
Wireless Network
Simulation

A Guide using Ad Hoc Networks
and the ns-3 Simulator
—
Henry Zárate Ceballos
Jorge Ernesto Parra Amaris
Hernan Jiménez Jiménez
Diego Alexis Romero Rincón
Oscar Agudelo Rojas
Jorge Eduardo Ortiz Triviño

Wireless Network
Simulation

A Guide using Ad Hoc Networks
and the ns-3 Simulator

Henry Zárate Ceballos
Jorge Ernesto Parra Amaris
Hernan Jiménez Jiménez
Diego Alexis Romero Rincón
Oscar Agudelo Rojas
Jorge Eduardo Ortiz Triviño

Wireless Network Simulation: A Guide using Ad Hoc Networks and the ns-3
Simulator

ISBN-13 (pbk): 978-1-4842-6848-3		 ISBN-13 (electronic): 978-1-4842-6849-0
https://doi.org/10.1007/978-1-4842-6849-0

Copyright © 2021 by Henry Zárate Ceballos, Jorge Ernesto Parra Amaris,
Hernan Jiménez Jiménez, Diego Alexis Romero Rincón, Oscar Agudelo Rojas,
Jorge Eduardo Ortiz Triviño

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for an ? nm mj y errors or omissions that may be made. The publisher makes no
warranty, express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Natalie Pao
Development Editor: James Markham
Coordinating Editor: Jessica Vakili

Distributed to the book trade worldwide by Springer Science+Business Media New York,1 NY
Plazar, New York, NY 10014. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail booktranslations@springernature.com; for
reprint, paperback, or audio rights, please e-mail bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/978-1-4842-6848-3.
For more detailed information, please visit www.apress.com/source-code.

Printed on acid-free paper

Henry Zárate Ceballos
Bogotá, Colombia

Jorge Ernesto Parra Amaris
Montreal, QC, Canada

Hernan Jiménez Jiménez
Bogotá, Colombia

Diego Alexis Romero Rincón
Bogotá, Colombia

Oscar Agudelo Rojas
Mosquera, Colombia

Jorge Eduardo Ortiz Triviño
Bogotá, BOGOTA, Colombia

https://doi.org/10.1007/978-1-4842-6849-0

iii

Table of Contents

Chapter 1: ��Introduction to Simulation���1

Framework���1

Simulations, Models, and Their Importance in Research���������������������������������������2

Types of Simulation Techniques���4

Formal Systems Concepts���7

Simulation and Emulation��8

Network Simulators���12

ns-3 Simulator General Features���12

Formal Concepts and ns-3 Specification���17

Summary���23

Complementary Readings��23

Chapter 2: ��Wireless and Ad Hoc Networks��25

Connectivity and Mobility Evolution���26

History of Wireless Communication Technologies���27

Computing Architecture with Wireless Networks���28

Mobile Clouds and Ad Hoc Networks���35

Features and Challenges of MANETs���37

Wireless Mesh Networks and Wireless Sensor Networks������������������������������������37

About the Authors���ix

About the Technical Reviewer��xi

Preface���xiii

iv

Cooperation in MANETs��38

Routing Protocols���39

Distance Vector and Link-State Routing���39

Social Clouds���40

MANET Clusters���41

Summary���42

Complementary Readings��42

Chapter 3: ��Design of Simulation Experiments�������������������������������������45

Introduction��45

Factorial Designs���53

2 �k Factorial Design���53

2� k−p Fractional Factorial Designs��56

Example���57

Summary���62

Complementary Readings��63

Chapter 4: ��Network Simulating Using ns-3���65

ns-3 at a Glance���65

Relations Between Abstractions on ns-3���67

Code Style��69

My First Network��71

Running and Building Other Scripts���78

Emulation on ns-3��80

Animating the Simulation���83

Scheduler���86

Logging and Tracing���87

Trace Helpers���89

Table of Contents

v

Using Command-Line Arguments��90

Summary���94

Exercises��94

Chapter 5: ��Analysis of Results���97

Output Data Analysis for a Single System��99

Transient and Steady-State Behavior of a Stochastic Process���������������������100

The Random Nature of the Simulation Output���101

Types of Simulation According to the Output Analysis���������������������������������������102

Statistical Analysis for Terminating (or Transient) Simulations���������������������103

Statistical Analysis for Steady-State Parameters���104

The Replication-Deletion Approach��106

Simulation Procedure���107

Output Data Analysis��107

Summary���110

Complementary Readings��110

Chapter 6: ��MANET Simulation on ns-3��111

A Simple Ad Hoc Network��  111

Wi-Fi Model��  113

The PHY Layer Model��  115

MAC Low Model��  116

MAC High Model���  116

Node Abstractions��  117

Socket Abstraction���  121

Plot���  127

Output��  128

Table of Contents

vi

Agent-Based Simulation��  129

Description of the Experiment��  132

Abstractions���  133

Tracing��  139

Run Simulation���  140

Analysis of Results���  141

Run and Analyze���  149

Results��  151

Summary���  158

Complementary Readings��  158

Chapter 7: ��MANETs and PLC on ns-3���161

Power Line Communication���161

Fundamental Characteristics of the PLC Channel��162

Deterministic Models of PLC Channel��164

PLC Software for ns-3 Simulation��166

MANET and PLC Simulation���168

Wireless-PLC Mixed Node��175

PLC Simulation Examples���178

Mixed Wireless-PLC Simulation on ns-3��183

Summary���185

Complementary Readings��186

��Appendix A: Basic Statistics��187

��Random Variables and Random Vectors��187

Random Variables���188

Probability Density Functions���188

Random Vector���189

Independence���189

Table of Contents

vii

Expected Value���190

Variance��191

Covariance��191

Correlation Coefficient��191

Binomial Random Variable��192

Normal Random Variable��193

Geometric Random Variable���194

Uniform Random Variable���194

��Appendix B: ns-3 Installation��197

��Installing ns-3��197

��Installing Additional Features���200

��Appendix C: Mininet��201

��Appendix D: ns3-gym: OpenAI Gym Integration��������������������������������205

��Installation���205

��Appendix E: Experiments���207

��Testing Environment and Assumptions��208

��Appendix F: PLC Code Experiment���211

��Acronyms��229

��Bibliography��235

Index��251

Table of Contents

ix

About the Authors

Henry Zárate Ceballos received his PhD in engineering computing and

systems and his master’s degree in telecommunications from the National

University of Colombia. Henry is currently a researcher with the TLÖN

Group. Henry has worked extensively with the ns-2 and ns-3 simulators

and wireless distributed operating systems.

Jorge Ernesto Parra Amaris received his master’s degree in

telecommunication from the National University of Colombia, and a

master’s degree in electronics engineering from the Colombian School

of Engineering Julio Garavito. Jorge’s master’s thesis proposed a unique

algorithm that was validated through simulation using ns-3.

Hernán Jiménez Jiménez received his postgraduate master’s in

telecommunications from the National University of Colombia. Hernán is

currently a researcher at TLÖN Group.

Diego Alexis Romero Rincón received his master’s in electronics from

the National University of Colombia and is currently a researcher with

the TLÖN Group. Diego focused his master’s thesis on the ns-3 simulator.

Diego is currently a lecturer at the National University of Colombia.

Oscar Agudelo Rojas is a systems engineer and lecturer at the National

University of Colombia, where he also received his master’s degree in

telecommunications. His research work includes networks (wired and

wireless), network coding, simulation (ns-2 and ns-3), and parallel and

distributed systems.

x

Jorge Eduardo Ortiz Triviño received his PhD in engineering computing

systems and master’s degrees in telecommunications, statistics, and

philosophy from the National University of Colombia. Jorge is currently

is Associate Professor in the Department of Systems and Industrial

Engineering and Director of the TLÖN research group of the Universidad

Nacional de Colombia, while also working as a network specialist.

About the Authors

xi

About the Technical Reviewer

John Edwar Gonzalez Ortiz Electronic Engineer John Edwar Gonzalez has

more than five years of experience in the telecommunications industry.

He has a master’s degree in telecommunications engineering from the

Universidad Nacional of Colombia. He has focused his projects on the

area of ad hoc networks and in his work, it is possible to see the focus on

the nodes that make up the network and their interaction when a social

inspired behavior is applied to the network. John Edwar has belonged

to the TLÖN research group for more than 5 years and his research can

be seen in various journals where the behavior of the nodes is analyzed.

Topics such as decision making in nodes, resource negotiation, game

theory, altruism and selfishness have been addressed in his articles.

xiii

Preface

Today connectivity is the principal need in our technologically linked

society. In this information society, users from children to elders share

their information, show their feelings, and publish their lives on the

information networks. Distributed and highly complex systems established

between machines support these networks, which interact in fractions of

seconds over long distances, delivering all kind of services. Both machines

and services are transforming our environment, with engineers’ new ideas

about computing devices, data networks, and information systems. This

high demand for services is the result of the evolution of several elements:

first, the growth of the Internet due to the changing nature of user

preferences, the increasing number of connections, and the development

and diffusion of social networks. Another factor is the emergence of

mobility features that add dynamic and random behavior to linked

devices, systems, and users.

Network services are support services at cities, government

institutions, university campuses, and companies, to name a few. These

networks provide service to the Internet and intranets, allowing shared

information, services, and stablishing users communications. Access to

these services is through different means such as optical fiber, copper,

and air. Commonly, the interactions between users happen over several

networks and mediums. The change of mediums is one of the critical

processes for the throughput and quality of network services and the

management of the systems supported by them across all communications

channels and network components. Network components are usually

diverse, and with only a few of them, it is possible to build relatively

complex systems. It is difficult to predict their performance or characterize

their operation when there are too many nodes, a heterogeneity of

xiv

components, multiple layers of specialized functions, different services,

and different mediums.

With all these factors, how do you know what the network behavior

will be? There are two ways: first you can emulate it or determine the

key points of the traffic behavior virtually through modeling or by

reproducing the logical processes involved. The reliable option to emulate

is intended to reproduce the network, routers, switches, nodes, and users;

however, it is quite extensive and expensive. Another solution is the use

of simulators, which are computational tools that allow the generation of

a similar scenario to a real one. The use of simulators can help to explore

interactions, component performance, and theoretical limits. Simulations

are useful tools for empirical research because they permit us to generate

data from a real network that can be high priced or difficult or impossible

to control when designing a new network model that needs novel

hypotheses for experimentation.

Setting up a virtual environment is useful to re-create a massive

network with thousands of nodes. For instance, to evaluate mobile data

traffic in IoT, Cisco [1] estimates that the monthly global mobile data

traffic will be 49 exabytes by 2021, and the annual traffic will exceed half

a zettabyte. The IoT environment has produced an increase in mobile

devices, which will represent 20 percent of the total IP traffic. The platform

business creates real Big Data scenarios and connects consumers with

producers who share information, goods, and services through the

Internet.

Simulation is a type of research methodology to compare some

models, identify hypotheses, and understand the behavior and

interactions between services, users, devices, and architectures. Since

a network simulator can be event-based, each event represents an

abstraction of a network and a computer system. For instance, nodes and

physical networks can be represented in classes such as node and channel

classes. The tools and components used, and the explanations, revolve

around the ns-3 simulator.

Preface

xv

The ns-3 simulator allows the simulation and emulation of networks.

It is an open and free simulator that emulates networks using the network

interface card (NIC) of the computer that tests and transports the traffic

generated by the simulation script and saves the simulation data in

different traces for post-simulation data analysis. In this sense, it is

important to discuss many concepts related to simulators, the abstractions

used for the ns-3 simulator, the application of the stack protocols (TCP,

UDP, OLSR, and so on), and the computational model created to imitate

the NICs, routers, and other network devices.

With simulation, it is easier to get quantitative results, identify

relationships, establish system interactions, determine component

performance, and reach theoretical limits. One of the best ways to improve

and check the simulation results is to share their results and scripts. In

a huge system like the Internet, due to scale, heterogeneity, and level of

interaction, the exclusive analytical option is to simulate. It is useful when

it is necessary to perform statistical models for data interpretation, with

one simulation or with a set of simulations. Each simulation has stages

and requires a working methodology. The main objective of this book is

to show the mechanism and techniques to design and create simulation

models, use the simulator and analyze the results, and find the factors that

affect and describe the simulation or the model created.

The book has three parts. The first part covers simulation basics

including general information about network simulation and wireless and

ad hoc networks and some techniques for experiment design. The second

part covers Network Simulator 3 (ns-3) and gives some examples and

techniques for analyzing results. The third part covers wireless network

simulators on ns-3 that conclude with examples and models to simulate

wireless, wired, and mixed networks with ns-3.

Specifically, the first part has three chapters that explain network

simulation, wireless networks, ad hoc networks, and experiment design.

Chapter 1 explains simulation features, objectives, and the techniques and

steps to do simulations.

Preface

xvi

Chapter 2 gives some insights about wireless and wired networks.

Taking elements from the real world and applying them to the simulation

world, we explain the evolution and principles of operation on

architecrures dynamic and stochastic, such as the Internet of Things (IoT),

fog computing, edge computing, and the mobile cloud. These are the new

trends in Internet service delivery. In addition, the chapter explains the

concept of cyberspace and of interactions on the Internet.

Chapter 3 shows some techniques for experiment design, the key

issues for the script design, and the event selection over the network.

After the simulation, the most important activity to be performed is the

analysis of results, where events are reported, and of the network behavior,

including problems and improvements that a network, a model, or a new

protocol could have.

The second part of this book covers ns-3. Chapter 4 introduces the ns-3

simulator, including the main abstractions, code style, tracing, and logging.

Chapter 5 shows the techniques to analyze the results post-simulations,

take information from the generated traces, and determine the reliability

of the simulation and the relevance of the simulation model.

Finally, in the third part, Chapters 6 and 7 include examples of

mobile ad hoc networks (MANETS) with all the necessary steps for the

simulations, to give you more clarity about the use of ns-3 and the process

of analyzing the results. Chapter 6 show how to build an ad hoc network

and analyze it with artificial agents using the ns-3gym and Open AI Gym

tools. Chapter 6 introduces an example that links the ad hoc networks

with power line communications (PLC). It is an approximation for the IoT

environment. At the end, we present the conclusions and prospects of the

network simulations and the future needs in this research field.

For the authors, this book is not just a dream come true but an effort of

a team of friends, researchers, and fellow students. With this book, we want

to inspire others to write, learn, and apply their knowledge to share it with

others.

Preface

1© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_1

CHAPTER 1

Introduction to
Simulation

The sheer volume of answers can often stif le insight...The purpose
of computing is insight, not numbers.

—[2]

�Framework
Computers have become one of the main resources for research. They are

essential to analyze models through simulations, giving more options to

verify the interactions between the components of a model, and essential

to analyze large amounts of data.

Simulation is used for theoretical and empirical research since it

provides the means to explore all the capacities and limits of theoretical

models and because it helps to create synthetic conditions that are

difficult to re-create in a real experiment. In some research specialties,

this field is considered a third methodology [3]. For instance, any tangible

laboratory sample can be re-created with a model in the computing

world; the physical device would be the computer program or software,

and the measurements would be the computer tasks [4]. A simulation is

an application or a computer process that attempts to imitate a physical

https://doi.org/10.1007/978-1-4842-6849-0_1#DOI

2

process by producing a similar response that allows someone to make

predictions about the expected behavior of a system. As a result, it can

be used as an experimental setup or as a support to make operational

decisions. It is also employed to study difficult and complex systems before

spending resources on a real experiment.

�Simulations, Models, and Their Importance
in Research
Before any simulation, it is essential to have a model. It is a conceptual

representation of a real system whose level of abstraction depends on the

research question and previous knowledge from the system. A simulation

cannot be executed by itself, since it requires a tool (programming

framework) and a platform (computer, server, etc.) to execute and produce

a response. The computational cost of a simulation depends on the

complexity of the real system and the level of abstraction used to model it.

Even though some models can be validated using mathematical

formalisms, some systems are complex, involving many variables and

input parameters that make mathematical validation challenging. For

these kinds of models, simulation provides a form of understanding at

different levels; however, the knowledge acquired from these models is

useful in a limited way, since the behavior is seen in conditions that are

difficult to test or that are generally not seen in real systems.

If the theory is accurate, simulation is a great tool to study theoretical

models. It also allows discovering how the responses would be in different

scenarios. Simulation cannot validate a model by itself, only instantiate

it. Therefore, to validate it, the same test scenario must be implemented

under real-world conditions to compare its results with the simulation

output to gain enough accuracy of the model and validate it.

Chapter 1 Introduction to Simulation

3

Theoretical models represent the behavior of the system based on
its knowledge and not the behavior of a real system. These models need
validation before being considered empirical. An ideal way to validate
them is through simulation. When simulating a theoretical model under
a determined set of conditions, the result works as a hypothesis for the
behavior of the real system if it is tested under the same circumstances.
If the experiment data is statistically close to the simulation output, it is
feasible to infer that the model is accurate. If the model does not seem
satisfactory, it does not imply that there are errors in it. There could be, but
there could also be errors in instantiating the model, which could serve as
a guideline for telling what not to do for a future experiment. Simulation
is a powerful tool. This whole process is a method to validate simulation
models through experimentation. However, it is not a substitute for
real experimentation, since the simulation results are only as good as
the models used. Therefore, it is mandatory to validate the model and
question their results and applicability if this has not been done.

The quality of the simulation results is directly associated with
the quality of the model. This implies that it is necessary to validate a
model before deploying it. Model validation is a process in which the
experiment is evaluated if it is an accurate representation from a real
system. Empirical studies are used to ensure their accuracy. However,
according to the research needs, not every model needs to be validated
with the same level of accuracy. In general, to validate a model, it is
possible to use two methodologies: observational methods and the
experimentation, exposed earlier.

The observational methods are usually aimed at answering the
research question, but in the case of simulation models, they are used to
ask questions to the model output data to determine its validity. Thanks to
machine-learning techniques and statistical methods, it is possible to carry
out observation methods. On the one hand, machine-learning techniques
employ algorithms that learn distributions and correlations to produce a
model from the output data. On the other hand, to ask questions and get
answers from the output data, statistical methods are used if the data has a

behavior that can match certain distributions.

Chapter 1 Introduction to Simulation

4

�Types of Simulation Techniques
There are two types of systems: discrete and continuous. In a discrete

system, the state variables change instantly at different points in time.

On the other hand, in a continuous system, the state variable change

continuously over time.

In computer networks, many systems function as discrete systems

(LAN, cellular infrastructure, wireless networks); in them, specific events

or interactions change the state and the behavior of the entire system.

In the simulation program, these events are inserted and read as states,

variables, and routines sequentially; this approach is known as next-event

time advance. All these attributes and events are enabled in the debugging

and execution processes along with the input scripts. The general

orientation of the processing is carried out through modeling, which is

usually formulated in a general-purpose language.

Table 1-1 describes the most important types of simulations that are of

particular importance to engineers [5].

Chapter 1 Introduction to Simulation

5

A particular case of discrete event simulation could have the following

components:

•	 Event queue: This contains all the events waiting to

happen. The implementation of the event list and the

functions to be performed on it can significantly affect

the efficiency of the simulation program.

Table 1-1.  Types of Simulations

Type of
Simulations

Description

Emulation This is the process of designing and building a model that uses

real system functionality. A study case is the prototyping process.

Monte Carlo

simulation

This is a simulation process without time reference. Monte

Carlo simulation techniques are used to model any probabilistic

phenomenon that does not change over time as an independent

variable.

Trace-driven

simulation

This simulation uses as input an ordered list equivalent to real-

world events. In this type of simulation, the time variable is an

attribute of the event.

Continuous-

event simulation

A function can model this type of simulation, and the changes

occur permanently. An issue is to determinate the scale and the

scope of the experiment to identify the factors and events that

influence the results.

Discrete-event

simulation (DES)

Discrete event simulation is a type of simulation that uses

“events” to specify details of an experiment that occur over time.

Discrete mathematical analysis can model the process and have a

medium level of abstraction. Each event is a function or class call

with a unique identifier.

Chapter 1 Introduction to Simulation

6

•	 Simulation clock: This is a global variable that

represents the simulation time; the simulator advances

in the simulation time until the next scheduled

event. During event execution, the simulation time is

frozen; however, in the ns-3 simulator, it is possible

to work with the real-time scheduler integrated with

the hardware clock to perform the progression of

the simulation clock in a synchronized way with the

machine or reference external clock.

•	 State variables: These variables help to describe the

state of the system.

•	 Event routines: These routines handle the occurrence

of events. Once an event is successfully executed, the

simulator updates the state variables and the event

queue.

•	 Input routine: This routine obtains the user input

parameters and supplies them to the model.

•	 Output generation routine: This routine is in charge of

creating the output of the events and the abstraction of

the simulator. In ns-3, there are two kinds of outputs:

.pcap and .tr files.

•	 Main program: This is the entry point on the ns-3

simulator where it is possible have C++ and Python’s

main() function program. The main program is used to

call the classes, functions, libraries, and methods useful

to execute the simulation. The simulation on ns-3

begins with the Simulator::Run() routine and ends

with the Simulator::Destroy() routine.

Chapter 1 Introduction to Simulation

7

�Formal Systems Concepts
Usually, simulation demands a previous conceptualization effort. In some

cases, because of the scope of work, it is a demanding task and difficult

to understand. On this subject, there are available formal works, and

some of them are based on demi-philosophical principles that could be

useful. Therefore, we recommend becoming familiar with the following

definitions, which are frequently used in this book.

•	 Behavior: This is the relationship between any input/

output pair in a system at different times. It can be

obtained from external measurement to know the

internal set of events and states that characterize the

system [6].

•	 Emulation: A partial or complete construction of a

system that is functional and artificial, whose behavior

mimics that of an analyzed reference system, this is the

process of simulating the inner workings of a systems to

produce a realistic output [7].

•	 Event: This is the source of the changes in a finite state

machine.

•	 Inference: This is an activity oriented to deduce the

internal structure of a system from its behavior. (This

definition is close to the simulation world.)

•	 Structure: This is an internal characteristic that defines

a set of system states and relations [6].

Chapter 1 Introduction to Simulation

8

Regarding the real experimenting analogies, when the scope of a

simulation process is to imitate a real physical process, it is important

to consider an experimental orientation for collecting process data

and for data analysis techniques that is similar to a scientific inference

laboratory. Otherwise, in computer systems, simulations are sort of hybrid

experiments, because just one side of the processes comes from the real

world, like propagation media features, transmission lines parameters,

delays, failures, and other common behaviors of hardware. The other side

consists of software processes.

The creation of different kinds of models is the result of efforts to

simulate and imitate real systems. Essentially, real-life systems and

phenomena are continuous models, which means that the variables of the

process can be set at any time. Unlike real-word systems, computational

processing uses discrete models, which are models that change state at

certain times and have a limited number of possible states.

In the description of discrete events of a system, there are

instantaneous changes of discrete variables that allow imitating a real

dynamic system. A combination of differential equation system

specifications and discrete event system specification, inherent in the

continuous and discrete descriptions respectively, allows the

computational models to simulate real systems in an approximate way.

�Simulation and Emulation
The simulation allows reaching a higher level that implies the fidelity

to a real system. While emulation is a superior level in which all the

components are simulated to produce a realistic response, as shown in

Figure 1-1. However, emulation can be more computationally expensive

and harder to model since its level of detail is superior and finer.

Chapter 1 Introduction to Simulation

9

There are two domains when a simulation begins: the real world and

the simulation world (Figure 1-2). It is necessary to define the elements

that compose the real world to create new hypotheses and experiments.

Among them are the system theories, their relationships with the data

results and the preliminary hypotheses, and the system or main problem.

The interactions between them are hypothesizing, abstracting, and

experimenting.

Figure 1-1.  Simulation versus emulation

Chapter 1 Introduction to Simulation

10

To design a simulation experiment, it is significant to define the

abstract model and follow the next steps, as shown in Figure 1-3.

Figure 1-2.  Real world versus simulation world

Figure 1-3.  Steps simulation

Chapter 1 Introduction to Simulation

11

	 1.	 Determine goals and objectives.

–– Boolean decisions: Should another component be

added to the model?

–– Numerical decisions: How many servers in parallel

offer optimal performance?

	 2.	 Build a conceptual model.

–– What are the important state variables?

–– How exhaustive should the model be?

	 3.	 Build the specification.

–– Collect and statistically analyze data to have “input”

models that control the simulation.

–– In the absence of data, the “input” models should

be built using stochastic models that are appropri-

ate for the problem.

	 4.	 Build the computational model.

–– Select the language or the simulation tool.

	 5.	 Verify that the computer model implements the

specification properly.

–– Still not the right model?

	 6.	 Validate if the correct model was built.

–– An expert compares the results of the real system

with the results of the simulated system.

–– The system’s animations are useful.

Chapter 1 Introduction to Simulation

12

�Network Simulators
In communication networks, the development of new routing protocols,

algorithms, and architectures is usual. The performance evaluation of these

new systems through experimentation can be expensive, the resources may

not be available, and valuable features such as scalability are not easy to test in

that way. Consequently, simulation becomes an important tool for research

since it does not require any physical hardware other than a computer to run

the simulations. It provides an economical alternative to evaluate the behavior

of these new systems or to test the performance of the existing ones, which

under different circumstances are hard to re-create in a laboratory.

Today, it is possible to find different simulation frameworks created

by network companies, universities, and academics, whose goal is to offer

alternatives, covering different aspects and functionalities of networks. The

selection depends on the needs and objectives of the researchers. Besides,

it is recommendable to check in bibliographic databases, such as Scopus,

for the number of papers that have used a certain simulator and its role on

the research.

In Table 1-2, you can see some of the most commonly used

network simulations for research. However, keep in mind that there

are many networks simulators available, and your selection depends

on the objectives of your research and your experience with different

programming languages.

�ns-3 Simulator General Features
ns-3 is a discrete event network simulator that uses a set of abstractions

(node, application, channel, net device, and topology helpers) to simulate

devices in communication networks, as well as their services, protocols,

and interfaces. The interactions between them are given through multiple

channels of communication like Ethernet cables, wireless channels, and

power line communication channels, among others.

Chapter 1 Introduction to Simulation

13

In a nontechnical explanation, it is possible to define ns-3 as a set of

application-oriented telecommunication systems tools with modeling

flexibility, with some graphical reporting capabilities and easy-to-use

statistical modules.

The development environment is object-oriented through the optional

C++ and Python frameworks, with Linux and IOS installers, and includes some

useful examples of reusable code and online growth community as support.

Table 1-2 shows some networks simulators (open source, academic, and

commercial licensing) with similar capabilities as ns-3. (The ns-3 summary

features are in Table 1-3 later in this chapter.)

Although it sounds great, you actually need longer periods and

patience to run custom simulations. Regardless of your programming

skills, based on experience, we recommend working on C++ and Ubuntu

Linux LT distributions if possible. In Appendix A, we describe the

installation processes of both operating systems.

Table 1-2.  Network Simulators

Simulator Framework License Type

ns-2 Open source

ns-3 Open source

Matlab Commercial

GlomoSim Free

JiST/SWANS Commercial

J-Sim Open source

OMNeT++ Open source, academic use

licensed

OPNET Commercial, free for qualifying

universities

Chapter 1 Introduction to Simulation

14

ns-3 is useful for modeling nonlinear and complex systems, which

are impossible to solve from an analytical perspective and often difficult

to predict. The typical approach to this obstacle is to reduce complexity

by using expert skills to extract conclusions in a reduced ambit and then

extend them to other contexts. This feature makes possible the process

of formulating well-founded conjectures, which is an important step in a

scientific approach.

From our personal experience, we consider that the nature of ns-3 is

broader because of its emulation capabilities. One of the main objectives

of this simulator is to supply different options to support the emulation

and execution of real implementation code. Thus, it allows the opportunity

to combine these techniques and reduce experimental discontinuities

when moving between simulation, emulation, and real experiments [10].

ns-3 usually runs only one simulation process at a time, which does

not limit the scope of possible simulation scenarios. For parallel scenarios,

it is required to enable the Message Passing Interface (MPI) and the

application program interface (API), which are beyond the scope of this

book. In our experience, we tried this with sequential processes, and the

results of the repetitive simulation processes were consistent, regardless of

the stochastic nature of the data and the real processes modeled. For this

reason, it is common to obtain similar results in successive experiments

that are desirable from the point of view of accuracy or statistics and

acceptable as a simplification of the real world. However, it is possible

to add stochastic features to the models. In the following chapters, some

examples will be presented and applied specifically to ad hoc networks.

ns-3 has a lot of examples that are useful for new users. Listing 1-1

consists of the topology of two devices (or two nodes) with point-to-point

communication of a 5Mbps data rate, a channel, and a delay of 2ms.

Chapter 1 Introduction to Simulation

15

Listing 1-1.  ns-3 Example

1 NodeContainer nodes;

2 nodes.Create (2);

3

4 PointToPointHelper pointToPoint;

5 �pointToPoint.SetDeviceAttribute ("DataRate", StringValue

("5Mbps"));

6 �pointToPoint.SetChannelAttribute ("Delay", StringValue

("2ms"));

These two nodes are equipped with a network device that adds a MAC

address and a queue to the device. It also has an Internet stack installed

that adds IP/TCP/UDP functionality to the existing nodes. A set of IP

addresses is then created, and an IPv4 interface is installed on the network

device. This interface assigns an IPv4 address to each node on the network

device. It then associates this address with the interface and stores it in a

container (see Listing 1-2).

Listing 1-2.  ns-3 Example

 1 NetDeviceContainer devices;

 2 devices = pointToPoint.Install (nodes);

 3

 4 InternetStackHelper stack;

 5 stack.Install (nodes);

 6

 7 Ipv4AddressHelper address;

 8 address.SetBase ("10.1.1.0", "255.255.255.0");

 9

10 �Ipv4InterfaceContainer interfaces = address.Assign

(devices);

Chapter 1 Introduction to Simulation

16

Then, an application server is created. It waits for UDP packets

and then sends them back to the sender, assigning port 9 for this

communication. This application created is stored in an application

container and assigned to the second node. This application is started at

the first second and stopped at second 10 (see Listing 1-3).

Listing 1-3.  ns-3 Example

1 UdpEchoServerHelper echoServer (9);

2

3 �ApplicationContainer serverApps = echoServer.Install

(nodes.Get (1));

4 serverApps.Start (Seconds (1.0));

5 serverApps.Stop (Seconds (10.0));

The next step is to create a client-server application on the first node

of the network. It will send UPD packets and wait for a response from the

second node. The application has a maximum of 1 packet of 1,024 bytes,

and the client will wait 1 second between packets. It will initialize in

second 2 of the simulation and stop in second 10 (see Listing 1-4).

Listing 1-4.  ns-3 Example

1 UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);

2 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

3 �echoClient.SetAttribute ("Interval", TimeValue (Seconds

(1.0)));

4 echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

5

6 �ApplicationContainer clientApps = echoClient.Install

(nodes.Get (0));

7 clientApps.Start (Seconds (2.0));

8 clientApps.Stop (Seconds (10.0));

Chapter 1 Introduction to Simulation

17

After defining all the parameters and events of the network, the only

thing left is simulating with these four events: one at second 1, one at 2

seconds, and two at 10 seconds (see Listing 1-5).

Listing 1-5.  ns-3 Example

1 Simulator::Run ();

2 Simulator::Destroy ();

�Formal Concepts and ns-3 Specification
In simulators, events are a mandatory abstraction. They can be described in

a nonformal definition and, for this book, as a change of state in the model,

generally associated with time. Events constitute a causal sequence that allows

discovering the evolution of variables as a flow with definite direction. In

turn, a discrete event could be explained mathematically through an integer

variable. In the simulator, it is common to get two forms of presenting them

in the ns-3 screen: as a list of events or as a graphical representation of the

behavior of nodes and their interactions, as shown in Figure 1-4. Also, it is

possible to output events as trace sinks, Wireshark’s .pcap files, and XML files.

As a first test case, we have an example of some “screen resume” list

output.

1 At time 2s client sent 1024 bytes to 10.1.2.4 port 9

2 �At time 2.01796s server received 1024 bytes from 10.1.3.3

port 49153

3 �At time 2.01796s server sent 1024 bytes to 10.1.3.3 port

49153

4 �At time 2.03364s client received 1024 bytes from 10.1.2.4

port 9

Chapter 1 Introduction to Simulation

18

Depending on the scope of the simulating job, it is probable that the

high-level events presented in Figure 1-4 are the most relevant, especially

in a framework of network interaction. Then, in that case, each network

event is represented by each screen line. For example, the previous

report shows a descriptor of each responsible entity (a network node)

that interacts in each previous subprocess. Each node has a network role

(server-client) that has its own IPv4 address, a TCP port, and a related

primitive service (send-receive).

Here, ns-3 can report some key network events on the screen.

However, there are many events (others not shown here) that occur in

the background and are associated with the protocols involved. Also,

events are associated with the internal programming classes and objects

that interact between them. When it is required in .pcap and .xml files,

valuable information can be tracked for low-level and detailed interactions

and processes.

Figure 1-4.  Example 1 of ns-3. a) Creating point-to-point nodes and
channels. b) Installing network and Internet stack devices in each
node and assigning IP addresses. c) Installing an echo server and
client in the nodes. d) Sending a packet and its respective response

Chapter 1 Introduction to Simulation

19

All of them are discrete events, referred by an arbitrary reference time

simulator. It is important to differentiate their time reference from the

real-world time reference. The first is an abstract way to order the events;

the second one is the conventional user concept and the ones that do not

necessarily maintain a clear relationship between them. For example, a user

easily understands that on different devices, the executing time is inversely

proportional to the performance of the equipment and is associated as

a commonsense result. The time reference of the ns-3 event could be

independent of the hardware used to build the simulation and even from the

released version of the ns-3. For instance, in different devices the third.cc

example of simulation delivers the same simulation time result.

According to the previous example, it is possible to appreciate that

each event describes an extensively defined frame protocol object

and a “nearly” continuous reference time. That suggested by the

microsecond-level precision of the time scale reference shown in ns-3

that has an integer as reference time at nanosecond.

When this temporal framework exists, the theoretical approach of

the Discrete Event System Specification (DEVS) [11] is used. It is a type of

discrete dynamic system with relevant changes occurring at a fixed time.

Here, an event is the occurrence of an external trigger or a significant change

in an internal variable, often referred to as a model state variable. In ns-3,

time advance is managed with a next-event approach. In this technique of

discrete event simulation, there is a local program or list of events built as a

data structure that updates a timer when the current event occurs. The next

or created events are listed in a time-based order until completion [12].

When the simulation time changes asynchronously and

discontinuously, the state of the variables is updated “instantly” and

remains fixed until the time of the next programmed event changes. In

some simulations, this capability can be a comparison metric between

experiments. Nevertheless, in the scope of this book, with stochastic

variables only, it will be considered as a real-world time framework, always

in the context of network traffic, given its burst behavior.

Chapter 1 Introduction to Simulation

20

Time is only one element of simulation. In the real world, the

interaction between nodes occurs through network interfaces and within

nodes through layer interfaces. In the same way, ns-3 represents the same

interaction with low-level abstractions represented by the programming

objects and entities. For example, a network interface is modeled with a

physical or logical port abstraction, identified here by a protocol address.

This one-to-one mapping is a system specification formalism called

homomorphism, an important approach of ns-3.

As said by Wainer [11], it is feasible to apply modularity with DEVS

because it allows an abstract model to be represented, regardless of

the simulation techniques used, and to progressively build complex

systems. This is another powerful feature of ns-3 associated with its object

programming language base. However, this is the reason for decoupling

between real-time and event time structure, because object-oriented

programming does not have an associated temporal sense.

The default simulated time in ns-3 is not related to the hardware clock;

it simply advances to the next event [13]. For the real-time capabilities

of ns-3 that are available through the RealTime scheduler, this mode

of operation requires an external time source for synchronizing. In this

simulated time mode, ns-3 runs in parallel with the external base time

between events, while stopping at the event execution (feature currently

included ns-3). In this mode, cumulative time differences between the

reference and the simulated time may occur, which must be resolved with

the configuration options of the RealTime scheduler.

Table 1-3 is the best way of resuming and classifying features of an ns-3

simulator.

Chapter 1 Introduction to Simulation

21

Table 1-3.  Summary of ns-3 Features

Summary and Classification of Simulator Features

Feature Yes No Observations

Discrete event systems X – –

Parallel discrete events

allowed

X – –

Parallel time scripts

allowed

X – –

Parallel time events

allowed

X – –

Object-oriented

programming

– X –

Object-oriented events X – –

Multicomponent systems

interactions allowed

X – Individual components system is coupled

by connecting their input and output

interfaces in a modular way

Multicomponent events

interactions allowed

X – Individual events influence all components

Iterative result X – As defined in customized code

Input-free systems X – –

Stochastics generators X – –

I/O observation frame X – –

I/O relation observation X – –

I/O function observation X – –

I/O system observation X – –

(continued)

Chapter 1 Introduction to Simulation

22

There are other types of modules created by other researches to

expand the capabilities of the simulator in fields such as bio-inspired

systems [14], [15], artificial intelligence [16], neuronal models [17], among

others.

