
May - June www.arkakapimag.comBimonthly Cyber Security Magazine 0505

9 772645 906009

ISSN 2645-906X

Cryptocurrency Monero (XMR) for Those Who Want True Privacy

Blockchain Applications and Security Problems

When “Random” Numbers Aren’t Really Random

Google vs. Authy Security Wars in 2FA

Network Packet Programming II - The Python Scapy Library

"Every time we witness an injustice and do not act, we train our
character to be passive in its presence and thereby eventually lose
all ability to defend ourselves and those we love."

Julian Assange

1

We have come to a month of freedom fight
and left behind a month of discovery.

Last month, on April 10, the very first op-
tical image of a black hole has been photographed. A
huge leap forward for the sake of science. While the
telescopes have been pointed out to the endless hori-
zons of the universe, we still continue to fight for the
freedom of speech and lives. If you move away from
the space and look at the Earth, you can see that fights
are being fought and tolls are being paid.

One of those who pays toll is Julian Assange. As most
of you know, Assange has been politically residing in
the Ecuador Embassy in London since 2012. On April
11, Assange’s political residency has been taken away
and taken under custody and arrested by the UK of-
ficials.

So it can be said that tolls have been paid and continue
to being paid to fight for the freedom of thought and
right demands - all around the world.

And about May. May 1 is the International Worker’s
/ Labor Day. We hereby celebrate all the laborers and
workers! There are many facts that we were born into
or eventually got used to. The 8-hours working stan-
dard is one of those things. Whereas what makes May
1 the Labor Day was the fight of the workers against
the bourgeois for decent living conditions in the 19th
century. Back then, many workers lost their lives pro-
testing the 8-hour working standards; that makes us
appreciate the working hours we have today. Also, as of
May 3, happy Press Freedom Day everyone!

This issue welcomes you with exciting articles and
news. Hope that you enjoy reading as much as we did
preparing it.

We would like to thank Netsparker Ltd. for sponsoring
this issue !

Ziyahan Albeniz - Cansu Topukçu
editor@arkakapimag.com

Greetings everyone!

ARKAKAPI MAG

Cyber Security Magazine YEAR: 1 – MAY-JUNE ISSUE: 2 Bimonthly - ISSN: 2645-906X www.arkakapimag.com
Editor in Chief: Ziyahan Albeniz • ziyahan@arkakapimag.com
Editorial Operations Manager: Cansu Topukçu • cansu@arkakapimag.com
Chief Business Officer: Oğuz Aydınyılmaz • oguz@arkakapimag.com
Publishing Coordinator: Şahin Solmaz • sahin@arkakapimag.com
Director of Web: Ömer Çıtak • omer@arkakapimag.com
Legal Advisor: Mehmet Pehlivan • mehmet@arkakapimag.com
Assistant research editor: Ayşenur Burak • nurayse47@gmail.com
Translators: Ali Alan, Ulaş Özdemir, Tayfur Özkara, Serdar Savaş, Nuri Çilengir, İhsan Sulaıman, Atalay
Keleştemur, Emre İyidoğan, Hakan Özer
Social Media: twitter.com/arkakapimag instagram.com/arkakapimag facebook.com/arkakapimag

We are proud to secure all our emails with Tutanota.

2

CONTENT
JULIAN ASSANGE - Cansu Topukçu	 4

CYBER SECURITY CONFERENCES - Ayşenur Burak	 6

SIGINTOS - Murat Şişman	 8

NETWORK PACKET PROGRAMMING II - THE PYTHON SCAPY LIBRARY - Güray Yıldırım 	 16

GOOGLE VS. AUTHY SECURITY WARS IN 2FA - Ulaş Fırat Özdemir	 28

WHEN “RANDOM” NUMBERS AREN’T REALLY RANDOM - Chris Stephenson 	 33

IPFS (INTERPLANETARY FILE SYSTEM) WITH PERMANENT WEB - Mustafa Yalçın	 44

NO ROOM FOR ANTIVIRUSES IN THE FUTURE - Utku Şen	 48

PASSWORD CRACKING ATTACKS IN WIRELESS NETWORKS - Besim Altınok	 50

BLOCKCHAIN APPLICATIONS AND SECURITY PROBLEMS - Mert Susur	 57

BIRTHDAY ATTACK TO HASH FUNCTIONS- Halit İnce	 62

CRYPTOLOGY IN THE 20TH CENTURY: THE ELECTRONIC AGE - Bayram Gök	 66

CRYPTOCURRENCY MONERO (XMR) FOR THOSE WHO WANT TRUE PRIVACY - Arka Kapı	 72

4

SECURITY WEST 2019

May 09-16, 2019
Manchester Grand Hyatt
Hotel, San Diego, CA

Organized by SANS, you can choose
from more than 35 different cyber se-
curity trainings.

Info: https://www.sans.org/event/securi-
ty-west-2019

Ayşenur Burak • nurayse@gmail.com

Cyber Security
Conferences

INTERNET OF THINGS WORLD 2019

May 13-16, 2019
Silicon Valley, CA, USA

Internet of Things World is your place to network and learn with-
in the growing IoT community, delivering business-critical infor-
mation to help you achieve ROI & real-world results from IoT.

Info: https://tmt.knect365.com/iot-world/

4TH ANNUAL CYBER INVESTING SUMMIT

May 16, 2019
New York City, New York

This conference, where investment opportunities and
strategies in the cyber security industry will be dis-
cussed, is being held in New York this year.

Info: www.cyberinvestingsummit.com/

5

BIG DATA FOR DEFENCE SUMMIT 2019

June 25-27, 2019
London, UK

In this event, the importance of reliable intelligence and secure storage
in defense industry will be emphasized.

Info: https://www.defenceiq.com/events-bigdatadefence

IFSEC INTERNATIONAL 2019

June 18-20, 2019	
ExCeL London

The summit includes a new calibre of edu-
cational content which reflects on today’s
most critical security issues. IFSEC connects
the global security industry to the tools and
knowledge required to combat ever-changing
landscape.

Info: https://bit.ly/2UVqenM

Ayşenur Burak • Cyber Security Conferences

CHINA CYBER SECURITY
CONFERENCE & EXPOSITION 2019

June 13, 2019
Beijing, China

Carrying the theme of ‘Globalization of Cyber Security’,
the Conference and Expo will address the most up-to-
date security and cyber security issues; from the latest
trends, risks, strategies, technologies, including case
studies and solutions.

Info: http://nsc.skdlabs.com/en/

CYBER SECURITY FOR HEALTHCARE EXCHANGE

May 19-21, 2019	
Dallas, Texas

This conference will discuss the security problems asso-
ciated with the use of artificial intelligence in health ser-
vices.

Info: https://bit.ly/2F4D6TQ

6

Cansu Topukçu • topukcucansu@gmail.com

We all know him of dicing with death, find-
ing and managing Wikileaks and lastly
with him taken into custody as a result of

his revoked political asylum. Born Julian Paul Hawkins,
a journalist, hacker, cypherpunk, activist and a father -
Jullian Assange was born on July 3, 1971, in Townsville,
Queensland, Australia to a visual artist mother (Chris-
tine Ann Hawkins) and an anti-war activist builder
father (John Shipton). However, his parents were di-
vorced before he was born. As a child, Assange had a
challenging childhood since he was living a nomadic
life with his mother and step-father Richard Brett As-
sange. For this reason, until his mid-20s, Assange lived

in more than 30 cities and attended 37 different schools
- even frequently homeschooled. Since he was like a
real father to him, Julian Assange chose his step-father’s
surname as his own. As Brett Assange told, as a child,
Julian Assange was the sharp kid who always fought for
the underdog.

In 1979, her mother and step-father got divorced and
her mother gave birth to a son from a man connected
to an Australian cult named The Family. In his mid-20s,
after living in over 30 cities, Assange moved to Mel-
bourne with his mother and brother. Assange started
hacking in 1987 with Mendax as his nick, meaning liar
in Latin. With two other hackers, Julian Assange was a
member of a cracking team named International Sub-
versives. In 1991, he hacked Nortel - a Canada-based
telecommunications company. Afterward the Austra-
lian Federal Police tapped his phone and discovered
that Nortel’s hacking was his doing, and raided his
home at the end of October. Assange then consulted
the Victoria Police Child Exploitation Unit and assisted
with prosecutions in 1993. The same year he founded
Suburbia Public Access Network, which was one of
Australia’s first internet service providers. Next year, in
1994, he was charged with 31 counts of hacking and
related crimes - including Nortel - and pleaded guilty
in 1996. Assange was then released on a good behavior
bond and was ordered to pay reparations of A$2100.
Again in 1994, he started programming (for instance,
in 1996 he wrote patches for PostgreSQL, NNTPCache
and deniable encryption system Rubberhose). At the
same time, Assange managed a website with 5000 sub-
scribers in 1996 called Best of Security which gave pieces
of advice on computer security. He founded Earthmen
Technology in 1998 and a year later, in 1999 bought the
domain leaks.org but hadn’t done anything about leak-
ages back then. Assange studied programming, mathe-
matics, and physics in Central Queensland University

JULIAN ASSANGE
“Every time we witness an injustice and do not act, we train our character to be passive in
its presence and thereby eventually lose all ability to defend ourselves and those we love.”

7

Cansu Topukçu • Julıan Assange

(1994) and University of Melbourne (2003-2006) yet
graduated from neither.

After a short study at the University of Melbourne, As-
sange founded WikiLeaks with a few friends. Here, As-
sange is a member of the advisory board, however, de-
scribes himself as an editor-in-chief. Any article that is
to be published on the WikiLeaks has to be confirmed
by Julian Assange beforehand and published only af-
ter being confirmed. WikiLeaks contains information
about confidential and leaked information and secret
media obtained from anonymous sources. Between
2007 and 2010 Assange travelled frequently from Afri-
ca, Asia, Europe, and North America. By 2015 over 10
million documents and related analyzes were published
on WikiLeaks.

Back then, there existed different points of view about
Assange - in which there still is. For instance, although
the Australian Prime Minister described Assange’s ac-
tions as illegal; Australian Police said that he had done
nothing against the laws. John Biden, the former Presi-
dent of the USA described him as a terrorist. In this peri-
od, some of those who supported Assange were Brasilian
President Luiz Inacio Lula da Silva, President of Ecudaor
Rafael Correa, Russian Prime Minister Dmitry Medve-
dev, Jeremy Corbyn, Pablo Iglesias, and more…

Assange left Sweden in 2010 after the allegations
against him were dropped: on November 20, Interpol
issued an international arrest warrant for Assange and
he turned himself in. However, was freed after his sup-
porters paid £240,000 in cash and sureties, Assange was
granted bail by the High Court. The fight over extradit-
ing Assange continued on in the UK until 2012 (his
lawyers warned him that if he went back to Sweden,
he’d be extradited to the US). Feeling forsaken by the
Australian Government, Julian Assange sought politi-
cal asylum from the Embassy of Ecuador in London.
Ecuador’s Minister of Foreign Affairs, Ricardo Patino

told that Assange applied the Embassy for residency,
on June 19, 2012. To prevent him from being arrest-
ed by the UK, the Ecuador Embassy in Knightsbridge
gave Assange political asylum in July 2012. France had
rejected the same asylum application.

Assange, as a cypherpunk, published Cypherpunks:
Freedom and the Future of the Internet the same year.
To summarize shortly, the relationship between soci-
ety and information security. As he states at the very
beginning of the book, this book is not a manifesto, it
is a warning.

After Assange’s failed bid for a seat at the Australian
Senate, as a support to him, a micro-political party
named WikiLeaks Party was found on 2 Temmuz 2013.
The council consisted of Julian Assange, Matt Watt, Gail
Malone, John Shipton, Omar Todd ve Gerry Georgatos.
Later on July 23, 2015, the party dissolved.

On September 2016, he stated to then-President Barack
Obama that if he released Chelsea Manning who was
being imprisoned accused of publishing critical docu-
ments and leaking information from the US Army, As-
sange would agree to be imprisoned.

In the Embassy, he would give balcony speeches to the
public and the press, in fact during one of his speeches
some people were arrested as a result of the incidents
that took place between the police and the activists. On
April 3, 2019, Assange claimed that the Ecuador Em-
bassy was going to deport him in a few hours or days.
Although Ecuador’s Minister of Foreign Affairs, Jose
Valencia denied this, on April 11, 2019, his political
asylum has been revoked, and therefore Julian Assange
was detained and arrested by the UK officials invited by
the Ecuadorian Government to the Embassy.

[https://www.biography.com/activist/julian-assange]

8

Murat Şişman • info@muratsisman.com

SigintOS, as its name suggests, is a Linux distribution developed for SIGINT ie signal intelligence. This distri-
bution, which can work live on a DVD or USB stick, is based on Ubuntu - Linux distribution. It has its own
utility called SigintOS Tools. With this software, many SIGINT operations can be performed through a single

graphical interface.

SigintOS
Local Linux Distribution for Signal Intelligence

9

Murat Şişman • SigintOS

Hardware and software installation
problems faced by many people in-
terested in signal processing are com-
pletely eliminated with SigintOS.
HackRF, BladeRF, USRP, RTL-SDR are
already installed, and the most widely
used Gnuradio, GSM, LTE and GPS
applications are also included in the
distribution.

Murat ŞİŞMAN who developed Sigin-
tOS distribution worked as a volun-
teer in Linux localization projects for
many years and implemented many
institutional and individual projects
about software. As a result of his inter-
est in Linux and cyber security, he de-
veloped SigintOS for his own use, but
also he made the distribution available
to be used by everyone interested. In
Turkey, as it is in everywhere, there is
a huge human resource gap on signal
intelligence and therefore this distri-
bution can be used in the field of ed-
ucation.

10

Murat Şişman • SigintOS

First and Only in the World
The most striking feature of this distribution is the graphical interface of the software called SigintOS Tools. There is
no other example in the world that can run many different applications in the signal area through a single software.
There is no software other than SigintOS Tools, which eliminates the problems experienced during the installation
of the hardware and software in this area and visually displays the connection status of the devices on the screen. It
provides users with ease by passing all software running on the terminal to the graphical interface.

Unlike other distributions, such as Pardus Linux, SigintOS is focused on only one area. For this reason, instead of
creating a basic system from scratch, a strong and stable structure has been developed by using Ubuntu. The dis-
tribution, which includes many languages ​​including Turkish, works in English language by default for global use.
The SigintOS Tools software is also available in English for global use. Murat ŞİŞMAN adds that he developed it in
English intentionally to make it a global distribution but would add Turkish language support in the future.

What can be done with SigintOS?
SigintOS is capable of working with many different hardware. Some of these hardware have only signal-listening
functions, and some have both listening and sending functions.

Signal Listening
With the hardware called RTL-SDR, only signal listening operations can be performed, so with this equipment and
SigintOS, the surrounding frequencies of GSM base stations can be found, these IMSI numbers can be displayed
using vulnerabilities in the base stations. Again, monitoring of these GSM vulnerabilities can be performed with
hardware such as HackRF and BladeRF.

11

Murat Şişman • SigintOS

Sending a Signal
With the help of SigintOS Tools software, FM broadcast can be performed at the desired frequency. This process re-
quires hardware such as HackRF or BladeRF, that can send signals. If you have these equipments, again, you can de-
ceive all devices with a GPS receiver like a mobile phone by spreading the coordinates you set with fake GPS signals.

Jammer
With the help of hardware such as HackRF or BladeRF, the specific frequency can be mixed and disarmed. This
feature has the same function as the foreign-origin jammer equipment used by the guards of the state elders. The
only difference is that the antennas of the equipment are much more powerful than those of HackRF or BladeRF.
SigintOS can do the job of jammer devices which are worth thousands of dollars - with HackRF and a simple an-
tenna booster. In this sense, a very important distribution has emerged for our defense industry.

12

Base station
You can build your own GSM operator with the preinstalled YateBTS software and BladeRF hardware, and broadcast
in areas where the power of your antenna is sufficient. You can have a base station like Drone Cell’s flying base stations
built by one of the largest GSM operator companies in our country. Moreover, you can do it in seconds without the
need for a two-year development process. GSM settings can be made by connecting to http://localhost address.

Murat Şişman • SigintOS

13

4G Base Station
With srsLTE software you can install 4G base stations and broadcast as in GSM base stations. Moreover, you can
broadcast both 4G and GSM base stations at your own name and frequency. This process requires Full-Duplex, such
as BladeRF or USRP, to be equipped to receive and send both signals at the same time.

Important note!
You must perform all listening and sending of this signal in a legally available folk band or in a faraday cage for test-
ing purposes. Broadcasting other than 27Mhz band, which is called as folk band, constitutes a crime. Murat Şişman
recommends using a faraday cage or working with low-power antennas that will broadcast in such a way as not to
affect any other devices in your area.

Setup
As said before, SigintOS works live on DVD or USB memory. Users can also perform the installation process on the
hard disk. For installation, simply download sigintos.iso from https://www.sigintos.com/download and write it as boot-
able to USB flash drive or DVD. It can also run smoothly on virtualization applications such as VMware and VirtualBox.
Windows users can write the sigintos.iso file with a program called iso2usb to a USB flash memory as bootable.

https://www.isotousb.com

Murat Şişman • SigintOS

14

MacOS users can easily print the sigintos.iso file to the USB flash drive as bootable with the program called Bale-
naEtcher.

https://www.balena.io/etcher/

Currently supported devices:
-	 BladeRF
-	 HackRF
-	 RTL-SDR
-	 AirSpy
-	 USRP

Some of the installed software:
-	 SigintOS
-	 Gnuradio
-	 Osmocom
-	 Gqrx
-	 Gr-gsm
-	 Gps-sdr-sim
-	 srsLTE
-	 YateBTS
-	 LTE-Cell-Search
-	 Wireshark

Murat Şişman • SigintOS

15

Development Process
The SigintOS development process is still ongoing. The distribution developed by Murat ŞİŞMAN until today is
open to all volunteers who want to give support. It is said that specifically Qt and Python software developers are in
need for plenty of support. Adding more modules are included in the plans for SigintOS Tool software. Visit www.
sigintos.com for information.

From the Developer
In today’s world, conventional wars are now replaced by electronic wars. The devices we use in every area of ​​our
lives communicate with each other with the help of signals. Almost all devices, from wireless modems and mobile
phones that we use in our home, communicate with radio signals. The greatest weakness in this world where wire-
less communication is muchly involved in our lives and the signals are surrounded by us is that those signals can be
easily listened to by others without your realization. The noise and electromagnetic waves emitted by a ballistic mis-
sile fired from Russia can be analyzed from the USA by means of antennas. While the whole world can be watched
only with the help of radio signals, without the need for image or human intelligence, our countries must produce
our own technologies without the need for others in this field. It is also important to develop software that will run
hardware in this area where hardware production is essential. The most important actor here is that the countries
have to offer great supports, facilities and training in the field of software and hardware development. I hope that
SigintOS will be a useful product for the interested public and those who want to improve themselves.

