult to say that the predictions are highly

accurate and hence the label outputs from such a model are called

pseudo labels.

	 3)	 You then collect the gold-label data and a chunk of pseudo-

labeled data and create a new training set.

	 4)	 You retrain your model using this new set.

	 5)	 You repeat the process until the performance metric chart (across

epochs) flattens out.

In Chapter 5, you worked on the node classification problem, where you had to

predict for company name, address, date, and total cost of the bill. You had less training

data available, yet you were able to predict with reasonable accuracy on the training

labels because the model was not only learning on the node features but also its edge

connection and hence a powerful graph neural network could learn well over this small

dataset.

Although any model can be used to train on a small gold-label dataset plus pseudo

labels, there are two main model strategies that have been leveraged extensively.

�GANs

Generator adversarial networks (GANs) include two networks that are adversaries and

hence compete with each other until a state of desirable equilibrium is reached. These

two networks are the generator and the discriminator. See Figure 6-1.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

175

Generator: Learns to generate real data

Discriminator: Learns to discriminate between the generator’s fake data and real

data

The key steps involved in training a GAN are

•	 Samples from both real data and fake data are used to train

discriminators alone. Here, fake data is generated from a noisy

distribution.

•	 Then the weights for the discriminator are frozen and the generator is

trained.

•	 Alternatively, these networks are trained, competing with each other

until they reach a state of equilibrium (gradient flow normalizes).

The loss function involved in training both networks is based on the real vs. fake

prediction of the discriminator network. In semi-supervised learning with GANs, the

discriminator network not only outputs distribution for real or fake but for all the labels

involved.

An input is classified as real if it is classified as any class label, as shown in Figure 6-2.

Figure 6-1.  A generator adversarial network

Chapter 6 Handling Availability of Low-Training Data in Healthcare

176

The discriminator now has a dual objective of first distinguishing real from fake

images (also called an unsupervised task) and secondly classifying real images to their

respective classes (the supervised task).

For each iteration, you do the following:

•	 Train the supervised discriminator. Take a batch of training labels

and train the multiclass network.

•	 Train the unsupervised discriminator. Take a batch of unlabeled

data and a batch of fake samples and train the binary classifier and

backpropagate the binary loss.

•	 Train the generator (just like a simple GAN).

Read the paper by Odena titled “Semi-Supervised Learning with Generative

Adversarial Networks” to further deep dive and understand the use of semi-supervised

learning with GANs.

�Autoencoders

I introduced autoencoders in Chapter 3, where you used them to encode your training

features to get a lower dimensional, dense representation so that it could be used for

clustering. See Figure 6-3.

Figure 6-2.  Semi-supervised GAN architecture

Chapter 6 Handling Availability of Low-Training Data in Healthcare

177

Well, the idea is still the same, but this time rather than just optimizing on the

reconstruction loss, you will also be using the lower-dimensional dense vector for

predicting the output. See Figure 6-4.

Figure 6-3.  Vanilla autoencoder

Chapter 6 Handling Availability of Low-Training Data in Healthcare

178

Now, many of you might be thinking that these reconstruction losses are sometimes

not that low and hence you might get a suboptimal representation in the bottleneck

layer. Well, that’s not entirely true.

You don’t need to capture all of the semantics of the input to predict the label. You

can work with representations that capture a part of the meaning such that Loss 1 is

minimized.

Although, having said that, the best results are achieved when the general

representation (Loss 2) also helps in predicting the class labels.

People have gone a step ahead and experimented with different ways to minimize

both Loss 1 and 2. Some of the papers you can read are

•	 “Semi-Supervised Learning with Ladder Networks” by Valpola et al

•	 “Exploring Semi-supervised Variational Autoencoders for Biomedical

Relation Extraction” by Zhang et al

Figure 6-4.  Autoencoder for semi-supervised learning

Chapter 6 Handling Availability of Low-Training Data in Healthcare

179

�Transfer Learning
You explored transfer learning and why it works in natural language tasks in detail in

Chapter 4. Transfer learning works on the principle of using large labeled data in a

similar domain to train neural networks such that it can learn lower-level features really

well and then you can use that architecture to fine-tune the task at hand using the few

labeled data you have.

It is a really powerful technique, but it has some limitations:

•	 Input data for your task can be widely different from the training set

for such pretrained networks.

•	 The pretrained tasks and the new task are vastly different, such as

classification vs. span extraction.

•	 Overfitting and unnecessary use of large models: Sometimes your

task doesn’t require the use of complex multi-million parameters, so

in these cases transfer learning might be overkill.

Transfer learning can also be used in a completely unsupervised setting where it

is not necessary to require large training labels. This is also called self-supervision. For

example, when you train a good language model, you try to do the following:

	 1)	 Masked language modeling

	 2)	 Next sentence prediction

Both of these techniques don’t require a labeled dataset but yet give a really good

network capable of doing a variety of tasks.

�Weak Supervised Learning
Weak supervised learning is another way of working with limited data. The idea here is

to harness patterns in the current data using noisy, heuristical, and limited sources to

label the data.

Like the techniques discussed above, it effectively alleviates the problem of having a

large amount of training data prehand to do your ML task. Read “Snorkel: Rapid Training

Data Creation with Weak Supervision,” a paper by the Stanford AI Lab team, that

explores how well weak supervision works. See Figure 6-5.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

180

In this chapter, you will be using this concept of weak learning. You will also

exploring the Snorkel library, which was developed by the Stanford AI Lab.

�Exploring Snorkel
Snorkel is a programming library that facilitates creating, modeling, and managing

training datasets without manually labeling. Its workflow is designed around data

programming and is made up of three stages:

Figure 6-5.  Diverse knowledge sources as weak supervision.
Source: ai.googleblog.com

Chapter 6 Handling Availability of Low-Training Data in Healthcare

181

	 1)	 Writing labeling functions/weak supervision

This includes use of hand-designed features, distant supervision

functions leveraging external databases, etc. These labeling

functions don’t have a good recall but are quite precise. If you

choose a subprecise function, its recall is generally higher. Hence

your labeling function set should be a mix of both kinds.

Labeling functions in Snorkel are created with the @labeling_

function decorator. The decorator can be applied to any Python

function that returns a label for a single data point.

Each LF function outputs three values (binary class):

	

L x
if not enoughevidence
if noevidence
if evidence

i � � �
��

�
�

�

1

0

1

,

,

,��

�

�
�

�
� 	

	 2)	 Combine LF outputs

Based on the quality of the labeling functions and their

agreements and disagreements, Snorkel’s generative model

combines the labeling functions to output labels. For example,

if two labeling functions have a high correlation in their output,

then the generative model tries to avoid double counting of such

functions. This also shows why a generative model is better than

max counting. Snorkel also provides an immense number of

analysis parameters that tell about the performance of a LF. You

will explore them in this chapter.

	 3)	 Model training

Snorkel’s output uses probabilistic labels which can then be used

to train any discriminative models. This discriminative model fills

in the gap of low recall. See Figure 6-6.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

182

You will explore labeling functions and how to apply them in depth in this chapter

but there are some other ways that Snorkel increases performance of the overall process

of labeling (Figure 6-7). The Snorkel team introduced two more concepts:

	 1)	 Transformation functions (TFs)

	 2)	 Slicing functions (SFs)

Figure 6-6.  Model training using Snorkel probabilities. Source: http://
ai.stanford.edu/blog/weak-supervision/

Chapter 6 Handling Availability of Low-Training Data in Healthcare

http://ai.stanford.edu/blog/weak-supervision/
http://ai.stanford.edu/blog/weak-supervision/

183

Just like you tend to data augmentation to increase your dataset, similarly in Snorkel

you can write TFs to each training data point using a policy (determines how you apply

the transformation to each point or some points, etc.) to generate an augmented training

set. Some of the common ways can be to replace words with synonyms or replace named

entities with other entities. Similar to labeling functions, you use a transformation_

function decorator, which wraps a function that takes in a single data point and returns

a transformed version of the data point.

Often in your training data you will find that certain subsections or slices are more

important than others, like patients receiving critical care being used for drug performance

testing, hence not only global performance but less failure on such local slices is expected.

Figure 6-7.  Different programming interfaces. Source: Snorkel.org

Chapter 6 Handling Availability of Low-Training Data in Healthcare

184

Snorkel provides a way to measure performance on such slices. SFs output binary

masks indicating whether a data point is in the slice or not. The ones in the slice are

monitored. Any model can leverage SFs to learn slice expert representations, which are

combined with an attention mechanism to make slice-aware predictions.

�Data Exploration
�Introduction
You are going to use the data capturing relation between the Disease and Treatment

entities. It’s originally provided from the research shared in the paper titled “Classifying

Semantic Relations in Bioscience Text” by Barbara Rosario and Marti A. Hearst, in

the proceedings of the 42nd Annual Meeting of the Association for Computational

Linguistics (ACL 2004), Barcelona, July 2004 (https://biotext.berkeley.edu/

dis_treat_data.html).

The text is taken randomly from Medline 2001, which is a bibliographic database

that contains more than 26 million references to journal articles in life sciences, with a

concentration on biomedicine.

Some key points about the data:

	 1)	 The dataset covers multiple relations between treatment and

disease, like

–– Cure: Treatment cures the disease irrespective of whether it is

clinically proven or not.

–– Only disease: No mentions of treatment in the sentence.

–– Only treatment: No mentions of disease in the sentence.

–– Prevent: Treatment prevents or inhibits a disease from

happening.

–– Side effect: Disease is a result of treatment.

–– Vague: The relationship is semantically unclear.

–– Does NOT Cure: Treatment is not effective.

–– Complex: Same entities taking part in several interconnected

relationships, or there are many-many relationships possible.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

https://biotext.berkeley.edu/dis_treat_data.html
https://biotext.berkeley.edu/dis_treat_data.html

185

	 2)	 <label> means that the word that follows it is the first of the entity and

</label> means that the word that proceeds it is the last of the entity.

	 3)	 There is unlabeled data shared for testing.

You will download the sentences with roles and relations file from the above

mentioned link and place the files as shown below:

Data

├── sentences_with_roles_and_relations.txt
├── labeled_titles.txt
├── labeled_abstracts.txt

Load the data from the text file. You will not be working with all of the relations;

you will just be focusing on the Cure, Prevent, and Side Effect relations. The rest are

discarded.

import re

import pandas as pd

import numpy as np

import os

 �f = open('./Data/sentences_with_roles_and_relations.txt',

encoding = "ISO-8859-1")

f_data = []

for line in f.readlines():

 line = line[:-1] # Remove linebreak

 f_data.append(line.split('||'))

f.close()

rows = []

for l in f_data:

 �if l[1] not in ['NONE', 'TREATONLY', 'DISONLY', 'TO_SEE', 'VAGUE',

'TREAT_NO_FOR_DIS']:

 sent = ' '.join(l[0].split())

 dis_re = re.compile('<DIS.*>(.*)</DIS.*>')

 disease = dis_re.search(sent).group(1)

 treat_re = re.compile('<TREAT.*>(.*)</TREAT.*>')

 treat = treat_re.search(sent).group(1)

Chapter 6 Handling Availability of Low-Training Data in Healthcare

186

 sent = re.sub(r'<.*?> ', '', sent).strip()

 # Handles sentences ending with <*> structure

 sent = re.sub(r'<.*?>', '', sent)

 rows.append([sent, l[1], treat.strip(), disease.strip()])

 �biotext_df = pd.DataFrame(data=rows, columns=['sentence', 'relation',

'term1', 'term2'])

The above code leverages the file that already contains the relation labels but you

can also use other files present in the folder, but some preprocessing needs to be done in

order to leverage it for your purpose.

biotext_df.relation.value_counts()

Output

 TREAT_FOR_DIS 830

 PREVENT 63

 SIDE_EFF 30

You can see that there is a lot of imbalance in relations, with the majority being

occupied by TREAT_FOR_DIS or Cure relations. This can be handled during label

modeling by passing a class imbalance array that contains a proportion of each class.

�Labeling Functions
What you have is tagged data on Treatment, Disease, and their relations from biomedical

journals. Effectively, there can be three major types of labeling functions that you can

create for an information extraction task like yours.

	 1)	 Syntactic information: Syntactic information helps you capture

grammatical dependencies between words and helps you

discover common patterns for a relation class.

	 2)	 Distance supervision: Use of external ontology like UMLs to

capture biomedical entities other than Treatment and Disease.

	 3)	 Regex: There are certain patterns that can be indicative of a relation type

with good precision. For example, words like prevent, prevention, reduce,

or reduction can easily indicate the Prevent relation class.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

187

�Regex

A quick way to get started with creating label functions is to scan the bunch of text

belonging to the category you want to predict.

You can start with seeing the count plot for different n-grams of the text. You will

be using the sklearn module for this, specifically sklearn.feature_extraction.text.

CountVectorizer.

 �sklearn.feature_extraction.text.CountVectorizer: "Convert a collection

of text documents to a matrix of token counts"

But before directly running the Countvectorizer there are some preprocessing steps

that you should carry out in order to make the exercise more effective:

	 1)	 Normalize words to their lemmas so that words that are

semantically the same are not counted differently, such as

“providing” and “provide.”

	 2)	 Remove all numerical mentions.

	 3)	 Remove common English stop words.

	 4)	 Lower the text.

You are going to use WordNet Lemmatizer from the nltk package to lemmatize

individual things. One of the important aspects of using the WordNet Lemmatizer is that

you need to provide an appropriate pos tag for the word. If this is not done, it can lead to

abrupt or no lemmatization.

Let’s understand this with an example.

You start by importing the relevant packages and classes.

from nltk import pos_tag

from nltk.stem import WordNetLemmatizer

lemmatizer = WordNetLemmatizer()

If you provide a word without any context of a pos tag, the word doesn’t get

lemmatized.

 lemmatizer.lemmatize("sitting")

Chapter 6 Handling Availability of Low-Training Data in Healthcare

188

Output
sitting

If you provide the context of the pos tag, lemmatization works.

 lemmatizer.lemmatize("sitting", pos = "v")

Output
sit

There are five types of pos tags for WordNet:

–– Adjective

–– Adjective satellite

–– Adverb

–– Noun

–– Verb

Most of you have heard about adjectives, adverbs, nouns, and verbs, but adjective

satellite might be a new term. An adjective satellite is a class of adjectives that are used

specifically in certain contexts. For example, there can only be “arid climate;” there can’t

be “arid skin.” However, PennTreeBank, which is used for creating pos tags, doesn’t

differentiate between satellite and normal adjectives and hence you will consider both of

them as adjectives.

Armed with the info above, let’s design your preprocessing function. For

lemmatization, you will maintain a label map of a pos tag to its label used for the

WordNet Lemmatizer.

 mapping_pos_label = {"JJ":'a',

 "RB":'r',

 "NN": 'n',

 "VB":'v'}

Chapter 6 Handling Availability of Low-Training Data in Healthcare

189

Next, you define a function that returns WordNet pos label if the pos tag of the word

is either an adjective (JJ*), adverb(RB*), noun(NN*), or verb(VB*).

 def get_pos_label(w, postag, mapping_pos_label):

 for k, v in mapping_pos_label.items():

 if postag.startswith(k):

 return v

 return "n"

Note in the above function you return a NOUN tag if the regex doesn’t find a match

as by default the WordNet Lemmatizer uses Noun as the pos tag.

You have everything you need to create a preprocessing function.

import re

 def preprocess_text(text):

 text = text.lower()

 text = " ".join([lemmatizer.lemmatize(w,

 pos= get_pos_label(w,

 pos_w,

 mapping_pos_label))\

 for w, pos_w in pos_tag(text.split()) \

 if w not in list(set(stopwords.words('english')))])

 text = re.sub(r'\d+', '', text)

 return text

You can use this preprocessor function either before using CountVectorizer or pass

it in the CountVectorizer function. Since the latter looks neater, let’s use it.

cv = CountVectorizer(preprocessor = preprocess_text,

 ngram_range = (1,3),

 min_df = 0.01)

Besides preprocessor, you also see two other parameters. The values for them are

chosen empirically. Please feel free to experiment. See the results in Figure 6-8.

•	 ngram_range: Tells you about the length of phrases you should

consider finding a count for.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

190

•	 min_df: If it’s a float, you can assume at least a percentage of samples

should have a mention of vocabulary words. If it’s an integer, assume

that at least that many rows should have a mention of vocabulary

words.

 �count_mat = cv.fit_transform(biotext_df[biotext_df.relation.isin([

"TREAT_FOR_DIS"])].sentence)

�count_df = pd.DataFrame(count_mat.todense(), columns=cv.get_feature_names())

count_df = count_df.sum().reset_index()

 count_df.columns = ["word","val"]

 count_df = count_df.sort_values('val', ascending = False)

import plotly.express as px

 �fig = px.pie(count_df.head(20), values='val', names='word', title="Top

Words for 'TREAT_FOR_DIS' Text")

fig.show()

Similarly, repeat the process for the SIDE_EFF and PREVENT classes. See Figures 6-9

and 6-10.

Figure 6-8.  Most frequent words/phrases in the TREAT_FOR_DIS category

Chapter 6 Handling Availability of Low-Training Data in Healthcare

191

The three figures above yield some really useful insights into the key words from the

corpus and can help you form some regex-based LFs.

 treatment_keywords = ['treatment', 'therapy','effective','treat', "reduce"]

Note that for treatment keywords you are seeing a lot of oncology-related terms like

lung cancer, breast cancer etc. but I would avoid taking them for a label function as they

can be just because of the limited corpus you have. You should try to create more robust

functions keeping precision in check.

Figure 6-9.  Most frequent words/phrases for the PREVENT category

Figure 6-10.  Most frequent words/phrases for the SIDE_EFF category

Chapter 6 Handling Availability of Low-Training Data in Healthcare

192

Similarly,

 �prevent_keywords = ["protect", "prevent", "inhibit", "block",

"control", 'effect']

 side_effect_keywords = ["risk","follow", "associate", "toxic"]

�Syntactic

There will be certain words that will not be very frequent but are still useful in tying a

disease to the treatment and its various relations.

To find such words, you will leverage the syntactic structure of the text. Specifically,

you will work on the dependency parsed tree of the sentence. This is a computational

linguist technique used to analyze the grammatical structure of the sentence,

establishing “head” words and establishing relations between those words. For more

info, refer to https://nlp.stanford.edu/software/nndep.html.

You will parse the dependency tree into a graph using the networkx library and look

for patterns of the words occurring in between the disease and treatment paths.

Generally there can be multiple paths connecting two paths, but what you are most

interested in is the shortest dependency path. This is preferred as it contains only the

necessary information to establish a relationship between any two entities.

For example, consider this statement from the PREVENT class:

Modified|bra in the prevention of mastitis in nursing mothers.

Here

Modified|bra is the treatment and mastitis is the disease.

The dependency graph looks something like Figure 6-11.

Figure 6-11.  Dependency graph, scispacy

Chapter 6 Handling Availability of Low-Training Data in Healthcare

https://nlp.stanford.edu/software/nndep.html

193

Note  “|” is introduced instead of a “ “ for a reason. More on this later.

Now if you want to traverse the dependencies from modified bra to mastitis, there

are multiple words and dependency jumps between the two entities. However, the SDP

is rather simple.

The SDP is

Modified|bra−−prevention−−mastitis

Some other examples are

	 1)	 CONCLUSIONS: These data, the first evidence that chronic

stress can inhibit the stability of the IgG antibody response to a

bacterial|vaccine for pneumonia, provide additional evidence of

health risks associated with dementia caregiving.

bacterial|vaccine−−stability−−pneumonia

	 2)	 Protective effect of pralidoxime on muscle|fiber|necrosis

induced by organophosphate compounds.

pralidoxime−−effect−−muscle|fiber|necrosis

You can see how perfectly the SDP captures the relevant information to relate two

entities just based on sentence structure and hence you will be using this to identify

some new relations or words.

For this you will be using the scispacy package used previously in Chapter 4 to

analyze the vocabulary of the BERT model. You will also be loading the networkx library

to find the shortest dependency path.

import spacy

import scispacy

import networkx as nx

from scispacy.linking import EntityLinker

 nlp = spacy.load('en_core_sci_lg')

Chapter 6 Handling Availability of Low-Training Data in Healthcare

194

Before diving into the main code, there are some things you should understand.

	 1)	 You are using scispacy for dependency parsing and not the

spacy general text parser for the simple reason that scispacy’s

dependency parsing is trained on the GENIA 1.0 corpus and

OntoNotes 5.0, which increases the accuracy and robustness of

the parser on biomedical text.

	 2)	 Spacy doesn’t tokenize on white spaces, while most of your

labeling (by a human annotator or otherwise) is based on white

spaces. This can lead to some misalignments of the pos tag for a

target token as it can get tokenized into smaller constituents based

on spacy’s logic. To counter this you will

	 a)	 Write a remerge logic to merge entities (disease or treatment)

that got split. Generally words with parentheses were showing

erratic behavior.

	 3)	 You will have noticed in the examples above the use of the “|”

character to replace spaces in the disease and treatment phases. This

is because you want to use these phrases as one single entity and not

separate entities in the dependency tree for SDP calculation.

For more information on scispacy please refer to “ScispaCy: Fast and Robust Models

for Biomedical Natural Language Processing” by Neuman et al.

You start by writing the retokenization logic. For this, you use the merge functionality

of spacy’s Doc class. It merges tokens that are not white spaces in place. Effectively the

tokens available from the Doc object become white space-separated.

 def remerge_sent(sent):

 i = 0

 while i < len(sent)-1:

 tok = sent[i]

 if not tok.whitespace_:

 ntok = sent[i+1]

 # in-place operation.

 sent.merge(tok.idx, ntok.idx+len(ntok))

 i += 1

 return sent

Chapter 6 Handling Availability of Low-Training Data in Healthcare

195

Next you initialize an empty list.

 sdp_list = {'PREVENT': [],

 'SIDE_EFF': [],

 'TREAT_FOR_DIS': []}

In the main code, you take these main steps:

	 1)	 You start by running two for loops, one for the different relation

types of disease and treatment and another for the different

sentences of the class.

	 2)	 You initialize an empty Graph using the networkx library.

	 a)	 For each token, you add a relation with all its children by

maintaining a separate edges list and adding them to the

Networkx Graph object using the add_edges_from function.

	 b)	 You also add a node with its properties using the add_nodes_from

function.

	 3)	 You also maintain a Python dictionary (meta_info) containing

different info that you can leverage for analysis.

for KEY in sdp_list.keys():

 for i,row in biotext_df[biotext_df.relation.isin([KEY])].iterrows():

 # Entities to find SDP between

 entity1 = row["term1"].replace(" ","|").replace("`","")

 entity2 = row["term2"].replace(" ","|").replace("`","")

 # Adjusting for Space

 new_sentence = row["sentence"].replace(row["term1"], entity1)

 new_sentence = new_sentence.replace(row["term2"], entity2)

 # Spacy Pipeline

 doc = nlp(new_sentence)

 doc = remerge_sent(doc)

 �entity1_idx = [token.i for token in doc if token.text in

[entity1]][0]

 �entity2_idx = [token.i for token in doc if token.text in

[entity2]][0]

Chapter 6 Handling Availability of Low-Training Data in Healthcare

196

 # Load Networkx Graph

 G = nx.Graph()

 # Load spacy's dependency tree into a networkx graph

 edges = []

 for token in doc:

 for child in token.children:

 G.add_nodes_from([(token.i, {"pos": token.pos_,

 "text": token.text}),

 (child.i, {"pos": child.pos_,

 "text": child.text})])

 edges.append((token.i,

 child.i))

 # Addding Edges

 G.add_edges_from(edges)

 meta_info = {}

 meta_info["entity1"] = entity1

 meta_info["entity2"] = entity2

 meta_info["entity1_idx"] = entity1_idx

 meta_info["entity2_idx"] = entity2_idx

 meta_info["graph_object"] = G

 �shortest_path_list = nx.all_shortest_paths(G, source = entity1_idx,

target = entity2_idx)

 meta_info["word_list"] = [(G.node[n]['text'], G.node[n]['pos']) \

 for shortest_path in shortest_path_list \

 for i,n in enumerate(shortest_path) \

 if i>0 and i<len(shortest_path)-1]

 sdp_list[KEY].append(meta_info)

Since you have the SDP list for the tree relations, let’s analyze what words/phrases

you get in the dependency path of the sentence.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

197

Similar to the strategy adopted earlier, you will lemmatize your words using the

WordNet Lemmatizer.

 mapping_pos_label_spacy = {"ADJ":'a',

 "ADV":'r',

 "NOUN": 'n',

 "VERB":'v'}

 lemmatized_list = [[lemmatizer.lemmatize(word[0].lower(),

 get_pos_label(word[0],

 word[1],

 �mapping_pos_label_

spacy)) \

 for word in val['word_list']] \

 for val in sdp_list["TREAT_FOR_DIS"] \

 if len(val['word_list']) > 0]

Next, you create a function named get_top_words, in which you

•	 Take individual wordlists from the lemmatized tokens.

•	 Create 1-3 gram tokens.

•	 Find the frequency and sort.

 def get_top_words(lemmatized_list, n):

 """

 Show Top 'n' words

 """

 count_df = pd.Series([" ".join(word_phrase) \

 for word_list in lemmatized_list \

 for i in range(1,4) \

 �for word_phrase in nltk.ngrams(word_list, i)]).

value_counts().reset_index()

 count_df.columns = ["word","counts"]

 count_df = count_df[count_df.counts > 1]

 for i,row in count_df.head(n).iterrows():

 print(row["word"] ,"---->", row["counts"])

Chapter 6 Handling Availability of Low-Training Data in Healthcare

198

With this, you get the following values for the three classes.

	 1)	 TREAT_FOR_DIS

 patient ----> 189

 treatment ----> 134

 treat ----> 59

 use ----> 43

 effective ----> 36

 effect ----> 31

 therapy ----> 23

 treat patient ----> 20

 trial ----> 19

 management ----> 16

 undergo ----> 16

 study ----> 15

 perform ----> 13

 show ----> 13

 rate ----> 13

 effectiveness ----> 13

 improve ----> 11

 efficacy ----> 11

 result ----> 11

 receive ----> 11

	 2)	 PREVENT

 prevent ----> 9

 prevention ----> 6

 effective ----> 4

 use ----> 4

 reduce ----> 4

 vaccine ----> 3

 patient ----> 3

 effect ----> 3

 study ----> 2

 incidence ----> 2

 effective prevent ----> 2

Chapter 6 Handling Availability of Low-Training Data in Healthcare

199

 risk ----> 2

 stability ----> 2

 trial ----> 2

 safe ----> 2

	 3)	 SIDE_EFF

 associate ----> 5

 rate ----> 4

 risk ----> 4

 case ----> 3

 eye ----> 3

 administration ----> 2

 complication ----> 2

 neurotoxicity ----> 2

 patient ----> 2

 associate risk ----> 2

 develop ----> 2

 had eye ----> 2

 had ----> 2

As you can observe, the words highlighted above have now “weakly” added new

information to help classify the relations. Moreover, some of them didn’t make sense to

include in a wild search, but within the SDP context chances of having false positives

gets reduced, like “patient” in the TREAT_FOR_DIS sentences.

�Distance Supervision

There are many words or phrases that carry semantic meaning along with them and

hence they can just be substituted with a statistical frequency-based analysis. For you

to identify such phrases, you will be leveraging UMLs ontology, which captures over

110 medical concepts such as therapeutic or preventive procedures, pharmacologic

substances, health care activity, pathologic functions, etc.

You learned about UMLs in Chapter 4, so here you’ll look at the code and analyze the

output.

Firstly, make sure you add the UMLs pipeline to spacy. For this you will just call the

EntityLinker class to add the umls database.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

200

 linker = EntityLinker(resolve_abbreviations=False, name="umls")

keeping default thresholds for match percentage.

nlp.add_pipe(linker)

UMLs provides a class name to each of its TXXX identifier, TXXX is code

for parents for each of the CUI numbers a unique concept

identifier used by UMLs Kb

To obtain this file please login to https://www.nlm.nih.gov/research/

umls/index.html

Shared in Github Repo of the book :)

 type2namemap = pd.read_csv("SRDEF", sep ="|", header = None)

 type2namemap = type2namemap.iloc[:,:3]

 type2namemap.columns = ["ClassType","TypeID","TypeName"]

 �typenamemap = {row["TypeID"]:row["TypeName"] for i,row in type2namemap.

iterrows()}

Then for each of the relation classes you create a concept dataframe that contains

how often a particular concept occurred. Unlike the previous setup where you were just

focused on frequency, here you will also look for uniqueness.

 KEY = "TREAT_FOR_DIS"

umls_concept_extracted = [[umls_ent for entity in doc.ents for umls_ent in

entity._.umls_ents] for doc in nlp.pipe(biotext_df[biotext_df.relation.

isin([KEY])].sentence.tolist())]

 �umls_concept_cui = [linker.kb.cui_to_entity[concept[0]] for concepts in

umls_concept_extracted for concept in concepts]

Capturing all the information shared from the UMLS DB in a dataframe

umls_concept_df = pd.DataFrame(umls_concept_cui)

concept_df = pd.Series([typenamemap[typeid] for types in umls_concept_

df.types for typeid in types]).value_counts().reset_index()

 concept_df.columns = ["concept","count"]

 �umls_concept_df["Name"] = pd.Series([[typenamemap[typeid] for typeid in

types] for types in umls_concept_df.types])

Based on the concept_df dataframe from each of the keys, Table 6-1 shows the major

UML types that can be used to discriminate between relation types.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

201

Table 6-1.  UML Types for Each Relation

Relation UML Types Reason Concepts Example

TREAT_FOR_DIS Therapeutic or

preventive procedure

Therapy and treatments Surgical procedures, chemo/

radiation/aspirin therapy,

treatment protocols, etc.

TREAT_FOR_DIS Intellectual product Methods, objective, and

processes

Methods, objectives, and

processes

TREAT_FOR_DIS Qualitative concept Assesses quality Effectiveness, typical,

simple, complete

TREAT_FOR_DIS Patient or disabled

group

Captures word patient and

its aliases

Patients, patient, etc.

TREAT_FOR_DIS Temporal concept Pertains to time and

duration mentions

Year, postoperative period,

weekly, transitory, etc.

TREAT_FOR_DIS Healthcare activity Evaluation and reporting Evaluation and reporting

PREVENT Immunologic factor Identifies active substance

whose activities affect

or play a role in the

functioning of the immune

system

Vaccines and combination

therapies

PREVENT Idea or concept Conclusions or outcomes Conclusion

PREVENT Occupational activity Analysis and activity of the

occupation

Economic analysis

SIDE_EFF Sign or symptom Shows effect of a drug Growing pain

SIDE_EFF Injury or poisoning Shows effect of a drug Wounds/injuries

SIDE_EFF Body part, organ, or

organ component

Shows effect of a drug Any body part

SIDE_EFF Pathologic function Adverse reactions and

effect

Brain hemorrhage,

adverse reaction to drug,

spontaneous abortion

Chapter 6 Handling Availability of Low-Training Data in Healthcare

202

�Pipeline
In order to demonstrate Snorkel’s capabilities, you need to create an experiment by

splitting your data into two datasets:

•	 An unlabeled training dataset named train_df that Snorkel’s

LabelModel will use to learn the labels

•	 A hand-labeled development dataset named val_df you will use to

determine if your LFs work

You will maintain the distribution of the target class by sampling in a stratified fashion.

from sklearn.model_selection import train_test_split

train_df, val_df, train_labels, val_labels = train_test_split(

 biotext_df,

 biotext_df['relation'],

 test_size=0.4,

 stratify = biotext_df['relation'],

 random_state = 42

)

As discussed, Snorkel has three primary interfaces

•	 Labeling functions

•	 Transformation functions

•	 Slicing functions

I will be discussing labeling function in depth in this chapter. A labelling function

deterministically determines the class of the data. These functions can work at any

level (text/para/metadata) and can leverage multiple sources of information (models/

external databases/ontologies)

In order to write labeling functions, you need to define the label schema for your

problem.