Table 1-3.  (continued)

Summary and Classification of Simulator Features

Feature Yes No Observations

Block-oriented simulation

system

X – –

Chaotic systems allowed – X –

Noncausal methods – X –

Fuzzy systems allowed X – –

Real-time simulating X – –

Model families allowed X – –

Error estimating tools X – –

Graphical model

representing

X – –

Graphical experiment

representing

X – –

Chapter 1 Introduction to Simulation

23

�Summary
The ns-3 simulator is based on discrete events to manage the simulation.

The simulator has abstractions such as the node, the channel, and the

packet. It allows you to create real network models from their abstractions.

The simulator allows the simulation and emulation functions to test

the models and scenarios on the script. The simulation output can be

analyzed as a .pcap file to use another tools such as Wireshark. The ns-3

simulator is a robust tool to design, test, and validate networks, protocols,

and architectures on a controlled testbed based on events.

�Complementary Readings
Here are some other topics to read about:

•	 Object-oriented modeling and design [18]

•	 Design and analysis of simulation experiments [19]

•	 A gentle introduction to simulation modeling [20]

•	 Yet another network simulator [21]

Chapter 1 Introduction to Simulation

25© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_2

CHAPTER 2

Wireless and Ad Hoc
Networks

When wireless is perfectly applied the whole earth will be con-
verted into a huge brain, which in fact it is, all things being
particles of a real and rhythmic whole. We shall be able to
communicate with one another instantly, irrespective of dis-
tance. Not only this, but through television and telephony we
shall see and hear one another as perfectly as though we were
face to face, despite intervening distances of thousands of
miles; and the instruments through which we shall be able to
do this will be amazingly simple compared with our present
telephone. A man will be able to carry one in his vest pocket.

—Hamming [22]

The proliferation of communication devices and networks is the result

of the exponential development of wireless components for computing

devices. This development allowed the diffusion of services and new

alternatives for users to interact with new technologies, among us, and the

continuos development of social networks and applications to stream and

share a variety of content.

https://doi.org/10.1007/978-1-4842-6849-0_2#DOI

26

This evolution required more sophisticated infrastructures, protocols,

and devices to allow the flow of services through the Internet and between

countries, devices, and users (Figure 2-1).

�Connectivity and Mobility Evolution
The evolution of the wireless interfaces has allowed us to move from a

mono-service system to shared schemes where a device can have at

least one wireless interface. For example, a mobile device can have 4G,

Wi-Fi, and Bluetooth interfaces that are potential channels for providing

communication services. Under these conditions, it is possible to generate

superposed networks, which are different coverage areas for each interface

to give or receive some service demanded by the user.

Another important aspect is the emergence of social networks that

have modified the behavior of users and changed their connectivity needs,

requiring new ways to deploy these services on their devices.

Figure 2-1.  Mobile ad hoc network

Chapter 2 Wireless and Ad Hoc Networks

27

�History of Wireless Communication
Technologies
Today, mobile devices have more built-in wireless technologies. There

are two ways to use devices: cellular networks and short-range networks.

Cellular network technologies have evolved from 2G technologies such

as GSM CSD and GPRS, to 3G such as UMTS/HSDPA, and finally to

4G as WiMAX, LTE, and LTE-A (HSPA+LTE). The architecture of these

systems has a central base station and a set of cells to provide services and

coverage.

On the other hand, short-range communications have evolved

rapidly, mainly because of the reduction in size and the increase in

computing capacity. This development has made it possible to create

overlay networks with the same device. Two technologies stand out in this

evolution: Bluetooth and IEEE802.11X or WLAN.

In both cases, evolution is related to data rates and bandwidth. In

smartphones, it is more common use both technologies, but there are

more and more devices with robust computing resources (memory and

CPU) and multiple network interfaces.

This evolution is the introduction to information and communications

technology (ICT), which features exploiting autonomy behaviors and

deploying smart systems in the computing environment. For instance,

low-cost sensor devices and pervasive and ubiquitous computing

infrastructure and wireless communication are at the core of the Internet

of Things (IoT). This relationship between the physical and digital

worlds has generated several advances for the design, planning, and

implementation of applications for smart cities and sustainable cities [23].

Chapter 2 Wireless and Ad Hoc Networks

28

�Computing Architecture with Wireless Networks
Today there are some types of architecture that use one or multiple

wireless interfaces. These infrastructures allow the deployment of online

services, allow for real-time services, and provide new applications to

users in different types of electronic devices. In this chapter, three types of

architectures will be explained: the Internet of Things, fog computing, and

edge computing.

�The Internet of Things

The ITU-T Y.2060 [24] recommendation defines the Internet of Things

as a global infrastructure that enables the interconnection of physical

and virtual functions, the state of information, and current and emerging

communications.

IoT denotes a trend in which there are a large number of devices that

use services such as the Internet. When they are not operated by human

intervention, they are called intelligent objects. Most IoT devices are

connected to networks or specific-purpose systems [25]. In this sense,

the IoT paradigm is articulated with the concepts of clusters and ad hoc

networks described earlier.

IoT is associated with electronic media such as refrigerators or

sensors that communicate with each other through the cloud. However,

the concept also extends to industrial applications that derive from the

concept of industrial IoT (IIoT), which consists of inserting intelligence

into industrial machines, systems, and processes with communication

mechanisms. In this way, the monitoring and coordination functions of a

productive chain are improved to achieve high quality with a considerable

reduction in costs.

Chapter 2 Wireless and Ad Hoc Networks

29

IoT can also be understood as an environment of interaction between

the physical and digital worlds since there are various ways to establish these

interactions [24]. Although it is a current trend and the object of numerous

studies, there is still no standardized architecture for IoT. However, one of

the best known is the architecture of the layers shown in Figure 2-2.

The first layer is the perception of things. As its name suggests, this layer

is related to the perception or capture of information from the environment.

It is composed of devices such as sensors, actuators, and processing units

that measure or detect physical variables or identify other objects.

The second is the network layer, which allows you to connect “smart”

things and is composed of network devices and servers. This layer serves

to transmit and process the information captured by the sensors.

The third is the application layer, which is responsible for delivering

services to the user. This layer identifies general-purpose IoT applications,

such as data processing or storage, and other specific-purpose applications

that specialize in a particular set of services, for example, smart homes or

smart health [25].

Figure 2-2.  Architecture for IoT of three layers

Chapter 2 Wireless and Ad Hoc Networks

30

The capabilities of the perception or device layer can be classified

into two types: device and gateway capabilities [24]. Some of their

characteristics are described here:

•	 Device capabilities: These include direct interaction

with the communications network. Devices can collect

and upload information to the network or receive

it without intermediaries. They can also interact

indirectly through gateways or devices that help send

or receive information between the network. Among

capabilities of the device within the IoT, their ad hoc

interconnection capacity stands out. Therefore, the

device can be equipped with the intelligence needed

to build temporary networks of specific purposes,

particularly in scenarios where it is essential to provide

immediate scalability and rapid deployment.

The ability of the nodes to stay in resting (sleeping)

or awake (waking up) states is desirable. These

states are essential to make intelligent use of the

battery or power supplies and, consequently, to

reduce energy consumption.

•	 Gateway capabilities: They support multiple interfaces

that allow the devices to be connected to different

technologies networks, either wireless or wired. In this

way, it is possible to use different types of networks:

local area, telephone, cellular, or even advanced

networks such as LTE.

It also includes the conversion of protocols where

the gateway or intermediaries allow heterogeneous

groups. They use different communication protocols

to coexist within the perception layer or act as

Chapter 2 Wireless and Ad Hoc Networks

31

translators to enable interaction at the perception

layer between devices working with different

technologies and those used by the network layer.

The concept of IoT appeared around 2010 [26] as the integration of the

physical world with the informational world. The “things” in this context

are a lot of sensors, embedded devices, physical and virtual objects, and

intelligent systems connected to humans through the Internet. For the

routing of devices, the IPv6 protocol is used mostly in IoT, due to the

exhaustion of IPv4 addresses that may occur in the coming years. However,

for testing, IPv4 is used [23]. This architecture allows the deployment of

innovative services involving people, devices, networks, and human-

machine interactions. One of the main objectives in this field is the use of

sensor networks or smart sensor networks to create a robust environment

in smart cities, sustainable cities, smart farming, and smart buildings, to

improve the monitoring and the decision process.

In the last decade, the extreme pervasiveness of embedded computing

systems in any application and infrastructure of today’s life and the

considerable improvement of communication technologies led to the so-

called IoT paradigm [27]. One of the promising aspects of IoT is to enable

“smartness” and “self-awareness” in the surrounding environment. This

empowers new applications in life today and in the future. For example,

in buildings, temperature and light can be controlled automatically on

the basis of human presence and wellness, just as robots can cooperate

autonomously in automated supply and production chains in the industry

[28], [29]. In the near future, in the hospital or even at home it will be

possible to automate the monitoring of patients remotely, and vehicles will

also coordinate autonomously with terrestrial hotspots to reduce traffic

and manage emergencies.

An IoT system consists of a networked cyber-physical hardware

platform on which a set of IoT software services detects and processes

data from the environment and collects it in the cloud or uses it to decide

and actuate on the Perception Layer, near to the users. In this scenario,

Chapter 2 Wireless and Ad Hoc Networks

32

the state-of-the-art design approach is based on static planning and

deployment of the distributed application to map sensing and actuation

tasks on the things, while the most relevant computing tasks are

delegated to high-end servers in the cloud, due to the reduced computing

capabilities of the former devices [30].

The devices and systems deployed on the edge, called the edge layer,

can be classified into three types: mobile edge computing (MEC), fog

computing (FC), and cloudlet computing (CC) [31]. MEC includes the

interactions with cellular networks that offer some cloud services in the

cellular cell. Then, FC presents a computing layer before the cloud to store

and process data. Finally, CC is deployed in dedicated devices with more

computing capacity, in some cases called micro data centers.

�Fog Computing

The cloud is seen as a high layer where many high-capacity processing and

storage equipment are grouped. This layer is highly differentiated and separate

from the device layer. In general, the teams that compose it are usually servers

located in computer centers (data centers) within facilities that are far from the

end user or entities that execute the perception of things [32].

However, as all processing happens in the cloud, this paradigm is a

fully centralized model, meaning that it receives all requests and data. At

first glance, this does not seem to be a problem, but considering that the

number of connected devices is rapidly growing 2020 [33], it is expecting

an increase in the volume of traffic per device. That could deplete network

bandwidth resources and cause congestion and communication delays.

The massive deployment of IoT anticipates that millions of sensors

and actuators will increase demands for real-time processing and delay-

sensitive applications. The large volumes of information generated will

require an exhaustive increase in processing and storage effort, and, in

many cases, it is not justified to do so centrally. In that scenario, cloud

computing is not the most appropriate solution.

Chapter 2 Wireless and Ad Hoc Networks

33

The fog computing paradigm is ideal for addressing this problem by

completing and optimizing the efforts of the cloud. In general, this model of

ubiquitous computing establishes a layer of fog or micronobs near to things

or receiving devices. This proximity will help the “big” cloud to do its work

more efficiently, streamlining communication, reducing latency parameters,

avoiding bottlenecks, and further distributing processing efforts. In Figure 2-3,

the clouds are shown near to the layer of things, located in boundary devices

of the network layer, which can communicate with each other to form one or

more clusters of fog at different points of the cloud network level, until they

connect with the servers of the global cloud.

�Edge Computing

Both cloud computing and frontier computing emerged to face the

challenges, and a thorough and direct use of the cloud is assumed

(Figure 2-4). Both are aimed at bringing the services of the cloud to the

final devices of the users.

Figure 2-3.  Fog node communication

Chapter 2 Wireless and Ad Hoc Networks

34

Edge computing (EC) is a paradigm based on the idea of running

computing and storage near the source of data generation. In other words,

it is about implementing computing tasks in frontier devices, which are

intelligent and have certain potential characteristics. These devices have

a double connection: they are intercommunicated forming a border

network; on the other hand, they are linked to the cloud with a large data

center through a network like the Internet [31].

Although both fog and EC are decentralized, hierarchical, and

distributed paradigms, the difference lies in the computing capacity and

the proximity to the end user. In EC, the user or end devices are the ones

executing the processing, while in fog it is the boundary devices of the

network. In other words, EC and fog are connected to the end user, and

together they become more powerful in terms of computing capabilities.

In conclusion, in EC the processing is executed in the final equipment,

while in fog it is close to the final equipment and not inside it. In any case,

both paradigms are designed to provide virtualization services that allow

mobility and scalability.

Figure 2-4.  Fog computing architecture

Chapter 2 Wireless and Ad Hoc Networks

35

�Mobile Clouds and Ad Hoc Networks
Mobile ad hoc networks (MANETs) can be found in mobile and dynamic

wireless configurations. What is an ad hoc network? It is a network of

computers (devices or nodes) connected by wireless interfaces, whose

resources have a certain level of dynamism, that can provide services

regardless of the dynamics and stochastic conditions of nodes as time

goes by. Two properties characterize this type of network. The first is

self-organization, which allows them to set up their own configuration

parameters and restore themselves in the case of failure. Second, but not

less important, is its decentralized infrastructure, since they do not depend

on any physical infrastructure to be deployed. This is why these types of

systems can generate pseudosocial behaviors from the moment they are

built until the end of their operation.

Formally, ad hoc networks are random graphics [34] with a set of

vertices, commonly called nodes. In this case, a set of links called edges

connect the mobile nodes. As a function of time and environmental

conditions, they change dynamically, for example, by user requests.

A MANET can be defined as a set of nodes (N), linked by a group

of links L, and with a set of interactions I. All of them include a random

multigraph ttp(l) with the probability of communication between two

or more nodes. In this way, a MANET can be defined as shown in the

following equation:

M = N, L, Gp(l), I    MANET formal definition

The interaction between the wireless interfaces, the Internet diffusion,

and the needs of users has generated new network models. There,

overlapping networks are present in all user areas, from a monolithic

centralized platform to a highly dynamic and stochastic system.

These interactions involve the user, the means of transmission, and

infrastructure. The services are at the intersection of these three elements,

thanks to the connectivity and mobility needs of the users.

Chapter 2 Wireless and Ad Hoc Networks

36

There are some definitions of mobile clouds. A first definition is related

to their main feature, the resources. A mobile cloud is a cooperative

arrangement of connected nodes sharing resources opportunistically. This

can be seen as a classical distributed system (see Figure 2-5).

A second definition includes the infrastructure elements required

for deployment: a mobile cloud is a cooperative arrangement of nearby

wireless devices, which can connect to other networks via access points or

base stations.

A definition of a cabled network for the scope of this work is a mobile

cloud with a flexible, dynamic, and stochastic computational platform

that manages distributed and wirelessly connected computing resources

without any central device that interconnects them. In this way, the

network can be changed, moved, increased, and generally combined in

new ways [35].

Figure 2-5.  The three states of an ad hoc network: formation,
operation, and maintenance

Chapter 2 Wireless and Ad Hoc Networks

37

�Features and Challenges of MANETs
MANETs differ from other networks because they can configure

themselves autonomously. Therefore, there is no centralized control, and

they can auto-recover in the event of failure. Because of the movement

of the nodes, the topology where MANETs are deployed is dynamic [36].

Therefore, the links between the nodes are temporary since they are in

continuous movement, causing some instability. Scalability can be a

problem for MANETs since as the network grows, its performance cannot

decrease, and it must maintain acceptable levels of quality for the services

offered. Since the network nodes do not have a continuous power supply

and depend on their batteries, each node must make proper use of its

remaining energy. Because MANETs are multihop networks, in which

nodes forward packets to other nodes and share access to the wireless

channel, security is a major issue, as the network may be vulnerable to

attacks.

�Wireless Mesh Networks and Wireless
Sensor Networks
Wireless mesh networks (WMNs) [37] and wireless sensor networks

(WSNs) are two types of MANETs that differ from regular ones in their

operation and hardware specifications.

In regular MANETs, a node can function as router and host, unlike

WMN, where the nodes are classified in mesh routers and mesh nodes.

On the one hand, mesh routers have minimal mobility and provide access

for regular and mesh nodes. Also, they can communicate with other mesh

routers; handle routing, bridging, and network functions; and have no power

limitations. On the other hand, mesh nodes can be stationary or mobile and

require efficient use of their power supply like regular MANET nodes.

Chapter 2 Wireless and Ad Hoc Networks

38

In contrast, wireless sensor nodes are part of the WSN. Usually, they

are deployed in hostile environments and employed for event detection

(e.g., temperature, pressure measure, etc.). These sensors can perform

a type of processing on the information obtained and transmit the data

over the network, allowing the final user a better understanding of the

current state of the environment. Unlike MANETs or WMNs, WSN nodes

are less expensive than regular wireless mobile devices, are smaller, and

have fewer hardware features and power consumption. However, because

of the nature of their operation, WSNs can become useless if a node has

consumed its battery or is damaged.

�Cooperation in MANETs
Since MANETs are networks with a particular fashion of operation, all

nodes must cooperate altruistically to compensate for the absence of

infrastructure [38], [39]; however, if cooperation arises, each node would

have to use its limited resources to maintain the operation of the network,

provided that the nodes may not be homogeneous and have hardware

limitations. Consequently, cooperation does not bring any direct benefit

to the nodes, and therefore selfish behaviors may emerge. A selfish node

will cooperate only if it receives direct benefit from cooperation. Moreover,

a selfish node will expect the other nodes to cooperate with it to gain

benefits without using its resources [40].

The main objective in MANETs is to maintain the communication and

the services that are being executed. Despite the changes that may occur,

several authors have proposed different methods to stimulate cooperation

and avoid selfish behaviors. To stimulate cooperation, [41] has proposed a

payment system, in which nodes that cooperate are rewarded with tokens

that allow them to access the services offered on the network when they

need them. Another proposed method uses reputation mechanisms [42] in

which the reputation of the cooperating nodes increases, while for those that

do not, it decreases, and eventually they are excluded from the network.

Chapter 2 Wireless and Ad Hoc Networks

39

With this in mind, it is easy to deduce that MANETs in nature should

be altruistic, and the nodes must find a way to cooperate under any

circumstance [43].

�Routing Protocols
Routing protocols are a fundamental element in the functioning of ad

hoc networks and are vital to exhibiting self-configuring capabilities

and tolerance to dynamic behaviors. These algorithms allow the ad hoc

network to find routes from neighboring nodes between devices and

maintain availability of services within the network.

These protocols have evolved and have different classifications. On

one side are the reactive or on-demand protocols such as Ad Hoc On-

Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). On

the other side are the proactive link-state protocols that make periodical

publications of routes such as the Optimized Link State Route (OLSR) and

Better Approach to Mobile Ad Hoc Networking (BATMAN) protocols. All

of these protocols flood the hello packets throughout the network, keeping

the routing tables updated, improving the discovery of neighbors, and

publishing the routes. In exchange for these is an additional consumption

of energy and resources.

�Distance Vector and Link-State Routing
These protocols are based on the ideas of conventional wired computer

networks. Their distance vector routing algorithms use a table in each

router and give the best known distance between the nodes with the hop

metric. The most familiar algorithm is Bellman-Ford in wired computers,

but this is not sufficient for MANETS. The algorithms need more dynamic

and auto-adapting for the traditional scenarios of ad hoc networks. Some

protocols are Destination Sequenced Distance Vector (DSDV), which is

classified as proactive or table-driven, and AODV, which is classified as a

reactive or on-demand protocol.

Chapter 2 Wireless and Ad Hoc Networks

40

The link-state routing algorithm searches for and discovers neighbors

and evaluates the cost of transmissions, distributes the link-state

information throughout the MANET, and computes the shortest path. An

example protocol in this category is OLSR.

�Social Clouds
In a broader context and involving users’ needs and preferences, a mobile

cloud is a flexible platform for establishing mobile social networks, that is,

networks where users have the freedom to interact at mobile devices [35].

In this sense, a direct interaction with the social preferences of the

users and their needs begins to exist, but what is a society? How can we

define it?

A society is more or less a self-sufficient association of people who

in their relationships generate collaborative behaviors to obtain well-

being and happiness. Its members recognize certain rules of conduct as

obligatory, and most of them agree with these rules.

As we said, mobile clouds are cooperative. That is, the base layer

makes its members accept some minimum rules to enter this system. It is

possible to define two domains of cooperation within the mobile clouds.

First is the technical domain where we can have cooperation forced and

allowed by technology (hardware). The second domain is the social one,

which has altruism and is socially allowed.

These schemes are based on the cost-benefit ratio. The user or

owner of the device is the one who values this relationship of installing,

modifying, operating, and distributing services from their mobile device.

The relation is simple: you pay the cost (C), and you get the benefit (B).

The following are the descriptions of each:

•	 Forced: In this kind of interaction there is a cost benefit

relationship C > B relation or B = 0, so the global profit

is more important than the individual profit.

Chapter 2 Wireless and Ad Hoc Networks

41

•	 Allowed by technology: In this kind of interaction there

is an initial profit for users (mandatory by the devices

manufacurer), on each node or device. The relation

cost-benefit is B > c and C = 0.

•	 Altruism: In this form, Hamilton’s rule applies. It shows

that a user prefers not to obtain more profit but is

happy to help others with their resources. The rule is

described as Bxr > C, where r is the relation between

the two entities; this relation is valid if r > 1.

�MANET Clusters
Another operating scenario of MANETs are clusters [44] based on a

hierarchical organization (Figure 2-6). Each cluster is a set of different

nodes. One of these nodes is the coordinating or representative node,

known as the cluster head (CH), which allows the member nodes (MNs) to

communicate with other clusters or networks. The CH is responsible for

managing intra- and intercluster communication.

Figure 2-6.  Cluster MANET, cluster communications

Chapter 2 Wireless and Ad Hoc Networks

42

Intracluster communications allow all member nodes to exchange

services and messages over the cluster, diffusion states, and effective data

transmissions. By contrast, the intercluster communications are only the

exchanges between the CHs. In some cases, the CH is used to improve

the coverage or allow long-range communications such as cellular or

WiMAX systems, creating the possibility of passing messages with other

neighborhoods.

�Summary
Wireless networks are used in most devices today to link to the Internet.

The Internet’s features like a specific class of distributed system, with

mobility for users, and stochastic behaviors. Has an study case in the

wireless networks as a interesting architecture to test, validate, research,

and simulate. The different kinds of approach and architectures allow

you to exploit the computing resources as explained in the mobile cloud

model. The evolution of wireless networks technologies with regard

to data rates and coverage allows more services and shared models to

create resource clusters, communication clusters, and social models to

provide solutions to achieve the needs of users, universities, industry, and

government.

�Complementary Readings
Here are some more topics to read about:

	 1.	 Mobile clouds (Chapter 10, “Mobile Clouds

Applications”) [35]

	 2.	 Multi-access edge computing: open issues,

challenges, and future perspectives [45]

Chapter 2 Wireless and Ad Hoc Networks

https://doi.org/10.1007/978-1-4842-6849-0_10

43

	 3.	 Energy management in wireless sensor networks [46]

	 4.	 A dynamic trade-off data processing framework for

delay-sensitive applications in the Cloud of Things

systems [47]

	 5.	 The IoT for Smart Sustainable Cities of the Future:

An Analytical Framework for Sensor-Based Big Data

Applications for Environmental Sustainability [23]

Chapter 2 Wireless and Ad Hoc Networks

45© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_3

CHAPTER 3

Design of Simulation
Experiments

So, what the human does is to abstract from concrete repre-
sentation, no matter what that representation is. That’s the
essence of the relationship between algorithm and program.

—[48].

�Introduction
Experiments were conceived as a way of understanding nature and

exploring its properties through research, the experiment is a tool with a

set factors involved in order to understand the world.

Experimentation is a tool with the aim of learning. Also, it is

possible to simplify and choose features of interest, which means that

experimentation is arranged by the investigator at will, which implies an

awareness stage of design for the experiment.

https://doi.org/10.1007/978-1-4842-6849-0_3#DOI

46

Part of the process is to select key variables to measure and to define

their attributes, the size of the experiment, the extent of the probes,

and their cost. These issues must be considered prior to balancing

them with the objectives of the experiment [49]. In the case of ns-3,

the computational costs are related to the availability of the physical

resources in the host simulation devices. In any case, all experiments and

research objectives are different, and as a consequence, it is difficult to

establish a precise guide for performing experiments, even for network

simulations. To design an experiment in a simulator, it could be enough to

build a mid-level abstraction with a reduced set of classes containing the

key functions or entities of the experience to be tested [11].

According to [11], through the inclusion of detailed processes oriented

to conceptual domains, functional systems, and the simulation program

itself, you can achieve a robust verification and validation (V&V), in

order to eases the experimental experience. In this framework, the main

validation criteria is the level of adjustment that is needed for achieve the

initial goals, which means whether the final accomplishment was reached

based on a concrete conceptual specification. From a design perspective, it

is important to enable whatever is needed to obtain appropriate measures

without interfering with the experience of the subject of experimentation.

As a minimum requirement of an experimental discipline, it is

recommended that the design take into account the Statistics and the

Theory of Measurement about the known parameters of accuracy,

exactitude, precision, range, theory of error, and other usual estimators of

certitude, reliability, and repeatability for the experimental measurements

[50]. This approach is especially important when considering random

variables.

Once the data is extracted from processes, with the aim of a better

understanding of the underlying phenomena, the next step is to apply

the instrumental analysis that includes, but is not limited to, sensitivity

analysis, optimization of variables, correlation of data, etc. In the ns-3

“laboratory,” the instruments can be built by the programmer or extracted

Chapter 3 Design of Simulation Experiments

47

from specific libraries oriented to measurements, for example the LTE

measurement test suite classes or the Wi-Fi radio energy model classes.

In addition, a logging functionality is available that allows you to trace the

events of the simulation. Another tool is the graphical representation of

events or variables that enables you to do quick estimations of obvious

tendencies in order to validate the data or the model.

A programmer has to define a functional system from a conceptual

model and integrate with to the code. Usually those models are quantitative.

Frequently a mathematical model is solved by experimentation. This is a

solution with numerical methods [19]. Figure 3-1 illustrates the relationship

between the different elements of an experiment.

According to [19], the modelers do not solve their model through

mathematical analysis. Instead, they try different values for the inputs

and parameters of their model in order to learn what will happen to the

model output (for V&V, prediction, sensitivity analysis, optimization of

Figure 3-1.  Experiment, simulation model, and mathematical
model

Chapter 3 Design of Simulation Experiments

48

real systems, risk analysis, etc.). The combination of parameters and

input variables is called a factor. Every combination is a scenario, run, or

design point. From a black-box perspective, with only inputs and outputs

known, it is possible to formulate a mathematical metamodel through

the experimentation as a result of the simulation of different factors. The

output variables can be nominal, ordinal, interval, ratio, etc. The inputs

are observed from the real world, and the parameters of the simulation are

inferred for real systems.

The process to design an experiment isn’t just a simple set of steps,

but it allows us to define the methods, controls, and experiments (in

our case simulations) to generate an output (data) to validate the main

objectives and experiment purpose (hypothesis). This process must give

an approximation of the number of trials and changes on the specification,

computational model, network simulator, and modules and abstractions.

Also, the process defines the analytic and statistical methods to analyze the

output data from the experiment. It is highly recommended to document

every step in the experiment and its proper execution to avoid ambiguity.

The experiment is a collection of trials. To estimate the number of

trials, it is useful to use the weak law of large numbers (Equation 3-2),

which is defined as follows:

Definition 1 Let X1, X2, ... be an independent random variables

succession and equally distributed with mean δ and finite variance ϵ2.

Then , by all ϵ > 0; it is satisfied that:

	 P
X X

n n
n�

� �
� �

�

�
�

�

�
� � �1

2

2
0



�
�




	 Equation 3-1

For all ϵ we have this:

	
P

X X

n
n�

� �
� �

�

�
�

�

�
� �

1 0


� 
	

Equation 3-2

Chapter 3 Design of Simulation Experiments

49

The weak law of large numbers has two basic parameters: the

maximum error allowed (s) and the statistical significance (δ). It is useful

to generate a reliable data set for an experiment to analyze the test and

changes on the input states of independent variables. The degree of

scientific rigor on the simulation is based on the experimental design,

which allows us to ensure the results and validate the internal and external

factors. The research community commonly uses mathematics models

to describe physical phenomenal or technical phenomena as network

behavior, computer communication, or web services.

	 y f x x f X X x x Tn n� � � � � � � � � ��1 1, , , ,  , 	 Equation 3-3

Here, X consists of input variables, y is an output variables, f is a

formula that describes the phenomenon, and T is the input variable space.

This model could represent the channel conditions, the protocol behavior,

or a way to predict the packet loss on the network. The simulation

could be defined in several ways, including the simulation of human

interactions, industrial systems, business, telecommunications systems,

computing networking, and distributed systems such as the Internet.

Currently the simulation is based on data or quantitative methods made

of heterogeneous computing systems with higher computing resources

and processing speed. Normally the simulation is classified into two main

domains that represent a conceptual duality.

•	 Deterministic versus random

•	 Static versus dynamic

In both cases, it is necessary build a model; for computer simulation, it

is called a metamodel.

Definition 2 A metamodel is an approximation of the input/output

(I/O) function that is defined by the underlying simulation model [19].

Chapter 3 Design of Simulation Experiments

50

To describe the variable relationship between the real and the

simulation worlds, some definitions are available to describe better the

importance to design a strong, consistent model to simulate and generate

data.

Definition 3 A simulation model is a representation from the real

world on the simulation world [19]. See Figure 3-2.

Definition 4 A model parameter has a value that is inferred from data

from the real system [19].

Definition 5 An input variable of a model can be directly observed in

the real system [19].

Wireless networks, for instance, are dynamic and random systems that

have variables directly observed as the interference on the spectrum at

specific frequency, but their behavior must be a probabilistic variable on

time. For dynamic systems, the time is a special independent variable, and

with the interference spectrum data, it is possible to estimate the coverage

area and the likelihood of dropped packets on the network.

As a summary, a factor can be quantitative or qualitative. Sometimes

the qualitative factors are assumptions from a system to model and not

quantified. Depending on the representation or abstractions, the factors

can be controllable or uncontrollable. The main goal of the experiment

Figure 3-2.  Computer simulation

Chapter 3 Design of Simulation Experiments

51

design is to find out the factor or factors that have major effects on a

response on an input, state change, or event. Defining the metamodel

allows you to predict the model response for system configurations or

factor combinations to optimize the input-factor values to reduce the

simulation time and use the response-surface-methodology to find

these combinations. In this sense, the statistical approach for computer

experiments involves two parts.

•	 Design: To find a set of n points it is design a matrix

denoted by Dn, in the input space T so that an

approximate model can be constructed by modeling

techniques based on the data set that conformed

by Dn and the output generated. Considering what

was previously mentioned for the requirements of

computer experiments, a natural idea is to put points of

Dn uniformly scattered on T . Such a design is called a

space-filling design or uniform design in the literature.

•	 Modeling: To define a model, it is highly recommended

that the model be highly adaptive. An experimental

design has a complex nature to deploy a parametric

regression or simply behaves as a linear system.

However, there are simulations with “model-free” as a

nonparametric model of a system that allow data from

most parts of the simulation space.

For example, in an experiment with 200 variables, the number of

possible combinations are 2200, and there are combinations of factors. But

what is a factor? A factor is a parameter, an input variable, or a module of a

simulation model or simulation computer program [51]. In this sense, it is

necessary define the combinations of factor levels that would be simulated

based on the experiment design and the simulation model.

Chapter 3 Design of Simulation Experiments

52

The input-output analysis (I/O) data of the experiment made for

the simulator allows us to identify the importance of some factors. In

simulations, the process is called what-if analysis. The question is, what

happens if the parameters change?

Other techniques used as regression analysis are known as analysis of

variance (ANOVA). This regression on the metamodel or approximation of

the simulation model belongs to one of these three types:

•	 First-order polynomial: This consists of main effects

only, in other words, a grand mean.

•	 First-order polynomial augmented: There is an

interaction between two factors (two-factor

interactions).

•	 Second-order polynomial: This includes purely

quadratic effects.

Multiple outputs, called responses or criteria, use optimization.

Nevertheless, the term multiple regression analysis refers not to the

number of outputs but to multiples inputs and therefore multiple

independent variables.

The design of experiments (DOE) gives estimators of the main effects,

interactions, and quadratic effects in metamodels regression, improves the

effectiveness of simulation experimentation, and allows the verification

and validation. Other options are the optimization techniques or

simulations based on optimization. To try to identify the decision variables

or input factor k in an optimal point in k-dimensional space (metamodel),

it is helpful to define the objective function to maximize or minimize in a

simulation study.

Chapter 3 Design of Simulation Experiments

53

�Factorial Designs
While analyzing the behavior of a system, it is of interest to find out what

happens when changes are made to the input parameters and how

this impacts a measure of performance. To estimate the change for a

simulation outcome as the input parameters vary, sensibility analyses are

employed.

There are two types of sensibility analysis techniques: local and global.

Local techniques are performed one factor at the time, changing one while

keeping the others fixed. Global techniques explore the definition interval

of each factor, in which the impact of each factor is an average over the

possible values of the other factors [52]. Factorial design techniques are

used in experimental design [53] in order to gain insight into the system’s

behavior with a reasonable quantity of factor combinations. Within the

factorial design techniques, there can be found 2k factorial designs.

�2  k Factorial Design
Presume that a model has k ≥ 2 factors and it is desired to estimate the

impact of each factor on the response and also if the factors interact with

each other. To achieve this, 2k factorial design is used. In this technique,

two levels for each k factor are selected, and then each 2k possible

combination is simulated. To identify the levels a ‘ - ’ and ‘ + ’, symbols are

used; nonetheless, specifying them requires the knowledge of the analyst

to assign them reasonable values; as suggested by the signs, the levels

should be opposite of each other but not to the point of being at unrealistic

extremes. The experiment can be represented using a table. For example,

for k = 2, it would be as shown in Table 3-1, which also is referred as a

design matrix.

Chapter 3 Design of Simulation Experiments

54

Each response is the result of a simulation when a combination of

factors is at its respective levels j−‘ or j+j. The impact of a factor k is the

average change in the response due to the change from j−‘ to + while

keeping the other factors fixed. This average considers every combination

of the other k−1 factors. Note that the main effect is determined with

respect to the current design and factors; therefore, it is not possible to

make extrapolations if other conditions are not fulfilled. To calculate

the main effect of a factor, apply the signs in the factor k column to the

response, add them up, and divide by 2k−1. For example using the

information from design matrix at Table 3-1, the effect for factor e1 will be

defined by the following:

	
e

R R R R
1

1 2 3 4

2
�
� � � �

	
Equation 3-4

and rewritten as follows:

	
e

R R R R
1

2 1 4 3

2
�

�� �� �� �
	

Equation 3-5

In some cases, the level of a factor k1 may depend on the level

of another factor, say k2. In this case, these factors interact, and the

interaction effect is defined by half the difference between the average

Table 3-1.  22 Factorial Design Matrix

Factor Combination Factor 1 Factor 2 Response

1 j−j j−j R1

2 j+j j−j R2

3 j−j j+j R3

4 j+j j+j R4

Chapter 3 Design of Simulation Experiments

55

effect of factor k1 when factor k2 is at j+j minus the average effect of factor

k1 when factor k2 is at j−j. For example, equation 3-6 e1,2, it will be defined

as follows:

	
e

R R R R
1 2

4 3 2 1

2 2, �
�

�
�

	
Equation 3-6

It can be calculated by multiplying the signs of both factors and then

repeating the same procedure explained for the main effect. Note that in

the design matrix at Table 3-1, in the second half that factor k2 is j+j, while

factor k1 is moving from j−j, to j+j; therefore, the first half of the Equation

3-6 reflects the average of moving factor k1 from j−j, to j+j when factor

k2 remains constant at j+j. Similarly, the second half of the Equation 3-6

shows the effect of moving factor k1 from j−j, to j+j, while factor k2 remains

at j−‘. Then the difference between these two parts of the expression is the

difference effect that factor k1 exercises on the response depending on the

levels of factor k2. As can be deduced, the effect is symmetric, so e1,2=e2,1.

A three-factor interaction is possible and is obtained in similar fashion

as the two-factor interaction; nevertheless, its interpretation is more

difficult. If there are higher interactions, the effects cannot be interpreted

as the change from j−j to j+j since the magnitude and change depend at

least on the level of another factor; under this situation, the experiment

needs to be interpreted in a different manner.

As explained during this chapter, a single replica is not enough. To

determine if an effect is real, it is necessary to estimate its variance. A

common practice in simulation experiments is to execute n replicas of

each combination of the design matrix to obtain n independent values

for each effect; then using the t distribution along with these results, a

100(1 − α) confidence interval is built for each effect with n−1 df. If the

confidence interval for a given effect does not include 0, then this effect is

real; otherwise, the statistical evidence suggests that it is not present [54].

Chapter 3 Design of Simulation Experiments

56

�2  k−p Fractional Factorial Designs
2k−p fractional factorial designs offer another alternative to obtain good

estimates of the main effects without the whole cost of a 2k factorial. A

2k−p is formed by using a subset of 2k−p of all the 2k combinations. One

question arises when dealing with 2k−p factorials: how to choose the set of

size 2k−p and p?. This method makes use of confounding, since in factorial

designs several different effects will have them algebraic expression; it

also uses resolution (given in Roman numerals) to quantify the severity of

confounding. To make things easier, in any book of experimental design,

the analyst can find a table that tells him how to pick the subset once he

has decided the total number k of factors; for instance, if k = 4, then he will

find an expression like this:

	 2 4 1234 1
iv
� � � 	 Equation 3-7

Equation 3-7 says that the resolution is 4, and p = 1. Make a 23

factorial matrix, and form the fourth column by multiplying the signs of

columns 1, 2, and 3. The main effect is determined in the same fashion

as 2k factorials but dividing by 2k−p−1. The main goal of this part of the

research is to simulate the methodology proposed. To achieve this, two

different scenarios were suggested, and they were implemented on the

network simulator software ns-3. After tests were finished, the results were

evaluated and validated to verify the performance of the methodology. See

Table 3-2.