Murat Şişman • SigintOS

16

Güray Yıldırım • guray@gurayyildirim.com

In the first article, we talked about Scapy and mentioned its detailed setup, basic settings, and simple operations.
In this article, we are going to try to advance the applications and look over different examples. Most of the ap-
plications we will develop are going to be simple, especially for educational purposes. After developing the appli-

cations, in order to run more realistic connection tests and network tests, basic network knowledge will be enough.

Now, let’s start by generating an ICMP echo request (ping) packet that we set the TTL (time to live). In the packet,
we will add the characters of the word “hello” as the data. The desired payload can be added to ICMP packets by this
method.

The TTL value refers to the maximum number of points that the network packets pass through after they are released
to the network, i.e. the number of hop times until they reach their destination. So, think that we have a car, and the
amount of gas put into it corresponds to the TTL value, how much the car will go is related to the amount of petrol.
Now, let’s say that the car is stranded and we received a phone call from the area where the car is located, saying that
the car couldn’t reach its destination. If we send a vehicle to travel between the two cities, by sending many vehicles
with different amounts of gasoline, we have a higher chance to find out where the stranded vehicle is. That is, even if
we don’t know the map at all, we first start by putting a little gas in a vehicle, send it, and note down the place from
where we’re being called when the gas finishes. If we send the next vehicle by putting a little more gas into it, we
will know the next settlement where the vehicles are passing. We can also increase the TTL value to find the routers
on the network and try to see where the packets we send according to the reply are directed. If you have previously
used traceroute or, tracepath, these commands work with a similar logic. If you are ready, let’s try to create a packet
with a TTL value of 2 and send it to gurayyildirim.com.tr. Before we get started, let’s run tcpdump by opening a new
terminal screen to follow the outgoing packet and incoming responses:

sudo tcpdump -i enp0s3

While describing the output on this screen, we create and send the ICMP packet with which we set the TTL value on
the screen where Scapy is turned on:

>>> send(IP(dst=’gurayyildirim.com.tr’, ttl=2)/ICMP()/’merhaba’)

Network packet
Programming II

The Python Scapy
Library

17

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

Sent 1 packets.

If you received this output, you may have seen more lines than you expect on the tcpdump screen. To leave such logs
as DNS queries as a research topic for you, running the same command several times on Scapy and watching the out-
put will be enough. Notice that on the tcpdump screen there is an output similar to this (in the following examples,
IP addresses and domain names have been removed/replaced with sample values):

20:34:57.791567 IP 10.0.2.15 > t-z-y-x.rev.example.com: ICMP echo re-
quest, id 0, seq 0, length 15

20:34:57.876921 IP a.b.c.d > 10.0.2.15: ICMP time exceeded in-transit,
length 36

The top output actually shows the ICMP packet we sent. In this example, the second line is important for us. In
fact, this line tells us that the Time-to-Live (TTL) value in the ICMP packet is not enough for the packet to reach its
destination and the packet expires on its way. In this case, when we assign 2 as the TTL value 2, we can consider the
address of the router we encountered as a.b.c.d in the example above.

Now if we increase the TTL value starting from 1, we can find the routers on the road. At this point, the output when
TTL is set to 1 is critical. The machine in the example is a virtual machine, connected with NAT Network. The effect
of this can be seen immediately:

>>> send(IP(dst=’gurayyildirim.com.tr’, ttl=1)/ICMP()/’merhaba’)
.
Sent 1 packets.

Now let’s note the following two lines on the tcpdump screen:

20:53:02.501309 IP 10.0.2.15 > t-z-y-x.rev.example.com: ICMP echo re-
quest, id 0, seq 0, length 15

20:53:02.501490 IP 10.0.2.2 > 10.0.2.15: ICMP time exceeded in-transit,
length 36

While the above line is trying to go to the same target again, note the value of 10.0.2.2 on the bottom line. This value
was actually the value that we received when the packet returned from the router that it would have gone to first be-
cause we set the TTL value to 1. So where does the packet go first when it leaves our computer? The packet that goes
outside of our own local network will go to the default gateway. In this case, 10.0.2.2 has to be the local gateway. So
how do we verify this? Let’s try it now:

$ ip r
default via 10.0.2.2 dev enp0s3 proto static metric 100
10.0.2.0/24 dev enp0s3 proto kernel scope link src 10.0.2.15 metric 100
169.254.0.0/16 dev enp0s3 scope link metric 1000

We have obtained the default gateway address as seen on the first line of the output. In other words, the TTL value of
the first gateway is going to be reduced to 1, and the router sends us a message on this issue.

18

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

If you’ve previously dealt with traceroute or a similar command, you may also have noticed that some routers are not
listed in the output. In fact, some routers may not send us a message when the TTL value is 0. In this case, neither the
packet reaches its target, nor are we informed. If you continue to increase the TTL value, on the tcpdump screen, you
can see that for some values there is no feedback even if you made requests. For example, the router used to prepare
this article from the network to the destination of the route in the dynamic route did not respond even when TTL
value was reduced to 0, came in at the 4th:

>>> send(IP(dst=’gurayyildirim.com.tr’, ttl=4)/ICMP()/’merhaba’)

.

Sent 1 packets.

At the same time, on the tcpdump screen:

21:06:40.535040 IP 10.0.2.15 > t-z-y-x.rev.example.com: ICMP echo re-
quest, id 0, seq 0, length 15

On the last output we received, there was not a timeout message. The only possibility here is that the router’s TTL
value of the packet is dropped to 0 when the packet is answered, but it actually responded yet the response may not
have reached us due to a problem that has been answered. To overcome this, instead of sending once and then decid-
ing, waiting for a while and sending it over and over again will ensure us of the result. Nevertheless, apart from these,
it is possible that we will not be able to get responses due to many possibilities.

Note: In these examples, because we use the domain name instead of IP address, DNS query is encountered in tcp-
dump output. If you want to write the destination IP directly, you can prevent the repetition of the DNS query on
each request and get a simpler output. If you’d like, as an alternative, you can apply many filtering options including
the IP address you want by adding BPF (Berkeley Packet Filter) to tcpdump, as we did before. This method can be
useful to filter out the intense output that may occur on the tcpdump screen, especially for non-virtual machine us-
ers. In this case, you can use the following command:

$ sudo tcpdump -i enp0s3 dst host gurayyildirim.com.tr

This query will display packets with the IP address of gurayyildirim.com.tr. If we want to see the answers in a simpler
query:

$ sudo tcpdump -i enp0s3 dst host gurayyildirim.com.tr or dst host
10.0.2.15 and icmp

At the same time, some routers do not reduce the TTL value by 1. In other words, the TTL value is 1, and the packet
is forwarded to the next router. We cannot find these routers directly with this method.

Now, if you want to produce a packet with a high TTL value, we can confirm that we have reached the other side and
that we can get the answer:

>>> send(IP(dst=’gurayyildirim.com.tr’, ttl=32)/ICMP(seq=3)/’merhaba’)

.

Sent 1 packets.

19

Many operating systems use TTL values ​​that are higher than the default. You can also try to learn the TTL from the
output that occurred by using the ping command.

In the ICMP-related introduction, we discussed some basic knowledge and practice. Now, after sending a packet, let’s
look at how to get a response from Scapy with this packet. In other words, let’s look at how we can see the messages
directly from the Scapy, which say that the TTL value we see on the tcpdump screen hasn’t been sufficient or that it
has successfully reached the other side. In order to do this, the basic function we will use is sr. sr is actually the ab-
breviation for send-receive. Its name describes what it does. Let’s start practicing: when performing the applications
in this section, we will start the containers up and try to connect to their IP addresses. You can also manually create
virtual network interfaces and advance them via IP assignments and other settings. The command to install Docker:

$ sudo apt install docker.io -y

In this application, we will use Docker mainly due to its software-based network features so that we can pass such
details as user authorization and move on quickly. Let’s create an Nginx container and get the IP address:

$ sudo docker run -d --name nginx -p 80:80 nginx
$ sudo docker inspect nginx --format ‘{{ .NetworkSettings.Networks.
bridge.IPAddress }}’
172.17.0.2

We can continue the application with the IP address we obtained in the second command. Even if we don’t have an
internet connection or even a network connection, we can send a request to this IP address and perform many ap-
plications in our own virtual machine. Let’s take a look at an example of send-receive:

>>> packet = IP(dst=”172.17.0.2”, ttl=10)/ICMP(type=8)
>>> sr(packet)
Begin emission:
..Finished sending 1 packets.
*
Received 3 packets, got 1 answers, remaining 0 packets
(<Results: TCP:0 UDP:0 ICMP:1 Other:0>,
 <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)

We created the packet in the first line and made the TTL value 10. In fact, it can reach the packet target even at much
fewer values. We now have the knowledge to test at how many times we’re going to reach. On the second line, we
said that we wanted to send the packet and get the answer. If we look at the answer quickly, we find packets that are
divided into Results and Unanswered, that are, answers and unanswered. These packets are put in a tuple structure
in Python. Before we can get to the details of this packet, there is a function that we can use without getting lost in
such a gravity if we want to get a single packet as an answer: sr1. This function makes it much easier when we expect
a single answer. Let’s try sending the packet with sr1 without breaking the packet:

>>> sr1(packet)
Begin emission:

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

20

..Finished sending 1 packets.
*
Received 3 packets, got 1 answers, remaining 0 packets
<IP version=4 ihl=5 tos=0x0 len=28 id=28253 flags= frag=0 ttl=64 pro-
to=icmp chksum=0xb45e src=172.17.0.2 dst=172.17.0.1 options=[] |<ICMP
type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>

The turn was exactly what we mentioned. We have seen the direct answer or even a piece of detailed information
about it. In fact, we could also access the same answer by sr, but we had to find the correct element of the bunch
inside it and remove the packet from it. So both methods have different usage areas, in some cases, sr1 can provide
us convenience and speed.

Now let’s see how we get the same result as the sr function without ever changing the packet again:

>>> result = sr(packet)
Begin emission:
*Finished sending 1 packets.

Received 1 packets, got 1 answers, remaining 0 packets
>>> result[0][ICMP][0]
(<IP frag=0 ttl=10 proto=icmp dst=172.17.0.2 |<ICMP type=echo-request
|>>,
 <IP version=4 ihl=5 tos=0x0 len=28 id=18181 flags= frag=0 ttl=64 pro-
to=icmp chksum=0xdbb6 src=172.17.0.2 dst=172.17.0.1 options=[] |<ICMP
type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>)

Here’s a brief explanation: when writing the first command, we assigned the output of the sr function to a variable
called result. Then, since this variable is a tuple, we came to index 0 with the result (result [0]). Because we were in-
terested in ICMPs only, we wanted them (result [0] [ICMP]). The ICMP packet we get is one tuple, so it can be used
to hold multiple items. So we reached the element 0 (result [0] [ICMP] [0]).

If we look at this result, both the request and the answer we received were given together. In this way, if we send more
than one packet it will be easier to distinguish which answer belongs to which request. In the last case, we wouldn’t be
mistaken to act, thinking that the structure we obtained in the parenthesis is resembles a tuple. On this tuple, while
the zero element gives the request, the first element will give the answer:

>>> result[0][ICMP][0][0] # request
<IP frag=0 ttl=10 proto=icmp dst=172.17.0.2 |<ICMP type=echo-request
|>>
>>> result[0][ICMP][0][1] # response
<IP version=4 ihl=5 tos=0x0 len=28 id=38110 flags= frag=0 ttl=64 pro-
to=icmp chksum=0x8ddd src=172.17.0.2 dst=172.17.0.1 options=[] |<ICMP
type=echo-reply code=0 chksum=0xffff id=0x0 seq=0x0 |>>

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

21

The sr and sr1 functions that we have seen so far work on the 3rd layer of the OSI model. You can try the srp func-
tion if you have applications that you will prepare according to layer 2. For example, let’s send an ARP query to find
the MAC address of the container that we created with Docker. Since we send ARP queries on the 2nd layer of OSI,
we will write ff: ff: ff: ff: ff: ff as the destination MAC address. When we create the ARP packet, we will write the IP
address we want to know in the corresponding field in it:

>>> frame = Ether(dst=’ff:ff:ff:ff:ff:ff’)/ARP(pdst=’172.17.0.2’)
>>> srp1(frame, iface=’docker0’)
Begin emission:
*Finished sending 1 packets.
Received 1 packets, got 1 answers, remaining 0 packets
<Ether dst=02:42:77:69:7f:08 src=02:42:ac:11:00:02 type=0x806 |<ARP
hwtype=0x1 ptype=0x800 hwlen=6 plen=4 op=is-at hwsrc=02:42:ac:11:00:02
psrc=172.17.0.2 hwdst=02:42:77:69:7f:08 pdst=172.17.0.1 |>>

In this application, we used the network interface docker0 when sending the packet. Since the container we are que-
rying with this interface is in the same network, we were able to respond directly to the ARP query.

If we want to run an ARP ping on the network, we can state the IP subnet instead of IP. Before continuing with this,
to make the output look better off and get multiple results as a result of the scan (let’s run this command three times),
let’s open a few new containers:

$ sudo docker run -d --rm alpine sleep 3600

For the containers created in this command, we told to automatically delete them after 1 hour when they are closed.

Now let’s run the same command for a subnet. For this purpose, we give a subnet in CIDR notation to Scapy:

>>> frame = Ether(dst=‘ff:ff:ff:ff:ff:ff’)/ARP(pdst=‘172.17.0.0/24’)
>>> srp(frame, iface=’docker0’, timeout=2)
Begin emission:
****Finished sending 256 packets.

Received 4 packets, got 4 answers, remaining 252 packets
(<Results: TCP:0 UDP:0 ICMP:0 Other:4>,
 <Unanswered: TCP:0 UDP:0 ICMP:0 Other:252>)

The only thing that changed was the subnet in CIDR notation instead of IP and that we wrote 172.17.0.0/24. It also
asked us for the MAC addresses of all IP addresses in this range. If we look at the output, we can see that it took four
turns. In addition, by setting a 2-second limit, we wanted it to give us results collected at a maximum 2-second span.
As we opened 4 containers in total, we achieved 4 outputs.

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

22

At this point, let’s move on to what we can do to get a neater view of the packets and frames. There are a number of
methods in Scapy that show packets in a stylish way. Repeat the previous example and assign the results to a variable
and try to list the 4 MAC addresses obtained and the IPs they belong to:

>>> frames = srp(frame, iface=’docker0’, timeout=2)
Begin emission:
****Finished sending 256 packets.

Received 4 packets, got 4 answers, remaining 252 packets
>>> frames
(<Results: TCP:0 UDP:0 ICMP:0 Other:4>,
 <Unanswered: TCP:0 UDP:0 ICMP:0 Other:252>)
>>> frames[0]
<Results: TCP:0 UDP:0 ICMP:0 Other:4>
>>> frames[0].display()
0000 Ether / ARP who has 172.17.0.2 says 172.17.0.1 ==> Ether / ARP is
at xx:xx:xx:xx:xx:xx says 172.17.0.2
0001 Ether / ARP who has 172.17.0.3 says 172.17.0.1 ==> Ether / ARP is
at xx:xx:xx:xx:xx:xx says 172.17.0.3
0002 Ether / ARP who has 172.17.0.4 says 172.17.0.1 ==> Ether / ARP is
at xx:xx:xx:xx:xx:xx says 172.17.0.4
0003 Ether / ARP who has 172.17.0.5 says 172.17.0.1 ==> Ether / ARP is
at xx:xx:xx:xx:xx:xx says 172.17.0.5

After repeating the same request and transferring the result to a variable named frames, the element with index 0
which holds the answered frames (Results). Then we were able to get summary information about all packets by
using the display method. This information included both MAC addresses and IP addresses. This actually is a sim-
ple network scan and a small tool can be used to determine which devices can connect. We can think of it as a very
simple feature of nmap.

If we want to get more detailed information, we can use the show method on the frame we want (we can apply the
same to packets):

>>> frames[0][0][1].show()
###[Ethernet]###
 dst= xx:xx:xx:xx:xx:xx
 src= xx:xx:xx:xx:xx:xx
 type= 0x806
###[ARP]###
 hwtype= 0x1

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

23

 ptype= 0x800
 hwlen= 6
 plen= 4
 op= is-at
 hwsrc= xx:xx:xx:xx:xx:xx
 psrc= 172.17.0.2
 hwdst= xx:xx:xx:xx:xx:xx
 pdst= 172.17.0.1

To display fields and their descriptions in a different way, use the ls function:

>>> ls(frames[0][0][1])
dst : DestMACField = ‘xx:xx:xx:xx:xx:xx’ (None)
src : SourceMACField = ‘xx:xx:xx:xx:xx:xx’ (None)
type : XShortEnumField = 2054 (36864)
--
hwtype : XShortField = 1 (1)
ptype : XShortEnumField = 2048 (2048)
hwlen : ByteField = 6 (6)
plen : ByteField = 4 (4)
op : ShortEnumField = 2 (1)
hwsrc : ARPSourceMACField = ‘xx:xx:xx:xx:xx:xx’ (None)
psrc : SourceIPField = ‘172.17.0.2’ (None)
hwdst : MACField = ‘xx:xx:xx:xx:xx:xx’
(‘00:00:00:00:00:00’)
pdst : IPField = ‘172.17.0.1’
(‘0.0.0.0’)

If we wanted to see more human-readable and summarized information about the packet/frame, as in the display()
method, the summary method can be used:

>>> f = frames[0][0][1]
>>> f.summary()
‘Ether / ARP is at 02:42:ac:11:00:02 says 172.17.0.2’

We can also visualize the packets/frames and save them as PDFs:

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

24

>>> paket.pdfdump(‘/home/guray/Desktop/icmpquery.pdf’)

Before finishing this part of the series, let’s refer to the TCP class. Creating TCP connections allows you to specify,
monitor, change, and re-assign all flags, sequence and acknowledge numbers and other information one by one.

