
Practical Machine
Learning with Rust

Creating Intelligent Applications
in Rust
—
Joydeep Bhattacharjee

Practical Machine
Learning with Rust

Creating Intelligent
Applications in Rust

Joydeep Bhattacharjee

Practical Machine Learning with Rust: Creating Intelligent Applications

in Rust

ISBN-13 (pbk): 978-1-4842-5120-1		 ISBN-13 (electronic): 978-1-4842-5121-8
https://doi.org/10.1007/978-1-4842-5121-8

Copyright © 2020 by Joydeep Bhattacharjee

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Celestin Suresh John
Development Editor: Matthew Moodie
Coordinating Editor: Aditee Mirashi

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book's product page, located at www.apress.com/978-1-4842-5120-1.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Joydeep Bhattacharjee
Bangalore, India

https://doi.org/10.1007/978-1-4842-5121-8

To my wife, Saionee, for patiently hearing my
ideas and giving me advice, support, and motivation.

To my mom, father-in-law, and mother-in-law
for believing in me throughout the years.

v

About the Author��xi

Acknowledgments��xiii

Introduction���xv

Table of Contents

Chapter 1: Basics of Rust��1

1.1 �Why Rust?��1

1.2 �A Better Reference���2

1.3 �Rust Installation���5

1.4 �Package Manager and Cargo���7

1.5 �Creating New Applications in Rust���7

1.6 �Variables in Rust��9

1.6.1 �Mutation and Shadowing���11

1.6.2 �Variable Scoping��13

1.7 �Data Types��13

1.8 �Functions���14

1.9 �Conditions��15

1.9.1 �If Conditions���15

1.9.2 �Pattern Matching���16

1.10 �References and Borrowing��17

1.10.1 �Mutable References��20

vi

1.11 �Object-Oriented Programming���22

1.11.1 �Structures��22

1.11.2 �Traits��23

1.11.3 �Methods and impl��24

1.11.4 �Enumerations��26

1.12 �Writing Tests���27

1.13 �Summary���28

1.14 �References���29

Chapter 2: Supervised Learning��31

2.1 �What Is Machine Learning?��31

2.2 �Dataset Specific Code��32

2.3 �Rusty_Machine Library��41

2.4 �Linear Regression��42

2.5 �Gaussian Process���52

2.6 �Generalized Linear Models���54

2.7 �Evaluation of Regression Models���57

2.7.1 �MAE and MSE��57

2.7.2 �R-Squared Error���59

2.8 �Classification Algorithms���61

2.8.1 �Iris Dataset��62

2.8.2 �Logistic Regression���67

2.8.3 �Decision Trees���68

2.8.4 �Random Forest��70

2.8.5 �XGBoost���72

2.8.6 �Support Vector Machines��77

2.8.7 �K Nearest Neighbors��79

Table of ContentsTable of Contents

vii

2.8.8 �Neural Networks��84

2.8.9 �Model Evaluation���94

2.9 �Conclusion���102

2.10 �Bibliography���102

Chapter 3: Unsupervised and Reinforcement Learning���������������������107

3.1 �K-Means Clustering���108

3.2 �Gaussian Mixture Model��112

3.3 �Density-Based Spatial Clustering of Applications with Noise (DBSCAN)�����119

3.4 �Principal Component Analysis��121

3.5 �Testing an Unsupervised Model���123

3.6 �Reinforcement Learning��127

3.7 �Conclusion���137

3.8 �Bibliography���137

Chapter 4: Working with Data���141

4.1 �JSON��141

4.2 �XML��149

4.3 �Scraping���154

4.4 �SQL���158

4.5 �NoSQL��166

4.6 �Data on s3�� �172

4.7 �Data Transformations���178

4.8 �Working with Matrices���183

4.9 �Conclusion���186

4.10 �Bibliography���186

Table of ContentsTable of Contents

viii

Chapter 5: Natural Language Processing��187

5.1 �Sentence Classification��188

5.2 �Named Entity Recognition��201

5.3 �Chatbots and Natural Language Understanding (NLU)���������������������������������213

5.3.1 �Building an Inference Engine���219

5.4 �Conclusion���227

Chapter 6: Computer Vision���229

6.1 �Image Classification���229

6.1.1 �Convolutional Neural Networks (CNN)���230

6.1.2 �Rust and Torch���232

6.1.3 �Torch Dataset���232

6.1.4 �CNN Model���240

6.1.5 �Model Building and Debugging���246

6.1.6 �Pretrained Models���249

6.2 �Transfer Learning���254

6.2.1 �Training��256

6.2.2 �Neural Style Transfer���257

6.3 �Tensorflow and Face Detection��264

6.4 �Conclusion���275

6.5 �Bibliography���276

Chapter 7: Machine Learning Domains��277

7.1 �Statistical Analysis���277

7.2 �Writing High Performance Code���290

7.3 �Recommender Systems���294

7.3.1 �Command Line���296

7.3.2 �Downloading Data���299

7.3.3 �Data���300

Table of ContentsTable of Contents

ix

7.3.4 �Model Building���302

7.3.5 �Model Prediction��307

7.4 �Conclusion���312

7.5 �Bibliography���313

Chapter 8: Using Rust Applications���315

8.1 �Rust Plug-n-Play��315

8.1.1 �Python���316

8.1.2 �Java���327

8.2 �Rust in the Cloud��336

8.3 �Conclusion���346

8.4 �Bibliography���346

Index��347

Table of ContentsTable of Contents

xi

About the Author

Joydeep Bhattacharjee is a Principal

Engineer who works for Nineleaps Technology

Solutions. After graduating from National

Institute of Technology at Silchar, he started

working in the software industry, where he

stumbled upon Python. Through Python,

he stumbled upon machine learning. He

is the author of fastText Quick Start Guide

(Packt, 2018). He has more than seven

years’ experience in the software industry

and around four years developing machine learning applications. He

finds great pleasure in developing intelligent systems that can parse and

process data to solve challenging problems at work. He believes in sharing

knowledge and loves mentoring. He also maintains a machine learning

blog on Medium.

xiii

Acknowledgments

First and foremost, I would like to thank all the open source maintainers

of the Rust crates mentioned in this book and the developers of the Rust

languages itself, without which this book would not have been possible.

Additionally, I would like to thank my friend Sherin Thomas for his help on

the PyTorch sections.

Thanks to the Apress team for believing in me, to Celestin believing

in my ideas, and to Aditee for pushing me on the initial drafts and for

coordinating the whole process.

xv

Introduction

This book is all about exploring Machine Learning in Rust lang. We will

learn about the intricacies of creating machine learning applications and

how they fit in the Rust worldview.

We will start from the very beginning by understanding some of the

important concepts of Machine Learning as well as the basics of Rust lang.

In the later chapters we will dive into the more specific areas of machine

learning, such as data processing, computer vision, and natural language

processing; and look at the Rust libraries that would make creating

applications for those domains easier. We will also look at how to deploy

those applications either onsite or over the cloud.

By the end of the book, the reader will have a solid understanding of

creating high computation libraries using Rust. Armed with the knowledge of

this amazing language, they can begin working toward creating applications

that are more performant, memory safe, and less-resource heavy.

�Who Is the Target Audience?
This book is best suited for the programmer who works in industrial

optimization problems and is looking for ways to write better code and

create better applications. Although this book does not assume any

machine learning experience and will explain all concepts, it would still

be best if there is some machine learning experience, especially using one

of the major programming languages such as Python. This book does not

assume any Rust knowledge and will be good for a budding Rust developer

interested in machine learning or someone who is not satisfied with the

current ecosystem and would like to take a look at the options available.

1© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_1

CHAPTER 1

Basics of Rust
In this chapter we will explore Rust as a language and the unique

constructs and programming models that Rust supports. We will also

discuss the biggest selling points of Rust and what makes this language

particularly appealing to machine learning applications.

Once we have an overview of Rust as a language, we will start with its

installation. Then we will move on to Cargo, which is the official package

manager of Rust, and how we can create applications in Rust. Later we will

look at Rust programming constructs such as variables, looping constructs,

and the ownership model. We will end this chapter by writing unit tests

for Rust code and showing how the tests can be run using the standard

package manager.

By the end of this chapter, you should have a fair understanding of how

to write and compile simple applications in Rust.

1.1  �Why Rust?
There is a general understanding that there are differences between

low-level systems programming languages and high-level application

programming languages. Received wisdom says that if you want to create

performant applications and create libraries that work on bare metal, you

will need to work in a language such as C or C++, and if you want to create

applications for business use cases, you need to program in languages

such as Java/Python/JavaScript.

2

The aim of the Rust language is to sit in the intersection between high-

level languages and low-level languages. Programs that are close to the

metal necessarily handle memory directly, which means that there is no

garbage collection in the mix. In high-level languages, memory is managed

for the programmer.

Implementing garbage collection has costs associated with it. At the

same time, garbage collection strategies that we have are not perfect,

and there are still examples of memory leaks in programs with automatic

memory management. One of the main reasons for memory leaks in

higher-level languages are when packages are created to give an interface

in the higher-level language but the core implementation is in a lower-

level language. For example, the Python library pandas has quite a few

memory leaks. Also, absence of evidence does not mean evidence of

absence, and hence there is no formal proof that bringing in garbage

collection strategies will remove all of the possible memory leaks.

The other issue is with referencing. References are easy to understand

in principle, and they are inexpensive and essential to achieving developer

performance in software creation. As such, languages that target low-

level software creation such as C and C++ allow unrestricted creation of

references and mutation of the referenced object.

1.2  �A Better Reference
Typically, in object systems, objects live in a global object space called the

heap or object store. There are no strict constraints on which part of the

object store the object can access, because there are no restrictions on the

way the object references are passed around. This has repercussions when

preventing representation exposure for aggregate objects. The components

that constitute an aggregate object are considered to be contained within

that aggregate, and part of its representation. But, because the object

Chapter 1 Basics of Rust

3

store is global, there is, in general, no way to prevent other objects from

accessing that representation. Enforcing the notion of containment with

the standard reference semantics is impossible.

A better solution can be to restrict the visibility of different types of

objects that are created. This is done by saying that all objects have a

context associated with them. All paths from the root of the system must

pass through the objects’ owner.

In Rust, types maintain a couple of key invariants that are listed here.

To start, every storage location is guaranteed to have either

•	 1 mutable reference and 0 immutable references to it, or

•	 0 mutable references and n immutable references to it.

We will see how this translates to actual code in a later part of

this chapter. This invariant prevents races in concurrent systems as it

prohibits concurrent reads and writes to a single memory location. By

itself, however, this invariant is not enough to guarantee memory safety,

especially in the presence of movable objects. For instance, since a given

variable becomes unusable after the object has been moved, the storage

locations associated with that variable may be reused or freed. As a result,

any references previously created will be dangling after a move.

This issue is also resolved by the previous ownership rules in Rust.

References to an object are created transitively through its owner. The type

of system guarantees that the owner does not change after a move while

references are outstanding. Conversely the type of systems allows change

of ownership when there are no outstanding references. Examples of this

will be discussed in more detail in a later part of the chapter.

All of what has just been mentioned is even more important in a

machine learning application. Training machine learning applications

involve a lot of data, and the more variation in the data the better, which

translates to a lot of object creation during the training phase. You

probably don’t want memory errors. After deployment of the models, the

Chapter 1 Basics of Rust

4

models that get created are matrices and tensors, which are implemented

as a collection of floats. It is probably not desirable to keep past objects

and predictions dangling in memory even after they have no more use.

There are advantages from creating a concurrent system as well. Rust types

guarantee that there will be no race conditions and hence programmers

can safely create machine learning applications that try to spread out the

computation as much as possible.

Along with all this talk about memory safety and high performance,

we also have high-level features such as type inference so we will not need

to write types for all the variables. We will see when defining types are

important in a later part of the chapter. Another interesting point from

the earlier discussion is that when writing Rust code, we are not thinking

about memory. So, from a usage point of view, it feels like memory is being

managed for us. Then there are other constructs such as closures, iterators,

and standard libraries, which make writing code in Rust more like writing

in a high-level language. For machine learning applications, this is crucial.

High-level languages such as Python have succeeded in machine learning

because of the expressiveness of the language that supports free-form

experimentation and developer productivity.

In this chapter we will be taking a look at the basics of Rust and the

programming constructs that make Rust the language it is. We primarily

cover topics such as Structs and Enums that look and feel different in this

language and might not be what we would expect in this language. We

will skip a lot of important things such as individual data types, which are

similar to other languages such as C and Java. One of the core designs of

Rust is that the programming feel should be the same as C and Java, which

are more popular so that programmers coming from these languages don’t

have to do a lot of mental overhauling while also gaining a lot of memory

advantages that have not been considered before.

Chapter 1 Basics of Rust

5

1.3  �Rust Installation
In this section we explore how to install Rust based on the operating

system. The command and a possible output are shown.

$ curl https://sh.rustup.rs -sSf | sh

info: downloading installer

Welcome to Rust!

This will download and install the official compiler for the

Rust programming language, and its package manager, Cargo.

It will add the cargo, rustc, rustup and other commands to

Cargo's bin directory, located at:

 /home/ubuntu/.cargo/bin

This path will then be added to your PATH environment variable

by modifying the profile file located at:

 /home/ubuntu/.profile

You can uninstall at any time with rustup self uninstall and

these changes will be reverted.

Current installation options:

 default host triple: x86_64-unknown-linux-gnu

 default toolchain: stable

 modify PATH variable: yes

1) Proceed with installation (default)

2) Customize installation

3) Cancel installation

>1

Chapter 1 Basics of Rust

6

info: syncing channel updates for 'stable-x86_64-unknown-linux-gnu'

info: latest update on 2019-02-28, rust version 1.33.0

(2aa4c46cf 2019-02-28)

info: downloading component 'rustc'

 84.7 MiB / 84.7 MiB (100 %) 67.4 MiB/s ETA: 0 s

info: downloading component 'rust-std'

 56.8 MiB / 56.8 MiB (100 %) 51.6 MiB/s ETA: 0 s

info: downloading component 'cargo'

info: downloading component 'rust-docs'

info: installing component 'rustc'

 84.7 MiB / 84.7 MiB (100 %) 10.8 MiB/s ETA: 0 s

info: installing component 'rust-std'

 56.8 MiB / 56.8 MiB (100 %) 12.6 MiB/s ETA: 0 s

info: installing component 'cargo'

info: installing component 'rust-docs'

 8.5 MiB / 8.5 MiB (100 %) 2.6 MiB/s ETA: 0 s

info: default toolchain set to 'stable'

 stable installed - rustc 1.33.0 (2aa4c46cf 2019-02-28)

Rust is installed now. Great!

To get started, you need Cargo's bin directory ($HOME/.cargo/

bin) in your PATHenvironment variable. Next time you log in

this will be done automatically.

To configure your current shell, run source $HOME/.cargo/env

If we study the earlier output, we will see the following points.

•	 rustup script has been successfully able to identify my

distribution and will be installing rust binaries that are

compatible with it.

Chapter 1 Basics of Rust

7

•	 Installation of Rust along with Cargo (the official rust

package manager) will be run through this command.

•	 The commands will be added to <home/>.cargo/bin

and will be accessible from the command line.

1.4  �Package Manager and Cargo
Cargo is a convenient build tool for development of Rust applications

and libraries. The package information is supposed to be saved in a

toml (Toms Obvious, Minimal Language) file. The toml file format is

relatively new, and according to the github toml repo, it is designed to map

unambiguously to a hash table.

1.5  �Creating New Applications in Rust
Creating a new application is simple in Rust.

$ cargo new myfirstapp

 Created binary (application) `myfirstapp` package

Check the Cargo.toml file. You should see something like the following.

[package]

name = "myfirstapp"

version = "0.1.0"

authors = ["Joydeep Bhattacharjee"]

edition = "2018"

[dependencies]

As you can see, there is some basic information added here. Important

items are the name and the version.

If you check the contents of the src/ folder, you can also see that there

is a main.rs file. Check the contents of the main.rs file. You can see that

Chapter 1 Basics of Rust

8

there is a minimal file written with main function. To run a Rust app, you

will need the main function that acts as the entry point for the code. The

code in this case is a simple printing of hello world.

fn main() {

 println!("Hello, world!");

}

We can now build the application using the build command. This

will generate a binary file that can be used to run the application. Once

development of the application is done, we can use the --release flag to

create an optimized binary. This needs to be done because by default, cargo

builds disable many optimizations so that they are useful for testing. So

when creating builds for production usage, the release flag should be used.

$ cargo build

 Compiling myfirstapp v0.1.0 (/tmp/myfirstapp)

 Finished dev [unoptimized + debuginfo] target(s) in 8.47s

$ ls target/debug/myfirstapp

target/debug/myfirstapp

$./target/debug/myfirstapp

Hello, world!

While developing, we can also use the cargo run command to

shortcut the procedure just shown.

$ cargo run

 Finished dev [unoptimized + debuginfo] target(s) in 0.42s

 Running `target/debug/myfirstapp`

Hello, world!

Chapter 1 Basics of Rust

9

1.6  �Variables in Rust
In Rust, variables are defined using the let keyword. The types of the

variables will be inferred for us. Take a look at the next example.

let x = "learning rust";

println!("{}", x);

println is used to see the variable.

There is a note on the special construct println! here. When you see the

! sign after a function name, that means that a macro is being used. Macros

are special metaprogramming constructs in Rust, which are outside the

scope of this book. The macro println is being used because Rust does not

support variable args in functions and hence println has to be a macro.

We can see the type of the variable using the following code.

#![feature(core_intrinsics)]

fn print_type_of<T>(_: &T) {

 �println!("{}", unsafe { std::intrinsics::

type_name::<T>() });

}

fn main() {

 let x = "learning rust";

 println!("{}", x);

 print_type_of(&x);

}

This will not run in a default stable version though and will need to

be compiled in the nightly version. The nightly compiler will need to

be enabled. Nightly version is the place where unstable or potentially

unstable code is kept, and so language features such as the one that we are

discussing right now will only be available in a nightly version.

Chapter 1 Basics of Rust

10

$ rustup default nightly

We should now be able to run the code.

$./variables1

learning rust

&str

Now try this out with different types of variables.

let x = "learning rust";

let y = 6;

let z = 3.14;

println!("{}", x);

println!("type of x:");

print_type_of(&x);

println!("type of y:");

print_type_of(&y);

println!("type of z:");

print_type_of(&z);

The output of using the above code is

$./variables1

learning rust

type of x:

&str

type of y:

i32

type of z:

f64

Chapter 1 Basics of Rust

11

Note  i32 are essentially integers in 32 bit and f64 are floats in
64 bits. We will discuss different types of numbers throughout this
book, but mostly Rust follows the primary data type formats that are
universal in different languages for easy compilation into different
architectures.

1.6.1  �Mutation and Shadowing
The variables that are created using the let keyword are immutable.

According to the Rust book, this is done because one of the primary

focuses of Rust is safety.1 When there is a need to change the values of

variables, we can create variables that are mutable. This is done using the

mut keyword with let.

let mut x = 32;

println!("Current value of x: {}", x);

x = 64;

println!("Current value of x: {}", x);

The output is

Current value of x: 32

Current value of x: 64

Mutating the type of the variable is not allowed though.

let mut x = 32;

println!("Current value of x: {}", x);

x = "rust";

println!("Current value of x: {}", x);

1�https://doc.rust-lang.org/nightly/book/variable-bindings.html

Chapter 1 Basics of Rust

https://doc.rust-lang.org/nightly/book/variable-bindings.html

12

So, for something like the previous example, we will get an error as

shown.

$ rustc variables3.rs

error[E0308]: mismatched types

 --> variables3.rs:4:9

 |

4 | x = "rust";

 | ^^^^^^ expected integer, found reference

 |

 = note: expected type `{integer}`

 found type `&'static str`

error: aborting due to previous error

For more information about this error, try `rustc --explain

E0308`.

Observe that in the place where x is assigned a string, the compiler is

telling us that the code should have an integer. Passing a string now will

not work.

For simple calculations we can use the shadowing principal as well.

Shadowing happens when a variable declared within an outer scope is

the same variable used within an inner scope. So something like what is

shown here is perfectly valid.

fn main() {

 let x = 1;

 let x = x + 2;

 let x = x * 2;

 println!("Value of x: {}", x);

}

Output for the above code is Value of x: 6.

Chapter 1 Basics of Rust

13

1.6.2  �Variable Scoping
Also, in this case, the scope of the variables needs to be strictly maintained.

Let’s take a look at an example.

// variables5.rs

fn main() {

 let x = 5;

 if 4 < 10 {

 let x = 10;

 println!("Inside if x = {:?}", x);

 }

 println!("Outside if x = {:?}", x);

}

Check the output. Since the scope of the inner variable x ends after the

first print statement, the first print statement prints x as 10 while the outer

print statement prints 5.

$./variables5

Inside if x = 10

Outside if x = 5

As you can see, the scope of variables is maintained, and once the scope

of the if statement is done, the variable x returns to the previous state.

1.7  �Data Types
The data types are mostly similar to what you would find in other

languages. Review the following list.

•	 bool : The Boolean type.

•	 char : A character type.

Chapter 1 Basics of Rust

14

•	 i8 : The 8-bit signed integer type.

•	 i16 : The 16-bit signed integer type.

•	 i32 : The 32-bit signed integer type.

•	 i64 : The 64-bit signed integer type.

•	 isize : The pointer-sized signed integer type.

•	 u8 : The 8-bit unsigned integer type.

•	 u16 : The 16-bit unsigned integer type.

•	 u32 : The 32-bit unsigned integer type.

•	 u64 : The 64-bit unsigned integer type.

•	 usize : The pointer-sized unsigned integer type.

•	 f32 : The 32-bit floating-point type.

•	 f64 : The 64-bit floating-point type.

•	 array : A fixed-size array, denoted [T; N], for the

element type, T, and the non-negative compile-time

constant size, N.

•	 slice : A dynamically sized view into a contiguous

sequence, [T].

•	 str : String slices.

•	 tuple : A finite heterogeneous sequence(T, U, . . .).

1.8  �Functions
Functions are defined using the fn keyword. When defining functions,

the signature of the function and the arguments will need to be said. We

can skip the function signature for void functions. Remember that we did

Chapter 1 Basics of Rust

15

not provide any signature in case of the main function. To return from a

function, there is no explicit return statement. Instead, return statements

will not have the semicolon at the end.

fn main() {

 println!("{:?}", square_of(-5));

}

fn square_of(x: i32) -> i32 {

 println!("x = {:?}", x);

 x.pow(2)

}

// output:

// x = -5

// 25

1.9  �Conditions
There are two ways you can do conditional checking. One is the normal if

blocks, and the other is pattern matching.

1.9.1  �If Conditions
If conditions work similar to those in other languages. Only what you

might not expect coming from more imperative languages is that an if

block in Rust can return a statement. This is convenient as Rust has strict

scoping rules as you saw before.

// Usage:

// $./conditions

// "cold"

fn main() {

 let place = "himalayas";

Chapter 1 Basics of Rust

16

 let weather = if place == "himalayas" {

 "cold"

 } else {

 "hot"

 };

 println!("{:?}", weather);

}

Note T he println with a {:?} for showing the variable will work if
Debug has been implemented for the variable type. We will implement
the Debug for different classes in the later chapters, and this will be the
standard method of printing variables throughout this book.

1.9.2  �Pattern Matching
For the same logic as shown in 1.9.1 we can use a more declarative syntax

using the match operator. The caveat is that all the use cases will need to

be covered. The above if can be written like what is shown next.

// Usage:

// $./match

// "cold"

fn main() {

 let place = "himalayas";

 let weather = match place {

 "himalayas" => "cold",

 _ => "hot",

 };

 println!("{:?}", weather);

}

Chapter 1 Basics of Rust

17

1.10  �References and Borrowing
As shown next, the functions can simply take a value, compute a result,

and get the output.

// $./ownership1

// "rust 2018."

fn main() {

 let lang = "rust";

 let rust1 = add_version(&lang);

 println!("{:?}", rust1);

}

fn add_version(s: &str) -> String {

 s.to_string() + " 2018."

}

But this simple logic is not necessarily the case when writing real-

world apps. Variables are generally created so that they can be used in

multiple places. Let’s take the next example, where we are trying to use the

same variable lang in different functions.

// ownership2.rs

fn main() {

 let lang = String::from("rust");

 let rust1 = add_version(lang);

 println!("{:?}", rust1);

 let rust2 = add_lang(lang);

 println!("{:?}", rust2);

}

fn add_version(s: String) -> String {

 s + " " + "2018!!"

}

Chapter 1 Basics of Rust

18

fn add_lang(s: String) -> String {

 s + " " + "lang."

}

Compiling this code gives the following error.

$ rustc ownership2_invalid.rs

error[E0382]: use of moved value: `lang`

 --> ownership2_invalid.rs:8:23

 |

6 | let rust1 = add_version(lang);

 | ---- value moved here

7 | println!("{:?}", rust1);

8 | let rust2 = add_lang(lang);

 | ^^^^ value used here after move

 |

 �= note: move occurs because `lang` has type

`std::string::String`, which does not implement the `Copy` trait

error: aborting due to previous error

For more information about this error, try `rustc --explain E0382`.

So here comes the concept of borrowership. Using the same variable

multiple times is not considered safe, and so what needs to be done

is to create a reference to the variable and pass the reference around.

This is similar to the analogy of borrowing books. The same book can

be borrowed by multiple people, but it can be owned by only one

person. Referencing is done using the ampersand & operator. The earlier

code will be changed to the following. In this case, sadly, we lose our

implementation of add and will need to use a method.

Chapter 1 Basics of Rust

19

// ownership3.rs

fn main() {

 let lang = String::from("rust");

 let rust1 = add_version(&lang);

 println!("{:?}", rust1);

 let rust2 = add_lang(&lang);

 println!("{:?}", rust2);

}

fn add_version(s: &String) -> String {

 s.push_str(" 2019!!");

 s.to_string()

}

fn add_lang(s: &String) -> String {

 s.push_str(" lang.");

 s.to_string()

}

Now if we run this code, we get the following error. Notice that the

error is different. If you are from a C++ background, you might notice that

this is a common construct. But in Rust, trying to push a string to a vector

seems to through an error.

error[E0596]: cannot borrow immutable borrowed content `*s` as

mutable

 --> ownership2_invalid2.rs:12:2

 |

11 | fn add_version(s: &String) -> String {

 | ------- �use `&mut String` here to make

mutable

12 | s.push_str(" 2019!!");

 | ^ cannot borrow as mutable

Chapter 1 Basics of Rust

20

error[E0596]: cannot borrow immutable borrowed content `*s` as

mutable

 --> ownership2_invalid2.rs:17:2

 |

16 | fn add_lang(s: &String) -> String {

 | ------- �use `&mut String` here to make

mutable

17 | s.push_str(" lang.");

 | ^ cannot borrow as mutable

error: aborting due to 2 previous errors

For more information about this error, try `rustc --explain

E0596`.

So the error is that you cannot borrow a reference and try to mutate

it. This is one of the defining characteristics of Rust as discussed in the

first section, and we will need to keep this in mind all the time later in the

development process.

1.10.1  �Mutable References
As we have seen in the variable section, the let keyword essentially creates

variables that are immutable. A way to convert them to mutable variables

is by putting in the mut keyword. So, in the previous code, put all the places

where the variable is referenced as mutable. The resulting code is shown

here.

// $./ownership4

// "rust 2019!!"

// "rust 2019!! lang."

Chapter 1 Basics of Rust

21

fn main() {

 let mut lang = String::from("rust");

 let rust1 = add_version(&mut lang);

 println!("{:?}", rust1);

 let rust2 = add_lang(&mut lang);

 println!("{:?}", rust2);

}

fn add_version(s: &mut String) -> String {

 s.push_str(" 2019!!");

 s.to_string()

}

fn add_lang(s: &mut String) -> String {

 s.push_str(" lang.");

 s.to_string()

}

We have now achieved our objective to be able to pass the variables

to all the functions. There is a final problem though. As the initial string

variable is mutable, the same object is getting changed in all the functions.

As you can see, the output is “rust 2019!!” and in the next function

the “lang” gets added to “rust 2019” and not “rust” alone. This can be

remedied by using str, which is the immutable version of the String type.

The code changes are shown here with comments by the code changes.

// $./ownership

// "rust 2018."

// "rust lang."

fn main() {

 let lang = "rust"; // major change

 let rust1 = add_version(&lang);

 println!("{:?}", rust1);

Chapter 1 Basics of Rust

22

 let rust2 = add_lang(&lang);

 println!("{:?}", rust2);

}

fn add_version(s: &str) -> String {

 s.to_string() + " 2018." // major change

}

fn add_lang(s: &str) -> String {

 s.to_string() + " lang." // major change

}

1.11  �Object-Oriented Programming
Rust has a healthy dose of both functional programming paradigms as well

as the OOP (Object-Oriented Programming) paradigm, but since the readers

of this book are probably coming from a machine learning industry and are

interested in learning machine learning (that is the assumption that we are

making), and because object-based programming models are in vogue in

these fields (as they are in almost all the programming fields), we will take a

special look at object-based models of programming. To get into this, we will

start with the core types and then go to how things come together in Rust.

1.11.1  �Structures
First come structures. Structures are essentially named tuples, and

they can be utilized to store organized information. They can also be

considered as attributes of an instance. Take a look at the next code.

// structures.rs

// $./structures

// Planet { co2: 0.04, nitrogen: 78.09 }

// Planet { co2: 95.32, nitrogen: 2.7 }

Chapter 1 Basics of Rust

23

#[derive(Debug)]

struct Planet {

 co2: f32,

 nitrogen: f32

}

fn main() {

 let earth = Planet { co2: 0.04, nitrogen: 78.09 };

 println!("{:?}", earth);

 let mars = Planet { co2: 95.32, nitrogen: 2.7 };

 println!("{:?}", mars);

}

Also notice that when creating the struct, we have annotated with the

Debug trait. This is done because it lets us print the class instances earth

and mars in the main method in the debug mode. Because of this we will

get output something like what comes next, clearly showing the class and

the variable names and values.

// $./oops

// Planet { co2: 0.04, nitrogen: 78.09 }

// Planet { co2: 95.32, nitrogen: 2.7 }

1.11.2  �Traits
Structs and other data structures do not have or own functionality. These

functionalities are defined using traits. Traits are similar to interfaces in

OOP languages. One of the core principles of Rust is the principle of zero-

cost abstraction. Zero-cost abstraction in the words of Bjarne Stroustrup:

C++ implementations obey the zero-overhead principle: What
you don’t use, you don’t pay for [Stroustrup, 1994]. And
further: What you do use, you couldn’t hand code any better.

—Stroustrup

Chapter 1 Basics of Rust

24

Traits are meant to support zero-cost abstractions. A trait can

be implemented for multiple types and new functionality can be

implemented for old types using traits. An example of a simple trait

is shown next. co2 and nitrogen are members of the trait, whereas

summarize is a method.

trait Atmosphere {

 fn new(co2: f32, nitrogen: f32) -> Self;

 fn amount_of_other_gases(&self) -> f32;

 fn summarize(&self);

}

1.11.3  �Methods and impl
You can implement methods on structs using the impl block. In this way

we have something that resembles objects, which means that we have

a type that encapsulates data and behavior. An example combining the

previous struct and trait are shown next as well as how the implementation

is done for the specific struct.

// oops.rs

#[derive(Debug)]

struct Planet {

 co2: f32,

 nitrogen: f32

}

trait Atmosphere {

 fn new(co2: f32, nitrogen: f32) -> Self;

 fn amount_of_other_gases(&self) -> f32;

 fn summarize(&self);

}

Chapter 1 Basics of Rust

25

impl Atmosphere for Planet {

 fn new(co2: f32, nitrogen: f32) -> Planet {

 Planet { co2: co2, nitrogen: nitrogen }

 }

 fn amount_of_other_gases(&self) -> f32 {

 100.0 - self.co2 - self.nitrogen

 }

 fn summarize(&self) {

 let other_gases = self.amount_of_other_gases();

 �println!("For planet {planet:?}: co2 = {co2},

nitrogen={nitrogen}, other_gases={other_gases}",

 �planet=self, co2=self.co2,

nitrogen=self.nitrogen,

other_gases=other_gases);

 }

}

fn main() {

 let earth = Planet { co2: 0.04, nitrogen: 78.09 };

 println!("{:?}", earth);

 let mars = Planet { co2: 95.32, nitrogen: 2.7 };

 println!("{:?}", mars);

 earth.summarize();

 mars.summarize();

}

For the previous code, we will see the output next. You can see that

after the creation of the instances earth and mars, the summarize method

for the instances run, which makes the calculation for the different

parameters and prints the result.

Chapter 1 Basics of Rust

26

// $./oops

// Planet { co2: 0.04, nitrogen: 78.09 }

// Planet { co2: 95.32, nitrogen: 2.7 }

// �For planet Planet { co2: 0.04, nitrogen: 78.09 }:

co2 = 0.04, nitrogen=78.09, other_gases=21.870003

// �For planet Planet { co2: 95.32, nitrogen: 2.7 }:

co2 = 95.32, nitrogen=2.7, other_gases=1.9800003

1.11.4  �Enumerations
Enumerations are an interesting way to create a type that will hold one of

the values of few different variants. For example, IP addresses can have

one of the types of IP addresses but not both. A book can be hardbound or

paperback but not both and so on. In such cases, we can define the types

as enums. Take a look at the following code.

// enumerations.rs

#[derive(Debug)]

enum NationalHolidays {

 GandhiJayanti,

 RepublicDay,

 IndependenceDay,

}

fn inspect(day: NationalHolidays) -> String {

 match day {

 NationalHolidays::GandhiJayanti => String::from("Oct 2"),

 NationalHolidays::RepublicDay => String::from("Jan 26"),

 �NationalHolidays::IndependenceDay => String::from

("Aug 15"),

 }

}

Chapter 1 Basics of Rust

27

fn main() {

 let day = NationalHolidays::GandhiJayanti;

 let date = inspect(day);

 println!("{:?}", date); // output: Oct 2

}

Similar to structs, we can attach functionality over enums as well.

Running this is left as an exercise for the reader.

1.12  �Writing Tests
Finally, as part of the core basics that we are covering in Rust, we are at

the place of how to write tests in Rust. As an example, we are taking the

ownership1.rs code and writing a test for the add_version function. The

code for the method is simple with a string “2018” concatenated to the

input string.

To write the test for this method, we will need to write a function and

annotate the function with #[test]. Then the compiler would know that the

underlying function is a test method. The assert_eq function in Rust is a

macro. After that, the first is the actual output from the function, which in

this case is add_version function and the next parameter is the expected

value, which is String::from("abcd 2018.").

fn add_version(s: &str) -> String {

 s.to_string() + " 2018."

}

#[test]

fn test_add_version() {

 �assert_eq!(add_version("abcd"), String::from("abcd

2018."));

}

Chapter 1 Basics of Rust

28

If written in a Cargo package, we can use the cargo test command to

compile and run the test for us.

$ cargo test

 Compiling unittestingexample v0.1.0 (/path/to/code)

 Finished dev [unoptimized + debuginfo] target(s) in 9.75s

 �Running target/debug/deps/unittestingexample-

9d94da4358544e8a

running 1 test

test test_add_version ... ok

test result: ok. 1 passed; 0 failed; 0 ignored; 0 measured; 0

filtered out

Note that a new test binary gets created, and the test binary is run to

evaluate the test cases.

1.13  �Summary
This chapter introduces you to the basics of Rust by showing how to

install Rust and set up a development environment, how to start working

on Rust projects using Cargo, and how to use variables and functions in

Rust. You also had a glimpse of ownership and references in Rust and how

to implement some object paradigms using Structs, Enums, Traits, and

Impl’s.

In the next chapter, you will look at using Rust and creating Rust

programs that use machine learning algorithms such as linear or logistic

regression.

Chapter 1 Basics of Rust

29

1.14  �References

	 [1]	 Pavel Kordík. On Machine Learning and

Programming Languages. Ed. by Towards Data

Science. [Online; accessed 23-May-2019]. 2018.

URL: https://medium.com/recombee-blog/

machinelearning-for-recommender-systems-

part-1-algorithmsevaluation-and-cold-start-

6f696683d0ed

	 [2]	 PyTorch bindings for Rust and OCaml. [Online;

accessed 11-Nov-2019]. 2019. URL: https://

www.reddit.com/r/MachineLearning/comments/

axy689/p_pytorch_bindings_for_rust_and_

ocaml/

	 [3]	 Oxide: The Essence of Rust. by Aaron Weiss, Daniel

Patterson, Nicholas D. Matsakis, Amal Ahmed.

[Online; accessed 11-Nov-2019]. 2019. URL:

https://arxiv.org/abs/1903.00982

	 [4]	 Short Paper: Rusty Types for Solid Safety. by Sergio

Benitez [Online; accessed 11-Nov-2019]. 2019. URL:

https://sergio.bz/docs/rusty-types-2016.pdf

	 [5]	 Ownership Types for Flexible Alias Protection

by David G. Clarke, John M. Potter, James Noble

[Online; accessed 11-Nov-2019]. 2019. URL: http://

citeseerx.ist.psu.edu/viewdoc/download;?

doi=10.1.1.23.2115&rep=rep1&type=pdf

Chapter 1 Basics of Rust

https://medium.com/recombee-blog/machinelearning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machinelearning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machinelearning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machinelearning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://www.reddit.com/r/MachineLearning/comments/axy689/p_pytorch_bindings_for_rust_and_ocaml/
https://www.reddit.com/r/MachineLearning/comments/axy689/p_pytorch_bindings_for_rust_and_ocaml/
https://www.reddit.com/r/MachineLearning/comments/axy689/p_pytorch_bindings_for_rust_and_ocaml/
https://www.reddit.com/r/MachineLearning/comments/axy689/p_pytorch_bindings_for_rust_and_ocaml/
https://arxiv.org/abs/1903.00982
https://sergio.bz/docs/rusty-types-2016.pdf
http://citeseerx.ist.psu.edu/viewdoc/download;?doi=10.1.1.23.2115&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;?doi=10.1.1.23.2115&rep=rep1&type=pdf
http://citeseerx.ist.psu.edu/viewdoc/download;?doi=10.1.1.23.2115&rep=rep1&type=pdf

30

	 [6]	 Java Garbage Collection handbook [Online;

accessed 11-Nov-2019]. 2019. URL: https://

plumbr.io/java-garbage-collection-handbook

	 [7]	 toml github repo [Online; accessed 11-Nov-2019].

2019. URL: https://github.com/toml-lang/toml

	 [8]	 Rust: str vs String [Online; accessed 12-Oct-2019].

2017. URL: https://www.ameyalokare.com/

rust/2017/10/12/rust-str-vs-String.html

Chapter 1 Basics of Rust

https://plumbr.io/java-garbage-collection-handbook
https://plumbr.io/java-garbage-collection-handbook
https://github.com/toml-lang/toml
https://www.ameyalokare.com/rust/2017/10/12/rust-str-vs-String.html
https://www.ameyalokare.com/rust/2017/10/12/rust-str-vs-String.html

31© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_2

CHAPTER 2

Supervised Learning
2.1  �What Is Machine Learning?
Machine learning is the science of getting computers to act without being

specifically programmed. This is done by implementing special algorithms

that have the ability to detect patterns in data. From a developer point of

view, this means creating a system that has access to relevant data, is able

to feed the data to machine learning algorithms, and is able to take the

output and redirect it to downstream processes and tasks.

Supervised learning Supervised learning happens when you pass

both the input and the desired outputs to the system, and you want the

resulting machine learning model to capture the relationship. Supervised

learning is again divided into two subsections based on the type of the

labels.

Supervised tasks when the target variable is continuous are termed as

regression problems. For example, the price of a product can be any value.

We should probably go for regression techniques when the prediction

needs to be made on something that requires the prediction of a quantity

of some sort. Quality of a regression model is generally measured using

some form of error measures, that is, the difference between the target

values and the predicted values.

Classification problems are different from regression problems in

that the labels are discrete and finite. For example, we can categorize an

email message as spam or ham. So, a problem is a classification problem

when we are interested in the resulting bucket that a particular set of

32

feature readings will fall into. Quality of a classification model is generally

measured using an accuracy measure that is essentially the count of the

number of times the model has been right.

Unsupervised learning In unsupervised algorithms, the labels or

the target classes are not given. So, the goal of unsupervised learning is to

attempt to find natural partitions of patterns.

The best time for unsupervised learning is when the data on desired

outcomes is not known, such as creating a new class of products that the

business has never sold before.

Reinforcement learning In reinforcement learning, specifically

crafted agents are released in an environment, in which they learn

to take actions based on some notion of rewards and punishments.

Reinforcement learning has been applied to robotic movements and

different classes of games with some success.

In this chapter we will be taking a look at creating models for different

machine learning algorithms using Rust. We will first read a dataset from a

csv file. This is a common dataset and will be representative of the types of

data in the real world. Then we will look at the logic of popular algorithms,

why they work, and how to implement them using some Rust machine

learning packages such as rusty_machine. We will also take a look at how

to evaluate the accuracy of each model.

By the end of this chapter, you should have a fair understanding of

how to create common machine learning models and implement them

in Rust.

2.2  �Dataset Specific Code
Before going into regression algorithms and the associated code, let’s build

the surrounding boilerplate code. Look at the rusty_machine_regression

package in the code that is shared with this book.

Chapter 2 Supervised Learning

33

For showing usage of regression, we will be using the boston housing

dataset.1 You can also download the data from the kaggle page for boston

dataset.2 The dataset has 14 features and has 506 samples. The following is

a description of the dataset.

•	 CRIM - per capita crime rate by town

•	 ZN - proportion of residential land zoned for lots over

25,000 sq. ft.

•	 INDUS - proportion of non-retail business acres per

town

•	 CHAS - Charles River dummy variable (1 if tract

bounds river; 0 otherwise)

•	 NOX - nitric oxides concentration (parts per 10 million)

•	 RM - average number of rooms per dwelling

•	 AGE - proportion of owner-occupied units built prior to

1940

•	 DIS - weighted distances to five Boston employment

centers

•	 RAD - index of accessibility to radial highways

•	 TAX - full-value property-tax rate per $10,000

•	 PTRATIO - pupil-teacher ratio by town

•	 B - 1000(Bk - 0.63) 2̂ where Bk is the proportion of

blacks by town

•	 LSTAT - % lower status of the population

•	 MEDV - Median value of owner-occupied homes in

$1000’s

1�https://www.cs.toronto.edu/ delve/data/boston/bostonDetail.html.
2�https://www.kaggle.com/c/boston-housing/data.

Chapter 2 Supervised Learning

https://www.cs.toronto.edu/~delve/data/boston/bostonDetail.html
https://www.kaggle.com/c/boston-housing/data

34

Now let’s first create the project. We can create a project with the cargo

command as shown next in Listing 2-1.

Listing 2-1.  Create new package

$ cargo new rustymachine-regression --bin

$ cd rustymachine-regression

We can see that an src/main.rs file has been created and a Cargo.

toml file has been created in the directory. We can create additional

directory data using the command mkdir data to keep the boston housing

dataset there.

The data is kept in a file “data/housing.csv”. A quick look at the csv

suggests that it is a fixed width file with no headers (Listing 2-2).

Listing 2-2.  Housing data

$ head -n1 data/housing.csv \

 | grep -Eo '[0-9]*[.]?[0-9]*' \

 | wc -l

14

$ head -n2 data/housing.csv

 0.00632 18.00 ... 4.98 24.00

 0.02731 0.00 ... 9.14 21.60

To parse through the files and create our model, we will need to

depend on various external dependencies. Rust packages are generally

called crates. To access the code in the different crates, we will need to

add them in the Cargo.toml file. The crates csv parses the csv files with

the help of additional crates serde and serde-derive. We will talk about the

rusty-machine crate later so for now just add them to the toml file. Notice

that we are using Rust version 2018. This is the version that we will be

using throughout the book (Listing 2-3).

Chapter 2 Supervised Learning

35

Listing 2-3.  chapter2/rustymachine_regression/Cargo.toml

[package]

name = "rustymachine_regression"

version = "0.1.0"

edition = "2018"

[dependencies]

rusty-machine = "0.5.4"

serde = "1"

serde_derive = "1"

rand = "0.6.5"

csv = "1.0.7"

For your applications, go to the crates.io page to find the available

versions of the respective dependencies for your applications. In the

website you can see that there is a search bar where you can put your

search terms. In Figure 2-1, the csv page is shown.

If you scroll below, you will get the accompanying documentation as well.

Figure 2-1.  Crates page

Chapter 2 Supervised Learning

36

Now we will start writing the code for the first module in this book.

Most of the code in this book would be written in the src/main.rs file

unless otherwise stated. Also, you can understand the file where the code is

written in the label for the code block. We will go ahead and add required

modules that will be imported using the use statement (Listing 2-4).

Listing 2-4.  chapter2/rustymachine_regression/src/lin_reg.rs

extern crate serde;

#[macro_use]

extern crate serde_derive;

use std::io::prelude::*;

use std::io::BufReader;

use std::path::Path;

use std::fs::File;

use std::vec::Vec;

use std::error::Error;

use rand::thread_rng;

use rand::seq::SliceRandom;

To parse the file and match with appropriate records, we create a

struct with each value to be a float64 (Listing 2-5).3 We will need to

initialize them as float64 due to the Rust machine learning library to we

will use that we will introduce later in this section.

Listing 2-5.  chapter2/ml-utils/src/datasets.rs

pub struct BostonHousing {

 crim: f64, zn: f64, indus: f64, chas: f64, nox: f64,

 rm: f64, age: f64, dis: f64, rad: f64, tax: f64,

 ptratio: f64, black: f64, lstat: f64, medv: f64,

}

3�This does not mean that they cannot be used in 32-bit machines. Floats have
nothing to do with the bitness of the machine.

Chapter 2 Supervised Learning

37

One way to convert the file into records is to read the file line by line

and build the BostonHousing record. This should enable us to implement

methods that separate out the predictors and the responses or target

variables. In this case we consider the median value of the house (the price

of the house) as the target, and we will try to predict the price of the house

based on the predictors available.

Listing 2-6 shows the code to implement the building of a

BostonHousing record and methods to build the feature vector and targets.

Listing 2-6.  chapter2/ml-utils/src/datasets.rs

impl BostonHousing {

 pub fn new(v: Vec<&str>) -> BostonHousing {

 let f64_formatted: Vec<f64> = v.iter().map(

 |s| s.parse().unwrap()).collect();

 BostonHousing {

 crim: f64_formatted[0], zn: f64_formatted[1],

 indus: f64_formatted[2], chas: f64_formatted[3],

 nox: f64_formatted[4], rm: f64_formatted[5],

 age: f64_formatted[6], dis: f64_formatted[7],

 rad: f64_formatted[8], tax: f64_formatted[9],

 ptratio: f64_formatted[10], black: f64_formatted[11],

 lstat: f64_formatted[12], medv: f64_formatted[13] }

 }

 pub fn into_feature_vector(&self) -> Vec<f64> {

 vec![self.crim, self.zn, self.indus, self.chas, self.nox,

 self.rm, self.age, self.dis, self.rad,

 self.tax, self.ptratio, self.black, self.lstat]

 }

Chapter 2 Supervised Learning

38

 pub fn into_targets(&self) -> f64 {

 self.medv

 }

}

Now that we can proceed and start reading the file line by line

using get_boston_records_from_file file. Each line will be passed to the

get_boston_record function, which splits the string to a vector of strings

to be parsed appropriately by BostonRecord (Listing 2-7).

Listing 2-7.  chapter2/ml-utils/src/datasets.rs

fn get_boston_record(s: String) -> BostonHousing {

 let v: Vec<&str> = s.split_whitespace().collect();

 let b: BostonHousing = BostonHousing::new(v);

 b

}

fn get_boston_records_from_file(

 fl: impl AsRef<Path>) -> Vec<BostonHousing> {

 let file = File::open(fl).expect("no such file");

 let buf = BufReader::new(file);

 buf.lines().enumerate()

 .map(|(n, l)| l.expect(

 &format!("Could not parse line no {}", n)))

 .map(|r| get_boston_record(r))

 .collect()

}

The output of get_boston_records_from_file will now be stored in a

mutable data variable to be used later (Listing 2-8).

Chapter 2 Supervised Learning

39

Note  Since these functions such as get_boston_record and
get_boston_records_from_file and other dataset parsing
functions are kept in the ml-utils package that is created in the
chapter2 directory, a separate package has been created for these
functions as we will be using these datasets for various machine
learning models throughout the book. The code for the models will
be kept in the respective chapter and packages. Hence, we will also
see the path to ml-utils being referenced to in the cargo file and
the module importing part of the code. Please have a look at the code
shared with the book for a better understanding.

Listing 2-8.  chapter2/rustymachine_regression/src/lin_reg.rs

use ml_utils::datasets::get_boston_records_from_file;

pub fn run() -> Result<(), Box<dyn Error>> {

 let fl = "data/housing.csv";

 let mut data = get_boston_records_from_file(&fl);

 // remaining part of the function

In machine learning tasks, it is a good practice to shuffle the incoming

dataset. Shuffling data serves the purpose of reducing variance and making

sure that models remain general and overfit less. Shuffling helps in making

sure that the train/test/validation samples of the dataset are representative

of the overall distribution of the data.

In Listing 2-9 we shuffle the data, split them into 80% train and 20%

tests, and convert them into f64 vectors.

Chapter 2 Supervised Learning

40

Listing 2-9.  chapter2/rustymachine_regression/src/lin_reg.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code

 data.shuffle(&mut thread_rng());

 // separate out to train and test datasets.

 let test_size: f64 = 0.2;

 let test_size: f64 = data.len() as f64 * test_size;

 let test_size = test_size.round() as usize;

 let (test_data, train_data) = data.split_at(test_size);

 let train_size = train_data.len();

 let test_size = test_data.len();

 // differentiate the predictors and the targets.

 let boston_x_train: Vec<f64> = train_data.iter()

 .flat_map(|r| r.into_feature_vector())

 .collect();

 let boston_y_train: Vec<f64> = train_data.iter()

 .map(|r| r.into_targets()).collect();

 let boston_x_test: Vec<f64> = test_data.iter()

 .flat_map(|r| r.into_feature_vector()).collect();

 let boston_y_test: Vec<f64> = test_data.iter()

 .map(|r| r.into_targets()).collect();

 // remaining part of the function

Data has been loaded and split into train and test components. The

code in Listing 2-9 is generic and will be there in most of the run methods

used in the run methods of the regression models in this chapter.

Chapter 2 Supervised Learning

41

2.3  �Rusty_Machine Library
Rusty_machine is a general-purpose machine learning library written

entirely in Rust. The main aims of the rusty_machine are ease of use and

speed without having to depend on a huge number of external libraries.

The consistency in the api is achieved using the rust’s trait system. It

currently uses rulinalg for its linear algebra back end. In this book, one

of the core libraries that we will focus on to achieve our machine learning

needs is by using this library.

To use the rusty machine library, we will need to convert the data

vectors into rulinalg supported Matrices. Convert the above vectors like

those shown in Listing 2-10.