	

L x

ABSTAIN
TREAT FOR DIS
PREVENT
SIDE EFF

i � � �

��

�
�
�

�
�
�

�1

0

1

2

,

, _ _

,

, _

��
�
�

�
�
� 	

Chapter 6 Handling Availability of Low-Training Data in Healthcare

203

It is mandatory to define an ABSTAIN label, besides the classes present in the data,

because this allows Snorkel to vote for a class only if there is enough evidence. If you get

a lot of abstain values as your output from Snorkel, then you will have to increase the

coverage for your LFs.

Define our numeric labels as integers

 ABSTAIN = -1

 TREAT_FOR_DIS = 0

 PREVENT = 1

 SIDE_EFF = 2

 def map_labels(x):

 """Map string labels to integers"""

 if x == 'TREAT_FOR_DIS':

 return TREAT_FOR_DIS

 elif x == 'PREVENT':

 return PREVENT

 elif x == 'SIDE_EFF':

 return SIDE_EFF

val_labels = val_labels.apply(map_labels, convert_dtype=True)

�Writing Your LFs
The program interface for labeling functions is snorkel.labeling.LabelingFunction.

They are instantiated with a name, a function reference, any resources the function

needs, and a list of any preprocessors to run on the data records before the labeling

function runs.

There are two ways to define a LF function:

	 1)	 Using the base class LabelingFunction.

 snorkel.labeling.LabelingFunction(name, f, resources=None, pre=None)

 - "name" = Name of the LF.

 - "f" = Function that implements the LF logic.

 - "resources" = Labeling resources passed into f

 - "pre" = Preprocessors to run on the data

Chapter 6 Handling Availability of Low-Training Data in Healthcare

204

	 2)	 Using the decorator labeling_function.

 snorkel.labeling.labeling_function(name=None, resources=None, pre=None)

 - "name" = Name of the LF.

 - "resources" = Labeling resources passed into f

 - "pre" = Preprocessors to run on the data

You will be using the decorator method as it is much easier.

For those who don’t understand decorators, decorators basically take a function, add

some functionality (a.k.a. decorate it), and return it by calling it.

�Working with Decorators

Based on your analysis, you have shortlisted the following words for each of the relation

classes. Hence, you will just write a labeling function that returns the relation class if any

of their respective words are found and otherwise abstains from the label.

 �treatment_keywords = ['treatment', 'therapy','effective','treat',

"reduce"]

 �prevent_keywords = ["protect", "prevent", "inhibit", "block",

"control", 'effect']

 side_effect_keywords = ["risk","follow", "associate", "toxic"]

@labeling_function()

 def sent_contains_TREAT_FOR_DIS(x):

 text = x.sentence.lower()

 lemmatized_word = [lemmatizer.lemmatize(w,

 pos= get_pos_label(w,

 pos_w,

 mapping_pos_label))\

 for w, pos_w in pos_tag(text.split()) \

 if w not in list(set(stopwords.words('english')))]

 �return TREAT_FOR_DIS if any([True if key in lemmatized_word else False

for key in treatment_keywords]) else ABSTAIN

Chapter 6 Handling Availability of Low-Training Data in Healthcare

205

@labeling_function()

 def sent_contains_SIDE_EFF(x):

 text = x.sentence.lower()

 lemmatized_word = [lemmatizer.lemmatize(w,

 pos= get_pos_label(w,

 pos_w,

 mapping_pos_label))\

 for w, pos_w in pos_tag(text.split()) \

 if w not in list(set(stopwords.words('english')))]

 �return SIDE_EFF if any([True if key in lemmatized_word else False for

key in side_effect_keywords]) else ABSTAIN

@labeling_function()

 def sent_contains_PREVENT(x):

 text = x.sentence.lower()

 lemmatized_word = [lemmatizer.lemmatize(w,

 pos= get_pos_label(w,

 pos_w,

 mapping_pos_label))\

 for w, pos_w in pos_tag(text.split()) \

 if w not in list(set(stopwords.words('english')))]

 �return PREVENT if any([True if key in lemmatized_word else False for

key in prevent_keywords]) else ABSTAIN

Yes, it is that simple.

�Preprocessor in Snorkel

But there is one problem with the above code. You must repeat the lemmatization and

text lower logic every time for each function. Can’t you preprocess your data beforehand

and then use it without repeating logic in each function?

Well, Snorkel has a preprocessor that maps a data point to a new data point.

LabelingFunctions can use preprocessors, which lets you write LFs over

transformed or enhanced data points.

You add the @preprocessor(...) decorator to preprocessing functions to create

preprocessors. Preprocessors also have extra functionality, such as memoization (i.e.

input/output caching, so it doesn’t re-execute for each LF that uses it).

Chapter 6 Handling Availability of Low-Training Data in Healthcare

206

from snorkel.preprocess import preprocessor

@preprocessor(memoize = True)

 def get_syntactic_info(x):

 # Entities to find SDP between

 entity1 = x.term1.replace(" ","|").replace("`","")

 entity2 = x.term2.replace(" ","|").replace("`","")

 # Adjusting for Space

 new_sentence = x.sentence.replace(x.term1, entity1)

 new_sentence = new_sentence.replace(x.term2, entity2)

 # Spacy Pipeline

 doc = nlp(new_sentence)

 doc = remerge_sent(doc)

 entity1_idx = [token.i for token in doc if token.text in [entity1]][0]

 entity2_idx = [token.i for token in doc if token.text in [entity2]][0]

 # Load Networkx Graph

 G = nx.Graph()

 # Load spacy's dependency tree into a networkx graph

 edges = []

 for token in doc:

 for child in token.children:

 G.add_nodes_from([(token.i, {"pos": token.pos_,

 "text": token.text}),

 (child.i, {"pos": child.pos_,

 "text": child.text})])

 edges.append((token.i,

 child.i))

 # Addding Edges

 G.add_edges_from(edges)

 �shortest_path_list = nx.all_shortest_paths(G, source = entity1_idx,

target = entity2_idx)

Chapter 6 Handling Availability of Low-Training Data in Healthcare

207

 word_list = [(G.node[n]['text'], G.node[n]['pos']) \

 for shortest_path in shortest_path_list \

 for i,n in enumerate(shortest_path) \

 if i>0 and i<len(shortest_path)-1]

 lemmatized_list = [lemmatizer.lemmatize(word[0].lower(),

 get_pos_label(word[0],

 word[1],

 �mapping_pos_label_

spacy)) \

 for word in word_list]

 x.sdp_word = lemmatized_list

 return x

Similarly, you know the important words from the SDP path for each of the relation

classes. Hence you start by initializing them.

 �treatment_sdp_keywords = ['patient', 'use','trial','management',

"study", "show", "improve"]

 prevent_sdp_keywords = ["reduce", "vaccine", "incidence", "stability"]

 �side_effect_sdp_keywords = ["rate","case", "administration",

"complication", "develop"]

@labeling_function(pre=[get_syntactic_info])

 def sent_sdp_TREAT_FOR_DIS(x):

 �return TREAT_FOR_DIS if any([True if key in x.sdp_word else False for

key in treatment_sdp_keywords]) else ABSTAIN

@labeling_function(pre=[get_syntactic_info])

 def sent_sdp_SIDE_EFF(x):

 �return SIDE_EFF if any([True if key in x.sdp_word else False for key in

side_effect_sdp_keywords]) else ABSTAIN

@labeling_function(pre=[get_syntactic_info])

 def sent_sdp_PREVENT(x):

 �return PREVENT if any([True if key in x.sdp_word else False for key in

prevent_sdp_keywords]) else ABSTAIN

Chapter 6 Handling Availability of Low-Training Data in Healthcare

208

See how easy and clean the code becomes now.

Lastly, you get your distance-based weak learners as well. Similar to the

preprocessing done above, you use the preprocessing decorator to do another

preprocessing.

@preprocessor(memoize = True)

 def get_umls_concepts(x):

 �umls_concept_extracted = [[umls_ent for entity in doc.ents for umls_ent

in entity._.umls_ents] for doc in nlp.pipe([x.sentence])]

 try:

 �umls_concept_cui = [linker.kb.cui_to_entity[concept[0]] for

concepts in umls_concept_extracted for concept in concepts]

 �# Capturing all the information shared from the UMLS DB in a

dataframe

 umls_concept_df = pd.DataFrame(umls_concept_cui)

 �concept_df = pd.Series([typenamemap[typeid] for types in umls_

concept_df.types for typeid in types]).value_counts().reset_index()

 concept_df.columns = ["concept","count"]

 x["umls_concepts"] = concept_df.concept.tolist()

 except Exception as e:

 x["umls_concepts"] = []

 return x

Based on Table 6-1, you also know the dominant and significant UML concepts from

the sentences.

 treatment_umls_concepts = ['Therapeutic or Preventive Procedure',

 'Intellectual Product',

 'Qualitative Concept',

 'Patient or Disabled Group',

 "Temporal Concept",

 "Health Care Activity"]

Chapter 6 Handling Availability of Low-Training Data in Healthcare

209

 prevent_umls_concepts = ["Immunologic Factor",

 "Idea or Concept",

 "Finding",

 "Occupational Activity"]

 side_effect_umls_concepts = ["Sign or Symptom",

 "Injury or Poisoning",

 "Body Part, Organ, or Organ Component",

 "Pathologic Function"]

Finally, you write the labeling functions for this distance supervision setup.

@labeling_function(pre=[get_umls_concepts])

 def sent_umls_TREAT_FOR_DIS(x):

 �return TREAT_FOR_DIS if any([True if key in x.umls_concepts else False

for key in treatment_umls_concepts]) else ABSTAIN

@labeling_function(pre=[get_umls_concepts])

 def sent_umls_SIDE_EFF(x):

 �return SIDE_EFF if any([True if key in x.umls_concepts else False for

key in prevent_umls_concepts]) else ABSTAIN

@labeling_function(pre=[get_umls_concepts])

 def sent_umls_PREVENT(x):

 �return PREVENT if any([True if key in x.umls_concepts else False for

key in side_effect_umls_concepts]) else ABSTAIN

�Training
For training, you must apply your weak labels to each sentence. Since your data is stored

in a pandas dataframe, you will leverage a built-in function called PandasLFApplier.

It is a LFApplier class that gives a label matrix. It’s a NumPy array L with one column

for each LF and one row for each data point, where L[i, j] is the label that the jth labeling

function output for the ith data point. You’ll create a label matrix for the train set.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

210

lfs = [sent_contains_TREAT_FOR_DIS, sent_contains_SIDE_EFF, sent_contains_

PREVENT,

 sent_sdp_TREAT_FOR_DIS, sent_sdp_SIDE_EFF, sent_sdp_PREVENT,

 sent_umls_TREAT_FOR_DIS, sent_umls_SIDE_EFF, sent_umls_PREVENT]

Instantiate our LF applier with our list of LabelFunctions (just one for now)

applier = PandasLFApplier(lfs=lfs)

Apply the LFs to the data to generate a list of labels

L_train = applier.apply(df=train_df)

L_dev = applier.apply(df=val_df)

�Evaluation
Snorkel nicely packs lots of analysis for us in a simple function named LFAnalysis.

There are many summary statistics that are reported (see Figure 6-12):

•	 Polarity: The set of unique labels this LF outputs (excluding abstains)

•	 Coverage: The fraction of the dataset the LF labels

•	 Overlaps: The fraction of data points with at least two (non-abstain)

labels.

•	 Conflicts: The fraction of the dataset where this LF and at least one

other LF label disagree (non-abstain labels)

•	 Correct: The number of data points this LF labels correctly (if gold

labels are provided)

•	 Incorrect: The number of data points this LF labels incorrectly (if

gold labels are provided)

•	 Empirical Accuracy: The empirical accuracy of this LF (if gold labels

are provided)

Run a label function analysis on the results, to describe their output

against the labeled development data

LFAnalysis(L=L_dev, lfs=lfs).lf_summary(val_labels.values)

Chapter 6 Handling Availability of Low-Training Data in Healthcare

211

Some observations:

•	 You see that TREAT_FOR_DIS performs very well on the coverage

and accuracy metrics.

•	 PREVENT’s SDP label sees a much better empirical accuracy as

compared to other label functions.

•	 SIDE_EFF doesn’t seem to perform that well on UMLs LF. You can

check for combinations of UMLs tags either in the whole sentence or

just in the SDP. You will have to iteratively make these LFs better.

�Generating the Final Labels
So far you have covered a lot of ground. You have

•	 Loaded and prepared the data

•	 Split it into train and test sets

•	 Scanned the data for LF ideas

•	 Created the LF

•	 Looked at preprocessing steps and how you can memoize them

•	 Evaluated the performance of these LFs against a validation data

Figure 6-12.  LFAnalysis output with various metrics

Chapter 6 Handling Availability of Low-Training Data in Healthcare

212

You are finally ready to generate labels. Snorkel provides two main ways to generate

final labels. One is the MajorityLabelVoter, which basically assigns the sample the label

that is given by most LFs.

This generally yields subpar or in some cases equal performance to Snorkel’s more

noise-aware generative model and hence acts as a baseline. A very intuitive way of

understanding this subperformance is due to the fact in MajorityLabel all LFs are

treated equal. However, as you can see for SIDE_EFF, “regex” makes more sense than

“umls” based LFs.

from snorkel.labeling.model import MajorityLabelVoter

 majority_model = MajorityLabelVoter(cardinality = 3)

preds_train = majority_model.predict(L=L_train)

As you can see, you need to provide a cardinality value to the MajorityLabelVoter,

which basically is nothing but the number of non-abstain classes.

This helps establish a baseline. You can now comfortably move to using a more

noise-aware and weighted voting strategy. Details of the strategy are out of scope for this

chapter but for the interested souls, please read the paper titled “Data Programming:

Creating Large Training Sets, Quickly” by Ratner et al.

from snorkel.labeling.model import LabelModel

label_model = LabelModel(cardinality=3, verbose=True)

Before you fit the model, you should understand the different options available for

you to play with.

LabelModel.fit() allows you to play with the following hyperparameters:

•	 n_epochs: The number of epochs to train (where each epoch is a

single optimization step)

•	 lr: Base learning rate (will also be affected by lr_scheduler choice

and settings)

•	 l2: Centered L2 regularization strength

•	 optimizer: Which optimizer to use (one of [“sgd”, “adam”,

“adamax”])

•	 optimizer_config: Settings for the optimizer

Chapter 6 Handling Availability of Low-Training Data in Healthcare

213

•	 lr_scheduler: Which lr_scheduler to use (one of [“constant”,

“linear”, “exponential”, “step”])

•	 lr_scheduler_config: Settings for the LRScheduler

•	 prec_init: LF precision initializations/priors

•	 seed: A random seed to initialize the random number generator with

•	 log_freq: Report loss every this many epochs (steps)

•	 mu_eps: Restrict the learned conditional probabilities to [mu_eps,

1-mu_eps]

You will train the model with defaults for now, but I urge you to experiment and

learn more about the effects of these hyperparameters on tuning.

 label_model.fit(L_train=L_train, n_epochs=100, seed=42)

Let’s see how the generative model compares to the majority vote baseline.

 �majority_acc = majority_model.score(L=L_dev, Y=val_labels, tie_break_

policy="random")[

 "accuracy"

]

 print(f"{'Majority Vote Accuracy:':<25} {majority_acc * 100:.1f}%")

 �label_model_acc = label_model.score(L=L_dev, Y=val_labels, tie_break_

policy="random")["accuracy"

]

 print(f"{'Label Model Accuracy:':<25} {label_model_acc * 100:.1f}%")

Majority Vote Accuracy: 80.8%

Label Model Accuracy: 87.6%

As you can see, the Label model outperforms the Majority Vote by over 7.5%. This is a

major lift. Although nothing conclusive can be said, you should always experiment to see

the sensitivity of the performance by changing the hyperparameters.

One thing you will notice while scoring the performance on validation set is the use

of policy,

Chapter 6 Handling Availability of Low-Training Data in Healthcare

214

Policies to break ties include

•	 abstain: Return an abstain vote (-1).

•	 true-random: Randomly choose among the tied options.

•	 random: Randomly choose among tied option using a deterministic

hash (the values remain consistent over different runs).

�Conclusion
There is no perfect way of weakly learning from your data. You just have to be better

than random. Your LFs can differently predict the output for a data point. You just need

to keep generating ideas by analyzing the data, writing the LF, and then refining and

debugging. As data increases at a much faster veracity and velocity, it is imperative for

organizations to adopt such innovative methods to get started with labeled data and

training powerful models. I hope this chapter has sparked your curiosity to learn more

about these methods. If yes, then it is a win for us.

Chapter 6 Handling Availability of Low-Training Data in Healthcare

215
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_7

CHAPTER 7

Federated Learning
and Healthcare
With better and more computer and hardware technology so easily accessible, there

is a huge influx of analytical data available from different healthcare stakeholders,

from clinical institutions to insurance companies and from patients to pharmaceutical

industries. This huge amount of data is a gold mine for uncovering insights that can

help design an AI-integrated healthcare system aimed at providing better outcomes and

quality at a reasonable cost.

Healthcare data, however generated in volumes, is still fragmented, with legal,

ethical, and privacy concerns inhibiting large scale data analysis for robust research.

For example, as you saw in Chapters 3 and 4, the EHR data collected by Beth Israel

Deaconess Medical Center, although still a large data set, lacked aspects like distribution

of white and non-white population, difference in age distribution, etc. whereas it could

be possible that data that contains more of such unrepresented groups might be present

elsewhere. Hence a more ingenious way of thinking is required.

Federated learning helps us address such issues of privacy and legal limitations by

bringing models to the data rather than the other way around. In this chapter, you are

going to deep dive into federated machine learning. What is TensorFlow Federated?

What are the different privacy mechanisms? The objective of the chapter is not to

introduce you to a novel case study but rather to learn more about the TensorFlow

Federated ecosystem (Federated, Privacy, and Encryption) and its capabilities.

https://doi.org/10.1007/978-1-4842-7086-8_7#DOI

216

�Introduction
Federated learning (FL) is a distributed machine learning concept that allows model

training on decentralized data while addressing the issues of data transfer, privacy, and

security for every stakeholder. There are four main components to a FL system and they

work in sync to do federated learning:

•	 Central server/node: Orchestrates training and deployment of local

models and serves as the playground to create a global model. Local

models are those that are trained on local nodes/edge devices, and

global models are those whose weights are updated using weights

from local nodes.

•	 Local server/devices/node: This is where the real-world data lies.

They are generally edge devices of installed machines collecting

customer data.

•	 Local model: This is any type of machine learning model that trains

on the data present in the local server. These models learn specific to

the data of local devices.

•	 Global model: The final model obtained by assembling information

from different local models.

�How Does Federation Learning Work?
There are four key steps in federated learning training.

Step 1: Transferring the initial model from the central node (see Figure 7-1)

•	 The initial model obtained from the central server is trained on data

available with the model’s owner (i.e. this model is trained with the

available data on a central server).

•	 This global model is then transferred over a network to all of the local

nodes.

Chapter 7 Federated Learning and Healthcare

217

Step 2: Model training

•	 Any type of machine learning model, from basic models like Naive

Bayes and SVM to DeepNets, can be trained.

•	 A fraction of clients are selected for local model training because

selecting lots of clients has diminishing returns over performance

and costs.

•	 The local node’s compute resources are used for training, which

saves the central server compute time and resources.

•	 Sometimes the data is insufficient at a local node, which can make

that node’s contribution futile to the global model, hence techniques

like secure aggregation which allows data sharing between nodes

using public-private keys. Also such a technique helps prevent

individual data leakage issues.

Step 3: Local models transferred to the central node (see Figure 7-2)

Figure 7-1.  Step 1

Chapter 7 Federated Learning and Healthcare

218

•	 After training, all models can be passed back to the central server. For

edge devices, this can cause huge network overheads (cross-device

training) while in cross-silos federal training (groups/institutes as

local nodes) this effect is less pronounced.

•	 Sometimes models can be subjected to adversarial attacks that can

help identify user-sensitive data used to train the models. Hence,

to prevent such attacks, a privacy-preserving layer that implements

techniques like differential privacy or secure aggregation can be

used. Note that differential privacy in principle can also be applied

locally rather than globally. More on this in later sections.

Figure 7-2.  Step 3

Chapter 7 Federated Learning and Healthcare

219

Step 4: The central node aggregates the result from all the local models.

•	 Federated averaging is more than simple averaging of output

probabilities or majority voting.

•	 Whatever parameter needs to be learned, like for example a deep

learning model works on weight updates. Hence a global weight

vector is decided by weighing on the loss metric and normalizing

with the number of samples observed. This way you get more

representation of weights, which statistically (number of samples)

lead to better performance.

•	 There can be many other averaging techniques depending on how

results are transferred from local nodes.

�Types of Federated Learning
Depending upon how the data is distributed across multiple local nodes in the FL

training process, you can classify FL into three major categories.

�Horizontal Federated Learning

In horizontal federated learning, datasets of different local nodes have the same set of

feature space but the amount of overlap of samples is minimal.

This is a natural partitioning for a cross-device setting, where different nodes/users

are trying to improve on a common task, say keyboard suggestions while typing using

GBoard on a mobile app or risk prediction of a disease using wearable device data. See

Figure 7-3.

Chapter 7 Federated Learning and Healthcare

220

�Vertical Federated Learning

Here datasets of different local nodes have the same set of samples/persons but the

amount of overlap of feature space can be different depending on organization data.

When multiple organizations are coordinating, they can look forward to

implementing vertical FL. A feature alignment approach is used to align features of

different individuals and then a single model is trained. The alignment is privacy

preserved, meaning it is not easy to identify protected information. This can be achieved

using encryption. You’ll learn more about this in the secure aggregation discussion.

Some examples are joint collaboration between insurance and banking companies

on common data of shared customers. Labels can be a default rate or any fraudulent

transactions. In healthcare, different hospitals can share info on different tests which

they have expertise in to chart out a comprehensive medical history of the patient. See

Figure 7-4.

Sa
m

pl
es

Features

Data from
Corporation

A

Data from
Corporation

B
Labels

Ho
riz

on
ta

l F
ed

er
at

ed
Le

ar
ni

ng

Figure 7-3.  Horizontal federated learning. Source: “Survey On Federated Learning
Towards Privacy Preserving AI” by Kurupathi et al

Chapter 7 Federated Learning and Healthcare

221

�Federated Transfer Learning

This is implemented in scenarios where both feature space and samples differ. Say a

group of hospitals wants to do breast cancer research. Each hospital has a distinct set

of patients (samples) and they may be capturing different metrics (feature space) with

some minimal capture in both dimensions.

Generally, a common representation is learned between the two feature spaces using

limited common sample sets and then later applied to obtain predictions for only one-

side feature samples. See Figure 7-5.

Sa
m

pl
es

Data from
Corporation

A

Data from
Corporation

B

Vertical Federated Learning

Labels

Features

Figure 7-4.  Vertical federated learning. Source: “Survey On Federated Learning
Towards Privacy Preserving AI” by Kurupathi et al

Chapter 7 Federated Learning and Healthcare

222

�Privacy Mechanism
The larger acceptance of FL in the real word came only when multiple privacy

mechanisms were implemented in addition to the flow discussed in the introduction.

Although the dataset resides on local nodes, there can be re-engineering of model

parameters to obtain information about data. Also, multiple privacy mechanism

techniques can be applied together to ensure more robust security of an individual’s

identity/data.

Sa
m

pl
es

Data from
Corporation

A

Data from
Corporation

B
Labels

Features

Federated Transfer
Learning

Figure 7-5.  Federated transfer learning. Source: “Survey On Federated Learning
Towards Privacy Preserving AI” by Kurupathi et al

Chapter 7 Federated Learning and Healthcare

223

As shown in Figure 7-6, a malicious attacker can try to match gradients to the local

gradient updates and reconstruct the data.

There are many privacy mechanism techniques, but in this chapter we are going to

discuss the two most common ones that are used in current FL systems.

For a more thorough deep-dive of privacy mechanisms and ways to measure their

effectiveness, refer to the paper “Technical Privacy Metrics: A Systematic Survey” by

Wagner et al, released in 2018.

�Secure Aggregation
Secure aggregation is a privacy-preserving machine learning technique that relies on

multi-party computation to compute sums of model parameters when updated from

individual user devices in a secure manner.

In 2017, Google originally proposed a secure aggregation technique in the paper

titled “Practical Secure Aggregation for Privacy-Preserving Machine Learning.” For

mathematical details you can have a look at the paper, but for now let’s understand it

intuitively.

	 1)	 Public and private keys are generated using a schema.

	 2)	 The public keys are shared with each local node.

Figure 7-6.  Gradient matching attack

Chapter 7 Federated Learning and Healthcare

224

	 3)	 These keys are used to encrypt the model parameters changes.

	 4)	 All the local nodes accumulate model weights using mathematical

operations like addition or multiplication.

	 5)	 The accumulated changes are sent to the central server, which

uses the private key to decrypt the data.

Two things to note in the above process are

•	 We can do ALU (arithmetic and logical) operations on the encrypted

data itself as the encryptions are homomorphic in nature. We can

perform ALU operations on data without decrypting it.

•	 The central server sees the accumulated results, which can be

decrypted using the private key.

Also, certain users can drop out abruptly due to network issues. Any change that

happens on the central server only happens when the sum comes from at least n number

of local nodes.

Internally TFF (TensorFlow Federated) uses TensorFlow Encrypted to carry out this

exercise, but for simplicity let’s use the pallier package to see how this can work.

You will be using python-pallier, which uses the Paillier Crypto system (a

homomorphic encryption scheme, see https://blog.openmined.org/the-paillier-

cryptosystem/ for how homomorphic encryption works).

import phe

import numpy as np

Generate Public and Private Key

 public_key, private_key = phe.generate_paillier_keypair(n_length=1024)

 weight1 = np.random.rand(10)

 weight2 = np.random.rand(10)

Note : This is a simple addition but it can be more complex as well

sum_of_local_weights = np.add(weight1, weight2)

 print("Addition Of w1 and w2: " + str(sum_of_local_weights))

encrypted_w1 = [public_key.encrypt(i) for i in weight1]

encrypted_w2 = [public_key.encrypt(j) for j in weight2]

encrypted_sum_of_w1_and_w2 = [i+j for i,j in zip(encrypted_w1, encrypted_w2)]

Chapter 7 Federated Learning and Healthcare

https://blog.openmined.org/the-paillier-cryptosystem/
https://blog.openmined.org/the-paillier-cryptosystem/

225

decryped_sum_of_w1_and_w2 = [private_key.decrypt(k) for k in encrypted_sum_

of_w1_and_w2]

 print("Addition Of Encrypted Number: " + str(decryped_sum_of_w1_and_w2))

Output

Addition Of w1 and w2: [0.01965569 1.38181926 0.95724207 1.40539024

0.56162914 1.26444545

 0.84660776 0.55585975 1.60470971 0.74662359]

Addition Of Encrypted Number: [0.01965569240712506, 1.381819260975988,

0.957242068080129, 1.4053902417875905, 0.5616291366817605,

1.2644454455590868, 0.8466077626079891, 0.5558597475342251,

1.604709707486859, 0.7466235859816883]

You can see how easily homomorphic encryption along with multiple parties (to

ensure robustness and better up-time) can secure data of an individual by sharing the

aggregated result itself.

As you may have thought by now, this technique contains a lot of overhead in terms

of computation, which can scale with the number of local nodes and parameter vector

size.

�Differential Privacy
Differential privacy is a privacy mechanism that tries to quantify the amount of privacy

ensued as a result of adding noise to the data either at the local node (Local DP) or at an

aggregate level (Global DP) such that the end analysis stays the same. Let’s understand it

through an example.

Suppose you take a survey in your class to see how many students have color

blindness to the color green. You plan to include a lot of visuals that might use green

color while explaining some of the concepts.

Objective: Are the majority of people not color blind to green?

Say you administer the survey and the results are as shown in Figure 7-7.

Note  For simplicity, we are using a very small sample size.

Chapter 7 Federated Learning and Healthcare

226

Let’s also imagine your secondary research tells you that people from a certain

ethnicity tend to show color blindness to the color green. So if you are presented with

data Dn, you can in some way identify those particular individuals in the classroom.

But what if you add some noise so that the number becomes non-intuitive and can’t be

pinpointed to a certain section of the classroom.

Figure 7-7.  Differential privacy

Chapter 7 Federated Learning and Healthcare

227

That’s exactly what differential privacy guarantees. It safeguards individuals

participating in the analysis and yet doesn’t affect the result, as in the above case of

finding that the majority of the class is not sensitive to the green color.

Differential privacy introduces a metric called an epsilon, which quantifies how

close the distributions of data is:

	

P f D
P f D

en

n

� �� �
� �� �

�
�

�

	

If ε = 0, then you have an exact distribution and you have achieved peak privacy.

f(Dn) represents the data function and f(D’n) represents the data function after adding

the noise.

In practice, Laplace and normal distributions are used to generate answer to queries

because these functions are more likely to predict numbers closer to the mean (<=1

standard deviations from means; for standard normal it is 68% while for Laplace it is 74%

(b=1)) and yet not giving the correct answer. The mean here will be your true value.

As you know, you can estimate the mean of any distribution if enough random

samples are taken from it by the Central Limit Theorem. In the same way, if multiple

queries are fired to the database containing data from local nodes, an estimate of the

mean can be formed.

For example,

	 1)	 What is the number of non-color blind students in the survey?

	 2)	 What is the number of students belonging to “this” ethnicity?

	 3)	 What is the total number of people?

So each time you throw a number, you are giving an adversary a better chance to

guess the right number/data coming from a local node or any of its characteristics.

While implementing differential privacy, you must make sure that the two

probability distributions are as close as possible. In small sample cases, noise can

completely change the data; with large numbers of samples, noise has a limiting effect

(because more variations are introduced so a single noise can’t mask all samples well).

Hence, designing a noise function is an extremely difficult task sometimes.

Chapter 7 Federated Learning and Healthcare

228

Since noise can sometimes overwhelm small samples, you can introduce another

parameter called δ, a threshold that helps you drop rare categories. So a unique

differential privacy mechanism is actually a function of two things:

•	 Threshold (δ)

•	 Amount of noise (ε)

TensorFlow Privacy is a library in the TensorFlow ecosystem for training machine

learning models with privacy for training data. There are three distinct features that this

library provides:

	 1)	 A training algorithm, specifically gradient descent

	 a)	 It limits the influence of a single datapoint in the resulting

gradient computation by clipping the gradients.

	 b)	 It make the gradient value agnostic of any particular point in the

training batch by adding random noise to the clipped gradients.

	 2)	 Selection and configuration (hyperparameter tuning) of the

privacy mechanisms to apply to each of the aggregates collected

(model gradients, batch normalization weight updates, metrics)

	 3)	 Performance measures

	 a)	 Privacy budget

	 b)	 Epsilon

Note D ifferential privacy is an independent privacy-maintaining technique
that can be used with FL architecture, in which case the updates come from
multi-parties.

�TensorFlow Federated
TensorFlow Federated (TFF) is an open-source framework for applying federated

learning locally through simulated experiments. TFF enables developers to simulate

the included federated learning algorithms on their models and data, as well as to

experiment with novel algorithms.

