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Preface

Today connectivity is the principal need in our technologically linked 

society. In this information society, users from children to elders share 

their information, show their feelings, and publish their lives on the 

information networks. Distributed and highly complex systems established 

between machines support these networks, which interact in fractions of 

seconds over long distances, delivering all kind of services. Both machines 

and services are transforming our environment, with engineers’ new ideas 

about computing devices, data networks, and information systems. This 

high demand for services is the result of the evolution of several elements: 

first, the growth of the Internet due to the changing nature of user 

preferences, the increasing number of connections, and the development 

and diffusion of social networks. Another factor is the emergence of 

mobility features that add dynamic and random behavior to linked 

devices, systems, and users.

Network services are support services at cities, government 

institutions, university campuses, and companies, to name a few. These 

networks provide service to the Internet and intranets, allowing shared 

information,  services, and stablishing users communications. Access to 

these services is through different means such as optical fiber, copper, 

and air. Commonly, the interactions between users happen over several 

networks and mediums. The change of mediums is one of the critical 

processes for the throughput and quality of network services and the 

management of the systems supported by them across all communications 

channels and network components. Network components are usually 

diverse, and with only a few of them, it is possible to build relatively 

complex systems. It is difficult to predict their performance or characterize 

their operation when there are too many nodes, a heterogeneity of 



xiv

components, multiple layers of specialized functions, different services, 

and different mediums.

With all these factors, how do you know what the network behavior 

will be? There are two ways: first you can emulate it or determine the 

key points of the traffic behavior virtually through modeling or by 

reproducing the logical processes involved. The reliable option to emulate 

is intended to reproduce the network, routers, switches, nodes, and users; 

however, it is quite extensive and expensive. Another solution is the use 

of simulators, which are computational tools that allow the generation of 

a similar scenario to a real one. The use of simulators can help to explore 

interactions, component performance, and theoretical limits. Simulations 

are useful tools for empirical research because they permit us to generate 

data from a real network that can be high priced or difficult or impossible 

to control when designing a new network model that needs novel 

hypotheses for experimentation.

Setting up a virtual environment is useful to re-create a massive 

network with thousands of nodes. For instance, to evaluate mobile data 

traffic in IoT, Cisco [1] estimates that the monthly global mobile data 

traffic will be 49 exabytes by 2021, and the annual traffic will exceed half 

a zettabyte. The IoT environment has produced an increase in mobile 

devices, which will represent 20 percent of the total IP traffic. The platform 

business creates real Big Data scenarios and connects consumers with 

producers who share information, goods, and services through the 

Internet.

Simulation is a type of research methodology to compare some 

models, identify hypotheses, and understand the behavior and 

interactions between services, users, devices, and architectures. Since 

a network simulator can be event-based, each event represents an 

abstraction of a network and a computer system. For instance, nodes and 

physical networks can be represented in classes such as node and channel 

classes. The tools and components used, and the explanations, revolve 

around the ns-3 simulator.
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The ns-3 simulator allows the simulation and emulation of networks. 

It is an open and free simulator that emulates networks using the network 

interface card (NIC) of the computer that tests and transports the traffic 

generated by the simulation script and saves the simulation data in 

different traces for post-simulation data analysis. In this sense, it is 

important to discuss many concepts related to simulators, the abstractions 

used for the ns-3 simulator, the application of the stack protocols (TCP, 

UDP, OLSR, and so on), and the computational model created to imitate 

the NICs, routers, and other network devices.

With simulation, it is easier to get quantitative results, identify 

relationships, establish system interactions, determine component 

performance, and reach theoretical limits. One of the best ways to improve 

and check the simulation results is to share their results and scripts. In 

a huge system like the Internet, due to scale, heterogeneity, and level of 

interaction, the exclusive analytical option is to simulate. It is useful when 

it is necessary to perform statistical models for data interpretation, with 

one simulation or with a set of simulations. Each simulation has stages 

and requires a working methodology. The main objective of this book is 

to show the mechanism and techniques to design and create simulation 

models, use the simulator and analyze the results, and find the factors that 

affect and describe the simulation or the model created.

The book has three parts. The first part covers simulation basics 

including general information about network simulation and wireless and 

ad hoc networks and some techniques for experiment design. The second 

part covers Network Simulator 3 (ns-3) and gives some examples and 

techniques for analyzing results. The third part covers wireless network 

simulators on ns-3 that conclude with examples and models to simulate 

wireless, wired, and mixed networks with ns-3.

Specifically, the first part has three chapters that explain network 

simulation, wireless networks, ad hoc networks, and experiment design. 

Chapter 1 explains simulation features, objectives, and the techniques and 

steps to do simulations.
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Chapter 2 gives some insights about wireless and wired networks. 

Taking elements from the real world and applying them to the simulation 

world, we explain the evolution and principles of operation on 

architecrures  dynamic and stochastic, such as the Internet of Things (IoT), 

fog computing, edge computing, and the mobile cloud. These are the new 

trends in Internet service delivery. In addition, the chapter explains the 

concept of cyberspace and of interactions on the Internet.

Chapter 3 shows some techniques for experiment design, the key 

issues for the script design, and the event selection over the network. 

After the simulation, the most important activity to be performed is the 

analysis of results, where events are reported, and of the network behavior, 

including problems and improvements that a network, a model, or a new 

protocol could have.

The second part of this book covers ns-3. Chapter 4 introduces the ns-3 

simulator, including the main abstractions, code style, tracing, and logging. 

Chapter 5 shows the techniques to analyze the results post-simulations, 

take information from the generated traces, and determine the reliability 

of the simulation and the relevance of the simulation model.

Finally, in the third part, Chapters 6 and 7 include examples of 

mobile ad hoc networks (MANETS) with all the necessary steps for the 

simulations, to give you more clarity about the use of ns-3 and the process 

of analyzing the results. Chapter 6 show how to build an ad hoc network 

and analyze it with artificial agents using the ns-3gym and Open AI Gym 

tools. Chapter 6 introduces an example that links the ad hoc networks 

with power line communications (PLC). It is an approximation for the IoT 

environment. At the end, we present the conclusions and prospects of the 

network simulations and the future needs in this research field.

For the authors, this book is not just a dream come true but an effort of 

a team of friends, researchers, and fellow students. With this book, we want 

to inspire others to write, learn, and apply their knowledge to share it with 

others.
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CHAPTER 1

Introduction to 
Simulation

The sheer volume of answers can often stif le insight...The purpose 
of computing is insight, not numbers.

—[2]

�Framework
Computers have become one of the main resources for research. They are 

essential to analyze models through simulations, giving more options to 

verify the interactions between the components of a model, and essential 

to analyze large amounts of data.

Simulation is used for theoretical and empirical research since it 

provides the means to explore all the capacities and limits of theoretical 

models and because it helps to create synthetic conditions that are 

difficult to re-create in a real experiment. In some research specialties, 

this field is considered a third methodology [3]. For instance, any tangible 

laboratory sample can be re-created with a model in the computing 

world; the physical device would be the computer program or software, 

and the measurements would be the computer tasks [4]. A simulation is 

an application or a computer process that attempts to imitate a physical 

https://doi.org/10.1007/978-1-4842-6849-0_1#DOI
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process by producing a similar response that allows someone to make 

predictions about the expected behavior of a system. As a result, it can 

be used as an experimental setup or as a support to make operational 

decisions. It is also employed to study difficult and complex systems before 

spending resources on a real experiment.

�Simulations, Models, and Their Importance 
in Research
Before any simulation, it is essential to have a model. It is a conceptual 

representation of a real system whose level of abstraction depends on the 

research question and previous knowledge from the system. A simulation 

cannot be executed by itself, since it requires a tool (programming 

framework) and a platform (computer, server, etc.) to execute and produce 

a response. The computational cost of a simulation depends on the 

complexity of the real system and the level of abstraction used to model it.

Even though some models can be validated using mathematical 

formalisms, some systems are complex, involving many variables and 

input parameters that make mathematical validation challenging. For 

these kinds of models, simulation provides a form of understanding at 

different levels; however, the knowledge acquired from these models is 

useful in a limited way, since the behavior is seen in conditions that are 

difficult to test or that are generally not seen in real systems.

If the theory is accurate, simulation is a great tool to study theoretical 

models. It also allows discovering how the responses would be in different 

scenarios. Simulation cannot validate a model by itself, only instantiate 

it. Therefore, to validate it, the same test scenario must be implemented 

under real-world conditions to compare its results with the simulation 

output to gain enough accuracy of the model and validate it.

Chapter 1  Introduction to Simulation



3

Theoretical models represent the behavior of the system based on 
its knowledge and not the behavior of a real system. These models need 
validation before being considered empirical. An ideal way to validate 
them is through simulation. When simulating a theoretical model under 
a determined set of conditions, the result works as a hypothesis for the 
behavior of the real system if it is tested under the same circumstances. 
If the experiment data is statistically close to the simulation output, it is 
feasible to infer that the model is accurate. If the model does not seem 
satisfactory, it does not imply that there are errors in it. There could be, but 
there could also be errors in instantiating the model, which could serve as 
a guideline for telling what not to do for a future experiment. Simulation 
is a powerful tool. This whole process is a method to validate simulation 
models through experimentation. However, it is not a substitute for 
real experimentation, since the simulation results are only as good as 
the models used. Therefore, it is mandatory to validate the model and 
question their results and applicability if this has not been done.

The quality of the simulation results is directly associated with 
the quality of the model. This implies that it is necessary to validate a 
model before deploying it. Model validation is a process in which the 
experiment is evaluated if it is an accurate representation from a real 
system. Empirical studies are used to ensure their accuracy. However, 
according to the research needs, not every model needs to be validated 
with the same level of accuracy. In general, to validate a model, it is 
possible to use two methodologies: observational methods and the 
experimentation, exposed earlier.

The observational methods are usually aimed at answering the 
research question, but in the case of simulation models, they are used to 
ask questions to the model output data to determine its validity. Thanks to 
machine-learning techniques and statistical methods, it is possible to carry 
out observation methods. On the one hand, machine-learning techniques 
employ algorithms that learn distributions and correlations to produce a 
model from the output data. On the other hand, to ask questions and get 
answers from the output data, statistical methods are used if the data has a 

behavior that can match certain distributions.

Chapter 1  Introduction to Simulation
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�Types of Simulation Techniques
There are two types of systems: discrete and continuous. In a discrete 

system, the state variables change instantly at different points in time. 

On the other hand, in a continuous system, the state variable change 

continuously over time.

In computer networks, many systems function as discrete systems 

(LAN, cellular infrastructure, wireless networks); in them, specific events 

or interactions change the state and the behavior of the entire system. 

In the simulation program, these events are inserted and read as states, 

variables, and routines sequentially; this approach is known as next-event 

time advance. All these attributes and events are enabled in the debugging 

and execution processes along with the input scripts. The general 

orientation of the processing is carried out through modeling, which is 

usually formulated in a general-purpose language.

Table 1-1 describes the most important types of simulations that are of 

particular importance to engineers [5].

Chapter 1  Introduction to Simulation
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A particular case of discrete event simulation could have the following 

components:

•	 Event queue: This contains all the events waiting to 

happen. The implementation of the event list and the 

functions to be performed on it can significantly affect 

the efficiency of the simulation program.

Table 1-1.  Types of Simulations

Type of 
Simulations

Description

Emulation This is the process of designing and building a model that uses 

real system functionality. A study case is the prototyping process.

Monte Carlo 

simulation

This is a simulation process without time reference. Monte 

Carlo simulation techniques are used to model any probabilistic 

phenomenon that does not change over time as an independent 

variable.

Trace-driven 

simulation

This simulation uses as input an ordered list equivalent to real-

world events. In this type of simulation, the time variable is an 

attribute of the event.

Continuous-

event simulation

A function can model this type of simulation, and the changes 

occur permanently. An issue is to determinate the scale and the 

scope of the experiment to identify the factors and events that 

influence the results.

Discrete-event 

simulation (DES)

Discrete event simulation is a type of simulation that uses 

“events” to specify details of an experiment that occur over time. 

Discrete mathematical analysis can model the process and have a 

medium level of abstraction. Each event is a function or class call 

with a unique identifier.
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•	 Simulation clock: This is a global variable that 

represents the simulation time; the simulator advances 

in the simulation time until the next scheduled 

event. During event execution, the simulation time is 

frozen; however, in the ns-3 simulator, it is possible 

to work with the real-time scheduler integrated with 

the hardware clock to perform the progression of 

the simulation clock in a synchronized way with the 

machine or reference external clock.

•	 State variables: These variables help to describe the 

state of the system.

•	 Event routines: These routines handle the occurrence 

of events. Once an event is successfully executed, the 

simulator updates the state variables and the event 

queue.

•	 Input routine: This routine obtains the user input 

parameters and supplies them to the model.

•	 Output generation routine: This routine is in charge of 

creating the output of the events and the abstraction of 

the simulator. In ns-3, there are two kinds of outputs: 

.pcap and .tr files.

•	 Main program: This is the entry point on the ns-3 

simulator where it is possible have C++ and Python’s 

main() function program. The main program is used to 

call the classes, functions, libraries, and methods useful 

to execute the simulation. The simulation on ns-3 

begins with the Simulator::Run() routine and ends 

with the Simulator::Destroy() routine.

Chapter 1  Introduction to Simulation
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�Formal Systems Concepts
Usually, simulation demands a previous conceptualization effort. In some 

cases, because of the scope of work, it is a demanding task and difficult 

to understand. On this subject, there are available formal works, and 

some of them are based on demi-philosophical principles that could be 

useful. Therefore, we recommend becoming familiar with the following 

definitions, which are frequently used in this book.

•	 Behavior: This is the relationship between any input/

output pair in a system at different times. It can be 

obtained from external measurement to know the 

internal set of events and states that characterize the 

system [6].

•	 Emulation: A partial or complete construction of a 

system that is functional and artificial, whose behavior 

mimics that of an analyzed reference system, this is the 

process of simulating the inner workings of a systems to 

produce a realistic output [7].

•	 Event: This is the source of the changes in a finite state 

machine.

•	 Inference: This is an activity oriented to deduce the 

internal structure of a system from its behavior. (This 

definition is close to the simulation world.)

•	 Structure: This is an internal characteristic that defines 

a set of system states and relations [6].
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Regarding the real experimenting analogies, when the scope of a 

simulation process is to imitate a real physical process, it is important 

to consider an experimental orientation for collecting process data 

and for data analysis techniques that is similar to a scientific inference 

laboratory. Otherwise, in computer systems, simulations are sort of hybrid 

experiments, because just one side of the processes comes from the real 

world, like propagation media features, transmission lines parameters, 

delays, failures, and other common behaviors of hardware. The other side 

consists of software processes.

The creation of different kinds of models is the result of efforts to 

simulate and imitate real systems. Essentially, real-life systems and 

phenomena are continuous models, which means that the variables of the 

process can be set at any time. Unlike real-word systems, computational 

processing uses discrete models, which are models that change state at 

certain times and have a limited number of possible states.

In the description of discrete events of a system, there are 

instantaneous changes of discrete variables that allow imitating a real  

dynamic system. A combination of differential equation system 

specifications and discrete event system specification, inherent in the  

continuous and discrete descriptions respectively, allows the 

computational models to simulate real systems in an approximate way.

�Simulation and Emulation
The simulation allows reaching a higher level that implies the fidelity 

to a real system. While emulation is a superior level in which all the 

components are simulated to produce a realistic response, as shown in 

Figure 1-1. However, emulation can be more computationally expensive 

and harder to model since its level of detail is superior and finer.
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There are two domains when a simulation begins: the real world and 

the simulation world (Figure 1-2). It is necessary to define the elements 

that compose the real world to create new hypotheses and experiments. 

Among them are the system theories, their relationships with the data 

results and the preliminary hypotheses, and the system or main problem. 

The interactions between them are hypothesizing, abstracting, and 

experimenting.

Figure 1-1.  Simulation versus emulation
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To design a simulation experiment, it is significant to define the 

abstract model and follow the next steps, as shown in Figure 1-3.

Figure 1-2.  Real world versus simulation world

Figure 1-3.  Steps simulation
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	 1.	 Determine goals and objectives. 

–– Boolean decisions: Should another component be 

added to the model?

–– Numerical decisions: How many servers in parallel 

offer optimal performance?

	 2.	 Build a conceptual model.

–– What are the important state variables?

–– How exhaustive should the model be?

	 3.	 Build the specification.

–– Collect and statistically analyze data to have “input” 

models that control the simulation.

–– In the absence of data, the “input” models should 

be built using stochastic models that are appropri-

ate for the problem.

	 4.	 Build the computational model.

–– Select the language or the simulation tool.

	 5.	 Verify that the computer model implements the 

specification properly.

–– Still not the right model?

	 6.	 Validate if the correct model was built.

–– An expert compares the results of the real system 

with the results of the simulated system.

–– The system’s animations are useful.

Chapter 1  Introduction to Simulation
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�Network Simulators
In communication networks, the development of new routing protocols, 

algorithms, and architectures is usual. The performance evaluation of these 

new systems through experimentation can be expensive, the resources may 

not be available, and valuable features such as scalability are not easy to test in 

that way. Consequently, simulation becomes an important tool for research 

since it does not require any physical hardware other than a computer to run 

the simulations. It provides an economical alternative to evaluate the behavior 

of these new systems or to test the performance of the existing ones, which 

under different circumstances are hard to re-create in a laboratory.

Today, it is possible to find different simulation frameworks created 

by network companies, universities, and academics, whose goal is to offer 

alternatives, covering different aspects and functionalities of networks. The 

selection depends on the needs and objectives of the researchers. Besides, 

it is recommendable to check in bibliographic databases, such as Scopus, 

for the number of papers that have used a certain simulator and its role on 

the research.

In Table 1-2, you can see some of the most commonly used 

network simulations for research. However, keep in mind that there 

are many networks simulators available, and your selection depends 

on the objectives of your research and your experience with different 

programming languages.

�ns-3 Simulator General Features
ns-3 is a discrete event network simulator that uses a set of abstractions 

(node, application, channel, net device, and topology helpers) to simulate 

devices in communication networks, as well as their services, protocols, 

and interfaces. The interactions between them are given through multiple 

channels of communication like Ethernet cables, wireless channels, and 

power line communication channels, among others.
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In a nontechnical explanation, it is possible to define ns-3 as a set of 

application-oriented telecommunication systems tools with modeling 

flexibility, with some graphical reporting capabilities and easy-to-use 

statistical modules.

The development environment is object-oriented through the optional 

C++ and Python frameworks, with Linux and IOS installers, and includes some 

useful examples of reusable code and online growth community as support.

Table 1-2 shows some networks simulators (open source, academic, and 

commercial licensing) with similar capabilities as ns-3. (The ns-3 summary 

features are in Table 1-3 later in this chapter.)

Although it sounds great, you actually need longer periods and 

patience to run custom simulations. Regardless of your programming 

skills, based on experience, we recommend working on C++ and Ubuntu 

Linux LT distributions if possible. In Appendix A, we describe the 

installation processes of both operating systems.

Table 1-2.  Network Simulators

Simulator Framework License Type

ns-2 Open source

ns-3 Open source

Matlab Commercial

GlomoSim Free

JiST/SWANS Commercial

J-Sim Open source

OMNeT++ Open source, academic use 

licensed

OPNET Commercial, free for qualifying 

universities
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ns-3 is useful for modeling nonlinear and complex systems, which 

are impossible to solve from an analytical perspective and often difficult 

to predict. The typical approach to this obstacle is to reduce complexity 

by using expert skills to extract conclusions in a reduced ambit and then 

extend them to other contexts. This feature makes possible the process 

of formulating well-founded conjectures, which is an important step in a 

scientific approach.

From our personal experience, we consider that the nature of ns-3 is 

broader because of its emulation capabilities. One of the main objectives 

of this simulator is to supply different options to support the emulation 

and execution of real implementation code. Thus, it allows the opportunity 

to combine these techniques and reduce experimental discontinuities 

when moving between simulation, emulation, and real experiments [10].

ns-3 usually runs only one simulation process at a time, which does 

not limit the scope of possible simulation scenarios. For parallel scenarios, 

it is required to enable the Message Passing Interface (MPI) and the 

application program interface (API), which are beyond the scope of this 

book. In our experience, we tried this with sequential processes, and the 

results of the repetitive simulation processes were consistent, regardless of 

the stochastic nature of the data and the real processes modeled. For this 

reason, it is common to obtain similar results in successive experiments 

that are desirable from the point of view of accuracy or statistics and 

acceptable as a simplification of the real world. However, it is possible 

to add stochastic features to the models. In the following chapters, some 

examples will be presented and applied specifically to ad hoc networks.

ns-3 has a lot of examples that are useful for new users. Listing 1-1 

consists of the topology of two devices (or two nodes) with point-to-point 

communication of a 5Mbps data rate, a channel, and a delay of 2ms.
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Listing 1-1.  ns-3 Example

1   NodeContainer nodes;

2   nodes.Create (2);

3

4   PointToPointHelper pointToPoint;

5   �pointToPoint.SetDeviceAttribute ("DataRate", StringValue 

("5Mbps"));

6   �pointToPoint.SetChannelAttribute ("Delay", StringValue 

("2ms"));

These two nodes are equipped with a network device that adds a MAC 

address and a queue to the device. It also has an Internet stack installed 

that adds IP/TCP/UDP functionality to the existing nodes. A set of IP 

addresses is then created, and an IPv4 interface is installed on the network 

device. This interface assigns an IPv4 address to each node on the network 

device. It then associates this address with the interface and stores it in a 

container (see Listing 1-2).

Listing 1-2.  ns-3 Example

 1   NetDeviceContainer devices;

 2   devices = pointToPoint.Install (nodes);

 3

 4   InternetStackHelper stack;

 5   stack.Install (nodes);

 6

 7   Ipv4AddressHelper address;

 8   address.SetBase ("10.1.1.0", "255.255.255.0");

 9

10   �Ipv4InterfaceContainer interfaces = address.Assign 

(devices);
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Then, an application server is created. It waits for UDP packets 

and then sends them back to the sender, assigning port 9 for this 

communication. This application created is stored in an application 

container and assigned to the second node. This application is started at 

the first second and stopped at second 10 (see Listing 1-3).

Listing 1-3.  ns-3 Example

1   UdpEchoServerHelper echoServer (9);

2

3   �ApplicationContainer serverApps = echoServer.Install 

(nodes.Get (1));

4   serverApps.Start (Seconds (1.0));

5   serverApps.Stop (Seconds (10.0));

The next step is to create a client-server application on the first node 

of the network. It will send UPD packets and wait for a response from the 

second node. The application has a maximum of 1 packet of 1,024 bytes, 

and the client will wait 1 second between packets. It will initialize in 

second 2 of the simulation and stop in second 10 (see Listing 1-4).

Listing 1-4.  ns-3 Example

1   UdpEchoClientHelper echoClient (interfaces.GetAddress (1), 9);

2   echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

3   �echoClient.SetAttribute ("Interval", TimeValue (Seconds 

(1.0)));

4   echoClient.SetAttribute ("PacketSize", UintegerValue (1024));

5

6   �ApplicationContainer clientApps = echoClient.Install 

(nodes.Get (0));

7   clientApps.Start (Seconds (2.0));

8   clientApps.Stop (Seconds (10.0));
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After defining all the parameters and events of the network, the only 

thing left is simulating with these four events: one at second 1, one at 2 

seconds, and two at 10 seconds (see Listing 1-5).

Listing 1-5.  ns-3 Example

1   Simulator::Run ();

2   Simulator::Destroy ();

�Formal Concepts and ns-3 Specification
In simulators, events are a mandatory abstraction. They can be described in 

a nonformal definition and, for this book, as a change of state in the model, 

generally associated with time. Events constitute a causal sequence that allows 

discovering the evolution of variables as a flow with definite direction. In 

turn, a discrete event could be explained mathematically through an integer 

variable. In the simulator, it is common to get two forms of presenting them 

in the ns-3 screen: as a list of events or as a graphical representation of the 

behavior of nodes and their interactions, as shown in Figure 1-4. Also, it is 

possible to output events as trace sinks, Wireshark’s .pcap files, and XML files.

As a first test case, we have an example of some “screen resume” list 

output.

1   At time 2s client sent 1024 bytes to 10.1.2.4 port 9

2   �At time 2.01796s server received 1024 bytes from 10.1.3.3 

port 49153

3   �At time 2.01796s server sent 1024 bytes to 10.1.3.3 port 

49153

4   �At time 2.03364s client received 1024 bytes from 10.1.2.4 

port 9
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Depending on the scope of the simulating job, it is probable that the 

high-level events presented in Figure 1-4 are the most relevant, especially 

in a framework of network interaction. Then, in that case, each network 

event is represented by each screen line. For example, the previous 

report shows a descriptor of each responsible entity (a network node) 

that interacts in each previous subprocess. Each node has a network role 

(server-client) that has its own IPv4 address, a TCP port, and a related 

primitive service (send-receive).

Here, ns-3 can report some key network events on the screen. 

However, there are many events (others not shown here) that occur in 

the background and are associated with the protocols involved. Also, 

events are associated with the internal programming classes and objects 

that interact between them. When it is required in .pcap and .xml files, 

valuable information can be tracked for low-level and detailed interactions 

and processes.

Figure 1-4.  Example 1 of ns-3. a) Creating point-to-point nodes and 
channels. b) Installing network and Internet stack devices in each 
node and assigning IP addresses. c) Installing an echo server and 
client in the nodes. d) Sending a packet and its respective response
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All of them are discrete events, referred by an arbitrary reference time 

simulator. It is important to differentiate their time reference from the 

real-world time reference. The first is an abstract way to order the events; 

the second one is the conventional user concept and the ones that do not 

necessarily maintain a clear relationship between them. For example, a user 

easily understands that on different devices, the executing time is inversely 

proportional to the performance of the equipment and is associated as 

a commonsense result. The time reference of the ns-3 event could be 

independent of the hardware used to build the simulation and even from the 

released version of the ns-3. For instance, in different devices the third.cc 

example of simulation delivers the same simulation time result.

According to the previous example, it is possible to appreciate that 

each event describes an extensively defined frame protocol object 

and a “nearly” continuous reference time. That suggested by the 

microsecond-level precision of the time scale reference shown in ns-3 

that has an integer as reference time at nanosecond.

When this temporal framework exists, the theoretical approach of 

the Discrete Event System Specification (DEVS) [11] is used. It is a type of 

discrete dynamic system with relevant changes occurring at a fixed time. 

Here, an event is the occurrence of an external trigger or a significant change 

in an internal variable, often referred to as a model state variable. In ns-3, 

time advance is managed with a next-event approach. In this technique of 

discrete event simulation, there is a local program or list of events built as a 

data structure that updates a timer when the current event occurs. The next 

or created events are listed in a time-based order until completion [12].

When the simulation time changes asynchronously and 

discontinuously, the state of the variables is updated “instantly” and 

remains fixed until the time of the next programmed event changes. In 

some simulations, this capability can be a comparison metric between 

experiments. Nevertheless, in the scope of this book, with stochastic 

variables only, it will be considered as a real-world time framework, always 

in the context of network traffic, given its burst behavior.
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Time is only one element of simulation. In the real world, the 

interaction between nodes occurs through network interfaces and within 

nodes through layer interfaces. In the same way, ns-3 represents the same 

interaction with low-level abstractions represented by the programming 

objects and entities. For example, a network interface is modeled with a 

physical or logical port abstraction, identified here by a protocol address. 

This one-to-one mapping is a system specification formalism called 

homomorphism, an important approach of ns-3.

As said by Wainer [11], it is feasible to apply modularity with DEVS 

because it allows an abstract model to be represented, regardless of 

the simulation techniques used, and to progressively build complex 

systems. This is another powerful feature of ns-3 associated with its object 

programming language base. However, this is the reason for decoupling 

between real-time and event time structure, because object-oriented 

programming does not have an associated temporal sense.

The default simulated time in ns-3 is not related to the hardware clock; 

it simply advances to the next event [13]. For the real-time capabilities 

of ns-3 that are available through the RealTime scheduler, this mode 

of operation requires an external time source for synchronizing. In this 

simulated time mode, ns-3 runs in parallel with the external base time 

between events, while stopping at the event execution (feature currently 

included ns-3). In this mode, cumulative time differences between the 

reference and the simulated time may occur, which must be resolved with 

the configuration options of the RealTime scheduler.

Table 1-3 is the best way of resuming and classifying features of an ns-3 

simulator.
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Table 1-3.  Summary of ns-3 Features

Summary and Classification of Simulator Features

Feature Yes No Observations

Discrete event systems X – –

Parallel discrete events 

allowed

X – –

Parallel time scripts 

allowed

X – –

Parallel time events 

allowed

X – –

Object-oriented 

programming

– X –

Object-oriented events X – –

Multicomponent systems 

interactions allowed

X – Individual components system is coupled 

by connecting their input and output 

interfaces in a modular way

Multicomponent events 

interactions allowed

X – Individual events influence all components

Iterative result X – As defined in customized code

Input-free systems X – –

Stochastics generators X – –

I/O observation frame X – –

I/O relation observation X – –

I/O function observation X – –

I/O system observation X – –

(continued)
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There are other types of modules created by other researches to 

expand the capabilities of the simulator in fields such as bio-inspired 

systems [14], [15], artificial intelligence [16], neuronal models [17], among 

others.

Table 1-3.  (continued)

Summary and Classification of Simulator Features

Feature Yes No Observations

Block-oriented simulation 

system

X – –

Chaotic systems allowed – X –

Noncausal methods – X –

Fuzzy systems allowed X – –

Real-time simulating X – –

Model families allowed X – –

Error estimating tools X – –

Graphical model 

representing

X – –

Graphical experiment 

representing

X – –
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�Summary
The ns-3 simulator is based on discrete events to manage the simulation. 

The simulator has abstractions such as the node, the channel, and the 

packet. It allows you to create real network models from their abstractions. 

The simulator allows the simulation and emulation functions to test 

the models and scenarios on the script. The simulation output can be 

analyzed as a .pcap file to use another tools such as Wireshark. The ns-3 

simulator is a robust tool to design, test, and validate networks, protocols, 

and architectures on a controlled testbed based on events.