>>> paket_ip = IP(dst=”www.gurayyildirim.com.tr”)
>>> paket_tcp = TCP(dport=80)
>>> paket = paket_ip / paket_tcp
>>> paket

<IP frag=0 proto=tcp dst=Net(‘www.gurayyildirim.com.tr’) |<TCP
dport=http |>>

When creating the packet, we first created an IP packet and then created the TCP class with the target port 80. Af-
terward, made them ready to make a request and connect to each other, using /. After the packet is created, we try to
send it and open a TCP connection:

>>> response = sr(packet)
Begin emission:
Finished sending 1 packets.
*
Received 1 packets, got 1 answers, remaining 0 packets
>>> response[0][TCP]
<TCP from Results: TCP:1 UDP:0 ICMP:0 Other:0>

If we want to parse the result a little better and examine the incoming-outgoing data, we can use the multiple assign-
ment function of Python:

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

25

>>> answered, unanswered = response

>>> request_response = answered[0]

First of all, we have differentiated and responded to the different variables by parsing the answers. We then assigned
the first request-response pair to the variable request-response. This variable is in a tuple: the first element is the re-
quest and the second contains the response. Normally we expect the SYN flag in the first outgoing request to establish
TCP, SYN and ACK flags in the incoming reply. To check this, we can use the summary() method we’ve seen before:

>>> request_response[0].summary()

‘IP / TCP 10.0.2.15:ftp_data > x.y.z.t:http S’

>>> request_response[1].summary()

‘IP / TCP x.y.z.t:http > 10.0.2.15:ftp_data SA / Padding’

In the output, the letters S which are placed towards the last parts correspond to SYN and letter A corresponds to
ACK. So, as expected, the request sent the SYN flag, and the reply sent both the SYN and the ACK flag. Now, let’s look
at the use of the show() method to examine the structure of the answer packet in detail:

>>> request_response[1].show()
###[IP]###
 version= 4
 ihl= 5
 tos= 0x0
 len= 44
 id= 42590
 flags=
 frag= 0
 ttl= 64
 proto= tcp
 chksum= 0x65de
 src= x.y.z.t
 dst= 10.0.2.15
 \options\
###[TCP]###
 sport= http
 dport= ftp_data
 seq= 20530901

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

26

 ack= 1
 dataofs= 6
 reserved= 0
 flags= SA
 window= 65535
 chksum= 0x73f6
 urgptr= 0
 options= [(‘MSS’, 1460)]
###[Padding]###
 load= ‘\x00\x00’

In this article, although we will not cover 3-way handshake yet, we have the enough knowledge to test whether the
TCP ports are open, that is, to do an application to scan the port. All we have to do is give as much ports as we want
in a list instead of just giving 80 as in the previous example. Now let’s see this through an example:

>>> paket = TCP(dport=[22,80,443,4444])
>>> ip = IP(dst=”www.gurayyildirim.com.tr”)
>>> ip / paket
<IP frag=0 proto=tcp dst=Net(‘www.gurayyildirim.com.tr’) |<TCP
dport=[‘ssh’, ‘http’, ‘https’, ‘4444’] |>>
>>> scanner = ip / paket
>>> results, unanswered = sr(scanner, timeout=3)
Begin emission:
.Finished sending 4 packets.

Received 5 packets, got 4 answers, remaining 0 packets
(<Results: TCP:4 UDP:0 ICMP:0 Other:0>,
 <Unanswered: TCP:0 UDP:0 ICMP:0 Other:0>)
>>> results.show()
0000 IP / TCP 10.0.2.15:ftp_data > x.y.z.t:http S ==> IP / TCP
x.y.z.t:http > 10.0.2.15:ftp_data SA / Padding
0001 IP / TCP 10.0.2.15:ftp_data > x.y.z.t:ssh S ==> IP / TCP
x.y.z.t:ssh > 10.0.2.15:ftp_data SA / Padding
0002 IP / TCP 10.0.2.15:ftp_data > x.y.z.t:https S ==> IP / TCP
x.y.z.t:https > 10.0.2.15:ftp_data SA / Padding
0003 IP / TCP 10.0.2.15:ftp_data > x.y.z.t:4444 S ==> IP / TCP
x.y.z.t:4444 > 10.0.2.15:ftp_data RA / Padding

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

27

In this example, we checked the 22, 80, 443, 4444 ports on the website by sending SYN from TCP and finally, we’ve
collected the answers. We have also set a timeout of 2 seconds based on the possibility of the server not responding to
some of the closed ports by itself or by another device in front of it. At the end of the results.show() if we look at the
answers, SA means SYN-ACK, and that means open ports, where R written in RA means RST and the port is closed.
And that is how a simple port scan can be performed.

References and reading recommendations:

https://scapy.readthedocs.io/

https://thepacketgeek.com/series/building-network-tools-with-scapy/

https://www.osso.nl/blog/scapy-dns-server-snippet/

Güray Yıldırım • Network packet Programming II - The Python Scapy Library

28

Ulaş Fırat Özdemir • ulas@arkakapidergi.com

Hello and welcome, in this article we will be dis-
cussing 2FA, which aims to ensure new gener-
ation of internet security, and two commonly

used apps helping us to use this technology with ease.

Multi factor authentication (MFA), is a security model re-
quiring two or more proofs before a system access. In this
model, proofs are split into three main categories (factors)
and care is taken to ensure that each proof is from differ-
ent categories. With this way, the end user passes through
multiple authentication steps and with the usage of inde-
pendent steps, a security risk from one step does not affect
the others. The three categories are as follows;

Information you know:
The main purpose here is to remember a secret infor-
mation belonging only to you for when you want to use
the system. This secret is used as a part of authentica-
tion process. This information could be a password,
PIN, PUK, signature or a security question and answer.

Tool that you own (something you have):
The main purpose here is to authenticate with a phys-
ical tool specially made for and only owned by you

which other users of the system could not own or make.

Whilst this tool could be electronic like phone (app),
smart card, RFID card, OTP device and e-signature,
other non electronic methods such as QR code, em-
bossment and different colors (like on money) could
be used. Besides these, phone lines (SMS) and proof by
making a call could also be included in this context.

An attribute of you (something you are):
The main purpose here is to use a special attribute of
you that differentiates you from other users.

This attribute could be physical like fingerprints, reti-
na/eye, palm, veins in hand and facial structure. This
attribute also could be from behaviours we learned by
giving thought but apply as if it was natural such as key-
board usage, typography, language usage, speech (tone
and accent).

Two factor authentication is the most common multi
factor authentication method used today. This method
is accomplished by using two proofs from two different
categories. Two factor and two step authentication are
commonly mistaken concepts. The following statement
could be applied to clarify the difference between the

Google vs. Authy
Security wars in 2FA

29

Ulaş Fırat Özdemir • Google vs. Authy - Security Wars in 2FA

two; two step authenticatication requires two different
proofs for authentication. While these proofs could be
from different factors (retina and password) they could
be from same factors as well (retina and fingerprint).
Two factor authentication, on the other hand, requires
two different proofs from two different factors. Two fac-
tor authentication aims to isolate the possible weakness-
es in one factor from the others. That is why two factor
authentication is more secure than two step authenti-
cation.

There are a lot of companies which already integrated
two factor authentication to their systems. While some
used their own implementations, most trusted 3rd party
applications. Before recognizing the rivals, it is useful to
examine Apple’s approach at the other end of the field.

https://blog.elcomsoft.com/2016/04/apple-two-fac-
tor-authent icat ion-vs-two-step-ver i f icat ion/

With the two-step verification feature that Apple intro-
duced in 2013, Apple’s aim was to make the operations
using Apple ID even more secure. For users who use
this feature, a second validation step is required during
the iCloud and Apple ID pairing or the first transaction
with a new device. The security codes in the second
step could be taken with one of the following methods.

•	 Push notification to a previously trusted device,

•	 Call or Text Message to a previously saved num-
ber,

•	 Offline recovery key,

•	 Application-specific passwords.

Two-step verification could be activated on Apple de-
vices or via My Apple ID.

In 2015, Apple developed a two-factor verification meth-
od structure on top of existing two-step validation with
iOS 9 and OS X El Capitan in an attempt to provide a
safer alternative to users. This validation method applies
to iOS 9 and later devices, older devices cannot use this
feature. In two-factor validation, there are no applica-
tion-based passwords due to the use of the same factor
and there are no offline passwords due to use complexi-
ty. Instead, the offline, time-based code has been imple-
mented as a code generator (OTP) and 6-digit authenti-
cation code. We seem to hear that the two-digit code is
not very different from the password. Yes, because 6-digit
code support is provided for older devices. If this feature
is enabled when logging into devices older than iOS 9, an
extra 6-digit authentication code is requested. To enable
this feature, the two-step authentication feature needs to
be disabled, and if you have an old device registered in
your account when the feature is activated, you will see a
warning that it may be necessary to enter a 6-digit code
besides the old password.

Regards to our understanding of the implementation
of the issue after Apple’s approach, let us introduce the
rivals and the advantages they offer.

In the blue corner, there is Google, which has become
a dominant power on the internet thanks to the offered
services and its app - Google Authenticator. This ap-
plication aims to provide access to the services used by
providing time-based OTP (TOTP) and Hmac-based.

This means that you cannot login to your account with-
out Google Authenticator (or any other application
running the same algorithm). In the HOTP algorithm,
application and web service share a common secret data
and counter data. Each time the application generates
new code, the counter is incremented on both sides
so that synchronization is ensured. One of the most
critical problems of HOTP systems is the synchroniza-
tion of the counter value. The counter value must be
the same for both sides, otherwise the generated codes
could not match.

In response to common counter problems due to a
network or application-related error, section 7.4 of the
RFC4226 document provides an explanation. Accord-
ing to this section, the controlling party must have a
look-ahead value. HOTP of the current value and in-
cremental values up to look ahead value are all checked
against in an attempt to assure the synchronization. If
this value is provided too high or unlimited, this im-
plies that for each mismatching code the HOTP cal-

30

Ulaş Fırat Özdemir • Google vs. Authy - Security Wars in 2FA

culation by the controlling party will go on for a long
time, leading to DoS / DDoS attacks.

If the look ahead value is kept too short, synchroniza-
tion errors may occur. Therefore, the value should be
carefully selected. Another approach for HOTP syn-
chronization problems is to enter several HOTP values
given in sequence. In this case, the authenticating party
checks the sequential HOTP values it receives against
the values it produces and ensures that the counter data
is matched after estimating the correct sequence. In
the TOTP algorithm, the only difference according to
HOTP is the counter value. Time data is used instead
of an incremental counter. This time data must be com-
mon and precise for both systems, so the calculations
usually use Unix Epoch time. Both systems must keep
the time data up to date with NTP (or alternative) pro-
tocol. The provided code changes over time (eg every
30 seconds) rather than changing each request/access.
For this reason, a portion of the Unix Epoch time (1 in
30 for 30 seconds) is used, that means that the longer
the code changes, the lower the sensitivity. The oth-
er problem that arises as a result of time usage is the
other applications on the server. If other applications
on the server are leaking out the time data or the time
data is being used through a common source that ev-
eryone can access, it becomes easier to guess the next
code. Nevertheless, attackers need to know the hidden
value, but one of the two values (confidential data and
time) that protect the system is bypassed. So, now that
we know more inner-workings of the application. The
Google Authenticator can be examined in three steps;

1.) Adding a New Account
When installing a new account in Google Authentica-
tor, the confidential key distribution problem is solved
by using a camera-captured QR code or manually en-
tered privacy data. In this way, the user maps the pri-
vacy data itself, and during the insertion, the system
(server) does not make a connection with the user (ap-
plication). Due to the absence of a connection and only
the mapping of the privacy data manually, the time is
provided by the system in which the application is lo-
cated (cell phone). Therefore, it is necessary to have the
correct time of the system in which the application is
located, otherwise key matching problems may arise.

2.) Using an Existing Account
It is a must to create the the requested data from the
application and provide the data at the time of login

to a service using Google Auth. For HOTP, this data is
checked for the HOTP value calculated using the cur-
rent counter value (ex. 10) and the counter value up to
the next look ahead (eg 20 this means counter 10-30)
and the synchronization is assured. Google does not
disclose the value it is using as the HOTP look ahead,
but it is mentioned in the documents of a close rival,
Yubikey, that this value should be between 50 and 80
and should not exceed 100. In the time based (TOTP)
method, the two sides generate time-dependent code
and the code generated by the application is entered
into the system by the user. If the code in the system
does not match, the time problem arises and the time
must be synchronized / updated in both systems.

3.) Account migration/deletion
In 2FA used systems, account operations are performed
in two ways, as self-service and as administrator aided.
In the self-service method, the user can perform the
operations related to the account on the server (change
/ equalize counter value, change privacy data and delete
account). Leaving some of these values to unauthorized
/ less authorized users may introduce security prob-
lems, and therefore only a certain part of these values
should be changed or displayed. For services that use
Google Authenticator, to delete the 2FA method, first
the user should login using 2FA authentication. Than
the 2FA method could be removed from Application
using Google Auth. If first the Google Auth application
is deleted before removing 2FA, login to the services
might fail and contacting to system/service manager
(Google) might be required.

For account migration between devices, shared secret
data should be moved between Google Auth. applica-
tions. That means, for every old account using Google
Auth., logging in, going to change code menu, acquir-
ing a new QR code and manually entering it to the new
Google Auth. application is required. This situation
takes long time because of the challenges of necessities
from visiting each account again to manually carry out
the account migration. This situation, combined with
2013 update crisis, renders the usability pretty low. As
a result of an 2013 update the 2FA keys of all users who
installed the update were automatically deleted, which
enabled most users to realize how many problems the
reinstallation could create and caused a search for an
alternative. In the period following the 2013 crisis, it
was exposed that the deleted application does not com-
pletely destroy the keys (https://github.com/google/

31

Ulaş Fırat Özdemir • Google vs. Authy - Security Wars in 2FA

google-authenticator/issues/632) and with the emer-
gence of similar problems, use of the application has
decreased gradually.

Red Corner, Authy,
Yes, the Authy application, which was born against
users’ migration problem offering an easier solution
works in partnership with many great services and also
supports Google Auth keys. Authy allows the authen-
ticated accounts to synchronize with all devices over
the cloud, making it easier to transfer accounts. In its
own webpage, transition process and the differences
between Google Auth. and Authy are being listed based
on twitter messages. this list, besides the following
quote from an incorrect article “Google Auth. could be
used only on one device, when it is desired to be used on
a second device Google automatically deletes the first de-
vice.” and unavailability of the twillio explanation link
for multi-password support, explains the advantages of
the Authy’s in a nice way.

These advantages are obvious when considering the
disadvantages of Google Authenticator:

•	 Google Authenticator is only available on mo-
bile devices and cannot be used as computers
and browser add-ons.

•	 Difficulty in the migration process and there-
fore unable to perform encrypted backups while
transferring the account.

•	 Not having password protection and relying
only on device security,

•	 It hasn’t been updated for a long time and it has
known problems.

•	 Decrease in supported services due to the de-
crease in use.

We would like to conclude our writeup with the review
of the Authy application’s safety.

The first point is the multiple passwords that Authy
brings. Google Auth. does not have password during
login, and all attackers that can bypass the device’s lock
screen could reach Google Auth. application. Due to
the emergence of vulnerabilities showing that device
lock screen can be bypassed rising every day, trust for
the devices built in security is questioned by users.
Security solutions based on device security are not as
secure as they are supposed to be. In this case, Authy

protects the application and accounts with three pass-
words. The first of these passwords, the backup pass-
word, protects the backups used in the cloud system. In
this way, even if an attack against Authy’s cloud systems
has taken place, the attackers cannot capture your 2FA
information.

Another security measure is PIN protection. It is wrong
to call this as a password, but the confusion of pass-
word, PIN, cipher concepts is not mentioned in this
article, it is enough to only know that this is an error. In
PIN protection a 4-digit code requested from the user
when entering the application and prevents unautho-
rized access to the application. This security measure
does not constitute an obstacle for attackers which
got a hold of the device (or has a backup). The mas-
ter password, which is the last security measure, is only
available in the computer version of Authy. This mea-
sure ensures that the application is password protected
when not in use. This password is a like a modified and
longer version of PIN protection designed for comput-
er application.

Authy uses PBKDF2 function for the backup password.
This function takes the entered password as input and
produces a longer and stochastic output. This improves
the security of for even the low-quality passwords. Be-
sides this, Authy also adds salt to the passwords and
hashes them 1000 times. Authy states that this value will
increase in proportion to the increase of the processing
capacity of mobile devices and that salt (salt) value is
composed of safe and random data. All 2FA switches
are then encrypted with the AES-256, CBC mode us-
ing the output of the PBKDF2 function. All 2FA secrets
are then encrypted with the AES-256, CBC mode us-
ing the output of the PBKDF2 function. The IV used in
this mode varies according to each account. If any 2FA
switch is smaller than 128 bits, it is filled using PKCS#5.
As a result of these processes, only the encrypted result,
salt and IV value are sent to the server. The key required
for encryption and decryption is not available on the
server, so that the data held on the server is secured. Be-
fore starting any research, the first factor that could cre-
ate problems seems like the salt and IV production with
PKCS#5 function. When there is PKCS#5, Padding or-
acle is the first attack which appears in our minds, and
the security of the IV value generated from the account
data (the functions accomplishing this task) could be
the weakest link in the chain. The safety of salt pro-
duction (which is explained in the shared link on their
webpage) offers a confidence that security measures are

32

taken care, but still the second weakest link of the chain
is salt production.

Trust Issue,
Authy provides both 2FA service and supports other
applications that provide 2FA service. Yes, you didn’t
hear it wrong, the support of its 2FA service has a se-
curity problem but this problem is not seen in other
supported systems.

How you might ask ? systems that use Authy 2FA ser-
vice require your phone number instead of giving you a
code or QR. As both the web service you are a member
of and the Authy knows the phone number, they are au-
tomatically matched. The 2FA codes created by match-
ing accounts in this way are produced as 7 digits com-
pared to 6-digit codes from RFC4226 / Google Auth.
Authy’s 7-digit 2FA codes are not securely stored in the
cloud as mentioned earlier. Cloud storage is connected
to your Authy account instead of being encrypted.This
means that when you install Authy on a new device and
verify it, you will have all the keys added via Authy. So
attackers who could access to your phone/software can
see your 7-digit 2FA codes and access the values used
to create those codes without using the password you
use to back up in the cloud. Authys own 2FA service
does not use cloud passwords and is based only on the
security of the application / account. How does authy

provides the security of account, you might ask; SMS.
Yes, when a new Authy application is installed, it re-
quires validation from the previously authenticated ap-
plication or SMS verification to transfer old passwords.
We can say that this approach is more problematic in
cloud backups by keeping in mind that verification can
be accomplished from different numbers by spoofing.