Chapter 7 Federated Learning and Healthcare

229

TFF’s interfaces are organized in two layers:

•	 Federated Learning (FL) API: This layer offers a set of high-

level interfaces that allow developers to apply the included

implementations of federated training and evaluation to their

existing TensorFlow models.

•	 Federated Core (FC) API: At the core of the system is a set of

lower-level interfaces for expressing novel federated algorithms by

combining TensorFlow with distributed communication operators.

�Input Data
You are going to use the malaria dataset, which contains a total of 27,558 cell images

with equal instances of parasitized and uninfected cells from the thin blood smear slide

images of segmented cells. The data set can be obtained from https://ceb.nlm.nih.

gov/proj/malaria/cell_images.zip.

There are simulated datasets present in the TensorFlow Federated library ecosystem

but the malaria dataset is close to the healthcare domain. In the next chapter, you are

going to see how medical image analysis works on 2D and 3D image data and hence it’s a

good start.

The malaria dataset contains two classes, shown in Figure 7-8:

•	 Parasitized (a.k.a. infected cells)

•	 Non-parasitized (a.k.a. uninfected cells)

Chapter 7 Federated Learning and Healthcare

https://ceb.nlm.nih.gov/proj/malaria/cell_images.zip
https://ceb.nlm.nih.gov/proj/malaria/cell_images.zip

230

You start by loading the data from the local directory and see the distribution of

infected and non-infected image samples.

import os

import glob

 BASE_DIR = os.path.join('./Data')

 parasitized_dir = os.path.join(BASE_DIR,'Parasitized')

 uninfected_dir = os.path.join(BASE_DIR,'Uninfected')

Figure 7-8.  Examples of parasitized and uninfected cells

Chapter 7 Federated Learning and Healthcare

231

 parasitized_files = glob.glob(parasitized_dir+'/*.png')

 uninfected_files = glob.glob(uninfected_dir+'/*.png')

len(parasitized_files), len(uninfected_files)

Output

 (13779, 13779)

It looks like you have a balanced representation for both the classes.

Federated learning requires a federated data set (a collection of data from multiple

users, also known as local nodes). Any federated data is expected to be non-iid which

means different clients should have at least some reasonably similar distributions (local

node-specific characteristics affect the distribution of data on each system).

In your case, you won’t have distinct distributions of the datasets but it would be

good to explore them through visualizations.

�Custom Data Load Pipeline
If you were using a simulated dataset already present in the tff library, you could simply

call the function load_data().

_train, _test = tff.simulation.datasets.<dbname>.load_data()

The data sets returned by load_data() are instances of tff.simulation.

ClientData, which enumerates the set of local nodes to construct a tf.data.Dataset

that represents the data of a particular node and to query the structure of individual data

elements.

Since you are not using a presimulated dataset, you need to construct one yourself.

Since your directory structure is organized in the following fashion

Data/

...Parasitized/

......image_1.png

......image_2.png

...Uninfected/

......image_1.png

......image_2.png

Chapter 7 Federated Learning and Healthcare

232

you can leverage the tf.keras preprocessing function image_dataset_from_

directory.

Calling image_dataset_from_directory(data_directory, labels='inferred')

will return a tf.data.Dataset that yields batches of images from the subdirectories

Parasitized and Uninfected, together with labels 0 and 1 (0 corresponding to

Parasitized and 1 corresponding to Uninfected).

tf.keras.preprocessing.image_dataset_from_directory(

 BASE_DIR, labels='inferred', label_mode='int',

 class_names=None, color_mode='rgb', batch_size=32, image_size=(256,

 256), shuffle=True, seed=None, validation_split=None, subset=None,

 interpolation='bilinear', follow_links=False

)

In the above function, there is also an option to resize the images, but for you to

resize the image you need to know the correct resized shape. Since these are cell images,

they might have different shapes. Let’s quickly check that and then use the preprocessing

function to load the data.

Since you have roughly 30k images, loading each one of them sequentially can take

some time, so you should try to parallelize the operation on different CPU cores and use

the OpenCV library to return the shape of each image.

You start by loading the libraries and using the built-in os library to calculate the

CPU count.

from joblib import Parallel, delayed

import os

nprocs = os.cpu_count()

You use one less CPU than the total number to not disrupt other applications'

compute resources. It’s just a good practice to follow.

You are going to use OpenCV 3 to read in the images. It can be downloaded by

running the following command:

pip install opencv-python==3.4.6.27

 def load_image_shape(img):

 return cv2.imread(img).shape

Chapter 7 Federated Learning and Healthcare

233

 �results = Parallel(n_jobs=nprocs-1)(delayed(load_image_shape)

(img_file) for img_file in parasitized_files + uninfected_files)

 print('Min Dimensions:', np.min(results, axis=0))

 print('Avg Dimensions:', np.mean(results, axis=0))

 print('Median Dimensions:', np.median(results, axis=0))

 print('Max Dimensions:', np.max(results, axis=0))

 Min Dimensions: [40 46 3]

 Avg Dimensions: [132.98345308 132.48715437 3.]

 Median Dimensions: [130. 130. 3.]

 Max Dimensions: [385 394 3]

Note this process just makes the load time faster, but you are still loading the full data

in memory, which is generally not recommended for large datasets. You use generators

for such cases, which loads data as and when required.

So, the median dimensions for the image shape comes at 130 and hence you can

safely rescale all of the images to a standard shape of (128,128,3).

Also, to reshape, the Keras preprocessing library will use bilinear interpolation, which is

the default option so you will just use it (bi here means two dimensions (x,y) of the image).

import numpy as np

import pandas as pd

import tensorflow as tf

import matplotlib.pyplot as plt

from sklearn.model_selection import train_test_split

import tensorflow_federated as tff

 IMG_HEIGHT = 128

 IMG_WIDTH = 128

 BATCH_SIZE = 32

 train_ds = tf.keras.preprocessing.image_dataset_from_directory(BASE_DIR,

 seed=123,

� labels='inferred',

 label_mode='int',

image_size=(IMG_HEIGHT, IMG_WIDTH),

 color_mode='rgb',

Chapter 7 Federated Learning and Healthcare

234

� subset="training",

shuffle=True,

 validation_split = 0.2,

batch_size= BATCH_SIZE)

 Found 27558 files belonging to 2 classes.

 Using 22047 files for training.

 val_ds = tf.keras.preprocessing.image_dataset_from_directory(BASE_DIR,

 seed=123,

 labels='inferred',

 label_mode='int',

�image_size=(IMG_HEIGHT, IMG_WIDTH),

 color_mode='rgb',

 subset="validation",

shuffle=True,

 validation_split = 0.2,

batch_size= BATCH_SIZE)

 Found 27558 files belonging to 2 classes.

 Using 5511 files for validation.

Note T F 2.2.0, which has been the version thus far in our journey, doesn’t
support the image_dataset_from_directory function so it is recommended
to use the latest TensorFlow Federated library, which by default installs TF 2.3.0.
In TF 2.3 and onwards image_dataset_from_directory is supported.

You can also see the class names that the labels are mapped to.

class_names = train_ds.class_names

print(class_names)

Output:

 ['Parasitized', 'Uninfected']

Chapter 7 Federated Learning and Healthcare

235

This means integer 0 is the class Parasitized and 1 is the class Uninfected.

The malaria dataset is a large dataset. Depending on your machine setting, you can

either load the full data into memory or not. To avoid any issues during runtime, you will

enclose your federated data creation in a try-catch block.

 NUM_CLIENTS = 10 # Local Nodes

 CLIENT_LR = 1e-2

 SERVER_LR = 1e-2 # Central Node

NUM_BATCH_CLIENT = int(len(train_ds)/NUM_CLIENTS)

import collections

 client_train_dataset = collections.OrderedDict()

 skip = 0

try :

 for i in range(1, NUM_CLIENTS+1):

 client_name = "Client_" + str(i)

 take = NUM_BATCH_CLIENT

 client_data = train_ds.skip(skip).take(take)

 x_train, y_train = zip(*client_data)

 �print(f"Adding data from Batch No {skip} to {take*i} for client :

{client_name}")

 �# We are going to unbatch and load the data to prevent data

dropping in creating client data later on

 �data = collections.OrderedDict((�('label', [y for x in y_train

for y in x]),

 �('pixels', [y for x in x_train

for y in x])))

 client_train_dataset[client_name] = client_data

 skip = take*i

except Exception as e:

 print("Memory Error - Client Data creation stopped")

 �print(f"Total number of clients created are {len(client_train_

dataset)}")

 NUM_CLIENTS = len(client_train_dataset)

Chapter 7 Federated Learning and Healthcare

236

Output

 Adding data from Batch No 0 to 68 for client : Client_1

 Adding data from Batch No 68 to 136 for client : Client_2

 Adding data from Batch No 136 to 204 for client : Client_3

 Adding data from Batch No 204 to 272 for client : Client_4

 Adding data from Batch No 272 to 340 for client : Client_5

Memory Error - Client Data creation stopped

 Total number of clients created are 4

In the above code you are trying to create an ordered dictionary so that the order of

clients is maintained while creating client data from tensor slices.

As I said, you can start with an expected number of clients but depending on the

compute resources available in your local you can expect a lower number of clients as

well. Here you are finally left with four clients and hence reduced data for training. For

now you shouldn’t worry about this as with a larger machine such issues can be easily

mitigated.

Also, as per the TFF team, “our near-term future roadmap includes a high-performance

runtime for experiments with very large data sets and large numbers of clients.”

Next, you create client data in a simulation environment by passing a key-value pair

of client data (see Figure 7-9).

train_dataset = tff.simulation.FromTensorSlicesClientData(client_train_

dataset)

 �sample_dataset = train_dataset.create_tf_dataset_for_client(train_

dataset.client_ids[0])

sample_element = next(iter(sample_dataset))

The total number of training examples at a local node is

len(sample_dataset)

Output

 2176

 plt.imshow(sample_element['pixels'].numpy().astype('uint8'))

plt.grid(False)

plt.show()

Chapter 7 Federated Learning and Healthcare

237

At this point, once you have the federated data available, since this is a simulation

environment you can do several tests to check the intensity of non-iid behavior of the

client’s data. I will leave this exercise for you to explore and experiment with, but keep

in mind that in a real-world setting this type of analysis is not possible as the data is not

available centrally.

�Preprocessing Input Data
For preprocessing, you must make sure of the following:

•	 Data quality

•	 You have normalized the pixel values by rescaling all of the

channels by multiplying pixel intensities by 1/255.

•	 Proper scale: Already ensured when loaded

•	 Augmentation to create more data and avoid overfitting the

OOB/Validation dataset. Since the case study is meant to discover

federated principles, you will skip this for now and return to it in

Chapter 8.

•	 Training improvements:

•	 Create batches for training using gradient descent

•	 Shuffle to induce randomness and make the loss independent of

sample selection

Figure 7-9.  Image from the federated data

Chapter 7 Federated Learning and Healthcare

238

•	 Prefetch certain samples to reduce possibility of lag in training

since you have to run preprocessing because the samples are

used for training

SHUFFLE_BUFFER = len(sample_dataset) # How much data to shuffle

 EPOCHS = 5 # Number of epochs to run for training @ individual node

 �PREFETCH_BUFFER = 100 # Preloading some number of samples to aid faster

training.

Normalizing the pixel values

 �normalization_layer = tf.keras.layers.experimental.preprocessing.

Rescaling(1.0/255)

 def preprocess(dataset):

 def batch(sample):

 _x = normalization_layer(sample['pixels'])

 return collections.OrderedDict(

 x = _x

 y = tf.reshape(sample['label'], [-1, 1]))

 return dataset.repeat(EPOCHS).shuffle(SHUFFLE_BUFFER).batch(

 BATCH_SIZE).map(batch).prefetch(PREFETCH_BUFFER)

�Creating Federated Data
Since you have the preprocess function ready, you can finally create the final federated

data by creating an iterator of the client dataset.

Also, in a real-world setting you generally select a sample of clients from a large

population of clients, as only a fraction of them are available (cross-device setting).

selected_clients = np.random.choice(train_dataset.client_ids,NUM_CLIENTS,

replace = False)

federated_train_data = (preprocess(train_dataset.create_tf_dataset_for_

client(i)) for i in selected_clients)

Chapter 7 Federated Learning and Healthcare

239

You also use the sample batch created earlier to create a sample preprocessed

federated dataset as it can be later used for input specification.

sample_federated_dataset = preprocess(sample_dataset)

�Federated Communications
Within the TFF framework, any model that is trained locally needs to be wrapped in the

tff.learning.Model interface. This allows two things:

•	 Helps in computing federated metrics and performance at individual

nodes

•	 A set of variables are impacted in silos on each local node.

You start by creating a train model function that builds the NNet architecture you are

using.

•	 The Conv2D layer is to do a convolution operation over the input

images to capture locality effects for each pixel.

•	 The Pooling layer is to reduce the dimensions and concentrate

information.

•	 You drop out random neurons during training to prevent overfitting.

•	 Finally, you add a dense layer after flattening the 2-D output from the

dropout layer for prediction.

 def train_model():

 model = Sequential([

 tf.keras.layers.InputLayer(input_shape=(IMG_HEIGHT,IMG_WIDTH, 3)),

 # Ingesting a 2-d Image with 3 channels

 tf.keras.layers.Conv2D(16, 3, padding='same', activation='relu'),

 # Max pooling to reduce dimensions

 tf.keras.layers.MaxPooling2D(),

 tf.keras.layers.Conv2D(32, 3, padding='same', activation='relu'),

 tf.keras.layers.MaxPooling2D(),

 tf.keras.layers.Conv2D(64, 3, padding='same', activation='relu'),

 tf.keras.layers.MaxPooling2D(),

 # Dropout to prevent over-fitting

Chapter 7 Federated Learning and Healthcare

240

 tf.keras.layers.Dropout(0.2),

 # Flattening to feed data for sigmoid activation

 tf.keras.layers.Flatten(),

 tf.keras.layers.Dense(128, activation='relu'),

 tf.keras.layers.Dense(len(class_names)-1, activation = 'sigmoid')

])

 return model

 def federated_train_model():

 local_train_model = train_model()

 return tff.learning.from_keras_model(

 local_train_model,

 input_spec=sample_federated_dataset.element_spec,

 loss=tf.keras.losses.BinaryCrossentropy(),

 metrics=[tf.keras.metrics.AUC()])

Next, you create the process for the central server to make updates for the central

model using parameter updates from all of the local nodes.

parameter_iteration_process = tff.learning.build_federated_averaging_process(

 federated_train_model,

 �client_optimizer_fn = lambda: tf.keras.optimizers.SGD(learning_rate=

CLIENT_LR),

 �server_optimizer_fn = lambda: tf.keras.optimizers.SGD(learning_rate=

SERVER_LR))

TFF has constructed a pair of federated computations and packaged them into a

tff.templates.IterativeProcess in which these computations are available as a pair

of properties called initialize and next.

•	 initialize represents the state of the Federated Averaging process

on the server. It consists of

•	 Model: The initial parameters distributed to all devices

•	 Optimizer state: Maintained for federated metrics calculation

and averaging. It keeps track of gradient updates.

•	 Delta aggregates

Chapter 7 Federated Learning and Healthcare

241

•	 The next_fn will make use of the client_update and server_update

and represents one cycle of federated averaging.

state = parameter_iteration_process.initialize()

state, metrics = parameter_iteration_process.next(state, federated_train_data)

 print('round 1, metrics={}'.format(metrics))

Output

 �round 1, metrics=OrderedDict([('broadcast', ()), ('aggregation',

OrderedDict([('value_sum_process', ()), ('weight_sum_process', ())])),

('train', OrderedDict([('auc', 0.5897039), ('loss', 0.6823319)]))])

Similarly, you can have multiple rounds.

 NUM_ROUNDS = 6 # Total 5 rounds of training

 for round_num in range(2, NUM_ROUNDS):

 �state, metrics = parameter_iteration_process.next(state, federated_

train_data)

 print('round {:2d}, metrics={}'.format(round_num, metrics))

Output

 �round 2, metrics=OrderedDict([('broadcast', ()), ('aggregation',

OrderedDict([('value_sum_process', ()), ('weight_sum_process', ())])),

('train', OrderedDict([('auc', 0.60388386), ('loss', 0.67804503)]))])

 �round 3, metrics=OrderedDict([('broadcast', ()), ('aggregation',

OrderedDict([('value_sum_process', ()), ('weight_sum_process', ())])),

('train', OrderedDict([('auc', 0.61434853), ('loss', 0.6752475)]))])

 �round 4, metrics=OrderedDict([('broadcast', ()), ('aggregation',

OrderedDict([('value_sum_process', ()), ('weight_sum_process', ())])),

('train', OrderedDict([('auc', 0.62443274), ('loss', 0.67076266)]))])

 �round 5, metrics=OrderedDict([('broadcast', ()), ('aggregation',

OrderedDict([('value_sum_process', ()), ('weight_sum_process', ())])),

('train', OrderedDict([('auc', 0.6333971), ('loss', 0.6674127)]))])

Chapter 7 Federated Learning and Healthcare

242

Some of you might find the training process (convergence) to be a little slow. Actually

this is due to a lower server learning rate. I kept it at 0.1. If you keep it at 1, that means

each iteration contributes in full strength to the central model’s parameters. In other

words the updates are completely learned.

Note I f you are running the same code in a Jupyter notebook, you must allow
async operations. In Python, you can do it by calling

import nest_asyncio

nest_asyncio.apply()

�Evaluation
The TensorFlow library provides build_federated_evaluation, which allows

aggregation of metrics via federated communication (across local nodes).

 def evaluate(train_fn, state, train_data, test_data):

 # Print training metrics

 evaluation = tff.learning.build_federated_evaluation(train_fn)

 train_metrics = evaluation(state.model, train_data)

 �print("Training Metrics: AUC : {}, Binary Cross Entropy Loss: {}".

format(

 train_metrics['auc'],

 train_metrics['loss']))

 # Print testing metrics

 test_metrics = evaluation(state.model, test_data)

 �print("Validation Metrics: AUC: {}, Binary Cross Entropy

Loss: {}".format(

 test_metrics['auc'],

 test_metrics['loss']))

You have to pass the validation set in the same format as the train data. In order to do

so, you create a client_test_dataset which is a dictionary that contains validation data

for each local node or server node.

Chapter 7 Federated Learning and Healthcare

243

All of the validation is then processed for evaluation using the preprocess()

function defined above.

val_dataset = tff.simulation.FromTensorSlicesClientData(client_test_dataset)

federated_val_data = [preprocess(val_dataset.create_tf_dataset_for_

client(i)) for i in selected_clients]

evaluate(federated_train_model, state, federated_train_data,

federated_val_data)

Output

 �Training Metrics: AUC : 0.6697379946708679, Binary Cross Entropy Loss:

0.6773737072944641

 �Validation Metrics: AUC: 0.6535744071006775, Binary Cross Entropy Loss:

0.6790395379066467

In this section, I discussed the TF learning API. TFF also offers the core API where

you can modify several different components of what TFF has to offer like Federated

Averaging techniques and Federated Communications (across device network loads and

local processing).

�Conclusion
Federated learning is an evolving field and is bound to grow as the need for protecting

private and expensive data becomes common. In this chapter, you covered privacy

mechanisms of differential privacy and multi-party communication in detail, but new

research is constantly happening. “A Survey on Federated Learning Systems: Vision,

Hype and Reality for Data Privacy and Protection” by Qinbin et al is an excellent paper

that unwraps different layers about federated learning.

Chapter 7 Federated Learning and Healthcare

244

Having said that, federated learning is not the only way to do protected learning.

People are also researching peer-to-peer systems in which there are no central servers

orchestrating the work; instead it is self-governed. The reliability of such systems in real-

world setting is yet to be established.

Lastly, several companies like Owkin, Google, and Apple are actively investing

in federated technologies especially around drug discoveries for patients, typing

recommendations, and improving chatbots, respectively. In my opinion, the pace at

which ML products are hitting the markets to solve vernacular problems across nations’

federated learning means it’s an important technology to use.

Chapter 7 Federated Learning and Healthcare

245
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_8

CHAPTER 8

Medical Imaging
Medical image analysis has evolved dramatically over the last three decades. Initially the

analysis in this area was seen as applying pattern recognition and actuarial computer

vision methodologies, but with the wide-scale use of advanced image processing and

deep learning-based methodologies, the field has evolved quickly not just in terms

of algorithmic advancements but also in terms of handling a wide variety of data as

different modalities have emerged during this time-frame.

In this case study, you will be touching upon many different aspects of medical

imaging. You will be especially focused on seeing the different types of medical data and

how is this medical image data captured, digitally stored, and distributed. You will not

be touching upon the physics of how these images are formed based on tissue-energy

interaction and related statistics.

You will deep-dive into two end applications of image segmentation and

classification using both 2-D and 3-D images. Lastly, you will explore various challenges

that currently exist such as image quality, explainability, and adversarial attacks.

�What Is Medical Imaging?
Medical imaging involves scientific analysis of biomedical images on different image

modalities such as X-ray, CT, MRI, etc. to monitor health (via screening), diagnosis, and

treatment of diseases and injuries.

These biomedical images are measurements of the human body, organs, or tissues

on different scales like macroscopic, mesoscopic, and microscopic. These scales differ

on penetration depth and image resolution, as shown in Figures 8-1 and 8-2.

https://doi.org/10.1007/978-1-4842-7086-8_8#DOI

246

Figure 8-1.  Overview of the optical resolution technique. Source: The Optical
Society (OSA)

Figure 8-2.  Comparison of optical imaging techniques based on their scales.
Source: Subhamoy Mandal et al, “Extending Biological Imaging to the Fifth
Dimension”

Chapter 8 Medical Imaging

247

Biomedical images are sourced using different imaging modalities which measure

different physical properties of the human body.

�Image Modalities
Image modalities are various ways to capture organ/tissue characteristics in the form

of n-dimensional images by leveraging interaction with the energy type used in the

technique/device. For example,

•	 Radiation absorption in X-ray imaging

•	 Acoustic pressure in ultrasounds

•	 Radio frequency (RF) signal amplitude in MRIs

MRI, ultrasound, X-ray, and CT are some of the major image modalities but there are

many more, as shown in Figure 2. So many modalities exist because of the simple reason

that a single technique is not enough to capture human anatomy and physiology.

In order to provide a brief overview of these techniques, Table 8-1 compares and

contrasts the major modalities.

Table 8-1.  Comparing Different Image Modalities

S. No. Modalities Application Main
Characteristic

Shortcomings Radiation

1 X-rays Non-uniformly composed

materials like bones.

These images help in

the assessment of the

presence or absence of

disease, damage, or a

foreign object.

Image obtained

through the use

of X-rays.

Non-invasive and

painless.

Sometimes structures

overlap and can

create problems in

interpretation.

Ionizing

(continued)

Chapter 8 Medical Imaging

248

S. No. Modalities Application Main
Characteristic

Shortcomings Radiation

2 CT Non-uniformly composed

materials like bones.

These images help

in assessment of the

presence or absence of

disease, damage, or a

foreign object.

Scanning is done

using

X-rays and later

A computer is

used to

construct a

series

of cross-

sectional

images. This

eliminates

superposition.

High dose of ionizing

radiation, and

hence can cause

carcinogenic diseases

in future.

Ionizing

3 MRI Generally used to

analyze torn ligaments

and tumors. Also helps

examine the brain and

spinal cord.

Uses magnetic

signals

and radio waves.

Strong signals can

cause claustrophobic

tendencies.

Non-

Ionizing

4 Ultrasound Primarily fetus imaging.

Also used for imaging of

abdominal organs, heart,

breast, muscles, tendons,

arteries, and veins.

Uses high

frequency

sound signals to

image internal

structures such

as organs,

soft tissues, and

unborn babies.

Prone to noise, and

the process is driven

by a radiologist and

hence is prone to

human error.

Non-

Ionizing

Table 8-1.  (continued)

Chapter 8 Medical Imaging

249

So why are we even interested in understanding these modalities?

Firstly, to understand that depending upon the use case on hand we must carefully

select the modality to use.

•	 Increased sensitivity towards finding the problem (foreign object/

vascular problems, etc.)

•	 3-D image modalities allow better localization as compared to 2-D

image modalities like X-ray.

•	 Better delineation between tissue types. For example, as shown in

Figure 8-3, if the objective is to find injured brain tissue from a stroke,

you can see that a MRI image shows clearly the damaged area as

compared to a CT, where most of the area is dark.

Secondly, these modalities can differ in how they capture the value. Because

there are pixel intensities for digital images, there are different metrics for measuring

information values in digital medical images.

Figure 8-3.  An MRI scan shows the injured brain tissue much more clearly
than a CT

Chapter 8 Medical Imaging

250

CT scans and X-ray Hounsfield units (HU) are used to measure intensities of ionizing

radiation. A higher HU means that it is more difficult for radiation to pass through, hence

there is higher attenuation. See Figure 8-4.

Note the many shades of gray. It is impossible for human eyes or even computers

in some cases to work on such a small gradient, hence a technique called windowing is

used to look at areas of interest such as soft tissue, lungs, and bone. A window level of

L and a width of W are decided. Then the gradients are maintained only for the range

L − w/2 to L + w/2 and the rest is made black (less than L - W/2) and white (greater than

L + W/2) completely. All of these important decisions are made and known before we

model such images.

Lastly, different modalities can use different contrasting agents to highlight certain

tissue areas. Since tissues differ in their rate of agent absorption, certain tissues stand

out. CT imaging uses an iodine base while MRIs uses a gadolinium base, which is

generally given orally (like tablets) or intravenously (pumped into bloodstream directly).

As shown in Figure 8-5, due to the use of a contrasting agent, after some time (20-30

second delay) you can see that carcinogenic nodules are highlighted in the liver.

Figure 8-4.  Hounsfield scale ranging from -1000 to + 1000. Source: Osborne et al,
www.southsudanmedicaljournal.com/

Chapter 8 Medical Imaging

http://www.southsudanmedicaljournal.com/

251

�Data Storage
Before we dive deeper into how to handle multiple dimensional image formats and

make a machine learning model on them, let’s quickly learn about the standard file

formats you will find medical image data to be in and the different components.

A typical medical image is made up of four basic components:

•	 Pixel depth

•	 Pixel data

•	 Metadata

•	 Photometric interpretation

Let’s understand this with a very simple example. Suppose you have a black and

white image in which you have various intensities of grayscale and you know various

other information like the who, what, and when of this image.

From this description, various elements correspond to the basic components you

just learned about.

•	 The black and white image tells us about the channels used and

hence the photometric interpretation of the image. An image can be

monochromatic or colored.

•	 Various intensity levels hint towards two things. Firstly, it tells us

about the pixel depth, which is the number of bits used to encode

information. For example, an 8-bit pixel can include 28 intensity

Figure 8-5.  A contrast agent highlights certain tissue areas

Chapter 8 Medical Imaging

252

levels (unsigned being 0 to 255). Secondly, it tells us about the pixel

intensity values as well as the range of pixel values.

•	 Other information is the metadata like study date, modality of the

image, patient sex, shape, etc.

Special data requires special formats. There are predominantly six different formats

for images collected from radiography modalities.

•	 DICOM (Digital Imaging and Communications in Medicine)

•	 NIFTI (Neuroimaging Informatics Technology Initiative)

•	 PAR/REC (Philips MRI scanner formats)

•	 ANALYZE (Mayo Medical Imaging)

•	 NRRD (Nearly Raw Raster Data)

•	 MINC (www.bic.mni.mcgill.ca/ServicesSoftware/MINC).

Of these six different formats, DICOM and NIFTI are the most widely used. The main

difference between DICOM and NIFTI is that the raw image data in DICOM is stored

as a collection of 2-D slice files, making the structure a little cumbersome for 3-D data

analysis, whereas in NIFTI we have the entire 3-D image.

All of these different formats, besides just handling, storing, printing, and

transmitting information, also help you to get all the features you need for your machine

learning model, and as a data scientist this where you should concentrate: on which

format can give what kind of information.

In sections ahead, you’ll use one example from DICOM and another from NIFTI in

order to make you familiar with these formats.

�Dealing with 2-D and 3-D Images
Of the modalities we have discussed only X-ray imaging creates a 2-D image. CTs and

MRIs create 3-D images because they capture information from various angles. There

are two other type of modalities that help us capture 2-D data:

•	 Fundal imaging: Used to scan the health of tiny vessels in the eye.

Generally used to identify diabetic retinopathy (DR).

Chapter 8 Medical Imaging

http://www.bic.mni.mcgill.ca/ServicesSoftware/MINC

253

•	 Pathology imaging: Cell-level imaging (remember the last chapter)

obtained by staining the cell so that different cell structures appear in

different colors and are then digitized.

In this chapter, however, we will be covering 2-D image analysis via the X-ray

modality.

Similarly, 3-D images are not limited to CTs and MRIs. Other modalities like

ultrasound and PET/SPECT scans also produce 3-D images meant for understanding

different parts of the human body. We can consider 3-D images as a stack of 2-D images,

such that these images are taken from different angles and then stitched together to

create a comprehensive 3-D view.

In this chapter, we will be covering 3-D image analysis via the MRI modality.

You might sometimes hear the term 4-D image. Well, don’t be surprised. It is just

several 3-D images captured across time or in different submodalities, like in the case of

MRI T1, T2, etc. I won’t be covering it, but if you’re interested, I urge you to have a look at

the paper by Li et al titled “Advances in 4D Medical Imaging and 4D Radiation Therapy.”

�Handling 2-D Images
You will take the RSNA Pneumonia detection challenge by the Radiological Society of

North America. Organized on Kaggle, it has data in the DICOM format. Although the

challenge was organized to locate lung capacities on chest radiographs, the DICOM

metadata file also contains the following labels for the image:

•	 Normal

•	 No Lung Opacity/Not Normal

•	 Lung Opacity

Hence, you will be using the same labels for your image classification as well.

RSNA organizes competitions on medical imaging each year. Check out their space

for different datasets and competitions: www.rsna.org/education/ai-resources-and-

training/ai-image-challenge.

Chapter 8 Medical Imaging

http://www.rsna.org/education/ai-resources-and-training/ai-image-challenge
http://www.rsna.org/education/ai-resources-and-training/ai-image-challenge

254

�DICOM in Python

Your directory should look something like this:

Data/

 ...2d_lung_opacity_challenge/

......Train/

 000db696-cf54-4385-b10b-6b16fbb3f985.dcm

 000fe35a-2649-43d4-b027-e67796d412e0.dcm

......Test/

 00b4e593-fcf8-488c-ae55-751034e26f16.dcm

 00f376d8-24a0-45b4-a2fa-fef47e2f9f9e.dcm

......stage_2_detailed_class_info.csv

•	 Downloaded separate ZIP files from the data section of the Kaggle

notebook and create the directory in the format shown above.

•	 stage_2_detailed_class_info.csv contains the label for each

patient-id, while each DICOM file in the train and test folders is

named patient-id.

•	 stage_2_train_labels.csv contains the target label Pneumonia

or No-Pneumonia for each patient-id from both the train and test

folders.

The DICOM file contains a combination of header metadata and the raw image pixel

array. In Python, you can use a library called pydicom to deal with the DICOM files.

Remember that we discussed how different image modalities can introduce new

preprocessing steps other than a typical image analysis pipeline? Happily, in your case

you already have preprocessed data. The data shared by RSNA is preprocessed on two

aspects:

•	 Converting a high dynamic range to 8-bit encoding with values

ranging from 0 to 255 grayscale.

•	 Images are usually captured at a higher resolution, but for practical

purposes the images are resized to 1024 x 1024 matrices.