Listing 2-10.  chapter2/rustymachine_regression/src/lin_reg.rs

use rusty_machine;

use rusty_machine::linalg::Matrix;

use rusty_machine::linalg::Vector;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 �let boston_x_train = Matrix::new(train_size, 13,

boston_x_train);

 let boston_y_train = Vector::new(boston_y_train);

 let boston_x_test = Matrix::new(test_size, 13, boston_x_test);

 let boston_y_test = Matrix::new(test_size, 1, boston_y_test);

 // remaining part ...

In the code shown in Listing 2-10, we have boston_y_train as a vector

but boston_y_test as a matrix of dimension 1. Theoretically they are the

same but the datatypes have been taken as different because later on we

will be using the function neg_mean_squared_error, which expects the

Chapter 2 Supervised Learning

42

inputs to be in matrix format as seen in Listing 2-11. Since we have not

reached that stage yet, you can choose to keep boston_y_test as a vector

for now.

Listing 2-11.  Error in lin_reg.rs

error[E0308]: mismatched types

 --> src/lin_reg.rs:79:52

 |

79 | �let acc = neg_mean_squared_error(&predictions,

&boston_y_test);

 | ^^^^^^^^^^^^^^

 �expected struct `rulinalg::matrix::Matrix`, found struct

`rulinalg::vector::Vector`

 |

 = note: expected type `&rulinalg::matrix::Matrix<f64>`

 found type `&rulinalg::vector::Vector<f64>`

error: aborting due to previous error

In rusty machine the two key methods that are implemented

throughout all the model classes are the train and predict methods.

Readers familiar with the sciki-learn api might be comfortable in it. As the

name suggests, we will need to pass the training data to the train method

for the respective models and the test data to the predict method of the

respective models.

2.4  �Linear Regression
Ordinary Least Squares linear regression is the method where a linear

model with coefficients w = (w1,w2,…,wp) is optimized to minimize the

residual sum of squares between the observed responses in the dataset,

Chapter 2 Supervised Learning

43

and the responses predicted by the linear approximation. Mathematically

it solves the problem of the form:

	
min

w
w= -X y

2

	 (1)

Using Rusty_Machine One of the methods to optimize the model

is Gradient Descent. Train a linear regression model using the code in

Listing 2-12.

Listing 2-12.  chapter2/rustymachine_regression/src/lin_reg.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code...

 let mut lin_model = LinRegressor::default();

 lin_model.train(&boston_x_train, &boston_y_train)?;

 let predictions = lin_model.predict(&boston_x_test).unwrap();

 let predictions = Matrix::new(test_size, 1, predictions);

 let acc = neg_mean_squared_error(&predictions, &boston_y_test);

 println!("linear regression error: {:?}", acc);

 println!("linear regression R2 score: {:?}", r_squared_score(

 &boston_y_test.data(), &predictions.data()));

 Ok(())

}

The output for the code in Listing 2-12 should be similar to that in

Listing 2-13.

Listing 2-13.  lin_reg.rs output

$ cargo run lr < ../datasets/housing.csv

LinRegressor { parameters: None }

linear regression error: -23.242663146907553

linear regression R2 score: 0.7627858374713654

Chapter 2 Supervised Learning

44

Creating a linear regression model similar to Listing 2-13 is kept in the

module chapter2/rustymachine_regression/src/lin_reg.rs module.

Using Tensorflow An interesting implementation of regression can

be done using the closed form solution of the regression equation using

Tensorflow. In this section we will implement the closed form solution

using Rust implementation of Tensorflow.

Tensorflow is designed in such a way that to implement computations,

we essentially need to create graphs. A Tensorflow program is essentially

divided into two parts. In one part we create the computational graph

and then we write the code that runs the graph in a session. It solves

linear regression using the normal equation where we solve for theta

q̂ = ×() × ×()-
X X X yT T1

 where q̂ are the weights.

To create the computational graph, we will first load the vectors to the

tensors with the appropriate dimensions (Listing 2-14).

Listing 2-14.  chapter/rust_and_tf/src/linear_regression.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let dim = (boston_y_train.len() as u64, 13);

 let test_dim = (boston_y_test.len() as u64, dim.1);

 let X_train = <Tensor<f64>>::new(&[dim.0, dim.1])

 .with_values(&boston_x_train)?;

 let y_train = <Tensor<f64>>::new(&[dim.0, 1])

 .with_values(&boston_y_train)?;

 let X_test = <Tensor<f64>>::new(&[test_dim.0,

 test_dim.1])

 .with_values(&boston_x_test)?;

 // rest of the code ...

Note that in the previous listing the starting of the function is similar to

what we have seen in Linear Regression sections Listings 2-9 and earlier.

Chapter 2 Supervised Learning

45

We will need to also calculate the transpose as you can see from

the closed form solution. Transposing using Tensorflow is not that

easy and hence we can take help from the transpose library with the

version being transpose = "0.2.0". The whole cargo dependencies is

shown in Listing 2-15. The crates serde and serde-derive is used for data

serialisation and deserialisation; rand crate is for generating random

numbers, mnist crate for easy access of the mnist dataset, random crate

provides some good random functions which we will use in the code,

mnist is the crate that we will developed and is available in book code.

Important crates in this section is the transpose crate which we will use

for transposing the matrices and the tensorflow crate for accessing the

tensorflow functions.

Listing 2-15.  chapter2/rust_and_tf/Cargo.toml

[package]

name = "rust_and_tf"

version = "0.1.0"

edition = "2018"

[dependencies]

tensorflow = { version = "0.13.0", features = ["tensorflow_

unstable"] }

serde = "1"

serde_derive = "1"

rand = "0.6.5"

transpose = "0.2.0"

mnist = "0.4.0"

ml-utils = { path = "../ml-utils" }

random = "0.12.2"

And then use the transpose crate to transpose boston_x_train

(Listing 2-16).

Chapter 2 Supervised Learning

46

Listing 2-16.  chapter2/rust_and_tf/src/linear_regression.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let mut output_array = vec![0.0; (dim.0 * dim.1) as usize];

 transpose::transpose(&boston_x_train,

 &mut output_array,

 dim.1 as usize, dim.0 as usize);

 �let XT = <Tensor<f64>>::new(&[dim.1, dim.0]).with_

values(&output_array[..])?;

 // remaining code ...

We should now be able to create the graph (Listing 2-17). A tensorflow

graph represents the data flow of the computations. We can code the specific

computations that will go as part of the graph as shown in Listing 2-17.

Listing 2-17.  chapter2/rust_and_tf/src/linear_regression.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let mut graph = Graph::new();

 let XT_const = {

 let mut op = graph.new_operation("Const", "XT")?;

 op.set_attr_tensor("value", XT)?;

 op.set_attr_type("dtype", DataType::Double)?;

 op.finish()?

 };

 let X_const = {

 let mut op = graph.new_operation("Const", "X_train")?;

 op.set_attr_tensor("value", X_train)?;

 op.set_attr_type("dtype", DataType::Double)?;

Chapter 2 Supervised Learning

47

 op.finish()?

 };

 let y_const = {

 let mut op = graph.new_operation("Const", "y_train")?;

 op.set_attr_tensor("value", y_train)?;

 op.set_attr_type("dtype", DataType::Double)?;

 op.finish()?

 };

 let mul = {

 let mut op = graph.new_operation("MatMul", "mul")?;

 op.add_input(XT_const.clone());

 op.add_input(X_const);

 op.finish()?

 };

 let inverse = {

 �let mut op = graph.new_operation("MatrixInverse", "mul_inv")?;

 op.add_input(mul);

 op.finish()?

 };

 let mul2 = {

 let mut op = graph.new_operation("MatMul", "mul2")?;

 op.add_input(inverse);

 op.add_input(XT_const.clone());

 op.finish()?

 };

 let theta = {

 let mut op = graph.new_operation("MatMul", "theta")?;

 op.add_input(mul2);

 op.add_input(y_const);

 op.finish()?

 };

 // remaining code ...

Chapter 2 Supervised Learning

48

Notice that in the code in Listing 2-17, different operations are defined

by the new_operation method on the graph. The inputs are defined and

any other related attributes may be defined. Essentially, we are calling

the C++ api directly in the code. To get a list of the operations defined in

the api, take a look at the array-ops page of Tensorflow at https://www.

tensorflow.org/api_docs/cc/group/array-ops.

This is only part of the graph. In the above graph the equation has been

defined and the θ values are being computed. Now we find the predicted

values as well as shown in Listing 2-18.

Listing 2-18.  chapter2/rust_and_tf/src/linear_regression.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let X_test_const = {

 let mut op = graph.new_operation("Const", "X_test")?;

 op.set_attr_tensor("value", X_test)?;

 op.set_attr_type("dtype", DataType::Double)?;

 op.finish()?

 };

 let predictions = {

 let mut op = graph.new_operation("MatMul", "preds")?;

 op.add_input(X_test_const);

 op.add_input(theta);

 op.finish()?

 };

 // remaining code ...

Now since the whole graph is built, we can create a graph session that

will do the actual computation (Listing 2-19).

Chapter 2 Supervised Learning

https://www.tensorflow.org/api_docs/cc/group/array-ops
https://www.tensorflow.org/api_docs/cc/group/array-ops

49

Listing 2-19.  chapter2/rust_and_tf/src/linear_regression.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let session = Session::new(&SessionOptions::new(),

 &graph)?;

 let mut args = SessionRunArgs::new();

 let preds_token = args

 .request_fetch(&predictions, 0);

 session.run(&mut args)?;

 let preds_token_res: Tensor<f64> = args.fetch::<f64>(

 preds_token)?;

 println!("r-squared error score: {:?}",

 �r_squared_score(&preds_token_res.to_vec(),

&boston_y_test));

 Ok(())

}

The r_squared_score is taken from the ml-utils library, and we will

discuss the function in the model evaluation section.

The output for the code in Listing 2-19 should be similar to

Listing 2-20.

Listing 2-20.  chapter2/rust_and_tf output

$ cd chapter2/rust_and_tf

$ cargo run lr

r-squared error score: 0.6779404103641853

Notice that in this code we create a session, pass the relevant

arguments, and then get the values from the output tensor.

We can run this module using cargo run lr and that should give the

output.

Chapter 2 Supervised Learning

50

A different approach that is recommended by the Rust Tensorflow

team is to create the computational graph using python and saving the

model in a pb file. Once done, you can load the model in a Rust program

and then run the computations. Once a computational graph is created,

we can save it using the code similar to Listing 2-21.

Listing 2-21.  chapter2/rust_and_tf/tensorflow%20create%20model.

ipynb

directory = 'boston_regression'

builder = SavedModelBuilder(directory)

with tf.Session(graph=tf.get_default_graph()) as sess:

 sess.run(init)

 signature_inputs = {

 "x": build_tensor_info(X),

 "y": build_tensor_info(Y)

 }

 signature_outputs = {

 "out": build_tensor_info(y_preds)

 }

 signature_def = build_signature_def(

 signature_inputs, signature_outputs,

 REGRESS_METHOD_NAME)

 builder.add_meta_graph_and_variables(

 sess, [TRAINING, SERVING],

 signature_def_map={

 REGRESS_METHOD_NAME: signature_def

 },

 assets_collection=tf.get_collection(

 tf.GraphKeys.ASSET_FILEPATHS))

builder.save(as_text=False)

Chapter 2 Supervised Learning

51

Now once the model is saved, we should be able to load and run the

model in our Rust program. Note that the function would have similar

data loading and partitioning to test train similar to what we have seen in

Listings 2-9 and previous ones.

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let export_dir = "boston_regression/"; // y = w * x + b

 let mut graph = Graph::new();

 let session = Session::from_saved_model

 (&SessionOptions::new(), &["train", "serve"],

 &mut graph, export_dir)?;

 let op_x = graph

 .operation_by_name_required("x")?;

 let op_x_test = graph

 .operation_by_name_required("x_test")?;

 let op_y = graph

 .operation_by_name_required("y")?;

 let op_train = graph

 .operation_by_name_required("train")?;

 let op_w = graph

 .operation_by_name_required("w")?;

 let op_y_preds = graph

 .operation_by_name_required("y_preds")?;

 Session::new(&SessionOptions::new(), &graph)?;

 let mut args = SessionRunArgs::new();

 args.add_feed(&op_x, 0, &X_train);

 args.add_feed(&op_x_test, 0, &X_test);

 args.add_feed(&op_y, 0, &y_train);

 args.add_target(&op_train);

Chapter 2 Supervised Learning

52

 let preds_token = args.request_fetch(

 &op_y_preds, 0);

 for _ in 0..10 {

 session.run(&mut args)?;

 };

 let preds_token_res: Tensor<f64> = args

 .fetch::<f64>(preds_token)?;

 println!("{:?}", &preds_token_res[..]);

 println!("{:?}", &boston_y_test);

 println!("{:?}", r_squared_score(

 &preds_token_res[..], &boston_y_test));

 // remaining code ...

Notice in this code the appropriate variables are called using the

Tensorflow names.

This should save your model in the folder boston_regression/saved_

model.pb. We should now be able to run the code and get the results.

2.5  �Gaussian Process
Gaussian Processes can be used in regression problems. One can think of

a Gaussian process as defining distribution over functions, and inference

taking place directly in the space of functions, the function-space view.

The predictions from a Gaussian process model take the form of a full

predictive distribution. Thus, a Gaussian process is a collection of random

variables, any finite number of which have a joint Gaussian distribution.

A Gaussian process is completely specified by its mean function

and covariance function. Thus, in a Gaussian process, the priors need

to be specified. Generally, the prior mean is assumed to be zero and the

covariance is specified by passing a kernel object.

The noise levels of the Gaussian process can also be passed. A

moderate noise level can be helpful for dealing with numeric issues when

Chapter 2 Supervised Learning

53

fitting as it is effectively implemented as Tikhonov regularization, that is,

by adding it to the diagonal of the kernel matrix.

Create a Gaussian process model to train it on the training part of the

boston dataset above. Here a kernel with lengthscale 2 and amplitude 1 is

defined as the covariance function. A Zero function is defined as the mean

function and noise levels is clipped at 10.0. We then pass the training xâ™s

and yâ™s to the train method. This optimizes the model according to the

training values (Listing 2-22).

Listing 2-22.  chapter2/rustymachine_regression/src/gaussian_

process_reg.rs

use rusty_machine::learning::gp::GaussianProcess;

use rusty_machine::learning::gp::ConstMean;

use rusty_machine::learning::toolkit::kernel;

use rusty_machine::learning::SupModel;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous data loading and partitioning code ...

 // the kernel function

 let ker = kernel::SquaredExp::new(2., 1.);

 // the mean function

 let zero_mean = ConstMean::default();

 // model definition

 �let mut gaus_model = GaussianProcess::new(ker, zero_mean,

10f64);

 gaus_model.train(&boston_x_train,

 &boston_y_train)?;

 let predictions = gaus_model.predict(&boston_x_test).unwrap();

 let predictions = Matrix::new(test_size, 1, predictions);

 let acc = neg_mean_squared_error(&predictions, &boston_y_test);

 println!("gaussian process regression error: {:?}", acc);

Chapter 2 Supervised Learning

54

 �println!("gaussian process regression R2 score: {:?}",

r_squared_score(

 &boston_y_test.data(), &predictions.data()));

 Ok(())

}

Running this code without any errors would mean that we are able to

create the model successfully. We should get an output similar to Listing 2-23.

Listing 2-23.  chapter2/rustymachine_regression/src/gaussian_

process_reg.rs output

$ cd chapter2/rustymachine_regression

$ cargo run gp

gaussian process regression error: -593.9085507602914

gaussian process regression R2 score: -5.578006698530541

2.6  �Generalized Linear Models
Ordinary linear regression assumed that the unknown quantity is the

linear combination of the set of predictors. This assumption is fine if the

response variable is a normal distribution of the input variables. Such

data can be any kind of data that is relatively stable and varies by a small

amount. This can be seen in many natural distributions such as the heights

of human beings where one value is independent of another value and

hence the Central Limit Theorem is able to play a role. In real life though,

many distributions are not normal.

The generalized linear model is a flexible variation of the OLS

Regression model that allows for response variables that have error

distribution models other than normal distribution. In these models,

Chapter 2 Supervised Learning

55

the response variable yi is assumed to follow an exponential family

distribution of mean μi, which is assumed to be some (linear or nonlinear)

function of xi
Tb [1].

The GLM consists of three elements [2].

	 1.	 A linear predictor similar to OLS

	
h b b bi i p pix x= + +¼+0 1 1 	 (2)

or in matrix form η = Xβ

	 2.	 A link function that describes how the mean

E(Yi) = μi depends on the linear predictor

	 g i im h() = 	 (3)

	 3.	 A variance function that describes how the variance,

var(Yi) depends on the mean

	 var Y Vi() = ()f m 	 (4)

It is convenient if V follows an exponential family of distributions. The

unknown parameters β are typically estimated using maximum likelihood,

maximum quasi-likelihood, or Bayesian methods. It can be shown that the

general linear model is a special case of the GLM where the link function is

g(μi) = μi and the variance function is V(μi) = 1.

In rusty_machine we can create a linear regression model using the

code shown in Listing 2-24.

Listing 2-24.  chapter2/rustymachine_regression/src/glms.rs

use rusty_machine::learning::glm::{GenLinearModel, Normal};

pub fn run() -> Result<(), Box<dyn Error>> {

 // starting code for data loading and partitioning...

Chapter 2 Supervised Learning

56

 // Create a normal generalised linear model

 let mut normal_model = GenLinearModel::new(Normal);

 normal_model.train(

 &boston_x_train, &boston_y_train)?;

 let predictions = normal_model.predict(

 &boston_x_test).unwrap();

 let predictions = Matrix::new(

 test_size, 1, predictions);

 let acc = neg_mean_squared_error(

 &predictions, &boston_y_test);

 println!("glm poisson accuracy: {:?}", acc);

 println!("glm poisson R2 score: {:?}", r_squared_score(

 &boston_y_test.data(), &predictions.data()));

 Ok(())

}

Output for this code should be similar to Listing 2-25.

Listing 2-25.  glms.rs output

$ cargo run glms

glm poisson accuracy: -36.55900309522449

glm poisson R2 score: 0.6478692745681216

Other models that are implemented are Bernoulli and Binomial, which

are mainly used for classification. We can also use Poisson regression for

the Criterion. Poisson regression is similar to multiple regression except

that the dependent variable is an observed count that follows the Poisson

distribution. Thus the possible values of Y are non-negative integers: 0,1,…

and so on. It is assumed that the large counts are rare.

Chapter 2 Supervised Learning

57

2.7  �Evaluation of Regression Models
So far in all the code for the machine learning models that we have

discussed so far, we have used a couple of functions such as neg_mean_

squared_error or r_squared_score, which we have avoided talking about

so far. These functions were used to evaluate how good the models that

were created were, and in this section, we will discuss those functions,

their creation, and usage in detail.

Evaluating a model is important to understand if it is doing a good job

of predicting the target on new and future data. Because future instances

have unknown target values, we need to check the accuracy metric of the

ML model on the data for which we already know. That is the reason that

before training, we split the dataset that we have into train and test sets.

This assessment acts as a proxy for evaluating how close the ML model is

to mimicking the real-world use case.

2.7.1  �MAE and MSE
For continuous variables, two of the most popular methods of evaluation

metrics are Mean Absolute Error and Mean Square Error [3]. Mean

Absolute Error is the average of the absolute difference between the

predicted values and observed values. For a vector of n predictions ŷ

generated from a sample of n data points and if y is the observed values for

those data points, then

	
Î = -

=
åMAE
i

n

i in
y y

1

1

ˆ
	

(5)

Mean Squared Error is the summation of the square of the differences

between the predicted and observed values (also called residuals).

	
Î = -()

=
åMSE
i

n

i in
y y

1

1

2ˆ
	

(6)

Chapter 2 Supervised Learning

58

In many cases the root of the above is also taken, ÎMSE . This

essentially transforms it to a sample standard deviation and is called the

root-mean-squared-error.

Now RMSE is the best error estimator when it comes to Gaussian

distributions. Sadly, most of the real-world use cases are not strictly

Gaussian. They act Gaussian-like only in a limited space. The result is

that we give undue importance to the outliers due to taking the square

of the residuals. MAE is also easier to understand and does not give too

much importance to outliers. However, RMSE is the default metric of

many models because loss function defined in terms of RMSE is smoothly

differentiable and makes it easier to perform mathematical operations

needed in machine learning.

In rusty machine to get the mean square error of these models, once

the training is done, we pass boston_x_test as a reference to predict

the method of the model to get the predictions. These predictions are

compared with the actual values to get the neg_mean_squared_error

function. This function returns the additive inverse of the mean-squared

error. Mean square error is the average of the squared differences between

prediction and actual observation (Listing 2-26).

Listing 2-26.  chapter2/rustymachine_regression/src/lin_reg.rs

use rusty_machine::analysis::score::neg_mean_squared_error;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part ...

 let predictions = lin_model.predict(&boston_x_test).unwrap();

 let predictions = Matrix::new(test_size, 1, predictions);

 �let acc = neg_mean_squared_error(&predictions, &boston_y_test);

 println!("linear regression error: {:?}", acc);

Chapter 2 Supervised Learning

59

 let predictions = gaus_model.predict(&boston_x_test).unwrap();

 let predictions = Matrix::new(test_size, 1, predictions);

 let acc = neg_mean_squared_error(&predictions, &boston_y_test);

 println!("gaussian process regression error: {:?}", acc);

 // remaining code...

2.7.2  �R-Squared Error
R-squared evaluates the scatter of the data points around the fitted

regression line. It is also called the coefficient of determination. For the

same dataset, higher R-squared values represent smaller differences

between the observed and fitted values.

R-squared is the percentage of the dependent variable variation that

the linear model explains.

	
R

Total variance
2 =

Variance explained by the model

	
(7)

	

= -
-()

-()

=

=

å

å
1

1

1
1

2

1

2

n
y y

n
y y

i

n

i i

i

n

i

ˆ

	

(8)

We can see in Figure 2-2 a visual demonstration of how R-squared

values represent the scatter around the regression line, using two sample

data points.

Chapter 2 Supervised Learning

60

The r-squared for the regression model on the left is 93% and for the

model on the right is 47%. When a regression model accounts for more of

the variance, the data points are closer to the regression line. In practice,

a regression model with R2 of 100% is never observed. In that case, fitted

values equal the data values and consequently all observations fall exactly

on the regression line.

The next function can be used as a reference to implement r-squared in

Rust. We first take the model variance, which is the sum of the squares of the

consecutive difference between actual and predicted values. Then we take the

mean of the actual distribution and use that to calculate the variance of the

test distribution. Then we run it through the r-squared formula (Listing 2-27).

Listing 2-27.  ml-utils/src/sup_metrics.rs

fn r_squared_score(y_test: &Vec<f64>, y_preds: &Vec<f64>) -> f64 {

 let mv: f64 = y_test.iter().zip(y_preds.iter()).fold(

 0., |v, (y_i, y_i_hat)| {

 v + (y_i - y_i_hat).powi(2)

 }

);

Figure 2-2.  Sample regression fits

Chapter 2 Supervised Learning

61

 let mean = y_test.iter().sum::<f64>() as f64

 / y_test.len() as f64;

 let var = y_test.iter().fold(

 0., |v, &x| {v + (x - mean).powi(2)}

);

 let r2: f64 = 1.0 - (mv / var);

 r2

}

This function should not be usable by passing the y_test and y_pred

to get the score. Since, in the examples in this chapter, the y_test and

predicted values are in rusty machine Matrices, we will probably need to

do something like that shown in Listing 2-28.

Listing 2-28.  chapter2/rustymachine_regression/src/glms.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part of the function...

 println!("glm poisson R2 score: {:?}", r_squared_score(

 &boston_y_test.data(), &predictions.data()));

}

2.8  �Classification Algorithms
Scenarios where the machine learning algorithm is tasked with bucketing

input variables to predefined buckets are called classification problems.

In this section, we will be creating classification models in Rust.

In Rust we can create classifiers using the package rustlearn.

This crate contains effective implementation for a number of common

machine learning algorithms. To be able to use rustlearn, we will need to

implement the floats as float32.

Chapter 2 Supervised Learning

62

2.8.1  �Iris Dataset
For showing the usage of the classification algorithms, we will be using

the Iris dataset.4 Download the dataset from the website or find it in the

code that is shared with this book in the datasets folder. It is a multivariate

dataset with the following features.

•	 sepal length in cm.

•	 sepal width in cm.

•	 petal length in cm.

•	 petal width in cm.

•	 classes: setosa, versicolor, and virginica.

The code that is explained here is kept in the rustlearn_

classification_tasks folder. Inside the package, create a folder data and

keep the csv file there (Listing 2-29).

Listing 2-29.  Iris data

$ head -n2 data/iris.csv

sepal_length,sepal_width,petal_length,petal_width,species

5.1,3.5,1.4,0.2,setosa

$ wc -l data/iris.csv

151 data/iris.csv # there are 150 samples in the dataset.

Similar to before, we are going to work with rustlearn, csv, rand, and

serde. Rustlearn crate is a new dependency that you are seeing now. We

will be using this crate for the classification tasks and will be talking about

it soon. Find these dependencies in the Cargo.toml file (Listing 2-30).

4�https://archive.ics.uci.edu/ml/datasets/iris.

Chapter 2 Supervised Learning

https://archive.ics.uci.edu/ml/datasets/iris

63

Listing 2-30.  chapter2/rustlearn_classification_tasks/Cargo.toml

[package]

name = "rustlearn_classification_tasks"

version = "0.1.0"

edition = "2018"

[dependencies]

rustlearn = "0.5.0"

csv = "1.0.5"

serde = "1.0.89"

serde_derive = "1.0.89"

rand = "0.6"

ml-utils = { path = "../ml-utils" }

Remember that in the regression case, we created a BostonHousing

struct. In this case we are going ahead with creating a Flower struct.

Notice that the code structures will be largely similar (Listing 2-31).

Listing 2-31.  chapter2/ml-utils/src/datasets.rs

extern crate serde;

#[macro_use]

extern crate serde_derive;

#[derive(Debug, Deserialize)]

pub struct Flower {

 sepal_length: f32, sepal_width: f32,

 petal_length: f32, petal_width: f32,

 species: String,

}

We are going with the f32 datatype now as we will be using the

rustlearn package, which requires the inputs to be in f32 floats.

Chapter 2 Supervised Learning

64

Here species is the label and other columns are the features. So, to

parse out the features and the labels we will implement into_feature_

vector and into_labels for the Flower struct. Note that in case of

defining the feature vector, the order of the placement in the csv file is

maintained. And in case of label encoding some numbers (which are

arbitrary) are given to the different labels. Ideally along with a label

encoding method, a label decoder should also be implemented for the final

response. In this case for the sake of brevity that is not shown (Listing 2-32).

Listing 2-32.  ml-utils/src/datasets.rs

use std::io; use std::vec::Vec; use csv;

impl Flower {

 pub fn into_feature_vector(&self) -> Vec<f32> {

 vec![self.sepal_length, self.sepal_width,

 self.petal_length, self.petal_width]

 }

 pub fn into_labels(&self) -> f32 {

 match self.species.as_str() {

 "setosa" => 0., "versicolor" => 1.,

 "virginica" => 2.,

 some_other => panic!("Not able to parse the label.

 Some other label got passed. {:?}", some_other),

 }

 }

}

We will use the amazing stdin and read the package using a command

similar to cargo run lr < data/iris.csv. Here cargo run will compile

and run the binary and lr is the argument after that which is enabled

in the package. Take a look at main.rs for all the options. So to enable

Chapter 2 Supervised Learning

65

that we will use the std::io package and pass it to a rdr variable using

csv::Reader. We now serialize each record to the Flower struct and

push it to a data vector, a similar data vector that we have seen in the

regression section. With this we will also shuffle the data for good measure

(Listing 2-33).

Listing 2-33.  chapter3/rustlearn_classification_tasks/src/

logistic_reg.rs

use ml_utils::datasets::Flower;

use csv; use rand::thread_rng;

use rand::seq::SliceRandom;

pub fn run() -> Result<(), Box<dyn Error>> {

 let mut rdr = csv::Reader::from_reader(io::stdin());

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: Flower = result?; // �should have Box<dyn Error> in

the defn.

 data.push(r);

 }

 data.shuffle(&mut thread_rng());

 // rest of the code...

Now we will be separating out the train and test datasets. The code

is similar to the one in the regression section except here in this case we

will need to convert the vectors into rustlearn sparse or dense vectors

(Listing 2-34).

Chapter 2 Supervised Learning

66

Listing 2-34.  chapter3/rustlearn_classification_tasks/src/logistic_

reg.rs

use rustlearn::prelude::*;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part of the function ...

 // separate out to train and test datasets.

 let test_size: f32 = 0.2;

 let test_size: f32 = data.len() as f32 * test_size;

 let test_size = test_size.round() as usize;

 let (test_data, train_data) = data.split_at(test_size);

 let train_size = train_data.len();

 let test_size = test_data.len();

 // differentiate the features and the labels.

 let flower_x_train: Vec<f32> = train_data.iter()

 .flat_map(|r| r.into_feature_vector()).collect();

 let flower_y_train: Vec<f32> = train_data.iter()

 .map(|r| r.into_labels()).collect();

 let flower_x_test: Vec<f32> = test_data.iter()

 .flat_map(|r| r.into_feature_vector()).collect();

 let flower_y_test: Vec<f32> = test_data.iter()

 .map(|r| r.into_labels()).collect();

 // Convert the vectors to a dense matrix or a sparse matrix

 let mut flower_x_train = Array::from(flower_x_train);

 // �reshape so that the read training vector is currently a

flat error.

 flower_x_train.reshape(train_size, 4);

 let flower_y_train = Array::from(flower_y_train);

 let mut flower_x_test = Array::from(flower_x_test);

Chapter 2 Supervised Learning

67

 // Similarly the test vector also needs to be reshaped.

 flower_x_test.reshape(test_size, 4);

 // rest of the function ...

We should now be able to train the data on rustlearn models.

2.8.2  �Logistic Regression
Logistic Regression is a popular classification technique in which a logit

function is used to model a binary dependent variable. The assumption for

the dependent variable is that it follows Bernoulli distribution. While OLS

regression is a distance-minimizing approximation method, estimation of

parameters is done using the maximum likelihood method. Maximizing

the likelihood function determines the parameters that are most likely to

produce the observed data.

Unlike regression, for normally distributed residuals, it is not

possible to find a closed form solution that maximizes the function.

So an iterative approach has to be used. One of the popular iterative

approaches is Stochastic Gradient Descent (SGD). SGD is implemented

in rustlearn and to implement model training in rustlearn, we call

the Hyperparameter module from linear_models and can pass various

parameters such as learning rate, l1 and l2 penalties, and if it is a multi-

label classification or binary classification (Listing 2-35).

Listing 2-35.  chapter3/rustlearn_classification_tasks/src/logistic_

reg.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part of the fn ..

 let mut model = lr::new(4)

 .learning_rate(0.1).l2_penalty(0.5)

 .l1_penalty(0.0).one_vs_rest();

Chapter 2 Supervised Learning

68

 for _ in 0..100 { // for 100 epochs

 model.fit(&flower_x_train, &flower_y_train).unwrap();

 let prediction = model.predict(&flower_x_test).unwrap();

 let acc1 = accuracy_score(&flower_y_test, &prediction);

 println!("Logistic Regression: accuracy: {:?}", acc1);

 Ok(())

}

Running the for loop on the model is equivalent to training the model

for multiple epochs.

Running the mode in Listing 2-35 should give an output similar to that

shown in Listing 2-36.

Listing 2-36.  logistic_reg.rs output

$ cargo run lr < ../datasets/iris.csv

Logistic Regression: accuracy: 0.36666667

2.8.3  �Decision Trees
Let us try to redefine the classification problem and understand it from

a different perspective. In a classification problem, we have a training

sample of n observations on a class variable Y that takes values 1, 2, ..., k

and p predictor variables, X1, X2, …, Xp. where xm is the training data in the

node m. Our goal is to find a model for predicting the values of Y for new

X values. We can think of this problem as simply a partition of the X-space

into k disjoint sets, A1, A2, …, Ak, such that the predicted value of Y is j if

X belongs to Aj, for j = 1, 2, ..., k. Classification trees take this approach.

They yield rectangular sets Aj by recursively partitioning the dataset one X

variable at a time. This makes the sets easier to interpret. A key advantage

of the tree structure is its applicability to any number of variables.

Chapter 2 Supervised Learning

69

The key idea is this:

	 1.	 Grow an overly large tree by using forward selection.

At each step, find the best split. Grow until all

terminal nodes either

(a)	 have <n data points,

(b)	� all nodes in a node have the same outcome. If

this happens the node is said to be “pure.”

	 2.	 Prune the tree back, creating a nested sequence of

trees, decreasing in complexity.

Implementing decision trees in rustlearn can be done with the code

shown in Listing 2-37. It supports the CART algorithm for both dense and

sparse data and features are selected using reduction in Gini impurity [4].

Listing 2-37.  chapter3/rustlearn_classification_tasks/src/trees.rs

use rustlearn::trees::decision_tree;

pub fn run() -> Result<(), Box<dyn Error>> {

 // data loading and transformations part ...

 // similar to the logistic regression secion above ...

 �let mut decision_tree_model = decision_

tree::Hyperparameters::new(

 flower_x_train.cols()).one_vs_rest();

 �decision_tree_model.fit(&flower_x_train, &flower_y_train).

unwrap();

 let prediction = decision_tree_model.predict(

 &flower_x_test).unwrap();

Chapter 2 Supervised Learning

70

 let acc = accuracy_score(

 &flower_y_test, &prediction);

 println!("DecisionTree model accuracy: {:?}", acc);

 Ok(())

}

Running the above code should give an output similar to that shown in

Listing 2-38.

Listing 2-38.  chapter3/rustlearn_classification_tasks/src/trees.rs

output

$ cargo run trees < ../datasets/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.03s

 Running `target/debug/rustlearn_classification_tasks trees`

DecisionTree model accuracy: 0.96666664

2.8.4  �Random Forest
An improvement of decision trees is the Random Forest. In this case, an

ensemble of trees is grown, and voting is done among them to get the most

popular class. The trees are a combination of tree predictors such that each

tree depends on the values of a random vector sampled independently and

with the same distribution for all trees in the forest. The generalization for

the forests converges to a limit as the number of trees in the forest becomes

large [4].

To implement random forests in rustlearn, we will need to pass

the previous decision trees variable with the parameters to the Random

Forest hyperparameter module so that a collection of trees can be built

(Listing 2-39).

Chapter 2 Supervised Learning

71

Listing 2-39.  chapter3/rustlearn_classification_tasks/src/trees.rs

use rustlearn::ensemble::random_forest::Hyperparameters as rf;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part of the fn ...

 let mut tree_params = decision_tree::Hyperparameters::new(

 flower_x_train.cols());

 tree_params.min_samples_split(10)

 .max_features(4);

 let mut model = randomforest::new(

 tree_params, 10).one_vs_rest();

 model.fit(&flower_x_train,

 &flower_y_train).unwrap();

 let prediction = random_forest_model

 .predict(&flower_x_test).unwrap();

 let acc = accuracy_score(

 &flower_y_test, &prediction);

 println!("Random Forest: accuracy: {:?}", acc);

 Ok(())

}

In the example, the above code is below the code for the decision trees and

hence in the output we will see the results for both the codes (Listing 2-40).

Listing 2-40.  chapter3/rustlearn_classification_tasks/src/trees.rs

output

$ cargo run trees < ../datasets/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.03s

 Running `target/debug/rustlearn_classification_tasks trees`

DecisionTree model accuracy: 1.0

Random Forest: accuracy: 1.0

Chapter 2 Supervised Learning

72

Note N otice that when we had started with logistic regressions and
other simpler algorithms, the accuracy was quite low, around 30%;
but as we have progressed to tree-based models, we have reached
accuracy of around 95–100%. Keep in mind that these are toy
datasets and have been chosen because they are well known, simple,
and because the focus of this book is to show Rust capabilities in
machine learning. Be wary of such accuracy levels in real-world
problems.

2.8.5  �XGBoost
To get even better at creating a good classification model using trees, one

idea is to assemble a series of weak learners and convert them into a strong

classifier. XGBoost means Extreme Gradient Boosting, so let’s take those

terms apart one by one. In boosting, the trees are built sequentially so that

each subsequent tree aims to reduce the errors of the previous tree. Each

tree learns from its predecessors and updates the residual errors. Hence

the tree that learns next in the sequence will learn from an updated version

of the residuals. This results in really strong classifiers [5].

In contrast to Random Forest, where the trees are grown to the

maximum extent, boosting makes use of trees with fewer splits. Such small

trees, which are not very deep, are highly interpretable. Cross-validation

is an important step in boosting as this is used to find optimal parameters

such as the number of tress or iterations, the rate at which the gradient

boosting learns, and the depth of the tree.

Parameters Before running XGBoost, we must set three types

of parameters: general parameters, booster parameters, and task

parameters [6].

Chapter 2 Supervised Learning

73

In this case, instead of rustlearn we will be using the rust-xgboost

library.5 The full code is kept in the package iris_classification_xgboost.

for reference. This library is a wrapper around the XGBoost library.6

In this case we will need to have xgboost = "0.1.4," which is a

wrapper over XGBoost-v0.82. In the main.rs we will call the relevant

modules (Listing 2-41).

Listing 2-41.  chapter3/iris_classification_xgboost/src/main.rs

use xgboost;

use xgboost::{parameters, DMatrix, Booster};

The other data preprocessing steps are the same as we have used

in the previous sections for logistic regression for the Iris dataset. Once

the vectors flower_x_train, flower_y_train, flower_x_test, and

flower_y_test vectors are created, we will need to convert it to XGBoost-

compatible vectors though. The x vectors are converted to DMatrix and the

corresponding labels are set (Listing 2-42).

Listing 2-42.  chapter3/iris_classification_xgboost/src/main.rs

fn read_csv() -> Result<(), Box<dyn Error>> {

 // previous data loading and splitting code ...

 �let mut dtrain = DMatrix::from_dense(&flower_x_train, train_

size).unwrap();

 dtrain.set_labels(&flower_y_train).unwrap();

 �let mut dtest = DMatrix::from_dense(&flower_x_test, test_

size).unwrap();

 dtest.set_labels(&flower_y_test).unwrap();

 // remaining part of the code ...

5�Rust XGBoost Source.
6�Original C++ based XGBoost source.

Chapter 2 Supervised Learning

https://github.com/davechallis/rust-xgboost
https://github.com/dmlc/xgboost/

74

Now we will set the XGBoost parameters. First the objective function

will be set to Multilabel Softmax as the number of labels are more than

two. Then we will set the tree-based learning model’s parameter. These are

utilized in setting the booster configuration (Listing 2-43).

Listing 2-43.  chapter3/iris_classification_xgboost/src/main.rs

fn read_csv() -> Result<(), Box<dyn Error>> {

 // previous part of the fn ..

 �let lps = parameters::learning::LearningTaskParametersBuilder

::default()

 .objective(parameters::learning::Objective::MultiSoftmax(3))

 .build().unwrap();

 �let tps = parameters::tree::TreeBoosterParametersBuilder::

default()

 .max_depth(2).eta(1.0)

 .build().unwrap();

 let bst_parms = parameters::BoosterParametersBuilder::default()

 .booster_type(parameters::BoosterType::Tree(tps))

 .learning_params(learning_params)

 .verbose(true).build().unwrap();

 // remaining part of the fn ...

After that we will specify which matrices are for training and which for

testing. This will be passed to a configuration object that will be utilized

during the training (Listing 2-44).

Chapter 2 Supervised Learning

75

Listing 2-44.  chapter3/iris_classification_xgboost/src/main.rs

fn read_csv() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let ev = &[(&dtrain, "train"), (&dtest, "test")];

 let params = parameters::TrainingParametersBuilder::default()

 .dtrain(&dtrain).boost_rounds(2)

 .booster_params(bst_parms)

 .evaluation_sets(Some(ev))

 .build().unwrap();

 let booster = Booster::train(¶ms).unwrap();

 // remaining code ...

Now the predictions can be made and compared with the actual values

(Listing 2-45).

Listing 2-45.  chapter3/iris_classification_xgboost/src/main.rs

fn read_csv() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let preds = booster.predict(&dtest).unwrap();

 let labels = dtest.get_labels().unwrap();

 // find the accuracy

 let mut hits = 0;

 let mut correct_hits = 0;

 for (predicted, actual) in preds.iter().zip(labels.iter()) {

 if predicted == actual {

 correct_hits += 1;

 }

 hits += 1;

 }

Chapter 2 Supervised Learning

76

 assert_eq!(hits, preds.len());

 println!("accuracy={} ({}/{} correct)",

 correct_hits as f32 / hits as f32, correct_hits, preds.len());

}

The output for the above code should be similar to that below with

accuracy of around 93–96% (Listing 2-46).

Listing 2-46.  chapter3/iris_classification_xgboost/src/main.rs

$ cd chapter2/iris_classification_xgboost

$ cargo run < ../datasets/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

 Running `target/debug/iris_classification_xgboost`

[08:26:11] DANGER AHEAD: You have manually specified `updater`

parameter. The `tree_method` parameter will be ignored.

Incorrect sequence of updaters will produce undefined behavior.

For common uses, we recommend using `tree_method` parameter

instead.

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 2 extra nodes, 0 pruned nodes, max_depth=1

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 4 extra nodes, 0 pruned nodes, max_depth=2

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 6 extra nodes, 0 pruned nodes, max_depth=2

[0] test-merror:0 train-merror:0.033333

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 2 extra nodes, 0 pruned nodes, max_depth=1

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 6 extra nodes, 0 pruned nodes, max_depth=2

[08:26:11] src/tree/updater_prune.cc:74: tree pruning end, 1

roots, 6 extra nodes, 0 pruned nodes, max_depth=2

[1] test-merror:0 train-merror:0.011111

Chapter 2 Supervised Learning

77

preds: [1.0, 2.0, 0.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0,

0.0, 2.0, 0.0, 1.0, 0.0, 2.0, 2.0, 0.0, 1.0, 2.0, 0.0, 1.0,

1.0, 1.0, 2.0, 0.0, 2.0, 0.0, 0.0]

[1.0, 2.0, 0.0, 2.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, 2.0, 0.0,

2.0, 0.0, 2.0, 0.0, 2.0, 2.0, 0.0, 2.0, 2.0, 0.0, 1.0, 1.0,

1.0, 2.0, 0.0, 2.0, 0.0, 0.0]

accuracy=0.93333334 (28/30 correct)

Figure 2-3.  Svm

2.8.6  �Support Vector Machines
A Support Vector Machine (SVM) is a discriminative classifier formally

defined by a separating hyperplane. Possible hyperplanes are shown

in Figure 2-3. In other words, given labeled training data, the algorithm

outputs an optimal hyperplane that categorizes new examples. In two-

dimensional space, this hyperplane is a line dividing a plane into two

parts wherein each class lays on either side. The vectors that define the

hyperplane are the support vectors.

Chapter 2 Supervised Learning

78

Kernel functions change the definition of the dot product in the linear

formulation. The different types of common dot products are linear,

polynomial, radial basis functions, and sigmoid functions. Generally RBF

functions are taken as the default kernels in most svm models [7].

In Figure 2-1 with different data points, multiple hyperplanes are

experimented with but the hyperplane (line2) is chosen because it has the

highest degree of margin.

To implement SVM in rustlearn, we will need to create the model

with the appropriate kernel function first and fit the model on the training

dataset. The SVM module in rustlearn is just a wrapper over the libsvm

package.7 Observe the snippet in Listing 2-47 where the models for the

different kernels are shown together.

Listing 2-47.  chapter3/rustlearn_classification_tasks/src/svm.rs

use rustlearn::svm::libsvm::svc::{

 Hyperparameters as libsvm_svc, KernelType};

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let svm_linear_model = libsvm_svc::new(

 4, KernelType::Linear, 3)

 .C(0.3).build();

 �let svm_poly_model = libsvm_svc::new(4, KernelType::

Polynomial, 3)

 .C(0.3) .build();

 let svm_rbf_model = libsvm_svc::new(4, KernelType::RBF, 3)

 .C(0.3).build();

 let svm_sigmoid_model = libsvm_svc::new(4, KernelType::Sigmoid, 3)

 .C(0.3).build();

7�https://www.csie.ntu.edu.tw/~cjlin/libsvm/.

Chapter 2 Supervised Learning

https://www.csie.ntu.edu.tw/~cjlin/libsvm/

79

 �let svm_kernel_types = ["linear", "polynomial", "rbf",

"sigmoid"];

 �let mut svm_model_types = [svm_linear_model, svm_poly_model,

svm_rbf_model, svm_sigmoid_model];

 �for (kernel_type, svm_model) in svm_kernel_types.iter().

zip(svm_model_types.iter_mut()) {

 svm_model.fit(&flower_x_train, &flower_y_train).unwrap();

 let prediction = svm_model.predict(&flower_x_test).unwrap();

 let acc = accuracy_score(&flower_y_test, &prediction);

 �println!("Lib svm {kernel}: accuracy: {accuracy}",

accuracy=acc, kernel=kernel_type);

 };

 // remaining code ...

We should be getting an output similar to that shown in Listing 2-48.

Listing 2-48.  output

Lib svm linear: accuracy: 0.9

Lib svm polynomial: accuracy: 0.9

Lib svm rbf: accuracy: 0.8666667

Lib svm sigmoid: accuracy: 0.26666668

2.8.7  �K Nearest Neighbors
For classification in Rust, we have mostly been focused on rustlearn,

and for regression we have used rusty machine, but one of the popular

classifiers that is available in rusty machine and not in rustlearn is the

K nearest neighbor’s algorithm. The assumption in the KNN algorithm is

that “birds of the same feather flock together” or in other words, similar

things tend to have the same results. So, an object is classified by the

plurality vote of the neighbors.

Chapter 2 Supervised Learning

80

In rusty machine, the KNN classifiers have not been published on the

crate, and hence we will need to clone the repo and build from the path or

use the github reference (Listing 2-49).

Listing 2-49.  chapter2/rusty_machine_classification/Cargo.toml

[package]

name = "rusty_machine_classification"

version = "0.1.0"

edition = "2018"

[dependencies]

rusty-machine = { path = "../rusty-machine" }

ml-utils = { path = "../ml-utils" }

rand = "0.6.5"

csv = "1.0.7"

Since this is a classification algorithm, we will be using the Flower

struct and Iris dataset. The Flower struct has been implemented for usage

with rustlearn and hence we will need to do some extra maneuvering

(Listing 2-50).

Listing 2-50.  chapter2/rusty_machine_classification/src/main.rs

use rusty_machine as rm;

use rm::linalg::Matrix;

use rm::linalg::Vector;

use ml_utils;

use ml_utils::datasets::Flower;

fn main() -> Result<(), Box<dyn Error>> {

 // previous data loading and splitting code ...

Chapter 2 Supervised Learning

81

 // differentiate the features and the labels.

 let flower_x_train: Vec<f64> = train_data.iter().flat_map(|r| {

 let features = r.into_feature_vector();

 let features: Vec<f64> = features.iter().map(

 |&x| x as f64).collect();

 features

 }).collect();

 let flower_y_train: Vec<usize> = train_data.iter().map(

 |r| r.into_int_labels() as usize).collect();

 let flower_x_test: Vec<f64> = test_data.iter().flat_map(|r| {

 let features = r.into_feature_vector();

 let features: Vec<f64> = features.iter().map(

 |&x| x as f64).collect();

 features

 }).collect();

 let flower_y_test: Vec<u32> = test_data.iter().map(

 |r| r.into_int_labels() as u32).collect();

 // COnvert the data into matrices for rusty machine

 let flower_x_train = Matrix::new(train_size, 4, flower_x_train);

 let flower_y_train = Vector::new(flower_y_train);

 let flower_x_test = Matrix::new(test_size, 4, flower_x_test);

 // remaining code ...

Remember that rustlearn needed vectors of f32, while in rusty

machine we needed to create rulinalg matrices of f64, hence we need to

convert these f32 vectors to f64 and then create the matrices in the above

code. Also, the into_int_labels of the Flower struct are the same as

into_labels but implemented for u64 as we are dealing with specific

labels in this case (Listing 2-51).

Chapter 2 Supervised Learning

82

Listing 2-51.  chapter2/rust-lang/ml-utils/src/datasets.rs

impl Flower {

 // ... previous code for Flower

 pub fn into_int_labels(&self) -> u64 {

 match self.species.as_str() {

 "setosa" => 0,

 "versicolor" => 1,

 "virginica" => 2,

 l => panic!(

 "Not able to parse the target.

 Some other target got passed. {:?}", l),

 }

 }

}

This was converted to usize as the KNN struct that we are going to

use later implemented labels as usize.

We should now be able to create a simple KNN classifier and train it on

the Iris dataset (Listing 2-52).

Listing 2-52.  chapter2/rusty_machine_classification/src/main.rs

use rm::learning::knn::KNNClassifier;

use rusty_machine::learning::knn::{KDTree, BallTree,

BruteForce};

use rm::learning::SupModel;

use ml_utils::sup_metrics::accuracy;

fn main() -> Result<(), Box<dyn Error>> {

 // previous code ...

Chapter 2 Supervised Learning

83

 let mut knn = KNNClassifier::new(2); // model initialisation

 �knn.train(&flower_x_train, &flower_y_train).unwrap();

// training

 let preds = knn.predict(&flower_x_test).unwrap(); // prediction

 �let preds: Vec<u32> = preds.data().iter().map(|&x| x as u32).

collect();

 println!("accuracy {:?}",

 accuracy(preds.as_slice(), &flower_y_test)); // accuracy

 Ok(())

}

The accuracy reported should be around 93-100%.

In rusty-machine we can have different KNN models apart from the

default one, which is the KDTree algorithm. We can use the Ball tree

algorithm, which is used when the number of dimensions are huge, or the

Brute force algorithm, the advantage of which is that it is embarrassingly

parallelizable (Listing 2-53).

Listing 2-53.  chapter2/rusty_machine_classification/src/main.rs

use rusty_machine::learning::knn::{KDTree, BallTree, BruteForce};

fn main() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let mut knn = KNNClassifier::new_specified(2, BallTree::new(30));

 �let mut knn = KNNClassifier::new_specified(2, KDTree::default());

 �let mut knn = KNNClassifier::new_specified(2, BruteForce::

default());

 // remaining code ...

Chapter 2 Supervised Learning

84

For the whole code, take a look at the rusty_machine_classification

package in the chapter2 folder.

2.8.8  �Neural Networks
Neural networks are a set of algorithms, modeled loosely after the human

brain, which are designed to recognize patterns. One of the most popular

ways of using neural networks is by grouping them in stacks. Usable

networks that work are seen to be composed of several layers. The layers

are made of nodes. A node is just a place where computation happens.