So in short, after Authy account transfer your keys cre-
ated with Authy 2FA are unencrypted while your Goo-
gle 2FA key is encrypted. Therefore, major crypto-mon-
ey discussion forums are suggesting to replace Authy
with Google Auth. Our suggestion for you to use Goo-
gle Auth if you don’t have a problems with the manual
transfer process, in other cases you can use Google Auth
and store your Google Auth key with Authy via cloud
encryption (Using Authy application for easy distribu-
tion of other 2FA keys instead of 2FA authentication).

Resources:

https://authy.com/blog/authy-vs-google-authenticator/

h t t p s : / / s u p p o r t . t w i l i o . c o m / h c / e n - u s / a r t i -
cles/223134967-Backups-password-Master-pass-
word-and-PIN-protection-for-Authy

https://www.codeproject.com/Articles/704865/Salted-
Password-Hashing-Doing-it-Right

Ulaş Fırat Özdemir • Google vs. Authy - Security Wars in 2FA

33

Chris Stephenson • cs@chrisstephenson.com

There are rand() or random() functions in almost every programming language.

From their names, you would think that these functions generated random numbers. However, this is far
from the case.

We first need to realise that understanding what randomness is, not a simple matter.

For instance, is 42 a randomly generated number? It is not possible to answer this question. Yet, for most numbers,
and number sequences or in circumstances when the number is not already known, this question is meaningful.

Is this sequence, 1,1,1,1 random? Maybe, maybe not. A number generator created to construct genuinely “random”
numbers using natural processes may perfectly well output a sequence like this. If the generator outputs this se-
quence once, its randomness is not put in doubt. If we throw a coin four times in a row and all four tosses give the
same answer, we shouldn’t be surprised or question the fairness of the coin. The probability of such an event is 12.5%,
1 in 8, so it should not be at all uncommon.

cartoon1

1	 https://dilbert.com/strip/2001-10-25 , retrieved on 2019-01-08

When “random” numbers
aren’t really random

(maybe the NSA’s
fingerprints are on them)

34

Chris Stephenson • When “Random” Numbers Aren’t Really Random

Probability is a difficult subject, one that sometimes
confuses the most serious mathematicians. For exam-
ple, Paul Erdos, a prolific and respected mathematician,
refused to believe the solution to the simplest of proba-
bility problems, the “Monty Hall” problem, even when
faced with the correct answer2.

Probability is not something that concerns only gamblers.
With the invention of thermodynamics and then of quan-
tum physics, we discovered probability and probabilistic
calculations in the very foundations of the universe. Lud-
wig Boltzmann discovered the concept of entropy and in-
troduced probabilistic calculations to physics in order to
the foundation of contemporary thermodynamics. In 1905
- Einstein’s miracle year - in one of his articles, Einstein an-
alysed Brownian Motion (the irregular movement of tiny
particles suspended in a liquid) and solved it using proba-
bilistic calculations. In the 1920s, Schrödinger, Heisenberg,
and other scientists developing quantum physics gave a
central role to probability in understanding the physical
world. Randomness thus took its place in the foundations
of our understanding of the universe.

Nevertheless, probability and randomness remained,
and remain, confusing concepts.

Solomonoff - Kolmogorov - Chaitin
Randomness
In 1933, the Russian mathematician Andrey Nikolaevich
Kolmogorov gave an axiomatic basis to the theory of prob-
ability with his book Foundations of the Theory of Proba-
bility3. We are not going into this deep subject directly.

The part that interests us is the algorithmic randomness

2	 The Monty Hall problem refers to a TV game show in which a contestant is shown three closed boxes, only one of which con-
tains a prize. The contestant chooses a box. The presenter of the programme (Monty Hall) opens one of the other boxes and
shows that it is empty. He then asks the contestant, “Do you want to change your choice?”. The problem is whether the contestant
should change their choice. Paul Erdos refused to accept the correct answer, that the contestant actually doubles their chance of
winning a prize by changing their choice, until he was shown a simulation. This highly productive an creative mathematician
was convinced, not by a mathematical argument, but by a practical demonstration. Probability is a difficult subject.

3	 Kolmogorov, Andrey (1956). Foundations of the Theory of Probability (2nd ed.). New York: Chelsea. ISBN 978-0-8284-
0023-7

4	 It was a great source of pride for us to invite and listen to a workshop over three days given by Ray Solomonoff during the
5th Turing Days organized by the Department of Computer Science at Istanbul Bilgi University in 2006. Unfortunately, these
days at Bilgi University, it would be inconceivable to think about the necessary budget or the requisite vision to embark on
such a project. The program of that event is available at this link: https://web.archive.org/web/20060615000718/http://cs.bilgi.
edu.tr:80/pages/turing_days/. The World Wide Web does not forget! web.archive.org is a very nice resource. cs.bilgi.edu.
tr, the Bilgi Computer Science web site, has long since been shut down by those who failed to understand its value, but the
content still lives on at web.archive.org.

5	 Chaitin chose LISP.

theory developed by Ray Solomonoff4 Kolmogorov
and Gregory Chaitin. As computer scientists interested
in computational theory, the fact that this definition is a
computational definition is of particular interest to us.

According to this theory, the randomness of a sequence
is measured by the length of the shortest program that
can generate it. For purposes of comparison, it would
be necessary to specify a programming language, in
advance5. Though we would hardly do this job in Visual
Basic, the concept is essentially clear. if writing the con-
tents of the sequence between quotation marks in a call
to the printf function is the shortest program to output
the sequence (let’s say, in C), this sequence is considered
random. If there exists a shorter program, then the se-
quence is not considered random. If you are wondering
how an sequence can be generated by a program short-
er than itself, consider any file compression program,
for example zip. If a file is compressed its compressed
state is packaged with the program that can re-create
it, a program shooter than the original sequence may
be obtained. The self-extracting zio file is an example
of this. The contents of an uncompressable file are con-
sidered random.

However, unfortunately, we immediately face a prob-
lem. The zip program’s compression methods are spe-
cific and limited. A file that might well be compressed
with other methods may not be compressed using zip.
Other methods may be tried, but this does process does
not have a definite end. One of the theorems the found-
ers of this field proved is that this beautiful randomness
definition is uncomputable. You cannot write a pro-
gram that looks at any file and calculates its shortest

35

Chris Stephenson • When “Random” Numbers Aren’t Really Random

compressed version. Chaitin and Kolmogorov proved this as a theorem. Therefore, a program that measures the
randomness of an sequence, at least according to this definition cannot be written. This is a fundamental and also a
practical difficulty, as we will see.

Let’s give another example. The expansion of the constant π (3.14159265359...).can be calculated easily by a relatively
short program Any subsequence of this extended sequence of digits seems random and would pass any statistical ran-
domness test. However, it is not random. We can recognize the expansion of the number π, but further unrecognisable
sequences can be generated in a simple way by transforming the original into seemingly random, yet, by our definition
totally non-random sequences. The theorem shows us that there is a definition, but not a measure, of randomness.

The horrible thing is that the rand () or random () functions in the libraries of programming languages embody exactly this
problem. The sequences produced by functions of the rand() type are not at all random, but instead, they are the opposite of
randomness. Because these functions are short programs generating a sequence of numbers that appear random.

Entropy is necessary
As most C programmers know, the rand() function generates a number sequence that is completely determined by
its start point yet looks random. It may even be useful for this to be so when testing software. If a certain sequence

Participants in the 2006 “Randomness and Complexity” Turing Days workshop held at Bilgi university. The photo
was taken on a Bosphorus tour. Ray Solomonoff is the fifth person from the right, with a long white beard.

36

of inputs causes an error, it is a good thing to be able
to produce the same pseudo random sequence again.
However, if the occurrence of the same sequence is
not wanted, this property of the rand() function is a
problem.

The solution is to import some randomness from an-
other place. To do so, in C for example, the srand()
function is used. The parameter given to the srand
() function creates an initial value for the number
sequence to be generated by rand(). This number is
called the seed. Borrowing a concept from thermo-
dynamics, we call the randomness introduced by this
number “entropy”.

A horrifying discovery
I Googled “C language rand” and checked the search
results returned on the first page. The first method pre-
ferred for using rand() function is primarily calling the
srand() function. In almost all results, the C-language
code looks like this example or exactly the same. It
is certain that this is copy-paste from whom it is not
known. I took the example from a page claiming to be
an Information Security Blog. To save their blushes I will
not give a reference. In any event it would be unfair, as
the same C code appeared in almost all search results

int main() {

 int rastgele;

 srand(time(NULL));

 rastgele=5+rand()%25;

 printf(“%d”,rastgele);

 return 0;

 getch();

} 6

6	 In this code example, the use of the getch () function should always ring our alarm bells. A function required only in Micro-
soft Windows’ crippled C environment. It is not contained in the standard libraries of C. I will not give concrete reference to
the codes I found, the sharers of the code are not to blame. For those who want to know can make a Google search.

7	 “Falsehood flies, and truth comes limping after it,
	 so that when men come to be undeceived, it is too late;
	 the jest is over, and the tale hath had its effect:
	 like a man, who hath thought of a good repartee when the discourse is changed,
	 or the company parted; or like a physician,
	 who hath found out an infallible medicine, after the patient is dead.”

As Jonathan Swift wrote in 1710; “Falsehood flies, and
truth comes limping after it”7,

With this aphorism, Swift predicted the future of the in-
ternet. This faulty (and dangerous) code emerges wherever
you search, and a more correct version is nowhere to be
found. However, it is a great example of bad code.

To import entropy, this function uses the time() func-
tion. The value returned the time in seconds elapsed
from 1 January 1970. So, the result is universally known
and only changes once a second second. This may be
enough for a student executing a program manually,
but in the real world, where randomness does matter,
this is a complete disaster.

It can be said that this is only one example, but it is
very bad one and a classic example of an approach that
should be avoided in secure applications.

When random numbers are used to create crypto keys
or passwords;

(a) The result of the time() function changes only once
per second. Two processes using srand() and rand() in
the same second on a server will produce the same re-
sult. The same password or key will be given to two dif-
ferent processes that made a request at the same second.

(b) Everyone knows the output of the time() function,
including any possible attacker.

Showing this code snippet to beginning programmers is
equivalent to showing a baby how to stick its fingers into
power sockets at home. Nothing bad happens right away,
but the lesson creates some seriously dangerous habits

Of course, in applications where randomness is critical,
as seed, as the source of entropy, much better and really
random data are used than time() function. The /dev/
random file in the *nix operating systems contains ran-
dom numbers derived from the data collected from the
computer’s physical surroundings. The entropy within
this file is a precious source for the operating system.
The computer continuously collects new and random

Chris Stephenson • When “Random” Numbers Aren’t Really Random

37

information from precise timings (in microseconds)
such as mouse and keyboard movements.

It is a bit tougher for servers, which lack a keyboard
and mouse. Information from precise timings in the
network traffic can be collected. Special hardware can
be used in critical applications such as banking, money
transfer security and lotteries. Random data can be col-
lected at a quantum level from special tools containing
a small amount of radioactive Americium.

Cloudflare – a content delivery network and network se-
curity company, found an eccentric solution. In the lob-
by of Cloudflare’s San Francisco head office, there are 80
lava lamps. A lava lamp is a home tool that was popular
in the 60s whose bi-coloured oils move randomly with
the heat of the lamp. The motions of the oils in the Lava
lamp are, in the scientific sense, chaotic. A camera records
the movements of the oils and these movements are the
source of entropy for software in Cloudflare’s network.8

When randomness Is lacking
Lack of entropy can be a complete disaster for security.

The Debian Linux distribution is one of the most popu-
lar Linux distributions for servers. And to make things

8	 https://blog.cloudflare.com/randomness-101-lavarand-in-production/

worse, other popular distributions like Ubuntu and
Mint are derived from Debian.

In my previous articles, I have referred to security vulner-
abilities, deriving from weaknesses of the C programming
language, such as the failure to prevent array bounds vi-
olations. To reduce the effects of these problems, code
scanning applications are used to detect “risky” program
behaviour. For example, applications such as Purify or
Valgrind are used to scan C source code. Debian develop-
ers scanned the libssl encryption library and found that
these tools reported some weaknesses.

It is still possible to read the arguments between the devel-
opers about this subject. Briefly, conversations like “What
are we going to do? Why does this code throw an excep-
tion? These lines give an error - shall we delete them?”
take place between the developers. A quotation from con-
versations on the Debian bug tracking system:

The problems are the following pieces
of code in the crypto/rand/md_rand.c:

#ifndef PURIFY

 MD_Update(&m,buf,j); /* pu-
rify complains */

#endif

What it’s doing is adding uninitial-
ized numbers to the pool to create
random numbers.

I’ve been thinking about commenting
those out.

...

Martin, what do you think about this?

These exchanges are the harbingers of a disaster. Those
critical, “problematic”, code lines were deleted, along
with the entropy that they provided. This change took
place in 2006.

As a result, the entropy being used in a critical process
in the libssl cryptographic library fell to just 16 bits.

It is necessary to briefly explain how cryptography is
used to understand the consequences of this. RSA pub-
lic key encryption technology uses large (very very
large) prime numbers. The cryptographic secret is two

Chris Stephenson • When “Random” Numbers Aren’t Really Random

Cloudflare’s solution to entropy: using 80 lava lamps!

38

large prime numbers, the public key you share with people who want to send you a message is generated from the
product of these two numbers. The difficulty of factorising the product is the key to the security of the encryption.

Therefore, the secret of the cryptographic method is exposed if it is possible to find the secret prime numbers.

The key point here is the problem with the method used for generating large prime numbers. Essentially, large num-
bers are selected at random and then tested for primality. The primality test, using the Rabin-Miller method, also
depends on the generation of random numbers. This is the fastest known method for finding large prime numbers.

However, here’s the problem: if the entropy entering the process is only 16-bits, the large numbers created are chosen
from a pool containing only 65,535 numbers. Thus there are only 65,535 unique keys. For good or evil, modern com-
puters work fast. In a few milliseconds, an attacker can try all 65,535 possible keys and unlock access to the system.

And, unfortunately, that is exactly what happened. With the deletion of these “problematic” lines of code, every serv-
er running that version of Debian, or any of its derivatives, was vulnerable to this very simple exploit9.The problem
was only detected in 2008. So, for 2 years this vulnerability was open to exploitation.

Lack of entropy is not always an accident: Deliberate lack of Entropy

9	 In the Department of Computer Science at Bilgi University, we, too, were victims of this vulnerability. I only wish the student
who got into our servers had done so by his own efforts. However, unfortunately, he was a ”script kiddy” who used a downlo-
aded script. His target was that term’s exam questions. The alarm bells of our Intrusion Detection System immediately rang.
Since he was carrying out the attack from a machine in one of our own labs, our people just ran down to the lab and caught
him red handed sitting at a screen. Since we did not trust the security of our own servers, we were using GPG encryption
when sending exam questions between professors and assistants. Since GPG is a carefully written application which insists
on using entropy generated from mouse movements, our exam questions were never actually under threat.

Chris Stephenson • When “Random” Numbers Aren’t Really Random

Image: Francesco Francavilla

39

It is hard to detect entropylessness for the theoretical reasons we have discussed. Since algorithmic complexity is not
a calculable quality, the entropy contained in the numbers coming from a random number generator cannot, post
facto, be calculated.

And this may lead to “undetectable” crimes. Which is exactly what happened in the Iowa State Lottery in the US10.

Eddie Tipton, the programmer of the random number generator used in the lottery, cheated with the entropy in
2006. The entropy of random numbers in lotterys often comes from a device that uses special radioactive random-
ness. Our programmer has added a few lines of code that, on certain dates, substituted most of the entropy from
that device with numbers derived from the date itself, making the lottery results predictable for anyone who knew
the code. He exploited the same vulnerability shown in the srand(time(NULL)) code snippet we exposed earlier in
this article. Of course, this code was audited. The changes he had made went unnoticed, and the code was approved.

For 4 years, the winning numbers on the special days were drawn from a pool of several hundred possibilities instead
of millions. Every time that pool was different, and because of the incomputable nature of randomness, no one could
have noticed it. Of course, it is forbidden for lottery workers to buy lottery tickets. Eddie Tipton would give his rela-
tives and friends a number and would get a pay-off for tipping them off.

Tipton only got caught because of his greed and carelessness. At the end of 2010, Eddie Tipton bought a ticket that
won $16.5 million. He tried to claim the prize by proxy and then backed down from claiming the prize. The event
remained secret for 4 years. When a new public prosecutor published the security camera recording showing the
moment the winning ticket had been bought, someone recognized Tipton and turned him in. However, once this
discovery had been made, the records of old lottery winners were searched for Tipton’s relatives and friends, and the
magnitude of the fraud was revealed, though not Tipton’s modus operandi. By this time, the code of the old random
number generator had been deleted, so the trail leading to Tipton’s exploit could have gone cold. Eventually a backup
of the old random generator code was found in another state and the secret was revealed..

Tipton, was convicted in 2014, and is still in prison at the time of writing.

10	 The Man Who Cracked The Lottery, Reid Forgrave. New York Times 2018-05-03 https://www.nytimes.com/interac-
tive/2018/05/03/magazine/money-issue-iowa-lottery-fraud-mystery.html (accessed 2019-01-02)

Chris Stephenson • When “Random” Numbers Aren’t Really Random

Image: Francesco Francavilla

40

Lack of entropy is not always an accident:
government inspired lack of entropy
National Security Agency (NSA), one of the US intel-
ligence agencies, has a very long list of previous form
on trying to propagate weak cryptography. What the
NSA does is simple: it disseminates and encourages
the adoption of cryptographic methods that appear to
work well but can be broken by an agency wt all the
resources of the government, like the NSA itself. Their
slogan is “Nobus”: Nobody but us. For example, when
Bill Clinton was US President, his government tried to
impose a cryptographic chip called Clipper as a stand-
ard. There was a backdoor open to the government in
the Clipper chip which had been created in 1993. The
government had a secret key that opened every chip.
Another security vulnerability was found in this back-
door. Fortunately, banks and other institutions in need
of cryptographic security did not accept Clipper be-
cause of its general vulnerabilities, thus preventing its
adoption as a standard.