Chapter 3 Design of Simulation Experiments

57

�Example
This section follows the procedure shown in the 2k factorial design to gain

more information about the testing scenario shown in E. To estimate how

the input parameters of the model impact the response of each system

configuration, 2k factorial design was used under the factor levels of

Table 3-2.

After simulating using 24 factorial design and making 100 replicas

for each combination, the results shown in Table 3-3 were obtained.

The main effects and the interactions for the nodes and files in the first

scenario are shown in Figure 3-3 (a and b), respectively. By looking at the

plots and the design matrix for the effects, it is pretty clear that the factor

that has the greatest impact on the response of the system is the cloning

probability; the reason for this is in the Quorum Sensing; provided it relies

on population density, when the cloning probability is low, there are a

few agents, probably the initial population plus some clones. Therefore,

there are low amounts of molecules in each node; nevertheless, when

the cloning probability increases, so does the number of agents and the

number of molecules in each node. This shows that in order to increase

the success of the communication strategy proposed in this research, the

population of agents needs to grow in a scalable manner.

Table 3-2.  Factor Levels

Factor Low-Level High-Level

Molecules capacity 5000 15000

Quorum threshold 0.3 0.7

Cloning probability 0.05 0.15

Mutation probability 0.05 0.15

Chapter 3 Design of Simulation Experiments

58

Additionally, two factors stand out, the molecules capacity and the

quorum threshold, that have similar effects in both scenarios. When both

of these factors increase, their impact on the response is negative, since

both require that more molecules be released in each node. In scenario

1, all the nodes are on the same utility curve, so it’s easier for an agent to

find nodes and fulfill its utility. Hence, a single agent while traversing the

network can release molecules on several nodes.

The last factor is the mutation probability, but as can be seen in

the plots, this is the factor that has the lowest effect on the response,

provided this factor must be redesigned for future implementations of

the communication strategy proposed in this investigation. Note that in

the majority of plots, the interaction does not have a significant effect

on the response. However, for the number of nodes in scenario 1 in

Figure 3-3, there are two interactions between the number of molecules

and the quorum threshold. This means that the effect of either factor

depends on the level of the other. To check the information of the effects

and interactions in detail, please refer to Table 3-4.

Chapter 3 Design of Simulation Experiments

59

Ta
bl

e
3-

3.
 2

4 F
ac

to
ri

al
 M

at
ri

x
D

es
ig

n

Sc
en

ar
io

 1
Ru

n
M

ol
ec

ul
es

Ca

pa
ci

ty
Qu

or
um

th

re
sh

ol
d

M
ut

at
io

n
Pr

ob
ab

ili
ty

Cl
on

in
g

Pr
ob

ab
ili

ty
No

de
s

Va
ria

nc
e

Fi
le

s
Va

ria
nc

e

1
-1

-1
-1

-1
22

.2
8

29
0.

54
7

11
.2

8
69

.1
73

2
1

-1
-1

-1
20

.1
5

31
0.

79
5

10
.0

5
77

.1
99

3
-1

1
-1

-1
20

.3
9

31
6.

36
2

10
.1

8
78

.7
15

4
1

1
-1

-1
13

.7
19

2.
23

2
8.

52
64

.5
35

5
-1

-1
1

-1
19

.5
5

31
0.

37
1

9.
82

73
.8

66

6
1

-1
1

-1
18

.9
32

0.
67

7
9.

38
78

.9
85

7
-1

1
1

-1
19

.1
2

31
9.

35
9

9.
49

77
.9

09

8
1

1
1

-1
13

.7
8

20
4.

65
8

8.
26

67
.5

28

9
-1

-1
-1

1
33

.8
1

58
.7

82
16

.9
7

12
.6

15

10
1

-1
-1

1
31

.3
9

12
6.

92
7

15
.7

4
28

.7
80

11
-1

1
-1

1
31

.8
1

11
1.

73
1

16
.0

2
25

.2
12

12
1

1
-1

1
27

.0
3

19
9.

06
0

14
.0

2
49

.4
95

(c
on

ti
n

u
ed

)

Chapter 3 Design of Simulation Experiments

60

Sc
en

ar
io

 1
Ru

n
M

ol
ec

ul
es

Ca

pa
ci

ty
Qu

or
um

th

re
sh

ol
d

M
ut

at
io

n
Pr

ob
ab

ili
ty

Cl
on

in
g

Pr
ob

ab
ili

ty
No

de
s

Va
ria

nc
e

Fi
le

s
Va

ria
nc

e

13
-1

-1
1

1
32

.4
5

10
3.

60
4

16
.1

9
24

.1
55

14
1

-1
1

1
31

.5
4

13
7.

30
1

15
.5

1
33

.4
24

15
-1

1
1

1
31

.3
7

13
9.

06
4

15
.6

2
34

.0
16

16
1

1
1

1
28

.5
9

16
1.

35
5

14
.8

3
38

.3
04

Ta
bl

e
3-

3.
 (

co
n

ti
n

u
ed

)

Chapter 3 Design of Simulation Experiments

61

Figure 3-3.  Effects for the scenario 1

Table 3-4.  Scenario 1 Effects and Interactions

Scenario 1
Factor Nodes Variance Files Variance

Molecules C -3.213±0.361 7.842 -1.158±0.166 1.657

Quorum T -3.035±0.337 6.807 -1.000±0.154 1.431

Mutation P -0.658±1.871 210.451 -0.460±0.941 53.194

Cloning P 12.515±1.645 162.565 5.990±0.828 41.183

Molecules C X Quorum T -1.685±0.375 8.465 -0.263±0.172 1.783

Molecules C X Mutation P 0.793±0.370 8.244 0.373±0.179 1.936

Molecules C X Cloning P 0.490±0.322 6.216 -0.018±0.166 1.653

Quorum T X Mutation P 0.640±0.348 7.280 0.325±0.170 1.746

Quorum T X Cloning P 0.438±0.318 6.066 0.020±0.153 1.412

Mutation P X Cloning P 0.635±1.483 132.138 0.310±0.760 34.718

(continued)

Chapter 3 Design of Simulation Experiments

62

Scenario 1
Factor Nodes Variance Files Variance

Molecules C X Quorum T X

Mutation P

0.045±0.320 6.161 0.038±0.157 1.490

Molecules C X Quorum T X

Cloning P

0.628±0.331 6.594 0.043±0.168 1.686

Quorum T X Mutation P X

Cloning P

-0.058±0.326 6.399 0.030±0.147 1.294

Molecules C X Mutation P X

Cloning P

0.085±0.338 6.859 0.068±0.156 1.468

Molecules C X Quorum T X

Mutation P X Cloning P

0.078±0.317 6.046 0.128±0.146 1.282

Table 3-4.  (continued)

�Summary
This chapter was about the conceptualization of the experiments and the

simulation models based on objective functions. This chapter introduced

a simulation methodology based on empirical design processes that guide

the definition of the tests. For this, several abstractions, formal methods,

and recommendations were proposed. The chapter also presented some

procedural and analytical tools. This chapter included an example of a

design process of an experiment in ns-3 with results. At the end of the

chapter, you will find some complementary readings of formal methods of

simulation.

Chapter 3 Design of Simulation Experiments

63

�Complementary Readings
•	 Generalized discrete event abstraction of continuous

systems: GDEVS formalism [55]

•	 Design and modeling for computer experiments [56]

•	 Some tactical problems in digital simulation [57]

•	 What do we mean by sensitivity analysis? The need for

comprehensive characterization of “global” sensitivity

in Earth and environmental systems models [58]

•	 Verification, validation, and testing [51]

•	 Searching for important factors in simulation models

with many factors: sequential bifurcation [59]

•	 Screening for the important factors in large discrete-

event simulation models: sequential bifurcation and its

applications [60]

Chapter 3 Design of Simulation Experiments

65© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_4

CHAPTER 4

Network Simulating
Using ns-3

I am god, I am hero, I am philosopher, I am demon and I am
world, which is a tedious way of saying that I do not exist.

—[61]

�ns-3 at a Glance
ns-3 is an open source discrete-event simulator, licensed under the GNU

GPLv2 license. It is publicly available for research, development, and

learning over networks, protocols, and traffic (Figure 4-1).

ns-3 in recent years has become one of the most prominent and

important network simulators. It allows you to create a complete network

environment to design, model, test, and improve networks, protocols, and

systems. It supports a great number of protocols.

The discrete-event network simulator is primarily for research

and educational use. ns-3 has two main objectives. One of them is to

enable research, not only for the academic community, but for modern

networking research. The second is to contribute to the industry. This

contribution has allowed the simulator to evolve through peer review and

validation. All contributions are documented on the ns-3 site.

https://doi.org/10.1007/978-1-4842-6849-0_4#DOI

66

The ns-3 simulator’s architecture is composed of a set of modules,

containing the abstraction, the core, and the compiler of the ns-3

simulator. This structure works with scripts in C++ and the Python

language. Additionally, the simulation outputs may be saved in .pcap

(Wireshark format) and .tr (trace format) files, which is a huge help to

read and analyze the traffic flows and the behavior of all components,

systems, and members from the scenario simulation.

Another characteristic of ns-3 is the ability to execute an emulation

over NICS. A method to emulate is the Network Simulation Cradle tool.

The ns-3 maintainers encourage its users to use this tool. The POSIX

emulation permits running daemons and calls over the operating system

and the ns-3 core.

The ns-3 project is committed to building a solid simulation core that

is well documented, easy to use, and easy to debug, and that caters to the

needs of the entire simulation workflow, from simulation configuration to

trace collection and analysis. See Figure 4-2.

Figure 4-1.  An open source organization (www.nsnam.org)
maintains the ns-3 project

Figure 4-2.  ns-3 modules

Chapter 4 Network Simulating Using ns-3

http://www.nsnam.org

67

Moreover, the ns-3 models are more realistic and more efficient in

the simulation context. ns-3 uses a real-time emulator and connects

to other devices with the ns-3 simulator. An example of that is direct

code execution (DCE) or Cradle (https://www.nsnam.org/overview/

projects/direct-code-execution/), created by [62]. The emulations

use the real network functions from your computer to simulator. This

framework is able to operate in user space and kernel space to run an

emulation, using the Linux networking stack.

Another feature of the emulator is the ability to create real scenarios

with virtual machines, interconnected by a local network, the cloud, or the

Internet. This operation mode deploys protocol implementations, probes

new protocols, and measures new network topologies.

The ns-3 simulation’s core at shows Figure 4-2 the main class. Its

functions run and debug the simulation. The simulator and common

classes, have event scheduler control , the settings and the packet

modules. The node as the main class in order to describe and create the

physical abstraction of network devices, the node class use the attributes

from mobility class, routing class, internet Stack class and devices to

create a simulations with all network abstractions possibles. All of these

class are linked by helpers, and the helpers are APIs that communicate all

abstractions and classes to the running simulations.

�Relations Between Abstractions on ns-3
How do you model a network in ns-3 [10]? The answer is simple: you use

the main abstractions and create your own network. The main abstractions

are as follows:

•	 Nodes: Nodes represent all devices or final systems with

the computing resources.

Chapter 4 Network Simulating Using ns-3

https://www.nsnam.org/overview/projects/direct-code-execution/
https://www.nsnam.org/overview/projects/direct-code-execution/

68

•	 Network devices: These are the physical devices that

connect a node with the channel. For example, an IEEE

802.11 NIC connects the node in wireless mode.

•	 Channel: This represents the medium used for the

information transmission between nodes and other

networks. The medium could be air (spectrum), fiber-

optic, or wire.

•	 Protocols: These are a set of rules allowing the

communication between nodes over a network. In ns-

3, the protocols are inside the core of the compiler. The

protocols are organized in the protocol stack by layer,

and in each layer some functions exist that interact

with the protocol or protocols.

•	 Headers: These are the subsets of data in a network

package. This package represents a well-defined

protocol such as IPv6. That header has a specific format

and is associated in the most cases to RFC.

•	 Packets: These are the main unit of information

exchange between nodes. Packets contain the headers

and the payload and describe protocols. The exchange

of packets defines the simulation and the behavior and

produce all the results. In other words, these make up

the main data on the network system.

•	 Other: Other elements such as random variables, trace

objects to work after the simulation, helpers, and

attributes will be described later in the chapter.

Chapter 4 Network Simulating Using ns-3

69

�Code Style
The clean code paradigm [63] is not a concept that is easy to define. This

approach to programming has a subjective set of characteristics. Clean code

is elegant, efficient, simple, and direct, and it can be read and improved.

According to Bjarne Stroustrup, “the clean code does one thing well.”

When writing code for ns-3, the code layout follows the GNU coding

standard [64]. For example, for type functions, methods, and naming, it is

recommended to use the CamelCase convention, and names should be

based on the common English language.

Listing 4-1 shows the naming conventions for ns-3.

Listing 4-1.  Naming Conventions

 1 #ifndef MY_CLASS_H

 2 #define MY_CLASS_H

 3

 4 namespace n3 {

 5

 6 /**

 7 �* \brief short one-line description of the purpose of

your class

 8 *

 9 �* A longer description of the purpose of your class

after a blank

10 * empty line.

11 */

12 class MyClass

13 {

14 public:

15 MyClass ();

16 /**

Chapter 4 Network Simulating Using ns-3

70

17 �* \param firstParam a short description of the purpose

of this parameter

18 �* \returns a short description of what is returned from

this function.

19 *

20 * A detailed description of the purpose of the method.

21 */

22 int DoSomething (int firstParam);

23 private:

24 void MyPrivateMethod (void);

25 int m_myPrivateMemberVariable;

26 };

27

28 } // namespace ns3

29

30 #endif /* MY_CLASS_H */

The ns-3 project uses the Doxygen tool to generate documentation

from a C++ source document. The next header is defined to license the

code under the GPL. Please do not add the “All Rights Reserved” phrase

after the copyright statement. See Listing 4-2.

Listing 4-2.  Documentation

 1 �/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil;

-*- */

 2 /*

 3 * Copyright (c) YEAR COPYRIGHTHOLDER

 4 *

 5 �* �This program is free software; you can redistribute it

and/or modify

 6 �* �it under the terms of the GNU General Public License

version 2 as

Chapter 4 Network Simulating Using ns-3

71

 7 * published by the Free Software Foundation;

 8 *

 9 �* �This program is distributed in the hope that it will be

useful,

10 �* �but WITHOUT ANY WARRANTY; without even the implied

warranty of

11 �* �MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the

12 * �GNU General Public License for more details.

13 *

14 �* �You should have received a copy of the GNU General

Public License

15 �* �along with this program; if not, write to the Free

Software

16 �* �Foundation, Inc., 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA

17 *

18 * Author: MyName <myemail@example.com>

19 */

To check that your code is useful, run the utils/check-style.py

script.

�My First Network
As shown in Figure 4-3, to create a network, we have define some

elements. The following is the proposed model [10]:

	 1.	 Define the simulation scenery.

	 2.	 Define the topology network and the elements to

evaluate.

	 3.	 Define the main metrics to evaluate the simulation.

Chapter 4 Network Simulating Using ns-3

72

	 4.	 Define the main events and main modules.

	 5.	 Build the script.

	 6.	 Run the script.

	 7.	 Analyze and validate the results.

	 8.	 Generate conclusions and improvements.

	 9.	 Resimulate.

The first example to understand how ns-3 works is located in the folder

tutorials in the ns-3 main folder. The script is called first. This script is

a simple point-to-point network that sends packets between nodes. In this

example, the script is in C++. Listing 4-3 shows the script.

Listing 4-3.  First Script

 1 �/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil;

-*- */

 2 /*

Figure 4-3.  Steps of simulation

Chapter 4 Network Simulating Using ns-3

73

 3 �* �This program is free software; you can

redistribute it and/or modify

 4 �* �it under the terms of the GNU General Public

License version 2 as

 5 * published by the Free Software Foundation;

 6 *

 7 �* �This program is distributed in the hope that it

will be useful,

 8 �* �but WITHOUT ANY WARRANTY; without even the

implied warranty of

 9 �* �MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the

10 �* GNU General Public License for more details.

11 *

12 �* �You should have received a copy of the GNU

General Public License

13 �* �along with this program; if not, write to the

Free Software

14 �* �Foundation, Inc., 59 Temple Place, Suite 330,

Boston, MA 02111-1307 USA

15 */

16

17 #include "ns3/core-module.h"

18 #include "ns3/network-module.h"

19 #include "ns3/internet-module.h"

20 #include "ns3/point-to-point-module.h"

21 #include "ns3/applications-module.h"

22

23 using namespace ns3;

24

25 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

Chapter 4 Network Simulating Using ns-3

74

26

27 int main (int argc, char *argv[])

28 {

29 CommandLine cmd;

30 cmd.Parse (argc, argv);

31

32 Time::SetResolution (Time::NS);

33 �LogComponentEnable ("UdpEchoClientApplication",

LOG_LEVEL_INFO);

34 �LogComponentEnable ("UdpEchoServerApplication",

LOG_LEVEL_INFO);

35

36 NodeContainer nodes;

37 nodes.Create (2);

38

39 PointToPointHelper pointToPoint;

40 �pointToPoint.SetDeviceAttribute ("DataRate",

StringValue ("5Mbps"));

41 �pointToPoint.SetChannelAttribute ("Delay",

StringValue ("2ms"));

42

43 NetDeviceContainer devices;

44 devices = pointToPoint.Install (nodes);

45

46 InternetStackHelper stack;

47 stack.Install (nodes);

48

49 Ipv4AddressHelper address;

50 address.SetBase ("10.1.1.0", "255.255.255.0");

51

Chapter 4 Network Simulating Using ns-3

75

52 �Ipv4InterfaceContainer interfaces = address.Assign

(devices);

53

54 UdpEchoServerHelper echoServer (9);

55

56 �ApplicationContainer serverApps = echoServer.Install

(nodes.Get (1));

57 serverApps.Start (Seconds (1.0));

58 serverApps.Stop (Seconds (10.0));

59

60 �UdpEchoClientHelper echoClient (interfaces.GetAddress

(1), 9);

61 echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

62 �echoClient.SetAttribute ("Interval", TimeValue

(Seconds (1.0)));

63 �echoClient.SetAttribute ("PacketSize", UintegerValue

(1024));

64

65 �ApplicationContainer clientApps = echoClient.Install

(nodes.Get (0));

66 clientApps.Start (Seconds (2.0));

67 clientApps.Stop (Seconds (10.0));

68

69 Simulator::Run ();

70 Simulator::Destroy ();

71 return 0;

72 }

Here’s what the script does:

	 1.	 From lines 17 to 21, the libraries for the modules

needed for the simulation are included.

Chapter 4 Network Simulating Using ns-3

76

	 2.	 Line 23 uses a namespace called ns3. This is a

global namespace that groups all relationships to

the script in a scope outside the global space, which

is useful to integrate all code used in the main script.

	 3.	 Line 25 declares a logging component called

FirstScriptExample to enable or disable console

message logging.

	 4.	 Line 27 begins and declares the main script.

	 a.	 The use of a NodeContainer helper is shown in lines 36 and

37. The NodeContainer object constructs two nodes.

	 b.	 Lines 39 to 41 use PoinToPointHelper and the methods

SetDeviceAttribute and SetChannelAttribute to set the

attributes, variable values, and configuration for the desired

simulation execution. Those values are added as strings.

	 c.	 Line 44 is the Install method for passing in

the NodeContainer object and returning a new

NetDeviceContainer, which contains the network devices

that were created when installing the point-to-point network

connecting the two nodes.

	 d.	 Line 46 indicates the use of the InternetStackHelper. This

method includes the Internet stack protocols, such as Address

Resolution Protocol (ARP), Internet Protocol (IP), and

Transmission Protocol (TCP).

	 e.	 Lines 49 to 52 set the IPV4 address to Ipv4AddressHelper to

specify the network address and mask. Line 50 indicates the

base of IPV4 address, at line 52, Ipv4InterfaceContainer,

holds the IPV4 address for all the network interfaces created

for the nodes simulation.

Chapter 4 Network Simulating Using ns-3

77

	 f.	 Lines 54 to 58 show the application helper that creates a server
service; it’s called UdpEchoServerHelper. These values are
strings that indicate the port (9 in this case). Line 56 installs
the server application on node 1 with the Get method. This
form creates an instance of an UDP echo server service. The
services are passed through a container object. In this way,
the services will be installed on all nodes in the container,
and ApplicationContainer will contain a pointer to the
application at each node. Lines 57–58 indicate the time of
event, in this case referring to the server application on node 1.

	 g.	 Lines 60–63 show other features for the application helpers,
such as UdpEchoClientHelper. The constructor at line 60
initializes the destination address and port for the echo data
service. The SetAttribute methods are attributes and allow
you to choose some metrics for the simulation.

	 h.	 The echo client application is installed on a single node (in
this case, node 0 in the Node-Container object), and event
start/stop times are specified in lines 65–67.

	 i.	 The simulator method Run is called on line 69, which causes
the simulation to start executing the simulated events.

	 j.	 The Destroy method is called explicitly to allow all objects in
the ns-3 environment to exit cleanly and return all allocated
memory. This call is not strictly necessary in order to obtain
correct simulation results but does allow thorough memory
leak checking to be done.

In Listing 4-3, the echo client sends only one packet and receives
one reply, after which there are no more pending events. The simulation
terminates, and the Run method returns to the caller. A more detailed
account of the procedure is discussed in the following section and
illustrated in Figure 4-4, which explains the abstractions creation and the

process in the script.

Chapter 4 Network Simulating Using ns-3

78

�Running and Building Other Scripts
To run examples (programs) and build on the installation process, you go

to the ns_folder and type the command to run followed by the program’s

name without the .cc extension, as shown here:

1 ./waf --run program_name)

To list the available programs, type the following:

1 ./waf --run non-existent-program-name)

Another way to run programs is to use Python, but you need type the

next command path to the script file and the –pyrun command instead

of --run:

1 ./waf --pyrun examples/wireless/mixed-wireless.py

Another technique to run ns-3 programs that does not require using

the ./waf –run command is to use the ns-3 shell, which takes care of

setting up all the environment variables necessary to do so:

1 ./waf shell

See Figure 4-4.

Chapter 4 Network Simulating Using ns-3

79

Then run this:

1 ./build/debug/examples/csma-broadcast

You can use other special tools to run the scripts on ns-3 such as

valgrind or gdb. Type the next command:

1 ./waf --run csma-cd-one-subnet --command-template="gdb %s"

Or type this:

1 �./waf --run csma-cd-one-subnet --command-template="valgrind %s"

Figure 4-4.  Graphical representation for the first example of ns-3

Chapter 4 Network Simulating Using ns-3

80

Now to run a new example or program, it is useful to build a modified

version of a script and drop it into the scratch directory. Then run ns3_

version_folder waf again.

1 cp examples/csma/csma-broadcast.cc scratch/csma-modified.cc

2 ./waf

To build C++ files simultaneously, you need to create a new

subdirectory in the scratch directory and build it.

1 mkdir scratch/modified

2 cp x.cc scratch/modified

3 cp y.cc scratch/modified

4 ./waf

This will build a new program named after your subdirectory

(modified here), and you can run it just like any other example:

1 ./waf --run modified

�Emulation on ns-3
The ns-3 software has two fundamental tools that allow its integration into

emulation environments through network devices. The first one allows

reading and writing file descriptors, which are smart pointers or handlers

that allow, in Unix operating systems, access to resources such as network

devices. In this way, through the FdNetDevice class, the user can provide

the program with a file descriptor associated with a TUN/TAP device, a

socket, or a user space process to read or write traffic. Take as an example

the simplest program of ns-3 using the FdNetDevice class: dummy-network.

cc. In this example, two nodes are created to which an Internet stack and

a network device are installed. A helper of the FdnetDevice class is also

created. See Listing 4-4.

Chapter 4 Network Simulating Using ns-3

81

Listing 4-4.  FdnetDevice

1 NodeContainer nodes;

2 nodes.Create (2);

3

4 InternetStackHelper stack;

5 stack.Install (nodes);

6

7 FdNetDeviceHelper fd;

8 NetDeviceContainer devices = fd.Install (nodes);

Subsequently, a pair of connected sockets of type AF UNIX are created

with the SOCK DGRAM protocol and their respective file descriptors. See

Listing 4-5.

Listing 4-5.  Datagram socket creation

1 int sv[2];

2 if (socketpair (AF_UNIX, SOCK_DGRAM, 0, sv) < 0)

3 {

4 �NS_FATAL_ERROR ("Error creating pipe=" << strerror (errno));

5 }

Then, each of the nodes is assigned a file descriptor. See Listing 4-6.

Listing 4-6.  File Descriptor creation

1 Ptr<NetDevice> d1 = devices.Get (0);

2 Ptr<FdNetDevice> device1 = d1->GetObject<FdNetDevice> ();

3 device1->SetFileDescriptor (sv[0]);

4

5 Ptr<NetDevice> d2 = devices.Get (1);

6 Ptr<FdNetDevice> device2 = d2->GetObject<FdNetDevice> ();

7 device2->SetFileDescriptor (sv[1]);

An IPv4 address is assigned to each of the nodes. See Listing 4-7.

Chapter 4 Network Simulating Using ns-3

82

Listing 4-7.  Set Ipv4 Adress

1 Ipv4AddressHelper addresses;

2 addresses.SetBase ("10.0.0.0", "255.255.255.0");

3 �Ipv4InterfaceContainer interfaces = addresses.Assign

(devices);

See Figure 4-5.

A V4Ping application is created and installed on node 1. This application

sends an ICMP echo request from node 1 to node 0 in the second 0, waits for

a response, and reports the round-trip time. See Listing 4-8.

Listing 4-8.  Set ICMP message

1 Ptr<V4Ping> app = CreateObject<V4Ping> ();

2 �app->SetAttribute ("Remote", Ipv4AddressValue (interfaces.

GetAddress (0)));

3 app->SetAttribute ("Verbose", BooleanValue (true));

4 nodes.Get (1)->AddApplication (app);

5 app->SetStartTime (Seconds (0.0));

6 app->SetStopTime (Seconds (4.0));

Figure 4-5.  Emulation example on ns-3

Chapter 4 Network Simulating Using ns-3

83

Finally, pcap is enabled for FdNetDeviceHelper, and the simulation

starts. See Listing 4-9.

Listing 4-9.  Enable packet capture as pcap file

1 fd.EnablePcapAll ("dummy-network", true);

2

3 Simulator::Stop (Seconds (5.));

4 Simulator::Run ();

5 Simulator::Destroy ();

To run the script, you use the command ./waf [65]. This is a build

automation tool designed to assist in the automatic compilation and

installation of computer software. Next, use the prefix −−run and the script

name. In this case, the command is as follows:

1 ./waf --run script-name

2 //For the example

3 ./waf --run first

�Animating the Simulation
Before beginning the modeling process, a key step is to define the

requirements as a service. In real-world networks, everything is

understood and managed as a service. This implies that a series of

requirements, metrics, and user satisfaction levels may be established.

Because the nature of simulation software is useful, you can create a set

of quantitative metrics that can be processed by ns-3 statistical modules

and get conclusions quickly. However, the animated tools are useful

to determine the behavior and check the events over the nodes and all

simulation objects.

Chapter 4 Network Simulating Using ns-3

84

In ns-3, you can use two tools for animating: PyViz and NetAnim.

In some cases, the animation is an important tool for interpreting the

network simulation. The PyViz method is described at www.nsnam.org/

wiki/PyViz. PyViz has been integrated into the mainline ns-3, starting

with version 3.10. To use the visualizer, add –vis to the end of the

simulation command.

1 �./waf --pyrun src/flow-monitor/examples/wifi-olsr-flowmon.

py –vis

PyViz is a data visualization tool used on ns-3 as a live simulation

visualizer to check the mobility models, check dropped packets, and verify

the state on the same objects while running the simulation. To install PyVis

correctly, see the https://www.nsnam.org/wiki/PyViz web page for more

details. The animation looks like Figure 4-6.

Figure 4-6.  NetAnim

Chapter 4 Network Simulating Using ns-3

http://www.nsnam.org/wiki/PyViz
http://www.nsnam.org/wiki/PyViz
https://www.nsnam.org/wiki/PyViz

85

The other tool is NetAnim, which is an offline animation tool. To

enable it, type the next statement in the script header:

1 #include "ns3/netanim-module.h"

Then type the following statement before the Simulator::Run()

statement:

1 AnimationInterface anim ("animation_example.xml")

Here, animation_example.xml is any arbitrary filename to save the

simulation data in so it can be animated offline. Figure 4-7 shows the

NetAnim GUI. It provides some controls to check the simulation and

menus to gain granularity on a specific node or event.

See Figure 4-7.

For detailed instructions on installing NetAnim and loading the XML

trace file (mentioned earlier) using NetAnim, please refer to www.nsnam.

org/wiki/index.php/NetAnim.

Figure 4-7.  NetAnim

Chapter 4 Network Simulating Using ns-3

http://www.nsnam.org/wiki/index.php/NetAnim
http://www.nsnam.org/wiki/index.php/NetAnim

86

�Scheduler
The simulator has an internal simulation clock as a 64-bit integer in a unit

specified by the user through the Time::SetResolution function. The order

established by the simulator to manage the queue of events is FIFO. The

first event inserted into the scheduling queue is scheduled to expire first.

1 �EventId ns3::Simulator::Schedule(Time const &delay,

MEM mem_ptr, OBJ obj)

Sometimes an event is set to expire after a delay. You can use the

parameter to expire the event later at the simulation time as a span of

event life on the experiment. The event expires when it becomes due to be

run. The input method will be invoked on the input object.

Template Parameters

MEM [deduced] Class

method function signature

type. OBJ [deduced]

Class type of the object.

Parameters

[in] delay The relative expiration time of

the event

[in] mem ptr Member method pointer to invoke

[in] obj The object on which to invoke the

member method

Returns

The ID for the scheduled event

1 �EventId ns3::Simulator::Schedule(Time const \& delay,

MEM mem_ptr, OBJ obj, T1 a1)

Schedule(const Time&,MEM,OBJ)

Chapter 4 Network Simulating Using ns-3

87

Template Parameters

MEM [deduced] Class

method function signature

type. OBJ [deduced]

Class type of the object

T1 [deduced] Type of first argument

Parameters

[in] delay The relative expiration time of

the event

[in]mem ptr Member method pointer to invoke

[in] obj The object on which to invoke the

member method

[in] a1 The first argument to pass to the

invoked method

Returns

The ID for the scheduled event

�Logging and Tracing
The logging facility is used to monitor or debug the progress of simulation

programs. To enable it via a program statement in your script on the

main() program, use the NS_LOG environment variable. The statement is

as follows:

1 NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

It is possible to deploy macros to get detailed information from

simulation or events after execution time to get debugging information,

warning, and errors messages quickly.

Chapter 4 Network Simulating Using ns-3

88

Table 4-1 lists the logging classes. Table 4-2 lists the seven levels of log

messages that are defined on the simulator.

For detailed information about logging, see https://www.nsnam.org/

docs/tutorial/html/tweaking.html.

Table 4-1.  Logging Classes

Severity Class Meaning

LOG ALL Log everything

LOG ERROR Serious error messages only

LOG WARN Warning messages

LOG DEBUG For use in debugging

LOG INFO Informational

LOG FUNCTION Function tracing

LOG LOGIC Control flow tracing within functions

Table 4-2.  Logging Levels

Level Meaning

LOG LEVEL ERROR Only LOG ERROR severity class messages

 LOG LEVEL WARN LOG WARN and above

LOG LEVEL DEBUG LOG DEBUG and above

LOG LEVEL INFO LOG INFO and above

LOG LEVEL FUNCTION LOG FUNCTION and above

LOG LEVEL LOGIC LOG LOGIC and above

LOG LEVEL ALL All severity classes

LOG ALL Synonym for LOG LEVEL ALL

Chapter 4 Network Simulating Using ns-3

https://www.nsnam.org/docs/tutorial/html/
https://www.nsnam.org/docs/tutorial/html/

89

�Trace Helpers
The most important outcome of simulation is the output or trace. The

trace subsystem is a mechanism that allows the researcher to build the

first scenario about the experiment, the node behavior, the network

interactions, and the proposed changes on the simulation. Then they can

run other kinds of experiments on the same network model. To enable the

trace, you first must define the trace sinks as entities that consume trace

information and the trace sources as generators of events.

On the ns-3 simulator, there are two kinds of traces: the ASCII trace

and the pcap. Both reduce the amount of data to manage and analyze and

avoid the postprocessing step of having other tools process the output.

The trace systems use a callback system to call functions from other code

without dependencies between them.

The trace subsystem is the more important tool to analyze the

simulation and events and improve the experiment. You need to learn

about the trace subsystem and how to create a proper template to obtain

the output traces.

You need to enable traces on the script. There are two options to

enable traces on the simulation. First enable all traces as .pcap or .tr file

output (as shown on lines 1 and 2). These statements save all information

about the simulation in the output. The second option is to save the data

about a specific protocol, node, or device (as shown on line 3 and 4). The

prefix is the output name, and the n is the object to collect information by

the trace subsystem. See Listing 4-10.

Listing 4-10.  Enable output traces

1 helper.EnableAsciiAll ("prefix");

2 helper.EnablePcapAll ("prefix");

3 helper.EnableAscii ("prefix", n);

4 helper.EnablePcap ("prefix", n);

Chapter 4 Network Simulating Using ns-3

90

For detailed information, see https://www.nsnam.org/docs/

tutorial/html/tracing.html.

�Using Command-Line Arguments
As we saw in Chapter 3, a fundamental characteristic in an experimental

test is the variation of parameters that allow you to know the sensitivity of

the modeling system with regard to a specific parameter. So far, the variation

of a parameter in the simulation has been done by directly changing the

simulation code in ns-3; however, the software has a feature that can be

useful to make these changes without directly affecting the code.

To see how to parse with the command line, let’s return to the first

example in Chapter 1. In this example, we defined two attributes for the

point-to-point communication network device: a transmission rate of

5Mbps and a delay of 2ms in the transmission channel. We also defined

attributes for the echo UDP application client: a maximum of packets of 1,

an interval between packets of 1 second, and a packet size of 1024.

To know the attributes assigned to the point-to-point network device,

we can use the following code in the command line:

1 �./waf --run "scratch/first --PrintAttributes=ns3::PointTo

PointNetDevice"

That gives us as the following result at the command line with the

default attributes:

 1 Attributes for TypeId ns3::PointToPointNetDevice

 2 --ns3::PointToPointNetDevice::Address=[ff:ff:ff:ff:ff:ff]

 3 The MAC address of this device.

 4 --ns3::PointToPointNetDevice::DataRate=[32768bps]

 5 The default data rate for point to point links

 6 --ns3::PointToPointNetDevice::InterframeGap=[+0.0ns]

Chapter 4 Network Simulating Using ns-3

https://www.nsnam.org/docs/tutorial/html/tracing.html
https://www.nsnam.org/docs/tutorial/html/tracing.html

91

 7 �The time to wait between packet (frame)

transmissions

 8 --ns3::PointToPointNetDevice::Mtu=[1500]

 9 The MAC-level Maximum Transmission Unit

10 --ns3::PointToPointNetDevice::ReceiveErrorModel=[0]

11 �The receiver error model used to simulate packet

loss

12 --ns3::PointToPointNetDevice::TxQueue=[0]

13 A queue to use as the transmit queue in the device.

In the same way, we can use the following command:

1 �./waf --run "scratch/first -PrintAttributes=ns3::UdpEcho

Client"

This gives us the following result at the command line with the default

attributes of the echo application:

 1 Attributes for TypeId ns3::UdpEchoClient

 2 --ns3::UdpEchoClient::Interval=[+1000000000.0ns]

 3 The time to wait between packets

 4 --ns3::UdpEchoClient::MaxPackets=[100]

 5 �The maximum number of packets the application will

send

 6 --ns3::UdpEchoClient::PacketSize=[100]

 7 Size of echo data in outbound packets

 8 --ns3::UdpEchoClient::RemoteAddress=[00-00-00]

 9 The destination Address of the outbound packets

10 --ns3::UdpEchoClient::RemotePort=[0]

11 The destination port of the outbound packets

Chapter 4 Network Simulating Using ns-3

92

Not only can we observe the assigned attributes; we can also change

them without directly intervening in the program code. For example,

if in the same program we eliminate the lines of code that define the

transmission rate and delay attributes of the channel, we can execute the

following lines:

1 �./waf --run "scratch/first --ns3::PointToPointNetDevice::

DataRate=5Mbps"

Here, we will run the program using a 5Mbps transmission rate. Or if

we run this:

1 �./waf --run "scratch/first --ns3::PointToPointChannel::

Delay=2ms"

then we will obtain the simulation results with a delay in the channel of

2ms.

In this way, we can quickly change the simulation parameters without

directly intervening in the code.

For example, we can create a bash script, as shown in Listing 4-11.