Chapter 8 Medical Imaging

255

For those who are still thinking how to do windowing and resizing if such

preprocessing is not already done, here is some code:

 def windowed_image(img, center, width):

 img_min = center - width // 2

 img_max = center + width // 2

 windowed_image = img.copy()

 windowed_image[windowed_image < img_min] = img_min

 windowed_image[windowed_image > img_max] = img_max

 return windowed_image

You merge the target and the class data to understand the distribution better.

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import tensorflow as tf

import pydicom

import glob

import os

 BASE_DIR = "./Data"

 DATA_DIR = os.path.join(BASE_DIR,"2d_lung_opacity_challenge/")

 classes = pd.read_csv(glob.glob(os.path.join(DATA_DIR,"*.csv"))[0])

 target = pd.read_csv(glob.glob(os.path.join(DATA_DIR,"*.csv"))[1])

 �train_labels = pd.merge(classes, target[["patientId","Target"]], on =

"patientId", how="left")

Since there are multiple patientIds, there can be multiple bounding boxes for a

single image. Just drop the duplicates.

 �assert train_labels.drop_duplicates().shape == train_labels.drop_

duplicates('patientId').shape:

train_labels = train_labels.drop_duplicates().reset_index(drop = True)

Chapter 8 Medical Imaging

256

 �print(train_labels.groupby(['class', 'Target']).size().reset_

index(name='Patient Count').to_markdown())

 | | class | Target | Patient Count |

 |---:|:-----------------------------|---------:|----------------:|

 | 0 | Lung Opacity | 1 | 6012 |

 | 1 | No Lung Opacity / Not Normal | 0 | 11821 |

 | 2 | Normal | 0 | 8851 |

Wherever there is lung opacity, there is pneumonia. However, medically lung

opacities can’t wholly and solely determine pneumonia because the diagnosis requires

other clinical information like laboratory data, symptoms, etc. But for simplicity, all lung

opacities are termed as pneumonia. In a real world-setting, though, you can’t make the

same assumptions; you must consult proper medical researchers and radiologists to

make such assumptions.

Next, Non-Pneumonia can be classified into No Lung Opacity/Not Normal and

Normal. Well, normal images are those of a healthy chest. You can’t say the same for No

Lung Opacity/Not Normal. Let’s look at a few of them.

 def draw(input_ids):

 # A maximum of 3 images in a row

 �ncols, nrows = min(3,len(input_ids)), len(input_ids)//min(3,

len(input_ids)) +1 if len(input_ids)%min(3,len(input_ids)) !=0 else

len(input_ids)//min(3,len(input_ids))

 # figure size, inches

 figsize = [10, 8]

 # create figure (fig), and array of axes (ax)

 fig, ax = plt.subplots(nrows=nrows, ncols=ncols, figsize=figsize)

 # plot image for single sub-plot

 for i, axi in enumerate(ax.flat):

 try:

 dicom_path = input_ids[i]

 data = pydicom.read_file(dicom_path)

 # one can also use plt.cm.bone

 axi.imshow(data.pixel_array, cmap="gray")

 # get indices of row/column

Chapter 8 Medical Imaging

257

 rowid = i // ncols

 colid = i % ncols

 except IndexError as e:

 continue

 # For some of you who want to add bounding box info to plots as

 # well can access by row-id and col-id on the array of axes

 # ax[row-id][col-id].plot()

 plt.tight_layout(True)

 plt.show()

 np.random.seed(123)

 �examples_non_normal = np.random.choice(train_labels[train_labels["class"].\

 isin(["No Lung Opacity

 / Not Normal"])].patientId,

 size = 3,

 replace = False)

 �examples_non_normal = [os.path.join(DATA_DIR,"Train",x+".dcm") for x in

examples_non_normal]

draw(examples_non_normal)

Some observations from Figure 8-6.

Chapter 8 Medical Imaging

258

•	 Lung Opacity images and No Lung Opacity/Not Normal images share

some similar characteristics.

•	 The presence of wires and tubes, which shows that there may be

some other observed illness than pneumonia where Target is 0.

•	 In most cases, the nature of gaps/opacity (gaps filled with fluid/

pathogens, etc.) is different for both types although it can overlap

due to a diffusion of foreign material in the lungs similar to COPD

or asthma.

•	 Due to pleural effusion, accumulation of fluids or foreign materials

can

•	 Ooze out to make the lung look smaller. See sample 3 in the No

Lung Opacity/Not Normal row.

•	 The above can easily be confused with a Lung Opacity case and

hence several radiologists may be consulted in such a case to

reach a conclusion.

Figure 8-6.  Samples of three different labels

Chapter 8 Medical Imaging

259

The objective of doing this analysis of a class label and not just following the target

label blindly was to make you aware that medical image analysis requires some amount

of domain knowledge to understand and implement a robust image analysis system.

Especially if you plan to take the model live, the FDA will probe the risk associated with

your model and in that case such subtle understanding comes in handy.

�EDA on DICOM Metadata

You define a function to select important metadata from the DICOM files.

 def get_metadata(patient_id):

 """

 Returns metadata from each dicom file

 """

 �data = pydicom.read_file(os.path.join(DATA_DIR,"Train",

patient_id+".dcm"),

 stop_before_pixels=False)

 _id = data.PatientID

 _age = data.PatientAge

 _sex = data.PatientSex

 # col_spacing (horizontal)

 _pixelspacing_x = data.PixelSpacing[1]

 # row_spacing (vertical)

 _pixelspacing_y = data.PixelSpacing[0]

 _viewpos = data.ViewPosition

 _mean = np.mean(data.pixel_array)

 _min = np.min(data.pixel_array)

 _max = np.max(data.pixel_array)

 �return pd.DataFrame([[_id, _age, _sex, _pixelspacing_x,

_pixelspacing_y, _viewpos ,_min, _max, _mean]],

 �columns = ["patientId","age","sex","pixel_

spacing_x","pixel_spacing_y","view_pos",

 "min_pixint","max_pixint","mean_pixint"])

•	 Patient age

•	 Patient sex: There are just two categories, male and female

•	 Pixel spacing: A higher pixel spacing means less quality in the image

Chapter 8 Medical Imaging

260

•	 View position: AP (ray goes from chest to back, laying down position;

generally for ill or old-aged people) and PA (ray goes from back to

chest, standing position)

Using parallel processing you capture all metadata to see its correlation and impact

on the target variable.

from joblib import Parallel, delayed, parallel_backend

from tqdm import tqdm

 �train_dicom = Parallel(n_jobs=os.cpu_count()-1, backend="threading")

(delayed(get_metadata)(pt_id) for pt_id in tqdm(train_labels.

patientId))

You then concatenate individual data frames returned from each DICOM.

 train_dicom_df = pd.concat(train_dicom, axis = 0)

Finally, you merge the target/label dataset with the metadata dataframe and create

the data for analysis. See Figure 8-7.

Train Labels with Metadata

 �train_labels_w_md = pd.merge(train_labels, train_dicom_df, on =

"patientId", how="left")

Figure 8-7.  Distribution of patients across view positions

Chapter 8 Medical Imaging

261

View Position

 fig, axes = plt.subplots(1, 2, figsize=(14, 7))

 sns.countplot(x='view_pos', hue='class', data=train_labels_w_md, ax=axes[0])

 sns.countplot(x='view_pos', hue='Target', data=train_labels_w_md, ax=axes[1])

The view position look like an important variable, based on the following reasons:

•	 Although the number of patients with PA or AP positions are similar,

the AP position has more pneumonia patients (Target = 1).

•	 Also, the lung opacity labels are pronounced for the AP view and the

normal labels are more pronounced for the PA view.

Age

You plot the distribution of age against both the target and the class labels to check the

distribution.

 fig, axes = plt.subplots(1, 2, figsize=(14, 7))

 �p = sns.distplot(train_labels_w_md[train_labels_w_md['class']=='No Lung

Opacity / Not Normal']['age'],

 hist=True,

 kde=False,

 color='red',

 label='No Lung Opacity / Not Normal', ax=axes[0])

 �p = sns.distplot(train_labels_w_md[train_labels_w_

md['class']=='Normal']['age'],

 hist=True,

 kde=False,

 color='cornflowerblue',

 label='Normal', ax=axes[0])

 �p = sns.distplot(train_labels_w_md[train_labels_w_md['class']=='Lung

Opacity']['age'],

 hist=True,

 kde=False,

 color='lime',

 label='Lung Opacity', ax=axes[0])

Chapter 8 Medical Imaging

262

_ = p.legend()

 �p = sns.distplot(train_labels_w_md[train_labels_w_md['Target']==0]['age'],

 hist=True,

 kde=False,

 color='gray',

 label='0', ax=axes[1])

 �p = sns.distplot(train_labels_w_md[train_labels_w_md['Target']==1]['age'],

 hist=True,

 kde=False,

 color='lime',

 label='1', ax=axes[1])

_ = p.legend()

As you can see in Figure 8-8, the Age category doesn’t show any distinctive

characteristics for any target, 0 or 1, likewise for the Class labels. However, certain groups

with a spacing of 20 can be formed.

Figure 8-8.  Distribution of patients across age

Chapter 8 Medical Imaging

263

Sex

You do two analyses on the Sex column.

•	 Check the distribution of patients across different targets and labels

for different sexes.

•	 Although the distribution is not structurally different, women

generally have a higher pneumonia percentage (see Figure 8-9).

•	 Age and sex correlation

•	 Both sexes show the same distribution pattern, with normal

patients generally having lower age mean as compared to No

Lung Opacity/Not Normal patients (see Figure 8-10).

 fig, axes = plt.subplots(1, 2, figsize=(14, 7))

 sns.countplot(x='sex', hue='class', data=train_labels_w_md, ax=axes[0])

 sns.countplot(x='sex', hue='Target', data=train_labels_w_md, ax=axes[1])

 train_labels_w_md["age"] = train_labels_w_md.age.apply(lambda x:int(x))

 fig, axes = plt.subplots(1, 2, figsize=(14, 7))

Figure 8-9.  Distribution of patients across the Sex column

Chapter 8 Medical Imaging

264

 �sns.boxplot(x='sex', y = 'age', hue='class', data=train_labels_w_md,

ax=axes[0])

 �sns.boxplot(x='sex', y = 'age', hue='Target', data=train_labels_w_md,

ax=axes[1])

Pixel Spacing

Pixel spacing represents the size of each pixel. Each pixel represents a certain patch of

area on the image. Differing pixel spacing can lead to non-uniform distribution of spatial

information. Let’s see how pronounced this difference is.

Firstly, you round off the pixel spacing by two points.

 �train_labels_w_md["pixel_spacing_x_norm"] = train_labels_w_md.pixel_

spacing_x.apply(lambda x: round(float(x),2))

 �train_labels_w_md["pixel_spacing_y_norm"] = train_labels_w_md.pixel_

spacing_y.apply(lambda x: round(float(x),2))

Figure 8-10.  Boxplot to see how age varies for different sexes

Chapter 8 Medical Imaging

265

Next, you plot the patient counts.

 fig, axes = plt.subplots(2, 2, figsize=(15, 10))

 �plot = sns.countplot(x='pixel_spacing_x_norm', hue='class', data=train_

labels_w_md, ax=axes[0][0])

 plot.set_xticklabels([x for x in plot.get_xticklabels()],rotation=90)

 plot.legend(loc='upper right')

 �plot = sns.countplot(x='pixel_spacing_x_norm', hue='Target',

data=train_labels_w_md, ax=axes[0][1])

 plot.set_xticklabels([x for x in plot.get_xticklabels()],rotation=90)

 plot.legend(loc='upper right')

 �sns.countplot(x='pixel_spacing_y_norm', hue='class', data=train_

labels_w_md, ax=axes[1][0])

 plot.set_xticklabels([x for x in plot.get_xticklabels()],rotation=90)

 plot.legend(loc='upper right')

 �sns.countplot(x='pixel_spacing_y_norm', hue='Target', data=train_

labels_w_md, ax=axes[1][1])

 plot.set_xticklabels([x for x in plot.get_xticklabels()],rotation=90)

 plot.legend(loc='upper right')

There are two main observations from Figure 8-11:

•	 Pixel spacing has good amount of variation, ranging from 0.13 to 0.2.

•	 Lung opacity is more observed for spacing between 0.15 to 0.17.

Chapter 8 Medical Imaging

266

Although you will not directly use pixel spacing, you will make the spatial

information uniform, for which you will resample the images to 1mm X 1mm.

Mean Intensity

Lastly, you will see how the mean intensity varies for labels and targets. If you find

different modes for the target or label, you will definitely try to include the metadata

In Figure 8-12, both Pneumonia and Non-Pneumonia patients follow a similar

distribution and hence they don’t give any special info about any of the classes.

Figure 8-11.  Distribution of patients by pixel spacing

Chapter 8 Medical Imaging

267

Figure 8-12.  Distribution of patients across mean intensity

Note I n a similar way you can do many more analyses using DICOM metadata. I
hope you got a fairly detailed understanding of dealing with DICOM files and also
the metadata.

�Handling 3-D Images
Handling a 3-D image is not very different from a 2-D one, but to make the things a little

challenging let’s learn about 3-D image handling in NIFTI. As in the previous section,

this will set you up and prepare for the image segmentation case study ahead.

You are going to use the BRATS 2020 dataset from the Perelman School of Medicine at

www.med.upenn.edu/cbica/brats2020/data.html. The BRATS 2020 data contains NIFTI

files in various modes (made by varying pulse sequences in the MRI machine), namely

•	 Native (T1)

•	 Post-contrast T1-weighted (T1CE)

•	 T2-weighted (T2)

•	 T2 Fluid Attenuated Inversion Recovery (T2-FLAIR)

Chapter 8 Medical Imaging

http://www.med.upenn.edu/cbica/brats2020/data.html

268

If you are interested in understanding the differences between pulse sequences, you

can visit https://radiopaedia.org/articles/mri-pulse-sequences-1?lang=us and

learn more.

Since your data is going to be 3-D data, let’s understand what exactly makes it 3-D. In

the medical system, our body can be divided into three planes:

•	 Axial/traverse: Top to bottom

•	 Sagittal: Left to right of the body

•	 Coronal: Posterior to anterior (back to front)

This is what gives three dimensions to a MRI images. In the DICOM images above,

the images were shot only in the coronal plane and hence you saw a 2-D image. To

learn more on this topic, please refer to https://teachmeanatomy.info/the-basics/

anatomical-terminology/planes/.

Although the MRI data is taken from different clinical protocols and multiple

scanners, they are already preprocessed in three ways:

•	 Coregistered with the same anatomical template: Since we are

capturing multiple modes of a MRI, if a patient moves (even slightly)

between acquiring these images it can cause misalignment when all

the sequences are combined together for the segmentation task and

hence a process called as registration is done to avoid such errors.

Since this has already been done for you, you don’t need to worry

about it. See Figure 8-13.

Chapter 8 Medical Imaging

https://radiopaedia.org/articles/mri-pulse-sequences-1?lang=us
https://teachmeanatomy.info/the-basics/anatomical-terminology/planes/
https://teachmeanatomy.info/the-basics/anatomical-terminology/planes/

269

•	 Interpolated with same resolution: This just means that spatial

information is uniform across the 3-D volume for all of the four

sequences.

•	 Skull-stripped: In MRI images, it is a good practice to remove skull

boundaries when solving tasks such as brain tumor segmentation

for the simple reason that the skull boundary doesn’t provide any

information that helps solve the segmentation problem and hence

we just strip it away. See Figure 8-14.

Figure 8-13.  Registration of medical images

Chapter 8 Medical Imaging

270

Note I f tomorrow you start to use a different dataset, make sure you check for
these three things for sure.

�NIFTI Format

The NIFTI file format is not generated by scanners and hence the metadata information

is not as rich compared to the DICOM file format, but it still has some metadata. Also, it

represents the images series as a single file.

The coordinate system is a little different in the NIFTI files as compared to DICOM. It

is good to know this difference because often you may want to keep files in the NIFTI

format as the whole image series is present in a single file, unlike DICOM, so it easier to

share and maintain. See Figure 8-15.

Figure 8-14.  Example of a skull-stripped image. (a) MRI image; (b) Skull-stripped
MRI image. Source: “SVM-LWT Enabled Fuzzy Clustering-based Image Analysis
for Brain Tumor Detection” by Arun et al in 2017

Chapter 8 Medical Imaging

271

Finally, the units of measurement can be different in NIFTI and not fixed to mm like

in DICOM. NIFTI stores the information on the unit of measurement separately (for

example, pixel spacing info as you saw in DICOM).

Since NIFTI headers are not that elaborate compared to DICOM, in practice we rarely

use NIFTI header info. Some of the important information to look out for is the following:

•	 Pixel spacing

•	 Dimensions for the three planes

•	 XYZ-T units

�Introduction to MRI Image Processing

Let’s quickly set up your input pipeline.

 BASE_DIR = "./Data/3d_brain_tumor_segmentation/MICCAI_BraTS2020_TrainingData/"

 label_paths = glob.glob(os.path.join(BASE_DIR,"**","*seg.nii"))

 flair_paths = glob.glob(os.path.join(BASE_DIR,"**","*flair.nii"))

 t1_paths = glob.glob(os.path.join(BASE_DIR,"**","*t1.nii"))

 t1ce_paths = glob.glob(os.path.join(BASE_DIR,"**","*t1ce.nii"))

 t2_paths = glob.glob(os.path.join(BASE_DIR,"**","*t2.nii"))

Let's create a dictionary of dictionary to order the data

Figure 8-15.  Coordinate system in NIFTI images

Chapter 8 Medical Imaging

272

 full_data = {i:{'label':label,

 'flair':flair,

 't1':t1,

 't1ce':t1ce,

 't2':t2} for i, (label,flair,t1,t1ce,t2) \

 in enumerate(zip(label_paths,

 flair_paths,

 t1_paths,

 t1ce_paths,

 t2_paths))}

You already know that there are four different sequences and each of them can be

viewed in three different ways across the axial, sagittal, and coronal planes.

 patient_id = 5

 k=1

 plt.figure(figsize=(20,20))

 for i,seq in enumerate(["flair","t1","t1ce","t2"]):

 img = io.imread(full_data[patient_id][seq], plugin='simpleitk')

 for j in range(3):

 if (j==0):

 plt.subplot(4,3,k)

 plt.imshow(img[100,:,:])

 # x-y plane

 plt.title("Axial/Traverse View")

 plt.ylabel(seq.upper())

 k=k+1

 elif (j==1):

 plt.subplot(4,3,k)

 plt.imshow(img[:,100,:])

 plt.title("Coronal View")

 k+=1

 else:

 plt.subplot(4,3,k)

 plt.imshow(img[:,:,100])

 plt.title("Sagittal View")

 k+=1

Chapter 8 Medical Imaging

273

In Figure 8-16, you can clearly see how different modalities highlight different parts

of the brain across different views and provide complementary information.

For the same patient, let’s also have a look at the target label.

Figure 8-16.  Cross-ciew of MRI modes and views

Chapter 8 Medical Imaging

274

For the same patient let's also have a look at the target label

 img = io.imread(full_data[patient_id]['label'], plugin='simpleitk')

 plt.figure(figsize = (20,20))

 k = 1

 for i in [50, 75,100, 125]:

 plt.subplot(1,4,k)

 plt.imshow(img[i,:,:])

 �plt.title("Labels:- " + ", ".join([str(i) for i in

np.unique(img[i,:,:])]))

 k+=1

As you can see in Figure 8-17, there are four different labels for the segmentation

task. The tumor part is labeled with green, yellow, and blue (1, 2, and 4) while the

background is labeled with purple (0)

From the above plots in Figures 8-16 and 8-17, it is clear that

•	 Not all slices are important.

•	 Pixel intensities are not evenly distributed for different sequences.

•	 There is high imbalance in the pixel intensities of the segmentation

labels (as most of the image has the purple color, followed by label 2,

the yellow color).

Let’s explore points 1 and 2 above and see what you get from these observations.

Figure 8-17.  Segmentation labels (in axial view)

Chapter 8 Medical Imaging

275

�Non-Even Pixel Distribution

Let’s quickly see how different sequences make pixel intensities vary. This will help you

decide a normalization strategy for each of the sequences.

import seaborn as sns

 sns.set_style('whitegrid')

 fig, axes = plt.subplots(nrows=4, ncols=4)

 fig.tight_layout(pad=1, w_pad=1, h_pad=0.5)

 fig.set_size_inches(20,20)

 k=1

 for patient_id in [5,10,20,50]:

 for i,seq in enumerate(["flair","t1","t1ce","t2"]):

 img = io.imread(full_data[patient_id][seq], plugin='simpleitk')

 if (i==0):

 plt.subplot(4,4,k)

 plt.hist(x= img.reshape(-1,1))

 plt.title(seq.upper())

 plt.ylabel("Patient "+str(patient_id))

 k=k+1

 else:

 plt.subplot(4,4,k)

 plt.hist(x= img.reshape(-1,1))

 plt.title(seq.upper())

 k+=1

You can clearly observe in Figure 8-18 that

•	 Most of the pixels have a 0 level of intensity and are right-skewed.

•	 For different sequences, different cutoffs can be observed for outlier

treatment. For T1 and T1CE, it is around 500, while for FLAIR and T2,

it varies from 300 t0 600.

•	 You must normalize this and deal with skewness.

Chapter 8 Medical Imaging

276

�Correlation Test

To analyze whether you need to consider all of the slices or not, you can do a correlation

test across the depth dimension. You will iterate across the depth of the image and

calculate the correlation. To make your job easier, you will just convert this into a pandas

dataframe and then calculate the correlation. The idea is that if the pixel intensities of

adjacent or near adjacent slices don’t vary, they will yield the correlation as NA because

their covariance is 0.

Figure 8-18.  Intensity variation across different MRI sequences across patients

Chapter 8 Medical Imaging

277

Let’s quickly plot some graphs to see which slices are not correlated.

 k = 1

from itertools import chain

 fig, axes = plt.subplots(nrows=1, ncols=4)

 fig.tight_layout(pad=0.5, w_pad=2, h_pad=0.5)

 fig.set_size_inches(13,5)

 for i,seq in enumerate(["flair","t1","t1ce","t2"]):

 _indices = []

 for patient_id in range(5,85,10):

 img = io.imread(full_data[patient_id][seq], plugin='simpleitk')

 depth_dimension = img.shape[0]

 �_slice = np.array([list(img[i,:,:].reshape(-1,1)) for i in

range(depth_dimension)])

 _slice = np.squeeze(_slice,axis = 2).T

 slice_df = pd.DataFrame(_slice)

 # correlation matrix

 _df = slice_df.corr()

 # indices or slice numbers whose correlation is nan

 �_indices.append([y for x in np.argwhere(_df.isnull().all(axis=1).

values) for y in x])

 plt.subplot(1,4,k)

 plt.hist(x= list(chain.from_iterable(_indices)))

 plt.title(seq.upper())

 k+=1

From Figure 8-19, you can clearly observe that

•	 Slice numbers from 0-5 and 140-154 in a general trend show no

variation in intensities across all sequences and hence these slices

can be ignored.

Chapter 8 Medical Imaging

278

Cropping and Padding

There are other types of preprocessing that can be done, such as cropping the slices

to a lower dimension and then padding them to a standard one. This is usually done

to reduce the volume size. You will follow another method to reduce unnecessary

convolutions over the image volume. But you must be sure that after doing this there is

no misalignment, as illustrated in Figure 8-20.

Figure 8-19.  Non-varying intensities across slices

Chapter 8 Medical Imaging

279

Figure 8-20.  Cropping the original image to reduce dimensions

Chapter 8 Medical Imaging

280

Although you can visibly see that the size has reduce without any loss of information,

I think the most effective way is to handle it while creating a 3-D patch of the volume

training data by setting thresholds on the patch volume, say at least 10% or 5% non-zero

pixel intensity. More on this in later sections.

�Image Classification on 2-D Images
The section called “Handling 2-D Images” covered in length many of the data attributes

and what all you can do with them. Remember the discussion around pixel spacing and

how you should resample your images to evenly distribute the spatial information? This

preprocessing step helps you make processing using CNNs effectively such that kernels

learn the same information from a unit of image. Kernels are filters (2-D matrices) that

are used to extract features from images.

�Image Preprocessing
�Histogram Equalization

Sometimes due to poor contrast X-ray images need to be enhanced to highlight small

textures and details. This is done basically to expand the range of values of pixels of the

image. See Figure 8-21.

Now if your whole image is confined within a range of pixels, you can simply map the

current pixel distribution to a wider and uniform distribution, but if there already exist

regions of high and low intensity (a.k.a. larger range of pixel values) you must go local

and apply something called adaptive histogram equalization.

Specifically you are going to use the CLAHE method. It can enhance the image local

contrast and enhance the visibility of the edges and curves in each part of an image.

Figure 8-21.  Histogram equalization. Source: Wiki

Chapter 8 Medical Imaging

281

•	 Contrast limiting: If any of the histograms of the region are above the

contrast limit, they are clipped.

•	 Adaptive histogram equalization: The image is divided into small

blocks called tiles. These tiles are histogram equalized.

You will be using the OpenCv to histogram normalize your images. See the results in

Figure 8-22.

 def histogram_equalization(img, clip_limit, grid_size):

 """

 Histogram Equalization

 """

 clahe = cv2.createCLAHE(clipLimit = clip_limit,

 tileGridSize = grid_size)

 img_clahe = clahe.apply(img)

 return img_clahe

Figure 8-22.  Result of the histogram equalization

Chapter 8 Medical Imaging

282

�Isotropic Equalization of Pixels

In order to ensure uniform pixel spacing, you must interpolate and resample your image.

 def resample(img, x_pixel, y_pixel):

 new_size = [1, 1]

 size = np.array([x_pixel, y_pixel])

 img_shape = np.array(img.shape)

 new_shape = img_shape * size

 new_shape = np.round(new_shape)

 resize_factor = new_shape / img_shape

 resampled_img = scipy.ndimage.interpolation.zoom(img, resize_factor)

 return resampled_img

Although your pixels are now properly spaced, this leads to a lower-shaped image,

which means that different pixel spacing will lead to different image sizes, so now you

must reshape them by cropping/padding/interpolation. I generally prefer interpolation

to a fixed size because the difference between original and target shape isn’t much. You

will be using Opencv for the same.

�Model Creation
Since you found some important information in the DICOM metadata, you will be

creating a two-input, single-output neural network where one branch ingests a batch of

2-D images and another branch ingests scaled feature columns. See Figure 8-23.

Chapter 8 Medical Imaging

283

Some of you might not know the different layers and terms I am going to use next. I

recommend going through this excellent guide shared by Dumoulin et al titled “A Guide

to Convolution arithmetic for Deep Learning.”

Let’s start by importing the relevant libraries from the TensorFlow library.

from tensorflow.keras.models import Model, Sequential

from tensorflow.keras.layers import (

 Input,

 Conv2D,

 Dropout,

 MaxPooling2D,

 concatenate,

 BatchNormalization,

 Flatten,

 Dense

)

from tensorflow.keras.optimizers import Adam

METRICS = [

 tf.keras.metrics.AUC(name='auc'),

]

Figure 8-23.  Medical image classification model

Chapter 8 Medical Imaging

284

Next, you create a function that acts as the convolution block (shown by the dotted

lines in Figure 8-23). You provide several controls to create this convolution block, namely

	 1)	 A convolution layer with any number of filters and a convolution

of a specific kernel_size.

	 2)	 A BatchNormalization layer to normalize data in a batch such

that covariate shifts between data are reduced.

	 3)	 pooling to reduce the feature space of an image by condensing

information by using the maximum of pixel intensities in a kernel.

	 4)	 dropout to prevent overfitting by randomly dropping neurons

while training.

 def convolution_block(input_layer, num_filters, kernel_size,

 strides, padding = 'valid',

 activation = 'selu',

 batch_normalization = False,

 pool_kernel = None, dropout_rate = None):

 layer = Conv2D(num_filters, kernel_size, strides = strides,

 padding=padding, activation=activation)(input_layer)

 if batch_normalization:

 layer = BatchNormalization()(layer)

 if pool_kernel:

 layer = MaxPooling2D(pool_kernel)(layer)

 if dropout_rate:

 layer = Dropout(dropout_rate)(layer)

 return layer

Now you can build your main function that creates your intended network.

•	 Start by creating two input layers, which tells the model what size of

input to expect.

•	 Then, depending on how many parameters you want to train, you

can keep adding to the convolution block and choose the kernel and

pooling accordingly. I generally prefer to start with large kernel size

and no pooling. Then I introduce both in deeper layers.

Chapter 8 Medical Imaging

285

 def build_model():

 input_img = Input(TARGET_SHAPE+(1,))

 input_feats = Input((6,))

 cb1 = convolution_block(input_img, num_filters = 128, kernel_size = 8,

 strides = 1, padding = 'valid',

 batch_normalization = True,

 activation = 'selu',

 pool_kernel = None, dropout_rate = None)

 cb2 = convolution_block(cb1, num_filters = 32, kernel_size = 8,

 strides = 1, padding = 'valid',

 activation = 'selu',

 pool_kernel = 2, dropout_rate = None)

 cb3 = convolution_block(cb2, num_filters = 8, kernel_size = 8,

 strides = 1, padding = 'valid',

 activation = 'selu',

 pool_kernel = 2, dropout_rate = 0.2)

 cb4 = convolution_block(cb3, num_filters = 4, kernel_size = 8,

 strides = 1, padding = 'valid',

 activation = 'selu',

 pool_kernel = 2, dropout_rate = 0.2)

 conv_flat = Flatten()(cb4)

 cl1 = Dense(128, activation='selu')(conv_flat)

 cl2 = Dense(64, activation='selu')(cl1)

 cl3 = Dense(32, activation='selu')(cl2)

 # Feature block

 fl1 = Dense(4, activation='selu')(input_feats)

 concat_layer = concatenate([cl3, fl1], axis = 1)

 # prediction block

 pl1 = Dense(16, activation = 'selu')(concat_layer)

 pl2 = Dense(8, activation = 'selu')(pl1)

 output = Dense(1, activation = 'sigmoid')(pl2)

 return Model([input_img, input_feats], output)

Chapter 8 Medical Imaging

286

�Preparing Input Data
Out-of-the-box generators in Keras don’t support such multi-inputs so you must create

your own custom generator.

You start with one-hot encoding the view position and the age bins, the two most

important feature variables you found to be correlated with the target variable.

 bin_labels = ['0_20', '20_40', '40_60', '60_80', '80_plus']

 �train_labels_w_md['age_bucketed'] = pd.cut(train_labels_w_md['age'].

astype(int),

 �bins = [0, 20, 40, 60, 80, max(train_

labels_w_md['age'].astype(int))],

 labels = bin_labels)

View position is already a categorical variable and hence it can be directly one-hot

encoded.

from sklearn.preprocessing import LabelBinarizer

age_binarizer = LabelBinarizer()

 age_binarizer.fit(train_labels_w_md['age_bucketed'])

 transformed_age = age_binarizer.transform(train_labels_w_md['age_bucketed'])

transformed_age_ohe = pd.DataFrame(transformed_age)

 �transformed_age_ohe.columns = ["age_bin_trans_"+str(i) for i in
range(len(age_binarizer.classes_))]

view_pos_binarizer = LabelBinarizer()

 �view_pos_binarizer.fit(train_labels_w_md['view_pos'])

 �transformed_view_pos = view_pos_binarizer.transform(train_labels_w_md[

'view_pos'])

transformed_view_pos_ohe = pd.DataFrame(transformed_view_pos)

 transformed_view_pos_ohe.columns = ["view_pos_trans"]

 �data = pd.concat([train_labels_w_md, transformed_age_ohe,

transformed_view_pos_ohe], axis=1)

Next, you define a preprocessing function for your image array. Besides histogram

equalization and isotropic equalization, you convert the images to a standard shape and

also normalize pixel values by dividing each pixel by 255 (the maximum value of a pixel

for your images).