�Complementary Readings
Here are some other topics to read about:

•	 Object-oriented modeling and design [18]

•	 Design and analysis of simulation experiments [19]

•	 A gentle introduction to simulation modeling [20]

•	 Yet another network simulator [21]

Chapter 1  Introduction to Simulation



25© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,  
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021 
H. Zárate Ceballos et al., Wireless Network Simulation,  
https://doi.org/10.1007/978-1-4842-6849-0_2

CHAPTER 2

Wireless and Ad Hoc 
Networks

When wireless is perfectly applied the whole earth will be con-
verted into a huge brain, which in fact it is, all things being 
particles of a real and rhythmic whole. We shall be able to 
communicate with one another instantly, irrespective of dis-
tance. Not only this, but through television and telephony we 
shall see and hear one another as perfectly as though we were 
face to face, despite intervening distances of thousands of 
miles; and the instruments through which we shall be able to 
do this will be amazingly simple compared with our present 
telephone. A man will be able to carry one in his vest pocket.

—Hamming [22]

The proliferation of communication devices and networks is the result 

of the exponential development of wireless components for computing 

devices. This development allowed the diffusion of services and new 

alternatives for users to interact with new technologies, among us, and the 

continuos development of social networks and applications to stream and 

share a variety of content.

https://doi.org/10.1007/978-1-4842-6849-0_2#DOI
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This evolution required more sophisticated infrastructures, protocols, 

and devices to allow the flow of services through the Internet and between 

countries, devices, and users (Figure 2-1).

�Connectivity and Mobility Evolution
The evolution of the wireless interfaces has allowed us to move from a  

mono-service system to shared schemes where a device can have at 

least one wireless interface. For example, a mobile device can have 4G, 

Wi-Fi, and Bluetooth interfaces that are potential channels for providing 

communication services. Under these conditions, it is possible to generate 

superposed networks, which are different coverage areas for each interface 

to give or receive some service demanded by the user.

Another important aspect is the emergence of social networks that 

have modified the behavior of users and changed their connectivity needs, 

requiring new ways to deploy these services on their devices.

Figure 2-1.  Mobile ad hoc network
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�History of Wireless Communication 
Technologies
Today, mobile devices have more built-in wireless technologies. There 

are two ways to use devices: cellular networks and short-range networks. 

Cellular network technologies have evolved from 2G technologies such 

as GSM CSD and GPRS, to 3G such as UMTS/HSDPA, and finally to 

4G as WiMAX, LTE, and LTE-A (HSPA+LTE). The architecture of these 

systems has a central base station and a set of cells to provide services and 

coverage.

On the other hand, short-range communications have evolved 

rapidly, mainly because of the reduction in size and the increase in 

computing capacity. This development has made it possible to create 

overlay networks with the same device. Two technologies stand out in this 

evolution: Bluetooth and IEEE802.11X or WLAN.

In both cases, evolution is related to data rates and bandwidth. In 

smartphones, it is more common use both technologies, but there are 

more and more devices with robust computing resources (memory and 

CPU) and multiple network interfaces.

This evolution is the introduction to information and communications 

technology (ICT), which features exploiting autonomy behaviors and 

deploying smart systems in the computing environment. For instance, 

low-cost sensor devices and pervasive and ubiquitous computing 

infrastructure and wireless communication are at the core of the Internet 

of Things (IoT). This relationship between the physical and digital 

worlds has generated several advances for the design, planning, and 

implementation of applications for smart cities and sustainable cities [23].
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�Computing Architecture with Wireless Networks
Today there are some types of architecture that use one or multiple 

wireless interfaces. These infrastructures allow the deployment of online 

services, allow for real-time services, and provide new applications to 

users in different types of electronic devices. In this chapter, three types of 

architectures will be explained: the Internet of Things, fog computing, and 

edge computing.

�The Internet of Things

The ITU-T Y.2060 [24] recommendation defines the Internet of Things 

as a global infrastructure that enables the interconnection of physical 

and virtual functions, the state of information, and current and emerging 

communications.

IoT denotes a trend in which there are a large number of devices that 

use services such as the Internet. When they are not operated by human 

intervention, they are called intelligent objects. Most IoT devices are 

connected to networks or specific-purpose systems [25]. In this sense, 

the IoT paradigm is articulated with the concepts of clusters and ad hoc 

networks described earlier.

IoT is associated with electronic media such as refrigerators or 

sensors that communicate with each other through the cloud. However, 

the concept also extends to industrial applications that derive from the 

concept of industrial IoT (IIoT), which consists of inserting intelligence 

into industrial machines, systems, and processes with communication 

mechanisms. In this way, the monitoring and coordination functions of a 

productive chain are improved to achieve high quality with a considerable 

reduction in costs.
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IoT can also be understood as an environment of interaction between 

the physical and digital worlds since there are various ways to establish these 

interactions [24]. Although it is a current trend and the object of numerous 

studies, there is still no standardized architecture for IoT. However, one of 

the best known is the architecture of the layers shown in Figure 2-2.

The first layer is the perception of things. As its name suggests, this layer 

is related to the perception or capture of information from the environment. 

It is composed of devices such as sensors, actuators, and processing units 

that measure or detect physical variables or identify other objects.

The second is the network layer, which allows you to connect “smart” 

things and is composed of network devices and servers. This layer serves 

to transmit and process the information captured by the sensors.

The third is the application layer, which is responsible for delivering 

services to the user. This layer identifies general-purpose IoT applications, 

such as data processing or storage, and other specific-purpose applications 

that specialize in a particular set of services, for example, smart homes or 

smart health [25].

Figure 2-2.  Architecture for IoT of three layers
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The capabilities of the perception or device layer can be classified 

into two types: device and gateway capabilities [24]. Some of their 

characteristics are described here:

•	 Device capabilities: These include direct interaction 

with the communications network. Devices can collect 

and upload information to the network or receive 

it without intermediaries. They can also interact 

indirectly through gateways or devices that help send 

or receive information between the network. Among 

capabilities of the device within the IoT, their ad hoc 

interconnection capacity stands out. Therefore, the 

device can be equipped with the intelligence needed 

to build temporary networks of specific purposes, 

particularly in scenarios where it is essential to provide 

immediate scalability and rapid deployment.

The ability of the nodes to stay in resting (sleeping) 

or awake (waking up) states is desirable. These 

states are essential to make intelligent use of the 

battery or power supplies and, consequently, to 

reduce energy consumption.

•	 Gateway capabilities: They support multiple interfaces 

that allow the devices to be connected to different 

technologies networks, either wireless or wired. In this 

way, it is possible to use different types of networks: 

local area, telephone, cellular, or even advanced 

networks such as LTE.

It also includes the conversion of protocols where 

the gateway or intermediaries allow heterogeneous 

groups. They use different communication protocols 

to coexist within the perception layer or act as 
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translators to enable interaction at the perception 

layer between devices working with different 

technologies and those used by the network layer.

The concept of IoT appeared around 2010 [26] as the integration of the 

physical world with the informational world. The “things” in this context 

are a lot of sensors, embedded devices, physical and virtual objects, and 

intelligent systems connected to humans through the Internet. For the 

routing of devices, the IPv6 protocol is used mostly in IoT, due to the 

exhaustion of IPv4 addresses that may occur in the coming years. However, 

for testing, IPv4 is used [23]. This architecture allows the deployment of 

innovative services involving people, devices, networks, and human-

machine interactions. One of the main objectives in this field is the use of 

sensor networks or smart sensor networks to create a robust environment 

in smart cities, sustainable cities, smart farming, and smart buildings, to 

improve the monitoring and the decision process.

In the last decade, the extreme pervasiveness of embedded computing 

systems in any application and infrastructure of today’s life and the 

considerable improvement of communication technologies led to the so-

called IoT paradigm [27]. One of the promising aspects of IoT is to enable 

“smartness” and “self-awareness” in the surrounding environment. This 

empowers new applications in life today and in the future. For example, 

in buildings, temperature and light can be controlled automatically on 

the basis of human presence and wellness, just as robots can cooperate 

autonomously in automated supply and production chains in the industry 

[28], [29]. In the near future, in the hospital or even at home it will be 

possible to automate the monitoring of patients remotely, and vehicles will 

also coordinate autonomously with terrestrial hotspots to reduce traffic 

and manage emergencies.

An IoT system consists of a networked cyber-physical hardware 

platform on which a set of IoT software services detects and processes 

data from the environment and collects it in the cloud or uses it to decide 

and actuate on the Perception Layer, near to the users. In this scenario, 
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the state-of-the-art design approach is based on static planning and 

deployment of the distributed application to map sensing and actuation 

tasks on the things, while the most relevant computing tasks are 

delegated to high-end servers in the cloud, due to the reduced computing 

capabilities of the former devices [30].

The devices and systems deployed on the edge, called the edge layer, 

can be classified into three types: mobile edge computing (MEC), fog 

computing (FC), and cloudlet computing (CC) [31]. MEC includes the 

interactions with cellular networks that offer some cloud services in the 

cellular cell. Then, FC presents a computing layer before the cloud to store 

and process data. Finally, CC is deployed in dedicated devices with more 

computing capacity, in some cases called micro data centers.

�Fog Computing

The cloud is seen as a high layer where many high-capacity processing and 

storage equipment are grouped. This layer is highly differentiated and separate 

from the device layer. In general, the teams that compose it are usually servers 

located in computer centers (data centers) within facilities that are far from the 

end user or entities that execute the perception of things [32].

However, as all processing happens in the cloud, this paradigm is a 

fully centralized model, meaning that it receives all requests and data. At 

first glance, this does not seem to be a problem, but considering that the 

number of connected devices is rapidly growing 2020 [33], it is expecting 

an increase in the volume of traffic per device. That could deplete network 

bandwidth resources and cause congestion and communication delays.

The massive deployment of IoT anticipates that millions of sensors 

and actuators will increase demands for real-time processing and delay-

sensitive applications. The large volumes of information generated will 

require an exhaustive increase in processing and storage effort, and, in 

many cases, it is not justified to do so centrally. In that scenario, cloud 

computing is not the most appropriate solution.
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The fog computing paradigm is ideal for addressing this problem by 

completing and optimizing the efforts of the cloud. In general, this model of 

ubiquitous computing establishes a layer of fog or micronobs near to things 

or receiving devices. This proximity will help the “big” cloud to do its work 

more efficiently, streamlining communication, reducing latency parameters, 

avoiding bottlenecks, and further distributing processing efforts. In Figure 2-3, 

the clouds are shown near to the layer of things, located in boundary devices 

of the network layer, which can communicate with each other to form one or 

more clusters of fog at different points of the cloud network level, until they 

connect with the servers of the global cloud.

�Edge Computing

Both cloud computing and frontier computing emerged to face the 

challenges, and a thorough and direct use of the cloud is assumed 

(Figure 2-4). Both are aimed at bringing the services of the cloud to the 

final devices of the users.

Figure 2-3.  Fog node communication
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Edge computing (EC) is a paradigm based on the idea of running 

computing and storage near the source of data generation. In other words, 

it is about implementing computing tasks in frontier devices, which are 

intelligent and have certain potential characteristics. These devices have 

a double connection: they are intercommunicated forming a border 

network; on the other hand, they are linked to the cloud with a large data 

center through a network like the Internet [31].

Although both fog and EC are decentralized, hierarchical, and 

distributed paradigms, the difference lies in the computing capacity and 

the proximity to the end user. In EC, the user or end devices are the ones 

executing the processing, while in fog it is the boundary devices of the 

network. In other words, EC and fog are connected to the end user, and 

together they become more powerful in terms of computing capabilities. 

In conclusion, in EC the processing is executed in the final equipment, 

while in fog it is close to the final equipment and not inside it. In any case, 

both paradigms are designed to provide virtualization services that allow 

mobility and scalability.

Figure 2-4.  Fog computing architecture
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�Mobile Clouds and Ad Hoc Networks
Mobile ad hoc networks (MANETs) can be found in mobile and dynamic 

wireless configurations. What is an ad hoc network? It is a network of 

computers (devices or nodes) connected by wireless interfaces, whose 

resources have a certain level of dynamism, that can provide services 

regardless of the dynamics and stochastic conditions of nodes as time 

goes by. Two properties characterize this type of network. The first is 

self-organization, which allows them to set up their own configuration 

parameters and restore themselves in the case of failure. Second, but not 

less important, is its decentralized infrastructure, since they do not depend 

on any physical infrastructure to be deployed. This is why these types of 

systems can generate pseudosocial behaviors from the moment they are 

built until the end of their operation.

Formally, ad hoc networks are random graphics [34] with a set of 

vertices, commonly called nodes. In this case, a set of links called edges 

connect the mobile nodes. As a function of time and environmental 

conditions, they change dynamically, for example, by user requests.

A MANET can be defined as a set of nodes (N ), linked by a group 

of links L, and with a set of interactions I. All of them include a random 

multigraph ttp(l) with the probability of communication between two 

or more nodes. In this way, a MANET can be defined as shown in the 

following equation:

M = N, L, Gp(l), I      MANET formal definition

The interaction between the wireless interfaces, the Internet diffusion, 

and the needs of users has generated new network models. There, 

overlapping networks are present in all user areas, from a monolithic 

centralized platform to a highly dynamic and stochastic system.

These interactions involve the user, the means of transmission, and 

infrastructure. The services are at the intersection of these three elements, 

thanks to the connectivity and mobility needs of the users.
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There are some definitions of mobile clouds. A first definition is related 

to their main feature, the resources. A mobile cloud is a cooperative 

arrangement of connected nodes sharing resources opportunistically. This 

can be seen as a classical distributed system (see Figure 2-5).

A second definition includes the infrastructure elements required 

for deployment: a mobile cloud is a cooperative arrangement of nearby 

wireless devices, which can connect to other networks via access points or 

base stations.

A definition of a cabled network for the scope of this work is a mobile 

cloud with a flexible, dynamic, and stochastic computational platform 

that manages distributed and wirelessly connected computing resources 

without any central device that interconnects them. In this way, the 

network can be changed, moved, increased, and generally combined in 

new ways [35].

Figure 2-5.  The three states of an ad hoc network: formation, 
operation, and maintenance
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�Features and Challenges of MANETs
MANETs differ from other networks because they can configure 

themselves autonomously. Therefore, there is no centralized control, and 

they can auto-recover in the event of failure. Because of the movement 

of the nodes, the topology where MANETs are deployed is dynamic [36]. 

Therefore, the links between the nodes are temporary since they are in 

continuous movement, causing some instability. Scalability can be a 

problem for MANETs since as the network grows, its performance cannot 

decrease, and it must maintain acceptable levels of quality for the services 

offered. Since the network nodes do not have a continuous power supply 

and depend on their batteries, each node must make proper use of its 

remaining energy. Because MANETs are multihop networks, in which 

nodes forward packets to other nodes and share access to the wireless 

channel, security is a major issue, as the network may be vulnerable to 

attacks.

�Wireless Mesh Networks and Wireless 
Sensor Networks
Wireless mesh networks (WMNs) [37] and wireless sensor networks 

(WSNs) are two types of MANETs that differ from regular ones in their 

operation and hardware specifications.

In regular MANETs, a node can function as router and host, unlike 

WMN, where the nodes are classified in mesh routers and mesh nodes. 

On the one hand, mesh routers have minimal mobility and provide access 

for regular and mesh nodes. Also, they can communicate with other mesh 

routers; handle routing, bridging, and network functions; and have no power 

limitations. On the other hand, mesh nodes can be stationary or mobile and 

require efficient use of their power supply like regular MANET nodes.
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In contrast, wireless sensor nodes are part of the WSN. Usually, they 

are deployed in hostile environments and employed for event detection 

(e.g., temperature, pressure measure, etc.). These sensors can perform 

a type of processing on the information obtained and transmit the data 

over the network, allowing the final user a better understanding of the 

current state of the environment. Unlike MANETs or WMNs, WSN nodes 

are less expensive than regular wireless mobile devices, are smaller, and 

have fewer hardware features and power consumption. However, because 

of the nature of their operation, WSNs can become useless if a node has 

consumed its battery or is damaged.

�Cooperation in MANETs
Since MANETs are networks with a particular fashion of operation, all 

nodes must cooperate altruistically to compensate for the absence of 

infrastructure [38], [39]; however, if cooperation arises, each node would 

have to use its limited resources to maintain the operation of the network, 

provided that the nodes may not be homogeneous and have hardware 

limitations. Consequently, cooperation does not bring any direct benefit 

to the nodes, and therefore selfish behaviors may emerge. A selfish node 

will cooperate only if it receives direct benefit from cooperation. Moreover, 

a selfish node will expect the other nodes to cooperate with it to gain 

benefits without using its resources [40].

The main objective in MANETs is to maintain the communication and 

the services that are being executed. Despite the changes that may occur, 

several authors have proposed different methods to stimulate cooperation 

and avoid selfish behaviors. To stimulate cooperation, [41] has proposed a 

payment system, in which nodes that cooperate are rewarded with tokens 

that allow them to access the services offered on the network when they 

need them. Another proposed method uses reputation mechanisms [42] in 

which the reputation of the cooperating nodes increases, while for those that 

do not, it decreases, and eventually they are excluded from the network.
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With this in mind, it is easy to deduce that MANETs in nature should 

be altruistic, and the nodes must find a way to cooperate under any 

circumstance [43].

�Routing Protocols
Routing protocols are a fundamental element in the functioning of ad 

hoc networks and are vital to exhibiting self-configuring capabilities 

and tolerance to dynamic behaviors. These algorithms allow the ad hoc 

network to find routes from neighboring nodes between devices and 

maintain availability of services within the network.

These protocols have evolved and have different classifications. On 

one side are the reactive or on-demand protocols such as Ad Hoc On-

Demand Distance Vector (AODV) and Dynamic Source Routing (DSR). On 

the other side are the proactive link-state protocols that make periodical 

publications of routes such as the Optimized Link State Route (OLSR) and 

Better Approach to Mobile Ad Hoc Networking (BATMAN) protocols. All 

of these protocols flood the hello packets throughout the network, keeping 

the routing tables updated, improving the discovery of neighbors, and 

publishing the routes. In exchange for these is an additional consumption 

of energy and resources.

�Distance Vector and Link-State Routing
These protocols are based on the ideas of conventional wired computer 

networks. Their distance vector routing algorithms use a table in each 

router and give the best known distance between the nodes with the hop 

metric. The most familiar algorithm is Bellman-Ford in wired computers, 

but this is not sufficient for MANETS. The algorithms need more dynamic 

and auto-adapting for the traditional scenarios of ad hoc networks. Some 

protocols are Destination Sequenced Distance Vector (DSDV), which is 

classified as proactive or table-driven, and AODV, which is classified as a 

reactive or on-demand protocol.
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The link-state routing algorithm searches for and discovers neighbors 

and evaluates the cost of transmissions, distributes the link-state 

information throughout the MANET, and computes the shortest path. An 

example protocol in this category is OLSR.

�Social Clouds
In a broader context and involving users’ needs and preferences, a mobile 

cloud is a flexible platform for establishing mobile social networks, that is, 

networks where users have the freedom to interact at mobile devices [35].

In this sense, a direct interaction with the social preferences of the 

users and their needs begins to exist, but what is a society? How can we 

define it?

A society is more or less a self-sufficient association of people who 

in their relationships generate collaborative behaviors to obtain well-

being and happiness. Its members recognize certain rules of conduct as 

obligatory, and most of them agree with these rules.

As we said, mobile clouds are cooperative. That is, the base layer 

makes its members accept some minimum rules to enter this system. It is 

possible to define two domains of cooperation within the mobile clouds. 

First is the technical domain where we can have cooperation forced and 

allowed by technology (hardware). The second domain is the social one, 

which has altruism and is socially allowed.

These schemes are based on the cost-benefit ratio. The user or 

owner of the device is the one who values this relationship of installing, 

modifying, operating, and distributing services from their mobile device.

The relation is simple: you pay the cost (C), and you get the benefit (B). 

The following are the descriptions of each:

•	 Forced: In this kind of interaction there is a cost benefit 

relationship C > B relation or B = 0, so the global profit 

is more important than the individual profit.
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•	 Allowed by technology: In this kind of interaction there 

is an initial profit for users (mandatory by the devices 

manufacurer), on each node or device. The relation 

cost-benefit is B > c and C = 0.

•	 Altruism: In this form, Hamilton’s rule applies. It shows 

that a user prefers not to obtain more profit but is 

happy to help others with their resources. The rule is 

described as Bxr > C, where r is the relation between 

the two entities; this relation is valid if r > 1.

�MANET Clusters
Another operating scenario of MANETs are clusters [44] based on a 

hierarchical organization (Figure 2-6). Each cluster is a set of different 

nodes. One of these nodes is the coordinating or representative node, 

known as the cluster head (CH), which allows the member nodes (MNs) to 

communicate with other clusters or networks. The CH is responsible for 

managing intra- and intercluster communication.

Figure 2-6.  Cluster MANET, cluster communications
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Intracluster communications allow all member nodes to exchange 

services and messages over the cluster, diffusion states, and effective data 

transmissions. By contrast, the intercluster communications are only the 

exchanges between the CHs. In some cases, the CH is used to improve 

the coverage or allow long-range communications such as cellular or 

WiMAX systems, creating the possibility of passing messages with other 

neighborhoods.

�Summary
Wireless networks are used in most devices today to link to the Internet. 

The Internet’s features like a specific class of distributed system, with 

mobility for users, and stochastic behaviors. Has an study case in the 

wireless networks as a interesting architecture to test, validate, research, 

and simulate. The different kinds of approach and architectures allow 

you to exploit the computing resources as explained in the mobile cloud 

model. The evolution of wireless networks technologies with regard 

to data rates and coverage allows more services and shared models to 

create resource clusters, communication clusters, and social models to 

provide solutions to achieve the needs of users, universities, industry, and 

government.

�Complementary Readings
Here are some more topics to read about:

	 1.	 Mobile clouds (Chapter 10, “Mobile Clouds 

Applications”) [35]

	 2.	 Multi-access edge computing: open issues, 

challenges, and future perspectives [45]
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	 3.	 Energy management in wireless sensor networks [46]

	 4.	 A dynamic trade-off data processing framework for 

delay-sensitive applications in the Cloud of Things 

systems [47]

	 5.	 The IoT for Smart Sustainable Cities of the Future: 

An Analytical Framework for Sensor-Based Big Data 

Applications for Environmental Sustainability [23]
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CHAPTER 3

Design of Simulation 
Experiments

So, what the human does is to abstract from concrete repre-
sentation, no matter what that representation is. That’s the 
essence of the relationship between algorithm and program.

—[48].

�Introduction
Experiments were conceived as a way of understanding nature and 

exploring its properties through research, the experiment is a tool with a 

set factors involved in order to understand the world.

Experimentation is a tool with the aim of learning. Also, it is 

possible to simplify and choose features of interest, which means that 

experimentation is arranged by the investigator at will, which implies an 

awareness stage of design for the experiment.

https://doi.org/10.1007/978-1-4842-6849-0_3#DOI
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Part of the process is to select key variables to measure and to define 

their attributes, the size of the experiment, the extent of the probes, 

and their cost. These issues must be considered prior to balancing 

them with the objectives of the experiment [49]. In the case of ns-3, 

the computational costs are related to the availability of the physical 

resources in the host simulation devices. In any case, all experiments and 

research objectives are different, and as a consequence, it is difficult to 

establish a precise guide for performing experiments, even for network 

simulations. To design an experiment in a simulator, it could be enough to 

build a mid-level abstraction with a reduced set of classes containing the 

key functions or entities of the experience to be tested [11].

According to [11], through the inclusion of detailed processes oriented 

to conceptual domains, functional systems, and the simulation program 

itself, you can achieve a robust verification and validation (V&V), in 

order to eases the experimental experience. In this framework, the main 

validation criteria is the level of adjustment that is needed for achieve the 

initial goals, which means whether the final accomplishment was reached 

based on a concrete conceptual specification. From a design perspective, it 

is important to enable whatever is needed to obtain appropriate measures 

without interfering with the experience of the subject of experimentation.

As a minimum requirement of an experimental discipline, it is 

recommended that the design take into account the Statistics and the 

Theory of Measurement about the known parameters of accuracy, 

exactitude, precision, range, theory of error, and other usual estimators of 

certitude, reliability, and repeatability for the experimental measurements 

[50]. This approach is especially important when considering random 

variables.

Once the data is extracted from processes, with the aim of a better 

understanding of the underlying phenomena, the next step is to apply 

the instrumental analysis that includes, but is not limited to, sensitivity 

analysis, optimization of variables, correlation of data, etc. In the ns-3 

“laboratory,” the instruments can be built by the programmer or extracted 
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from specific libraries oriented to measurements, for example the LTE 

measurement test suite classes or the Wi-Fi radio energy model classes. 

In addition, a logging functionality is available that allows you to trace the 

events of the simulation. Another tool is the graphical representation of 

events or variables that enables you to do quick estimations of obvious 

tendencies in order to validate the data or the model.

A programmer has to define a functional system from a conceptual 

model and integrate with to the code. Usually those models are quantitative. 

Frequently a mathematical model is solved by experimentation. This is a 

solution with numerical methods [19]. Figure 3-1 illustrates the relationship 

between the different elements of an experiment.

According to [19], the modelers do not solve their model through 

mathematical analysis. Instead, they try different values for the inputs 

and parameters of their model in order to learn what will happen to the 

model output (for V&V, prediction, sensitivity analysis, optimization of 

Figure 3-1.  Experiment, simulation model, and mathematical 
model
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real systems, risk analysis, etc.). The combination of parameters and 

input variables is called a factor. Every combination is a scenario, run, or 

design point. From a black-box perspective, with only inputs and outputs 

known, it is possible to formulate a mathematical metamodel through 

the experimentation as a result of the simulation of different factors. The 

output variables can be nominal, ordinal, interval, ratio, etc. The inputs 

are observed from the real world, and the parameters of the simulation are 

inferred for real systems.

The process to design an experiment isn’t just a simple set of steps, 

but it allows us to define the methods, controls, and experiments (in 

our case simulations) to generate an output (data) to validate the main 

objectives and experiment purpose (hypothesis). This process must give 

an approximation of the number of trials and changes on the specification, 

computational model, network simulator, and modules and abstractions. 

Also, the process defines the analytic and statistical methods to analyze the 

output data from the experiment. It is highly recommended to document 

every step in the experiment and its proper execution to avoid ambiguity.

The experiment is a collection of trials. To estimate the number of 

trials, it is useful to use the weak law of large numbers (Equation 3-2), 

which is defined as follows:

Definition 1 Let X1, X2, ... be an independent random variables 

succession and equally distributed with mean δ and finite variance ϵ2. 

Then , by all ϵ > 0; it is satisfied that:
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	 Equation 3-1

For all ϵ we have this:

	
P

X X

n
n�

� �
� �

�

�
�

�

�
� �

1 0


� 
	

Equation 3-2
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The weak law of large numbers has two basic parameters: the 

maximum error allowed (s) and the statistical significance (δ). It is useful 

to generate a reliable data set for an experiment to analyze the test and 

changes on the input states of independent variables. The degree of 

scientific rigor on the simulation is based on the experimental design, 

which allows us to ensure the results and validate the internal and external 

factors. The research community commonly uses mathematics models 

to describe physical phenomenal or technical phenomena as network 

behavior, computer communication, or web services.

	 y f x x f X X x x Tn n� � � � � � � � � ��1 1, , , ,  , 	 Equation 3-3

Here, X consists of input variables, y is an output variables, f is a 

formula that describes the phenomenon, and T is the input variable space. 

This model could represent the channel conditions, the protocol behavior, 

or a way to predict the packet loss on the network. The simulation 

could be defined in several ways, including the simulation of human 

interactions, industrial systems, business, telecommunications systems, 

computing networking, and distributed systems such as the Internet. 

Currently the simulation is based on data or quantitative methods made 

of heterogeneous computing systems with higher computing resources 

and processing speed. Normally the simulation is classified into two main 

domains that represent a conceptual duality.

•	 Deterministic versus random

•	 Static versus dynamic

In both cases, it is necessary build a model; for computer simulation, it 

is called a metamodel.

Definition 2 A metamodel is an approximation of the input/output 

(I/O) function that is defined by the underlying simulation model [19].

Chapter 3  Design of Simulation Experiments



50

To describe the variable relationship between the real and the 

simulation worlds, some definitions are available to describe better the 

importance to design a strong, consistent model to simulate and generate 

data.

Definition 3 A simulation model is a representation from the real 

world on the simulation world [19]. See Figure 3-2.

Definition 4 A model parameter has a value that is inferred from data 

from the real system [19].

Definition 5 An input variable of a model can be directly observed in 

the real system [19].

Wireless networks, for instance, are dynamic and random systems that 

have variables directly observed as the interference on the spectrum at 

specific frequency, but their behavior must be a probabilistic variable on 

time. For dynamic systems, the time is a special independent variable, and 

with the interference spectrum data, it is possible to estimate the coverage 

area and the likelihood of dropped packets on the network.

As a summary, a factor can be quantitative or qualitative. Sometimes 

the qualitative factors are assumptions from a system to model and not 

quantified. Depending on the representation or abstractions, the factors 

can be controllable or uncontrollable. The main goal of the experiment 

Figure 3-2.  Computer simulation
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design is to find out the factor or factors that have major effects on a 

response on an input, state change, or event. Defining the metamodel 

allows you to predict the model response for system configurations or 

factor combinations to optimize the input-factor values to reduce the 

simulation time and use the response-surface-methodology to find 

these combinations. In this sense, the statistical approach for computer 

experiments involves two parts.

•	 Design: To find a set of n points it is design a matrix 

denoted by Dn, in the input space T so that an 

approximate model can be constructed by modeling 

techniques based on the data set that conformed 

by Dn and the output generated. Considering what 

was previously mentioned for the requirements of 

computer experiments, a natural idea is to put points of 

Dn uniformly scattered on T . Such a design is called a 

space-filling design or uniform design in the literature.

•	 Modeling: To define a model, it is highly recommended 

that the model be highly adaptive. An experimental 

design has a complex nature to deploy a parametric 

regression or simply behaves as a linear system. 