A node combines input from the data with a set of coefficients or weights,

which either amplify or dampen that input, thereby assigning significance

to inputs with regard to the task the algorithm is trying to learn: for

example, which input is most helpful in classifying the data without

error. These input weight products are summed and passed through an

“activation function.” Activation functions are generally nonlinear and they

work to determine whether and to what extent that signal should progress

further through the network to affect the ultimate outcome, an example

being the classification task. If the signal passes through, the neuron has

been “activated.” Take a look at Figure 2-4 to have an understanding of

what a node might look like.

A node layer is a row of those neuron-like switches that turn on and off

as the input is fed through the net. Each layer’s output is simultaneously

the next layer’s input, starting from an initial input layer receiving the

data. Pairing the models’ adjustable weights with input features is how we

assign significance to those features with regard to how the neural network

classifies and clusters input.

Neural networks with multiple hidden layers have each layer of node

train on a distinct set of features based on the previous layer’s output. More

deep layers learn the more complicated features in the training data, since

they are able to aggregate and recombine features from the previous layers.

An example is shown in Figure 2-5.

Chapter 2 Supervised Learning

85

Figure 2-4.  Single node example

Figure 2-5.  Deep neural network

Chapter 2 Supervised Learning

86

2.8.8.1  �Torch and tch-rs

Torch is a scientific computing framework with wide support for machine

learning algorithms and has good support for GPU [8]. It is widely used

for deep learning and creating neural network architectures. The C

implementation of Torch is distributed in a package called libtorch. It

provides a flexible N-dimensional array or tensor, which supports basic

routines for indexing. slicing, transposing, type-casting, resizing, sharing

storage, and cloning. This object is used by most other packages, and

useful and more complicated routines are built on top of it.

In Rust, the libtorch C++-api has been extended using the tch-rs

crate.8 The aim of this create is to be as close to the C++ api as possible.

To use tch-rs, just adding tch-rs in your Cargo.toml and then

doing a cargo build should work. If you are in a Mac system, you might

encounter the error shown in Listing 2-54.

Listing 2-54.  Possible error

dyld: Library not loaded: @rpath/libmklml.dylib

 Referenced from: /path to libtorch/lib/libcaffe2.dylib

 Reason: image not found

We can resolve this error by manually downloading the file and adding

the paths to the lib file in the Mac terminal (Listing 2-55).

Listing 2-55.  mkl installation

wget https://github.com/intel/mkl-dnn/releases/download/v0.18/

mklml_mac_2019.0.3.20190220.tgz

$ gunzip -c mklml_mac_2019.0.3.20190220.tgz| tar xvf -

$ export LD_LIBRARY_PATH=/path to mkl folder/lib:"$LD_LIBRARY_PATH"

8�tch-rs.

Chapter 2 Supervised Learning

https://github.com/LaurentMazare/tch-rs

87

The code should build after this.

We will now build a small neural network on it so that the network can

train on the data. To be able to do that, we will need to change the data though.

We will take a look at all the important steps next. These steps are under the

assumption that all the data preprocessing steps are complete and are similar

to the ones we encountered in the previous sections. The consolidated code is

also present in the package iris_classification_tchrs for reference.

First, we will need to specify the test train ratio to be the same. This

is a technicality that needs to be taken care because of the way matrix

multiplication works and the implications that we will take a look at later

(Listing 2-56).

Listing 2-56.  chapter2/iris_classification_tchrs/src/simple_nn.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let test_size: f64 = 0.5;

 // remaining code ...

Now we will need to convert the vectors to torch tensors so that we are

able to perform computations on those tensors (Listing 2-57).

Listing 2-57.  chapter3/iris_classification_tchrs/src/main.rs

use tch::{kind, Kind, Tensor};

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let flower_x_train = Tensor::float_vec(

 flower_x_train.as_slice());

 let flower_y_train = Tensor::float_vec(

 flower_y_train.as_slice()).to_kind(Kind::Int64);

Chapter 2 Supervised Learning

88

 let flower_x_test = Tensor::float_vec(

 flower_x_test.as_slice());

 let flower_y_test = Tensor::float_vec(

 flower_y_test.as_slice()).to_kind(Kind::Int64);

 // remaining code ...

We can now reshape the vectors to reflect the training size and the

dimension of the features. Label values in this case are essentially vectors

(Listing 2-58).

Listing 2-58.  chapter3/iris_classification_tchrs/src/main.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let train_size = train_size as i64;

 let test_size = test_size as i64;

 let flower_x_train = flower_x_train.view(&[train_size, 4]);

 let flower_x_test = flower_x_test.view(&[test_size, 4]);

 let flower_y_train = flower_y_train.view(&[train_size]);

 let flower_y_test = flower_y_test.view(&[test_size]);

 // remaining code ...

Now we come to the actual neural network creation. Similar to

Figure 2-4, let’s create a single layer network where we are optimizing

on the matrix equation Y = X * W + B where all the values are vectors

or matrices [9]. We will need to initiate our weights and biases for this

(Listing 2-59).

Chapter 2 Supervised Learning

89

Listing 2-59.  chapter3/iris_classification_tchrs/src/main.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 let mut ws = Tensor::ones(

 &[feature_length, 1], kind::FLOAT_CPU)

 .set_requires_grad(true);

 let mut bs = Tensor::ones(

 &[train_size], kind::FLOAT_CPU)

 .set_requires_grad(true);

 // remaining code ...

In the above example, we will be setting the requires_grad to be true

because we will need to compute the gradients for these values. Tensors

have requires_grad as false by default and gradient for tensors for which

the requires_grad is false are not calculated [8].

Now we will need to first perform the matrix multiplication flower_x_

train * ws + bs. We will then consider the loss against flower_y_train.

Then we need to propagate the loss. This operation will be repeated for

multiple epochs, and we will report the accuracy for each epoch so that we

are able to keep track of the increase or decrease in accuracy of the model

(Listing 2-60).

Listing 2-60.  chapter3/iris_classification_tchrs/src/simple_nn.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous part of the run code ...

 for epoch in 1..200 {

 let logits = flower_x_train.mm(&ws) + &bs;

 let loss = logits.squeeze().cross_entropy_for_logits(

 &flower_y_train);

 ws.zero_grad();

Chapter 2 Supervised Learning

90

 bs.zero_grad();

 loss.backward();

 no_grad(|| {

 ws += ws.grad() * (-1);

 bs += bs.grad() * (-1);

 });

 let test_logits = flower_x_test.mm(&ws) + &bs;

 let test_accuracy = test_logits

 .argmax1(-1, false)

 .eq1(&flower_y_test)

 .to_kind(Kind::Float)

 .mean()

 .double_value(&[]);

 println!(

 "epoch: {:4} train loss: {:8.5} test acc: {:5.2}%",

 epoch,

 loss.double_value(&[]),

 100. * test_accuracy

);

 }

 Ok(())

}

We expect to see an incremental decrease in loss of the model. The

output should be similar to that in Listing 2-61.

Listing 2-61.  chapter3/iris_classification_tchrs/src/simple_nn.rs

$ cd chapter2/iris_classification_tchrs

$ wget https://github.com/intel/mkl-dnn/releases/download/

v0.19/mklml_mac_2019.0.5.20190502.tgz

... other logs ...

Chapter 2 Supervised Learning

91

Length: 28288113 (27M) [application/octet-stream]

Saving to: 'mklml_mac_2019.0.5.20190502.tgz'

mklml_mac_2019.0.5.20190502.tgz

100%[==

==============================>] 26.98M 1.07MB/s in 2m 44s

2019-08-08 08:44:34 (169 KB/s) - 'mklml_mac_2019.0.5.20190502.

tgz' saved [28288113/28288113]

$ gunzip -c mklml_mac_2019.0.5.20190502.tgz| tar xvf -

x mklml_mac_2019.0.5.20190502/

...

x mklml_mac_2019.0.5.20190502/third-party-programs.txt

$ ls mklml_mac_2019.0.5.20190502/lib

libiomp5.dylib libmklml.dylib

$ export LD_LIBRARY_PATH=mklml_mac_2019.0.5.20190502/lib:"$LD_

LIBRARY_PATH"

$ cargo run nn < ../datasets/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

 Running `target/debug/iris_classification_tchrs nn`

Training data shape [300]

Training flower_y_train data shape [75]

epoch: 1 train loss: 1.69804 test acc: 30.67%

... printing for each epock

epoch: 199 train loss: 1.10409 test acc: 29.33%

Linear network using Torch Now creating the previous model is great

for understanding neural networks, but there is a better way of creating

networks in torch similar to what is advocated for in pytorch as well.

For creating models in torch, we can create a simple struct and then

implement forward for the struct (Listing 2-62).

Chapter 2 Supervised Learning

92

Listing 2-62.  chapter2/iris_classification_tchrs/src/linear_with_

sgd.rs

use tch;

use tch::{nn, kind, Kind, Tensor, no_grad, vision, Device};

use tch::{nn::Module, nn::OptimizerConfig};

static FEATURE_DIM: i64 = 4;

static HIDDEN_NODES: i64 = 10;

static LABELS: i64 = 3;

#[derive(Debug)]

struct Net {

 fc1: nn::Linear,

 fc2: nn::Linear,

}

impl Net {

 fn new(vs: &nn::Path) -> Net {

 let fc1 = nn::Linear::new(vs,

 FEATURE_DIM, HIDDEN_NODES,

 Default::default());

 let fc2 = nn::Linear::new(vs,

 HIDDEN_NODES, LABELS,

 Default::default());

 Net { fc1, fc2 }

 }

}

impl Module for Net {

 fn forward(&self, xs: &Tensor) -> Tensor {

 xs.apply(&self.fc1).relu().apply(&self.fc2)

 }

}

Chapter 2 Supervised Learning

93

In the above model, we create two linear networks, basically a hidden

network between the input layer and the output labels. The forward

method is then overriden to implement the network.

To train the above network, we will need to convert the Flower vectors

to torch tensors (Listing 2-63).

Listing 2-63.  chapter2/iris_classification_tchrs/src/linear_with_sgd.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code with data loading and data splitting ...

 let flower_x_train = Tensor::float_vec(

 flower_x_train.as_slice());

 let flower_y_train = Tensor::float_vec(

 flower_y_train.as_slice()).to_kind(Kind::Int64);

 let flower_x_test = Tensor::float_vec(

 flower_x_test.as_slice());

 let flower_y_test = Tensor::float_vec(

 flower_y_test.as_slice()).to_kind(Kind::Int64);

 let train_size = train_size as i64;

 let test_size = test_size as i64;

 let flower_x_train = flower_x_train.view(

 &[train_size, FEATURE_DIM]);

 let flower_x_test = flower_x_test.view(

 &[test_size, FEATURE_DIM]);

 let flower_y_train = flower_y_train.view(

 &[train_size]);

 let flower_y_test = flower_y_test.view(

 &[test_size]);

 // remaining part of the fn ...

Now that the model and the appropriate tensors have been created, we

should be able to train the model using an SGD algorithm (Listing 2-64).

Chapter 2 Supervised Learning

94

Listing 2-64.  chapter2/iris_classification_tchrs/src/simple_nn.rs

let vs = nn::VarStore::new(Device::Cpu); // �use GPU for bigger

models.

let net = Net::new(&vs.root());

let opt = nn::Adam::default().build(&vs, 1e-3)?;

for epoch in 1..200 {

 let loss = net

 .forward(&flower_x_train)

 .cross_entropy_for_logits(&flower_y_train);

 opt.backward_step(&loss);

 let test_accuracy = net

 .forward(&flower_x_test)

 .accuracy_for_logits(&flower_y_test);

 println!(

 "epoch: {:4} train loss: {:8.5} test acc: {:5.2}%",

 epoch,

 f64::from(&loss),

 100. * f64::from(&test_accuracy),

);

};

We should be able to run the command cargo run linear_with_sgd

< data/iris.csv to run this linear model.

2.8.9  �Model Evaluation
Similar to the regression section, in this classification section, we also have

been showing the accuracy of the models with the code for the models

so that the readers can execute the code and match the accuracy for

themselves. In this section the respective model evaluation functions that

we have used have been explained.

Chapter 2 Supervised Learning

95

Accuracy The most common metric to evaluate a classification model

is by using classification accuracy. It is the ratio of the number of correct

predictions to the total number of input samples.

	
Accuracy

Number of correct predictions

Total number of prediction
=

ss made 	
(9)

We can implement this using the next function (Listing 2-65).

Listing 2-65.  ml-utils/src/sup_metrics.rs

pub fn accuracy(y_test: &[u32], y_preds: &[u32]) -> f32 {

 let mut correct_hits = 0;

 for (predicted, actual) in y_preds.iter().zip(y_test.iter()) {

 if predicted == actual {

 correct_hits += 1;

 }

 }

 let acc: f32 = correct_hits as f32 / y_test.len() as f32;

 acc

}

The signature of the function is u32 because the y values will be

specific labels.

Or since we are using rustlearn in this chapter, we can use the

accuracy_score from the package (Listing 2-66).

Listing 2-66.  chapter3/rustlearn_classification_tasks/src/logistic_

reg.rs

use rustlearn::metrics::accuracy_score;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

Chapter 2 Supervised Learning

96

 let prediction = model.predict(&flower_x_test).unwrap();

 let acc = accuracy_score(&flower_y_test, &prediction);

 // remaining code ...

Using the above function, we should be able to see the following

accuracy scores for the models implemented (Listing 2-67).

Listing 2-67.  chapter3/rustlearn_classification_tasks/src/logistic_

reg.rs}

$ cargo run lr < data/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 3.66s

 Running `target/debug/rustlearn_classification_tasks lr`

Logistic Regression: accuracy: 0.3

Logistic Regression: accuracy: 0.3

This method of calculating the accuracy score only works if there

are an equal number of samples belonging to each class. For example,

let’s assume that 99% of samples belong to class A and the remaining 1%

belong to class B. Then by the above metric, a simple model, such as that

in Listing 2-68, predicts all out-of-sample classes as class A would have an

accuracy of 99%.

Listing 2-68.  My awesome machine learning model

fn model(y_test: &Vec<f32>) -> Vec<String> {

 vec![String::from("Class A"); y_test.len()]

}

The result would be that we would have a false sense of achieving high

accuracy.

Logarithmic Loss Logarithmic loss, or cross-entropy loss, works

by penalizing the false classifications. It works well for multi-class

classifications. Log Loss increases as the predicted probability diverges

Chapter 2 Supervised Learning

97

from the actual label. A perfect model would have a log loss of 0. So

predicting a probability of 0.12 when the actual observation label is 1

would be bad and result in a high log loss [10]. This is given by

	
H q

N
y p y y p yp

i

N

i i i i() = - × ()() + -() - ()()
=

å1 1 1
1

log log
	

(10)

The graph in Figure 2-6 shows the range of possible log loss given a

true observation of 1. Log loss is not very steep when the probability is

approaching 1 but increases rapidly when the probability is going toward

0. We want the behavior to be penalized for any errors, but notice how the

penalizing is infinite when the predictors are confident and wrong.

Figure 2-6.  Log loss

Thus, log loss has a more nuanced approach to accuracy than a simple

yes/no nature. It gives a value based on how wrong the model is from the

true value.

Chapter 2 Supervised Learning

98

In Rust, the function in Listing 2-69 will calculate the log-loss score.

The vectors y_test and y_preds are the ground truths and the predicted

values. Log loss is undefined for probability values of 0 and 1 and hence

the y_test vector is clamped to a little above 0 and a little below 1 given by

eps following the equation max(min(p, 1 − ∈), ∈). Note that partial_cmp

is used to compare as we are comparing between two floats. The Rust

official stance is that comparing floating-point numbers is very tricky

and situation dependent, and best avoided if at all possible. There is no

panacea that “just works” [11].

Once done we will implement the actual log-loss function for binary

classification on the clamped vector.

Listing 2-69.  ml-utils/src/sup_metrics.rs

fn logloss_score(y_test: &Vec<f32>,

 y_preds: &Vec<f32>,

 eps: f32) -> f32 {

 let y_preds = y_preds.iter().map(|&p| {

 match p.partial_cmp(&(1.0 - eps)) {

 Some(Ordering::Less) => p,

 _ => 1.0 - eps, // if equal or greater.

 }

 });

 let y_preds = y_preds.map(|p| {

 match p.partial_cmp(&eps) {

 Some(Ordering::Less) => eps,

 _ => p,

 }

 });

 let logloss_vals = y_preds.zip(y_test.iter())

 .map(|(predicted, &actual)| {

 if actual as f32 == 1.0 {

Chapter 2 Supervised Learning

99

 (-1.0) * predicted.ln()

 } else if actual as f32 == 0.0 {

 (-1.0) * (1.0 - predicted).ln()

 } else {

 panic!("Not supported. y_preds should be either 0 or 1");

 }

 });

 logloss_vals.sum()

}

This can now be used in something similar to Listing 2-70.

Listing 2-70.  chapter2/rustlearn_classification_tasks/src/binary_

class_scores.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 let preds = vec![1., 0.0001, 0.908047338626,

 0.0199900075962, 0.904058545833, 0.321508119045,

 0.657086320195];

 let actuals = vec![1., 0., 0., 1., 1., 0., 0.];

 println!("{:?}",

 logloss_score(&actuals, &preds, 1e-15)); // output 7.8581247

 Ok(())

}

ROC-AUC An ROC Curve (receiver operating characteristic curve)

is a graph showing the performance of a classification model at all

classification thresholds [12]. The curve plots two parameters.

•	 True Positive Rate

•	 False Positive Rate

Chapter 2 Supervised Learning

100

True Positive Rate (TPR) is a synonym for recall and is therefore

defined as

	
TPR

TP

TP FN
=

+ 	 (11)

and False Positive Rate is defined as

	
FPR

FP TN
=

+
FP

	 (12)

An ROC Curve plots TPR vs. FPR at different classification thresholds.

Lowering the classification threshold classifies more items as positive, thus

increasing both false positives and true positives.

Figure 2-7.  Roc-auc curve

AUC stands for “Area under the ROC Curve.” It measures the entire

two-dimensional area under the entire ROC Curve. For Figure 2-7 the

ROC-AUC area is 0.895. As is evident, the score has a range between 0 and 1.

The greater the value, the better is the performance of the model.

Chapter 2 Supervised Learning

101

The crate rustlearn has roc-auc score implemented for binary

classification (Listing 2-71).

Listing 2-71.  chaper3/rustlearn_classification_tasks/src/binary_

class_scores.rs

use rustlearn::metrics::roc_auc_score;

pub fn run() -> Result<(), Box<dyn Error>> {

 let preds = vec![

 1., 0.0001, 0.908047338626,

 0.0199900075962, 0.904058545833,

 0.321508119045, 0.657086320195];

 let actuals = vec![1., 0., 0., 1., 1., 0., 0.];

 println!("logloss score: {:?}",

 logloss_score(&actuals, &preds, 1e-15));

 println!("roc auc scores: {:?}",

 roc_auc_score(&Array::from(actuals), // new code

 &Array::from(preds))?);

 Ok(())

}

Running the above should give something like that shown in Listing 2-72.

Listing 2-72.  chaper3/rustlearn_classification_tasks/src/binary_

class_scores.rs

$ cargo run bs

 Finished dev [unoptimized + debuginfo] target(s) in 0.16s

 Running `target/debug/rustlearn_classification_tasks bs`

logloss score: 7.8581247

roc auc scores: 0.6666667

Chapter 2 Supervised Learning

102

2.9  �Conclusion
This chapter introduced you to different regression algorithms such as

Linear Regression, Gaussian Processes, and Generalized Linear Models.

Along with the algorithms, the package rusty_machine is introduced and

how to create regression models of these algorithms using the package.

Finally, we end the chapter with an understanding of how to evaluate

regression models.

In the next chapter, you will learn about creating classification models.

2.10  �Bibliography
	 [1]	 Introduction to Generalized Linear Models. https://

newonlinecourses.science.psu.edu/stat504/

node/216/. 2018.

	 [2]	 Heather Turner. Introduction to Generalized Linear

Models. http://statmath.wu.ac.at/courses/

heather_turner/glmCourse_001.pdf. 2018.

	 [3]	 Alvira Swalin. Choosing the Right Metric for

Evaluating Machine Learning Models – Part I.

https://medium.com/usf-msds/choosing-the-

right-metric-for-machine-learning-models-

part-1-a99d7d7414e4. 2018.

	 [4]	 Leo Breiman. Random Forests. https://www.stat.

berkeley.edu/~breiman/randomforest2001.pdf.

2001.

	 [5]	 Ramya Bhaskar Sundaram. The math behind

XGBoost. https://www.analyticsvidhya.com/

blog/2018/09/an-end- to-end-guide-to-

understand-the-math-behind-xgboost/. 2018.

Chapter 2 Supervised Learning

https://newonlinecourses.science.psu.edu/stat504/node/216/
https://newonlinecourses.science.psu.edu/stat504/node/216/
https://newonlinecourses.science.psu.edu/stat504/node/216/
http://statmath.wu.ac.at/courses/heather_turner/glmCourse_001.pdf
http://statmath.wu.ac.at/courses/heather_turner/glmCourse_001.pdf
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://medium.com/usf-msds/choosing-the-right-metric-for-machine-learning-models-part-1-a99d7d7414e4
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.stat.berkeley.edu/~breiman/randomforest2001.pdf
https://www.analyticsvidhya.com/blog/2018/09/an-end-
https://www.analyticsvidhya.com/blog/2018/09/an-end-

103

	 [6]	 Tianqi Chen and Carlos Guestrin. “XGBoost: A

Scalable Tree Boosting System.” In: Proceedings of

the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining. KDD ‘16.

ACM, 2016, pp. 785–794. ISBN: 978-1-4503-4232-2.

DOI: 10.1145/2939672.2939785. url: http://doi.

acm.org/10.1145/2939672.2939785.

	 [7]	 Chih-Wei Hsu, Chih-Chung Chang, and Chih-Jen Lin.

A Practical Guide to Support Vector Classification.

https://www.csie.ntu.edu.tw/~cjlin/papers/

guide/guide.pdf. Ed. Department of Computer

Science. [Online; accessed 11-Nov-2019]. 2018.

	 [8]	 Torch. http://torch.ch/.

	 [9]	 Excluding subgraphs from backward. https://

pytorch.org/docs/stable/notes/autograd.

html#excluding-subgraphs-from-backward. 2018.

	[10]	 Log Loss. http://wiki.fast.ai/index.php/Log_

Loss#Log_Loss_vs_Cross-Entropy. 2017.

	[11]	 Float Comparisons. https://docs.rs/float-

cmp/0.4.0/float_cmp/.

	[12]	 Google. Classification: ROC Curve and AUC.

https://developers.google.com/machine-

learning/crash-course/classification/roc-

and-auc. 2019.

	[13]	 Vitaly Bushaev. Stochastic Gradient Descent with

Momentum. https://towardsdatascience.com/

stochastic-gradient-descent- with-momentum-

a84097641a5d. 2017.

Chapter 2 Supervised Learning

http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf
http://torch.ch/
https://pytorch.org/docs/stable/notes/autograd.html#excluding-subgraphs-from-backward
https://pytorch.org/docs/stable/notes/autograd.html#excluding-subgraphs-from-backward
https://pytorch.org/docs/stable/notes/autograd.html#excluding-subgraphs-from-backward
http://wiki.fast.ai/index.php/Log_Loss#Log_Loss_vs_Cross-Entropy
http://wiki.fast.ai/index.php/Log_Loss#Log_Loss_vs_Cross-Entropy
https://docs.rs/float-cmp/0.4.0/float_cmp/
https://docs.rs/float-cmp/0.4.0/float_cmp/
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://developers.google.com/machine-learning/crash-course/classification/roc-and-auc
https://towardsdatascience.com/stochastic-gradient-descent-
https://towardsdatascience.com/stochastic-gradient-descent-

104

	[14]	 Anastasios Kyrillidis. Adagrad. http://

akyrillidis.github.io/notes/AdaGrad.

	[15]	 Vitaly Bushaev. L1 and L2 Regularization.

https://towardsdatascience.com/l1-and-l2-

regularization-methods-ce25e7fc831c. 2017.

	[16]	 Maciej Kula. Rustlearn Decision Tree. https://

maciejkula.github.io/rustlearn/doc/rustlearn/

trees/decision_tree/index.html. 2018.

	[17]	 Rafael Irizarry. Decision Tree. https://rafalab.

github.io/pages/649/section-11.pdf. 2006.

	[18]	 Decision Trees and Random Forest. https://scikit-

learn.org/stable/modules/tree.html. 2011.

	[19]	 F. Pedregosa et al. “Scikit-learn: Machine Learning

in Python”. In: Journal of Machine Learning Research

12 (2011), 2825–2830.

	[20]	 Leo Breiman and Adele Cutler. Random Forests.

https://www.stat.berkeley.edu/~breiman/

RandomForests/cc_home.htm.

	[21]	 StackExchange:user:15501. Need help understanding

xgboost’s approximate split points proposal.

https://datascience.stackexchange.com/

questions/10997/need-help-understanding-

xgboosts-approximate- split-points-proposal.

2016.

	[22]	 A Beginner’s Guide to Neural Networks and Deep

Learning. https://skymind.ai/wiki/neural-

network.

Chapter 2 Supervised Learning

http://akyrillidis.github.io/notes/AdaGrad
http://akyrillidis.github.io/notes/AdaGrad
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://towardsdatascience.com/l1-and-l2-regularization-methods-ce25e7fc831c
https://maciejkula.github.io/rustlearn/doc/rustlearn/trees/decision_tree/index.html
https://maciejkula.github.io/rustlearn/doc/rustlearn/trees/decision_tree/index.html
https://maciejkula.github.io/rustlearn/doc/rustlearn/trees/decision_tree/index.html
https://rafalab.github.io/pages/649/section-11.pdf
https://rafalab.github.io/pages/649/section-11.pdf
https://scikit-learn.org/stable/modules/tree.html
https://scikit-learn.org/stable/modules/tree.html
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://www.stat.berkeley.edu/~breiman/RandomForests/cc_home.htm
https://datascience.stackexchange.com/questions/10997/need-help-understanding-xgboosts-approximate-
https://datascience.stackexchange.com/questions/10997/need-help-understanding-xgboosts-approximate-
https://datascience.stackexchange.com/questions/10997/need-help-understanding-xgboosts-approximate-
https://skymind.ai/wiki/neural-network
https://skymind.ai/wiki/neural-network

105

	[23]	 A Matrix Formulation of the Multiple Regression

Model. https://newonlinecourses.science.psu.

edu/stat501/node/382/. 2018.

	[24]	 Hsuan-Tien Lin and Chih-Jen Lin. A Study on

Sigmoid Kernels for SVM and the Training ofnon-

PSD Kernels by SMO-type Methods. https://www.

csie.ntu.edu.tw/~cjlin/papers/tanh.pdf.

Chapter 2 Supervised Learning

https://newonlinecourses.science.psu.edu/stat501/node/382/
https://newonlinecourses.science.psu.edu/stat501/node/382/
https://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf
https://www.csie.ntu.edu.tw/~cjlin/papers/tanh.pdf

107© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_3

CHAPTER 3

Unsupervised
and Reinforcement
Learning
In the previous chapters we took a look at the regression and classification

algorithms that fall under the category of supervised algorithms [1]. In

this chapter, we will be taking a look at the remaining forms of machine

learning, namely unsupervised algorithms and reinforcement learning.

In unsupervised algorithms, the labels or the target classes are not

given. So the goal of unsupervised learning is to attempt to find natural

partitions of patterns.

The main forms of performing unsupervised learning has been

through clustering.

First, we will focus on different unsupervised learning algorithms and

how we can implement them using Rust. We will be using the same Iris

dataset, and the data preparation steps would be the same that we saw

in Chapter 2. Finally, we should have two rusty_machine dense matrices

flower_x_train and flower_x_test. Although this dataset is not totally

conducive to unsupervised learning as we know the labels, this is a good

dataset for understanding the workings of creating unsupervised models.

108

3.1  �K-Means Clustering
A way of performing unsupervised learning is by observing which groups

of data cluster together based on a notion of similarity. The simplest model

that solves the clustering problem is k-means. The number of clusters

needs to be set a priori; and based on that, the dataset is classified in such

a way that these set numbers of clusters are formed. An example for a

datasets clustered using k-means is shown in Figure 3-1.

Figure 3-1.  K-means clustering: the number of clusters here is taken
as 3, but we might as well have taken 2

The output of the final k-means is quite dependent on the initial

patterns that are used. The patterns are generally initialized using Forgy,

Random Partition, or K-means++ methods. In the Forgy method, randomly

chosen k observations from the dataset are used as the initial means. In the

the random partition method, a cluster is assigned to each observation in

Chapter 3 Unsupervised and Reinforcement Learning

109

the beginning and then proceeds to the updating step, thus computing the

initial mean to be the centroid of the cluster’s randomly assigned points.

The Forgy method tends to spread the initial means out, while a Random

partition places all of them close to the center of the dataset.

K-Means++ is almost the same as vanilla K-Means just that K-means++

starts with allocating one cluster center randomly and then searches for

other centers given the first one [2].

Using rusty_machine we can use the K-MeansClassifier struct to

implement and apply K-Means on the data using the train method. We

can then either see the model centroids or run the predict method on the

unseen data (Listing 3-1).

Listing 3-1.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs output

use rusty_machine as rm;

use rm::learning::k_means::KMeansClassifier;

fn main() -> Result<(), Box<Error>> {

 // data loading and splitting code ...

 const clusters: usize = 3;

 let model_type = "Kmeans";

 let mut model = KMeansClassifier::new(clusters);

 model.train(&flower_x_train)?;

 let centroids = model.centroids().as_ref().unwrap();

 println!("Model Centroids:\n{:.3}", centroids);

 println!("Predicting the samples...");

 let classes = model.predict(&flower_x_test).unwrap();

 println!("number of classes from kmeans: {:?}",

 classes.data().len());

 remaining code ...

Chapter 3 Unsupervised and Reinforcement Learning

110

The output for this code should be something like that shown in

Listing 3-2.

Listing 3-2.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs output

$ cargo run < ../../chapter2/datasets/iris.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.04s

 Running `target/debug/rusty_machine_unsupervised`

Training the Kmeans model

Model Centroids:

 5.817 2.710 5.817 1.410

 4.988 3.388 4.988 0.260

 6.886 3.081 6.886 1.956

Predicting the samples...

number of classes from kmeans: 30

Creating this model initializes the k-means using k-means++. Apart from

this, we can also use the Forgy or RandomPartition method (Listing 3-3).

Listing 3-3.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs output

use rm::learning::k_means::{KMeansClassifier, Forgy,

 RandomPartition, KPlusPlus};

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 // can use either Forgy or RandomPartition

 let mut model = KMeansClassifier::new_specified(3, 100, Forgy);

 //Train the model

 println!("Training the kmeans forgy model model");

 model.train(&flower_x_train)?;

Chapter 3 Unsupervised and Reinforcement Learning

111

 let centroids = model.centroids().as_ref().unwrap();

 println!("Model Centroids:\n{:.3}", centroids);

 // Predict the classes and partition into

 println!("Predicting the samples...");

 let classes = model.predict(&flower_x_test).unwrap();

 �println!("number of classes from kmeans: {:?}", classes.

data().len());

 println!("{:?}", classes.data().len());

 // remaining code ...

}

Note that in the parameters to KMeansClassifier::new_specified we

are passing 3 which is the number of partitions and we are specifying the

number_of_epochs param at 100. The type if partition is Forgy in Listing 3-4,

the output only for the code block in Listing 3-3 is shown.

Listing 3-4.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs output

Training the kmeans forgy model model

Model Centroids:

 5.018 3.414 5.018 0.264

 5.867 2.721 5.867 1.463

 6.873 3.045 6.873 1.976

Predicting the samples...

number of classes from kmeans: 30

30

Chapter 3 Unsupervised and Reinforcement Learning

112

3.2  �Gaussian Mixture Model
A k-means algorithm is generally the first algorithm of choice when

performing unsupervised learning, due to its relative simplicity in training

and understanding. But the simple nature of k-means also brings in

practical challenges when applied. In this section we will take a look

at Gaussian Mixture Models (or GMM’s), which are more generalized

versions of k-means. GMM’s give k-means a more theoretical and

mathematical footing [3].

Think of the k-means as defining circle spheres (or a circle in the

simplest sense) where if a point is within the circle, it’s part of the cluster

or the group; and if not within the circle, then it’s not part of the group.

The cluster center is the center of the circle and the radius can be the

distance to the outermost point. In k-means this radius will act like a hard

cutoff between which points are members of the cluster and which are

not members of the cluster. In contrast, we can relax this hard boundary

assumption and assume that all cluster centers have an effect on all

points in the distribution. An interesting analogy in this respect might

be that even though the planets in the solar system are part of the same

cluster and revolve around the sun (an analogy for the cluster center),

distant stars and galaxies do exert some gravitational pull on earth and

the other planets. The pull though is quite minuscule so that for practical

calculations we can ignore them.

Mathematically, this is achieved by assuming that all data points are

generated from a mixture of a finite number of Gaussian distributions with

unknown parameters. Hence, we go from a hard-bounded k-means to a

more probabilistic model. A Gaussian distribution is show in Figure 3-2,

and what the distribution looks like when we have multiple distributions is

shown in Figure 3-3.

Chapter 3 Unsupervised and Reinforcement Learning

113

In Figure 3-3 we are using the Iris dataset to map the distribution

between two variables: sepal_length and sepal_width.

Figure 3-2.  Gaussian

Figure 3-3.  Multiple distributions

Chapter 3 Unsupervised and Reinforcement Learning

114

A Gaussian distribution is completely determined by its covariance

matrix and its mean. The covariance matrix of a Gaussian distribution

determines the directions and lengths of the aces of its density contours,

all of which are ellipsoids. The different types of covariance matrices are

the following:

•	 Full means that the components may independently

adopt any position and shape.

•	 Tied means they have the same shape but the shape

may be anything.

•	 Diagonal means that the contour axes are oriented

along the coordinate axes, but otherwise the

eccentricities may vary between components.

•	 Spherical means that the contour is a sphere.

•	 Toeplitz means that the diagonals of the contour

have elements that share the same parameters. It has

an additional complexity parameter that selects the

number of active off-diagonals and their constants.

•	 Shrinked means that the contour shape is determined

by the complex combination of a diagonal and any

covariance. There is no immediate obvious tying, but

it ties all eigenvalues so that they grow and shrink

depending on the same parameter.

•	 Kernel covariance means that in this case, the

covariance is defined by a positive definite function. We

are in this case able to get a mixture model of functions

(the greatest amount of generalization mathematically

speaking).

Apart from the above, constraints can be put on the Gaussian mixture

composition, which increases generalization of the model [4].

Chapter 3 Unsupervised and Reinforcement Learning

115

A Gaussian Mixture model is evaluated using the expectation

maximization algorithm. This algorithm iterates to find the maximum

likelihood estimates of parameters in statistical models. The advantage

of using an EM algorithm is that it is able to estimate the parameters in

models that depend on unobserved latent or hidden variables. In this

case, we can think of the mixing probabilities of the Gaussian functions

as the prior probabilities for the outcomes. For given values of individual

components, the algorithm will evaluate the corresponding posterior

probabilities, called responsibilities. These responsibilities are essentially

the latent variables [5].

Rust Using rusty_machine, we can create a mixture model. Then we

set the maximum number of iterations and the covariance types. We can

then train this model using the train method. Once training is done apart

from the predict method, we will also be able to get the means and the

covariances of the trained model and run the predict method (Listing 3-5).

Listing 3-5.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs

use rm::learning::gmm::{CovOption, GaussianMixtureModel};

use ml_utils::unsup_metrics::{jaccard_index, rand_index};

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 let mut model = GaussianMixtureModel::new(2);

 model.set_max_iters(1000);

 model.cov_option = CovOption::Diagonal;

 println!("Training the model");

 model.train(&flower_x_train)?;

 // Print the means and covariances of the GMM

 println!("{:?}", model.means());

 println!("{:?}", model.covariances());

Chapter 3 Unsupervised and Reinforcement Learning

116

 // Predict the classes and partition into

 println!("Predicting the samples...");

 let classes = model.predict(&flower_x_test).unwrap();

 �println!("number of classes from GMM: {:?}", classes.data().

len());

 // Probabilities that each point comes from each Gaussian.

 �println!("number of Probablities from GMM: {:?}", classes.

data().len());

 �let predicted_clusters = flower_labels_clusters_gmm(classes.

data());

 �println!("predicted clusters from gmm: {:?}", predicted_

clusters);

 �println!("rand index: {:?}", rand_index(&predicted_clusters,

&flower_y_test_clus));

 �println!("jaccard index: {:?}", jaccard_index(&predicted_

clusters, &flower_y_test_clus));

 // rest of the code ...

}

In place of Diagonal, we can also use the Full and Regularized

options. Output for the above model is shown in Listing 3-6.

Listing 3-6.  rust-machine-learning/chapter3/rusty_machine_

unsupervised/src/main.rs output

Training the Mixture model model

model means: Some(Matrix { rows: 3, cols: 4, data:

[5.00999871185655, 3.4275000972153493, 5.00999871185655,

0.24749396211890054, 6.661363633497823, 3.010315328597311,

6.661363633497823, 1.9381371828096539, 5.685719344467794,

2.670276005506212, 5.685719344467794, 1.3354911643349907] })

Chapter 3 Unsupervised and Reinforcement Learning

117

model covariances: Some([Matrix { rows: 4, cols: 4, data:

[0.13190228661798534, 0.0, 0.0, 0.0, 0.0, 0.16249683048609323,

0.0, 0.0, 0.0, 0.0, 0.13190228661798534, 0.0, 0.0, 0.0, 0.0,

0.011992091366866362] }, Matrix { rows: 4, cols: 4, data:

[0.25623508453320654, 0.0, 0.0, 0.0, 0.0, 0.06361683319359594,

0.0, 0.0, 0.0, 0.0, 0.25623508453320654, 0.0, 0.0, 0.0, 0.0,

0.11105964367994896] }, Matrix { rows: 4, cols: 4, data:

[0.14296761663516486, 0.0, 0.0, 0.0, 0.0, 0.06916983667682852,

0.0, 0.0, 0.0, 0.0, 0.14296761663516486, 0.0, 0.0, 0.0, 0.0,

0.06722138159035253] }])

Predicting the samples...

number of classes from GMM: 90

gmm classes: Matrix { rows: 30, cols: 3, data: [0.0000000000000

001

4163053449105444, 0.9999999770633979, 0.000000022936602131147763,

0.0026043

664126255967, 0.055250462547009986, 0.94474953745299, 0.99999999

48172809, 0.0000000000002230990802244913, 0.0000000051824961446

47463, 0.000636332801

3832893, 0.9996792118434199, 0.0003207881565800758, 0.9999987790

420889, 0.000000020897732033112106, 0.000001200060179100879,

0.00000000000000000000000000000800914271537728, 0.0074920307322

04336, 0.9925079692677956, 0.0000000000000000000000000000000000

00000000000000000000000000005285373201144257, 0.9998616296930777,

0.00013837030692238176, 0.9999995096444436, 0.00000000000415274

14529597685, 0.0000004903514037292042, 0.9999999132286986,

0.000000000001393742090001966, 0.00000008676990757234786,

0.000000000000000000000000000000004855186479064118, 0.002719277

709391326, 0.9972807222906086, 0.0000000000000000000000000

00

0000000000000000000001355051993171768, 0.9999999999966558,

Chapter 3 Unsupervised and Reinforcement Learning

118

0.0000000000033441909895411436, 0.00000000000000000000000000000

00000000005357830561231346, 0.9999562181964523, 0.0000437818035

47699205, 0.0000000000000000000000000000000000018392034391239705,

0.9999892831622388, 0.000010716837761224078, 0.0000000000000000

0000000003778865818805634, 0.7503202988312131, 0.2496797011687869,

0.000

0000000000000000000000000003893607802799448, 0.9999999999999958,

0.000000000000004298567960918699, 0.0000000000000130727701

77035594, 0.00023239823168584218, 0.999767601768301, 0.00000000

00000000000000000000000000000000000000015160002176660837,

0.8387135667053368, 0.16128643329466325, 0.00000000000000000000

000

00000000034953327151517393, 0.9999997656317542, 0.0000002343682

4583147217, 0.0000000000000000000002340633434163898, 0.00050881

61744897154, 0.9994911838255103, 0.0000000000000000000000000000

000000000000000000000000000000000000000689099149495584, 0.99999

99977229123, 0.0000000022770877848717026, 0.9999999436031238,

0.000000000005926988070694233, 0.000000056390949161758715,

0.9999999132286986, 0.000000000001393742090001966, 0.0000000867

6990757234786, 0.00

0000000000000000000000000000000005362212435215233, 0.9999122879

769339, 0.00008771202306615775, 0.9999997736979629, 0.000000000

03757036119192523, 0.0000002262644667433647, 0.0000000000000000

000000000000000034483840914121184, 0.9985361511608948, 0.001463

8488391051328, 0.000

004937468317251526, 0.42540236377099694, 0.5745976362290031,

0.9999999948172809, 0.0000000000002230990802244913, 0.000000005

182496144647463, 0.9999998751000135, 0.0000000000421445815

8918603, 0.00000012485784186635827, 0.0000000000000000000000000

0000000025705463248504494, 0.262309436768884, 0.7376905632311159,

0.9999999956801614, 0.00000000000012481190923957532,

0.0000000043197138843938396] }

Chapter 3 Unsupervised and Reinforcement Learning

119

number of Probablities from GMM: 90

predicted clusters from gmm: [{21, 23, 2, 8, 26, 4, 7, 20, 27,

29}, {13, 3, 10, 14, 16, 6, 22, 24, 0, 12, 17, 11, 19}, {15, 9,

1, 5, 18, 25, 28}]

rand index: 0.7793103448275862

jaccard index: 0.48936170212765956

3.3  �Density-Based Spatial Clustering
of Applications with Noise (DBSCAN)

The idea behind DBSCAN is that clusters are essentially regions of high

density separated by areas of low density. Much like cities, which are

generally highly densely interspaced with the countryside, which are of

lower density. High density means it’s probably a cluster and low density

is assumed to be noise. An interesting difference with k-means is that

k-means assumes that the underlying clusters are convex shaped, but that

assumption is not necessary for discovering clusters using DBSCAN; hence

they are potentially more general. Thus, this algorithm is particularly

useful when it seems like it’s a large dataset with complicated shapes for

the clusters and lots of noise in the dataset.

From an evaluation point of view, each point P is evaluated and there

must be at least a certain number of points m1, m2,… within a set radius, R

of the point P. This is the minimum density that the cluster must have. The

algorithm needs three input parameters [6].

•	 k, the nearest neighbor list size;

•	 eps, the radius that delimits the neighborhood area of a

point;

•	 min points, the minimum number of points that must

exist in the eps neighborhood.

Chapter 3 Unsupervised and Reinforcement Learning

120

The issue with DBSCAN is that it cannot handle varying densities. Also,

this algorithm is quite sensitive to parameters set.

DBSCAN models can be created using rusty_machine. In Listing 3-7

we create a DBSCAN model with eps as 3 and minimum samples as 10. We

then pass true flag to set_predict method of the model. This allows us to

use the predict method on new unseen data. Similar to previous models,

we can train and predict on the dataset. Apart from these, we can also

check the clusters that the model has learned.

Listing 3-7.  rusty_machine_unsupervised

use rm::learning::dbscan::DBSCAN;

use rm::learning::UnSupModel;

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 let mut model = DBSCAN::new(0.3, 10);

 model.set_predictive(true);

 model.train(&flower_x_train)?;

 let clustering = model.clusters().unwrap();

 let classes = model.predict(&flower_x_test).unwrap();

 // remaining code ...

Apart from DBSCAN::new we can use DBSCAN::default. The default

values that are initialized are 0.5 for eps, 5 for minimum points.

Chapter 3 Unsupervised and Reinforcement Learning

121

3.4  �Principal Component Analysis
One of the main components of machine learning is matrix multiplication.

Matrix multiplications are generally computationally expensive [7]. Also,

the number of dimensions that we are dealing with needs to be taken into

account, and we should not add too many dimensions unnecessarily. We

are shown by the Hughes Phenomenon, as seen in Figure 3-4, that as the

number of features increases, a classifiers performance increases as well

until we reach the optimal number of features. Adding more features for

the same size as the training set will degrade the features. This is called the

curse of dimensionality [8].

Many algorithms such as KNN are particularly susceptible to this

curse of dimensionality. A way to escape this curse is by dimensionality

reduction. In dimensionality reduction, we generally choose a

mathematical representation within which most of the variance in the

original data, if not all, can be explained. The effect is that we are able

to remove a significant number of features while retaining a lot of the

information.

Principal Component Analysis is a method of dimensionality reduction.

It’s essentially a transformation where our original variables will get

converted to a new set of variables, which are linear combinations of the

original set of variables. It means that if the original features are “a” and “b,”

for example, the resultant features might be c = p1a + q1b and d = p2a + q2b.

	 PX Y= 	 (1)

where X is the original recorded dataset, Y is the representation of the

dataset, and P is the linear transformation matrix. Geometrically, we can

see that P is a rotation and stretches from X to Y.

Chapter 3 Unsupervised and Reinforcement Learning

122

PCA and Rust Although PCA has been implemented in rusty_

machine, it has not been published in the crate as of the writing of this

book. Hence, we will need to update the dependencies in Cargo.toml file to

pull in the latest code from the master (Listing 3-8).

Listing 3-8.  Cargo.toml

[dependencies]

rusty-machine = { git = "https://github.com/AtheMathmo/rusty-

machine.git", rev = "f43da8d" }

Now we should be able to create a PCA model and train on the data.

In this case we are reducing the dimensions to 2 and asking the model to

center the clusters (Listing 3-9).

Listing 3-9.  rusty_machine_unsupervised

use rm::learning::pca::PCA;

use rm::learning::UnSupModel;

let mut model = PCA::new(2, true);

model.train(&flower_x_train)?;

Figure 3-4.  Hughes Phenomenon

Chapter 3 Unsupervised and Reinforcement Learning

123

println!("{:?}", model.predict(&flower_x_test)?);

println!("{:?}", model.components());

We can also use the PCA::default method to create a default model,

but the default model has all the components. So, we will be having a

reduction in the dimensions.

3.5  �Testing an Unsupervised Model
Evaluating the performance of an unsupervised model is difficult as

there are no labels to compare the final score with. One way is through

internal metrics such as the silhouette score, which aims at formalizing the

attainment of high intra-cluster similarity; or points within a cluster should

be close to each other and have low inter-cluster similarity, which means

similarity between points in two clusters should be low. But good scores on

an internal criterion may not necessarily translate into good effectiveness

in an application. The other approach is through direct evaluation in

the application of interest. For example, a website implementing search

may measure the time taken by the users to find an answer with different

clustering algorithms, and the two algorithms can be compared with beta

testing. This is the most direct evaluation, but it is expensive, especially if

large user studies are necessary.

A third approach is by using a surrogate of user judgments, in which

case we use a set of classes and create a gold standard ourselves. The

gold standard is ideally produced by human judges with good levels of

inter-judge agreement. We can then compute an external criterion that

evaluates how well the cluster matches the gold standard classes. In

this section, two measures of external criteria are described with code

accompanying them.

Chapter 3 Unsupervised and Reinforcement Learning

124

Rand Index The Rand Index computes a similarity measure between

two clusters by considering all pairs of samples and counting pairs that

are assigned in the same or different clusters in the predicted and true

clustering. The most common formulation of the Rand Index focuses on

the following four sets of different permutations given by
n

k

æ

è
ç

ö

ø
÷ element

pairs:: N11 is the number of element pairs that are grouped in the same

cluster in both clustering, N10 is the number of element pairs that are

grouped in the same cluster by A but in different clusters by B, N01 is the

number of element pairs that are grouped in the same cluster by B but in

different clusters by A, and N00 is the number of elements pairs that are

grouped in different clusters by both A and B. Notice that N11 and N00 are

the indicators of agreements between clusters A and B while N10 and N01

are the disagreements.

Table 3-1.  Contingency Table

The contingency is shown in Table 3-1. Therefore, the Rand index

would be given by the below function:

	

RI A B
N N

n

k

,() = +
æ

è
ç

ö

ø
÷

11 00

	

(2)

Chapter 3 Unsupervised and Reinforcement Learning

125

The value of the above index would lie between 0 and 1, where 1

indicates that the clusterings are identical and 0 means that the clusters do

not share a single pair of elements.

Rand index is implemented in ml-utils (Listing 3-10).

Listing 3-10.  ml-utils/src/unsup_metrics.rs

pub fn rand_index(clusters1: &[HashSet<u64>],

 clusters2: &[HashSet<u64>]) -> f64 {

 let (n11, n10, n01, n00) = count_pairwise_cooccurence(

 clusters1, clusters2);

 (n11 + n00) / (n11 + n10 + n01 + n00)

}

The implementation of a count_pairwise_cooccurence function can

be found on the same module but has been skipped for brevity.

We should now be able to run this function and get the index

(Listing 3-11).

Listing 3-11.  ml-utils/src/unsup_metrics.rs

use ml_utils::unsup_metrics::rand_index;

println!("rand index: {:?}",

 rand_index(&predicted_clusters, &flower_y_test_clus));

Jaccard Index Similar to the Rand index, we have the Jaccard Index. It

is defined by the size of the intersection divided by the size of the union.

	
J A B

A B

A B
,() = Ç

È 	
(3)

This can be easily understood by Figure 3-5. The intersection should

approach the union as the clusters are similar to each other.

Chapter 3 Unsupervised and Reinforcement Learning

126

Take a look at the implementation of the Jaccard index in ml-utils

(Listing 3-12).

Listing 3-12.  ml-utils/src/unsup_metrics.rs

pub fn jaccard_index(clusters1: &[HashSet<u64>],

 clusters2: &[HashSet<u64>]) -> f64 {

 �let (n11, n10, n01, n00) = count_pairwise_

cooccurence(clusters1, clusters2);

 let denominator = n11 + n10 + n01;

 if denominator > 0.0 {

 return n11 / denominator;

 } else {

 0.0

 }

}

Figure 3-5.  Jaccard

We should now be able to run this function and get the index

(Listing 3-13).

Chapter 3 Unsupervised and Reinforcement Learning

127

Listing 3-13.  ml-utils/src/unsup_metrics.rs

use ml_utils::unsup_metrics::jaccard_index;

println!("jaccard index: {:?}",

 jaccard_index(&predicted_clusters, &flower_y_test_clus));

3.6  �Reinforcement Learning
Reinforcement learning is the utilization of different algorithms so that a

suitable action can be chosen to maximize rewards in a given situation.

The difference from supervised learning is that the labeled input/output

pairs may not be present. In unsupervised learning, we are interested

in finding the similarities and differences between the data points. But

reinforcement learning is more about finding the best behavior given an

environment. To build a reinforcement system, the software system should

have a mechanism to make observations and take actions within an

environment. In return, it should receive rewards in some form. The idea is

to maximize long-term rewards.

There are various real-world applications for reinforcement learning.

Robots have been used in manufacturing for some time now. Some

repetitive tasks such as picking an object and putting it in a container

benefit greatly from using reinforcement learning in their programming.