Chapter 8 Medical Imaging

287

You also add another dimension that acts as a channel. This is done to satisfy the

Conv2D layer requirements.

 def get_train_images(dicom_path, target_shape):

 img = pydicom.read_file(dicom_path)

 img_equalized = histogram_equalization(img.pixel_array, 4, (8,8))

 �img_isotropic = resample(img.pixel_array, img.PixelSpacing[1],

img.PixelSpacing[0])

 �img_standardized = cv2.resize(img_isotropic, target_shape,

interpolation = cv2.INTER_CUBIC)

 # Pixel Standardization

 img_standardized = np.array(img_standardized)/255

 res = np.expand_dims(img_standardized, axis = 2)

 return res

You create your training and validation sets.

from sklearn.model_selection import train_test_split

 train, val = train_test_split(data,test_size=0.25, random_state=42)

 TARGET_SHAPE = (224,224)

 BATCH_SIZE = 32

Finally, you create your generator, similar to the one you created in Chapter 4. You

yield your multi-input to the network.

 def get_data_generator(df, target_shape, shuffle = True, batch_size=32):

 """

 �Generator function which yields the input data and output for

different clusters

 """

 img, feat_set, y = [], [], []

 if shuffle:

 df = df.sample(frac=1).reset_index(drop=True)

 while True:

 for i,row in df.iterrows():

 �feat_set.append(np.array(row[[x for x in df.columns if

"_trans" in x]].tolist()))

Chapter 8 Medical Imaging

288

 �img.append(get_train_images(os.path.join(DATA_DIR,

"Train",row['patientId'] + ".dcm"), TARGET_SHAPE))

 y.append(np.array([row['Target']]))

 if len(feat_set) >= batch_size:

 yield (np.array(img), np.array(feat_set)), y

 img, feat_set, y = [], [], []

�Training
In training, you call the generator function separately for the training and validation

sets. Please note that creating generators in such a fashion is not always recommended

as the data pipeline is not optimized for things like prefetching and many of the data

operations while creating batch data. You can avoid this if you have more compute and

RAM to preprocess and store data in desired formats.

train_generator = get_data_generator(train, TARGET_SHAPE, True, BATCH_SIZE)

val_generator = get_data_generator(val, TARGET_SHAPE, True, BATCH_SIZE)

model = build_model()

 model.compile(optimizer= 'adam',

 loss = tf.keras.losses.BinaryCrossentropy(from_logits=True),

 metrics=METRICS)

As you can see in Figure 8-24, based on architecture, the number of training

parameters is 526,217, which is nowhere close to what we expect from very large image

models such as ImageNet. Hence, depending upon your compute resources, feel free to

make a different architecture and experiment performance and convergence rate.

history = model.fit(train_generator,

 steps_per_epoch= len(train)//BATCH_SIZE,

 epochs=10,

 validation_data=val_generator,

 validation_steps= len(val)//BATCH_SIZE)

Chapter 8 Medical Imaging

289

Figure 8-24.  Model summary

�Image Segmentation for 3-D Images
I already discussed in depth various image analysis methodologies when I covered key

challenges and key developments/solutions for each of these methodologies. In this

section, you are going to focus on the image segmentation problem of a 3-D image.

Let’s quickly recap key things about image segmentation:

•	 What is it? Image segmentation partitions a given image into various

segments, also known as regions of interest, based on training data.

•	 Key challenges for biomedical segmentation:

•	 Noise in a captured image can lead to non-uniform intensities.

•	 The target organ or lesion may vary hugely in size and shape from

patient to patient.

•	 Class imbalance where the lesion/target organ occupies a very

small area of the whole image can lead to ML models learning

more about the background or local minima.

�Image Preprocessing
Based on your analysis of the BRATS data in the section above and other general

preprocessing recommended for MRI images, you will be doing the following

preprocessing:

•	 Bias field correction

•	 Removing unwanted Slices

Chapter 8 Medical Imaging

290

You will standardize your center pixel intensity and ignore empty volumes when

creating patches for training.

�Bias Field Correction

When capturing MRI images, a bias field can blur images by reducing high frequency

content such as edges. It also affects the intensity of pixels such that the same tissue

shows gray-level variation.

For the naked eye, the difference doesn’t mean much, but for ML algorithms it can

create a huge difference. Let’s correct for this bias. You will be using the SimpleITK

library for this, which provides N4 field correction. The N4 bias field correction

algorithm is a popular method for correcting low frequency intensity non-uniformity

present in MRI image data known as a bias or gain field. More details are at https://

simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html

Since the edges/contours are affected by the bias field, you must use a thresholding

algorithm to separate the background and foreground pixels. For this, you will use Otsu’s

Method. Note there are other automatic thresholding algorithms in the SimpleITK

library such as Maximum Entropy, Triangle, etc. I urge you to try such different

variations.

Otsu’s Method is quite computationally extensive, so it can take a good amount of

time to complete, so you will save the result of this bias correction in a separate folder.

 NEW_BASE_DIR = os.path.join(os.path.split(BASE_DIR)[0],

 "PROCESSED_IMAGE")

You start by reading the image and then creating a mask using Otsu’s method. This

mask just contains 1 and 0 separating the foreground and background pixels. After this

you field correct the input image using the threshold mask.

 def correct_bias_field(input_path, output_path):

 inputImage = sitk.ReadImage(input_path)

 maskImage = sitk.OtsuThreshold(inputImage,

 0, # Background Value

 1, # Foreground Value

 250 # Number of Histograms

)

Chapter 8 Medical Imaging

https://simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html
https://simpleitk.readthedocs.io/en/master/link_N4BiasFieldCorrection_docs.html

291

 # Casting to allow real pixel value

 inputImage = sitk.Cast(inputImage, sitk.sitkFloat32)

 corrector = sitk.N4BiasFieldCorrectionImageFilter()

 output = corrector.Execute(inputImage, maskImage)

 # Since our original image followed the 16-bit pixel format

 outputCasted = sitk.Cast(output,sitk.sitkVectorUInt16)

 sitk.WriteImage(outputCasted,output_path)

You call the above function for each patient and each image sequence and

correspondingly save the results.

processed_full_data = {}

for patient_id,v in full_data.items():

 processed_full_data[patient_id] = {}

 for seq,input_path in v.items():

 �print(f"Started Bias Correction for Patient {patient_id} and

Sequence {seq.upper()}")

 folder_name = os.path.split(os.path.split(input_path)[0])[-1]

 file_name = os.path.split(input_path)[-1]

 output_path = os.path.join(NEW_BASE_DIR,folder_name, file_name)

 # Automatically create the directory that doesn't exist

 if not os.path.exists(os.path.join(NEW_BASE_DIR,folder_name)):

 os.makedirs(os.path.join(NEW_BASE_DIR,folder_name))

 # Updating the new paths for 4 sequences

 if seq == "label":

 processed_full_data[patient_id].update({seq:input_path})

 else:

 processed_full_data[patient_id].update({seq:output_path})

 correct_bias_field(input_path, output_path)

 break

�Removing Unwanted Slices

This is the last step of the preprocessing pipeline before creating the training data. Save

the results in the HDF5 file format, which allows stitching individual data together in a

single file.

Chapter 8 Medical Imaging

292

You are going to save the final image file with all sequences stacked together to

create a 4-D volume of size 4,135,240,240 and the label volume of size 135,240,240.

You are going to use the h5py Python package to save the HDF5 files.

import h5py

 NEW_BASE_DIR = os.path.join(os.path.split(BASE_DIR)[0],

 "PROCESSED_IMAGE","SLICE_CORRECTED")

Automatically create the directory that doesn't exist

if not os.path.exists(NEW_BASE_DIR):

 os.makedirs(NEW_BASE_DIR)

You run consecutive for loops to loop through the paths and save the h5py file in the

new directory created above.

for patient_id,v in processed_full_data.items():

 image_vol_w_seq = {}

 image_mask = []

 for seq,input_path in v.items():

 image_volume = io.imread(input_path, plugin='simpleitk')

 �slices_to_keep = np.array([_slice for i,_slice in enumerate(

image_volume) if i not in (list(range(5))+list(range(140,155)))])

 if seq == "label":

 # To enable one-hot encoding of these categories

 # we make a continous range of classes from 0 to 3

 slices_to_keep[slices_to_keep == 4] = 3

 image_mask = np.copy(slices_to_keep)

 else:

 image_vol_w_seq[seq] = slices_to_keep

 final_image = np.stack((image_vol_w_seq['flair'],

 image_vol_w_seq['t1'],

 image_vol_w_seq['t1ce'],

 image_vol_w_seq['t2'])).astype('float')

 # Check individual size of mask and train images

 assert image_mask.shape == slices_to_keep.shape

 assert final_image.shape == (4,) + slices_to_keep.shape

Chapter 8 Medical Imaging

293

 # Initialize the HDF5 File

 _path = os.path.join(NEW_BASE_DIR, f'{str(patient_id+1).zfill(3)}.h5')

 _hf = h5py.File(_path, 'w')

 # Use create_dataset to give dataset name and provide numpy array

 _hf.create_dataset('X', data = final_image)

 _hf.create_dataset('Y', data = image_mask)

 # Close to write to the disk

 _hf.close()

�Model Creation
The 3D U-Net architecture was inspired from the U-Net architecture which amassed

huge popularity after being the SOTA for some time for medical image segmentation.

The architecture was introduced by the University of Freiburg in collaboration with

Google’s Deepmind Team in the paper titled “3D U-Net: Learning Dense Volumetric

Segmentation from Sparse Annotation.” Figure 8-25 is an image from the same paper

showcasing the U-Net architecture.

Figure 8-25.  The 3D U-Net architecture. The blue boxes represent feature maps.
The number of channels is denoted above each feature map

Chapter 8 Medical Imaging

294

A U-Net architecture consists of a contracting path (left side) and an expansive
path (right side).

The contracting path follows the typical architecture of a convolutional network.

A convolution layer is followed by non-linear activation and a pooling operation to

prevent overfitting. Sometimes BatchNormalization or its variants are added to make

sure that covariate shifts in a batch of data don’t abruptly affect the gradient learning

process. Covariate shits are observed changes in data distribution across batches.

At each downsampling step, the feature channels are doubled whereas the expansive

path consists of upsampling and concatenation followed by regular convolution

operations. In this path you try to restore the condensed features by expanding the

feature dimension. You upsample in a way that you meet the desired shape of the feature

map from the contracting path denoted by green arrows in Figure 8-25.

The main win for U-Net is that while upsampling you also concatenate the feature

maps from the encoder/contracting network.

Let’s get coding. You start by importing the relevant layers required to create the model.

from tensorflow.keras.models import Model

from tensorflow.keras.layers import (

 Input,

 Activation,

 Conv3D,

 Conv3DTranspose,

 MaxPooling3D,

 UpSampling3D,

 SpatialDropout3D,

 concatenate,

 BatchNormalization

)

from tensorflow.keras.optimizers import Adam

You create the convolution block, which basically creates both the contracting and

expanding path. Just like in previous chapters you continue to use SELU as your go-to

activation.

You are also going to use a batch normalization layer, which handles covariate shits

across a batch of data. You can control the use of it by using a flag variable.

Chapter 8 Medical Imaging

295

One thing to note is the use of data_format = 'channels_first'. This is done to tell

the layers that the input image has channels as the first dimension. Don’t be confused;

your input image is actually a 5-D tensor.

 �5+D tensor with shape: batch_shape + (channels, conv_dim1, conv_dim2,

conv_dim3) if data_format='channels_first' or 5+D tensor with shape:

batch_shape + (conv_dim1, conv_dim2, conv_dim3, channels) if data_

format='channels_last'

 def convolution_block(input_layer, n_filters, batch_normalization=False,

 kernel=(3, 3, 3), activation='selu',

 padding='same', strides=(1, 1, 1)):

 """

 Creates Convolutional Block

 """

 �layer = Conv3D(n_filters, kernel, activation = 'selu', data_format

= 'channels_first', padding = padding, strides = strides)

(input_layer)

 if batch_normalization:

 layer = BatchNormalization(axis=1)(layer)

 return layer

Sometimes to prevent overfitting you might want to add a dropout layer after

max-pooling but for simplicity, let’s not introduce it. For those who want, you can add

SpatialDropout3D layer by passing the max-pooling output to the Dropout layer.

In a similar manner, for the expanding path you define an up-convolution operation.

To get the image of the same size, there are various methods. In the function below, you

can see two of them, which are deconvolution and upsampling.

•	 Deconvolution: Use filters, kernels, padding, and strides just as the

convolution layers to get an image of desired size.

•	 Upsampling: Resizes images to the desired size by passing the pool

size used to compress the image.

 def up_convolution(n_filters, pool_size, kernel_size = (2, 2, 2),

 strides = (2, 2, 2),

 deconvolution = False):

Chapter 8 Medical Imaging

296

 if deconvolution:
 �return Conv3DTranspose(filters=n_filters, data_format =

'channels_first',

 kernel_size=kernel_size, strides=strides)

 else:
 �return UpSampling3D(size=pool_size, data_format =

'channels_first')

You create the architecture shown in Figure 8-25 and return the model for training.

 def unet_model_3d(loss_function, input_shape=(4, 24, 160, 160),
 pool_size = 2, n_labels = 3,

 initial_learning_rate = 0.001,

 �deconvolution=False, depth = 4, n_base_filters = 32,

metrics=[],

 batch_normalization = True):

 """

 U-Net 3D Model

 """

 # Input Layer for the Image patch

 inputs = Input(input_shape)

 current_layer = inputs

 levels = list()

 # add levels with max pooling

 for layer_depth in range(depth):
 layer1 = convolution_block(input_layer = current_layer,

 n_filters = \

 n_base_filters * (2 ** layer_depth),

 batch_normalization = \

 batch_normalization)

 layer2 = convolution_block(input_layer=layer1,

 n_filters = \

 n_base_filters * (2 ** layer_depth)* 2,

 batch_normalization = \

 batch_normalization)

 # Do Max-Pooling until reaching the bridge

Chapter 8 Medical Imaging

297

 if layer_depth < depth - 1:

 �current_layer = MaxPooling3D(pool_size = pool_size, data_

format = 'channels_first')(layer2)

 levels.append([layer1, layer2, current_layer])

 else:

 current_layer = layer2

 levels.append([layer1, layer2])

 # add levels with up-convolution or up-sampling

 for layer_depth in range(depth - 2, -1, -1):

 up_convolution_layer = up_convolution(pool_size = pool_size,

 deconvolution = deconvolution,

 n_filters = \

 current_layer.shape[1])(current_layer)

 # Concatenate Higher and Lower Dimensions

 �concat = concatenate([up_convolution_layer, levels[layer_depth]

[1]], axis=1)

 current_layer = convolution_block(

 n_filters = levels[layer_depth][1].shape[1],

 �input_layer = concat, batch_normalization = batch_normalization)

 current_layer = convolution_block(

 n_filters=levels[layer_depth][1].shape[1],

 input_layer=current_layer,

 batch_normalization=batch_normalization)

 final_convolution = Conv3D(n_labels, (1, 1, 1),

 data_format = 'channels_first',

 activation = 'sigmoid')(current_layer)

 model = Model(inputs = inputs, outputs = final_convolution)

 if not isinstance(metrics, list): metrics = [metrics]

 model.compile(optimizer=Adam(lr = initial_learning_rate),

 loss = loss_function,

 metrics=metrics)

 return model

Chapter 8 Medical Imaging

298

�Preparing Input Data
To prepare input data, you need to understand how segmentation ideally works given

the model explained above.

Ideally, you would like the whole volume of information, be it channels/seq, the

depth dimension, etc., to be used for creating training labels, but as you can see from the

file size of one HDF5 file, the image size will be huge when uncompressed. Besides, this

would lead to larger kernel size when convolving and hence many more parameters to

learn.

So you are left with either of these two approaches:

	 1)	 Train the segmentation model by inputting each slice from the

stacked image at a time and the corresponding slice from the label

image, just like you would do a 2-D convolution, but then you

are knowingly letting go of spatial information present along the

depth dimension, which can play a pivotal role in determining the

type of tumor. Some tumors might look small in the axial view but

might be very visible in the sagittal view and hence this technique

doesn’t provide good results.

	 2)	 You can also create small patches of 3-D volume from your

volume cube and capture the spatial information across all

dimensions. Now this isn’t a perfect technique since you might

miss out on some colocation information, but it allows you

to capture much more information at a time and hence it is

preferred.

As shown in Figure 8-26, you will create your training data. You repeat this process

for n number of tries depending upon how many maximum patches you want per image

volume.

Chapter 8 Medical Imaging

299

Figure 8-26.  Detail flow to create the training data patches

You start by first creating the standardize function, which centers your pixel intensity

to a mean of 0 and a standard deviation of 1. For each sequence you loop across the

depth and on the (240,240) image you center-scale it and then stack them back at the

same place.

import tensorflow as tf

 def standardize(image):

 """

 Centers the image with mean of zero and sd = 1

 """

 # initialize to array of zeros, with same shape as the image

 standardized_image = np.zeros(image.shape)

 # iterate over sequences

 for c in range(image.shape[0]):

 # iterate over the depth dimension

 for z in range(image.shape[1]):

 image_slice = image[c,z,:,:]

 # subtract the mean from image_slice

 centered = image_slice - np.mean(image_slice)

 �# divide by the standard deviation (only if it is different

from zero)

 if np.std(centered):

 centered_scaled = centered / np.std(centered)

 standardized_image[c, z, :, :] = centered_scaled

Chapter 8 Medical Imaging

300

 else:

 standardized_image[c, z, :, :] = image_slice

 return standardized_image

Next, you create the patches you want for the training data. For this you create a new

folder for the new images.

 NEW_BASE_DIR = os.path.join(os.path.split(BASE_DIR)[0],

 "FINAL_TRAIN_IMAGE")

Automatically create the directory that doesn't exist

if not os.path.exists(NEW_BASE_DIR):

 os.makedirs(NEW_BASE_DIR)

There are a lot of things happening in the function, but these are the broad steps that

are happening.

	 1)	 You start by taking your desired patch size, number of classes in

the label image, and how many tries you want for getting a desired

number of patches from a patient image. You need to try multiple

times because you want the threshold to have at least 4% tumor

region.

	 2)	 You select a random patch by selecting a random start point for all

the axes: x, y, and z.

	 a)	 Since you are selecting multiple patches, it can happen that a patch’s

starting point can be the same. For this you can maintain a separate list for

already-selected starting points to avoid any overlap.

	 b)	 You can either compare an axis tuple or individual axis points. I chose the

former one but you can try either one.

	 3)	 On the label image you introduce a new dimension that one-hot

encoded the tumor labels. As you can see in the code example

below, a new dimension is introduced.

Chapter 8 Medical Imaging

301

You are going to use tf.keras.utils.to_categorical to do this.

 Converts a class vector (integers) to binary class matrix.

Read more at https://www.tensorflow.org/api_docs/python/tf/keras/utils/

to_categorical

 tf.keras.utils.to_categorical([0,1,2,3], num_classes=4)

Output:-

 array([[1., 0., 0., 0.],

 [0., 1., 0., 0.],

 [0., 0., 1., 0.],

 [0., 0., 0., 1.]], dtype=float32)

 tf.keras.utils.to_categorical([[0,1,0,3],[0,0,2,3]], num_classes=4)

Output:

 array([[[1., 0., 0., 0.],

 [0., 1., 0., 0.],

 [1., 0., 0., 0.],

 [0., 0., 0., 1.]],

 [[1., 0., 0., 0.],

 [1., 0., 0., 0.],

 [0., 0., 1., 0.],

 [0., 0., 0., 1.]]], dtype=float32)

	 4)	 You remove the background class because you are not interested

in predicting it. But keep in mind that this still doesn’t change the

sparsity you will have due to imbalance.

	 5)	 If the background ratio is passed, you standardize the input image

and save it along with the label.

Note  For those of you thinking how to decide the output dimension, revisit the
cropping image exercise. You can see that after cropping for the skull you are left with a
dimension of 164,123 and hence you can take a desired dimension of (180, 160).

Chapter 8 Medical Imaging

302

 def get_multiple_patchs(image, label, patient_id,

 save_dir,

 out_dim = (180,160,24),

 num_classes = 4,

 max_tries = 1000,

 num_patches = 5,

 background_threshold=0.96):

 """

 Extract random sub-volume from original images.

 """

 num_channels, orig_z, orig_x, orig_y = image.shape

 out_x, out_y, out_z = out_dim

 all_patches = []

 tries = 0

 # try until you fail :P

 prev_start = []

 while (tries < max_tries) and (len(all_patches) < num_patches):

 # Start from the corner randomly sample a voxel (volume box)

 start_x = np.random.randint(0, orig_x - out_x + 1)

 start_y = np.random.randint(0, orig_y - out_y + 1)

 start_z = np.random.randint(0, orig_z - out_z + 1)

 # Make sure you are choosing a unique starting point each time

 while (start_x,start_y,start_z) in prev_start:

 start_x = np.random.randint(0, orig_x - out_x + 1)

 start_y = np.random.randint(0, orig_y - out_y + 1)

 start_z = np.random.randint(0, orig_z - out_z + 1)

 # extract relevant area of label

 y = label[start_z: start_z + out_z,

 start_x: start_x + out_x,

 start_y: start_y + out_y]

 # One-hot encode the tumor categories to add a 4-th dimension

Chapter 8 Medical Imaging

303

 y = tf.keras.utils.to_categorical(y,num_classes)

 # compute the background ratio

 bgrd_ratio = np.sum(y[:,:,:,0])/(out_x*out_y*out_z)

 # increment tries counter

 tries += 1

 # check if background ratio is less than the maximum background

 # threshold

 if bgrd_ratio < background_threshold:

 # make copy of the sub-volume and take all the channels/seq

 X = np.copy(image[:,

 start_z: start_z + out_z,

 start_x: start_x + out_x,

 start_y: start_y + out_y])

 X_std = standardize(X)

 # we will also make sure that we bring the num class dimension

 # as the first axis

 y = np.moveaxis(y, 3, 0)

 # Exclude the background class as we don't want to predict it

 y = y[1:, :, :, :]

 all_patches.append([X_std, y])

 # Initialize the HDF5 File

 �_path = os.path.join(save_dir, f'{str(patient_id).zfill(3)

+ "_" + str(len(all_patches))}.h5')

 _hf = h5py.File(_path, 'w')

 # Use create_dataset to give dataset name and provide numpy array

 _hf.create_dataset('X', data = X_std)

 _hf.create_dataset('Y', data = y)

 # Close to write to the disk

 _hf.close()

 return all_patches

Chapter 8 Medical Imaging

304

Finally, you save all the patches to the training directory.

 �processed_path =

glob.glob(os.path.join(os.path.join(os.path.split(BASE_DIR)[0],

 "PROCESSED_IMAGE","SLICE_CORRECTED"),"*.h5"))

for _path in processed_path:

 with h5py.File(_path, 'r') as f:

 _image = f.get("X")

 _label = f.get("Y")

 _patient_id = int(os.path.split(_path)[-1].replace(".h5",""))

 x = get_multiple_patchs(_image, _label, _patient_id, NEW_BASE_DIR,

 out_dim = (180, 160,24),

 num_classes = 4,

 max_tries = 1000,

 num_patches = 5,

 background_threshold=0.96)

You are now all set to train your model.

�Training
Since you are dealing with a lot of images of significant sizes, it is generally not

recommended to load all of your images at once. You will load them using a generator.

Not all of the out-of-the-box generators in TensorFlow-Keras expect an image file.

There are some remarkable generators but sadly they won’t work for HDF5 data and

hence you would have to write one on your own.

Note  For those interested, check flow_from_* functions at this repo:
https://keras.io/api/preprocessing/image/.

I am leveraging code from this excellent tutorial. Follow it to broaden your

understanding: https://stanford.edu/~shervine/blog/keras-how-to-generate-

data-on-the-fly. The code for the generator is shared in the GitHub repo of the book.

Do check it out.

Chapter 8 Medical Imaging

https://keras.io/api/preprocessing/image/
https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly
https://stanford.edu/~shervine/blog/keras-how-to-generate-data-on-the-fly

305

Figure 8-27.  Actual and predicted image pixels

In order to train your model, the last piece is to decide on a loss function. Most likely,

when dealing with multiple classes you would be inclined to choose cross-entropy loss

but cross-entropy loss doesn’t work that well with highly imbalanced dataset.

Let’s understand it. Figure 8-27 shows an image patch with foreground pixels

represented by 1 and background pixels represented by 0.

You can see how binary cross entropy almost linearly increases as the non-

overlapping region increases whereas the dice coefficient doesn’t touch 0 even with no

overlap and there is no linear decrease, hence it handles imbalance better.

The paper titled “Statistical Validation of Image Segmentation Quality Based on a

Spatial Overlap Index” by Zou et al discusses dice coefficient in detail with statistical

validation. I strongly recommend you have a look at it.

Chapter 8 Medical Imaging

306

You can further tune the loss function to your use case. Since your DL model actually

outputs and not just probabilities, you can modify the actual Dice function to work on

probabilities and not the actual binary values.

The code for the Soft Dice function is shared in the GitHub repo of the book, so check

it out. Also, please note that while reading some papers you will not find any mention of

epsilon, but in implementation you will. Don’t be scared; it’s a common practice to use

laplace smoothing to avoid division errors in real-world implementations.

Having finally decided on the loss function, you now need a performance metric for

evaluating the trained model. For this you will be using the dice coefficient, which is the

standard metric for evaluating the performance of segmentation models.

from tensorflow.keras import backend as K

K.set_image_data_format("channels_first")

 def dice_coefficient(y_true, y_pred, axis=(1, 2, 3),

 laplace_smoothing_factor=0.00001):

 �dice_numerator =2 *K.sum(y_pred*y_true,axis) + laplace_smoothing_

factor

 �dice_denominator = K.sum(y_pred,axis) + K.sum(y_true,axis) + laplace_

smoothing_factor

 # For multiple classes take the mean across each axis

 dice_coefficient = K.mean(dice_numerator/dice_denominator)

 return dice_coefficient

 def soft_dice_loss(y_true, y_pred, axis=(1, 2, 3),

 laplace_smoothing_factor=0.00001):

 """

 Compute mean soft dice loss over all Multiple classes.

 """

 �dice_numerator =2 *K.sum(y_pred*y_true,axis) + laplace_smoothing_

factor

 �dice_denominator = K.sum(y_pred**2,axis) + K.sum(y_true**2,axis) +

laplace_smoothing_factor

 dice_loss = 1 - K.mean(dice_numerator / dice_denominator)

 return dice_loss

Chapter 8 Medical Imaging

307

For details, refer to https://en.wikipedia.org/wiki/

S%C3%B8rensen%E2%80%93Dice_coefficient.

 model = unet_model_3d(depth = 3,

 pool_size= 2,

 input_shape=(4,180, 160,24),

 n_base_filters = 32,

 loss_function=soft_dice_loss, metrics=[dice_coefficient])

import h5py
 NEW_BASE_DIR = os.path.join(os.path.split(BASE_DIR)[0],

 "FINAL_TRAIN_IMAGE")

 all_patches = glob.glob(os.path.join(NEW_BASE_DIR,"*.h5"))

from sklearn.model_selection import train_test_split
 �train_data, val_data = train_test_split(all_patches, test_size=0.33,

random_state=42)

 BATCH_SIZE = 5

Get generators for training and validation sets

 �train_generator = BatchDataGenerator(train_data, batch_size =

BATCH_SIZE, dim = (180, 160, 24))

 �valid_generator = BatchDataGenerator(val_data, batch_size = BATCH_SIZE,

dim = (180, 160, 24))

For training a generator, you pass something called steps per epoch. This number

of steps is the number of samples to train in a batch. If there are 100 train samples and

you want 5 batches, then steps per epoch = ceil(num_samples/batch_size).

steps_per_epoch = len(train_data)//BATCH_SIZE

 n_epochs=10

validation_steps = len(val_data)//BATCH_SIZE

history = model.fit(train_generator,

 steps_per_epoch=steps_per_epoch,

 epochs=n_epochs,

 use_multiprocessing=False,
 validation_data=valid_generator,

 validation_steps=validation_steps)

Chapter 8 Medical Imaging

https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient
https://en.wikipedia.org/wiki/Sørensen–Dice_coefficient

308

 Epoch 1/10

 �120/120 [==============================] - 860s 7s/step - loss: 0.3559 -

dice_coefficient: 0.4725 - val_loss: 0.4446 - val_dice_coefficient: 0.4008

 Epoch 2/10

 �120/120 [==============================] - 802s 7s/step - loss: 0.3350 -

dice_coefficient: 0.5026 - val_loss: 0.3232 - val_dice_coefficient: 0.5164

 Epoch 3/10

 �120/120 [==============================] - 4914s 41s/step - loss: 0.3214 -

dice_coefficient: 0.5237 - val_loss: 0.5040 - val_dice_coefficient: 0.3589

 Epoch 4/10

 �120/120 [==============================] - 505s 4s/step - loss: 0.3194 -

dice_coefficient: 0.5305 - val_loss: 0.3561 - val_dice_coefficient: 0.4605

 Epoch 5/10

 �120/120 [==============================] - 517s 4s/step - loss: 0.3023 -

dice_coefficient: 0.5525 - val_loss: 0.4168 - val_dice_coefficient: 0.4328

 Epoch 6/10

 �120/120 [==============================] - 518s 4s/step - loss: 0.3066 -

dice_coefficient: 0.5552 - val_loss: 0.3478 - val_dice_coefficient: 0.5206

 Epoch 7/10

 �120/120 [==============================] - 521s 4s/step - loss: 0.3054 -

dice_coefficient: 0.5596 - val_loss: 0.3900 - val_dice_coefficient: 0.4615

 Epoch 8/10

 �120/120 [==============================] - 238s 2s/step - loss: 0.2914 -

dice_coefficient: 0.5746 - val_loss: 0.3515 - val_dice_coefficient: 0.5378

 Epoch 9/10

 �120/120 [==============================] - 294s 2s/step - loss: 0.3022 -

dice_coefficient: 0.5697 - val_loss: 0.3471 - val_dice_coefficient: 0.5286

 Epoch 10/10

 �120/120 [==============================] - 374s 3s/step - loss: 0.2864 -

dice_coefficient: 0.5864 - val_loss: 0.3279 - val_dice_coefficient: 0.5300

Chapter 8 Medical Imaging

309

�Performance Evaluation
See Figure 8-28 to get the Performance and Loss graphs for your model. Note that the

model performs decently with the dice coefficient improving with each epoch. There are

multiple ways to improve the model further by using a higher filter size and dropouts to

prevent overfitting and more depth.

�Transfer Learning for Medical Images
Transfer learning is a way to unlock knowledge from a large pretrained network trained

on huge annotated datasets to solve tasks outside the domain or the purpose it was

trained for. Almost all computer vision problems now use transfer learning and achieve

SOTA.

But unlike natural images, which consistently consist of three channels and less

variation between different sets, medical images can be fundamentally different.

Figure 8-28.  Performance and Loss graphs for the 3-D U-Net Model

Chapter 8 Medical Imaging

310

They can not only have varying channel length but also the pixel intensity of these

images is decided based on the medical device and physics it applies.

Therefore, let’s develop an understanding about whether transfer learning is

applicable for medical images and, if not, what can we do to make it happen.

This section mainly picks up ideas from Google Brain and Cornell University’s

paper published in NIPS 2019 titled “Transfusion: Understanding Transfer Learning for

Medical Imaging.”