However, there are simulations with “model-free” as a 

nonparametric model of a system that allow data from 

most parts of the simulation space.

For example, in an experiment with 200 variables, the number of 

possible combinations are 2200, and there are combinations of factors. But 

what is a factor? A factor is a parameter, an input variable, or a module of a 

simulation model or simulation computer program [51]. In this sense, it is 

necessary define the combinations of factor levels that would be simulated 

based on the experiment design and the simulation model.
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The input-output analysis (I/O) data of the experiment made for 

the simulator allows us to identify the importance of some factors. In 

simulations, the process is called what-if analysis. The question is, what 

happens if the parameters change?

Other techniques used as regression analysis are known as analysis of 

variance (ANOVA). This regression on the metamodel or approximation of 

the simulation model belongs to one of these three types:

•	 First-order polynomial: This consists of main effects 

only, in other words, a grand mean.

•	 First-order polynomial augmented: There is an 

interaction between two factors (two-factor 

interactions).

•	 Second-order polynomial: This includes purely 

quadratic effects.

Multiple outputs, called responses or criteria, use optimization. 

Nevertheless, the term multiple regression analysis refers not to the 

number of outputs but to multiples inputs and therefore multiple 

independent variables.

The design of experiments (DOE) gives estimators of the main effects, 

interactions, and quadratic effects in metamodels regression, improves the 

effectiveness of simulation experimentation, and allows the verification 

and validation. Other options are the optimization techniques or 

simulations based on optimization. To try to identify the decision variables 

or input factor k in an optimal point in k-dimensional space (metamodel), 

it is helpful to define the objective function to maximize or minimize in a 

simulation study.
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�Factorial Designs
While analyzing the behavior of a system, it is of interest to find out what 

happens when changes are made to the input parameters and how 

this impacts a measure of performance. To estimate the change for a 

simulation outcome as the input parameters vary, sensibility analyses are 

employed.

There are two types of sensibility analysis techniques: local and global. 

Local techniques are performed one factor at the time, changing one while 

keeping the others fixed. Global techniques explore the definition interval 

of each factor, in which the impact of each factor is an average over the 

possible values of the other factors [52]. Factorial design techniques are 

used in experimental design [53] in order to gain insight into the system’s 

behavior with a reasonable quantity of factor combinations. Within the 

factorial design techniques, there can be found 2k factorial designs.

�2  k Factorial Design
Presume that a model has k ≥ 2 factors and it is desired to estimate the 

impact of each factor on the response and also if the factors interact with 

each other. To achieve this, 2k factorial design is used. In this technique, 

two levels for each k factor are selected, and then each 2k possible 

combination is simulated. To identify the levels a ‘ - ’ and ‘ + ’, symbols are 

used; nonetheless, specifying them requires the knowledge of the analyst 

to assign them reasonable values; as suggested by the signs, the levels 

should be opposite of each other but not to the point of being at unrealistic 

extremes. The experiment can be represented using a table. For example, 

for k = 2, it would be as shown in Table 3-1, which also is referred as a 

design matrix.
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Each response is the result of a simulation when a combination of 

factors is at its respective levels j−‘ or j+j. The impact of a factor k is the 

average change in the response due to the change from j−‘ to + while 

keeping the other factors fixed. This average considers every combination 

of the other k−1 factors. Note that the main effect is determined with 

respect to the current design and factors; therefore, it is not possible to 

make extrapolations if other conditions are not fulfilled. To calculate 

the main effect of a factor, apply the signs in the factor k column to the 

response, add them up, and divide by 2k−1. For example using the 

information from design matrix at Table 3-1, the effect for factor e1 will be 

defined by the following:

	
e

R R R R
1

1 2 3 4

2
�
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Equation 3-4

and rewritten as follows:

	
e

R R R R
1

2 1 4 3

2
�

�� �� �� �
	

Equation 3-5

In some cases, the level of a factor k1 may depend on the level 

of another factor, say k2. In this case, these factors interact, and the 

interaction effect is defined by half the difference between the average 

Table 3-1.  22 Factorial Design Matrix

Factor Combination Factor 1 Factor 2 Response

1 j−j j−j R1

2 j+j j−j R2

3 j−j j+j R3

4 j+j j+j R4
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effect of factor k1 when factor k2 is at j+j minus the average effect of factor 

k1 when factor k2 is at j−j. For example, equation 3-6 e1,2, it will be defined 

as follows:

	
e

R R R R
1 2

4 3 2 1

2 2, �
�

�
�

	
Equation 3-6

It can be calculated by multiplying the signs of both factors and then 

repeating the same procedure explained for the main effect. Note that in 

the design matrix at Table 3-1, in the second half that factor k2 is j+j, while 

factor k1 is moving from j−j, to j+j; therefore, the first half of the Equation 

3-6 reflects the average of moving factor k1 from j−j, to j+j when factor 

k2 remains constant at j+j. Similarly, the second half of the Equation 3-6 

shows the effect of moving factor k1 from j−j, to j+j, while factor k2 remains 

at j−‘. Then the difference between these two parts of the expression is the 

difference effect that factor k1 exercises on the response depending on the 

levels of factor k2. As can be deduced, the effect is symmetric, so e1,2=e2,1.

A three-factor interaction is possible and is obtained in similar fashion 

as the two-factor interaction; nevertheless, its interpretation is more 

difficult. If there are higher interactions, the effects cannot be interpreted 

as the change from j−j to j+j since the magnitude and change depend at 

least on the level of another factor; under this situation, the experiment 

needs to be interpreted in a different manner.

As explained during this chapter, a single replica is not enough. To 

determine if an effect is real, it is necessary to estimate its variance. A 

common practice in simulation experiments is to execute n replicas of 

each combination of the design matrix to obtain n independent values 

for each effect; then using the t distribution along with these results, a 

100(1 − α) confidence interval is built for each effect with n−1 df. If the 

confidence interval for a given effect does not include 0, then this effect is 

real; otherwise, the statistical evidence suggests that it is not present [54].
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�2  k−p Fractional Factorial Designs
2k−p fractional factorial designs offer another alternative to obtain good 

estimates of the main effects without the whole cost of a 2k factorial. A 

2k−p is formed by using a subset of 2k−p of all the 2k combinations. One 

question arises when dealing with 2k−p factorials: how to choose the set of 

size 2k−p and p?. This method makes use of confounding, since in factorial 

designs several different effects will have them algebraic expression; it 

also uses resolution (given in Roman numerals) to quantify the severity of 

confounding. To make things easier, in any book of experimental design, 

the analyst can find a table that tells him how to pick the subset once he 

has decided the total number k of factors; for instance, if k = 4, then he will 

find an expression like this:

	 2 4 1234 1
iv
� � � 	 Equation 3-7

Equation 3-7 says that the resolution is 4, and p = 1. Make a 23 

factorial matrix, and form the fourth column by multiplying the signs of 

columns 1, 2, and 3. The main effect is determined in the same fashion 

as 2k factorials but dividing by 2k−p−1. The main goal of this part of the 

research is to simulate the methodology proposed. To achieve this, two 

different scenarios were suggested, and they were implemented on the 

network simulator software ns-3. After tests were finished, the results were 

evaluated and validated to verify the performance of the methodology. See 

Table 3-2.
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�Example
This section follows the procedure shown in the 2k factorial design to gain 

more information about the testing scenario shown in E. To estimate how 

the input parameters of the model impact the response of each system 

configuration, 2k factorial design was used under the factor levels of 

Table 3-2.

After simulating using 24 factorial design and making 100 replicas 

for each combination, the results shown in Table 3-3 were obtained. 

The main effects and the interactions for the nodes and files in the first 

scenario are shown in Figure 3-3 (a and b), respectively. By looking at the 

plots and the design matrix for the effects, it is pretty clear that the factor 

that has the greatest impact on the response of the system is the cloning 

probability; the reason for this is in the Quorum Sensing; provided it relies 

on population density, when the cloning probability is low, there are a 

few agents, probably the initial population plus some clones. Therefore, 

there are low amounts of molecules in each node; nevertheless, when 

the cloning probability increases, so does the number of agents and the 

number of molecules in each node. This shows that in order to increase 

the success of the communication strategy proposed in this research, the 

population of agents needs to grow in a scalable manner.

Table 3-2.  Factor Levels

Factor Low-Level High-Level

Molecules capacity 5000 15000

Quorum threshold 0.3 0.7

Cloning probability 0.05 0.15

Mutation probability 0.05 0.15
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Additionally, two factors stand out, the molecules capacity and the 

quorum threshold, that have similar effects in both scenarios. When both 

of these factors increase, their impact on the response is negative, since 

both require that more molecules be released in each node. In scenario 

1, all the nodes are on the same utility curve, so it’s easier for an agent to 

find nodes and fulfill its utility. Hence, a single agent while traversing the 

network can release molecules on several nodes.

The last factor is the mutation probability, but as can be seen in 

the plots, this is the factor that has the lowest effect on the response, 

provided this factor must be redesigned for future implementations of 

the communication strategy proposed in this investigation. Note that in 

the majority of plots, the interaction does not have a significant effect 

on the response. However, for the number of nodes in scenario 1 in 

Figure 3-3, there are two interactions between the number of molecules 

and the quorum threshold. This means that the effect of either factor 

depends on the level of the other. To check the information of the effects 

and interactions in detail, please refer to Table 3-4.
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Figure 3-3.  Effects for the scenario 1

Table 3-4.  Scenario 1 Effects and Interactions

Scenario 1
Factor Nodes Variance Files Variance

Molecules C -3.213±0.361 7.842 -1.158±0.166 1.657

Quorum T -3.035±0.337 6.807 -1.000±0.154 1.431

Mutation P -0.658±1.871 210.451 -0.460±0.941 53.194

Cloning P 12.515±1.645 162.565 5.990±0.828 41.183

Molecules C X Quorum T -1.685±0.375 8.465 -0.263±0.172 1.783

Molecules C X Mutation P 0.793±0.370 8.244 0.373±0.179 1.936

Molecules C X Cloning P 0.490±0.322 6.216 -0.018±0.166 1.653

Quorum T X Mutation P 0.640±0.348 7.280 0.325±0.170 1.746

Quorum T X Cloning P 0.438±0.318 6.066 0.020±0.153 1.412

Mutation P X Cloning P 0.635±1.483 132.138 0.310±0.760 34.718

(continued)
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Scenario 1
Factor Nodes Variance Files Variance

Molecules C X Quorum T X 

Mutation P

0.045±0.320 6.161 0.038±0.157 1.490

Molecules C X Quorum T X 

Cloning P

0.628±0.331 6.594 0.043±0.168 1.686

Quorum T X Mutation P X 

Cloning P

-0.058±0.326 6.399 0.030±0.147 1.294

Molecules C X Mutation P X 

Cloning P

0.085±0.338 6.859 0.068±0.156 1.468

Molecules C X Quorum T X 

Mutation P X Cloning P

0.078±0.317 6.046 0.128±0.146 1.282

Table 3-4.  (continued)

�Summary
This chapter was about the conceptualization of the experiments and the 

simulation models based on objective functions. This chapter introduced 

a simulation methodology based on empirical design processes that guide 

the definition of the tests. For this, several abstractions, formal methods, 

and recommendations were proposed. The chapter also presented some 

procedural and analytical tools. This chapter included an example of a 

design process of an experiment in ns-3 with results. At the end of the 

chapter, you will find some complementary readings of formal methods of 

simulation.
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�Complementary Readings
•	 Generalized discrete event abstraction of continuous 

systems: GDEVS formalism [55]

•	 Design and modeling for computer experiments [56]

•	 Some tactical problems in digital simulation [57]

•	 What do we mean by sensitivity analysis? The need for 

comprehensive characterization of “global” sensitivity 

in Earth and environmental systems models [58]

•	 Verification, validation, and testing [51]

•	 Searching for important factors in simulation models 

with many factors: sequential bifurcation [59]

•	 Screening for the important factors in large discrete-

event simulation models: sequential bifurcation and its 

applications [60]
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CHAPTER 4

Network Simulating 
Using ns-3

I am god, I am hero, I am philosopher, I am demon and I am 
world, which is a tedious way of saying that I do not exist.

—[61]

�ns-3 at a Glance
ns-3 is an open source discrete-event simulator, licensed under the GNU 

GPLv2 license. It is publicly available for research, development, and 

learning over networks, protocols, and traffic (Figure 4-1).

ns-3 in recent years has become one of the most prominent and 

important network simulators. It allows you to create a complete network 

environment to design, model, test, and improve networks, protocols, and 

systems. It supports a great number of protocols.

The discrete-event network simulator is primarily for research 

and educational use. ns-3 has two main objectives. One of them is to 

enable research, not only for the academic community, but for modern 

networking research. The second is to contribute to the industry. This 

contribution has allowed the simulator to evolve through peer review and 

validation. All contributions are documented on the ns-3 site.

https://doi.org/10.1007/978-1-4842-6849-0_4#DOI
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The ns-3 simulator’s architecture is composed of a set of modules, 

containing the abstraction, the core, and the compiler of the ns-3 

simulator. This structure works with scripts in C++ and the Python 

language. Additionally, the simulation outputs may be saved in .pcap 

(Wireshark format) and .tr (trace format) files, which is a huge help to 

read and analyze the traffic flows and the behavior of all components, 

systems, and members from the scenario simulation.

Another characteristic of ns-3 is the ability to execute an emulation 

over NICS. A method to emulate is the Network Simulation Cradle tool. 

The ns-3 maintainers encourage its users to use this tool. The POSIX 

emulation permits running daemons and calls over the operating system 

and the ns-3 core.

The ns-3 project is committed to building a solid simulation core that 

is well documented, easy to use, and easy to debug, and that caters to the 

needs of the entire simulation workflow, from simulation configuration to 

trace collection and analysis. See Figure 4-2.

Figure 4-1.  An open source organization (www.nsnam.org) 
maintains the ns-3 project

Figure 4-2.  ns-3 modules
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Moreover, the ns-3 models are more realistic and more efficient in 

the simulation context. ns-3 uses a real-time emulator and connects 

to other devices with the ns-3 simulator. An example of that is direct 

code execution (DCE) or Cradle (https://www.nsnam.org/overview/

projects/direct-code-execution/), created by [62]. The emulations 

use the real network functions from your computer to simulator. This 

framework is able to operate in user space and kernel space to run an 

emulation, using the Linux networking stack.

Another feature of the emulator is the ability to create real scenarios 

with virtual machines, interconnected by a local network, the cloud, or the 

Internet. This operation mode deploys protocol implementations, probes 

new protocols, and measures new network topologies.

The ns-3 simulation’s core at shows Figure 4-2 the main class. Its 

functions run and debug the simulation. The simulator and common 

classes, have event scheduler control , the settings and the packet 

modules. The node as the main class in order to describe and create the 

physical abstraction of network devices, the node class use the attributes 

from mobility class, routing class, internet Stack class and devices to 

create a simulations with all network abstractions possibles. All of these 

class are linked by helpers, and the helpers are APIs that communicate all 

abstractions and classes to the running simulations.

�Relations Between Abstractions on ns-3
How do you model a network in ns-3 [10]? The answer is simple: you use 

the main abstractions and create your own network. The main abstractions 

are as follows:

•	 Nodes: Nodes represent all devices or final systems with 

the computing resources.
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•	 Network devices: These are the physical devices that 

connect a node with the channel. For example, an IEEE 

802.11 NIC connects the node in wireless mode.

•	 Channel: This represents the medium used for the 

information transmission between nodes and other 

networks. The medium could be air (spectrum), fiber-

optic, or wire.

•	 Protocols: These are a set of rules allowing the 

communication between nodes over a network. In ns-

3, the protocols are inside the core of the compiler. The 

protocols are organized in the protocol stack by layer, 

and in each layer some functions exist that interact 

with the protocol or protocols.

•	 Headers: These are the subsets of data in a network 

package. This package represents a well-defined 

protocol such as IPv6. That header has a specific format 

and is associated in the most cases to RFC.

•	 Packets: These are the main unit of information 

exchange between nodes. Packets contain the headers 

and the payload and describe protocols. The exchange 

of packets defines the simulation and the behavior and 

produce all the results. In other words, these make up 

the main data on the network system.

•	 Other: Other elements such as random variables, trace 

objects to work after the simulation, helpers, and 

attributes will be described later in the chapter.
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�Code Style
The clean code paradigm [63] is not a concept that is easy to define. This 

approach to programming has a subjective set of characteristics. Clean code 

is elegant, efficient, simple, and direct, and it can be read and improved. 

According to Bjarne Stroustrup, “the clean code does one thing well.”

When writing code for ns-3, the code layout follows the GNU coding 

standard [64]. For example, for type functions, methods, and naming, it is 

recommended to use the CamelCase convention, and names should be 

based on the common English language.

Listing 4-1 shows the naming conventions for ns-3.

Listing 4-1.  Naming Conventions

 1   #ifndef MY_CLASS_H

 2   #define MY_CLASS_H

 3

 4   namespace n3 {

 5

 6   /**

 7     �* \brief short one-line description of the purpose of 

your class

 8     *

 9     �* A longer description of the purpose of your class 

after a blank

10     * empty line.

11     */

12   class MyClass

13   {

14   public:

15    MyClass ();

16    /**
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17      �* \param firstParam a short description of the purpose 

of this parameter

18      �* \returns a short description of what is returned from 

this function.

19      *

20      * A detailed description of the purpose of the method.

21      */

22    int DoSomething (int firstParam);

23   private:

24    void MyPrivateMethod (void);

25    int m_myPrivateMemberVariable;

26   };

27

28   } // namespace ns3

29

30   #endif /* MY_CLASS_H */

The ns-3 project uses the Doxygen tool to generate documentation 

from a C++ source document. The next header is defined to license the 

code under the GPL. Please do not add the “All Rights Reserved” phrase 

after the copyright statement. See Listing 4-2.

Listing 4-2.  Documentation

 1   �/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; 

-*- */

 2   /*

 3    * Copyright (c) YEAR COPYRIGHTHOLDER

 4    *

 5    �* �This program is free software; you can redistribute it 

and/or modify

 6    �* �it under the terms of the GNU General Public License 

version 2 as
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 7    * published by the Free Software Foundation;

 8    *

 9    �* �This program is distributed in the hope that it will be 

useful,

10    �* �but WITHOUT ANY WARRANTY; without even the implied 

warranty of

11    �* �MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the

12    * �GNU General Public License for more details.

13    *

14    �* �You should have received a copy of the GNU General 

Public License

15    �* �along with this program; if not, write to the Free 

Software

16    �* �Foundation, Inc., 59 Temple Place, Suite 330, Boston, 

MA 02111-1307 USA

17    *

18    * Author: MyName <myemail@example.com>

19    */

To check that your code is useful, run the utils/check-style.py 

script.

�My First Network
As shown in Figure 4-3, to create a network, we have define some 

elements. The following is the proposed model [10]:

	 1.	 Define the simulation scenery.

	 2.	 Define the topology network and the elements to 

evaluate.

	 3.	 Define the main metrics to evaluate the simulation.
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	 4.	 Define the main events and main modules.

	 5.	 Build the script.

	 6.	 Run the script.

	 7.	 Analyze and validate the results.

	 8.	 Generate conclusions and improvements.

	 9.	 Resimulate.

The first example to understand how ns-3 works is located in the folder 

tutorials in the ns-3 main folder. The script is called first. This script is 

a simple point-to-point network that sends packets between nodes. In this 

example, the script is in C++. Listing 4-3 shows the script.

Listing 4-3.  First Script

 1   �/* -*- Mode:C++; c-file-style:"gnu"; indent-tabs-mode:nil; 

-*- */

 2   /*

Figure 4-3.  Steps of simulation
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 3         �* �This program is free software; you can 

redistribute it and/or modify

 4           �* �it under the terms of the GNU General Public 

License version 2 as

 5           * published by the Free Software Foundation;

 6           *

 7           �* �This program is distributed in the hope that it 

will be useful,

 8           �* �but WITHOUT ANY WARRANTY; without even the 

implied warranty of

 9           �* �MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the

10           �* GNU General Public License for more details.

11           *

12           �* �You should have received a copy of the GNU 

General Public License

13           �* �along with this program; if not, write to the 

Free Software

14           �* �Foundation, Inc., 59 Temple Place, Suite 330, 

Boston, MA 02111-1307        USA

15           */

16

17   #include "ns3/core-module.h"

18   #include "ns3/network-module.h"

19   #include "ns3/internet-module.h"

20   #include "ns3/point-to-point-module.h"

21   #include "ns3/applications-module.h"

22

23   using namespace ns3;

24

25    NS_LOG_COMPONENT_DEFINE ("FirstScriptExample");

Chapter 4  Network Simulating Using ns-3



74

26

27    int main (int argc, char *argv[])

28    {

29       CommandLine cmd;

30       cmd.Parse (argc, argv);

31

32       Time::SetResolution (Time::NS);

33       �LogComponentEnable ("UdpEchoClientApplication",  

LOG_LEVEL_INFO);

34        �LogComponentEnable ("UdpEchoServerApplication",  

LOG_LEVEL_INFO);

35

36        NodeContainer nodes;

37        nodes.Create (2);

38

39        PointToPointHelper pointToPoint;

40        �pointToPoint.SetDeviceAttribute ("DataRate", 

StringValue ("5Mbps"));

41        �pointToPoint.SetChannelAttribute ("Delay", 

StringValue ("2ms"));

42

43        NetDeviceContainer devices;

44        devices = pointToPoint.Install (nodes);

45

46        InternetStackHelper stack;

47        stack.Install (nodes);

48

49        Ipv4AddressHelper address;

50        address.SetBase ("10.1.1.0", "255.255.255.0");

51
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52        �Ipv4InterfaceContainer interfaces = address.Assign 

(devices);

53

54        UdpEchoServerHelper echoServer (9);

55

56        �ApplicationContainer serverApps = echoServer.Install 

(nodes.Get (1));

57        serverApps.Start (Seconds (1.0));

58        serverApps.Stop (Seconds (10.0));

59

60        �UdpEchoClientHelper echoClient (interfaces.GetAddress 

(1), 9);

61         echoClient.SetAttribute ("MaxPackets", UintegerValue (1));

62        �echoClient.SetAttribute ("Interval", TimeValue 

(Seconds (1.0)));

63        �echoClient.SetAttribute ("PacketSize", UintegerValue 

(1024));

64

65        �ApplicationContainer clientApps = echoClient.Install 

(nodes.Get (0));

66        clientApps.Start (Seconds (2.0));

67        clientApps.Stop (Seconds (10.0));

68

69        Simulator::Run ();

70        Simulator::Destroy ();

71        return 0;

72    }

Here’s what the script does:

	 1.	 From lines 17 to 21, the libraries for the modules 

needed for the simulation are included.
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	 2.	 Line 23 uses a namespace called ns3. This is a 

global namespace that groups all relationships to 

the script in a scope outside the global space, which 

is useful to integrate all code used in the main script.

	 3.	 Line 25 declares a logging component called 

FirstScriptExample to enable or disable console 

message logging.

	 4.	 Line 27 begins and declares the main script.

	 a.	 The use of a NodeContainer helper is shown in lines 36 and 

37. The NodeContainer object constructs two nodes.

	 b.	 Lines 39 to 41 use PoinToPointHelper and the methods 

SetDeviceAttribute and SetChannelAttribute to set the 

attributes, variable values, and configuration for the desired 

simulation execution. Those values are added as strings.

	 c.	 Line 44 is the Install method for passing in 

the NodeContainer object and returning a new 

NetDeviceContainer, which contains the network devices 

that were created when installing the point-to-point network 

connecting the two nodes.

	 d.	 Line 46 indicates the use of the InternetStackHelper. This 

method includes the Internet stack protocols, such as Address 

Resolution Protocol (ARP), Internet Protocol (IP), and 

Transmission Protocol (TCP).

	 e.	 Lines 49 to 52 set the IPV4 address to Ipv4AddressHelper to 

specify the network address and mask. Line 50 indicates the 

base of IPV4 address, at line 52, Ipv4InterfaceContainer, 

holds the IPV4 address for all the network interfaces created 

for the nodes simulation.
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	 f.	 Lines 54 to 58 show the application helper that creates a server 
service; it’s called UdpEchoServerHelper. These values are 
strings that indicate the port (9 in this case). Line 56 installs 
the server application on node 1 with the Get method. This 
form creates an instance of an UDP echo server service. The 
services are passed through a container object. In this way, 
the services will be installed on all nodes in the container, 
and ApplicationContainer will contain a pointer to the 
application at each node. Lines 57–58 indicate the time of 
event, in this case referring to the server application on node 1.

	 g.	 Lines 60–63 show other features for the application helpers, 
such as UdpEchoClientHelper. The constructor at line 60 
initializes the destination address and port for the echo data 
service. The SetAttribute methods are attributes and allow 
you to choose some metrics for the simulation.

	 h.	 The echo client application is installed on a single node (in 
this case, node 0 in the Node-Container object), and event 
start/stop times are specified in lines 65–67.

	 i.	 The simulator method Run is called on line 69, which causes 
the simulation to start executing the simulated events.

	 j.	 The Destroy method is called explicitly to allow all objects in 
the ns-3 environment to exit cleanly and return all allocated 
memory. This call is not strictly necessary in order to obtain 
correct simulation results but does allow thorough memory 
leak checking to be done.

In Listing 4-3, the echo client sends only one packet and receives 
one reply, after which there are no more pending events. The simulation 
terminates, and the Run method returns to the caller. A more detailed 
account of the procedure is discussed in the following section and 
illustrated in Figure 4-4, which explains the abstractions creation and the 

process in the script.
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�Running and Building Other Scripts
To run examples (programs) and build on the installation process, you go 

to the ns_folder and type the command to run followed by the program’s 

name without the .cc extension, as shown here:

1   ./waf --run program_name)

To list the available programs, type the following:

1   ./waf --run non-existent-program-name)

Another way to run programs is to use Python, but you need type the 

next command path to the script file and the –pyrun command instead 

of --run:

1   ./waf --pyrun examples/wireless/mixed-wireless.py

Another technique to run ns-3 programs that does not require using 

the ./waf –run command is to use the ns-3 shell, which takes care of 

setting up all the environment variables necessary to do so:

1   ./waf shell

See Figure 4-4.
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Then run this:

1   ./build/debug/examples/csma-broadcast

You can use other special tools to run the scripts on ns-3 such as 

valgrind or gdb. Type the next command:

1   ./waf --run csma-cd-one-subnet --command-template="gdb %s"

Or type this:

1   �./waf --run csma-cd-one-subnet --command-template="valgrind %s"

Figure 4-4.  Graphical representation for the first example of ns-3
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Now to run a new example or program, it is useful to build a modified 

version of a script and drop it into the scratch directory. Then run ns3_

version_folder waf again.

1   cp examples/csma/csma-broadcast.cc scratch/csma-modified.cc

2   ./waf

To build C++ files simultaneously, you need to create a new 

subdirectory in the scratch directory and build it.

1   mkdir scratch/modified

2   cp x.cc scratch/modified

3   cp y.cc scratch/modified

4   ./waf

This will build a new program named after your subdirectory 

(modified here), and you can run it just like any other example:

1   ./waf --run modified

�Emulation on ns-3
The ns-3 software has two fundamental tools that allow its integration into 

emulation environments through network devices. The first one allows 

reading and writing file descriptors, which are smart pointers or handlers 

that allow, in Unix operating systems, access to resources such as network 

devices. In this way, through the FdNetDevice class, the user can provide 

the program with a file descriptor associated with a TUN/TAP device, a 

socket, or a user space process to read or write traffic. Take as an example 

the simplest program of ns-3 using the FdNetDevice class: dummy-network.

cc. In this example, two nodes are created to which an Internet stack and 

a network device are installed. A helper of the FdnetDevice class is also 

created. See Listing 4-4.
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Listing 4-4.  FdnetDevice

1   NodeContainer nodes;

2   nodes.Create (2);

3

4   InternetStackHelper stack;

5   stack.Install (nodes);

6

7   FdNetDeviceHelper fd;

8   NetDeviceContainer devices = fd.Install (nodes);

Subsequently, a pair of connected sockets of type AF UNIX are created 

with the SOCK DGRAM protocol and their respective file descriptors. See 

Listing 4-5.

Listing 4-5.  Datagram socket creation

1   int sv[2];

2   if (socketpair (AF_UNIX, SOCK_DGRAM, 0, sv) < 0)

3       {

4    �NS_FATAL_ERROR ("Error creating pipe=" << strerror (errno));

5   }

Then, each of the nodes is assigned a file descriptor. See Listing 4-6.

Listing 4-6.  File Descriptor creation

1   Ptr<NetDevice> d1 = devices.Get (0);

2   Ptr<FdNetDevice> device1 = d1->GetObject<FdNetDevice> ();

3   device1->SetFileDescriptor (sv[0]);

4

5   Ptr<NetDevice> d2 = devices.Get (1);

6   Ptr<FdNetDevice> device2 = d2->GetObject<FdNetDevice> ();

7   device2->SetFileDescriptor (sv[1]);

An IPv4 address is assigned to each of the nodes. See Listing 4-7.
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Listing 4-7.  Set Ipv4 Adress

1   Ipv4AddressHelper addresses;

2   addresses.SetBase ("10.0.0.0", "255.255.255.0");

3   �Ipv4InterfaceContainer interfaces = addresses.Assign 

(devices);

See Figure 4-5.

A V4Ping application is created and installed on node 1. This application 

sends an ICMP echo request from node 1 to node 0 in the second 0, waits for 

a response, and reports the round-trip time. See Listing 4-8.

Listing 4-8.  Set ICMP message

1   Ptr<V4Ping> app = CreateObject<V4Ping> ();

2   �app->SetAttribute ("Remote", Ipv4AddressValue (interfaces.

GetAddress (0)));

3   app->SetAttribute ("Verbose", BooleanValue (true));

4   nodes.Get (1)->AddApplication (app);

5   app->SetStartTime (Seconds (0.0));

6   app->SetStopTime (Seconds (4.0));

Figure 4-5.  Emulation example on ns-3
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Finally, pcap is enabled for FdNetDeviceHelper, and the simulation 

starts. See Listing 4-9.