Whether they succeed or fail, they are able to train themselves and

complete the tasks with good speed and accuracy. Another field where

there are good applications of reinforcement learning is speculative

trading in the stock market. Agents are being used to pick between trading

strategies using Q-learning, using one simple instruction to maximize

the value of the portfolio. Reinforcement learning is of great value in such

systems that are highly controlled and which require speed to choose

between a high range of action.

Chapter 3 Unsupervised and Reinforcement Learning

128

The algorithm that is used by the software to determine its actions is

called its policy. The policy should have access to two functions of the target

body, a way to take observations as inputs and a way to take the next step.

One of the challenges of reinforcement learning is that in order to train an

agent, we need to create the environment. The environment can be both real-

world and software simulations. Real-world simulations are outside the scope

of this book so we will target a subset of software simulations. One of the great

crates for reinforcement learning is rsrl. Since the api is not stable yet, we

will use a slightly modified version of the code to be able to call the functions

well (Listing 3-14). Hence we have the ndarray crate for matrix manipulation

and slog for logging. The crate to be focused on in this section is rsrl which

will provide us with the relevant types for reinforcement learning.

Listing 3-14.  chapter3/rsrl_custom/Cargo.toml

[package]

name = "rsrl_custom"

version = "0.1.0"

edition = "2018"

[dependencies]

rsrl = { git = "https://github.com/infinite-Joy/rsrl", branch =

"mymodel" }

slog = "2.4.1"

ndarray = "0.12.0"

Now we should be able to create a custom model. Most of the code

here has been taken from the A2C examples and the Cart-pole problem in

reinforcement learning. The Cart-pole problem, also known as the inverted

pendulum, is a pendulum with the center of gravity above the pivot point.

This results in the pendulum being very unstable. The goal is to keep the

pole balanced by applying forces in the appropriate direction at the pivot

point. This is shown in Figure 3-6.

Chapter 3 Unsupervised and Reinforcement Learning

129

At each time step, we are able to observe its position x, velocity dx,

angle θ, and angular velocity dθ. Thus, the state space has four dimensions

of continuous values and the action space has one dimension of two discrete

values. The force can be represented by ALL_ACTIONS. (Listing 3-15).

Listing 3-15.  chapter3/rsrl_custom/src/main.rs

const ALL_ACTIONS: [f64; 2] = [-1.0 * CART_FORCE,

1.0 * CART_FORCE];

And we will need to define the environment by the scope of the current

state and what will happen when a force is applied (Listing 3-16).

Listing 3-16.  chapter3/rsrl_custom/src/main.toml

impl CartPole {

 fn new(x: f64, dx: f64, theta: f64, dtheta: f64) -> CartPole {

 CartPole {

 state: Vector::from_vec(vec![x, dx, theta, dtheta]),

 }

 }

 fn update_state(&mut self, a: usize) {

 let fx = |_x, y| CartPole::grad(

 ALL_ACTIONS[a], &y); // when a force <a> is applied

Figure 3-6.  Cart-pole

Chapter 3 Unsupervised and Reinforcement Learning

130

 let mut ns = runge_kutta4(

 &fx, 0.0, self.state.clone(), TAU);

 ns[StateIndex::X] = clip!(

 LIMITS_X.0, ns[StateIndex::X], LIMITS_X.1);

 ns[StateIndex::DX] = clip!(

 LIMITS_DX.0, ns[StateIndex::DX], LIMITS_DX.1);

 ns[StateIndex::THETA] = clip!(

 LIMITS_THETA.0, ns[StateIndex::THETA], LIMITS_THETA.1);

 ns[StateIndex::DTHETA] = clip!(

 LIMITS_DTHETA.0, ns[StateIndex::DTHETA], LIMITS_DTHETA.1);

 self.state = ns;

 }

 fn grad(force: f64, state: &Vector) -> Vector {

 let dx = state[StateIndex::DX];

 let theta = state[StateIndex::THETA];

 let dtheta = state[StateIndex::DTHETA];

 let cos_theta = theta.cos();

 let sin_theta = theta.sin();

 let z = (force

 + POLE_MOMENT

 * dtheta * dtheta

 * sin_theta) / TOTAL_MASS;

 let numer = G * sin_theta - cos_theta * z;

 let denom = FOUR_THIRDS

 * POLE_COM

 - POLE_MOMENT

 * cos_theta * cos_theta;

Chapter 3 Unsupervised and Reinforcement Learning

131

 let ddtheta = numer / denom;

 let ddx = z - POLE_COM * ddtheta * cos_theta;

 Vector::from_vec(vec![dx, ddx, dtheta, ddtheta])

 }

}

In rsrl, to implement this environment, we will need to implement

the Domain trait. If we see the signature of the Domain trait, we get an

understanding of the types of behavior that we need to implement. This

can be seen in https://github.com/tspooner/rsrl/blob/master/src/

domains/mod.rs

pub trait Domain {

 type StateSpace: Space;

 type ActionSpace: Space;

 fn emit(&self) -> .. // this is for observation

 fn step(.. // given an action what should be the next state.

 fn is_terminal(&self) -> bool; // �this is to end the sequence

of action sometime.

 fn reward(.. // a reward mechanism

 fn state_space(.. // returns an instance of state space

 fn action_space(.. // �returns an instance of the action

class.

}

Coming back to Cart-pole, first we define a default (Listing 3-17).

Listing 3-17.  chapter3/rsrl_custom/src/main.rs

impl Default for CartPole {

 fn default() -> CartPole { CartPole::new(0.0, 0.0, 0.0, 0.0)

}

}

Chapter 3 Unsupervised and Reinforcement Learning

https://github.com/tspooner/rsrl/blob/master/src/domains/mod.rs
https://github.com/tspooner/rsrl/blob/master/src/domains/mod.rs

132

Now we should be able to implement the Domain behaviors for

Cart-pole. We first define the state space and the action space. We will

choose the state space to be a LinearSpace, which is an n dimensional

homogeneous space as defined in the spaces repo.1 The action space will

need to be an Ordinal, which is the type for defining a finite, ordinal set of

values in spaces packages (Listing 3-18).

Listing 3-18.  chapter3/rsrl_custom/src/main.rs

use rsrl::geometry::product::LinearSpace;

use rsrl::geometry::discrete::Ordinal;

impl Domain for CartPole {

 type StateSpace = LinearSpace<Interval>;

 type ActionSpace = Ordinal;

Emit is simple. If it’s the last state, then we define it as terminal or else

we define it as full (Listing 3-19).

Listing 3-19.  chapter3/rsrl_custom/src/main.rs

impl Domain for CartPole {

 // code ..

 fn emit(&self) -> Observation<Vector<f64>> {

 if self.is_terminal() {

 Observation::Terminal(self.state.clone())

 } else {

 Observation::Full(self.state.clone())

 }

 }

1�https://github.com/tspooner/spaces.

Chapter 3 Unsupervised and Reinforcement Learning

https://github.com/tspooner/spaces

133

 fn is_terminal(&self) -> bool {

 let x = self.state[StateIndex::X];

 let theta = self.state[StateIndex::THETA];

 x <= LIMITS_X.0

 || x >= LIMITS_X.1

 || theta <= LIMITS_THETA.0

 || theta >= LIMITS_THETA.1

 }

Now we will need to implement behaviors for reward and state_

space. The reward behavior will be the final or terminal reward when the

observation is the final observation in the space of possible observations.

For other sets of observations, the reward should be the reward step

(Listing 3-20).

Listing 3-20.  chapter3/rsrl_custom/src/main.rs

impl Domain for CartPole {

 // previous method definitions

 �fn reward(&self, _: &Observation<Vector<f64>>, to:

&Observation<Vector<f64>>) -> f64 {

 match *to {

 Observation::Terminal(_) => REWARD_TERMINAL,

 _ => REWARD_STEP,

 }

 }

 // remaining methods.

A state space behavior is within the range of the possible behaviors that

our agent can have or, in other words, the constraints that our environment

will have on any agent. Since in our case we are trying to model a Cart-pole,

Chapter 3 Unsupervised and Reinforcement Learning

134

the state space will be a combination of the empty space and bounded

values for position x, velocity dx, angle θ , and angular velocity dθ as defined

previously (Listing 3-21).

Listing 3-21.  chapter3/rsrl_custom/src/main.rs

impl Domain for CartPole {

 // previous method definitions ...

 fn state_space(&self) -> Self::StateSpace {

 �LinearSpace::empty() + Interval::bounded(LIMITS_X.0,

LIMITS_X.1)

 + Interval::bounded(LIMITS_DX.0, LIMITS_DX.1)

 + Interval::bounded(LIMITS_THETA.0, LIMITS_THETA.1)

 + Interval::bounded(LIMITS_DTHETA.0, LIMITS_DTHETA.1)

 }

 // remaining methods ...

And the action space will be just the value 2 signifying that some

dimension of the state space will be changed by 2 on application of action, and

that is the only possible difference in any two successive states (Listing 3-22).

Listing 3-22.  chapter3/rsrl_custom/src/main.rs

impl Domain for CartPole {

 // previous method definitions ...

 fn action_space(&self) -> Ordinal { Ordinal::new(2) }

}

Currently there are different reinforcement algorithms that can be

used to train the environment. We have the actor critic system, doing

this using Q-learning, with some variants. In the example, we have used

the actor critic system. In this, there are essentially two systems that

Chapter 3 Unsupervised and Reinforcement Learning

135

need to be trained. One is the critic that measures how good the action

taken is and the actor that controls how the agent behaves. So, we will

need to first define the agent and the critic. To define both the agent

and the critic, we will first define a policy. A policy is what the agent

will need to do to accomplish the task at hand. Keep in mind that the

goal of reinforcement learning is to arrive at the optimal policy, and

hence it is quite important that the policy is chosen carefully. In this

case we can define the policy to be a Gibbs kernel sampler of a vector

composed of linear function approximators from the LFA library.2

The LFA library provides the type LFA, which is a framework for linear

function approximation with gradient descent. The advantage of using a

linear function of features in the policy is that now we can approximate

the Q-function using SARSA[0] and assign it to be the critic. Further. the

agent will be derived as an A2C type from both the critic and the policy

(Listing 3-23).

Listing 3-23.  chapter3/rsrl_custom/src/main.rs

use rsrl::fa::fixed::Fourier;

use rsrl::fa::LFA;

use rsrl::policies::parameterised::Gibbs;

use rsrl::control::td::SARSA;

use rsrl::control::actor_critic::A2C;

fn main() {

 let domain = CartPole::default();

 let n_actions = domain.action_space().card().into();

 let bases = Fourier::from_space(

 3, domain.state_space()).with_constant();

2�https://github.com/tspooner/lfa.

Chapter 3 Unsupervised and Reinforcement Learning

https://github.com/tspooner/lfa

136

 let policy = make_shared({

 let fa = LFA::vector(bases.clone(), n_actions);

 Gibbs::new(fa)

 });

 let critic = {

 let q_func = LFA::vector(bases, n_actions);

 SARSA::new(q_func, policy.clone(), 0.1, 0.99)

 };

 let mut agent = A2C::new(critic, policy, 0.01);

 // rest of the code ..

Once they are created, we can go ahead and train the system to find

the optimal policy. In this case we can go through 1,000 episodes to get the

optimal policy (Listing 3-24).

Listing 3-24.  chapter3/rsrl_custom/src/main.rs

fn main() {

 // previous code ...

 let logger = logging::root(logging::stdout());

 let domain_builder = Box::new(CartPole::default);

 let _training_result = {

 �let e = SerialExperiment::new(&mut agent, domain_builder.

clone(), 1000);

 run(e, 1000, Some(logger.clone()))

 };

 let testing_result = Evaluation::new(

 &mut agent, domain_builder).next().unwrap();

 info!(logger, "solution"; testing_result);

}

Chapter 3 Unsupervised and Reinforcement Learning

137

Running this would return the number of steps that are required and

the optimal policy. Since the testing_result is a result of the Evaluation

type, we would need the logger to print it out.

3.7  �Conclusion
In this chapter we explored unsupervised learning and reinforcement

learning. In unsupervised learning, we looked at how to implement

K-means, Gaussian mixture models, and DBSCAN for clustering and PCA

for dimensionality reduction using rusty_machine using a dataset without

labels. Then we looked at evaluation clustering models using two popular

methods: the Rand index and the Jaccard index. The basic methods of

implementing other evaluation criteria would be similar.

Last, we explored reinforcement learning and how to implement a

custom model using it in rsrl.

In the next chapter we will be moving away from models and focusing

on another important dimension of machine learning, which is how to

work with common data formats and transformation techniques. We

will also learn how to create structured data if the data available is not

structured at all.

3.8  �Bibliography

	 [1]	 Zoubin Ghahramani. Unsupervised Learning.

http://mlg.eng.cam.ac.uk/pub/pdf/Gha03a.pdf.

2004.

	 [2]	 David Arthur and Sergei Vassilvitskii. k-means++:

The Advantages of Careful Seeding. http://ilpubs.

stanford.edu:8090/778/1/2006-13.pdf. 2006.

Chapter 3 Unsupervised and Reinforcement Learning

http://mlg.eng.cam.ac.uk/pub/pdf/Gha03a.pdf
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf
http://ilpubs.stanford.edu:8090/778/1/2006-13.pdf

138

	 [3]	 Jake VanderPlas. “Python DataScience Handbook.

Essential tools for working with data.” In: O’Reilly

Media, 2016. Chap. In Depth: Gaussian Mixture

Models.

	 [4]	 Jugurta Montalv ao Janio Canuto, ed. CONTOUR

LEVEL ESTIMATION FROM GAUSSIAN MIXTURE

MODELSAPPLIED TO NONLINEAR BSS (Brazil).

Universidade Federal de Sergipe (UFS)N ucleo de

Engenharia El etricaS ao Crist ov ao, 2008.

	 [5]	 The EM Algorithm for Gaussian Mixtures. https://

www.ics.uci.edu/~smyth/courses/cs274/notes/

EMnotes.pdf.

	 [6]	 T. Soni Madhulatha. An Overview on Clustering

Methods. https://arxiv.org/abs/1205.1117. 2012.

	 [7]	 Joydeep Bhattacharjee. Dimensionality Reduction

and Principal Component Analysis - I. https://

medium.com/technology-nineleaps/dimensional-

reduction-and-principal-component-analysis-

i-8ce60a5ed2c2. 2017.

	 [8]	 Badreesh Shetty. Curse of Dimensionality.

https://towardsdatascience.com/curse-of-

dimensionality-2092410f3d27. 2019.

	 [9]	 Hastie and Tibshirani. Gaussian Mixture Models.

http://statweb.stanford.edu/~tibs/stat315a/

LECTURES/em.pdf. 2008.

	[10]	 Lars Kai Hansen Rasmus Elsborg Madsen and Ole

Winther. http://www2.imm.dtu.dk/pubdb/views/

edoc_download.php/4000/pdf/imm4000.

Chapter 3 Unsupervised and Reinforcement Learning

https://www.ics.uci.edu/~smyth/courses/cs274/notes/EMnotes.pdf
https://www.ics.uci.edu/~smyth/courses/cs274/notes/EMnotes.pdf
https://www.ics.uci.edu/~smyth/courses/cs274/notes/EMnotes.pdf
https://arxiv.org/abs/1205.1117
https://medium.com/technology-nineleaps/dimensional-reduction-and-principal-component-analysis-i-8ce60a5ed2c2
https://medium.com/technology-nineleaps/dimensional-reduction-and-principal-component-analysis-i-8ce60a5ed2c2
https://medium.com/technology-nineleaps/dimensional-reduction-and-principal-component-analysis-i-8ce60a5ed2c2
https://medium.com/technology-nineleaps/dimensional-reduction-and-principal-component-analysis-i-8ce60a5ed2c2
https://towardsdatascience.com/curse-of-dimensionality-2092410f3d27
https://towardsdatascience.com/curse-of-dimensionality-2092410f3d27
http://statweb.stanford.edu/~tibs/stat315a/LECTURES/em.pdf
http://statweb.stanford.edu/~tibs/stat315a/LECTURES/em.pdf
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4000/pdf/imm4000
http://www2.imm.dtu.dk/pubdb/views/edoc_download.php/4000/pdf/imm4000

139

	[11]	 Yong-Yeol Ahn Alexander J. Gates. The Impact of

Random Models on Clustering Similarity. http://

www.jmlr.org/papers/volume18/17-039/17-039.

pdf. 2017.

	[12]	 David Poole and Alan Mackworth. SARSA with

Linear Function Approximation. https://artint.

info/html/ArtInt_272.html. 2010.

Chapter 3 Unsupervised and Reinforcement Learning

http://www.jmlr.org/papers/volume18/17-039/17-039.pdf
http://www.jmlr.org/papers/volume18/17-039/17-039.pdf
http://www.jmlr.org/papers/volume18/17-039/17-039.pdf
https://artint.info/html/ArtInt_272.html
https://artint.info/html/ArtInt_272.html

141© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_4

CHAPTER 4

Working with Data
Machine learning applications run on data. One of the main activities

when building a machine learning application is to collate from different

data sources, store in an effective format, and transform of raw data into

formats that are appropriate for the machine learning app. Data can come

in different formats. In the previous chapters, we mainly worked with CSV

files. CSV files are great for storing and retrieving information. There is the

added advantage that data paradigms in the CSV translate quite well to

matrix formats where most of the calculations happen. But in reality, when

working on actual data, we seldom find that the data is presented in a nice

CSV format. In this chapter we will explore the different types of popular

paradigms to store and retrieve information and see how we can leverage

them to extract, process, and store data.

4.1  �JSON
JSON stands for JavaScript Object Notation. It is a very common format

used for asynchronous browser-server communication; and hence, a lot of

time the data from some web process would be stored directly in the JSON

format. Many developers consider JSON to be the default serialization-

deserialization data structure for the web, the result being that many web

apis publish their data in the JSON format. In this section we will see how

we can work with JSON data.

142

Serde and related crates are great for serialization and deserialization

of different types of data formats. For JSON we have the serde_json.

To have a look at how to work with JSON data structure and create

code for parsing JSON objects to Rust data types, let us create a package

named data_formats (Listing 4-1).

Listing 4-1.  bin package creation for data_formats

$ cd chapter4 && cargo new data_formats –bin

Now inside the folder data_formats, open the Cargo.toml file and

update the contents with the dependencies shown in Listing 4-2. As we

have seen before serde and serde-derive is for the data management and

the serde_json will be for parsing the json files.

Listing 4-2.  chapter4/working_with_data/data_formats/Cargo.toml

[package]

name = "data_formats"

version = "0.1.0"

edition = "2018"

[dependencies]

serde = "1.0.90"

serde_derive = "1.0.90"

serde_json = "1.0"

Now we should be able to read an arbitrary JSON string and get the

structure of the JSON. This is enabled by the serde_json::Value ENUM

(Listing 4-3).

Chapter 4 Working with Data

143

Listing 4-3.  chapter4/working_with_data/data_formats/src/

jsonreading.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 let json_str = r#"{

 "FirstName": "John",

 "LastName": "Doe",

 "Age": 43,

 "Address": {

 "Street": "Downing Street 10",

 "City": "London",

 "Country": "Great Britain"

 },

 "PhoneNumbers": [

 "+44 1234567",

 "+44 2345678"

]

 }"#;

 let person: serde_json::Value = serde_json::from_str(json_str)

 .expect("JSON was not well-formatted");

 let address = person.get("Address").unwrap();

 println!("{:?}", address.get("City").unwrap());

}

To be able to run the code, we will need to call the function in the

main function. Similar to other packages that we have seen so far, we can

define the main.rs file containing the main method, which will only parse

the incoming arguments. If the incoming argument is json, then we will

pass the control to the run function in the jsonreading module. For that,

ofcourse, we will need to expose the jsonreading module using the mod

keyword (Listing 4-4).

Chapter 4 Working with Data

144

Listing 4-4.  chapter4/working_with_data/data_formats/src/main.rs

#[macro_use]

extern crate serde_derive;

extern crate serde;

extern crate serde_json;

extern crate serde_xml_rs;

use std::vec::Vec;

use std::process::exit;

use std::env::args;

mod jsonreading;

mod xmlreading;

mod csvreading;

fn main() {

 let args: Vec<String> = args().collect();

 let model = if args.len() < 2 {

 None

 } else {

 Some(args[1].as_str())

 };

 let res = match model {

 None => {println!("nothing",); Ok(())},

 Some("json") => jsonreading::run(),

 };

 // �Putting the main code in another function serves two

purposes:

 // 1.We can use the ‘?’ operator.

 // 2.�We can call exit safely, which does not run any

destructors.

 exit(match res {

Chapter 4 Working with Data

145

 Ok(_) => 0 ,

 Err(e) => {

 println!("{}", e);

 1

 }

 })

}

Now that we have the constructs in place, we can run the package and

get the output (Listing 4-5).

Listing 4-5.  chapter4/working_with_data/data_formats/src/

jsonreading.rs

$ cargo run json

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

 Running 'target/debug/data_formats json'

String("London")

Although the code in Listing 4-3 works, the disadvantage is that we

are not leveraging the strongly typed ability of Rust. Using strongly typed

data structures is great because you would want the program to fail when

the incoming data format has changed, which they do a lot, and you want

that information fast. You don’t want corrupted data to pass through

unhindered and pollute your machine learning applications downstream.

So what we will do is put in a strongly typed structure and deserialize

based on that structure. Thus, we get the added benefit of data validation

as well.

As an example, we will move to a little bit more complicated json file

that is a dataset of Nobel Prizes in different domains.1 To parse the dataset,

we will create what is essentially a hierarchy of structs (Listing 4-6).

1�Download prizes data-set http://api.nobelprize.org/v1/prize.json.

Chapter 4 Working with Data

http://api.nobelprize.org/v1/prize.json

146

Listing 4-6.  chapter4/working_with_data/data_formats/src/

jsonreading.rs

#[derive(Debug, Serialize, Deserialize)]

struct Prizes {

 prizes: Vec<Prize>,

}

#[derive(Debug, Serialize, Deserialize)]

#[allow(non_snake_case)]

struct Prize {

 category: String,

 #[serde(default)]

 overallMotivation: Option<String>,

 laureates: Vec<NobelLaureate>,

 #[serde(deserialize_with = "de_u16_from_str")]

 year: u16,

}

#[derive(Debug, Serialize, Deserialize)]

struct NobelLaureate {

 share: String,

 #[serde(default)]

 motivation: Option<String>,

 surname: String,

 #[serde(deserialize_with = "de_u16_from_str")]

 id: u16,

 firstname: String,

}

So the top-level field is prizes, which is a list of Prizes, which

has categories, overallMotivation and year as single attributes

and laureates as a list of laureates; laureates have share,

Chapter 4 Working with Data

147

motivation, surname, id, and firstname as attributes. Motivation and

overallMotivation may not be present. Hence we can keep them as

optional by telling serde to give default values, which in this case will be

None. Since year and id are numbers, we will try to modify them to u16 and

write a simple helper function de_u16_from_str to do the transformation

from string to u16. By default the serde deserializer only supports

conversion to string (Listing 4-7).

Listing 4-7.  chapter4/working_with_data/data_formats/src/

jsonreading.rs

fn de_u16_from_str<'a, D>(deserializer: D)

 -> Result<u16, D::Error>

 where D: Deserializer<'a>

{

 let s = String::deserialize(deserializer)?;

 u16::from_str(&s).map_err(de::Error::custom)

}

In Listing 4-7, deserializer is something that implements Serde’s

deserializer trait, and any reference to this object in memory would live

for the ’a lifetime. Once the specific string object is obtained from the

deserializer, we parse it to get the u16 object using u16::from_str function

and then return it. If there is an error, then de::Error::custom error is

raised.

Now that we are done defining the structure, serde should be able to

effortlessly read the file into the structure (Listing 4-8).

Chapter 4 Working with Data

148

Listing 4-8.  chapter4/working_with_data/data_formats/src/

jsonreading.rs

use std::fs::File;

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 println!("from prizes json file");

 let file = File::open("data/prize.json")

 .expect("file should open read only");

 let prizes_data: Prizes = serde_json::from_reader(file)

 .expect("file should be proper JSON");

 // inspect the output

 let prizes_0 = &prizes_data.prizes[0];

 println!("category: {:?}", prizes_0.category);

}

The output from Listing 4-8 run should be similar to that in Listing 4-9.

Listing 4-9.  chapter4/working_with_data/data_formats/src/

jsonreading.rs output

$ cargo run json

 Finished dev [unoptimized + debuginfo] target(s) in 0.02s

 Running `target/debug/data_formats json`

String("London")

from prizes json file

category: "physics"

If there are no errors, we are able to parse the json file without any

issues and the schema struct that has been defined is working fine.

Chapter 4 Working with Data

149

4.2  �XML
The other popular data format is the XML data format. XML format is also

considered to be one of the open standards for communication between

apps and devices. Hence a lot of data is exposed in the XML format as

well. The working and logic of parsing the XML file works the same way as

shown in the JSON file format. We define the data in a hierarchy of structs

and then try to deserialize the data using serde. In this case, to parse an

XML file, we will use serde-xml-rs crate.

The code for parsing the XML files would be in the same binary

package data_formats, which we have created in the previous JSON

schema. This should enable us to realize that both XML and JSON, by

being in inherently hierarchical data formats, will have similar code

structures when writing the Rust parsing code. The only difference would

be in the underlying dependencies. The rest of the code in this chapter

would also embody similar motivations. Hence we will update the Cargo.

toml file in the same data_formats binary package (Listing 4-10). Note

that in addition to the crates seen before we have the serde-xml-rs crate

added for parsing the XML files.

Listing 4-10.  chapter4/working_with_data/data_formats/Cargo.toml

[dependencies]

serde = "1.0.90"

serde_derive = "1.0.90"

serde_json = "1.0"

serde-xml-rs = "0.3.1" // adding xml dependencies

We will create a Rust model of the sample_2.xml file. This file can be

found in chapter4/data/sample_2.xml. The file structure looks something

like that in Listing 4-11.

Chapter 4 Working with Data

150

Listing 4-11.  Possible file structure

project

 libraries

 library

 module

 files

 file

 libraries

 library

 module

 files

 file

Open the file and notice the above structure. So we will go ahead and

create structs that capture the above structure in the xml file (Listing 4-12).

Listing 4-12.  chapter4/working_with_data/data_formats/src/

xmlreading.rs

use serde_xml_rs;

use serde_xml_rs::from_reader;

use serde_xml_rs::Deserializer;

#[derive(Deserialize, Debug)]

struct Project {

 name: String,

 libraries: Vec<Libraries>,

 module: Vec<Module>,

}

#[derive(Deserialize, Debug)]

struct Module {

 files: Vec<Files>,

Chapter 4 Working with Data

151

 #[serde(default)]

 libraries: Vec<Libraries>,

}

#[derive(Deserialize, Debug)]

struct Files {

 file: Vec<FileName>,

}

#[derive(Deserialize, Debug)]

struct FileName {

 name: String,

 #[serde(rename = "type")]

 lang: String,

 #[serde(rename = "$value")]

 body: String,

}

#[derive(Deserialize, Debug)]

struct Libraries {

 library: Vec<Library>,

}

#[derive(Deserialize, Debug)]

struct Library {

 #[serde(rename = "groupId")]

 group_id: String,

 #[serde(rename = "artifactId")]

 artifact_id: String,

 version: String,

}

Chapter 4 Working with Data

152

On a small technicality, in the struct FileName we cannot use the at tribute
name as type and need to rename from lang to type because type is a
keyword in Rust. The other renamings are done for aesthetic reasons.
Also #[serde(rename = "$value")] helps in getting the value of
the specific field. All the other constructs should be self-explanatory as
this is similar to how deserialization happens in csv and json.

We should now be able to pass the file to the deserializer, and that

should create our project variable (Listing 4-13).

Listing 4-13.  chapter4/working_with_data/data_formats/src/

xmlreading.rs

pub fn run() -> Result<(), Box<dyn Error>> {

 let file = File::open("data/sample_2.xml").unwrap();

 let project: Project = from_reader(file).unwrap();

 println!("{:#?}", project.libraries[0].library[0]);

 Ok(())

}

Similar to what we have seen in the JSON section, we will need to add

the module in main.rs file and also add an argument so that we are able

to execute the run function in the xmlreading module. Hence, we will add

the following lines in the main method (Listing 4-14).

Listing 4-14.  chapter4/working_with_data/data_formats/src/main.rs

// previous imports

mod jsonreading;

mod xmlreading;

fn main() {

 // previous code ...

Chapter 4 Working with Data

153

 let res = match model {

 None => {println!("nothing",); Ok(())},

 Some("json") => jsonreading::run(),

 Some("xml") => xmlreading::run(),

 Some(_) => {println!(

 "only json and xml allowed right now",); Ok(())},

 };

 // remaining part of the code ...

}

Notice the advantage of the strongly typed constructs in Listing 4-12.

These is essentially free data validation: write once and all our data woes

are gone. Also, we are able to effectively navigate through the data as if they

are code. For example, something like what follows becomes possible.2

pub fn run() -> Result<(), Box<dyn Error>> {

 // previous code ...

 println!("{:#?}", project.libraries[0].library[0]);

}

The output of running the xmlreading::run function and seeing the

output of the above print statement, we should get the output shown in

Listing 4-15.

Listing 4-15.  xmlreading::run output

$ cargo run xml

 Finished dev [unoptimized + debuginfo] target(s) in 0.03s

 Running `target/debug/data_formats xml`

Library {

 group_id: "org.example",

2�The claim is not totally true for the given example. Can you figure out why?

Chapter 4 Working with Data

154

 artifact_id: "<name>",

 version: "0.1",

}

In the code that is shared with the book, the csv code is also kept for

completeness. The code can be downloaded from the website of the book

at apress.com.

4.3  �Scraping
Until now we have seen how to read csv, json, and xml file formats.

Although these data formats are quite popular to store and share

structured data, it might so happen that the data is not present in a

structured format at all, and we might need to gather the data from

different sources and collate it all together. One of the ways that can be

done is through web scraping. Web scraping is about sifting through

publicly available data on the internet and passing the data to a downward

process. To do web scraping through Rust, we will need two crates that we

will list as the dependencies, namely reqwest and scraper.

To explore the required code to perform web scraping, we will now

create another package named scraping (Listing 4-16).

Listing 4-16.  scraping package creation

$ cd chapter4 && cargo new scraping –bin

We can now update the Cargo.toml file with the reqwest and scraper

dependencies (Listing 4-17).

Listing 4-17.  chapter4/working_with_data/scraping/Cargo.toml

[package]

name = "scraping"

version = "0.1.0"

edition = "2018"

Chapter 4 Working with Data

http://apress.com

155

[dependencies]

reqwest = "0.9.15"

scraper = "0.10.0"

The package reqwest is a convenient higher-level web client, which we

will use to access the specific web pages, and scraper will be used to parse

and query the html pages using CSS selectors.

As an example, we will take the moneycontrol.com website. This

website is an Indian online business news website. The important thing

to keep in mind is that this website also publishes periodic stock prices of

different public companies listed on the BSE and NSE. BSE and NSE are

two major stock exchanges in India.

Now consider a hypothetical scenario where we are interested in

building a dataset of the timelines and the prices of a particular Indian

company, namely NTPC. NTPC is a thermal power corporation owned

by the government of India and is listed on the sensex. We can find the

current prices of the NTPC stock on the moneycontrol website in this

money control NTPC link: https://www.moneycontrol.com/india/

stockpricequote/power-generation-distribution/ntpc/NTP.

Figure 4-1.  Moneycontrol

Chapter 4 Working with Data

http://moneycontrol.com
https://www.moneycontrol.com/india/stockpricequote/power-generation-distribution/ntpc/NTP
https://www.moneycontrol.com/india/stockpricequote/power-generation-distribution/ntpc/NTP

156

As can be seen in Figure 4-1, the BSE and NSE prices are listed. To get

the data, we will need to get the response of the page. This can be done

using the reqwest apis (Listing 4-18).

Listing 4-18.  chapter4/working_with_data/scraping/src/main.rs

use reqwest;

fn main() -> Result<(), Box<std::error::Error>> {

 let mut resp = reqwest::get(

 �"https://www.moneycontrol.com/india/stockpricequote/power-

generation-distribution/ntpc/NTP")?;

 assert!(resp.status().is_success());

 // remaining code ...

}

This part of the code will store the response in the resp variable. Once

done, we will need to parse the html, select the specific target data, and

then collect it in a variable. This is shown in Listing 4-19.

Listing 4-19.  chapter4/working_with_data/scraping/src/main.rs

use scraper::{Selector, Html};

fn main() -> Result<(), Box<std::error::Error>> {

 // previous code ...

 let body = resp.text().unwrap();

 let fragment = Html::parse_document(&body);

 �let stories = Selector::parse("#Bse_Prc_tick > strong:nth-

child(1)").unwrap();

Chapter 4 Working with Data

157

 for price in fragment.select(&stories) {

 let price_txt = price.text().collect::<Vec<_>>();

 // rest of the code ...

 // remaining code ...

}

The string that goes into the Selector::parse method is the css

selector. We can get the appropriate selector using the chrome tools. Right-

click on the specific item, in this case the BSE price, and go to Inspect.

This should open up the chrome developer tools. Once the tool is opened,

copy the selector. Take a look at Figure 4-2.

Once you copy the selector, you should get the selector string, which is the

identifier for the price in the website. The app is almost complete. We can now

use the time module in standard library to get a snapshot of the time when

the price was captured, and this can then be printed out to stdout. We can

then probably run this app in a cronjob or other scheduling system. In that

way, we get a time series of the time and the price of the stock (Listing 4-20).

Figure 4-2.  Chrome Selector

Chapter 4 Working with Data

158

Listing 4-20.  chapter4/working_with_data/scraping/src/main.src

use std::time::{SystemTime, UNIX_EPOCH};

fn main() -> Result<(), Box<std::error::Error>> {

 let start = SystemTime::now();

 let since_the_epoch = start.duration_since(UNIX_EPOCH)

 .expect("Time went backwards");

 // scraping code ...

 for price in fragment.select(&stories) {

 let price_txt = price.text().collect::<Vec<_>>();

 if price_txt.len() == 1 {

 println!("{:?}", (since_the_epoch, price_txt[0]));

 }

 }

 Ok(())

}

The output of Listing 4-20 should be something like that in Listing 4-21.

Listing 4-21.  scraping output

$ cargo run

 Finished dev [unoptimized + debuginfo] target(s) in 0.60s

 Running `target/debug/scraping`

(1566103337.390445s, "1.05")

4.4  �SQL
A lot of data is present in SQL databases, and hence to run machine

learning algorithms on those data, we will need a way to talk to those

databases and aggregate data from them. In this section we will take a look

Chapter 4 Working with Data

159

at the postgres database and try to load, access, and run an SQL query on

our postgres database. For this we will use the postgres Rust crate, which as

the name suggests, is the Rust native crate for postgres. Apart from writing

native SQL queries, one other popular method of querying databases

is using ORMs. Rust also has a popular ORM crate named diesel, but

we will not look at using ORMs. This is because ORMs generally are best

suited for web applications where the types of queries that developers

do are fairly consistent and predictable. However, in machine learning

applications, we might need to write complex queries in which case,

writing queries using ORMs might become too complicated. Hence we will

stick to writing native queries in SQL.

The code for this SQL section would also be in a separate package

named databases (Listing 4-22).

Listing 4-22.  Create binary package databases

$ cd chapter4 && cargo new databases --bin

Now before writing any code, we will need a postgres database. There

are different ways to create the database. We could install postgres and

then access the db using a client. But probably a simpler way would be to

use the postgres docker. Docker is a containerization platform to package

the software along with the underlying dependencies in a docker container

so that it runs seamlessly in any environment. To be able to use docker,

we would need to have docker installed. You can have a look at the ways

of installing docker using this link: https://docs.docker.com/v17.12/

install/#supported-platforms. Once docker is installed, the command

in Listing 4-23 can be executed to have a running postgres container.

Execute the command in a separate terminal.

Chapter 4 Working with Data

https://docs.docker.com/v17.12/install/#supported-platforms
https://docs.docker.com/v17.12/install/#supported-platforms

160

Listing 4-23.  docker postgres

sudo docker run \

 --name rust-postgres \

 -e POSTGRES_PASSWORD=postgres -e POSTGRES_USER=postgres \

 -p 5432:5432 -d \

 postgres

The above command will run a postgres container with the name

rust-postgres with user postgres and password postgres. Postgres runs

on port 5432 and hence that will be mapped to the 5432 port on the host

computer. The -d command means to run this container in daemon or, in

other words, as a background process.

Now we can start updating the databases package. As an example,

we will input the data from this url: https://www.yr.no/place/India/

Karnataka/Bangalore/statistics.html. So we will create a vector of

tuples with the data in a different module, postgres_db.rs (Listing 4-24).

Listing 4-24.  chapter4/databases/src/postgres_db.rs

pub fn run() -> Result<(), Box<Error>> {

 let weathers = vec![

 ("January", 21.3, 27.3, 15.1),

 ("February", 23.6, 30.1, 17.0),

 ("March", 26.1, 32.7, 19.5),

 ("April", 28.0, 34.2, 21.8)

];

 // remaining part of the code ...

}

To feed the data, we will first need to have the postgres crate in our

dependencies (Listing 4-25).

Chapter 4 Working with Data

https://www.yr.no/place/India/Karnataka/Bangalore/statistics.html
https://www.yr.no/place/India/Karnataka/Bangalore/statistics.html

161

Listing 4-25.  chapter4/working_with_data/databases/Cargo.toml

[package]

name = "databases"

version = "0.1.0"

edition = "2018"

[dependencies]

postgres = "0.15.2"

And then we can create the connection to postgres using the

connection string, which needs to be in the format “postgresql://

user:password@uri:port/databasename”. After establishing the

connection, we will create the table (Listing 4-26).

Listing 4-26.  chapter4/databases/src/postgres_db.rs

use postgres;

use postgres::{Connection, TlsMode}; // all the dependencies

pub fn run() -> Result<(), Box<Error>> {

 let conn = Connection::connect(

 "postgresql://postgres:postgres@localhost:5432/postgres",

 TlsMode::None)?; // create the connection

 conn.execute("CREATE TABLE IF NOT EXISTS weather (

 id SERIAL PRIMARY KEY,

 month VARCHAR NOT NULL,

 normal DOUBLE PRECISION NOT NULL,

 warmest DOUBLE PRECISION NOT NULL,

 coldest DOUBLE PRECISION NOT NULL

)", &[])?; // create the table

 // remaining code ...

}

Chapter 4 Working with Data

162

The next part of the code (Listing 4-27) will be to insert the data from

the vector to the table.

Listing 4-27.  chapter4/databases/src/postgres_db.rs

pub fn run() -> Result<(), Box<Error>> {

 // previous code ...

 for weather in &weathers {

 conn.execute("INSERT INTO weather \

 (month, normal, warmest, coldest) \

 VALUES ($1, $2, $3, $4)",

 &[&weather.0, &weather.1, &weather.2, &weather.3])?;

 }

 // remaining code ...

}

In this example, too, we are clubbing sections such as SQL and NoSQL

sections so that similar code functions can be compared with each other

similar to what we have seen in JSON and XML sections. Hence similar to

the previous sections, we will need the main method where we will expose

the postgres_db module and execute the run function (Listing 4-28).

Listing 4-28.  chapter4/databases/src/main.rs

use std::vec::Vec;

use std::process::exit;

use std::env::args;

mod postgres_db;

fn main() {

 let args: Vec<String> = args().collect();

 let model = if args.len() < 2 {

Chapter 4 Working with Data

163

 None

 } else {

 Some(args[1].as_str())

 };

 let res = match model {

 None => {println!("nothing",); Ok(())},

 Some("postgres") => postgres_db::run(),

 Some(_) =>

 println!("Only postgres allowed for now.",);

 ok(())} ,

 };

 exit(match res {

 Ok(_) => 0,

 Err(e) => {

 println!("{}", e);

 1

 }

 })

}

We should now be able to create the table by executing the relevant

table creation SQL query by running the command cargo run postgres.

Retrieving the data from the database can now be done. Just executing

the code written until now should have the data in the database. In a

separate terminal, open the database and run a select query (Listing 4-29).

Listing 4-29.  postgres queries

$ sudo docker exec -it rust-postgres psql --username postgres

psql (11.2 (Debian 11.2-1.pgdg90+1))

Type "help" for help.

Chapter 4 Working with Data

164

postgres=# \dt;

 List of relations

 Schema | Name | Type | Owner

--------+---------+-------+----------

 public | weather | table | postgres

(1 row)

postgres=# select ∗ from weather;
 id | month | normal | warmest | coldest

----+-----------+--------+---------+---------

 1 | January | 21.3 | 27.3 | 15.1

 2 | February | 23.6 | 30.1 | 17

 .. and the remaining data

(12 rows)

To retrieve the values from the database, we can create a struct that has

the data structure (Listing 4-30).

Listing 4-30.  chapter4/databases/src/postgres_db.rs

#[derive(Debug)]

struct Weather {

 id: i32, month: String,

 normal: f64, warmest: f64,

 coldest: f64

}

We can now use this struct to hold the data that we retrieve using

select query from the database and then use it for various purposes

(Listing 4-31).

Chapter 4 Working with Data

165

Listing 4-31.  chapter4/databases/src/postgres_db.rs

pub fn run() -> Result<(), Box<Error>> {

 // previous code ...

 for row in &conn.query(

 "SELECT id, month, normal, warmest, coldest \

 FROM weather", &[])? {

 let weather = Weather {

 id: row.get(0),

 month: row.get(1),

 normal: row.get(2),

 warmest: row.get(3),

 coldest: row.get(4)

 };

 println!("{:?}", weather);

 }

 // remaining code ...

}

We should see all the values printed in the console when we do a cargo

run on the package root.3

To complete this section on SQL, we will perform an average of the

warmest column to find the warmest of the temperatures in Bangalore.

The main advantage of SQL in datascience is that it allows us to not pull

the data to the code but take the code to the data. This can be done by

writing the business logic as SQL queries and sending the queries to the

database to be executed there (Listing 4-32).

3�Just to remind readers, package root is the directory where the Cargo.toml file
resides.

Chapter 4 Working with Data

166

Listing 4-32.  chapter4/databases/src/postgres_db.rs

pub fn run() -> Result<(), Box<Error>> {

 // previous code ...

 for row in &conn.query(

 "SELECT AVG(warmest) FROM weather;", &[])? {

 let x: f64 = row.get(0);

 println!("{:?}", x); // output 31.075 for the data input here.

 }

}

4.5  �NoSQL
Although SQL databases are quite popular, the main drawback of SQL is

that they are difficult to scale. Queries rely on the indexes to understand

the relationships between different tables. Hence every time tables are

updated, everything needs to be recomputed again. This puts a real

bottleneck on the amount of updating you can do on a database. If the

target is a fast-growing data sink, an SQL database might not be able to

work. As a solution for this, NoSQL came into the picture. Although NoSQL

databases are of different types, in this section we will take a look at Neo4J,

which comes under the class of graph databases.

In Graph databases, nodes and edges are created, which result in

finding interesting relationships between data. These nodes and edges

are defined in namespaces. To understand how that works, we will take

the movie-lens dataset4 and create relationships from them. Download

the ml-latest-small.zip file and unzip it in the directory. For the code

in this section, we will need to expose the files through http and we

can do it using a handy python command. Open a terminal, cd to the

4�https://grouplens.org/datasets/movielens/.

Chapter 4 Working with Data

https://grouplens.org/datasets/movielens/

167

ml-latest-small directory, and run the command shown in Listing 4-33.

This is so that neo4j, which will be started in a docker comtainer, is able

to pick up the files. As you hopefullyunderstand, this command relies

on python3 being installed in the computer. Another simple means of

creating a simple http server is using an npm http-server5 as well. Please

note to expose it on port 8000. The command should be run inside the

folder where the movie-lens directory is.

Listing 4-33.  Bash

$ python3 -m http.server

Serving HTTP on 0.0.0.0 port 8000 (http://0.0.0.0:8000/) ...

To start the neo4j database, we run the below docker command in a

terminal (Listing 4-34). This should start the latest neo4j container.

Listing 4-34.  Bash

sudo docker run \

 --name rust-neo4j \

 --rm --env=NEO4J_AUTH=none \

 --publish=7474:7474 \

 --publish=7687:7687 \

 --volume=$HOME/neo4j/data:/data neo4j:3.5.8

We will now add the ability to talk to neo4j to the databases

package. We will need to add a rusted-cypher crate in the

dependencies (Listing 4-35).

5�https://stackoverflow.com/questions/16333790/node-js-quick-file-
server-static-files-over-http.

Chapter 4 Working with Data

https://stackoverflow.com/questions/16333790/node-js-quick-file-server-static-files-over-http
https://stackoverflow.com/questions/16333790/node-js-quick-file-server-static-files-over-http

168

Listing 4-35.  chapter4/databases/Cargo.toml

[package]

name = "databases"

version = "0.1.0"

edition = "2018"

[dependencies]

postgres = "0.15.2"

rusted_cypher = "1.1.0" // adding the neo4j dependency

We should now be able to connect to the database in our code. Similar

to what is seen in the SQL section, the connection string needs to be

passed, which is of the format http://username:password@uri:port/db/

data. In our case we have the neo4j started without authentication and

hence will not need the username and password (Listing 4-36).

Listing 4-36.  chapter4/databases/src/neo4j_db.rs

use rusted_cypher;

use rusted_cypher::{GraphClient, Statement, GraphError};

use std::iter::repeat;

fn main() -> Result<(), Box<GraphError>> {

 let graph = GraphClient::connect(

 "http://localhost:7474/db/data")?;

 // rest of the code..

To load the movie data, we will first need to have the namespaces

(Listing 4-37).

Listing 4-37.  chapter4/databases/src/neo4j_db.rs

fn main() -> Result<(), Box<GraphError>> {

 // previous code ...

 let mut query = graph.query();

Chapter 4 Working with Data

169

 let statement1 = Statement::new(

 "CREATE CONSTRAINT ON (m:Movie) ASSERT m.id IS UNIQUE;");

 let statement2 = Statement::new(

 " CREATE CONSTRAINT ON (u:User) ASSERT u.id IS UNIQUE;"

);

 let statement3 = Statement::new(

 " CREATE CONSTRAINT ON (g:Genre) ASSERT g.name IS UNIQUE;"

);

 query.add_statement(statement1);

 query.add_statement(statement2);

 query.add_statement(statement3);

 query.send()?;

 // remaining code ...

}

This should create the namespaces. Now we should be able to pull the

data from the files (Listing 4-38).

Listing 4-38.  chapter4/databases/src/neo4j_db.rs

fn main() -> Result<(), Box<GraphError>> {

 // import movies.csv

 graph.exec(

 "USING PERIODIC COMMIT LOAD CSV WITH HEADERS \

 FROM \"http://10.0.1.43:8000/movies.csv\" AS line \

 WITH line, SPLIT(line.genres, \"|\") AS Genres \

 �CREATE (m:Movie { id: TOINTEGER(line.`movieId`), title:

line.`title` }) \

 WITH Genres \

 UNWIND RANGE(0, SIZE(Genres)-1) as i \

Chapter 4 Working with Data

170

 MERGE (g:Genre {name: UPPER(Genres[i])}) \

 CREATE (m)-[r:GENRE {position:i+1}]->(g);"

)?;

 // import ratings.csv

 graph.exec(

 " USING PERIODIC COMMIT LOAD CSV WITH HEADERS \

 FROM \"http://10.0.1.43:8000/ratings.csv\" AS line \

 WITH line \

 MATCH (m:Movie { id: TOINTEGER(line.`movieId`) }) \

 MATCH (u:User { id: TOINTEGER(line.`userId`) }) \

 CREATE (u)-[r:RATING {rating: TOFLOAT(line.`rating`)}]->(m);"

)?;

 // import tags

 graph.exec(

 " USING PERIODIC COMMIT LOAD CSV WITH HEADERS \

 FROM \"http://10.0.1.43:8000/tags.csv\" AS line \

 WITH line \

 MATCH (m:Movie { id: TOINTEGER(line.`movieId`) }) \

 MERGE (u:User { id: TOINTEGER(line.`userId`) }) \

 CREATE (u)-[r:TAG {tag: line.`tag`}]->(m);"

)?;

 // remaining code ...

}

The 10.0.1.43 ip that is used to get the data is the ip address of the

machine, and in your case this ip would be different. In ubuntu the ip

address can be seen by running the command hostname -I. In Mac the

corresponding command is ipconfig getifaddr en0. Similar commands

can be retrieved for other OS’s.

Chapter 4 Working with Data

171

The code until now should have the data in the database, and we

should be able to see the graph in the neo4j console. For movies, this might

be something similar to what is shown in Figure 4-3.

Figure 4-3.  Movie nodes

To retrieve the data from the graph database or run queries, we can just

pass the cypher queries that work in the console to the graph.exec method,

and that should return the relevant results (Listing 4-39).

Listing 4-39.  chapter4/databases/src/neo4j_db.rs

pub fn run() -> Result<(), Box<Error>> {

 // previous code ...

 let result = graph.exec(

 "MATCH (u:User {id: 119}) RETURN u.id")?;

Chapter 4 Working with Data

172

 for row in result.rows() {

 let id: u16 = row.get("u.id")?;

 println!("user id: {}", id);

 }

 // remaining code ...

}

The data can then be augmented using relational learning on the

graphs [1].

4.6  �Data on s3
Machine learning models, especially deep learning models, need a huge

amount of data to be able to effectively train and create models that have

usable levels of accuracy. Storing that amount of data might be a challenge

as it we might need to have terabytes of disk space with us or invest

resources in procuring and setting up that much space. Cloud storage

solutions allow us to circumvent this problem. Various cloud providers

such as Amazon and Azure have low-cost storage solutions that promise to

store and manage our data on the internet either publicly or privately.

Amazon S3 is one of the most popular solutions in this regard. To

perform S3 operations from rust, a popular crate is rusoto.6 Rusoto is an

integrated project that has a crate for each AWS service. To use S3, we will

use the rusoto-s3 crate.

To explore with the code working with Amazon S3, we will create a

binary package s3_files (Listing 4-40).

Listing 4-40.  create binary package s3_files

$ cd chapter4 && cargo new s3_files --bin

6�github source code https://github.com/rusoto/rusoto.

Chapter 4 Working with Data

http://github.com/rusoto/rusoto

173

The folder s3_files should be created now with the files src/main.rs

and Cargo.toml inside it. We can now add the S3 dependencies (rusoto_s3

and rusoto_core crates), to the toml file (Listing 4-41). We also have

some additional crates such as env_logger that provides good logging

configuration management, futures and futures-fs which gives good types

for efficient file management. We have also seen the rustlearn crate, rand

crate, csv crate and ml-utils crate before.