The authors tried to understand it by doing the following:

•	 Performance evaluation: Compare models trained from random

initialization and applied directly on tasks to those pretrained on

ImageNet for the same task.

•	 Representation analysis: Compare and contrast hidden

representation from different models using the canonical correlation

analysis.

•	 Effects on convergence: Time taken for the model to converge is

significantly reduced as features are reused.

On the basis of these three experiments, this is what the authors concluded:

	 1)	 Transfer learning does not significantly affect performance on

medical imaging tasks. It means pretrained models are over-

parameterized.

	 a)	 For context, ImageNet has 1000 classes whereas medical images have much

smaller prediction vectors.

	 b)	 The sizes of the input images are very different. While the natural images

that are part of ImageNet have a size of 224 X 224, medical images can have

much larger sizes, like 512 X 512, 1024 X 1024, etc. Such images are too

large to be directly fed to a neural network.

	 2)	 Using pretrained weights from the last two layers of the network is

found to have the biggest effect on convergence.

I think that transfer learning for medical images is not as effective as it is for natural

images. For medical images, we should still stick to the approach of training our own

network based on the modality of the image and task at hand.

Chapter 8 Medical Imaging

311

�Conclusion
Congratulations on making through such a long chapter. This chapter covered a wide

spectrum of information related to medical images and the application of AI. You

explored the different modalities used to capture medical images and how some

modalities can be useful for certain anatomy. We then discussed two different formats,

DICOM and NIFTI, which store these images, and how to leverage metadata associated

with the images to broaden your understanding of the images you receive. Often, this is

neglected by the more fascinating deep-learning applications but metadata contains a

lot of insights. Lastly, you looked at 2-D and 3-D images and different architectures that

can be used to solve classification and segmentation problems.

There is a huge real-world value in what you learned in this chapter. Classification

and localization can be used for screening of diseases and also in emergent diagnosis

and incidental findings. Very recently, with the onslaught of COVID cases leading to an

unforeseen shortage of medical staff, techniques like segmentation were used to diagnose

patients for critical conditions and thus they were given care first. Segmentation also helps

identify tumor contours and sensitive areas for radiation therapy in oncology.

Lastly, the field of deep learning and medical AI isn’t limited to just classification

or segmentation. There are various other areas where there is huge potential to

apply advanced AI techniques, such as registration of images captured from different

sequences, reconstruction of images from the device to what is available to physician,

and also image retrieval with clinical context that can help physicians track what’s been

done in the past for a case.

�References

	 1.	 B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-Cramer, K. Farahani,

J. Kirby, et al, “The Multimodal Brain Tumor Image Segmentation

Benchmark (BRATS),” IEEE Transactions on Medical Imaging

34(10), 1993-2024 (2015) DOI: 10.1109/TMI.2014.2377694.

	 2.	 S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J.S. Kirby,

et al, “Advancing the Cancer Genome Atlas Glioma MRI

Collections with Expert Segmentation Labels and Radiomic

Features,” Nature Scientific Data, 4:170117 (2017) DOI: 10.1038/

sdata.2017.117.

Chapter 8 Medical Imaging

312

	 3.	 S. Bakas, M. Reyes, A. Jakab, S. Bauer, M. Rempfler, A. Crimi, et al,

“Identifying the Best Machine Learning Algorithms for Brain

Tumor Segmentation, Progression Assessment, and Overall

Survival Prediction in the BRATS Challenge,” arXiv preprint

arXiv:1811.02629 (2018).

	 4.	 S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby,

et al, “Segmentation Labels and Radiomic Features for the

Pre-operative Scans of the TCGA-GBM collection,” The Cancer

Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.KLXWJJ1Q.

	 5.	 S. Bakas, H. Akbari, A. Sotiras, M. Bilello, M. Rozycki, J. Kirby,

et al, “Segmentation Labels and Radiomic Features for the

Pre-operative Scans of the TCGA-LGG collection,” The Cancer

Imaging Archive, 2017. DOI: 10.7937/K9/TCIA.2017.GJQ7R0EF.

	 6.	 www.frontiersin.org/articles/10.3389/fnins.2019.00810/full

Chapter 8 Medical Imaging

http://www.frontiersin.org/articles/10.3389/fnins.2019.00810/full

313
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_9

CHAPTER 9

Machines Have All the
Answers, Except What’s
the Purpose of Life
We have covered so much thus far. Kudos to us. In all of the past cases, you knew what

you were looking for and what the outcome would be, whether it was the readmission

rate of at-risk patients, ICD-9 code prediction, or tumor identification. But sometimes

all we have are questions and we don’t know the possible answers. Be it healthcare or

any other industry, there is so much knowledge embedded into research, company

documents, or any public information, and sometimes we are not aware as it becomes

a little overwhelming to go over such an extensive set of information. So, let's put the

machine to work.

In this chapter, I will briefly review how Q&A systems are built and then you will

build one for yourself using the COVID-19 dataset. With the pandemic situation we

all have faced, we know so little about the side effects of present medication and how

comorbidities can affect treatment. Also, understanding information about the SARS

family of viruses, which was embedded into millions of documents in such a short time,

wouldn’t be possible without technologies like Q&A. So let’s get right into it.

�Introduction
People working in the healthcare profession as well as the general public need fast

and effective access to biomedical information via a system that understands complex

biomedical concepts and can find the best document to support a particular response.

The research in Q&A and particularly biomedical Q&A has been fueled by various

competitions and conference tracks such as TREC [Text REtrieval Conference (TREC)]

https://doi.org/10.1007/978-1-4842-7086-8_9#DOI

314

and BioASQ. BioASQ organizes challenges on biomedical semantic indexing and

question answering (QA). The challenges include tasks relevant to hierarchical text

classification, machine learning, information retrieval, QA from texts and structured

data, multi-document summarization, and many other areas.

There are various datasets released through independent research and competitions

in various areas of healthcare such as scientific (CORD-19), clinical (emrQA) or

consumer health (MediQA, LiveQA-Med).

Despite an active interest, there are still many challenges:

•	 Small and non-complex datasets: Most of the datasets available are

small in size in comparison to SQUAD v1 and v2 datasets (general

domain) and generally do not require complex reasoning.

•	 Ontologies and KB are not utilized: NCBI and BioPortal host

a bunch of Ontologies and Knowledge Graphs pertaining to the

medical domain but often a standalone deep-learning-based

solution fails to utilize them. Certain recent papers are coming up

that are enriching either the embeddings while training or reranking

retrieved documents using existing KBs.

•	 Lack of explainability: Due to the nature of the healthcare domain,

sometimes an explanation of a specific answer can help the user

understand the reasoning better and accordingly instill confidence.

As a general overview, there are roughly four major types of Q&A systems:

•	 Open/closed domain: In retriever (information retrieval) and

reader/generator (machine comprehension) frameworks, a large

number of passages from the knowledge source are encoded and

stored in memory. A retrieval model is able to query the memory to

identify the top relevant passages, which have the maximum inner

product with the question embedding.

•	 Knowledge base: Converts queries to RDF triplets and answers questions

based on KGs or ontologies such as DbPedia or Semantic Map.

•	 Question entailment: Reuses answers from similar questions in the

training database to formulate responses.

•	 Visual Q&A: Answers questions from images.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

315

You are going to work on an IR-based QA system. These systems find and extract a

text segment from a large collection of documents and are the closest implementation

of a real world QA as you are first deciding which documents to find an answer from and

then finding the answer.

Unless you live under a rock, you have used Google. Let’s search for a question on

Google, which very “simply” is an IR system with recently integrated QA capabilities. See

Figure 9-1.

As you can see, the query produced

•	 A list of links with relevant paragraphs from each of the links

highlighting certain keywords

•	 A snippet box giving the actual answer

Figure 9-1.  Google search

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

316

Google at the back end uses multiple technologies to

•	 Retrieve documents

•	 Highlight important keywords/paragraphs in those documents

•	 Give a final answer

•	 Reformulate multiple queries from the given query

•	 Search history

But for us mere mortals, we can understand this IR-QA to work simply as shown in

Figure 9-2.

•	 The retriever serves as a search engine, ranking and retrieving

relevant documents.

•	 Comprehension is generally a seq-seq model that tries to

probabilistically identify which phrase from the context is highly

likely to be seen given the question and, yes, you guessed right: this

generally done using question answering datasets.

�Getting Data
You are going to use CORD-19 dataset to build your Q&A model. It consists of over 400,000

scholarly articles about COVID-19, SARS-CoV-2, and related coronaviruses. You can obtain

this dataset from Kaggle by signing up for the CORD-19 research challenge competition at

www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge.

Figure 9-2.  Flow diagram for IR-QA system

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

http://www.kaggle.com/allen-institute-for-ai/CORD-19-research-challenge

317

The CORD-19 dataset comes with metadata.csv, a single file that records basic

information on all papers available in the CORD-19 dataset. This is a good place to start

exploring!

Along with metadata, there are full text articles taken from PubmedCentral and PDFs

(Research journals - Microsoft) in the document_parses folder on Kaggle. These are

JSON files containing information about the full text article/PDF such as SHA-ID, list of

authors, list of paragraphs in the abstract, full text, bibliography, etc.

For this case study, you will only be working with the metadata.csv, which contains

an article’s title and abstract information. You can easily expand upon the principles

you learn here to include paragraphs from full text as well. This is something you should

experiment with.

So for now, download the metadata.csv from Kaggle and put it in the ./Data folder

of your working directory.

Note N ote the presence of metadata.readme. This keeps track of the changes
the data went through. This data is maintained by Allen AI along with other
collaborators.

Load the metadata and see what’s present:

import os

import pandas as pd

 data_dir = "./Data/"

 metadata_path = os.path.join(data_dir,"metadata.csv")

 �metadata_df = pd.read_csv(metadata_path, dtype={'Microsoft Academic

Paper ID': str, 'pubmed_id': str})

 �metadata_df = metadata_df.dropna(subset=['abstract', 'title']).reset_

index(drop=True)

 �metadata_df = metadata_df.drop_duplicates(['abstract', 'title']).reset_

index(drop = True)

Here you load the metadata, ensuring that full-text IDs are stored as strings. You

remove rows that are missing the abstract and title or are duplicated at the abstract and

title level. This can happen because the main document can have multiple sources of

information or reference multiple documents (full text). But you can ignore these

nitty-gritties and move forward with the analysis.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

318

Keep the columns that we are concerned with for this case study.

#Subsetting Columns

 final_metadata = metadata_df[['abstract', 'title']]

 final_metadata["id"] = [str(i) for i in range(final_metadata.shape[0])]

For those who plan to integrate full text as well as the abstract and title, please visit

https://github.com/allenai/cord19#metadatacsv-overview to get a good idea about

what the different columns mean.

Since you are dealing with transformer-based language models, you know that they

only capture a limited amount of context, which is fixed to a maximum length of 512 tokens.

This means that if the abstract is greater than 512 tokens, it will not be used entirely and

the remaining tokens will be missed. Moreover, these 512 tokens are not something you

get from whitespace splitting but the transformer’s own internal tokenization mechanism

(wordpiece for BERT architectures) and the vocabulary it is using.

To handle this, you will run a window of a fixed length and stride and split the

abstract into several smaller chunks to capture context as decided by the window length.

Figure 9-3 shows how to create your data for retrieval and comprehension.

Since you are going to use Covid-BERT fine-tuned for MedNLI, you will load it to

decide upon tokenization length (discussed in the “Retrieval Mechanics” section). For

now, you can imagine it to be like a BERT model used for encoding information from text.

Figure 9-3.  Running a window over an abstract to prevent abrupt loss of context

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://github.com/allenai/cord19#metadatacsv-overview

319

You can download a pretrained model from https://huggingface.co/Darkrider/

covidbert_mednli and create a folder named pretrained_model in your working

directory and save it there, or you can directly pass the string /Darkrider/covidbert_

mednli to AutoTokenizer.from_pretrained().

Then you can load the model using Hugging Face’s transformers package.

from nltk.tokenize import sent_tokenize
import numpy as np
from transformers import AutoTokenizer
 �TOKENIZER = AutoTokenizer.from_pretrained('./pre_trained_model/

training_nli_covidbert-mednli/0_Transformer')

 MAX_LEN = 300

 STRIDE = 1

Next, write a function that splits the abstract into different paragraphs.

 def get_para_segments(text, stride, max_len, id_, title, tokenizer):
 """

 �Get Running length window of certain length with a particular stride

 """

tokenizer = AutoTokenizer.from_pretrained('./pre_trained_model/

training_nli_covidbert-mednli/0_Transformer')

 text_map = {i:sent for i, sent in enumerate(sent_tokenize(text))}
 �text_lenmap = {i:len(input_id) for i,input_id in

enumerate(tokenizer(list(text_map.values()))['input_ids'])}

 para = []

 i = 0

 if len(text_map) > 1:
 while i < len(text_map):
 for j in text_map.keys():
 if j > i:
 new_para_sub_len = np.sum(list(text_lenmap.values())[i:j])

 if j == (len(text_map) -1):
 �para.append("".join(list(text_map.values())

[i:(j+1)]))

 i = 999999 # some big value

 if new_para_sub_len <= max_len:

 continue

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://huggingface.co/Darkrider/covidbert_mednli
https://huggingface.co/Darkrider/covidbert_mednli

320

 else:

 �para.append("".join(list(text_map.values())

[i:j]))

 i = i+stride

 else:

 para.append(text_map[0])

 # at least 5 words should be there in the paragraph

 para = [paragraph for paragraph in para if len(paragraph.split()) > 5]

 return [[id_, str(id_) + "_" + str(i), title, paragraph] for

i,paragraph in enumerate(para)]

There are three main things happening in the code above:

	 1)	 You provide an ID to each sentence of the abstract. These

sentences are obtained from nltk’s sentence tokenization.

	 2)	 You also create a mapping using the same ID and get the length

post tokenization from the BERT model.

	 3)	 You keep on iterating on each sentence until you hit the maximum

length or it is the end of possible sentences.

Finally, you call the function over chunks of your metadata dataframe. But before

you do this, please make sure you create a folder named passage inside the Data folder.

Pickle is used to serialize Python objects into byte streams (1s and 0s). This makes

loading data into your work environment easy.

from tqdm import tqdm

import pickle

 for i,df in enumerate(np.array_split(final_metadata, 10)):

 print(i)

 �passage_list = [get_para_segments(row["abstract"],STRIDE,

MAX_LEN,row["id"], row["title"], TOKENIZER) for i,row in tqdm

(df.iterrows())]

 with open('./Data/passage/passage_'+str(i)+'.pkl', 'wb') as f:

 pickle.dump(passage_list, f)

 del passage_list

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

321

�Designing Your Q&A
As shown in Figure 9-2, there are multiple components in a Q&A system. Mainly

the functionalities are divided between the Retriever and Reading/Comprehension

modules. Each module further contains multiple parts which can be removed or added

depending on the complexity of the use case and expected performance. Let’s deep dive

into each of them and see what all makes up a Retriever module and a Reading module.

�Retriever Module
A retriever module is made up of three main parts:

•	 Query paraphrasing

•	 Retrieval mechanics (core)

•	 Reranking

�Query Paraphrasing

Query paraphrasing is the process of asking semantically the same query but changing

it linguistically. For example, “What are the benefits of taking covaxin?” can be

paraphrased to “What are the advantages of using covaxin?”
There can be multiple ways in which queries can be paraphrased. This is captured

extremely well by a NeurIPS 2016 paper titled “Paraphrase Generation with Latent Bag of

Words” by Fu et al. They propose that lexical substitutions from WordNet like ontologies

and seq2seq models (generative models) do not fully capture all linguistic aspect of the

sentence. These linguistic aspects can be

	 1)	 Morphology: Study of words and parts of words such as root

words, prefixes, suffixes, etc. (e.g. speak-speaking-spoken)

	 2)	 Synonym: Words similar to other words (e.g. big-large, airplane-jet)

	 3)	 Entailment: If sentence A entails sentence B then sentence A

can’t be true without B being true as well (e.g. sky-airplane, court-

racket)

	 4)	 Metonymy: Search engines like Google, Quora, etc.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

322

The authors use the words from the source sentence to predict their neighbors and

use the words in the target sentence as the target BOW. See Figure 9-4.

The datasets used in the paper can’t be used in specialized domains like biomedical.

There are datasets like MedSTS that give a pair of similar biomedical sentences, which

can be used to try the ideas from the paper.

Another paper titled “BERT-QE: Contextualized Query Expansion for Document Re-

ranking” by Zheng et al focuses on not actually creating new queries but trying to find

contextual evidence from within the paragraphs that are to be retrieved. This reduces the

false positives due to spurious query generation that can happen due to use of ontologies

(which doesn’t address polysemy and/or semantics of the usage) or other methods

based on syntactic correctness.

Figure 9-4.  Example from the deep generative BOW model

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

323

It does so in three phases:

•	 Phase 1: Take the top n documents from BM25 (term-based

matching, discussed in the next section) and find the relevance

score using a fine-tuned BERT model trained on the MSMARCO and

ROBUST04 datasets. This selects the relevant document given the

query.

•	 Phase 2: For each of these documents you now select chunks, which

are subphrases taken from the docs with a sliding window of size m

such that two neighboring chunks are overlapped by up to m/2 words.

This selects the relevant chunks given the query. See Figure 9-5.

•	 Phase 3: The chunks selected from phase two are used in

combination with the original query to compute a final reranking.

You start by evaluating the relevance of a document using the

selected feedback chunks and the query relevance score as weights to

chunk and document relevance.

	
rel C d rel q c rel c d

c C
c C i i

i

i
, softmax , ,� � � � �� � � � �

�
��

	

Figure 9-5.  Phase 1 and 2 of the BERT-QE model

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

324

With 𝞪 as the hyperparameter, you weigh the importance of relevancy score of

(query, document) and (chunk, document).

	 rel q C d rel q d rel C d, , , ,� � � �� � � � � � � � �1 � � 	

You will use the second approach because it is domain agnostic and you can

capture semantics by using a COVID-specific corpus. You will be using deepset’s Covid

fine-tuned model from https://huggingface.co/deepset/covid_bert_base.

�Retrieval Mechanics

A retriever generates a set of candidate passages. Since the number of documents can be

very large, especially for open-domain question answering systems, it is very important

to have an efficient retrieval mechanism. It can be either term-based or semantic-based.

Term/Phrase-Based

Both the query text and the context text are represented by a vector where each

dimension represents a word in the vocabulary. Now, since each context only contains a

subset of possible terms, their term vectors are often sparse.

The similarity between two texts, for instance a document and a query, can be

computed by a dot product between these vectors while also accounting for term

importance using techniques like TF-IDF or BM25.

BM25 helps saturate term frequency and takes into account the document length by

penalizing larger docs containing no relevant term for the query. If you’re interested in

knowing more, go to www.kmwllc.com/index.php/2020/03/20/understanding-tf-idf-

and-bm25/.

To efficiently do term-based matching at scale, you need to create an inverted index

of the content. An inverted index is a type of hashmap that maps words to the documents

they are found in. All major search engines like Elasticsearch, Solr, and Anserini use

inverted indexing to fetch documents given a set of words.

There are three main steps to create an inverted index:

	 1)	 Load the document.

	 2)	 Analyze it.

–– Remove stop words like “I”, “the”, “we”, “is”, “an,” etc.

–– Stem the root word to normalize the words.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://huggingface.co/deepset/covid_bert_base
http://www.kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm25/
http://www.kmwllc.com/index.php/2020/03/20/understanding-tf-idf-and-bm25/

325

	 3)	 Make an inverted index.

–– In a general search, you find a document and then the word in it, but with

an inverted search, you directly query over terms and then find the docu-

ment IDs pertaining to them.

For more information on how inverted indexes work, refer to

www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html.

Semantic-Based

Almost all search engines provide the ability to pass synonyms for the indexed words but

the potential terms in the vocabulary can be really large. Here comes our old good friend

embeddings, which basically tries to quantify the proportion of your text to different

semantic categories.

There are various ways to train these embeddings for semantic retrieval. Let’s

discuss some of them. Before you dive deeper, you need to understand that any kind of

embeddings can be used here but you want embeddings that are trained on “similarity”

tasks such as end-to-end Q&A, sentence similarity, natural language inference (NLI), etc.

•	 Dense passage retrieval: Two independent BERT networks are used

to encode passages and queries to take into account their different

nature such as length, style, and syntax to optimize the dot product of

the two encodings to perform better on ranking query-passage pairs.

•	 NLI-based: Natural language inference is the task of determining

whether a "hypothesis" is true (entailment), false (contradiction), or

undetermined (neutral) given a "premise."

•	 Sentence similarity: Given a pair of sentences and flag 1/0, which

shows whether the sentence is similar or not, model weights are fine-

tuned to reduce binary cross-entropy loss between the target and

predicted labels.

Since you are mostly concerned with optimizing on the similarity task, which in

turns means you need to adopt a method closest to understanding the natural language,

I’ll only discuss NLI-based methods in detail.

Given a pair of texts, you predict the similarity by predicting for three classes:

entailment (meaning similar), contradiction (meaning not similar at all), and neutral

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

http://www.elastic.co/guide/en/elasticsearch/guide/current/inverted-index.html

326

(meaning the premise and hypothesis are completely independent). With the addition of

a third state, the model is better able to understand sentences. See Figure 9-6.

The idea to use NLI for sentence representation was presented in the paper titled

“Supervised Learning of Universal Sentence Representations from Natural Language

Inference Data” by Conneau et al.

You will be using a pretrained model that uses different NLI datasets, particularly

related to the biomedical domain. These MedNLI datasets are obtained from PhysioNet,

the same website from which you accessed to MIMIC 3 dataset for your first case. The

good news is you don’t have to go through any training to access to this new dataset. See

Figure 9-7.

Figure 9-6.  Using NLI to create sentence representation

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

327

Since you are going to use large dimensional embeddings on your list of paragraphs,

it is recommended to index them for fast retrieval. You are particularly going to use

FAISS for this.

FAISS is a C++ library with Python bindings that is used to do vector similarity

matching over millions or billions of vectors. More details can be found at https://

engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-

efficient-similarity-search/.

�Reranking

Reranking is the final nail in the coffin for getting the best ranked passages on which

your Q&A model can run.

MS-MARCO is the most widely used dataset when it comes to passage reranking. For

reranking, you need a query against a set of positive and negative passages. You are free

to choose any ratio of positive to negative passage for a query. This ratio also determines

the size of your training data. You can read more about it at https://github.com/

microsoft/MSMARCO-Passage-Ranking#ranking-task.

You can’t directly use the MS-MARCO dataset for your domain as most of the

questions in the dataset are not medically related, causing a domain mismatch between

the training and evaluation data.

To overcome this challenge, MacAvaney et al in their paper titled “SLEDGE-Z: A

Zero-Shot Baseline for COVID-19 Literature Search” used MedSyn, a lexicon of layperson

and expert terminology for various medical conditions, to filter for medical questions.

Figure 9-7.  PhysioNet MedNLI data

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/microsoft/MSMARCO-Passage-Ranking#ranking-task
https://github.com/microsoft/MSMARCO-Passage-Ranking#ranking-task

328

Yes, you are right to think here that you can also replace it with the UMLs ontologies

that we discussed previously, but the beauty of this ontology is that the terms are more

general human conversation lingo and not terms based on scientific literature.

Hence you will be using a CovidBert transformer fine-tuned for the ranking task for

reranking of your results.

�Comprehension
There are various machine comprehension/question answering models/techniques that

leverage state-of-the-art deep-learning methodologies, such as the neural variational

inference model (VS-NET), RNNs with self-matching attention, and even convolutional

networks. But for this case study, you will be leveraging the transformer architecture via

BERT models to learn what machine comprehension is and how BERT does it.

You learned a lot about the BERT architecture in Chapter 4. If you haven’t read that

chapter, go through the section “Understanding How Language Modeling works” to

understand more about it.

In a question-answering task, you are given a question along with a paragraph

containing an answer to the question. The goal is to extract the answer from the

paragraph for the given question.

�BERT for Q&A

To prepare the input for training a Q&A model on BERT, there are five major steps. You

won’t be coding each step because they are handled by the use of external libraries.

	 1)	 When using BERT for the question answering task, you represent

the input question and passage as a single packed sequence.

	 2)	 The [CLS] token is added to the beginning of the question. It plays no

role in picking up the answer but condenses the question's context.

	 3)	 The [SEP] token is added at the end of the question as well as the

passage.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

329

	 4)	 BERT also uses segment embeddings to differentiate between the

question and the passage that contains an answer. BERT creates

two segment embeddings, one for the question and other for the

passage, to differentiate between the question and passage. Then

these embeddings are added to a one-hot representation of tokens

(BERT tokenization using token embedding) to segregate between

the question and passage.

	 5)	 A positional embedding is also added to each token to indicate its

position in the sequence. See Figure 9-8.

When I say that the model must extract an answer from the paragraph, it essentially

has to return the text span containing the answer. This is done by finding the start and

end index of the text span.

You only introduce a start vector S and an end vector E during fine-tuning. The

probability of word i being the start of the answer span is computed as a dot product

between Ti and S, followed by a Softmax over all of the words in the paragraph. Similarly,

an E vector is present to calculate the end index.

One thing to note here is that both S and E are 768-dimension vectors, which is

equal to the dimension of the token’s embedding. For one iteration the same weights are

applied to each token embedding. See Figure 9-9.

Figure 9-8.  Input of the BERT for QnA

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

330

I hope this provides a very succinct review of how you set up BERT for Q&A training.

In this case study, you will be using a fine-tuned BERT model and will not be training

from scratch.

If you want to learn how BERT does its magic on Q&A, read the paper titled “How

Does BERT Answer Questions? A Layer-Wise Analysis of Transformer Representations”

by Aken and Winter. It does this analysis on three main parameters, which are

interpretability, transferability, and modularity.

�Fine-Tuning a Q&A Dataset

More often you will not be training a transformer model from scratch for just the

question/answering task. You will mostly be fine-tuning it for various tasks. It works just

like the transfer learning examples you saw in the past chapters.

Question answering comes in many forms. In this case study, you are going to do

extractive QA that involves answering a question using a passage as the context for

comprehension and then highlighting the segment of the passage that answers the

question. This involves fine-tuning a model that predicts a start position and an end

position in the passage.

One popular dataset for such a task is the SQUAD dataset. It consists of 100k+

questions on a set of Wikipedia articles, where the answer to each question is a text

snippet from corresponding passages. SQUAD 2.0 takes it a step further by combining

the 100k questions with 50k+ unanswerable questions that look similar to the

answerable ones.

Figure 9-9.  Calculating the start index for the answer span

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

331

There’s a fine-tuned BERT model on the SQUAD dataset available at https://

huggingface.co/graviraja/covidbert_squad. You will use this model for your

comprehension task.

If you want to learn how to fine-tune a pretrained model from scratch, Hugging

Face provides a very good tutorial on how to do so at https://huggingface.co/

transformers/custom_datasets.html#question-answering-with-squad-2-0 .

Recently COVID-QA (https://github.com/deepset-ai/COVID-QA), which is a

question answering dataset consisting of 2,019 question/answer pairs annotated, was

released. It can be used to further fine-tune your comprehension model. I leave this as a

task for you to try.

�Final Design and Code
Based on your understanding of the different components of QnA, let’s quickly lay out

the steps needed to design it. See Figure 9-10.

Figure 9-10.  Q&A system design

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://huggingface.co/graviraja/covidbert_squad
https://huggingface.co/graviraja/covidbert_squad
https://huggingface.co/transformers/custom_datasets.html#question-answering-with-squad-2-0
https://huggingface.co/transformers/custom_datasets.html#question-answering-with-squad-2-0
https://github.com/deepset-ai/COVID-QA

332

�Step 0: Preparing the Document Data
You start by loading the pickle file that you saved after converting the abstracts to passages.

import glob

import pickle

import pandas as pd

all_metadata = []

 for i,files in enumerate(glob.glob("./Data/passage/passage_*.pkl")):

 with open(files, 'rb') as f:

 data_list = pickle.load(f)

 all_metadata.extend([data_pair for data in data_list \

 for data_pair in data])

 �all_metadata_df = pd.DataFrame(all_metadata, columns = ["id","passage_

id","title","passage"])

�Step 1: BERT-QE Expansion
�Step 1.1: Extract the Top k Documents for a Query Using BM-25

Since there are a lot of documents, I will be randomly sampling 50,000 passages from the

all_metadata_df to carry out relevancy tasks. If you have a very large amount of RAM,

you can try with the full or partial data.

Since BM-25 works on terms, you need to tokenize your passages to these terms to

create an inverted index and then retrieve them using BM-25. For this exercise, you are

going to use the rank-bm25 package.

For tokenizers, you are going to use a base spacy package. Please note that spacy has

released v3.0, which extensively uses transformers for accuracy but is not efficient for

our purpose, which is tokenization. Previous spacy pipelines are quite accurate, so you

will use the en_core_web_sm spacy package for this purpose.

from spacy.tokenizer import Tokenizer

from spacy.lang.en import English

nlp = English()

Create a blank Tokenizer with just the English vocab

tokenizer = Tokenizer(nlp.vocab)

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

333

You are going to create a class called BM25RankedResults which basically indexes
your data and allows you to query and return the top 200 documents.

from rank_bm25 import BM25Okapi

import numpy as np

 class BM25RankedResults:

 """

 BM25 Results from the abstract.

 Usage:

 �bm25 = BM25RankedResults(metadata_df) # metadata_df is a pandas

dataframe with 'title' and 'abstract' columns

 �topbm25 = bm25.search("What is coronavirus", num=10) # Return `num`

top-results

 """

 def __init__(self, corpus: pd.DataFrame):

 self.corpus = corpus

 self.columns = corpus.columns

 token_list = pd.Series([[str(token) for token in doc if str(token)] \

 for doc in tokenizer.pipe(corpus.passage,

 batch_size=5000)])

 self.index = token_list.to_frame()

 self.index.columns = ['terms']

 self.index.index = self.corpus.index

 self.bm25 = BM25Okapi(self.index.terms.tolist())

 self.bm25 = BM25Okapi(token_list)

 def search(self, query, num = 200):

 """

 Return top `num` results that better match the query

 """

 search_terms = query.split()

 doc_scores = self.bm25.get_scores(search_terms) # get scores

 ind = np.argsort(doc_scores)[::-1][:num] # sort results

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

334

 results = self.corpus.iloc[ind][self.columns] # Initialize results_df

 results['score'] = doc_scores[ind] # Insert 'score' column

 results = results[results.score > 0]

 return results.passage_id.tolist()

 �passage_data = all_metadata_df.sample(50000)

bm25 = BM25RankedResults(passage_data) # Covid Search Engine

If you want to work with full data and have a decent amount of RAM, you can also

load a prebuilt Lucene index and use Pyserini (v 9.3.1) to query using BM-25. It is faster

and very scalable.

I already have the index built for the configuration I used to create the passage, which

is stride of 1 and maximum length of 300 tokens for the passage. You can get those files

from https://drive.google.com/file/d/1A824rH3iNg8tRjCYsH2aD50YQMNR6FVI/view.

Now load the prebuilt binary and call the SimpleSearcher class.

from pyserini.search import SimpleSearcher

 bm25 = SimpleSearcher('./Data/indexes')

Example

search_hits = bm25.search('what is coronavirus', k= 200)

 bm25_passage = [hit.docid for hit in search_hits]

I am going to use the pyserini method for the rest of the code because it is super-

fast, but the BM25RankedResults class offers more flexibility in terms of handling text

(cleaning, lemmatization, etc.) and can be used as well.

�Step 1.2: Relevance Score on the Top 200 Documents

To calculate the relevance score, there are three phases, as discussed in the section

above. Although the authors have experimented with different transformer models

in different phases, for your use case you will use the covidBert model from deepset

available at https://huggingface.co/deepset/covid_bert_base.