Listing 4-9.  Enable packet capture as pcap file

1   fd.EnablePcapAll ("dummy-network", true);

2

3   Simulator::Stop (Seconds (5.));

4   Simulator::Run ();

5   Simulator::Destroy ();

To run the script, you use the command ./waf [65]. This is a build 

automation tool designed to assist in the automatic compilation and 

installation of computer software. Next, use the prefix −−run and the script 

name. In this case, the command is as follows:

1   ./waf --run script-name

2   //For the example

3   ./waf --run first

�Animating the Simulation
Before beginning the modeling process, a key step is to define the 

requirements as a service. In real-world networks, everything is 

understood and managed as a service. This implies that a series of 

requirements, metrics, and user satisfaction levels may be established. 

Because the nature of simulation software is useful, you can create a set 

of quantitative metrics that can be processed by ns-3 statistical modules 

and get conclusions quickly. However, the animated tools are useful 

to determine the behavior and check the events over the nodes and all 

simulation objects.
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In ns-3, you can use two tools for animating: PyViz and NetAnim. 

In some cases, the animation is an important tool for interpreting the 

network simulation. The PyViz method is described at www.nsnam.org/

wiki/PyViz. PyViz has been integrated into the mainline ns-3, starting 

with version 3.10. To use the visualizer, add –vis to the end of the 

simulation command.

1   �./waf --pyrun src/flow-monitor/examples/wifi-olsr-flowmon.

py –vis

PyViz is a data visualization tool used on ns-3 as a live simulation 

visualizer to check the mobility models, check dropped packets, and verify 

the state on the same objects while running the simulation. To install PyVis 

correctly, see the https://www.nsnam.org/wiki/PyViz web page for more 

details. The animation looks like Figure 4-6.

Figure 4-6.  NetAnim
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The other tool is NetAnim, which is an offline animation tool. To 

enable it, type the next statement in the script header:

1   #include "ns3/netanim-module.h"

Then type the following statement before the Simulator::Run() 

statement:

1   AnimationInterface anim ("animation_example.xml")

Here, animation_example.xml is any arbitrary filename to save the 

simulation data in so it can be animated offline. Figure 4-7 shows the 

NetAnim GUI. It provides some controls to check the simulation and 

menus to gain granularity on a specific node or event.

See Figure 4-7.

For detailed instructions on installing NetAnim and loading the XML 

trace file (mentioned earlier) using NetAnim, please refer to www.nsnam.

org/wiki/index.php/NetAnim.

Figure 4-7.  NetAnim
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�Scheduler
The simulator has an internal simulation clock as a 64-bit integer in a unit 

specified by the user through the Time::SetResolution function. The order 

established by the simulator to manage the queue of events is FIFO. The 

first event inserted into the scheduling queue is scheduled to expire first.

1   �EventId ns3::Simulator::Schedule(Time const &delay, 

MEM mem_ptr, OBJ obj)

Sometimes an event is set to expire after a delay. You can use the 

parameter to expire the event later at the simulation time as a span of 

event life on the experiment. The event expires when it becomes due to be 

run. The input method will be invoked on the input object.

Template Parameters

MEM [deduced] Class

method function signature

type. OBJ [deduced]

Class type of the object.

Parameters

[in] delay The relative expiration time of 

the event

[in] mem ptr Member method pointer to invoke

[in] obj The object on which to invoke the 

member method

Returns

The ID for the scheduled event

1   �EventId ns3::Simulator::Schedule(Time const \& delay,  

MEM mem\_ptr,   OBJ obj, T1 a1 )

Schedule(const Time&,MEM,OBJ)
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Template Parameters

MEM [deduced] Class

method function signature

type. OBJ [deduced]

Class type of the object

T1 [deduced] Type of first argument

Parameters

[in] delay The relative expiration time of 

the event

[in]mem ptr Member method pointer to invoke

[in] obj The object on which to invoke the 

member method

[in] a1 The first argument to pass to the 

invoked method

Returns

The ID for the scheduled event

�Logging and Tracing
The logging facility is used to monitor or debug the progress of simulation 

programs. To enable it via a program statement in your script on the 

main() program, use the NS\_LOG environment variable. The statement is 

as follows:

1  NS\_LOG\_COMPONENT\_DEFINE ("FirstScriptExample");

It is possible to deploy macros to get detailed information from 

simulation or events after execution time to get debugging information, 

warning, and errors messages quickly.
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Table 4-1 lists the logging classes. Table 4-2 lists the seven levels of log 

messages that are defined on the simulator.

For detailed information about logging, see https://www.nsnam.org/

docs/tutorial/html/tweaking.html.

Table 4-1.  Logging Classes

Severity Class Meaning

LOG ALL Log everything

LOG ERROR Serious error messages only

LOG WARN Warning messages

LOG DEBUG For use in debugging

LOG INFO Informational

LOG FUNCTION Function tracing

LOG LOGIC Control flow tracing within functions

Table 4-2.  Logging Levels

Level Meaning

LOG LEVEL ERROR Only LOG ERROR severity class messages

 LOG LEVEL WARN LOG WARN and above

LOG LEVEL DEBUG LOG DEBUG and above

LOG LEVEL INFO LOG INFO and above

LOG LEVEL FUNCTION LOG FUNCTION and above

LOG LEVEL LOGIC LOG LOGIC and above

LOG LEVEL ALL All severity classes

LOG ALL Synonym for LOG LEVEL ALL
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�Trace Helpers
The most important outcome of simulation is the output or trace. The 

trace subsystem is a mechanism that allows the researcher to build the 

first scenario about the experiment, the node behavior, the network 

interactions, and the proposed changes on the simulation. Then they can 

run other kinds of experiments on the same network model. To enable the 

trace, you first must define the trace sinks as entities that consume trace 

information and the trace sources as generators of events.

On the ns-3 simulator, there are two kinds of traces: the ASCII trace 

and the pcap. Both reduce the amount of data to manage and analyze and 

avoid the postprocessing step of having other tools process the output. 

The trace systems use a callback system to call functions from other code 

without dependencies between them.

The trace subsystem is the more important tool to analyze the 

simulation and events and improve the experiment. You need to learn 

about the trace subsystem and how to create a proper template to obtain 

the output traces.

You need to enable traces on the script. There are two options to 

enable traces on the simulation. First enable all traces as .pcap or .tr file 

output (as shown on lines 1 and 2). These statements save all information 

about the simulation in the output. The second option is to save the data 

about a specific protocol, node, or device (as shown on line 3 and 4). The 

prefix is the output name, and the n is the object to collect information by 

the trace subsystem. See Listing 4-10.

Listing 4-10.  Enable output traces

1   helper.EnableAsciiAll ("prefix");

2   helper.EnablePcapAll ("prefix");

3   helper.EnableAscii ("prefix", n);

4   helper.EnablePcap ("prefix", n);
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For detailed information, see https://www.nsnam.org/docs/

tutorial/html/tracing.html.

�Using Command-Line Arguments
As we saw in Chapter 3, a fundamental characteristic in an experimental 

test is the variation of parameters that allow you to know the sensitivity of 

the modeling system with regard to a specific parameter. So far, the variation 

of a parameter in the simulation has been done by directly changing the 

simulation code in ns-3; however, the software has a feature that can be 

useful to make these changes without directly affecting the code.

To see how to parse with the command line, let’s return to the first 

example in Chapter 1. In this example, we defined two attributes for the 

point-to-point communication network device: a transmission rate of 

5Mbps and a delay of 2ms in the transmission channel. We also defined 

attributes for the echo UDP application client: a maximum of packets of 1, 

an interval between packets of 1 second, and a packet size of 1024.

To know the attributes assigned to the point-to-point network device, 

we can use the following code in the command line:

1   �./waf --run "scratch/first --PrintAttributes=ns3::PointTo 

PointNetDevice"

That gives us as the following result at the command line with the 

default attributes:

 1   Attributes for TypeId ns3::PointToPointNetDevice

 2     --ns3::PointToPointNetDevice::Address=[ff:ff:ff:ff:ff:ff]

 3          The MAC address of this device.

 4     --ns3::PointToPointNetDevice::DataRate=[32768bps]

 5          The default data rate for point to point links

 6     --ns3::PointToPointNetDevice::InterframeGap=[+0.0ns]
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 7          �The time to wait between packet (frame) 

transmissions

 8     --ns3::PointToPointNetDevice::Mtu=[1500]

 9          The MAC-level Maximum Transmission Unit

10     --ns3::PointToPointNetDevice::ReceiveErrorModel=[0]

11          �The receiver error model used to simulate packet 

loss

12     --ns3::PointToPointNetDevice::TxQueue=[0]

13          A queue to use as the transmit queue in the device.

In the same way, we can use the following command:

1   �./waf --run "scratch/first -PrintAttributes=ns3::UdpEcho 

Client"

This gives us the following result at the command line with the default 

attributes of the echo application:

 1   Attributes for TypeId ns3::UdpEchoClient

 2     --ns3::UdpEchoClient::Interval=[+1000000000.0ns]

 3          The time to wait between packets

 4     --ns3::UdpEchoClient::MaxPackets=[100]

 5          �The maximum number of packets the application will 

send

 6     --ns3::UdpEchoClient::PacketSize=[100]

 7          Size of echo data in outbound packets

 8     --ns3::UdpEchoClient::RemoteAddress=[00-00-00]

 9          The destination Address of the outbound packets

10     --ns3::UdpEchoClient::RemotePort=[0]

11          The destination port of the outbound packets
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Not only can we observe the assigned attributes; we can also change 

them without directly intervening in the program code. For example, 

if in the same program we eliminate the lines of code that define the 

transmission rate and delay attributes of the channel, we can execute the 

following lines:

1   �./waf --run "scratch/first --ns3::PointToPointNetDevice:: 

DataRate=5Mbps"

Here, we will run the program using a 5Mbps transmission rate. Or if 

we run this:

1   �./waf --run "scratch/first --ns3::PointToPointChannel:: 

Delay=2ms"

then we will obtain the simulation results with a delay in the channel of 

2ms.

In this way, we can quickly change the simulation parameters without 

directly intervening in the code.

For example, we can create a bash script, as shown in Listing 4-11.

Listing 4-11.  Bash script

 1   #! /bin/bash

 2

 3   cd /home/ns3/Downloads/ns-allinone-3.XX/ns-3.XX

 4

 5   Mbps="Mbps"

 6   for i in {1..5}

 7   do

 8   datarate="$i$Mbps";

 9               �./waf --run "scratch/first --ns3::PointToPoint

NetDevice::DataRate=$datarate"

10   done
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Here, we perform an iteration in which we run the simulation five 

times with five different transmission rates. In this way, we can verify in a 

single script the transmission rates we want and make a scan that allows us 

to know the response of the simulation when this parameter changes.

In addition to the default attributes for the ns-3 classes, we can 

create our own parameters to be modified at the command line. The 

CommandLine class of ns-3 allows you to perform the parse process with the 

command line. Through an instance of this class we can create variables 

that can be modified using the command line.

In our example, there is already an instance of the CommandLine class 

called cmd. If after the definition of this instance we add the following line 

of code:

1   �cmd.AddValue("nPackets", "Number of packets to echo",  

n_packets);

we will be adding a variable called nPackets that can be modified on 

the command line and will have the description “Number of packets to 

echo.” The value that we add through the command line will be stored in 

the ns-3 simulation in the variable called n packets, so we must define it 

beforehand as follows:

1   uint32_t n_packets = 1;

Now we just have to use the variable we have obtained from the 

command line in our simulation. In defining the attribute of the number of 

packets sent in the echo application, we make the following modification:

1   �echoClient.SetAttribute ("MaxPackets", UintegerValue  

(n_packets));

Once the modification process is finished, we can go to the command 

line and execute the following line of code:

1   ./waf --run "scratch/first --PrintHelp"
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In this way, we can see the arguments that can be modified. There we 

can find the option nPackets that is found by default in 1, since it is the 

value assigned to the variable n packets.

If we want to modify the value of the variable, we can write the 

following line:

1   ./waf --run "scratch/first --nPackets=2"

In this way, we can change the number of packages sent in the echo 

application. We can also create a bash script where we can automatically 

iterate over the values we want.

�Summary
This chapter described the ns-3 basic coding elements, style, and 

the simulation process in detail through examples and step-by-step 

explanations. It explored functionalities such as logging, tracing, and 

animation, which are essential for creating programs and analyzing the 

results. Also, the chapter covered emulation and scheduling functions. 

Next you will find some proposed exercises.

�Exercises
Here are some exercises to do on your own:

	 i.	 Create a network with nine nodes and a star 

topology and ping all the nodes.
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	 ii.	 Run the fifth example, (ns-3/examples/tutorial 

folder) to view the contention window, and graph 

the output (you can use gnuplot).

	 iii.	 Create a network with five nodes, with a bus 

topology, and create a scenario to drop packets.

	 iv.	 Create a network with a mesh topology with 12 

nodes and ping all the nodes.

	 v.	 Animate all exercises with PyViz and NetAnim.
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CHAPTER 5

Analysis of Results
“Science is thus a slave to its own methods and techniques, 
while they are successful.”

—[66]

As computers become more powerful today, they also become an 

important means to analyze data and perform simulations of theoretical 

models and complex systems, just by setting up different scenarios, 

varying some parameters, and allowing their execution. Simulation is a 

tool employed for theoretical and empirical research. When a theoretical 

model is instantiated and simulated, the output data generated can be 

considered as a hypothesis, which produces the starting point for an 

experimental process and also creates a foundation to make operational 

decisions before a real implementation.

Simulation as such is a computer process that imitates a physical 

process generating a similar response; it requires a model of a real process 

or system, which is translated into an executable program producing an 

output that attempts to mimic the output of a real system. In simulation, 

it is possible to achieve a higher level of fidelity. This process is called 

emulation, in which all of the inner components of a system are simulated 

to produce more realistic output; however, since the level of detail is 

superior because finer aspects of the real model are considered, emulation 

could be more computationally expensive and harder to model.

https://doi.org/10.1007/978-1-4842-6849-0_5#DOI
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Exploring a theoretical model through simulation helps to understand 

how the outcomes from different scenarios would be provided the degree 

of accuracy in the theory; nevertheless, this does not mean that the 

theory has been corroborated or controverted, since through simulation 

the theory is only instantiated. If it is desired to validate the theory, it is 

necessary to experiment under real-world conditions in order to have 

enough evidence that supports the accuracy of the model and therefore 

the motivating theory.

Simulation is also used to generate predictions of a real system, if the 

system was modeled with a certain level of accuracy. Simulation allows 

you to run what-if scenarios with the goal of having various alternatives 

to verify the possible outcomes either good or bad from the model. 

Provided that most simulations start from a theoretical model instead 

of an empirical one, the output of the simulation represents different 

predictions under specific conditions. Since a theoretical model describes 

the behavior of a system given the knowledge and understanding from it, 

before a theoretical model can be considered an empirical one, it must be 

validated through simulation under controlled conditions, thus producing 

a hypothesis for experimentation. With these hypotheses, it is expected 

that the real system will produce the same output while experimenting 

under the same controlled conditions. If the output data of the experiment 

is statistically close to the output data of the simulation, this will bring 

enough support of the accuracy of the theoretical model. However, if they 

differ, during the process some errors may have been made that caused 

such a result. It is important to keep in mind that regardless of the accuracy 

of the theoretical model, simulation should never be considered as a 

substitute for experimentation.
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�Output Data Analysis for a Single System
When developing a model, a great amount of dedication and work is put 

into building and programming it but not so much into analyze its results. 

A common practice is to run a simulation (replica) of an arbitrary length 

m assuming that its results describe the real characteristics of the system. 

Simulation models use random variables; therefore, the output is random, 

which makes a single replica useless. Since a simulation involves the 

realization of random variables that could have huge variances, the result 

can differ greatly from the real system. Simulation can also be defined as a 

computer-based statistical experiment. If its results will be used to validate 

a model, to give a good interpretation and meaning to the results, it is 

important to use appropriate statistical techniques.
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Let x1,1, x1,2, x1,i, x1,m be the realization from the output stochastic 

process X1, X2, , Xi, Xm when using a set of random numbers as their 

input. If the same scenario is performed using a different set of random 

numbers as input, this will result in a different realization x2,1, x2,2, x2,3, x2,m 

of the random numbers X1, X2, Xm. Now, if n independent replications are 

performed in which the input parameters for the random numbers are 

reinitialized and the initial conditions are the same for each replication 

with a length m, this will result in the next observations.

The observations from a single replica (row) cannot be processed 

with traditional statistical techniques, because they are auto-correlated, 

not stationary, and not independent and identically distributed (IID). 
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Consequently, a replica of an arbitrary length has little significance by 

itself; nonetheless, note the column i: x1,i, x2,i, xj,i, xn,i are IID observations 

for the random variable Xi. The basis for output data analysis for 

simulations is to perform n replicas, with each one of length m having 

the same initial conditions, but using different seeds to produce random 

numbers and finally using the IID observations xj,i (where i = 1, 2, ... , m 

and j = 1, 2, , n) to gain information to estimate performance measures for 

the behavior of the system.

�Transient and Steady-State Behavior of a 
Stochastic Process
Consider X = X1, X2, ..., Xm to be the output of a stochastic process, and let 

Fi(X | I) = P (Xi ≤ x | I), where Fi(X | I) at time i is given the initial conditions I.

As shown in Figure 5-1, each transient distribution has a density 

function fyi . The density functions specify how the behavior of the random 

variable changes from one replication to another. If x and I are fixed,  

then F1(x | I), F2(x | I), ... Fi(x | I) will be just a sequence of numbers.  

If Fi(X | I) → F (x) as i → ∞ for every x and I, then F (x) is called the  

steady-state distribution of the output process X. As can be understood, 

the steady-state distribution F (x) occurs at a point in which i → ∞ or i is 

sufficiently large, as shown in Figure 5-1. There is time k + 1 where steady 

state starts. Please keep in mind that steady state does not imply that the 

random variables after Xk+1 will have the same value; instead, it means they 

will have approximately the same distribution. Additionally, these random 

variables won’t be independent; rather, they will form a co-variance-

stationary stochastic process.
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�The Random Nature of the Simulation Output
Assume x1,1, x1,2, x1,3, ... , x1,m as the realizations of the random variables 

X1, X2, X3, Xm utilizing the random numbers u1,1, u1,2, u1,3, u1,m. If the same 

scenario is performed using a different set of random numbers u2,1, u2,2, 

u2,3...u2,m, this will result in a different realization, x2,1, x2,2, x2,3, x2,m, of the 

random numbers x1,1, x1,2, x1,3 x1,m. Now, if n independent replications are 

performed in which the input parameters for the random numbers are 

reinitialized and the initial conditions are the same for each replication 

with a length m, this will result in the next observations:
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Figure 5-1.  Transient and steady-state density functions for a 
stochastic process
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By looking at the realizations, it is clear to infer from any replication 

(row) that they are not IID; nonetheless, notice any column, for instance, 

x1,j, x2,j, ... , xi,j, xn,j, is IID, and the observations are the random realizations 

for the variable Xj. As you can see, it is possible to find independence 

between runs; thus, it is of interest to use the observations xi,j where i = 1, 

2, 3, ... , n and j = 1, 2, 3, m, which are the starting points for all the output 

data analysis methodologies explained during this chapter. Now let’s 

continue with the factorial design.

�Types of Simulation According to the  
Output Analysis
There are two ways to finish a simulation: terminating and nonterminating 

simulations. In terminating simulations (also called transients), the short-

run behavior of a system is studied. Also, the performance measure of 

interest is estimated within a period whose end is marked by an event E, 

which can be deterministic. For instance, E = 20 seconds or is random, 

such as when the number of jobs in a queue reaches 500, or E = 500. 

Usually, the nature of the problem defines E.

Nonterminating simulations (steady-state) aim to study the long-run 

behavior of a system, which starts at i = 0 and converges when i → ∞ or is 

large enough. This means that there is not any event E that specifies when 

a simulation finishes. However, in a practical simulation, the researcher 

defines its duration in such way that it allows you to obtain good estimates 

of interest. These types of simulations are employed when designing new 

systems or making changes on an existing one.

Both types of simulation depend a lot on the initial conditions, since 

they have some impact on the results and may lead to errors. Therefore, 

care must be taken when selecting initial conditions, taking into 

consideration that they must be representative of those of the actual real 

system.
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�Statistical Analysis for Terminating (or Transient) 
Simulations
Suppose that n independent replications of a terminating simulation 

finishing at a predetermined specific event E are performed and that they 

all began with the same initial conditions. Let Xi be the resulting random 

IID where i = 1, 2, 3, ..., n, and then a point estimate and confidence interval 

for X such as E(X). Therefore, X¯i is an unbiased point estimator with a 100 

(1 − α) percent confidence interval therefore:
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�The Number of Replicas

To obtain an estimate of E(X) with a relative error of γ where 0 < γ < 1 and a 

confidence interval of 100 (1 − α) percent, perform the following steps:

	 1.	 Perform n0. In our experience, n0 = 35 is a nice 

number to start.

	 2.	 Calculate the following:
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•	 Calculate X(n0 ) and if 
� �

�
n

X n
0

0

,� �
� �

� , then X(n0 ) is a 

good estimator for E(x); otherwise, add five more 

replications and repeat the procedure.
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�Statistical Analysis for Steady-State Parameters
Consider ϕ as a steady-state parameter that is characteristic of X like E(X). 

The estimation of ϕ causes a problem when the distribution of Xi is different 

from F . Due to the initial conditions, the initial output data is not very 

representative of such behavior, raising a question about how to choose 

simulation output data that actually represents the steady-state behavior. 

Because of this, the estimators of φ from some initial observations may not 

be representative. This situation is called the problem of the initial transient 

or the startup problem. One technique commonly employed to face this 

situation is named warming up the model or initial data deletion, whose goal 

is to identify an index l such that (1 ≤ l ≤ m − 1), deleting the observations X1, 

X2, …, Xl and finally using the remaining observations to estimate v as follows:
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Since X(m,l) does not consider the observations until l, which may 

have been affected by the initial conditions, it is likely to be less biased 

than X(m); nevertheless, m and l must be chosen in such way that 

E X m l v� � ��� �� �, . If they are chosen too small, E X m l� � ��� ��,  may be 

significantly different than v. The opposite happens if they are chosen too 

large; E X m l� � ��� ��,  will have an excessive variance.

One technique broadly used to find index l such that E[Xi] ≈ v for i > l  

is the Welch graphical method. Provided that a single replication is not 

enough to determine l, this method uses multiple n replications and works 

as follows:

	 1.	 Make n replication, each one of length m, where m 

is large.

	 2.	 Compute across the replicas 

X
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	 3.	 To soften the high-frequency oscillations from the 

previous step, the method uses a moving average 

Y wi � � , where w is the time window and is defined 

as follows:
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  as an example to compute Xi(w) when 

w = 2. (Table 5-1).
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Plot Xi(w). Then if the curve is reasonably smooth, choose a value for l 

at a point after which X1(w), X2(w), ..., seems to have converged; otherwise, 

pick another value for w and repeat the whole procedure again. Then if 

the response is not satisfactory, add more replicas and carry out the whole 

procedure again.
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�The Replication-Deletion Approach
The replication-deletion approach is a method proposed by Kelton to 

obtain a point estimate and confidence interval for v, which offers the 

following advantages:

•	 When used correctly, it has good statistical 

performance.

•	 It is easy to understand and implement.

•	 It can be applied to all types of output parameters and 

to make different estimates.

•	 It is useful to make comparison between different 

system configurations.

Suppose that n independent replications, each one of length m, 

was performed and that l has been already estimated using the Welsch 

graphical method, resulting in the observations in Table 5-1.

The first 1(m ≫ l) observations in each replication can be deleted 

since they are not representative of the steady-state behavior; with the 

remaining Xj,l+1, …, Xj,m, let Yj be defined as follows:
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Note that the Yjs are IID observations that can be used with classical 

statistics to build a point estimate and confidence interval for v. Let the 

sample mean be given by the following:
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Here is the sample variance:
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Thus, for v, an approximate 100(1 − α) percent confidence interval is 

given as follows:
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�Simulation Procedure
This section follows the steps shown in this chapter to analyze the results 

from the experiment in E.1 Provided that the goal of this experiment is to 

validate a new model, this simulation is a nonterminating one. Therefore, 

it is of interest to obtain its steady-state parameters.

�Output Data Analysis
The next procedures were done in order to obtain the data to analyze:

	 1.	 Following the indications supplied in [67], for 

each scenario we carried out n = 100 independent 

replications of simulation experiments, with each 

one of length m = 280.

	 2.	 Use the Welsch graphical method to determine the 

moment at which the steady-state behavior begins.

1�Please refer to the Appendix E for more details.
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	 3.	 Use the replication-deletion approach [67] to 

estimate the steady-state mean given a confidence 

interval of 90. See Figure 5-2 and Table 5-2.

Figure 5-2.  Response of the simulation scenario

Table 5-2.  Steady-State Parameters for Both Scenarios

Scenario Response Point Estimate Variance Confidence 
interval

Scenario 1 Quorum sensing 

nodes

23.468 ± 0.131 1.035 [23.337, 23.599]

Files managed by 

the agents

11.809 ± 0.065 0.252 [11.745, 11.874]
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�Results

Here are the results:

	 1.	 After making the initial independent simulation, the 

average response for each scenario was plotted in 

Figure 5-2a.

	 2.	 Use the Welch graphical method with a window 

value of w1 = 40 for the testing scenario, obtaining 

the results showed in Figure 5-3a and ??.

Figure 5-3.  Moving averages
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	 3.	 By graphical inspection, it is possible to see that 

both plots start to converge at lsc1 = 25 and lsc2 = 32 for 

each scenario, respectively.

After applying the replication-deletion approach, there is a 90 percent 

confidence that the mean for the nodes induced to QS and the files 

managed by the agents are between the values shown in Table 5-2.

�Summary
Simulation is one way of validating a model, and proper statistical analysis 

is what helps obtain the right conclusions about the behavior of a model. 

Therefore, it is important to use the appropriate tools to gain more 

knowledge about a model. In this chapter, we introduced the process 

that must be carried out to perform a valid simulation experiment. Once 

the model has been built using the simulation tool (ns-3), depending on 

the type of simulation, there are different ways of analyzing those results. 

Those guidelines were the main topic of this chapter.

�Complementary Readings
Here are some readings to learn more on your own:

	 1.	 A new approach for dealing with the startup 

problem in discrete event simulation [68]

	 2.	 Output data analysis, in Handbook of Simulation [51]

	 3.	 Steady-state simulation of queuing processes: 

survey of problems and solutions [69]

	 4.	 The statistical analysis of simulation results [70]
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CHAPTER 6

MANET Simulation 
on ns-3

Almost always the men who achieve these fundamental inven-
tions of a new paradigm have been either very young or very 
new to the field whose paradigm they change.

—[71]

�A Simple Ad Hoc Network
An ad hoc network is a computer network linked by wireless interfaces, 

with a set of dynamic computing resources. This kind of network works on 

dynamic and stochastic conditions to provide services to its users. Ad hoc 

networks have two properties: the first is self-organization, and the second 

is to have a decentralized architecture. Formally, ad hoc networks [72]–[75] 

are a random graph as a set of vertices called nodes with mobility features, ​

joined by links called edges that change dynamically at time function and 

with the environment conditions, for instance, the propagation, spectrum 

distortions, users petitions, and so on.
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An ad hoc network can be defined as a set of nodes (N), connected for 

a set of links (L), with a set of interactions (I), and all of them as a random 

multigraph (ttpl) as shown by the following the equation (see Figure 6-1):

	
M N L G l Ip� � �, , , 	 (6.1)

For our first example, use the code called wifi-adhoc.cc written by 

Mathieu Lacage. This code has a single node with an access point (AP) on 

the mode ad hoc (IIEE802.11 Mesh mode). The experiment was detailed at 

[76]. Nonetheless, a brief description of the experiment follows.

The experiment was designed with the IEEE 802.11a standard and 

specifies eight PHY modes. The goal is maximize a given metric, which 

typically is the system throughput. In the experiment the metric rate 

adaptation scheme is selected on the PHY mode. To simulate the scenario, 

the medium control access mechanism is a key factor to validate the 

rate. In the IEEE 802.11 standard, the mechanism is controlled by the 

Distributed Coordination Function (DCF) and the random access scheme 

Carrier Sense Multiple Access with Collision Avoidance (CSMA/CA).

Figure 6-1.  Ad hoc network
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ns-3 allows you to enable different rate adaptation algorithms such 

as Auto Rate Fallback (ARF), Adaptative Auto Rate Fallback (AARF), 

Robust Rate Adaptation Algorithm (RRAA) [77], and Collision-Aware Rate 

Algorithm (CARA) [78].

For this example, the algorithm chosen is Adaptive Auto Rate Fallback 

with Collision Detection (AARF-CD) as a modification of the Adaptive 

Auto Rate Fallback (AARF) scheme [79], which is compared with the other 

rate adaptation algorithm present on ns-3 on the available rates for IEEE 

802.11a. These are 6, 12, 18, 24, 36, 48, and 54 Mbps. In AARF-CD, the RTS/

CTS mechanism is turned on/off depending on the number of successful 

transmission attempts.

Finally, the experiment has an infrastructure scenario with a variable 

number of nodes (for example, a single-node scenario is presented for 

default); each node is in the transmission range of the others at a variable 

distance from the AP. All the nodes are equipped with an IEEE 802.11a 

interface, and they use the same-rate adaptation algorithm. Each node 

sends saturated UDP traffic with a packet size of 2,000 bytes without the 

MAC and PHY headers.

To learn more about the abstractions and the models of ns-3, visit 

https://www.nsnam.org/docs/release/ns-3-version/models/html/.

�Wi-Fi Model
The simulation model used on ns-3 for wireless is based on the IEEE 

802.11 standard [80]. In this case, the abstraction is located on the network 

interface. The model WifiNetDevice contains the following features from 

the standard:

•	 The medium access control mechanism specified 

in the IEEE 802.11 standard is called the Distributed 

Coordination Function (DCF).
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•	 The model supports infrastructure and ad hoc modes.