Listing 4-41.  chapter4/s3_files/Cargo.toml

[package]

name = "s3_files"

version = "0.1.0"

edition = "2018"

[dependencies]

rusoto_s3 = "0.38.0"

rusoto_core = "0.38.0"

env_logger = "0.6.1"

futures = "0.1.26"

futures-fs = "0.0.5"

rand = "0.6.5"

csv = "1.0.7"

ml-utils = { path = "../../ml-utils" }

rustlearn = "0.5.0"

Now we should be able to write a function that takes the client, bucket,

and filename and places it in S3 (Listing 4-42).

Listing 4-42.  chapter4/s3_files/src/main.rs

use futures::{Future, Stream};

use rusoto_core;

use rusoto_core::credential::{

 AwsCredentials, DefaultCredentialsProvider};

Chapter 4 Working with Data

174

use rusoto_core::{Region, ProvideAwsCredentials, RusotoError};

use rusoto_s3::{

 CreateBucketRequest, DeleteBucketRequest,

 DeleteObjectRequest, GetObjectRequest, ListObjectsV2Request,

 PutObjectRequest, S3Client, S3,

};

fn push_file_to_s3(

 client: &S3Client, bucket: &str,

 dest_filename: &str, local_filename: &str,

) {

 let mut f = File::open(local_filename).unwrap();

 let mut contents: Vec<u8> = Vec::new();

 match f.read_to_end(&mut contents) {

 �Err(why) => panic!("Error opening file to send to S3: {}",

why),

 Ok(_) => {

 let req = PutObjectRequest {

 bucket: bucket.to_owned(),

 key: dest_filename.to_owned(),

 body: Some(contents.into()),

 ..Default::default()

 };

 client.put_object(req).sync().expect("Couldn't PUT object");

 }

 }

}

The function in Listing 4-42 takes a file, denoted by local_filename,

and places it in S3 where dest_filename is the key. To be able to run this

function, we will need an S3 client (Listing 4-43).

Chapter 4 Working with Data

175

Listing 4-43.  chapter4/s3_files/src/main.rs

use std::env;

use std::fs::File;

use std::io::Read;

use std::str;

use std::vec::Vec;

use std::error::Error;

use env_logger;

use rusoto_core::{Region, ProvideAwsCredentials, RusotoError};

fn main() -> Result<(), Box<Error>> {

 let _ = env_logger::try_init();

 let region = if let Ok(endpoint) = env::var("S3_ENDPOINT") {

 let region = Region::Custom {

 // name: "us-east-1".to_owned(),

 name: "ap-south-1".to_owned(),

 endpoint: endpoint.to_owned(),

 };

 println!(

 �"picked up non-standard endpoint {:?} from S3_ENDPOINT

env. variable",

 region

);

 region

 } else {

 // Region::UsEast1

 Region::ApSouth1

 };

 let credentials = DefaultCredentialsProvider::new()

 .unwrap().credentials()

 .wait().unwrap();

Chapter 4 Working with Data

176

 let client = S3Client::new(region.clone());

 // rest of the code...

Now we should be able to pass the client to the push_file_to_s3

function (Listing 4-44).

Listing 4-44.  chapter4/s3_files/src/main.rs

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 let s3_bucket = format!("rust-ml-bucket");

 let filename = format!("iris.csv");

 push_file_to_s3(

 &client, &s3_bucket, &filename, "data/iris.csv");

 // remaining code ...

}

Running the code until now should push the file to the s3 bucket

and we should see the file in s3 through the console or through the aws

command line (Listing 4-45).7

Listing 4-45.  Bash

$ aws s3 ls s3://rust-ml-bucket/

2019-04-21 09:28:06 3858 iris.csv

Now that the file is in S3, we should be able to pull the file from S3. So

we create a GetObjectRequest, which the client can use to pull the data

from S3. The data would be a vector of u8 characters, which we can then

transform to string. Once the string is formed correctly, we can then return

the string. See Listing 4-46.

7�Install aws command line using the official documentation https://docs.aws.
amazon.com/cli/latest/userguide/cli-chap-install.html.

Chapter 4 Working with Data

https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html
https://docs.aws.amazon.com/cli/latest/userguide/cli-chap-install.html

177

Listing 4-46.  chapter4/s3_files/src/main.rs

use rusoto_s3::GetObjectRequest;

fn pull_object_from_s3(client: &S3Client,

 bucket: &str,

 filename: &str) -> Result<String,

 Box<Error>> {

 let get_req = GetObjectRequest {

 bucket: bucket.to_owned(),

 key: filename.to_owned(),

 ..Default::default()

 };

 let result = client

 .get_object(get_req).sync()

 .expect("Couldn't GET object");

 println!("get object result: {:#?}", result);

 let stream = result.body.unwrap();

 let body = stream.concat2().wait().unwrap();

 Ok(str::from_utf8(&body).unwrap().to_owned())

}

We should now be able to pull the csv file from s3 and load into an array

if Flower struct, similar to what we have seen in Chapter2 (Listing 4-47).

Listing 4-47.  chapter4/s3_files/src/main.rs

use csv;

use ml_utils::datasets::Flower;

fn main() -> Result<(), Box<Error>> {

 // previous code ...

Chapter 4 Working with Data

178

 �let data = pull_object_from_s3(&client, &s3_bucket,

&filename)?;

 let mut rdr = csv::Reader::from_reader(data.as_bytes());

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: Flower = result?;

 data.push(r);

 }

 // any of the machine learning code

 // that we have seen in chapter 2.

}

Now we should be able to put in any machine learning construct with

any machine learning algorithm that we have seen in Chapter2. Apart from

these, we can use other constructs in our s3 apps. Examples of creating

these functions can be seen in the rusoto github repository.

4.7  �Data Transformations
Writing data transformation code is quite intuitive in Rust as this

would generally involve writing structs for the data constructs and then

implementing methods for those constructs. We have created similar

methods in Chapter 2 for different structs such as the Flower stuct and the

BostonHousing struct. Moreover, we have seen how to deserialize from

different data stores to structs, shown at the beginning of this chapter.

Although this works even for large datasets, if the dataset is huge it may be

difficult for the developer to write efficient structs for them.

Chapter 4 Working with Data

179

Outside of the Rust ecosystem, we have the Apache Arrow ecosystem,8

which is specifically based on the columnar data memory layout system for

data, which allows data access in O(1) time. Rust developers are able to take

advantage of the developments in the arrow ecosystem using the datafusion

crate. Using datafusion, we can write SQL queries to perform transformations

on the data. The disadvantage is that as of this writing, the datafusion library

still needs a lot of functionality to be useful in a major application.

To get a basic understanding of using datafusion for parsing through

datasets, we will use the titanic dataset. We can download the dataset from

the kaggle website: https://www.kaggle.com/c/titanic.

We will now create the data_transformations_datafusion package

using cargo (Listing 4-48).

Listing 4-48.  Create binary package data_transformations_

datafusion

$ cd chapter4 && cargo new data_transformations_datafusion --bin

This would create the src/main.rs and Cargo.toml files. We will add the

datafusion and arrow dependencies in Cargo.toml (Listing 4-49).

Listing 4-49.  chapter4/data_transformations_datafusion/Cargo.toml

[package]

name = "data_transformations_datafusion"

version = "0.1.0"

edition = "2018"

[dependencies]

datafusion = "0.13.0"

arrow = "0.13.0"

8�https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-
fast-interoperable-in-memory-columnar-data-structure-standard/.

Chapter 4 Working with Data

https://www.kaggle.com/c/titanic
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/
https://blog.cloudera.com/blog/2016/02/introducing-apache-arrow-a-fast-interoperable-in-memory-columnar-data-structure-standard/

180

To be able to run the computation through arrow, we will need an

execution context and a schema arc. Take a look at the code shown in

Listing 4-50 to create the objects.

Listing 4-50.  chapter4/working_with_data/data_transformations_

datafusion/src/main.rs

use arrow;

use datafusion;

use arrow::array::{

 BinaryArray, Float64Array, UInt16Array, ListArray};

use arrow::datatypes::{DataType, Field, Schema};

use datafusion::execution::context::ExecutionContext;

fn main() {

 // create local execution context

 let mut ctx = ExecutionContext::new();

 // define schema for data source (csv file)

 let schema = Arc::new(Schema::new(vec![

 Field::new("PassengerId", DataType::Int32, false),

 Field::new("Survived", DataType::Int32, false),

 Field::new("Pclass", DataType::Int32, false),

 Field::new("Name", DataType::Utf8, false),

 Field::new("Sex", DataType::Utf8, false),

 Field::new("Age", DataType::Int32, true),

 Field::new("SibSp", DataType::Int32, false),

 Field::new("Parch", DataType::Int32, false),

 Field::new("Ticket", DataType::Utf8, false),

 Field::new("Fare", DataType::Float64, false),

 Field::new("Cabin", DataType::Utf8, true),

 Field::new("Embarked", DataType::Utf8, false),

]));

Chapter 4 Working with Data

181

 // register csv file with the execution context

 ctx.register_csv("titanic", "titanic/train.csv",

 &schema, true,

);

 // rest of the code..

We should now be able to run queries on the data in SQL. In this case,

we will find the maximum of the Fare paid by the passengers who survived.

(Listing 4-51).

Listing 4-51.  chapter4/working_with_data/data_transformations_

datafusion/src/main.rs

fn main() {

 // previous code ...

 let sql = "SELECT MAX(Fare) FROM titanic WHERE Survived = 1";

 // remaining code ...

}

We will then execute the query and then also pass the number of

records per batch (Listing 4-52).

Listing 4-52.  chapter4/working_with_data/data_transformations_

datafusion/src/main.rs

fn main() {

 // previous code ...

 let relation = ctx.sql(&sql, 1024 ∗ 1024).unwrap();

 // remaining code ...

}

We will now need to iterate on all the batches and collect the results

(Listing 4-53).

Chapter 4 Working with Data

182

Listing 4-53.  chapter4/working_with_data/data_transformations_

datafusion/src/main.rs

fn main() {

 // previous code ...

 // display the relation

 let mut results = relation.borrow_mut();

 while let Some(batch) = results1.next().unwrap() {

 println!(

 "RecordBatch has {} rows and {} columns",

 batch.num_rows(), batch.num_columns()

);

 let name = batch

 .column(0).as_any()

 .downcast_ref::<Float64Array>().unwrap();

 for i in 0..batch.num_rows() {

 let name_value: f64 = name.value(i);

 println!("name: {}", name_value);

 }

 }

}

Right now, in terms of aggregation functions, there are only a limited

number of functions that are implemented. More SQL features such as

JOIN, ORDER BY, and LIMIT need to be implemented. Another important

feature that needs work is building a dataframe api similar to the lines

of apache spark.9 Even so, we should now be able to implement a lot of

common business logic using the existing features.

9�https://arrow.apache.org/blog/2019/02/05/datafusion-donation/.

Chapter 4 Working with Data

https://arrow.apache.org/blog/2019/02/05/datafusion-donation/

183

4.8  �Working with Matrices
In this section we will explore an elementary and elegant datastructure

called the matrix and its cousin, the tensor. Matrices are of immense

importance in the machine learning domain as almost all of the operations

and “learning” involve matrix multiplications.

Simply put, a matrix is a rectangular array of data arranged in rows and

columns. Matrices support basic arithmetic operations such as addition

and multiplication, and the mathematics of matrix operations are also

called linear algebra. The most popular crate for linear algebra is ndarray,

and we will take a look at some matrix operations in Rust using ndaray.

For this we will create a binary package named matrix_transformations

using cargo. See Listing 4-54.

Listing 4-54.  Create binary package matrix_transformations

$ cd chapter4 && cargo new matrix_transformations –bin

We can now update the Cargo.toml file with the ndarray dependency

(Listing 4-55).

Listing 4-55.  chapter4/matrix_transformations/Cargo.toml

[package]

name = "matrix_transformations"

version = "0.1.0"

edition = "2018"

[dependencies]

ndarray-rand = "0.9.0"

ndarray = "0.12.1"

Chapter 4 Working with Data

184

Let us define a 2x3 matrix, which is mathematically represented as

follows.

	
A2 3

0 1 2

3 4 5x =
é

ë
ê

ù

û
ú 	

(1)

To create a matrix similar to the one above, we can create a rust vector

and then create a matrix from that vector. See Listing 4-56.

Listing 4-56.  chapter4/matrix_transformations/src/main.rs

fn main() {

 let a1 = arr2(&[[0., 1., 2.],

 [3., 4., 5.]]);

 // remaining code ...

}

Printing this prints the matrix in the following fashion.

Finished dev [unoptimized + debuginfo] target(s) in 2.42s

Running `target/debug/matrix_transformations`

[[0.0, 1.0, 2.0],

 �[3.0, 4.0, 5.0]] shape=[2, 3], strides=[3, 1], layout=C (0x1),

const ndim=2

We can also use other methods such as from_vec, from_shape_vec,

and from_iter according to what is convenient for us. So the below code

in Listing 4-57 is equivalent to the above code in Listing 4-56.

Listing 4-57.  chapter4/matrix_transformations/src/main.rs

fn main() {

 // previous code ...

 let a2 = Array::from_shape_vec((2, 3).strides((3, 1)),

 vec![0., 1., 2., 3., 4., 5.]).unwrap();

Chapter 4 Working with Data

185

 // remaining code ...

}

A common matrix transformation is taking the transpose of the matrix.

Matrix transposition is a sort of mirroring where we flip the matrix along

a diagonal. So the rows become the columns and the columns become

the rows. Matrix transposition is needed in a lot of equations and hence is

quite important. To take the transpose of a matrix in ndarray, we call the

.t() method (Listing 4-58).

Listing 4-58.  chapter4/matrix_transformations/src/main.rs

fn main() {

 // previous code ...

 let a_T = a1.t();

 // remaining code ...

}

Multiplying two matrices is similar to taking the dot product of them.

We will multiply a1 with a_T, which are of dimensions 2x3 and 3x2, so we

should have a resultant vector of 2x2 (Listing 4-59).

Listing 4-59.  chapter4/matrix_transformations/src/main.rs

fn main() {

 // previous code ...

 let a_mm = a1.dot(&a_T);

 println!("{:?}", a_mm.shape()); // output [2, 2]

 // remaining code ...

}

Chapter 4 Working with Data

186

There are a lot more operations that can be done in ndarray. Take a

look at the exhaustive list: https://docs.rs/ndarray/0.11/ndarray/doc/

ndarray_for_numpy_users/index.html.

4.9  �Conclusion
In this chapter we introduced different ways of reading data. The different

data storages we explored are the following:

•	 We have seen how to load data from different file

formats such as json and xml.

•	 We have seen how to create our own structured data

from open sources on the internet using web scraping.

•	 We have looked into pulling and storing data in SQL

and NoSql data sources.

•	 We have also looked at BigData transformations using

datafusion and matrix transformations using ndarray.

Next, we will study how to work in more real machine learning

domains such as computer vision and natural language processing.

4.10  Bibliography
	 [1]	 Maximilian Nickel et al. “A Review of Relational

Machine Learning for Knowledge Graphs." In: arXiv

e-prints, arXiv:1503.00759 (2015), arXiv:1503.00759.

arXiv: 1503.00759 [stat.ML].

Chapter 4 Working with Data

https://docs.rs/ndarray/0.11/ndarray/doc/ndarray_for_numpy_users/index.html
https://docs.rs/ndarray/0.11/ndarray/doc/ndarray_for_numpy_users/index.html

187© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_5

CHAPTER 5

Natural Language
Processing
In the previous chapters, we took a look at different machine learning

algorithms and then we worked on how to work with data for those

algorithms. Those datasets were largely tabular, and the individual values

were either numerical or categorical. Generally, not much processing is

required in those datasets because computers are great with standardized

and structured data. While trying to apply those machine learning

techniques to human language though, it opens up a whole new box of

challenges as language is not precise and holds different meanings in

different contexts. Even the basic structure changes when we move from

one language to another. Hence language needs special consideration

during the creation of intelligent applications, and this is grouped under

the domain of Natural Language Processing (NLP).

In this chapter we will be taking a look at different problems

statements in NLP and understand the techniques that go toward solving

those specific problems. First, we will take a look at sentence classification.

Then we will see how to perform Named Entity Recognition on a text

corpus. Finally, we will understand how to create an intent inference

engine to support a good chatbot. These problems will be described using

representative datasets.

188

5.1  �Sentence Classification
To implement sentence classification in Rust, we will be using the fastText

library. FastText is a library developed by Facebook for efficient learning of

word representations and sentence classification. The premise is to build

distributed and distributional word vectors using shallow neural networks.

First, let’s take a look at how to perform sentence classification on a corpus.

To work with the fastText model, we will create a package named

fasttext-model using cargo similar to what we have seen in the previous

chapters. This will create the fasttext-model directory in chapter5 folder

(Listing 5-1).

Listing 5-1.  Create fasttext-model package

$ cd chapter5 && cargo new fasttext-model --bin

$

To understand how to implement classification, we will need to

work on a dataset. An interesting classification dataset is the spooky

author dataset.1 This dataset contains text from works of fiction in the

public domain and written by three famous authors: Edgar Allan Poe, HP

Lovecraft, and Mary Shelley. Download the data and unzip the files in a

folder data inside the fasttext-model directory. We should now have the

training file in the folder (Listing 5-2).

Listing 5-2.  Peep into spooky author data

$ head -n2 data/train.csv

"id","text","author"

"id26305","This process, however, afforded me

no means of ascertaining the dimensions of my

dungeon; as I might make its circuit, and return

1�https://www.kaggle.com/c/spooky-author-identification.

Chapter 5 Natural Language Processing

https://www.kaggle.com/c/spooky-author-identification

189

to the point whence I set out, without being

aware of the fact; so perfectly uniform seemed the wall.","EAP"

$

The data has three fields, so we will create a struct that reflects the data

(Listing 5-3).

Listing 5-3.  chapter5/fasttext-model/src/main.rs

#[derive(Debug, Deserialize)]

pub struct SpookyAuthor {

 id: String, text: String, author: String

}

Now before moving forward, let us talk about the dependencies that we

will be using to create a simple fastText model. We have the usual suspects,

csv, serde, and serde_derive to parse the CSV file and deserialize each

record into the struct above. We have rand to shuffle between the data.

Rust packages stopwords, rust-stemmers, and vtext will be used to

normalize and tokenize the corpus. Then we will have the crate fasttext

to create the fastText classification model and itertools crate for some

helper functions. Hence, we should see the dependencies in the Cargo file

as shown in Listing 5-4.

Listing 5-4.  chapter5/fasttext-model/Cargo.toml

[package]

name = "fasttext-model"

version = "0.1.0"

edition = "2018"

[dependencies]

csv = "1.0.7"

serde = "1"

Chapter 5 Natural Language Processing

190

serde_derive = "1"

rand = "0.6.5"

fasttext = "0.4.1"

stopwords = "0.1.0"

vtext = "0.1.0-alpha.1"

rust-stemmers = "1.1.0"

itertools = "0.8.0"

As usual, use the latest version for the different crates. Once the crates

are in the dependencies, we should be able to import the relevant modules

in our main.rs file (Listing 5-5).

Listing 5-5.  chapter5/fasttext-model/src/main.rs

extern crate serde;

#[macro_use]

extern crate serde_derive;

use std::io;

use std::vec::Vec;

use std::error::Error;

use std::io::Write;

use std::fs::File;

use std::collections::HashSet;

use csv;

use rand::thread_rng;

use rand::seq::SliceRandom;

use fasttext::{FastText, Args, ModelName, LossName};

use stopwords::{Spark, Language, Stopwords};

use itertools::Itertools;

use vtext::tokenize::VTextTokenizer;

use rust_stemmers::{Algorithm, Stemmer};

Chapter 5 Natural Language Processing

191

We will use some constants in our code so we can define them in

Listing 5-6.

Listing 5-6.  chapter5/fasttext-model/src/main.rs

const TRAIN_FILE: &str = "data.train";

const TEST_FILE: &str = "data.test";

const MODEL: &str = "model.bin";

FastText requires the training files to be in a specific format. You will

have the labels prefixed by __label__ keyword and then a space is used as

the delimiter; and once all the labels for the specific sentence or document

are done, then the rest of the sentence comes after it. For example, if l1 and

l2 are two labels for a sentence, “this is a sentence,” then fastText expects it

to be in the format shown in Listing 5-7.

Listing 5-7.  fastText format example

__label__l1 __label__l2 this is a sentence

Different documents are differentiated by new lines. So, we will need to

convert the present format to the fastText format. For that, of course, we will

first need to read the train.csv file to our struct. The idea is that once the

raw data is deserialized into the structs, we should be able to implement

the needed changes as methods in the struct. Similar to what was in

Chapter2, we will read the lines in the CSV file to a vector of SpookyAuthor

struct and shuffle the vector for better classification later (Listing 5-8).

Listing 5-8.  chapter5/fasttext-model/src/main.rs

fn main() -> Result<(), Box<Error>> {

 let mut rdr = csv::Reader::from_reader(io::stdin());

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: SpookyAuthor = result?;

Chapter 5 Natural Language Processing

192

 data.push(r); // all the data is pushed to this vector.

 }

 �data.shuffle(&mut thread_rng()); // we random shuffle the data

 let test_size: f32 = 0.2; // test size is 20%

 let test_size: f32 = data.len() as f32 * test_size;

 let test_size = test_size.round() as usize;

 let (test_data, train_data) = data.split_at(test_size);

 // rest of the code...

Since we need to prefix the labels with the __label__ keyword, we will

implement a into_labels method for SpookyAuthor (Listing 5-9).

Listing 5-9.  chapter5/fasttext-model/src/main.rs

impl SpookyAuthor {

 // other methods..

 fn into_labels(&self) -> String {

 match self.author.as_str() {

 "EAP" => String::from("__label__EAP"),

 "HPL" => String::from("__label__HPL"),

 "MWS" => String::from("__label__MWS"),

 l => panic!("

 Not able to parse the target. \

 Some other target got passed. {:?}", l),

 }

 }

 // other methods..

}

Chapter 5 Natural Language Processing

193

Now to train a good fastText model, it is advised that you perform some

text preprocessing on the raw text. Text preprocessing is primarily done to

achieve text normalization, which means to convert specific areas of the

text so that text is more conducive for machine learning. The techniques

shown in this section are not exhaustive, nor foolproof, but are generally

adopted in various contexts. Please use all text normalization techniques

in your specific context to achieve optimal results.

We can convert all the text to lowercase. This is mainly applicable

in Germanic languages that mainly use the Latin script for writing. A

prime example of this is English. In these languages, there is a difference

between lowercase and uppercase, and they are considered different

during processing in a computing device. Hence it might be important to

convert text to lowercase so that similar text is not considered differently

during the learning process during training. But we should be careful when

converting all text to lowercase as acronyms and enumerations might

lose their meaning altogether when converted to lowercase. In Rust, the

to_lowercase method on a string will convert all characters to lowercase

(Listing 5-10).

Listing 5-10.  chapter5/fasttext-model/src/main.rs

let lc_text = text.to_lowercase();

Computing devices have traditionally stored documents as a sequence

of characters. Even Rust stores a random document as a Vec<u8>.

But such a format does not provide any information to the machine

learning algorithm. Hence a document needs to be broken down into

Linguistically Meaningful Units. This process is called tokenization. We

need to create different tokenization libraries for different languages as

all languages are not equal in their organization of meaning. Generally,

in English, the meaning resides in the words that are delimited by white

space so it is relatively easier than other languages such as Chinese or

Chapter 5 Natural Language Processing

194

Japanese where orthographies might have no spaces to delimit “words” or

"tokens." Even in English, care needs to be taken; for example “New Delhi”

needs to be considered together to encapsulate the idea. In Rust, we can

use the vtext crate if we are trying to tokenize on an English sentence

(Listing 5-11).

Listing 5-11.  chapter5/fasttext-model/src/main.rs

let tok = VTextTokenizer::new("en");

let tokens: Vec<&str> = tok.tokenize(lc_text.as_str()).

collect();

Sometimes in different languages, we have the word being morphed

into different languages rules: for example, the tense of the sentence.

For example, depending on the situation, the words “am,” “are,” and “is”

are the same as “be.” You might argue that these tense differentiations

might be important to the resulting meaning but that might not be the

case. The tense information might only be contributing noise to the core

understanding. Stemming is an attempt to remove these ambiguities

and is implemented through some heuristics that chops off the ends of

words based on common prefixes and suffixes. In our case for the English

language, we can use the rust-stemmers crate. This library provides rust

implementations for some stemmer algorithms written in the snowball

language.2 In Listing 5-12 we will use the Stemmer struct to parse the tokens

from the vtext tokenizer in Listing 5-11 and then get the stemmed tokens.

Listing 5-12.  chapter5/fasttext-model/src/main.rs

let en_stemmer = Stemmer::create(

 Algorithm::English);

let tokens: Vec<String> = tokens.iter().map(

 |x| en_stemmer.stem(x).into_owned())

2�https://snowballstem.org/algorithms/.

Chapter 5 Natural Language Processing

https://snowballstem.org/algorithms/

195

 .collect();

let mut tokens: Vec<&str> = tokens.iter().map(

 |x| x.as_str()).collect();

Lastly, we will go ahead and remove the stopwords. Stopwords are

commonly used words that are essentially language constructs and do

not contribute in terms of meaning to the sentence. Common examples

of stopwords in English are “a,” “am,” “the,” “is,” and so on. The target

language that you are working on may or may not have stopwords in them.

Removal of stopwords can be done using the stopwords package or you

can just store a vector of the stopwords and filter out those stopwords from

the tokens (Listing 5-13).

Listing 5-13.  chapter5/fasttext-model/src/main.rs

let stops: HashSet<_> = Spark::stopwords(Language::English)

 .unwrap().iter().collect();

// notice that tokens was initialized as mutable

tokens.retain(|s| !stops.contains(s));

We can now join the tokens and return the whole string (Listing 5-14).

Listing 5-14.  chapter5/fasttext-model/src/main.rs

tokens.iter().join(" ")

These have been the different preprocessing steps that can be

implemented. This list of normalization techniques is not exhaustive

and should be employed depending on the context. For example, in a

financial setting, “₹200” should probably be “two hundred rupees” when

normalized. Real-world text is quite complicated and might even involve

different languages mixed together. In that case, text normalization

would need to be more complicated and handle more corner cases for an

effective ML model. The above steps, when put together in into_tokens

methods, can be seen in Listing 5-15.

Chapter 5 Natural Language Processing

196

Listing 5-15.  chapter5/fasttext-model/src/main.rs

impl SpookyAuthor {

 pub fn into_tokens(&self) -> String {

 // convert all to lowercase

 let lc_text = self.text.to_lowercase();

 // tokenise the words

 let tok = VTextTokenizer::new("en");

 let tokens: Vec<&str> = tok.tokenize(

 lc_text.as_str()).collect();

 // stem the words

 let en_stemmer = Stemmer::create(Algorithm::English);

 let tokens: Vec<String> = tokens.iter().map(

 |x| en_stemmer.stem(x).into_owned()).collect();

 let mut tokens: Vec<&str> = tokens.iter().map(

 |x| x.as_str()).collect();

 // remove the stopwords

 let stops: HashSet<_> = Spark::stopwords(Language::English)

 .unwrap().iter().collect();

 tokens.retain(|s| !stops.contains(s));

 // join the tokens and return

 tokens.iter().join(" ")

 }

 // remaining methods ...

Once done, we should be able to join the labels and the string to

achieve the fastText format. We can then take the joined string and write to

a file for the training data (Listing 5-16).

Chapter 5 Natural Language Processing

197

Listing 5-16.  chapter5/fasttext-model/src/main.rs

fn push_training_data_to_file(train_data: &[SpookyAuthor],

 filename: &str) -> Result<(), Box<Error>> {

 let mut f = File::create(filename)?;

 for item in train_data {

 �writeln!(f, "{} {}", item.into_labels(), item.into_

tokens())?;

 }

 Ok(())

}

Consider that in Listing 5-8, we had split the full data into train_data

and test_data. We can now pass the train_data to this function to create

the training file (Listing 5-17).

Listing 5-17.  chapter5/fasttext-model/src/main.rs

push_training_data_to_file(train_data.to_owned(),

 TRAIN_FILE)?;

Similar to the training file, we can create the test file as well. However,

in the case of the test file, we should check that we are not adding the

labels as well. Test files should only contain the tokens (Listing 5-18).

Listing 5-18.  chapter5/fasttext-model/src/main.rs

fn push_test_data_to_file(test_data: &[SpookyAuthor],

 filename: &str) -> Result<(), Box<Error>> {

 let mut f = File::create(filename)?;

 for item in test_data {

 writeln!(f, "{}", item.into_tokens())?;

 }

 Ok(())

}

Chapter 5 Natural Language Processing

198

fn main() {

 // data loading code ...

 push_test_data_to_file(test_data.to_owned(),

 TEST_FILE)?;

 // remaining code ...

}

Now that all the preprocessing and data organization are done, we can

go ahead with the training process. For that we will create an Args context

and pass the context to the fastText struct for training. The args context

will have the input file; since this is a classification problem, we will need

to define the type of model as supervised and the loss function needs to

be softmax. Softmax should be used because for multi-label classification.

Using softmax is equivalent to predicting the distribution of labels, as

softmax essentially converts them to probabilities. (Listing 5-19).

Listing 5-19.  chapter5/fasttext-model/src/main.rs

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 let mut args = Args::new();

 args.set_input(TRAIN_FILE);

 args.set_model(ModelName::SUP);

 args.set_loss(LossName::SOFTMAX);

 let mut ft_model = FastText::new();

 ft_model.train(&args).unwrap();

 // remaining code ...

}

So once the model is created, we can check the accuracy and save

the model. This is done by creating vector preds by running the predict

method of the fastText model on the items of test_data. Another variable

Chapter 5 Natural Language Processing

199

test_labels is created by running the into_labels method on the

items of test_data. These two vectors are then compared one by one

in a for loop, and if they are the same then a variable correct_hits is

incremented. For all values in preds, the variable hits is incremented to

get a count of total values. The ratio of these two values is then computed

to get the accuracy parameter (Listing 5-20).

Listing 5-20.  chapter5/fasttext-model/src/main.rs

fn main() -> Result<(), Box<Error>> {

 // previous code ...

 let preds = test_data.iter().map(

 |x| ft_model.predict(x.text.as_str(), 1, 0.0));

 let test_labels = test_data.iter().map(

 |x| x.into_labels());

 let mut hits = 0;

 let mut correct_hits = 0;

 let preds_clone = preds.clone();

 for (predicted, actual) in preds.zip(test_labels) {

 let predicted = predicted?;

 // only taking the first value.

 let predicted = &predicted[0];

 if predicted.clone().label == actual {

 correct_hits += 1;

 }

 hits += 1;

 }

 assert_eq!(hits, preds_clone.len());

 println!("accuracy={} ({}/{} correct)",

 correct_hits as f32 / hits as f32,

Chapter 5 Natural Language Processing

200

 correct_hits, preds_clone.len());

 ft_model.save_model(MODEL)?;

 Ok(())

}

We should now be able to run the model and train the fastText

classifier (Listing 5-21).

Listing 5-21.  fasttext-model training

$ cd chapter5/fasttext-model

$ cargo run < data/train.csv

 Compiling fasttext-model v0.1.0 (chapter5/fasttext-model)

 Finished dev [unoptimized + debuginfo] target(s) in 1.42s

 Running `target/debug/fasttext-model`

Read 0M words

Number of words: 5560

Number of labels: 3

Progress: 100.0% words/sec/thread: 134810 lr: 0.000000

loss: 1.079427 ETA: 0h 0m

accuracy=0.48263535 (1890/3916 correct)

$

And we should be able to see the model file saved in the directory

(Listing 5-22).

Listing 5-22.  Trained fastText model

$ ls -ltr model.bin

$

-rw-r--r-- 1 joydeepbhattacharjee staff 802313179 Aug 20

09:37 model.bin

Chapter 5 Natural Language Processing

201

As this model is built in the fastText code library, the model.bin file

generated in Listing 5-22 conforms to the general fastText specification

and can be used by a different fastText application as well. For example,

if we load the model using the original fastText application, it works just

fine. See Listing 5-23.

Listing 5-23.  fastText predict using the official binary

$./fasttext predict ../model.bin -

I love ghosts.

__label__EAP

^C

$

To compile and create the above fasttext binary, follow the instructions

in the fasttext webpage: https://github.com/facebookresearch/

fastText#building-fasttext-using-make-preferred.

5.2  �Named Entity Recognition
One of the core areas of implementation of natural language processing is

Named Entity Recognition (NER), where entities that are present in the text

are classified into predefined categories. These categories are context and

problem dependent. For example, a travel organization may be interested

in the cities and dates. You could argue that this can be done using regex,

but if you are a growing company, it would be very difficult to scale up

such an operation. Also going through the NER route adds a wealth of

semantic knowledge to the content and helps to understand the subject of

any given text.

One of the popular algorithms that is used for NER tasks are

Conditional Random Fields (CRFs). CRFs are essentially classifiers that use

contextual information from previous labels, thus increasing the amount

of information that the label has to make a good prediction.

Chapter 5 Natural Language Processing

https://github.com/facebookresearch/fastText#building-fasttext-using-make-preferred
https://github.com/facebookresearch/fastText#building-fasttext-using-make-preferred

202

To perform CRF effectively, the input text would need to be chunked

correctly. Text chunking divides each sentence into syntactically correlated

parts of words. For example, the sentence, “Rust is great for machine

learning” can be divided as follows:

[NP Rust][VP is][NP great][PP for][NP machine

learning]

In this example, NP stands for a noun phrase, VP for a verb phrase,

and PP for a prepositional phrase. This task is formalized as a sequential

labeling task in which a sequence of tokens in a text is assigned with a

sequence of labels. In order to present a chunk, the IOB2 notation is used.

The beginning of a chunk is given by a B-label, inside of the chunk is given

by an I-label, and others are defined as O. Chunking is mostly a manual

task and there are some popular annotation tools that make it a little

simpler for the user.

•	 GATE - General Architecture and Text Engineering is

15+ years old, free and open source.

•	 Anafora - It is a free and open source, web-based raw

text annotation tool.

•	 brat - Brat rapid annotation tool is an online

environment for collaborative text annotation.

•	 tagtog – It is proprietary tool costing money.

•	 prodigy - It is an annotation tool powered by active

learning and costs money.

•	 LightTag - LightTag is a hosted and managed text

annotation tool for a team and costs money.3

3�https://github.com/keon/awesome-nlp#annotation-tools

Chapter 5 Natural Language Processing

https://github.com/keon/awesome-nlp#annotation-tools

203

We will, on the other hand, use a dataset that has been annotated

for us. This is can be downloaded from the kaggle website with this link:

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus.

Download the ner.csv file and keep it in the data folder. We can see that the

data has a lot of fields and this is a good guideline for the type of fields that

should be there in an NER dataset. Let’s take a look at the fields.

•	 lemma - Lemma of a token in sentence

•	 next-lemma Lemma of next token in sentence

•	 next-next-lemma Lemma of token at +2nd position to

the current token in sentence

•	 next-next-pos POS tag of token at +2nd position to the

current token in sentence

•	 next-next-shape Shape of token at +2nd position to the

current token in sentence

•	 next-next-word Token at +2nd position to the current

token in sentence

•	 next-pos POS tag of the next(+1 position) token

•	 next-shape Shape of the next(+1 position) token

•	 next-word Next(+1 position) token

•	 pos POS tag of current token

•	 prev-iob IOB annotation of previous token

•	 prev-lemma Lemma of previous token

•	 prev-pos POS tag for previous token

•	 prev-prev-iob IOB annotation of token at -2nd position

to the current token in sentence

•	 prev-prev-lemma Lemma of token at -2nd position to

the current token in sentence

Chapter 5 Natural Language Processing

https://www.kaggle.com/abhinavwalia95/entity-annotated-corpus

204

•	 prev-prev-pos POS tag of token at -2nd position to the

current token in sentence

•	 prev-prev-shape Shape of token at -2nd position to the

current token in sentence

•	 prev-prev-word Token at -2nd position to the current

token in sentence

•	 prev-shape Shape of previous (-1 position to current

token) token

•	 prev-word Previous word (-1 position to current token)

•	 sentence_idx Sentence Index (Tokens having same

index belongs to same sentence)

•	 shape Shape of the token in sentence

•	 word often termed as Token

•	 tag IOB annotation of current token

For our example, though, we will only be using the lemma and next-

lemma to have an understanding of how to create an NER model using crf-

suite. In a production environment, though, you should use all the above

features and all the other features that you can integrate.

Now to create the code for the NER, we will create a binary package

crfsuite-model using cargo (Listing 5-24).

Listing 5-24.  create crfsuite-model package

$ cargo new crfsuite-model --bin

$

This should create the src/main.rs and Cargo.toml files in the

directory crfsuite-model (Listing 5-25).

Chapter 5 Natural Language Processing

205

Listing 5-25.  chapter5/crfsuite-model/src/main.rs

#[derive(Debug, Deserialize, Clone)]

pub struct NER {

 lemma: String,

 #[serde(rename = "next-lemma")]

 next_lemma: String,

 word: String,

 tag: String

}

Notice that in Listing 5-25, we have used the rename feature in serde to

identify next_lemma in the NER struct to be the next-lemma column in the csv.

Before we go ahead, let’s talk about the dependencies that we will need

for creating the model. The crate csv is for parsing the csv files where serde

and serde-derive will help as well. The crate rand is used for generating

random variables and crfsuite is the main crate that can be used to have

CRF capabilities in the code. See Listing 5-26.

Listing 5-26.  chapter5/crfsuite-model/Cargo.toml

[dependencies]

csv = "1.0.7"

serde = "1"

serde_derive = "1"

rand = "0.6.5"

crfsuite = "0.2.6"

Once these are in the toml file, we should be able to import the

relevant modules in our main module (Listing 5-27).

Listing 5-27.  chapter5/crfsuite-model/src/main.rs

extern crate serde;

#[macro_use]

extern crate serde_derive;

Chapter 5 Natural Language Processing

206

use std::io;

use std::vec::Vec;

use std::error::Error;

use csv;

use rand;

use rand::thread_rng;

use rand::seq::SliceRandom;

below are the new ones and useful for NER

use crfsuite::{Model, Attribute, CrfError};

use crfsuite::{Trainer, Algorithm, GraphicalModel};

Similar to what we have seen before, we can now create a function that

reads the data from the standard input and stores it in a vector of the data

struct that we have, in this case that being Vec<NER>. See Listing 5-28.

Listing 5-28.  chapter5/crfsuite-model/src/main.rs

fn get_data() -> Result<Vec<NER>, Box<Error>> {

 let mut rdr = csv::Reader::from_reader(io::stdin());

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: NER = result?;

 data.push(r);

 }

 data.shuffle(&mut thread_rng());

 Ok(data)

}

Given that now we have the data, we should be able to split the data

into train and test, so that we can check the accuracy on out-of-sample

data. This is the same code that we have seen before in other modules and

chapters (Listing 5-29).

Chapter 5 Natural Language Processing

207

Listing 5-29.  chapter5/crfsuite-model/src/main.rs

fn split_test_train(data: &[NER],

 test_size: f32)

 -> (Vec<NER>, Vec<NER>) {

 let test_size: f32 = data.len() as f32 ∗ test_size;
 let test_size = test_size.round() as usize;

 let (test_data, train_data) = data.split_at(test_size);

 (test_data.to_vec(), train_data.to_vec())

}

Now comes the interesting part. Given the data, we will need to

extract each item in the data to a vector of Attributes, provided by the

crf_suite crate so that the training module is able to train on the dataset.

This Attribute will contain the token and the value of the token, which

is the weightage that the token has in the sequence. In the Listing 5-30,

weightage of 1.0 is given for the target word and 0.5 for the next word, but

you can play with these weightage and see which gives a better result. The

labels can be a Vec<String> as expected.

Listing 5-30.  chapter5/crfsuite-model/src/main.rs

fn create_xseq_yseq(

 data: &[NER])

 -> (Vec<Vec<Attribute>>, Vec<String>) {

 let mut xseq = vec![];

 let mut yseq = vec![];

 for item in data {

 let seq = vec![Attribute::new(item.lemma.clone(), 1.0),

 �Attribute::new(item.next_lemma.clone(), 0.5)];

// higher weightage for the mainword.

 xseq.push(seq);

Chapter 5 Natural Language Processing

208

 yseq.push(item.tag.clone());

 }

 (xseq, yseq)

}

We can now create a function that will do the model prediction given

x-sequence and y-sequence. In this case, after training, the model saves in

a file that is determined by model_name (Listing 5-31).

Listing 5-31.  chapter5/crfsuite-model/src/main.rs

fn crfmodel_training(xseq: Vec<Vec<Attribute>>,

 yseq: Vec<String>,

 model_name: &str)

 -> Result<(), Box<CrfError>> {

 let mut trainer = Trainer::new(true); // verbose is true

 trainer.select(Algorithm::AROW, GraphicalModel::CRF1D)?;

 trainer.append(&xseq, &yseq, 0i32)?;

 trainer.train(model_name, -1i32)?; // �using all instances for

training.

 Ok(())

}

In Listing 5-31, we used the Adaptive regularization of weight vector.

The different algorithms that we can use are the following:

•	 Gradient descent using the L-BFGS method: It is a way

of finding the local minimum of objective function,

and making use of objective function values and the

gradient of the objective function.

•	 Stochastic Gradient Descent with L2 regularization

term: It combines stochastic gradient descent with the

loss function having an additional parameter of the

Chapter 5 Natural Language Processing

209

square of the weights. This should avoid the model

having to overfit on the data.

•	 Averaged Perceptron: This is a binary classification

method where averaged weights and biases of a

standard perceptron algorithm are used.

•	 Passive Aggressive: This algorithm slowly forgets

the old distribution in case the data is taken from a

different sample. It is passive if a correct classification

occurs and “aggressive” or there is a change in weights

in case there is a missclassification.

•	 Adaptive Regularization of Weight Vector: This

algorithm combines large margin training, confidence

weighting, and the capacity to handle non-separable

data. AROW performs adaptive regularization of the

prediction function upon seeing each new instance,

allowing it to perform especially well in the presence of

label noise.

Once training is done, we can load the model from file and run

predictions on it (Listing 5-32).

Listing 5-32.  chapter5/crfsuite-model/src/main.rs

fn model_prediction(xtest: Vec<Vec<Attribute>>,

 model_name: &str)

 -> Result<Vec<String>, Box<CrfError>>{

 let model = Model::from_file(model_name)?;

 let mut tagger = model.tagger()?;

 let preds = tagger.tag(&xtest)?;

 Ok(preds)

}

Chapter 5 Natural Language Processing

210

We can use this model_prediction function and see how our model

fared on the test data. To do this, we need to use the accuracy function.

The accuracy function here is the same as the ones that we have seen in

previous chapters. See Listing 5-33.

Listing 5-33.  chapter5/crfsuite-model/src/main.rs

fn check_accuracy(preds: &[String], actual: &[String]) {

 let mut hits = 0;

 let mut correct_hits = 0;

 for (predicted, actual) in preds.iter().zip(actual) {

 if actual != "O" { // �will not consider the other category

as it bloats the accuracy.

 if predicted == actual && actual != "O" {

 correct_hits += 1;

 }

 hits += 1;

 }

 }

 println!("accuracy={} ({}/{} correct)",

 correct_hits as f32 / hits as f32,

 correct_hits,

 hits);

}

Notice the difference: we will not consider the values where the actual

is “O.” That is because this label means that other and most of the labels

would be others. So considering this as part of the accuracy, values would

essentially bloat up our accuracy and give accuracy results better than they

actually are. A more general way in which the accuracy of the CRF model

is determined is by using precision and recall and the F1 score, which can

also be implemented in Rust in a similar manner.

Chapter 5 Natural Language Processing

211

Now that we have all the relevant functions, we can stitch all those

functions in our main function (Listing 5-34).

Listing 5-34.  chapter5/crfsuite-model/src/main.rs

fn main() {

 let data = get_data().unwrap();

 let (test_data, train_data) = split_test_train(

 &data, 0.2);

 let (xseq_train, yseq_train) = create_xseq_yseq(

 &train_data);

 let (xseq_test, yseq_test) = create_xseq_yseq(

 &test_data);

 crfmodel_training(xseq_train,

 yseq_train,

 "rustml.crfsuite").unwrap();

 let preds = model_prediction(xseq_test,

 "rustml.crfsuite").unwrap();

 check_accuracy(&preds, &yseq_test);

}

Running the code in Listing 5-34 should have an output similar to that

shown in Listing 5-35.

Listing 5-35.  crfsuite-model output

$ cd chapter5/crfsuite-model

$ cargo run < data/ner.csv

 Finished dev [unoptimized + debuginfo] target(s) in 0.03s

 Running `target/debug/crfsuite-model`

Feature generation

type: CRF1d

feature.minfreq: 0.000000

Chapter 5 Natural Language Processing

212

feature.possible_states: 0

feature.possible_transitions: 0

0....1....2....3....4....5....6....7....8....9....10

Number of features: 3137

Seconds required: 0.013

Adaptive Regularization of Weights (AROW)

variance: 1.000000

gamma: 1.000000

max_iterations: 100

epsilon: 0.000000

***** Iteration #1 *****
Loss: 1210.000000

Feature norm: 0.526780

Seconds required for this iteration: 0.012

**** Intermediate iterations

***** Iteration #100 *****
Loss: 369.217403

Feature norm: 296.558922

Seconds required for this iteration: 0.012

Total seconds required for training: 1.226

Storing the model

Number of active features: 3116 (3137)

Number of active attributes: 2067 (2088)

Number of active labels: 17 (17)

Writing labels

Writing attributes

Writing feature references for transitions

Chapter 5 Natural Language Processing

213

Writing feature references for attributes

Seconds required: 0.014

accuracy=0.5551948 (171/308 correct)

$

And we should have the model being created in the directory

(Listing 5-36).

Listing 5-36.  model output file

$ ls -ltr rustml.crfsuite

-rw-r--r-- 1 joydeepbhattacharjee staff 168196 Aug 20 09:10

rustml.crfsuite

As you can see in Listing 5-35, the accuracy is quite low. That is

because we have utilized only three features for the sake of simplicity. Try

with more features and see if the accuracy improves or not.

Named Entity Recognitions are an important and interesting set of

problems in NLP, and the crfsuite is an excellent crate to create a CRF

model for NER.

In this section, we looked at how to use to create a CRF model for NER

in Rust. We also looked at how to mold an incoming dataset so that it is

conducive to the CRF suite model. Finally, we took a look at one of the

ways in which accuracy for a CRF model can be decided.

5.3  �Chatbots and Natural Language
Understanding (NLU)

While chatbots is a complex topic and involves a lot of integration and

engineering for a production system, one of the core areas that powers a

chatbot is for the underlying system to have some level of natural language

understanding. NLU is needed to determine a user’s intention and to

Chapter 5 Natural Language Processing

214

extract information from an utterance and to carry on a conversation with

the user in order to execute and complete a task.

Intent Recognition  Most intents are simple discrete tasks like

“Find Product,” “Transfer Funds,” “Book Flight,” and are typically

described with the verb and noun combination. These types of intents will

initiate a dialogue with the user to capture more information, to fetch and

update data from remote systems, and to inform the user of its progress.

The goal of intent recognition is to match a user utterance with its

correctly intended task or question. Intent parsing of user utterance can be

done in Rust using the crate snips-nlu-lib. The caveat though is that this

library can only be used for the inference part, and training needs to be

done in python.

Now before moving ahead, ensure that you have clang installed in your

machine. For an ubuntu machine, installation of clang can be done using

the command shown in Listing 5-37.

Listing 5-37.  ubuntu install clang

$ sudo apt update

$ sudo apt install clang

type yes and <enter> in case there is a prompt

$

In case you are using a mac, it should have clang installed or you can

install it using Xcode.4

Let’s talk about how to use steps to create a snips model. Since the

snips model is a python model, we can create a virtual environment and

install the package (Listing 5-38).

4�https://developer.apple.com/xcode/.

Chapter 5 Natural Language Processing

https://developer.apple.com/xcode/

215

Listing 5-38.  Create python virtual environment

$ python3 -m venv venv

$ source venv/bin/activate

(venv) $ pip install snips-nlu

(venv) $

To download the model, we will need to download the English model.

Other models as of this writing are German, Spanish, French, Italian,

Japanese, Korean, and Portuguese (one for Brazil dialect and one for

Portugal dialect).5 Implementing a different language involves changes in

a lot of repositories, which is not very simple and hence the snips team is

working on making the whole process simpler.6 If downloading the English

model does not work for the remaining steps, we can also download all the

resources and try again (Listing 5-39).

Listing 5-39.  Download english

(venv) $ python -m snips_nlu download en

or we can try

(venv) $ python -m snips-nlu download-all-languages

(venv) $

We can now create a dataset.yaml for our different types of utterances.

See Listing 5-40.

Listing 5-40.  contents of dataset.yaml

$ cat dataset.yaml

turnLightOn intent

5�https://snips-nlu.readthedocs.io/en/latest/languages.html.
6�https://github.com/snipsco/snips-nlu-language-resources/issues/12#iss
uecomment-433325114.

Chapter 5 Natural Language Processing

https://snips-nlu.readthedocs.io/en/latest/languages.html
https://github.com/snipsco/snips-nlu-language-resources/issues/12#issuecomment-433325114
https://github.com/snipsco/snips-nlu-language-resources/issues/12#issuecomment-433325114

216

type: intent

name: turnLightOn

slots:

 - name: room

 entity: room

utterances:

 - Turn on the lights in the [room](kitchen)

 - give me some light in the [room](bathroom) please

 - Can you light up the [room](living room) ?

 - switch the [room](bedroom)'s lights on please

turnLightOff intent

type: intent

name: turnLightOff

slots:

 - name: room

 entity: room

utterances:

 - Turn off the lights in the [room](entrance)

 - turn the [room](bathroom)'s light out please

 - switch off the light the [room](kitchen), will you?

 - Switch the [room](bedroom)'s lights off please

setTemperature intent

type: intent

name: setTemperature

slots:

 - name: room

 entity: room

 - name: roomTemperature

 entity: snips/temperature

Chapter 5 Natural Language Processing

217

utterances:

 �- �Set the temperature to [roomTemperature](19 degrees) in the

[room](bedroom)

 �- �please set the [room](living room)'s temperature to

[roomTemperature](twenty two degrees celsius)

 �- �I want [roomTemperature](75 degrees fahrenheit) in the

[room](bathroom) please

 �- �Can you increase the temperature to [roomTemperature]

(22 degrees) ?

room entity

type: entity

name: room

automatically_extensible: no

values:

- bedroom

- [living room, main room, lounge]

- [garden, yard, backyard]

$

We would now need to create our dataset.json file from the

utterances yaml file (Listing 5-41).

Listing 5-41.  Create dataset.json

(venv) $ snips-nlu generate-dataset en dataset.yaml > dataset.

json

(venv) $

Once the dataset.json file is created, we should be able to train a

model (Listing 5-42).

Chapter 5 Natural Language Processing

218

Listing 5-42.  snips training

(venv) $ snips-nlu train dataset.json snips.model -v

(venv) $

The output of the command in Listing 5-42 should be something like

what is shown in Listing 5-43.