To load this model, you will use the sentence-transformer library. It is an excellent

library that quickly helps to compute dense vector representations for sentences and

paragraphs. It supports various transformer networks like BERT, RoBERTa, XLM-

RoBERTa, etc.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://drive.google.com/file/d/1A824rH3iNg8tRjCYsH2aD50YQMNR6FVI/view
https://huggingface.co/deepset/covid_bert_base

335

If you have cuda set up on your laptop, you can also pass the device for the model to

perform operations on. For NVIDIA-GPU cards you can pass device = 'cuda'.

from sentence_transformers import SentenceTransformer,util

 �covid_bert = SentenceTransformer("deepset/covid_bert_base",

device = 'cuda')

Since BERT-QE is based on finding the top n passages/chunks, let’s write a single

wrapper function to get the top k values based on cosine similarity between two vectors.

You start by encoding all the of text present in the list using the covidBert model.

Then you use a built-in function from the sentence-transformer utility file to

compute cosine scores and then return the top k matches based on cosine similarity.

There is a flag variable that you can use if you want to directly work with the cosine

score metric.

 �def get_top_k_vals(list1, list2, k = 100, model = covid_bert, return_

cosine_mat = False):

 # Compute embedding for both lists

 embeddings1 = model.encode(list1, convert_to_tensor = True)

 embeddings2 = model.encode(list2, convert_to_tensor = True)

 # Compute cosine-similarity

 cosine_scores = util.pytorch_cos_sim(embeddings1, embeddings2)

 if return_cosine_mat:

 return cosine_scores.numpy()

 # Select top kd documents/passage

 _topkd = np.argsort(cosine_scores.numpy()[0])[::-1][:k]

 return _topkd, cosine_scores.numpy()[0][_topkd]

You also need to calculate the Softmax of the query with top chunks, so let’s define a

Softmax function that can work with a NumPy array.

 def softmax(x):

 """Compute softmax values for each sets of scores in x."""

 e_x = np.exp(x - np.max(x))

 return e_x / e_x.sum(axis=0)

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

336

You are now ready to write the main function. The steps are as laid out in the original

paper. I have commented the code into separate phases for better understanding.

from collections import OrderedDict

 def bert_qe(query, bm25_model, passage_id_map, bert_model = covid_bert,

 alpha = 0.4, document_size = 500, chunk_size = 8):

 """

 �Re-ranks BM-25 document based on relevancy of query to chunks of a

passage.

 """

 print("\tPhase 1")

 # Phase 1

 topbm25 = bm25_model.search(query, document_size)

 #doc index to passage map

 �passage_index_map = OrderedDict({idx:passage_id_map[passages] if

isinstance(passages,str) \

 �else passage_id_map[passages.docid] for

idx,passages in enumerate(topbm25)})

 �passageid_index_map = OrderedDict({idx:passages if

isinstance(passages,str) \

 �else passages.docid for idx,passages in

enumerate(topbm25)})

 _topdocidx, _topdocscores = get_top_k_vals([query],

 list(passage_index_map.values()),

 k = document_size, model = bert_model)

 # Store Top Contextually matching docs

 �passage_scores = {idx:score for idx,score in zip(_topdocidx,

_topdocscores)}

 print("\tPhase 2")

 # Phase 2

 # Create chunks of length "n" and stride them with a length of "n/2"

 �_chunks = [[" ".join(phrase) for i, phrase in enumerate(nltk.

ngrams(passage_index_map[idx].split(),

chunk_size)) if i%(chunk_size/2)==0] for idx in _topdocidx]

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

337

 # Flatten the list

 all_chunks = list(chain.from_iterable(_chunks))

 # Get top chunks based on relevancy score with the query

 _topchunkidx, _topchunkscores = get_top_k_vals([query],

 all_chunks,

 �k = int(len(all_chunks)/2),

model = bert_model)

 top_chunks = np.array(all_chunks)[_topchunkidx]

 # Apply softmax over query and chunk relevancy score,

 # This acts as weights to chunk and document relevancy

 _topchunksoftmax = softmax(_topchunkscores)

 # Phase 3

 print("\tPhase 3")

 scores = get_top_k_vals(list(passage_index_map.values()),

 list(top_chunks),

 k = len(top_chunks),

 model = bert_model,

 return_cosine_mat = True)

 �# Multiply the weights of chunk with query to relevancy of chunk with

the document

 # and sum over all the top chunks (kc in the paper)

 �docchunk_score = np.sum(np.multiply(_topchunksoftmax,

np.array(scores)), axis = 1)

 # weighing importance of query relevance and query chunk-doc relevance

 final_score = alpha*_topdocscores + (1-alpha)*docchunk_score

 �passage_score = dict(zip([passageid_index_map[idx] for idx in

_topdocidx],final_score))

 return passage_score

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

338

�Step 2: Semantic Passage Retrieval
To achieve semantic retrieval at a considerable pace, you will leverage Faiss. Faiss is

a library for efficient similarity searching and clustering of dense vectors. It contains

algorithms that search in sets of vectors of any size, even ones that do not fit in RAM.

Faiss uses only 32-bit floating point matrices. This means that you must change the

data type of the input before building the index.

Here, you will use the IndexFlatIP index. It's a simple index that performs a

maximum inner product search.

For a whole list of the index, you can visit

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes.

You start by loading the covidbert-nli model to get the encoding of all the passages

you have. This is the same model that you used for tokenization to create running length

passages from your abstract.

Instantiate the sentence-level covid-BERT NLI model

 from sentence_transformers import SentenceTransformer,util

 �covid_nli = SentenceTransformer('./pre_trained_model/training_nli_

covidbert-mednli', device = 'cuda')

Convert abstracts to vectors

embeddings = covid_nli.encode(passage_data.passage.to_list(), show_

progress_bar=True)

You can now write the code for Faiss indexing. Please note that Faiss doesn’t support

string IDs and hence an external map needs to be created for the passage_ids that are

mapped to an integer value.

Also, to create an index with the passage vectors, you will

•	 Change the data type of the passage vectors to float32.

•	 Build an index and pass it the dimension of the vectors it will operate on.

•	 Pass the index to IndexIDMap, an object that enables you to provide a

custom list of IDs for the indexed vectors.

•	 Add the passage vectors and their ID mapping to the index.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://github.com/facebookresearch/faiss/wiki/Faiss-indexes

339

import faiss

Building FAISS Index

 �embeddings = np.array([embedding for embedding in embeddings]).

astype("float32")

Instantiate the index

 embedding_index = faiss.IndexFlatIP(embeddings.shape[1])

Pass the passage index to IndexIDMap

embedding_index = faiss.IndexIDMap(embedding_index)

Numerical map

passage_num_map = {int(i):x for i,x in enumerate(all_metadata_df.passage_

id.values)}

Add vectors and their IDs

embedding_index.add_with_ids(embeddings, np.array(list(passage_num_map.

keys()), np.int64))

You can now save this index using the Faiss library. You can use this index later to

deploy your Q&A model in the next chapter.

 faiss.write_index(index, "./Data/faiss_cord-19-passage.index")

You can load a Faiss index by using the read_index command.

 embedding_index = faiss.read_index("./Data/faiss_cord-19-passage.index")

�Step 3: Passage Reranking Using a Fine-Tuned Covid
BERT Model on the Med-Marco Dataset
You are at the final step of your retriever steps where you use the passages from both

BERT-QE and semantic retrieval to rerank using the BERT model trained on the

reranking tasks on the Med-Marco dataset.

You can download the pretrained model from https://huggingface.co/

Darkrider/covidbert_medmarco and create a folder named pretrained_model in your

working directory and save it there. Or you can directly pass the string /Darkrider/

covidbert_medmarco to CrossEncoder().

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

https://huggingface.co/Darkrider/covidbert_medmarco
https://huggingface.co/Darkrider/covidbert_medmarco

340

Once you download it, you can place it in your pre_trained_model folder.

from sentence_transformers.cross_encoder import CrossEncoder

 �covid_marco = CrossEncoder("./pre_trained_model/training_medmarco_

covidbert")

Sentence transformers provide two wrapper functions to compare a pair of

sentences. The first is a bi-encoder and the second is a cross-encoder.

Bi-encoders produce for a given sentence a sentence embedding. You pass the

sentences A and B to a BERT independently, which results in the sentence embeddings

u and v. These sentence embedding can then be compared using cosine similarity. In

contrast, for a cross-encoder, you pass both sentences simultaneously to the transformer

network. It produces an output value between 0 and 1, indicating the similarity of the

input sentence pair.

Since for your passage ranking task you are not concerned about individual embeddings

but how similar two sentences are, you will use cross-encoders. See Figure 9-11.

Figure 9-11.  Bi-encoder vs. cross-encoder for a sentence pair

As per Figure 9-10, you now have important passages from the BERT query

expansion technique and the semantic vector matching. You are ready to rerank them

using a fine-tuned BERT model on the Med-Marco dataset explained in the “Retriever”

section.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

341

For this you first write a wrapper function that collates the results from step 1 and 2.

This function basically takes the passage IDs from Step 1 and 2 and passes them to the

Marco-trained model (Step 3).

 �def get_ranked_passages(query, bm25_model, bert_model, passage_id_map,

faiss_index, bert_qe_alpha = 0.4):

 print("Step 1 : BERT-QE Expansion")

 #BERT-QE

 �bertqe_dict = bert_qe(query, bm25_model = bm25_model, passage_id_map =

passage_id_map,

 �bert_model = bert_model, alpha = 0.4, document_size = 500,

chunk_size = 8)

 print("Step 2 : Semantic Passage Retrieval")

 # Semantic Search

 �_,indices = faiss_index.search(np.expand_dims(covid_nli.

encode(query), axis = 0), k=500)

 semantic_passage_ids = [passage_num_map[idx] for idx in indices[0]]

 # passages to be re-ranked

 total_passage_ids = list(bertqe_dict.keys())+ semantic_passage_ids

 return list(set(total_passage_ids))

Finally, based on the query, you retrieve the final ranked documents.

Some queries we want to search for in the document

 queries = ["What is Coronavirus"]

Map of Passage id to Passage Text

passage_id_map = pd.Series(all_metadata_df.passage.values,index=all_

metadata_df.passage_id).to_dict()

#Search in a loop for the individual queries

for i,query in enumerate(queries):

 print(f"Ranking Passages for {i+1} of {len(queries)} query/queries")

 �passage_ids = get_ranked_passages(query, bm25_model = bm25, passage_id_

map = passage_id_map,

 bert_model = covid_bert,

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

342

 faiss_index = embedding_index,

 bert_qe_alpha = 0.4)

 �#Concatenate the query and all passages and predict the scores for the

pairs [query, passage]

 �model_inputs = [[query, passage_id_map[passage_id]] for passage_id in

passage_ids]

 print("Step 3 : Passage Re-ranking using Fine-Tuned Covid BERT ")

 scores = covid_marco.predict(model_inputs)

 #Sort the scores in decreasing order

 �results = [{'input': inp, 'score': score} for inp, score in

zip(passage_ids, scores)]

 results = sorted(results, key=lambda x: x['score'], reverse=True)

Output

 Ranking Passages for 1 of 1 query/queries

 Step 1 : BERT-QE Expansion

 Phase 1

 Phase 2

 Phase 3

 Step 2 : Semantic Passage Retrieval

 Step 3 : Passage Re-ranking using Fine-Tuned Covid BERT

Note that result is a dictionary containing the passage_id and the ranked score. You

are now finally ready to do comprehension. You can also subset the results based on the

score. Let’s keep a cutoff of 0.3

 �final_results = {res_dict['input']:res_dict['score'] for res_dict in

results if res_dict['score'] > 0.3}

len(final_results)

Output

107

You see how by using intelligent retrieval techniques you are able to reduce your

document search space from 0.6 million to just ~100 odd documents/passages.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

343

�Step 4: Comprehension
Hugging Face provides a simple interface for model inference using pipelines. These are

objects that abstract out most of the complex code for model inference. They cover many

tasks, such as

•	 ConversationalPipeline

•	 FeatureExtractionPipeline

•	 FillMaskPipeline

•	 QuestionAnsweringPipeline

•	 SummarizationPipeline

•	 TextClassificationPipeline

•	 TextGenerationPipeline

•	 TokenClassificationPipeline

•	 TranslationPipeline

•	 ZeroShotClassificationPipeline

•	 Text2TextGenerationPipeline

•	 TableQuestionAnsweringPipeline

Well, each of these tasks deserves a chapter in of its own, but for this case study you

are concerned with just the QuestionAnsweringPipeline.

from transformers import pipeline

 �comprehension_model = pipeline("question-answering", model='graviraja/

covidbert_squad',tokenizer='graviraja/covidbert_squad', device=-1)

The parameters are

•	 task(str): The task defining which pipeline will be returned.

"question-answering" returns a QuestionAnsweringPipeline.

•	 model(str or PreTrainedModel(pytorch) or TFPreTrained

Model(Tensorflow)): The model that will be used by the pipeline to

make predictions. This can be a model identifier (string) or an actual

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

344

instance of a pretrained model inheriting from PreTrainedModel (for

PyTorch) or TFPreTrainedModel (for TensorFlow).

•	 tokenizer (str or PreTrainedTokenizer): The tokenizer that will

be used by the pipeline to encode data for the model. This can be a

model identifier or an actual pretrained tokenizer inheriting from

PreTrainedTokenizer. If not provided, the default tokenizer for the

given model will be loaded (if it is a string).

•	 use_fast (bool): Whether or not to use a fast tokenizer if possible.

Fast tokenizers are implemented using Rust.

•	 device is a kwarg parameter. You use “-1” to enable GPU use.

To use this, you need to pass the question and the context.

sample example

 �comprehension_model(question="What is coronavirus", context=all_

metadata_df.passage.tolist()[0])

Output

 {'score': 0.02539900690317154,

 'start': 529,

 'end': 547,

 'answer': 'community-acquired'}

Now on Kaggle’s CORD-19 task, there are sets of questions that are divided across

nine tasks:

	 1.	 What is known about transmission, incubation, and

environmental stability?

	 2.	 What do we know about COVID-19 risk factors?

	 3.	 What do we know about virus genetics, origin, and evolution?

	 4.	 What do we know about vaccines and therapeutics?

	 5.	 What do we know about non-pharmaceutical interventions?

	 6.	 What has been published about medical care?

	 7.	 What do we know about diagnostics and surveillance?

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

345

	 8.	 What has been published about information sharing and inter-

sectoral collaboration?

	 9.	 What has been published about ethical and social science

considerations?

Each of these tasks has a set of questions that are often asked in a COVID-Literature

search, so you will include them as well. Thanks to @kaggle/dirktheeng for compiling

these questions.

Here is a small snippet of these questions:

covid_kaggle_questions = [

 {

 �"task": "What is known about transmission, incubation,

and environmental stability?",

 "questions": [

 �"Is the virus transmitted by aerosol, droplets, food,

close contact, fecal matter, or water?",

 "How long is the incubation period for the virus?",

 ...

]

 },

 {

 "task": "What do we know about COVID-19 risk factors?",

 "questions": [

 �"What risk factors contribute to the severity of

2019-nCoV?",

 "How does hypertension affect patients?",

 "How does heart disease affect patients?",

 ...

 }

]

Let’s go back and modify the question for loop that ranks the passages for

comprehension and create a dataframe for each task’s question.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

346

Using the Q&A pipeline from Hugging Face, you basically get a dictionary of the form.

 �{'score': 0.622232091629833, 'start': 34, 'end': 96, 'answer':

'COVID-19 happens in respiratory tract'}

Since you pass a list of passage_ids (a.k.a. context), you get a list of this dictionary.

When creating the comprehension output (comp_output variable) make sure to pass the

passage_id and the passage_rank score. You are storing this information to use it later

in deployment (Chapter 10).

Finally, you store all of the answers for each question from all of the tasks in a

dataframe named all_comprehension_df.

Map of Passage id to Passage Text

passage_id_map = pd.Series(all_metadata_df.passage.values,index=all_

metadata_df.passage_id).to_dict()

Numerical map for semantic passage retrieval

passage_num_map = pd.Series(all_metadata_df.passage_id.values,index=pd.

Series(range(len(all_metadata_df)))).to_dict()

Map of Passage id to Paper Title

passage_id_title_map = pd.Series(all_metadata_df.title.values,index=all_

metadata_df.passage_id).to_dict()

all_comprehension_df_list = []

#Search in a loop for the individual queries

for task_query_dict in covid_kaggle_questions:

 for i,query in enumerate(task_query_dict["questions"]):

 �print(f"Ranking Passages for {i+1} of {len(task_query_

dict['questions'])} query/queries")

 �passage_ids = get_ranked_passages(query, bm25_model = bm25,

passage_id_map = passage_id_map,bert_model = covid_bert, faiss_

index = embedding_index, bert_qe_alpha = 0.4)

 �#Concatenate the query and all passages and predict the scores for

the pairs [query, passage]

 �model_inputs = [[query, passage_id_map[passage_id]] for passage_id

in passage_ids]

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

347

 print("Step 3 : Passage Re-ranking using Fine-Tuned Covid BERT ")

 scores = covid_marco.predict(model_inputs)

 #Sort the scores in decreasing order

 �results = [{'input': inp, 'score': score} for inp, score in

zip(passage_ids, scores)]

 results = sorted(results, key=lambda x: x['score'], reverse=True)

 # Filtering passages above a certain threshold

 �final_results = {res_dict['input']:res_dict['score'] for res_

dict in results if res_dict['score'] > 0.3}

 print("Step 4 : Comprehension ")

 # Comprehension

 comp_output = [[comprehension_model(question="What is coronavirus",

 �context = passage_id_map[pass_id]),

pass_id, pass_score] \

 �for pass_id, pass_score in final_results.items() if

len(passage_id_map[pass_id].split()) > 5]

 # Adding pass id and score to the comprehension

 [comp_output[i][0].update({'pass_id': comp_output[i][1],

 �'pass_rank_score': comp_output[i][2]}) for

i in range(len(comp_output))]

 # Converting list of dictionaries of ranked results to dataframe.

 comprehension_df = pd.DataFrame([comp_[0] for comp_ in comp_output])

 # adding query and the task

 comprehension_df["query"] = query

 comprehension_df["task"] = task_query_dict["task"]

 �# Finally, using passage_id to replace with actual Paper Title and

Context

 �comprehension_df["title"] = [passage_id_title_map[pass_id] for

pass_id in comprehension_df.pass_id]

 all_comprehension_df_list.append(comprehension_df)

 all_comprehension_df = pd.concat(all_comprehension_df_list, axis = 0)

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

348

Now you save the pandas dataframe.

 �all_comprehension_df.to_csv("all_question_comprehension.csv",

index = None)

�Conclusion
You learned a lot in this chapter. You started with the different types of Q&A systems and

then you built a system design for a closed-domain Q&A system involving multiple ways

of ranking the right document before comprehension can be applied. You also learned

new technologies such as FAISS for inner product search. This has applications beyond

Q&A and can be used in any large-scale production environment.

Feel free to play around with different questions. Although you are using the

questions of the CORD-19 task for the next chapter, you can still pass in your own

queries and understand COVID better.

Chapter 9 Machines Have All the Answers, Except What’s the Purpose of Life

349
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8_10

CHAPTER 10

You Need an Audience
Now
A very large percentage of ML research and modeling today is left to gather dust in

Jupyter notebooks or multiple Python scripts. It takes a great amount of understanding

of other IT systems and enterprise architecture for a data scientist to take things to

production and go live on a real system. Trends have changed in the industry from just a

“data scientist” to a “full-stack data scientist.”

All of our modern ML application code is nothing but libraries with a complicated

setup process with data munging. In this chapter, you will learn how to take models to

production with the help of Docker, which can reproduce the environment you used to

develop your ML code, which then leads to reproducible outputs and hence provides

portability. You will also deploy your app with a live URL using Heroku.

�Demystifying the Web
Most enterprise applications today are web applications. Gone are the days of downloading

an .exe file to run the latest software. Most software today runs in the cloud. This has led to a

change in the scale, experience, and cost for both companies and consumers. We are putting

larger computing powers into smaller devices and are living in an “always connected” world

via the Internet. With changing times, a change in technology is warranted.

Modern software systems follow a CI/CD approach (continuous integration and

continuous deployment). Continuous integration aims at integrating the source code

with proper testing, and deployment takes that code and packages it for deployment. For

AI to be successful, it needs to be a part of this system.

https://doi.org/10.1007/978-1-4842-7086-8_10#DOI

350

A data scientist, when given a problem, will start with a Jupyter notebook/Python

script and create a model that solves the problem. Once the model achieves the required

accuracy, it will be stored in file formats such as .h5, .pkl, or .onnx so that it can be

loaded and used by another data scientist or end user. To integrate it into modern

applications, which are traditionally written in JS/C#/Java or C++, we have to write a

wrapper that can call such a model inside its environment, as most of the data pipelines

are written in such languages. This isn’t just a problem of integration but also of storing

and making available the compute resources to run such a model, as most likely the

model will require a GPU. Hence we can’t just keep exchanging files. We need to manage

the model lifecycle just like software development.

�How Does an Application Communicate?
A web application connects to a web server, which is nothing but a remote computer

unit (like a CPU). Figure 10-1 explains how the web technology evolved from just static

HTML to advance applications such as Gmail, Facebook, etc. One important thing that

gets missed in discussion is the evolution of database technologies. Although traditional

applications were built on a SQL DB, now more advanced DB technologies are available

such as MongoDB, Cassandra, Neo4J, etc.

Chapter 10 You Need an Audience Now

351

Generally these websites were supported by local servers maintained by a company’s

IT but as the applications became complex and extremely connected (with data, people,

and other applications), it was difficult to scale the servers proportionately. It didn’t

make business sense and the resources weren’t available to maintain such a highly

performant system.

Figure 10-1.  Evolution of web technologies

Chapter 10 You Need an Audience Now

352

�Cloud Technology
And then came cloud technology. For the uninitiated, the cloud is an on-demand

computer system available to many users over the Internet. This on-demand system

helps us get desired storage and processing power through virtualization (i.e. dividing

(through resource-locking via software) servers into smaller virtual machines).

With the cloud making enterprise-scale technology available at a really low cost,

many services started to pop up. A view of such technologies is shown in Figure 10-2.

On-site is very rare these days. It might be used for some internal software/websites

that can only be accessed via a company’s intranet.

In IaaS, only the infrastructure is rented (i.e. a machine with certain storage, RAM,

and compute resources is commissioned to you). Imagine buying a CPU. Now you can

do anything: install software, make applications, or even start a website. Yes, you can

host a website with your computer but can you guarantee uptime and speed?

Figure 10-2.  Various cloud-based services. Source: redhat.com

Chapter 10 You Need an Audience Now

353

While using PaaS you are only concerned with developing your code and data

scripts. You are not concerned with how many VMs you need to run your code efficiently

and also provision the OS, library versions, and so on for each VM separately.

SaaS are generally web-based tools like Google Colab, Facebook, LinkedIn, etc. They

are so called because you don’t need to set up anything in order to use them. All you

need is an Internet connection that communicates to the cloud.

�Docker and Kubernetes
�Why Docker?
Modern web apps contain a lot of dependencies. Some of them are OS dependent. Some

of them are dependent on versions of different libraries that are used. This situation is

only expected to grow as more and more libraries are developed independently. You

could be using one library from one developer and another one from another, and thus

is the case in ML.

This can be very troublesome if you have to integrate code tested on multiple

machines (in development) and then integrate it finally to a staging server. To manage

issues like this, a new development paradigm is emerging called containerized

applications. It basically keeps the code, libraries used to run it, and OS-level

information as a separate, isolated unit. This isolated unit can be run on another

machine as is without worrying about configuring the machine for the application code

to run. Docker is the most widely used container technology today and is very popular in

the ML community.

�OS Virtualization
Docker containers run on top of a host operating system and provide a standardized

environment for code running within the container. Docker is suitable when the

development environment’s operating system and testing operating system are the

same. These containerized units basically solve the DevOps issue in ML because you

now, along with code, get all of the dependent libraries with the right version and even

the OS (i.e. an exact replica of the developer's environment).

This OS virtualization using Docker allows you to achieve efficient use of resources

as compared to hardware virtualization done using VM creation with applications such

Chapter 10 You Need an Audience Now

354

as Hypervisor because you can now dynamically allocate resources between Docker

containers, although they all use the same server compared to VMs, which block

resources to their respective unit.

�Kubernetes
Now, imagine a full-fledged app like Amazon that uses multiple such images of a

container. One is allowing search results to come up, one is recommending new items,

and one is capturing user behavior and interaction touchpoints with the web app. Can

we scale all of them dependent on their usage? Yes. For orchestrating independent

Docker containers, we use Kubernetes.

Covering Kubernetes or Docker in more detail than I have is out of the scope for

the book but there are some excellent resources online such as articles on https://

mlinproduction.com/.

�Deploying the QnA System
I have covered the basics. You are ready to now deploy your Q&A setup and create a web

app.

First, you need a framework to handle your deployment and integration needs such

as front-end and backend communication, client- and server-side scaling, etc. You will

use Flask for this purpose. Let’s dive into it.

�Building a Flask Structure
Flask is a microservices web-based framework that allows you to expose any business

logic/functions via an API. Although I am not going to cover a lot of Flask, for those of

you using Flask for the first time, here are some basics.

Start by creating a folder named covidquest. You will use this as the folder for your

application.

Install Flask so you can download the latest Flask via a pip channel.

After setting it up, let’s create the Flask app.

There are two essential things that are required to make your Flask app, one that

handles the client side (front end) and another that handles the server side (back end).

Chapter 10 You Need an Audience Now

https://mlinproduction.com/
https://mlinproduction.com/

355

The web application setup contains two files. Hence you will create these two files as

follows:

•	 app.py: A Python script to handle client communication and

generate responses.

•	 index.html: Your GUI interface. It allows users to submit inputs

(a.k.a. requests) for computation and renders the returned result,

exactly like you studied in the section “How Does an Application

Communicate?”

You can clone the app files from https://github.com/NeverInAsh/covidquest.

This will serve as your starting point, but let’s quickly see the basics of what’s in each of

your files.

�Deep Dive into app.py

from flask import Flask, render_template, request

import pandas as pd

import numpy as np

import sys

 app = Flask(__name__, template_folder='./templates/')

@app.before_first_request

 def at_startup():

 global answer_df, question_map, top_k_map

 �answer_df = pd.read_csv("./all_question_comprehension.csv", index_

col=None)

 �question_map = {'1': 'Is the virus transmitted by aerosol,

droplets, food, close contact, fecal matter, or water?',

 ... skipped lines

 '30': 'Can 2019-nCoV infect patients a second time?'}

 top_k_map = {'0': 5, '1': 10, '2': 20, '3': 30, '4': 50}

@app.route('/')

 def home():

 return render_template("index.html")

Chapter 10 You Need an Audience Now

https://github.com/NeverInAsh/covidquest

356

 def create_answer(text, start, end):

 output = [text[0:start],

 text[start:end],

 text[end:len(text)]]

 return output

@app.route('/top_k_results', methods=['GET', 'POST'])

 def top_k_results():

 question_select = "0"

 weight = "0.2"

 top_k = "0"

 if request.method == "POST":

 question_select = request.form.get('question_select', '')

 weight = request.form.get('weight', '')

 top_k = request.form.get('top_k', '')

 query = question_map[question_select]

 # Filtering answer dataframe for the query

 _df = answer_df[answer_df['query'].isin([query])]

 _df = _df.drop_duplicates(subset=['passage_id']).reset_index(drop=True)

 _df["final_score"] = np.float(

 weight)*_df["score"] + (1-np.float(weight))*_df["pass_rank_score"]

 _df = _df.sort_values(

 'final_score', ascending=False).reset_index(drop=True)

 # results-dictionary

 �results = [{'passage': create_answer(row['passage'], row['start'],

row['end']),

 'title':row['title'],

 �'task':row['task']} for i, row in _df.head(top_k_map[

top_k]).iterrows()]

 �return render_template("index.html", question_select=question_

select,

 weight=weight, top_k=top_k, results=results)

Chapter 10 You Need an Audience Now

357

 if __name__ == '__main__':

 port = int(os.environ.get("PORT", 5000))

 app.run('0.0.0.0', port)

Your app.py is organized in the following way:

	 1)	 You start by importing all the relevant libraries used to write your

backend logic.

	 2)	 You then create an app object, which is an instance of the Flask

object. Using it, you can configure your entire application. For

example, you make sure that Flask knows which web page to

render by explicitly giving the link to the templates folder. The

templates folder is used to store all of the HTML files of the app,

whereas all of the CSS and .js files (other technologies used for

front-end/client side) are stored in static folders.

	 3)	 The app object also helps set up routes for the endpoints/

functions, which in turn invoke a URL. (A URL is the addresses

of an endpoint.) This is done using the decorator @app.

route(<url>, methods), which is an HTTP method for

communication.

	 4)	 The most common data communication/transfer methods are

GET and POST. Whereas GET sends unencrypted information to

the server, POST masks this information and passes the data in the

request's body.

	 5)	 You use the home endpoint as the landing page for your website.

It simply renders the index file.

	 6)	 You also use decorators like @app.before_first_request, which

makes sure that all of the required files/variables needed to

generate a response to a request are loaded before the server is

ready for communication.

	 7)	 app.route() is used to map the specific URL with the function.

For example, you are mapping the landing page/home page of

the website with the URL “/”. Similarly, you’re mapping “/top_k_

results” with the function top_k_results.

Chapter 10 You Need an Audience Now

358

	 8)	 render_tempalte() is used to render HTML that is the skeleton of

the UI for the client to interact with. Flask uses the Jinja template

library to render templates. Read more about it at https://jinja.

palletsprojects.com/en/2.11.x/.

	 9)	 The main code logic is stored in the top_k_results() endpoint,

which collects data from the website form (Figure 10-3). This data is

	 a)	 Query

	 b)	 Weight of comprehension score in the final score, which is a

linearly weighted sum of the comprehension score and the

med-marco rank score

	 c)	 Top k results to show for the question asked

	 10)	 The above data is returned via the POST method in the request

body and is all string, so you convert it into the write datatype and

also get an actual value and not an HTML element’s value.

	 11)	 You return with a render_template() function to render the

HTML or URL associated with the endpoint. Note that you pass a

number of variables along with render_template(). This helps

you embed logic into the markup using backend data. This is done

using a Jinja template (discussed more below).

	 12)	 Finally, you run the Flask app by calling it with the address and

the port number for the server to listen to for the requests.

Figure 10-3.  Form for getting user input

Chapter 10 You Need an Audience Now

https://jinja.palletsprojects.com/en/2.11.x/
https://jinja.palletsprojects.com/en/2.11.x/

359

�Understanding index.html

Your index file looks something like

 �<form action="{{url_for('top_k_results',_anchor='resultsView')}}"

method="post">

 <div class="container my-4">

 <p class="font-weight-bold">Questions</p>

 �<select class="mdb-select md-form" id="question-select"

name="question_select">

 �<option value="" disabled selected>Choose your question

</option>

 �<option value='1' {% if question_select=='1' %} selected {

% endif %}>Is the virus transmitted by aerosol,

 �droplets, food, close contact, fecal matter, or water?

</option>

 �<option value='2' {% if question_select=='2' %} selected

{% endif %}>How long is the incubation period for

 the virus?</option>

 �<button type="submit" class="btn btn-primary btn-block btn-large">

Get Top Results</button>

 </form>

 </div>

You use a form to get post requests from the front end. The weird template {{}} you

see is called a Jinja template. It helps create HTML, XML, and other markup formats,

which are returned to the user via an HTTP response.