•	 The set of 802.11 models provided in ns-3 attempts 

to provide an accurate MAC-level implementation of 

the 802.11 specification and provides a packet-level 

abstraction of the PHY level for different PHYs.

•	 The model works on 802.11a, 802.11b, 802.11g, 802.11n 

(in both the 2.4 and 5 GHz bands), 802.11ac, and 802.11ax 

draft 1.0 (both the 2.4 and 5 GHz bands) specifications. 

Also, it has physical layers MSDU aggregation and MPDU 

aggregation extensions of 802.11n.

•	 The 802.11s mesh and 802.11p specifications are 

supported.

•	 It supports QoS-based EDCA and the queuing 

extensions of 802.11e.

•	 It has different propagation loss models, delay models, 

and some rate-control algorithms as cited in the 

previous section.

•	 The node abstraction can have multiple Wi-Fi 

interfaces (WifiNetDevices) on different channels and 

different network interfaces.

•	 To simulate scenarios with cross-channel interference 

or a set of wireless technologies on a single channel, 

use the framework SpectrumWifiPhy.

•	 The source code for WifiNetDevice and its models 

lives in the directory src/wifi.

•	 The implementation is modular and provides roughly 

three sublayers of models: PHY layer, MAC Low, and 

MAC High.

Chapter 6  MANET Simulation on ns-3



115

Figure 6-2 shows the complete model.

�The PHY Layer Model
The physical layer is the computational model to enable the reception of 

packets and monitor energy consumption. For the packets, the model is 

based on a probabilistic function with parameters such as modulation, 

signal of noise, and state of the physical layer. The result is computed 

with an error model to allow for successful transmission. This module 

denotes whether a packet was received or not. Two physical layer models 

exist in ns-3: the YansWifiPhy model based on the [21] model and the 

SpectrumWifiPhy model developed for ns-3. The SpectrumWifiPhy model  

allows a fine-grained frequency decomposition of the signal and includes 

multiple technologies coexisting on the same channel.

Figure 6-2.  ns-3 Wi-Fi model [81]
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�MAC Low Model
On these sublayers, the simulator has functions to model the medium 

access (DCF and EDCA) and the mechanism RTS/CTS and ACK. This layer 

is split into three main components.

•	 ns3::MacLow, which takes care of RTS/CTS/DATA/ACK 

transactions and also performs MPDU aggregation.

•	 ns3::ChannelAccessManager and ns3::DcfState, 

which implement the DCF and EDCAF functions.

•	 ns3::Txop and ns3::QosTxop, which handle the 

packet queue, packet fragmentation, and packet 

retransmissions if they are needed. ns3::QosTxop is 

used by QoS-enabled high MACs and also performs 

MSDU aggregation.

�MAC High Model
These models implement the MAC-level beacon generation, probing, and 

association state machines, as well as a set of rate-control algorithms.

Three MAC high models provide for the three Wi-Fi topological 

elements:

•	 Access point (AP) ns3::ApWifiMac: This is a class that 

implements an AP that generates periodic beacons and 

that accepts every attempt of association.

•	 Non-AP station (STA) ns3::StaWifiMac: This is a class 

that implements an active probing and association 

state machine that handles automatic re-association 

whenever too many beacons are missed.

Chapter 6  MANET Simulation on ns-3



117

•	 STA in an independent basic service set (IBSS): For an 

ad hoc network, use ns3::AdhocWifiMac. This class 

enables the mesh mode from the IEEE 802.11 standard 

with a Wi-Fi MAC that does not perform any kind of 

beacon generation, probing, or association.

�Node Abstractions
On the simulator, the first step is to define the libraries that are useful to 

deploy the experiment, as follows:

•	 For mobility: mobility-helper.h

•	 For channels: yans-wifi-channel.h

•	 For wireless interfaces: yans-wifi-helper.h

•	 For traffics: on-off-helper.h

•	 For IP stacks: ipv4-address-helper.h

•	 For applications: packet-socket-helper.h and 

packet-socket-address.h

To generate a graphical output, use the gnuplot.h library, to invoke the 

Gnuplot program (see Listing 6-1).

Listing 6-1.  ns-3 Libraries

 1   #include "ns3/gnuplot.h"

 2   #include "ns3/command-line.h"

 3   #include "ns3/config.h"

 4   #include "ns3/uinteger.h"

 5   #include "ns3/string.h"

 6   #include "ns3/log.h"

 7   #include "ns3/yans-wifi-helper.h"
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 8   #include "ns3/mobility-helper.h"

 9   #include "ns3/ipv4-address-helper.h"

10   #include "ns3/on-off-helper.h"

11   #include "ns3/yans-wifi-channel.h"

12   #include "ns3/mobility-model.h"

13   #include "ns3/packet-socket-helper.h"

14   #include "ns3/packet-socket-address.h"

To describe the experiment and its features, we have created an 

Experiment class. The Experiment class contains the parameters for 

the Gnuplot data set in line 6. The functions are attached to the nodes, 

such as the SetPosition position in the ns-3 grid; ReceivePackets 

and SetupPacketReceive for traffic, sockets, and application layer; 

GetPosition and AdvancePosition for node mobility; and Experiment to 

generate the output style of Gnuplot. See Listing 6-2.

Listing 6-2.  Class Experiment

 1   class Experiment

 2   {

 3   public:

 4      Experiment ();

 5      Experiment (std::string name);

 6      �Gnuplot2dDataset Run (const WifiHelper &wifi, const 

YansWifiPhyHelper &wifiPhy,const ‹→ WifiMacHelper 

&wifiMac, const YansWifiChannelHelper &wifiChannel);

 7   private:

 8      void ReceivePacket (Ptr<Socket> socket);

 9      void SetPosition (Ptr<Node> node, Vector position);

10      Vector GetPosition (Ptr<Node> node);

11      void AdvancePosition (Ptr<Node> node);

12      Ptr<Socket> SetupPacketReceive (Ptr<Node> node);
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13      uint32_t m_bytesTotal

14      Gnuplot2dDataset m_output;

15   };

16   Experiment::Experiment ()

17   {

18   }

19   Experiment::Experiment (std::string name)

20     : m_output (name)

21   {

22     m_output.SetStyle (Gnuplot2dDataset::LINES);

23   }

To simulate the node mobility, three functions are used: SetPosition 

to establish the position on the ns-3 grid, GetPosition to return the node 

position at simulation time, and AdvancePosition to generate a mobility 

model on the grid. To set the node position, call the function SetPosition 

with the parameters node and pos and create an event at second 1 in the 

simulation time.

The mobility support in ns-3 includes a set of mobility models, 

position allocators, and helper functions. All of them work at an assembly 

track and maintain the current Cartesian position and speed of an object 

(node). The mobility aggregates a node abstraction and querying using 

GetObject<MobilityModel>(). The base class is ns3::MobilityModel, 

which is subclassed for different motion behaviors. The initial position is a 

setting for a PositionAllocator. Once the simulation starts, the position 

allocator may no longer be used. Only set the initial position on the ns-3 

Cartesian plane. The MobilityHelper combines a mobility model and 

position allocator and can be used with a node container to install the 

mobility capability on a set of nodes. See Listing 6-3.
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Listing 6-3.  Mobility and Position Methods

 1   void

 2   Experiment::SetPosition (Ptr<Node> node, Vector position)

 3   {

 4      �Ptr<MobilityModel> mobility = node->GetObject 

<MobilityModel> ();

 5      mobility->SetPosition (position);

 6   }

 7

 8   Vector

 9   Experiment::GetPosition (Ptr<Node> node)

10   {

11      �Ptr<MobilityModel> mobility = node->GetObject 

<MobilityModel> ();

12      return mobility->GetPosition ();

13   }

14

15   void

16   Experiment::AdvancePosition (Ptr<Node> node)

17   {

18      Vector pos = GetPosition (node);

19      double mbs = ((m_bytesTotal * 8.0) / 1000000);

20      m_bytesTotal = 0;

21      m_output.Add (pos.x, mbs);

22      pos.x += 1.0;

23      if (pos.x >= 210.0)

24         {

25            return;

26         }

27      SetPosition (node, pos);
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28      �Simulator::Schedule (Seconds (1.0), 

&Experiment::AdvancePosition, this, node);

29   }

�Socket Abstraction
Simulating an application is useful to use the socket abstraction on ns-3. 

A socket is a network application programming interface (API) that works 

on the user-space applications to access network services in the kernel. 

The socket is the interface between the application layer and the transport 

layer within a host [82]. On ns-3, a “socket API” is not the same as in a real 

context. It has two abstractions. The first one is a native ns-3 API, and the 

second one uses the services of the native API to provide a POSIX-like API 

as part of an overall application process. The POSIX variant is the closest 

to a real system’s sockets API. (ns3::Socket is defined in src/network/

model/socket.h.)

The purpose is to align the abstraction with a POSIX sockets 

API. However, the ns-3 socket has specific features that are like a 

computational model as follows [83]:

•	 ns-3 applications handle a smart pointer to a Socket 

object, not a file descriptor.

•	 There is no notion of a synchronous API or a blocking 

API; in fact, the model for interaction between an 

application and a socket is the asynchronous I/O, 

which is not typically found in real systems (more on 

this later).

•	 The C-style socket address structures are not used.

•	 Many calls use the ns3::Packet class to transfer data 

between the application and the socket. See Figure 6-3 

and Listing 6-4.
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Listing 6-4.  Packet Abstraction Code

 1   void

 2   Experiment::ReceivePacket (Ptr<Socket> socket)

 3   {

 4      Ptr<Packet> packet;

 5      while ((packet = socket->Recv ()))

 6       {

 7          m_bytesTotal += packet->GetSize ();

 8       }

 9   }

10

11   Ptr<Socket>

12   Experiment::SetupPacketReceive (Ptr<Node> node)

13   {

14      �TypeId tid = TypeId::LookupByName 

("ns3::PacketSocketFactory");

15      Ptr<Socket> sink = Socket::CreateSocket (node, tid);

16      sink->Bind ();

Figure 6-3.  ns-3 socket model [81]
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17      �sink->SetRecvCallback (MakeCallback 

(&Experiment::ReceivePacket, this));

18      return sink;

19   }

Let’s get back to the code. The abstractions installed on the node 

abstraction are the packet socket (lines 10–11), wireless network interface 

device (lines 16–17), mobility (lines 19–26), the addressing as sockets 

(lines 28–31), the traffic (lines 33–37), the variables initializing as memory 

bytes (line 5), and the number of nodes (line 8).

The channel abstraction uses YansWifiChannelHelper. The helper can 

be used to create a YansWifiChannelwith, a default model of propagation 

delay. PropagationDelay is equal to a constant (ns3::ConstantSpeed

PropagationDelayModel), the speed of light, and the propagation loss 

(PropagationLoss) is based on a default log distance model from ns-3.  

The model was calculated using the Friis propagation loss model at 

5.15GHz (ns3::LogDistancePropagationLossModel). The reference loss 

must be changed if 802.11b, 802.11g, 802.11n (at 2.4GHz), or 802.11ax  

(at 2.4GHz) is used since all of those operate at 2.4GHz.

According to the ns-3 Wi-Fi model, the physical devices 

(ns3::WifiPhy) must connect to the channel (ns3::YansWifiChannel). 

The models need to create WifiPhy objects appropriate for the class 

YansWifiChannel for proper operation. The YansWifiPhyHelper 

class configures an object factory to create instances of YansWifiPhy 

and adds some other objects to it, including possibly a supplemental 

ErrorRateModel and a pointer to a MobilityModel. See Listing 6-5.

Listing 6-5.  Antenna, Socket, and Traffic Code

 1   Gnuplot2dDataset

 2   �Experiment::Run (const WifiHelper &wifi, const 

YansWifiPhyHelper &wifiPhy,
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 3                �const WifiMacHelper &wifiMac, const 

YansWifiChannelHelper       ‹→ &wifiChannel)

 4   {

 5      m_bytesTotal = 0;

 6

 7      NodeContainer c;

 8      c.Create (2);

 9

10      PacketSocketHelper packetSocket;

11      packetSocket.Install (c);

12

13      YansWifiPhyHelper phy = wifiPhy;

14      phy.SetChannel (wifiChannel.Create ());

15

16      WifiMacHelper mac = wifiMac;

17      NetDeviceContainer devices = wifi.Install (phy, mac, c);

18

19      MobilityHelper mobility;

20      �Ptr<ListPositionAllocator> positionAlloc = CreateObject

<ListPositionAllocator> ();

21      positionAlloc->Add (Vector (0.0, 0.0, 0.0));

22      positionAlloc->Add (Vector (5.0, 0.0, 0.0));

23      mobility.SetPositionAllocator (positionAlloc);

24      �mobility.SetMobilityModel ("ns3::ConstantPosition 

MobilityModel");

25

26      mobility.Install (c);

27

28      PacketSocketAddress socket;

29      socket.SetSingleDevice (devices.Get (0)->GetIfIndex ());
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30      �socket.SetPhysicalAddress (devices.Get (1)-> 

GetAddress ());

31      socket.SetProtocol (1);

32

33      �OnOffHelper onoff ("ns3::PacketSocketFactory", Address 

(socket));

34      onoff.SetConstantRate (DataRate (60000000));

35      �onoff.SetAttribute ("PacketSize", UintegerValue (2000));

36

37      ApplicationContainer apps = onoff.Install (c.Get (0));

38      apps.Start (Seconds (0.5));

39      apps.Stop (Seconds (250.0));

40

41      �Simulator::Schedule (Seconds (1.5), 

&Experiment::AdvancePosition, this, c.Get (1));

42      Ptr<Socket> recvSink = SetupPacketReceive (c.Get (1));

43

44      Simulator::Run ();

45

46      Simulator::Destroy ();

47

48      return m_output;

49   }

main() calls the Gnuplot function to create the data to plot the 

experiment results and declare the features on the physical layer. The 

channel uses ns3::WifiPhy, which is an abstract base class representing 

the 802.11 physical layer functions. There are two implementations of the 

physical layer on ns-3: ns3::YansWifiPhy and ns3::SpectrumWifiPhy. 

They work in conjunction with three other objects: WifiPhyStateHelper 
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that maintains the PHY state machine, InterferenceHelper that tracks 

all packets observed on the channel, and ErrorModel that computes a 

probability of error for a given SNR.

The packets are passed to the physical interface through the 

SendPacket() method. The receiving PHY object decides based on the 

signal power and interference whether the packet was successful. This 

class also provides a number of callbacks for notifications of physical 

layer events, exposes a notion of a state machine that can be monitored 

for MAC-level processes such as carrier sense, and handles sleep/wake 

models and energy consumption.

The physical layer is configured on lines 8–13, and line 16 sets up the 

ad hoc mode. Finally, the experiment is setting up each data rate and rate 

adaptation algorithm. See Listing 6-6.

Listing 6-6.  Main

 1   int main (int argc, char *argv[])

 2   {

 3      CommandLine cmd;

 4      cmd.Parse (argc, argv);

 5

 6      Gnuplot gnuplot = Gnuplot ("reference-rates.png");

 7

 8      Experiment experiment;

 9      WifiHelper wifi;

10      wifi.SetStandard (WIFI_PHY_STANDARD_80211a);

11      WifiMacHelper wifiMac;

12      YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

13      �YansWifiChannelHelper wifiChannel = 

YansWifiChannelHelper::Default ();

14      Gnuplot2dDataset dataset;

15
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16      wifiMac.SetType ("ns3::AdhocWifiMac");

17

18      NS_LOG_DEBUG ("54");

19      experiment = Experiment ("54mb");

20      �wifi.SetRemoteStationManager ("ns3::ConstantRateWifi 

Manager","DataMode", StringValue ‹→ ("OfdmRate54Mbps"));

21      �dataset = experiment.Run (wifi, wifiPhy, wifiMac, 

wifiChannel);

22      gnuplot.AddDataset (dataset);

23

24      NS_LOG_DEBUG ("48");

25      experiment = Experiment ("48mb");

26      �wifi.SetRemoteStationManager ("ns3::ConstantRateWifi 

Manager","DataMode", ‹→ StringValue("OfdmRate48Mbps"));

27      �dataset = experiment.Run (wifi, wifiPhy, wifiMac, 

wifiChannel);

28      gnuplot.AddDataset (dataset);

�Plot
To plot the results, use the library gnuplot.h to generate the code. Saving 

the output with a .dat file extension is necessary. The simulation has 

two outputs. The first is called reference-control.png and compares 

different rates; The second is called rate control.png and compares each 

rate adaptation algorithm used creates a data set reading for the Gnuplot 

program. See Listing 6-7.

Listing 6-7.  Plot with GNUplot Code

 1   gnuplot = Gnuplot ("rate-control.png");

 2      wifi.SetStandard (WIFI_PHY_STANDARD_holland);
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 3

 4      NS_LOG_DEBUG ("arf");

 5      experiment = Experiment ("arf");

 6      wifi.SetRemoteStationManager ("ns3::ArfWifiManager");

 7      �dataset = experiment.Run (wifi, wifiPhy, wifiMac, 

wifiChannel);

 8      gnuplot.AddDataset (dataset);

 9

10      NS_LOG_DEBUG ("aarf");

11      experiment = Experiment ("aarf");

12      wifi.SetRemoteStationManager ("ns3::AarfWifiManager");

13      �dataset = experiment.Run (wifi, wifiPhy, wifiMac, 

wifiChannel);

14      gnuplot.AddDataset (dataset);

15

16

17      gnuplot.GenerateOutput (std::cout);

18

19      return 0;

�Output
To plot the output, you need to type the following command in the terminal 

(you should have previously installed the packages for Gnuplot [84]):

1   gnuplot output_file_name.dat

This command creates two PNG files in the root directory of the 

ns-3 version. Then it searches the files reference-rates.png and 

rate-control.png. The files are similar to Figure 6-4a and Figure 6-4b, 

respectively.
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�Agent-Based Simulation
In this section, we will discuss another type of traditional discrete-event 

simulation (DES), called agent-based simulation (ABS). By using the 

simulator ns-3, it is possible to do the simulation using agents; in DES, to 

control the simulating clock, there are two approaches: the next-event time 

advance (NETA) and the fixed-increment time advance (FITA) defined as 

follows:

•	 NETA: NETA advances the mechanism and estimates 

the time of future events that are going to happen on 

the basis of a list of events (in terms of arrival state or 

departure state). Under this approach, the mechanism 

starts by locating the simulation clock at zero.

•	 FITA: Under this approach, the simulation clock 

advances a specified unit of time ∆t for representing an 

exact increment. When advancing to later processes in 

the simulation, clock examines the event list to identify 

the possible occurrence of any event in the past ∆t.

Figure 6-4.  Experiment output with Gnuplot

Chapter 6  MANET Simulation on ns-3



130

The ABS approach as a variation of DES [85] is useful to deploy new 

systems and models in the simulation environment. For example, it is 

necessary first to define an agent, which could be as simple as an element 

that receives input (sensor), which leads you to execute actions (actuator) 

on an environment (space). In a more complex context, the agent and a 

person in a physical and/or social environment can operate under a set of 

rules that define the space and limit the possible actions and hence the set 

of states (behavior) [86]. In computer networks, a simple agent is an SNMP 

agent [87] that collects information from the management information 

base (MIB) to know the network or manager device state to deploy some 

action or system information.

In this sense, the entities or agents interact with other entities and, 

ergo, other simulator abstractions. But these entities learn autonomously 

as this is the behavior of the whole system or some modules or subsystems. 

Generally, ABS is implemented in object-oriented software where 

instances variables are attributes and methods to behaviors. One of the 

advantages of the ns-3 simulator is that it is object-oriented software that 

allows the existence of agents and multi-agent systems [88]. Some authors 

consider this to be necessary to exhibit an emergence behavior, but this 

feature depends on the intuition of the observer. Furthermore, general 

DES can exhibit emergence behavior such as deadlocks, oscillations, and 

bottlenecks, among other things. ABS is useful when the entities interact 

with each other and their environment, when the entities need to learn to 

adapt their behavior (take better decisions), and when the movement of 

entities depends on the perception of its environment (awareness).

If you need to create an agent, it is useful to use the algorithm shown 

in [89], called a skeleton agent, on each invocation. The agent’s memory 

is updated to reflect the new perception, the best action is chosen, and 

the fact that the action was taken is also stored in memory. The memory 

persists from one invocation to the next. See Algorithm 6-1.
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Algorithm 6-1

function SKELETON-AGENT (percept) returns action

          static: memory, the agents memory of the world

          memory - UPDATE-MEMORY(memory,percept)

          memory ← CHOOSE-BEST-ACTION(memory)

          memory   UPDATE-MEMORY(memory,action)

return action

Otherwise, the environment shows that the agents exist and shows 

their interaction with the “world.” The basic environment simulator 

program gives each agent its perception, gets an action from each agent, 

and then updates the environment. See Algorithm 6-2.

Algorithm 6-2 

procedure RUN-ENVIRONMENT (state,UPDATE-FN,agents, termination)

        inputs: state,the initial state of the environment

                           �UPDATE-FN,function to modify the 

environment

                           agents, a set of agents

                                                  termination, 

a predicate to test when we are done

                                            repeat

            for each agent in agents do

                  PERCEPT[agent] ← GET-PERCEPT(agent,state)

            end

            for each  agent in agents do

                  ACTION[agent] - PROGRAM[agent](PERCEPT[agent])

            end

             state ← UPDATE-FN(actions, agents, state)

until termination(state)
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Now it is useful for ABS to design experiments, simulate, and analyze 

the results with other additional techniques different at sensibility 

analysis or screening. For that we use the Open AI Gym D as a module 

post-simulation to train the agents in an environment created in the ns-3 

simulator. 

�Description of the Experiment
A cluster can be used to test a mobile ad hoc network (MANET) [46].  

A cluster is a set of devices, based on a hierarchical organization. One 

of them has the coordination function called the cluster head (CH). The 

other important role is the gateway node (ttN). The CH manages the 

communication intracluster, and the ttN allows the communications 

intercluster [46], [90]–[92].

A MANET is a traditional ad hoc network with the characteristic that 

its nodes are in motion, so it is necessary that they dynamically adjust 

themselves to the changing conditions of their topology, which makes 

them useful for many situations such as natural disasters and emergencies 

because they are easy to configure and somehow resistant to failures. This 

type of network has a large number of features, but for the purpose of this 

project, we are interested in the following:

•	 Dynamic structure: The ad hoc network works without 

defining a topology and architecture. They have a 

dynamic structure that can change rapidly over time, 

and the links that form between nodes can be both 

unidirectional and bidirectional.

•	 Autonomous behavior: Each node can act as a host or 

as a router autonomously.

•	 Autoconfiguration: All nodes are capable of discovering 

neighbors and routes dynamically on a flat or 

hierarchical network structure.
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The code used to simulate is WifiSimpleAdhocGrid.cc. Listing 6-8 

shows the minimal libraries required for the MANET simulation.

Listing 6-8.  Libraries ABS Experiment

 1   #include "ns3/command-line.h"

 2   #include "ns3/config.h"

 3   #include "ns3/uinteger.h"

 4   #include "ns3/double.h"

 5   #include "ns3/string.h"

 6   #include "ns3/log.h"

 7   #include "ns3/yans-wifi-helper.h"

 8   #include "ns3/mobility-helper.h"

 9   #include "ns3/ipv4-address-helper.h"

10   #include "ns3/yans-wifi-channel.h"

11   #include "ns3/mobility-model.h"

12   #include "ns3/olsr-helper.h"

�Abstractions
Running the simulation first is necessary to define the abstractions and the 

ns-3 modules and then choose the events and the simulation steps, which 

can be seen at the command line while the simulation run. Listing 6-9 

shows how to configure them.

Listing 6-9.  Command-Line Attributes

 1   CommandLine cmd;

 2   cmd.AddValue ("phyMode", "Wifi Phy mode", phyMode);

 3   cmd.AddValue ("distance", "distance (m)", distance);

 4   �cmd.AddValue ("packetSize", "size of application packet 

sent", packetSize);
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 5   �cmd.AddValue ("numPackets", "number of packets generated", 

numPackets);

 6   �cmd.AddValue ("interval", "interval (seconds) between 

packets", interval);

 7   �cmd.AddValue ("verbose", "turn on all WifiNetDevice log 

components", verbose);

 8   �cmd.AddValue ("tracing", "turn on ascii and pcap tracing", 

tracing);

 9   �cmd.AddValue ("numNodes", "number of nodes", numNodes);

10   �cmd.AddValue ("sinkNode", "Receiver node number", 

sinkNode);

11   �cmd.AddValue ("sourceNode", "Sender node number", 

sourceNode);

12   cmd.Parse (argc, argv);

Node instance: Nodes are instantiated as follows:

Node c; c.Create(numNodes);

Listing 6-10 shows the program variable values.

Listing 6-10.  Code Variables

 1   std::string phyMode ("DsssRate1Mbps");

 2     double distance = 500; // m

 3     uint32_t packetSize = 1000; // bytes

 4     uint32_t numPackets = 1;

 5     uint32_t numNodes = 25; // by default, 5x5

 6     uint32_t sinkNode = 0;

 7     uint32_t sourceNode = 24;

 8     double interval = 1.0; // seconds

 9     bool verbose = false;

10     bool tracing = false;
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This instance allows you to create nodes without any configuration, so 

these nodes do not yet have any features to communicate, send data, etc.

Wi-Fi ad hoc configuration: Since the nodes have no configuration 

features, we proceed to configure them as Wi-Fi nodes. For this, we use the 

WifiHelper class that allows us to denote the nodes as Wi-Fi. However, its 

functionality is limited, so we use YansWifiPhyHelper, which allows us to 

configure the channel with features such as gain (RxGain), Wi-Fi standard, 

etc. We also configure the MAC so that it is ad hoc through WifiMacHelper. 

Finally, this configuration is installed to the nodes using the following:

Wifi.Install(wifiPhy,wifiMac,c)

Listing 6-11 shows the complete code.

Listing 6-11.  Antenna Mode and Physical Layer Code

 1   YansWifiPhyHelper wifiPhy = YansWifiPhyHelper::Default ();

 2   wifiPhy.Set ("RxGain", DoubleValue (-10) );

 3   �wifiPhy.SetPcapDataLinkType (WifiPhyHelper:: 

DLT_IEEE802_11_RADIO);

 4

 5   YansWifiChannelHelper wifiChannel;

 6   �wifiChannel.SetPropagationDelay ("ns3::ConstantSpeed 

PropagationDelayModel");

 7   �wifiChannel.AddPropagationLoss ("ns3::FriisPropagationLoss

Model");

 8   wifiPhy.SetChannel (wifiChannel.Create ());

 9

10   WifiMacHelper wifiMac;

11   wifi.SetStandard (WIFI_PHY_STANDARD_80211b);

12   �wifi.SetRemoteStationManager ("ns3::ConstantRateWifiManager",

13                                 �"DataMode",StringValue 

(phyMode),
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14                                 �"ControlMode",StringValue 

(phyMode));

15   wifiMac.SetType ("ns3::AdhocWifiMac");

16   �NetDeviceContainer devices = wifi.Install (wifiPhy, 

wifiMac, c);

Mobility module: The mobility module is of great importance to our 

goal. To make use of this, we have two methods that allow us to secure 

it for our needs. The first method is SetPositionAllocator in which 

we configure a type of initial configuration for our nodes, whether it is 

grid, linear, etc. In our case we use an allocator that allows us to define 

nodes randomly within a 500×500 rectangle. After this, we make use 

of the second SetMobilityModel method where we set up a constant-

speed mobility model so that our node can move. Listing 6-12 shows the 

configuration.

Listing 6-12.  Mobility Code

1   �mobility.SetMobilityModel ("ns3::ConstantPositionMobility 

Model");

2   mobility.Install (c);

Packets: To send packets, it is necessary assign IP addresses to the 

nodes. To do this, we use InternetStackHelper and Ipv4AddressHelper 

to add a default Internet stack and set up NICs with IPv4 as the protocol, 

respectively. Finally, the sockets for sending and receiving packets are 

configured. For this purpose, the ReceivePacket and GenerateTraffic 

functions defined before the main are used. In the MANET, because 

of their dynamic and stochastic nature, they are used in reactive and 

proactive routing protocols to deliver packets, discover neighbors, and 

search routes to the destination. For this example, use the proactive 

Optimized Link State Route Protocol (OLSR) to search for the best 

route based on the link-state parameter through hello packets that are 

disseminated on the wireless ad hoc network. Listing 6-13 shows the code.
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Listing 6-13.  OLRS Protocol and IP Address Configuration

 1   OlsrHelper olsr;

 2   Ipv4StaticRoutingHelper staticRouting;

 3

 4   Ipv4ListRoutingHelper list;

 5   list.Add (staticRouting, 0);

 6   list.Add (olsr, 10);

 7

 8   InternetStackHelper internet;

 9   internet.SetRoutingHelper (list);

10   internet.Install (c);

11

12   Ipv4AddressHelper ipv4;

13   NS_LOG_INFO ("Assign IP Addresses.");

14   ipv4.SetBase ("10.1.1.0", "255.255.255.0");

15   Ipv4InterfaceContainer i = ipv4.Assign (devices);

Application: Deploying services over the network is necessary to define 

the roles of the node server and node client and to provide services and 

consume them into the ad hoc network. The socket is the door by which 

the user comes into the server and the services are published. The service 

in IPv4 has an IP address and a port to publish the service. In this case, the 

port is 80, and the protocol is UDP. See Listing 6-14.