Listing 5-43.  snips training output

Create and train the engine...

[INFO][21:55:51.091][snips_nlu.intent_parser.deterministic_

intent_parser]: Fitting deterministic parser...

[INFO][21:55:51.103][snips_nlu.intent_parser.deterministic_

intent_parser]: Fitted deterministic parser in 0:00:00.011588

[INFO][21:55:51.103][snips_nlu.intent_parser.probabilistic_

intent_parser]: Fitting probabilistic intent parser...

[DEBUG][21:55:51.103][snips_nlu.intent_classifier.log_reg_

classifier]: Fitting LogRegIntentClassifier...

[DEBUG][21:55:51.616][snips_nlu.intent_classifier.log_reg_

classifier]: Top 50 features weights by intent:

<training on different intents>

...

< training on transition weights and feature weights.>

[DEBUG][21:55:57.292][snips_nlu.slot_filler.crf_slot_filler]:

Fitted CRFSlotFiller in 0:00:01.482648

[DEBUG][21:55:57.293][snips_nlu.intent_parser.probabilistic_

intent_parser]: Fitted slot fillers in 0:00:05.671146

[INFO][21:55:57.294][snips_nlu.intent_parser.probabilistic_

intent_parser]: Fitted probabilistic intent parser in

0:00:06.190487

Chapter 5 Natural Language Processing

219

[INFO][21:55:57.294][snips_nlu.nlu_engine.nlu_engine]: Fitted

NLU engine in 0:00:07.315197

Persisting the engine...

Saved the trained engine

5.3.1  �Building an Inference Engine
Once the training is done, we should be able to use the model in our

application. As an example application, we will be creating a simple API

that would take a sentence as an input and provide the parsed intents in

the sentence.

As for the dependencies, we would be using the snips-nlu-lib crate

for the snips model inference. serde, and serde_json and serde_derive

would be used for serializing and deserializing the incoming request. For

creating the web-app, we would be using the rocket web framework. The

API from the rocket framework is inspired out of great web frameworks

such as Rails, Flask, Bottle, and Yesod; and hence it is quite fun to create

applications in Rocket. To create the inference engine and to play with

these dependencies, we would now need to create a Rust project using

cargo (Listing 5-44).

Listing 5-44.  Create snips-model Rust project

$ cd chapter5

$ cargo new snips-model –bin

This should create the main.rs and Cargo.toml files in the directory

and we should be able to update the Cargo file similar to what is shown

in Listing 5-45. The crate serde-json will be used to parse the json files

and serde and serde-derive will help towards that. The crates rocket and

rocket-contrib will be utilised to create the web apis and snips-nlu-lib is

the main crate giving us NLU capabilities.

Chapter 5 Natural Language Processing

220

Listing 5-45.  chapter5/snips-model/Cargo.toml

[package]

name = "snips-model"

version = "0.1.0"

edition = "2018"

[dependencies]

snips-nlu-lib = { git = "https://github.com/snipsco/snips-nlu-

rs", branch = "master" }

rocket = "0.4.0"

rocket_contrib = "0.4.0"

serde = "1.0"

serde_json = "1.0"

serde_derive = "1.0"

Note that we are using the github link directly for the snips library as

that works the best for now.

We can now import the relevant modules from the dependencies in

our main file (Listing 5-46).

Listing 5-46.  chapter5/snips-model/src/main.rs

#![feature(proc_macro_hygiene, decl_macro)]

#[macro_use] extern crate rocket;

#[macro_use] extern crate rocket_contrib;

#[macro_use] extern crate serde_derive;

extern crate snips_nlu_lib;

use std::sync::Mutex;

use snips_nlu_lib::SnipsNluEngine;

use rocket::{Rocket, State};

use rocket_contrib::json::Json;

Chapter 5 Natural Language Processing

221

We can now write a small function to see if our setup until now is

working or not (Listing 5-47).

Listing 5-47.  chapter5/snips-model/src/main.rs

#[get("/")]

fn hello() -> &'static str {

 "Hello, from snips model inference!"

}

To activate this endpoint, we will need to do a little setup and launch

the app (Listing 5-48).

Listing 5-48.  chapter5/snips-model/src/main.rs

fn rocket() -> Rocket {

 rocket::ignite()

 .mount("/", routes![hello])

}

fn main() {

 rocket().launch();

}

Run the application using cargo run. This should build all the

dependencies, and then if everything hah been fine until now, you should

run the web application and be able to see the following output shown in

Listing 5-49.

Listing 5-49.  Run snips model inference

$ cd chapter5/snips-model

$ cargo run

 Compiling snips-model v0.1.0 (...)

 Finished dev [unoptimized + debuginfo] target(s) in 1m 39s

 Running `target/debug/snips-model`

Chapter 5 Natural Language Processing

222

Loading the nlu engine...

 Configured for development.

 => address: localhost

 => port: 8000

 => log: normal

 => workers: 8

 => secret key: generated

 => limits: forms = 32KiB

 => keep-alive: 5s

 => tls: disabled

Mounting /:

 => GET / (hello)

Rocket has launched from http://localhost:8000

$

And we should be able to make a simple call to the webserver

(Listing 5-50).

Listing 5-50.  curl to snips nlu engine

$ curl localhost:8000/

Hello, from snips model inference!

$

Now we are moving into the main inference part. We will try to create

a function that will handle the post request. Hence we will create a struct

Message that will hold the incoming request data and a function infer,

which will handle the inference part. So writing code for handling the

incoming function will look something like what is in Listing 5-51.

Chapter 5 Natural Language Processing

223

Listing 5-51.  chapter5/snips-model/src/main.rs

#[derive(Serialize, Deserialize)]

struct Message {

 contents: String

}

#[post("/infer", format = "json", data = "<message>")]

fn infer(message: Json<Message>,

 <remaining arguments>) -> OutputType {

 �let query = message.0.contents; // to get the query from

the incoming data

 // remaining code ...

}

fn rocket() -> Rocket {

 �// Have Rocket manage the engine to be passed to the

functions.

 rocket::ignite()

 .mount("/", routes![hello, infer])

}

fn main() {

 rocket().launch();

}

We will now need to load the engine, an object of type

SnipsNluEngine, run the inference based on the incoming query, and

return the result. Since this is dependent on the user query sentence, a

naive way might be to put all the code in the infer function. This however

is not ideal as creating the engine from the model is quite expensive and

having to do that all over again for each request is not ideal. Hence we

need a mechanism to load the model and create the engine once at the

start of the app initiation and then use the same model for each request

Chapter 5 Natural Language Processing

224

inference cycle. Since this model will be shared between threads in the

Rocket app, we cannot just create a global variable or something similar.

An elegant solution for this is by using Rust mutexes.7 This is a highly

useful, mutual-exclusion primitive implemented as a struct to be used for

protecting shared data.

So we will wrap the engine as a mutex (Listing 5-52).

Listing 5-52.  chapter5/snips-model/src/main.rs

type Engine = Mutex<SnipsNluEngine>;

A different function will be defined for creating the engine. This

function will be called before initializing the Rocket app, and the engine

object would be passed to the rocket app to be managed by it (Listing 5-53).

Listing 5-53.  chapter5/snips-model/src/main.rs

fn init_engine() -> SnipsNluEngine {

 let engine_dir = "path to snips model/snips.model";

 println!("\nLoading the nlu engine...");

 let engine = SnipsNluEngine::from_path(engine_dir).unwrap();

 engine

}

fn rocket() -> Rocket {

 // load the snips ingerence engine.

 let engine = init_engine();

 �// Have Rocket manage the engine to be passed to the

functions.

 rocket::ignite()

 // let rocket manage the state of the engine

7�https://doc.rust-lang.org/std/sync/struct.Mutex.html.

Chapter 5 Natural Language Processing

https://doc.rust-lang.org/std/sync/struct.Mutex.html

225

 .manage(Mutex::new(engine))

 .mount("/", routes![hello, infer])

}

Once our rocket app has access to the engine object, we can call it

in our functions, infer in this case, and get the intents from the user-

provided document (Listing 5-54).

Listing 5-54.  chapter5/snips-model/src/main.rs

#[post("/infer", format = "json", data = "<message>")]

fn infer(message: Json<Message>, engine: State<Engine>) ->

String {

 let query = message.0.contents;

 // locking the mutex so that nothing else

 // changes it and we can utilise the underlying resource

 let engine = engine.lock().unwrap();

 // get the intents

 let result = engine.get_intents(query.trim()).unwrap();

 // serialize the result as a json string.

 let result_json = serde_json::to_string_pretty(

 &result).unwrap();

 result_json

}

Building the intent inference is done. We can now run the app using

cargo run as in Listing 5-55. So apart from the other output that we have

seen before when running the app, we should see the infer endpoint

being loaded as well. We should also see the print statement that tells us

that the model has been loaded from the init_engine function.

Chapter 5 Natural Language Processing

226

Listing 5-55.  Launch nlu engine

$ cd chapter5/snips-model

$ cargo run

 Compiling snips-model v0.1.0 (...)

 Finished dev [unoptimized + debuginfo] target(s) in 1m 39s

 Running `target/debug/snips-model`

Loading the nlu engine...

// other output...

Mounting /:

 => GET / (hello)

 => POST /infer application/json (infer)

Rocket has launched from http://localhost:8000

$

If the infer endpoint is loaded correctly, we should now be able to

make requests to the app and get the result (Listing 5-56).

Listing 5-56.  Output of nlu engine in separate terminal

$ curl --header "Content-Type: application/json" \

 --request POST \

 --�data '{"contents":"set the temperature to 23 degrees

in the bedroom"}' \

 localhost:8000/infer

[

 {

 "intentName": "setTemperature",

 "confidenceScore": 1.0

 },

Chapter 5 Natural Language Processing

227

 {

 "intentName": null,

 "confidenceScore": 0.291604

 },

 {

 "intentName": "turnLightOn",

 "confidenceScore": 0.08828778

 },

 {

 "intentName": "turnLightOff",

 "confidenceScore": 0.070788406

 }

]

$

One of the important problem statements in NLP is chatbots and to

build chatbots, we need a good intent inference engine. In this section, we

took a look at how to train a snips model and use the model in a simple

webapp for inferring the intents in a user-specified query.

5.4  �Conclusion
This chapter introduced you to different interesting problems in NLP. The

chapter started with text classification and how to build a classifier using

the fasttext algorithm. It also had common text preprocessing steps that

can be done in Rust. Then the chapter went on with a look at performing

named entity recognition on a corpus and how to create a CRF model

using the crfsuite crate to perform the NER task. Last, we looked at creating

an intent inference web application using the snips library.

In the next chapter, you will learn about creating computer vision

models and running image classifiers.

Chapter 5 Natural Language Processing

229© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_6

CHAPTER 6

Computer Vision
In the last chapter, we took at look at how machine learning applies in

the domain of human languages. That covers our senses of speech and

sound. Another sense where machine learning has a huge influence is our

sense of vision and how machine learning is able to capture the essence of

images. The overall branch is termed computer vision and there have been

great strides in solving computer vision problems in Rust as we will see in

this chapter.

As part of this chapter, we will look at different applications in

computer vision such as the following:

•	 Image classification

•	 Using pretrained models

•	 Neural style transfer

•	 Face detection

6.1  �Image Classification
Image classification is the application of machine learning to images,

where the objective is that given an image and a model trained on finding

objects of interest, the model would identify if the object is present in the

230

image or not. This is achieved by defining a set of target classes (objects to

identify in images), and a model is trained to identify them using labeled

example photos.

Image classification using traditional models was achieved by adding

new features from pixel data, such as color histograms, textures, and

shapes. The downside of this approach was that feature engineering in the

case of image classification was a huge cost. Features needed to be tuned

quite precisely, and hence building robust models was very challenging

with low accuracy in many cases.

6.1.1  �Convolutional Neural Networks (CNN)
In contrast with the traditional models, Neural networks with

convolutional layers was seen to have better results for the image

classification tasks. A CNN progressively extracts higher and higher-level

representations of the image content. Instead of preprocessing the data

to derive features like textures and shapes, a CNN takes just the raw pixels

of the image as input and “learns” how to extract those features, and

ultimately infer what object they constitute.

The CNN starts with an input feature map of three dimensions where

the size of the first two dimensions is the length and width of the images

in pixels. The size of the third dimension is the number of channels in the

image and is generally 3. The CNN comprises stacks of modules, where

each module performs three operations [1].

	 1.	 A convolution layer is where tiles of the input feature

map are extracted and filters are applied to the

features. A filter matrix is slid over the feature matrix

and the sum of the element-wise multiplication

is stored in the resulting matrix. During training

the CNN “learns” the optimal value for the feature

matrix, which enables it to extract meaningful

Chapter 6 Computer Vision

231

features. Figure 6-1 shows how this process takes

place on a 4x4 input feature map with the filter layer

being 3x3.

	 2.	 A Relu layer is introduced after the convolution layer

in order to introduce nonlinearity into the model.

The Relu function is defined as f (x)=max(0,x) and is

given by Figure 6-2.

	 3.	 After application of the Relu activation function,

pooling is applied to downsample the convolved

feature. Downsampling needs to be done by

keeping the most critical feature information

while at the same time reducing the dimensions as

much as possible. Generally max pooling is used

where tiles are extracted from the feature map and

the maximum value is kept from each tile while

discarding all the other values.

Figure 6-1.  Extracting features through convolution

Chapter 6 Computer Vision

232

At the end of the CNN layer, one or more layers of fully connected

layers are needed to perform the classification based on the features

extracted by the convolutions.

6.1.2  �Rust and Torch
As seen in Chapter2, we can use the torch deep learning library,1 which

many developers know as pytorch. Since in the case of computer vision,

deep learning has been shown to have the best results, we will be focusing

mostly on creating and using deep neural models. Currently torch is the

most usable in terms of creating and using deep neural models in Rust;

and hence in this chapter, we will mostly be working in the torch paradigm.

6.1.3  �Torch Dataset
We will now create a Rust project for image classification. First create

a directory chapter 6 and inside it we can create a pytorch-image-

classification project (Listing 6-1).

1�https://pytorch.org/.

Figure 6-2.  Relu function

Chapter 6 Computer Vision

https://pytorch.org/

233

Listing 6-1.  Create image classifi cation project

$ cd chapter6

$ cargo new pytorch-image-classification --bin

$ cd pytorch-image-classification

$

Since we will be working with the torch dependency, let’s download

the library files as well and create established references to them so that

the tch library is able to find the relevant core dependencies (Listing 6-2).

Listing 6-2.  Download mkl and libtorch dependencies

$ �wget https://github.com/intel/mkl-dnn/releases/download/

v0.19/mklml_mac_2019.0.5.20190502.tgz

$ gunzip -c mklml_mac_2019.0.5.20190502.tgz | tar xvf -

$ �wget https://download.pytorch.org/libtorch/cpu/libtorch-

macos-1.1.0.zip

$ unzip libtorch-macos-1.1.0.zip

$ �export LD_LIBRARY_PATH=mklml_mac_2019.0.5.20190502/lib:"$LD_

LIBRARY_PATH"

$ export LIBTORCH=libtorch

$ export LD_LIBRARY_PATH=${LIBTORCH}/lib:$LD_LIBRARY_PATH

$

To build an image classification model, we will be using the

Caltech1012 dataset. To download the files, go to the link that is given in the

footnote and download the images (Listing 6-3).

2�http://www.vision.caltech.edu/Image_Datasets/Caltech101/.

Chapter 6 Computer Vision

http://www.vision.caltech.edu/Image_Datasets/Caltech101/

234

Listing 6-3.  Download images

$ wget http://www.vision.caltech.edu/Image_Datasets\

/Caltech101/101_ObjectCategories.tar.gz

$ gunzip -c 101_ObjectCategories.tar.gz | tar xvf -

$

Or you can download using the browser. If you click on the link

http://www.vision.caltech.edu/Image_Datasets/Caltech101/ in

your browser, you should get a link as shown in Figure 6-3. If downloaded

using the browser, you would still need to uncompress it using the gunzip

command.

Figure 6-3.  Download caltech101

Similar to torch-vision, to work with image datasets, we have the

vision::Dataset structure. Let;s take a look at this structure (Listing 6-4).

Listing 6-4.  tch-rs/src/vision/dataset.rs

#[derive(Debug)]

pub struct Dataset {

 pub train_images: Tensor,

 pub train_labels: Tensor,

 pub test_images: Tensor,

 pub test_labels: Tensor,

 pub labels: i64,

}

A handy function in the tch crate to load the images and convert

it to the dataset mentioned above is through using the function

tch::vision::imagenet::load_from_dir. To do that, we will need to

Chapter 6 Computer Vision

http://www.vision.caltech.edu/Image_Datasets/Caltech101/

235

separate the caltech101 files that we have created into training and val folders

in the below format. Inside the root folder, we need to have two folders,

“train” and “val,” and inside those folders we need to have the different

images inside the folders with folder names as the labels. Or, in other words,

all images with the same label would be in the same folder (Listing 6-5).

Listing 6-5.  Dataset directory that we need

dataset

 train

 accordion

 image_0001.jpg

 image_0002.jpg

 airplanes

 image_0001.jpg

 image_0060.jpg

 ...

val

 accordion

 image_0036.jpg

 airplanes

 image_0685.jpg

 ...

The caltech dataset when uncompressed is in this format (Listing 6-6).

Listing 6-6.  Current directory structure

101_ObjectCategories

 accordion

 image_0001.jpg

 image_0002.jpg

 airplanes

Chapter 6 Computer Vision

236

 image_0001.jpg

 image_0002.jpg

 ...

102 directories, 9145 files

Although the directory structure is mostly similar, we still will need to

write a small function that will split the dataset into train and validation

sets. The function in Listing 6-7 is written for this purpose and is a recursive

function where if path is a directory, then we will go deeper or else we will

run the testing function on one file and training function on the other files.

The variable this_label is there to check if the testing function has already

been run on the current label. We will implement the train_fn and

test_fn as functions that implement the actual movement. This could

have been implemented is the same visit_dir function, but implementing

this as separate functions will make this more modular and easily testable.

Listing 6-7.  chapter6/pytorch-image-classifi cation/src/main.rs

use std::io;

use std::fs::{self, DirEntry, copy, create_dir_all};

use std::path::Path;

fn visit_dir(dir: &Path,

 train_fn: &Fn(&DirEntry),

 test_fn: &Fn(&DirEntry)) -> io::Result<()> {

 if dir.is_dir() {

 let mut this_label = String::from("");

 for entry in fs::read_dir(dir)? {

 let entry = entry?;

 let path = entry.path();

 if path.is_dir() {

 visit_dir(&path, train_fn, test_fn)?;

 } else {

Chapter 6 Computer Vision

237

 let full_path: Vec<String> = path.to_str().unwrap()

 .split("/").into_iter()

 .map(|x| x[..].to_string()).collect();

 if this_label == full_path[1] {

 train_fn(&entry); // move the training file

 } else {

 test_fn(&entry); // move the testing file

 }

 // the second entry is the label

 this_label = full_path[1].clone();

 }

 }

 }

 Ok(())

}

Now we will need to define the actual file copying function from the

source folder to the destination folder. Remember that our destination

path should be in the format “root_dataset_foldername > ‘train’ or ‘val’

folder based on if the file is a training file or a validation file > label as

folder name for the particular image > image file.” The function should

create all the intermediate directories in case they are not present. This can

be implemented using the move_file function in Listing 6-8.

Listing 6-8.  chapter6/pytorch-image-classifi cation/src/main.rs

use std::fs::{self, DirEntry, copy, create_dir_all};

const DATASET_FOLDER: &str = "dataset";

fn move_file(

 from_path: &DirEntry, to_path: &Path)

 -> io::Result<()> {

 let root_folder = Path::new(DATASET_FOLDER);

Chapter 6 Computer Vision

238

 let second_order = root_folder.join(to_path);

 �let full_path: Vec<String> = from_path.path().to_str().

unwrap()

 �.split("/").into_iter().map(|x| x[..].to_string()).

collect();

 let label = full_path[1].clone();

 let third_order = second_order.join(label);

 create_dir_all(&third_order)?;

 let filename = from_path.file_name();

 let to_filename = third_order.join(&filename);

 copy(from_path.path(), to_filename)?;

 Ok(())

}

As we can see in Listing 6-8, root folder is the dataset folder, and

to_path is essentially if the file needs to go to the train folder or the

validation folder. Next we will split the source path to the full_path

variable so that we are able to retrieve the label from the full path. Once

all the paths are joined, the function create_dir_all from std::fs

standard library is used to create all the directories. The respective file

name is parsed from the from_path variable, joined to the to_filename

variable. Once we have successfully constructed the full path for the

destination path, we pass the destination path: in other words, the to_

filename variable to the copy function from std::fs standard library to

create the folder structure.

We should now be able to run this code and segregate the dataset to

train and val images (Listing 6-9).

Chapter 6 Computer Vision

239

Listing 6-9.  chapter6/pytorch-image-classifi cation/src/main.rs

fn main() {

 let obj_categories = Path::new("101_ObjectCategories");

 let move_to_train = |x: &DirEntry| {

 let to_folder = Path::new("train");

 move_file(&x, &to_folder).unwrap();

 }

 let move_to_test =

 |x: &DirEntry| {

 let to_folder = Path::new("val");

 move_file(&x, &to_folder).unwrap();

 };

 visit_dir(

 &obj_categories, &move_to_train,

 &move_to_test).unwrap();

 println!(

 �"files kept in the imagenet format in {}", DATASET_

FOLDER);

 ... remaining code

Run the code upto Listing 6-9 here and you should see that the folders

are being moved into the respective folders (Listing 6-10).

Listing 6-10.  pytorch-image-classifi cation output for now

$ cargo run

warning: clang: warning: -Wl,-rpath=chapter6/pytorch-image-

classification/libtorch/lib: 'linker' input unused [-Wunused-

command-line-argument]

 Finished dev [unoptimized + debuginfo] target(s) in 0.05s

Chapter 6 Computer Vision

240

 �Running `target/debug/pytorch-image-classification`

files kept in the imagenet format in dataset

$ ls dataset

train val

In the code in Listing 6-10, we create two closures, move_to_train

and move_to_test that will pass to move_file function the appropriate

destination folder. These closures are then passed to the visit_dir

function that will run them as we had already seen. Running the code

until now should segregate the folders and arrange them in the imagenet

format. We should now be able to use the load_from_dir function, which

is a handy function in torch::vision. This will load the directory in the

correct format so that tch will be able to act on it. See Listing 6-11.

Listing 6-11.  chapter6/pytorch-image-classifi cation/src/main.rs

use tch::vision::imagenet::load_from_dir;

fn main() {

 // previous code ...

 let image_dataset = load_from_dir(DATASET_FOLDER).unwrap();

 // remaining code ...

}

Pytorch and hence tch uses the NCHW format for images. If the image

shape is [256, 3, 224, 224], it means that the number of samples is 256,

there are 3 channels for each image, and 224x224 is the height and width of

the dataset.

6.1.4  �CNN Model
Now that our data is in the correct format, we will work on defining the

model. The advantage in Rust is that the model can be a simple structure

(Listing 6-12).

Chapter 6 Computer Vision

241

Listing 6-12.  chapter6/pytorch-image-classifi cation/src/main.rs

use tch::{Device, Tensor, nn};

use tch::nn::{ModuleT, OptimizerConfig, conv2d, linear};

#[derive(Debug)]

struct CnnNet {

 conv1: nn::Conv2D,

 conv2: nn::Conv2D,

 fc1: nn::Linear,

 fc2: nn::Linear,

}

A new method for the struct in Listing 6-12 can be implemented, which

creates an instance of CnnNet.

Listing 6-13.  chapter6/pytorch-image-classifi cation/src/main.rs

const LABELS: i64 = 102;

const W: i64 = 224;

const H: i64 = 224;

const C: i64 = 3;

impl CnnNet {

 fn new(vs: &nn::Path) -> CnnNet {

 let conv1 = conv2d(vs, C, 32, 5, Default::default());

 let conv2 = conv2d(vs, 32, 64, 5, Default::default());

 let fc1 = linear(vs, 1024, 1024, Default::default());

 let fc2 = linear(vs, 1024, LABELS, Default::default());

 CnnNet {

 conv1,

 conv2,

Chapter 6 Computer Vision

242

 fc1,

 fc2,

 }

 }

}

In Listing 6-13, conv1 is a convolutional layer with input dimension C,

which is a constant of 3 and an output dimension of 32. The input

dimension needs to be 3, because we will define conv1 to be the first

convolutional layer and in our dataset each image is comprised of 3

channels. Further conv1 can have a kernel size of 5x5, which is given by the

fourth parameter. The last parameter is the convolutional config, and we

can pass default parameters here. The default parameters can be seen in

the conv.rs file in the tch-rs library (Listing 6-14).

Listing 6-14.  tch-rs/src/nn/conv.rs

impl Default for ConvConfig {

 fn default() -> Self {

 ConvConfig {

 stride: 1,

 padding: 0,

 dilation: 1,

 groups: 1,

 bias: true,

 ws_init: super::Init::KaimingUniform,

 bs_init: super::Init::Const(0.),

 }

 }

}

Moving on with the description of Listing 6-8, we will have conv2

similar to conv1 with the appropriate dimensions. These dimensions will

be explained soon. We will also create two densenets fc1 and fc2, with

Chapter 6 Computer Vision

243

the last dimension of fc2 the same as the number of labels defined by the

LABELS constant.

In pytorch, the python equivalent, the model is created by subclassing

from torch.nn.Module. Similarly, when using tch in Rust, we will need to

implement nn::ModuleT trait, which will have the relevant functions that

can be used for training the model. See Listing 6-15.

Listing 6-15.  chapter6/pytorch-image-classifi cation/src/main.rs

use tch::{Device, Tensor, nn};

const BATCH_SIZE: i64 = 16;

impl nn::ModuleT for CnnNet {

 fn forward_t(&self, xs: &Tensor, train: bool) -> Tensor {

 xs.view(&[-1, C, H, W]) // out dim: [16, 3, 224, 224]

 .apply(&self.conv1) // [16, 32, 220, 220]

 .max_pool2d_default(2) // [16, 32, 110, 110]

 .apply(&self.conv2) // [16, 64, 106, 106]

 .max_pool2d_default(2) // [16, 64, 53, 53]

 .view(&[BATCH_SIZE, -1]);// [16, 179776]

 .apply(&self.fc1) // [16, 1024]

 .relu() // [16, 1024]

 .dropout_(0.5, train) // [16, 1024]

 .apply(&self.fc2) // [16, 102]

 }

}

In the code in Listing 6-15, the code, along with the changing

dimensions with each tensor transformation, is shown. The dimensions of

the input tensor xs changes from [16, 3, 224, 224] to [16,102] dimensions,

which is (batch_size, outputs) as the transformations are applied.

When you are executing this code, you can verify if the dimensions match

in your case as well.

Chapter 6 Computer Vision

244

Once the model is created, we should be able to train it on the dataset.

The training process for the torch model will generally be similar. We

initialize the model instance, we define the loss function, and then we

initialize the optimizer. We can now change the return name to be of type

Fallible as well, which is a standard in the tch repo. This can be seen in the

code given in Listing 6-16.

Listing 6-16.  chapter6/pytorch-image-classifi cation/src/main.rs

use failure;

fn main() -> failure::Fallible<()> {

 // previous code ...

 let image_dataset = load_from_dir(dataset_folder).unwrap();

 let vs = nn::varstore::new(device::cuda_if_available());

 let opt = nn::adam::default().build(&vs, 1e-4)?;

 let net = cnnnet::new(&vs.root());

 for epoch in 1..100 {

 for (bimages, blabels)

 in image_dataset.train_iter(batch_size)

 .shuffle().to_device(vs.device()) {

 let loss = net

 .forward_t(&bimages, true)

 .cross_entropy_for_logits(&blabels);

 opt.backward_step(&loss);

 }

 let test_accuracy =

 net.batch_accuracy_for_logits(&image_dataset.test_images,

 &image_dataset.test_labels,

 vs.device(), 1024);

Chapter 6 Computer Vision

245

 println!("epoch: {:4} test acc: {:5.2}%",

 epoch, 100. * test_accuracy,);

 }

 // remaining code ...

 Ok(())

}

In Listing 6-16, vs is used to store the common configurations to be

used in different stages of the training process. As stated earlier, the model

is initialized with the variable net. For 100 epochs, batches are taken from

the dataset for training. Since the training variable is an instance of the

Dataset struct, the bimages and blabels are neatly retrieved and in this

case they are of the shape [32, 3, 244, 244] for the images and [32] for the

labels. The forward_t method will pass the tensors through the whole

architecture defined previously and opt.backward_step will compute the

gradients. After the completion of 100 epochs, we should have our model

trained.

You should now be able to run the package using cargo run. Once run,

check if the trained model.ot file gets generated.

Note S ince all this earlier code uses a lot of computing resources,
your laptop may not be able to run the code. If that happens, you
can try reducing the number of labels that you are predicting. In
that case, do change the LABELS parameter as well and make it the
same as the number of labels that you are predicting. You can also try
reducing the BATCH_SIZE as well.

Chapter 6 Computer Vision

246

6.1.5  �Model Building and Debugging
When building the models, it is very important to keep track of the shapes

for the different tensors that are built as the data flows. Otherwise, getting

errors such as those shown in Listing 6-17 are quite common.

Listing 6-17.  Possible size mismatch error when training

thread 'main' panicked at 'called `Result::unwrap()` on an

`Err`

value: TorchError { c_error: "size mismatch,

m1: [2809 x 1024], m2: [179776 x 1024] at

/pytorch/aten/src/TH/generic/THTensorMath.cpp:961" }',

src/libcore/result.rs:997:5

Or it could be something like what is shown in Listing 6-18.

Listing 6-18.  Possible batch size failure when training

thread 'main' panicked at 'called `Result::unwrap()` on an

`Err`

value: TorchError { c_error:

"Assertion `THTensor_sizeLegacyNoScalars(target, 0) == batch_

size\' failed.

at /pytorch/aten/src/THNN/generic/ClassNLLCriterion.c:84" }',

src/libcore/result.rs:997:5

In those scenarios, we would need to debug the net. One way of

debugging is that we can transfer the app to a python application and

run the app through there, printing the shape throughout as we go. See

Listing 6-19.

Chapter 6 Computer Vision

247

Listing 6-19.  Ex code in pytorch

import torch.nn as nn

import torch.nn.functional as F

class Net(nn.Module):

 def __init__(self):

 super(Net, self).__init__()

 self.conv1 = nn.Conv2d(3, 32, 5)

 self.pool1 = nn.MaxPool2d(2, 2)

 self.fc1 = nn.Linear(1600, 1024)

 self.fc2 = nn.Linear(1024, 10)

 def forward(self, x):

 x = self.conv1(x)

 print(x.shape)

 x = self.pool1(x)

 print(x.shape)

 x = F.relu(self.fc1(x))

 print(x.shape)

 x = F.dropout(x, training=True)

 print(x.shape)

 x = self.fc2(x)

 print(x.shape)

 return x

net = Net()

The above logic can be utilized in case of Rust as well. We can

transform the previous forward function to the above way of writing and

plug in println statements as we go (Listing 6-20).

Chapter 6 Computer Vision

248

Listing 6-20.  Put print statements in the convnet for good

debugging

impl nn::ModuleT for CnnNet {

 fn forward_t(&self, xs: &Tensor, train: bool) -> Tensor {

 let xs_prime = xs.view(&[-1, C, H, W]);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.apply(&self.conv1);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.max_pool2d_default(2);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.apply(&self.conv2);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.max_pool2d_default(2);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.view(&[BATCH_SIZE, -1]);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.apply(&self.fc1);

 println!("{:?}", xs_prime.size());

 let mut xs_prime = xs_prime.relu();

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.dropout_(0.5, train);

 println!("{:?}", xs_prime.size());

 let xs_prime = xs_prime.apply(&self.fc2);

 println!("{:?}", xs_prime.size());

 xs_prime

 }

}

This should be able to print the dimensions for the different layers

when running through the network.

Chapter 6 Computer Vision

249

6.1.6  �Pretrained Models
Generally, once the models are trained, they need to be shipped to a

production environment where the model inference happens. In the tch

framework, the trained model can be saved as an .ot file and then loaded

and served in the inference environment. A variable store can be used to

save the model (Listing 6-21).

Listing 6-21.  Model saving

fn main() {

 // previous code with model training ...

 vs.save("model.ot")?;

}

This should save the model in the current directory once we run the

training using cargo run. Once the model is saved, we can then load

the model in the inference app and run predictions on it. Since each

model architecture is different, there is no boilerplate functioning code

that will work in all scenarios. The developer would need access to each

architecture to be able to make predictions.

The tch/examples/pretrained models have examples of how to load a

pretrained model in case they belong to one of the standard architectures.

The standards architectures that are possible to be loaded are alexnet,

densenet, imagenet, resnet, squeezenet, and VGG16. Since the code is

pretty standard, we will go with the pretrained model example that is

shown in the tch repo. Loading the models can be seen using the code

shown in Listing 6-22.

Chapter 6 Computer Vision

250

Listing 6-22.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/pretrained-models/main.rs

use tch::vision::{

 alexnet, densenet, imagenet,

 inception, resnet, squeezenet, vgg};

We can load the image and resize it to the imagenet dimension of

224x224, which is a convention that is used when working with this

package (Listing 6-23).

Listing 6-23.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/pretrained-models/main.rs

extern crate failure;

extern crate tch;

use tch::nn::ModuleT;

use tch::vision::{

 �alexnet, densenet, efficientnet, imagenet, inception,

mobilenet, resnet, squeezenet, vgg,

};

pub fn main() -> failure::Fallible<()> {

 let args: Vec<_> = std::env::args().collect();

 let (weights, image) = match args.as_slice() {

 [_, w, i] => (std::path::Path::new(w), i.to_owned()),

 _ => bail!("usage: main resnet18.ot image.jpg"),

 };

 let image = imagenet::load_image_and_resize224(image)?;

 // remaining code ...

}

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs

251

Now let’s try working with the resnet18 model. We would need to have

a way to encode the architecture in our deep network, which needs to be

an instance of the ModuleT struct. Hence we create a VarStore variable and

create a resnet18 net instance (Listing 6-24).

Listing 6-24.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/pretrained-models/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let mut vs = tch::nn::VarStore::new(tch::Device::Cpu);

 �let net: Box<dyn ModuleT> = Box::new�(resnet::resnet18

(&vs.root(),imagenet::

CLASS_COUNT)),

 // remaining code ...

Now that the model basic architecture is initialized, we should be able

to load the weights and create the trained model (Listing 6-25).

Listing 6-25.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/pretrained-models/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 vs.load(weights)?;

 // remaining code ...

}

Once we are able to create the model, we should now be able to run

predictions on our model. See Listing 6-26.

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs

252

Listing 6-26.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/pretrained-models/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 // Apply the forward pass of the model to get the logits.

 let output = net

 .forward_t(&image.unsqueeze(0), /*train=*/ false)

 .softmax(-1); // Convert to probability.

 // Print the top 5 categories for this image.

 for (probability, class) in imagenet::top(&output, 5).iter() {

 println!("{:50} {:5.2}%", class, 100.0 * probability)

 }

 // remaining code ...

}

Similar to loading a saved model for standard and common

architecture, for the models that we have trained and saved, we will need

access to the original model architecture struct that was created to create

the model. So, we will create a path to the model file and the image file.

(Listing 6-27)

Listing 6-27.  chapter6/pytorch-image-classifi cation/src/main.rs

fn main() -> failure::Fallible<()> {

 // previous model building code ...

 let weights = Path::new("model.ot");

 let image = "image.jpg";

 // remaining code ...

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/pretrained-models/main.rs

253

After that, the code that we will see is similar to Listing 6-27 except

that in this case we will be creating a model from the CnnNet that we had

created before. See Listing 6-28.

Listing 6-28.  chapter6/pytorch-image-classifi cation/src/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 �// Load the image file and resize it to the usual imagenet

dimension of 224x224.

 let image = load_image_and_resize224(image)?;

 // Create the model and load the weights from the file.

 let mut vs = tch::nn::VarStore::new(tch::Device::Cpu);

 �let net: Box<dyn ModuleT> = Box::new(CnnNet::new(&vs.

root()));

 vs.load(weights)?;

 // Apply the forward pass of the model to get the logits.

 let output = net

 .forward_t(&image.unsqueeze(0), /*train=*/ false)

 .softmax(-1); // Convert to probability.

 // Print the top 5 categories for this image.

 for (probability, class) in top(&output, 5).iter() {

 println!("{:50} {:5.2}%", class, 100.0 * probability)

 }

 Ok(())

}

Chapter 6 Computer Vision

254

6.2  �Transfer Learning
Training a sufficiently deep neural network for high accuracy is generally

not feasible as neural nets require a huge amount of data, and such a large

amount of data may not be present, especially in the early stages of the

product. Instead a pretrained conv net that is trained on a large dataset

is either used as an initializer or for gathering the set of features from the

image. In this case, we will freeze the weights for all the network except

that of the final layer. This last fully connected layer is replaced with a new

one with random weights, and only this layer is trained. A possible transfer

learning architecture is shown in Figure 6-4.

Figure 6-4.  Transfer Learning

To proceed with this example, we will download a pretrained model

from this url: https://github.com/LaurentMazare/ocaml-torch/

releases/download/v0.1-unstable/resnet18.ot. See Listing 6-29.

Chapter 6 Computer Vision

https://github.com/LaurentMazare/ocaml-torch/releases/download/v0.1-unstable/resnet18.ot
https://github.com/LaurentMazare/ocaml-torch/releases/download/v0.1-unstable/resnet18.ot

255

Listing 6-29.  Download resnet pretrained model

wget https://github.com/LaurentMazare/ocaml-torch/releases/

download/v0.1-unstable/resnet18.ot

As the code for this section is also standard on how to load and make

predictions, we will follow the example in main repo.

To be able to do this, we will need to load the dataset (Listing 6-30).

Listing 6-30.  chapter6/pytorch-image-classifi cation/src/main.rs

#[macro_use]

extern crate failure;

extern crate tch;

use tch::nn::{self, OptimizerConfig};

use tch::vision::{imagenet, resnet};

pub fn main() -> failure::Fallible<()> {

 let args: Vec<_> = std::env::args().collect();

 let (weights, dataset_dir) = match args.as_slice() {

 [_, w, d] => (std::path::Path::new(w), d.to_owned()),

 _ => bail!("usage: main resnet18.ot dataset-path"),

 };

 let dataset = imagenet::load_from_dir(dataset_dir)?;

 // remaining code ...

Similar to the pretrained network, we will need to create the model and

load the weights to the model. As seen before, we can keep the weights in a

variable store (Listing 6-31).

Chapter 6 Computer Vision

256

Listing 6-31.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/transfer-learning/main.rs

let mut vs = tch::nn::VarStore::new(tch::Device::Cpu);

let net = resnet::resnet18_no_final_layer(&vs.root());

vs.load(weights)?;

We will need to store the output of the model in such a way that we are

able to create the resulting vectors and tell pytorch that we don’t need to store

the graph as we are not going to compute the gradients. See Listing 6-32.

Listing 6-32.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/transfer-learning/main.rs

let train_images = tch::no_grad(

 || dataset.train_images.apply_t(&net, false));

let test_images = tch::no_grad(

 || dataset.test_images.apply_t(&net, false));

6.2.1  �Training
We can now append a small linear layer on top of the extracted layers and

train only the linear part of the layer. This way, less of our data will be used

to effectively train only a small part of the net instead of trying to train on

the whole model. We create the model and a variable store is used to store

the trainable variables (Listing 6-33).

Listing 6-33.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/transfer-learning/main.rs

let vs = tch::nn::VarStore::new(tch::Device::Cpu);

let linear = nn::linear(vs.root(), 512, dataset.labels,

Default::default());

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs

257

Similar to the previous code, we can use adam to minimize the

cross entropy loss in the classification task. Hence we will need to create

an optimizer and iterate on the training dataset. After each epoch, the

accuracy is computed on the training set and printed (Listing 6-34).

Listing 6-34.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/transfer-learning/main.rs

let optimizer = nn::Adam::default().build(&vs, 1e-4)?;

for epoch_idx in 1..1001 {

 let predicted = train_images.apply(&linear);

 �let loss = predicted.cross_entropy_for_logits(&dataset.train_

labels);

 optimizer.backward_step(&loss);

 let test_accuracy = test_images

 .apply(&linear)

 .accuracy_for_logits(&dataset.test_labels);

 �println!("{} {:.2}%", epoch_idx, 100. * f64::from(test_

accuracy));

}

Once the training is done, we can save the file using vs.save("model.

ot")?; which can be again reused in a later training cycle when the next

batch of images is ready.

6.2.2  �Neural Style Transfer
Neural style transfer is a technique used to generate images in the style

of another image. The neural style algorithm takes a content-image and

a style image as input and returns the content image transformed in the

style of the style image. This is done by creating two distances: one for the

content and another for the image. A new image is created such that the

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/transfer-learning/main.rs

258

content distance from the content image and the style distance from the

style image is minimized.

Content Loss  To create such a transformed image, we need a way

to control the amount of content image that ends up in the optimized

output image. For this, a way to determine the content loss needs to be

determined. The main challenge in the content loss is figuring out a way

to extract only the content features of an image, and not the style of the

image. The solution to this as per the Artistic Style paper [2] is that using

the feature maps of the different convolutional layers should solve this

problem. Trained convnets learn to represent different parts of the image;

the initial layers capture the rough, underlying pattern; and the final layers

capture the distinct features. It’s the intermediate layers that capture the

spatial characteristics of the image, which is what is needed here.

Thus, in this case the content loss is calculated by just computing

the mean-square error on some of the upper layers. This error helps in

ensuring that the extracted images happen at the same on-screen places

between the content and current images (Listing 6-35).

Listing 6-35.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

let content_loss: Tensor = CONTENT_INDEXES

 .iter()

 .map(

 |&i| input_layers[i].mse_loss(&content_layers[i], 1))

 .sum();

Style loss  The style loss is responsible for incorporating the style of

image in the final image. According to the paper, the style of an image can

be encoded using a gram matrix of the image. The gram matrix is made by

computing the dot product of the flattened style features and themselves

(Listing 6-36).

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

259

Listing 6-36.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

fn gram_matrix(m: &Tensor) -> Tensor {

 let (a, b, c, d) = m.size4().unwrap();

 let m = m.view(&[a * b, c * d]);

 let g = m.matmul(&m.tr());

 g / (a * b * c * d)

}

fn style_loss(m1: &Tensor, m2: &Tensor) -> Tensor {

 gram_matrix(m1).mse_loss(&gram_matrix(m2), 1)

}

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let style_loss: Tensor = STYLE_INDEXES

 .iter()

 .map(

 |&i| style_loss(&input_layers[i], &style_layers[i]))

 .sum();

 // remaining code ...

}

Observe that the style of an image is not dependent on the pixel values

but the relationship between the pixel values. The gram matrix delocalizes

all the information of the style image, such as texture, shape, and weights,

and then the dot product is taken. This results in features that co-occur

more get greater weightage, and features that do not have similarity across

the style image do not get weightage.

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

260

Now that we have the basic idea on how style transfer works, let’s

look at the full implementation. To be able to do neural style transfer, we

will need to load the content image and the style image. These will need

to be torch tensors and hence we can use the imagenet module from

tch::vision to load the images (Listing 6-37).

Listing 6-37.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let style_img = imagenet::load_image(style_img)?

 .unsqueeze(0).to_device(device);

 let content_img = imagenet::load_image(content_img)?

 .unsqueeze(0).to_device(device);

 // remaining code ...

}

We will also need to load a pretrained model. We can use a

19-layer VGG network like the one used in the paper. This is another

hyperparameter that you can experiment with and see if there can be

another model that would provide a better feature for the content image.

Download the model by going to this link or using your favorite download

command (Listing 6-38).

Listing 6-38.  Download vgg pretrained model

$ �wget https://github.com/LaurentMazare/ocaml-torch/releases/

download/v0.1-unstable/vgg16.ot

$

This VGG model consists of two Sequential child modules: features

(containing the convolution and pooling layers), and the classifier

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

261

(containing the fully connected layers). To be able to capture the content

from the image, we will need to use the features layer. We will load the

weights from the model and freeze the model (Listing 6-39).

Listing 6-39.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let mut net_vs = tch::nn::VarStore::new(device);

 let net = vgg::vgg16(&net_vs.root(),

 imagenet::CLASS_COUNT);

 net_vs.load(weights)?;

 net_vs.freeze();

 // remaining code ...

}

We now run the model on the style and content images. These calls

return a vector of the extracted features for each of the model layers

(Listing 6-40).

Listing 6-40.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let style_layers = net.forward_all_t(

 &style_img, false, Some(max_layer));

 let content_layers = net.forward_all_t(

 &content_img, false, Some(max_layer));

 // remaining code ...

}

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

262

We will use a gradient optimization method to optimize an image. For

that we create a second variable store to hold this image. The initial values

for this image will be by copying the content image. This image will be

transformed so that the style is similar to the style image. See Listing 6-41.

Listing 6-41.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let vs = nn::VarStore::new(device);

 let input_var = vs.root().var_copy("img", &content_img);

 // remaining code ...

}

We will now create the optimizer, which will be an instance of the use

Adam optimization algorithm (Listing 6-42).

Listing 6-42.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 let opt = nn::Adam::default().build(&vs, LEARNING_RATE)?;

// remaining code ..}

Now in the gradient descent loop cycle, the content and style losses

will need to be computed. They will then be summed together, and the

aggregate loss will be optimized using the optimizer created in Listing 6-42.

For every 1000 epochs, we can compute the current loss and write the

current image to file (Listing 6-43).

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

263

Listing 6-43.  https://github.com/LaurentMazare/tch-rs/blob/
master/examples/neural-style-transfer/main.rs

pub fn main() -> failure::Fallible<()> {

 // previous code ...

 for step_idx in 1..(1 + TOTAL_STEPS) {

 let input_layers = net.forward_all_t(

 &input_var, false, Some(max_layer));

 let style_loss: Tensor = STYLE_INDEXES

 .iter()

 .map(

 |&i| style_loss(&input_layers[i], &style_layers[i]))

 .sum();

 let content_loss: Tensor = CONTENT_INDEXES

 .iter()

 .map(

 |&i| input_layers[i].mse_loss(&content_layers[i], 1))

 .sum();

 let loss = style_loss * STYLE_WEIGHT + content_loss;

 opt.backward_step(&loss);

 if step_idx % 1000 == 0 {

 println!("{} {}", step_idx, f64::from(loss));

 �imagenet::save_image(&input_var, &format!("out{}.jpg",

step_idx))?;

 }

 }

 // remaining code ...

}

Chapter 6 Computer Vision

https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs
https://github.com/LaurentMazare/tch-rs/blob/master/examples/neural-style-transfer/main.rs

264

We should be able to run the code now. Keep the TOTAL_STEPS 5000 or

higher so that we have a high number of images and can choose the image

that seems the most coherent yet similar to the target style.

6.3  �Tensorflow and Face Detection
In the previous sections, we have mostly worked on torch and the

corresponding Rust framework tch. In this section we will be using

tensorflow and look at an application for face detection. The challenge

is to take an image, identify the faces, and create a new image with boxes

drawn around the faces. As seen in Chapter 2, just running the inference

in tensorflow is easier than training a model, and hence we will mostly be

working toward model inference in this case.

Create the face-detection-tf package for detecting faces and boxing the

areas around them. See Listing 6-44.

Listing 6-44.  Create face-detection-tf Rust package

$ cd chapter6

$ cargo new face-detection-tf --bin

$ cd face-detection-tf

$

Download the following trained model. This model will be used to

predict an image. Figure 6-5 is the predicted image with the faces boxed.3

See Listing 6-45.

Listing 6-45.  Download mtcnn pretrained model

$ wget https://github.com/blaueck/tf-mtcnn/raw/master/mtcnn.pb

$

3�Original Image Source http://sannadullaway.com/7xdocsffg0d917t2gqkbqpqy
z36qgx.

Chapter 6 Computer Vision

http://sannadullaway.com/7xdocsffg0d917t2gqkbqpqyz36qgx
http://sannadullaway.com/7xdocsffg0d917t2gqkbqpqyz36qgx

265

Or you can download from this url: https://github.com/blaueck/tf-

mtcnn/blob/master/mtcnn.pb.

Now let’s talk about the dependencies. We will need the tensorflow

crate to read the model and make the inferences on an image using the

model. Structopt crate will be used to parse the command line and make

the input output parsing better. Apart from these we will need the image

crate to read, write, and make changes in the image. The crate imageproc

help in the related image processing operations. Hence we should have a

Cargo.toml similar to the one shown in Listing 6-46.

Listing 6-46.  chapter6/face-detection-tf/src/main.rs

[package]

name = "face-detection-tf"

version = "0.1.0"

edition = "2018"

[dependencies]

tensorflow = "0.13.0"

structopt = "0.2.15"

image = "0.21.1"

imageproc = "0.18.0"

We can now start with defining the command line. Our app can have

the image file name as one of the inputs and an output file name as the file

that would need to be created with the faces identified. See Listing 6-47.

Listing 6-47.  chapter6/face-detection-tf/src/main.rs

use std::path::PathBuf;

use structopt::StructOpt;

#[derive(Debug, StructOpt)]

#[structopt(name = "face-detection-tf", about = "Face

Identification")]

Chapter 6 Computer Vision

https://github.com/blaueck/tf-mtcnn/blob/master/mtcnn.pb
https://github.com/blaueck/tf-mtcnn/blob/master/mtcnn.pb

266

struct Opt {

 �#[structopt(short = "i", long = "input", parse(from_os_

str))]

 input: PathBuf,

 �#[structopt(short = "o", long = "output", parse(from_os_

str))]

 output: PathBuf

}

Creating the above StructOpt struct means that when we plug in

let opt = Opt::from_args(); in the main function, we will be able

to pass command-line arguments as in ./face-detection-tf -i

inputfilename.jpg -o outputfilename.jpg or pass --input and

--output as the command-line arguments. To run this check if the

command-line arguments run now, we can put the following lines in

the main function of the code and check if the command lines are being

parsed correctly. See Listing 6-48.

Listing 6-48.  chapter6/face-detection-tf/src/main.rs

use std::error::Error;

fn main() -> Result<(), Box<dyn Error>> {

 let opt = Opt::from_args();

 // since this is plumbing we will take

 // care that we dont move over ownership of the

 // opt objects using to_owned. In the final code

 // you probably will not need this code.

 println!("{:?}",

 (opt.input.to_owned(), opt.output.to_owned()));

 Ok(())

}

Chapter 6 Computer Vision

267

Now running cargo run should give us the correct outputs (Listing 6-49).

Listing 6-49.  chapter6/face-detection-tf/src/main.rs

$ cargo run -- -i input_image.jpg -o out.jpg

 Compiling face-detection-tf v0.1.0 (path to face-detection-tf)

 Finished dev [unoptimized + debuginfo] target(s) in 28.24s

 �Running `target/debug/face-detection-tf -i input_image.jpg

-o out.jpg`

("input_image.jpg", "out.jpg")

$

We can now see if we are able to load the model. We will first load the

model as a byte array, and then we will try to infer the graph from the byte

array. If the model file is corrupted, this should give an error in this case

(Listing 6-50).