Listing 4-11.  Bash script

 1 #! /bin/bash

 2

 3 cd /home/ns3/Downloads/ns-allinone-3.XX/ns-3.XX

 4

 5 Mbps="Mbps"

 6 for i in {1..5}

 7 do

 8 datarate="iMbps";

 9 �./waf --run "scratch/first --ns3::PointToPoint

NetDevice::DataRate=$datarate"

10 done

Chapter 4 Network Simulating Using ns-3

93

Here, we perform an iteration in which we run the simulation five

times with five different transmission rates. In this way, we can verify in a

single script the transmission rates we want and make a scan that allows us

to know the response of the simulation when this parameter changes.

In addition to the default attributes for the ns-3 classes, we can

create our own parameters to be modified at the command line. The

CommandLine class of ns-3 allows you to perform the parse process with the

command line. Through an instance of this class we can create variables

that can be modified using the command line.

In our example, there is already an instance of the CommandLine class

called cmd. If after the definition of this instance we add the following line

of code:

1 �cmd.AddValue("nPackets", "Number of packets to echo",

n_packets);

we will be adding a variable called nPackets that can be modified on

the command line and will have the description “Number of packets to

echo.” The value that we add through the command line will be stored in

the ns-3 simulation in the variable called n packets, so we must define it

beforehand as follows:

1 uint32_t n_packets = 1;

Now we just have to use the variable we have obtained from the

command line in our simulation. In defining the attribute of the number of

packets sent in the echo application, we make the following modification:

1 �echoClient.SetAttribute ("MaxPackets", UintegerValue

(n_packets));

Once the modification process is finished, we can go to the command

line and execute the following line of code:

1 ./waf --run "scratch/first --PrintHelp"

Chapter 4 Network Simulating Using ns-3

94

In this way, we can see the arguments that can be modified. There we

can find the option nPackets that is found by default in 1, since it is the

value assigned to the variable n packets.

If we want to modify the value of the variable, we can write the

following line:

1 ./waf --run "scratch/first --nPackets=2"

In this way, we can change the number of packages sent in the echo

application. We can also create a bash script where we can automatically

iterate over the values we want.

�Summary
This chapter described the ns-3 basic coding elements, style, and

the simulation process in detail through examples and step-by-step

explanations. It explored functionalities such as logging, tracing, and

animation, which are essential for creating programs and analyzing the

results. Also, the chapter covered emulation and scheduling functions.

Next you will find some proposed exercises.

�Exercises
Here are some exercises to do on your own:

	 i.	 Create a network with nine nodes and a star

topology and ping all the nodes.

Chapter 4 Network Simulating Using ns-3

95

	 ii.	 Run the fifth example, (ns-3/examples/tutorial

folder) to view the contention window, and graph

the output (you can use gnuplot).

	 iii.	 Create a network with five nodes, with a bus

topology, and create a scenario to drop packets.

	 iv.	 Create a network with a mesh topology with 12

nodes and ping all the nodes.

	 v.	 Animate all exercises with PyViz and NetAnim.

Chapter 4 Network Simulating Using ns-3

97© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_5

CHAPTER 5

Analysis of Results
“Science is thus a slave to its own methods and techniques,
while they are successful.”

—[66]

As computers become more powerful today, they also become an

important means to analyze data and perform simulations of theoretical

models and complex systems, just by setting up different scenarios,

varying some parameters, and allowing their execution. Simulation is a

tool employed for theoretical and empirical research. When a theoretical

model is instantiated and simulated, the output data generated can be

considered as a hypothesis, which produces the starting point for an

experimental process and also creates a foundation to make operational

decisions before a real implementation.

Simulation as such is a computer process that imitates a physical

process generating a similar response; it requires a model of a real process

or system, which is translated into an executable program producing an

output that attempts to mimic the output of a real system. In simulation,

it is possible to achieve a higher level of fidelity. This process is called

emulation, in which all of the inner components of a system are simulated

to produce more realistic output; however, since the level of detail is

superior because finer aspects of the real model are considered, emulation

could be more computationally expensive and harder to model.

https://doi.org/10.1007/978-1-4842-6849-0_5#DOI

98

Exploring a theoretical model through simulation helps to understand

how the outcomes from different scenarios would be provided the degree

of accuracy in the theory; nevertheless, this does not mean that the

theory has been corroborated or controverted, since through simulation

the theory is only instantiated. If it is desired to validate the theory, it is

necessary to experiment under real-world conditions in order to have

enough evidence that supports the accuracy of the model and therefore

the motivating theory.

Simulation is also used to generate predictions of a real system, if the

system was modeled with a certain level of accuracy. Simulation allows

you to run what-if scenarios with the goal of having various alternatives

to verify the possible outcomes either good or bad from the model.

Provided that most simulations start from a theoretical model instead

of an empirical one, the output of the simulation represents different

predictions under specific conditions. Since a theoretical model describes

the behavior of a system given the knowledge and understanding from it,

before a theoretical model can be considered an empirical one, it must be

validated through simulation under controlled conditions, thus producing

a hypothesis for experimentation. With these hypotheses, it is expected

that the real system will produce the same output while experimenting

under the same controlled conditions. If the output data of the experiment

is statistically close to the output data of the simulation, this will bring

enough support of the accuracy of the theoretical model. However, if they

differ, during the process some errors may have been made that caused

such a result. It is important to keep in mind that regardless of the accuracy

of the theoretical model, simulation should never be considered as a

substitute for experimentation.

Chapter 5 Analysis of Results

99

�Output Data Analysis for a Single System
When developing a model, a great amount of dedication and work is put

into building and programming it but not so much into analyze its results.

A common practice is to run a simulation (replica) of an arbitrary length

m assuming that its results describe the real characteristics of the system.

Simulation models use random variables; therefore, the output is random,

which makes a single replica useless. Since a simulation involves the

realization of random variables that could have huge variances, the result

can differ greatly from the real system. Simulation can also be defined as a

computer-based statistical experiment. If its results will be used to validate

a model, to give a good interpretation and meaning to the results, it is

important to use appropriate statistical techniques.

x x x x

x x x x

x x x

i m

i m

j j j i

1 1 1 2 1 1

2 1 2 2 2 2

1 2

, , , ,

, , , ,

, , ,

, , ,

, , ,









⋅ ⋅ ⋅ ⋅
xx

x x x x

j m

n n n i n m

,

, , , ,, ,

⋅ ⋅ ⋅ ⋅

1 2

Let x1,1, x1,2, x1,i, x1,m be the realization from the output stochastic

process X1, X2, , Xi, Xm when using a set of random numbers as their

input. If the same scenario is performed using a different set of random

numbers as input, this will result in a different realization x2,1, x2,2, x2,3, x2,m

of the random numbers X1, X2, Xm. Now, if n independent replications are

performed in which the input parameters for the random numbers are

reinitialized and the initial conditions are the same for each replication

with a length m, this will result in the next observations.

The observations from a single replica (row) cannot be processed

with traditional statistical techniques, because they are auto-correlated,

not stationary, and not independent and identically distributed (IID).

Chapter 5 Analysis of Results

100

Consequently, a replica of an arbitrary length has little significance by

itself; nonetheless, note the column i: x1,i, x2,i, xj,i, xn,i are IID observations

for the random variable Xi. The basis for output data analysis for

simulations is to perform n replicas, with each one of length m having

the same initial conditions, but using different seeds to produce random

numbers and finally using the IID observations xj,i (where i = 1, 2, ... , m

and j = 1, 2, , n) to gain information to estimate performance measures for

the behavior of the system.

�Transient and Steady-State Behavior of a
Stochastic Process
Consider X = X1, X2, ..., Xm to be the output of a stochastic process, and let

Fi(X | I) = P (Xi ≤ x | I), where Fi(X | I) at time i is given the initial conditions I.

As shown in Figure 5-1, each transient distribution has a density

function fyi . The density functions specify how the behavior of the random

variable changes from one replication to another. If x and I are fixed,

then F1(x | I), F2(x | I), ... Fi(x | I) will be just a sequence of numbers.

If Fi(X | I) → F (x) as i → ∞ for every x and I, then F (x) is called the

steady-state distribution of the output process X. As can be understood,

the steady-state distribution F (x) occurs at a point in which i → ∞ or i is

sufficiently large, as shown in Figure 5-1. There is time k + 1 where steady

state starts. Please keep in mind that steady state does not imply that the

random variables after Xk+1 will have the same value; instead, it means they

will have approximately the same distribution. Additionally, these random

variables won’t be independent; rather, they will form a co-variance-

stationary stochastic process.

Chapter 5 Analysis of Results

101

�The Random Nature of the Simulation Output
Assume x1,1, x1,2, x1,3, ... , x1,m as the realizations of the random variables

X1, X2, X3, Xm utilizing the random numbers u1,1, u1,2, u1,3, u1,m. If the same

scenario is performed using a different set of random numbers u2,1, u2,2,

u2,3...u2,m, this will result in a different realization, x2,1, x2,2, x2,3, x2,m, of the

random numbers x1,1, x1,2, x1,3 x1,m. Now, if n independent replications are

performed in which the input parameters for the random numbers are

reinitialized and the initial conditions are the same for each replication

with a length m, this will result in the next observations:

	

x x x x

x x x x

x x x

i m

i m

j j j i

1 1 1 2 1 1

2 1 2 2 2 2

1 2

, , , ,

, , , ,

, , ,

, , ,

, , ,









⋅ ⋅ ⋅ ⋅
xx

x x x x

j m

n n n j n m

,

, , , ,, ,

⋅ ⋅ ⋅ ⋅

1 2 	

Figure 5-1.  Transient and steady-state density functions for a
stochastic process

Chapter 5 Analysis of Results

102

By looking at the realizations, it is clear to infer from any replication

(row) that they are not IID; nonetheless, notice any column, for instance,

x1,j, x2,j, ... , xi,j, xn,j, is IID, and the observations are the random realizations

for the variable Xj. As you can see, it is possible to find independence

between runs; thus, it is of interest to use the observations xi,j where i = 1,

2, 3, ... , n and j = 1, 2, 3, m, which are the starting points for all the output

data analysis methodologies explained during this chapter. Now let’s

continue with the factorial design.

�Types of Simulation According to the
Output Analysis
There are two ways to finish a simulation: terminating and nonterminating

simulations. In terminating simulations (also called transients), the short-

run behavior of a system is studied. Also, the performance measure of

interest is estimated within a period whose end is marked by an event E,

which can be deterministic. For instance, E = 20 seconds or is random,

such as when the number of jobs in a queue reaches 500, or E = 500.

Usually, the nature of the problem defines E.

Nonterminating simulations (steady-state) aim to study the long-run

behavior of a system, which starts at i = 0 and converges when i → ∞ or is

large enough. This means that there is not any event E that specifies when

a simulation finishes. However, in a practical simulation, the researcher

defines its duration in such way that it allows you to obtain good estimates

of interest. These types of simulations are employed when designing new

systems or making changes on an existing one.

Both types of simulation depend a lot on the initial conditions, since

they have some impact on the results and may lead to errors. Therefore,

care must be taken when selecting initial conditions, taking into

consideration that they must be representative of those of the actual real

system.

Chapter 5 Analysis of Results

103

�Statistical Analysis for Terminating (or Transient)
Simulations
Suppose that n independent replications of a terminating simulation

finishing at a predetermined specific event E are performed and that they

all began with the same initial conditions. Let Xi be the resulting random

IID where i = 1, 2, 3, ..., n, and then a point estimate and confidence interval

for X such as E(X). Therefore, X¯i is an unbiased point estimator with a 100

(1 − α) percent confidence interval therefore:

	
X n t

S n

nn
� � � � �

� �
�

1 1
2

2

, 	

where S2(n) is given as follows:

	
S n

X X n

n
i

n

i2 1

2

1
� � �

� � ��� ��
�

��
	

�The Number of Replicas

To obtain an estimate of E(X) with a relative error of γ where 0 < γ < 1 and a

confidence interval of 100 (1 − α) percent, perform the following steps:

	 1.	 Perform n0. In our experience, n0 = 35 is a nice

number to start.

	 2.	 Calculate the following:

	
� �n t

S n

nn
0

1 1
2

2
0

00

,� � � � �
� �

�
, 	

•	 Calculate X(n0) and if
� �

�
n

X n
0

0

,� �
� �

� , then X(n0) is a

good estimator for E(x); otherwise, add five more

replications and repeat the procedure.

Chapter 5 Analysis of Results

104

�Statistical Analysis for Steady-State Parameters
Consider ϕ as a steady-state parameter that is characteristic of X like E(X).

The estimation of ϕ causes a problem when the distribution of Xi is different

from F . Due to the initial conditions, the initial output data is not very

representative of such behavior, raising a question about how to choose

simulation output data that actually represents the steady-state behavior.

Because of this, the estimators of φ from some initial observations may not

be representative. This situation is called the problem of the initial transient

or the startup problem. One technique commonly employed to face this

situation is named warming up the model or initial data deletion, whose goal

is to identify an index l such that (1 ≤ l ≤ m − 1), deleting the observations X1,

X2, …, Xl and finally using the remaining observations to estimate v as follows:

	
X m l

m l
X

i l

m

i,� � �
� � �
�1

1 	

Since X(m,l) does not consider the observations until l, which may

have been affected by the initial conditions, it is likely to be less biased

than X(m); nevertheless, m and l must be chosen in such way that

E X m l v� � ��� �� �, . If they are chosen too small, E X m l� � ��� ��, may be

significantly different than v. The opposite happens if they are chosen too

large; E X m l� � ��� ��, will have an excessive variance.

One technique broadly used to find index l such that E[Xi] ≈ v for i > l

is the Welch graphical method. Provided that a single replication is not

enough to determine l, this method uses multiple n replications and works

as follows:

	 1.	 Make n replication, each one of length m, where m

is large.

	 2.	 Compute across the replicas

X
X

n
for i mi

j

n
j i� �

�
�

1

1 2, , , , .

Chapter 5 Analysis of Results

105

	 3.	 To soften the high-frequency oscillations from the

previous step, the method uses a moving average

Y wi � � , where w is the time window and is defined

as follows:

	
X w

w
X for i w m w

i
X fori

s w

w

i s
s

i

i s� �
�

� � � � �
�

� �
��

�
�

�

�� �{ , ,
1

2 1
1

1

2 1 1

1

 ii w�1, ,

It is recommended that w
m

≤
4

 as an example to compute Xi(w) when

w = 2. (Table 5-1).

X X X X X X X

X X X X X Xm

1 1 2 1 2 3 3

1 2 3 4 5 2

2 2
1

3
2

1

5
2

� � � � � � � �� � � �

� � � � �� � � �� �� � � �� �� � �
1

5 4 3 2X X X Xm m m m

Table 5-1.  Observations from n Replication Simulation

of Length m

X X X X X

X X X X X

X X

l l m

l l m

n

11 12 1 1 1 1

2 1 2 2 2 2 1 2

1

, , , , ,

, , , , ,

,

 

 

�

�

� � � � �

nn n l n l n mX X X, , , ,2 1 �

� � � � �

Plot Xi(w). Then if the curve is reasonably smooth, choose a value for l

at a point after which X1(w), X2(w), ..., seems to have converged; otherwise,

pick another value for w and repeat the whole procedure again. Then if

the response is not satisfactory, add more replicas and carry out the whole

procedure again.

Chapter 5 Analysis of Results

106

�The Replication-Deletion Approach
The replication-deletion approach is a method proposed by Kelton to

obtain a point estimate and confidence interval for v, which offers the

following advantages:

•	 When used correctly, it has good statistical

performance.

•	 It is easy to understand and implement.

•	 It can be applied to all types of output parameters and

to make different estimates.

•	 It is useful to make comparison between different

system configurations.

Suppose that n independent replications, each one of length m,

was performed and that l has been already estimated using the Welsch

graphical method, resulting in the observations in Table 5-1.

The first 1(m ≫ l) observations in each replication can be deleted

since they are not representative of the steady-state behavior; with the

remaining Xj,l+1, …, Xj,m, let Yj be defined as follows:

	
Y

m l
X for j nj

i l

m

j i�
�

�
�

�
� �
�1

1 2
1

´

, , , ,
	

Note that the Yjs are IID observations that can be used with classical

statistics to build a point estimate and confidence interval for v. Let the

sample mean be given by the following:

	
Y n

n
Y

j

n

j�
�

� � �
�
�1

1 	

Chapter 5 Analysis of Results

107

Here is the sample variance:

	
S n

n
Y Y n

j

n

j
2

1

21

1
�

�
� � �

�
� � �� �

�
� ´

	

Thus, for v, an approximate 100(1 − α) percent confidence interval is

given as follows:

	
Y n t

S n

nn
�

�
�

� � � �
� �

� �´ ,1 1
2

2

�
	

�Simulation Procedure
This section follows the steps shown in this chapter to analyze the results

from the experiment in E.1 Provided that the goal of this experiment is to

validate a new model, this simulation is a nonterminating one. Therefore,

it is of interest to obtain its steady-state parameters.

�Output Data Analysis
The next procedures were done in order to obtain the data to analyze:

	 1.	 Following the indications supplied in [67], for

each scenario we carried out n = 100 independent

replications of simulation experiments, with each

one of length m = 280.

	 2.	 Use the Welsch graphical method to determine the

moment at which the steady-state behavior begins.

1�Please refer to the Appendix E for more details.

Chapter 5 Analysis of Results

108

	 3.	 Use the replication-deletion approach [67] to

estimate the steady-state mean given a confidence

interval of 90. See Figure 5-2 and Table 5-2.

Figure 5-2.  Response of the simulation scenario

Table 5-2.  Steady-State Parameters for Both Scenarios

Scenario Response Point Estimate Variance Confidence
interval

Scenario 1 Quorum sensing

nodes

23.468 ± 0.131 1.035 [23.337, 23.599]

Files managed by

the agents

11.809 ± 0.065 0.252 [11.745, 11.874]

Chapter 5 Analysis of Results

109

�Results

Here are the results:

	 1.	 After making the initial independent simulation, the

average response for each scenario was plotted in

Figure 5-2a.

	 2.	 Use the Welch graphical method with a window

value of w1 = 40 for the testing scenario, obtaining

the results showed in Figure 5-3a and ??.

Figure 5-3.  Moving averages

Chapter 5 Analysis of Results

110

	 3.	 By graphical inspection, it is possible to see that

both plots start to converge at lsc1 = 25 and lsc2 = 32 for

each scenario, respectively.

After applying the replication-deletion approach, there is a 90 percent

confidence that the mean for the nodes induced to QS and the files

managed by the agents are between the values shown in Table 5-2.

�Summary
Simulation is one way of validating a model, and proper statistical analysis

is what helps obtain the right conclusions about the behavior of a model.

Therefore, it is important to use the appropriate tools to gain more

knowledge about a model. In this chapter, we introduced the process

that must be carried out to perform a valid simulation experiment. Once

the model has been built using the simulation tool (ns-3), depending on

the type of simulation, there are different ways of analyzing those results.

Those guidelines were the main topic of this chapter.

�Complementary Readings
Here are some readings to learn more on your own:

	 1.	 A new approach for dealing with the startup

problem in discrete event simulation [68]

	 2.	 Output data analysis, in Handbook of Simulation [51]

	 3.	 Steady-state simulation of queuing processes:

survey of problems and solutions [69]

	 4.	 The statistical analysis of simulation results [70]

Chapter 5 Analysis of Results

111© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_6

CHAPTER 6

MANET Simulation
on ns-3

Almost always the men who achieve these fundamental inven-
tions of a new paradigm have been either very young or very
new to the field whose paradigm they change.

—[71]

�A Simple Ad Hoc Network
An ad hoc network is a computer network linked by wireless interfaces,

with a set of dynamic computing resources. This kind of network works on

dynamic and stochastic conditions to provide services to its users. Ad hoc

networks have two properties: the first is self-organization, and the second

is to have a decentralized architecture. Formally, ad hoc networks [72]–[75]

are a random graph as a set of vertices called nodes with mobility features, ​

joined by links called edges that change dynamically at time function and

with the environment conditions, for instance, the propagation, spectrum

distortions, users petitions, and so on.

https://doi.org/10.1007/978-1-4842-6849-0_6#DOI

112

An ad hoc network can be defined as a set of nodes (N), connected for

a set of links (L), with a set of interactions (I), and all of them as a random

multigraph (ttpl) as shown by the following the equation (see Figure 6-1):

	
M N L G l Ip� � �, , , 	 (6.1)

For our first example, use the code called wifi-adhoc.cc written by

Mathieu Lacage. This code has a single node with an access point (AP) on

the mode ad hoc (IIEE802.11 Mesh mode). The experiment was detailed at

[76]. Nonetheless, a brief description of the experiment follows.

The experiment was designed with the IEEE 802.11a standard and

specifies eight PHY modes. The goal is maximize a given metric, which

typically is the system throughput. In the experiment the metric rate

adaptation scheme is selected on the PHY mode. To simulate the scenario,

the medium control access mechanism is a key factor to validate the

rate. In the IEEE 802.11 standard, the mechanism is controlled by the

Distributed Coordination Function (DCF) and the random access scheme

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

Figure 6-1.  Ad hoc network

Chapter 6 MANET Simulation on ns-3

113

ns-3 allows you to enable different rate adaptation algorithms such

as Auto Rate Fallback (ARF), Adaptative Auto Rate Fallback (AARF),

Robust Rate Adaptation Algorithm (RRAA) [77], and Collision-Aware Rate

Algorithm (CARA) [78].

For this example, the algorithm chosen is Adaptive Auto Rate Fallback

with Collision Detection (AARF-CD) as a modification of the Adaptive

Auto Rate Fallback (AARF) scheme [79], which is compared with the other

rate adaptation algorithm present on ns-3 on the available rates for IEEE

802.11a. These are 6, 12, 18, 24, 36, 48, and 54 Mbps. In AARF-CD, the RTS/

CTS mechanism is turned on/off depending on the number of successful

transmission attempts.

Finally, the experiment has an infrastructure scenario with a variable

number of nodes (for example, a single-node scenario is presented for

default); each node is in the transmission range of the others at a variable

distance from the AP. All the nodes are equipped with an IEEE 802.11a

interface, and they use the same-rate adaptation algorithm. Each node

sends saturated UDP traffic with a packet size of 2,000 bytes without the

MAC and PHY headers.

To learn more about the abstractions and the models of ns-3, visit

https://www.nsnam.org/docs/release/ns-3-version/models/html/.

�Wi-Fi Model
The simulation model used on ns-3 for wireless is based on the IEEE

802.11 standard [80]. In this case, the abstraction is located on the network

interface. The model WifiNetDevice contains the following features from

the standard:

•	 The medium access control mechanism specified

in the IEEE 802.11 standard is called the Distributed

Coordination Function (DCF).

Chapter 6 MANET Simulation on ns-3

https://www.nsnam.org/docs/release/ns-3-version/models/html/

114

•	 The model supports infrastructure and ad hoc modes.

•	 The set of 802.11 models provided in ns-3 attempts

to provide an accurate MAC-level implementation of

the 802.11 specification and provides a packet-level

abstraction of the PHY level for different PHYs.

•	 The model works on 802.11a, 802.11b, 802.11g, 802.11n

(in both the 2.4 and 5 GHz bands), 802.11ac, and 802.11ax

draft 1.0 (both the 2.4 and 5 GHz bands) specifications.

Also, it has physical layers MSDU aggregation and MPDU

aggregation extensions of 802.11n.

•	 The 802.11s mesh and 802.11p specifications are

supported.

•	 It supports QoS-based EDCA and the queuing

extensions of 802.11e.

•	 It has different propagation loss models, delay models,

and some rate-control algorithms as cited in the

previous section.

•	 The node abstraction can have multiple Wi-Fi

interfaces (WifiNetDevices) on different channels and

different network interfaces.

•	 To simulate scenarios with cross-channel interference

or a set of wireless technologies on a single channel,

use the framework SpectrumWifiPhy.

•	 The source code for WifiNetDevice and its models

lives in the directory src/wifi.

•	 The implementation is modular and provides roughly

three sublayers of models: PHY layer, MAC Low, and

MAC High.

Chapter 6 MANET Simulation on ns-3

115

Figure 6-2 shows the complete model.

�The PHY Layer Model
The physical layer is the computational model to enable the reception of

packets and monitor energy consumption. For the packets, the model is

based on a probabilistic function with parameters such as modulation,

signal of noise, and state of the physical layer. The result is computed

with an error model to allow for successful transmission. This module

denotes whether a packet was received or not. Two physical layer models

exist in ns-3: the YansWifiPhy model based on the [21] model and the

SpectrumWifiPhy model developed for ns-3. The SpectrumWifiPhy model

allows a fine-grained frequency decomposition of the signal and includes

multiple technologies coexisting on the same channel.

Figure 6-2.  ns-3 Wi-Fi model [81]

Chapter 6 MANET Simulation on ns-3

116

�MAC Low Model
On these sublayers, the simulator has functions to model the medium

access (DCF and EDCA) and the mechanism RTS/CTS and ACK. This layer

is split into three main components.

•	 ns3::MacLow, which takes care of RTS/CTS/DATA/ACK

transactions and also performs MPDU aggregation.

•	 ns3::ChannelAccessManager and ns3::DcfState,

which implement the DCF and EDCAF functions.

•	 ns3::Txop and ns3::QosTxop, which handle the

packet queue, packet fragmentation, and packet

retransmissions if they are needed. ns3::QosTxop is

used by QoS-enabled high MACs and also performs

MSDU aggregation.

�MAC High Model
These models implement the MAC-level beacon generation, probing, and

association state machines, as well as a set of rate-control algorithms.

Three MAC high models provide for the three Wi-Fi topological

elements:

•	 Access point (AP) ns3::ApWifiMac: This is a class that

implements an AP that generates periodic beacons and

that accepts every attempt of association.

•	 Non-AP station (STA) ns3::StaWifiMac: This is a class

that implements an active probing and association

state machine that handles automatic re-association

whenever too many beacons are missed.

Chapter 6 MANET Simulation on ns-3

117

•	 STA in an independent basic service set (IBSS): For an

ad hoc network, use ns3::AdhocWifiMac. This class

enables the mesh mode from the IEEE 802.11 standard

with a Wi-Fi MAC that does not perform any kind of

beacon generation, probing, or association.

�Node Abstractions
On the simulator, the first step is to define the libraries that are useful to

deploy the experiment, as follows:

•	 For mobility: mobility-helper.h

•	 For channels: yans-wifi-channel.h

•	 For wireless interfaces: yans-wifi-helper.h

•	 For traffics: on-off-helper.h

•	 For IP stacks: ipv4-address-helper.h

•	 For applications: packet-socket-helper.h and

packet-socket-address.h

To generate a graphical output, use the gnuplot.h library, to invoke the

Gnuplot program (see Listing 6-1).

Listing 6-1.  ns-3 Libraries

 1 #include "ns3/gnuplot.h"

 2 #include "ns3/command-line.h"

 3 #include "ns3/config.h"

 4 #include "ns3/uinteger.h"

 5 #include "ns3/string.h"

 6 #include "ns3/log.h"

 7 #include "ns3/yans-wifi-helper.h"

Chapter 6 MANET Simulation on ns-3

118

 8 #include "ns3/mobility-helper.h"

 9 #include "ns3/ipv4-address-helper.h"

10 #include "ns3/on-off-helper.h"

11 #include "ns3/yans-wifi-channel.h"

12 #include "ns3/mobility-model.h"

13 #include "ns3/packet-socket-helper.h"

14 #include "ns3/packet-socket-address.h"

To describe the experiment and its features, we have created an

Experiment class. The Experiment class contains the parameters for

the Gnuplot data set in line 6. The functions are attached to the nodes,

such as the SetPosition position in the ns-3 grid; ReceivePackets

and SetupPacketReceive for traffic, sockets, and application layer;

GetPosition and AdvancePosition for node mobility; and Experiment to

generate the output style of Gnuplot. See Listing 6-2.

Listing 6-2.  Class Experiment

 1 class Experiment

 2 {

 3 public:

 4 Experiment ();

 5 Experiment (std::string name);

 6 �Gnuplot2dDataset Run (const WifiHelper &wifi, const

YansWifiPhyHelper &wifiPhy,const ‹→ WifiMacHelper

&wifiMac, const YansWifiChannelHelper &wifiChannel);

 7 private:

 8 void ReceivePacket (Ptr<Socket> socket);

 9 void SetPosition (Ptr<Node> node, Vector position);

10 Vector GetPosition (Ptr<Node> node);

11 void AdvancePosition (Ptr<Node> node);

12 Ptr<Socket> SetupPacketReceive (Ptr<Node> node);

Chapter 6 MANET Simulation on ns-3

119

13 uint32_t m_bytesTotal

14 Gnuplot2dDataset m_output;

15 };

16 Experiment::Experiment ()

17 {

18 }

19 Experiment::Experiment (std::string name)

20 : m_output (name)

21 {

22 m_output.SetStyle (Gnuplot2dDataset::LINES);

23 }

To simulate the node mobility, three functions are used: SetPosition

to establish the position on the ns-3 grid, GetPosition to return the node

position at simulation time, and AdvancePosition to generate a mobility

model on the grid. To set the node position, call the function SetPosition

with the parameters node and pos and create an event at second 1 in the

simulation time.

The mobility support in ns-3 includes a set of mobility models,

position allocators, and helper functions. All of them work at an assembly

track and maintain the current Cartesian position and speed of an object

(node). The mobility aggregates a node abstraction and querying using

GetObject<MobilityModel>(). The base class is ns3::MobilityModel,

which is subclassed for different motion behaviors. The initial position is a

setting for a PositionAllocator. Once the simulation starts, the position

allocator may no longer be used. Only set the initial position on the ns-3

Cartesian plane. The MobilityHelper combines a mobility model and

position allocator and can be used with a node container to install the

mobility capability on a set of nodes. See Listing 6-3.

Chapter 6 MANET Simulation on ns-3

120

Listing 6-3.  Mobility and Position Methods

 1 void

 2 Experiment::SetPosition (Ptr<Node> node, Vector position)

 3 {

 4 �Ptr<MobilityModel> mobility = node->GetObject

<MobilityModel> ();

 5 mobility->SetPosition (position);

 6 }

 7

 8 Vector

 9 Experiment::GetPosition (Ptr<Node> node)

10 {

11 �Ptr<MobilityModel> mobility = node->GetObject

<MobilityModel> ();

12 return mobility->GetPosition ();

13 }

14

15 void

16 Experiment::AdvancePosition (Ptr<Node> node)

17 {

18 Vector pos = GetPosition (node);

19 double mbs = ((m_bytesTotal * 8.0) / 1000000);

20 m_bytesTotal = 0;

21 m_output.Add (pos.x, mbs);

22 pos.x += 1.0;

23 if (pos.x >= 210.0)

24 {

25 return;

26 }

27 SetPosition (node, pos);

Chapter 6 MANET Simulation on ns-3

121

28 �Simulator::Schedule (Seconds (1.0),

&Experiment::AdvancePosition, this, node);

29 }

�Socket Abstraction
Simulating an application is useful to use the socket abstraction on ns-3.

A socket is a network application programming interface (API) that works

on the user-space applications to access network services in the kernel.

The socket is the interface between the application layer and the transport

layer within a host [82]. On ns-3, a “socket API” is not the same as in a real

context. It has two abstractions. The first one is a native ns-3 API, and the

second one uses the services of the native API to provide a POSIX-like API

as part of an overall application process. The POSIX variant is the closest

to a real system’s sockets API. (ns3::Socket is defined in src/network/

model/socket.h.)

The purpose is to align the abstraction with a POSIX sockets

API. However, the ns-3 socket has specific features that are like a

computational model as follows [83]:

•	 ns-3 applications handle a smart pointer to a Socket

object, not a file descriptor.

•	 There is no notion of a synchronous API or a blocking

API; in fact, the model for interaction between an

application and a socket is the asynchronous I/O,

which is not typically found in real systems (more on

this later).

•	 The C-style socket address structures are not used.

•	 Many calls use the ns3::Packet class to transfer data

between the application and the socket. See Figure 6-3

and Listing 6-4.

Chapter 6 MANET Simulation on ns-3

122

Listing 6-4.  Packet Abstraction Code

 1 void

 2 Experiment::ReceivePacket (Ptr<Socket> socket)

 3 {

 4 Ptr<Packet> packet;

 5 while ((packet = socket->Recv ()))

 6 {

 7 m_bytesTotal += packet->GetSize ();

 8 }

 9 }

10

11 Ptr<Socket>

12 Experiment::SetupPacketReceive (Ptr<Node> node)

13 {

14 �TypeId tid = TypeId::LookupByName

("ns3::PacketSocketFactory");

15 Ptr<Socket> sink = Socket::CreateSocket (node, tid);

16 sink->Bind ();

Figure 6-3.  ns-3 socket model [81]

Chapter 6 MANET Simulation on ns-3

123

17 �sink->SetRecvCallback (MakeCallback

(&Experiment::ReceivePacket, this));

18 return sink;

19 }

Let’s get back to the code. The abstractions installed on the node

abstraction are the packet socket (lines 10–11), wireless network interface

device (lines 16–17), mobility (lines 19–26), the addressing as sockets

(lines 28–31), the traffic (lines 33–37), the variables initializing as memory

bytes (line 5), and the number of nodes (line 8).

The channel abstraction uses YansWifiChannelHelper. The helper can

be used to create a YansWifiChannelwith, a default model of propagation

delay. PropagationDelay is equal to a constant (ns3::ConstantSpeed

PropagationDelayModel), the speed of light, and the propagation loss

(PropagationLoss) is based on a default log distance model from ns-3.

The model was calculated using the Friis propagation loss model at

5.15GHz (ns3::LogDistancePropagationLossModel). The reference loss

must be changed if 802.11b, 802.11g, 802.11n (at 2.4GHz), or 802.11ax

(at 2.4GHz) is used since all of those operate at 2.4GHz.

According to the ns-3 Wi-Fi model, the physical devices

(ns3::WifiPhy) must connect to the channel (ns3::YansWifiChannel).

The models need to create WifiPhy objects appropriate for the class

YansWifiChannel for proper operation. The YansWifiPhyHelper

class configures an object factory to create instances of YansWifiPhy

and adds some other objects to it, including possibly a supplemental

ErrorRateModel and a pointer to a MobilityModel. See Listing 6-5.

Listing 6-5.  Antenna, Socket, and Traffic Code

 1 Gnuplot2dDataset

 2 �Experiment::Run (const WifiHelper &wifi, const

YansWifiPhyHelper &wifiPhy,

Chapter 6 MANET Simulation on ns-3

124

 3 �const WifiMacHelper &wifiMac, const

YansWifiChannelHelper ‹→ &wifiChannel)

 4 {

 5 m_bytesTotal = 0;

 6

 7 NodeContainer c;

 8 c.Create (2);

 9

10 PacketSocketHelper packetSocket;

11 packetSocket.Install (c);

12

13 YansWifiPhyHelper phy = wifiPhy;

14 phy.SetChannel (wifiChannel.Create ());

15

16 WifiMacHelper mac = wifiMac;

17 NetDeviceContainer devices = wifi.Install (phy, mac, c);

18

19 MobilityHelper mobility;

20 �Ptr<ListPositionAllocator> positionAlloc = CreateObject

<ListPositionAllocator> ();

21 positionAlloc->Add (Vector (0.0, 0.0, 0.0));

22 positionAlloc->Add (Vector (5.0, 0.0, 0.0));

23 mobility.SetPositionAllocator (positionAlloc);

24 �mobility.SetMobilityModel ("ns3::ConstantPosition

MobilityModel");

25

26 mobility.Install (c);

27

28 PacketSocketAddress socket;

29 socket.SetSingleDevice (devices.Get (0)->GetIfIndex ());

Chapter 6 MANET Simulation on ns-3

125

30 �socket.SetPhysicalAddress (devices.Get (1)->

GetAddress ());

31 socket.SetProtocol (1);

32

33 �OnOffHelper onoff ("ns3::PacketSocketFactory", Address

(socket));

34 onoff.SetConstantRate (DataRate (60000000));

35 �onoff.SetAttribute ("PacketSize", UintegerValue (2000));

36

37 ApplicationContainer apps = onoff.Install (c.Get (0));

38 apps.Start (Seconds (0.5));

39 apps.Stop (Seconds (250.0));

40

41 �Simulator::Schedule (Seconds (1.5),

&Experiment::AdvancePosition, this, c.Get (1));

42 Ptr<Socket> recvSink = SetupPacketReceive (c.Get (1));

43

44 Simulator::Run ();

45

46 Simulator::Destroy ();

47

48 return m_output;

49 }

main() calls the Gnuplot function to create the data to plot the

experiment results and declare the features on the physical layer. The

channel uses ns3::WifiPhy, which is an abstract base class representing

the 802.11 physical layer functions. There are two implementations of the

physical layer on ns-3: ns3::YansWifiPhy and ns3::SpectrumWifiPhy.

They work in conjunction with three other objects: WifiPhyStateHelper

Chapter 6 MANET Simulation on ns-3

126

that maintains the PHY state machine, InterferenceHelper that tracks

all packets observed on the channel, and ErrorModel that computes a

probability of error for a given SNR.

The packets are passed to the physical interface through the

SendPacket() method. The receiving PHY object decides based on the

signal power and interference whether the packet was successful. This

class also provides a number of callbacks for notifications of physical

layer events, exposes a notion of a state machine that can be monitored

for MAC-level processes such as carrier sense, and handles sleep/wake

models and energy consumption.