Listing 6-14.  Socket Creation Code

1   �TypeId tid = TypeId::LookupByName 

("ns3::UdpSocketFactory");

2   �Ptr<Socket> recvSink = Socket::CreateSocket (c.Get 

(sinkNode), tid);

3   �InetSocketAddress local = InetSocketAddress 

(Ipv4Address::GetAny (), 80);
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4   recvSink->Bind (local);

5   recvSink->SetRecvCallback (MakeCallback (&ReceivePacket));

6

7   �Ptr<Socket> source = Socket::CreateSocket (c.Get 

(sourceNode), tid);

8   �InetSocketAddress remote = InetSocketAddress (i.GetAddress 

(sinkNode, 0), 80);

9   source->Connect (remote);Code 6.15

Traffic: The traffic between nodes is generated for 30 seconds 

(simulation time). It is initializing the values as follows: the packet size is 

1,000 bytes, the number of packets is 100, and the data rate is a string with 

a value of 1Mbps. Those values are used for the method GenerateTraffic, 

which is described as a static void method that creates the sockets needed 

and then sends the packets until finished; for this case, it’s 100 packets. To 

confirm that the packet was received, the method ReceivePacket prints 

the message in the console as soon as the socket receives the packet. See 

Listing 6-15.

Listing 6-15.  Traffic Model and Schedule Code

1   std::string phyMode ("DsssRate1Mbps");

2   double distance = 500; // m

3   uint32_t packetSize = 1000; // bytes

4   uint32_t numPackets = 100;

5   double interval = 1.0; // seconds

6

7   �Simulator::Schedule (Seconds (30.0), &GenerateTraffic, 

source, packetSize, ‹→ numPackets, interPacketInterval);

 1   �static void GenerateTraffic (Ptr<Socket> socket, uint32_t 

pktSize, uint32_t ‹→ pktCount, Time pktInterval )
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 2   {

 3      if (pktCount > 0)

 4       {

 5        socket->Send (Create<Packet> (pktSize));

 6        �Simulator::Schedule (pktInterval, &GenerateTraffic, 

socket, pktSize,pktCount ‹→ - 1, pktInterval);

 7       }

 8      else

 9        {

10           socket->Close ();

11        }

12   }

13

14   void ReceivePacket (Ptr<Socket> socket)

15   {

16     while (socket->Recv ())

17       {

18         NS_LOG_UNCOND ("Received one packet!");

19       }

20   }

�Tracing
This step takes two kinds of traces. The first trace is the flat file called 

wifi-simple-adhoc-grid.tr. This is a ASCII file with all the information 

about the routing stream and the routing table and the neighbors’ 

transmission information. The second file is a .pcap file that is useful to 

analyze the information with a traffic analyzer such as Wireshark. This file 

is called wifi-simple-adhoc-grid and creates one file for each device. 

See Listing 6-16.
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Listing 6-16.  Output and Tracing Code

 1   if (tracing == true)

 2         {

 3            AsciiTraceHelper ascii;

 4            �wifiPhy.EnableAsciiAll (ascii.CreateFileStream 

("wifi-simple-adhoc-grid.tr"));

 5             �wifiPhy.EnablePcap ("wifi-simple-adhoc-grid", 

devices);

 6

 7             �Ptr<OutputStreamWrapper> routingStream = 

Create<OutputStreamWrapper> ‹→ ("wifi-simple-

adhoc-grid.routes", std::ios::out);

 8            �olsr.PrintRoutingTableAllEvery (Seconds (2), 

routingStream);

 9            �Ptr<OutputStreamWrapper> neighborStream = 

Create<OutputStreamWrapper> ‹→ ("wifi-simple-

adhoc-grid.neighbors", std::ios::out);

10             �olsr.PrintNeighborCacheAllEvery (Seconds (2), 

neighborStream);

11

12   }

�Run Simulation
Finally, to execute the simulation, print a log on the console with the 

node information. Create the simulation for 33 seconds, and call the Run 

method. Finally, destroy the simulation; in other words, kill the process on 

the kernel with the Destroy method. See Listing 6-17.
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Listing 6-17.  Running and Stopping the Simulation Code

1   �NS_LOG_UNCOND ("Testing from node " << sourceNode << " to " 

<< sinkNode << " with grid ‹→ distance " << distance);

2

3      Simulator::Stop (Seconds (33.0));

4      Simulator::Run ();

5      Simulator::Destroy ();

6

7      return 0;

�Analysis of Results
Open AI Gym allows you to create a system to train agents in the 

environment created by the agent’s existence. The essence of this module 

is to link the environment with the simulator and establish a method for 

the agent to obtain rewards at each step to improve the simulation results 

according to the factors and metrics selected on the simulation script.

The two learning metrics that will be used are the number of recorded 

nodes and the processing time. The objective is that the number of nodes 

recorded to transmit packets through the ad hoc network is reduced, and, 

in turn, the time required for the transmission of said packets is reduced. 

To verify this, various tools such as Wireshark will be used to observe 

the movement of packages (these tools are present in the requirements 

section).

Finally, it should be specified that the middleware and the Open 

AI Gym framework are based on the example of “cognitive radio” for 

their realization. The results are also based on the .pcap files to observe 
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the movement of packages and the graphic tools (mentioned in the 

requirements section) to observe the learning metrics. See Figure 6-5.

Listing 6-18 shows the elements to compose the integration simulator 

and Open AI Gym.

	 a)	 Agent: The agent is in charge of taking a simulation 

course; the agent can receive the iterations and start 

the parameters in the console, which correspond to the 

number of iterations and if the simulation of ns-3 is going 

to run, respectively. In addition, the agent configures the 

environment of ns-3, with these parameters:

•	 port: This is the port where you will communicate 

with the simulation.

•	 stepTime: This specifies how often a simulation step 

will take place.

Figure 6-5.  Open AI Gym framework [93]
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•	 startSim: This assigns the value it receives per 

console in the start parameter and indicates 

whether the ns-3 simulation is run.

•	 simSeed: This is the seed of the simulation.

•	 simArgs: These are the extra parameters of 

the simulation, such as simTime, which is the 

simulation time, and testArg, which is a test 

parameter to verify that the parameters are received 

as expected.

•	 debug: This is a Boolean that allows you to say 

whether to debug.

Listing 6-18.  Agent Configuration Code

 1   Ptr<OpenGymDataContainer> MyGetObservation(void){

 2

 3     std::vector<uint32_t> shape = {numNodes,};

 4     �Ptr<OpenGymBoxContainer<uint32_t> > box = ‹→ Create 

Object<OpenGymBoxContainer<uint32_t> >(shape);

 5

 6     for (uint32_t i = 0; i<2*numNodes; i++){

 7        u_int32_t value = m_channelOccupation.at(i);

 8        box->AddValue(value);

 9     }

10

11     NS_LOG_UNCOND ("MyGetObservation: " << box);

12     return box;

13   }

Chapter 6  MANET Simulation on ns-3



144

	 b)	 OpenGym: For the integration with the library, it was 

necessary to define the observation and action spaces 

in such a way that they would allow us to carry out 

the training regarding the movement of a node, as 

described in the description of the simulator. They are 

presented here (see Listing 6-19):

•	 Observation space: This will correspond to the 

positions of all nodes so that you can know the 

distance between them.

Listing 6-19.  Agent Observation Space Code

 1   Ptr<OpenGymSpace> MyGetObservationSpace(void)

 2   {

 3      float low = 0.0;

 4      float high = 10.0;

 5       std::vector<uint32_t> shape = {numNodes,};

 6      std::string dtype = TypeNameGet<uint32_t> ();

 7      �Ptr<OpenGymBoxSpace> space = CreateObject 

<OpenGymBoxSpace> (low, high, shape, ‹→ dtype);

 8      NS_LOG_UNCOND ("MyGetObservationSpace: " << space);

 9      return space;

10   }

•	 Action space: This corresponds to the movements 

of the node. It has movement, it is denoted as 

a random integer between 0 and 4, and this is 

mapped to an address: 1 corresponds to the 

top, 2 to the right, 3 to the bottom, and 4 to the 

left. Finally, 0 corresponds to not performing 

any movement. It should also be noted that the 

movement made by the node will be 15 units in the 

corresponding direction. See Listing 6-20.
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Listing 6-20.  Agent Actions Code

1   Ptr<OpenGymSpace> MyGetActionSpace(void)

2   {

3      uint32_t nodeNum = 5;

4

5      �Ptr<OpenGymDiscreteSpace> space = CreateObject<OpenGym 

DiscreteSpace> ‹→ (nodeNum);

6      NS_LOG_UNCOND ("MyGetActionSpace: " << space);

7      return space;

8   }

Likewise, it was necessary to denote the functions of MyGetReward and 

MyGetGameOver that correspond to the reward that will be given based on 

the current observation space and the decision of whether the state of 

the observation space is such that the simulation should be finalized. See 

Listing 6-21.

•	 MyGetReward: This was reported based on the distance 

of the node with respect to the others. On each 

iteration, it checks the channel occupation and uses 

a vector to define the distance between nodes. The 

conditions are a reward of +2 for each node that is less 

than or equal to 100 units, -1 for each node that is at a 

distance greater than 100 units, and less than or equal 

to 150 units.

Listing 6-21.  Agent Reward Code

 1   float MyGetReward(void){

 2      static float reward = 0.0;

 3

 4      �int x = m_channelOccupation[0], y = m_channel 

Occupation[1];
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 5      �for (uint32_t i = 2; i < m_channelOccupation.size()-1; 

i+=2){

 6        �int xx = m_channelOccupation[i], yy = m_channel 

Occupation[i+1];

 7        int d = distance(x,y,xx,yy);

 8        if(d<=10000){

 9           reward+=2;

10        }else if(d>=10000 && d<=22500){

11          reward-=1;

12        }

13   //otherwise no reward

14      }

15      return reward;

16   }

In the same way, a method called MyUpdatechannel allows you to 

analyze the new channel and the new network conditions to update the 

reward and the agent knowledge. See Listing 6-22.

Listing 6-22.  Customized Method for Agent Code

1   void MyUpdateChannel(){

2      �Ptr<ConstantVelocityMobilityModel> mob = ‹→ c.Get( 

sourceNode)->GetObject<ConstantVelocityMobilityModel>();

3      Vector pos = mob->GetPosition();

4

5      m_channelOccupation.at(0) = pos.x;

6      m_channelOccupation.at(1) = pos.y;

7   }
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•	 MyGetGameOver: Since the space in which the nodes 

are has a size of 500×500 and there are 20 nodes, this 

function is true if the node being observed is at a 

distance greater than 150 units from all nodes. See 

Listing 6-23.

Listing 6-23.  Agent Game in Code

 1   bool MyGetGameOver(void)

 2   {

 3

 4      bool isGameOver = false;

 5      bool test = false;

 6      static float stepCounter = 0.0;

 7      stepCounter += 1;

 8      if (stepCounter == 10 && test) {

 9        isGameOver = true;

10      }

11      NS_LOG_UNCOND ("MyGetGameOver: " << isGameOver);

12      return isGameOver;

13   }

•	 MyExecuteActions: The agent receives the 

observations from the channel occupation, and 

the node position calls the MyUpdateChannel() 

function to change the position and mobility with the 

ConstantVelocityMobilityModel. See Listing 6-24.
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Listing 6-24.  Agent Actions Code

 1   bool MyExecuteActions(Ptr<OpenGymDataContainer> action)

 2   {

 3      �Ptr<OpenGymDiscreteContainer> discrete = ‹→ DynamicCast 

<OpenGymDiscreteContainer>(action);

 4      uint32_t value = discrete->GetValue();

 5      direction = value;

 6

 7      MyUpdateChannel();

 8      NS_LOG_UNCOND ("MyExecuteActions: " << value);

 9      return true;

10   }

•	 Utils: There are two functions used to estimate the 

distance between nodes with the channel occupation 

parameter and change the velocity and the position of 

nodes on the ad hoc network, in four directions: up, 

down, right, and left. See Listing 6-25.

Listing 6-25.  Customized Agent Mobility Code

 1   int distance(int x,int y,int xx,int yy){

 2      return (x-xx)*(x-xx) +(y-yy)*(y-yy);

 3   }

 4

 5   void MoveNode(Ptr<ConstantVelocityMobilityModel> mob){

 6      �int speed = 15;// Here you configure the node to go 

faster or slower

 7      //Vector m_pos = mob->GetPosition();

 8      Vector m_velocity = mob->GetVelocity();

 9      if(direction == 0) //static

10        m_velocity = Vector(0,0,0);
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11      else if(direction == 1) //up

12        m_velocity = Vector(0,-speed,0);

13      else if(direction == 2) //right

14        m_velocity = Vector(speed,0,0);

15      else if(direction == 3) //down

16        m_velocity = Vector(0,speed,0);

17      else if(direction == 4) //left

18        m_velocity = Vector(-speed,0,0);

19      mob->SetVelocity(m_velocity);

20      Simulator::Schedule (Seconds (1.0), &MoveNode,

21      mob);

22   }

�Run and Analyze
Running the simulation with the ABS methodology is useful to run the 

example. For the “Hello World!” program, it is necessary to deploy the 

ambient in the first instance on terminal 1 at /path_to_ns/ns3_version. 

Execute the compiler waf as follows:

./waf --run /contrib/opengym/examples/opengym"

The simulator linked with the environment allows the existence of the 

agent (as Figure 6-6 shows).

Figure 6-6.  AI OpenGym ambient
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Running the simulation and creating the agent to learn the behavior 

is the main factor to improve the simulation. To run the agent on terminal 

2, go to the path to ns-3 and type the following command to execute the 

Python script:

1   �cd path_to_ns_3/ns3_version/contrib/opengym/examples/

opengym/

2   python3 ./test.py --start=0

Now the agent exists on the environment and runs the simulation, and 

it prints on the terminal the results as rewards for the agent, as shown in 

Figures 6-7a and 6-7b.

This exercise was developed from a Stochastic Models course in a 

systems engineering undergraduate program [94]. The first step is to 

build the project with the command ./waf in the ns3-version folder. 

The project to deploy the simulation is allocated in the scratch directory, 

/ns-3.version/scratch/. The work directory in our case is called 

wifiadhoc. The goal for the simulation is to hold the link between nodes. 

Figure 6-7.  ABS simulation output
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Using the position and the mobility pattern, the agent works in order to 

move the nodes to the cluster coverage zone for more time.

To run the environment, type the command ./waf --run 

"wifiadhoc" in the ns-3 path directory. On another terminal, to execute 

the agent, type the command in the work directory python3 scriptname.

py --start=0, and save the rewards. See Figure 6-8.

�Results
You can analyze the experiment using the .pcap files, the .tr file, and the 

agent’s reward file that are output to check the results and simulation. In our 

example, we used 20 nodes with the OLSR routing protocol and sent messages 

between two nodes (nodes 0 and 19), while the nodes moved on the canvas 

space at 500×500 units. In this example, for each node, a .pcap file is generated. 

You can use a Wireshark traffic analyzer [95] to verify the network behavior, 

check the protocols used, send packets, drop packets, and graph them.

In Wireshark you can show the protocols used in the simulation.  

This is possible through a dissector. In Wireshark each dissector decodes 

its part of the protocol, for example, OLSR, and then hands off decoding 

to subsequent dissectors for an encapsulated protocol. To develop a 

new protocol and analyze it, it is useful to create a proper dissector as a 

Figure 6-8.  ABS scenario simulation output
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library for Wireshark (.h file). Figure 6-9a shows the OLSR protocol used 

as a routing protocol on an ad hoc network. This protocol sends “Hello” 

messages every second to discover neighbors and the network structure. 

Figure 6-9b shows the control packets used for the IEEE 802.11a standard 

for recognition between nodes on the network. The mechanism described 

is only available with the enablement of ad hoc mode.

The payload on this experiment is sent at a constant rate of 2,000 bytes. 

Figure 6-10b shows the payload. The traffic is sent to the network while 

the nodes move on the canvas. For the transport protocol, we used a UDP 

stream based on the QUIC transport protocol [96], as shown in Figure 6-10a.  

The QUIC transport protocol incorporates stream multiplexing and per-

stream flow control; it also incorporates TLS 1.3 at the transport layer, 

offering comparable security to running TLS over TCP, with the improved 

connection setup latency of TCP Fast Open.

Figure 6-9.  Wireshark packet view output
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Finally, to check the UDP stream on Wireshark on each node, click 

the statistics menu and then the I/O graph to generate a graph with traffic 

information. In this case, it creates a graph with the UDP stream on QUIC, 

the source as the IP address 10.1.1.1, and the destination IP address 

10.1.1.20 on port 80. Figure 6-11a shows the packets sent for node 0 (100), 

and Figure 6-11b shows the received packets from node 0 to node 19.

Another way to check the simulation is on the trace output (.tr file), 

which contains all events and interactions between all nodes over all 

simulations. The common fields on a trace file are as follows:

Figure 6-10.  Wireshark packet analysis output

Figure 6-11.  Statistical analysis packet output
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•	 Event: This field contains the next options: + indicates 

a packet was enqueued. - indicates a packet was 

dequeued. d indicates a packet was dropped. r 

indicates a packet was received.

•	 Time: The next field in the ns-3 file is the time at which 

the event occurred.

•	 From: This is the starting node for the link on which the 

event has occurred.

•	 To: This is the ending node for the link on which the 

event has occurred.

•	 Type: The type indicates type of packets.

•	 Size: The size indicates the size of packets in bytes.

•	 Flags: For the experiment the flags are ignored.

•	 Class: This is the class of the packet, which can be used 

to identify a particular connection.

•	 Source: This is the source address.

•	 Destination: This is the destination address.

•	 seq: This is the sequence number of the packet.

•	 Id: This is the identifier of the packet.

Table 6-1 shows the field state as r (packet received), time (seconds), 

the protocol as split from the class information (17=UDP), source, 

destination, class type, and size. The table only has the first arrows to 

illustrate the output information. The output as .png files looks like 

Figure 6-12.
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Figure 6-12.  Packets received on node 19

All the packets are received on this experiment for the destination 

node. The agent keeps the nodes linked, controls the mobility on each 

node to avoid the drop packet on simulation time, and obtains the reward. 

The parameters are as follows:

•	 observation: This is the occupation on each channel in 

the current time slot and node position.

•	 actions: These set the channel to be used for the next 

time slot and move the node.

•	 reward: This is +2 if the node position is more than 100 

units with respect to another node; otherwise, it is -1.

•	 game over: This specifies if there is more than 150 units 

of distance between nodes on a MANET or the end 

simulation time.
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As Figure 6-13 shows, the agent has a reward of 1,443 points on the 

simulation. It is not the number of packets or packets received or a similar 

measure. The reward is based on the node position inside the ns-3 canvas 

that allows communication between nodes in ad hoc mode. The OLSR 

messages and the UDP stream are between node 0 and node 19. At 400 

seconds in the simulation time, the agent checks each communication 

on 200 events, checking the condition at each position and the channel 

occupations per node. The reward concludes that the nodes are in a 

cluster form on the same coverage area between 1 and 100 units. See 

Figure 6-13.

Figure 6-13.  Wi-Fi agent reward
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�Summary
MANETs are networks connected via mobile wireless devices. Their special 

characteristics make their implementation a little bit complicated. That’s 

why simulators are so important since they allow an alternative way to 

validate a model. One of these simulators is ns-3. This chapter provided all 

the necessary information to write code, simulate it, and obtain different 

metrics associated with the operation of wireless networks.

The discrete event simulation allows you to create dynamic 

scenarios for networks, for instance wireless networks with centralized 

infrastructure, protocols such as IEEE 802.11, mobility, channel 

interference, and all the features for testing and verifying the network 

behavior. MANETs or ad hoc networks don’t have infrastructure and use 

proactive and reactive protocols to maintain the services and user requests 

on the cluster. To move forward in a simulation, the ABS techniques are 

useful to validate the variables, to search for better scenarios to guarantee 

the optimal working on the cluster or simulation scenario with the 

inclusion of an agent model, to abstract the environment, and to evaluate 

the metrics for rewards or game over in the agent. The agent model in the 

ns-3 simulation creates a new ecosystem that elevates the technical and 

computational rigor of the simulator.

�Complementary Readings
Read the following on your own to learn more:

	 1.	 Agent-based modeling and simulation Simon Taylor [97]

	 2.	 Introduction to discrete event simulation and 

agent-based modeling: voting systems, health care, 

military, and manufacturing [98]

Chapter 6  MANET Simulation on ns-3



159

	 3.	 Multi-Agent-Based Simulation XIX: 19th 

International Workshop, MABS [99]

	 4.	 Fast prototyping of network protocols through ns-3 

simulation model reuse [100]

	 5.	 Ad-hoc networks: fundamental properties and 

network topologies [101]
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CHAPTER 7

MANETs and PLC 
on ns-3
�Power Line Communication
Much of the work in telecommunications is done in the physical channel 

through which the transmission of information is carried out. Each 

communication channel has its own characteristics that facilitate or hinder 

the transmission of information, so the technology must be adapted using 

different modulation, multiplexing techniques, and efficient access to the 

transmission medium.

In the exploration of different communication channels and 

transmission mediums, we have been gradually advancing from guided 

transmission in wires, waveguides of different shapes, and optical 

fiber channels that notably increase the transmission speeds, to high 

throughput dispersive wireless channels that take advantage of constant 

improvement of electromagnetic spectrum engineering and add mobility 

to the communication nodes, among other benefits.

In this exploration of possible communication methods, it has been 

demonstrated that the most traditional guided medium that was not 

initially designed at all for the transmission of information has good 

performance as well as other communications mediums in certain 

https://doi.org/10.1007/978-1-4842-6849-0_7#DOI
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conditions: electrical power lines. The transmission of information 

through power cables is not a new idea. In the late 1880s or early 1900s, 

there were already patents about information transmission on devices that 

allowed remote measurements to be made through electrical distribution 

cables [102].

The applications of this channel were increasing over time, and the 

transmission frequencies increased gradually; however, until the early 

1990s they operated only below 3kHz, so the transmission rates were low.

In the late 1990s, some applications were developed in the 1.8MHz 

band at 250MHz that allowed transmission rates in electrical distribution 

lines up to the order of hundreds of megabits per second, which enabled 

the Internet to be supplied through this channel. This field is currently 

known as power line communications (PLC). At the beginning of the 21st 

century, the research approach once again focused on narrow-band 

transmissions due to possible applications in smart grids [102].

Although current technology allows the use of high-, medium-, and 

low-voltage power distribution lines as a communication back-haul for 

the distribution of telecommunications services to city users, several 

technical and legal difficulties in the use of these lines have limited its use. 

However, an application that has gained acceptance in the use of PLCs is 

the transmission of information in the internal networks of buildings.

�Fundamental Characteristics of the PLC Channel
The use of the power line channel for information transmission finds its 

greatest challenge in the technical difficulties arising from the fact that 

a power line is not a medium designed for this purpose. The complete 

design of electrical distribution networks had, until recently, the unique 

purpose of transmitting energy to the end users of electrical services, and 

in its design and construction no high frequency handling considerations 

were made.
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For this reason, the use of the PLC channel as a communication 

medium implies challenges to overcome the tough characteristics 

imposed by the medium. The first great challenge is to obtain a suitable 

model of the medium. Consequently, the first effort was aimed at 

measuring the parameters on the real power lines in order to find common 

characteristics and to extract parameters that would serve for modeling 

the system. However, it must be considered that the electrical transmission 

networks differ greatly from country to country, and even in the specific 

case of a country as Colombia, there are differences in the electrical 

network structure depending on the sectors and of the type of end points.

For this reason, further efforts were made for creating deterministic 

models that subsequently allow the transmission channel to be modeled 

under different circumstances and under the different design parameters 

of an electrical network.

From the measurements that were conducted in the research and their 

subsequent validation using deterministic techniques, certain common 

characteristics were observed in the PLC channels. For instance, these 

mediums are frequency selective, which means that the communications 

channel presents fading for signals at certain frequencies, and in addition, 

due to the characteristics of the devices connected to the network and the 

randomness nature of their connection and disconnection, the channel 

presents temporary changes that cause the transfer function models of the 

system to change.

Also, the temporal changes in the channel model show a relationship 

with the period of the electrical network so that cyclical repetitions can be 

observed that generally have half of the period of the power signals in the 

network.

Likewise, the PLC channel is subject to colored noise figure types, 

which is noise that has some components of a larger magnitude in certain 

regions of the frequency spectrum, unlike white noise that has a uniform 

magnitude throughout the spectrum.
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�Deterministic Models of PLC Channel
There are two general perspectives for modeling the transfer function of 
the power line channel. The first is the perspective of the analysis in the 
time domain, in which the communication channel is considered as a 
multipath channel, which means that the model is built using the property 
of multiple reflections of the waves, caused by the possible paths that they 
can take from the sender to the receiver.

In the specific case of the power line channel, those reflections are 
caused by the multiple branches and interconnections in the wiring and by 
the differences between impedances through the line and the differences 
with the impedance of the loads connected to it. In this way, each of these 
discontinuities generates reflections as transmitted waves that reach the 
receiver at different times and with different amplitudes due to attenuation 

[103]. See Figure 7-1.

Figure 7-1.  Measured time and frequency variations of PLC channel 
[103]
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According to a temporal analysis, the transfer function can be 

described as the sum of functions corresponding to each of the signal 

paths. Each of these functions, in turn, will have a dependency on the link 

topology, the signal attenuation coefficients, and the time delays that each 

path introduces.

This approach can be complex when trying to model all the 

discontinuities and leads present in a PLC channel in a real scenario, since 

all possible reflection and transmission paths must be considered.

Another perspective of analysis is the one based on the theory of 

transmission lines, which starts from a detailed knowledge of the network 

and the constructive characteristics of the cabling that makes it up, 

resulting in getting a complete model of the channel to be made from 

the transmitter to the receiver. This perspective is also used for modeling 

two-wire DSL copper lines [104]; however, the analysis can be extended to 

three-wire lines or four-wire transmission lines.

This method considers an infinitesimal fragment of transmission line, 

which can be characterized with just four parameters: a resistive value “R” 

and an inductive value “L” per unit length and a value of capacitance “C” 

and one of conductance “G” that constitute a parallel impedance. These R, 

L, C, and G values are called primary parameters. Using these values and 

circuit theory, a differential equation can be obtained for the voltages and 

currents on this infinitesimal line fragment model; these equations are 

called currently the telegrapher’s equations.

If we add to the infinitesimal line segment a voltage source at one of its 

ends and an impedance at the other, we will form a circuit. When solving 

the equations of this circuit, we can find a relationship between the voltage 

and the current on the infinitesimal segment, which is made up of two 

waves that travel in different directions, one of which is the transmitted 

wave and the other is the reflected wave from the termination of the line.
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In this way, we can find a frequency-dependent relationship between 

the voltages and currents at the beginning of the fragment and the end of 

it, using the following matrix equation, where A, B, C, and D are factors 

that depend on distributed factors: resistance, inductance, capacitance, 

and conductance of the line [104].

	 V I A BC D V I
1 1 2 2� � � � �� � 	

Each of these infinitesimal segments can be viewed as a two-port 

network, with two inputs and two outputs. If we locate a consecutive 

sequence of these ports, knowing the parameters A, B, C, and D of each 

one, we could deterministically model the behavior of a cable segment or 

transmission line from the emitter to the receiver, finding the function of 

transfer of each of the fragments and making a product between them.

�PLC Software for ns-3 Simulation
In the attempt to model and predict the behavior of PLC channels for the 

transmission of data, different simulation methods and software have been 

used; these methods have used measurements made in the field over real 

channels and theoretical approaches that allow predicting their behavior 

in a deterministic way. Standing out among the software produced for that 

purpose is the one developed by Fariba Aalamifar et al. [105] as a module 

for network simulation software based on discrete ns-3 events [106].

This software is based on the transmission line theory to model the 

behavior of the PLC channel and calculate its transfer function; it also includes 

tools to conform communication topologies with PLC nodes, add different 

types of noise and different types of impedances in each of its nodes, and 

easily implement a connection with the other abstractions of ns-3.
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The module can be divided into four constitutional parts for easy 

analysis. The first module is called Grid and Network Elements, where the 

user can create different network topologies by joining different nodes. In 

this class, a range of frequencies and a resolution must be defined on the 

calculations and simulation.

Each of the nodes of the PLC network can be seen as the vertices of 

a graph and can fulfill different functions, one of which is to serve as an 

impedance. The software allows you to add an impedance to a PLC node. This 

impedance can be constant (modeled as a complex number that never varies 

during simulation), frequency selective (modeled as a vector of complex 

numbers that can be supplied where each value corresponds to a frequency 

or three parameters of a resonant circuit), selectivity in time (modeled as a 

vector of complex numbers that is supplied where each value corresponds to 

a specific time in the main cycle), and selectivity in both frequency and time 

that combines the properties of the two previous models.

The nodes can also be used as active components of communication, 

being assigned as transmitters or receivers. In this way, the node will have 

an interface that will allow the use of protocols such as TCP/IP.

To create a more realistic simulation scenario, the software also allows 

the nodes to be used as a noise source. Several functions are implemented 

to model the white noise, the colored noise, the impulsive noise set by the 

user, and the impulsive noise of random type.

Finally, the software allows the nodes to be used as unions where 

multiple vertices of the graph converge or branch.

As shown in Figure 7-2, another functionality of the grid and network 

abstraction of the module is the function for creating edges, which are 

understood as the links between the nodes. This link is modeled by the 

software through a two-port network characterized by an ABCD matrix. 

The elements can be fixed, time-selective, or frequency-selective. The 

module includes three different model of cables used in electrical 

installations: the NAYY 150SE and NAYY 50SE four-section cables and the 

AL3X95XLPE three-section cable.

Chapter 7  MANETs and PLC on ns-3



168

The next abstraction of the module is the so-called Topology Creation. 

In this abstraction, the topologies that are made up of the nodes and links 

mentioned earlier are handled. For the creation of topologies, an arbitrary 

number of nodes and links is allowed; however, the limitation is that no 

closed cycle is contained within it. The software allows the calculation of 

the transfer function between any pair of PLC nodes in the topology, as 

well as the signal-to-noise ratio and the power spectral density.

Finally we find the “core” module. This module is divided into two 

main parts. The first is the class PLC channel that allows you to link all the 

transfer functions of the PLC channels and also extends the Channel class 

of ns-3, allowing you to add elements of the NetDevice class to the PLC 

nodes. The second is the PLC ChannelTransferImpl class that computes 

the transmission channel using transmission line theory.

�MANET and PLC Simulation
Next, a practical communication scenario will be presented on electrical 

channels in an in-home space, which will be simulated using ns-3. 

Figure 7-3 shows the electrical plan of a house or single-family apartment 

that, with certain modifications, is common in different parts of the world. 