Listing 6-50.  chapter6/face-detection-tf/src/main.rs

use tensorflow::Graph;

use tensorflow::ImportGraphDefOptions;

use tensorflow::{

 Session, SessionOptions, SessionRunArgs, Tensor};

fn main() -> Result<(), Box<dyn Error>> {

 ... prev code ...

 let model = include_bytes!("../mtcnn.pb");

 let mut graph = Graph::new();

 graph.import_graph_def(

 &*model, &ImportGraphDefOptions::new())?;

 let session = Session::new(

 &SessionOptions::new(), &graph)?;

 .. rem code ...

Chapter 6 Computer Vision

268

If the graph is loaded successfully, we should be able to create a

session with this graph.

Now if we check the model from which the graph is created, we can see

that there are some variables that need to be set before running the model

as seen in this line for the model https://github.com/blaueck/tf-

mtcnn/blob/master/mtcnn.py#L9. These variables are min_size, factor,

and thresholds. We will need to assign those variables in our session

before running the session. The values that are assigned in Listing 6-51

are the same as the ones that had been used for the model, but you play

around with these values and see if there are better alternatives.

Listing 6-51.  chapter6/face-detection-tf/src/main.rs

fn main() -> Result<(), Box<dyn Error>> {

 ... previous code ...

 let min_size = Tensor::new(

 &[]).with_values(&[40f32])?;

 let thresholds = Tensor::new(&[3]).with_values(

 &[0.6f32, 0.7f32, 0.7f32])?;

 let factor = Tensor::new(&[]).with_values(&[0.709f32])?;

 let mut args = SessionRunArgs::new();

 //Load our parameters for the model

 args.add_feed(

 &graph.operation_by_name_required("min_size")?,

 0, &min_size);

 args.add_feed(

 &graph.operation_by_name_required("thresholds")?,

 0, &thresholds);

 args.add_feed(

 &graph.operation_by_name_required("factor")?,

 0, &factor);

Chapter 6 Computer Vision

https://github.com/blaueck/tf-mtcnn/blob/master/mtcnn.py#L9
https://github.com/blaueck/tf-mtcnn/blob/master/mtcnn.py#L9

269

 ... remaining code ...

One other variable that needs to be passed, and the most important

one that will enable the graph to recognise the faces, is the input image

tensor. So we will open the input image using the image crate. Once the

image is opened, we will read the values and store in a tensor in BGR

format.4 See Listing 6-52.

Listing 6-52.  chapter6/face-detection-tf/src/main.rs

use image::GenericImageView;

fn get_input_image_tensor(

 opt: &Opt)

 -> Result<Tensor<f32>, Box<dyn Error>> {

 let input_image = image::open(&opt.input)?;

 let mut flattened: Vec<f32> = Vec::new();

 for (_x, _y, rgb) in input_image.pixels() {

 flattened.push(rgb[2] as f32);

 flattened.push(rgb[1] as f32);

 flattened.push(rgb[0] as f32);

 }

 let input = Tensor::new(

 �&[input_image.height() as u64, input_image.width()

as u64, 3])

 .with_values(&flattened)?;

 Ok(input)

}

4�We will need to store in BGR instead of RGB because the model was created to
support opencv. Go to this link for further information: https://stackoverflow.
com/a/33787594/5417164.

Chapter 6 Computer Vision

https://stackoverflow.com/a/33787594/5417164
https://stackoverflow.com/a/33787594/5417164

270

So now as seen in Listing 6-53, we should be able to load the image to

the graph as the input.

Listing 6-53.  chapter6/face-detection-tf/src/main.rs

fn main() -> Result<(), Box<dyn Error>> {

 ... previous code ...

 let input = get_input_image_tensor(&opt)?;

 args.add_feed(

 &graph.operation_by_name_required("input")?, 0, &input);

 ... remaining code ...

}

Now that the inputs are taken care of, we need to create endpoints for

the outputs. This will enable us to fetch the results when the session is run

(Listing 6-54).

Listing 6-54.  chapter6/face-detection-tf/src/main.rs

fn main() -> Result<(), Box<dyn Error>> {

 ... previous code ...

 let bbox = args.request_fetch(

 &graph.operation_by_name_required("box")?, 0);

 let prob = args.request_fetch(

 &graph.operation_by_name_required("prob")?, 0);

 session.run(&mut args)?;

 let bbox_res: Tensor<f32> = args.fetch(bbox)?;

 let prob_res: Tensor<f32> = args.fetch(prob)?;

Chapter 6 Computer Vision

271

 println!("{:?}", bbox_res.dims());

 println!("{:?}", prob_res.dims());

 ... remaining code ...

}

Executing the code in Listing 6-54 until now would print the

dimensions of bbox_res and prob_res (Listing 6-55).

Listing 6-55.  face-detection-tf output

$ cargo run -- --input Solvay_conference_1927.jpg --output

output.jpg

 Finished dev [unoptimized + debuginfo] target(s) in 0.06s

 �Running `target/debug/face-detection-tf --input Solvay_

conference_1927.jpg --output output.jpg`

("Solvay_conference_1927.jpg", "output.jpg")

2019-08-25 16:30:59.485045: I tensorflow/core/platform/cpu_

feature_guard.cc:141] Your CPU supports instructions that this

TensorFlow binary was not compiled to use: SSE4.2 AVX AVX2 FMA

[30, 4]

[30]

$

As we can see, the output dimensions for bbox_res is [30, 4] and prob_

res is [30].

Now we will need to parse the outputs and store in a struct so that we

are able to draw the bounding boxes. For this reason, we will create a BBox

struct so that we are able to store the outputs. See Listing 6-56.

Chapter 6 Computer Vision

272

Listing 6-56.  chapter6/face-detection-tf/src/main.rs

#[derive(Copy, Clone, Debug)]

pub struct BBox {

 pub x1: f32,

 pub y1: f32,

 pub x2: f32,

 pub y2: f32,

 pub prob: f32,

}

We should now be able to store the results as a Vec<BBox> (Listing 6-57).

Listing 6-57.  chapter6/face-detection-tf/src/main.rs

fn main() -> Result<(), Box<dyn Error>> {

 ... previous code ...

 let bboxes: Vec<_> = bbox_res

 .chunks_exact(4)

 �.zip(prob_res.iter()) // combine with the probability

outputs

 .map(|(bbox, &prob)| BBox {

 y1: bbox[0], x1: bbox[1],

 y2: bbox[2], x2: bbox[3],

 prob,

 }).collect();

 ... remaining code ...

}

We should now be able to draw the rectangles around the faces for the

input figure. For that, we will create a new image, called output_image and

which of course should be mutable, with the input image and for all the

Chapter 6 Computer Vision

273

bboxes we will draw rectangles at x1 and y1 with sizes (bbox.x2 - bbox.

x1) and (bbox.y2 - bbox.y1). Once the images have been updated with

rectangles, we can save the changed image (Listing 6-58).

Listing 6-58.  chapter6/face-detection-tf/src/main.rs

use image;

use imageproc;

use imageproc::rect::Rect;

use imageproc::drawing::draw_hollow_rect_mut;

const LINE_COLOUR: Rgba<u8> = Rgba {

 data: [0, 255, 0, 0],

};

fn main() -> Result<(), Box<dyn Error>> {

 ... previous code ...

 let mut output_image = image::open(&opt.input)?;

 for bbox in bboxes {

 let rect = Rect::at(bbox.x1 as i32, bbox.y1 as i32)

 �.of_size((bbox.x2 - bbox.x1) as u32, (bbox.y2 - bbox.y1)

as u32);

 draw_hollow_rect_mut(&mut output_image, rect, LINE_COLOUR);

 }

 output_image.save(&opt.output)?;

 Ok(())

}

Chapter 6 Computer Vision

274

Download the Solvay_conference_1927.jpg file from this url:

http://sannadullaway.com/7xdocsffg0d917t2gqkbqpqyz36qgx if not

already done, and keep in the face-detection-tf root directory. We should

then be able to pass this file to the code and build the resulting image,

which we can call output.jpg (Listing 6-59).

Listing 6-59.  face-detection-tf output

cargo run -- --input Solvay_conference_1927.jpg --output output.jpg

 Finished dev [unoptimized + debuginfo] target(s) in 0.07s

 �Running `target/debug/face-detection-tf --input Solvay_

conference_1927.jpg --output output.jpg`

("Solvay_conference_1927.jpg", "output.jpg")

2019-08-25 14:31:02.256970: I tensorflow/core/platform/cpu_

feature_guard.cc:141] Your CPU supports instructions that this

TensorFlow binary was not compiled to use: SSE4.2 AVX AVX2 FMA

[30, 4]

[30]

Figure 6-5.  Famous Scientists

Chapter 6 Computer Vision

http://sannadullaway.com/7xdocsffg0d917t2gqkbqpqyz36qgx

275

BBox Length: 30, Bboxes:[

 BBox {

 x1: 1031.1285,

 y1: 333.9382,

 x2: 1082.9902,

 y2: 397.1919,

 prob: 1.0,

 },

 ... printing all the boxes ...

 BBox {

 x1: 207.15288,

 y1: 357.41956,

 x2: 241.75725,

 y2: 403.062,

 prob: 0.89407635,

 },

]

Check the folder and we should see the output.jpg file being formed.

Opening the file should give us the image that is shown in the start of this

section.

6.4  �Conclusion
This chapter introduced us to different interesting applications in

Computer Vision. The chapter started with image classification and how

to build an image classifier using tch library, which allows easy usage of

the pytorch deep learning library. Then the chapter went on with using

pretrained networks for image classification when the number of samples

in the dataset are small. The next application for discussion was Neural

Style transfer, and an application was created that took in a content image

and a style image and transformed the content image in the style of the

Chapter 6 Computer Vision

276

style image. The next application in the chapter was how Generative

Neural Networks work and creating a fake facial creator app using the tch

library. After mostly working in the tch library, the chapter also included

an application in identifying faces in an image using the tensorflow library.

In the next chapter, you will learn about other different needs in machine

learning such as statistical analysis in Rust and recommender systems.

6.5  �Bibliography

	 [1]	 cetra3, “Face Detection with Tensorflow Rust”,

[Online; last checked 18 nov 2019]. 2019. URL:

https://cetra3.github.io/blog/face-

detection-with-tensorflow-rust/

	 [2]	 Leon A. Gatys, Alexander S. Ecker, and Matthias

Bethge. “A Neural Algorithm of Artistic Style.” In:

CoRR abs/1508.06576 (2015). arXiv: 1508.06576.

URL: http://arxiv.org/abs/1508.06576.

	 [3]	 cetra3. Face Detection with Tensorflow Rust.

	 [4]	 Greg Surma. Style Transfer - Styling Images with

Convolutional NeuralNetworks. Ed. by Towards Data

Science. [Online; last checked 19 May 2019]. 2014.

URL: https://towardsdatascience.com/style-

transferstyling-images-with-convolutional-

neural-networks-7d215b58f461.

	 [5]	 Tanish Baranwal. Neural Style Transfer Using Tensorflow

2.0. Ed. by Towards Data Science. [Online; last checked

19 May 2019]. 2019. URL: https://towardsdatascience.

com/neural-style-transfer-23a3fb4c6a9e.

	 [6]	 Andrej Karpathy. Convolutional Neural Networks

(CNNs / ConvNets).

Chapter 6 Computer Vision

https://cetra3.github.io/blog/face-detection-with-tensorflow-rust/
https://cetra3.github.io/blog/face-detection-with-tensorflow-rust/
http://arxiv.org/abs/1508.06576
https://towardsdatascience.com/style-transferstyling-images-with-convolutional-neural-networks-7d215b58f461
https://towardsdatascience.com/style-transferstyling-images-with-convolutional-neural-networks-7d215b58f461
https://towardsdatascience.com/style-transferstyling-images-with-convolutional-neural-networks-7d215b58f461
https://towardsdatascience.com/neural-style-transfer-23a3fb4c6a9e
https://towardsdatascience.com/neural-style-transfer-23a3fb4c6a9e

277© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_7

CHAPTER 7

Machine Learning
Domains
In the previous two chapters, we took a look at how machine learning is

approached in the two major domains of NLP and computer vision. These

domains cover the major breakthroughs of machine learning, and the state

of the art is continually being pushed forward in these domains. But a lot

of machine learning and high performance computing come outside these

domains as well. In this chapter, we will take a look at some of these domains

and how Rust can help in creating applications in these domains. We shall

start with Statistical Analysis where we will compute Z-scores for different

diseases in a genetic dataset. Then we will move on to understanding how

high performance code can be written using SIMD and BLAS libraries in

Rust. Finally, we will build a good books recommender in Rust.

By the end of this chapter, you should have a fair understanding of how

machine learning applications can be built in different domains.

7.1  �Statistical Analysis
As data scientists and machine learning engineers, we will need to perform

a lot of statistical analysis on different types of data. The underlying

assumption of this section is that if we are able to parse the data and store

different measurements of a variable in an ndarray matrix, we should be

able to perform statistical analysis on them. Many programming languages

278

that have machine learning libraries implement the ndarray matrix type.

An ndarray is a multidimensional container of items of the same type and

fixed size. The number of dimensions and items in an array is defined by

its shape. In Rust the ndarray type is implemented in the ndarray crate.

The ndarray crate has been discussed in detail in Chapter 4.

To explore how we can use Rust to compute different statistical

parameters, we create a Rust project, named statistics, where we will be

writing the code. Change directory to chapter7 in a terminal and create the

Rust binary package statistics (Listing 7-1).

Listing 7-1.  Rust binary package statistics creation

$ cd chapter7

$ cargo new statistics --bin && cd statistics

We should now have the main.rs file and the Cargo.toml file. Add the

dependencies to the toml file. Since in this case we are trying to compute

different statistics for a dataset, we will be needing the ndarray crate in the

dependencies (Listing 7-2).

Listing 7-2.  chapter7/statistics/Cargo.toml

 [package]

name = "statistics"

version = "0.1.0"

edition = "2018"

[dependencies]

ndarray = "0.12.1"

Now let’s move on to the dataset. As an example of how Rust enables

us to perform statistical analysis on raw data, we can perform a simple

differential expression analysis on a gene expression dataset. We will use

false discovery rates to provide interpretable results when conducting an

analysis that involves large-scale multiple hypothesis testing. Note the

Chapter 7 Machine Learning Domains

279

format of the dataset and how we will be reading the dataset to create the

vectors of our choice.

We can download the raw data from this url” {https://www.ncbi.nlm.

nih.gov/sites/GDSbrowser?acc=GDS1615}. See Listing 7-3.

Listing 7-3.  Download browser data

$ wget ftp://ftp.ncbi.nlm.nih.gov/geo/datasets\

/GDS1nnn/GDS1615/soft/GDS1615_full.soft.gz

$ gunzip GDS1615_full.soft.gz

Once we have downloaded the data, we will see that the file is in this

format (Listing 7-4).

Listing 7-4.  Peep into the file

DATABASE = Geo

DATASET HEADERS Go HERE ...

!dataset_table_begin

DATASET HEADERS HERE ...

1007_s_at MIR4640 80.7287 ...

// THE INDIVIDUAL RECORDS ...

AFFX-TrpnX-M_at --Control 1.62238 ...

!dataset_table_end

The first 193 lines are the headers of the whole request and other

metadata of the data records in the soft file. The records are kept between

the lines !dataset_table_begin ... !dataset_table_end. And the first

record after dataset_table_begin contains the following data structures:

•	 GID : A list of gene identifiers of length d

•	 SID : A list of sample identifiers of length n

•	 STP : A list of sample descriptions of length d

•	 X : A dxn array of gene expression values

Chapter 7 Machine Learning Domains

https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1615}
https://www.ncbi.nlm.nih.gov/sites/GDSbrowser?acc=GDS1615}

280

This dataset contains analysis of peripheral blood mononuclear cells

(PBMCs) from 59 Crohn’s disease patients and 26 ulcerative colitis (UC)

patients. There are 22,283 samples. In this section, we will consider the

mean expression levels in the two groups.

Moving on to the code part, we will first need to parse through the

whole file. So we create a process_file function and pass the path to

the file. Inside the function we can implement the loop to read the lines

(Listing 7-5).

Listing 7-5.  chapter7/statistics/src/main.rs

use std::path::Path;

use std::fs::File;

use std::io::{BufRead, BufReader};

fn process_file(filename: &Path) {

 let file = File::open(filename).unwrap();

 for line in BufReader::new(file).lines() {

 let thisline = line?;

 // business logic on the lines implemented.

 }

}

fn main() {

 let filename = Path::new("GDS1615_full.soft");

 process_file(&filename).unwrap();

}

Now before moving ahead, let us talk about the dependencies that we

would need. Since we will be converting our vectors to ndarray matrices,

we will need ndarray. As an option, if you have higher statistics to be

measured, we can also bring in the ndarray-stats crate, which gives us a

couple of more options when dealing with ndarray vectors.

Chapter 7 Machine Learning Domains

281

Now we should be able to read in the headers. The subset_

description comes first, and then in the next line, subset_sample_id are

given as a list. An example of this is shown below in Listing 7-6.

Listing 7-6.  Sample subset description and sample id

// prev data ..

!subset_description = normal

!subset_sample_id = GSM76115,...

!subset_type = disease state

// subsequent data ...

Keeping that in mind, we can write the below code in Listing 7-7.

Listing 7-7.  chapter7/statistics/src/main.rs

fn process_file(filename: &Path) {

 let mut SIF = HashMap::new();

 let mut subset_description = String::new();

 let mut within_headers = true;

 for line in BufReader::new(file).lines() {

 let thisline = line?;

 let line_split: Vec<String> = thisline

 .split("=")

 .map(|s| s.to_owned()).collect();

 if within_headers {

 if thisline.starts_with("!subset_description") {

 subset_description = line_split[1].trim().to_owned();

 };

 �let subset_ids = if thisline.starts_with("!subset_

sample_id") {

 let subset_ids = line_split[1].split(",");

 �let subset_ids = subset_ids.map(|s| s.trim().to_owned());

 subset_ids.collect()

Chapter 7 Machine Learning Domains

282

 } else {

 Vec::new()

 };

 for k in subset_ids {

 SIF.insert(k, subset_description.to_owned());

 }

 }

 }

 // rest of the code ...

}

In the code in Listing 7-7, SIF is a mapping from the different

subset_ids in the line with subset_sample_id to the subset_description

mentioned above them. This needs to go on until dataset_table_begin is

reached. See Listing 7-8.

Listing 7-8.  chapter7/statistics/src/main.rs

'linereading: for line in BufReader::new(file).lines() {

 let thisline = line?;

 �let line_split: Vec<String> = thisline.split("=").

map(|s| s.to_owned()).collect();

 if thisline.starts_with("!dataset_table_begin") {

 within_dataset_table = true;

 within_headers = false;

 continue 'linereading;

 }

// rest of the code ...

}

Once the dataset_table_begin is reached, we turn the flag within_

headers to false and then jump to the next line. This happens because the

for loop is designed that way. That way in the remaining line reads the if

within_headers block is not executed anymore.

Chapter 7 Machine Learning Domains

283

Once the mapping between subset sample id to subset description (SIF)

is done, we should be able to parse through the header, which is the first

line after dataset_table_begin. Notice that in the thisline.starts_

with("!dataset_table_begin") block, the within_dataset_table is

assigned as true suggesting that we are within the table. We will also have

other variable gene_expression_headers to suggest that the header line

as passed. We will create a function of the header line as passed. And we

will also create a function process_gene_expresssion_data_headers

to process the headers for the header line. This function will take the

SIF mapping created earlier and will create the column indices for the

columns to which the sample descriptions are mapped. See Listing 7-9.

Listing 7-9.  chapter7/statistics/src/main.rs

fn process_gene_expresssion_data_headers(

 thisline: &String,

 SIF: &HashMap<String, String>)

 -> (Vec<String>, Vec<String>, Vec<usize>) {

 �let SID: Vec<String> = thisline.split("\t").map(|s| s.to_

owned()).collect();

 let indices: Vec<usize> = SID.iter()

 .enumerate()

 .filter(|&(_, x)| x.starts_with("GSM"))

 .map(|(i, _)| i).collect();

 �let SID: Vec<String> = indices.iter().map(|&i| SID[i].

clone()).collect();

 let STP: Vec<String> = SID.iter().map(

 |k| SIF.get(&k.to_string()).unwrap())

 .cloned().collect();

 (SID, STP, indices)

}

Chapter 7 Machine Learning Domains

284

fn process_file(filename: &Path) {

 //prev code ..

 let mut gene_expression_headers = true;

 let mut indices: Vec<usize> = Vec::new();

 let mut gene_expression_measures_vec = Vec::new();

 let mut gene_identifiers_vec = Vec::new();

 let mut SID = Vec::new();

 let mut STP = Vec::new();

 'linereading: for line in BufReader::new(file).lines() {

 let thisline = line?;

 �let line_split: Vec<String> = thisline.split("=").map(|s|

s.to_owned()).collect();

 if within_dataset_table && gene_expression_headers {

 �let sid_stp_indices = process_gene_expresssion_data_

headers(&thisline, &SIF);

 indices = sid_stp_indices.2.clone();

 SID = sid_stp_indices.0.clone();

 STP = sid_stp_indices.1.clone();

 gene_expression_headers = false;

 continue 'linereading;

 };

 // remaining code...

}

In the code in Listing 7-9, the indices are created when the individual

identifiers start with “GSM.” Once the identifiers are there, the mapping

to the description is understood from SIF and then the values STD, STP,

and indices are returned to be used later. Once this header line is parsed,

we do not want this line to be evaluated anymore and hence we continue

the loop after assigning gene_expression_headers to be false so that this

block is not executed in anymore of the consecutive line reads.

Chapter 7 Machine Learning Domains

285

Now that all the header information has been parsed, we run through

the gene data that runs from line 196 to the end in the soft file. This comes

under the unique condition of being in the dataset table and not being

the gene_expression_headers. Hence we can resort to the following code

shown in Listing 7-10.

Listing 7-10.  chapter7/statistics/src/main.rs

fn process_file(filename: &Path) {

 // previous code ...

 if within_dataset_table && !gene_expression_headers {

 if thisline.starts_with("!dataset_table_end") {

 break 'linereading;

 }

 �let (gene_expression_measures, gene_identifiers) = process_

gene_expresssion_data(&thisline, &indices);

 �gene_expression_measures_vec.extend(gene_expression_

measures);

 gene_identifiers_vec.push(gene_identifiers);

 }

 // remaining code ...

process_gene_expresssion_data is the function that will handle this

parsing of the lines and putting it in gene_expression_measures_vec and

gene_identifiers_vec. The gene_expression_measures_vec will have all

the vectors for the different headers and the gene_identifiers_vec will

have the concatenated id references and identifiers.

Once the gene_expression_measures_vec has been created, we

can convert them to ndaray matrices. In Listing 7-11, we will use the

different Array constructs that are provided by ndarray. Array is for an

ndarray of arbitrary dimensions, while Array2 and Array1 give us arrays

of dimensions 2 and 1 respectively. The function stack can be done to

Chapter 7 Machine Learning Domains

286

reshape the ndarray to new dimensions, where the Axis function provides

the Axis index.

Listing 7-11.  chapter7/statistics/src/main.rs

use ndarray;

use ndarray::{Array, Array2, Array1, Axis, stack};

fn convert_to_log_scale(X: &Array2<f64>) -> Array2<f64> {

 let two = 2.0f64;

 let two_log = two.ln();

 X.mapv(|x| x.ln()/two_log)

}

fn process_file(filename: &Path) {

 // previous code ...

 let gene_expression_measures_matrix = Array::from_shape_vec(

 (22283, 127), gene_expression_measures_vec).unwrap();

 let gene_expression_measures_matrix = convert_to_log_scale(

 &gene_expression_measures_matrix);

 // remaining code ...

From this matrix, we would need to separate out the UC and Crohn’s

disease sample indices. See Listing 7-12.

Listing 7-12.  chapter7/statistics/src/main.rs

fn filter_specific_samples(

 STP: &Vec<String>,

 group_type: &str) -> Vec<usize> {

 STP.iter().enumerate()

 .filter(|&(_, x)| x == group_type)

 .map(|(i, _)| i).collect()

}

Chapter 7 Machine Learning Domains

287

fn different_samples(

 STP: &Vec<String>) -> (Vec<usize>, Vec<usize>) {

 let UC = filter_specific_samples(&STP, "ulcerative colitis");

 let CD = filter_specific_samples(&STP, "Crohn's disease");

 (UC, CD)

}

let (UC, CD) = different_samples(&STP);

Now that we have the data, we can calculate the mean and variance of

each group, which will be used to calculated the Z-scores to summarize the

evidence of differential expression. To construct the Z-scores, we will need

to construct some functions. The first function is to filter out the columns

from gene_expression_measures_matrix if we pass the samples indices.

The idea is that we should be able to pass the relevant UC and CD indices

and get the submatrices. See Listing 7-13.

Listing 7-13.  chapter7/statistics/src/main.rs

fn filter_out_relevant_columns(samples: &Vec<usize>,

 �gene_expression_measures_matrix: &Array2<f64>) ->

Array2<f64> {

 let shape1 = samples.len();

 let shape0 = gene_expression_measures_matrix.shape()[0];

 let mut cols = Vec::new();

 for &msamples_columns in samples {

 let col = gene_expression_measures_matrix.column(

 msamples_columns);

 cols.push(col);

 }

 let Msamples = stack(Axis(0), &cols[..]).unwrap();

 let Msamples = Array::from_iter(Msamples.iter());

Chapter 7 Machine Learning Domains

288

 �let Msamples = Msamples.into_shape((shape0, shape1)).

unwrap();

 Msamples.mapv(|&x| x)

}

Now that we have the submatrices we can either construct the mean of

the samples or the variance of the samples, which is a simple function in

ndarray (Listing 7-14).

Listing 7-14.  chapter7/statistics/src/main.rs

fn mean_of_samples(samples: &Vec<usize>,

 �gene_expression_measures_matrix: &Array2<f64>) ->

Array1<f64> {

 let Msamples = filter_out_relevant_columns(

 samples, gene_expression_measures_matrix);

 Msamples.mean_axis(Axis(1))

}

fn variance_of_samples(

 samples: &Vec<usize>,

 gene_expression_measures_matrix: &Array2<f64>)

 -> Array1<f64> {

 �let Msamples = filter_out_relevant_columns(samples, gene_

expression_measures_matrix);

 Msamples.var_axis(Axis(1), 1.)

}

Thus, we are finally able to compute the Z-scores for the two samples

together (Listing 7-15).

Chapter 7 Machine Learning Domains

289

Listing 7-15.  chapter7/statistics/src/main.rs

fn generate_zscores(UC: &Vec<usize>,

 CD: &Vec<usize>,

 �gene_expression_measures_matrix:

&Array2<f64>)

 -> Array1<f64> {

 �let MUC = �mean_of_samples(&UC, &gene_expression_measures_

matrix);

 �let MCD = �mean_of_samples(&CD, &gene_expression_measures_

matrix);

 �let VUC = �variance_of_samples(&UC, &gene_expression_

measures_matrix);

 �let VCD = �variance_of_samples(&CD, &gene_expression_

measures_matrix);

 let nUC = UC.len();

 let nCD = CD.len();

 let z_scores_num = MUC - MCD;

 �let z_scores_den = �(VUC/nUC as f64 + VCD/nCD as f64).

mapv(f64::sqrt);

 let z_scores = �z_scores_num / z_scores_den;

z_scores

}

fn process_file(filename: &Path) {

 // previous code ...

 �let z_scores = �generate_zscores(&UC, &CD, &gene_expression_

measures_matrix);

 let z_scores_mean = z_scores.sum() / z_scores.len() as f64;

 let z_scores_std = z_scores.std_axis(Axis(0), 1.);

 println!("z scores mean {:?}", z_scores_mean);

 println!("z scores mean {:?}", z_scores_std);

}

Chapter 7 Machine Learning Domains

290

If a gene is not differentially expressed, it has the same expected values

in the two groups of samples. In this case the Z-scores will be standardized

or will have a zero mean and unit standard deviation. Printing out z_scores_

mean and z_scores_std we find that the values are 0.042918212228268235

and 3.5369539066322027 respectively. Notice that since the vectors are in

ndarray format, we can easily compute the stats using the ndarray api.

Since the standard deviation is much greater than 1, there appear to

be multiple genes for which the mean expression levels in the UC and

Crohn’s disease samples differ. Further, since the mean Z-score is positive,

it appears that the dominant pattern is for genes to be expressed more in

the UC compared to the Crohn’s disease samples.

Similarly we can find the p-values. The exact results are

inconsequential for this section, the aim of which is to show that once

values are converted to ndarray matrices in Rust, it is fairly trivial to

perform statistical analysis on them.

7.2  �Writing High Performance Code
A lot of the machine learning code that has the ability to use GPU is

through Rust bindings to libraries that are essentially created in C/C++.

To be able to use the GPU or write high performance code, we can use

crates such as blas-src or lapack-src, which provide access to low-level

mathematical operations.

In the majority of the cases the high-level crates and libraries that we

have discussed in the previous chapters would be enough, but sometimes

we would need to go low-level and perform direct vector operations. The

Single Instruction Multiple Data operation library, or more popularly known

as SIMD, is a popular library for performing vector operations, and the faster1

crate gives us good abstractions for running SIMD instructions in Rust.

1�https://github.com/AdamNiederer/faster.

Chapter 7 Machine Learning Domains

https://github.com/AdamNiederer/faster

291

SIMD and faster are great if we are trying to get parallel instructions

being run on a vector and to return the result. The transformation runs on

each element of the vector. In the code shown in Listing 7-16, we will take a

vector and return the cube of all the elements in the vector.

Before running the installation code, you should probably have blas

and lapack libraries installed in the system. Installing in an ubuntu system

might need a command such as that shown in this code.

Listing 7-16.  Installing libblas

$ sudo apt-get install libblas-dev liblapack-dev

$ sudo apt-get install libopenblas-dev

$ sudo apt-get install gfortran

$

We can now create a Rust project to explore how to write high

performance code and name it high performance computing (Listing 7-17).

Listing 7-17.  Create Rust project for high performance computing

$ cd chapter7

$ �cargo new high-performance-computing --bin && cd high-

performance-computing

We should now have the main.rs file and the Cargo.toml file. Since we

will be using lapack, openblas, and SIMD dependencies, we would need to

add the crates that enable us to use those dependencies. See Listing 7-18.

Listing 7-18.  chapter7/high-performance-computing/Cargo.toml

[package]

name = "high-performance-computing"

version = "0.1.0"

edition = "2018"

Chapter 7 Machine Learning Domains

292

[dependencies]

faster = "0.5.0"

rblas = "0.0.13"

In Listing 7-18, the dependencies list, the crate faster is the Rust code

for writing SIMD code in Rust, rblas crate gives us access to the open BLAS

and OpenBLAS packages.

We should now be able to write the code and we will start with using the

faster package and writing code that uses the SIMD software (Listing 7-19).

Listing 7-19.  chapter7/high-performance-computing/src/main.rs

use faster::*;

fn main() {

 let my_vector: Vec<f32> = (0..10).map(

 |v| v as f32).collect();

 let power_of_3 = (&my_vector[..]).simd_iter(f32s(0.0))

 .simd_map(|v| v * v * v)

 .scalar_collect();

 println!("{:?}", power_of_3);

}

Similarly when we are trying to perform a reduction on the vector, we

can use the simd_reduce method. For example, in the code in Listing 7-20,

we will try to find the sum of the elements in a vector.

Listing 7-20.  chapter7/high-performance-computing/src/main.rs

fn main() {

 // previous code ...

 let reduced = (&power_of_3[..])

 .simd_iter(f32s(0.0))

 .simd_reduce(f32s(0.0), |a, v| a + v).sum();

}

Chapter 7 Machine Learning Domains

293

Another common operation that is performed on vectors is the

dot product of two vectors, and in that case we will use the rblas crate,

included earlier, which is a wrapper over blas and openblas libraries.

BLAS, which stands for Basic Linear Algebra Specification, is a set of low-

level routines for performing common linear operations. The rblas crate

has the Dot product implemented over blas [1].

In Listing 7-21, we take the dot product of two vectors initialized.

Listing 7-21.  chapter7/high-performance-computing/src/main.rs

use rblas::Dot;

fn main() {

 let x = vec![1.0, -2.0, 3.0, 4.0];

 let y = [1.0, 1.0, 1.0, 1.0, 7.0];

 let d = Dot::dot(&x, &y[..x.len()]);

 println!("dot product {:?}", d);

}

Running the code in Listing 7-21, we should get the output in Listing 7-22.

Listing 7-22.  high-performance-computing output

$ cargo run

 Finished dev [unoptimized + debuginfo] target(s) in 0.01s

 Running `target/debug/high-performance-computing`

[3.0, 3.0, ..., 3.0, 3.0]

[0.0, 1.0, 8.0, 27.0, 64.0, 125.0, 216.0, 343.0, 512.0, 729.0]

2025.0

dot product 6.0

Thus using these wrappers over high performance libraries, we should

be able to write high performance code in our Rust applications.

Chapter 7 Machine Learning Domains

294

7.3  �Recommender Systems
Recommender systems are one of the most successful and widespread

applications of machine learning technologies in business. Machine

learning algorithms in recommender systems are typically classified

into two categories – content-based filtering and collaborative filtering

although modern architectures mainly employ a combination of both.

Content-based methods are based on similarity of item attributes and

collaborative methods calculate similarity from interactions.

In Rust, we are able to create recommendation engines mostly due

to the great sbr-rs crate.2 In this crate there are two models that are

implemented. This crate will need some additional OS-level dependencies

installed. Ensure that you have libssl installed in your system. In an ubuntu

system, running the following command in Listing 7-23 should be fine.

Listing 7-23.  Install libssl ubuntu

$ sudo apt install libssl-dev

$

The models that we can create using the package sbr are these:

•	 LSTM: an LSTM network is used to model the sequence

of a user’s interaction to predict their next action;

•	 EWWA: This model uses an exponentially weighted

average of past actions to predict future interactions.

To start the project, we can create a project using cargo as shown in

Listing 7-24.

2�https://github.com/maciejkula/sbr-rs/.

Chapter 7 Machine Learning Domains

https://github.com/maciejkula/sbr-rs/

295

Listing 7-24.  New rust goodbooks package

$ cargo new --bin goodbooks-recommender

$

This will set up the project with the src/main.rs file and the Cargo.toml

files as we have seen in the previous chapters. Add the dependencies in the

cargo file. Some of the dependencies we have already seen such as reqwest

to serve as a web client. Failure is an excellent crate for better handling of

errors. The crates serde, serde_json, and serde_json are there to be able to

serialize and deserialize the data. We will need the csv crate for working with

csv files. The crate rand will help us in randomizing the data and structopt

crate to create good command-line interfaces. The most important crate as

per this section is the sbr crate, which has the recommendation modules

implemented that we will call here in Listing 7-25.

Listing 7-25.  chapter7/goodbooks-recommender/Cargo.toml

[package]

name = "goodbooks-recommender"

version = "0.1.0"

authors = ["author names"]

edition = "2018"

[dependencies]

reqwest = "0.9.17"

failure = "0.1.5"

serde = "1"

serde_derive = "1"

serde_json = "1"

csv = "1"

sbr = "0.4.0"

rand = "0.6.5"

structopt = "0.2.15"

Chapter 7 Machine Learning Domains

296

7.3.1  �Command Line
We will now start with the creation of the command line. For readers

who are familiar with git, you might have noticed that git has first-level

commands such as git clone or git pull, and then depending on the

first command, we will have a second level of commands such as origin

master like a subcommand for pull, which enables us to write git pull

origin master. Along similar lines we will try to build a command-line

parser (Listing 7-26).

Listing 7-26.  goodbooks-recommender/src/main.rs

use structopt::StructOpt;

#[derive(Debug, StructOpt)]

#[structopt(name = "goodbooks-recommender", about = "Books

Recommendation")]

enum Opt {

 #[structopt(name = "fit")]

 /// Will fit the model.

 Fit,

 #[structopt(name = "predict")]

 �/// Will predict the model based on the string after this.

Please run

 �/// this only after fit has been run and the model has been

saved.

 Predict(BookName),

}

// Subcommand can also be externalized by using a 1-uple enum

variant

#[derive(Debug, StructOpt)]

Chapter 7 Machine Learning Domains

297

struct BookName {

 #[structopt(short = "t", long = "text")]

 /// Write the text for the book that you want to predict

 /// Multiple books can be passed in a comma separated manner

 text: String,

}

fn main() {

 let opt = Opt::from_args();

}

In the code in Listing 7-26, the goodbooks-recommender takes in a

first command, which is essentially an enum of either Fit or Predict. Fit is

fine by itself but Predict takes in a separate subcommand to it which is a

text. The help function also gives documentation on this (Listing 7-27).

Listing 7-27.  Package run help

$ cargo run -- --help

 Finished dev [unoptimized + debuginfo] target(s) in 0.23s

 �Running `target/debug/goodbooks-recommender --help`

goodbooks-recommender 0.1.0

Books Recommendation

USAGE:

 goodbooks-recommender <SUBCOMMAND>

FLAGS:

 -h, --help Prints help information

 -V, --version Prints version information

Chapter 7 Machine Learning Domains

298

SUBCOMMANDS:

 fit Will fit the model.

 �help �Prints this message or the help of the given

subcommand(s)

 �predict �Will predict the model based on the string after

this. Please run this only after fit has been run

 and the model has been saved.

We are also able to see the help text for predict as shown in Listing 7-28.

Listing 7-28.  Package run predict help

$ cargo run -- predict --help

 Finished dev [unoptimized + debuginfo] target(s) in 0.23s

 �Running `target/debug/goodbooks-recommender predict

--help`

goodbooks-recommender-predict 0.1.0

Will predict the model based on the string after this. Please

run this only after fit has been run and the model has

been saved.

USAGE:

 goodbooks-recommender predict --text <text>

FLAGS:

 -h, --help Prints help information

 -V, --version Prints version information

OPTIONS:

 -t, --text <text> �Write the text for the book that you

want to predict Multiple books can be

passed in a comma separated manner

Chapter 7 Machine Learning Domains

299

7.3.2  �Downloading Data
We should now be able to create functions for downloading the data and

create saving the files in the destination folders (Listing 7-29).

Listing 7-29.  chapter7/goodbooks-recommender/src/main.rs

use std::fs::File;

use std::io::BufWriter;

use std::path::Path;

fn download(url: &str, destination: &Path)

 -> Result<(), failure::Error> {

 if destination.exists() {

 return Ok(()) // do not download multiple times

 }

 let mut writer = BufWriter::new(file);

 let mut response = reqwest::get(url)?;

 response.copy_to(&mut writer)?;

 Ok(())

}

In the above download function shown in Listing 7-29, we take the url

as a str and destination as a path. If the path exists, then nothing needs to

be done. We will leave to the caller of this function to ensure that the url

and destination combinations are correct. Then we will get the response

from the url and write it to the path using BufWriter module. This should

download any url that we pass to the function.

Using the above function, we can download the good books dataset

from this github repo https://github.com/zygmuntz/goodbooks-10k/.

This dataset contains six million ratings for ten thousand most of the

popular books. The other kinds of information that are provided in the

Chapter 7 Machine Learning Domains

https://github.com/zygmuntz/goodbooks-10k/

300

datasets are such as isbn values and authors and so on, but we will not

be concerned with them for the purpose of this example. We will be

downloading the ratings.csv and the books.csv as seen in Listing 7-30.

Listing 7-30.  chapter7/goodbooks-recommender/src/main.rs

/// download ratings and metadata both.

fn download_data(ratings_path: &path,

 �books_path: &path) {

 let ratings_url = "https://github.com/zygmuntz/\

 goodbooks-10k/raw/master/ratings.csv";

 let books_url = "https://github.com/zygmuntz/\

 goodbooks-10k/raw/master/books.csv";

 download(&ratings_url, ratings_path)

 .expect("could not download ratings");

 download(&books_url, books_path)

 .expect("could not download metadata");

}

7.3.3  �Data
Now we can run this function and we will see the files downloaded in the

root folder. Take a look at these two csv’s. The columns in books.csv file

are book_id, goodreads_book_id, work_id, books_count, isbn, isbn13,

authors, original_publication_year, language_code, title, language_

code, average_rating, ratings_count, work_ratings_count, work_text_

reviews_count, ratings_1, ratings_2, ratings_3, ratings_4, ratings_5,

image_url, and small_image_url, thus having 23 columns. Similarly, the

ratings file has user_id, book_id, and rating.

From this ratings file we will create the mapping between user_id and

book_id and from the book file we will create the mapping between the

book_id and the title. This can be encoded in a struct. We are only taking

Chapter 7 Machine Learning Domains

301

a small number of features for the sake of simplicity, but you should try it

out with more features. See Listing 7-31.

Listing 7-31.  chapter7/goodbooks-recommender/src/main.rs

#[derive(Debug, Serialize, Deserialize)]

struct UserReadsBook {

 user_id: usize,

 book_id: usize,

}

#[derive(Debug, Deserialize, Serialize)]

struct Book {

 book_id: usize,

 title: String

}

We can now write two functions, one for deserializing the ratings and

one for deserializing the books (Listing 7-32).

Listing 7-32.  chapter7/goodbooks-recommender/src/main.rs

use csv;

fn deserialize_ratings(path: &Path)

 -> Result<Vec<UserReadsBook>, failure::Error> {

 let mut reader = csv::Reader::from_path(path)?;

 let entries = reader.deserialize()

 .collect::<Result<Vec<_>, _>>()?;

 Ok(entries)

}

fn deserialize_books(path: &Path)

 -> Result<(HashMap<usize, String>,

 HashMap<String, usize>), failure::Error> {

Chapter 7 Machine Learning Domains

302

 let mut reader = csv::Reader::from_path(path)?;

 let entries: Vec<Book> = reader.deserialize::<Book>()

 .collect::<Result<Vec<_>, _>>()?;

 let id_to_title: HashMap<usize, String> = entries

 .iter()

 .map(|book| (book.book_id, book.title.clone()))

 .collect();

 let title_to_id: HashMap<String, usize> = entries

 .iter()

 .map(|book| (book.title.clone(), book.book_id))

 .collect();

 Ok((id_to_title, title_to_id))

}

In both Listings 7-31 and 7-32, we will read the files using csv and

then collect the vectors. In the deserialize_ratings instead of directly

returning the vectors, we will return the result of the vectors given by

Result<Vec<UserReadsBook>. In the deserialize_books function,

additionally we create id_to_title and title_to_id mappings so that we

are able to get one from the other through a simple lookup on the relevant

mapping.

7.3.4  �Model Building
The data part already is already done, so now we can compose functions

for building the models. As stated earlier, the sbr implements two models

that we can use an LSTM-based model and a moving average-based model

(EWMA). We will go ahead and use the EWMA model. The EWMA model

is simpler in terms of computational weight and we will use this here. An

exponentially weighted moving average is a type of control used to monitor

small shifts in the process mean. It weights observations in geometrically

Chapter 7 Machine Learning Domains

303

decreasing order so that the most recent observations carry the most

weight and the older observations contribute very little to the model. In

many cases this is enough.

First we write a function that sets up the hyperparameters of the model

(Listing 7-33).

Listing 7-33.  chapter7/goodbooks-recommender/src/main.rs

use sbr::models::ewma::{Hyperparameters, ImplicitEWMAModel};

use sbr::models::{Loss, Optimizer};

fn build_model(num_items: usize) -> ImplicitEWMAModel {

 let hyperparameters = Hyperparameters::new(num_items, 128)

 .embedding_dim(32)

 .learning_rate(0.16)

 .l2_penalty(0.0004)

 .loss(Loss::WARP)

 .optimizer(Optimizer::Adagrad)

 .num_epochs(10)

 .num_threads(1);

 hyperparameters.build()

}

For the model to work, we need the data converted to sbr interactions

objects. Interactions take in a number of users and a number of items and

the timestamp. Since the ids are ordinal, we can take the greatest ids to be

the number of users and items and have the id as the timestamp assuming

that the data is ordered chronologically. In other situations, we will need to

take care of these in a different manner (Listing 7-34)

Chapter 7 Machine Learning Domains

304

Listing 7-34.  chapter7/goodbooks-recommender/src/main.rs

fn build_interactions(data: &[UserReadsBook]) -> Interactions {

 let num_users = data

 .iter()

 .map(|x| x.user_id)

 .max()

 .unwrap() + 1;

 let num_items = data

 .iter()

 .map(|x| x.book_id)

 .max()

 .unwrap() + 1;

 let mut interactions = Interactions::new(num_users,

 num_items);

 for (idx, datum) in data.iter().enumerate() {

 interactions.push(

 Interaction::new(datum.user_id,

 datum.book_id,

 idx)

);

 }

 interactions

}

Now that the model has been built, we will need to train on the data.

We will now go ahead and create a fit function. As with other training done

before, the data needs to be split into test and train so that the fitness of

the model can be determined and we can understand that the model is

actually learning. See Listing 7-35.

Chapter 7 Machine Learning Domains

305

Listing 7-35.  chapter7/goodbooks-recommender/src/main.rs

use sbr::evaluation::mrr_score;

fn fit(model: &mut ImplicitEWMAModel,

 data: &Interactions)

 -> Result<f32, failure::Error> {

 let (train, test) = user_based_split(

 data, &mut rng, 0.2);

 model.fit(&train.to_compressed())?;

 let mrr = mrr_score(model, &test.to_compressed())?;

 Ok(mrr)

}

In the fit function in Listing 7-35, the result is the mrr score. The

MRR score or the mean reciprocal score is the score when the validity

of the single highest-ranking item is measured. Unfortunately, the other

popular means of scoring, which is the mean average precision, is not

implemented in sbr and would need to be implemented by the user.

Once the model training is done, we will need to serialize the model,

so that we can save the model in a file. We can use the serde library to do

this (Listing 7-36).

Listing 7-36.  chapter7/goodbooks-recommender/src/main.rs

fn serialize_model(model: &ImplicitEWMAModel,

 path: &Path) -> Result<(), failure::Error> {

 let file = File::create(path)?;

 let mut writer = BufWriter::new(file);

 Ok(serde_json::to_writer(&mut writer, model)?)

}

Chapter 7 Machine Learning Domains

306

We will now need a function to execute the functions we just

mentioned, one after the other. See Listing 7-37.

Listing 7-37.  chapter7/goodbooks-recommender/src/main.rs

fn main_build() {

 let ratings_path = Path::new("ratings.csv");

 let books_path = Path::new("books.csv");

 let model_path = Path::new("model.json");

 // Exit early if we already have a model.

 if model_path.exists() {

 println!("Model already fitted.");

 return ();

 }

 download_data(ratings_path, books_path);

 let ratings = deserialize_ratings(ratings_path).unwrap();

 let (id_to_title,

 title_to_id) = deserialize_books(books_path).unwrap();

 println!("Deserialized {} ratings.", ratings.len());

 println!("Deserialized {} books.", id_to_title.len());

 let interactions = build_interactions(&ratings);

 let mut model = build_model(interactions.num_items());

 println!("Fitting...");

 let mrr = fit(&mut model, &interactions)

 .expect("Unable to fit model.");

 println!("Fit model with MRR of {:.2}", mrr);

 serialize_model(&model, &model_path)

 .expect("Unable to serialize model.");

}

Chapter 7 Machine Learning Domains

307

We should now plug in this main_build function in the main function

(Listing 7-38).

Listing 7-38.  chapter7/goodbooks-recommender/src/main.rs

fn main() {

 let opt = Opt::from_args();

 match opt {

 Opt::Fit => main_build(),

 _ => {

 unimplemented!();

 },

 }

}

Running it now with cargo run – fit should save the model in the

model.json file (Listing 7-39).

Listing 7-39.  Check model.json in directory

$ ls

books.csv Cargo.lock Cargo.toml fit model.json ratings.

csv src target

$

7.3.5  �Model Prediction
To be able to do predictions, we need to be able to do two things. First is

model deserialization. After model deserialization, the model will be in

ImplicitEWMAModel struct (Listing 7-40).

Chapter 7 Machine Learning Domains

308

Listing 7-40.  chapter7/goodbooks-recommender/src/main.rs

use std::io::BufReader;

fn deserialize_model() -> Result<ImplicitEWMAModel,

 failure::Error> {

 let file = File::open("model.json")?;

 let reader = BufReader::new(file);

 let model = serde_json::from_reader(reader)?;

 Ok(model)

}

After model deserialization is done, we will use the model to make

predictions. So the predict function needs to be passed to the model for

inference. Also the target tokens need to be passed (Listing 7-41).

Listing 7-41.  chapter7/goodbooks-recommender/src/main.rs

fn predict(input_titles: &[String],

 model: &ImplicitEWMAModel)

 -> Result<Vec<String>, failure::Error> {

 let (id_to_title,

 title_to_id) = deserialize_books(

 &Path::new("books.csv")

).unwrap();

 // Let's first check if the inputs are valid.

 for title in input_titles {

 if !title_to_id.contains_key(title) {

 println!("No such title, ignoring: {}", title);

 }

 }

 // rem code..

}

Chapter 7 Machine Learning Domains

309

For this we will need to create the user representation and the possible

indices that can be predicted.

Since the model is trained on the title ids, we will provide the ids

as input for prediction. We will also need the possible ids that can be

predicted. In this case the ids are ordered and hence we can just take from

0 to the length. In other cases, we would have needed to collect the actual

vector. See Listing 7-42.

Listing 7-42.  chapter7/goodbooks-recommender/src/main.rs

fn predict(input_titles: &[String],

 model: &ImplicitEWMAModel)

 -> Result<Vec<String>, failure::Error> {

 // prev code..

 // Map the titles to indices.

 let input_indices: Vec<_> = input_titles

 .iter()

 .filter_map(|title| title_to_id.get(title))

 .cloned()

 .collect();

 let indices_to_score: Vec<usize> =

 (0..id_to_title.len()).collect();

 // rem code..

}

Based on the input_indices vector, we can get the user representation

that will be passed to the model for predictions (Listing 7-43).

Chapter 7 Machine Learning Domains

310

Listing 7-43.  chapter7/goodbooks-recommender/src/main.rs

fn predict(input_titles: &[String],

 model: &ImplicitEWMAModel)

 -> Result<Vec<String>, failure::Error> {

 // prev code ..

 // Get the user representation.

 let user = model.user_representation(&input_indices)?;

 // Get the actual predictions.

 let predictions = model.predict(&user, &indices_to_score)?;

 // rem code ..

Once the predictions are generated, we will need to sort based on the

score. Here we will show only the top 10 results (Listing 7-44).