The physical layer is configured on lines 8–13, and line 16 sets up the

ad hoc mode. Finally, the experiment is setting up each data rate and rate

adaptation algorithm. See Listing 6-6.

Listing 6-6.  Main

 1 int main (int argc, char *argv[])

 2 {

 3 CommandLine cmd;

 4 cmd.Parse (argc, argv);

 5

 6 Gnuplot gnuplot = Gnuplot ("reference-rates.png");

 7

 8 Experiment experiment;

 9 WifiHelper wifi;

10 wifi.SetStandard (WIFI_PHY_STANDARD_80211a);

11 WifiMacHelper wifiMac;

12 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

13 �YansWifiChannelHelper wifiChannel =

YansWifiChannelHelper::Default ();

14 Gnuplot2dDataset dataset;

15

Chapter 6 MANET Simulation on ns-3

127

16 wifiMac.SetType ("ns3::AdhocWifiMac");

17

18 NS_LOG_DEBUG ("54");

19 experiment = Experiment ("54mb");

20 �wifi.SetRemoteStationManager ("ns3::ConstantRateWifi

Manager","DataMode", StringValue ‹→ ("OfdmRate54Mbps"));

21 �dataset = experiment.Run (wifi, wifiPhy, wifiMac,

wifiChannel);

22 gnuplot.AddDataset (dataset);

23

24 NS_LOG_DEBUG ("48");

25 experiment = Experiment ("48mb");

26 �wifi.SetRemoteStationManager ("ns3::ConstantRateWifi

Manager","DataMode", ‹→ StringValue("OfdmRate48Mbps"));

27 �dataset = experiment.Run (wifi, wifiPhy, wifiMac,

wifiChannel);

28 gnuplot.AddDataset (dataset);

�Plot
To plot the results, use the library gnuplot.h to generate the code. Saving

the output with a .dat file extension is necessary. The simulation has

two outputs. The first is called reference-control.png and compares

different rates; The second is called rate control.png and compares each

rate adaptation algorithm used creates a data set reading for the Gnuplot

program. See Listing 6-7.

Listing 6-7.  Plot with GNUplot Code

 1 gnuplot = Gnuplot ("rate-control.png");

 2 wifi.SetStandard (WIFI_PHY_STANDARD_holland);

Chapter 6 MANET Simulation on ns-3

128

 3

 4 NS_LOG_DEBUG ("arf");

 5 experiment = Experiment ("arf");

 6 wifi.SetRemoteStationManager ("ns3::ArfWifiManager");

 7 �dataset = experiment.Run (wifi, wifiPhy, wifiMac,

wifiChannel);

 8 gnuplot.AddDataset (dataset);

 9

10 NS_LOG_DEBUG ("aarf");

11 experiment = Experiment ("aarf");

12 wifi.SetRemoteStationManager ("ns3::AarfWifiManager");

13 �dataset = experiment.Run (wifi, wifiPhy, wifiMac,

wifiChannel);

14 gnuplot.AddDataset (dataset);

15

16

17 gnuplot.GenerateOutput (std::cout);

18

19 return 0;

�Output
To plot the output, you need to type the following command in the terminal

(you should have previously installed the packages for Gnuplot [84]):

1 gnuplot output_file_name.dat

This command creates two PNG files in the root directory of the

ns-3 version. Then it searches the files reference-rates.png and

rate-control.png. The files are similar to Figure 6-4a and Figure 6-4b,

respectively.

Chapter 6 MANET Simulation on ns-3

129

�Agent-Based Simulation
In this section, we will discuss another type of traditional discrete-event

simulation (DES), called agent-based simulation (ABS). By using the

simulator ns-3, it is possible to do the simulation using agents; in DES, to

control the simulating clock, there are two approaches: the next-event time

advance (NETA) and the fixed-increment time advance (FITA) defined as

follows:

•	 NETA: NETA advances the mechanism and estimates

the time of future events that are going to happen on

the basis of a list of events (in terms of arrival state or

departure state). Under this approach, the mechanism

starts by locating the simulation clock at zero.

•	 FITA: Under this approach, the simulation clock

advances a specified unit of time ∆t for representing an

exact increment. When advancing to later processes in

the simulation, clock examines the event list to identify

the possible occurrence of any event in the past ∆t.

Figure 6-4.  Experiment output with Gnuplot

Chapter 6 MANET Simulation on ns-3

130

The ABS approach as a variation of DES [85] is useful to deploy new

systems and models in the simulation environment. For example, it is

necessary first to define an agent, which could be as simple as an element

that receives input (sensor), which leads you to execute actions (actuator)

on an environment (space). In a more complex context, the agent and a

person in a physical and/or social environment can operate under a set of

rules that define the space and limit the possible actions and hence the set

of states (behavior) [86]. In computer networks, a simple agent is an SNMP

agent [87] that collects information from the management information

base (MIB) to know the network or manager device state to deploy some

action or system information.

In this sense, the entities or agents interact with other entities and,

ergo, other simulator abstractions. But these entities learn autonomously

as this is the behavior of the whole system or some modules or subsystems.

Generally, ABS is implemented in object-oriented software where

instances variables are attributes and methods to behaviors. One of the

advantages of the ns-3 simulator is that it is object-oriented software that

allows the existence of agents and multi-agent systems [88]. Some authors

consider this to be necessary to exhibit an emergence behavior, but this

feature depends on the intuition of the observer. Furthermore, general

DES can exhibit emergence behavior such as deadlocks, oscillations, and

bottlenecks, among other things. ABS is useful when the entities interact

with each other and their environment, when the entities need to learn to

adapt their behavior (take better decisions), and when the movement of

entities depends on the perception of its environment (awareness).

If you need to create an agent, it is useful to use the algorithm shown

in [89], called a skeleton agent, on each invocation. The agent’s memory

is updated to reflect the new perception, the best action is chosen, and

the fact that the action was taken is also stored in memory. The memory

persists from one invocation to the next. See Algorithm 6-1.

Chapter 6 MANET Simulation on ns-3

131

Algorithm 6-1

function SKELETON-AGENT (percept) returns action

 static: memory, the agents memory of the world

 memory - UPDATE-MEMORY(memory,percept)

 memory ← CHOOSE-BEST-ACTION(memory)

 memory UPDATE-MEMORY(memory,action)

return action

Otherwise, the environment shows that the agents exist and shows

their interaction with the “world.” The basic environment simulator

program gives each agent its perception, gets an action from each agent,

and then updates the environment. See Algorithm 6-2.

Algorithm 6-2

procedure RUN-ENVIRONMENT (state,UPDATE-FN,agents, termination)

 inputs: state,the initial state of the environment

 �UPDATE-FN,function to modify the

environment

 agents, a set of agents

 termination,

a predicate to test when we are done

 repeat

 for each agent in agents do

 PERCEPT[agent] ← GET-PERCEPT(agent,state)

 end

 for each agent in agents do

 ACTION[agent] - PROGRAM[agent](PERCEPT[agent])

 end

 state ← UPDATE-FN(actions, agents, state)

until termination(state)

Chapter 6 MANET Simulation on ns-3

132

Now it is useful for ABS to design experiments, simulate, and analyze

the results with other additional techniques different at sensibility

analysis or screening. For that we use the Open AI Gym D as a module

post-simulation to train the agents in an environment created in the ns-3

simulator.

�Description of the Experiment
A cluster can be used to test a mobile ad hoc network (MANET) [46].

A cluster is a set of devices, based on a hierarchical organization. One

of them has the coordination function called the cluster head (CH). The

other important role is the gateway node (ttN). The CH manages the

communication intracluster, and the ttN allows the communications

intercluster [46], [90]–[92].

A MANET is a traditional ad hoc network with the characteristic that

its nodes are in motion, so it is necessary that they dynamically adjust

themselves to the changing conditions of their topology, which makes

them useful for many situations such as natural disasters and emergencies

because they are easy to configure and somehow resistant to failures. This

type of network has a large number of features, but for the purpose of this

project, we are interested in the following:

•	 Dynamic structure: The ad hoc network works without

defining a topology and architecture. They have a

dynamic structure that can change rapidly over time,

and the links that form between nodes can be both

unidirectional and bidirectional.

•	 Autonomous behavior: Each node can act as a host or

as a router autonomously.

•	 Autoconfiguration: All nodes are capable of discovering

neighbors and routes dynamically on a flat or

hierarchical network structure.

Chapter 6 MANET Simulation on ns-3

133

The code used to simulate is WifiSimpleAdhocGrid.cc. Listing 6-8

shows the minimal libraries required for the MANET simulation.

Listing 6-8.  Libraries ABS Experiment

 1 #include "ns3/command-line.h"

 2 #include "ns3/config.h"

 3 #include "ns3/uinteger.h"

 4 #include "ns3/double.h"

 5 #include "ns3/string.h"

 6 #include "ns3/log.h"

 7 #include "ns3/yans-wifi-helper.h"

 8 #include "ns3/mobility-helper.h"

 9 #include "ns3/ipv4-address-helper.h"

10 #include "ns3/yans-wifi-channel.h"

11 #include "ns3/mobility-model.h"

12 #include "ns3/olsr-helper.h"

�Abstractions
Running the simulation first is necessary to define the abstractions and the

ns-3 modules and then choose the events and the simulation steps, which

can be seen at the command line while the simulation run. Listing 6-9

shows how to configure them.

Listing 6-9.  Command-Line Attributes

 1 CommandLine cmd;

 2 cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);

 3 cmd.AddValue ("distance", "distance (m)", distance);

 4 �cmd.AddValue ("packetSize", "size of application packet

sent", packetSize);

Chapter 6 MANET Simulation on ns-3

134

 5 �cmd.AddValue ("numPackets", "number of packets generated",

numPackets);

 6 �cmd.AddValue ("interval", "interval (seconds) between

packets", interval);

 7 �cmd.AddValue ("verbose", "turn on all WifiNetDevice log

components", verbose);

 8 �cmd.AddValue ("tracing", "turn on ascii and pcap tracing",

tracing);

 9 �cmd.AddValue ("numNodes", "number of nodes", numNodes);

10 �cmd.AddValue ("sinkNode", "Receiver node number",

sinkNode);

11 �cmd.AddValue ("sourceNode", "Sender node number",

sourceNode);

12 cmd.Parse (argc, argv);

Node instance: Nodes are instantiated as follows:

Node c; c.Create(numNodes);

Listing 6-10 shows the program variable values.

Listing 6-10.  Code Variables

 1 std::string phyMode ("DsssRate1Mbps");

 2 double distance = 500; // m

 3 uint32_t packetSize = 1000; // bytes

 4 uint32_t numPackets = 1;

 5 uint32_t numNodes = 25; // by default, 5x5

 6 uint32_t sinkNode = 0;

 7 uint32_t sourceNode = 24;

 8 double interval = 1.0; // seconds

 9 bool verbose = false;

10 bool tracing = false;

Chapter 6 MANET Simulation on ns-3

135

This instance allows you to create nodes without any configuration, so

these nodes do not yet have any features to communicate, send data, etc.

Wi-Fi ad hoc configuration: Since the nodes have no configuration

features, we proceed to configure them as Wi-Fi nodes. For this, we use the

WifiHelper class that allows us to denote the nodes as Wi-Fi. However, its

functionality is limited, so we use YansWifiPhyHelper, which allows us to

configure the channel with features such as gain (RxGain), Wi-Fi standard,

etc. We also configure the MAC so that it is ad hoc through WifiMacHelper.

Finally, this configuration is installed to the nodes using the following:

Wifi.Install(wifiPhy,wifiMac,c)

Listing 6-11 shows the complete code.

Listing 6-11.  Antenna Mode and Physical Layer Code

 1 YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

 2 wifiPhy.Set ("RxGain", DoubleValue (-10));

 3 �wifiPhy.SetPcapDataLinkType (WifiPhyHelper::

DLT_IEEE802_11_RADIO);

 4

 5 YansWifiChannelHelper wifiChannel;

 6 �wifiChannel.SetPropagationDelay ("ns3::ConstantSpeed

PropagationDelayModel");

 7 �wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLoss

Model");

 8 wifiPhy.SetChannel (wifiChannel.Create ());

 9

10 WifiMacHelper wifiMac;

11 wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

12 �wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",

13 �"DataMode",StringValue

(phyMode),

Chapter 6 MANET Simulation on ns-3

136

14 �"ControlMode",StringValue

(phyMode));

15 wifiMac.SetType ("ns3::AdhocWifiMac");

16 �NetDeviceContainer devices = wifi.Install (wifiPhy,

wifiMac, c);

Mobility module: The mobility module is of great importance to our

goal. To make use of this, we have two methods that allow us to secure

it for our needs. The first method is SetPositionAllocator in which

we configure a type of initial configuration for our nodes, whether it is

grid, linear, etc. In our case we use an allocator that allows us to define

nodes randomly within a 500×500 rectangle. After this, we make use

of the second SetMobilityModel method where we set up a constant-

speed mobility model so that our node can move. Listing 6-12 shows the

configuration.

Listing 6-12.  Mobility Code

1 �mobility.SetMobilityModel ("ns3::ConstantPositionMobility

Model");

2 mobility.Install (c);

Packets: To send packets, it is necessary assign IP addresses to the

nodes. To do this, we use InternetStackHelper and Ipv4AddressHelper

to add a default Internet stack and set up NICs with IPv4 as the protocol,

respectively. Finally, the sockets for sending and receiving packets are

configured. For this purpose, the ReceivePacket and GenerateTraffic

functions defined before the main are used. In the MANET, because

of their dynamic and stochastic nature, they are used in reactive and

proactive routing protocols to deliver packets, discover neighbors, and

search routes to the destination. For this example, use the proactive

Optimized Link State Route Protocol (OLSR) to search for the best

route based on the link-state parameter through hello packets that are

disseminated on the wireless ad hoc network. Listing 6-13 shows the code.

Chapter 6 MANET Simulation on ns-3

137

Listing 6-13.  OLRS Protocol and IP Address Configuration

 1 OlsrHelper olsr;

 2 Ipv4StaticRoutingHelper staticRouting;

 3

 4 Ipv4ListRoutingHelper list;

 5 list.Add (staticRouting, 0);

 6 list.Add (olsr, 10);

 7

 8 InternetStackHelper internet;

 9 internet.SetRoutingHelper (list);

10 internet.Install (c);

11

12 Ipv4AddressHelper ipv4;

13 NS_LOG_INFO ("Assign IP Addresses.");

14 ipv4.SetBase ("10.1.1.0", "255.255.255.0");

15 Ipv4InterfaceContainer i = ipv4.Assign (devices);

Application: Deploying services over the network is necessary to define

the roles of the node server and node client and to provide services and

consume them into the ad hoc network. The socket is the door by which

the user comes into the server and the services are published. The service

in IPv4 has an IP address and a port to publish the service. In this case, the

port is 80, and the protocol is UDP. See Listing 6-14.

Listing 6-14.  Socket Creation Code

1 �TypeId tid = TypeId::LookupByName

("ns3::UdpSocketFactory");

2 �Ptr<Socket> recvSink = Socket::CreateSocket (c.Get

(sinkNode), tid);

3 �InetSocketAddress local = InetSocketAddress

(Ipv4Address::GetAny (), 80);

Chapter 6 MANET Simulation on ns-3

138

4 recvSink->Bind (local);

5 recvSink->SetRecvCallback (MakeCallback (&ReceivePacket));

6

7 �Ptr<Socket> source = Socket::CreateSocket (c.Get

(sourceNode), tid);

8 �InetSocketAddress remote = InetSocketAddress (i.GetAddress

(sinkNode, 0), 80);

9 source->Connect (remote);Code 6.15

Traffic: The traffic between nodes is generated for 30 seconds

(simulation time). It is initializing the values as follows: the packet size is

1,000 bytes, the number of packets is 100, and the data rate is a string with

a value of 1Mbps. Those values are used for the method GenerateTraffic,

which is described as a static void method that creates the sockets needed

and then sends the packets until finished; for this case, it’s 100 packets. To

confirm that the packet was received, the method ReceivePacket prints

the message in the console as soon as the socket receives the packet. See

Listing 6-15.

Listing 6-15.  Traffic Model and Schedule Code

1 std::string phyMode ("DsssRate1Mbps");

2 double distance = 500; // m

3 uint32_t packetSize = 1000; // bytes

4 uint32_t numPackets = 100;

5 double interval = 1.0; // seconds

6

7 �Simulator::Schedule (Seconds (30.0), &GenerateTraffic,

source, packetSize, ‹→ numPackets, interPacketInterval);

 1 �static void GenerateTraffic (Ptr<Socket> socket, uint32_t

pktSize, uint32_t ‹→ pktCount, Time pktInterval)

Chapter 6 MANET Simulation on ns-3

139

 2 {

 3 if (pktCount > 0)

 4 {

 5 socket->Send (Create<Packet> (pktSize));

 6 �Simulator::Schedule (pktInterval, &GenerateTraffic,

socket, pktSize,pktCount ‹→ - 1, pktInterval);

 7 }

 8 else

 9 {

10 socket->Close ();

11 }

12 }

13

14 void ReceivePacket (Ptr<Socket> socket)

15 {

16 while (socket->Recv ())

17 {

18 NS_LOG_UNCOND ("Received one packet!");

19 }

20 }

�Tracing
This step takes two kinds of traces. The first trace is the flat file called

wifi-simple-adhoc-grid.tr. This is a ASCII file with all the information

about the routing stream and the routing table and the neighbors’

transmission information. The second file is a .pcap file that is useful to

analyze the information with a traffic analyzer such as Wireshark. This file

is called wifi-simple-adhoc-grid and creates one file for each device.

See Listing 6-16.

Chapter 6 MANET Simulation on ns-3

140

Listing 6-16.  Output and Tracing Code

 1 if (tracing == true)

 2 {

 3 AsciiTraceHelper ascii;

 4 �wifiPhy.EnableAsciiAll (ascii.CreateFileStream

("wifi-simple-adhoc-grid.tr"));

 5 �wifiPhy.EnablePcap ("wifi-simple-adhoc-grid",

devices);

 6

 7 �Ptr<OutputStreamWrapper> routingStream =

Create<OutputStreamWrapper> ‹→ ("wifi-simple-

adhoc-grid.routes", std::ios::out);

 8 �olsr.PrintRoutingTableAllEvery (Seconds (2),

routingStream);

 9 �Ptr<OutputStreamWrapper> neighborStream =

Create<OutputStreamWrapper> ‹→ ("wifi-simple-

adhoc-grid.neighbors", std::ios::out);

10 �olsr.PrintNeighborCacheAllEvery (Seconds (2),

neighborStream);

11

12 }

�Run Simulation
Finally, to execute the simulation, print a log on the console with the

node information. Create the simulation for 33 seconds, and call the Run

method. Finally, destroy the simulation; in other words, kill the process on

the kernel with the Destroy method. See Listing 6-17.

Chapter 6 MANET Simulation on ns-3

141

Listing 6-17.  Running and Stopping the Simulation Code

1 �NS_LOG_UNCOND ("Testing from node " << sourceNode << " to "

<< sinkNode << " with grid ‹→ distance " << distance);

2

3 Simulator::Stop (Seconds (33.0));

4 Simulator::Run ();

5 Simulator::Destroy ();

6

7 return 0;

�Analysis of Results
Open AI Gym allows you to create a system to train agents in the

environment created by the agent’s existence. The essence of this module

is to link the environment with the simulator and establish a method for

the agent to obtain rewards at each step to improve the simulation results

according to the factors and metrics selected on the simulation script.

The two learning metrics that will be used are the number of recorded

nodes and the processing time. The objective is that the number of nodes

recorded to transmit packets through the ad hoc network is reduced, and,

in turn, the time required for the transmission of said packets is reduced.

To verify this, various tools such as Wireshark will be used to observe

the movement of packages (these tools are present in the requirements

section).

Finally, it should be specified that the middleware and the Open

AI Gym framework are based on the example of “cognitive radio” for

their realization. The results are also based on the .pcap files to observe

Chapter 6 MANET Simulation on ns-3

142

the movement of packages and the graphic tools (mentioned in the

requirements section) to observe the learning metrics. See Figure 6-5.

Listing 6-18 shows the elements to compose the integration simulator

and Open AI Gym.

	 a)	 Agent: The agent is in charge of taking a simulation

course; the agent can receive the iterations and start

the parameters in the console, which correspond to the

number of iterations and if the simulation of ns-3 is going

to run, respectively. In addition, the agent configures the

environment of ns-3, with these parameters:

•	 port: This is the port where you will communicate

with the simulation.

•	 stepTime: This specifies how often a simulation step

will take place.

Figure 6-5.  Open AI Gym framework [93]

Chapter 6 MANET Simulation on ns-3

143

•	 startSim: This assigns the value it receives per

console in the start parameter and indicates

whether the ns-3 simulation is run.

•	 simSeed: This is the seed of the simulation.

•	 simArgs: These are the extra parameters of

the simulation, such as simTime, which is the

simulation time, and testArg, which is a test

parameter to verify that the parameters are received

as expected.

•	 debug: This is a Boolean that allows you to say

whether to debug.

Listing 6-18.  Agent Configuration Code

 1 Ptr<OpenGymDataContainer> MyGetObservation(void){

 2

 3 std::vector<uint32_t> shape = {numNodes,};

 4 �Ptr<OpenGymBoxContainer<uint32_t> > box = ‹→ Create

Object<OpenGymBoxContainer<uint32_t> >(shape);

 5

 6 for (uint32_t i = 0; i<2*numNodes; i++){

 7 u_int32_t value = m_channelOccupation.at(i);

 8 box->AddValue(value);

 9 }

10

11 NS_LOG_UNCOND ("MyGetObservation: " << box);

12 return box;

13 }

Chapter 6 MANET Simulation on ns-3

144

	 b)	 OpenGym: For the integration with the library, it was

necessary to define the observation and action spaces

in such a way that they would allow us to carry out

the training regarding the movement of a node, as

described in the description of the simulator. They are

presented here (see Listing 6-19):

•	 Observation space: This will correspond to the

positions of all nodes so that you can know the

distance between them.

Listing 6-19.  Agent Observation Space Code

 1 Ptr<OpenGymSpace> MyGetObservationSpace(void)

 2 {

 3 float low = 0.0;

 4 float high = 10.0;

 5 std::vector<uint32_t> shape = {numNodes,};

 6 std::string dtype = TypeNameGet<uint32_t> ();

 7 �Ptr<OpenGymBoxSpace> space = CreateObject

<OpenGymBoxSpace> (low, high, shape, ‹→ dtype);

 8 NS_LOG_UNCOND ("MyGetObservationSpace: " << space);

 9 return space;

10 }

•	 Action space: This corresponds to the movements

of the node. It has movement, it is denoted as

a random integer between 0 and 4, and this is

mapped to an address: 1 corresponds to the

top, 2 to the right, 3 to the bottom, and 4 to the

left. Finally, 0 corresponds to not performing

any movement. It should also be noted that the

movement made by the node will be 15 units in the

corresponding direction. See Listing 6-20.

Chapter 6 MANET Simulation on ns-3

145

Listing 6-20.  Agent Actions Code

1 Ptr<OpenGymSpace> MyGetActionSpace(void)

2 {

3 uint32_t nodeNum = 5;

4

5 �Ptr<OpenGymDiscreteSpace> space = CreateObject<OpenGym

DiscreteSpace> ‹→ (nodeNum);

6 NS_LOG_UNCOND ("MyGetActionSpace: " << space);

7 return space;

8 }

Likewise, it was necessary to denote the functions of MyGetReward and

MyGetGameOver that correspond to the reward that will be given based on

the current observation space and the decision of whether the state of

the observation space is such that the simulation should be finalized. See

Listing 6-21.

•	 MyGetReward: This was reported based on the distance

of the node with respect to the others. On each

iteration, it checks the channel occupation and uses

a vector to define the distance between nodes. The

conditions are a reward of +2 for each node that is less

than or equal to 100 units, -1 for each node that is at a

distance greater than 100 units, and less than or equal

to 150 units.

Listing 6-21.  Agent Reward Code

 1 float MyGetReward(void){

 2 static float reward = 0.0;

 3

 4 �int x = m_channelOccupation[0], y = m_channel

Occupation[1];

Chapter 6 MANET Simulation on ns-3

146

 5 �for (uint32_t i = 2; i < m_channelOccupation.size()-1;

i+=2){

 6 �int xx = m_channelOccupation[i], yy = m_channel

Occupation[i+1];

 7 int d = distance(x,y,xx,yy);

 8 if(d<=10000){

 9 reward+=2;

10 }else if(d>=10000 && d<=22500){

11 reward-=1;

12 }

13 //otherwise no reward

14 }

15 return reward;

16 }

In the same way, a method called MyUpdatechannel allows you to

analyze the new channel and the new network conditions to update the

reward and the agent knowledge. See Listing 6-22.

Listing 6-22.  Customized Method for Agent Code

1 void MyUpdateChannel(){

2 �Ptr<ConstantVelocityMobilityModel> mob = ‹→ c.Get(

sourceNode)->GetObject<ConstantVelocityMobilityModel>();

3 Vector pos = mob->GetPosition();

4

5 m_channelOccupation.at(0) = pos.x;

6 m_channelOccupation.at(1) = pos.y;

7 }

Chapter 6 MANET Simulation on ns-3

147

•	 MyGetGameOver: Since the space in which the nodes

are has a size of 500×500 and there are 20 nodes, this

function is true if the node being observed is at a

distance greater than 150 units from all nodes. See

Listing 6-23.

Listing 6-23.  Agent Game in Code

 1 bool MyGetGameOver(void)

 2 {

 3

 4 bool isGameOver = false;

 5 bool test = false;

 6 static float stepCounter = 0.0;

 7 stepCounter += 1;

 8 if (stepCounter == 10 && test) {

 9 isGameOver = true;

10 }

11 NS_LOG_UNCOND ("MyGetGameOver: " << isGameOver);

12 return isGameOver;

13 }

•	 MyExecuteActions: The agent receives the

observations from the channel occupation, and

the node position calls the MyUpdateChannel()

function to change the position and mobility with the

ConstantVelocityMobilityModel. See Listing 6-24.

Chapter 6 MANET Simulation on ns-3

148

Listing 6-24.  Agent Actions Code

 1 bool MyExecuteActions(Ptr<OpenGymDataContainer> action)

 2 {

 3 �Ptr<OpenGymDiscreteContainer> discrete = ‹→ DynamicCast

<OpenGymDiscreteContainer>(action);

 4 uint32_t value = discrete->GetValue();

 5 direction = value;

 6

 7 MyUpdateChannel();

 8 NS_LOG_UNCOND ("MyExecuteActions: " << value);

 9 return true;

10 }

•	 Utils: There are two functions used to estimate the

distance between nodes with the channel occupation

parameter and change the velocity and the position of

nodes on the ad hoc network, in four directions: up,

down, right, and left. See Listing 6-25.

Listing 6-25.  Customized Agent Mobility Code

 1 int distance(int x,int y,int xx,int yy){

 2 return (x-xx)*(x-xx) +(y-yy)*(y-yy);

 3 }

 4

 5 void MoveNode(Ptr<ConstantVelocityMobilityModel> mob){

 6 �int speed = 15;// Here you configure the node to go

faster or slower

 7 //Vector m_pos = mob->GetPosition();

 8 Vector m_velocity = mob->GetVelocity();

 9 if(direction == 0) //static

10 m_velocity = Vector(0,0,0);

Chapter 6 MANET Simulation on ns-3

149

11 else if(direction == 1) //up

12 m_velocity = Vector(0,-speed,0);

13 else if(direction == 2) //right

14 m_velocity = Vector(speed,0,0);

15 else if(direction == 3) //down

16 m_velocity = Vector(0,speed,0);

17 else if(direction == 4) //left

18 m_velocity = Vector(-speed,0,0);

19 mob->SetVelocity(m_velocity);

20 Simulator::Schedule (Seconds (1.0), &MoveNode,

21 mob);

22 }

�Run and Analyze
Running the simulation with the ABS methodology is useful to run the

example. For the “Hello World!” program, it is necessary to deploy the

ambient in the first instance on terminal 1 at /path_to_ns/ns3_version.

Execute the compiler waf as follows:

./waf --run /contrib/opengym/examples/opengym"

The simulator linked with the environment allows the existence of the

agent (as Figure 6-6 shows).

Figure 6-6.  AI OpenGym ambient

Chapter 6 MANET Simulation on ns-3

150

Running the simulation and creating the agent to learn the behavior

is the main factor to improve the simulation. To run the agent on terminal

2, go to the path to ns-3 and type the following command to execute the

Python script:

1 �cd path_to_ns_3/ns3_version/contrib/opengym/examples/

opengym/

2 python3 ./test.py --start=0

Now the agent exists on the environment and runs the simulation, and

it prints on the terminal the results as rewards for the agent, as shown in

Figures 6-7a and 6-7b.

This exercise was developed from a Stochastic Models course in a

systems engineering undergraduate program [94]. The first step is to

build the project with the command ./waf in the ns3-version folder.

The project to deploy the simulation is allocated in the scratch directory,

/ns-3.version/scratch/. The work directory in our case is called

wifiadhoc. The goal for the simulation is to hold the link between nodes.

Figure 6-7.  ABS simulation output

Chapter 6 MANET Simulation on ns-3

151

Using the position and the mobility pattern, the agent works in order to

move the nodes to the cluster coverage zone for more time.

To run the environment, type the command ./waf --run

"wifiadhoc" in the ns-3 path directory. On another terminal, to execute

the agent, type the command in the work directory python3 scriptname.

py --start=0, and save the rewards. See Figure 6-8.

�Results
You can analyze the experiment using the .pcap files, the .tr file, and the

agent’s reward file that are output to check the results and simulation. In our

example, we used 20 nodes with the OLSR routing protocol and sent messages

between two nodes (nodes 0 and 19), while the nodes moved on the canvas

space at 500×500 units. In this example, for each node, a .pcap file is generated.

You can use a Wireshark traffic analyzer [95] to verify the network behavior,

check the protocols used, send packets, drop packets, and graph them.

In Wireshark you can show the protocols used in the simulation.

This is possible through a dissector. In Wireshark each dissector decodes

its part of the protocol, for example, OLSR, and then hands off decoding

to subsequent dissectors for an encapsulated protocol. To develop a

new protocol and analyze it, it is useful to create a proper dissector as a

Figure 6-8.  ABS scenario simulation output

Chapter 6 MANET Simulation on ns-3

152

library for Wireshark (.h file). Figure 6-9a shows the OLSR protocol used

as a routing protocol on an ad hoc network. This protocol sends “Hello”

messages every second to discover neighbors and the network structure.

Figure 6-9b shows the control packets used for the IEEE 802.11a standard

for recognition between nodes on the network. The mechanism described

is only available with the enablement of ad hoc mode.

The payload on this experiment is sent at a constant rate of 2,000 bytes.

Figure 6-10b shows the payload. The traffic is sent to the network while

the nodes move on the canvas. For the transport protocol, we used a UDP

stream based on the QUIC transport protocol [96], as shown in Figure 6-10a.

The QUIC transport protocol incorporates stream multiplexing and per-

stream flow control; it also incorporates TLS 1.3 at the transport layer,

offering comparable security to running TLS over TCP, with the improved

connection setup latency of TCP Fast Open.

Figure 6-9.  Wireshark packet view output

Chapter 6 MANET Simulation on ns-3

153

Finally, to check the UDP stream on Wireshark on each node, click

the statistics menu and then the I/O graph to generate a graph with traffic

information. In this case, it creates a graph with the UDP stream on QUIC,

the source as the IP address 10.1.1.1, and the destination IP address

10.1.1.20 on port 80. Figure 6-11a shows the packets sent for node 0 (100),

and Figure 6-11b shows the received packets from node 0 to node 19.

Another way to check the simulation is on the trace output (.tr file),

which contains all events and interactions between all nodes over all

simulations. The common fields on a trace file are as follows:

Figure 6-10.  Wireshark packet analysis output

Figure 6-11.  Statistical analysis packet output

Chapter 6 MANET Simulation on ns-3

154

•	 Event: This field contains the next options: + indicates

a packet was enqueued. - indicates a packet was

dequeued. d indicates a packet was dropped. r

indicates a packet was received.

•	 Time: The next field in the ns-3 file is the time at which

the event occurred.

•	 From: This is the starting node for the link on which the

event has occurred.

•	 To: This is the ending node for the link on which the

event has occurred.

•	 Type: The type indicates type of packets.

•	 Size: The size indicates the size of packets in bytes.

•	 Flags: For the experiment the flags are ignored.

•	 Class: This is the class of the packet, which can be used

to identify a particular connection.

•	 Source: This is the source address.

•	 Destination: This is the destination address.

•	 seq: This is the sequence number of the packet.

•	 Id: This is the identifier of the packet.

Table 6-1 shows the field state as r (packet received), time (seconds),

the protocol as split from the class information (17=UDP), source,

destination, class type, and size. The table only has the first arrows to

illustrate the output information. The output as .png files looks like

Figure 6-12.

Chapter 6 MANET Simulation on ns-3

155

Ta
bl

e
6-

1.
 S

u
m

m
ar

iz
ed

 tr
 F

il
e

O
u

tp
u

t

Ev
en

t
Ti

m
e

Fr
om

Pr
ot

oc
ol

So
ur

ce
De

st
in

at
io

n
Cl

as
s

Ty
pe

Si
ze

r
30

,0
02

Ds
ss

Ra
te

1M
bp

s/

No
de

Li
st

/1
9/

De
vi

ce
Li

st
/0

/

$n
s3

::W
ifi

Ne
tD

ev
ic

e/
Ph

y/

St
at

e/
Rx

Ok

pr
ot

oc
ol

17

10
.1

.1
.1

10
.1

.1
.2

0
ns

3:
:U

dp
He

ad
er

(le
ng

th
: 1

00
8

49
15

3

>8
0)

Pa
yl

oa
d

(s
iz

e=
10

00
)

r
31

,0
09

Ds
ss

Ra
te

1M
bp

s/

No
de

Li
st

/1
9/

De
vi

ce
Li

st
/0

/

$n
s3

::W
ifi

Ne
tD

ev
ic

e/
Ph

y/

St
at

e/
Rx

Ok

pr
ot

oc
ol

17

10
.1

.1
.1

10
.1

.1
.2

0
ns

3:
:U

dp
He

ad
er

Pa
yl

oa
d

(s
iz

e=
10

00
)

Chapter 6 MANET Simulation on ns-3

156

Figure 6-12.  Packets received on node 19

All the packets are received on this experiment for the destination

node. The agent keeps the nodes linked, controls the mobility on each

node to avoid the drop packet on simulation time, and obtains the reward.

The parameters are as follows:

•	 observation: This is the occupation on each channel in

the current time slot and node position.

•	 actions: These set the channel to be used for the next

time slot and move the node.

•	 reward: This is +2 if the node position is more than 100

units with respect to another node; otherwise, it is -1.

•	 game over: This specifies if there is more than 150 units

of distance between nodes on a MANET or the end

simulation time.

Chapter 6 MANET Simulation on ns-3

157

As Figure 6-13 shows, the agent has a reward of 1,443 points on the

simulation. It is not the number of packets or packets received or a similar

measure. The reward is based on the node position inside the ns-3 canvas

that allows communication between nodes in ad hoc mode. The OLSR

messages and the UDP stream are between node 0 and node 19. At 400

seconds in the simulation time, the agent checks each communication

on 200 events, checking the condition at each position and the channel

occupations per node. The reward concludes that the nodes are in a

cluster form on the same coverage area between 1 and 100 units. See

Figure 6-13.

Figure 6-13.  Wi-Fi agent reward

Chapter 6 MANET Simulation on ns-3

158

�Summary
MANETs are networks connected via mobile wireless devices. Their special

characteristics make their implementation a little bit complicated. That’s

why simulators are so important since they allow an alternative way to

validate a model. One of these simulators is ns-3. This chapter provided all

the necessary information to write code, simulate it, and obtain different

metrics associated with the operation of wireless networks.

The discrete event simulation allows you to create dynamic

scenarios for networks, for instance wireless networks with centralized

infrastructure, protocols such as IEEE 802.11, mobility, channel

interference, and all the features for testing and verifying the network

behavior. MANETs or ad hoc networks don’t have infrastructure and use

proactive and reactive protocols to maintain the services and user requests

on the cluster. To move forward in a simulation, the ABS techniques are

useful to validate the variables, to search for better scenarios to guarantee

the optimal working on the cluster or simulation scenario with the

inclusion of an agent model, to abstract the environment, and to evaluate

the metrics for rewards or game over in the agent. The agent model in the

ns-3 simulation creates a new ecosystem that elevates the technical and

computational rigor of the simulator.

�Complementary Readings
Read the following on your own to learn more:

	 1.	 Agent-based modeling and simulation Simon Taylor [97]

	 2.	 Introduction to discrete event simulation and

agent-based modeling: voting systems, health care,

military, and manufacturing [98]

Chapter 6 MANET Simulation on ns-3

159

	 3.	 Multi-Agent-Based Simulation XIX: 19th

International Workshop, MABS [99]

	 4.	 Fast prototyping of network protocols through ns-3

simulation model reuse [100]

	 5.	 Ad-hoc networks: fundamental properties and

network topologies [101]

Chapter 6 MANET Simulation on ns-3

161© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0_7

CHAPTER 7

MANETs and PLC
on ns-3
�Power Line Communication
Much of the work in telecommunications is done in the physical channel

through which the transmission of information is carried out. Each

communication channel has its own characteristics that facilitate or hinder

the transmission of information, so the technology must be adapted using

different modulation, multiplexing techniques, and efficient access to the

transmission medium.