MYK-78 Clipper chip - NSA’s golden key

11	 What the government should have learned about backdoors from the clipper chip, https://arstechnica.com/information-tech-
nology/2015/12/what-the-government-shouldve-learned-about-backdoors-from-the-clipper-chip/ accessed 2019-01-08

12	 Keys Under Doormats Harold “Hal” Abelson, Ross Anderson, Steven M. Bellovin, Josh Benaloh, Matt Blaze, Whitfield
“Whit” Diffie, John Gilmore, Matthew Green, Susan Landau, Peter G. Neumann, Ronald L. Rivest, Jeffrey I. Schiller, Bruce
Schneier, Michael A. Specter, Daniel J. Weitzner, Communications of the ACM, October 2015, Vol. 58 No. 10, Pages 24-26
10.1145/2814825

13	 https://www.schneier.com/blog/archives/2008/05/random_number_b.html accessed 2019-01-08
14	 https://csrc.nist.gov/publications/nistpubs/800-90/SP800-90revised_March2007.pdf I could not access this resource because

of the closure of the government imposed by President Trump. “Computer Security Resource Center - Due to the lapse in
government funding, csrc.nist.gov, and all associated online activities will be unavailable until further notice.” This notice was
accessed 2019-01-10

This setback did not put an end to such efforts by the
NSA. 25 years later, in 2015, under the Obama admin-
istration, FBI director James Comey wanted all cryp-
tographic methods to have a compulsory back door
for the state.11 The UK government has also demanded
cryptographic back doors. Security experts and scien-
tists have always object to these attempts. One crucial
objection is the fact that a hidden back door is unlike-
ly to remain hidden from malfeasants. If people with
bad intentions (worse intentions, even, than the state)
can find the keys to these back doors, then commercial
secrecy is dead and bank robbery becomes a trivial ex-
ercise. An article published in Communications of the
Association for Computing Machinery (CACM) jour-
nal was more like a manifesto, written by distinguished
authors in the field, including Ronald Rivest, Harold
Abeson and Whitfield Diffie, denounced the idea of
government back doors in cryptographic schemes.12

There are attempts to impose back doors through laws
and government policy. There are also covert attempts
to insert back doors by secretly propagating defective
algorithms..

As Bruce Schneier, a random number generator expert,
wrote: “In old times, when the NSA wanted to weak-
en commercial cryptographic methods, one way they
chose was to secretly decrease the entropy of a Random
Number Generator”13.

In 2006, theNIST (National Institute of Standards and
Technology) proposed a new random number gener-
ator. NIST published a new standards paper contain-
ing several random number generators.14 Among these
was the Dual Elliptic Curve-based Dual_EC_DRBG
proposed by the NSA. The NSA recommended their
own solution. The peculiarities of this random number
generator were immediately recognized by the cryp-
tographic community. At the Crypto 2007 Congress,
Microsoft employees Dan Shumow and Niels Ferguson

Chris Stephenson • When “Random” Numbers Aren’t Really Random

41

made a presentation15 which showed that there are some constant values embedded in the Dual EC_DRBG algo-
rithm and that these constant values can be generated from other hidden values, and that someone who knows
the hidden values can decrypt the cipher after seeing an output of only 32 bytes of this random number generator.
Shurnow and Ferguson could not discover the hidden values, but they were able to prove that they existed.

Bruce Schneier, wrote an article on wired.com, titled ’If you’re in need of a random number generator, my advice is
not to use Dual EC_DRBG under any circumstances.’

Schneier did not consider the possibility that the NSA had deliberately inserted a back door into the Dual_EC_
DRBG, since in his view doing so would have been too obvious. Nonetheless, he strongly warned against using
Dual_EC_DRBG, just in case.

So the idea that the backdoor was deliberately inserted remains only speculation. This much is certain, thanks to
the vigilance of the cryptographic community, another weak cryptographic algorithm had been exposed. That is how
we progress

Nightmare becomes reality
Only it did not work out like that.

Juniper Networks16 is a very important internet infrastructure and network security company. With 37% of the rout-
er market and turnover of 5 billion dollars in 2017, it is one of the largest internet companies after CISCO.

The sample Juniper Networks NetScreen product inspected in the research - Secure Services Gateway SSG 550M

One of their products is the NetScreen VPN router. These devices have a critical role in the field of securing Virtual
Private Network conversations.. In October 2008, version number of the ScreenOS software on these devices was
upgraded to 6.2. With this upgrade, the device’s RandonNumber Generator was changed to be Dual_EC_DRBG.
Five other changes were made that adversely affected the security of the device. On top of that, in August 2012, a
critical parameter of the device’s Dual_EC_DRBG implementation was changed by someone from outside the Juni-
per company.

In September 2013, former CIA employee Edward Snowden leaked some ten thousand scertedocuments to jour-
nalists and after a journey around the world managed to escape to Russia. Information from the documents were
published in some prestigious newspapers such as the Washington Post and The Guardian in London. Among the
allegations was the claim that “the NSA had put a back door into a random number generator. Dual_EC_DRBG is
not mentioned in the documents, however it was referred to as “a vulnerability discovered in 2007 by two Microsoft

15	 On the Possibility of a Back Door in the NIST SP800-90 Dual EC Prng, Dan Shumow, Niels Ferguson http://rump2007.cr.yp.
to/15-shumow.pdf accessed 2019-01-08

16	 https://www.juniper.net/

Chris Stephenson • When “Random” Numbers Aren’t Really Random

42

employees”. Clearly the reabdomnnumber generator referred to is Dual_EC_DRBG. After this revelation, the NIST
withdrew its recommendation to use Dual_EC_DRBG. In a press release, Juniper claimed that they used two differ-
ent random number generators in sequence and that since only one of these was Dual_EC_DRBG, the privacy of the
device was not affected by the backdoor.

However, finally, in September 2015, Juniper did accept the existence of a problem. But the patch they deployed did
not solve the Dual_EC_DRBG induced vulnerability.

In a 2016 article, a team of security researchers revealed the whole problem by reverse engineering the software con-
tained in Juniper NetScreen devices.17 What can I say about this beautiful article? It is a clear, calm and carefully writ-
ten article about programming, security, and cryptography. I just want to mention two important points it makes:

(a)	In the code in question, a global variable’s value is changed. The variable is a loop control variable, so the re-
verse engineering process labelled the variable “index”.. Since the code was obtained by reverse engineering,
the source code might have contained a for or while loop. This doesn’t matter. Anyone reading the reverse en-
gineered code would assume that this variable is local. This variable being made global was one of the changes
that led to the vulnerability.

If I were to write a C textbook, I cannot think of a more striking example of the potential harm from the use of global
variables. When the global variable is changed within the invoked function, it is virtually impossible to understand,
or at least very easy to misunderstand, how the invoking function works.

(b) A technique was used to prevent the monitoring of the variable’s scope change from the reader of the code.
Look at the code: Dual_EC_DRBG is only used to create the seed of another, innocent, number generator
namely X9.31. However, as a result of a trick mentioned in part (a), before each use, the X9.31 random num-
ber generator is re-seeded with a value originated from Dual_EC_DRBG. In the above C-code code samples
downloaded from the internet, “only call the rand() function in the loop, call the srand() function once” is
written. This rule is violated. That’s why the X9.31 random number generator, which is actually innocent, has
no share in this.

All in all, there is no smoking gun evidencing the NSA’s guilt in the Juniper Systems affair. However, there is a gun,
and someone was shot. The identity of the shooter remains a matter for speculation. Where there’s smoke, there’s fire.

Conclusions
We have looked at a few random number generators that are far from random, and some critical accidents that were
just waiting to happen.

Cryptography is a difficult subject, broad and deep, and “a little learning is a dang’rous thing” - Alexander Pope18

The number of people who think they understand cryptography is much more than the number of people who really
understand it. This author also makes no claims. I have shared with admiration what I have read in references. That’s
all.

As we saw in the Debian SSL example, it is very easy to cause vulnerabilities unintentionally.

17	 Where Did I Leave My Keys?: Lessons from the Juniper Dual EC Incident Stephen Checkoway, Jacob Maskiewicz, Christina
Garman, Joshua Fried, Shaanan Cohney, Matthew Green, Nadia Heninger, Ralf-Philipp Weinmann, Eric Rescorla, Hovav
Shacham, Communications of the ACM, November 2018, Vol. 61 No. 11, Pages 148-155 10.1145/3266291

18	 “A little Learning is a dang’rous Thing;
	 Drink deep, or taste not the Pierian Spring:
	 There shallow Draughts intoxicate the Brain,
	 And drinking largely sobers us again.”

	 An Essay on Criticism, (1709) Alexander Pope,

Chris Stephenson • When “Random” Numbers Aren’t Really Random

43

Everywhere in the world of security, randomness is a critical weapon and a defence mechanism. For the cryptogra-
pher, in order to prevent side-channel attacks like Meltdown and Spectre, it is important for the system to act unpre-
dictably by randomising memory locations and timings. Entropy is important and is worth its weight in gold in our
systems. We should follow mathematicians and their theorems carefully. They do know something.

From the Juniper case we learn something else important. Attempts by government to create a back door for state
agencies may also break the lock on the front door. The systems will be vulnerable attack by any assailant. In the Ju-
niper case, the intervention by the NSA could not be proven. At the end of the day, however, the VPN device of one
of the biggest companies on the market was completely vulnerable to being listened to for over 9 years..

The authors of the the CACM journal article about Juniper Systems make a number of important recommendations.
I have added my own observations and opinions to theirs.

(a) Software. Cryptographic code should be locally auditable. It should be possible to understand what a function
does by looking at its code, independent of any other programs. Global variables and global storage areas should be
avoided. When auditing code, the quality of the code should be taken into account.

Opinion: Even if programs are not written in functional languages, they should be written in referentially transpar-
ent, functional style.

(b) Auditing Institutions: All software in the Juniper Systems devices had been audited and approved in an inde-
pendent laboratory for FIPS (US Federal Information Standards) compliance. Evidently these tests were insufficient.
more systematic code auditing is essential.

Opinion: Programs need to be proven, evaluated and audited using automatic methods. Just glancing at the code is not
enough. Formal methods are required.

(c) Random Number Generator Vulnerabilities: Attacks exploiting weak random number generators have a great
advantage. The lack of randomness in the numbers generated cannot be computed from the generator output.

Opinion: random number generation is too important to be left to companies operating within the bounds of commercial
secrecy.

(d) Openness: Reports in the media have concentrated on the changes made to their devices by actors from outside
Juniper Systems in 2012 and 2013. However, the real vulnerability was due to random number generator changes
made by Juniper’s own developers in 2008. Juniper avoided providing information to the public, did not explain the
code in question, nor did it give access to researchers. Juniper’s version control system, internal e-mail traffic and the
developers’ memories would have been really helpful in determining how these vulnerabilities had arisen. Research-
ers had to purchase a Juniper Systems VPN device, then reverse engineer it to discover the vulnerabilities in the code.

Opinion: Security critical software should always be open. Journalists should be given technical information to
deepen their research. After an event like the Juniper Systems vulnerability has occurred , transparency should be
guaranteed by law.

(e) Politics: In a secure system, giving special access to a person or a branch of the government is an attack on the
integrity of the entire security of the system. Such back doors should not be created under any circumstances.

Opinion: Security software should be open source, preferably free software.

“Let’s be careful out there.”19

19	 Hill Street Blues TV show 1981-1987 pace

Chris Stephenson • When “Random” Numbers Aren’t Really Random

44

Mustafa Yalçın • iletisim@sahvemat.com

What Is IPFS?
InterPlanetary File System is a distributed file system that allows you to address content on the network that can be
hyper-shared with end-to-end communication methodology. The abbreviation is IPFS and that’s how I’m gonna use
it all the way through the article.

The initial design of the project belongs to Juan Benet and is currently being managed by the community as open
source code.

Bitcoin, which we complain about the prices of these days, actually led to the emergence of this idea in 2014. The
design features such as network architecture on data storage, deleting repeated recordings, addressing networked
nodes are inspired by Bitcoin’s Blockchain protocol. This technology is combined with GIT (Version Control System)
and Torrent technologies.

The languages used in the design of IPFS are Go and Javascript. It is being developed on a Python-based design.
Technically, anyone who wants to study IPFS design and Github codes can visit https://ipfs.io.

Nwow, let’s talk about the purpose of IPFS and its advantages.

What is the purpose of IPFS?
The motto of IPFS is ‘Permanent Web’. Their main aim by doing so is to replace HTTP. It is stated that IPFS is de-
veloped as a solution to the constraints of today’s web topology.

In order to interpret this well, let’s take a look at the features of today’s web.

Modern Web Topology
→Centralised Architecture Network
→A Server
→Scalability problem
→Single Point of Failure (loss of all functions in case of weak ring problem)
→Unproductive
→Decentralised Architecture Network
→Multiple Servers
→Scalable
→Productive
→High Up-time
→Better error management
→but higher cost

IPFS (InterPlanetary
File System) With
Permanent Web

45

Mustafa Yalçın • IPFS (InterPlanetary File System) With Permanent Web

^1 Media graphics is a collection of information that includes audio, video, text-only, and hyperlinks.

IPFS’s Topology

→Fully Distributed Architecture
→Each node can perform both server and client functions
→Productive

When we see a centralized structure in today’s Web-HTTP technology, we see that there are some disadvantages in
terms of productivity, and when a distributed architecture is created in today’s Web-HTTP technology, the costs rise
too much.

Let’s make it clear with an example.

For example, you take courses at the university with 100 people and your teacher shares a web link with you and asks
you to visit it. When 100 students want to access this web server, 100 different requests are sent to the server and 100
responses are received from the server. This is not an ideal method for efficiency. That is because even though the
same data is available to all students from the first person who made the request, it can only be obtained from the
same server. Also, in addition, this process becomes even more complicated for HTTP: with server-side problems,
data erasure, ISP-side communication problems, or country-based content blocking.

How would the teacher in our example share data with their students using IPFS technology?

The structure of our HTTP link in the first example can be this way: http://12.34.56.78/folder/data.txt

IPFS links are similar: /ipfs/QmT5NvUtoM5n/folder/file.txt

At this point, it is enough to install the software for different platforms for accessing the “/ipfs” architecture. Once
installed, you can visit the filesystem as if you had a virtual disk or if you are accessing an HTTP web address.

If we go back to the link of the lecturer, the students who send the request after distributing it to the students can
obtain the data from other people who have previously requested the data according to their proximity. Data integ-
rity may come to your mind at this point. Data integrity is also confirmed by the acquisition of the data by means of
cryptology techniques.

In other words, you can obtain the data you want by connecting it to someone who has already obtained it from the
central server, without disturbing the integrity of the data. At this point, we can say that it uses Torrent technology.

With HTTP, you ask what happened at a particular location, with IPFS you ask where a particular file is.

46

IPFS and BLOCKCHAIN
IPFS can work successfully with blockchains due to their structural similarities. Juan Benet, the inventor of IPFS
interprets the interoperability of Blockchain and IPFS as a perfect marriage.

Protocol Labs (https://protocol.ai), founded by Juan Benet, currently hosts several projects outside of IPFS.

One of the initiatives of Protocol Labs is the “IPLD (Inter-Planetary Linked Data-https://ipld.io/)” project. With this
project, Bitcoin and Ethereum chains are transferred to the distributed IPFS network. Many other Blockchain archi-
tectures can be stored on the IPFS network with this protocol. The aim is to reach different users who will ensure the
safety of the blockchains and ensure that the data continues to exist continuously on the network. This is achieved by
awarding the users who store data on the network with an alternative crypto coin, called Filecoin.

You can find the technical steps needed to display the Ethereum blockchain on IPFS by clicking the link below:

https://github.com/ipfs/js-ipfs/tree/master/examples/explore-ethereum-blockchain

It’s not even just blockchains; a project had been designed in 2017 when Wikipedia was blocked in Turkey where you

can access Wikipedia’s mirror over IPFS. The project is available at https://en.wikipedia-on-ipfs.org

After a year and a half from its development; there weren’t much demand nor much IPFS users in Turkey so the
project is now a bit outdated. The project still continues to being developed counter to this fact, though.

Project’s Source Code: https://github.com/ipfs/distributed-wikipedia-mirror

IPFS SETUP
In a few simple steps, you can install IPFS on your computer.

First, if you haven’t, to download the appropriate IPFS package for your operating system, click the following link:
https://dist.ipfs.io/.

Since the IPFS project is currently fully operational on the Go platform, I recommend you to download the Go lan-
guage version.

After you install the package, you can use the following start command on your command terminal:

$ ipfs init

Mustafa Yalçın • IPFS (InterPlanetary File System) With Permanent Web

47

Then, to become an active node in the IPFS network, just run the following command
in your terminal:

$ ipfs daemon

Ready now. http: // localhost: 5001 / webui /

You can extract the desired repo to your computer by running the address above.

From the web interface, you can even watch a movie with a repo that has a movie stream on your local network. To
share your private files with someone else, not just public, you can encrypt a file with PGP and upload it to the net-
work and access it from anywhere.

Mustafa Yalçın • IPFS (InterPlanetary File System) With Permanent Web

48

Utku Şen• Çevirmen: Atalay Keleştemur • utku@utkusen.com

Antivirus software have been with us for around
20 years, both for our everyday use and for
corporate uses. However, it’s the year 2019 and

things change eventually. People, except Windows us-
ers, do not have the need for antiviruses. In fact, they
even started to question the necessity of antivirus soft-
ware on Windows computers with the built-in security
mechanisms that come with Windows 10. Alright, so
what will happen in the future? In this article, I’ll be
explaining the possible scenarios that may take place in
the future from my point of view.

Why do we need antivirus software on
our computers?
Because computers are capable of downloading and
directly executing files from the internet. For instance,
HR personnel may download and run an EXE file from
the internet. The file may read and leak critical infor-
mation, may encrypt files and demand ransom or may
cause problems in other ways. Therefore, your comput-
er must have a mechanism which distinguishes good
files from the bad.

Why do iPhones not need antiviruses?
Because iOS does not allow you to download and run
random files from the internet. You can only download
software from the AppStore. Software on AppStore are
frequently inspected, and also there is plenty of in-
formation about the developers. Apart from this, the
OS-level permissions that the running software have
are pretty few (sandbox). The software cannot read the
data of one another i.e., a photograph editing app you
downloaded cannot read your WhatsApp messages.

Problems with the Antivirus Products
The Blacklist Approach: For 20 years, we have been us-
ing antiviruses and thousands of malware have arisen.
Therefore, antivirus companies have added the signa-
tures of this malicious software to their databases, and
these databases have been filled up with tens of thou-
sands of different signatures at the end of 20 years. It is
not possible for the companies to throw some of these
signatures away since a good antivirus software should
be able to detect malware of both 10 years and a week.
Roughly, we can say that when it encounters with a
new malware it calculates its signature and compares
with the gigantic databases of signatures. If no match is
found, the software is accepted to be safe.

Imagine that you throw a birthday party at your home.
Instead of preparing a 20-person invited guests list, you
prepare an uninvited list for 79,999,980 people. When a
new person comes, you compare them with the list of
the uninvited. If they are not one of those who is not
uninvited, you accept them in - this method is a waste
of time and resources. The same thing applies to antivi-
ruses. The signature database grows each year and con-
sumes more resources. This is not a sustainable method.