Listing 7-44.  chapter7/goodbooks-recommender/src/main.rs

fn predict(input_titles: &[String],

 model: &ImplicitEWMAModel)

 -> Result<Vec<String>, failure::Error> {

 // prev code ...

 let mut predictions: Vec<_>

 = indices_to_score.iter()

 .zip(predictions)

 .map(|(idx, score)| (idx, score))

 .collect();

 predictions

 .sort_by(

 |(_, score_a), (_, score_b)|

 score_b.partial_cmp(score_a)

 .unwrap());

Chapter 7 Machine Learning Domains

311

 Ok((&predictions[..10])

 .iter()

 .map(|(idx, _)| id_to_title.get(idx).unwrap())

 .cloned()

 .collect())

}

Plugging it in the main method should yield the results we need

(Listing 7-45).

Listing 7-45.  chapter7/goodbooks-recommender/src/main.rs

fn main() {

 let opt = Opt::from_args();

 match opt {

 Opt::Fit => main_build(),

 Predict(book) => {

 let model = deserialize_model()

 .expect("Unable to deserialize model.");

 let tokens: Vec<String> = book.text.split(",").map(

 |s| s.to_string()).collect();

 let predictions = predict(&tokens, &model)

 .expect("Unable to get predictions");

 println!("Predictions:");

 for prediction in predictions {

 println!("{}", prediction);

 }

 },

 }

}

Using the command in Listing 7-46, we can predict user input titles.

Chapter 7 Machine Learning Domains

312

Listing 7-46.  chapter7/goodbooks-recommender/src/main.rs

$ cargo run -- predict --text "The Alchemist"

 Finished dev [unoptimized + debuginfo] target(s) in 0.22s

 �Running `target/debug/goodbooks-recommender predict --text

'The Alchemist'`

Predictions:

The Alchemist

The Kite Runner

One Hundred Years of Solitude

The Da Vinci Code (Robert Langdon, #2)

A Thousand Splendid Suns

Life of Pi

Eat, Pray, Love

Memoirs of a Geisha

Angels & Demons (Robert Langdon, #1)

The Five People You Meet in Heaven

$

7.4  �Conclusion
This chapter introduced you to different interesting domains in high

performance computing with Rust that are generally nontraditional

applications of machine learning. The chapter starts with statistical

analysis and how statistical analysis becomes trivial once we are able to

convert datasets to ndarray matrices. In the next section, we used wrappers

of SIMD and BLAS to perform high performance and parallel computation

on vectors. Finally, we built a recommendation system using a popular

recommendation crate in Rust.

In the last chapter of the book, you will learn how we can create and

deploy Rust ML applications for production using cloud as well as other

ways of deploying Rust machine learning applications and models.

Chapter 7 Machine Learning Domains

313

7.5  �Bibliography

	 [1]	 Various. Recommender system. [Online; accessed

23-May-2019]. 2019. URL: https://en.wikipedia.

org/wiki/Recommender_system.

	 [2]	 Pavel Kordík. Machine Learning for Recommender

systems — Part 1 (algorithms, evaluation

and cold start). Ed. by Towards Data Science.

[Online; accessed 23-May-2019]. 2018. URL:

https://medium.com/recombee-blog/machine-

learning-for-recommender-systems-part-

1-algorithmsevaluation-and-cold-start-

6f696683d0ed.

	 [3]	 Maciej Kula. Recommending books (with Rust).

	 [4]	 Jason Brownlee. A Gentle Introduction to Vectors

for Machine Learning. Ed. by Machine Learning

Mastery. [Online; accessed 1-June-2019]. 2018. URL:

https://machinelearningmastery.com/gentle-

introductionvectors-machine-learning/.

Chapter 7 Machine Learning Domains

https://en.wikipedia.org/wiki/Recommender_system
https://en.wikipedia.org/wiki/Recommender_system
https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
https://medium.com/recombee-blog/machine-learning-for-recommender-systems-part-1-algorithmsevaluation-and-cold-start-6f696683d0ed
­https://machinelearningmastery.com/gentle-introductionvectors-machine-learning/
­https://machinelearningmastery.com/gentle-introductionvectors-machine-learning/

315© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8_8

CHAPTER 8

Using Rust
Applications
Throughout this book, we have looked into data transformations and

creating machine learning models in Rust. Once we know the machine

learning workflow that we are going ahead with, we need a way to

integrate the workflow in our overall architecture. Since Rust is a fairly new

language, it is highly probable that overall architecture in your project is

probably created in a mainstream language. In this chapter we will look

at how to integrate Rust code into our overall production architecture. We

will start with integrating Rust code in Python applications and then we

will move on to integrating Rust code in Java applications. We shall finally

take a look at creating serverless applications in Rust.

8.1	 �Rust Plug-n-Play
Since Rust is a relatively new application, chances are quite high that you

are working in a legacy application with a couple of million lines of code,

written in a popular language such as Python or Java. In that case, using

a Rust ML application would mean only using a small part of the existing

application. The fact that Rust does not have a runtime makes it very easy

316

to call Rust code in other languages as long as these “other” languages

have a way of calling shared libraries. Generally, all mainstream languages

have such capabilities. In this next sections, we will take two examples, one

in which we will call Rust functions in Python and one in Java.

8.1.1  �Python
In this section, we will run call Rust code using PyO3.1 PyO3 provides Rust

bindings for Python. In this code we will take the crfsuite-model that was

created in Chapter 5 and try to call the code from Python.

First let’s recap a little bit. In the crfsuite code, we have a struct NER

to read lemma, next_lemma, word, and tag from the dataset. The data is

then passed through different functions such as split_test_train and

create_xseq_yseq to convert to the correct sequence of vectors. We can

then pass the data to crfmodel_training, which will perform the training.

This training also creates a model file. Once trained, we can use model_

prediction to perform the prediction and use check_accuracy function to

check the accuracy.

To be able to use these functionalities, we will need to create a public

api and wrap them in some Python callable code. So let’s first look at the

dependencies and the overall project structure that we will need. We will

need the data reading and organization crates that we have seen before

csv, serde, serde-derive, and rand. We will also need the crfsuite for

being able to perform machine learning and run the previous code. We

will also need the latest code for pyo3. Finally, we will need to specify

the library name and crate type. If we don’t use dylib, then it will create

rlib binaries. The format rlib is a Rust-specific static library format that

includes metadata such as serialized typechecked AST-s for generics.

Hence they are not suitable for external consumption. Also, don’t use

1�https://github.com/PyO3/pyo3.

Chapter 8 Using Rust Applications

https://github.com/PyO3/pyo3

317

staticlib, since this fails to link as well. Most other languages understand

and produce .so/.dylib formats only. Thus, we will have the Cargo.toml

similar to Listing 8-1.

Listing 8-1.  chapter8/crfsuite-model/Cargo.toml

[package]

name = "crfsuite-model"

version = "0.2.0"

edition = "2018"

[dependencies]

csv = "1.0.7"

serde = "1"

serde_derive = "1"

rand = "0.6.5"

crfsuite = "0.2.6"

pyo3 = { git = "https://github.com/PyO3/pyo3.git",

 // Take the latest revision from github

 rev = "99fdafbb880c181f4bce16bbbac03888b3cf85c8",

 features = ["extension-module"]}

[lib]

name = "crfsuite_model"

crate-type = ["cdylib"]

Now we will need to decide on a public api for the code. This is similar

to the famous scikit-learn style of creating a model class and defining fit

and predict methods on the code. The class can take the model file name

as input and train and predict can take the path of the training and

predict files as the data to train and predict (Listing 8-2).

Chapter 8 Using Rust Applications

318

Listing 8-2.  chapter8/crfsuite-model/src/lib.rs

use pyo3::prelude::*;

use std::fs;

use std::path::PathBuf;

#[pyclass(module = "crfsuite_model")]

pub struct CRFSuiteModel {

 model_name: String,

}

#[pymethods]

impl CRFSuiteModel {

 #[new]

 fn new(obj: &PyRawObject, path: String) {

 obj.init(CRFSuiteModel {

 model_name: path,

 });

 }

 fn fit(&self, py: Python<'_>, path: String) -> PyResult<String> {

 // code for training ...

 Ok("model fit done".to_string())

 }

 fn predict(&self,

 predict_filename: String)

 -> PyResult<Vec<String>> {

 // code for predict ...

 Ok(preds)

 }

}

Chapter 8 Using Rust Applications

319

Now that we have the overall function signature, transfer the main

method that we had in version 0.1 to the fit method (Listing 8-3).

Listing 8-3.  chapter8/crfsuite-model/src/lib.rs

fn fit(&self, py: Python<'_>, path: String) -> PyResult<String> {

 let data_file = PathBuf::from(

 &path[..]);

 let data = get_data(

 &data_file).unwrap();

 let (test_data, train_data) = split_test_train(

 &data, 0.2);

 let (xseq_train, yseq_train) = create_xseq_yseq(

 &train_data);

 let (xseq_test, yseq_test) = create_xseq_yseq(

 &test_data);

 crfmodel_training(

 xseq_train, yseq_train, self.model_name.as_ref())

 .unwrap();

 let preds = model_prediction(

 xseq_test, self.model_name.as_ref())

 .unwrap();

 check_accuracy(&preds, &yseq_test);

 Ok("model fit done".to_string())

}

The description of the functions split_test_train, create_xseq_

yseq, crfmodel_training, model_prediction, and check_accuracy was

described in Chapter 5.

To be able to create the predict method, we will need to create some

additional code as the predict code cannot have the functions create_

xseq_yseq because the test file will not have labels for the x sequences.

Chapter 8 Using Rust Applications

320

Once the x_seq is created, we can pass the sequences to model_prediction

to get the predictions.

We will need to create a new struct that will not have labels. We can

then have similar functions such as get_data for reading the data as

per the predict function and create_xseq_yseq for creating the x_seq’s

without the labels (Listing 8-4).

Listing 8-4.  chapter8/crfsuite-model/src/lib.rs

#[derive(Debug, Deserialize, Clone)]

pub struct NER_Only_X {

 lemma: String,

 #[serde(rename = "next-lemma")]

 next_lemma: String,

 word: String,

}

fn get_data_no_y(path: &PathBuf) -> Result<Vec<NER_Only_X>,

Box<dyn Error>> {

 let csvfile = fs::File::open(path)?;

 let mut rdr = csv::Reader::from_reader(csvfile);

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: NER_Only_X = result?;

 data.push(r);

 }

 Ok(data)

}

fn create_xseq_for_predict(data: &[NER_Only_X])

 -> Vec<Vec<Attribute>> {

 let mut xseq = vec![];

Chapter 8 Using Rust Applications

321

 for item in data {

 let seq = vec![Attribute::new(item.lemma.clone(), 1.0),

 �Attribute::new(item.next_lemma.clone(), 0.5)];

// higher weightage for the mainword.

 xseq.push(seq);

 }

 xseq

}

We should now be able to stitch these functions in the predict method

(Listing 8-5).

Listing 8-5.  chapter8/crfsuite-model/src/lib.rs

fn predict(&self, predict_filename: String) ->

PyResult<Vec<String>> {

 let predict_data_file = PathBuf::from(

 predict_filename);

 let data = get_data_no_y(

 &predict_data_file).unwrap();

 let xseq_test = create_xseq_for_predict(

 &data[..]);

 let preds = model_prediction(

 xseq_test, self.model_name.as_ref())

 .unwrap();

 Ok(preds)

}

Now we will need to register the applications as a Python module

(Listing 8-6).

Chapter 8 Using Rust Applications

322

Listing 8-6.  chapter8/crfsuite-model/src/lib.rs

#[pymodule]

fn crfsuite_model(_py: Python<'_>, m: &PyModule) ->

PyResult<()> {

 m.add_class::<CRFSuiteModel>()?;

 Ok(())

}

Now that the Rust api is done, we will need to call the application

from Python and we will need to set up some additional plumbing. We

would need a setup file to run the cargo build file, a pyproject.toml, and a

MANIFEST.in so that the appropriate files are bundled.

The setup.py file is the same as the pyo3 examples.2 The only

differences are in the project file names (Listing 8-7).

Listing 8-7.  chapter8/crfsuite-model/setup.py

setup(

 name="crfsuite-model",

 version="0.2.0",

 classifiers=[

 "License :: OSI Approved :: MIT License",

 "Development Status :: 3 - Alpha",

 "Intended Audience :: Developers",

 "Programming Language :: Python",

 "Programming Language :: Rust",

 "Operating System :: POSIX",

 "Operating System :: MacOS :: MacOS X",

],

 packages=["crfsuite_model"],

2�https://github.com/PyO3/pyo3/tree/master/examples/word-count.

Chapter 8 Using Rust Applications

https://github.com/PyO3/pyo3/tree/master/examples/word-count

323

 �rust_extensions=[RustExtension("crfsuite_model.crfsuite_

model", "Cargo.toml")],

 install_requires=install_requires,

 tests_require=tests_require,

 setup_requires=setup_requires,

 include_package_data=True,

 zip_safe=False,

 cmdclass={

 'test': PyTest,

 'sdist': CargoModifiedSdist,

 },

)

Listing 8-8.  chapter8/crfsuite-model/MANIFEST.in

include pyproject.toml Cargo.toml

recursive-include src *

Listing 8-9.  chapter8/crfsuite-model/pyproject.toml

[build-system]

requires = ["setuptools>=41.0.0", "wheel", "setuptools_

rust>=0.10.2", "toml"]

build-backend = "setuptools.build_meta"

We will also need to create a director with the project name and place

an __init__.py file there. This would help in calling the built shared

object file that can be accessed using a clean interface (Listing 8-10).

Listing 8-10.  init

from .crfsuite_model import CRFSuiteModel

__all__ = ["CRFSuiteModel",]

Chapter 8 Using Rust Applications

324

Since we are organizing the files in a package, we should be able to

call the classes as if the classes had been written in pure Python. Next are

training (Listing 8-11) and predict code (Listing 8-12) as different files.

Note that we are passing the same model name in the code.

Listing 8-11.  Example training file

coding: utf-8

from crfsuite_model import CRFSuiteModel

model = CRFSuiteModel("model.crfsuite")

res = model.fit("data/ner.csv")

print(res)

Listing 8-12.  Example prediction file

coding: utf-8

from crfsuite_model import CRFSuiteModel

model = CRFSuiteModel("model.crfsuite")

res = model.predict("data/ner_predict.csv")

print(res)

Now we should be able to run the training and prediction Python code

(Listing 8-13).

Listing 8-13.  Run training code

$ cd chapter8

$ python3 −m venv venv
$ source venv/bin/ activate

(venv) $ pip install -e .

(venv) $ python crfsuite_model_training.py

Feature generation

type: CRF1d

Chapter 8 Using Rust Applications

325

feature . minfreq : 0.000000

feature . possible_states : 0

feature . possible_transitions : 0

0 1 2 3 4 5 6 7 8

.... 9 10

Number of features : 3136

Seconds required : 0.014

Adaptive Regularization of Weights (AROW)

variance : 1.000000

gamma: 1.000000

max_iterations : 100

epsilon : 0.000000

***** Iteration #1 *****
Loss : 1214.000000

Feature norm : 0.526245

Seconds required for this iteration : 0.014

***** Other iterations *****

***** Iteration #100 *****
Loss : 455.980399

Feature norm : 329.397943

Seconds required for this iteration : 0.012

Total seconds required for training : 1.257

Storing the model

Number of active features : 3115 (3136)

Number of active attributes : 2065 (2086)

Number of active labels : 17 (17)

Writing labels

Writing attributes

Chapter 8 Using Rust Applications

326

Writing feature references for transitions

Writing feature references for attributes

Seconds required : 0.015

accuracy =0.5263158 (160/304 correct)

model fit done

$

If we now check the directory, the crfsuite model file named “model.

crfsuite” should be created (Listing 8-14).

Listing 8-14.  Check for model file

$ l s

Cargo . lock crfsuite_model.egg−info data
requirements−dev.txt venv
Cargo . toml crfsuite_model_prediction.py model.crfsuite

setup . py

MANIFEST. in crfsuite_model_training.py pip−wheel−meta
data src

crfsuite_model crfsuite_model_training1.py pyproject.toml

target

$

Now that the model is created, we should be able to run the prediction

code (Listing 8-15).

Listing 8-15.  Run prediction code

(vevn) $ python crfsuite_model_prediction . py

['O' , 'O' , 'O' , 'O' , 'O' , 'O' , 'B−geo' , 'O', 'O']
$

Similarly, we can take other examples from this book and create apis

that are callable in Python.

Chapter 8 Using Rust Applications

327

8.1.2  �Java
Similar to the Python example that we had a look at earlier, we can

integrate Rust functions and call them in a Java class. The concepts are

similar where we will need to expose the Rust functions in a C interface,

and in Java we will define native methods that are referenced to those C

interfaces. This is done using the jni crate. Let us take the xgboost example

in Chapter 2 and augment it by making it a Java application.

Similar to what we have seen in the Python section, any ffi project will

have some code in both of the languages. We will see the least amount of

code that is required to act as the bridge between the Java side and the

Rust side. Java requires all native methods to adhere to the Java Native

Interface or the JNI standard. So we will need to define the function

signature from Java, and then we can write the Rust code that will adhere

to it. The steps are the following:

•	 Write the functionality;

•	 Write the Java class;

•	 Write the Rust interface that wraps the Rust

functionality and provides access to those

functionalities in Java.

Rust functionality To implement the Rust functions, we will copy and

paste the previous code in xgboost. Notice that the previous code was a

binary executable. Hence we will need to convert the package to a library

to be able to call the functions in Rust (Listing 8-16).

Listing 8-16.  Copy xgboost for java interface

$ cd chapter8

$ cp -r ../chapter2/iris_classification_xgboost .

$ mv src/main.rs src/lib.rs

$

Chapter 8 Using Rust Applications

328

Now we will need to make some edits in the code. Notice that all the

code was written in the run function, which was in turn called in the main

function. We will not need the main function in this case and hence we

will remove it. Then we will break the run function to two functions, fit and

predict. The fit function will read the training file, arrange it according to

relevant vectors, and then train the model. Once the model is trained, we

will save the model in an xgb.model file (Listing 8-17).

Listing 8-17.  chapter8/iris_classification_xgboost/iris_

classification_library/src/lib.rs

pub fn fit() -> Result<(), Box<dyn Error>> {

 let training_file = "data/iris.csv";

 let file = File::open(training_file).unwrap();

 let mut rdr = csv::Reader::from_reader(file);

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: Flower = result.unwrap();

 data.push(r); // data contains all the records

 }

 // previous code that was part of run function.

 // train model, and print evaluation data

 let booster = Booster::train(¶ms).unwrap();

 // save and load model file

 println!("\nSaving Booster model...");

 booster.save("xgb.model").unwrap();

 Ok(())

}

Chapter 8 Using Rust Applications

329

Similarly, we have the predict method, which skips out all the code for

training and only has the data reading and organising code and the predict

code (Listing 8-18).

Listing 8-18.  chapter8/iris_classification_xgboost/iris_

classification_library/src/lib.rs

pub fn predict() -> Result<String, Box<dyn Error>> {

 println!("Loading model");

 let booster = Booster::load("xgb.model").unwrap();

 let predict_file = "data/predict.csv";

 let file = File::open(predict_file).unwrap();

 let mut rdr = csv::Reader::from_reader(file);

 let mut data = Vec::new();

 for result in rdr.deserialize() {

 let r: Flower = result.unwrap();

 data.push(r); // data contains all the records

 }

 let val_size: usize = data.len();

 // differentiate the features and the labels.

 let flower_x_val: Vec<f32> = data.iter().flat_map(

 |r| r.into_feature_vector()).collect();

 let flower_y_val: Vec<f32> = data.iter().map(

 |r| r.into_labels()).collect();

 // validation matrix with 1 row

 let mut dval = DMatrix::from_dense(

 &flower_x_val, val_size).unwrap();

 dval.set_labels(&flower_y_val).unwrap();

 let preds = booster.predict(&dval).unwrap();

 Ok(flower_decoder(preds[0]))

}

Chapter 8 Using Rust Applications

330

Check that in the fit function, we train the model and save the model.

Similarly, in the predict method, we load the model to perform the

predictions. As you can probably understand, this method of persisting

models on disk between runs is not ideal. Also, for each predict request,

this will read the whole model again and again. A better way would be to

persist the model in memory and then pass the pointers to the model, but

this may be unstable and may have memory leaks in them. You can see

that the same method has been seen in the Python section as well.

Java class Now that we have refactored the Rust class to cover the

functionality, we will come back to the Java class definition. The main

point to note is that we will need to define a class with the method names

as same as the functions that we will call so that the jni is able to link the

functions in an effective manner. So we define the signature like that

shown in Listing 8-19.

Listing 8-19.  chapter8/iris_classification_xgboost/iris_

classification_library/src/lib.rs

class IrisClassificationXgboost {

 private static native void fit();

 private static native String predict();

 static {

 System.loadLibrary("iris_classification_xgboost");

 }

}

In the Java class in Listing 6-19, we have the class

IrisClassificationXgboost and then we define native methods under it, fit

and predict. The static System.loadLibrary will load the library and

understand the functions and act as the appropriate linker.

Wrapper functions: Now we will write the appropriate linker functions

that wrap over our functionality. To make things simpler, let’s create a

Chapter 8 Using Rust Applications

331

folder iris_classification_library and move the Rust code inside the

folder. We will also need to make a few changes in Cargo.toml. Apart from

the previous dependencies, we will need to add the jni dependency and

we will need to specify the crate to be of type cdylib (Listing 8-20).

Listing 8-20.  chapter8/iris_classification_xgboost/iris_

classification_library/Cargo.toml

[package]

name = "iris_classification_xgboost"

version = "0.1.0"

edition = "2018"

[dependencies]

previous dependencies

ml-utils = { path = "../../../chapter2/ml-utils" } # give

correct path to mlutils

jni = "0.12.3"

[lib]

name = "iris_classification_xgboost"

crate-type = ["cdylib"]

Now if we run cargo build in the directory, we should see a .dylib file

or an .so (depending on your OS) file in target/debug folder. Now we

need to define our exported methods (Listing 8-21).

Listing 8-21.  chapter8/iris_classification_xgboost/iris_

classification_library/src/lib.rs

use jni;

use jni::JNIEnv;

use jni::objects::{GlobalRef, JClass, JObject, JString};

use jni::sys::{jint, jlong, jstring, jbyteArray};

Chapter 8 Using Rust Applications

332

#[no_mangle]

#[allow(non_snake_case)]

pub unsafe extern "system" fn Java_IrisClassificationXgboost_

fit(_env: JNIEnv, _class: JClass) {

 fit().unwrap();

}

#[no_mangle]

#[allow(non_snake_case)]

pub unsafe extern "system" fn Java_IrisClassificationXgboost_

predict(

 env: JNIEnv,

 _class: JClass,

) -> jstring {

 let output = env.new_string(predict().unwrap())

 .expect("Couldn't create java string!");

 output.into_inner()

}

Notice in Listing 8-21 the dependencies that we are loading. JNIEnv is

the interface to the JVM that the majority of the methods will work on. The

objects in the jni::objects are the objects that carry additional lifetime

information that prevent them from escaping the context. The objects in

jni::sys are meant to return pointers to the appropriate data from Rust. We

cannot send the exact data because the lifetime checker won’t let us.

Now let’s focus on the wrapper functions Java_IrisClassification

Xgboost_fit and Java_IrisClassificationXgboost_predict. We will

apply the no_mangle outer attribute to these wrapper functions, so that

Rust does not mangle the method names when creating the binaries and

Java is able to identify the functions. Generally, if this is not done when

creating the binaries, Rust internally mangles the names of the methods

Chapter 8 Using Rust Applications

333

that are written in the code.3 The Java needs to be written in the format

 Java_classname_methodname. In this way, the Java_IrisClassification

Xgboost_fit and Java_IrisClassificationXgboost_predict wrapper

functions have been created.

Now the fit method is fine as this is a void method, but in case of

Java_IrisClassificationXgboost_predict, we are returning a string. In

this case we need to take care of some additional things. The output type

needs to be a jstring and hence we will need to create a new java string

using env.new_string from the predict function. We will then return the

pointer to the function.

Now we have written all the code that would expose the Rust functions

to Java code. We should now be able to run this code. For this we create the

main method in Java (Listing 8-22).

Listing 8-22.  chapter8/iris_classification_xgboost/iris_

classification_library/src/lib.rs

class IrisClassificationXgboost {

 // previous code

 public static void main(String[] args) {

 IrisClassificationXgboost.fit();

 String predictions = IrisClassificationXgboost.predict();

 System.out.println(predictions);

 }

}

3�Name mangling is used in various other languages such as FORTRAN as well
as to solve various problems caused by the need to solve unique names for
programming entities.

Chapter 8 Using Rust Applications

334

Notice in Listing 8-22 that we are retrieving the output of

IrisClassificationXgboost.predict as a java string and then we are printing

it. We should not be able to compile this code and run the functions

(Listing 8-23).

Listing 8-23.  chapter8/iris_classification_xgboost/iris_classification_

library/src/lib.rs

$ cd iris_classification_library \

 && cargo build

$ javac IrisClassificationXgboost.java \

 �&& java -Djava.library.path=iris_classification_

library/target/debug/ \

 IrisClassificationXgboost

[15:27:22] DANGER AHEAD: You have manually specified `updater`

parameter. The `tree_method` parameter will be ignored.

Incorrect sequence of updaters will produce undefined behavior.

For common uses, we recommend using `tree_method` parameter

instead.

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 4 extra nodes, 0 pruned nodes, max_depth=2

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 4 extra nodes, 0 pruned nodes, max_depth=2

[0] test-merror:0.066667 train-merror:0.044444

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 2 extra nodes, 0 pruned nodes, max_depth=1

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 4 extra nodes, 0 pruned nodes, max_depth=2

Chapter 8 Using Rust Applications

335

[15:27:22] �src/tree/updater_prune.cc:74: tree pruning end,

1 roots, 4 extra nodes, 0 pruned nodes, max_depth=2

[1] test-merror:0.066667 train-merror:0.033333

Saving Booster model...

Loading model

setosa

The Java code was able to take the predictions and print it out. We can

now encode these commands in a makefile (Listing 8-24).

Listing 8-24.  chapter8/iris_classification_xgboost/Makefile

java_run: lib

 javac IrisClassificationXgboost.java \

 �&& java -Djava.library.path=iris_classification_

library/target/debug/ \

 IrisClassificationXgboost

.PHONY: lib

javah:

 javah IrisClassificationXgboost

lib:

 cd iris_classification_library \

 && cargo build

In this way we should be able to create functions in Rust and call those

applications in Java.

Chapter 8 Using Rust Applications

336

8.2	 �Rust in the Cloud
There are various benefits of using machine learning in the cloud.

•	 The cloud’s pay-per-use model is good for bursty and

erratic AI or machine learning workloads.

•	 The cloud makes it easy for enterprises to experiment

with machine learning capabilities and scale up as

projects go into production and demand increases.

•	 The barriers to building a machine learning application

that provide value to the business are many: from

expertise revolving around data sifting, building and

training good machine learning models, to specialized

hardware requirements for machine learning models.

Good cloud providers focus on providing solutions to

all these aspects.

In this section we will take a look at AWS Lambda. After designing

and learning an ML model, the hardest part is actually running and

maintaining it in production. Integrating serverless applications in the

machine learning workflow allow for quick scaling of the machine learning

application.

When creating serverless applications, we would generally select

the runtimes to be one of Python or Node. Luckily, we have the aws

runtime for Rust4 and hence we are able to create serverless applications

in Rust. The API’s for AWS serverless applications define an HTTP-based

specification of the Lambda programming model, which, ideally, can be

implemented in any model.

In our application, we will be making a simple word count application.

To create the application, we will need to add the dependencies to the

4�https://github.com/awslabs/aws-lambda-rust-runtime.

Chapter 8 Using Rust Applications

https://github.com/awslabs/aws-lambda-rust-runtime

337

Cargo.toml file. The serde dependency will serialize and deserialize the

incoming data. We can use log and simple-logger for logging and regex to

be able to parse through the incoming text. Finally, the most important

thing is that we will need to add lambda_runtime to be able to create the

serverless application (Listing 8-25).

Listing 8-25.  chapter8/my_lambda_function/Cargo.toml

[package]

name = "my_lambda_function"

version = "0.1.0"

edition = "2018"

[dependencies]

lambda_runtime = "0.1"

serde = "^1"

serde_derive = "^1"

serde_json = "^1"

log = "0.4"

simple_logger = "^1"

regex = "1"

To be able to serialize and deserialize the incoming data, we will need

to create an event struct and have serialization and deserialization added

so that the runtime is able to parse the data (Listing 8-26).

Listing 8-26.  chapter8/my_lambda_function/src/main.rs

use serde_derive;

use serde_derive::{Serialize, Deserialize};

#[derive(Serialize, Deserialize)]

struct CustomEvent {

 string: String,

}

Chapter 8 Using Rust Applications

338

In our lambda application, we will need to execute the handler as

part of the main function. In the Listing 8-27, my_handler is the handler

function that will have the handler code for the output on the event.

Listing 8-27.  chapter8/my_lambda_function/src/main.rs

use lambda_runtime;

use lambda_runtime::{lambda, Context, error::HandlerError};

use log;

use log::error;

use std::error::Error;

fn main() -> Result<(), Box<dyn Error>> {

 simple_logger::init_with_level(log::Level::Debug).unwrap();

 lambda!(my_handler);

 Ok(())

}

We should now be able to put in the code for the handler. The

incoming data will be parsed and put in the CustomEvent struct using

serde. If the string is not given, then we return saying that no input string

has been provided. If a string is present, then we create a hashmap with

all the words in the string, with the values as the count of the words in the

string. The words in the string are recognized by parsing using the regex

module. Last, we will need to serialize to a string, which we perform using

json serialization (Listing 8-28).

Listing 8-28.  chapter8/my_lambda_function/src/main.rs

use std::collections;

use std::collections::hash_map::Entry::{Occupied, Vacant};

use regex;

use regex::Regex;

Chapter 8 Using Rust Applications

339

fn my_handler(

 event: CustomEvent, ctx: Context)

 -> Result<String, HandlerError> {

 if event.string == "" {

 error!("Empty string in request {}", ctx.aws_request_id);

 return Err(ctx.new_error("Empty input string"));

 }

 let mut map = collections::HashMap::<String, u32>::new();

 let re = Regex::new(r"\w+").unwrap();

 for caps in re.captures_iter(&event.string) {

 if let Some(cap) = caps.get(0) {

 let word = cap.as_str();

 match map.entry(word.to_string()) {

 Occupied(mut view) => { *view.get_mut() += 1; }

 Vacant(view) => { view.insert(1); }

 }

 }

 }

 let j = serde_json::to_string(&map).unwrap();

 Ok(j)

}

Now although the app by itself is done, we would need to perform

some additional hoops to be able to run it in the lambda runtime on the

cloud servers. When configured to use a custom runtime with the Runtime

APIs, AWS Lambda expects the deployment package to contain an

executable file called bootstrap. We can configure Cargo to generate a file

called bootstrap, regardless of the name of our crate. First, in the [package]

section of the file, add an autobins = false setting. Then, at the bottom of

the Cargo.toml, add a new [[bin]] section providing the name of the binary

file and the path of the code (Listing 8-29).

Chapter 8 Using Rust Applications

340

Listing 8-29.  chapter8/my_lambda_function/Cargo.toml

[package]

name = "my_lambda_function"

version = "0.1.0"

authors = ["joydeep bhattacharjee"]

autobins = false

edition = "2018"

dependencies code

[[bin]]

name = "bootstrap"

path = "src/main.rs"

This would create a binary executable name bootstrap when built in

line with the AWS expectations.

Now before we build, we need to make sure that the Rust compiler

is targeting the correct platform. AWS Lambda executes in an Amazon

Linux environment and hence we will need to build against this specific

platform. This is where Cargo as a tool shines again as it makes it very easy

for us to be able to build cross-platform tools. So, we don’t necessarily

need to compile in an Amazon Linux machine but can build on, let’s say, a

MacOS laptop as well. First we will need to install the musl tool to be able

to build against the platform (Listing 8-30).

Listing 8-30.  rustup add linux target

$ rustup target add x86_64-unknown-linux-musl

$

Chapter 8 Using Rust Applications

341

Before we build the platform, we will need to add a linker for the

compilation toolchain. This means that we will need to run a brew install

command on MacOS platforms.5 See Listing 8-31.

Listing 8-31.  Brew install musl-cross

$ brew install filosottile/musl-cross/musl-cross

$

Once done, we will need to tell Cargo that when building, use this

linker instead the default one. This is done by creating a new file in

.cargo/config with the linker information (Listing 8-32).

Listing 8-32.  chapter8/my_lambda_function/.cargo/config

[target.x86_64-unknown-linux-musl]

linker = "x86_64-linux-musl-gcc"

Sometimes the linker would not get picked up directly, so we might

need to manually soft link to the linker (Listing 8-33).

Listing 8-33.  link musl gcc

$ ln -s /usr/local/bin/x86_64-linux-musl-gcc /usr/local/bin/

musl-gcc

$

Now with the toolchain fully in place, we should be able to create the

executable that can be run on the lambda platform (Listing 8-34).

Listing 8-34.  cargo build

$ cargo build --release --target x86_64-unknown-linux-musl

$

5�https://github.com/FiloSottile/homebrew-musl-cross.

Chapter 8 Using Rust Applications

https://github.com/FiloSottile/homebrew-musl-cross

342

We should now be able to see the executable built in the target folder

(Listing 8-35).

Listing 8-35.  check executable fi le

$ ls target/x86_64-unknown-linux-musl/release/

bootstrap bootstrap.d build deps

examples incremental native runtime_release

$

We will need to zip this executable to be able to deploy to AWS Lambda

(Listing 8-36).

Listing 8-36.  zip for AWS

$ zip -j rust.zip ./target/x86_64-unknown-linux-musl/release/

bootstrap

$

Since this involves quite a lot of commands, we can put them in a

simple build shell file (Listing 8-37).

Listing 8-37.  chapter8/my_lambda_function/buildthis.sh

rm -f rust.zip

cargo build --release --target x86_64-unknown-linux-musl

zip -j rust.zip target/x86_64-unknown-linux-musl/release/

bootstrap

We can now deploy this file to AWS Lambda. Navigate to the AWS

Lambda console and create a new function. We will need to select Author

from Scratch. Type in a name of the function and, importantly, select

the runtime to be “Provide your own bootstrap.” The page should look

something like Figure 8-1.

Chapter 8 Using Rust Applications

343

In the next page, scroll below to function code. Click on code entry

type and then select “Upload a .zip file.” See Figure 8-2

Now we need to select the correct file and click the save button. This is

shown in Figure 8-3.

Once saved, our lambda function is created. We can now configure a

test case in the console to see if the function is behaving as expected. This

is shown in Figure 8-4. Since our function expects a string parameter, we

can pass a random sentence to the string parameter, and that should give

us the word count.

In Figure 8-5 we see that running the test case gives us the correct

result.

We have been successful in creating a serverless application in Rust.

There are some caveats in this model of bprogramming though. In our

case, the algorithm was simple and can be built easily using Rust. If the

code is in pure Rust, the Rust tooling that is built works, and we should

be able to build serverless applications easily. In case the applications

have external library dependencies, such as the ones we have seen in

the majority of this book, it is quite difficult to perform cross-linking and

compilation and create a binary for the AWS platform. Still if we are able

to do that, then model inference will work. Model training using serverless

Rust is not shown because that takes up time and serverless applications

have a timeout. Nonetheless, integrating serverless applications in the ML

workflow gives a huge productivity benefit to the developer.

Chapter 8 Using Rust Applications

344

Figure 8-1.  Create lambda funcion

Figure 8-2.  Select upload method

Chapter 8 Using Rust Applications

345

Figure 8-3.  Select zip file

Figure 8-4.  Test case

Figure 8-5.  Test run

Chapter 8 Using Rust Applications

346

8.3	 �Conclusion
This last chapter introduced you to different ways in which Rust code

can be integrated in an existing application. The chapter starts with

writing wrappers for Python code using PyO3, and then we moved on to

writing JNI wrapper code for using Rust code in Java. Finally, we created a

serverless application in AWS Lambda for an example of Rust in the cloud.

8.4	 �Bibliography

	 [1]	 Ben Frederickson. Writing Python Extensions in Rust

Using PyO3. “[On- line; accessed 5-June-2019]”. 2018.

url: https://www.benfrederickson.com/writing-

python-extensions-in-rust-using-pyo3/.

	 [2]	 Carol Nichols Steve Klabnik. Safe JNI Bindings in

Rust. [Online; accessed 19-Nov-2019]. url: https://

docs.rs/jni/0.12.3/jni/.

	 [3]	 Michael Nitschinger. First Steps with Rust and JNI.

Ed. by Machine Learn-ing Mastery. [Online; accessed

11-June-2019]. 2016. URL: https://nitschinger.at/

First-Steps-with-Rust-and-JNI/.

	 [4]	 AWS Lambda Runtimes. [Online; accessed 15-June-

2019]. url: https://docs.aws.amazon.com/lambda/

latest/dg/lambda-runtimes.html.

Chapter 8 Using Rust Applications

https://www.benfrederickson.com/writing-python-extensions-in-rust-using-pyo3/
https://www.benfrederickson.com/writing-python-extensions-in-rust-using-pyo3/
https://docs.rs/jni/0.12.3/jni/
https://docs.rs/jni/0.12.3/jni/
https://nitschinger.at/First-Steps-with-Rust-and-JNI/
https://nitschinger.at/First-Steps-with-Rust-and-JNI/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html
https://docs.aws.amazon.com/lambda/latest/dg/lambda-runtimes.html

347© Joydeep Bhattacharjee 2020
J. Bhattacharjee, Practical Machine Learning with Rust,
https://doi.org/10.1007/978-1-4842-5121-8

Index

A
Amazon S3, 172
Application creation, 7, 8
array, 14, 285
AWS Lambda, 339, 340, 342
AWS serverless applications, 336

B
bootstrap, 339, 340

C
Cargo, 7, 8, 34, 179, 183
Cargo.toml file, 7, 278
Cart-pole problem, 128
Chatbots/Natural language

understanding (NLU), 213
creating dataset.json, 217
dataset.yaml, content, 215, 216
English model, download, 215
inference engine (see Inference

engine)
intent recognition, 214
Python virtual

environment, 215
snips training, 218
Ubuntu install clang, 214

Cloud, Rust
AWS Lambda, 342
benefits, 336
Cargo.toml, 339
CustomEvent struct, 338
event struct, 337
handler function, 338
json serialization, 338
lambda application, 338
lambda function,

creation, 344
lambda_runtime, 337
serialization and

deserialization, 337
serverless

application, 336, 343
test case, 345
test run, 345
upload method,

selection, 344
word count application, 336

Cluster center, 109, 112
Collaborative filtering, 294
Collaborative methods, 294
Command line, 296–298
Conditional Random

Fields (CRFs), 201
Content-based filtering, 294

https://doi.org/10.1007/978-1-4842-5121-8

348

Convolutional neural networks
(CNN), 230

convolution layer, 230
model, 241

CnnNet, 241
forward_t method, 245
tch repo, 244
tch-rs library, 242
tensor

transformation, 243
torch.nn.Module, 243

relu layer, 231, 232
stacks of modules, 230

Covariance matrices, 114
Cross-platform tools, 340
CSS selectors, 155, 157
CustomEvent struct, 338

D
datafusion, 179
dataset_table_begin, 279, 282
Data transformation, 178–182
Data types, 13, 14
Density-Based Spatial Clustering of

Applications with Noise
(DBSCAN), 119, 120

deserialize_books function, 302
deserialize_ratings, 302
Docker, 159

E
EM algorithm, 115

F
FastText, 188, 191
fit function, 304, 319, 330, 333
Forgy method, 108, 109
from_path variable, 238
Functions, 14, 15

G
Gaussian distribution, 112, 114
Gaussian functions, 115
Gaussian mixture models (GMM’s)

cluster centers, 112
covariance matrices, 114
expectation maximization

algorithm, 115
full and regularized

options, 116–119
Gaussian distribution, 112, 113
multiple distributions, 113
predict method, 115, 116
rusty_machine, 115

Gene expression dataset, 278
gene_expression_headers, 283–285
gene_expression_measures_

matrix, 287
gene_expression_measures_vec, 285
Graph databases, 166, 171

H
Heap/object store, 2
HTTP-based specification, 336
Hughes phenomenon, 121, 122

INDEX

349

I
If conditions, 15, 16
Image classification, 229, 230

CNN, 230–232
current directory structure, 235
model building and debugging,

246–248
pretrained models, 249–253
rust and torch, 232
torch dataset, 232

Caltech101, 233, 234
directory, 235
load_from_dir function, 240
mkl/libtorch

dependencies, 233
move_file function, 237
output, 239
this_label variable, 236, 237
train/val images, 238

ImplicitEWMAModel
struct, 307, 308

Inference engine
cargo run, 221, 222
cargo.toml, 220
incoming function, 223
modules, 220, 221
nlu engine, 222, 226, 227
rocket app, 224, 225
rust mutexes, 224
rust project, 219

init_engine function, 225
input_indices vector, 309
Installation, 5, 6

Intent recognition, 214
Inverted pendulum, 128

J
JavaScript Object Notation (JSON)

Cargo.toml file, 142
conversion, string, 147
data_formats, 142
data structure, 142
default serialization-

deserialization data
structure, 141

defining, structure, 147
hierarchy of structs, 145
mod keyword, 143
schema struct, 148
serde_json::Value ENUM, 142
Serde’s deserializer, 147

json serialization, 338

K
Key invariants, 3
K-MeansClassifier struct, 109
K-means clustering, 108–111

L
Lambda function, 343
Lambda programming model, 336
Linear algebra, 183
load_from_dir function, 240
LSTM-based model, 302

INDEX

350

M
Machine learning, 121, 194
Matrices, 183–186
Matrix multiplications, 121
Matrix transformation, 185
Model building, 302–307
Model deserialization, 307
model_prediction, 210, 316
Model training, 343
Moneycontrol, 155
Moving average-based model

(EWMA), 302
Mutable references, 20–22

N
Named entity recognition (NER)

accuracy function, 210
algorithm, 208, 209
annotation tools, 202, 203
CRFs, 201
crfsuite-model

package, 204
dataset, 203, 204
IOB2 notation, 202
main module, 205
model prediction, 208
output, 211–213
Vec<NER>, 206

Natural language processing (NLP)
FastText, 191
sentence classification, 188

cargo file, 189, 190
constants, 191

fasttext model, 188, 196, 197
into_labels

method, 192, 199
ML model, 195
shuffle vector, 191, 192
softmax, 198
spooky author data, 188
stemmer algorithm, 194
stopwords, 195
text preprocessing, 193
tokenization, 193
to_lowercase method, 193
training, fasttext

model, 200
ndarray matrix type, 277, 278
Neural style transfer

Adam optimization
algorithm, 262

content loss, 258
current loss, 263
gradient optimization

method, 262
model layers, 261
style loss, 258, 259
VGG pretrained model, 260

NoSQL
Bash, 167
connection string, 168
cypher queries, 171
graph databases, 166
hostname-I, 170
namespaces, 168, 169
relational learning, 172
rusted-cypher crate, 167

INDEX

351

O
Object-Oriented

Programming (OOP)
enumerations, 26
methods and impl, 24, 25
structures, 22, 23
traits, 23, 24

ORMs, 159

P
Postgres database, 159
Postgres Docker, 159
Postgres rust crate, 159
Predict method, 319, 329
Principal component

analysis, 121–123
process_gene_expresssion_

data, 285

Q
Q-function, 135
Q-learning, 127, 134

R
Rand Index, 124
RandomPartition method, 108, 110
Recommender systems

command line, 296–298
content-based and collaborative

filtering, 294
crate rand, 295

data, 300, 302
downloading data, 299
failure, 295
install libssl ubuntu, 294
model building, 302–307
model prediction, 307–312
package sbr, 294
recommendation modules, 295
rust goodbooks package, 295
sbr crate, 295

References and borrowing, 17, 18, 20
Reinforcement learning

agents, 127
cart-pole, 129
challenges, 128
domain behaviors,

Cart-pole, 132
domain trait, 131
inverted pendulum, 128
optimal policy, 136, 137
Q-function, 135
Q-learning, 134
real-world applications, 127
real-world simulations, 128
reward behavior, 133
rsrl, 128
SARSA, 135
state space behavior, 133

Rust
aim, 2
binary package statistics, 278
recommendation engines, 294
statistical parameters, 278
tests, 27, 28

INDEX

352

Rust code
Java

copy xgboost, interface, 327
fit function, 330
functions creation, 335
IrisClassificationXgboost.

predict, 334
Java class definition, 330
jni crate, 327
main function, 328
main method, 333
organization and predict

code, 329
predict method, 329
rust functionality, 327
training code, 329
Wrapper functions, 330–333
xgb.model file, 328

Python
Cargo.toml, 317
check_accuracy, 319
clean interface, 323
create_xseq_yseq, 319, 320
crfmodel_training, 316, 319
crfsuite model file, 326
fit method, 319
__init__.py file, 323
model_prediction, 316, 319
module, 321
overall function signature, 319
predict method, 321
run prediction code, 326
run training code, 324, 325
split_test_train, 316, 319

training and predict
files, 317, 324

Rust-specific static library
format, 316

rusty_machine_unsupervised,
120, 122

S
Scraping package

Cargo.toml file, 154
Chrome Selector, 157
CSS selectors, 155
moneycontrol website, 155
output, 158
package creation, 154
reqwest apis, 156
resp variable, 156
scheduling system, 157
Selector::parse method, 157

Selector string, 157
Serialization and deserialization, 142
Serverless applications, 336
Softmax, 198
SQL

binary package databases,
creation, 159

cargo run Postgres, 163
connection string, 161
data, s3, 172–178
data transformations, 178–182
Docker postgres, 160
main method, 162
NoSQL (see NoSQL)

INDEX

353

ORMs, 159
package root, run, 165
postgres container, 160
postgres crate, 160
postgres queries, 163
postgres rust crate, 159
retrieving data, 163
struct, create, 164
table creation, 161
vector, table, 162
writing native queries, 159

Standard deviation, 290
Statistical analysis

Axis index, 286
dataset_table_begin, 283
data structures, 279
dependencies, 280
download browser data, 279
file, format, 279
gene_expression_headers,

283, 284
gene_expression_measures_

matrix, 287
gene_expression_measures_

vec, 285
mean and variance,

calculation, 287
ndarray, 280
process_gene_expresssion_

data_headers, 283
p-values, 290
rust binary package statistics

creation, 278
soft file, 279

subset_description, 281, 283
subset_ids, 282
Z-scores, 287, 288, 290

T
Tensorflow

bbox_res and prob_res, 271–275
BGR format, 269, 270
cargo.toml, 265
face-detection-tf Rust package,

creation, 264
graph, 267, 268
mtcnn pretrained model, 264
result, 268
StructOpt struct, 266

to_filename variable, 238
Tokenization, 193
Transfer learning, 254–256

neural style (see Neural style
transfer)

training, 256, 257

U
Unsupervised model, 123, 124

V
Variables

mutation and shadowing, 11, 12
nightly version, 9
scope, 13
types, 9

visit_dir function, 236, 240

INDEX

354

W
Wrapper functions, 330–333

X, Y
XML data format

Cargo.toml file, 149
file structure, 149
hierarchy, structs, 149
main method, 152

serde-xml-rs crate, 149
strongly typed constructs, 153
structs, creating, 150
structure, xml file, 150
xmlreading module, 152
xmlreading::run function, 153

Z
Z-scores, 287, 290

INDEX

	Table of Contents
	About the Author
	Acknowledgments
	Introduction
	Chapter 1: Basics of Rust
	1.1 Why Rust?
	1.2 A Better Reference
	1.3 Rust Installation
	1.4 Package Manager and Cargo
	1.5 Creating New Applications in Rust
	1.6 Variables in Rust
	1.6.1 Mutation and Shadowing
	1.6.2 Variable Scoping

	1.7 Data Types
	1.8 Functions
	1.9 Conditions
	1.9.1 If Conditions
	1.9.2 Pattern Matching

	1.10 References and Borrowing
	1.10.1 Mutable References

	1.11 Object-Oriented Programming
	1.11.1 Structures
	1.11.2 Traits
	1.11.3 Methods and impl
	1.11.4 Enumerations

	1.12 Writing Tests
	1.13 Summary
	1.14 References

	Chapter 2: Supervised Learning
	2.1 What Is Machine Learning?
	2.2 Dataset Specific Code
	2.3 Rusty_Machine Library
	2.4 Linear Regression
	2.5 Gaussian Process
	2.6 Generalized Linear Models
	2.7 Evaluation of Regression Models
	2.7.1 MAE and MSE
	2.7.2 R-Squared Error

	2.8 Classification Algorithms
	2.8.1 Iris Dataset
	2.8.2 Logistic Regression
	2.8.3 Decision Trees
	2.8.4 Random Forest
	2.8.5 XGBoost
	2.8.6 Support Vector Machines
	2.8.7 K Nearest Neighbors
	2.8.8 Neural Networks
	2.8.8.1 Torch and tch-rs

	2.8.9 Model Evaluation

	2.9 Conclusion
	2.10 Bibliography

	Chapter 3: Unsupervised and Reinforcement Learning
	3.1 K-Means Clustering
	3.2 Gaussian Mixture Model
	3.3 Density-Based Spatial Clustering of Applications with Noise (DBSCAN)
	3.4 Principal Component Analysis
	3.5 Testing an Unsupervised Model
	3.6 Reinforcement Learning
	3.7 Conclusion
	3.8 Bibliography

	Chapter 4: Working with Data
	4.1 JSON
	4.2 XML
	4.3 Scraping
	4.4 SQL
	4.5 NoSQL
	4.6 Data on s3
	4.7 Data Transformations
	4.8 Working with Matrices
	4.9 Conclusion
	4.10 Bibliography

	Chapter 5: Natural Language Processing
	5.1 Sentence Classification
	5.2 Named Entity Recognition
	5.3 Chatbots and Natural Language Understanding (NLU)
	5.3.1 Building an Inference Engine

	5.4 Conclusion

	Chapter 6: Computer Vision
	6.1 Image Classification
	6.1.1 Convolutional Neural Networks (CNN)
	6.1.2 Rust and Torch
	6.1.3 Torch Dataset
	6.1.4 CNN Model
	6.1.5 Model Building and Debugging
	6.1.6 Pretrained Models

	6.2 Transfer Learning
	6.2.1 Training
	6.2.2 Neural Style Transfer

	6.3 Tensorflow and Face Detection
	6.4 Conclusion
	6.5 Bibliography

	Chapter 7: Machine Learning Domains
	7.1 Statistical Analysis
	7.2 Writing High Performance Code
	7.3 Recommender Systems
	7.3.1 Command Line
	7.3.2 Downloading Data
	7.3.3 Data
	7.3.4 Model Building
	7.3.5 Model Prediction

	7.4 Conclusion
	7.5 Bibliography

	Chapter 8: Using Rust Applications
	8.1	 Rust Plug-n-Play
	8.1.1 Python
	8.1.2 Java

	8.2	 Rust in the Cloud
	8.3	 Conclusion
	8.4	 Bibliography

	Index