In the exploration of different communication channels and

transmission mediums, we have been gradually advancing from guided

transmission in wires, waveguides of different shapes, and optical

fiber channels that notably increase the transmission speeds, to high

throughput dispersive wireless channels that take advantage of constant

improvement of electromagnetic spectrum engineering and add mobility

to the communication nodes, among other benefits.

In this exploration of possible communication methods, it has been

demonstrated that the most traditional guided medium that was not

initially designed at all for the transmission of information has good

performance as well as other communications mediums in certain

https://doi.org/10.1007/978-1-4842-6849-0_7#DOI

162

conditions: electrical power lines. The transmission of information

through power cables is not a new idea. In the late 1880s or early 1900s,

there were already patents about information transmission on devices that

allowed remote measurements to be made through electrical distribution

cables [102].

The applications of this channel were increasing over time, and the

transmission frequencies increased gradually; however, until the early

1990s they operated only below 3kHz, so the transmission rates were low.

In the late 1990s, some applications were developed in the 1.8MHz

band at 250MHz that allowed transmission rates in electrical distribution

lines up to the order of hundreds of megabits per second, which enabled

the Internet to be supplied through this channel. This field is currently

known as power line communications (PLC). At the beginning of the 21st

century, the research approach once again focused on narrow-band

transmissions due to possible applications in smart grids [102].

Although current technology allows the use of high-, medium-, and

low-voltage power distribution lines as a communication back-haul for

the distribution of telecommunications services to city users, several

technical and legal difficulties in the use of these lines have limited its use.

However, an application that has gained acceptance in the use of PLCs is

the transmission of information in the internal networks of buildings.

�Fundamental Characteristics of the PLC Channel
The use of the power line channel for information transmission finds its

greatest challenge in the technical difficulties arising from the fact that

a power line is not a medium designed for this purpose. The complete

design of electrical distribution networks had, until recently, the unique

purpose of transmitting energy to the end users of electrical services, and

in its design and construction no high frequency handling considerations

were made.

Chapter 7 MANETs and PLC on ns-3

163

For this reason, the use of the PLC channel as a communication

medium implies challenges to overcome the tough characteristics

imposed by the medium. The first great challenge is to obtain a suitable

model of the medium. Consequently, the first effort was aimed at

measuring the parameters on the real power lines in order to find common

characteristics and to extract parameters that would serve for modeling

the system. However, it must be considered that the electrical transmission

networks differ greatly from country to country, and even in the specific

case of a country as Colombia, there are differences in the electrical

network structure depending on the sectors and of the type of end points.

For this reason, further efforts were made for creating deterministic

models that subsequently allow the transmission channel to be modeled

under different circumstances and under the different design parameters

of an electrical network.

From the measurements that were conducted in the research and their

subsequent validation using deterministic techniques, certain common

characteristics were observed in the PLC channels. For instance, these

mediums are frequency selective, which means that the communications

channel presents fading for signals at certain frequencies, and in addition,

due to the characteristics of the devices connected to the network and the

randomness nature of their connection and disconnection, the channel

presents temporary changes that cause the transfer function models of the

system to change.

Also, the temporal changes in the channel model show a relationship

with the period of the electrical network so that cyclical repetitions can be

observed that generally have half of the period of the power signals in the

network.

Likewise, the PLC channel is subject to colored noise figure types,

which is noise that has some components of a larger magnitude in certain

regions of the frequency spectrum, unlike white noise that has a uniform

magnitude throughout the spectrum.

Chapter 7 MANETs and PLC on ns-3

164

�Deterministic Models of PLC Channel
There are two general perspectives for modeling the transfer function of
the power line channel. The first is the perspective of the analysis in the
time domain, in which the communication channel is considered as a
multipath channel, which means that the model is built using the property
of multiple reflections of the waves, caused by the possible paths that they
can take from the sender to the receiver.

In the specific case of the power line channel, those reflections are
caused by the multiple branches and interconnections in the wiring and by
the differences between impedances through the line and the differences
with the impedance of the loads connected to it. In this way, each of these
discontinuities generates reflections as transmitted waves that reach the
receiver at different times and with different amplitudes due to attenuation

[103]. See Figure 7-1.

Figure 7-1.  Measured time and frequency variations of PLC channel
[103]

Chapter 7 MANETs and PLC on ns-3

165

According to a temporal analysis, the transfer function can be

described as the sum of functions corresponding to each of the signal

paths. Each of these functions, in turn, will have a dependency on the link

topology, the signal attenuation coefficients, and the time delays that each

path introduces.

This approach can be complex when trying to model all the

discontinuities and leads present in a PLC channel in a real scenario, since

all possible reflection and transmission paths must be considered.

Another perspective of analysis is the one based on the theory of

transmission lines, which starts from a detailed knowledge of the network

and the constructive characteristics of the cabling that makes it up,

resulting in getting a complete model of the channel to be made from

the transmitter to the receiver. This perspective is also used for modeling

two-wire DSL copper lines [104]; however, the analysis can be extended to

three-wire lines or four-wire transmission lines.

This method considers an infinitesimal fragment of transmission line,

which can be characterized with just four parameters: a resistive value “R”

and an inductive value “L” per unit length and a value of capacitance “C”

and one of conductance “G” that constitute a parallel impedance. These R,

L, C, and G values are called primary parameters. Using these values and

circuit theory, a differential equation can be obtained for the voltages and

currents on this infinitesimal line fragment model; these equations are

called currently the telegrapher’s equations.

If we add to the infinitesimal line segment a voltage source at one of its

ends and an impedance at the other, we will form a circuit. When solving

the equations of this circuit, we can find a relationship between the voltage

and the current on the infinitesimal segment, which is made up of two

waves that travel in different directions, one of which is the transmitted

wave and the other is the reflected wave from the termination of the line.

Chapter 7 MANETs and PLC on ns-3

166

In this way, we can find a frequency-dependent relationship between

the voltages and currents at the beginning of the fragment and the end of

it, using the following matrix equation, where A, B, C, and D are factors

that depend on distributed factors: resistance, inductance, capacitance,

and conductance of the line [104].

	 V I A BC D V I
1 1 2 2� � � � �� � 	

Each of these infinitesimal segments can be viewed as a two-port

network, with two inputs and two outputs. If we locate a consecutive

sequence of these ports, knowing the parameters A, B, C, and D of each

one, we could deterministically model the behavior of a cable segment or

transmission line from the emitter to the receiver, finding the function of

transfer of each of the fragments and making a product between them.

�PLC Software for ns-3 Simulation
In the attempt to model and predict the behavior of PLC channels for the

transmission of data, different simulation methods and software have been

used; these methods have used measurements made in the field over real

channels and theoretical approaches that allow predicting their behavior

in a deterministic way. Standing out among the software produced for that

purpose is the one developed by Fariba Aalamifar et al. [105] as a module

for network simulation software based on discrete ns-3 events [106].

This software is based on the transmission line theory to model the

behavior of the PLC channel and calculate its transfer function; it also includes

tools to conform communication topologies with PLC nodes, add different

types of noise and different types of impedances in each of its nodes, and

easily implement a connection with the other abstractions of ns-3.

Chapter 7 MANETs and PLC on ns-3

167

The module can be divided into four constitutional parts for easy

analysis. The first module is called Grid and Network Elements, where the

user can create different network topologies by joining different nodes. In

this class, a range of frequencies and a resolution must be defined on the

calculations and simulation.

Each of the nodes of the PLC network can be seen as the vertices of

a graph and can fulfill different functions, one of which is to serve as an

impedance. The software allows you to add an impedance to a PLC node. This

impedance can be constant (modeled as a complex number that never varies

during simulation), frequency selective (modeled as a vector of complex

numbers that can be supplied where each value corresponds to a frequency

or three parameters of a resonant circuit), selectivity in time (modeled as a

vector of complex numbers that is supplied where each value corresponds to

a specific time in the main cycle), and selectivity in both frequency and time

that combines the properties of the two previous models.

The nodes can also be used as active components of communication,

being assigned as transmitters or receivers. In this way, the node will have

an interface that will allow the use of protocols such as TCP/IP.

To create a more realistic simulation scenario, the software also allows

the nodes to be used as a noise source. Several functions are implemented

to model the white noise, the colored noise, the impulsive noise set by the

user, and the impulsive noise of random type.

Finally, the software allows the nodes to be used as unions where

multiple vertices of the graph converge or branch.

As shown in Figure 7-2, another functionality of the grid and network

abstraction of the module is the function for creating edges, which are

understood as the links between the nodes. This link is modeled by the

software through a two-port network characterized by an ABCD matrix.

The elements can be fixed, time-selective, or frequency-selective. The

module includes three different model of cables used in electrical

installations: the NAYY 150SE and NAYY 50SE four-section cables and the

AL3X95XLPE three-section cable.

Chapter 7 MANETs and PLC on ns-3

168

The next abstraction of the module is the so-called Topology Creation.

In this abstraction, the topologies that are made up of the nodes and links

mentioned earlier are handled. For the creation of topologies, an arbitrary

number of nodes and links is allowed; however, the limitation is that no

closed cycle is contained within it. The software allows the calculation of

the transfer function between any pair of PLC nodes in the topology, as

well as the signal-to-noise ratio and the power spectral density.

Finally we find the “core” module. This module is divided into two

main parts. The first is the class PLC channel that allows you to link all the

transfer functions of the PLC channels and also extends the Channel class

of ns-3, allowing you to add elements of the NetDevice class to the PLC

nodes. The second is the PLC ChannelTransferImpl class that computes

the transmission channel using transmission line theory.

�MANET and PLC Simulation
Next, a practical communication scenario will be presented on electrical

channels in an in-home space, which will be simulated using ns-3.

Figure 7-3 shows the electrical plan of a house or single-family apartment

that, with certain modifications, is common in different parts of the world.

The plan also shows the electrical connection diagram of the house where

the distribution box can be seen, where the electrical energy is distributed

to the entire house. In the case of houses with a single-phase supply (the

most common in this type of electrical installations), three cables are used,

which are called phase, neutral, and ground; however, the links are shown

here by means of a single line.

Since some of the nodes shown in Figure 7-3 correspond to lamps,

they cannot be used for communication through the power line. For this

reason, the nodes used as the communication interface will be those

corresponding to outlets, since it is there that a communication signal

can be injected and obtained. The other nodes will simply be taken as

branches or interconnection points. See Figure 7-2.

Chapter 7 MANETs and PLC on ns-3

169

In Figure 7-4, a two-dimensional representation of the same plane can

be seen, where all the nodes are distributed in the same plane, respecting the

distances between nodes. In this case, the switches are not taken into account

since they do not represent a branch or a possible communication node.

Now we will look at how to create PLC links using the module

described in the previous section. For this purpose, some lines of code will

be described that will allow us to understand the operation and structure

of the simulation. We will start with a simple link between two nodes,

which is completely done through a PLC channel.

To start, we define a spectral model that will give the information of

the frequency interval on which we will work in our simulation. In this

case, we are taking from 0 to 10MHz, and this interval is divided into 100

positions. See Figure 7-3 and Listing 7-1.

Figure 7-2.  Graphical description of main classes of ns-3 PLC module

Chapter 7 MANETs and PLC on ns-3

170

Listing 7-1.  Spectrum Model PLC

1 PLC_SpectrumModelHelper smHelper;

2 Ptr<const SpectrumModel> sm;

3 sm = smHelper.GetSpectrumModel(0, 10e6, 100);

Subsequently, the power spectral density of transmission is defined,

that is, the power that will be applied to the channel at each of the

frequencies previously defined when transmitting. In the specific case of

this example, a power of 10nW or -50dBm will be used, applied uniformly

to all the frequencies of the channel.

It is important to consider that one of the limitations for the use of

the PLC channel for information transmission is that of electromagnetic

compatibility, since by this same medium the electrical energy is

distributed for the home. That is, although communication can be

improved by applying more power to transmit the information, this would

Figure 7-3.  Electrical diagram of a single-phase installation of a house

Chapter 7 MANETs and PLC on ns-3

171

greatly affect the main purpose of the channel; however, addressing this

type of problem goes beyond the purpose of this book, so in the suggested

reading material at the end of the chapter, you will be able to find multiple

texts that deepen this and other perspectives of communication on PLC

channels. See Figure 7-4 and Listing 7-2.

Listing 7-2.  PLC Channel Setup

1 Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

2 (*txPsd) = 1e-8;

The next step is to define a communication channel between the

nodes, for which an AL3x95XLPE type cable is created, which is part of and

is defined within the module used for the simulation. This cable is also

associated with the spectrum model created earlier. See Listing 7-3.

Figure 7-4.  2D representation of PLC nodes inside the house

Chapter 7 MANETs and PLC on ns-3

172

Listing 7-3.  PLC Cable Setup

1 �Ptr<PLC_Cable> cable = CreateObject<PLC_AL3x95XLPE_Cable>

(sm);

We can also associate the PLC nodes with an impedance that would

allow us to simulate the behavior of the communication if a device that

has a constant impedance, an impedance that depends on frequency, or

an impedance that depends on time or one that depends on both, time

and frequency, is connected to any of the nodes. For this reason we create

a vector of 100 positions, taking into account that our spectral model has

this same quantity. In this vector, we save each of the impedance values

associated with the corresponding frequency of the spectral model. For

the specific case of our example, all the positions of the vector contain

the value 50, so in each of the frequencies there would be a constant

impedance value of 50 ohms. See Listing 7-4.

Listing 7-4.  PLC Impedance Setup

1 PLC_ValueSpectrum values(100,50);

2 �Ptr<PLC_FreqSelectiveImpedance> shuntImp = Create<PLC_

FreqSelectiveValue> (sm,values);

Having all the characteristics, we can proceed to create the necessary

nodes to establish communication. In this process, the nodes that will act

as bifurcation or interconnection must also be taken into account. After

creating the nodes, a position must be associated with them, which will

allow us to subsequently calculate the transfer function of the channel. In

this case, we have that the nodes are at a distance of 5 meters from each

other. After creating the nodes, they must be added to one or more lists,

which will allow us to assign group qualities to them. Finally, we can link

the nodes through the channels created previously. See Listing 7-5.

Chapter 7 MANETs and PLC on ns-3

173

Listing 7-5.  PLC Link Nodes

 1 Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

 2 Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

 3

 4 n1->SetPosition(0,0,0);

 5 n2->SetPosition(5,0,0);

 6

 7 n1->SetName("Node1");

 8 n2->SetName("Node2");

 9

10 PLC_NodeList nodes;

11 nodes.push_back(n1);

12 nodes.push_back(n2);

13

14 CreateObject<PLC_Line> (cable, n1, n2);

15

Now we can configure the channel and the nodes that we will use

for communication. For this purpose, we create an object of class PLC

ChannelHelper and install it to the group of defined nodes, after which

we can call the channel created. In this case, we are going to associate the

impedance frequency dependence shuntImp at node 1, which means that

this node will present an impedance of 50 ohms at all frequencies of the

spectrum. See Listing 7-6.

Listing 7-6.  PLC Outlet Setup

1 PLC_ChannelHelper channelHelper(sm);

2 channelHelper.Install(nodes);

3 Ptr<PLC_Channel> channel = channelHelper.GetChannel();

4

Chapter 7 MANETs and PLC on ns-3

174

5 �Ptr<PLC_Outlet> outlet1 = CreateObject<PLC_Outlet>

(n1, shuntImp);

6

Then a PLC network device can be associated with the created nodes.

In this case, some aspects of the communication are configured by

default, such as the physical layer, the modulation and coding scheme of

the headers, and the communication payload, after which we can fully

calculate the transfer function of the channel. See Listing 7-7.

Listing 7-7.  PLC Physical Layer Setup

1 PLC_NetDeviceHelper deviceHelper(sm, txPsd, nodes);

2 �deviceHelper.DefinePhyType(TypeId::LookupByName ("ns3::PLC_

InformationRatePhy"));

3 �deviceHelper.DefineMacType(TypeId::LookupByName ("ns3::PLC_

ArqMac"));

4 �deviceHelper.SetHeaderModulationAndCodingScheme(ModulationA

ndCodingScheme(BPSK_1_4,0));

5 �deviceHelper.SetPayloadModulationAndCodingScheme(Modulation

AndCodingScheme(BPSK_1_2,0));

6 deviceHelper.Setup();

7 channel->InitTransmissionChannels();

8 channel->CalcTransmissionChannels();

After the creation and configuration of the PLC nodes, we can create

a node container of the NodeContainer class of ns-3, which allows linking

the nodes created previously to the normal software interface. This implies

that we can associate the PLC nodes with characteristics already known

as network devices or routing protocols normally used in other types of

networks.

1 NodeContainer nodes1;

2 nodes1=deviceHelper.GetNS3Nodes();

Chapter 7 MANETs and PLC on ns-3

175

�Wireless-PLC Mixed Node
The creation and association of nodes discussed will allow the formation

of communication networks where the only communication channel is

the power lines, which can be useful in multiple experimental settings.

However, given the versatility and variety in modern communication links,

it is necessary to create nodes within the simulation environment that can

support two or more communication interfaces.

For this reason, the way to establish nodes in the simulator that allow

the interface in different communication channels is shown in Listing 7-8,

which is today a common denominator in communication devices.

The procedure for defining the PLC node does not differ from the one

shown previously; a spectrum is defined that will allow us to conduct the

simulation and define other parameters such as the impedance associated

with the nodes or the power spectral density applied for transmission.

After this, the nodes are created and associated with the physical positions,

and the usual configuration is carried out.

Listing 7-8.  PLC: Wireless, Mixed Architecture

 1 // Define spectrum model

 2 PLC_SpectrumModelHelper smHelper;

 3 Ptr<const SpectrumModel> sm;

 4 sm = smHelper.GetSpectrumModel(0, 10e6, 100);

 5

 6 // Define transmit power spectral density

 7 Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

 8 (*txPsd) = 1e-8; // -50dBm/Hz

 9

10 // Create cable types

11 �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_Cable>

(sm);

Chapter 7 MANETs and PLC on ns-3

176

12

13 // Create nodes

14 Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

15 Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

16 n1->SetPosition(0,0,0);

17 n2->SetPosition(100,0,0);

18 n1->SetName("Node1");

19 n2->SetName("Node2");

20

21 PLC_NodeList nodes;

22 nodes.push_back(n1);

23 nodes.push_back(n2);

24

25 // Link nodes

26 CreateObject<PLC_Line> (cable, n1, n2);

27

28 // Set up channel

29 PLC_ChannelHelper channelHelper(sm);

30 channelHelper.Install(nodes);

31 Ptr<PLC_Channel> PLCchannel = channelHelper.GetChannel();

32

33 // Create PLC net devices

34 PLC_NetDeviceHelper PLCdeviceHelper(sm, txPsd, nodes);

35 �PLCdeviceHelper.DefinePhyType(TypeId::LookupByName

("ns3::PLC_InformationRatePhy"));

36 �PLCdeviceHelper.DefineMacType(TypeId::LookupByName("ns3::P

LC_ArqMac"));

37 �PLCdeviceHelper.SetHeaderModulationAndCodingScheme(Modulat

ionAndCodingScheme(BPSK_1_4,0));

38 �PLCdeviceHelper.SetPayloadModulationAndCodingScheme(Modula

tionAndCodingScheme(BPSK_1_2,0));

Chapter 7 MANETs and PLC on ns-3

177

39 PLCdeviceHelper.Setup();

40

41 // Calculate channels

42 PLCchannel->InitTransmissionChannels();

43 PLCchannel->CalcTransmissionChannels();

44

45 // Get NS-3 node container

46 NodeContainer PLCnodes;

47 PLCnodes=PLCdeviceHelper.Getns-3Nodes();

48

49 NetDeviceContainer PLCDevices;

50 PLCDevices = PLCdeviceHelper.GetNetDevices();

Once we have created and linked with the ns-3 functionalities, the PLC

nodes can be used to establish communications with other interfaces. In

this specific example, a node container has been created that will handle

the CSMA media access protocol. In this container, the previously created

PLC node will be pulled from its container. It is important to consider

here that this call to the node must be made on the container that allows

the link between the PLC module and the ns-3 functionalities, in this

case called PLCnodes, and must never be made from the list of PLC nodes

called here nodes since they do not yet have interconnectivity with the full

functionalities of the software. See Listing 7-9.

Listing 7-9.  Wireless Node Setup

1 NodeContainer csmaNodes;

2 csmaNodes.Add (PLCnodes.Get (1));

3 csmaNodes.Create (nCsma);

Chapter 7 MANETs and PLC on ns-3

178

In this case, we would already have a node with the two interfaces;

however, it would be necessary to configure the rest of the functionalities

of the network devices. The following shows the configuration of the PLC

nodes, within which there is one that has a double interface, and that is in

two containers: PLCnodes and csmaNodes.

�PLC Simulation Examples
Here are some examples.

�PLC Simulation on ns-3

In this example, developed through the NS-3 simulation software [106],

the topology shown in the Figure 7-4 built. The communication channels

in this example are only the electrical transmission lines inside home, and

it is a matter of verifying the possible influences on communication with

different routing techniques, normally used in wireless communications.

Similarly, an attempt is made to test the influence that other parameters

have on communication, among which are the size of the transmitted

packet and the transmission power spectral density (which will be taken as

a single value at all frequencies). Finally, the influence that the impedance

associated with the nodes of the network would have can be estimated

with this experimental setup.

The objective of the experimental test is to evaluate the effect

that the aforementioned input parameters have on the quality of the

communication service in order to verify the efficiency of the channel

in scenarios within the home, so it will be taken as the output of the

simulation the throughput or the rate of packets delivered successfully in

kilobits per second, so the program will export the packet reception rate

data and the number of packets delivered in a CSV file.

Chapter 7 MANETs and PLC on ns-3

179

To facilitate the experimental tests, a class called PLCRoutingExperiment

is created, which includes the fundamental parameters for the simulation,

as well as the Run functions from where the main communication settings

will be made and the simulation will be run; SetupPacketReceive, where

the reception of the packet will be configured according to a node and an

IPv4 address for which a socket will be configured; CommandSetup, where

the inputs of the parameters will be configured by console in order to make

changes in a simple way in the simulation without having to modify all the

NS-3 code; ReceivePacket, in which a socket is received as a parameter and

the packets sent are counted in order to have a record of the transmission

rate; and CheckThroughput, in which the transmission rate is calculated in

kilobits per second. See Listing 7-10.

Listing 7-10.  Traffic Experiment Setup

 1 void

 2 PLCRoutingExperiment::ReceivePacket (Ptr<Socket> socket)

 3 {

 4 Ptr<Packet> packet;

 5 while ((packet = socket->Recv ()))

 6 { bytesTotal += packet->GetSize ();

 7 packetsReceived += 1;

 8 �NS_LOG_UNCOND (PrintReceivedPacket (socket,

packet));

 9 }

10 }

 1 Ptr<Socket>

 2 �PLCRoutingExperiment::SetupPacketReceive (Ipv4Address

addr, Ptr<Node> node)

 3 {

 4 �TypeId tid = TypeId::LookupByName

("ns3::UdpSocketFactory");

Chapter 7 MANETs and PLC on ns-3

180

 5 Ptr<Socket> sink = Socket::CreateSocket (node, tid);

 6 �InetSocketAddress local = InetSocketAddress (addr,

port);

 7 sink->Bind (local);

 8 �sink->SetRecvCallback (MakeCallback (&PLCRoutingExperim

ent::ReceivePacket, this));

 9

10 return sink;

11 }

 1 std::string

 2 PLCRoutingExperiment::CommandSetup (int argc, char **argv)

 3 {

 4 CommandLine cmd;

 5 �cmd.AddValue ("CSVfileName", "The name of the CSV

output file name", m_CSVfileName);

 6 �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV;4=DSR",

m_protocol);

 7 �cmd.AddValue ("packetSize", "Packet Size", m_

packetSize);

 8 �cmd.AddValue ("txp", "Transmit power spectral density",

m_txp);

 9 cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

10 cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e);

11 cmd.Parse (argc, argv);

12 return m_CSVfileName;

13 }

Chapter 7 MANETs and PLC on ns-3

181

To know the influence that the input has on the simulation, an analysis

of each of the parameters must first be carried out. The routing protocols will

include four, two proactive (OLSR and DSDV) and two reactive (AODV and

DSR), as they are the most common in decentralized communications. The

packet size is defined as a value that can vary between 1 bit and 1Mb, as this

value is considered a high enough maximum to affect the packet reception

rate. On the other hand, the transmission power is a value that ranges from

microwatts to megawatts (this consideration is purely theoretical since the

idea of injecting this amount of energy into the power line is impossible in

reality). Given that the impedance associated with every node can take a real

value, every one of those will be a simulation input.

Since the simulation has as input the size of the packet to be sent,

the routing protocol, the power spectral density of the transmission, the

transmission rate, and the impedance of each of the nodes associated with

the outlets, it is suggested to perform a screening process that allows you to

select the most important factors that determine simulation variations.

To facilitate access to the input variables of the simulation, a link

is made with command-line arguments. From there you can select the

name of the output CSV file, the routing protocol to use, the packet size,

the power spectral density, and the nodes that will act as transmitter and

receiver of the transmission. See Listing 7-11.

Listing 7-11.  CMD Experiment Setup

1 �cmd.AddValue ("CSVfileName", "The name of the CSV output

file name", m_CSVfileName);

2 �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV;4=DSR",

m_protocol);

3 cmd.AddValue ("packetSize", "Packet Size", m_packetSize);

4 �cmd.AddValue ("txp", "Transmit power spectral density",

m_txp);

5 cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

6 cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e)

Chapter 7 MANETs and PLC on ns-3

182

The complete code of this example can be found in Appendix F of

this book. In the same way, Listing 7-12 is a bash script that allows you

to iterate over one of the inputs of the simulation, in this case the routing

protocol. This simple script can be modified to achieve independent or

nested iterations of the variables to be treated; however, as mentioned

earlier, the number of variables would make the combination of all of

them have too high a computational cost, so the process of screening is

necessary to lighten the computational load.

Listing 7-12.  Bash Code to Run Iterative Simulations from Linux

Terminal

 1 #! /bin/bash

 2 cd *your ns-3 route*/ns-allinone-3.25/ns-3.25

 3

 4 packetSize='1'

 5 for i in {1..4}

 6 do

 7 case "$i" in

 8 1) �sudo ./waf --run "scratch/plc_routing_compare --protocol=$i

‹→ --CSVfileName="PLC-routing_OLSR.output.csv" --packetSize

=$packetSize"

 9 ;;

10 2) �sudo ./waf --run "scratch/plc_routing_compare --protocol

=$i ‹→ --CSVfileName="PLC-routing_AODV.output

.csv" --packetSize=$packetSize"

11 ;;

12 3) �sudo ./waf --run "scratch/plc_routing_compare --protocol=

$i ‹→ --CSVfileName="PLC-routing_DSDV.output.

csv" --packetSize=$packetSize"

13 ;;

Chapter 7 MANETs and PLC on ns-3

183

14 4) �sudo ./waf --run "scratch/plc_routing_compare --protocol=$i

‹→ --CSVfileName="PLC-routing_DSR.output.csv" --packetSize=

$packetSize"

15 ;;

16 *) echo "Non valid state"

17 ;;

18 esac

19 done

�Mixed Wireless-PLC Simulation on ns-3
This section presents a simple and concrete example that allows the use

of communication nodes with a double interface, which allows the use of

several communication channels. The topology consists of a backbone

made up of two PLC nodes. Two LAN node and two WiFi nodes are linked

to each of these nodes, which will use the PLC backbone to communicate

with each other.

It begins with the creation of the PLC backbone, which is made up of

two nodes. They are assigned a position and a link channel; in this case, it

will be the NAYY150SE cable. See Listing 7-13.

Listing 7-13.  PLC Channel Configuration

 1 �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_Cable>

(sm);

 2

 3 Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

 4 Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

 5

 6 n1->SetPosition(0,0,0);

 7 n2->SetPosition(10,0,0);

 8

 9 n1->SetName("Node1");

Chapter 7 MANETs and PLC on ns-3

184

10 n2->SetName("Node2");

11

12 PLC_NodeList nodes;

13 nodes.push_back(n1);

14 nodes.push_back(n2);

15

16 CreateObject<PLC_Line> (cable, n1, n2);

17

18 PLC_ChannelHelper channelHelper(sm);

19 channelHelper.Install(nodes);

20 Ptr<PLC_Channel> channel = channelHelper.GetChannel();

Next, the LAN nodes are created that will be linked to node 0 of the PLC

backbone, so they are located in the same node container. See Listing 7-14.

Listing 7-14.  LAN Backbone Setup

1 NodeContainer newLanNodes;

2 newLanNodes.Create (lanNodes - 1);

3 NodeContainer lan (PLCBackbone.Get (0), newLanNodes);

Finally, the WiFi nodes that will be linked to node 1 of the backbone

are created. See Listing 7-15.

Listing 7-15.  Wireless Node Setup

1 NodeContainer stas;

2 stas.Create (infraNodes - 1);

3 NodeContainer infra (PLCBackbone.Get (1), stas);

Once all the nodes have been created and located, an OnOff

application is created that will allow information to be sent between two

nodes on the network. The information will travel from the LAN node,

through the PLC backbone, until it reaches the last WiFi node created. See

Listing 7-16.

Chapter 7 MANETs and PLC on ns-3

185

Listing 7-16.  Set Ipv4 Address and socket creation

 1 uint16_t port = 9;

 2 NS_ASSERT (lanNodes > 1 && infraNodes > 1);

 3 Ptr<Node> appSource = NodeList::GetNode (backboneNodes);

 4 Ptr<Node> appSink = NodeList::GetNode (3);

 5 �Ipv4Address remoteAddr = appSink->GetObject<Ipv4>

()->GetAddress (1, 0).GetLocal ();

 6 OnOffHelper onoff ("ns3::UdpSocketFactory",

 7 Address (InetSocketAddress (remoteAddr, port)));

 8 ApplicationContainer apps = onoff.Install (appSource);

 9 apps.Start (Seconds (3));

10 apps.Stop (Seconds (stopTime - 1));

This code allows the generation of traces to observe the passage of

information in each of the nodes so they can be observed in a packet

analyzer software such as Wireshark. The complete code for this example

is available in Appendix G of this book.

�Summary
This chapter deals with a communication channel that has been

designed for the transmission and distribution of energy but that in

certain circumstances may present advantages for the transmission

of information. This form of communication is called power line

communication. Two application examples are presented, one with

a completely PLC channel, in which various input parameters of the

simulation can be modified, and the other that has a PLC backbone over

which LAN and WiFi nodes communicate.

Chapter 7 MANETs and PLC on ns-3

186

�Complementary Readings
Here are some topics to learn more about:

	 1.	 Power line communications: theory and

applications for narrowband and broadband

communications over power lines [103]

	 2.	 Power line communications principles, standards,

and applications from multimedia to smart grids [102]

	 3.	 Modeling power line communication using ns-3 [105]

	 4.	 Fundamentals of DSL technology [104]

	 5.	 Waves and antennas electromagnetic [107]

Chapter 7 MANETs and PLC on ns-3

187© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX A

Basic Statistics
The content of this appendix was taken from [108] and [109].

An event A is a subset of the sample space and is what happens if the

result of the experiment is contained in A. We suppose that for each event

A of the sample space S, a number P (A), called the probability of A, is

defined as follows:

Axiom 1: 0 ≤ P(A) ≤ 1

Axiom 2: P(s) = 1

Axiom 3: For any sequence of mutually exclusive events A1, A2, ..., we

have this:

	
P P A

i
i

i
iA

�

�

�

��

�
�

�

�
� � � ��

1 1



	

�Random Variables and Random Vectors
This section discusses random variables and random vectors.

https://doi.org/10.1007/978-1-4842-6849-0#DOI

188

�Random Variables
A random variable X is a function that assigns a real value to each

outcome of the experiment. For any set of real numbers C, the probability

that X will have a value that is contained in the set C is equal to the

probability that the outcome of the X is contained in X−1(C). In other

words:

	
PX C P X C� �� � � �� �1 1

	

Here, X−1(C) is the event consisting of all outcomes s ∈ S such that X(c)

∈ C.

�Probability Density Functions
The distribution function F of the random variable X is defined for all real

numbers by the following:

	 F x PX x PX x� � � � � � ��� �, 	

•	 Discrete: A random variable is said to be discrete if

its set of possible values is either finite or countably

infinite. For a discrete random variable X, we define its

probability mass function p(x) as follows:

	 p x PX x� � � � 	

If xi, i ≥ 0 represented the possible values of X, then

Appendix A Basic Statistics

189

	 i

p x
�

�

� � � �
0

1
	

Also, if F is the distribution function of X, then

	
F x p x

i x x
i

i

� � � � �
�

�

�
: 	

•	 Continuous: A random variable is said to be continuous

if there exists a function f (x), called the probability

density function of X, such that for any set of

numbers C,

	
PX C f x dx

C

� � � �� 	

�Random Vector
A vector x = (X1, ... , Xi) is called a random vector if all the components X1, ...

, Xi are random variables.

�Independence
The random variables X and Y are said to be independent if for any sets of

real numbers C and D,

	 P X C Y D P X C P Y D� �� � � �� � �� �, 	

The preceding will hold provided that

	 F x y F x F yX Y,� � � � � � � 	

Appendix A Basic Statistics

190

for all x and y. Furthermore, the discrete ransom variables X and Y will be

independent provided that

	 P X x Y y P X x P Y y� �� � � �� � �� �, 	

for all x and y, and will be jointly continuous random variables provided

that

	 f x y f x f yX Y,� � � � � � � 	

for all x and y.

�Expected Value
If X is a discrete random variable that takes on one of the values xi, i ≥ 1,

then the expected value or expectation of X, denoted as E[X], is defined as

follows:

	
E X x PX x

i
i� � � �� 	

That is, E[X] is a weighted average of the possible values of X, with each

value being weighted by the probability that X assumes it.

	

E g X

g x PX x if X is discrete

g x dx If X is continu

x

� ��� ��

� � �

� �

�

�
��

�

,

,

 oos with density f .

�

�
��

�
�
� 	

Appendix A Basic Statistics

191

�Variance
The variance of a random variable X, denoted as Var(X), is defined as

follows:

	
Var X E X E X� � � � � �� ��

��
�
��

2

	

�Covariance
The covariance of random variables X and Y is defined as follows:

	
cov X Y E X E X Y E Y,� � � � � �� � � � �� ��� �� 	

For the random variables X, Y, and Z and constant c,

•	 Cov(X, Y) = E[XY] − E[X]E[Y]

•	 Cov(X, Y) = Var(X)

•	 Cov(X, Y) = Cov[Y, X]

•	 Cov(cX, Y) = c Cov(X, Y)

•	 Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

�Correlation Coefficient
The correlation coefficient between two random variables X and Y is

defined as follows:

	

Corr X Y X Y
X Z

Var X Var Y
, ,

,� � � � � � � �
� � � �

�
cov

	

Obviously, Corr(X, X) = 1.

Appendix A Basic Statistics

192

�Binomial Random Variable
If X is a binomial random variable with parameters n and p, then

	
P pX i

n
p i i ni n�� � � �

�
�

�

�
� �� � � � �

1
1 0, , ,

	

where

	
X X

i

n

i�
�
�

1 	

	
X

if trial i is a success
if trial i is a failurei �

�
�
�

1

0

,

,

 	
(A.2)

Because each Xi is a Bernoulli random variable with

	 E X pVar X p pi i� � � � � � �� �1 	

it follows that

	
E X E X np

i

n

i� � � � � �
�
�

1 	

	
Var X Var X np p

i

n

i� � � � � � �� �
�
�

1

1
	

where the assumed independence of the Xi was used to assert that the

variance of their sum is equal to the sum of their variances.

Appendix A Basic Statistics

193

�Normal Random Variable
A random variable X has a normal distribution with mean μ and variance s2

if its probability density function is as follows:

	
f x e xx� � � �� � � ��� �1

2

2 2
2

��
� �/

,
	

When μ = 0 and σ = 1, we say that X has a normal distribution. The

moment-generating function of a standard normal variable Z is obtained

as follows:

	

E e e e x dx

e dx

e

tZ tx

x tx

t

�� �� � �

�

�

��

�

��

�
�

��

�

�

�

1

2

2

1

2

1

2

2

2 2

2

2

2

�

�

�

/

/

/ �� � �� �

�

e dx

e

x t

t

2

2
2/ 	

Now, if Z is a standard normal, then X = σZ + μ with mean μ and

variance σ2; therefore, we have this:

	 E[etX] = E[et(σZ + μ)]= e E e ey t Z t t� � � ��� �� �
� 2 2

2/ 	 (A.4)

Suppose now that X and Y are independent normal random variables

with means μx and μy and variances σ x
2 and σ y

2 . Then we have this:

	
E e E e E e t tt X Y tX tY

x y x y
�� ��

�
�
� � �� �� �� �� � �� � � �� �� �exp � � � �2 2 2

2/ 	

By the uniqueness of the moment-generating function, the preceding

shows that the sum of independent normal random variables remains a

normal random variable.