They create extra attack surface: Antiviruses are also
developed by humans just like other software. There-
fore, they may reside vulnerabilities - which come to be
true pretty often. There have been remote code execu-
tion vulnerabilities in antivirus software such as F-Se-
cure, Kaspersky, Symantec, and ESET.

Privacy problems: Most antivirus programs send the
files on your computer to their own servers in order to
analyze them better. If you are working on something

No Room for
Antiviruses

in the Future

49

Utku Şen • No Room for Antiviruses in the Future

confidential, this is quite alarming. If you recall, the ex-
ploits used by NSA have been captured via the Kasper-
sky antivirus on an employee’s computer. Apart from
this, many antiviruses listen to the HTTPS traffic of
your computer by performing MitM (Man in the Mid-
dle) attack. Although they do this to detect malicious
websites, this once again is perilous for privacy.

Budget problems: If you are a company with hundreds of
thousands of computers, you must pay a small fortune for
antivirus software. This is a distressing situation for compa-
nies that are already having budget shortages.

They are not that good at detecting malicious software:
There are both excellent and awful antiviruses on the
market. For example, when you compile Hidden Tear
and upload it to Virustotal, you will see that over 20 An-
tivirus software still cannot detect it. How can you bene-
fit from your antivirus if it cannot even detect one of the
world’s most popular malware? Yet again, there are some
really good antiviruses on the market who are capable of
detecting even the malware of APT groups. However, it
not always possible for them to detect malicious soft-
ware. Sometimes, the APT groups have already finished
the attack long before your antivirus detects it.

What do we need?
We are in need of desktop operating systems that apply
the iOS security model. A computer should be able to
download and run software from only an app market
that is frequently inspected. If it is an employee com-
puter, he/she should even not be allowed to download
from the market; there should be a limited number of
software such as web browsers, text editors or office
programs.That way, the whitelist method will be ap-
plied instead of blacklisting. We will not need antivi-
ruses since only a number of software we pre-allowed
will be running.

What will happen in the future?
I think Microsoft will sell the operating system with the
above-mentioned security model to the companies in
the future. This operating system will become a stand-
ard for corporate users. The possible vulnerabilities of
this OS will make its security questioned at first, thus
companies will continue to trust the antivirus software
for some time. Later on, when the security weaknesses
will be minimal, the era of antiviruses will mostly fade.

Besim Altınok • besimaltnok@gmail.com

50

There are many different methods to obtain the password of a wireless network. In this article I will try to follow
one of these ways step by step. From the mentioned methods, password acquisition will be performed only by
brute force attack method.

If we want to obtain the password of a wireless network with the brute force method, we fırst need to meet some re-
quirements. We will approach to these requirements under two parts; software and hardware.

Software Requirements:
➢	 aircrack-ng
➢	 aireplay-ng
➢	 airodump-ng

Hardware Requirements:

➢	 A network card with monitor mode and injection support.

o	 TPLINK TL-WN722N
o	 Alfa Card

Once the requirements are met, we will try to obtain the password information of a wireless network by following
these steps one by one.

1- Preparation
First, check the presence of the network adapter in the system. For that, you can use the `iwconfig` command.

Password Cracking
Attacks in Wireless

Networks

Besim Altınok • Password Cracking Attacks in Wireless Networks

51

To use our network adapter as a sniffer, we must put it in monitor mode. You can use the airmon-ng tool for this. The
nice thing about this tool is that it can detect and shut down the services that might be a problem, so that we will not
encounter any problems during sniffing. You can use the “airmon-ng check kill” command for this. This will stop the
network card dependencies.

After disconnecting the network card you will use, you can put your network card in the listening mode with the “start
airmon-ng start wlan0” command. When in listening mode, the new name of the network card will be wlan0mon.

2- Determining the Target
In order to determine our target, we need to find out which access points exist. For this we can use the ”airodump-ng
wlan0mon” command.

52

Besim Altınok • Password Cracking Attacks in Wireless Networks

You may see surrounding access points in the first part of the output; and the information as who connected to where
previously and who is connected to where currently in the second part of the output.

After detecting the target access point, we start to collect information about the target access point with the “airo-
dump-ng wlan0mon –bssid C0:D3:C0:31:E7:C9 –c 5 –w WPAkir” command and just follow it. At this stage, our aim
is to capture a packet of 4-way handshake operation to obtain the password information and view the clients connect-
ed to the access point.

• --bssid C0:D3:C0:31:E7:C9 : To define the MAC address of the network we’re reviewing,

• -c 5 : To define the channel number it broadcasts,

• --write WPAkir : To print the results to a file named WPAkir,

• wlan0mon : The interface name of the network adapter we use.

3 different methods can be used to capture the mentioned package.

➢	 Wait for someone to connect,
➢	 To drop the connected one from the network and ensure that it is reconnected or
➢	 Capture the PMKID value.
➢	 However, we will apply only second method out of these 3 methods. (To drop someone connected from the

network and make it reconnect)

3- Network Drop (DeAuth)
We’ll repeat the deauthentication packages to drop clients connected to any access point from the network. We will use
the aireplay-ng tool for this operation. You can run the tool with the following parameters.

➢	 “aireplay-ng –deauth 100 -a C0:D3:C0:31:E7:C9 -c 0C:D2:92:3E:79:34 wlan0mon”
o	 --deauth 100 : The number of de-auth packages we want to send
o	 -a C0:D3:C0:31:E7:C9 : MAC address of the target access point
o	 -c 0C:D2:92:3E:79:34 : MAC address of the target client
o	 wlan0mon : Interface name of the adapter in monitor mode

53

Besim Altınok • Password Cracking Attacks in Wireless Networks

We can both reduce the number of packets sent and also increase it. However, the factor that determines the number
value is the density of the client’s packet exchange with A.P. If there is a lot of instant outgoing packet, the de-auth
package we sent may not be accepted. So we can apply this for a few times.

With this method, we will be able to capture the handshake value when the client is dropped from the network and
reconnected to it.

4- Brute Force Attack
When we examine the directory where we run the “airodump-ng command”, we see that there are many files named
“WPAkir”. You can also review these files. The file with the extension ”.cap“ is needed for us now.

54

Two methods are preferred in brute force attack.

➢	 Dictionaries.
➢	 Defining password format with Regex.

The advantage of the second way, if you know the combination of the password as 9 characters – only numbers and
letters etc., cracking of the password is nearly absolute. The only thing for more is a little time.

But most of the time you will not encounter such a scenario. An unknown network in an unknown environment that
you don’t know the users. Therefore, dictionary attacks are preferred. Dictionaries are advantageous because people
define very simple passwords just for easiness.

There are many dictionaries available on the Internet. The most famous is “rockyou”. In Kali, you can find many dic-
tionaries under ”/usr/share/wordlists/”. We used the Turkish dictionary shared by packetstormsecurity. It is advanta-
geous to use a special dictionary for languages.

To confirm its vulnerability, we added our password to the dictionary.

After obtaining the required dictionary:

aircrack-ng WPAKir-01.cap -w “/root/Desktop/turkish”

You can start the process with above command. You can also add -0 parameter if you like to be as moves ☺

Besim Altınok • Password Cracking Attacks in Wireless Networks

55

WPAkir-01.cap : File with .cap extension and obtained from airodump-ng

-w /root/Desktop/turkish : Absolute path of the dictionary

Conclusion
Even though WPA2 networks are secure, simple failures caused by the user or hardware manufacturer allow network
penetration.

Let’s share more specific information to Arka Kapi followers. You can your own computer with its hardware limita-
tions as well as online services. One of these services is https://www.onlinehashcrack.com. Many services are provided
here, but we have just touched on wireless network password cracking scenarios.

Besim Altınok • Password Cracking Attacks in Wireless Networks

56

The bad angle we have detected is being able to see other’s posts due to lack of an interface. All you have to do is find
the e-mail information of people using this service. It will be enough the enter the e-mail address at https://www.on-
linehashcrack.com/dashboard.

As you can see in the screenshot, there is no captcha protection. This allows you to try a mailing list. Therefore, think
again before using this kind of services!

Besim Altınok • Password Cracking Attacks in Wireless Networks

57

Finally, we began to see and use the real applications of the field of blockchain. One of the biggest benefits of
this technology, which I think is still in its infancy, is ‘Decentralised Applications (DApps). DApps allow the
development of decentralized applications. The technology that has the most impact on the spreading of such

practices is undoubtedly the Ethereum blockchain. However, I would like to talk a little more about the Ethereum
Virtual Machine (EVM) and different attack vectors.

Ethereum Virtual Machine
The software development languages that Ethereum supports and allows us to create a smart contract are compiled
into instructions that can be expressed in the virtual machine level in 16-bit order.

(1).In this way, the virtual machine compiles Just-In-Time (JIT) and performs optimization based on the operating
system it is running on, thus allowing smart contracts to run. Of course, these operations are operated in an isolated
area, and manipulation is prevented by external intervention. So to summarize, applications written in Solidity are
converted to a format called byte-code after compilation and sent to the network to be run by miners on the network,
just like a value transfer process.

Once this process has been created and confirmed by the miners, it can no longer be changed. So if I compile a smart
contract and send it to the network, this application can no longer be changed as long as this network survives, and
more importantly, it cannot be undone. If there is a security vulnerability or other kind of errors in this application
then that error will remain there forever. And this, naturally, makes us drift away from the classical “if it doesn’t work,
we can set it up again” type of approach. Therefore, it would not be wrong to say that the application development
process should be slightly different from the classical methods of application development. But I’m leaving this issue
to cover it later and am going back to the primary topic.

1) Ethereum Yellow Paper: https://ethereum.github.io/yellowpaper/paper.pdf

Ethereum Attack Vectors
For the reasons explained above, errors in applications developed on Ethereum may lead to irreversible results.
Therefore, it is very important to pay attention to critical vulnerabilities and attack vectors that should be considered
when developing applications and to make sure that your applications are free of them.

1. Integer Overflow Attacks

Mert Susur • mail@mertsusur.com

Blockchain
Applications and

Security Problems

58

Mert Susurı • Blockchain Applications and Security Problems

If you are interested in the blockchain and cryptocurrency field, which I assume that you are since you’re reading
this article you might have seen the article, headlining ”vulnerability have been found on ERC20 tokens”(2) wander-
ing around on social media. You might think that vulnerability is related to ERC20 tokens, but the reality is slightly
different.

REFERANS - (2) ERC20: Ethereum means that the acronym for Request for Comment and 20 means that it is the
20th. It has also been proposed to establish an interface for the crypto coins which are also worthy of this request,
and over time has become the de-facto standard of the crypto coins on Ethereum.

https://github.com/ethereum/eıps/issues/20

At the beginning of the article, I described the different data types used to manage the memory on the EVM. Because
Ethereum will deal with very large numbers due to its nature, these types of data usually include the types of variables
that are ‘unsigned’ in which larger values can be expressed. The integer type that can have the largest value among
these data types is UINT256, ie 256-bit unsigned integer type. In summary, this data type can take the integer values
from 0 to 2^256. In other words, the maximum number of values that a variable using this data type can represent with
256 bits is 115792089237316195423570985008687907853269984665640564039457584007913129639935. The
issue here is that the problem arises at this point since 2^255 + 1 is over the boundaries of UINT256 and this number
is rounded to 0 by the EVM. Wondering why? For performance, of course!

How so? You might be saying “It’s the year 2019, you’re talking about arithmetic overflow check cost” maybe even
“We don’t have that problem with other software languages”. Wait, wait, calm down. To understand the reason for
this decision, we have to understand Ethereum’s purpose a little more.

Ethereum is designed to be decentralized and is designed to work on servers, and all technical decisions are made
in this framework. There are two critical issues that underpin the decentralization: reward and cryptographic algo-
rithms. I will not mention the cryptography section now, but the prize of the miners who approve the transaction is
the only reason for the continuity of this network and the high hash ratios. Because as of today, miners are rewarded
proportional to both by the blocks they find and the process steps of software they run in these blocks. ^3

REFERANS - (3)This awarding mechanism will be replaced by a Proof of Stake agreement called Casper. However,
I don’t want to speculate as there is no clear explanation and the issue is still in the discussion stage.

These process steps are called gas: the more you occupy the miner’s processor, the more you have to pay. Thus, both
the miners are rewarded and the system is protected against DoS attacks.

If this is the case, that is, if a payment is made in exchange for the transaction to be executed, then the transaction
costs would have been higher if the negligible operations were included as well.

While other software languages prevent these problems by throwing errors as a result of a value overflow, this is still
not accepted as a healthy solution for the EVM. The reason for this is that every Ethereum operation will consume
gas and that you pay for this gas and if an exception was to be thrown, it will cause you to spend all the money you
pay. The reason for this is that the cost of exception throwing is very high since all the stacks that are created when
an unmanaged error is thrown must be destroyed, and all heaps must be returned to the top. This, in turn, requires
serious processing power with the throwing of the error and causes a process called gas limit to be equal to or greater
than the maximum amount of gas that a process can use. So if you’re convinced a bit, let’s take a look at how the error
occurs and how it can be exploited.

Our script is very simple; say that we have an ERC20 token contract, with its name being ArkaKapiToken. Let’s say
an account wants to transfer its 100 ArkaKapiTokens to 10 different addresses. In this case, instead of sending 10
different transactions and paying 10 times the transaction fee, using the ‘BatchTransfer’ function on the contract,
send out to 10 different addresses the amount of transfer that can be made to each of the 10 different addresses given
as parameters.

59

Mert Susurı • Blockchain Applications and Security Problems

Thus, instead of doing 10 different operations, they will pay much fewer transaction fees as they can perform these
transfers with only one transaction. This is a feature provided by many ERC20 token contracts and is often added to
the contracts by the software developers unfortunately by copy-pasting them without thinking. Now let’s look at the
code below taken from a real smart contract.

REFERANS - (4) I don’t share the details of the smart contract so as not to abuse the vulnerability. However, you can
find this error in many intelligent contracts, and I never support the abuses of projects that have barely completed
their projects and successfully completed ICOs with a thousand challenges. Remember, you could have come to your
head!

Can you see the error in the example above? Let me give you a hand: the third row is where the error occurred. Let’s
say that the _value value is equal to the maximum value of 2^256 and there are two elements in the _receivers array. In
this case, 2^256 x 2 value will exceed the boundaries of the UINT256 data type amount variable will be 0. In the fourth
line, the cnt value of the array number of elements will be passed successfully. Since in line 5 the value of amount is
0, the control will be passed successfully, and a very large number of token transfers will be made to the elements of
the _receivers array between the lines 8 - 11.

Of course, this problem is not only for ERC20 tokens with a transferBatch function but also for each smart contract
that handles UINT256. At the same time, the problem is not only in the collision and collecting operations but also
in downward processing. This problem is also called underflow. The following code snippet exemplifies both over-
flow and underflow problems.

2. Time Stamp Dependency
If you’re used to installing applications in software languages such as C #, Java, Javascript or Python manually or on
cloud servers, there’s still one important issue to consider when writing smart contracts.

60

Ethereum and almost all blockchain protocols are based on not completely trusting. This basic principle is referred to
as ‘Trustlessness’ and aims to ensure that the parties in the system do not need to trust each other in the procedures
to be done in the protocol and provide solutions in this field. One of the most important reasons for this is that it is
a completely distributed system and since the parties do not recognize each other, the concept of the existence of the
evil-minded people in the system are accepted.

The best example of this is the 30-second rule.

The time settings of all nodes included in the Ethereum network must be correct. So this means that every computer
connected to the network must share the time zone and the computer’s system clock with the parties it is connected
to during the first connection. If the system time is different, then the network is blocked.

The most important reason for this is to prevent manipulations. However, considering that all transactions are one-to-one
and there are message losses, 30-second time gaps are ignored since there will always be disruptions in communication.

This means that at least one of the miners in the network can be ahead or behind 30 seconds.

In this case, if you use block.timestamp and want to make some decisions based on time, you should consider this
30-second tolerance. Again, if this 30-second time difference is important to you, malicious miners can manipulate
your contract using this time difference.

3.Short Address Attack
Now it is time to tell the most difficult method of attack. This method was found last year by the Golem team and
influenced the Ethereum-based tokens of many crypto exchanges. You may not have heard much about influencing
big actors, but I’ll try to explain some details, hoping that I can!

As you know, Ethereum addresses are 20 bytes long. For example, 0x071a8A7a1cb42F0300202a8374c1DDFA14895500
is a valid Ethereum address.

Let’s take a look at the zeros at the end of this address. What would have I done if I have referred to this address as
0x071a8A7a1cb42F0300202a8374c1DDFA148955 by throwing the zeros at the end?

We’ll turn to the above question, but if I don’t tell a little about how Ethereum works before, it’s going to describe the problem.

Let’s say you’re calling the Transfer function of an ERC20 contract. The transfer function can be operated with two
parameters, address, and uint256.

So if you wanted to make a call like this Transfer (0xaaabbbccc00, 100), the Ethereum protocol would add the signa-
ture of the Transfer function in that contract and all the other parameters successively, then prepare and sign a trans-
action and send it for approval by the miners on the network. By assuming that the contract signature of the transfer
function is 0x12345, the Transfer(0xaaabbbccc00, 1) function call is expressed as 0x12345aaabbbccc0000000001,
then signed and sent to the network. Now I think you understand where this is going. What happens if I process this
address without the hindermost zeros and then the market tries to process this address without checking the size?
For Transfer(0xaaabbbccc, 1), a process such as 0x12345aaabbbccc00000001 will be created (note that the address
does not have zeros at the end). When this process is tried to be understood by the miner, it will be divided into
pieces and the following table will appear;

Fonksiyonun imzası 0x12345

The first parameter is of
address data type

0xaaabbbccc00

The second parameter is
of UINT256 data type

0x000001??

Mert Susurı • Blockchain Applications and Security Problems

61

In other words, since it is the first parameter that is missing, it completes the missing address parameter from 1 byte
at the beginning of the second parameter, 0x00000001, because it separates the process from the left and completes
it to 0x00000100 or 256 integer value, as predicted.

This way, if there are enough tokens available in the market that is responsible for this transaction, at the end of the
day, while thinking that it will send only 1 token, it actually will send 256 tokens on the smart contract. Although this
method of attack is thought to be as simple and fast as the SQL injection attack, you can make sure that the number
of applications that host this error is surprisingly high.

If you have patiently read it here, you should have understood EVM and Ethereum more, which are more important
than the attack methods.