The plan also shows the electrical connection diagram of the house where 

the distribution box can be seen, where the electrical energy is distributed 

to the entire house. In the case of houses with a single-phase supply (the 

most common in this type of electrical installations), three cables are used, 

which are called phase, neutral, and ground; however, the links are shown 

here by means of a single line.

Since some of the nodes shown in Figure 7-3 correspond to lamps, 

they cannot be used for communication through the power line. For this 

reason, the nodes used as the communication interface will be those 

corresponding to outlets, since it is there that a communication signal 

can be injected and obtained. The other nodes will simply be taken as 

branches or interconnection points. See Figure 7-2.
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In Figure 7-4, a two-dimensional representation of the same plane can 

be seen, where all the nodes are distributed in the same plane, respecting the 

distances between nodes. In this case, the switches are not taken into account 

since they do not represent a branch or a possible communication node.

Now we will look at how to create PLC links using the module 

described in the previous section. For this purpose, some lines of code will 

be described that will allow us to understand the operation and structure 

of the simulation. We will start with a simple link between two nodes, 

which is completely done through a PLC channel.

To start, we define a spectral model that will give the information of 

the frequency interval on which we will work in our simulation. In this 

case, we are taking from 0 to 10MHz, and this interval is divided into 100 

positions. See Figure 7-3 and Listing 7-1.

Figure 7-2.  Graphical description of main classes of ns-3 PLC module
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Listing 7-1.  Spectrum Model PLC

1   PLC_SpectrumModelHelper smHelper;

2   Ptr<const SpectrumModel> sm;

3   sm = smHelper.GetSpectrumModel(0, 10e6, 100);

Subsequently, the power spectral density of transmission is defined, 

that is, the power that will be applied to the channel at each of the 

frequencies previously defined when transmitting. In the specific case of 

this example, a power of 10nW or -50dBm will be used, applied uniformly 

to all the frequencies of the channel.

It is important to consider that one of the limitations for the use of 

the PLC channel for information transmission is that of electromagnetic 

compatibility, since by this same medium the electrical energy is 

distributed for the home. That is, although communication can be 

improved by applying more power to transmit the information, this would 

Figure 7-3.  Electrical diagram of a single-phase installation of a house
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greatly affect the main purpose of the channel; however, addressing this 

type of problem goes beyond the purpose of this book, so in the suggested 

reading material at the end of the chapter, you will be able to find multiple 

texts that deepen this and other perspectives of communication on PLC 

channels. See Figure 7-4 and Listing 7-2.

Listing 7-2.  PLC Channel Setup

1   Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

2   (*txPsd) = 1e-8;

The next step is to define a communication channel between the 

nodes, for which an AL3x95XLPE type cable is created, which is part of and 

is defined within the module used for the simulation. This cable is also 

associated with the spectrum model created earlier. See Listing 7-3.

Figure 7-4.  2D representation of PLC nodes inside the house
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Listing 7-3.  PLC Cable Setup

1   �Ptr<PLC_Cable> cable = CreateObject<PLC_AL3x95XLPE_Cable> 

(sm);

We can also associate the PLC nodes with an impedance that would 

allow us to simulate the behavior of the communication if a device that 

has a constant impedance, an impedance that depends on frequency, or 

an impedance that depends on time or one that depends on both, time 

and frequency, is connected to any of the nodes. For this reason we create 

a vector of 100 positions, taking into account that our spectral model has 

this same quantity. In this vector, we save each of the impedance values 

associated with the corresponding frequency of the spectral model. For 

the specific case of our example, all the positions of the vector contain 

the value 50, so in each of the frequencies there would be a constant 

impedance value of 50 ohms. See Listing 7-4.

Listing 7-4.  PLC Impedance Setup

1   PLC_ValueSpectrum values(100,50);

2   �Ptr<PLC_FreqSelectiveImpedance> shuntImp = Create<PLC_

FreqSelectiveValue> (sm,values);

Having all the characteristics, we can proceed to create the necessary 

nodes to establish communication. In this process, the nodes that will act 

as bifurcation or interconnection must also be taken into account. After 

creating the nodes, a position must be associated with them, which will 

allow us to subsequently calculate the transfer function of the channel. In 

this case, we have that the nodes are at a distance of 5 meters from each 

other. After creating the nodes, they must be added to one or more lists, 

which will allow us to assign group qualities to them. Finally, we can link 

the nodes through the channels created previously. See Listing 7-5.
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Listing 7-5.  PLC Link Nodes

 1   Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

 2   Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

 3

 4   n1->SetPosition(0,0,0);

 5   n2->SetPosition(5,0,0);

 6

 7   n1->SetName("Node1");

 8   n2->SetName("Node2");

 9

10   PLC_NodeList nodes;

11   nodes.push_back(n1);

12   nodes.push_back(n2);

13

14   CreateObject<PLC_Line> (cable, n1, n2);

15

Now we can configure the channel and the nodes that we will use 

for communication. For this purpose, we create an object of class PLC 

ChannelHelper and install it to the group of defined nodes, after which 

we can call the channel created. In this case, we are going to associate the 

impedance frequency dependence shuntImp at node 1, which means that 

this node will present an impedance of 50 ohms at all frequencies of the 

spectrum. See Listing 7-6.

Listing 7-6.  PLC Outlet Setup

1   PLC_ChannelHelper channelHelper(sm);

2   channelHelper.Install(nodes);

3   Ptr<PLC_Channel> channel = channelHelper.GetChannel();

4
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5   �Ptr<PLC_Outlet> outlet1 = CreateObject<PLC_Outlet>  

(n1, shuntImp);

6

Then a PLC network device can be associated with the created nodes. 

In this case, some aspects of the communication are configured by 

default, such as the physical layer, the modulation and coding scheme of 

the headers, and the communication payload, after which we can fully 

calculate the transfer function of the channel. See Listing 7-7.

Listing 7-7.  PLC Physical Layer Setup

1   PLC_NetDeviceHelper deviceHelper(sm, txPsd, nodes);

2   �deviceHelper.DefinePhyType(TypeId::LookupByName ("ns3::PLC_

InformationRatePhy"));

3   �deviceHelper.DefineMacType(TypeId::LookupByName ("ns3::PLC_

ArqMac"));

4   �deviceHelper.SetHeaderModulationAndCodingScheme(ModulationA

ndCodingScheme(BPSK_1_4,0));

5   �deviceHelper.SetPayloadModulationAndCodingScheme(Modulation

AndCodingScheme(BPSK_1_2,0));

6   deviceHelper.Setup();

7   channel->InitTransmissionChannels();

8   channel->CalcTransmissionChannels();

After the creation and configuration of the PLC nodes, we can create 

a node container of the NodeContainer class of ns-3, which allows linking 

the nodes created previously to the normal software interface. This implies 

that we can associate the PLC nodes with characteristics already known 

as network devices or routing protocols normally used in other types of 

networks.

1   NodeContainer nodes1;

2   nodes1=deviceHelper.GetNS3Nodes();
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�Wireless-PLC Mixed Node
The creation and association of nodes discussed will allow the formation 

of communication networks where the only communication channel is 

the power lines, which can be useful in multiple experimental settings. 

However, given the versatility and variety in modern communication links, 

it is necessary to create nodes within the simulation environment that can 

support two or more communication interfaces.

For this reason, the way to establish nodes in the simulator that allow 

the interface in different communication channels is shown in Listing 7-8, 

which is today a common denominator in communication devices.

The procedure for defining the PLC node does not differ from the one 

shown previously; a spectrum is defined that will allow us to conduct the 

simulation and define other parameters such as the impedance associated 

with the nodes or the power spectral density applied for transmission. 

After this, the nodes are created and associated with the physical positions, 

and the usual configuration is carried out.

Listing 7-8.  PLC: Wireless, Mixed Architecture

 1   // Define spectrum model

 2   PLC_SpectrumModelHelper smHelper;

 3   Ptr<const SpectrumModel> sm;

 4   sm = smHelper.GetSpectrumModel(0, 10e6, 100);

 5

 6   // Define transmit power spectral density

 7   Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

 8   (*txPsd) = 1e-8; // -50dBm/Hz

 9

10   // Create cable types

11   �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_Cable> 

(sm);
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12

13   // Create nodes

14   Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

15   Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

16   n1->SetPosition(0,0,0);

17   n2->SetPosition(100,0,0);

18   n1->SetName("Node1");

19   n2->SetName("Node2");

20

21   PLC_NodeList nodes;

22   nodes.push_back(n1);

23   nodes.push_back(n2);

24

25   // Link nodes

26   CreateObject<PLC_Line> (cable, n1, n2);

27

28   // Set up channel

29   PLC_ChannelHelper channelHelper(sm);

30   channelHelper.Install(nodes);

31   Ptr<PLC_Channel> PLCchannel = channelHelper.GetChannel();

32

33   // Create PLC net devices

34   PLC_NetDeviceHelper PLCdeviceHelper(sm, txPsd, nodes);

35   �PLCdeviceHelper.DefinePhyType(TypeId::LookupByName 

("ns3::PLC_InformationRatePhy"));

36   �PLCdeviceHelper.DefineMacType(TypeId::LookupByName("ns3::P

LC_ArqMac"));

37   �PLCdeviceHelper.SetHeaderModulationAndCodingScheme(Modulat

ionAndCodingScheme(BPSK_1_4,0));

38   �PLCdeviceHelper.SetPayloadModulationAndCodingScheme(Modula

tionAndCodingScheme(BPSK_1_2,0));
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39   PLCdeviceHelper.Setup();

40

41   // Calculate channels

42   PLCchannel->InitTransmissionChannels();

43   PLCchannel->CalcTransmissionChannels();

44

45   // Get NS-3 node container

46   NodeContainer PLCnodes;

47   PLCnodes=PLCdeviceHelper.Getns-3Nodes();

48

49   NetDeviceContainer PLCDevices;

50   PLCDevices = PLCdeviceHelper.GetNetDevices();

Once we have created and linked with the ns-3 functionalities, the PLC 

nodes can be used to establish communications with other interfaces. In 

this specific example, a node container has been created that will handle 

the CSMA media access protocol. In this container, the previously created 

PLC node will be pulled from its container. It is important to consider 

here that this call to the node must be made on the container that allows 

the link between the PLC module and the ns-3 functionalities, in this 

case called PLCnodes, and must never be made from the list of PLC nodes 

called here nodes since they do not yet have interconnectivity with the full 

functionalities of the software. See Listing 7-9.

Listing 7-9.  Wireless Node Setup

1   NodeContainer csmaNodes;

2   csmaNodes.Add (PLCnodes.Get (1));

3   csmaNodes.Create (nCsma);
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In this case, we would already have a node with the two interfaces; 

however, it would be necessary to configure the rest of the functionalities 

of the network devices. The following shows the configuration of the PLC 

nodes, within which there is one that has a double interface, and that is in 

two containers: PLCnodes and csmaNodes.

�PLC Simulation Examples
Here are some examples.

�PLC Simulation on ns-3

In this example, developed through the NS-3 simulation software [106], 

the topology shown in the Figure 7-4 built. The communication channels 

in this example are only the electrical transmission lines inside home, and 

it is a matter of verifying the possible influences on communication with 

different routing techniques, normally used in wireless communications. 

Similarly, an attempt is made to test the influence that other parameters 

have on communication, among which are the size of the transmitted 

packet and the transmission power spectral density (which will be taken as 

a single value at all frequencies). Finally, the influence that the impedance 

associated with the nodes of the network would have can be estimated 

with this experimental setup.

The objective of the experimental test is to evaluate the effect 

that the aforementioned input parameters have on the quality of the 

communication service in order to verify the efficiency of the channel 

in scenarios within the home, so it will be taken as the output of the 

simulation the throughput or the rate of packets delivered successfully in 

kilobits per second, so the program will export the packet reception rate 

data and the number of packets delivered in a CSV file.
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To facilitate the experimental tests, a class called PLCRoutingExperiment 

is created, which includes the fundamental parameters for the simulation, 

as well as the Run functions from where the main communication settings 

will be made and the simulation will be run; SetupPacketReceive, where 

the reception of the packet will be configured according to a node and an 

IPv4 address for which a socket will be configured; CommandSetup, where 

the inputs of the parameters will be configured by console in order to make 

changes in a simple way in the simulation without having to modify all the 

NS-3 code; ReceivePacket, in which a socket is received as a parameter and 

the packets sent are counted in order to have a record of the transmission 

rate; and CheckThroughput, in which the transmission rate is calculated in 

kilobits per second. See Listing 7-10.

Listing 7-10.  Traffic Experiment Setup

 1   void

 2   PLCRoutingExperiment::ReceivePacket (Ptr<Socket> socket)

 3   {

 4      Ptr<Packet> packet;

 5      while ((packet = socket->Recv ()))

 6         { bytesTotal += packet->GetSize ();

 7           packetsReceived += 1;

 8           �NS_LOG_UNCOND (PrintReceivedPacket (socket, 

packet));

 9         }

10   }

 1   Ptr<Socket>

 2   �PLCRoutingExperiment::SetupPacketReceive (Ipv4Address 

addr, Ptr<Node> node)

 3   {

 4      �TypeId tid = TypeId::LookupByName 

("ns3::UdpSocketFactory");
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 5      Ptr<Socket> sink = Socket::CreateSocket (node, tid);

 6      �InetSocketAddress local = InetSocketAddress (addr, 

port);

 7      sink->Bind (local);

 8      �sink->SetRecvCallback (MakeCallback (&PLCRoutingExperim

ent::ReceivePacket, this));

 9

10      return sink;

11   }

 1   std::string

 2   PLCRoutingExperiment::CommandSetup (int argc, char **argv)

 3   {

 4      CommandLine cmd;

 5      �cmd.AddValue ("CSVfileName", "The name of the CSV 

output file name", m_CSVfileName);

 6      �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV;4=DSR", 

m_protocol);

 7      �cmd.AddValue ("packetSize", "Packet Size", m_

packetSize);

 8      �cmd.AddValue ("txp", "Transmit power spectral density", 

m_txp);

 9      cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

10      cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e);

11      cmd.Parse (argc, argv);

12      return m_CSVfileName;

13   }
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To know the influence that the input has on the simulation, an analysis 

of each of the parameters must first be carried out. The routing protocols will 

include four, two proactive (OLSR and DSDV) and two reactive (AODV and 

DSR), as they are the most common in decentralized communications. The 

packet size is defined as a value that can vary between 1 bit and 1Mb, as this 

value is considered a high enough maximum to affect the packet reception 

rate. On the other hand, the transmission power is a value that ranges from 

microwatts to megawatts (this consideration is purely theoretical since the 

idea of injecting this amount of energy into the power line is impossible in 

reality). Given that the impedance associated with every node can take a real 

value, every one of those will be a simulation input.

Since the simulation has as input the size of the packet to be sent, 

the routing protocol, the power spectral density of the transmission, the 

transmission rate, and the impedance of each of the nodes associated with 

the outlets, it is suggested to perform a screening process that allows you to 

select the most important factors that determine simulation variations.

To facilitate access to the input variables of the simulation, a link 

is made with command-line arguments. From there you can select the 

name of the output CSV file, the routing protocol to use, the packet size, 

the power spectral density, and the nodes that will act as transmitter and 

receiver of the transmission. See Listing 7-11.

Listing 7-11.  CMD Experiment Setup

1   �cmd.AddValue ("CSVfileName", "The name of the CSV output 

file name", m_CSVfileName);

2   �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV;4=DSR", 

m_protocol);

3   cmd.AddValue ("packetSize", "Packet Size", m_packetSize);

4   �cmd.AddValue ("txp", "Transmit power spectral density", 

m_txp);

5   cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

6   cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e)

Chapter 7  MANETs and PLC on ns-3



182

The complete code of this example can be found in Appendix F of 

this book. In the same way, Listing 7-12 is a bash script that allows you 

to iterate over one of the inputs of the simulation, in this case the routing 

protocol. This simple script can be modified to achieve independent or 

nested iterations of the variables to be treated; however, as mentioned 

earlier, the number of variables would make the combination of all of 

them have too high a computational cost, so the process of screening is 

necessary to lighten the computational load.

Listing 7-12.  Bash Code to Run Iterative Simulations from Linux 

Terminal

 1   #! /bin/bash

 2   cd *your ns-3 route*/ns-allinone-3.25/ns-3.25

 3

 4   packetSize='1'

 5   for i in {1..4}

 6   do

 7   case "$i" in

 8   1) �sudo ./waf --run "scratch/plc_routing_compare --protocol=$i  

‹→ --CSVfileName="PLC-routing_OLSR.output.csv" --packetSize 

=$packetSize"

 9   ;;

10   2) �sudo ./waf --run "scratch/plc_routing_compare --protocol 

=$i ‹→ --CSVfileName="PLC-routing_AODV.output 

.csv" --packetSize=$packetSize"

11   ;;

12   3) �sudo ./waf --run "scratch/plc_routing_compare --protocol= 

$i ‹→ --CSVfileName="PLC-routing_DSDV.output. 

csv" --packetSize=$packetSize"

13   ;;
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14   4) �sudo ./waf --run "scratch/plc_routing_compare --protocol=$i  

‹→ --CSVfileName="PLC-routing_DSR.output.csv" --packetSize= 

$packetSize"

15   ;;

16   *) echo "Non valid state"

17   ;;

18   esac

19   done

�Mixed Wireless-PLC Simulation on ns-3
This section presents a simple and concrete example that allows the use 

of communication nodes with a double interface, which allows the use of 

several communication channels. The topology consists of a backbone 

made up of two PLC nodes. Two LAN node and two WiFi nodes are linked 

to each of these nodes, which will use the PLC backbone to communicate 

with each other.

It begins with the creation of the PLC backbone, which is made up of 

two nodes. They are assigned a position and a link channel; in this case, it 

will be the NAYY150SE cable. See Listing 7-13.

Listing 7-13.  PLC Channel Configuration

 1   �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_Cable> 

(sm);

 2

 3   Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

 4   Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

 5

 6   n1->SetPosition(0,0,0);

 7   n2->SetPosition(10,0,0);

 8

 9   n1->SetName("Node1");
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10   n2->SetName("Node2");

11

12   PLC_NodeList nodes;

13   nodes.push_back(n1);

14   nodes.push_back(n2);

15

16   CreateObject<PLC_Line> (cable, n1, n2);

17

18   PLC_ChannelHelper channelHelper(sm);

19   channelHelper.Install(nodes);

20   Ptr<PLC_Channel> channel = channelHelper.GetChannel();

Next, the LAN nodes are created that will be linked to node 0 of the PLC 

backbone, so they are located in the same node container. See Listing 7-14.

Listing 7-14.  LAN Backbone Setup

1   NodeContainer newLanNodes;

2   newLanNodes.Create (lanNodes - 1);

3   NodeContainer lan (PLCBackbone.Get (0), newLanNodes);

Finally, the WiFi nodes that will be linked to node 1 of the backbone 

are created. See Listing 7-15.

Listing 7-15.  Wireless Node Setup

1   NodeContainer stas;

2   stas.Create (infraNodes - 1);

3   NodeContainer infra (PLCBackbone.Get (1), stas);

Once all the nodes have been created and located, an OnOff 

application is created that will allow information to be sent between two 

nodes on the network. The information will travel from the LAN node, 

through the PLC backbone, until it reaches the last WiFi node created. See 

Listing 7-16.
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Listing 7-16.  Set Ipv4 Address and socket creation

 1   uint16_t port = 9;

 2   NS_ASSERT (lanNodes > 1 && infraNodes > 1);

 3   Ptr<Node> appSource = NodeList::GetNode (backboneNodes);

 4   Ptr<Node> appSink = NodeList::GetNode (3);

 5   �Ipv4Address remoteAddr = appSink->GetObject<Ipv4> 

()->GetAddress (1, 0).GetLocal ();

 6   OnOffHelper onoff ("ns3::UdpSocketFactory",

 7   Address (InetSocketAddress (remoteAddr, port)));

 8   ApplicationContainer apps = onoff.Install (appSource);

 9   apps.Start (Seconds (3));

10   apps.Stop (Seconds (stopTime - 1));

This code allows the generation of traces to observe the passage of 

information in each of the nodes so they can be observed in a packet 

analyzer software such as Wireshark. The complete code for this example 

is available in Appendix G of this book.

�Summary
This chapter deals with a communication channel that has been 

designed for the transmission and distribution of energy but that in 

certain circumstances may present advantages for the transmission 

of information. This form of communication is called power line 

communication. Two application examples are presented, one with 

a completely PLC channel, in which various input parameters of the 

simulation can be modified, and the other that has a PLC backbone over 

which LAN and WiFi nodes communicate.
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�Complementary Readings
Here are some topics to learn more about:

	 1.	 Power line communications: theory and 

applications for narrowband and broadband 

communications over power lines [103]

	 2.	 Power line communications principles, standards, 

and applications from multimedia to smart grids [102]

	 3.	 Modeling power line communication using ns-3 [105]

	 4.	 Fundamentals of DSL technology [104]

	 5.	 Waves and antennas electromagnetic [107]

Chapter 7  MANETs and PLC on ns-3



187© Henry Zárate Ceballos, Jorge Ernesto Parra Amaris, Hernan Jiménez Jiménez,  
Diego Alexis Romero Rincón, Oscar Agudelo Rojas, Jorge Eduardo Ortiz Triviño 2021 
H. Zárate Ceballos et al., Wireless Network Simulation,  
https://doi.org/10.1007/978-1-4842-6849-0

APPENDIX A

Basic Statistics
The content of this appendix was taken from [108] and [109].

An event A is a subset of the sample space and is what happens if the 

result of the experiment is contained in A. We suppose that for each event 

A of the sample space S, a number P (A), called the probability of A, is 

defined as follows:

Axiom 1: 0 ≤ P(A) ≤ 1

Axiom 2: P(s) = 1

Axiom 3: For any sequence of mutually exclusive events A1, A2, ..., we 

have this:

	
P P A

i
i

i
iA

�

�

�

��

�
�

�

�
� � � ��

1 1



	

�Random Variables and Random Vectors
This section discusses random variables and random vectors.
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�Random Variables
A random variable X is a function that assigns a real value to each 

outcome of the experiment. For any set of real numbers C, the probability 

that X will have a value that is contained in the set C is equal to the 

probability that the outcome of the X is contained in X−1(C). In other 

words:

	
PX C P X C� �� � � �� �1 1

	

Here, X−1(C) is the event consisting of all outcomes s ∈ S such that X(c) 

∈ C.

�Probability Density Functions
The distribution function F of the random variable X is defined for all real 

numbers by the following:

	 F x PX x PX x� � � � � � ��� �, 	

•	 Discrete: A random variable is said to be discrete if 

its set of possible values is either finite or countably 

infinite. For a discrete random variable X, we define its 

probability mass function p(x) as follows:

	 p x PX x� � � � 	

If xi, i ≥ 0 represented the possible values of X, then
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p x
�

�
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0

1
	

Also, if F is the distribution function of X, then

	
F x p x

i x x
i

i

� � � � �
�

�

�
: 	

•	 Continuous: A random variable is said to be continuous 

if there exists a function f (x), called the probability 

density function of X, such that for any set of 

numbers C,

	
PX C f x dx

C

� � � �� 	

�Random Vector
A vector x = (X1, ... , Xi) is called a random vector if all the components X1, ... 

, Xi are random variables.

�Independence
The random variables X and Y are said to be independent if for any sets of 

real numbers C and D,

	 P X C Y D P X C P Y D� �� � � �� � �� �, 	

The preceding will hold provided that

	 F x y F x F yX Y,� � � � � � � 	
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for all x and y. Furthermore, the discrete ransom variables X and Y will be 

independent provided that

	 P X x Y y P X x P Y y� �� � � �� � �� �, 	

for all x and y, and will be jointly continuous random variables provided 

that

	 f x y f x f yX Y,� � � � � � � 	

for all x and y.

�Expected Value
If X is a discrete random variable that takes on one of the values xi, i ≥ 1, 

then the expected value or expectation of X, denoted as E[X], is defined as 

follows:

	
E X x PX x

i
i� � � �� 	

That is, E[X] is a weighted average of the possible values of X, with each 

value being weighted by the probability that X assumes it.

	

E g X

g x PX x if X is discrete

g x dx If X is continu

x

� ��� ��
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�Variance
The variance of a random variable X, denoted as Var(X), is defined as 

follows:

	
Var X E X E X� � � � � �� ��

��
�
��

2

	

�Covariance
The covariance of random variables X and Y is defined as follows:

	
cov X Y E X E X Y E Y,� � � � � �� � � � �� ��� �� 	

For the random variables X, Y, and Z and constant c,

•	 Cov(X, Y) = E[XY] − E[X]E[Y]

•	 Cov(X, Y) = Var(X)

•	 Cov(X, Y) = Cov[Y, X]

•	 Cov(cX, Y) = c Cov(X, Y)

•	 Cov(X, Y + Z) = Cov(X, Y) + Cov(X, Z)

�Correlation Coefficient
The correlation coefficient between two random variables X and Y is 

defined as follows:

	

Corr X Y X Y
X Z

Var X Var Y
, ,

,� � � � � � � �
� � � �

�
cov

	

Obviously, Corr(X, X) = 1.
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�Binomial Random Variable
If X is a binomial random variable with parameters n and p, then

	
P pX i

n
p i i ni n�� � � �

�
�

�

�
� �� � � � �

1
1 0, , ,

	

where

	
X X
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i�
�
�

1 	

	
X
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if trial i is a failurei �

�
�
�

1

0

,

,

 

 	
(A.2)

Because each Xi is a Bernoulli random variable with

	 E X pVar X p pi i� � � � � � �� �1 	

it follows that

	
E X E X np

i

n

i� � � � � �
�
�

1 	

	
Var X Var X np p

i

n
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�
�

1

1
	

where the assumed independence of the Xi was used to assert that the 

variance of their sum is equal to the sum of their variances.

Appendix A  Basic Statistics



193

�Normal Random Variable
A random variable X has a normal distribution with mean μ and variance s2 

if its probability density function is as follows:

	
f x e xx� � � �� � � ��� �1

2

2 2
2

��
� �/

,
	

When μ = 0 and σ = 1, we say that X has a normal distribution. The 

moment-generating function of a standard normal variable Z is obtained 

as follows:
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Now, if Z is a standard normal, then X = σZ + μ with mean μ and 

variance σ2; therefore, we have this:

	 E[etX] = E[et(σZ + μ)]= e E e ey t Z t t� � � ��� �� �
� 2 2

2/ 	 (A.4)

Suppose now that X and Y are independent normal random variables 

with means μx and μy and variances σ x
2  and σ y

2 . Then we have this:

	
E e E e E e t tt X Y tX tY

x y x y
�� ��

�
�
� � �� �� �� �� � �� � � �� �� �exp � � � �2 2 2

2/ 	

By the uniqueness of the moment-generating function, the preceding 

shows that the sum of independent normal random variables remains a 

normal random variable.
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�Geometric Random Variable
Recall that X is geometric with parameter p if

	 P X n pq nn�� � � � � �1 1 2, , , 	

where q=1-p. Hence, its moment-generating function is as follows:
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with differentiation and evaluating at t = 0.

	
Var X E X E X p

p
� � � �� �� � � � � �2 2

2

1

	

If X and Y are independent, then

	
E e E e e E e E et X Y tX tY tX tY�� ��
�

�
� � �� �� � �� �� �� ��

) )
	

�Uniform Random Variable
A random variable is said to be uniformly distributed over the interval (0, 1) 

if its probability density function is given as follows:

	
f x

x
otherwise
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� ��

�
�

1 0 1

0
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, 	
(A.6)
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Note that the preceding is a density function since f (x) ≥ 0 and

	 ��

�

��

�

� �� � � �f x dx dx 1
	

Since f (x) > 0 only when x ∈ (0, 1), it follows that X must assume a 

value in (0, 1). Also, since f (x) is constant for x ∈ (0, 1), X is just as likely to 

be “near” any value in (0, 1) as any other value. To check this, note that, for 

any 0 < a < b < 1,

	
P a X b f x dx b a

a

b

� �� � � � � � �� 	

In other words, the probability that X is in any particular subinterval 

of (0, 1) equals the length of that subinterval. In general, we say that X is 

a uniform random variable on the interval (α, β) if its probability density 

function is given by the following:

	

f x
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(A.7)
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APPENDIX B

�ns-3 Installation
This appendix contains the steps to install ns-3. We recommend installing 

it on a Linux distribution. This example is on Ubuntu/Debian/Mint. For 

other operating systems, see the ns-nam installation web page. You can 

download other versions by merely changing the version numbers on the 

links. (For this example, the version is 3.XX.)

�Installing ns-3
Follow these steps:

Step 1: Download the file ns-allineone3.XX.

1   https://www.nsnam.org/release/ns-allinone-3.XX.tar.bz2

Step 2: Copy ns-allineone3.XX to your desktop or to a directory that 

you prefer.

Step 3: Extract the packet with the following command:

1   tar xjf ns-allinone-3.XX.tar.bz2

Step 4: Open the console and install the following libraries:

 1   sudo apt-get install gcc g++ python python-dev
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 2   �python3 python3-dev python3-setuptoolsv mercurial bzr gdb 

valgrind gsl-bin libgsl0-dev

 3   �libgsl0ldbl git flex bison tcpdump sqlite sqlite3 

libsqlite3-dev libxml2

 4   �libxml2-dev libgtk2.0-0 libgtk2.0-dev uncrustify doxygen 

graphviz imagemagick

 5   �texlive texlivelatex-extra texlive-generic-extra texlive-

generic-recommended

 6   �texinfo dia texlive texlive-latex-extra texlive-extra-

utils qt5-default

 7   �openmpi-bin openmpi-common openmpi-doc libopenmpi-dev 

texi2html

 8   �texlive-generic-recommended python-pygraphviz python-kiwi 

gdb valgrind

 9   �python-pygoocanvas libgoocanvas-dev pythonpygccxml 

uncrustify

10   �doxygen graphviz imagemagick python3-sphinx dia gsl-bin 

libgsl-dev

11   libgsl23 libgslcblas0

Add support for the ns-3-pyviz visualizer. For ns-3.28 and earlier 

releases, PyViz is based on GTK+ 2, GooCanvas, and GraphViz.