Appendix A Basic Statistics

194

�Geometric Random Variable
Recall that X is geometric with parameter p if

	 P X n pq nn�� � � � � �1 1 2, , , 	

where q=1-p. Hence, its moment-generating function is as follows:

	

� t E e X

e pq

pe qe

pe
qe

t

n

tn n

t

n

t n

t

t

� � � �� ��

�

� � � �

�
�

�

�
�

�

�

�

�
1

1

1

1

1 	

(A.5)

with differentiation and evaluating at t = 0.

	
Var X E X E X p

p
� � � �� �� � � � � �2 2

2

1

	

If X and Y are independent, then

	
E e E e e E e E et X Y tX tY tX tY�� ��
�

�
� � �� �� � �� �� �� ��

))
	

�Uniform Random Variable
A random variable is said to be uniformly distributed over the interval (0, 1)

if its probability density function is given as follows:

	
f x

x
otherwise

� � �
� ��

�
�

1 0 1

0

, .

, 	
(A.6)

Appendix A Basic Statistics

195

Note that the preceding is a density function since f (x) ≥ 0 and

	 ��

�

��

�

� �� � � �f x dx dx 1
	

Since f (x) > 0 only when x ∈ (0, 1), it follows that X must assume a

value in (0, 1). Also, since f (x) is constant for x ∈ (0, 1), X is just as likely to

be “near” any value in (0, 1) as any other value. To check this, note that, for

any 0 < a < b < 1,

	
P a X b f x dx b a

a

b

� �� � � � � � �� 	

In other words, the probability that X is in any particular subinterval

of (0, 1) equals the length of that subinterval. In general, we say that X is

a uniform random variable on the interval (α, β) if its probability density

function is given by the following:

	

f x
if x

otherwise
� � � �

� ��
�
�

��

1

0

� �
� �,

, 	

(A.7)

Appendix A Basic Statistics

197© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX B

�ns-3 Installation
This appendix contains the steps to install ns-3. We recommend installing

it on a Linux distribution. This example is on Ubuntu/Debian/Mint. For

other operating systems, see the ns-nam installation web page. You can

download other versions by merely changing the version numbers on the

links. (For this example, the version is 3.XX.)

�Installing ns-3
Follow these steps:

Step 1: Download the file ns-allineone3.XX.

1 https://www.nsnam.org/release/ns-allinone-3.XX.tar.bz2

Step 2: Copy ns-allineone3.XX to your desktop or to a directory that

you prefer.

Step 3: Extract the packet with the following command:

1 tar xjf ns-allinone-3.XX.tar.bz2

Step 4: Open the console and install the following libraries:

 1 sudo apt-get install gcc g++ python python-dev

https://doi.org/10.1007/978-1-4842-6849-0#DOI

198

 2 �python3 python3-dev python3-setuptoolsv mercurial bzr gdb

valgrind gsl-bin libgsl0-dev

 3 �libgsl0ldbl git flex bison tcpdump sqlite sqlite3

libsqlite3-dev libxml2

 4 �libxml2-dev libgtk2.0-0 libgtk2.0-dev uncrustify doxygen

graphviz imagemagick

 5 �texlive texlivelatex-extra texlive-generic-extra texlive-

generic-recommended

 6 �texinfo dia texlive texlive-latex-extra texlive-extra-

utils qt5-default

 7 �openmpi-bin openmpi-common openmpi-doc libopenmpi-dev

texi2html

 8 �texlive-generic-recommended python-pygraphviz python-kiwi

gdb valgrind

 9 �python-pygoocanvas libgoocanvas-dev pythonpygccxml

uncrustify

10 �doxygen graphviz imagemagick python3-sphinx dia gsl-bin

libgsl-dev

11 libgsl23 libgslcblas0

Add support for the ns-3-pyviz visualizer. For ns-3.28 and earlier

releases, PyViz is based on GTK+ 2, GooCanvas, and GraphViz.

1 �apt-get install python-pygraphviz python-kiwi python-

pygoocanvas libgoocanvas-dev ipython

For Ubuntu 18.04, python-pygoocanvas is no longer provided. The

ns-3.29 release (and newer) upgrades the support to GTK+ version 3 and

requires these packages:

1 �apt-get install gir1.2-goocanvas-2.0 python-gi python-gi-

cairo python-pygraphviz

Appendix B ns-3 Installation

199

2 �python3-gi python3-gi-cairo python3-pygraphviz gir1.2-

gtk-3.0 ipython ipython3

Step 5: Open the directory ns-allinone-3.XX.

1 $ cd ns-allinone-3.XX

Step 6: Use the command ls to view the ns-3 archives.

1 $ls

Step 7: Enter the following command in the terminal in the directory

ns − allinone − 3.XX:

1 $./build.py --enable-examples --enable-tests

If your debugging is correct, you will see the next message in your

console:

1 "Build finished successfully"

Step 8: Now debug with the command .waf (go to the ns 3.XX

directory) and type the following:

1 $./waf -d debug --enable-examples --enable-tests configure

Step 9: Run the command .waf again.

1 ./waf

Step 10: Test all the packets with the following command:

1 ./test.py

Appendix B ns-3 Installation

200

�Installing Additional Features
You can install additional features. To use a GTK-based graphic module

configuration system, use this:

1 apt-get install libgtk2.0-0 libgtk2.0-dev

To experiment with virtual machines and ns-3, use this:

1 apt-get install vtun lxc

To support the OpenFlow module (which requires some Boost

libraries), use this:

1 apt-get install libboost-signals-dev libboost-filesystem-dev

To install on other operating systems, visit https://www.nsnam.org/

wiki/Installation.

Appendix B ns-3 Installation

https://www.nsnam.org/wiki/Installation
https://www.nsnam.org/wiki/Installation
https://www.nsnam.org/wiki/Installation

201© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX C

�Mininet
Mininet is a network emulator [110], or, perhaps more precisely, a network

emulation orchestration system. It runs a collection of end hosts, switches,

routers, and links on a single Linux kernel. Mininet is a network emulator

that creates a network of virtual hosts, switches, controllers, and links.

The Mininet hosts run standard Linux network software, and its switches

support OpenFlow for highly flexible custom routing and software-defined

networking. It uses lightweight virtualization to make a single system look

like a complete network, running the same kernel, system, and user code.

A Mininet host behaves just like a real machine; you can ssh into it (if

you start up sshd and bridge the network to your host) and run arbitrary

programs (including anything that is installed on the underlying Linux

system). The programs you run can send packets through what seems like

a real Ethernet interface, with a given link speed and delay. Packets get

processed by what looks like a real Ethernet switch, router, or middlebox,

with a given amount of queueing. When two programs, like an iPerf client

and server, communicate through Mininet, the measured performance

should match that of two (slower) native machines [111].

In short, Mininet’s virtual hosts, switches, links, and controllers are the

real thing—they are just created using software rather than hardware—and

for the most part their behavior is similar to discrete hardware elements. It

is usually possible to create a Mininet network that resembles a hardware

network, or a hardware network that resembles a Mininet network, and to

run the same binary code and applications on either platform [112].

https://doi.org/10.1007/978-1-4842-6849-0#DOI

202

Mininet supports research, development, learning, prototyping,

testing, debugging, and any other tasks that could benefit from having a

complete experimental network on a laptop or other PC.

It provides a simple and inexpensive network testbed for developing

OpenFlow applications and enables multiple concurrent developers

to work independently on the same topology. It supports system-level

regression tests, which are repeatable and easily packaged. It enables

complex topology testing, without the need to wire up a physical network.

It includes a CLI that is topology-aware and OpenFlow-aware, for

debugging or running network-wide tests. It supports arbitrary custom

topologies and includes a basic set of parametrized topologies usable

out of the box without programming. In addition, Minimet provides a

straightforward and extensible Python API for network creation and

experimentation. Mininet provides an easy way to get correct system

behavior (and, to the extent supported by your hardware, performance)

and to experiment with topologies.

Mininet networks run real code including standard Unix/Linux

network applications as well as the real Linux kernel and network stack

(including any kernel extensions that you may have available, as long as

they are compatible with network namespaces).

Because of this, the code you develop and test on Mininet, for an

OpenFlow controller, modified switch, or host, can move to a real system

with minimal changes, for real-world testing, performance evaluation, and

deployment. Importantly, this means that a design that works in Mininet

can usually move directly to hardware switches for line-rate packet

forwarding.

Appendix C Mininet

203

The following is an example of network topology configuration on

mininet:

1 topo = Tree(depth=3, fanout=3)

2 servers = ['localhost','server2','server3']

3 net = MininetCluster(topo=topo, servers=servers)

4 net.start()

5 CLI(net)

6 net.stop()

Figure C-1 shows Mininet Network topology.

Figure C-1.  Mininet [93]

Appendix C Mininet

205© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX D

�ns3-gym: OpenAI
Gym Integration
OpenAI ns3-gym [113] is a module built on the ns-3 simulator for

reinforcement learning. It is a framework that integrates a network

simulation based on discrete events with artificial intelligence to link two

areas in networking research.

The main purpose of the Gym framework is to provide a standardized

interface allowing agents to access the environment state and execute

actions in the environment. The environment is defined inside the

simulation scenario, the agent is written in Python language, which is

useful for interacting with environment’s conditions on the simulation

experiment and the simulation scripts.

�Installation
For this installation, use version 3.29. This framework is useful on version

3.29 and up. Download the source archive and unpack it.

1 tar -xzf ns3-gym-1.0.0.tar.gz

Move (and rename) the ns3-gym-1.0.0 directory to the following:

1 /path_to_ns/ns-3.29/contrib/opengym

https://doi.org/10.1007/978-1-4842-6849-0#DOI

206

Install the ZMQ and Protocol Buffers libs. To install protobuf-3.6 on

Ubuntu 16.04, run the following:

1 sudo add-apt-repository ppa:maarten-fonville/protobuf &&

sudo apt-get update

Then, run the following:

1 apt-get install libzmq5 libzmq5-dev

2 apt-get install libprotobuf-dev

3 apt-get install protobuf-compiler

Configure and build the ns-3 project. Note that if you use a Python

virtual environment, you need to execute these commands inside it.

The OpenGym Protocol Buffer messages (C++ and Python) are built

during configuration.

1 ./waf configure --enable-examples

2 ./waf build

Install the ns3gym Python module. Python 3 is recommended.

Compile the Protobuf messages manually (this is not required if ./waf

configuration was executed).

1 cd /path_to_ns/ns-3.29/contrib/opengym/

2 �protoc -I=/model/ --python_out=./model/ns3gym/ns3gym /

model/messages.proto

Install the ns3gym Python module.

1 �pip3 install /path_to_ns/ns-3.29/contrib/opengym/model/

ns3gym

Appendix D ns3-gym: OpenAI Gym Integration

207© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX E

�Experiments
To understand better the reason for the experiments in this book, it is

important to put things into context. These experiments were part of the

result of an applied observational study in which a theoretical model based

on the quorum sensing (QS) employed by gram negative bacteria was used

to create an algorithm for multi-agent communication to manage contents

with a MANET, which was validated through simulation. The simulation

was carried out using the ns-3 simulator. The details of the algorithm can

be reviewed in Chapter 3 of [114]. In this research, agents are endowed

with capabilities like those employed by bacteria; additionally, they use a

decision mechanism based on microeconomics concepts. In this research,

agents traverse the network. If certain conditions are met, they release

molecules within the node. If a threshold of molecules is met (a quorum

threshold), the node is induced to QS state. For more information about

quorum sensing and agents, please refer to [115].

In this model, there are four input parameters of interest, described here:

•	 Molecules capacity: This is the total number of

molecules that can be released in the node.

•	 Quorum threshold: This is a level of molecules that

must be met so that a node can be induced to QS state.

•	 Cloning probability: This is the probability that an exact

copy of an agent is created.

•	 Mutation probability: This is the probability that the

chromosome changes on an agent.

https://doi.org/10.1007/978-1-4842-6849-0#DOI

208

�Testing Environment and Assumptions
All the simulation experiments were performed with the general

parameters in Table E-1 and the following assumptions:

•	 All the nodes move freely.

•	 The nodes have a limited amount of disk space to store

data files.

•	 All NS-· files cannot be uploaded1 or managed;

therefore, in the simulation, they will be treated as

traffic. To simulate that the nodes have a hard drive, a

counter variable will decrease or increase according to

the traffic received or sent.

•	 The files are always consistent.

•	 During each simulation, half of the nodes are chosen

randomly to store original chunks of a file.

•	 Each node has a battery of limited capacity.

•	 The cost for energy and disk space is equal to 1, and the

agents are the price-takers.

In the testing scenario employed, all the nodes have the same

hardware capabilities, and they are at their maximum values. Table E-2

describes the details.

After simulation, two results will be considered.

•	 The quantity of nodes induced to QS state by the agents

•	 The quantity of files managed by agents

1�When this dissertation was presented in 2018, it was not possible.

APPENDIX E Experiments

209

Table E-1.  General Simulation Parameters

Parameter Characteristics

Geographic space Flatland

Number of nodes 36

Propagation model ns-3 constant

Loss model ns-3 two-ray ground propagation loss model

Mobility model Random direction 2D mobility model

Simulation time 600 seconds

Energy source Basic energy source

Energy model Simple device energy model

Version 3.24.1

Table E-2.  Testing Scenario Parameters

Model Parameter Testing Scenario

Energy (units) 100

Disk space (units) 100

File size 10240

P parameter 0.1

Molecules 100–200

Number of hops 1

Molecules capacity 10000

QS threshold 0.51

Mutation probability 0.1

Cloning probability 0.1

APPENDIX E Experiments

211© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX F

�PLC Code Experiment
 1 �/* -*- Mode:C++; c-file-style:"gnu";

indent-tabs-mode:nil; -*- */

 2 /*

 3 * �This program is free software; you can redistribute it

and/or modify

 4 * �it under the terms of the GNU General Public License

version 2 as

 5 * published by the Free Software Foundation;

 6 *

 7 * �This program is distributed in the hope that it will

be useful,

 8 * �but WITHOUT ANY WARRANTY; without even the implied

warranty of

 9 * �MERCHANTABILITY or FITNESS FOR A PARTICULAR

PURPOSE. See the

 10 * GNU General Public License for more details.

 11 *

 12 * �You should have received a copy of the GNU General

Public License

 13 * �along with this program; if not, write to the Free

Software

https://doi.org/10.1007/978-1-4842-6849-0#DOI

212

 14 * �Foundation, Inc., 59 Temple Place, Suite 330, Boston,

MA 02111-1307 USA

 15 *

 16 */

 17

 18

 19 #include <fstream>

 20 #include <iostream>

 21 #include "ns3/core-module.h"

 22 #include "ns3/network-module.h"

 23 #include "ns3/internet-module.h"

 24 #include "ns3/mobility-module.h"

 25 #include "ns3/wifi-module.h"

 26 #include "ns3/aodv-module.h"

 27 #include "ns3/olsr-module.h"

 28 #include "ns3/dsdv-module.h"

 29 #include "ns3/dsr-module.h"

 30 #include "ns3/applications-module.h"

 31

 32 #include <sstream>

 33 #include <time.h>

 34

 35 #include <ns3/core-module.h>

 36 #include <ns3/nstime.h>

 37 #include <ns3/simulator.h>

 38 #include <ns3/output-stream-wrapper.h>

 39 #include "ns3/plc.h"

 40 #include "ns3/internet-module.h"

 41 #include "ns3/applications-module.h"

 42

APPENDIX F PLC Code Experiment

213

 43 using namespace ns3;

 44 using namespace dsr;

 45

 46 NS_LOG_COMPONENT_DEFINE ("PLC-routing-compare");

 47

 48

 49

 50 class PLCRoutingExperiment

 51 {

 52 public:

 53 PLCRoutingExperiment ();

 54 �void Run (int nSinks, double txp, std::string CSVfileName);

 55

 56 private:

 57 �Ptr<Socket> SetupPacketReceive (Ipv4Address addr,

Ptr<Node> node);

 58 void ReceivePacket (Ptr<Socket> socket);

 59 void CheckThroughput ();

 60

 61 uint32_t port;

 62 uint32_t bytesTotal;

 63 uint32_t packetsReceived;

 64

 65 std::string m_CSVfileName;

 66 int m_nSink_r;

 67 int m_nSink_e;

 68 std::string m_protocolName;

 69 double m_txp;

 70

 71 uint32_t m_protocol;

 72 std::string m_packetSize;

 73 };

APPENDIX F PLC Code Experiment

214

 74

 75 PLCRoutingExperiment::PLCRoutingExperiment ()

 76 : port (9),

 77 bytesTotal (0),

 78 packetsReceived (0),

 79 m_CSVfileName ("PLC-routing.output.csv"),

 80 m_nSink_r(17),

 81 m_nSink_e(5),

 82 m_txp(1e-3),

 83 m_protocol (1), // 1=OLSR;2=AODV;3=DSDV;4=DSR

 84 m_packetSize ("1")

 85

 86 {

 87 }

 88

 89 static inline std::string

 90 �PrintReceivedPacket (Ptr<Socket> socket, Ptr<Packet>

packet)

 91 {

 92 SocketAddressTag tag;

 93 bool found;

 94 found = packet->PeekPacketTag (tag);

 95 std::ostringstream oss;

 96

 97 �oss << Simulator::Now ().GetSeconds () << " " <<

socket->GetNode ()->GetId ();

 98

 99 if (found)

100 {

101 �InetSocketAddress addr = InetSocketAddress::

ConvertFrom (tag.GetAddress ());

APPENDIX F PLC Code Experiment

215

102 �oss << " received one packet from " <<

addr.GetIpv4 ();

103 }

104 else

105 {

106 oss << " received one packet!";

107 }

108 return oss.str ();

109 }

110

111 void

112 PLCRoutingExperiment::ReceivePacket (Ptr<Socket> socket)

113 {

114 Ptr<Packet> packet;

115 while ((packet = socket->Recv ()))

116 {

117 bytesTotal += packet->GetSize ();

118 packetsReceived += 1;

119 �NS_LOG_UNCOND (PrintReceivedPacket (socket,

packet));

120

121 }

122 }

123

124

125 void

126 PLCRoutingExperiment::CheckThroughput ()

127 {

128 double kbs = (bytesTotal * 8.0) / 1000;

129 bytesTotal = 0;

130

APPENDIX F PLC Code Experiment

216

131 �std::ofstream out (m_CSVfileName.c_str (),

std::ios::app);

132

133 out << (Simulator::Now ()).GetSeconds () << ","

134 << kbs << ","

135 << packetsReceived << ","

136 << m_nSink_r << ","

137 << m_protocolName << ","

138 << m_txp << ""

139 << std::endl;

140

141 out.close ();

142 packetsReceived = 0;

143 �Simulator::Schedule (Seconds (1.0), &PLCRoutingExper

iment::CheckThroughput, this);

144 }

145

146 Ptr<Socket>

147 �PLCRoutingExperiment::SetupPacketReceive (Ipv4Address

addr, Ptr<Node> node)

148 {

149 �TypeId tid = TypeId::LookupByName

("ns3::UdpSocketFactory");

150 Ptr<Socket> sink = Socket::CreateSocket (node, tid);

151 �InetSocketAddress local = InetSocketAddress (addr,

port);

152 sink->Bind (local);

153 �sink->SetRecvCallback (MakeCallback (&PLCRouting

Experiment::ReceivePacket, this));

154

APPENDIX F PLC Code Experiment

217

155 return sink;

156 }

157

158 std::string

159 �PLCRoutingExperiment::CommandSetup (int argc, char **argv)

160 {

161 CommandLine cmd;

162 �cmd.AddValue ("CSVfileName", "The name of the CSV

output file name", m_CSVfileName);

163 �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV;

4=DSR", m_protocol);

164 �cmd.AddValue ("packetSize", "Packet Size",

m_packetSize);

165 �cmd.AddValue ("txp", "Transmit power spectral

density", m_txp);

166 cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

167 cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e);

168 cmd.Parse (argc, argv);

169 return m_CSVfileName;

170 }

171

172

173

174

175 int main (int argc, char *argv[])

176 {

177

178 PLCRoutingExperiment experiment;

179 �std::string CSVfileName = experiment.CommandSetup

(argc,argv);

180

APPENDIX F PLC Code Experiment

218

181 �//blank out the last output file and write the column

headers

182 std::ofstream out (CSVfileName.c_str ());

183 out <<"#"<< "SimulationSecond," <<

184 "ReceiveRate," <<

185 "PacketsReceived," <<

186 "NumberOfSinks," <<

187 "RoutingProtocol," <<

188 "TransmissionPower" <<

189 std::endl;

190 out.close ();

191

192 int nSinks = 2;

193 double txp = 1e-8;

194 experiment.Run (nSinks, txp, CSVfileName);}

195

196

197 void

198 �PLCRoutingExperiment::Run (int nSinks, double txp,

std::string CSVfileName)

199 {

200 Packet::EnablePrinting ();

201 m_CSVfileName = CSVfileName;

202 std::string rate ("512bps");

203 double TotalTime = 200.0;

204

205 �Config::SetDefault ("ns3::OnOffApplication::PacketSize",

StringValue (m_packetSize));

206 �Config::SetDefault ("ns3::OnOffApplication::DataRate",

StringValue (rate));

207

APPENDIX F PLC Code Experiment

219

208

209

210 // Define spectrum model

211 PLC_SpectrumModelHelper smHelper;

212 Ptr<const SpectrumModel> sm;

213 sm = smHelper.GetSpectrumModel(0, 10e6, 100);

214

215 // Define transmit power spectral density

216 Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

217 (*txPsd) = m_txp; // -50dBm/Hz

218

219 // Create cable types

220 // �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_

Cable> (sm);

221 // �Ptr<PLC_Cable> cable = CreateObject<PLC_

NYCY70SM35_Cable> (sm);

222 �Ptr<PLC_Cable> cable = CreateObject<PLC_AL3x95XLPE_Cable>

(sm);

223

224 �Ptr<PLC_ConstImpedance> shuntImp6 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

225 �Ptr<PLC_ConstImpedance> shuntImp8 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

226 �Ptr<PLC_ConstImpedance> shuntImp9 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

227 �Ptr<PLC_ConstImpedance> shuntImp11 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

228 �Ptr<PLC_ConstImpedance> shuntImp13 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

229 �Ptr<PLC_ConstImpedance> shuntImp14 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

APPENDIX F PLC Code Experiment

220

230 �Ptr<PLC_ConstImpedance> shuntImp15 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

231 �Ptr<PLC_ConstImpedance> shuntImp18 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

232 �Ptr<PLC_ConstImpedance> shuntImp19 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

233 �Ptr<PLC_ConstImpedance> shuntImp20 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

234 �Ptr<PLC_ConstImpedance> shuntImp22 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

235 �Ptr<PLC_ConstImpedance> shuntImp23 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

236 �Ptr<PLC_ConstImpedance> shuntImp24 = Create<PLC_Const

Impedance> (sm, PLC_Value(50, 0));

237

238

239 // Create nodes

240 Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

241 Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

242 Ptr<PLC_Node> n3 = CreateObject<PLC_Node> ();

243 Ptr<PLC_Node> n4 = CreateObject<PLC_Node> ();

244 Ptr<PLC_Node> n5 = CreateObject<PLC_Node> ();

245 Ptr<PLC_Node> n6 = CreateObject<PLC_Node> ();

246 Ptr<PLC_Node> n7 = CreateObject<PLC_Node> ();

247 Ptr<PLC_Node> n8 = CreateObject<PLC_Node> ();

248 Ptr<PLC_Node> n9 = CreateObject<PLC_Node> ();

249 Ptr<PLC_Node> n10 = CreateObject<PLC_Node> ();

250 Ptr<PLC_Node> n11 = CreateObject<PLC_Node> ();

251 Ptr<PLC_Node> n12 = CreateObject<PLC_Node> ();

252 Ptr<PLC_Node> n13 = CreateObject<PLC_Node> ();

253 Ptr<PLC_Node> n14 = CreateObject<PLC_Node> ();

APPENDIX F PLC Code Experiment

221

254 Ptr<PLC_Node> n15 = CreateObject<PLC_Node> ();

255 Ptr<PLC_Node> n16 = CreateObject<PLC_Node> ();

256 Ptr<PLC_Node> n17 = CreateObject<PLC_Node> ();

257 Ptr<PLC_Node> n18 = CreateObject<PLC_Node> ();

258 Ptr<PLC_Node> n19 = CreateObject<PLC_Node> ();

259 Ptr<PLC_Node> n21 = CreateObject<PLC_Node> ();

260 Ptr<PLC_Node> n22 = CreateObject<PLC_Node> ();

261

262 n1->SetPosition(0,0,0);

263 n2->SetPosition(3,0,0);

264 n3->SetPosition(6,0,0);

265 n4->SetPosition(9,0,0);

266 n5->SetPosition(14,0,0);

267 n6->SetPosition(0,-4,0);

268 n7->SetPosition(3,-4,0);

269 n8->SetPosition(3,3,0);

270 n9->SetPosition(6,-6,0);

271 n10->SetPosition(6,-4,0);

272 n11->SetPosition(8,-4,0);

273 n12->SetPosition(6,3,0);

274 n13->SetPosition(6,5,0);

275 n14->SetPosition(9,-5,0);

276 n15->SetPosition(11,-3,0);

277 n16->SetPosition(9,-3,0);

278 n17->SetPosition(9,3,0);

279 n18->SetPosition(11,3,0);

280 n19->SetPosition(9,5,0);

281 n21->SetPosition(14,-4,0);

282 n22->SetPosition(14,2,0);

283

APPENDIX F PLC Code Experiment

222

284 n1->SetName("Node1");

285 n2->SetName("Junction2");

286 n3->SetName("Junction3");

287 n4->SetName("Junction4");

288 n5->SetName("Junction5");

289 n6->SetName("Node6");

290 n7->SetName("Junction7");

291 n8->SetName("Node8");

292 n9->SetName("Junction9");

293 n10->SetName("Node10");

294 n11->SetName("Node11");

295 n12->SetName("Junction12");

296 n13->SetName("Node13");

297 n14->SetName("Junction14");

298 n15->SetName("Node15");

299 n16->SetName("Junction16");

300 n17->SetName("Junction17");

301 n18->SetName("Node18");

302 n19->SetName("Junction19");

303 n21->SetName("Node21");

304 n22->SetName("Junction22");

305

306 PLC_NodeList nodes;

307 nodes.push_back(n1);

308 nodes.push_back(n2);

309 nodes.push_back(n3);

310 nodes.push_back(n4);

311 nodes.push_back(n5);

312 nodes.push_back(n6);

313 nodes.push_back(n7);

314 nodes.push_back(n8);

APPENDIX F PLC Code Experiment

223

315 nodes.push_back(n9);

316 nodes.push_back(n10);

317 nodes.push_back(n11);

318 nodes.push_back(n12);

319 nodes.push_back(n13);

320 nodes.push_back(n14);

321 nodes.push_back(n15);

322 nodes.push_back(n16);

323 nodes.push_back(n17);

324 nodes.push_back(n18);

325 nodes.push_back(n19);

326 nodes.push_back(n21);

327 nodes.push_back(n22);

328

329

330 // Link nodes

331 CreateObject<PLC_Line> (cable, n1, n2);

332 CreateObject<PLC_Line> (cable, n2, n3);

333 CreateObject<PLC_Line> (cable, n3, n4);

334 CreateObject<PLC_Line> (cable, n4, n5);

335

336 CreateObject<PLC_Line> (cable, n2, n7);

337 CreateObject<PLC_Line> (cable, n7, n6);

338 CreateObject<PLC_Line> (cable, n2, n8);

339

340 CreateObject<PLC_Line> (cable, n3, n10);

341 CreateObject<PLC_Line> (cable, n10, n11);

342 CreateObject<PLC_Line> (cable, n10, n9);

343 CreateObject<PLC_Line> (cable, n3, n12);

344 CreateObject<PLC_Line> (cable, n12, n13);

345

APPENDIX F PLC Code Experiment

224

346 CreateObject<PLC_Line> (cable, n4, n16);

347 CreateObject<PLC_Line> (cable, n16, n15);

348 CreateObject<PLC_Line> (cable, n16, n14);

349 CreateObject<PLC_Line> (cable, n4, n17);

350 CreateObject<PLC_Line> (cable, n17, n18);

351 CreateObject<PLC_Line> (cable, n17, n19);

352

353 CreateObject<PLC_Line> (cable, n5, n21);

354 CreateObject<PLC_Line> (cable, n5, n22);

355

356

357 // Set up channel

358 PLC_ChannelHelper channelHelper(sm);

359 channelHelper.Install(nodes);

360 Ptr<PLC_Channel> channel = channelHelper.GetChannel();

361

362 �Ptr<PLC_Outlet> outlet1 = CreateObject<PLC_Outlet>

(n6, shuntImp6);

363 �Ptr<PLC_Outlet> outlet2 = CreateObject<PLC_Outlet>

(n8, shuntImp8);

364 �Ptr<PLC_Outlet> outlet3 = CreateObject<PLC_Outlet>

(n9, shuntImp9);

365 �Ptr<PLC_Outlet> outlet4 = CreateObject<PLC_Outlet>

(n11, shuntImp11);

366 �Ptr<PLC_Outlet> outlet5 = CreateObject<PLC_Outlet>

(n13, shuntImp13);

367 �Ptr<PLC_Outlet> outlet6 = CreateObject<PLC_Outlet>

(n14, shuntImp14);

368 �Ptr<PLC_Outlet> outlet7 = CreateObject<PLC_Outlet>

(n15, shuntImp15);

369 �Ptr<PLC_Outlet> outlet8 = CreateObject<PLC_Outlet>

(n18, shuntImp18);

APPENDIX F PLC Code Experiment

225

370 �Ptr<PLC_Outlet> outlet9 = CreateObject<PLC_Outlet>

(n19, shuntImp19);

371 �Ptr<PLC_Outlet> outlet11 = CreateObject<PLC_Outlet>

(n22, shuntImp22);

372

373 // Create PLC net devices

374 PLC_NetDeviceHelper deviceHelper(sm, txPsd, nodes);

375 �deviceHelper.DefinePhyType(TypeId::LookupByName

("ns3::PLC_InformationRatePhy"));

376 �deviceHelper.DefineMacType(TypeId::LookupByName

("ns3::PLC_ArqMac"));

377 �deviceHelper.SetHeaderModulationAndCodingScheme(

ModulationAndCodingScheme(BPSK_1_4,0));

378 �deviceHelper.SetPayloadModulationAndCodingScheme(

ModulationAndCodingScheme(BPSK_1_2,0));

379 deviceHelper.Setup();

380

381

382 // Calculate channels

383 channel->InitTransmissionChannels();

384 channel->CalcTransmissionChannels();

385

386 // Get NS-3 node container

387 NodeContainer nodes1;

388 nodes1=deviceHelper.GetNS3Nodes();

389

390

391 NetDeviceContainer d;

392 d = deviceHelper.GetNetDevices();

393

APPENDIX F PLC Code Experiment

226

394 //New Code From Manet Routing

395 AodvHelper aodv;

396 OlsrHelper olsr;

397 DsdvHelper dsdv;

398 DsrHelper dsr;

399 DsrMainHelper dsrMain;

400 Ipv4ListRoutingHelper list;

401 InternetStackHelper internet;

402

403 switch (m_protocol)

404 {

405 case 1:

406 list.Add (olsr, 100);

407 m_protocolName = "OLSR";

408 break;

409 case 2:

410 list.Add (aodv, 100);

411 m_protocolName = "AODV";

412 break;

413 case 3:

414 list.Add (dsdv, 100);

415 m_protocolName = "DSDV";

416 break;

417 case 4:

418 m_protocolName = "DSR";

419 break;

420 default:

421 NS_FATAL_ERROR ("No such protocol:" << m_protocol);

422 }

423

APPENDIX F PLC Code Experiment

227

424 if (m_protocol < 4)

425 {

426 internet.SetRoutingHelper (list);

427 internet.Install (nodes1);

428 }

429 else if (m_protocol == 4)

430 {

431 internet.Install (nodes1);

432 dsrMain.Install (dsr, nodes1);

433 }

434

435 NS_LOG_INFO ("assigning ip address");

436 Ipv4AddressHelper addressAdhoc;

437 addressAdhoc.SetBase ("10.1.1.0", "255.255.255.0");

438 Ipv4InterfaceContainer adhocInterfaces;

439 adhocInterfaces = addressAdhoc.Assign (d);

440

441 OnOffHelper onoff1 ("ns3::UdpSocketFactory",Address ());

442 �onoff1.SetAttribute ("OnTime", StringValue ‹→ ("ns3::

ConstantRandomVariable[Constant=1.0]"));

443 �onoff1.SetAttribute ("OffTime", StringValue ‹→ ("ns3::

ConstantRandomVariable[Constant=0.0]"));

444

445

446

447 �Ptr<Socket> sink = SetupPacketReceive (adhocInterfaces.

GetAddress (m_nSink_r), ‹→ nodes1.Get (m_nSink_r));

448

449 �AddressValue remoteAddress (InetSocketAddress

(adhocInterfaces.GetAddress (m_nSink_r), ‹→ port));

450 onoff1.SetAttribute ("Remote", remoteAddress);

451

APPENDIX F PLC Code Experiment

228

452 �Ptr<UniformRandomVariable> var = CreateObject<Uniform

RandomVariable> ();

453 �ApplicationContainer temp = onoff1.Install (nodes1.Get

(m_nSink_e));

454 temp.Start (Seconds (var->GetValue (100.0,101.0)));

455 temp.Stop (Seconds (TotalTime));

456

457

458 AsciiTraceHelper ascii;

459 NS_LOG_INFO ("Run Simulation.");

460 CheckThroughput ();

461

462 Simulator::Stop (Seconds (TotalTime));

463 Simulator::Run ();

464

465 Simulator::Destroy ();

466 }

APPENDIX F PLC Code Experiment

229© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

�Acronyms
ABM Agent-Based Model

ABR Adaptive Bit Rate

ABS Agent-Based Simulation

ACP Algebra of Communicating Systems

AMS Agent Management System

ANA Autonomic Network Architecture

ANM Autonomic Network Management

ANOVA Analysis of Variance

AP Access Point Wireless

ARP Address Resolution Protocol

ASCII American Standard Code for Information Interchange

ATM Asynchronous Transfer Mode

AWS Amazon Web Services

B.A.T.M.A.N. Better Approach to Mobile Ad Hoc Networking

BDI Belief, Desire, and Intention

BGP Border Gateway Protocol

CAP Consistency Availability Partition

CC Cloudlet Computing

(continued)

https://doi.org/10.1007/978-1-4842-6849-0#DOI

230

CDN Content Distribution Network

CIA Consistency, Integrity, Availability

CN Core Network

CRN Common Random Number

CSD Circuit Switched Data

CSP Communicating Sequential Processes

CSPF Constrained Shortest Path First

D2D Device-to-Device

DAO Data Access Object

DASH Dynamic Adaptive Streaming over HTTP

DDOS Distributed Denial of Service

DHCP Dynamic Host Configuration Protocol

DNS Domain Name Service

DOE Design of Experiments

DSCP Differentiated Service Code Point

EFTM Embedded Flow Table Manager

ES Event Simulation

FC Fog Computing

FIPA Foundation for Intelligent Physical Agents

FITA Fixed Increment Time Advance

FSF Free Software Foundation

GNS A real-time network simulator

GNU General Public License

GoS Grade of Service

(continued)

Acronyms

231

GPRS General Packet Radio Service

GSM Global System for Mobile

HSDPA High-Speed Downlink Packet Access

HWMP Hybrid Wireless Mesh Protocol

IEC International Electrotechnical Commission

IED Intelligent Electronic Device

IEEE Institute of Electrical and Electronics Engineers

IoT Internet of Things

IPS Intrusion Prevention System

IPv4 Internet Protocol Version 4

IPv6 Internet Protocol Version 6

ISO International Organization for Standardization

ISP Internet Service Provider

ITIL Information Technology Infrastucture Library

ITU Telecommunication Standardization Sector

JRE Java Runtime Environment

LAN Local Area Network

LDAP Lightweight Directory Access Protocol

LGPL Lesser General Public License

LLC Logical Link Control

LLDP Link Layer Discovery Protocol

LTE Long-Term Evolution

LVAP Virtual Access Point

MA Mobile Agent

(continued)

Acronyms

232

MAC Media Access Control

MANET Mobile Ad Hoc Network

MAP Mesh Access Point

MAS Multi Agent System

MEC Mobile Edge Computing

MCS Monitoring and Control Server

MPLS Multi Protocol Label Switching

MRTG Multi Router Traffic Grapher

MSN Mobile Social Network

MSS Maximum Segment Size

MST Multiple Spanning Tree

MTU Maximum Transmission Unit

NAT Network Address Translation

NETA Next Event Time Advances

NFV Network Function Virtualization

NMS Network Management System

NOS Network Operating System

NS3 Network Simulator 3

OGM Originator Message

OLSR Open Link State Routing

ONF Open Network Foundation

OSPF Open Shortest Path First

PANE Participatory Networking

PC Personal Computer

(continued)

Acronyms

233

P-GW Packet Data Network Gateway

PLC Power Line Communication

PRS Procedure Reasoning System

QoE Quality of Experience

QoS Quality of Service

QoSen Quality of Sensisng

RAM Random Access Memory

RAN Radio Access Network

REST Representational State Transfer

RFC Request For Comments

SDN Software-Defined Networking

SDN-WISE SDN-WIreless Sensor Network

SDR Software-Defined Radio

SDWN Software-Defined Wireless Networking

SFTP Secure File Transfer Protocol

SNMP Simple Network Management Protocol

SOA Service-Oriented Architecture

SoftRAN Software-Defined RAN

SON Self-Organizing Network

SOVORA Sistema Operativo Virtualizado Orientado a Redes Ad Hoc

SSID Service Set ID

STP Spanning Tree Protocol

TCP Transmission Control Protocol

UDP User Datagram Protocol

(continued)

Acronyms

234

UMTS Universal Mobile Telecommunications System

UUID Universal Unique Identifier

V2I Vehicle to Infrastructure

V2V Vehicle to Vehicle

VLAN Virtual LAN

VM Virtual Machine

VPN Virtual Private Network

V&V Verification and Validation

WAF Web Application Firewall

WCCP Web Cache Control Protocol

WCN Wireless Cellular Network

WHN Wireless Home Network

WiMAX Worldwide Interoperability for Microwave Access

WMN Wireless Mesh Network

WNV Wireless Network Virtualization

WSN Wireless Sensor Network

Acronyms

235© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

�Bibliography

	 [1].	 VNI Mobile Forecast Highlights, 2016-2021 Cisco

VNI. https://www.cisco.com/assets/sol/sp/

vni/forecast_highlights_mobile/. Accessed:

2018-02-20.