You can use any variable passed as a response from the endpoint you interacted

with. It is very helpful. In your use case, you don’t have any pre-hand knowledge of how

many responses a user would like to see for the question asked, so this is something that

can’t be static.

See how easy it is easy to replicate a template for the number of results you want?

 <ul class="timeline">

 {% for result in results %}

 <li class="timeline-item bg-white rounded ml-3 p-4 shadow">

 <div class="timeline-arrow"></div>

Chapter 10 You Need an Audience Now

360

 �<h2 class="h5 mb-0">{{result.title}}</h2><span class=

"small text-gray"><i class="fa fa-clock-o mr-1"></i>

{{result.task}}

 �<p class="text-small mt-2 font-weight-light">{{result.

passage[0]}}<span

 �style="color:orange">{{result.passage[1]}}

{{result.passage[2]}}</p>

 {% endfor %}

By now you should have a good idea of your Flask app and how it is structured.

Before I close this section, I would like you to see the directory tree of your Flask app.

| all_question_comprehension.csv

| app.py

|

+---static

| | favicon-32x32.png

| |

| +---css

| | bootstrap.min.css

| | choices.min.css

| | font-awesome.min.css

| | index.css

| | jquery.mCustomScrollbar.min.css

| |

| \---js

| bootstrap.bundle.min.js

| choices.min.js

| index.js

| jquery-3.3.1.slim.min.js

| jquery.mCustomScrollbar.concat.min.js

|

+---templates

| index.html

|

Chapter 10 You Need an Audience Now

361

To run the Flask app, go to the project folder directory using the command line tool

of your OS and type flask run, as shown in Figure 10-4.

�Dockerizing Your Application
So far, you have built your application. Now it can be deployed on the server. Although

for your use case it is not absolutely necessary to dockerize your application because

you’re not using very many libraries and packages, this is something that can change

with time and hence can cut short the lifetime for your application.

Also, you are coding on Windows but most deployment servers are Unix-based

kernels. It is very likely that when you make this app live, there will be package issues

and also hardware resource usage issues if the code leverages a GPU.

So to create an isolated and portable machine that can stay true to your present

configuration, you will need Docker to sail smoothly through the journey of taking your

app from your laptop to the production environment.

Note T o install Docker on your system, please refer to the very simple guide at
https://docs.docker.com/desktop/.

�Creating a Docker Image

In order to create a Docker image, which is a single file containing all the config and

dependency information required to run the app, you must create a Dockerfile. It

contains all the startup commands that are executed once the container is spun off.

Containers are running instances of an image. For example, a house’s blueprint is

the image and the actual house is the container. In the same way that you can use a

blueprint to create many houses, a Docker image can be used to create many instances

that are run in separate containers.

Figure 10-4.  Windows command of flask run to launch the app on a local host

Chapter 10 You Need an Audience Now

https://docs.docker.com/desktop/

362

The following commands are used to create a Dockerfile:

•	 FROM

•	 COPY

•	 WORKDIR

•	 EXPOSE

•	 RUN

•	 CMD or ENTRYPOINT

Base Image and FROM Command

Every Docker container is an image with a read/write layer on top of a bunch of read-

only layers. What this means is you start with an OS distribution, say Linux Ubuntu,

which is your read-only layer, and then keep on adding different layers like Anaconda to

set up your Python environment and libraries like Flask, pandas, and NumPy to run your

application. See Figure 10-5.

You use the FROM command to get the base image. This is a necessary command to

build a Dockerfile. For your application, you are going to use the continuum Anaconda

distribution. This image can be found on the Docker hub, which is a collection of

container applications: https://hub.docker.com/r/continuumio/anaconda3.

Figure 10-5.  Docker containers are stacked images

Chapter 10 You Need an Audience Now

https://hub.docker.com/r/continuumio/anaconda3

363

COPY and EXPOSE

Using COPY command you essentially pass your files and folders to the Docker image.

This, in your case, is the covidquest folder that contains your Flask app. Once copied,

you will be able to fire the app from inside the Docker image.

The EXPOSE command tells the Docker OS’s network to open some ports for the

server to listen for requests.

WORKDIR, RUN, and CMD

WORKDIR helps you set up the work directory, which in your case is where the app.

py file resides. This is typically the directory you copied your files into using the COPY

command.

The RUN command helps you to install a set of dependencies and libraries to run the

app inside the container. Instead of installing each dependency separately, you make use

of a requirement.txt file that contains all of the required files with particular versions.

This can also be used to run not just library installations but any other command line

command. Obviously, it varies with the base image you choose.

The last command in the Dockerfile is CMD, which is the startup command for the

container. It’s just like when you ran flask run on your local.

Dockerfile

Now that you are armed with this knowledge, you can finally use these commands to

build your Docker image.

You start by copying your covidquest folder and renaming it to covidquest_docker.

Inside this folder you create your Dockerfile. It will be an extension-less file. Your

directory will now look something like this:

| Dockerfile

|

\---covidquest

 | all_question_comprehension.csv

 | app.py

 | requirements.txt

 |

Chapter 10 You Need an Audience Now

364

 +---static

 | | favicon-32x32.png

 | |

 | +---css

 | | bootstrap.min.css

 | | choices.min.css

 | | font-awesome.min.css

 | | index.css

 | | jquery.mCustomScrollbar.min.css

 | |

 | \---js

 | bootstrap.bundle.min.js

 | choices.min.js

 | index.js

 | jquery-3.3.1.slim.min.js

 | jquery.mCustomScrollbar.concat.min.js

 |

 \---templates

 index.html

Add the following commands to your Dockerfile. You can use any text editor, but

make sure that there is no extension to the Dockerfile.

FROM continuumio/anaconda3

 MAINTAINER Anshik, https://www.linkedin.com/in/anshik-8b159173/

RUN mkdir /app

COPY ./covidquest /app

WORKDIR /app

EXPOSE 5000

RUN pip install -r requirements.txt

CMD flask run --host 0.0.0.0

One more thing to note is that requirements.txt is kept inside the app folder

because multiple containers that are spun off using this image will know exactly what

libraries are used to build this app logic.

Chapter 10 You Need an Audience Now

365

�Building Docker Image

Finally, you use the following command to build your Docker image (see Figure 10-6):

docker build -t <docker_image_name> .

Note T he -t flag is used to give a name to the newly created image.

The process can take some time depending upon your network speed. Figure 10-7

shows whether the image has been created.

After the image gets created, you can run the container using the following

command. The command below the -p flag is used to publish a container’s port to the

host. Here, you’re mapping port 5000 inside your Docker container to port 5000 on your

host machine so that you can access the app at localhost:5000. See Figure 10-8.

Figure 10-6.  Building the Docker image

Figure 10-7.  Docker image list

Chapter 10 You Need an Audience Now

366

Even after you press Ctrl + C or CMD + C, the container will still run in the

background.

Please note that each Docker container is associated with an ID. You can find out

how many containers are running by using the command docker container ls, as

shown in Figure 10-9.

Make sure to kill the container after use (Figure 10-10). If you don’t, it can throw an

error like this:

 �(tfdeploy) C:\Users\bansa\Desktop\Book\Chapter 10\covidquest_

docker>docker run -p 5000:5000 -d covidquest

 �4778247c6c95a5a5093edd1279b03a1e41e243afb6ab84788752c9629fbaf69b

docker: Error response from daemon: driver failed

programming external connectivity on endpoint funny_jemison

(dc7d4acc7671b41c701558a8c4200406ec9f0474e360e8aea38b075cc1c2d5d0): Bind

 for 0.0.0.0:5000 failed: port is already allocated.

Figure 10-8.  Running the Docker container

Figure 10-9.  Listing the Docker containers

Figure 10-10.  Kill the container

Chapter 10 You Need an Audience Now

367

When building Docker image covidquest and running the Docker container, you

generate a lot of garbage, such as

•	 Stopped containers

•	 Networks not used by at least one container

•	 Images (see Figure 10-7)

•	 Build cache

You can delete all of these unwanted files and reclaim space by running the

command

docker system prune

�Making It Live Using Heroku
Now that you have dockerized your application, you can take it anywhere you want

and deploy it to an actual address. But before you do that, let’s understand a bit about

development servers.

What you have been using until now was Flask’s very own development server. This

server is very limited in a sense that it can’t handle multiple users or multiple requests

well.

When running a web app in production, you want it to be able to handle multiple

users and many requests such that there are no noticeable amounts of time for the pages

and static files to load.

To make the server more “production-ready,” you can use Gunicorn. Gunicorn is

a pure-Python HTTP server for WSGI (Web Service Gateway Interface) applications.

It allows you to run any Python application concurrently by running multiple Python

processes over the machine commissioned by Heroku (also called dynos).

For your application to run in a production environment, you need to make certain

changes. You need to change the Docker file:

FROM continuumio/anaconda3

 MAINTAINER Anshik, https://www.linkedin.com/in/anshik-8b159173/

make a local directory

RUN mkdir /app

COPY ./covidquest /app

Not required by Heroku

Chapter 10 You Need an Audience Now

368

EXPOSE 5000

WORKDIR /app

RUN pip install -r requirements.txt

CMD flask run --host 0.0.0.0

 CMD gunicorn app:app --bind 0.0.0.0:$PORT --reload

You also add a Procfile. Procfile is a format for declaring the process types that

describe how your app will run. A process type declares its name and a command-

line command. This is a prototype that can be instantiated into one or more running

processes such as your Docker container.

It is an extensionless file that contains the following process, which is basically a

gunicorn process telling the app.py file it has to run since it contains the function/

endpoint that processes the request:

web: gunicorn app:app --log-file=-

Your covidquest_docker directory now looks like this:

 | Dockerfile

 |

 \---covidquest

 | all_question_comprehension.csv

 | app.py

 | Procfile

 | requirements.txt

 |

 +---static

 | | favicon-32x32.png

 | |

 | +---css

 | | bootstrap.min.css

 | | choices.min.css

 | | font-awesome.min.css

 | | index.css

 | | jquery.mCustomScrollbar.min.css

 | |

 | \---js

Chapter 10 You Need an Audience Now

369

 | bootstrap.bundle.min.js

 | choices.min.js

 | index.js

 | jquery-3.3.1.slim.min.js

 | jquery.mCustomScrollbar.concat.min.js

 |

 \---templates

 index.html

You are finally ready to deep-dive into Heroku. Heroku is a PaaS system that helps

build data-driven apps with fully managed data services. To learn more about Heroku,

see the video “Heroku Explained: Icebergs, Lumberjacks, and Condos.”

You will do so by using the Heroku CLI. The Heroku command line interface (CLI)

makes it easy to create and manage your Heroku apps directly from the terminal. It’s

an essential part of using Heroku. You can follow the CLI installation from https://

devcenter.heroku.com/articles/heroku-cli.

To check whether you have successfully set up Heroku or not, run the command

shown in Figure 10-11.

Next, you must log in to Heroku. You can do it from the command line by typing the

command heroku login, which redirects you to the browser for login. After successfully

logging in (Figure 10-12), close the tab and return to the CLI.

Figure 10-11.  Checking the Heroku version

Figure 10-12.  Heroku login

Chapter 10 You Need an Audience Now

https://devcenter.heroku.com/articles/heroku-cli
https://devcenter.heroku.com/articles/heroku-cli

370

You can now create your Heroku app by using the command heroku create <app-

name>. This prepares Heroku to receive your source code. Heroku doesn’t allow you

to take names that are already taken. But before that, make sure you move to the app

directory (Figure 10-13).

Heroku runs a container registry on registry.heroku.com. With the CLI, you can log

in with the command

heroku container:login

or via the Docker CLI

 �docker login --username=<email-id> --password=$(heroku auth:token)

registry.heroku.com

But before you push the app to the Heroku container registry, you need to tell the

Heroku CLI which app you want to run this command for. For this, you convert your

folder to a Git repository using git init. If it is already a Git repo, then you don’t need to

worry.

After this, you add the app name for the repo and create a git remote. Git remotes are

versions of your repository that live on other servers. You deploy your app by pushing its

code to a special Heroku-hosted remote that’s associated with your app.

heroku git:remote -a <your_app_name>

To build an image and push it to container registry, make sure that your directory

contains a Dockerfile and run the command heroku container:push web. See

Figure 10-14.

Figure 10-13.  Creating a Heroku app

Chapter 10 You Need an Audience Now

371

After you’ve successfully pushed an image to the container registry, you can create a

new release. Whenever you deploy code, change a config var, or modify your app's add-

on resources, Heroku creates a new release and restarts your app. You can do so by using

 heroku container:release web

Finally, you can open your app using the following command. This will open the app

in the browser (Figure 10-15).

 heroku open

Figure 10-14.  Build and push a Docker image with Heroku

Chapter 10 You Need an Audience Now

372

Since you are using the free tier, the app will go down after 30 mins of idle time. To

keep your app up forever, you can explore paid apps.

�Conclusion
It has been a long journey. If you made it to this chapter, you are a rock star. I hope in

this journey of over seven case studies you felt curious and are excited about the kind of

opportunity the current healthcare system offers and why you need to apply advanced AI

and ML skills to take healthcare to scale.

You learned how different ethnic groups can have different adoption rates

(Chapter 3) and how to extract ICD-9 codes from EHR text to help the insurance system

that deals with billions of dollars using the latest flag-bearer of language understanding

models, transformers. Then you explored advanced models like GCNs that leverage not

just entity information but the linkages between them to learn better from the available

data.

In Chapter 6, you explored the biggest pain point for any industry, especially

healthcare, given the amount of expertise required to get any training data for the

models. You learned about Snorkel, an upcoming power-packed package that makes

semi-supervised learning tenable.

Figure 10-15.  Deployed app with a URL

Chapter 10 You Need an Audience Now

373

Chapter 7 introduced you to another way of looking at training ML models using

federated learning. Healthcare has the right balance of consumers (patients), creators

(pharma companies), and distributors (physicians and government organizations).

Since there are so many stakeholders involved with inequitable power and resources,

it begs the question of how we can protect the rights of an individual’s privacy and

yet advance science. You learned how this can be done using privacy-preserving

mechanisms.

Chapter 8 discussed in length various types of medical image data and their

various formats. You also looked at handling two different and highly prevalent image

structures, 2-D and 3-D, and solved some of the most important tasks of detection and

segmentation, respectively, on these images. You also learned how to optimize your data

pipelines using iterators.

Chapter 9 took you to the future of how we will be interacting with computer

systems. In the previous decade, the number of clicks to do a task (like buying clothes)

has reduced considerably. With advances in UI and financial technologies, we are

heading towards a time when we will just be chatting with machines, and QnA is the first

step towards it.

Finally, you deployed what you built because if the world can’t see it, it won’t benefit

anyone.

I hope you carry forward the learnings from this book and that this knowledge has

sparked the flame in you to embrace, develop, and deploy the next great ML app idea

you have in your mind.

Chapter 10 You Need an Audience Now

375
© Anshik 2021
Anshik, AI for Healthcare with Keras and Tensorflow 2.0, https://doi.org/10.1007/978-1-4842-7086-8

Index

A
Accountable care organizations (ACOs), 7
Adaptive histogram equalization, 280
Adjacency matrices, 158
Anaconda Windows installation, 31
Autoencoders, 70, 71
AutoGraph, 26
AWS Public Dataset program, 43

B
BERT architecture, 318
BERT-QE model, 323
Bidirectional Encoder Representations

from Transformers (BERT)
ImageNet movement, 114
input

representation, 115
segment embeddings, 116
token embeddings, 115, 116

training
masked language

mModeling, 117, 118
next-sentence prediction, 118

Bi-encoders, 340
Bi-encoder vs. cross-encoder, 340
Biomedical images, 245, 247

C
Center for Medicare and Medicaid

Innovation (CMMI), 3
Center for Medicare and Medicaid

Services (CMS), 3
CLAHE method, 280
Clinically integrated

networks (CINs), 7
Clinical modifications (CM), 100
Clinical notes

attention, 106
data

DIAGNOSES_ICD, 105
NOTEEVENTS, 101–105

EHR data, 100
encoder-decoder

architecture, 106
HHS, 100
ICD codes, 99, 100
modeling

BERT deep-dive, 119–123
paying attention

classes, 109
decoder and encoder states, 108
feed-forward layer, 107
fixed-length representation, 106
information theory, 107

https://doi.org/10.1007/978-1-4842-7086-8#DOI

376

sentences, 106
types, 109
vectors, 107

training
CPU machine, 130
custom layers, 128
design parameters, 126
fine-tuning, 124
generator function, 126
GPU, 130
learning rate, 126
maximum length, 126
model summary, 128, 129
multi-label

classification, 124
pytorch model, 126
set of layers, 124
Softmax function, 129
TensorBoard, 129
validation set, 125
word embeddings, 124

transformer-based architecture
models, 106

transformer model, 105
Cloud technology, 352
Command line

interface (CLI), 369
Comprehension/question answering

models/techniques, 328
BERT, 328–330
fine-tuning, 330

Computational graph, 23
Computer science theory, 155, 156
Containerized applications, 353
Continuous integration and continuous

deployment (CI/CD), 349
CORD-19 dataset, 317

D
Data

dataset, 134
hierarchical layout, 145

creating edges, 146
graph modeling

algorithm, 148, 149, 151–154
line formation, 146, 148

images/labels, 134
input data pipeline, 154, 155
labeled data, 134
node features, 141, 142, 144, 145
node labels, OCR

output, 135–138, 140, 141
Data exploration

bibliographic database, 184–186
labeling function

distance supervision, 199, 200
information extraction, 186
regex, 187–189, 191
syntactic, 192–196, 198

Datasets, 27
Department of Health and Human

Services, 99
Diabetic retinopathy (DR), 252
Differential privacy, 225
DMIS (Data Mining and Information

Systems) Lab, 118
Docker, 353
Dockerize your application, 361

build, 365, 366
COPY command, 363
create, 361
Dockerfile, 363, 364
FROM command, 362
Heroku, 367
WORKDIR command, 363

Clinical notes (cont.)

Index

377

E
Eager execution, 25
Electronic health record (EHR)

care elements, 41
cohort discovery

cluster health, 86
clustering algorithm, 81
inertia, 84, 85
K-means performance, 82–84
silhouette score analysis, 84, 85

data
admissions related, 52–56
categories, 47
comorbidity score, 64–67, 69
lab events, 61, 63
patient’s clinical data, 56–61
predictors for readmission, 47, 48
social and demographic, 48–52

medical and health records, 41
MIMIC-3 dataset, 41
morbidity, 39
mortality, 39
Patient Protection and

Affordable Care Act, 39
patient representation

autoencoders, 70, 71
clinical decision-making tools, 69
creation, feature columns, 76
feature columns, TensorFlow, 71–73
heterogeneous populations, 70
input pipeline, tf.data, 73–75
machine learning models, 69
stacked autoencoder, 76–80
subpopulations, 69

patient’s care, 40
patient’s medical record, 40
symptoms, disease, 40

time-frame restriction, 39
timeline view, 41

Electronic medical record (EMR), 41
Enterprise-scale technology, 352

F
FAISS, 327
Federated learning (FL)

definition, 215, 216
federated, 221
horizontal, 219
privacy mechanisms, 222
steps, 216, 217, 219
vertical, 220

Fine-tuned BERT model, 331
Flask, 354

app.py, 357, 358
index.html, 359

Food and Drug Administration (FDA), 3
Fundal imaging, 252

G
Generator adversarial

networks (GANs), 174
Graph convolutional networks

adjacency matrix, 161, 162
convolutions, graph, 159–161
layer stacking, 163
modeling

graphs, 165
stellar graph, 166
training/model performance

plots, 167, 170, 171
train-test split/target

encoding, 165, 166
training, 164

Index

378

H
Health and Human Services (HHS), 2
Healthcare market

applications
diagnosis, 9
prognosis, 9
response to treatment, 10
screening, 9

environment functions, 1
events, 8
federal protection, 7
industry landscape (see Industry

landscape)
payers

functions, 3, 4
insurance options, 5, 6
national health expenditure, 4
organizations/state agencies, 3
2018 US healthcare spending

distribution, 5
providers, 6, 7
regulators

CMMI, 3
CMS, 3
FDA, 3
federal/central government, 2
groups/actors, 2

stakeholders, 1
supply chain, 1, 2

Hounsfield units (HU), 250

I, J
Image modalities, 247, 249, 250
Industry landscape

Crunchbase information, 10, 11
paging property, 13
private and public companies, 10

targeted companies, 15
technologies, 10
word cloud, 15
word’s TF-IDF score, 16

Integrated delivery networks (IDNs), 6
Integrated payer-provider

networks (IPPNs), 6
Internal tokenization mechanism, 318
International Classification of

Disease (ICD), 99
IR-QA system, 316

K
K-means performance, 82–84
Kubernetes, 354

L
LabelingFunctions, 203, 205
Laboratory of Computational

Physiology (LCP), 43
Laplacian matrix, 159

M
Machine learning models, 69
map_labels, 137
Masked language mModeling, 117, 118
Mean intensity, 266
Medical image analysis, 245

data storage, 251, 252
image modalities, 247, 249, 250

Medical Information Mart for Intensive
Care (MIMIC)

access, 43
database, 42
databases, 43
DbSchema, 44–46

Index

379

health-related data, 42
Mimic-3 Data, 42
open source schema, 44–46
PhysioNet, 42
schema/entity relationship

diagram, 44
Metadata, 317
Multi-head attention, 112–114
Multitask learning (MTL) model

continual incremental
learning, 90

hard parameter sharing, 88, 89
imagine building, 87
learning metric, 87
soft parameter sharing, 89, 90
training, 91–93, 95, 96

N
Natural language inference (NLI), 325
Neural networks, 157
Neural Structured Learning, 20
Next-sentence prediction, 118
NIFTI file format, 270, 271
Non-Euclidean databases, 157
Nvidia CUDA Deep Neural Network

library (cuDNN), 35

O
Optical Society (OSA), 246
OS virtualization, 353

P
Pathology imaging, 253
Peer-to-peer systems, 244
PhysioNet, 42
Pickle, 320

Pipeline
evaluation, 210, 211
interfaces, 202
labels, 211–213
LFs, 203–207, 209, 214
Snorkel’s capabilities, 202
training, 209

Pixel spacing, 264, 266
Positional encoding, 111, 112
preprocess() function, 243
Privacy mechanism

definition, 222
differential privacy, 225–228
gradient matching attack, 223
secure aggregation, 223, 225

Procedure coding systems (PCS), 100
Procfile, 368
Protected health information (PHI), 8
Python installation, 31–33

Q
Q&A system, 321

BERT-QE expansion, 332, 334
relevance, 334, 335, 337
semantic retrieval, 338

BERT-QE model, 323
BOW model, 322
comprehension, 343–345
document data, 332
linguistic aspects, 321
reranking, 327, 328, 339, 342
retrieval mechanism, 324
retriever module, 321
semantic-based, 325, 326
term/phrase-based, 324

Query paraphrasing, 321
Question answering (QA), 314

Index

380

R
Radiography modalities, 252
render_template() function, 358
Reranking, 327
Retrieval mechanism, 324

S
Secure aggregation, 223
Semi-supervised learning

autoencoders, 176–178
GANs, 174–176
steps, 174
transfer learning, 179
weak supervised learning, 179

Serving Models, 20
Snorkel, 180–183
Stellar graph library, 154

T, U
TensorBoard, 20
TensorFlow

compatible versions, 37
embracing TF 2.x

autoGraph, 26
datasets, 27
eager execution, 25
Estimators, 29, 30
tf.keras, 27, 28

Federated, 36
and GPU, 34–36
practices, 30, 31
prepackages, 37
scispacy models, 37
TF 1.x, 23–25

TensorFlow 2
core, 20, 21
JS, 21
Lite, 22
TFX, 22, 23

TensorFlow Extended (TFX), 22, 23
TensorFlow Federated (TFF), 224

communications, 239, 240, 242
creating data, 238
custom data load

pipeline, 231, 232, 234–237
definition, 228
evaluation, 242, 243
input data, 229–231
layers, 229
preprocessing input data, 237

TensorFlow library, 242
TensorFlow Privacy, 228
Text REtrieval Conference (TREC), 313
3-D image, 252, 267

correlation, 276, 278
cropping, 278, 279
image segmentation, 289
input data, 298, 300, 301, 304
model creation, 293–295
MRI, 271, 273, 274
MRI data, 268, 270
NIFTI, 270, 271
padding, 278, 279
performance, 309
pixel intensities, 275, 276
preprocessing, 289

bias field correction, 290, 291
remove unwanted slices, 292

training, 304, 305, 307
transfer learning, 309, 310

Index

381

Transfer learning, 309
Transformer architecture

models, 109, 110
multi-head attention, 112–114
NLP transfer learning tasks, 109
positional encoding, 111, 112

Transformer-based language
model, 318

Transformer model, 105
2-D image, 252

age, 261, 262
DICOM, Python, 254–256, 259
EDA, 259, 260
histogram equalization, 280, 281
isotropic equalization, 282

mean intensity, 266, 267
model creation, 282–284
pixel, 264, 266
prepare input data, 286, 287
sex, 263, 264
training, 288

V
Variational inference model (VS-NET), 328
Virtual environments, 33, 34

W, X, Y, Z
Web application, 355

Index

	Table of Contents
	About the Author
	About the Technical Reviewers
	Introduction
	Chapter 1: Healthcare Market: A Primer
	Different Stakeholders of the Healthcare Marketplace
	Regulators
	Food and Drug Administration (FDA)
	Center for Medicare and Medicaid Services (CMS)
	Center for Medicare and Medicaid Innovation (CMMI)

	Payers
	Providers

	Regulation of Healthcare Information
	AI Applications in Healthcare
	Screening
	Diagnosis
	Prognosis
	Response to Treatment

	What Is the Industry Landscape?
	Conclusion

	Chapter 2: Introduction and Setup
	Introduction to TensorFlow 2
	TensorFlow Core
	TensorFlow JS
	TensorFlow Lite
	TensorFlow Extended

	TensorFlow 1.x vs 2.x
	What Is TF 1.x?
	Embracing TF 2.x
	Eager Execution
	AutoGraph
	TensorFlow Datasets
	tf.keras
	Estimators

	Recommendations for Best Use

	Installation and Setup
	Python Installation
	Using the Virtual Environment
	Library and Versions
	TensorFlow and GPU
	Others

	Conclusion

	Chapter 3: Predicting Hospital Readmission by Analyzing Patient EHR Records
	What Is EHR Data?
	MIMIC 3 Data: Setup and Introduction
	Access
	Introduction and Setup

	Data
	Social and Demographic
	Admissions Related
	Patient’s Clinical Data
	Lab Events
	Comorbidity Score

	Modeling for Patient Representation
	A Brief Introduction to Autoencoders
	Feature Columns in TensorFlow
	Creating an Input Pipeline Using tf.data
	Creating Feature Columns
	Building a Stacked Autoencoder

	Cohort Discovery
	What Is an Ideal Cohort Set?
	Optimizing K-Means Performance
	Deciding the Number of Clusters by Inertia and Silhouette Score Analysis
	Checking Cluster Health

	Multitask Learning Model
	What Is Multitask Learning ?
	Different Ways to Train a MTL Model
	Training Your MTL Model

	Conclusion

	Chapter 4: Predicting Medical Billing Codes from Clinical Notes
	Introduction
	Data
	NOTEEVENTS
	DIAGNOSES_ICD

	Understanding How Language Modeling Works
	Paying Attention
	Transforming the NLP Space: Transformer Architecture
	Positional Encoding
	Multi-Head Attention

	BERT: Bidirectional Encoder Representations from Transformers
	Input
	Token Embeddings
	Segment Embeddings

	Training
	Masked Language Modeling
	Next-Sentence Prediction

	Modeling
	BERT Deep-Dive
	What Does the Vocabulary Actually Contain?

	Training

	Conclusion

	Chapter 5: Extracting Structured Data from Receipt Images Using a Graph Convolutional Network
	Data
	Mapping Node Labels to OCR Output
	Node Features
	Hierarchical Layout
	Line Formation
	Graph Modeling Algorithm

	Input Data Pipeline

	What Are Graphs and Why Do We Need Them?
	Graph Convolutional Networks
	Convolutions over Graph
	Understanding GCNs
	Layer Stacking in GCNs
	Training

	Modeling
	Train-Test Split and Target Encoding
	Creating Flow for Training in StellarGraph
	Training and Model Performance Plots

	Conclusion

	Chapter 6: Handling Availability of Low-Training Data in Healthcare
	Introduction
	Semi-Supervised Learning
	GANs
	Autoencoders

	Transfer Learning
	Weak Supervised Learning

	Exploring Snorkel
	Data Exploration
	Introduction
	Labeling Functions
	Regex
	Syntactic
	Distance Supervision

	Pipeline
	Writing Your LFs
	Working with Decorators
	Preprocessor in Snorkel

	Training
	Evaluation
	Generating the Final Labels

	Conclusion

	Chapter 7: Federated Learning and Healthcare
	Introduction
	How Does Federation Learning Work?
	Types of Federated Learning
	Horizontal Federated Learning
	Vertical Federated Learning
	Federated Transfer Learning

	Privacy Mechanism
	Secure Aggregation
	Differential Privacy

	TensorFlow Federated
	Input Data
	Custom Data Load Pipeline
	Preprocessing Input Data
	Creating Federated Data
	Federated Communications
	Evaluation

	Conclusion

	Chapter 8: Medical Imaging
	What Is Medical Imaging?
	Image Modalities
	Data Storage

	Dealing with 2-D and 3-D Images
	Handling 2-D Images
	DICOM in Python
	EDA on DICOM Metadata
	View Position
	Age
	Sex
	Pixel Spacing
	Mean Intensity

	Handling 3-D Images
	NIFTI Format
	Introduction to MRI Image Processing
	Non-Even Pixel Distribution
	Correlation Test
	Cropping and Padding

	Image Classification on 2-D Images
	Image Preprocessing
	Histogram Equalization
	Isotropic Equalization of Pixels

	Model Creation
	Preparing Input Data
	Training

	Image Segmentation for 3-D Images
	Image Preprocessing
	Bias Field Correction
	Removing Unwanted Slices

	Model Creation
	Preparing Input Data
	Training
	Performance Evaluation

	Transfer Learning for Medical Images
	Conclusion
	References

	Chapter 9: Machines Have All the Answers, Except What’s the Purpose of Life
	Introduction
	Getting Data
	Designing Your Q&A
	Retriever Module
	Query Paraphrasing
	Retrieval Mechanics
	Term/Phrase-Based
	Semantic-Based

	Reranking

	Comprehension
	BERT for Q&A
	Fine-Tuning a Q&A Dataset

	Final Design and Code
	Step 0: Preparing the Document Data
	Step 1: BERT-QE Expansion
	Step 1.1: Extract the Top k Documents for a Query Using BM-25
	Step 1.2: Relevance Score on the Top 200 Documents

	Step 2: Semantic Passage Retrieval
	Step 3: Passage Reranking Using a Fine-Tuned Covid BERT Model on the Med-Marco Dataset
	Step 4: Comprehension

	Conclusion

	Chapter 10: You Need an Audience Now
	Demystifying the Web
	How Does an Application Communicate?
	Cloud Technology

	Docker and Kubernetes
	Why Docker?
	OS Virtualization
	Kubernetes

	Deploying the QnA System
	Building a Flask Structure
	Deep Dive into app.py
	Understanding index.html

	Dockerizing Your Application
	Creating a Docker Image
	Base Image and FROM Command
	COPY and EXPOSE
	WORKDIR, RUN, and CMD
	Dockerfile

	Building Docker Image

	Making It Live Using Heroku

	Conclusion

	Index