I would like to thank Fuat Cem Özyazıcı, Serkan Ayyıldız and Şafak Kayran from the Unichain team who read this
article at midnight and helped me correct numerous typos.

Mert Susurı • Blockchain Applications and Security Problems

62

Halit İnce • halit_ince@protonmail.com

How many people is enough to have a 50% chance of two people having the same birthday? Of course, we
assume that people here are randomly selected. The answer is interesting, though: 23 people are enough.
In other words, if you are in a community of 23 people, the probability of a coin coming up tails and the

probability of finding two people with the same birthday is the same. Even if the result is mathematically proven,
it is known as birthday paradox because it is contrary to human intuition. This probability reaches 70% for 30 people
and 97% for 50 people. The following table provides possibilities for different situations.

So, how can we prove this situation mathematically? Before we go on to explain further, we need to agree on the no-
tation we’re going to use. X is an event (coming up tails to coin, four to the top of a dice, etc.); Let Pr (X) indicate the
probability of the occurrence of event X. For proof, we will use the method of reaching the result from the inverse,
that is often used in the theory of probability. Let’s exemplify this method. Let’s assume that a fair die is thrown, and
we are asked if there is a chance that the number on the die is 6, that is, PR(not 6). We can solve this problem as
follows: if we are asked the possibility that the output is not 6, then the total of the probability of output of 1, 2, 3, 4
and 5 are asked. Since the probability is 1/6 for each, the result is

Birthday Attack To
Hash Functions

63

Halit İnce • Birthday Attack To Hash Functions

However, on the other hand, we can also think of this as from reverse. We know that the sum of the probability of an
event occurring and not occurring is 1 (100%). So an event either happens or not. If we subtract the probability of
being 6 from 1, we actually get the desired result. Expressing mathematically,

firstly, set the equation as follows:

Pr(not 6) = 1 - Pr(6)

From here we get

Pr(not 6) =

as a result. Besides, as you can see, the cost drops from 5 different probability calculations (simple calculations for
this experiment but requires more calculations as the problem gets more complex) and 4 summations to 1 probabili-
ty calculation and 1 subtraction. As a result, this method is more advantageous both for the approach to the problem
and for the cost of the operation.

Let’s come to the main conclusion that we want to prove.

Theorem 1 (The Birthday Paradox): In a group of 23 randomly selected individuals, the probability of at least two
people having the same birthday is at least 1/2.

Proof: As we did above, we’re going to follow a reverse approach to the problem. What is the opposite of having at
least two people having the same birthday? In this group, at least two people have the same birthday, or everyone’s
birthday is different. In that case, we need to subtract the possibility of everyone having a different birthday from 1.

Mathematically,

Afterward, calculating the probability that everyone will have a different birthday will be enough. Let’s assume that
there is only one person in our group and suppose a second person is included in the group. What is the probability
that this second person has a different birthday than the first person? Considering that there are 365 days in a year
and that the first person has only one birthday, the second person has to be born in the remaining 364 days. So, this
probability is . The third person must be born in one of the remaining 363 days to have a different birthday from
these two. So, all three people are likely to have a different birthday . If we continue this scheme for 23 peo-
ple, the probability of having a different birth date for 23 people is

64

Halit İnce • Birthday Attack To Hash Functions

The Birthday Paradox And Hash Functions

A cryptographic hash function H is a one-way function that reduces data of any length to a bit sequence of fixed
length. If the hash value of x data is y, this is expressed as H (x) = y and x are called a preimage of y. According to
the hash function used, the data can be reduced to different sizes such as 80 bits, 160 bits, 256 bits. Thus, the number
of summation values that can be taken in the aggregate is and respectively.

Before the cryptanalysis of any cryptographic system, the features that the system must provide must be determined.
Later, to what extent these features are provided can be worked out. Hash functions also provide three major security
features:	 	 	

1.	 Pre-image Resistance: From a given hash value, a preimage of this hash must not be found. That is, for a
given y hash value, there should be no such x to provide the H (x) = y equation. A hash function that pro-
vides this feature is called a preimage resistant hash function.

2.	 Second Pre-image Resistance: For a given x data, no other z data should be available to give the same sum-
mary value. So, such a data z cannot be found such that H (x) = H (z) for the data x. The hash functions that
provide this feature are said to be second preimage resistant.

3.	 Collision Resistance: There must be no data with the same hash. So, it should not be possible to calculate
any two x and z data such that H (x) = H (z). The hash functions that provide this feature are called collision
resistant.

We will focus on the most difficult feature to provide among these features is the collision resistance. Suppose we have
a hash function that produces a hash of 80 bits. At least how many data should we get such that two of them will have
the same hash? Let’s answer this question with the Pigeonhole Principle.	 	

The Pigeonhole Principle: If n + 1 pigeons want to settle in n pigeonholes, at least 2 pigeons have to share a common
pigeonhole. Assume that 11 pigeons want to get into 10 pigeonholes. Even if the first 10 pigeons all enter different
slots, the 11th pigeon will have to enter into another pigeon’s nest because there are no more nests. 	 	

Thus; if we take the hash of y data in an 80-bit hash function; since the hash space is X, we can find at least two
identical data with 100% probability. So do we really need that much data to break the resistance to collision? Let’s
ask our question like this: how many hashes should we get so that we can find the two data that have the same hash
at 50% probability? Actually, it’s a lot like the question we asked at the beginning of the article, isn’t it? Suppose that
the hash of each person is their birthday. Thus, the total number of hash values is 365 and according to theorem 1,
only gathering 23 people would be enough to find a collision, with a 50% chance. Now, let we express the Theorem
1 in more general terms.

Theorem 2: Let H be a cryptographic hash function that produces n bit hash values. Note that the size of our hash
value space is X. In that case, it is sufficient to obtain approximately the hash of data to find two different data with
the same hash value with 50% probability.	

Now, let’s think of an 80-bit hash function and try to understand our theorem through an example. Let H be a hash
function of 80 bits. Let’s try to test the collision resistance of this hash function. If we were unaware of the Birthday
Paradox, we would think that the number of data needed to find two data of the same hash to be . That means

 hash operations (process complexity) indicate that the data we need to store in memory (memory complexity)
is . Considering that the cost to build 1 yottabyte storage is $ 100 trillion, we
can think that 80-bit security is sufficient for a hash function. However, with the birthday paradox approach, 23 data
is enough to find a collision with 50% probability. This means that of storage
is enough to find a collision with 50% chance. If no collision is found in the first attempt, all data is deleted and the
experiment is repeated and this time finding a collision is very high.

65

Halit İnce • Birthday Attack To Hash Functions

As a result, the birthday paradox is understood by the fact that an n bit hash function provides an n/2 bit security,
not an n bit security against the collision resistance security criterion.

Among the methods of mathematical cryptanalysis applied to the functions of Hash, this is one of the most basic
methods. With the development of this and similar mathematical cryptanalysis methods, the output produced by
the hash functions used today is now 160 bits, 256 bits, and even 512 bits long. In the cryptology world, design and
cryptanalysis studies are continuing for the search for more secure hash functions.

Resources :

[1] D. Stinson. Cryptography Theory and Practice. CRC Press, 2005

[2] FIPS PUB 180-4, Secure Hash Standard (SHS). NIST, 2012.

[3] N. P. Smart. Cryptography Made Simple. Springer, 2016.

66

Bayram Gök • bayram@arkakapidergi.com

A brief look at the dawn of the
electronic age
Many geniuses, including Charles Babbage, had the
idea of inventing a machine that would make things
easier. Because making complex, precise calculations
by hand was a laborious and error-prone process.
Babbage too built his own machine, but it was with
iron and brass.

In fact, the first automata operating according to the
data entered by the user were 18th-century textile
machines. It was possible to manage the machine and
determine the pattern it would process according to
the small holes with certain dimensions that were or
were not opened onto the cartons. Even the automatic
pianos playing notes with punched cardboards were
made which can be considered the ancestors of today’s
Jukebox. The results of the first census in the United
States in 1880 could only be achieved by human labor
after 7 years. It was foreseen that the census in 1890
would result in 1900 if the population continued to
increase as it did back then. Hollerith who was a stat-
istician and mining engineer proposed using punch
cards in the counting of the census. Firstly, the sur-
vey that was filled by every citizen was transferred to
a punch card. The card was read into an electro-me-
chanical calculator. The machine performed automat-
ic calculations due to a hole meaning yes-no given as
an answer to each answer, found on a card. The sys-
tem was used in the 1890 census and the results were
obtained within 2.5 years. The future of the vending
machines was brilliant.

Perforated card and similar methods were used until

1	 https://en.wikipedia.org/wiki/Communication_Theory_of_Secrecy_Systems

after the Second World War. The Nobel laureate phys-
icist Richard Feynman, who works in the Los Alamos
National Laboratory of the United States, where the
first nuclear bomb was produced, describes his work
with calculators that read punch cards. Feynman, who
is also a talented mechanic, reports that machines can
process 4 times faster data with the method he devel-
oped.

ENIAC is the most famous of these calculators. Howev-
er, these useful vending machines had a common flaw.
These vending machines, which were the super calcula-
tors of the period (ENIAC could do about 100,000 fast
calculations per second), could not run different calcu-
lation procedures according to the intermediate results.
Therefore, the calculations were divided into pieces by
the intermediate results, the operator was reprogram-
ming the machine according to the intermediate result
when they were received from the automat. In 1945,
John Von Neumann developed a machine language in
which a processor could run different (if-then, for...)
subprocedures or code blocks according to the inter-
mediate results. Later, all human-friendly high-level
languages developed ​​(C, Pascal, Python) worked as a
compiler and produced the machine language code
Neumann suggested. The compilers still produce the
processor-specific machine code. In 1947, the first tran-
sistor was built at the Bell Laboratory, and from iron to
silicon new horizons appeared. In 1971, Intel launched
the first commercial processor 4004, which ran at 4 bits,
750 kHz. This processor contained only 2300 transis-
tors. In 1949, Claude Shannon published his new pio-
neering ideas with “ Theory of Confidential Communi-
cation Systems”. 1

Cryptology in the 20th Century:
the Electronic Age

67

Bayram Gök • Cryptology in the 20th Electronics Century

Visual 1: The first processor developed by Intel 4004

We can’t go further Claude Shannon’s writing without
talking about his ideas on communication and confi-
dential communication. In 2016, Google made a spe-
cial Doodle for the 100th anniversary of Claude Shan-
non’s birth.

Shannon worked with Alan Turing on cryptology.
Boolean Algebra (logic course for the design of digital
circuits must be taught at schools) showed that it can
be used in the design of digital circuits. Today, thanks
to Shannon, we can design and optimize the layout of
digital circuits with mathematical expressions. Shan-
non laid the foundation for the transition from an-
alog to digital technology. He used the term “bit” for
the first time. We are able to communicate neatly with
our mobile phones today, thanks to Shannon. Shannon
also demonstrated ways to calculate the reliability of
a confidential communication. He also proposed the
relationship between the minimum effort (amount of
processes,accountable security) required to break into
a ciphered system and the system’s security. The mini-
mum amount of processing required by the best algo-
rithm that can break into the encrypted system that we
target before the information gets obsolete (expires) re-
veals the reliability of the encrypted system. With this
policy, we can say that the fastest computer that can
break RSA encryption needs to work several centuries.

Another principle that Shannon puts forth is that the
reliability of the proposed encryption algorithm can be
proven. The method of encryption is difficult to base on
the well-accepted, well-known methods. For instance,
we can say that prime factoring a 1024 number used
as key in the RSA algorithm is practically impossible

to be broken with today’s technology. The difficulty of
proving the contrary of this proposition is a commonly
known fact.

General principles of modern
cryptology
The basic tools that an encryption system has to take
care of can be summarized as follows.

●	 Privacy / confidentiality

●	 It should provide the necessities that can make
the information private and allow only those
who are authorized to access the information.

●	 Authentication

●	 The sender and the buyer provide protocols to
verify that they are the persons they claim, in or-
der to be able to trust each other.

●	 Integrity

●	 It should be able to verify that information has
not undergone any changes as it exits from the
source, nor there have been any adjustments.

●	 Non-repudiation

●	 The data should be able to prevent the sender or
the data from denying the data transfer or data
reception.

What is the difference between
symmetric and asymmetric
encryption?
It is possible to examine encryption systems in two
main groups as asymmetric and symmetric encryption.

The main feature that separates the two methods is the
approach in the use of keys. In symmetric encryption
systems, the same key is both used to encrypt open text
and to decrypt text. For this reason, the key must be
in the place where both the encryption and decoding
processes are performed. The key used in encryption
should also be delivered to the persons / institutions that
will perform the decoding process through secure chan-
nels. If the same key is used by groups of users, the secu-
rity risks are very high. Communication security of the
entire group is compromised if a user within the group

68

Bayram Gök • Cryptology in the 20th Electronics Century

steals, loses or sells the key. By means of symmetric en-
cryption, private communication between the two users
- creating a separate key means that the created key has
to bear the risks of distribution. Symmetric algorithms
can be carried out by easy methods such as transposi-
tion, substitution and XOR. By using paper and pencil,
it is possible to apply symmetric encryption using tables
and utilizing various low cost encryption equipment.

For example: Vigenère Encryption, which we reviewed
earlier, is a symmetric encryption method that can be
applied using paper and pen. Symmetric encryption is
divided into two subgroups as block and array encryp-
tion algorithms. Block encryption algorithms in the
first group divide open text into pieces of certain length
and encrypt them. DEA and AES, which are still in use,
can also be given as an example. I gave an easy-to-im-
plement example of block encryption in the XOR Ci-
pher section. Block encryption is mostly used to meet
the speed requirement of heap data in the encryption
of large files. Sequence (stream) encryption method
is preferred in applications where partial loss of infor-
mation, such as audio and video transmission, is con-
fronted. Encrypted radio communication is also a good
example. With symmetric encryption, it is not possible
to meet the requirements mentioned in the section of
generally accepted principles of modern cryptology
other than the privacy confidentiality principle.

In his article “La Cryptographie Militaire”2 published
in 1883, Auguste Kerckhoffs suggested that “A stored
writing system, except for the key, should be safe even if
everything is known about the system.” This was accept-
ed as a principle and was referred to as the principle of
Kerckhoffs. Later, Claude Shannon expressed this prin-
ciple in a simpler and clearer form: “The enemy knows
the system”. According to this view, a hidden writing
system should be developed with a focus on securing
the key. Algorithm confidentiality was not important.
Asymmetric encryption was introduced.

In asymmetric encryption, the key that encodes the
open text and the key that decodes the encrypted text
are related to but different from each other. The key that
encrypts open text is called the Public Key, whereas the
key that decrypts the secret key is called the Private
Key. In summary, open text is encrypted using the pub-
lic key and encrypted text can be decrypted only with

2	 http://www.wikizeroo.net/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvS2VyY2tob2Zm-
cydzX3ByaW5jaXBsZQ

using the private key associated with this public key. In
asymmetric encryption, the key that does the encryp-
tion is public and is not hidden so that anyone can send
encrypted messages to the public key owner. Think of
it as your phone number. Since the private key key that
decodes the passphrase is never shared, only the person
or entity with that key can resolve the encrypted text.
You cannot even read this encrypted message again,
even if you encrypt the open text with the private key
owner’s public key. You can actually decode a text de-
coded using the private key with the public key linked
with the private key. Anyone can verify an encrypted
text with the private key by using the public key. This
useful feature is used in digital signature applications.

A major problem arises here. It must be verified that the
public key belongs to the person / organization that we
want to send encrypted text to. This is a big problem.

In 1976, Whitfield Diffie and Martin Hellman broad-
cast a public key sharing protocol over a public chan-
nel. The biggest obstacle to asymmetric encryption was
removed with this protocol. In 1978, Ron Rivest, Adi
Shamir and Leonard Adleman published the public key
/ private key-based asymmetric RSA encryption algo-
rithm. In the upcoming issues we will discuss this with
further details.

Asymmetric encryption uses algorithms based on the
difficulty of solving mathematical operations that make
it almost impossible to find the private key. For this pur-
pose, operations are performed with numbers that push
the boundaries of our minds. For example, let’s say we
will perform RSA encryption with a 1024-bit key. The
1024-bit key in the binary number system corresponds
to a 309-digit number in the decimal number base.

It can be difficult to imagine. Here is a 309 digit number
in the decimal form:

300
000
000
000
000
000
000
0000000000000123456789

69

Bayram Gök • Cryptology in the 20th Electronics Century

By means of an asymmetric system (eg RSA), 1024-bit
encryption means you’ll need very powerful proces-
sors. This is one of the major challenges in asymmetric
encryption, and fortunately, the electronic age has pro-
vided us with these processors.

To make it easier to explain, we can think of the asym-
metric encryption method and key sharing as the GSM
(mobile phone) network. An authority authorized by
the State undertakes the key operator and distribution
of the GSM operator. A person/institution who wants
to communicate with the GSM system asks the oper-
ator to assign a number for them/it (public key). You
would even need to print a business card and distribute
it to everyone.

The operator checks the identity of the applicant (au-
thentication - authentication), which matches a blank
line in the system with this ID and allocates it. The ap-
plicant will be provided with a SIM card (private key)
with special information with the associated number
and ID and to log in to the network. The operator au-
thenticates the SIM card as soon as you insert it into
a phone; records the calls you make (non-repudiation)
and directs the calls coming to your number (privacy -
confidentiality).

Symmetric
passwords

Asymmetric
passwords

Privacy/confidentiality X X
Integrity - -
Authentication/
identification - X

Non-repudiation - X
Performance/Cost Fast/Cheap Slow/

expensive
Example algorithms DEA, AES RSA, DSA

Table 1: Comparison of Symmetric and Asymmetric En-
cryption

XOR Encryption (XOR Cipher)
It is a block encryption method that can be easily ap-
plied on computers both with low cost hardware and
software. XOR is one of the most basic gate circuits
used in digital electronics.

Visual 2: XOR Gate

You can find more detailed information about the open
circuit of the XOR Gate. The XOR gate, as seen in the
open circuit in Visual 2, has a straightforward truth ta-
ble. When the truth table is examined, you can see that
the output is equal to 0 when A and B are equal to each
other, and 1 when not they’re not equal. In spite of its
simple structure, because of this unique feature, XOR
gate is used in digital electronic collection and compar-
ison process. Here we will use the XOR gate for a differ-
ent purpose in the encryption process.