	 [2].	 Richard Hamming. Numerical methods for

scientists and engineers. Courier Corporation, 2012.

	 [3].	 Douglass E Post and Lawrence G Votta.

“Computational science demands a new paradigm.”

In: Physics today 58.1 (2005), pp. 35–41.

	 [4].	 Harvey Gould, Jan Tobochnik, and Wolfgang

Christian. An introduction to computer simulation

methods. Vol. 1. Addison-Wesley New York, 1988.

	 [5].	 Mohsen Guizani, Ammar Rayes, Bilal Khan, et al.

Network modeling and simulation: a practical

perspective. John Wiley & Sons, 2010.

	 [6].	 Bernard P Zeigler, Tag Gon Kim, and Herbert

Praehofer. Theory of modeling and simulation.

Academic Press, 2000.

	 [7].	 Thomas W Edgar and David O Manz. Research

Methods for Cyber Security. Syngress, 2017.

https://doi.org/10.1007/978-1-4842-6849-0#DOI
https://www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile/
https://www.cisco.com/assets/sol/sp/vni/forecast_highlights_mobile/

236

	 [8].	 MathWorks. MATLAB - MathWorks - MATLAB &

Simulink. 2019. URL: https://www.mathworks.com/

products/matlab.html (visited on 07/17/2019).

	 [9].	 K Fall and K Varadhan. “The network simulator (ns-

2).” In: URL: http://www.isi.edu/nsnam/ns (2007).

URL: https://www.isi.edu/nsnam/ns/.

	[10].	 George F Riley and Thomas R Henderson. “The

ns-3 network simulator.” In: Modeling and tools for

network simulation (2010), pp. 15–34.

	[11].	 Gabriel A Wainer. Discrete-event modeling and

simulation: a practitioner’s approach. CRC Press,

2009.

	[12].	 Lawrence M Leemis and Stephen Keith Park.

Discrete-event simulation: A first course. Pearson

Prentice Hall Upper Saddle River, NJ, 2006.

	[13].	 Averill M Law, W David Kelton, and W David Kelton.

Simulation modeling and analysis. Vol. 3. McGraw-

Hill New York, 2000.

	[14].	 Abhishek Roy, Navrati Saxena, Bharat JR Sahu, et al.

“BISON: A bioinspired self-organizing network for

dynamic auto-configuration in 5G wireless.” In:

Wireless Communications and Mobile Computing

2018 (2018).

	[15].	 Mohammad Abu Shattal, Ala Al-Fuqaha, Bilal Khan,

et al. “Evolution of bio-socially inspired strategies

in support of dynamic spectrum access.” In: 2017

IEEE International Conference on Communications

Workshops (ICC Workshops). IEEE. 2017, pp. 289–295.

BIBLIOGRAPHY

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
http://www.isi.edu/nsnam/ns
https://www.isi.edu/nsnam/ns/

237

	[16].	 Hao Yin, Pengyu Liu, Lytianyang Zhang, et al.

“NS3-AI: Enable Applying Artificial Intelligence to

Network Simulation in ns-3.” In: ().

	[17].	 Piotr Gawłowicz and Anatolij Zubow. “Ns-3 meets

openai gym: The playground for machine learning

in networking research.” In: Proceedings of the 22nd

International ACM Conference on Modeling, Analysis

and Simulation of Wireless and Mobile Systems.

2019, pp. 113–120.

	[18].	 James Rumbaugh, Michael Blaha, William Premerlani,

et al. Object-oriented modeling and design. Vol. 199. 1.

Prentice-hall Englewood Cliffs, NJ, 1991.

	[19].	 Jack PC Kleijnen. “Design and analysis of simulation

experiments.” In: International Workshop on

Simulation. Springer. 2015, pp. 3–22.

	[20].	 Paul J Sanchez. “As simple as possible, but no

simpler: a gentle introduction to simulation

modeling.” In: Proceedings of the 2006 winter

simulation conference. IEEE. 2006, pp. 2–10.

	[21].	 Mathieu Lacage and Thomas R Henderson. “Yet

another network simulator.” In: Proceeding from the

2006 workshop on ns-2: the IP network simulator.

ACM. 2006, p. 12.

	[22].	 Nikola Tesla. The true wireless. Simon and Schuster,

2015.

	[23].	 Simon Elias Bibri. “The IoT for Smart Sustainable

Cities of the Future: An Analytical Framework for

Sensor-Based Big Data Applications for Environmental

Sustainability.” In: Sustainable Cities and Society (2017).

BIBLIOGRAPHY

238

	[24].	 ITU-T Study Group 20. “Recommendation ITU-T

Y.206.” In: (2012). URL: https://www.itu.int/

rec/T-REC-Y.2060-201206-I.

	[25].	 Dimitrios Serpanos and Marilyn Wolf. Internet-

of-things (IoT) systems: architectures, algorithms,

methodologies. Springer, 2017.

	[26].	 Yinghui Huang and Guanyu Li. “A semantic analysis

for internet of things.” In: Intelligent computation

technology and automation (icicta), 2010 international

conference on. Vol. 1. IEEE. 2010, pp. 336–339.

	[27].	 Luigi Atzori, Antonio Iera, and Giacomo Morabito.

“The Internet of Things: A survey.” In: Computer

Networks 54.15 (2010), pp. 2787–2805.

	[28].	 Masoud Saeida Ardekani, Rayman Preet Singh, Nitin

Agrawal, et al. “Rivulet: A Fault-tolerant Platform

for Smart-home Applications.” In: Proc. of the 18th

ACM/IFIP/USENIX Middleware Conference. 2017,

pp. 41–54.

	[29].	 OpenFog Consortium. OpenFog Consortium website.

https://www.openfogconsortium.org.

	[30].	 O. Skarlat, M. Nardelli, S. Schulte, et al. “Optimized

IoT service placement in the fog.” In: Service

Oriented Computing and Applications 11.4 (2017),

pp. 427–443. DOI: 10 . 1007 / s11761 - 017-0219-8.

	[31].	 Koustabh Dolui and Soumya Kanti Datta. “Comparison

of edge computing implementations: Fog computing,

cloudlet and mobile edge computing.” In: Global

Internet of Things Summit. 2017, pp. 1–6.

BIBLIOGRAPHY

https://www.itu.int/rec/T-REC-Y.2060-201206-I
https://www.itu.int/rec/T-REC-Y.2060-201206-I
https://www.openfogconsortium.org

239

	[32].	 “OpenFog Reference Architecture for Fog

Computing.” In: Reference Architecture February

(2017), pp. 1–162. ISSN: 2047-4954. URL: https://

www.openfogconsortium.org/wp-content/

uploads/OpenFog%7B%5C_%7DReference%7B%5C_%7D

Architecture%7B%5C_%7D2%7B%5C_%7D09%7B%5C_%

7D17-FINAL-1.pdf.

	[33].	 Luis M Vaquero and Luis Rodero-merino. “Finding

your Way in the Fog : Towards a Comprehensive

Definition of Fog Computing.” In: 44.5 (2020),

pp. 27–32.

	[34].	 Sam Newman. Building microservices: designing

fine-grained systems. O’Reilly Media, Inc., 2015.

	[35].	 Frank HP Fitzek and Marcos D Katz. Mobile clouds:

Exploiting distributed resources in wireless, mobile

and social networks. John Wiley & Sons, 2013.

	[36].	 J. E Ortiz. “Simulación y evaluación de redes ad

hoc bajo diferentes modelos de movilidad.” In:

Ingenieŕıa e Investigación 53 (2003), pp. 44–50.

	[37].	 Ian F. Akyildiz, Xudong Wang, and Weilin Wang.

Wireless mesh networks: A survey. 2005.

	[38].	 Imrich Chlamtac, Marco Conti, and Jennifer J.-

N. Liu. “Mobile ad hoc networking: imperatives and

challenges.” In: Ad Hoc Networks 1.1 (July 2003),

pp. 13–64. ISSN: 15708705. DOI: 10. 1016 / S1570 -

8705(03) 00013 - 1. URL: http://linkinghub.

elsevier.com/retrieve/pii/S1570870503000131.

BIBLIOGRAPHY

https://www.openfogconsortium.org/wp-content/uploads/OpenFog{/_}Reference{/_}Architecture{/_}2{/_}09{/_}17-FINAL-1.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog{/_}Reference{/_}Architecture{/_}2{/_}09{/_}17-FINAL-1.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog{/_}Reference{/_}Architecture{/_}2{/_}09{/_}17-FINAL-1.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog{/_}Reference{/_}Architecture{/_}2{/_}09{/_}17-FINAL-1.pdf
https://www.openfogconsortium.org/wp-content/uploads/OpenFog{/_}Reference{/_}Architecture{/_}2{/_}09{/_}17-FINAL-1.pdf
http://linkinghub.elsevier.com/retrieve/pii/S1570870503000131
http://linkinghub.elsevier.com/retrieve/pii/S1570870503000131

240

	[39].	 Moerman I Dhoedt B Demeester P Hoebeke J. “An

overview of mobile ad hoc networks: Applications

and challenges.” In: Journal of the Communications

Network 3.3 (2004), pp. 60–66.

	[40].	 Sudip Misra, Isaac Woungang, and Subhas Chandra

Misra. Guide to Wireless Ad Hoc Networks. Springer

Science & Business Media, 2009.

	[41].	 Sheng Zhong, Jiang Chen, and Yang Richard Yang.

“Sprite: A Simple, Cheat-Proof, Credit-Based System

for Mobile Ad-Hoc Networks.” In: INFOCOM 2003.

Twenty-Second Annual Joint Conference of the IEEE

Computer and Communications. IEEE Societies. Vol.

03. 2003.

	[42].	 A reputation-based trust mechanism for ad hoc

networks. 2005.

	[43].	 “Cooperation issues in mobile ad hoc networks.” In:

Distributed Computing Systems Workshops, 2004.

Proceedings. 24th International Conference on

(2004), pp. 803–808.

	[44].	 Youcef Touati, Arab Ali-Chérif, and Boubaker

Daachi. Energy management in Wireless Sensor

Networks. Vol. 1. ISTE Oress Ltd-Elsevier Ltd- UK,

2017.

	[45].	 Sonia Shahzadi, Muddesar Iqbal, Tasos Dagiuklas,

et al. “Multi-access edge computing: open issues,

challenges and future perspectives.” In: Journal of

Cloud Computing 6.1 (2017), p. 30.

BIBLIOGRAPHY

241

	[46].	 Youcef Touati, Boubaker Daachi, and Ali -Cherif

Arab. Energy Management in Wireless Sensor

Networks. Elsevier, 2017.

	[47].	 Yucen Nan, Wei Li, Wei Bao, et al. “A dynamic

tradeoff data processing framework for delay-

sensitive applications in Cloud of Things systems.”

In: Journal of Parallel and Distributed Computing

112 (2018), pp. 53–66.

	[48].	 Robin Milner. The space and motion of communicating

agents. Cambridge University Press, 2009.

	[49].	 David Roxbee Cox and Nancy Reid. The theory of the

design of experiments. Chapman and Hall/CRC, 2000.

	[50].	 Alan S Morris. Measurement and instrumentation

principles. 2001.

	[51].	 Jerry Banks. Handbook of simulation: principles,

methodology, advances, applications, and practice.

John Wiley & Sons, 1998.

	[52].	 Andrea Saltelli. “Global Sensitivity Analysis: An

Introduction .” In: proceedings of the 4th International

conference on sensitivity analysis of model output

(SAMO 2004) February (2004), pp. 27–43.

	[53].	 Jack P.C. Kleijnen. “An overview of the design and

analysis of simulation experiments for sensitivity

analysis.” In: European Journal of Operational

Research 164.2 (2005), pp. 287–300. ISSN:

03772217. DOI: https://doi.org/10.1016/

j.ejor.2004.02.005.

BIBLIOGRAPHY

https://doi.org/10.1016/j.ejor.2004.02.005
https://doi.org/10.1016/j.ejor.2004.02.005

242

	[54].	 Averill M. Law. “A tutorial on design of experiments

for simulation modeling.” In: Proceedings of the

Winter Simulation Conference 2014 (2014),

pp. 66–80. DOI: 10 . 1109 / WSC. 2014 . 7019878.

URL: http://ieeexplore.ieee.org/lpdocs/

epic03/wrapper.htm?arnumber=7019878.

	[55].	 Norbert Giambiasi and Jean Claude Carmona.

“Generalized discrete event abstraction of

continuous systems: GDEVS formalism.” In:

Simulation Modelling Practice and Theory 14.1

(2006), pp. 47–70.

	[56].	 Kai-Tai Fang, Runze Li, and Agus Sudjianto. Design

and modeling for computer experiments. Chapman

and Hall/CRC, 2005.

	[57].	 Richard W Conway. “Some tactical problems in

digital simulation.” In: Management Science 10.1

(1963), pp. 47–61.

	[58].	 Saman Razavi and Hoshin V Gupta. “What do

we mean by sensitivity analysis? The need for

comprehensive characterization of ‘global’

sensitivity in E arth and E nvironmental systems

models.” In: Water Resources Research 51.5 (2015),

pp. 3070–3092.

	[59].	 Bert Bettonvil and Jack PC Kleijnen. “Searching for

important factors in simulation models with many

factors: Sequential bifurcation.” In: European Journal

of Operational Research 96.1 (1997), pp. 180–194.

BIBLIOGRAPHY

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7019878
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7019878

243

	[60].	 Jack PC Kleijnen, Bert Bettonvil, and Fredrik

Persson. “Screening for the important factors in

large discrete-event simulation models: sequential

bifurcation and its applications.” In: Screening.

Springer, 2006, pp. 287–307.

	[61].	 Jorge Luis Borges and Honorio Bustos Domecq.

Labyrinths: Selected stories & other writings. 186.

New Directions Publishing, 1964.

	[62].	 Hajime Tazaki, Frédéric Uarbani, Emilio Mancini,

et al. “Direct code execution: revisiting library OS

architecture for reproducible network experiments.”

In: Proceedings of the ninth ACM conference on

Emerging networking experiments and technologies.

2013, pp. 217–228.

	[63].	 Robert C Martin. Clean code: a handbook of agile

software craftsmanship. Pearson Education, 2009.

	[64].	 GNU Coding Standards. http://www.gnu.org/

prep/standards/. Accessed: 2020-04-20.

	[65].	 Waf. Home page. https://waf.io/ [Accessed:

Whenever]. 2020.

	[66].	 Mario Bunge. La ciencia: su método y su filosofía.

Vol. 1. Laetoli, 2018.

	[67].	 A M Law. Simulation modeling and analysis. 2007.

	[68].	 W David Kelton and Averill M Law. “A new approach

for dealing with the startup problem in discrete

event simulation.” In: Naval Research Logistics

Quarterly 30.4 (1983), pp. 641–658.

BIBLIOGRAPHY

http://www.gnu.org/prep/standards/
http://www.gnu.org/prep/standards/
https://waf.io/

244

	[69].	 Krzysztof Pawlikowski. “Steady-state simulation

of queueing processes: survey of problems and

solutions.” In: ACM Computing Surveys (CSUR) 22.2

(1990), pp. 123–170.

	[70].	 Peter D Welch. “The statistical analysis of simulation

results.” In: The computer performance modeling

handbook 22 (1983), pp. 268–328.

	[71].	 Thomas S Kuhn. The structure of scientific

revolutions. University of Chicago Press, 2012.

	[72].	 Jonathan Loo, Jaime Lloret Mauri, and Jesus

Hamilton Ortiz. Mobile ad hoc networks: current

status and future trends. CRC Press, 2016.

	[73].	 Mohammad Ilyas. The handbook of ad hoc wireless

networks. CRC Press, 2002.

	[74].	 Michel Barbeau and Evangelos Kranakis. Principles

of ad-hoc networking. John Wiley & Sons, 2007.

	[75].	 Stefano Basagni, Marco Conti, Silvia Giordano, et al.

Mobile ad hoc networking. John Wiley & Sons, 2004.

	[76].	 Federico Maguolo, Mathieu Lacage, and Thierry

Turletti. “Efficient collision detection for auto rate

fallback algorithm.” In: 2008 IEEE Symposium

on Computers and Communications. IEEE. 2008,

pp. 25–30.

	[77].	 Starsky Wong, Songwu Lu, H. Yang, et al. “Robust

rate adaptation for 802.11 wireless networks.” In: vol.

2006. Jan. 2006, pp. 146–157. DOI: https://doi.

org/10.1145/1161089.1161107.

BIBLIOGRAPHY

https://doi.org/10.1145/1161089.1161107
https://doi.org/10.1145/1161089.1161107

245

	[78].	 Jongseok Kim, Seongkwan Kim, Sunghyun Choi,

et al. “Cara: Collision-aware rate adaptation for IEEE

802.11 WLANS.” In: Apr. 2006. DOI: https://doi.

org/10.1109/INFOCOM.2006.316.

	[79].	 Mathieu Lacage, Mohammad Hossein Manshaei,

and Thierry Turletti. “IEEE 802.11 rate adaptation: a

practical approach.” In: Proceedings of the 7th ACM

international symposium on Modeling, analysis and

simulation of wireless and mobile systems. 2004,

pp. 126–134.

	[80].	 IEEE 802.11 WIRELESS LOCAL AREA NETWORKS

The Working Group for WLAN Standards. http://

www.ieee802.org/11/. Accessed: 2020-04-20.

	[81].	 MS Windows NT Kernel Description. https://www.

nsnam.org/. Accessed: 2019-07-01.

	[82].	 James F Kurose. Computer networking: A top-down

approach featuring the internet, 3/E. Pearson

Education India, 2005.

	[83].	 Sockets APIs. https://www.nsnam.org/docs/

release/3.29/models/html/sockets-api.html.

Accessed: 2020-04-20.

	[84].	 Gnuplot. http://www.gnuplot.info/. Accessed:

2020-04-20.

	[85].	 CM Macal, MJ North, DA Samuelson, et al. “Agent-

based simulation.” In: Encyclopedia of Operations

Research and Management Science 3 (2013).

BIBLIOGRAPHY

https://doi.org/10.1109/INFOCOM.2006.316
https://doi.org/10.1109/INFOCOM.2006.316
http://www.ieee802.org/11/
http://www.ieee802.org/11/
https://www.nsnam.org/
https://www.nsnam.org/
https://www.nsnam.org/docs/release/3.29/models/html/sockets-api.html
https://www.nsnam.org/docs/release/3.29/models/html/sockets-api.html
http://www.gnuplot.info/

246

	[86].	 Prof Moore and K Roger. “PCT and Beyond:

Towards a Computational Framework

forIntelligent’Communicative Systems.” In: arXiv

preprint arXiv:1611.05379 (2016).

	[87].	 Chris Hare. Simple Network Management Protocol

(SNMP). 2011.

	[88].	 Michael Wooldridge. An introduction to multiagent

systems. John Wiley & Sons, 2009.

	[89].	 P Russel Norvig. A modern approach.

	[90].	 Yang Xiao and Yi Pan. Emerging wireless LANs,

wireless PANs, and wireless MANs: IEEE 802.11,

IEEE 802.15, 802.16 wireless standard family. Vol. 57.

John Wiley & Sons, 2009.

	[91].	 R Ramanathan, R Allan, P Basu, et al. “Scalability

of mobile ad hoc networks: Theory vs practice.”

In: MILITARY COMMUNICATIONS CONFERENCE,

2010-MILCOM 2010. IEEE. 2010, pp. 493–498.

	[92].	 JANE Y Yu and Peter HJ Chong. “A survey of

clustering schemes for mobile ad hoc networks.”

In: IEEE Communications Surveys & Tutorials 7.1

(2005), pp. 32–48.

	[93].	 Bob Lantz, Brandon Heller, and Nick McKeown. “A

network in a laptop: rapid prototyping for software-

defined networks.” In: Proceedings of the 9th ACM

SIGCOMM Workshop on Hot Topics in Networks.

ACM. 2010, p. 19.

BIBLIOGRAPHY

247

	[94].	 Juan Diego Moreno Mora, Edwin Ricardo Mahecha

Parra, and Juan Jesús Pulido Sánchez. NS3 -

Maximización de Conexiones de un Nodo en Redes Ad-

Hoc Móviles. Stochastic Models Project report. 2019.

	[95].	 Wireshark. https://www.wireshark.org/.

	[96].	 QUIC Hypertext Transfer Protocol Version 3

(HTTP/3). https://tools.ietf.org/html/draft-

ietf-quic-http-27. Accessed: 2020-04-20.

	[97].	 Simon Taylor. Agent-based modeling and simulation.

Springer, 2014.

	[98].	 Theodore T Allen. Introduction to discrete event

simulation and agent-based modeling: voting

systems, health care, military, and manufacturing.

Springer Science & Business Media, 2011.

	[99].	 Paul Davidsson and Harko Verhagen. Multi-Agent-

Based Simulation XIX: 19th International Workshop,

MABS 2018, Stockholm, Sweden, July 14, 2018,

Revised Selected Papers. Vol. 11463. Springer, 2019.

	[100].	 Gustavo Carneiro, Helder Fontes, and Manuel

Ricardo. “Fast prototyping of network protocols

through ns-3 simulation model reuse.” In:

Simulation modelling practice and theory 19.9

(2011), pp. 2063–2075.

	[101].	 Ramin Hekmat. Ad-hoc networks: fundamental

properties and network topologies. Springer Science

& Business Media, 2006.

Bibliography

https://www.wireshark.org/
https://tools.ietf.org/html/draft-ietf-quic-http-27
https://tools.ietf.org/html/draft-ietf-quic-http-27

248

	[102].	 Andrea M. Tonello andTheo G. Swart Lutz Lampe.

Power Line Communications Principles , Standards

and Applications From Multimedia to Smart Grids.

ISBN: 9781118676714.

	[103].	 Hendrik C. Ferreira, Lutz Lampe, John Newbury,

et al. Power Line Communications: Theory and

Applications for Narrowband and Broadband

Communications over Power Lines. 2010.

ISBN: 9780470661291. DOI: https://doi.

org/10.1002/9780470661291.

	[104].	 Francis Group, Bruce Middleton, Philip Golden,

et al. Fundamental of DSL Technology. 2006. ISBN:

9780849331572.

	[105].	 Fariba Aalamifar, Alexander Schlögl, Don Harris,

et al. “Modelling power line communication using

network simulator-3.” In: Global Communications

Conference (GLOBECOM), 2013 IEEE (2013). DOI:

https://doi.org/10.1109/GLOCOM.2013.6831526.

URL: http://www.ece.ubc.ca/%7B˜%7Dfaribaa/

paper.pdf.

	[106].	 Fariba Aalamifar, Alexander Schlögl, Don Harris,

et al. “Modelling Power Line Communication

Using Network Simulator-3.” In: IEEE Global

Communications Conference (GLOBECOM). 2013.

URL: http://www.ece.ubc.ca/˜faribaa/ns3_plc_

software.htm.

	[107].	 Sophocles J Orfanidis. “Waves and Antennas

Electromagnetic.” In: Media 2 (2008),

pp. 525–570. URL: http://www.ece.rutgers.

edu/%7B˜%7Dorfanidi/ewa/.

Bibliography

https://doi.org/10.1002/9780470661291
https://doi.org/10.1002/9780470661291
https://doi.org/10.1109/GLOCOM.2013.6831526
http://www.ece.ubc.ca/{˜}faribaa/paper.pdf
http://www.ece.ubc.ca/{˜}faribaa/paper.pdf
http://www.ece.ubc.ca/~faribaa/ns3_plc_software.htm
http://www.ece.ubc.ca/~faribaa/ns3_plc_software.htm
http://www.ece.rutgers.edu/{~}orfanidi/ewa/
http://www.ece.rutgers.edu/{~}orfanidi/ewa/

249

	[108].	 Sheldon M Ross. Probability models for computer

science. Harcourt Academic Press San Diego, 2002.

	[109].	 Sheldon M Ross. Introduction to probability models.

Academic Press, 2019.

	[110].	 Mininet org. Mininet. An Instant Virtual Network

on your Laptop (or other PC). URL: http://

mininet.org/.

	[111].	 Bob Lantz and Brian O’Connor. “A mininet-based

virtual testbed for distributed SDN development.”

In: ACM SIGCOMM Computer Communication

Review. Vol. 45. 4. ACM. 2015, pp. 365– 366.

	[112].	 Karamjeet Kaur, Japinder Singh, and Navtej

Singh Ghumman. “Mininet as software defined

networking testing platform.” In: International

Conference on Communication, Computing &

Systems (ICCCS). 2014, pp. 139–42.

	[113].	 Piotr Gawłowicz and Anatolij Zubow. “ns-3 meets

OpenAI Gym: The Playground for Machine Learning

in Networking Research.” In: ACM International

Conference on Modeling, Analysis and Simulation

of Wireless and Mobile Systems (MSWiM). Miami

Beach, USA, Nov. 2019. URL: http://www.tkn.

tu-berlin.de/fileadmin/fg112/Papers/2019/

gawlowicz19_mswim.pdf.

	[114].	 Jorge Ernesto Parra Amaris. “Contents management

algorithm for Ad Hoc networks bio-inspired in the

quorum sensing utilized by gram negative bacteria.”

Mag´ıster en ingenier´ıa - telecomunica- ciones.

Bibliography

http://mininet.org/
http://mininet.org/
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf
http://www.tkn.tu-berlin.de/fileadmin/fg112/Papers/2019/gawlowicz19_mswim.pdf

250

Ĺınea de investigación: Redes Ad-Hoc. Mar. 2018.

URL: http://bdigital.unal.edu.co/63163/.

	[115].	 J. E. Parra Amaris, A. C. Checa Hurtado, and J. E.

Ortiz Trivino. “Bacteria agent colony inside an ad-

hoc network.” In: 2015 10th Computing Colombian

Conference (10CCC). 2015, pp. 347–350.

Bibliography

http://bdigital.unal.edu.co/63163/

251© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021
H. Zárate Ceballos et al., Wireless Network Simulation,
https://doi.org/10.1007/978-1-4842-6849-0

Index

A, B
Ad hoc network

ABS, 129
definition, 112
equation, 112
gnuplot, 129
infrastructure scenario, 113
output, 128–129
PHY modes, 112
plot code, 127
rate adaptation algorithms, 113
socket abstraction, 121–127
Wi-Fi model

features, 113, 115
high models, 116
medium access, 116
mobility and position

methods, 120
node abstractions, 117–121
physical layer, 115

Agent-based simulation (ABS), 129
abstraction

Antenna mode/physical
layer code, 135

application, 137
code Variables, 134
command-line attributes, 133

mobility module, 136
node instance, 134
packets, 136
running and stopping, 141
socket creation code, 137
traffic model, 138
Wi-Fi ad hoc

configuration, 135
approaches, 129
cluster head (CH), 132
entities/agents interact, 130
features, 132
interaction, 131
libraries, 133
result analysis

actions code, 145
agent configuration code, 142
AI Gym, 141
customized method, 146
file output, 155–157
framework, 142
integration simulator, 142
learning metrics, 141
MyExecuteActions, 147
observation space code, 144
OpenGym, 144
packets, 156

https://doi.org/10.1007/978-1-4842-6849-0#DOI

252

parameters, 156
reward code, 145
statistical analysis packet

output, 153
trace file, 153
utils, 148
Wi-Fi agent reward, 157
wireshark packet analysis

output, 153
wireshark packet view

output, 152
running process, 149–151
skeleton agent, 130
systems/models, 130
tracing code, 140, 141

C
Cluster

cluster head (CH), 41, 132
communications, 41, 42
definition, 132
MANET, 41–42

D
Design of experiments (DOE)

analytic and statistical
methods, 48

ANOVA, 52
computer communication/web

services, 49

computer simulation, 50
conceptual duality, 49
controllable/uncontrollable, 50
definition, 45, 48
factorial designs (see Factorial

designs)
factors, 48
input-output analysis (I/O), 52
metamodel, 49
numerical methods, 47
objectives, 46
quantitative/qualitative, 50
simulation/mathematical

model, 47
statistical approach, 51
types, 52
verification and validation, 46
weak law, 49
wireless networks, 50

Distance vector routing
algorithms, 39

Distributed Coordination Function
(DCF), 112, 113, 116

E
Edge computing (EC), 28, 33–34

F, G, H
Factorial designs

definition, 53
design matrix, 54
effects and interactions, 58, 61

Agent-based
simulation (ABS) (cont.)

INDEX

253

local/global techniques, 53
sensibility analysis

techniques, 53
testing scenario, 57–62
three-factor interaction, 55
2k factorial design, 53–55
2k−p fractional factorial

designs, 56, 57
Fixed-increment time

advance (FITA), 129
Fog computing, 33, 34

I, J, K
Internet of Things (IoT)

architecture, 29
characteristics, 30
concepts, 31
edge layer, 32
intelligent objects, 28
paradigm, 31
physical and digital worlds, 29
refrigerators/sensors, 28

L
Link-state routing algorithm, 39–40

M
Mobile ad hoc networks (MANETs)

ABS (see Agent-based
simulation (ABS))

ad hoc network, 35

benefits, 40
cluster communication, 41, 42
cooperation arises, 38
definition, 35, 36
edges, 35
evolution, 26
features, 37
formation, operation, and

maintenance, 36
interactions, 35
ns-3 simulation software

backbone setup, 184
bash code, 182
channel configuration,

183–185
CMD experiment

setup, 181, 182
node setup, 184
objectives, 178–181
traffic experiment

setup, 179–182
operation/hardware

specifications, 37
PLC simulation

cable setup, 171
electrical diagram, 170
graphical description,

168, 169
impedance setup, 172
link nodes, 173
outlet setup, 173
phase, neutral, and

ground, 168
physical layer setup, 174

INDEX

254

single-phase installation,
169, 170

2D representation, 171
wireless mixed

architecture, 175–178
routing protocols, 39, 40
social clouds, 40, 41

N
Next-event time

advance (NETA), 4, 129
ns-3 network system

abstractions, 67, 68
animating process, 84–86
characteristics, 66
code paradigm, 69–71
command line arguments

attributes, 90
definition, 93
echo application, 91
modeling system, 90
modification, 93, 94
scripts, 92
source code, 92

discrete-event simulator, 65
documentation, 70
elements, 71, 72
emulation environments, 80–83
FdnetDevice, 81
graphical representation, 79
logging classes, 87, 88

modules, 66
naming conventions, 69
NetAnim, 84, 85
open source organization, 66
proposed model, 71, 72
run/build scripts, 78–80
run/debug, 67
scheduling queue, 86, 87
scripts, 72–78
trace collection and analysis, 66
trace subsystem, 89, 90

O
Output data analysis

emulation, 97
moving averages, 109
predictions, 98
procedures, 107
random numbers, 101, 102
replication-deletion

approach, 106, 107
results, 109
scenario, 108
signal system

observations, 99
statistical techniques, 99
stochastic process, 100, 101

statistical analysis
number of replicas, 103
replication, 105
steady-state

parameter, 104, 105
terminating simulation, 103

Mobile ad hoc networks (MANETs)
(cont.)

INDEX

255

steady-state, 102
terminating simulations, 102
theoretical and empirical

research, 97, 98

P, Q
Power line communication (PLC)

characteristics, 163, 164
communication/transmission,

161, 162
current technology, 162
deterministic models, 164–166
MANET, 168–178
ns-3 simulation, 166–168
telegrapher’s equations, 165
topology creation, 168

R
Routing protocols

definition, 39
distance vector/link-state, 39
reactive/on-demand

protocols, 39

S
Simulations

communication networks, 12
components, 5
computational cost, 2
discrete and continuous

system, 4–6

vs. emulation
abstract model view, 10
goals/objectives, 11
real world vs. simulation

world, 9, 10
superior level, 8

formal system concepts, 7, 8
framework, 1
networks, 13
ns-3 features, 12–17
ns-3 specification/formal

concepts
classification, 20, 22
discrete events, 19
high-level events, 18
homomorphism, 20
network events, 18
output events, 17
temporal framework, 19

observational methods, 3
theoretical models, 1, 3
validation, 3

T, U, V
Transient and steady-state density

functions, 101

W, X, Y, Z
Wireless communication

technologies
computing architecture, 28

edge computing, 34, 35

INDEX

256

fog computing, 33, 34
IoT, 28

connectivity/mobility
evolution, 26

history, 27
mono-service system, 26

Wireless mesh networks
(WMNs)37–38

Wireless sensor networks
(WSNs), 37–38

Wireless communication
technologies (cont.)

INDEX

	Table of Contents
	About the Authors
	About the Technical Reviewer
	Preface
	Chapter 1: Introduction to Simulation
	Framework
	Simulations, Models, and Their Importance in Research
	Types of Simulation Techniques

	Formal Systems Concepts
	Simulation and Emulation
	Network Simulators
	ns-3 Simulator General Features
	Formal Concepts and ns-3 Specification
	Summary
	Complementary Readings

	Chapter 2: Wireless and Ad Hoc Networks
	Connectivity and Mobility Evolution
	History of Wireless Communication Technologies
	Computing Architecture with Wireless Networks
	The Internet of Things
	Fog Computing
	Edge Computing

	Mobile Clouds and Ad Hoc Networks
	Features and Challenges of MANETs
	Wireless Mesh Networks and Wireless Sensor Networks
	Cooperation in MANETs
	Routing Protocols
	Distance Vector and Link-State Routing

	Social Clouds
	MANET Clusters
	Summary
	Complementary Readings

	Chapter 3: Design of Simulation Experiments
	Introduction
	Factorial Designs
	2 k Factorial Design
	2 k−p Fractional Factorial Designs

	Example
	Summary
	Complementary Readings

	Chapter 4: Network Simulating Using ns-3
	ns-3 at a Glance
	Relations Between Abstractions on ns-3
	Code Style
	My First Network
	Running and Building Other Scripts
	Emulation on ns-3
	Animating the Simulation
	Scheduler
	Logging and Tracing
	Trace Helpers
	Using Command-Line Arguments
	Summary
	Exercises

	Chapter 5: Analysis of Results
	Output Data Analysis for a Single System
	Transient and Steady-State Behavior of a Stochastic Process

	The Random Nature of the Simulation Output
	Types of Simulation According to the Output Analysis
	Statistical Analysis for Terminating (or Transient) Simulations
	The Number of Replicas

	Statistical Analysis for Steady-State Parameters
	The Replication-Deletion Approach

	Simulation Procedure
	Output Data Analysis
	Results

	Summary
	Complementary Readings

	Chapter 6: MANET Simulation on ns-3
	A Simple Ad Hoc Network
	Wi-Fi Model
	The PHY Layer Model
	MAC Low Model
	MAC High Model

	Node Abstractions
	Socket Abstraction
	Plot
	Output
	Agent-Based Simulation
	Description of the Experiment
	Abstractions
	Tracing
	Run Simulation
	Analysis of Results
	Run and Analyze
	Results

	Summary
	Complementary Readings

	Chapter 7: MANETs and PLC on ns-3
	Power Line Communication
	Fundamental Characteristics of the PLC Channel
	Deterministic Models of PLC Channel

	PLC Software for ns-3 Simulation
	MANET and PLC Simulation
	Wireless-PLC Mixed Node
	PLC Simulation Examples
	PLC Simulation on ns-3

	Mixed Wireless-PLC Simulation on ns-3

	Summary
	Complementary Readings

	Appendix A: Basic Statistics
	Random Variables and Random Vectors
	Random Variables
	Probability Density Functions
	Random Vector
	Independence
	Expected Value
	Variance
	Covariance
	Correlation Coefficient
	Binomial Random Variable
	Normal Random Variable
	Geometric Random Variable
	Uniform Random Variable

	Appendix B: ns-3 Installation
	Installing ns-3
	Installing Additional Features

	Appendix C: Mininet
	Appendix D: ns3-gym: OpenAI Gym Integration
	Installation

	Appendix E: Experiments
	Testing Environment and Assumptions

	Appendix F: PLC Code Experiment
	Acronyms
	Bibliography
	Index