1   �apt-get install python-pygraphviz python-kiwi python-

pygoocanvas libgoocanvas-dev ipython

For Ubuntu 18.04, python-pygoocanvas is no longer provided. The 

ns-3.29 release (and newer) upgrades the support to GTK+ version 3 and 

requires these packages:

1   �apt-get install gir1.2-goocanvas-2.0 python-gi python-gi-

cairo python-pygraphviz
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2   �python3-gi python3-gi-cairo python3-pygraphviz gir1.2-

gtk-3.0 ipython ipython3

Step 5: Open the directory ns-allinone-3.XX.

1   $ cd ns-allinone-3.XX

Step 6: Use the command ls to view the ns-3 archives.

1   $ls

Step 7: Enter the following command in the terminal in the directory 

ns − allinone − 3.XX:

1   $./build.py --enable-examples --enable-tests

If your debugging is correct, you will see the next message in your 

console:

1   "Build finished successfully"

Step 8: Now debug with the command .waf (go to the ns 3.XX 

directory) and type the following:

1   $ ./waf -d debug --enable-examples --enable-tests configure

Step 9: Run the command .waf again.

1   ./waf

Step 10: Test all the packets with the following command:

1   ./test.py
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�Installing Additional Features
You can install additional features. To use a GTK-based graphic module 

configuration system, use this:

1   apt-get install libgtk2.0-0 libgtk2.0-dev

To experiment with virtual machines and ns-3, use this:

1   apt-get install vtun lxc

To support the OpenFlow module (which requires some Boost 

libraries), use this:

1   apt-get install libboost-signals-dev libboost-filesystem-dev

To install on other operating systems, visit https://www.nsnam.org/

wiki/Installation.
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APPENDIX C

�Mininet
Mininet is a network emulator [110], or, perhaps more precisely, a network 

emulation orchestration system. It runs a collection of end hosts, switches, 

routers, and links on a single Linux kernel. Mininet is a network emulator 

that creates a network of virtual hosts, switches, controllers, and links. 

The Mininet hosts run standard Linux network software, and its switches 

support OpenFlow for highly flexible custom routing and software-defined 

networking. It uses lightweight virtualization to make a single system look 

like a complete network, running the same kernel, system, and user code. 

A Mininet host behaves just like a real machine; you can ssh into it (if 

you start up sshd and bridge the network to your host) and run arbitrary 

programs (including anything that is installed on the underlying Linux 

system). The programs you run can send packets through what seems like 

a real Ethernet interface, with a given link speed and delay. Packets get 

processed by what looks like a real Ethernet switch, router, or middlebox, 

with a given amount of queueing. When two programs, like an iPerf client 

and server, communicate through Mininet, the measured performance 

should match that of two (slower) native machines [111].

In short, Mininet’s virtual hosts, switches, links, and controllers are the 

real thing—they are just created using software rather than hardware—and 

for the most part their behavior is similar to discrete hardware elements. It 

is usually possible to create a Mininet network that resembles a hardware 

network, or a hardware network that resembles a Mininet network, and to 

run the same binary code and applications on either platform [112].

https://doi.org/10.1007/978-1-4842-6849-0#DOI
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Mininet supports research, development, learning, prototyping, 

testing, debugging, and any other tasks that could benefit from having a 

complete experimental network on a laptop or other PC.

It provides a simple and inexpensive network testbed for developing 

OpenFlow applications and enables multiple concurrent developers 

to work independently on the same topology. It supports system-level 

regression tests, which are repeatable and easily packaged. It enables 

complex topology testing, without the need to wire up a physical network. 

It includes a CLI that is topology-aware and OpenFlow-aware, for 

debugging or running network-wide tests. It supports arbitrary custom 

topologies and includes a basic set of parametrized topologies usable 

out of the box without programming. In addition, Minimet provides a 

straightforward and extensible Python API for network creation and 

experimentation. Mininet provides an easy way to get correct system 

behavior (and, to the extent supported by your hardware, performance) 

and to experiment with topologies.

Mininet networks run real code including standard Unix/Linux 

network applications as well as the real Linux kernel and network stack 

(including any kernel extensions that you may have available, as long as 

they are compatible with network namespaces).

Because of this, the code you develop and test on Mininet, for an 

OpenFlow controller, modified switch, or host, can move to a real system 

with minimal changes, for real-world testing, performance evaluation, and 

deployment. Importantly, this means that a design that works in Mininet 

can usually move directly to hardware switches for line-rate packet 

forwarding.
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The following is an example of network topology configuration on 

mininet:

1   topo = Tree(depth=3, fanout=3)

2   servers = ['localhost','server2','server3']

3   net = MininetCluster(topo=topo, servers=servers)

4   net.start()

5   CLI(net)

6   net.stop()

Figure C-1 shows Mininet Network topology.

Figure C-1.  Mininet [93]
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APPENDIX D

�ns3-gym: OpenAI 
Gym Integration
OpenAI ns3-gym [113] is a module built on the ns-3 simulator for 

reinforcement learning. It is a framework that integrates a network 

simulation based on discrete events with artificial intelligence to link two 

areas in networking research.

The main purpose of the Gym framework is to provide a standardized 

interface allowing agents to access the environment state and execute 

actions in the environment. The environment is defined inside the 

simulation scenario, the agent is written in Python language, which is 

useful for interacting with environment’s conditions on the simulation 

experiment and the simulation scripts.

�Installation
For this installation, use version 3.29. This framework is useful on version 

3.29 and up. Download the source archive and unpack it.

1   tar -xzf ns3-gym-1.0.0.tar.gz

Move (and rename) the ns3-gym-1.0.0 directory to the following:

1   /path_to_ns/ns-3.29/contrib/opengym

https://doi.org/10.1007/978-1-4842-6849-0#DOI
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Install the ZMQ and Protocol Buffers libs. To install protobuf-3.6 on 

Ubuntu 16.04, run the following:

1   sudo add-apt-repository ppa:maarten-fonville/protobuf && 

sudo apt-get update

Then, run the following:

1   apt-get install libzmq5 libzmq5-dev

2   apt-get install libprotobuf-dev

3   apt-get install protobuf-compiler

Configure and build the ns-3 project. Note that if you use a Python 

virtual environment, you need to execute these commands inside it.

The OpenGym Protocol Buffer messages (C++ and Python) are built 

during configuration.

1   ./waf configure --enable-examples

2   ./waf build

Install the ns3gym Python module. Python 3 is recommended.

Compile the Protobuf messages manually (this is not required if ./waf 

configuration was executed).

1   cd /path_to_ns/ns-3.29/contrib/opengym/

2   �protoc -I=/model/ --python_out=./model/ns3gym/ns3gym /

model/messages.proto

Install the ns3gym Python module.

1   �pip3 install /path_to_ns/ns-3.29/contrib/opengym/model/

ns3gym
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APPENDIX E

�Experiments
To understand better the reason for the experiments in this book, it is 

important to put things into context. These experiments were part of the 

result of an applied observational study in which a theoretical model based 

on the quorum sensing (QS) employed by gram negative bacteria was used 

to create an algorithm for multi-agent communication to manage contents 

with a MANET, which was validated through simulation. The simulation 

was carried out using the ns-3 simulator. The details of the algorithm can 

be reviewed in Chapter 3 of [114]. In this research, agents are endowed 

with capabilities like those employed by bacteria; additionally, they use a 

decision mechanism based on microeconomics concepts. In this research, 

agents traverse the network. If certain conditions are met, they release 

molecules within the node. If a threshold of molecules is met (a quorum 

threshold), the node is induced to QS state. For more information about 

quorum sensing and agents, please refer to [115].

In this model, there are four input parameters of interest, described here:

•	 Molecules capacity: This is the total number of 

molecules that can be released in the node.

•	 Quorum threshold: This is a level of molecules that 

must be met so that a node can be induced to QS state.

•	 Cloning probability: This is the probability that an exact 

copy of an agent is created.

•	 Mutation probability: This is the probability that the 

chromosome changes on an agent.

https://doi.org/10.1007/978-1-4842-6849-0#DOI
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�Testing Environment and Assumptions
All the simulation experiments were performed with the general 

parameters in Table E-1 and the following assumptions:

•	 All the nodes move freely.

•	 The nodes have a limited amount of disk space to store 

data files.

•	 All NS-· files cannot be uploaded1 or managed; 

therefore, in the simulation, they will be treated as 

traffic. To simulate that the nodes have a hard drive, a 

counter variable will decrease or increase according to 

the traffic received or sent.

•	 The files are always consistent.

•	 During each simulation, half of the nodes are chosen 

randomly to store original chunks of a file.

•	 Each node has a battery of limited capacity.

•	 The cost for energy and disk space is equal to 1, and the 

agents are the price-takers.

In the testing scenario employed, all the nodes have the same 

hardware capabilities, and they are at their maximum values. Table E-2 

describes the details.

After simulation, two results will be considered.

•	 The quantity of nodes induced to QS state by the agents

•	 The quantity of files managed by agents

1�When this dissertation was presented in 2018, it was not possible.
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Table E-1.  General Simulation Parameters

Parameter Characteristics

Geographic space Flatland

Number of nodes 36

Propagation model ns-3 constant

Loss model ns-3 two-ray ground propagation loss model

Mobility model Random direction 2D mobility model

Simulation time 600 seconds

Energy source Basic energy source

Energy model Simple device energy model

Version 3.24.1

Table E-2.  Testing Scenario Parameters

Model Parameter Testing Scenario

Energy (units) 100

Disk space (units) 100

File size 10240

P parameter 0.1

Molecules 100–200

Number of hops 1

Molecules capacity 10000

QS threshold 0.51

Mutation probability 0.1

Cloning probability 0.1
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APPENDIX F

�PLC Code Experiment
  1   �/* -*- Mode:C++; c-file-style:"gnu";  

indent-tabs-mode:nil; -*- */

  2   /*

  3    * �This program is free software; you can redistribute it 

and/or modify

  4    * �it under the terms of the GNU General Public License 

version 2 as

  5    * published by the Free Software Foundation;

  6    *

  7    * �This program is distributed in the hope that it will 

be useful,

  8    * �but WITHOUT ANY WARRANTY; without even the implied 

warranty of

  9    * �MERCHANTABILITY or FITNESS FOR A PARTICULAR 

PURPOSE. See the

 10    * GNU General Public License for more details.

 11    *

 12    * �You should have received a copy of the GNU General 

Public License

 13    * �along with this program; if not, write to the Free 

Software

https://doi.org/10.1007/978-1-4842-6849-0#DOI
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 14    * �Foundation, Inc., 59 Temple Place, Suite 330, Boston, 

MA 02111-1307 USA

 15    *

 16    */

 17

 18

 19   #include <fstream>

 20   #include <iostream>

 21   #include "ns3/core-module.h"

 22   #include "ns3/network-module.h"

 23   #include "ns3/internet-module.h"

 24   #include "ns3/mobility-module.h"

 25   #include "ns3/wifi-module.h"

 26   #include "ns3/aodv-module.h"

 27   #include "ns3/olsr-module.h"

 28   #include "ns3/dsdv-module.h"

 29   #include "ns3/dsr-module.h"

 30   #include "ns3/applications-module.h"

 31

 32   #include <sstream>

 33   #include <time.h>

 34

 35   #include <ns3/core-module.h>

 36   #include <ns3/nstime.h>

 37   #include <ns3/simulator.h>

 38   #include <ns3/output-stream-wrapper.h>

 39   #include "ns3/plc.h"

 40   #include "ns3/internet-module.h"

 41   #include "ns3/applications-module.h"

 42
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 43   using namespace ns3;

 44   using namespace dsr;

 45

 46   NS_LOG_COMPONENT_DEFINE ("PLC-routing-compare");

 47

 48

 49

 50   class PLCRoutingExperiment

 51   {

 52   public:

 53   PLCRoutingExperiment ();

 54   �void Run (int nSinks, double txp, std::string CSVfileName);

 55

 56   private:

 57   �Ptr<Socket> SetupPacketReceive (Ipv4Address addr, 

Ptr<Node> node);

 58   void ReceivePacket (Ptr<Socket> socket);

 59   void CheckThroughput ();

 60

 61   uint32_t port;

 62   uint32_t bytesTotal;

 63   uint32_t packetsReceived;

 64

 65   std::string m_CSVfileName;

 66   int m_nSink_r;

 67   int m_nSink_e;

 68   std::string m_protocolName;

 69   double m_txp;

 70

 71   uint32_t m_protocol;

 72   std::string m_packetSize;

 73   };
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 74

 75   PLCRoutingExperiment::PLCRoutingExperiment ()

 76     : port (9),

 77        bytesTotal (0),

 78        packetsReceived (0),

 79        m_CSVfileName ("PLC-routing.output.csv"),

 80           m_nSink_r(17),

 81           m_nSink_e(5),

 82           m_txp(1e-3),

 83        m_protocol (1), // 1=OLSR;2=AODV;3=DSDV;4=DSR

 84           m_packetSize ("1")

 85

 86   {

 87   }

 88

 89   static inline std::string

 90   �PrintReceivedPacket (Ptr<Socket> socket, Ptr<Packet> 

packet)

 91   {

 92      SocketAddressTag tag;

 93      bool found;

 94      found = packet->PeekPacketTag (tag);

 95      std::ostringstream oss;

 96

 97      �oss << Simulator::Now ().GetSeconds () << " " << 

socket->GetNode ()->GetId ();

 98

 99      if (found)

100          {

101            �InetSocketAddress addr = InetSocketAddress:: 

ConvertFrom (tag.GetAddress ());
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102            �oss << " received one packet from " <<  

addr.GetIpv4 ();

103          }

104      else

105         {

106           oss << " received one packet!";

107         }

108      return oss.str ();

109   }

110

111   void

112   PLCRoutingExperiment::ReceivePacket (Ptr<Socket> socket)

113   {

114      Ptr<Packet> packet;

115      while ((packet = socket->Recv ()))

116      {

117         bytesTotal += packet->GetSize ();

118         packetsReceived += 1;

119         �NS_LOG_UNCOND (PrintReceivedPacket (socket, 

packet));

120

121       }

122   }

123

124

125   void

126   PLCRoutingExperiment::CheckThroughput ()

127   {

128      double kbs = (bytesTotal * 8.0) / 1000;

129      bytesTotal = 0;

130
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131      �std::ofstream out (m_CSVfileName.c_str (), 

std::ios::app);

132

133      out << (Simulator::Now ()).GetSeconds () << ","

134          << kbs << ","

135          << packetsReceived << ","

136          << m_nSink_r << ","

137          << m_protocolName << ","

138          << m_txp << ""

139          << std::endl;

140

141      out.close ();

142      packetsReceived = 0;

143      �Simulator::Schedule (Seconds (1.0), &PLCRoutingExper 

iment::CheckThroughput, this);

144   }

145

146   Ptr<Socket>

147   �PLCRoutingExperiment::SetupPacketReceive (Ipv4Address 

addr, Ptr<Node> node)

148   {

149      �TypeId tid = TypeId::LookupByName 

("ns3::UdpSocketFactory");

150      Ptr<Socket> sink = Socket::CreateSocket (node, tid);

151      �InetSocketAddress local = InetSocketAddress (addr, 

port);

152      sink->Bind (local);

153      �sink->SetRecvCallback (MakeCallback (&PLCRouting 

Experiment::ReceivePacket, this));

154
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155      return sink;

156   }

157

158   std::string

159   �PLCRoutingExperiment::CommandSetup (int argc, char **argv)

160   {

161      CommandLine cmd;

162      �cmd.AddValue ("CSVfileName", "The name of the CSV 

output file name", m_CSVfileName);

163      �cmd.AddValue ("protocol", "1=OLSR;2=AODV;3=DSDV; 

4=DSR", m_protocol);

164      �cmd.AddValue ("packetSize", "Packet Size",  

m_packetSize);

165      �cmd.AddValue ("txp", "Transmit power spectral 

density", m_txp);

166      cmd.AddValue ("nSinkr", "Sink Receptor", m_nSink_r);

167      cmd.AddValue ("nSinke", "Sink Emitter", m_nSink_e);

168      cmd.Parse (argc, argv);

169      return m_CSVfileName;

170   }

171

172

173

174

175   int main (int argc, char *argv[])

176   {

177

178   PLCRoutingExperiment experiment;

179   �std::string CSVfileName = experiment.CommandSetup 

(argc,argv);

180
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181   �//blank out the last output file and write the column 

headers

182   std::ofstream out (CSVfileName.c_str ());

183   out <<"#"<< "SimulationSecond," <<

184   "ReceiveRate," <<

185   "PacketsReceived," <<

186   "NumberOfSinks," <<

187   "RoutingProtocol," <<

188   "TransmissionPower" <<

189   std::endl;

190   out.close ();

191

192   int nSinks = 2;

193   double txp = 1e-8;

194   experiment.Run (nSinks, txp, CSVfileName);}

195

196

197   void

198   �PLCRoutingExperiment::Run (int nSinks, double txp, 

std::string CSVfileName)

199   {

200   Packet::EnablePrinting ();

201   m_CSVfileName = CSVfileName;

202   std::string rate ("512bps");

203   double TotalTime = 200.0;

204

205   �Config::SetDefault ("ns3::OnOffApplication::PacketSize", 

StringValue (m_packetSize));

206   �Config::SetDefault ("ns3::OnOffApplication::DataRate",  

StringValue (rate));

207
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208

209

210   // Define spectrum model

211   PLC_SpectrumModelHelper smHelper;

212   Ptr<const SpectrumModel> sm;

213   sm = smHelper.GetSpectrumModel(0, 10e6, 100);

214

215   // Define transmit power spectral density

216   Ptr<SpectrumValue> txPsd = Create<SpectrumValue> (sm);

217   (*txPsd) = m_txp; // -50dBm/Hz

218

219   // Create cable types

220   //     �Ptr<PLC_Cable> cable = CreateObject<PLC_NAYY150SE_

Cable> (sm);

221   //     �Ptr<PLC_Cable> cable = CreateObject<PLC_

NYCY70SM35_Cable> (sm);

222   �Ptr<PLC_Cable> cable = CreateObject<PLC_AL3x95XLPE_Cable> 

(sm);

223

224   �Ptr<PLC_ConstImpedance> shuntImp6 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

225   �Ptr<PLC_ConstImpedance> shuntImp8 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

226   �Ptr<PLC_ConstImpedance> shuntImp9 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

227   �Ptr<PLC_ConstImpedance> shuntImp11 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

228   �Ptr<PLC_ConstImpedance> shuntImp13 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

229   �Ptr<PLC_ConstImpedance> shuntImp14 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));
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230   �Ptr<PLC_ConstImpedance> shuntImp15 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

231   �Ptr<PLC_ConstImpedance> shuntImp18 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

232   �Ptr<PLC_ConstImpedance> shuntImp19 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

233   �Ptr<PLC_ConstImpedance> shuntImp20 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

234   �Ptr<PLC_ConstImpedance> shuntImp22 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

235   �Ptr<PLC_ConstImpedance> shuntImp23 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

236   �Ptr<PLC_ConstImpedance> shuntImp24 = Create<PLC_Const 

Impedance> (sm, PLC_Value(50, 0));

237

238

239   // Create nodes

240   Ptr<PLC_Node> n1 = CreateObject<PLC_Node> ();

241   Ptr<PLC_Node> n2 = CreateObject<PLC_Node> ();

242   Ptr<PLC_Node> n3 = CreateObject<PLC_Node> ();

243   Ptr<PLC_Node> n4 = CreateObject<PLC_Node> ();

244   Ptr<PLC_Node> n5 = CreateObject<PLC_Node> ();

245   Ptr<PLC_Node> n6 = CreateObject<PLC_Node> ();

246   Ptr<PLC_Node> n7 = CreateObject<PLC_Node> ();

247   Ptr<PLC_Node> n8 = CreateObject<PLC_Node> ();

248   Ptr<PLC_Node> n9 = CreateObject<PLC_Node> ();

249   Ptr<PLC_Node> n10 = CreateObject<PLC_Node> ();

250   Ptr<PLC_Node> n11 = CreateObject<PLC_Node> ();

251   Ptr<PLC_Node> n12 = CreateObject<PLC_Node> ();

252   Ptr<PLC_Node> n13 = CreateObject<PLC_Node> ();

253   Ptr<PLC_Node> n14 = CreateObject<PLC_Node> ();
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254   Ptr<PLC_Node> n15 = CreateObject<PLC_Node> ();

255   Ptr<PLC_Node> n16 = CreateObject<PLC_Node> ();

256   Ptr<PLC_Node> n17 = CreateObject<PLC_Node> ();

257   Ptr<PLC_Node> n18 = CreateObject<PLC_Node> ();

258   Ptr<PLC_Node> n19 = CreateObject<PLC_Node> ();

259   Ptr<PLC_Node> n21 = CreateObject<PLC_Node> ();

260   Ptr<PLC_Node> n22 = CreateObject<PLC_Node> ();

261

262   n1->SetPosition(0,0,0);

263   n2->SetPosition(3,0,0);

264   n3->SetPosition(6,0,0);

265   n4->SetPosition(9,0,0);

266   n5->SetPosition(14,0,0);

267   n6->SetPosition(0,-4,0);

268   n7->SetPosition(3,-4,0);

269   n8->SetPosition(3,3,0);

270   n9->SetPosition(6,-6,0);

271   n10->SetPosition(6,-4,0);

272   n11->SetPosition(8,-4,0);

273   n12->SetPosition(6,3,0);

274   n13->SetPosition(6,5,0);

275   n14->SetPosition(9,-5,0);

276   n15->SetPosition(11,-3,0);

277   n16->SetPosition(9,-3,0);

278   n17->SetPosition(9,3,0);

279   n18->SetPosition(11,3,0);

280   n19->SetPosition(9,5,0);

281   n21->SetPosition(14,-4,0);

282   n22->SetPosition(14,2,0);

283
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284   n1->SetName("Node1");

285   n2->SetName("Junction2");

286   n3->SetName("Junction3");

287   n4->SetName("Junction4");

288   n5->SetName("Junction5");

289   n6->SetName("Node6");

290   n7->SetName("Junction7");

291   n8->SetName("Node8");

292   n9->SetName("Junction9");

293   n10->SetName("Node10");

294   n11->SetName("Node11");

295   n12->SetName("Junction12");

296   n13->SetName("Node13");

297   n14->SetName("Junction14");

298   n15->SetName("Node15");

299   n16->SetName("Junction16");

300   n17->SetName("Junction17");

301   n18->SetName("Node18");

302   n19->SetName("Junction19");

303   n21->SetName("Node21");

304   n22->SetName("Junction22");

305

306   PLC_NodeList nodes;

307   nodes.push_back(n1);

308   nodes.push_back(n2);

309   nodes.push_back(n3);

310   nodes.push_back(n4);

311   nodes.push_back(n5);

312   nodes.push_back(n6);

313   nodes.push_back(n7);

314   nodes.push_back(n8);
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315   nodes.push_back(n9);

316   nodes.push_back(n10);

317   nodes.push_back(n11);

318   nodes.push_back(n12);

319   nodes.push_back(n13);

320   nodes.push_back(n14);

321   nodes.push_back(n15);

322   nodes.push_back(n16);

323   nodes.push_back(n17);

324   nodes.push_back(n18);

325   nodes.push_back(n19);

326   nodes.push_back(n21);

327   nodes.push_back(n22);

328

329

330   // Link nodes

331   CreateObject<PLC_Line>      (cable,    n1, n2);

332   CreateObject<PLC_Line>      (cable,    n2, n3);

333   CreateObject<PLC_Line>      (cable,    n3, n4);

334   CreateObject<PLC_Line>      (cable,    n4, n5);

335

336   CreateObject<PLC_Line>      (cable,    n2, n7);

337   CreateObject<PLC_Line>      (cable,    n7, n6);

338   CreateObject<PLC_Line>      (cable,    n2, n8);

339

340   CreateObject<PLC_Line>      (cable,    n3, n10);

341   CreateObject<PLC_Line>      (cable,    n10, n11);

342   CreateObject<PLC_Line>      (cable,    n10, n9);

343   CreateObject<PLC_Line>      (cable,    n3, n12);

344   CreateObject<PLC_Line>      (cable,    n12, n13);

345
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346   CreateObject<PLC_Line>      (cable,    n4, n16);

347   CreateObject<PLC_Line>      (cable,    n16, n15);

348   CreateObject<PLC_Line>      (cable,    n16, n14);

349   CreateObject<PLC_Line>      (cable,    n4, n17);

350   CreateObject<PLC_Line>      (cable,    n17, n18);

351   CreateObject<PLC_Line>      (cable,    n17, n19);

352

353   CreateObject<PLC_Line>      (cable,    n5, n21);

354   CreateObject<PLC_Line>      (cable,    n5, n22);

355

356

357   // Set up channel

358   PLC_ChannelHelper channelHelper(sm);

359   channelHelper.Install(nodes);

360   Ptr<PLC_Channel> channel = channelHelper.GetChannel();

361

362       �Ptr<PLC_Outlet>  outlet1 = CreateObject<PLC_Outlet> 

(n6, shuntImp6);

363       �Ptr<PLC_Outlet>  outlet2 = CreateObject<PLC_Outlet> 

(n8, shuntImp8);

364       �Ptr<PLC_Outlet>  outlet3 = CreateObject<PLC_Outlet> 

(n9, shuntImp9);

365       �Ptr<PLC_Outlet>  outlet4 = CreateObject<PLC_Outlet> 

(n11, shuntImp11);

366       �Ptr<PLC_Outlet>  outlet5 = CreateObject<PLC_Outlet> 

(n13, shuntImp13);

367       �Ptr<PLC_Outlet>  outlet6 = CreateObject<PLC_Outlet> 

(n14, shuntImp14);

368       �Ptr<PLC_Outlet>  outlet7 = CreateObject<PLC_Outlet> 

(n15, shuntImp15);

369       �Ptr<PLC_Outlet>  outlet8 = CreateObject<PLC_Outlet> 

(n18, shuntImp18);
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370       �Ptr<PLC_Outlet>  outlet9 = CreateObject<PLC_Outlet> 

(n19, shuntImp19);

371       �Ptr<PLC_Outlet>  outlet11 = CreateObject<PLC_Outlet> 

(n22, shuntImp22);

372

373   // Create PLC net devices

374   PLC_NetDeviceHelper deviceHelper(sm, txPsd, nodes);

375   �deviceHelper.DefinePhyType(TypeId::LookupByName 

("ns3::PLC_InformationRatePhy"));

376   �deviceHelper.DefineMacType(TypeId::LookupByName 

("ns3::PLC_ArqMac"));

377   �deviceHelper.SetHeaderModulationAndCodingScheme( 

ModulationAndCodingScheme(BPSK_1_4,0));

378   �deviceHelper.SetPayloadModulationAndCodingScheme( 

ModulationAndCodingScheme(BPSK_1_2,0));

379   deviceHelper.Setup();

380

381

382   // Calculate channels

383   channel->InitTransmissionChannels();

384   channel->CalcTransmissionChannels();

385

386   // Get NS-3 node container

387   NodeContainer nodes1;

388   nodes1=deviceHelper.GetNS3Nodes();

389

390

391   NetDeviceContainer d;

392   d = deviceHelper.GetNetDevices();

393
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394   //New Code From Manet Routing

395   AodvHelper aodv;

396   OlsrHelper olsr;

397   DsdvHelper dsdv;

398   DsrHelper dsr;

399   DsrMainHelper dsrMain;

400   Ipv4ListRoutingHelper list;

401   InternetStackHelper internet;

402

403   switch (m_protocol)

404   {

405   case 1:

406   list.Add (olsr, 100);

407   m_protocolName = "OLSR";

408   break;

409   case 2:

410   list.Add (aodv, 100);

411   m_protocolName = "AODV";

412   break;

413   case 3:

414   list.Add (dsdv, 100);

415   m_protocolName = "DSDV";

416   break;

417   case 4:

418   m_protocolName = "DSR";

419   break;

420   default:

421   NS_FATAL_ERROR ("No such protocol:" << m_protocol);

422   }

423
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424   if (m_protocol < 4)

425   {

426   internet.SetRoutingHelper (list);

427   internet.Install (nodes1);

428   }

429   else if (m_protocol == 4)

430   {

431   internet.Install (nodes1);

432   dsrMain.Install (dsr, nodes1);

433   }

434

435   NS_LOG_INFO ("assigning ip address");

436   Ipv4AddressHelper addressAdhoc;

437   addressAdhoc.SetBase ("10.1.1.0", "255.255.255.0");

438   Ipv4InterfaceContainer adhocInterfaces;

439   adhocInterfaces = addressAdhoc.Assign (d);

440

441   OnOffHelper onoff1 ("ns3::UdpSocketFactory",Address ());

442   �onoff1.SetAttribute ("OnTime", StringValue ‹→ ("ns3:: 

ConstantRandomVariable[Constant=1.0]"));

443   �onoff1.SetAttribute ("OffTime", StringValue ‹→ ("ns3:: 

ConstantRandomVariable[Constant=0.0]"));

444

445

446

447   �Ptr<Socket> sink = SetupPacketReceive (adhocInterfaces.

GetAddress (m_nSink_r), ‹→ nodes1.Get (m_nSink_r));

448

449   �AddressValue remoteAddress (InetSocketAddress 

(adhocInterfaces.GetAddress (m_nSink_r), ‹→ port));

450   onoff1.SetAttribute ("Remote", remoteAddress);

451
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452   �Ptr<UniformRandomVariable> var = CreateObject<Uniform 

RandomVariable> ();

453   �ApplicationContainer temp = onoff1.Install (nodes1.Get 

(m_nSink_e));

454   temp.Start (Seconds (var->GetValue (100.0,101.0)));

455   temp.Stop (Seconds (TotalTime));

456

457

458   AsciiTraceHelper ascii;

459   NS_LOG_INFO ("Run Simulation.");

460   CheckThroughput ();

461

462   Simulator::Stop (Seconds (TotalTime));

463   Simulator::Run ();

464

465   Simulator::Destroy ();

466   }
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