INPUT OUTPUT(Q)

A B
A XOR B

A B
0 0 0
0 1 1
1 0 1
1 1 0

 Table 2 XOR gate truth table

According to the truth table, let’s say that the encryp-
tion key is applied to the XOR port A and B in clear
text. Therefore, our encryption function is simply Q=A

B . Let’s set our encryption key to 1. If we put the value
of the key in the formula instead of 1, we get Q=1 B .
Apply the text that is open to cases where input A is 1 in
the truth table. Open texts will be encrypted as; open
text 1 -> Q=1 1 = 0 Q = 1 , open text -> Q=1 0 = 1 .
For example, assuming that the open text is 0, perform
a 1 0 = 1 operation. Then, pass the resulting value

70

Bayram Gök • Cryptology in the 20th Electronics Century

(here 1) as encrypted text to the other party.

The resolution of the encrypted text is the same as in the identical encryption process. Let the encryption key be
applied to input A and the encrypted text be given to input B. Then our decryption function is “Q = A B”. Since the
encryption key has already been set to 1, it will be applied as 1 to input A of the XOR port. If we put 1, which is the
encryption key in the formula, instead of A, we get “Q = 1 B”. Encrypted text -here 1- is applied to input B. As a
result of the “1 1 = 0” operation (here 0), the open text is obtained.

In this example, it is only 1-bit XOR encryption, which can be broken easily with two brute force attacks. The small-
est value that means letter 1 in digital electronics is 1 byte consisting of 8 bits.

To further enhance the encryption power, we can perform 1 byte (8 bit) encryption with XOR ports. To be able to
do 1 byte encryption, 8 XOR gates will be needed. We will use an XOR gate for each bit of the keyword and the open
text. Then, tag 8 key inputs as A0, A1..A7, and 8 text inputs as B0, B1..B7 and 8 encrypted text outputs in Q0, Q1..
Q7 format, using standard addressing method. In our current example, let’s choose the letter K as the keyword. The
letter K’s ASCII equivalent is 75 and in decimal system and 01001011 in the binary system. Let’s apply the bit values ​​
of the keyword to the A inputs of 8 XOR ports. As the input for the key gate we named as A0, we’re going to give the
least significant bit of the letter K. Let A be an open text. We learn the value of the letter A from the ASCII table and
convert it to the binary number system. We enter the bit values ​​of the letter A by the same way we applied the same
key input to the B inputs of 8 XOR ports. As a result of the transaction, the encrypted text obtained from Q outputs
of 8 XOR ports is 00001110. You can review this process in the table.

KEY A7..0 0 1 0 0 1 0 1 1
OPEN TEXT B7..0 0 1 0 0 0 0 0 1
Q=A B Q7..0 0 0 0 0 1 1 1 0

If a one-letter (8 bit, 1 byte) encryption power does not make you feel secure, let’s increase the key to 64-bit, ie 8 bytes.

I created a random 64-bit (8-byte), hexadecimal (Hex) notation with 2A743CFA46B4F1AD to use as a keyword. This
time we’ll need a lot more XOR gates. Full 64 pieces. We will encrypt the name of a figure from Turkish Mytholo-
gy as “SU İYESİ“. The 8-bit standard ASCII table does not contain the İ letter. The Turkish letters are listed on the
CP857 code page of the ASCII table. The equivalent of the big I in this table is 152 (hex 98). I’ve written to the table
in hexadecimal (Hex) number system to shorten data instead of binary number system. You can use the built-in cal-
culator of the operating system to program mode, or use the https://www.binaryhexconverter.com website to convert
between number systems. It is not practical to try to do this by using the manual XOR gate truth table. You can take
advantage of the built-in calculator of the operating system or through the www.xor.pw site.

KEY A63..0 2A 74 3C FA 46 B4 F1 AD
OPEN TEXT B63..0 53 55 20 98 59 45 53 98
A B Q63..0 79 21 1C 62 1F F1 A2 35

A short function code written in Visual Basic is given for our readers who want to try XOR encryption in their own
application. It is easy to convert VB code to other programming languages. Code descriptions are given in the lines.

Public Function XORCipher(Key As String, OpenText As String) As String

 Dim Pointer As Long

 Dim EncryptedText As String

 Dim intXOr1 As Integer, intXOr2 As Integer

71

Bayram Gök • Cryptology in the 20th Electronics Century

 ‘ This function processes the same length alphanumeric Key and Open Text data..
 ‘ Returns the encrypted text of the same length..
 ‘ Key and Open Text length must be the same.

 If Len(Key) <> Len(Text) Then

 XORCipher = “”

 Exit Function

 End If

 For counter = 1 To Len(OpenText)

 ‘ Converting key and explicit text data to number type

 intXOr1 = Asc(Mid$(OpenText, pointer, 1))

 intXOr2 = Asc(Mid$(Key, pointer, 1))

 ‘ XOR is being processed and added to an encrypted text string

 EncryptedText = EncryptedText + Chr(intXOr1 Xor intXOr2)
 Next Pointer
 XORCipher = EncryptedText

End Function

‘ Usage:

‘ Add the tools listed on the Visual Basic Form
‘ cmdEncrpt (Button)
‘ txtKey (Tex Box)
‘ txtOpenText (Tex Box)

‘ txtXorCipher (Tex Box)

Private Sub cmdEncrpt_Click()

 txtXorCipher.Text = XORCipher(txtKey.Text, txtOpenText.Text)

XOR block encryption application is an extremely easy encryption system. However, continuous use of the same key
can easily be broken by linguistic frequency analysis, as in the Vigenere Code. You can also try the Vernam pass-
word based on the XOR process proven by Claude Shannon, which is impossible to break. The Vernam password is
based on the production of random keys (One Time Pairing, OTP). The keys produced are distributed over a secure
channel in advance and used only once. It was used by organizations capable of implementing strict rules such as
the military. It is said that these disposable keys are pressed on special papers that are converted into ash by a spark.

72

Arka Kapı

Image is nothing, yet privacy is everything!
Arka Kapi readers are pretty familiar with cryptocurrencies and blockchain architectures built upon them. So we
won’t make an entry for cryptocurrencies again, and we’ll focus on the privacy and security promised by Monero.

Let’s begin with a question.

Why do people prefer cryptocurrencies; for financial freedom or for financial privacy?

Apparently for more financial privacy. Not to mention some people who do not understand the spirit of crypto-
currencies and the greedy people who turned it into an evil weapon. Because their purpose is not the tremendous
possibility of cryptology, but to make more profit for them from this new area.

Ah, yes, privacy. But is it really?

Here you go, an IBAN number: TR63 0001 2009 1410 0009 2165 66

What are the information you obtain when you learn someone’s IBAN number?

The bank’s name, address and account number, nothing more.

Cryptocurrency Monero
(XMR) for Those Who

Want True Privacy

73

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

Okay, but what if you learn someone’s Bitcoin (BTC) address; what other personal information you get by doing so?

By looking at the person’s BTC address, it is possible to obtain the total amount of BTC he/she sent or received,
account balance, how many transactions they have made until today and amount, date, hour, sender and receiver
information about these transactions.

Let’s think of such an occasion that you’re on a vacation. When you spend some BTC, the persons you transact with
i.e., those who know your account number are going to know your balance. This may pose a threat to your security.

If that is not serious enough for you, you can take a look at the 2017 news from Antalya, talking about a murder over
Bitcoin1.

1	 https://www.ntv.com.tr/turkiye/antalyada-bitcoin-cinayeti,mp2noo9eVU6SOFXsIiU3yghttps://www.ntv.com.tr/tur-
kiye/antalyada-bitcoin-cinayeti,mp2noo9eVU6SOFXsIiU3yg

74

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

Account activities being transparent might be beneficial for the civil society or candidate campaigns. However, ap-
parently this would be a disaster for those who use cryptocurrencies for financial privacy and security.

In addition to the vital risk exemplified above, there are other scenarios that will threaten your entire financial assets.
For this, we need to take a look at two concepts: fungibility and tainting.

Fungibility ve Tainting
Fungibility, a financial term, is used to describe the fact that two financially equivalent material values can be used
interchangeably. For instance, the 1 Turkish Lira (shortened TL) I have and the one you do have the same purchas-
ing power on the market; not having my name nor yours written on them. So, there is no way to distinguish 1 TL
obtained illegally and 1 TL gained legally on the market.

The transparency that BTC offers affects mostly its fungibility, and this case is called Tainting. There are even orga-
nizations that have made it a profession.

A BTC obtained illegally can be detected instantly from the transaction logs. So, why would such a detail concern
users like us who are as straight as a die?

Let’s say that we added BTC as a payment method to a work we put great effort into. But what if someone, who
bought their BTCs on an unlawful path, for example by spreading ransomware, shopped from us one day?

Since this transaction will be open in our financial logs, it is as easy as a pie for us to be included in a blacklist and get
stamped with tainting in the future. Whatever your account balance, you will not be able to spend the BTCs in your
account. Therefore, BTC, which claims to be a real tool of change, will lose its feature of fungibility, which is the most
important feature of other means of exchange.

Monero (XMR) for those whose winds have been taken out of their sails

 Monero (XMR)
Monero is a word derived from the Mono, which means money in the Esperanto language, which is designed as the
common language of communication, and the suffix -ero meaning the smallest something can be. Monero has cho-
sen XMR letters as its symbol. You can follow Monero on the cryptocurrency markets by using this abbreviation.

Monero can be related historically to ByteCoin. ByteCoin, a crypto-money developed on the CryptoNote backbone
in 2012, had an infrastructure that uses the public key of many recipients to sign the transaction, in particular by
using Ring-Signature, a successful technique to keep the sender secret. Indeed, even today, the crypto coins that
promise confidentiality use this protocol.

Everything was going fine with ByteCoin up until 80% of the coins were mined, resulting in a fork and the birth of
Monero. At first, it was called BitMonero but then continued to be called as Monero.

75

What are the advantages of Monero?
Monero is a cryptocurrency that promises true priva-
cy, keeping both the sender and receiver secret in the
blockchain. In this article, the technical details will not
be mentioned very much, but explanations on how to en-
sure confidentiality will be briefly covered. At the end of
the article, reference source details will satisfy the readers
who are curious about the details.

How does Monero achieve this?
First of all, in order to keep the sender private, it uses
a system called Ring-Signature. Monero prevents the
sender from pointing to a specific address by signing a
transaction with the public key of the users in the system.
Yet there exist another dangerous detail in the blockchain
logs: the amount of the transaction. Think that you made
a transaction of 212.52 XMR. There are not much who
does such a transaction in a time T, with this amount.
Here, Monero uses another method called Ring-CT to
hide the amount sent. For example, when you want to
transfer 20 XMR, it will be sent to the receiver as 8 XMR, 10 XMR and 2 XMR so the real transaction amount will
be kept secret.

Three Keys (Public Key, Private View Key, Private Spend Key)
In the 90s, it was a trend to promise three keys to the voters: car, house and job. Monero too does promise you three
keys, yet this time it is not an illusion like the politicians use to trick you, but to trick those who are after your finan-
cial information.

These keys are: Public Key, Private View Key, Private Spend Key.

When creating a Monero wallet, a seed has to be used to create the keys from. For example the following seed had
been used for the wallet we are going to use for this article:

“cuddled moat lagoon lamb rest leech upcoming dozen sword keyboard smuggled liar rover efficient tribal dyslexic
token injury domestic snout problems cool tiger upwards problems”

You can think of it as three branches sprouting from a seed. Someone who has your seed would have all of your keys
needed to send and receive Monero. Therefore, we highly recommend you keep this seed private.

What are these three keys created from seed?
Public Key: The address you’d give to those who want to send you Monero. There is no problem with sharing this
address. If this address is known, any information on your financial confidentiality cannot be reached as in BTC.
The details will be explained in the Stealth Address title later. In 2018, there had been an update in Monero where
you can create infinite number of sub addresses under public addresses. Readers who took a look at the world of
ransomware shall recall: this way virus brokers who create BTC wallets for each client the virus has spread onto can
check if a transaction did or did not come. Before the 2018 update, Monero users used various methods to distin-
guish the senders from one another. One of them was the Transaction ID. Since the biggest thing Monero promises
is confidentiality/privacy, one should not question the fact that senders’ identities are secret. Since Monero’s greatest

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

The US Department
of Homeland Security

turned out to be
looking for ways

to monitor the
transactions made

of privacy-oriented
cryptocurrencies,

such as Monero and
ZCash. Source:

Source: @uzmancoin

76

promise is privacy, it is not surprising that the identity of the senders is secret. In the dilemma of security and com-
fort, compromising security and a little comfort, some Monero users have solved this problem by using methods
like Transaction ID. But the unlimited subaddressing that comes with the 2018 update offered a real solution against
these winding roads. Now, it is possible to distinguish a transaction from other transactions using the subaddresses.

Stealth Address: In order to hide the recipient’s address when creating transactions in the Monero blockchain, a
value called Stealth Address is used that cannot be associated with the user’s public address. Therefore, in the exam-
ple of BTC, the danger of someone knowing your address accessing all your financial confidentiality is eliminated.

Private-View Key: We have stated that in the Monero blockchain, the values sent to you are hidden with Stealth
Address. But how will your wallet detect what values are sent here? Of course, with the Private-View Key! Thanks to
this key, the transactions that belong to your wallet in the blockchain will be readable. This is kind of a read-only key.
We recommend that you do not share this key for your financial confidentiality.

Private-Spend Key: This is the key that makes it possible for your wallet to be operated in the Monero blockchain. It
is never ever to be shared with anyone.

After some technical information about Monero, let’s set up a Monero client and create a wallet.

You can download the Monero Client which has both GUI and CLI features through https://www.getmonero.org/
downloads/ . When this article was written, the current version was monero-gui-v0.13.0.4.

You will see ready-to-use apps after downloading and extracting the archive file.

For the Windows interface and to be able to do wallet management via command line; also to access the mone-
ro-wallet-rpc wallet and RPC service; these are the executable files you’d need.

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

77

We are going to move on with the Windows interface: monero-wallet-gui.exe

A screen asking us the preferred language will pop up:

The second screen is the one that asks us if we are going to continue using an existing wallet or a new one. Here, you
can also import a wallet file or use a hardware wallet:

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

78

Restore wallet from keys or mnemonic seed options can be used to access an existing wallet, using the Private Key or
seed as we have mentioned above.

With the Create New Wallet option, we create a new wallet.

After the Create a New Wallet option, we see the seed created for our wallet:

At this screen, you can name the wallet and specify the path that the wallet will be created into.

At the next screen, it is expected for us to type in a password and in the second box, to verify the password we just
typed.Sıradaki ekranda ise cüzdana erişim için bir parola belirlememiz ve ikinci kutuda da bu parolayı doğrulama-
mız beklenmekte.

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

79

This password will protect the wallet from only those who have access to your PC.There is no way to remind you
of your password in case you forget it. You can access your wallet once again by using your private key or seed. It is
important to note that this password is valid only for the PC you set it up onto. An attacker who got your Private Key
or seed can use your wallet without having the need for this password.

The screen we face after setting the password includes a critical setting. To be able to process the client we have in-
stalled on our PC, we first have to access the Monero blockchain and take the balance of our wallet and perform
transactions. So, how will it do this? For this, we have two options: one of them is using a local node. This can be done
by downloading a copy of the whole Monero blockchain. The other option is connecting to a remote node each time
and operating through this node. The safe way is to start a local node and not choosing to connect to a remote node
each time.

If you choose to connect to a remote node, this type of wallet is called Light Wallet in Monero terminology. In the
same manner, there are web wallets but we would not recommend you to use them.

We chose local as the node setting. That is to say, a process running in the background will download a copy of
Monero blockchain onto the computer. This process will also run on a port.

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

80

You can display the wallet by clicking the Use Monero button - of course after downloading a copy of a process block-
chain called daemon.

For this article we have chosen to connect to a remote node.

When everything is all set up, you will see the screen below:

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

81

Above, you can see the Send menu where you can send Monero to another account. On the address field the address
information (the public key) of the receiver should be written and Amount is the amount you want to send. Option-
al Payment ID field is the option which includes the value in which the receiver can distinguish you from the other
senders. Description can be thought of as a reminder note that will be saved to your wallet.

The Receive menu is another menu which contains all functions you might need to receive a payment. Here in the
Primary Address field, you can see your primary public address. As stated at the beginning of the article, it is possible
to create N sub addresses connected to this address. You can name those addresses.

It is also possible to create a QR code related toı the address and requested amount.

Monero is the mostly preferred cryptocurrency for those who need privacy. Although there exist such cryptocur-
rencies as ZCash who care for privacy, the most important feature of Monero is that it offers privacy not optionally
but rather as a default behaviour. That is to say; for Monero users, privacy is not a preference, it is a necessity for the
functioning of the system.

A P2P protocol named Kovri has been developed by those who want to prevent your identitity from being exposed
as a user connected to the Monero network. Monero volunteers work everyday to make the system better. You too

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

82

can support as a developer, translator or by telling the opportunities of Monero to the ones near you and help it get
used more.

If you would like to learn more technical details about Moner, we highly recommend you to read Mastering Monero
book written by an Italian security researcher with the nickname SerHack. The book aims to explain even the most
difficult issues of cryptology with creative examples and to clarify the wonderful details of the functioning of the
system. Especially the taxi stop example the author gives to explain Monero blockchain is amazing.

You can visit www.masteringmonero.com to get the book.

Monero is not just a cryptocurrency: it is a movement that truly values privacy and freedom. The most overwhelm-
ing example is the update about mining that is written in the book.

Cryptocurrencies have been designed on the assumption that the end users can mine by themselves. It is possible to
mine with a web browser, even with a mobile phone processor. Indeed, it is not in vain that whenever CryptoJacking
(i.e., crypto money to be swiped in the browser) is mentioned, Monero is the only cryptocurrency that comes to mind.

The fact that the ASIC miners are advantageous in Monero mining, and that these processors are above the buying
power of ordinary users has prompted the Monero community to react to this unfair competition. As a matter of fact,
they have implemented the update that will turn the comparative advantage of ASICs into a disadvantage in mining
operations. In the same way, every 6 months they make updates to the ASIC production for Monero mining with
minor changes in the mining algorithm.

Here is the real spirit of freedom the hacker culture needs, right?

Arka Kapı • Cryptocurrency Monero For Those Who Want True Privacy

CALL
FOR

PAPERS

Do you want your article to be published
on Arka Kapi Magazine? Submit now to be

featured in the next issue! Your article can be
of any title as long as it fits to the cyber security

context. Make sure it’s an original article that
isn’t previously published elsewhere.

Email your articles to:
editor@arkakapimag.com

FEEDBACK
Got any feedback about Arka Kapi

Magazine? Found a bug? Want us to add or
remove something? Let us know!

follow us
Don’t miss the news!

arkakapimag

